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SUMMARY

This dissertation focuses on topics related to the value of real-time information and/or

to supply uncertainties due to uncertain lead-times and yields in supply chains. The first

two of these topics address issues associated with freight transportation, while the remaining

two topics are concerned with inventory replenishment.

We first assess the value of dynamic tour determination for the traveling salesman prob-

lem (TSP). Given a network with traffic dynamics that can be modeled as a Markov chain,

we present a policy determination procedure that optimally builds a tour dynamically. We

then explore the potential for expected total travel cost reduction due to dynamic tour

determination, relative to two a priori tour determination procedures.

Second, we consider the situation where the decision to continue or abort transporting

perishable freight from an origin to a destination can be made at intermediate locations,

based on real-time freight status monitoring. We model the problem as a partially observed

Markov decision process (POMDP) and develop an efficient procedure for determining an

optimal policy. We determine structural characteristics of an optimal policy and upper and

lower bounds on the optimal reward function.

Third, we analyze a periodic review inventory control problem with lost sales and random

yields and present conditions that guarantee the existence of an optimal policy having a so-

called staircase structure. We make use of this structure to accelerate both value iteration

and policy evaluation.

Lastly, we examine a model of inventory replenishment where both lead time and supply

qualities are uncertain. We model this problem as an MDP and show that the weighted sum

of inventory in transit and inventory at the destination is a sufficient statistic, assuming that

random shrinkage can occur from the origin to the supply system or destination, shrinkage

is deterministic within the supply system and from the supply system to the destination,

x



and no shrinkage occurs once goods reach the destination.
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CHAPTER I

INTRODUCTION

This dissertation focuses on topics related to the value of real-time information and/or to

supply uncertainties due to uncertain lead-times and yields in supply chains. The first two

of these topics address issues associated with freight transportation, while the remaining

two topics are concerned with inventory replenishment.

Our interest in the value of information in supply chain control has grown as the appli-

cation of sensor, communications, and control technologies has rapidly spread throughout

the freight transportation, logistics, and supply chain industries, providing data in real time

that enable the real time control of supply chains. The sources of potentially useful data in

a supply chain include: inventory levels; production rates; vehicle, vessel, or trailer position,

speed, direction, engine status, oil or air pressure; traffic congestion; weather; freight status

and visibility.

With regard to supply uncertainty, there are many causes of lead-time variability: con-

gestion on highways, at ports (both air and sea), and at intermodal sites; extreme weather;

labor disputes; accidents; intentional disruptions; natural disasters; resource (e.g., fuel, la-

bor, equipment) shortages; mistakes. This variability tends to increase as the mean of the

lead-time increases, particularly when the supply chain requires multiple mode changes and

international border crossings. Not surprisingly, globalization has been a significant con-

tributor to supply chain lead-time mean and variability and the need for related supply

chain control.

A significant portion of freight (e.g., types of food, particularly fresh produce, and vac-

cines) moved nationally and internationally is perishable (often due to poor temperature

control during transit), and there are a variety of manufacturing processes (e.g., semiconduc-

tor manufacturing) that produce a significant and random percentage of unusable products

(due, for example, to poor quality process control). Damage in-transit and pilferage can
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also contribute to a reduction in the amount of freight received, compared to the amount

of freight ordered. In such situations, a challenge is to place orders that optimally take

into account fact that the amount of useable goods received is only randomly related to the

amount of goods ordered.

Assuming that network traffic congestion can be described by a Markov chain, we exam-

ine the value of traffic information for pickup and delivery in Chapter 2 by comparing the

optimal expected value function for a traveling salesman problem (TSP) tour determined

dynamically to a TSP tour determined a priori. In Chapter 3, we investigate the expected

improvement of supply chain performance if actions to continue or abort the transport of

goods from origin to destination can be taken, based on perishable freight status (e.g.,

temperature) monitored in transit.

Chapters 4 and 5 are more specifically related to supply uncertainty when the quality

of all freight throughout the supply chain is completely observed and known to the decision

maker. Chapter 4 examines the structure of an optimal replenishment policy under the as-

sumption that replenishment of a perishable product is instantaneous. Chapter 5 considers

a much more complex supply system model that allows lead-time variability and extends

known results to the case where the product in the supply chain is perishable.

We now present more in-depth overviews of each of the remaining chapters in the dis-

sertation. In Chapter 2, we study a variant of a classical TSP, called dynamic traveling

salesman problem (DTSP), to identify an optimal policy in a stochastic TSP network where

the network congestion dynamics are governed by a stationary Markov chain to determine

the next stop, given the following information: set of nodes visited previously, the current

node, and the current status of network congestion. More specifically, Chapter 2

• Investigates the value of choosing the next stop to visit in a multi-stop trip, based on

current traffic conditions, in order to minimize expected total travel time of the tour;

• Develops a MDP decision model for the concomitant DTSP, and a solution approach

based on a best-first search algorithm called AO*; and

• Provides two benchmark fixed tours in order to assess the value of constructing a tour

2



dynamically, relative to the benchmark tours.

Our numerical results indicate that the proposed solution methodology is capable of solving

realistically sized problems (e.g., for less-than-truckload pickup and delivery) fast enough

for operational purposes while the standard dynamic programming approach can be com-

putationally impractical or intractable for the same sized problems in terms of the number

of states evaluated and CPU times.

Chapter 3 focuses on how real time in-transit monitoring of perishable freight for a single

vehicle traveling from an origin to a destination can improve cold supply chain performance.

Typically, such freight is either accepted or not accepted at the destination, based on tem-

perature data collected during transit. However, if the condition of the freight is known

in-transit, actions can be taken in-transit to improve overall supply chain performance. We

investigate the expected improvement in supply chain performance if at intermediate points

during the trip actions can be taken to either allow the trip to continue or to abort the trip.

Allowing the trip to continue to the next intermediate point also involves deciding whether

or not to observe the freight for a fee. Depending on circumstances, the action to abort

can have one of many interpretations, including immediately disposing of the freight and

returning directly back to the origin, disposing of the freight and expediting a fresh load to

the destination, or selling the freight to a secondary market. Specifically, Chapter 3

• Examines the expected improvement of cold supply chain productivity if access is

available to inspections of perishable freight for a single vehicle in transit from a

source to a destination through intermediate locations;

• Models the problem as a partially-observed Markov decision process (POMDP);

• Develops an efficient procedure to solve the POMDP model;

• Presents structural properties for both the optimal expected cost function and an

optimal policy; and

• Examines two special cases of the original model, the case reflecting current practice

and the case where observations are free, and present additional structural properties

3



of the corresponding expected cost functions and optimal policies for each of these

two special cases.

We note that the expected cost function is used to determine the expected improvement

in supply chain performance if the freight can be monitored in transit while an optimal

policy provides what actions should be taken, based on currently available data, in order

to optimally increase expected supply chain productivity.

Chapter 4 studies the effects of the supply uncertainty on the optimal order quantity in

supply chains. Specifically, we consider a discrete state, discrete decision epoch inventory

replenishment control problem under random yield. We assume that there is no backlogging,

the single period demand d is deterministic, and once an item is placed in inventory, it will

not perish in order to investigate the impact of supply uncertainty in procurement. Chapter

4

• Develops a MDP decision model for an inventory control system with random yields

and lost sale over discrete state and action spaces;

• Presents conditions that guarantee that an optimal replenishment policy δ∗ is such

that δ∗(z) = 0 for z < 0, δ∗(z)− z > 0, and δ∗(z)− z is monotonically non-decreasing

for z > 0 where z = d− x and x is the current inventory level; and

• Develops an algorithm for determining the optimal policy and the optimal expected

total discounted cost over infinite horizon.

Chapter 5 further investigates the effects of the supply uncertainty during a shipment

on the optimal order quantity when the lead-time between a source and a destination is

uncertain and non-negligible. Specifically, Chapter 5

• Develops a MDP decision model for an multi-staged inventory control model with

both lead-time and yield uncertainty over infinite horizon; and

• Presents conditions that guarantee that the weighted sum of inventory in-transit and

inventory at the destination is a sufficient statistic for the MDP model, assuming

that random shrinkage can occur from the origin to the supply system or destination,

4



shrinkage is deterministic within the supply system and from the supply system to

the destination, and no shrinkage occurs once goods reach the destination.

Finally, we summarize our results and present topics for future research in Chapter 6.
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CHAPTER II

DYNAMIC TRAVELING SALESMAN PROBLEM: VALUE OF

REAL-TIME TRAFFIC INFORMATION

2.1 Introduction

The traveling salesman problem (TSP) has a long history of capturing the interests of

researchers, in large part because of its usefulness in modeling a variety of important real-

world problems (e.g., problems in logistics, genetics, manufacturing, telecommunications,

and neuroscience) and because of a myriad of intellectual challenges. Applegate et al. [2]

present the history, applications, and computational solution techniques for the TSP; we

paraphrase their definition of the TSP as follows:

Given a set of cities along with the cost of travel between

each pair of them, the TSP is to find the cheapest way of visiting

all the cities and returning to the starting point,

where the order of the cities to be visited is called a tour (or circuit) and the cost of travel

between each pair of cities is stationary and deterministic.

In reality for pick up and delivery (PUD) in an urban (typically congested) environment

(the application that has motivated our research), travel times can change unpredictably

and hence are reasonably modeled as random variables. Further, information technologies

that sense traffic conditions in real time (perhaps an integration of infrastructure-based and

vehicle-based intelligent transportation systems) can provide data that permit dynamic tour

determination, the real-time construction of the tour as the trip progresses based on real-

time traffic congestion data. We call the concomitant problem the dynamic TSP (DTSP).

In order to illustrate the potential value of real-time traffic information, consider a three

location network, where location 1 is the origin and destination location. Assume the costs

of traversing the arcs are as given in Table 1, where the cost of arc (n, n′) represents the

cost of traveling from location n to location n′.

6



Table 1: Cost Parameters

Arc Cost

(1, 2)

{
1, if the arc is not congested

3, if the arc is congested

All other arcs 2

Clearly, if arc (1, 2) is not congested, the optimal tour is (1, 2, 3, 1), and if arc (1, 2)

is congested, the optimal tour is (1, 3, 2, 1). If we let α be the probability that arc (1, 2)

is not congested, then we note that the expected cost of always selecting tour (1, 2, 3, 1) is

5α+7(1−α), the expected cost of always selecting tour (1, 3, 2, 1) is 6, and the expected cost

of selecting (1, 2, 3, 1) when arc (1, 2) is not congested and selecting (1, 3, 2, 1) when arc (1, 2)

is congested is 5α+ 6(1− α). Thus, the value of selecting the congestion dependent policy,

relative to selecting the best of the two congestion independent policies, is min{6, 5α+7(1−
α)} − (5α+ 6(1− α)) = min{α, 1− α}. We remark that min{α, 1− α}/min{6, 5α+ 7(1−
α)}, the ratio of gain from congestion information to the best cost of the two congestion

independent policies, is in the interval [0, 1/12], depending on α. This productivity gain

could be significant for a (often low margin) PUD carrier and is quite similar to theoretical

productivity gains estimated to result if vehicles were allowed to dynamically route (i.e.,

re-route in-route between origin and destination, based on real-time traffic information; see

Kim et al. [33][34]). Both dynamic routing and touring together could produce significant

productivity increases.

The objective of the research presented in this chapter is to better understand the value

of real-time traffic data in developing tours for PUD vehicles in real-time (i.e., dynamic

touring) and hence better understand the implications of incorporating this capability into

the management of a PUD fleet. Our interest in determining the value of dynamic touring

is due to

(i) research presented in Kim et al. [33] and Kim et al. [34], which indicated the possi-

bility of significant productivity improvement from dynamic routing,
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(ii) the fact that package express PUD drivers in Tokyo construct tours and routes dy-

namically using their experience and intuition, based on current traffic congestion

information reported to them by their dispatchers and other company PUD drivers

in the area (private communications).

Although we demonstrate that there may be material advantage in using current traffic

data for dynamic touring, we recognize two challenges for eventual successful implementa-

tion. First, we note that PUD dispatchers in large urban areas often have wireless com-

munications connectivity with their drivers and web access to real-time traffic conditions.

Thus, we anticipate that the challenge of inserting and sustaining dynamic touring into a

PUD fleet’s operating procedures would be primarily behavioral and organizational, rather

than financial.

The second challenge, which we take an initial step to address, is to determine how to

turn current traffic data into dynamic touring decisions in light of the fact that the TSP has

long represented a significant computational challenge, and stochastic optimization prob-

lems tend to be more computationally demanding than deterministic optimization prob-

lems. Due to the limitations of dynamic programming (DP) for solving realistically sized

DTSPs, we transform the DTSP into an AND/OR graph and apply the best-first heuris-

tic search algorithm AO* for optimal policy determination. This application has proved

capable of solving many realistically sized problems (e.g., for LTL PUD) fast enough for

operational purposes on a laptop with standard configuration. We note, however, that the

DTSP represents a formidable computational challenge, and expanding the space of solv-

able, realistically sized problems would require further algorithmic development. Improved

computational procedures and the development of good sub-optimal designs for the DTSP

are topics for future research and development.

2.2 Related Literature

The deterministic TSP and its variants have been extensively studied Applegate et al.

[2]. However, there has been limited research on solving the TSP problem with stochastic

travel times. Leipala [37] proposed a method to estimate the expected length of an optimal
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tour when travel times between two nodes are assumed to be identically and independently

distributed (i.i.d) random variables. Bellman and Roosta [6] presented a stochastic dynamic

programming formulation for the TSP, and Percus and Martin [47] proposed a method

called the cavity method to determine a tour of minimum expected length under the same

assumptions on arcs whose travel times are random variables. Jula et al. [30] examined the

stochastic TSP with time windows (STSPTW) having stochastic travel and service times.

To seek a least-cost tour while meeting the service requirements for each customer, they

proposed a method to estimate means and variances of arrival times at each node, and then

presented an approximate algorithm to determine the least-cost STSPTW tour based on an

estimate of arrival time at each node. Chang et al. [10] proposed a heuristic approach for

the STSPTW having tight time windows. For most previous research, we observe that the

travel time random variables on each arc are usually assumed to be i.i.d random variables,

and it has been a common approach to approximate travel times in order to handle the

complexity caused by the stochastic travel time assumption.

A comprehensive overview of the vehicle routing problem (VRP) and its stochastic vari-

ants can be found in Toth and Vigo [60]. Ichoua [28] proposed a VRP with time-dependent

travel speed that satisfies the FIFO property. Laporte et al. [35] introduced a stochastic

travel-time version of a VRP. Haghani and Jung [22] developed a genetic algorithm for the

VRP having a continuous travel time function and proposed a strategy to adjust the vehicle

route at certain times in the planning horizon, based on newly available traffic or demand

information.

This chapter differs from existing research in that we focus on seeking an optimal policy

(not an a priori tour) that is dependent on currently observed network status in a stochas-

tically evolving network. To the best of our knowledge, there have been only a few studies

regarding tours that dynamically change depending on network status. Taniguchi and Shi-

mamoto [58] observed that the dynamic adjustment of a tour in transit, based on up-to-date

travel time information, can decrease expected travel time and hence can reduce total costs.

Recently, Bartin and Ozbay [5] performed a case study whose objective is to determine the

subset of fixed routes in a highway network based on real-time traffic information in order
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to bring maximal benefits of traveler information systems, and modeled the problem with

a nonlinear integer programming technique. Stochastic routing problems and their variants

have been studied in Kim et al. [33] and Kim et al. [34]; however, this research does not

address dynamic tour determination in a stochastic network. Related research is presented

in Hall [23].

We use the AND/OR graph heuristic search algorithm AO* to identify an optimal policy

for the DTSP. AO* is an extension of the OR graph heuristic search algorithm A*, which is a

generalization of Dijkstra’s algorithm. Heuristic search techniques for AND/OR graphs are

presented in Pearl [46]. Mahanti and Bagchi [43] presented conditions for AO* to terminate

with admissible solutions, and Bagchi and Mahanti [3] showed that if a heuristic function

used for search guidance optimistically estimates the true cost-to-go function, the algorithm

terminates with an optimal solution. Bander and White [4] investigated the application of

AO* to a stochastic shortest path problem with random and time-dependent travel times.

2.3 Problem Statement and Preliminary Results

Let N be the set of locations to visit, and let σ ∈ N be the origin and destination location.

Let (n, n′) be the arc from location n to location n′, and assume for every n and n′(6= n)

in N , there exists an arc (n, n′). Let A = {(n, n′) : n, n′ ∈ N , n 6= n′}, the set of all arcs

in the network. Assume Aprob ⊆ A is the set of all arcs monitored for traffic congestion.

Thus, s ≡ {s(n, n′) : (n, n′) ∈ Aprob} represents the state of network, where s(n, n′) is the

state of arc (n, n′) (e.g., not congested, slightly congested, heavily congested, etc).

The (expected) cost of traversing arc (n, n′) is c(n, s, n′), where s ∈ S represents the

current state of the network of arcs when the vehicle departs from n to n′ on arc (n, n′) and

where S is the set of all network states. We assume that the network state is completely

observed by the decision maker and evolves according to the probability q(s′|n, s, n′), which

is the probability that the network state will be s′ when location n′ is reached by traversing

arc (n, n′), given that the network state was s upon departure from location n. Appendix B.1

presents a derivation of q(s′|n, s, n′) from probabilities more directly available from traffic

data. Throughout, we assume that q(s′|n, s, n′) is time-invariant. It is straightforward, but
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notationally complicated, to extend all the results of this chapter to the time dependent

case (an example of which is presented in Kim et al. [33]). Adding an additional variable

can be significant computationally. If adding time is significant computationally for the

DTSP, then clever use of the time-invariant model may serve for the development of good

sub-optimal policies.

A policy π is a set of rules that selects the next location to visit, given (N,n, s), where

N ⊆ N is the set of locations previously visited, n ∈ N\N is the current location, and

s is the current network state. The triple (N,n, s) serves as the state of the DTSP. The

objectives of the DTSP are:

• To determine a policy (called an optimal policy) that minimizes the expected cost of

visiting all of the locations in N , starting and ending at σ, where the total cost of

visiting all of the locations is the sum of the costs accrued by traversing all of the

individual arcs in the tour.

• To determine the expected total cost accrued by an optimal policy.

We now present optimality equations and boundary conditions for the DTSP. Let

v(N,n, s) be the expected minimum cost of visiting all locations in N ′ = N\(N ∪{n})(6= φ)

and then proceeding directly to σ, given the current location of the vehicle is n and the

current network state is s. Then, the optimality equation for the concomitant dynamic

program is

v(N,n, s) = min
n′∈N ′

{
c(n, s, n′) +

∑

s′∈S
q(s′|n, s, n′)v(N ∪ {n}, n′, s′)

}

with boundary condition

v(N,n, s) = c(n, s, n′) +
∑

s′∈S
q(s′|n, s, n′)c(n′, s′, σ)

for {n′} = N\(N ∪ {n}). Results in Puterman [50] guarantee that

• v(φ, σ, s) is the minimum expected total cost to be accrued by visiting all of the

locations, assuming the network state is s when the vehicle departs from location σ

(and that φ is the null set), and
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• π∗(N,n, s) ∈ argminn′∈N ′
{
c(n, s, n′) +

∑
s′∈S q(s′|n, s, n′)v(N ∪ {n}, n′, s′)

}
for all

(N,n, s) is an optimal policy.

2.4 Computing π∗ and v(π, σ, s)

Although our focus is on understanding the value of real-time traffic information for dy-

namic tour determination, it is important to at least initially investigate the potentially

quite formidable computational challenges presented by the DTSP. DP is an approach for

determining v(φ, σ, s) and hence, π∗. However, DP has not been the approach of choice

for the deterministic TSP due to the large cardinality of the state space associated with

the optimality equation. This state space cardinality enlarges significantly for the DTSP,

relative to the deterministic TSP, by a multiple of the cardinality of the set of all network

states S. We remark that |S|, the cardinality of S, can be quite large. Assume each arc in

Aprob can be in one of γ states. Then, |S| = γ|Aprob|, and hence, the size of the state space

for the DTSP can be as large as

(
1 +

|N |−2∑

j=0

[(|N | − 1

j

)
× (|N | − j − 1)

])
× |S|.

We remark that, for most cases, it is unnecessary to identify an optimal policy for all

states (N,n, s); i.e., there is no reason to know an optimal action for a state (N,n, s) if

an optimally-executed tour will never visit it. The DP approach, however, evaluates all

possible states (N,n, s) and determines an optimal policy for every state.

We now present an alternative approach for determining v(φ, σ, s) and π∗ that has proven

capable of solving problems of practical size fast enough for operational purposes. AO* is

a best-first search algorithm for finding an optimal solution graph in an AND/OR graph

[46]. The DTSP is an example of a finite horizon Markov decision process (MDP) [50]. It

is straightforward to show that a finite horizon MDP can be represented as an AND/OR

graph having the following special structure: each OR node corresponds to a state in the

state space; each immediate successor of an OR node is an AND node; each immediate

successor of an AND node is an OR node; each arc from an OR node to an AND node

represents an action; each arc from an AND node to an OR node has a probability and a
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consequence associated with it. Figure 1 illustrates an AND/OR graph for the DTSP.
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Figure 1: Part of a AND/OR graph for DTSP

AO* iteratively constructs what it needs from the AND/OR representation of the DTSP,

starting from a single node (φ, σ, s), building partial solution graphs (equivalent to partial

policies) until it finds a solution graph (equivalent to a policy) that satisfies the optimality

criterion. This entire process is guided by a heuristic function. During the search process,

the graph that AO* has thus far constructed (a subset of the AND/OR graph representation

of the DTSP) is called the explicit graph G′. Let Γ be the goal (or terminal) node set (i.e., set

of states (N,n, s) where N∪{n} = N ). In the context of the AND/OR graph representation

of the DTSP, a solution graph G: (i) contains the (start) OR node (φ, σ, s), (ii) every OR

node not in Γ has exactly one AND node as its immediate successor, (iii) every AND node

has all of its immediate OR node successors, and (iv) every directed path from the start

OR node in the solution graph ends at a node in Γ. A partial solution graph G′
psg has the

same definition as a solution graph except a directed path from the start OR node may end

with a non-terminal (i.e., not in Γ) tip node of the explicit graph where a tip node is an

OR node having no successors in the current explicit graph. We remark that AO* restricts

its interest only to OR nodes that an optimal tour may visit with positive probability (i.e.,

the reachable states). Thus, AO* determines an optimal action for each reachable state
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(N,n, s).

AO* expands the current explicit graph using two procedures, forward expansion and

back propagation. The forward expansion procedure involves determining which tip node

to expand and expanding it and the partial solution graph of current interest. Tip node

expansion involves adding to the current explicit graph all AND nodes that are immediate

successors of the selected tip node and all OR nodes that are immediate successors to these

AND nodes. The heuristic function provides an estimate of the expected cost function for

each newly added OR node; the estimate of the optimal expected cost function of the newly

expanded tip node can be subsequently revised. The newly expanded tip node is then no

longer a tip node, and the OR nodes that are newly added to the explicit graph become

new tip nodes. The back propagation procedure may now choose a new partial solution

graph to pursue and update, as needed, the estimates of the optimal expected cost function

of the OR nodes throughout the new explicit graph. Based on these two procedures, AO*

iteratively expands the best partial solution graph until an optimal solution graph is found.

Typically when AO* finds an optimal solution graph, the concomitant explicit graph is

a very small subset of the AND/OR representation of the DTSP, whereas DP in essence

must construct the entire AND/OR representation of the DTSP. Details are presented in

Section 2.4.2.

Proposition 1 will state that if a heuristic function is a lower bound of the optimal

expected cost function of the DTSP, then AO* is guaranteed to find an optimal policy for

the DTSP. The determination of an easily computed heuristic function that is a tight lower

bound of the optimal expected cost of the DTSP will be of considerable interest below.

2.4.1 Heuristic Function

In order to guide the search in an AND/OR graph so as to identify an optimal solution

graph (and equivalently an optimal policy), AO* explicitly utilizes a so-called heuristic

function. We focus on heuristic functions h(N,n, s) having the following property for all

(N,n, s).

h(N,n, s) ≤ c(n, s, n′) +
∑

s′∈S
q(s′|n, s, n′)h(N ∪ {n}, n′, s′) (1)
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for all n′ ∈ N\(N ∪ {n}), and, for N ∪ {n} ≡ N , h(N,n, s) = c(n, s, σ). Then, it is

straightforward to show that for all (N,n, s), h(N,n, s) ≤ v(N,n, s): i.e., h(N,n, s) is a

lower bound on v(N,n, s). The next result follows from this observation, the proof of which

is essentially identical to the proof of Theorem 4.4 in Chakrabarti and Ghose [9].

Proposition 1 Suppose that a heuristic function h satisfies h(N,n, s) ≤ v(N,n, s) for all

(N,n, s). Then, AO* finds an optimal solution graph.

Proposition 1 states that AO* is guaranteed to terminate with an optimal solution graph

if h is a lower bound on the solution of the optimality equation. We now seek such a function.

Let PHP (N,n, s) be a set of all (directed) Hamiltonian paths from n to σ that visit every

node in N\(N ∪ {n}) exactly once. Let CHP (p) be the travel cost incurred by path p ∈
PHP (N,n, s), where the cost of traversing arc (n, n′) is c(n, s, n′) and the cost of traversing

arc (n′, n′′) is mins∈S c(n′, s, n′′) when n′ 6= n. Let hHP (N,n, s) = minp∈PHP (N,n,s) {CHP (p)}
which clearly satisfies Equation (1).

Unfortunately, the Hamiltonian path problem is NP-Complete [16] and hence does not

represent a computationally desirable approach for determining a lower bound on v(N,n, s).

We now turn our attention to a computationally efficient approach for determining a lower

bound on hHP (N,n, s). Given a state (N,n, s), we construct a directed complete graph

T (N,n, s) = (Ñ , Ã) where Ñ = (N\N) ∪ {σ, κ} such that κ is a dummy node, and Ã

is a set of arcs (n′, n′′) for all n′, n′′(6= n′) ∈ Ñ . We set the cost c′(n′, n′′) for each arc

(n′, n′′) ∈ Ã as follows:

• c′(κ, n) = c′(σ, κ) = 0, c′(n, κ) = c′(κ, σ) = ∞, and c′(κ, n′) = c′(n′, κ) = ∞ for all

n′ ∈ Ñ\{n, σ},

• c′(n, n′) = c(n, s, n′), and c′(n′, n) = mins∈S{c(n′, s, n)} for all n′ ∈ N\(N ∪{n}), and

• c′(n′, n′′) = mins∈S{c(n′, s, n′′)} for all n′, n′′(6= n′) ∈ Ñ\{κ, n}.

Then, the travel cost of an optimal TSP tour in the graph T (N,n, s) is equal to hHP (N,n, s).

We now discuss a lower bound on an optimal TSP tour in the graph T (N,n, s), and hence a

lower bound on hHP (N,n, s). An optimal solution for either the corresponding assignment

15



problem or the minimum spanning tree problem is a lower bound on the travel cost of an

optimal TSP tour [11]. Our preliminary computational experiments suggest that a bound

from the assignment problem is generally tighter than a bound from the minimum spanning

tree problem, and, for an instance with less than 30 stops, the bound from the assignment

problem is reasonably tight. Thus, we use a bound from the assignment problem as a

heuristic function h. The detailed procedure is presented in Algorithm 1. It has been our

experience that a well-chosen (lower bound) heuristic function h can improve performance

significantly.

Data: State (N,n, s)
Result: h(N,n, s), a lower bound for v(N,n, s)
Construct a |Ñ | × |Ñ | cost matrix [cij ] from T (N,n, s) = (Ñ , Ã) where a (i, j)-th

entry, cij , i, j ∈ Ñ , is determined by

cij =

{
c′(i, j) if i, j(6= i) ∈ Ñ

∞ if i = j
;

Apply the Hungarian method [1] to the cost matrix [cij ], and let [c̃ij ] be the resulting
cost matrix from the method;
Set h(N,n, s) =

∑
i∈Ñ

∑
j∈Ñ [c′(i, j)× I(c̃ij = 0)] where I(·) is an indicator function.

Algorithm 1: Heuristic function h(N,n, s)

2.4.2 Adaptations of the AO* Algorithm

Based on the proposed lower bound function above, we now adapt AO* to serve as a solution

procedure for the MDP model of the DTSP. Throughout its operation, AO* maintains two

sets of information for each node in the explicit graph G′:

(i) ωO(·) and ωA(·): For an OR node (N,n, s), ωO(N,n, s) is the current best estimate of

v(N,n, s). For an AND node (N,n, s, n′), ωA(N,n, s, n′) is the current best estimate

of v(N,n, s), assuming n′ is the node to be visited next. The relationship between

ωO(N,n, s) and ωA(N,n, s, n′) is given below.

(ii) lO(·) and lA(·): For an OR node (N,n, s), lO(N,n, s) is true if the OR node (N,n, s)

is either (a) in Γ or (b) in ωO(N,n, s) = v(N,n, s), and is false otherwise. For

an AND node (N,n, s, n′), lA(N,n, s, n′) is true if all immediate successors of the
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AND node (N,n, s, n′) are labeled true, and false otherwise. As explained below, the

OR node (N,n, s) is labeled true if an AND node (N,n, s, n′) is labeled true and

ωO(N,n, s) = ωA(N,n, s, n′).

For a partial solution graph, the estimates of nodes, ωO(·) or ωA(·), in the graph can

be calculated by dynamic programming. When an OR node (N,n, s) is initially introduced

in G′, the value of ωO(N,n, s) is determined by h(N,n, s). In other cases, the current best

estimate ω and the corresponding label l for each node in G′ are determined as follows:

• OR node (N,n, s):

ωO(N,n, s) = min
n′∈N ′

ωA(N,n, s, n′),

lO(N,n, s) = lA(N,n, s, ñ)

(2)

where ñ = argminn′∈N ′ ωA(N,n, s, n′).

• AND node (N,n, s, n′) for n′ ∈ N\(N ∪ {n}):

ωA(N,n, s, n′) = c(n, s, n′) +
∑

s′∈S
q(s′|n, s, n′)ωO(N ∪ {n}, n′, s′),

lA(N,n, s, n′) =
∧

s′∈S
lO(N ∪ {n}, n′, s′)

(3)

where
∧

s′∈S l(s′) is true if all l(s′) for s′ ∈ S are labeled true, and false otherwise.

These calculations are used for both forward expansion and back propagation.

Basically, for each step, AO* expands a (non-terminal) tip node labeled as false in a

current partial solution graph G′
psg, and its successors that are connected through an AND

node are added to G′
psg (and G′), where each successor AND node corresponds to a node

to visit next and each AND node again adds its successor OR nodes to G′
psg (and G′). As

mentioned above, if such an OR node is introduced in G′ for the first time, its value of ωO(·)
is given by the heuristic function h with lO(·) labeled as false, and this value never decreases

throughout the operation of the algorithm. Then, each successor AND node of the tip node

determines its value of ωA(·) and lA(·), according to Equation (3). We remark that there

are several ways to select such a tip node to expand for each step. In our adaptation, a

tip node that is farther from the start node in the graph G′
psg has higher priority to be
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selected first (as is the case for depth-first search) in order to increase the likelihood of

reaching a terminal node earlier. Since there are multiple numbers of such the tip nodes

due to the explicit graph construction, a tip node with the highest value of the estimate

ωO(·) will be selected, based on the rationale that ωO(·) never decreases. If several tip

nodes have the same ωO(·), one is arbitrarily chosen. We remark that such an arbitrary

choice may lead to constructing different partial solution graphs and eventually may result

in different optimal solution graphs if there does not exist a unique optimal solution graph.

This forward expansion procedure continues until a newly expanded tip node is labeled to

be true or its current best estimate ω is updated. Then, the back propagation procedure

from the node is performed, and the revised estimate or label for the node is propagated

back to all of its ancestors in G′
psg until an ancestor is reached whose estimate or label is not

altered. We remark that when the forward expansion hits one of the terminal nodes, the

value of ωO(·) for the node is equal to the true value v(·). Hence, its value of lO(·) becomes

true, which immediately triggers the back propagation.

As mentioned before, the back propagation procedure may alter the current partial

solution graph. In the altered resulting G′
psg, each non-terminal OR node (N,n, s) has

exactly one immediate AND node successor (N,n, s, ñ) where ñ = argminn′∈N\(N∪{n})

ωA(N,n, s, n′), and, for the AND node (N,n, s, ñ), all of its immediate OR node successors

are in the graph. The algorithm terminates when the start node (φ, σ, s) is labeled true

(i.e., ωO(φ, σ, s) = v(φ, σ, s)), and the partial solution graph G′
psg at the point is indeed an

optimal solution graph G. One of the interesting features in this model is that any two

OR nodes (N,n, s1) and (N,n, s2) where s1 6= s2 share the same immediate OR successors

through AND nodes (N,n, s1, n
′) and (N,n, s2, n

′) respectively for all n′ ∈ N\(N ∪ {n}).
Algorithm 2 describes the detailed adaptation of AO* to the DTSP.

2.4.3 Computational Evaluation

In this section, we briefly evaluate the performance of AO* on randomly generated networks,

relative to DP. We developed a program that generates a random network over a square grid.

Each node is randomly chosen from the intersections of the grid network, and an arc length
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Data: State (φ, σ, s)
Result: an optimal solution graph G
Create an explicit graph G′, and a partial solution graph G′

psg where both consist of
an OR node (φ, σ, s) whose label lO(φ, σ, s) = false;
repeat

Choose a non-terminal tip node (N,n, s) of the current partial solution graph
G′

psg;
Expand the OR node (N,n, s) by generating all immediate AND nodes
(N,n, s, n′) for all n′ ∈ N\(N ∪ {n}) and ∑

s′ q(s
′|n, s, n′) > 0, and generate

subsequent OR nodes which are the immediate successors (N ∪ {n}, n′, s′) of each
generated AND node (N,n, s, n′) where q(s′|n, s, n′) > 0. For each newly
generated OR node, set ωO(N ∪ {n}, n′, s′) = h(N ∪ {n}, n′, s′), and if
(N ∪ {n}, n′, s′) ∈ Γ, set lO(N ∪ {n}, n′, s′) true; otherwise, false. Append all the
newly generated AND and OR nodes in G′;
Evaluate all the immediate AND nodes of (N,n, s) by updating the
corresponding ωA(·) and lA(·);
Evaluate the OR node (N,n, s) by updating ωO(N,n, s) and lO(N,n, s);
if either ωO(N,n, s) or lO(N,n, s) is changed then

Create a queue Q and put (N,n, s);
repeat

Remove a node from Q;
if the node is a OR node then

Let (N ′′, n′′, s′′) be the OR node;
Revise ωA(·) and lA(·) of all the AND ancestors that have the node
(N ′′, n′′, s′′) as an immediate successor in G′

psg.;
Put all the AND ancestors that either the corresponding ωA(·) or lA(·)
are revised to Q;

else
Let (N ′′, n′′, s′′, n′′′) be the AND node;
Reevaluate ωO(·) and lO(·) of all the OR ancestors that have the node
(N ′′, n′′, s′′, n′′′) as an immediate successor in G′

psg;
Update the immediate AND successor node of all the OR ancestors
that either ωO(·) or lO(·) is revised;
Put all the OR ancestors that either the corresponding ωO(·) or lO(·)
are revised to Q;

end

until Q is empty ;
Reconstruct new partial solution graph G′

psg;

end

until lO(φ, σ, s) is labeled true ;
Set G′

psg as G;

Algorithm 2: Description of AO* algorithm adapted to the DTSP

between two nodes is assigned by calculating the Euclidean distance between the nodes. To

generate such networks, we determined several input parameters including the size of the
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grid I1, the number of nodes (including an origin) I2, and the number of probabilistic arcs

I3. For example, if I1 = 10, then I2 nodes are randomly selected from 100 intersections on a

10×10 grid. A complete graph based on the selected nodes is then constructed, and I3 arcs

that are elements of Aprob are also randomly selected from the constructed complete graph.

The value of I3 is determined such that at least 90% of the arcs have single deterministic

travel times. We remark that in most urban areas in the U.S., only a small number of

arcs are monitored for congestion (e.g., highways and major arterials), which lends support

to this assumption. For arcs in Aprob, the probability distributions over travel times have

two or three travel times, with equal probability to each travel time for both idle and

congested cases. For each parameter combination, we constructed 50 networks, applied

AO*, and recorded the number of OR node expansions and CPU time required for each

network. Both AO* and DP were implemented in Sun Java JDK 1.6.1 and were run on a

LINUX machine with a Intel Xeon 2.66 GHz processor and 4GB of RAM. Table 2 presents

performance-related statistics on the number of OR node expansions and average CPU

times such as the ratios (Number of OR nodes expanded)
(Size of state space) and (Average CPU time of AO*)

(Average CPU time of DP) (columns

(8) and (9) in Table 2). We note that the average CPU times for DP is determined from

only 10 network instances out of 50 test cases for each parameter combination because DP

evaluates all the states and thus the execution time is invariant over instances. The results,

presented in Table 2, indicate that AO* significantly outperforms DP on the basis of the

number of OR nodes expanded and CPU time on average. Specifically, AO* evaluates less

than 10% of all possible states on average, and maximally less than 30% of states in the

state space while DP is required to evaluate all the possible states. In addition, for most

instances, AO* requires significantly less amount of execution time than DP (see column

(9) in Table 2). However, we remark that AO* can require more computation time than

DP (e.g., (I1, I2, I3) = (15, 10, 7)) when AO* is required to expand a large percentage of

OR nodes, due to the large amount of CPU time required to expand an OR node by AO*,

relative to DP. We note that a single node expansion by AO* is more computationally

extensive than a node expansion by DP. Usually, however, AO* will expand far fewer nodes

than DP, thus resulting in reduced CPU times for AO*, relative to DP.
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Lastly, we perform a sensitivity analysis for investigating the impact on CPU times as

either |N | or |Aprob| changes. Figure 2 presents such the changes in average CPU times of 50

instances which are randomly generated in the same manner as above for each parameter

combination when (a) I2 changes for (I1, I3) = (10, 5) and (b) I3 changes for (I1, I2) =

(10, 8). Let t
(a)
|N | and t

(b)
|Aprob| be such the average CPU times of 50 instances when |N | (I2) and

|Aprob| (I3) are given for (a) and (b) respectively. Then, Figure 2 indicates t
(a)
|N |+1 ' 2× t

(a)
|N |

while t
(b)
|Aprob|+1 ' 6 × t

(b)
|Aprob|, implying that CPU times are more sensitive to |Aprob| than

to |N |. We remark that each AND node has 2|Aprob| number of OR successors in G′, and a

label for the AND node, lA(·), is determined according to Equation (3); on the other hand,

|N | corresponds to the depth of a solution graph. We also remark that although the impact

of either |N | or |Aprob| on CPU times is significant, as presented in numerical experiments

above, AO* can identify an optimal policy for problem instances of a practical size within a

reasonable time for operational purposes while DP for the same size problems is impractical

operationally or intractable.
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Figure 2: Changes of CPU times in (a) |N | and (b) |Aprob|

2.5 Benchmarks

We now analyze the reduction of expected total cost due to dynamic tour determination,

relative to the expected cost accrued by two fixed tours. The value of using real-time

network information is the difference between the expected cost generated by the fixed tour

and the expected cost generated by an optimal dynamic tour.
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2.5.1 Fixed Tour 1

Consider the deterministic cost structure {c′(n, n′)}, where c′(n, n′) ≤ c(n, s, n′) for all s.

Determine an optimal fixed (network state invariant) tour, based on this cost structure, and

call it {σ, n1, . . . , nK , σ} where K = |N | − 1. If c′(n, n′) = d(n, n′)/SL(n, n′) where d(n, n′)

is the distance from n to n′, and SL(n, n′) is the speed limit on arc (n, n′), the resulting

TSP represents the tour typically used in industry. This tour generates expected total cost

v′(φ, σ, s), where

v′({σ, n1, . . . , nK−1}, nK , s) = c(nK , s, σ),

and for k < K,

v′({σ, n1, . . . , nk−1}, nk, s) = c(nk, s, nk+1)

+
∑

s′∈S
q(s′|nk, s, nk+1)v′({σ, n1, . . . , nk}, nk+1, s′).

Since the set of all policies for the DTSP contains the set of all network state invariant

policies, the optimality of π∗ guarantees that v′(φ, σ, s) − v(φ, σ, s) ≥ 0 for all s, and this

difference represents the value of real-time network information, using {σ, n1, . . . , nK , σ} as

the benchmark.

2.5.2 Fixed Tour 2

An undesirable feature of the tour {σ, n1, . . . , nK , σ} is that it may not be optimal within

the set of all network state invariant policies. We remark that the existence of an optimal

network state invariant policy is assured by results in Smallwood and Sondik [54]. We now

seek the fixed tour that is optimal within the class of all fixed tours. An optimal fixed tour

is of interest in its own right since it would be easier to implement than a dynamic tour

and would give clear guidance as to how rear-loaded trailers (as is typically the case for the

U.S. less-than-truckload industry) should be loaded.

We recall that it was assumed that the decision maker for the DTSP knows exactly

the current state of the network when deciding what stop to visit next (complete state

observability). A generalization of the DTSP would assume the decision maker observes

noise-corrupted observations of the network state (partial state observability). A modeling
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tool for such a generalization would be the partially observed Markov decision process

(POMDP; see Smallwood and Sondik[54] and White [63]). There are two extreme cases

of the POMDP, the completely observed MDP and the completely unobserved MDP. The

DTSP is a completely observed MDP. The completely unobserved MDP assumes there are

no state observations (or equivalently, there is no information content in the observations)

and hence its optimal policy for the DTSP is a fixed tour. The optimality equation for the

completely unobserved version of the DTSP is

v′′(N,n, x) = min
n′∈N ′

{∑

s∈S
xsc(n, s, n

′) + v′′(N ∪ {n}, n′, xQ(n, n′))
}

with boundary condition

v′′(N,n, x) =
∑

s∈S
xsc(n, s, n

′) +
∑

s∈S
xs

∑

s′∈S
q(s′|n, s, n′)c(n′, s′, σ)

for {n′} = N\(N ∪ {n}), where x = {xs ≥ 0, s ∈ S} is a probability mass vector (pmv)

over S (i.e.,
∑

s∈S xs = 1), xs is the probability that s is the current network state, and the

(s, s′)-th entry of the matrix Q(n, n′) is q(s′|n, s, n′).

Assume that the state of the network evolves according to a stationary Markov chain P ,

having P (s(t+1) = s′|s(t) = s) as its (s, s′)-the entry. Appendix B.1 presents how Q(n, n′)

can be constructed from P and probabilities of the form P (∆(t+1)|∆(t), s(t)), where ∆(t)

is the distance remaining to n′ at time t. Robust assumptions, i.e., S is a single ergodic

class, that would invariably be satisfied in applications guarantee the existence of a unique

pmv x∗ that satisfies x∗ = x∗P . Note also that x∗Q(n, n′) = x∗ (see Appendix B.1). Thus,

assuming x∗ is the a priori, the optimality equation for the completely unobserved DTSP

becomes

v′′(N,n) = min
n′∈N ′

{∑

s∈S
x∗sc(n, s, n

′) + v′′(N ∪ {n}, n′))
}

with boundary condition

v′′(N,n) =
∑

s∈S
x∗sc(n, s, n

′) +
∑

s∈S
x∗sc(n

′, s, σ)

for {n′} = N\(N∪{n}) where for notational simplicity, we have dropped explicit dependence

of v′′(N,n) on x∗. We now observe that the solutions of the completely unobserved DTSP,
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assuming a priori pmv x∗, is the deterministic TSP having (expected) arc cost structure

{∑s x
∗
sc(n, s, n

′)}.
We remark that

∑

s∈S
x∗sv

′(φ, σ, s) ≥ v′′(φ, σ) ≥
∑

s∈S
x∗sv(φ, σ, s). (4)

Note that the first inequality holds due to the fact that a tour corresponding to v′′(φ, σ)

is indeed an optimal fixed tour when the a priori distribution is x∗. The second inequality

holds since the expected cost function for the completely unobserved MDP is always an

upper bound on the expected cost function for the completely observed MDP [64]. Again,

v′′(φ, σ) − ∑
s x

∗
sv(φ, σ, s) represents the value of real-time information, using an optimal

network state invariant policy (or fixed tour) as the benchmark policy.

2.5.3 Value of Dynamic Touring: Illustrative Examples

The objectives of the following two illustrative examples are, respectively, (i) to illustrate

the use of the adapted AO* algorithm and (ii) to indicate the value of dynamic touring

relative to the two aforementioned fixed tours.

1) Example 1

We now examine a simple four-node network where N = {σ, 1, 2, 3}. Suppose that only one

arc (1, 2) is in Aprob, and that this arc can be in one of two network states – not congested (0)

or congested (1). Thus, S = {(0), (1)}. The cost matrix of traversing arcs (n, n′), [c(n, n′)],

and the stationary Markov chain P are:

[c(n, n′)] =

n′ = σ 1 2 3

n = σ ∞ 4 3 5

1 3 ∞ ∗ 4

2 3 6 ∞ 3

3 2 4 3 ∞

, P =

s′ = (0) (1)

s =(0) 0.89 0.11

(1) 0.15 0.85

for all t.

We also assume that the traversal time on arc (1, 2) is
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• either 3,4 or 5 with probabilities 0.9, 0.05, 0.05 respectively if the arc is not congested

at the time the vehicle departs from node 1 to node 2, and

• either 4,5 or 6 with probabilities 0.05, 0.45, 0.5 respectively if the arc is congested at

the time the vehicle departs from node 1 to node 2.

Therefore, if (n, n′) 6= (1, 2), c(n, s, n′) = c(n, n′) for all s ∈ S, and if (n, n′) = (1, 2),

c(1, (0), 2) = 3.15 and c(1, (1), 2) = 5.45. Lastly, the a priori pmv x∗ is x∗ = [0.5769, 0.4231].

We now determine the fixed tours 1 and 2 and an optimal policy for this DTSP.

Table 3: Cost matrix for determining fixed tours 1 (a) and 2 (b)

(a) [c′(n, n′)] =

n′ = σ 1 2 3

n = σ ∞ 4 3 5
1 3 ∞ 3.15 4
2 3 6 ∞ 3
3 2 4 3 ∞

(b) [
∑

s x
∗
sc(n, s, n

′)] =

n′ = σ 1 2 3

n = σ ∞ 4 3 5
1 3 ∞ 4.115 4
2 3 6 ∞ 3
3 2 4 3 ∞

.

Sub-optimal Policy 1 (Fixed Tour 1): To determine the fixed tour 1, we first con-

struct the deterministic cost matrix {c′(n, n′)}, which is presented in Table 3(a). Note that

c′(1, 2) = min{c(1, (0), 2), c(1, (1), 2)} = min{3.15, 5.45}. DP can be used to identify the

minimum travel cost tour, which is {σ, 1, 2, 3, σ}.
Sub-optimal Policy 2 (Fixed Tour 2): Similarly, to determine the fixed tour 2, we first

construct the deterministic cost matrix {∑s x
∗
sc(n, s, n

′)}, which is presented in Table 3(b).

Again, DP can be used to identify the minimum travel cost tour, which is {σ, 2, 3, 1, σ}.
Optimal Policy: Algorithm 2 terminates with an optimal solution graph G, presented in

Figure 3. The optimal policy for this DTSP from the graph G′ is as follows: When the

vehicle starts a tour from the origin σ,

(i) if the arc (1, 2) is not congested, then travel toward node 1. When the vehicle de-

parts from node 1, if the arc (1, 2) is not congested, then follow the path {1, 2, 3, σ};
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otherwise, follow the path {1, 3, 2, σ}.

(ii) if the arc (1, 2) is congested, then follow the tour {σ, 2, 3, 1, σ}.

( ))0(,,σφ

( )1),0(,,σφ

( ))0(,1},{σ ( ))1(,1},{σ

( )2),0(,1},{σ ( )3),1(,1},{σ

( ))0(,2},1,{σ ( ))1(,2},1,{σ ( ))0(,3},1,{σ ( ))1(,3},1,{σ

( )3),0(,2},1,{σ ( )3),1(,2},1,{σ ( )2),0(,3},1,{σ ( )2),1(,3},1,{σ

( ))0(,3},2,1,{σ ( ))1(,3},2,1,{σ ( ))0(,2},3,1,{σ ( ))1(,2},3,1,{σ

( ))1(,,σφ

( )2),1(,,σφ

( ))0(,2},{σ ( ))1(,2},{σ

( )3),0(,2},{σ ( )3),1(,2},{σ

( ))0(,3},2,{σ ( ))1(,3},2,{σ

( )1),0(,3},2,{σ ( )1),1(,3},2,{σ

( ))0(,1},3,2,{σ ( ))1(,1},3,2,{σ

Start Nodes

Goal (or Terminal) Nodes

Figure 3: Optimal solution graph G for Example 1

Results and Discussion: Table 4 presents the expected total travel cost for each pol-

icy. We remark that these costs satisfy Equation (4). In order to quantify the value of

dynamic touring, the ratio ∆1 =

∑
s x

∗
sv

′(φ, σ, s)−∑
s x

∗
sv(φ, σ, s)∑

s x
∗
sv

′(φ, σ, s)
× 100 (%) and ∆2 =

v′′(φ, σ)−∑
s x

∗
sv(φ, σ, s)

v′′(φ, σ)
× 100 (%) are introduced as measures of the value of informa-

tion. Table 5 indicates that the percent reduction in expected total travel time due to

dynamic touring, relative to static tours 1 and 2, are 2.27% and 1.34%. respectively.

Table 4: Expected Total Travel Costs for Each Policy

Optimal Policy
v(φ, σ, (0)) 12.697989684
v(φ, σ, (1)) 13∑

s∈S x∗sv(φ, σ, s) 12.82577025

Fixed Tour 1
v′(φ, σ, (0)) 12.831284472
v′(φ, σ, (1)) 13.52097572∑

s∈S x∗sv′(φ, σ, s) 13.12309284

Fixed Tour 2 v′′(φ, σ) 13
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Table 5: Value of Information: Percentage Decrease of Total Travel Cost

∆1 =

∑
s x

∗
sv

′(φ, σ, s)−∑
s x

∗
sv(φ, σ, s)∑

s x
∗
sv

′(φ, σ, s)
× 100(%) 2.27

∆2 =
v′′(φ, σ)−∑

s x
∗
sv(φ, σ, s)

v′′(φ, σ)
× 100(%) 1.34

2) Example 2

In this example, we examine a twelve-node network, where N = {σ, 1, 2, . . . , 11}, Aprob =

{(σ, 3), (3, 6), (5, 9)}, and each arc can be in one of two network states, not congested (0)

or congested (1). Thus, S = {(000), (001), (010), (011), (100), (101), (110), (111)} where, for

state (abc), a is the network state of (σ, 3), b is the state of (3, 6), and c is the state of (5, 9).

The cost matrix of traversing arcs (n, n′), [c(n, n′)], and the stationary Markov chain P are

given in Tables 6 and 7 respectively.

Table 6: Cost matrix used in Example 2

[c(n, n′)] =

n′ = σ 1 2 3 4 5 6 7 8 9 10 11

n = σ ∞ 9 19 ∗ 10 8 8 9 12 4 5 20
1 8 ∞ 14 18 4 9 14 9 15 3 8 1
2 15 15 ∞ 16 11 16 3 2 8 15 6 10
3 6 20 20 ∞ 13 18 ∗ 12 18 6 11 5
4 4 9 14 6 ∞ 5 13 12 18 4 9 7
5 10 3 13 4 18 ∞ 19 9 15 ∗ 6 4
6 17 10 6 6 13 10 ∞ 4 7 17 12 20
7 11 16 9 13 12 17 4 ∞ 6 11 16 11
8 16 17 14 14 7 12 20 16 ∞ 16 11 15
9 4 5 19 2 4 9 17 6 12 ∞ 5 13
10 15 4 18 4 3 8 16 5 4 20 ∞ 19
11 18 14 13 17 6 3 6 15 20 15 18 ∞

Travel times with corresponding probabilities for the arcs in Aprob are presented in Table 8.

The a priori pmv is x∗ = [0.1838, 0.0459, 0.1963, 0.0557, 0.1588, 0.0889, 0.1474, 0.1232]. We

now determine the expected total costs for fixed tours 1 and 2 and for an optimal policy.

Sub-optimal Policy 1 (Fixed Tour 1): To determine fixed tour 1 and the expected total

cost, we first construct the deterministic cost matrix {c′(n, n′)} which, for (n, n′) ∈ Aprob,
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Table 7: State transition probability matrix P ((abc) where a is the network state of (σ, 3),
b is the network state of (3, 6) and c is the network state of (5, 9))

P =

s′ = (000) (001) (010) (011) (100) (101) (110) (111)

s =(000) 0.85 0.05 0.05 0.0 0.05 0.0 0.0 0.0
(001) 0.0 0.8 0.1 0.0 0.1 0.0 0.0 0.0
(010) 0.1 0.0 0.8 0.05 0.0 0.0 0.05 0.0
(011) 0.0 0.0 0.05 0.7 0.0 0.0 0.1 0.15
(100) 0.05 0.0 0.05 0.0 0.8 0.05 0.05 0.0
(101) 0.0 0.0 0.0 0.05 0.05 0.8 0.0 0.1
(110) 0.0 0.0 0.1 0.0 0.05 0.0 0.8 0.05
(111) 0.0 0.0 0.0 0.02 0.05 0.08 0.05 0.8

Table 8: Travel times and corresponding probabilities when a network state is given on
each probabilistic arc: in the third column, a(b) where a is a travel time with probability b
on the corresponding arc (n, n′) if the arc is in a state s(n,n′) of either Not Congested (0) or
Congested (1) at the time the vehicle departs node n to node n′

(n, n′) ∈ Aprob
Network State Time

c(n, s, n′)
s(n,n′) (Probability)

(σ, 3)
Not Congested

2 3
2.1(0.9) (0.1)

Congested
9 10 11

9.8(0.4) (0.4) (0.2)

(3, 6)
Not Congested

5 6
5.2(0.8) (0.2)

Congested
13 14 15

13.8(0.3) (0.6) (0.1)

(5, 9)
Not Congested

5 6 8
5.4(0.8) (0.1) (0.1)

Congested
15 16

15.9(0.1) (0.9)

c′(n, n′) is determined by c′(n, n′) = mins∈S{c(n, s, n′)}, which is presented in Table 9. DP

was used to identify this tour, which is {σ, 10, 1, 11, 5, 9, 3, 6, 2, 7, 8, 4, σ}.
Sub-optimal Policy 2 (Fixed Tour 2): Similarly, to determine fixed tour 2, we first con-

struct the deterministic cost matrix {∑s x
∗
sc(n, s, n

′)}, which is presented in Table 10. DP

was used to identify a tour of minimum travel cost, which is {σ, 9, 10, 1, 11, 5, 3, 6, 2, 7, 8, 4, σ}.
Optimal Policy: The algorithm 2 terminates with an optimal solution graph, which spec-

ifies an optimal policy for the DTSP. Details of the policy are presented in Appendix B.2.

Results and Discussion: Figure 4 presents the expected total travel cost for each initial
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Table 9: Cost matrix for fixed tour 1 in Example 2

[c′(n, n′)] =

n′ = σ 1 2 3 4 5 6 7 8 9 10 11

n = σ ∞ 9 19 2.1 10 8 8 9 12 4 5 20
1 8 ∞ 14 18 4 9 14 9 15 3 8 1
2 15 15 ∞ 16 11 16 3 2 8 15 6 10
3 6 20 20 ∞ 13 18 5.2 12 18 6 11 5
4 4 9 14 6 ∞ 5 13 12 18 4 9 7
5 10 3 13 4 18 ∞ 19 9 15 5.4 6 4
6 17 10 6 6 13 10 ∞ 4 7 17 12 20
7 11 16 9 13 12 17 4 ∞ 6 11 16 11
8 16 17 14 14 7 12 20 16 ∞ 16 11 15
9 4 5 19 2 4 9 17 6 12 ∞ 5 13

10 15 4 18 4 3 8 16 5 4 20 ∞ 19
11 18 14 13 17 6 3 6 15 20 15 18 ∞

Table 10: Cost matrix for fixed tour 2 in Example 2

[
∑

s x
∗
sc(n, n

′)] =

n′ = σ 1 2 3 4 5 6 7 8 9 10 11

n = σ ∞ 9 19 6.1 10 8 8 9 12 4 5 20
1 8 ∞ 14 18 4 9 14 9 15 3 8 1
2 15 15 ∞ 16 11 16 3 2 8 15 6 10
3 6 20 20 ∞ 13 18 9.7 12 18 6 11 5
4 4 9 14 6 ∞ 5 13 12 18 4 9 7
5 10 3 13 4 18 ∞ 19 9 15 8.7 6 4
6 17 10 6 6 13 10 ∞ 4 7 17 12 20
7 11 16 9 13 12 17 4 ∞ 6 11 16 11
8 16 17 14 14 7 12 20 16 ∞ 16 11 15
9 4 5 19 2 4 9 17 6 12 ∞ 5 13
10 15 4 18 4 3 8 16 5 4 20 ∞ 19
11 18 14 13 17 6 3 6 15 20 15 18 ∞

network state. The results suggest that the larger the cardinality of Aprob, the greater the

impact of optimal dynamic touring. We remark that the inequalities in (4) hold as presented

in Figure 4 and Table 11. We again use the ratios ∆1 and ∆2 to measure the value of

information. Table 11 indicates that the percentage reduction in expected total travel time

due to dynamic touring, relative to static tours 1 and 2, is 11% and 7%, respectively.
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Figure 4: Expected total travel costs for each policy (Example 2)

Table 11: Expected Total Travel Costs for Each Policy and Value of Information (Percent-
age Decrease of Total Travel Cost)

Optimal Policy
∑

s∈S
x∗sv(φ, σ, s) 52.654

Fixed Tour 1
∑

s∈S
x∗sv

′(φ, σ, s) 58.924

Fixed Tour 2 v′′(φ, σ) 56.324

∆1 =

∑
s x

∗
sv

′(φ, σ, s)−∑
s x

∗
sv(φ, σ, s)∑

s x
∗
sv

′(φ, σ, s)
× 100(%) 10.641(%)

∆2 =
v′′(φ, σ)−∑

s x
∗
sv(φ, σ, s)

v′′(φ, σ)
× 100(%) 6.516(%)

2.6 Summary

Chapter 2 has examined the so-called dynamic traveling salesman problem in which the

vehicle chooses the next stop to visit, based on current traffic conditions at each stop of a

multi-stop trip. In the problem, travel time along each arc in the network has been modeled

as a random variable, and we have assumed that network congestion dynamics can be

described by a stationary Markov chain. In this chapter, we presented an efficient algorithm

based on AO* for dynamically determining a tour that minimizes the expected total travel

time and showed that this algorithm outperformed the standard dynamic programming

approach, in terms of CPU times and states evaluated, in determining an optimal policy.

We have also investigated the potential value of using traffic congestion information for
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dynamic tour determination, relative to two benchmark tours developed prior to departure,

through numerical examples.
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CHAPTER III

IN-TRANSIT PERISHABLE PRODUCT INSPECTION

3.1 Introduction

A significant portion of freight moved nationally and internationally is perishable. For ex-

ample, the United States imports and exports annually about US$ 40 billion of perishable

food, such as produce and fresh meat and fish [12, 14]. In 2007, the pharmaceutical market

was estimated to be a US$ 712 billion market worldwide [17] and many important phar-

maceuticals are perishable, e.g., vaccines. Such freight is typically transported and stored

in temperature controlled trailers, containers, and warehouses, which are part of the cold

supply chain. However, cold supply chains are only partially successful in insuring perish-

able freight arrives at its destination fresh. According to a study by the United Nations

Environment Program (UNEP), over half of the food produced globally is lost, wasted or

discarded as a result of inefficiency in the human-managed food chain [13]. The percentage

of perishable food that perishes during storage and transit in the U.S. is approximately

10%− 15% of perishable freight tonnage and 25%− 50% of total economic value due to the

degraded quality of goods [42]. A recent study by the University of Florida Food Distribu-

tion and Retailing Resource Center1 showed that one-third of shipped food production is

wasted annually (equivalent to a US$ 35 billion loss each year), and half of the loss is mainly

due to temperature control problems in a shipment between the grower and the retailer [29].

Further, approximately 25% of all vaccine products worldwide degrade before reaching their

destination [65, 66]. These percentages can be substantially higher in countries with a less

well-developed cold supply chain infrastructure (e.g., China [7]). According to the United

Kingdom’s Medicines and Healthcare Products Regulatory Agency (MHRA), as much as

43% of major deficiencies in pharmaceutical cold chain shipping and distribution are related

to poor control and monitoring of storage and transportation temperature [41].

1http://cfdr.ifas.ufl.edu/
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There are a variety of ways of improving the productivity of cold supply chains; we

mention two. One way is to improve the likelihood that a perishable is kept at a temperature

within its temperature range during transport and storage. Another way is to base the real-

time control of the cold supply chain on real-time data resulting from monitoring the state

of the product during transport and storage.

With respect to this second approach, which is the focus of this chapter, there may be

advantage in knowing when freight in-transit materially degrades. For example, consider

perishable freight being transported from South America to Miami and then to its final

destination, Chicago. Assume that the freight perishes in-route between South America

and Miami. If the state of the freight is monitored in Miami and it is determined that

the freight has perished, then transportation and perhaps disposal costs may be reduced

significantly, relative to determining upon delivery in Chicago that the freight has perished.

Clearly, though, deciding whether or not to monitor freight quality in Miami is dependent

on a variety of information, including the cost of monitoring, the likelihood of the freight

perishing en-route to Miami, and the cost of the transportation.

Our communications with individuals in the food supply chain and logistics industry

include discussions with the vice president for logistics and the vice president for food safety

and quality for a large food shipper, the manager of systems development and design for

a well-known third party logistics provider of temperature sensitive freight transportation,

and a senior vice president for a large food re-distributor. These communications indicate

that it is common that food temperature is recorded but not transmitted in transit and

that these data are used at the destination to determine whether or not the freight is

accepted or rejected (see Harrington [25] for further detail). These communications also

indicate that the primary barrier to requiring freight status data be transmitted in transit

is the perception that the value of such data currently does not justify the investment in

the enabling information technology infrastructure and the cost of the concomitant service,

although it is commonly felt that this perception may change as these investment and service

costs are reduced and the value of these data is better understood. In contrast, we have
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learned from contact with Euroscan2, a supplier of systems solutions for mobile temperature

monitoring, which provides solutions for both the case where no temperature (and other)

data are transmitted in transit and the case where data are transmitted in transit [24],

that the latter service is provided to a variety of customers, including a large fast food

company. All of our industry contacts believe that regulation, e.g., the Hazard Analysis and

Critical Control Points (HACCP), may eventually require in-transit temperature records for

a significant amount of food transportation, and several of our industry contacts envision

when some combination of reduced infrastructure and service costs and a more demanding

regulatory environment will motivate growing use of temperature transmission in transit.

We, and the individuals in the private sector of the food industry with whom we have

communicated, are unaware of any formal approach for determining the value of transmit-

ting temperature data during transit relative to simply waiting until the food arrives at the

destination before examining the in-transit or arrival temperature data. In this chapter, we

take an initial step in developing such a formal approach with the intent of providing an

approach to better inform (1) the private sector regarding the expected value of such data

and (2) the regulator regarding the economic impact of potential regulatory environments

on the private sector.

Food transportation typically involves multiple: distribution centers, products, carriers,

vehicles, and customers. Perishable food is often transported in temperature controlled

and monitored vehicles. Temperature measurements are often noise corrupted. Pickup

and delivery vehicles often visit several customers per delivery cycle. We take an initial

step in this chapter to develop an understanding of the role of real-time information in the

management of this complex distribution system by considering transportation of perishable

food from a single distribution center (the origin) to a single customer (the destination)

with multiple intermediate locations on a prescribed route from an origin to a destination,

assuming inspections, when they occur, perfectly describe the state of the freight. At

each intermediate location, the decision maker (DM) can decide to go forward to the next

location or to alter the plan to deliver the freight to the destination (the ‘alternative’

2http://www.euroscan-group.com/
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decision). If the decision is to go forward, we also decide whether or not the freight will

be inspected (for a fee) upon arrival at the next location. We assume that an inspection

is a perfect determinant of freight quality. Once the destination is reached, then a reward

is received based on the quality of the freight. The cost and reward structure is composed

of transportation, inspection, wholesale costs, and a destination delivery reward and may

include, depending on the alternative decision, disposal cost, an expedite fee, and/or a

reward structure for a secondary market sell.

The alternative decision is essentially a decision to abort (in some manner) transporting

the current (presumably poor quality) load to the destination and restart, with a new load,

the process of transporting goods from origin to destination. The alternative decision can

model any one of several scenarios. These scenarios include:

• Dispose of the freight, return the vehicle directly to the origin, and begin again with

a fresh load of freight. This scenario assumes that there is a single vehicle (e.g.,

an aircraft) tasked with providing freight to the customer and that freight may be

delivered aperiodically.

• Dispose of the freight and immediately expedite a fresh load of freight to the des-

tination. This scenario allows for periodic freight delivery and permits the cost of

expedited freight to be dependent on when the decision to expedite is made during

the delivery cycle.

• Sell the freight to a secondary market at the current location. This scenario allows for

the case where, for example, fresh strawberries being shipped from the West Coast to

the East Coast in the U.S. have value in St. Louis but are likely to be spoiled by the

time they would reach their destination.

The problem objective is to find a rule (or policy) for selecting a decision at each intermediate

location that maximizes the expected total discounted reward over the infinite planning

horizon, where decisions are based on the results of all the inspections made and at what

locations they were made since the freight last left the origin.
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We remark that when freight quality is measured but not transmitted in transit is

the special case where no monitoring is permitted or equivalently where the cost of data

transmission is prohibitively high. This special case will serve as the basis for comparison

with the more general problem in the analysis later in this chapter.

We also remark that data transmitted in real-time can have benefit ancillary to produc-

tivity improvement. For example, temperature monitoring equipment can be bundled with

information technology that monitors, for example, whether or not the trailer door is open

or closed, perhaps for very little additional cost. Then, real-time data can be used to insure

food quality and perhaps, additionally help to reduce pilferage and/or avoid tampering.

More generally, we believe that information technology for food protection and defense is

much more likely to be embraced by the private sector and inserted in cold supply chains

if it is bundled with information technology for productivity improvement.

For modeling simplicity, we will assume that product quality is perfectly observed. A

topic for future research would assume that product quality is probabilistically related to

measurement (e.g., the output of a temperature gauge and perhaps additionally the output

of other sensors) and hence is partially observed. We remark that studies have shown

significant temperature variation inside a trailer [51], which further supports the claim that

food quality may not be perfectly observed in transit. We further remark that the level

of understanding of the relationship between product quality and temperature history is

highly variable across foods and this relationship is of considerable current interest to the

food industry and the food regulatory community.

We model the problem considered in this chapter as an infinite horizon, expected total

discounted reward, partially observed Markov decision process (POMDP). The sufficient

statistic of the POMDP is the pair (n, ~x), where n is the current location of the loaded

vehicle traveling toward the destination and ~x is the probability mass vector (pmv) of the

state of the freight, conditioned on all the inspections made and at what locations they were

made since the freight last left the origin. Taking advantage of the special structure of the

problem, we develop an efficient procedure for determining the optimal reward function that

avoids the tractability issues typically associated with solution procedures for the POMDP.
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We show that the optimal reward function and an optimal policy have several intuitively

appealing and implementable characteristics but provide a counter example to an intuitive

claim regarding the structure of an optimal policy. We determine the value of having access

to inspections at the intermediate locations and an upper bound on this value. Such results

could be useful to a company deciding whether or not to purchase access to such information,

how to optimally extract value from inspection data, and how much value the company can

expect to extract.

3.2 Literature Review

Several research studies have focused on inventory control for perishable products. Com-

prehensive literature surveys on this topic have been provided by Goyal and Giri [20] and

Nahmias [44]. Both studies classified perishable inventory problems in terms of shelf-life

(fixed or random) and reviewed various types of inventory control policy models.

Research has also focused on perishable product logistics. Lin and Chen [39] examined

a dynamic logistics control model for perishable products in order to maximize total net

profit of all supply chain parties. Specifically, their focus was on the dynamic allocation of

perishable commodities to retailers when supply availability may be uncertain.

Regarding the transportation and delivery of perishable products, much previous re-

search has dealt with the transportation problem as a variant of the vehicle routing problem

(VRP). Such studies are concerned with the distribution of perishable products in order to

prevent the reduction of quality or value of fresh products and focus on reducing travel time

or distance. Tarantilis and Kiranoudis [59] examined the problem of fresh meat distribution

in Athens, Greece, and formulated the problem as an open multi-depot VRP. The authors

proposed a stochastic threshold-accepting meta-heuristic to solve the problem. Osvald and

Stirn [45] considered the problem of distributing fresh vegetables using a VRP formula-

tion with time windows and time-dependent travel time constraints and used a tabu-search

based algorithm for solution determination. They showed that the proposed algorithm re-

duced the amount of perished products in a Slovenian food market by 47%. Hemmelmayr

et al. [26] considered a blood delivery problem of the Austrian Red Cross and investigated
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the potential benefit by changing their delivery process into a vendor-managed inventory

system. They provided an integer programming formulation that is a variant of the periodic

VRP and used variable neighborhood search (VNS) algorithms as a solution approach. In

their formulation, they did not consider blood product spoilage during delivery.

The use of RFID technology for real-time information collection in supply chains has

attracted considerable interest. Lee and Ozer [36] have provided an overview of the impact

of RFID on the improvement of inventory visibility. Kang and Gershwin [31] have examined

the impact of RFID technology on theft prevention in an inventory system. Ustundag and

Tanyas [61] evaluated supply chain performance enhancement from RFID technology in a

three-echelon supply chain through a simulation model by quantifying the expected increase

of benefits from its deployment. Karkkainen [32] presented a case study, conducted at

Sainsbury’s in the UK, that investigated the benefits of RFID deployment for short shelf-

life products. The objectives were to reduce labor costs associated with stock counting

and rotation monitoring and to reduce spoilage in the supply chain. Sahin et al. [52]

evaluated an existing monitoring tool, called the ‘Time Temperature Integrator (TTI)’, to

check perishable product freshness. The authors identified several potential benefits from

TTI deployment but did not develop an operational strategy based on product freshness.

Regarding the use of real-time information for cold chain management, Ferguson and

Ketzenberg [15] considered the value of information sharing between suppliers and retailers

for perishable products. The authors examined the impact on retailer inventory replenish-

ment of fixed lifetime perishable products that are discarded if they are unsold before their

life time. LiKehoe and Drake [38] gathered product quality information using RFID tags

that also measured other environmental indicators and used the information to make deci-

sions for dynamic product (re)allocations in order to maximize product value to customers.

This research and research found in Lin and Chen [39] also focused on perishable product

allocations. To the best of our knowledge, no previous research has addressed the potential

benefit derived from product inspection in cold chain freight transportation. Recently, Cai

et al. [8] studied the impact of preserving product freshness on the order quantity and

selling price, based on a newsvendor model. The authors also investigated an incentive
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structure for supply chain coordination between a producer and a retailer. That is different

from the cost and reward structure of this chapter.

We model our problem as a partially observed Markov Decision Process (POMDP) (see

Puterman [50] and White [63] for details). Related analysis regarding a production process

control problem modeled as a POMDP can be found in White [62], where the structure of

an optimal policy was characterized.

3.3 Problem Statement

A vehicle is to transport a perishable product from the origin (0) to the destination (N)

through intermediate locations, n = 1, . . . , N−1, along the prescribed path 0, 1, . . . , N . Let

s(n) be the state or quality of the product at location n, where s(n) ∈ {0, 1, . . . , S}. We

think of state s as being at least as preferred as state s′ if and only if s ≤ s′. Thus, state 0

can be thought of as “fresh”, state S “spoiled”, and the remaining states as varying degrees

or percentages of fresh and spoiled.

We assume that the quality of the product changes (deteriorates) randomly during

transport according to the stochastic matrix P = {pij} where pij = P (s(n+1) = j | s(n) =
i) for all n. Let xs be the probability that the product is in state s at the current location,

conditioned on the outcome of all inspections made and at what locations these inspections

were made since the freight last left the origin. Since an inspection is assumed to perfectly

reveal the state of the freight, all that is needed to determine the probability mass vector

(pmv) of the product state ~x = (x0, x1, . . . , xS) is the last location where the freight was

inspected, the resultant observation, and P . More specifically, the pmv at location n, given

that an observation took place most recently at location k < n, and that the observation

was j (i.e., s(k) = j) is ~ejP
n−k, where ~ej is the (S+1)-vector having 1 as its j-th entry and

0 otherwise. If an observation has not been made since departure from the origin, then the

pmv at location n is ~x∗Pn, where ~x∗ is the (a priori) pmv of the freight when it leaves the

origin.

One might assume that the freight leaves the origin fresh (i.e., x∗0 = 1). However, this

may not be the case for a variety of reasons: e.g., lengthy time on the dock when moving the
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freight from the temperature controlled warehouse to the temperature controlled trailers.

Presumably, though, x∗0 equals or is close to 1.

At the origin, the DM can decide to inspect (I) or not inspect (NI) the product at

location 1. If the decision is I, then the actual (perfectly observed) state (or quality) of the

product at location 1 is revealed once the vehicle arrives at location 1. At any intermediate

location n ∈ {1, . . . , N−1}, the DM can decide I, NI, or can select the alternative decision

A. Both the I and NI decisions assume the vehicle travels from n to n+ 1. Again, if the

decision is I, the state of the product at n+ 1 is revealed once the vehicle arrives at n+ 1.

Decision A represents the decision to abort transporting the current load to the destination

and restart the process of transporting goods from origin to destination.

The cost and reward structure is as follows. Assume each inspection costs M and the

wholesale purchase cost is W , where both M and W are assumed to be negative. If the

product arrives at the destination in state s, then a reward of Rs is accrued where Rs may

be positive or negative. The product can only be purchased wholesale at the origin. Assume

that the cost of traveling from n to n′ ∈ {n − 1, n + 1}, whether the vehicle is loaded or

empty, is c(n, n′) < 0.

Costs associated with action A might include: a freight disposal cost, the cost (or

reward) of selling the current load at a secondary market (perhaps dependent on freight

quality), an expedite cost, and the cost of returning the vehicle to the origin (location

dependent). We assume all of these costs can be described by the function ln + ~x~lxn, where

n is the current location and ~x is the pmv of the current load at location n, and hence, the

scalar ln reflects the location-dependent costs while the vector ~lxn reflects both location and

quality dependent costs (or rewards).

We discount costs and rewards as follows: Assume that at location n, it is decided to

continue to location n + 1 (i.e., either I or NI is selected at location n). Then, all costs

incurred after reaching location n + 1 are discounted by discount factor β ∈ [0, 1). Both

selection of action A and reaching the destination cause the current process of transport-

ing goods from origin to destination to terminate and the next load of product to begin

transport from origin to destination, either immediately or at some time or event in the
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future, depending on the situation. All costs incurred after the next load of product begins

transport are discounted by discount factor βn ∈ [0, 1) when action A is selected at location

n ∈ {1, 2, . . . , N−1}, and are discounted by discount factor βN ∈ [0, 1) when the destination

is reached.

A policy is a rule that maps the current location n and the current pmv of the state of the

freight at location n into the available actions. Our criterion is expected total discounted

reward over the infinite horizon. Our objective is to determine a policy that maximizes

the criterion and the resultant value of the criterion. Throughout, we assume that P and

β are location invariant for notational simplicity. It is straightforward but notationally

complicated to extend all of the results of this chapter to the more realistic case where P

and β are location dependent. Proofs of all results are presented in Appendix A.1.

We remark that the operational issue of deciding what to do, based on real-time inspec-

tion data, with a perishable product that is in-transit from an origin to a destination is

inherently a finite horizon problem while the more strategic firm level issue of managing a

perishable product logistics business is reasonably modeled as an infinite horizon problem.

Both the operational and firm level issues are captured and linked by the infinite horizon

expected total discounted cost criterion presented above.

3.4 Preliminary Results

Results in Sondik [55] guarantee that it is sufficient to base action selection on (n, ~x), where

n is the current location and ~x is the pmv of the state of the freight at location n. Let

ω(n, ~x) be the optimal expected discounted reward over the infinite horizon, given (n, ~x).

We seek ω(n, ~x) for all (n, ~x) and a policy that generates these criterion values.

We begin by constructing ω(N,~x). An expected quality-dependent reward/cost of ~x~R is

accrued once the destination N is reached. Other costs may be incurred additionally (e.g.,

the cost of relocating the vehicle from the destination back to the origin). Let lN + ~x~R

represent the total cost and reward accrued between the time the destination is reached

and the time the next movement of goods from origin to destination begins. Then,

ω(N, x) = lN + ~x~R+ βNω(0, ~x∗), (5)
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where ω(0, ~x∗) is the optimal expected discounted reward over the infinite horizon when the

next movement of goods from 0 to N begins.

For n = 1, . . . , N − 1,

ω(n, ~x) = max





c(n, n+ 1) + βω(n+ 1, ~xP ),

c(n, n+ 1) +M + β~xP~ω(n+ 1),

ln + ~x~lxn + βnω(0, ~x
∗),

(6)

where ~ω(n+1) = col{ω(n+1, ~e0), ω(n+1, ~e1), . . . , ω(n+1, ~eS)} and where the three terms on

the RHS of Equation (6) are associated with actions NI, I, and A respectively. Similarly,

ω(0, ~x) = W +max





c(0, 1) + βω(1, ~xP ),

c(0, 1) +M + β~xP~ω(1).
(7)

Equations (5), (6) and (7) constitute the optimality equations and boundary conditions

for the problem. Results in Chapter 6 of Puterman [50] guarantee that an optimal policy

can be constructed from the actions that cause the maxima in the optimality equations to

be achieved.

3.4.1 Determination of ω(0, ~x∗)

We observe that the key to determining ω(n, ~x) for all (n, ~x) is determining ω(0, ~x∗). Once

ω(0, ~x∗) is known, determining ω(n, ~x) for all (n, ~x) becomes a finite horizon dynamic pro-

gram.

We now construct a process for finding ω(0, ~x∗). Let z be the current approximation of

ω(0, ~x∗) and define

ω′(N,~x, z) = lN + ~x~R+ βNz,

ω′(n, ~x, z) = max





c(n, n+ 1) + βω′(n+ 1, ~xP, z),

c(n, n+ 1) +M + β~xP~ω′(n+ 1, z),

ln + ~x~lxn + βnz,

for n = 1, . . . , N − 1,

ω′(0, ~x, z) = W +max





c(0, 1) + βω′(1, ~xP, z),

c(0, 1) +M + β~xP~ω′(1, z),

where the s-th element of the (S + 1)-vector ~ω′(n, z) is ω′(n,~es, z).
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We note that if z = ω(0, ~x∗), then ω′(n, ~x, z) = ω(n, ~x) for all (n, ~x). Let H(z) =

ω′(0, ~x∗, z). Our objective then becomes to find a fixed point for the operator H. It is

straightforward to show that H is a contraction mapping. Hence, there exists a unique

z∗ such that z∗ = H(z∗), and this fixed point is ω(0, x∗). Further, for any bounded z0,

limn→∞ |ω(0, x∗)−zn| = 0, where zn+1 = H(zn). This limit forms the basis for determining

ω(0, ~x∗) and hence ω(n, ~x) for all (n, ~x). We now focus on finding H(z), given z.

3.5 Structural Results

3.5.1 Optimal Reward Function Determination

We now present an approach for determining ω(n, ~x) for all (n, ~x). We begin by determining

H(z), given z. For given z, results in Smallwood and Sondik [54] guarantee that ω′(n, ~x, z)

is piecewise linear and convex in ~x. Thus, for each n, there is a finite set of (S + 1)-vectors

V ′(n, z) such that

ω′(n, ~x, z) = max
{
~x~m : ~m ∈ V ′(n, z)

}
.

We now determine the vectors in V ′(n, z). For n = 1, . . . , N , let the (S + 1)-vector

~l(n, z) = (l0(n, z), . . . , lS(n, z)) = ~lxn + (ln + βnz)~e, where ~e is the (S +1)-vector having 1 in

all entries and ~lxN = ~R. Let the vector ~m(ρ, n, z) for all n and ρ such that N ≥ ρ ≥ n ≥ 0,

be defined as follows:

~m(N,N, z) = ~l(N, z),

~m(ρ, n, z) = c(n, n+ 1)~e+ βP ~m(ρ, n+ 1, z) for N ≥ ρ > n ≥ 0, and

~m(n, n, z) = (c(n, n+ 1) +M)~e+ βP~η(n+ 1, z) for N > n ≥ 0,

where the s-th element of the (S + 1)-vector ~η(n + 1, z) is max{ls(n + 1, z), ~ms(n+ 1, n +

1, z), . . . , ~ms(N,n+ 1, z)}, and ~ms(ρ, n, z) is the s-th element of the vector ~m(ρ, n, z) (i.e.,

~ms(ρ, n, z) = ~es ~m(ρ, n, z)).

Let A1 (Assumption 1) be defined as follows:

A1 : For n = 1, 2, . . . , N − 2, ~l(n, z) ≥ c(n, n+ 1)~e+ βP~l(n+ 1, z).

A1 indicates that for all intermediate locations, the earlier the decision A is made, the less

corresponding loss is incurred. This is clearly the case for transportation cost back to the
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origin or the cost of expediting freight when the freight is to be delivered periodically (i.e.,

the less time-urgent the expedite transport, the less expensive the expedite decision).

A straightforward induction argument proves the following result.

Proposition 2 Assume A1. Then,

ω′(N,~x, z) = ~x~l(N, z),

ω′(n, ~x, z) = max{~x~l(n, z), ~x~m(n, n, z), ~x~m(n+ 1, n, z), . . . , ~x~m(N,n, z)}

for n = 1, . . . , N − 1, and

ω′(0, ~x, z) = W +max{~x~m(0, 0, z), ~x~m(1, 0, z), . . . , ~x~m(N, 0, z)}.

Thus, V ′(N, z) = {~l(N, z)}, V ′(n, z) = {~l(n, z), ~m(n, n, z), ~m(n+1, n, z), . . . , ~m(N,n, z)} for

n = 1, . . . , N − 1, and V ′(0, z) = {W~e + ~m(0, 0, z),W~e + ~m(1, 0, z), . . . ,W~e + ~m(N, 0, z)}.
Let |V | be the cardinality of the set V . Note that |V ′(N, z)| = 1, |V ′(N − k, z)| = k + 2,

k = 1, . . . , N − 1, and |V ′(0, z)| = N + 1. The extremely modest increase in the cardinality

of the V ′(n, z) sets as n gets smaller is in stark contrast to the potential increase in the

cardinality of concomitant sets for the general finite horizon POMDP and to the fact that

this cardinality can be (countably) infinite for the infinite horizon POMDP [55].

We summarize the determination of ω(n, ~x) as Algorithm 3:

0. Select z0; set k = 0;

1. Determine {V ′(n, zk), n = N, . . . , 0};
2. Set zk+1 = max{~x∗ ~m : ~m ∈ V ′(0, zk)};
3. If |zk+1 − zk| < ε for a sufficiently small ε, then stop, use zk as an approximation

of z∗, and use max{~x~m : ~m ∈ V ′(n, zk)} as an approximation of ω(n, ~x). Otherwise,

set k = k + 1 and go to Step 1;

Algorithm 3: Procedure for determining ω(n, ~x)

3.5.2 Optimal Reward Function Structure

We now show that the model reflects the statement: the fresher the product, the greater the

expected profit. We use stochastic dominance to compare two pmvs for freshness: ~x′ is at

least as fresh as ~x (~x ≺ ~x′) if and only if
∑

s≥k xs ≥
∑

s≥k x
′
s for all k. Let ~ps = (ps0, . . . , psS)

be the s-th row of P . We now present Assumption 2 (A2):
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A2 : P is stochastic and ~ps+1 ≺ ~ps for all s.

We remark that A2 has the following interpretation: the fresher the current product, the

more likely the product will be fresher one decision epoch in the future.

We now present conditions that guarantee ω′(n, ~x, z) is monotonically non-decreasing in

~x with respect to stochastic dominance. Let a vector ~v be NIV (a non-increasing vector) if

and only if ~vs ≥ ~vs+1 for all s.

Proposition 3 Assume A1, A2, and ~lxn are NIV for all n = 1, 2, . . . , N . If ~x ≺ ~x′, then

ω′(n, ~x, z) ≤ ω′(n, ~x′, z) for all n = 0, 1, . . . , N .

We remark that the assumptions that ~lxn are NIV for n = 1, . . . , N are consistent with the

assumption that the greater the state of the freight, the lower its quality, which, in turn,

induces higher cost or lower reward.

3.5.3 Optimal Policy Structure

We now investigate the structure of an optimal policy. It is intuitive that if, at any interme-

diate location, the product is spoiled (i.e., if ~x = ~eS), then the trip should be aborted (i.e.,

select action A). This characteristic holds under robust conditions, as we show in Propo-

sition 4. It is also intuitive that if it is known that the product is fresh (i.e., if ~x = ~e0),

then it is unlikely to be necessary to inspect (select action NI). For situations in between,

there may be a reason to inspect the product (select action I). Thus, as the product’s

state changes from spoiled to fresh, it is reasonable to expect that an optimal action would

change from A to I to NI (i.e., the fresher the product, the less the need to inspect). More

formally, and letting π∗ be an optimal policy, we interpret these statements as follows:

(i) If π∗(n, ~x) 6= A, and ~x ≺ ~x′, then π∗(n, ~x′) 6= A.

(ii) If π∗(n, ~x) /∈ {A, I} and ~x ≺ ~x′, then π∗(n, ~x′) /∈ {A, I}.

We will show (i) and (ii) hold when S = 1 in Proposition 5, and we will show (i) holds for

all S in Proposition 6. However, Appendix C.2 presents a counter-example to the claim

that (ii) holds for all S. We begin by defining an optimal policy based on the optimality

equations.
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Define the optimal policy π∗(n, ~x) as follows:

(i) if ω′(n, ~x, z∗) = ~x~l(n, z∗), then let π∗(n, ~x) = A,

(ii) if ω′(n, ~x, z∗) = ~x~m(n, n, z∗), then let π∗(n, ~x) = I, and

(iii) if ω′(n, ~x, z∗) = ~x~m(ρ, n, z∗) for any ρ ∈ {n+ 1, . . . , N}, then let π∗(n, ~x) = NI.

The policy π∗ is optimal by results in Smallwood and Sondik [54] and by the construction of

the ~m(ρ, n, ~x) and essentially reflects the statement that if an action causes the maximum

in the optimality equations to be attained, then it is an optimal action.

We now show that under weak conditions, it is always optimal to select action A when

the product has spoiled in route to the destination.

Proposition 4 Assume A1, pSS = 1, and c(N−1, N)+βlS(N, z∗) ≤ lS(N − 1, z∗). Then,

π∗(n,~eS) can be selected to equal A for all n = 1, . . . , N − 1.

We remark that pSS = 1 is consistent with the statement: once the freight has spoiled, its

quality will never improve. Additionally, the assumption that c(N − 1, N) + βlS(N, z∗) ≤
lS(N − 1, z∗) is consistent with assumption A1.

We now investigate the S = 1 case. Let σ(ρ, n, z) = ~m0(ρ, n, z)− ~m1(ρ, n, z), the slope

of ~x~m(ρ, n, z) versus x0. Proposition 3 guarantees that this slope is always non-negative.

Proposition 5 Assume:

(i) S = 1, p01 = α, p11 = 1, and γ = β(1− α),

(ii) A1, and c(N − 1, N) + βl1(N, z) ≤ l1(N − 1, z),

(iii) for all n = 1, . . . , N − 1, l0(n, z) < ω′(n,~e0, z).

Then, for all n = 1, . . . , N − 1, σ(ρ, n, z) ≤ σ(ρ+ 1, n, z) for ρ = n, . . . , N − 1.

We interpret Proposition 5, with the help of Proposition 4 restricted to the case where

S = 1, as follows. Proposition 4 guarantees that there is a x′0 ∈ [0, 1] where if x0 ≤ x′0, the

optimal action is A. Note that the facet of ω′(n, ~x, z) with the least non-negative slope has
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slope σ(n, n, z) and is associated with action I. This suggests that there is a x′′0 ∈ [x′0, 1]

such that if x0 ∈ [x′0, x
′′
0], then choose action I, and for all x0 ∈ [x′′0, 1], choose action NI.

Figure 5 is a graphical depiction of this discussion.
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Figure 5: Graph of ω′(n, ~x, z) versus x0 for the S = 1 case.

Observe that assumption (iii) in Proposition 5 implies that it is optimal to continue to

travel toward the destination if, at location n, the probability that the product is fresh is 1

(i.e., x0 = 1). If this assumption does not hold, then it would always be optimal to select

action A, one would never make a profit, and hence there would be no reason to enter into

or remain in the business.

Proposition 5 implies for the S = 1 case that if π∗(n, ~x) = NI and x0 ≤ x′0, then

π∗(n, ~x′) 6= I. However, this statement does not hold in general when S > 1. Given that

the current decision epoch and pmv is (n, ~x), the expected discounted value of knowing the

state of the freight at epoch n + 1 is β[~xPω(n + 1) − ω(n + 1, ~xP )]. If |M | ≥ β[~xPω(n +

1)−ω(n+1, ~xP )], then the cost of obtaining freight state information exceeds its expected

value, and hence it would be better to select NI than I. The convexity of ω(n, ~x) in ~x for

all n assures there are ~x and ~x′ such that, for ~x ≺ ~x′ and P satisfying A2,

~x′Pω(n+ 1)− ~xPω(n+ 1) ≥ ω(n+ 1, ~x′P )− ω(n+ 1, ~xP ).
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Thus, for any M such that

β[~x′Pω(n+ 1)− ω(n+ 1, ~x′P )] ≥ |M | ≥ β[~xPω(n+ 1)− ω(n+ 1, ~xP )],

π∗(n, ~x) = NI and π∗(n, ~x′) = I (assuming π∗(n, ~x) 6= A and π∗(n, ~x′) 6= A). Appendix C.2

presents an example where ~x and ~x′ are such that ~x ≺ ~x′, π∗(n, ~x) = NI and π∗(n, ~x′) = I
when S > 1.

We now give conditions that guarantee for all S that if it is suboptimal to select A in

state (n, ~x), and if ~x′ is at least as fresh as ~x, then it is suboptimal to choose A when in

state (n, ~x′).

Lemma 1 Let X be a (multi-dimensional) convex set and {ωa(~x)}a∈A be an arbitrary family

of (real-valued) convex functions over X where A is a (convex) index set where each element

corresponds to an action. In addition, let ω∗(~x) = supa∈A{ωa(~x)} for all ~x ∈ X, and

X∗
a = {~x ∈ X : ωa(~x) = ω∗(~x)}, an optimal region in X which is associated with ωa(~x), for

each a ∈ A. Then, if ωa(~x) is an affine function for any a ∈ A, X∗
a is a convex set.

Thus, there exists a convex set XA ⊆ X containing ~eS such that π∗(~x) = A for all ~x ∈ XA

due to Lemma 1 and Propositions 4 and 6.

Proposition 6 Assume A1, A2, and βP~lxn+1−~lxn is NIV for all n ≤ N−1. If π∗(n, ~x) 6= A
and ~x ≺ ~x′, then π∗(n, ~x′) 6= A.

We now examine the conditions on {~lxn} found in the assumptions of Proposition 6.

These conditions hold trivially when ~lxn = ~0. Observe that A1 holds when the following two

conditions hold:

(i) ln + βnz
∗ ≥ c(n, n+ 1) + β(ln+1 + βn+1z

∗)

(ii) ~lxn ≥ βP~lxn+1.

If condition (i) is intended to capture discounted transportation cost, as it would for our

first scenario (where ~lxn = ~0 for all n), then (i) simply represents the triangle inequality

when β = 1.
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We remark that βP~lxn+1 can be interpreted as the expected secondary market reward

structure one decision epoch in the future, taking into account expected freight deteriora-

tion. Thus, condition (ii) indicates that this reward structure is expected to be uniformly

reduced going forward. We remark that if ~lxn is NIV and location invariant (all secondary

markets share the same reward structure) and if pij = 0 for j < i (freight quality never

improves), then condition (ii) holds. The condition that βP~lxn+1 −~lxn is NIV indicates that

we can expect the state of secondary reward structure deterioration to be greater as freight

quality degrades. We remark that when secondary markets are highly dynamic and/or non-

uniform, then these assumptions on ~lxn may not hold, and hence the result of Proposition 6

may not be true for the ~lxn 6= 0 case.

3.5.4 Sensitivity Analysis

We now examine how the cost of inspection (M), the structure of the rewards and costs re-

ceived when the freight is delivered to the destination (~R), and the description of freight de-

terioration (P ) affect the optimal total reward function ω(·). Let ω′(n, x, z;M), ω′(n, x, z; ~R),

and ω′(n, x, z;P ) be defined as before, explicitly recognizing the dependence of ω′ on the

parameters M , ~R, and P , respectively.

We begin by considering the cost of inspection. It can be shown that for any n, ~x

and z, (i) ω′(n, ~x, z;M) is monotonically non-decreasing in M , and (ii) there is a set

VM (n, ~x, z) (countable but not necessarily finite) where ω′(n, ~x, z;M) = max{aM + b :

(a, b) ∈ VM (n, ~x, z)} and noting that an element in VM (n, ~x, z) is a pair of scalars. Hence,

ω′(n, ~x, z;M) is both monotonically non-decreasing and convex in M . Thus, an increase

in the cost of an inspection has more of a negative impact on the optimal reward function

when this cost is close to zero than otherwise. This characteristic is illustrated in Figure

6, where the slope of the graph increases as M increases. We also remark that inspection

frequency will decrease, and the time between inspections will increase as the inspection

cost increases.

We now examine the impact of changes of the reward vector ~R on ω′(n, ~x, z; ~R). Follow-

ing an argument identical to the above case for the cost of inspection, we can show that for
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Figure 6: Graph of ω′(0, ~x∗, z∗;M) versus M .

any n, ~x and z, ω′(n, ~x, z; ~R) is monotonically non-decreasing in ~R, and there is a count-

able but not necessarily finite set VR(n, ~x, z) where ω′(n, ~x, z; ~R) = max{~a~R + b : (~a, b) ∈
VR(n, ~x, z)} where in this case ~a is an (S + 1)-vector and b is a scalar. Thus, ω′(n, ~x, z; ~R)

is also convex in ~R, and hence the incremental increase of expected profit per increase in

unit reward gets larger as the reward gets larger.

We next investigate the impact of variations in the transition matrix P on ω′(n, ~x, z;P ).

Let P ≺ P ′ if and only if ~ps ≺ ~p′s for all s = 0, 1, . . . , S. We can interpret this ordering on

P as follows: A transportation mode with P ′ is more reliable than one with P in terms of

freight quality degradation. Then, we can show an intuitive result stating that more reliable

transportation mode yields higher expected reward.

The following result summarizes all the discussions above:

Proposition 7 Given any n, ~x and z,

(a) ω′(n, ~x, z;M) is monotonically non-decreasing and convex in M .

(b) ω′(n, ~x, z; ~R) is monotonically non-decreasing and convex in ~R.

(c) if P ≺ P ′, then ω′(n, ~x, z;P ) ≤ ω′(n, ~x, z;P ′).
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3.6 Benchmarks

It follows from Proposition 7(a) that, for any M ≤ 0, ω′(n, ~x, z;−∞) ≤ ω′(n, ~x, z;M) ≤
ω′(n, ~x, z; 0). In addition to serving as bounds, both ω′(n, ~x, z;−∞) and ω′(n, ~x, z; 0) are

special cases useful in understanding the value of being able to access freight status in

transit. If observing freight status in transit and communicating this information in real

time is cost prohibitive, then no observations will be made and transmitted. Since it is

currently common business practice to make and transmit no observations of freight status

in transit, ω′(n, ~x, z∗;−∞) represents the current practice benchmark, and ω′(n, ~x, z∗;M)−
ω′(n, ~x, z∗;−∞) represents the value of having access to freight status in transit.

If observations are free, then (as we will show) it is optimal to observe freight status at

every intermediate location. Hence, ω′(n, ~x, z∗; 0) − ω′(n, ~x, z∗;−∞) represents the maxi-

mum value that can be achieved of having access to freight status in transit. If this value

does not justify acquiring the capability of monitoring freight status in transit, then it is

unlikely that a business case can be made for in-transit freight status monitoring.

3.6.1 Lower Bounds: Current Practice in Industry

Let ωL(n, ~x) be the optimal expected total discounted reward assuming that there is no

access to product inspections in-transit from the origin to the destination. We remark

that ωL(n, ~x) = ω′(n, ~x, z∗;−∞) since having no access to product inspections in-transit is

equivalent from a decision making perspective to having access to prohibitively expensive

product inspections in-transit. As indicated by Proposition 7(a), ωL(n, ~x) ≤ ω(n, ~x) for all

n and ~x. The difference ω(n, ~x) − ωL(n, ~x) is the value of having access to inspection at

the intermediate locations and taking optimal advantage of this access. We now investigate

ωL(n, ~x).

If product inspection is not available at the intermediate locations, then the optimality
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equations simplify to

ωL(0, ~x) = W + c(0, 1) + βωL(1, ~xP ),

ωL(n, ~x) = max





c(n, n+ 1) + βωL(n+ 1, ~xP )

ln + ~x~lxn + βnωL(0, ~x
∗),

for 1 ≤ n < N, and

ωL(N,~x) = lN + ~x~R+ βNωL(0, ~x
∗).

Define

ωLL(0, ~x) = W + c(0, 1) + βωLL(1, ~xP ),

ωLL(n, ~x) = c(n, n+ 1) + βωLL(n+ 1, ~xP ) for 1 ≤ n < N, and

ωLL(N,~x) = lN + ~x~R+ βNωLL(0, ~x
∗).

Clearly, ωLL(n, ~x) ≤ ωL(n, ~x) for all n and ~x. Note that ωLL(·) is the value function

for the policy “always travel directly from the origin to the destination,” which is the

policy typically used in industry currently. Letting ~x = ~x∗ in the equations above, it is

straightforward to show that for 1 ≤ n < N ,

ωLL(n, ~x
∗Pn) =

N−1∑

k=n

βk−nc(k, k + 1) + βN−n
[
lN + ~x∗PN ~R+ βNωLL(0, ~x

∗)
]
,

where ωLL(0, ~x
∗) =

{
W +

∑N−1
n=0 βnc(n, n+ 1) + βN

[
lN + ~x∗PN ~R

]}
/(1− βNβN ).

We now investigate the following question: assuming there is no opportunity to inspect

the product in transit, when is the “always travel from origin to destination” policy optimal?

An answer is when the following inequality holds for all 1 ≤ n < N :

c(n, n+ 1) + βωLL(n+ 1, ~x∗Pn+1) ≥ ln + ~x∗Pn~lxn + βnωLL(0, ~x
∗). (8)

We now give conditions that imply this inequality holds for all 1 ≤ n < N , assuming the

inequality holds when n = 1.

Proposition 8 If c(n, n + 1) + βωLL(n + 1, ~x∗Pn+1) ≥ ln + ~x∗Pn~lxn + βnωLL(0, ~x
∗), then

c(n+ 1, n+ 2) + βωLL(n+ 2, ~x∗Pn+2) ≥ ln+1 + ~x∗Pn+1~lxn+1 + βn+1ωLL(0, ~x
∗).

Thus, if it is optimal to travel from location 1 to location 2 (rather than select action A),

then it is optimal to travel from the origin to the destination, which suggests a bound on

53



the initial product quality ~x∗. Appendix C.3 presents the conditions that the inequality (8)

holds when n = 1, and hence ωL(n, ~x) = ωLL(n, ~x) due to Proposition 8.

We remark that ω(n, ~x) represents an upper bound on the optimal reward function for

the case where product quality inspections are noise-corrupted. Hence, ω(n, ~x) − ωL(n, ~x)

represents an upper bound on the value of having access to inspections at the intermediate

locations if inspections are partial observations of product quality.

3.6.2 Upper Bounds

We now seek upper bounds on ω(n, ~x). Let ωU (n, ~x) be the expected optimal total dis-

counted value function when there is no cost of inspection (i.e., M = 0). By Proposition

7(a), ωU (n, ~x) = ω′(n, ~x, z∗; 0) and hence ω(n, ~x) ≤ ωU (n, ~x) for all n and ~x. We remark

that ωU (n, ~x) − ωL(n, ~x) represents an upper bound on the value of being able to inspect

the product in transit.

We also note that since ω(n, ~x) is convex in ~x, ω(n, ~x) ≤ ~x~ω(n). Thus, when M = 0,

action NI is always suboptimal and can be eliminated as an action. Hence,

ωU (0, ~x) = W + c(0, 1) + β~xP~ωU (1),

ωU (n, ~x) = max





c(n, n+ 1) + β~xP~ωU (n+ 1)

ln + ~x~lxn + βnωU (0, ~x
∗) = ~x~l(n, ωU (0, ~x

∗)),
for 1 ≤ n < N, and

ωU (N,~x) = lN + ~x~R+ βNωU (0, ~x
∗) = ~x~l(N,ωU (0, ~x

∗))

where ~ωU (n) is an (S + 1)-vector whose j-th element is ωU (n,~ej).

Since the underlying product quality is assumed to be perfectly observable, the opti-

mality equations above become as follows: for 1 ≤ n < N ,

ωU (n,~es) = max





c(n, n+ 1) + β
∑

s′ pss′ωU (n+ 1, ~es′)

~es~l(n, ωU (0, ~x
∗))

and ωU (N,~es) = ~es~l(N,ωU (0, ~x
∗)).

We now show that there is an optimal policy for the upper bound case with an intuitively

appealing structure.

Proposition 9 Let M = 0. Then,
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(i) for each 1 ≤ n < N , there is an s(n) ∈ {0, 1, . . . , S} for which

(a) if s ≥ s(n), then choose action A,

(b) if s < s(n), then choose action I.

Additionally, assume P is upper-triangular (i.e., pij = 0 if j < i). Then,

(ii) s(n) ≤ s(n+ 1), n = 1, 2, . . . , N − 2.

Thus, there exists an optimal control-limit rule for each intermediate location, and the

control-limit is non-increasing as the intermediate location gets closer to the destination

(i.e., the farther we are from the destination, the fresher the product must be in order to be

eventually profitable). These structural characteristics are potentially useful in constructing

good, easily implementable suboptimal policies when the cost of inspection is small. In

Appendix C.4, we present a closed-form formula of ωU (n,~es) when such a policy having the

structural properties in Proposition 9 is assumed.

We remark that since determining the upper bound ωU (n, ~x) involves solving for ω(n, ~x)

for the special case where M = 0, the solution procedure for determining ω(n, ~x) presented

earlier can be used to determine ωU (n, ~x). Thus, lim
n→∞ |ωU (0, ~x

∗) − zn| = 0, where zn+1 =

HU (zn) for any bounded z0, HU (z) = ω′
U (0, ~x

∗, z),

ω′
U (0, ~x, z) = W + c(0, 1) + β~xP~ωU (1, z),

ω′
U (n,~es, z) = max





c(n, n+ 1) + β
∑

s′ pss′ω
′
U (n+ 1, ~es′ , z)

~es~l(n, z)
for 1 ≤ n < N, and

ω′
U (N,~es, z) = lN +Rs + βNz.

3.7 Illustrative Example

Consider a distribution system where fresh strawberries in California are loaded on a re-

frigerated truck for delivery to a destination on the East Coast of the U.S. Suppose that

transit takes 4 days, and the refrigerated truck is equipped with a GPS-enabled commu-

nication module and temperature monitoring system. We assume that the decision maker

can poll for real-time temperature data captured by the monitoring system from the vehicle
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via GPS/Satellite communication link, and the minimum inter-transmission interval is 1

hour. In this scenario, we assume that a new shipment is initiated every week. Typically,

the procurement cost cw of strawberries from suppliers is $0.98/lb, their retail price cp is

$2.29/lb, and the disposal cost cd is $0.2/lb. We also assume that transportation costs (in-

cluding driver wages, fuel, and other costs) is approximately $2/mile, and the driver drives

11 hours per day at an average speed of 50 miles/hour.

Suppose that the strawberries can be in one of eight states (S = 7). We can think of

state 0 as the freshest state of the strawberries, freshness is reduced as the state increases,

and state 7 is the least fresh (perished) state. The strawberries deteriorate in a Markovian

fashion over each of the minimum inter-transmission intervals with the corresponding state

transition probability matrix P as follows:

P =




0.97 0.03 0 0 0 0 0 0

0 0.96 0.04 0 0 0 0 0

0 0 0.94 0.06 0 0 0 0

0 0 0 0.92 0.08 0 0 0

0 0 0 0 0.88 0.12 0 0

0 0 0 0 0 0.86 0.12 0.02

0 0 0 0 0 0 0.8 0.2

0 0 0 0 0 0 0 1




.

When strawberries are loaded onto the refrigerated truck at the origin, it is assumed

that the strawberries are in state 0 with probability 0.95 and in state 1 with probability

0.05.

Finally, we consider a scenario for action A that an expedite delivery is arranged

while the current freight is disposed of, and that the expedite decision incurs a fixed

cost of dS per pound at any intermediate location. Thus, we consider sets of freight

sizes Q (lb) and (fixed) costs dS ($/lb) for action A: Q ∈ {30000lb, 40000lb, 50000lb}
and dS ∈ {1.5cd, 2.5cd, 3cd, 3.5cd, 4cd, 6cd, 10cd} where cd is the disposal cost per pound.
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We also consider three different levels of reward per pound (denoted cr ($/lb)), where

cr ∈ {1.4, 1.5, 1.6} when the freight state at the destination is in state 0. We remark that

the penalty 6cd is larger than the procurement cost per pound, cw, and 10cd is larger than the

reward per pound, cr. We further assume a state-dependent reward structure as follows: Let

R0 be the total reward when delivered goods are in state 0. Then, if the delivered freight at

the destination is in state s (s = 1, 2, . . . , 7), the corresponding reward Rs is determined by

ρsR0 where (s, ρs) ∈ {(1, 0.99), (2, 0.97), (3, 0.95), (4, 0.9), (5, 0.8), (6, 0.3), (7, 0)}. We note

that when the strawberries are in state 6, the per-pound reward becomes 0.3cr, which is less

than the per-pound procurement cost cw, implying that a net loss is incurred. We also vary

values of the inspection cost M($) over {0,−0.5,−1,−2,−5,−10,−20,−50,−70,−100} in

order to determine how the cost of inspection affects the expected total discounted profit

over the infinite horizon. In practice, the overall inspection cost is determined as follows.

For example, Euroscan3 charges at least (i) a data transmission cost (≈ $0.1/message), (ii)

a data hosting and web access fee ($6/month), and (iii) an one-time configuration fee ($22

for terminal activation fee, and $50 for one-time setup fee per terminal), in addition to a

fee related to the monitoring and communication modules. Table 12 presents the summary

of parameters used in this example.

For each freight size and per-pound reward, we present the expected total discounted

reward ω(0, ~x∗) if the pmv of the initial freight state at the origin is ~x∗ in Figure 7, depending

on the values of costs for action A, dS , and inspection cost M . We observe that, for given

reward vector R, ω(0, ~x∗) becomes more sensitive to the change of the inspection cost

M as the penalty for delivery failure increases. This supports the intuitive idea that as

the cost dS increases, the decision maker will want to inspect more frequently in order to

make an appropriate action as early as possible if the quality of the freight deteriorates

significantly. Numerical experiments show that ω(0, ~x∗) gradually decreases as dS increases

and eventually, ω(0, ~x∗) converges for reasonable inspection cost levels. This suggests that

there may exist a threshold of dS such that ω(0, ~x∗) no longer decreases when the inspection

cost is not sufficiently large. This result seems initially counter-intuitive. However, it may

3http://www.euroscanweb.com
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Table 12: Value of parameters in the illustrative example

Parameters Description Value(s)

M Inspection cost ($) {0,−0.5,−1,−2,−5,−10,−20,−50,
−70,−100}

Q Freight size (lb) {30000, 40000, 50000}
cp Retail price ($/lb) 2.29
cw Procurement cost ($/lb);

W = −cwQ
0.98

cr Reward if the freight state is
in 0 ($/lb); R0 = crQ

{1.4, 1.5, 1.6}

ρs State-dependent reward rate;
Rs = ρsR0, s = 0, 1, . . . , S

{1, 0.99, 0.97, 0.95, 0.9, 0.8, 0.3, 0}

cd Disposal cost ($/lb) 0.2
dS Fixed cost for action A per

pound ($/lb); ln = −dSQ
{1.5cd, 2.5cd, 3cd, 3.5cd, 4cd, 6cd, 10cd}

~x∗ pmv of the initial product
quality at the origin

[
0.95 0.05 0 0 0 0 0 0

]

β Discount factor 0.995

imply that the larger penalty impedes selecting a decision A, and hence, the vehicle is less

likely to abort delivery since the freight may still generate a small amount of revenue. In

addition, as the reward vector ~R increases, ω(0, ~x∗) becomes more sensitive to a change in

the inspection cost M since the net profit upon arrival at the destination increases. Thus,

the decision maker becomes more interested in the freight status in transit as ~R increases.

We also evaluate how the value of inspection in transit depends on the changes of rewards

or penalties. An upper bound on the value of information (VI), ∆V I =
{
(ωU (0, ~x

∗) −
ωL(0, ~x

∗))/ωL(0, ~x
∗)
}
× 100 (%), is introduced to measure the percentage increase of the

expected total discounted reward when in-transit inspection is available, and we use ∆V I =
{
(ωU (0, ~x

∗) − ω(0, ~x∗;−100))/ω(0, ~x∗;−100)
}
× 100 (%) as its approximation. Figure 8

presents the value of this bound as per-pound rewards, penalties and freight sizes vary.

This analysis provides several intuitively appealing results: the percentage gains in profit

from inspection increases as per-pound penalty increases, and a smaller per-pound reward

induces a larger information gap (see Appendix C.5 for further discussion). In addition,

the benefits from inspection decline, and the increasing rate of the bound, as a function of
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(a)                                                                          (b)                                             (c)

(d)                                                                          (e)                                             (f)

(g)                                                                          (h)                                             (i)

Per-pound Fixed

Cost for Action A S
d

Figure 7: Changes of ω(0, ~x∗) according to the changes of freight size Q, inspection cost
M , per-pound reward cr, and per-pound cost for action A dS : The parameter values used
in this figure are (i) freight size Q = 30000lb for (a)(b)(c), Q = 40000lb for (d)(e)(f), and
Q = 50000lb for (g)(h)(i); (ii) per-pound reward cr = $1.4/lb for (a)(d)(g), cr = $1.5/lb for
(b)(e)(h), and cr = $1.6/lb for (c)(f)(i).

per-pound penalty, decreases as the freight size increases.

We now investigate the impact of variations in the transition matrix P on the optimal

expected total discounted reward over the infinite horizon. For the numerical studies, we

consider the following three transition matrices Pl, Pm, Ph where Pl ≺ Pm ≺ Ph such that
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(a)                                                                          (b)                                             (c)

Per-pound Reward
r
c

VI
∆

VI
∆

VI
∆

Figure 8: Changes of ∆V I according to the changes of freight size Q, per-pound reward cr,
and per-pound cost for action A dS : The parameter values used in this figure are as follows:
freight size Q = 30000lb for (a), Q = 40000lb for (b), and Q = 50000lb for (c).

Pl and Ph are P after replacing ~p4 and ~p5 of P with



0 0 0 0 0.88 0.12 0 0

0 0 0 0 0 0.85 0.13 0.02


 ,

and 

0 0 0 0 0.89 0.11 0 0

0 0 0 0 0 0.87 0.11 0.02




respectively, where Pm = P . Figure 9 indicates that the information gap decreases as

shipment process reliability increases, which implies that the information from freight status

inspection in transit is more valuable when the freight is delivered with a less reliable

transportation mode and the benefits from inspection decline as reliability increases.

3.8 Summary

In this chapter, we have determined the value of monitoring perishable freight in-transit for

a single vehicle traveling from an origin to a destination. We developed a computationally

practical approach for determining the optimal expected cost function and an optimal policy,

based on an infinite horizon partially observed Markov decision process model. Structural

properties of the optimal expected cost function and optimal policy have been determined.

These results can lend insight when deciding whether to acquire the capacity to monitor
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(a)                                                                             (b)                                          (c)

S
d

Per-pound Fixed

Cost for Action A

P1<P2<P3

(d)

VI
∆

hml
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h

m

l

P

P

P

Figure 9: Changes of ω(0, ~x∗) (a)(b)(c) and ∆V I (d) according to the changes of the
freshness-keeping effort P , inspection cost M , and per-pound cost for action A dS : The
parameter values used in this figure are as follows: (i) state transition matrix Pl for (a), Pm

for (b), and Ph for (c); (ii) freight size Q = 40000lb; (iii) per-pound reward cr = $1.5/lb.

freight status in transit and what actions to take, based on the data from the in-transit

monitoring, that optimally increase expected supply chain productivity.
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CHAPTER IV

INVENTORY REPLENISHMENT CONTROL UNDER SUPPLY

UNCERTAINTY

4.1 Introduction

Models of sequential decision making under uncertainty have been widely applied to a vari-

ety of inventory control problems. Many of these models are such that optimal order policies

exist with structures that are easy to understand, implement, and/or enable efficient compu-

tation. For example, when demand is random and replenishment can be selected precisely,

then there is a broad class of single product inventory control models having optimal (s, S)

policies [53, 48]. Structured policy results have been investigated when replenishment de-

cisions result in random replenishment (e.g., lot sizing with random yields) and the state

space is continuous. Primary focus has been on stochastically proportional yield models

where if Q is the replenishment decision, then QU replenishment results, where U is a

random variable independent of Q [27, 67, 19].

In this chapter, we consider a discrete state and action infinite horizon, expected total

discounted cost Markov decision process model of a single product, periodic review inventory

problem with lost-sales, deterministic demand and random yield. We model random yield

by the conditional probability P (α|a), where a is the number of items ordered and α ≤ a

is the number of items that are acceptable to add to the inventory. As our interest in this

problem has been motivated by perishable inventory replenishment, we think of (a− α) as

the amount of goods ordered that perish (or spoil) before inventory replenishment occurs.

If d is demand and x is the current inventory level, then z = d − x represents the amount

of items required to satisfy demand prior to placement of an order. If P (a|a) = 1, i.e., if

there is no spoilage, then an optimal inventory decision at each decision epoch is to order z.

More generally, when yield is described by the conditional probability P (α|a), we present

conditions that guarantee the existence of an optimal policy δ∗ such that δ∗(z) = 0 for

62



z ≤ 0, and for z ≥ 0, δ∗(z) ≥ z and (δ∗(z) − z) is monotonically non-decreasing. Thus,

δ∗(z) − z can be described as a staircase function in z and hence has a simple parametric

characterization. We also show that this policy structure can reduce the computational

demands of a single iteration of value iteration and of both the policy improvement and

policy evaluation steps in policy iteration.

4.2 Problem Formulation

Let x(t) ∈ S = {0, 1, 2, . . .} be the number of items of a single product in inventory at the

beginning of period t. Based on this inventory level, the decision maker orders a(t) ∈ A =

{0, 1, 2, . . .} items, of which α(t) ≤ a(t) items are immediately added to the inventory with

probability P (α(t)|a(t)), where ∑a(t)
α(t)=0 P (α(t)|a(t)) = 1. We can think of a(t) − α(t) as

the number of ordered items that perish before inventory replenishment occurs. We assume

that once an item is placed in inventory, it will not perish. We assume that there is no

backlogging and that single period demand d is deterministic and stationary. Thus,

x(t+ 1) = max
{
0, x(t) + α(t)− d

}

with probability P (α(t)|a(t)).
Let c > 0 be the wholesale price, h > 0 the single period holding cost, and p > 0 the

retail price for each item. For notational simplicity, we drop explicit dependence on t. Then,

the single period expected total cost is

ca+ h
∑
α

(x+ α)P (α|a)− p
∑
α

min{x+ α, d}P (α|a) (9)

where we assume that the retailer pays the wholesaler on the basis of the number of items

ordered, perished items are discarded before any holding costs are accrued, and perished

goods have no retail value (see Appendix D.1).

A policy maps the set of current inventory levels into the set of replenishment actions

A. The problem objective is to determine a policy, an optimal policy, that minimizes the

expected total discounted cost over the infinite horizon. Further details can be found in

Chapter 6 of Puterman [50]. Proofs of all results are presented in Appendix A.2
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4.3 Preliminary Results

The optimality equation, given discount factor β ∈ [0, 1), is

v̄(x) = min
a≥0

{
ca+ h

∑
α

(x+ α)P (α|a)− p
∑
α

min{x+ α, d}P (α|a)

+ β
∑
α

P (α|a)v̄(max{0, x+ α− d})
}
.

Let z = d− x, the amount of items required to satisfy demand prior to placement of an

order, which we will use as our state. Note that z(t+1) = d− x(t+1) = d−max{0, x(t)+
α(t) − d} = d − max{0, α(t) − z(t)}. We observe that z(t) ∈ Z = {. . . ,−1, 0, 1, . . . , d}.
In addition, we note that min{y, d} = y − max{0, y − d}. Let Ya ∈ {0, 1, . . . , a} be the

number of acceptable items, given that a number of items are ordered. Denote Y(a) =

E[Ya] =
∑

α αP (α|a), and define v(z) = v̄(x) + (p − h)x. Thus, v(z) = v̄(x) − (p − h)z +

d(p− h). Straightforward algebraic manipulation implies that the optimality equation can

be expressed as v = Hv, where for p̄ = p− β(p− h),

[Hv](z) = min
a≥0

h(z, a, v),

h(z, a, v) = f(z, a) + β
∑

ξ

P (ξ|z, a)v(ξ),

P (ξ|z, a) =





∑z
α=0 P (α|a) if ξ = d

P (z + k|a) if ξ = d− k, k > 0

,

f(z, a) = ca− (p− h)Y(a) + p̄
∑
α

P (α|a)max{0, α− z}.

We note that
∑

ξ P (ξ|z, a)v(ξ) = ∑
α P (α|a)v(d−max{0, α− z}). Results in Puterman

[50] imply that there exists a unique solution to v = Hv; let v∗ represent this solution.

Then, v̄(x) = v∗(z) − (p − h)x represents the minimum expected total infinite horizon

discounted cost. Furthermore, let v0 be any bounded, real-valued function on Z, and define

the sequence {vn} by vn+1 = Hvn. Then, limn→∞ ‖ vn − v∗ ‖= 0, where ‖ · ‖ is the

supremum norm. Further, an action selection rule that causes the minimization in Hv∗

to be attained, as a function of z, is a stationary policy δ∗ : Z → A that is an optimal

policy. We remark that finding a policy δ∗, which is the problem objective, requires the

determination of v∗. Thus, we seek both v∗ and an δ∗.
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4.4 Structured Results

We now present conditions that gurantee that there exists an optimal policy δ∗ such that

(a) δ∗(z) = 0 if z ≤ 0,

(b) δ∗(z) ≥ z ≥ 0, and

(c) δ∗(z)− z is isotone (monotonically non-decreasing) for z ≥ 0,

following the proof of a structural property satisfied by v∗.

We remark that if P (a|a) = 1, and hence there is no spoilage with probability 1, an

optimal policy would be δ(z) = z. Thus, δ∗(z) − z ≥ 0 represents the additional items

ordered to compensate for spoilage. The isotonicity of δ∗(z)−z implies that the more items

ordered, the more items we would expect would perish. (This assumes, as we do in this

paper, that all orders are treated identically, irrespective of order size. If large orders receive

special treatment, relative to small orders, then δ∗(z)−z may not be isotone in z.) We note

that if δ∗(z)− z is isotone, then δ∗(z) is isotone, but not conversely, since the isotonicity of

δ∗(z)− z is equivalent to δ∗(z + 1) ≥ δ∗(z) + 1.

We begin by proving that v∗ is antitone, or equivalently, the more inventory in stock,

the greater the minimum expected total infinite horizon discounted cost.

Proposition 10 If v is antitone, then Hv is antitone and therefore, v∗ is antitone.

We now consider the z ≤ 0 case. Define A3, Assumption 3, as follows:

A3 : ca+ (p− (p− h))Y(a) is non-negative for all a ≥ 0.

Proposition 11 Assume z ≤ 0, v is antitone, and A3. Then, for all a ≥ 0, h(z, a, v) ≥
h(z, 0, v) = p|z|+ βv(d− |z|), and hence δ∗(z) = 0.

We remark that A3 may not hold but that h(z, a, v∗) − h(z, 0, v∗) ≥ 0 for all z ≤ 0 and

a ≥ 0 due to the antitonicity of v∗ and that fact that for z ≤ 0,

h(z, a, v∗)− h(z, 0, v∗) = ca+ (p− (p− h))Y(a)

+ β
∑
α

P (α|a)
[
v∗(d− |z| − α)− v∗(d− |z|)

]
.
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Determination of an easy-to-compute, more easily satisfied A3 that takes into account the

non-negativity of v∗(d− |z| − α)− v∗(d− |z|) is a topic of continuing interest.

We now present conditions that guarantee that there exists an optimal policy δ∗ such

that δ∗(z) ≥ z when z ≥ 0. Let

A4 : ca− (p− h)Y(a) ≥ cz − (p− h)Y(z) for all a ≤ z.

Proposition 12 Assume z ≥ 0 and A4. Then, any element in argmin{h(z, a, v)} is

bounded below by z.

We remark that A4 is a reasonably robust assumption, and that A3 and A4 can hold simul-

taneously under reasonable assumption (e.g., c = p/2, h = p/20, β = 0.9, and Y(a)/a = 0.6

for all a, a ratio not uncommon in semiconductor wafer manufacturing and fresh produce).

We now give conditions that guarantee the existence of an optimal policy δ∗ such that

(δ∗(z)− z) is isotone for z ≥ 0. Let q(k|a) = ∑
α≥k P (α|a),

A5 : ca− (p− h)Y(a) is antitone in a.

A6 : Y(a)− Y(a+ 1) is antitone in a.

A7 : q(k|a)− q(k|a+ 1) is isotone in a for all k.

Proposition 13 Assume A5,A6, and A7. Then, there exists an optimal policy δ∗ such that

δ∗(z + 1) ≥ δ∗(z) + 1 for all z ≥ 0.

As observed earlier, A5 implies A4. Lemma 4.7.2 in Puterman [50] and A7 imply that

Y(a)−Y(a+1) is isotone in a. Noting A6, it follows that Y(a)−Y(a+1) is a constant and

hence the concomitant random variable has the proportional-yield-in-expectation property

[21]. We remark that uniformly and binomially distributed discrete random variables possess

this property and also satisfy A5.

4.5 Parametric Characterization of δ∗

We have presented conditions that guarantee the existence of an optimal policy δ∗ such that

(i) δ∗(z) = 0 if z ≤ 0,

(ii) δ∗(z) ≥ z if z ≥ 0, and
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(iii) δ∗(z)− z is isotone if z ≥ 0.

Since both state and action spaces are discrete, the graph of δ∗(z)− z versus z will have

the shape of a staircase, which has the following simple parametric characterization.

Definition 1 A policy δ : Z → A is a staircase (SC) policy if and only if:

(i) there is a non-negative integer L,

(ii) there are states zl, l = 0, . . . , L such that 0 ≤ z0, zL = d, and zl < zl+1 for l =

0, . . . , L− 1, and

(iii) there are integers γl, l = 1, . . . , L such that 0 < γl < γl+1 for l = 1, . . . , L− 1

such that

(i) δ(z) = 0 for z ≤ 0,

(ii) δ(z)− z = 0 for 0 < z ≤ z0,

(iii) δ(z)− z = γl for zl−1 < z ≤ zl, l = 1, . . . , L− 1, and

(iv) δ(z)− z = γL for zL−1 < z ≤ zL = d.

( ) zz −δ

z0
z

1
z

1−L
z dz

L =2
z

1γ

2γ

1−Lγ

Lγ

Figure 10: Graph of an SC-policy
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Thus, we have determined conditions guaranteeing that the intersection of the set of all

SC-policies and the set of all optimal policies is non-null. Hence, we can restrict our search

for an optimal policy to a search for an optimal L, {zl, l = 0, . . . , L}, and {γl, l = 1, . . . , L}.
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8

z

p=0.99

p=0.95

p=0.9

p=0.8

( ) zz −∗δ

ρ

ρ

ρ

ρ

Figure 11: Graph of SC-policies for binomially distributed P (α|a) with success probability
ρ when d = 50

4.6 Computational Implications

Value iteration and policy iteration are two valuable computational procedures for the

Markov decision process (see Sections 6.3 and 6.4 in Puterman [50]). We now show that the

structure of an optimal policy described in the last section can reduce the computational

demands of key steps in both value iteration and policy iteration.

4.6.1 Single-Step Value Iteration and Policy Improvement

Let the operator Hδ be defined as

[Hδv](z) = h(z, δ(z), v).

For given function v, a value iteration step involves determining v′ = Hv, and policy im-

provement involves determining a δ such that Hδv = Hv which by Proposition 13, equiva-

lently involves determining a concomitant L, {γl : l = 1, 2, . . . , L}, and {zl : l = 0, 1, . . . , L}.
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We note that γL and v′(d) satisfy

v′(d) = min
a≥d

h(d, a, v) = h(d, d+ γL, v).

A recursive procedure to find L, {γl : l = 1, . . . , L}, and {zl : l = 0, 1, . . . , L − 1} is as

follows:

Data: Antitone v

Result: L, {γl : l = 1, . . . , L}, and {zl : l = 0, 1, . . . , L}
Set j ← 0;

Find γ̃j such that

v′(d) = min
a≥d

h(d, a, v) = h(d, d+ γ̃j , v);

Set z ← d and z̃j ← d;

while z > 0 do

z ← z − 1;

Find δ(z) such that

v′(z) = min
z≤a≤z+γ̃j

h(z, a, v) = h(z, δ(z), v);

if δ(z) < z + γ̃j then

Set j ← j + 1, z̃j ← z and γ̃j ← δ(z)− z;

end

end

Set L ← j, zl ← z̃L−l for l = 0, 1, . . . , L and γl ← γ̃L−l for l = 1, . . . , L;

Algorithm 4: Finding L, {γl} and {zl}

We remark that the structure of an optimal policy leads to an increasingly reduced

action space cardinality in determining the zl, γl and v′.
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4.6.2 Policy Evaluation

Assume that L, {γl : l = 1, . . . , L} and {zl : l = 0, 1, . . . , L} are given, where 0 < γl < γl+1

and 0 ≤ z0, zl < zl+1, zL = d. Define δ(·) as follows:

δ(z) = z for 0 ≤ z ≤ z0

δ(z) = z + γl for zl−1 < z ≤ zl, l = 1, 2, . . . , L.

We seek the (unique) fixed point of Hδ, vδ (i.e., vδ = Hδvδ). We consider this policy

evaluation procedure under two possible cases – (i) d ≥ γL and (ii) d < γL.

Case when d− γL ≥ 0

First, assume d− γL ≥ 0. Let V be the (γL +1)-vector V = col{vδ(d), vδ(d− 1), . . . , vδ(d−
γL)}. Note that

(i) if 0 ≤ z ≤ z0, then

vδ(z) = f(z, z) + βvδ(d), (10)

(ii) if zl−1 < z ≤ zl, then

vδ(z) = f(z, z+γl)+β
[ z∑

α=0

P (α|z+γl)vδ(d)+

z+γl∑

α=z+1

P (α|z+γl)vδ(d−α+ z)
]
. (11)

Thus, if V is known, then vδ(z) is known for all 0 ≤ z ≤ d. To calculate V , we can construct

a (γL +1)-vector A and a (γL +1)× (γL +1) stochastic matrix P such that V = A+ βPV

and hence V = (I − βP)−1A. Details of its construction are presented in Appendix D.2.

Recalling that for z ≤ 0, vδ(z) = −pz + βvδ(d+ z), it is straightforward to show that if

−md ≤ z ≤ −(m− 1)d, then

vδ(z) = p

(
m−1∑

k=0

βk|kd+ z|
)

+ βmvδ(md+ z). (12)

Thus, given vδ(z), 0 ≤ z ≤ d, we can determine vδ(z), for all z ≤ 0.

Case when d− γL < 0

Second, assume d−γL < 0, and let M > 0 be such that (M+1)d−γL ≥ 0 and Md−γL < 0.

Then, V can be described as V = col{V0, V1, . . . , VM}, where
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(i) V0 = col{vδ(z), 0 ≤ z ≤ d}, a (d+ 1)-vector,

(ii) for 1 ≤ m < M , Vm = col{vδ(z),−md ≤ z < −(m− 1)d}, a d-vector, and

(iii) VM = col{vδ(z), d− γL ≤ z < −(M − 1)d}, a (γL −Md)-vector.

Let A0 and P0m, 0 ≤ m ≤ M be such that V0 = A0 + β
∑M

m=0 P0mVm (see Equation

(11)), where A0 is a (d + 1)-vector, P00 is (d + 1) × (d + 1) matrix, P0m is a (d + 1) × d

matrix for 1 ≤ m < M , and P0M is (d+ 1)× (γL −Md) matrix. Note that all elements in

the matrix
[
P00 P01 · · · P0M

]
are non-negative and each row sums to one.

Equation (12) indicates that for each 1 ≤ m ≤ M , there is a vector A′
m and a matrix

I ′m such that V ′
m = A′

m + βmI ′mV0. Note the A′
m is a d-vector for 1 ≤ m < M , A′

M is a

(γL−Md)-vector, I ′m is a d×(d+1) matrix for 1 ≤ m < M , and I ′M is a (γL−Md)×(d+1)

matrix. Further note that I ′1 =
[
0 I

]
(a matrix with all zeros in the first column, where

I is the identity matrix), I ′m = I for 1 < m < M , and I ′M =
[
I 0

]
. Then,

V0 = A0 + β
[
P00V0 +

M∑

m=1

P0m

(A′
m + βmI ′mV0

) ]
= Λ+ βPV0,

where Λ = A0+β
∑M

n=1 P0mA′
m and P = P00+

∑M
m=1 β

mP0mI ′m, which, by its construction,

is substochastic. Thus, there exists a unique solution to V0 = (I − βP)−1Λ, which can be

used to determine vδ(z) for all z.

In summary, the overall procedure for identifying an optimal SC policy is presented in

Algorithm 5.
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Data: Antitone v0

Set j ← 0;

repeat

(Policy Improvement) Given vj , perform Algorithm 4, and obtain

δj ≡ (L, {γl}, {zl});
(Policy Evaluation) Given δj , evaluate vδj (z) for all z based on the discussion in

Section 4.6.2, and let vj+1 ← vδj ;

j ← j + 1;

until maxz |vj(z)− vj−1(z)| < ε for a sufficiently small ε ;

Algorithm 5: Procedure for identifying an optimal SC policy

4.6.3 Numerical Analysis

In this section, we briefly compare the performance of the proposed approach with dynamic

programming. We use the following parameter values for the computational experiments:

c = 9, p = 20, h = 3 and β = 0.99. We vary the size of demand d and compare a SC policy-

based approach with a standard dynamic programming approach in terms of CPU times.

Both approaches were implemented in Sun Java JDK 1.6.1, and their implementations were

run on a LINUX machine with a Intel Xeon 2.66 GHz processor and 4GB of RAM.
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Figure 12: Comparisons of CPU times between dynamic programming and SC policy as
demand d varies, assuming random yield is binomially distributed with success probability
ρ: (a) ρ = 0.8 and (b) ρ = 0.9
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Figure 12 shows that the solution approach developed in this section significantly reduces

CPU times, relative to dynamic programming (DP). Specifically, the SC policy approach

requires less than 5% of the CPU time required by DP to determine an optimal policy.

Since DP evaluates every possible state, its CPU times grow exponentially as d increases

(known as the curse of dimensionality). The solution procedure proposed in this section

requires significantly less information (i.e., L, {γl}, and {zl}) to identify an optimal policy

since we limit the search for an optimal policy having a staircase structure. We remark that

computational times seem insensitive to changes in the parameter ρ, as indicated in Figure

12.

We now investigate how CPU times for the SC policy approach are sensitive to changes

in d. Figure 13 presents such an example of CPU time changes in d. The figure indicates

that, unlike DP approaches, the increasing rate of CPU times gradually decreases as d

increases, and hence, for larger d, CPU times seem increasing almost linearly in d. Therefore,

the SC policy-based solution approach outperforms DP approaches significantly, and its

computational times increase moderately unlike DP approaches, which is desirable in terms

of computational tractability.
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Figure 13: Changes of CPU time for the SC policy approach in d, assuming random yield
is binomially distributed with success probability ρ = 0.9
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4.7 Summary

Chapter 4 has investigated a discrete state, discrete decision epoch inventory replenishment

control problem under supply uncertainty. We have assumed that there is no backlogging,

the single period demand d is deterministic and stationary, and once an item is placed in

inventory, it will not perish. By letting z = d−x as a state where x is the inventory level at

the beginning of each period in a MDP model with infinite-horizon total expected discounted

costs, we have presented conditions that guarantee that an optimal replenishment policy δ∗

is such that δ∗(z) = 0 for z ≤ 0, δ∗(z) ≥ z ≥ 0, and δ∗(z)−z is monotonically non-decreasing

for z ≥ 0. Such a “staircase” structure has a simple parametric description, which can help

to significantly accelerate value iteration and policy iteration.
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CHAPTER V

INVENTORY CONTROL WITH SUPPLY CHAIN YIELD

INFORMATION

5.1 Introduction

Firms often face the challenge of receiving a random amount of an order placed. As exam-

ples,

(a) In semiconductor manufacturing, the percentage of defective wafers produced can be

significant and as high as 30% to 50% [18],

(b) The percentage of perishable food that perishes during storage and transit in the U.S.

is typically 10% to 15% by weight, and the reduction of the total economic value of

perishable food due to the reduction of food quality caused by storage and transit is

typically 25% to 50% [42].

In order to mitigate this type of risk, firms typically order or manufacture more than is

needed. The challenge is to order just the right amount to insure that an adequate amount

of the desired product is on hand at the right time. This challenge is exacerbated if the

length of time needed to deliver an order (lead time) is also uncertain.

In this chapter, we consider a model of inventory replenishment and delivery where both

lead time and the amount of the order delivered are uncertain. The firm periodically places

orders to a supplier (the origin, 0) for delivery to a plant or retail outlet (the destination,

N). There are at most a finite number of in-transit states n ∈ {1, 2, . . . , N − 1}, which we

call the supply system. We assume the stochastic lead time model proposed by Song and

Zipkin [56] for the case where the number of in-transit states is finite and where the supply

system is governed by an exogenous Markov chain. Further, we assume that the product is

subject to shrinkage as it travels from origin to destination. Our objective is to place orders

so as to minimize expected total discounted cost over the infinite horizon, where the usual

fixed order, wholesale, and inventory holding costs and backlogging penalties apply.
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This chapter is organized as follows: Section 5.2 introduces an infinite-horizon Markov

decision process model for the multiple-staged inventory control problem under yield and

lead time uncertainties. In Section 5.3, we present conditions where there exists a suffi-

cient statistic for the problem introduced in the previous section by assuming that random

shrinkage can occur from the origin to the supply system or destination, shrinkage is de-

terministic within the supply system and from the supply system to the destination, and

no shrinkage occurs once goods reach the destination. We summarize our results in Section

5.4.

5.2 Problem Statement and Preliminaries

Consider the following periodic review inventory and supply system problem. An order

placed at decision epoch t, a(t), is transported from the origin (0) to the destination (N)

through the supply system as follows. Goods at location k ∈ {0, 1, . . . , N −1} at time t will

move to location M(k|i(t), e(t)) ∈ {1, 2, . . . , N} during period (t, t+ 1), where:

(a) The {e(t)} are independent, identically distributed random variables,

(b) {i(t), t = 0, 1, . . .} is an exogenous Markov process such that i(t+ 1) = Q(i(t), e(t)).

The process {i(t), t = 0, 1, . . .} serves as a surrogate for anything that can affect lead time

and/or freight shrinkage (e.g., weather, labor strikes, congestion).

With regard to the function M , and consistent with assumptions made in Song and

Zipkin [56], we assume that for each pair (i, e):

(a) k < k′ implies M(k|i, e) ≤ M(k′|i, e). Hence, “cross-over” is not permitted,

(b) M(N |i, e) = N . Thus, once products reach the destination, they never move back

into the supply system.

We now describe our model of shrinkage as the product proceeds from origin to desti-

nation. We remark that no shrinkage occurs in the model considered by Song and Zipkin

[56]. Let gn−1
k (x|i, e) be the amount of goods that moves to in-transit state n from in-

transit state k during period (t, t+ 1), assuming the amount of goods at in-transit state k
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at epoch t is x, i(t) = i, and e(t) = e. It is reasonable to assume that for all k, n, i, and e,

0 ≤ gn−1
k (x|i, e) ≤ x. We further assume that no shrinkage occurs once the destination is

reached, and hence gNN (x|i, e) = x for all (i, e).

We now present the dynamic equations for the system. Let M(n|i, e) = {k|M(k|i, e) =
n}, and let xn(t) represent the number of items at in-transit state n ≥ 1 at epoch t. Then,

for 1 ≤ n < N ,

xn(t+ 1) =
∑

k∈M(n|i,e)
gn−1
k (xk(t)|i, e),

for i(t) = i and e(t) = e, where x0(t) = a(t). At the destination,

xN (t+ 1) = xN (t)−D(t) +
∑

k∈M(N |i,e)
gN−1
k (xk(t)|i, e),

for i(t) = i, and e(t) = e, and where {D(t)} are stationary, independent, and identically

distributed random variables that represent demand.

Let x(t) = {xn(t), 1 ≤ n ≤ N}, and assume the function f is such that x(t + 1) =

f
(
x(t), i(t), a(t), e(t), D(t)

)
.

Let c > 0 be the wholesale cost per item, h > 0 be the holding cost per item per period

for an item not lost to shrinkage, and σ > 0 be the backlogging penalty per item. Let K > 0

be the fixed order cost, and δ(a) = 1 (0) if a > 0 (a = 0). Then, the cost accrued during

period (t, t+ 1) is:

Kδ(a) + ca+ h
∑

1≤n<N

xn(t+ 1) + h(xN (t+ 1))+ − σ(xN (t+ 1))−

= Kδ(a) + ca+ h
∑

1≤n≤N

xn(t+ 1)− (h+ σ)(xN (t+ 1))−,

where x+ = max{0, x} and x− = min{0, x}. Let c(x, i, a) be the expected cost accrued

during period (t, t+ 1), given x = x(t), i = i(t), and a = a(t).

We assume the decision maker selects a(t), knowing the realizations of the random

variable x(t) and i(t), but before knowing the realization of the random variables D(t),

e(t), and hence gn−1
k (xk(t)|i(t), e(t)) for all n and k. Thus, a policy determines a(t), given

x(t) and i(t). The criterion is the expected total discounted cost over the infinite horizon.

The problem objective is (i) to determine a policy, an optimal policy, that minimizes the

criterion and (ii) to determine the value of the criterion generated by an optimal policy.
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The optimality equation is

v(x, i) = [Hv](x, i) = min
a

{
c(x, i, a) + βE

[
v(f(x, i, a, e,D), Q(i, e))

]}
,

where the expectation operator E is with respect to the random variables (e,D), and β ∈
[0, 1) is the discount factor. Results in Puterman [50] guarantee the existence of a unique

solution to the optimality equation, this solution is the value of the criterion generated by

an optimal policy, and a policy that causes the minimum to be obtained in the optimality

equation is an optimal policy. Further, for bounded v0, the sequence {vn} is such that

limn→∞ ‖ vn − v∗ ‖= 0, where ‖ · ‖ is the supremum norm, v∗ is the unique fixed point

of the operator H, and vn+1 = Hvn. Thus, we seek both v∗ and a policy that attains the

minimum in Hv∗. Proofs of all results are presented in Appendix A.3.

5.3 Yield Model

One of the key results in Song and Zipkin [56] is that the pipeline inventory position,

∑N
n=1 xn, is a sufficient statistic for this problem. That is, it is sufficient to know only the

sum of the inventory in-transit plus the inventory at the destination (a scalar), rather than

the entire vector x, in order to select an optimal inventory replenishment level. We now

extend this result by showing that a natural extension of the pipeline inventory position is

a sufficient statistic when shrinkage is assumed deterministic for goods moving within the

supply system and moving from the supply system to the destination.

More precisely, we assume throughout this section that:

(a) gn−1
k (xk|i, e) is independent of (i, e) for all k ≥ 1 and all n (i.e., gn−1

k (xk|i, e) =

gn−1
k (xk)),

(b) gn−1
k (xk) = gn−1

m

(
gm−1
k (xk)

)
for all k ≥ 1, m and n(> m),

and remark that under these assumptions gn−1
0 (a|i, e), for all n ≥ 1, can remain dependent

on (i, e). We further assume that gn−1
0 (a|i, e) = gn−1

m (gm−1
0 (a|i, e)). The extension of the

pipeline inventory position that will be of interest is

I(x) =
N−1∑

n=1

gN−1
n (xn) + xN ,
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and we call it effective pipeline inventory position.

We begin by showing that I has an important property under the following assumptions:

A8 :

(i) gn−1
k (x′ + x′′) = gn−1

k (x′) + gn−1
k (x′′) for all 1 ≤ k < n ≤ N .

(ii) |M(n|i, e)| ≤ 1 for all n < N and all (i, e).

We remark that the deterministic version of the multiplicative random yield model can

be an example of A8 (i). A8 (ii) indicates that each in-transit location is the destination

over a single period of goods from at most one other in-transit location, and synchronous

production lines in which all the movements of jobs are coordinated serves as such an

example.

Lemma 2 Suppose that A8 (i) or (ii) holds. Then, I(f(x, i, a, e,D)) = gN−1
0 (a|i, e) +

I(x)−D for all (i, e).

We now present several preliminary results and definitions. Let Ml(n|i, el) = {k :

M l(k|i, el) = n}, where el = {e(0), . . . , e(l − 1)}, M l(n(0)|i(0), el) = n(l), n(k + 1) =

M(n(k)|i(k), e(k)), i(k+1) = Q(i(k), e(k)), and where i(0) and n(0) are given. Let M l(n|i)
be the l-step movement random variable where M1 = M . Then, LN (i) = min{l : M l(0|i) =
N, l ≥ 1}, which is a random variable representing the lead time for an order placed, given

that i is the supply system status when the order is placed. Let

v′(x, i) = ELN

[ LN−2∑

j=0

βjhEej+1,Dj+1

{ N∑

n=1

∑

k∈Mj+1(n|i,ej+1)

gn−1
k (xk) + xN −Dj+1

}]

v′′(x, i) = −ELN

[ LN−2∑

j=0

βj(h+ σ)Ee,Dj+1

{( j+1∑

l=1

∑

k∈Ml(N |i,el)
gNk (xk) + xN −Dj+1

)−}]
(13)

c◦(I(x), i, a) = Kδ(a) + ca+ hEe

[N−1∑

k=1

∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

]

+ ELN

[ LN−2∑

j=1

βjhEe,ej

{N−1∑

n=1

∑

k∈Mj(n|i,ej)
gn−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)}]

+ ELN

[
βLN−1hEe,DLN

{
gN0 (a|i, e) + I(x)−DLN

}]

− ELN

[
βLN−1(h+ σ)Ee,DLN

{(
gN0 (a|i, e) + I(x)−DLN

)−}]
,
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where LN = LN (i). In addition, the explicit expression for c(x, i, e) is

c(x, i, e) = Kδ(a) + ca+ hEe

[N−1∑

n=1

∑

0∈M(n|i,e)
gn−1
0 (a|i, e)

]

+ hEe,D

[ N∑

n=1

∑

k∈M(n|i,e)
gn−1
k (xk) + xN −D

]

− (h+ σ)Ee,D

[( ∑

k∈M(N |i,e)
gNk (xk) + xN −D

)−]
.

We now present a preliminary result that is useful in the proof of Proposition 14, the

main result of this chapter.

Lemma 3 It follows that:

(a)

hEe,D

[ N∑

n=1

∑

k∈M(n|i,e)
gn−1
k (xk) + xN −D

]
+ βEe,D

[
v′(f(x, i, a, e,D), Q(i, e))

]

= ELN

[ LN−2∑

j=1

βjhEe,ej

{N−1∑

n=1

∑

k∈Mj(n|i,ej)
gn−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)}]

+ ELN

[
βLN−1hEe,DLN

{
gN0 (a|i, e) + I(x)−DLN

}]
+ v′(x, i).

(b)

− (h+σ)Ee,D

[( ∑

k∈M(N |i,e)
gNk (xk)+xN −D

)−]
+βEe,D

[
v′′(f(x, i, a, e,D), Q(i, e))

]

= −ELN

[
βLN−1(h+ σ)Ee,DLN

{(
gN0 (a|i, e) + I(x)−DLN

)−}]
+ v′′(x, i).

(c)

c(x, i, a) + βEe,D

[
v′(f(x, i, a, e,D), Q(i, e))

]
+ βEe,D

[
v′′(f(x, i, a, e,D), Q(i, e))

]

= c◦(I(x), i, a) + v′(x, i) + v′′(x, i).

Define the operator H◦ as

[H◦v](x, i) = min
a

{
c◦(I(x), i, a) + βE

[
v(f(x, i, a, e,D), Q(i, e))

]}
.
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Let v◦∗ be the fixed point of H◦, {vn} be the sequence vn+1 = Hvn for v0 = v′ + v′′, and

{v◦n} be the sequence v◦n+1 = H◦v◦n, for v◦0 = 0. We now show finding v◦∗ is equivalent to

finding v∗. We now present the main result of the chapter.

Proposition 14 Suppose that A8 holds. Then, vn = v◦n + v′ + v′′ for all n. Hence, v∗ =

v◦∗ + v′ + v′′.

We remark that v◦0 trivially depends on x only through I(x). Assume v◦n(x, i) = v◦n(I(x), i).
Then, from Lemma 3,

v◦n (f(x, i, a, e,D), Q(i, e)) = v◦n
(
gN0 (a|i, e) + I(x)−D,Q(i, e)

)

for all (i, e). Since c◦(I(x), i, a) depends on ~x only through I(x), [H◦v◦n](x, i) depends

on x only through I(x). Thus, v◦n+1 and the decision rule that causes the minimum in

[H◦v◦n](x, i) to be attained both depends on x only through I(x). An induction argument

then can conclude that v◦∗ depends on x only through I(x), and that there exists an optimal

policy that depends on x only through I(x). Thus, I(x) is a sufficient statistic. Of further

interest is the fact that the solution of the problem associated with the operator H◦ is

guaranteed to have an optimal policy that has an (s, S) structure. Thus, there is an s and

S (s < S) such that it is optimal to order up to S once I(x) falls below s and not to order

otherwise.

5.4 Summary

Chapter 5 has considered a periodic review inventory and supply system with an origin,

a destination, and a supply system composed of a finite number of intermediate locations

between the origin and the destination. We have assumed that the model of the supply

system is the model proposed by Song and Zipkin [56] for the case where there are a finite

number of intermediate locations. Further, we have assumed that random shrinkage can

occur from the origin to the supply system or destination, shrinkage is deterministic within

the supply system and from the supply system to the destination, and no shrinkage occurs

once goods reach the destination. We have shown that under these conditions, the effective
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pipeline inventory position is a sufficient statistic, extending the results of Song and Zipkin

[56].
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CHAPTER VI

CONCLUSION AND FUTURE RESEARCH

This dissertation has focused on two related issues of importance in supply chain control,

the value of information and supply uncertainty. With regard to supply uncertainty, we

have investigated issues surrounding uncertain quantity and/or quality with instantaneous

delivery and with uncertain lead-times.

Chapter 2 investigated the value of dynamically determining a tour for the TSP, based

on current network conditions and assuming network arc costs are random variables. A

numerical study has shown the potential for significant reduction in expected total travel

costs due to dynamic tour determination, relative to two benchmarks. The first of the

benchmarks reflected the current practice in industry of constructing a fixed tour prior to

departure from the starting point based on known distances and speed limits; the second

benchmark represented the optimal tour within the class of all fixed tours determined prior

to departure from the starting point, based on historic travel time data.

Due to the limitations of DP for solving realistically sized DTSPs, we transformed the

DTSP into an AND/OR graph and applied the best-first heuristic search algorithm AO*

for optimal policy determination. This application proved capable of solving realistically

sized problems (e.g., for LTL PUD) fast enough for operational purposes on a laptop with

standard configuration. We note, however, that the DTSP represents a formidable compu-

tational challenge, and expanding the space of solvable, realistically sized problems would

require further algorithmic development. Possible next steps in this regard include im-

proving the current AO* implementation and examining other algorithms for optimal and

sub-optimal (e.g, applications of approximate DP [49]) policy determination.

In Chapter 3, we have taken an initial step in analyzing the impact of being able to

monitor perishable freight quality in transit by examining a model of a single vehicle trans-

porting a perishable from a single origin to a single destination through several intermediate
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predetermined locations. Taking advantage of the special structure of the problem, we de-

veloped an efficient procedure for determining the optimal reward function that avoids the

tractability issues typically associated with solution procedures for the general POMDP.

We showed that the optimal reward function and an optimal policy have several intuitively

appealing and implementable structural characteristics but provide a counter example to

an intuitive claim regarding the structure of an optimal policy. We remark that structured

policy results for POMDPs are a relatively unexplored area of research. We determined

the value of having access to inspections at the intermediate locations and an upper bound

on this value. These results can provide guidance when deciding whether to acquire the

capacity to monitor freight status in transit, how to optimally extract value from inspection

data, and how much value we can expect to extract. Several extensions of these results for

more detailed models are topics for future research.

Chapter 4 presented conditions that guarantee the existence of an optimal policy having

a staircase structure for a discrete state and action, single product periodic review inventory

problem with random yield. We have used this structure to reduce the computational

demands of key steps in both value iteration and policy evaluation. The numerical impact of

this computational reduction appears encouraging. Future research will focus on problems

involving multiple products, which quickly become intractable even if each product has

a small state space, in order to understand the computational advantage of restricting

attention to staircase policies for determining good suboptimal designs.

Chapter 5 discussed an inventory control model which includes the two aspects of supply-

side uncertainties – uncertain lead-time and yield – under the assumption that the supply

system is evolved in a Markovian fashion, and such the evolution of the system affects the

two aspects. For the corresponding system with yield model presented in Section 5.3, we

showed that the effective pipeline inventory position, which is a scalar, is indeed a sufficient

statistic for the model in order to determine an optimal inventory replenishment level.

Future research includes the development of good sub-optimal algorithm designs for the

original problem based on the results from the deterministic yield model.
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APPENDIX A

PROOFS

A.1 Proofs in Chapter 3

Before presenting proofs in detail, we begin by introducing several useful properties of a

vector that is NIV:

Lemma 4 (i) If ~v is NIV, then ~v + c~e is NIV for any constant c.

(ii) If ~v and ~v′ are both NIV, then ~v + ~v′ is NIV.

(iii) If ~v is NIV and ~x ≺ ~x′, then ~x~v ≤ ~x′~v.

(iv) If ~v is NIV, β ≥ 0, and A2 holds, then βP~v is NIV.

(v) If ~vk is NIV for all k = 1, 2, . . . ,K < ∞, and ~v′ is such that ~v′s = maxk{~vks}, then ~v′

is NIV.

Proof: Proofs of (iii) and (iv) follow from Lemma 4.7.2 in Puterman [50]. Regarding

(v), assume there is an s̃ such that v′s̃ < v′s̃+1. Let k be such that v′s̃+1 = vks̃+1. Then,

vks̃ ≤ v′s̃ < v′s̃+1 = vks̃+1, which is a contradiction.

A.1.1 Proof of Proposition 3

By assumption, ~m(N,N, z) is NIV, and hence by Lemma 4(iii) and Proposition 2, ~x ≺ ~x′

implies ω′(N,~x, z) ≤ ω′(N,~x′, z). Assume ~m(ρ, n+ 1, z) is NIV for all ρ ≥ n+ 1 and hence

ω′(n+ 1, ~x, z) ≤ ω′(n+ 1, ~x′, z). Due to Lemma 4(i) and (iv), ~m(ρ, n, z) is NIV. Moreover,

~l(n, z) is NIV due to assumption that ~lxn is NIV and Lemma 4(i). Therefore, Lemma

4(iii) again implies that ~x~m(ρ, n, z) ≤ ~x′ ~m(ρ, n, z) for ρ ≥ n, and ~x~l(n, z) ≤ ~x′~l(n, z). The

maximum of monotonically nondecreasing functions is monotonically nondecreasing. Hence,

the results hold by induction.
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A.1.2 Proof of Proposition 4

It follows from the definitions and assumption of c(N − 1, N) + βRS ≤ ~eS~l(N − 1, z) =

lS(N − 1, z) that ω′(N − 1, ~eS , z) = lS(N − 1, z). Assume ω′(n + 1, ~eS , z) = lS(n+ 1, z) ≥
~mS(ρ, n+ 1, z), ρ = n+ 1, . . . , N . Then,

ω′(n,~eS , z) = max





~mS(ρ, n, z), ρ = n, . . . , N

lS(n, z)





,

where for ρ > n,

~mS(ρ, n, z) = c(n, n+ 1) + β ~mS(ρ, n+ 1, z) ≤ c(n, n+ 1) + βlS(n+ 1, z) ≤ lS(n, z)

due to the induction hypothesis, Assumption A1, and pSS = 1.

For ρ = n,

~mS(n, n, z) = c(n, n+ 1) +M + βω′(n+ 1, ~eS , z)

= c(n, n+ 1) +M + βmax





lS(n+ 1, z),

~mS(ρ, n+ 1, z),∀ρ ≥ n+ 1





= c(n, n+ 1) +M + βlS(n+ 1, z) ≤ c(n, n+ 1) + βlS(n+ 1, z) ≤ lS(n, z).

Therefore, ω′(n,~eS , z) = lS(n, z), and proof follows by induction.

A.1.3 Proof of Proposition 5

We now show

(i) ω′(n,~e0, z)− ω′(n,~e1, z) ≤ γ[ω′(n+ 1, ~e0, z)− ω′(n+ 1, ~e1, z)],

(ii) σ(n, n, z) ≤ γσ(n+ 1, n+ 1, z),

(iii) σ(ρ, n, z) = γσ(ρ, n+ 1, z) for ρ > n,

and then prove the result by induction. Result (ii) follows from (i) and the definition of

σ(n, n, z). It is straightforward to show (iii). We now show (i). It follows that

ω′(n,~e0, z) = max





c(n, n+ 1) + βω′(n+ 1, [1− α, α], z)

c(n, n+ 1) +M + β[(1− α)ω′(n+ 1, ~e0, z) + αω′(n+ 1, ~e1, z)]

≤ c(n, n+ 1) + β[(1− α)ω′(n+ 1, ~e0, z) + αω′(n+ 1, ~e1, z)]
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where the equality is due to assumption (iii) that ω′(n,~e0, z) > l0(n, z) (≥ l1(n, z)) and the

inequality follows from the convexity of ω′(n+ 1, ·, z) and the assumption M ≤ 0. Thus,

ω′(n,~e0, z) ≤ c(n, n+ 1) + βω′(n+ 1, ~e1, z) + γ[ω′(n+ 1, ~e0, z)− ω′(n+ 1, ~e1, z)]

= c(n, n+ 1) + βl1(n+ 1, z) + γ[ω′(n+ 1, ~e0, z)− ω′(n+ 1, ~e1, z)]

≤ l1(n, z) + γ[ω′(n+ 1, ~e0, z)− ω′(n+ 1, ~e1, z)]

= ω′(n,~e1, z) + γ[ω′(n+ 1, ~e0, z)− ω′(n+ 1, ~e1, z)]

where the first and second equalities are due to Proposition 4, and the second inequality

follows from Assumption A1.

We now prove the Proposition. It is straightforward to show that σ(N − 1, N − 1, z) =

σ(N,N − 1, z); hence, the result holds for N − 1. Assume σ(ρ, n+1, z) ≤ σ(ρ+1, n+1, z),

ρ ≥ n+ 1. Then, for ρ ≥ n,

σ(ρ, n, z) = γσ(ρ, n+ 1, z) ≤ γσ(ρ+ 1, n+ 1, z) = σ(ρ+ 1, n, z),

where the equalities are due to (iii), and the inequality is due to (ii) for the ρ = n case and

by assumption for ρ > n.

A.1.4 Proof of Lemma 1

Let ~x1, ~x2 ∈ X∗
a . It is sufficient to show that λ~x1+(1−λ)~x2 ∈ X∗

a where λ ∈ [0, 1]. Observe

that ω∗(~x) is convex and hence,

ω∗(λ~x1 + (1− λ)~x2) ≤ λω∗(~x1) + (1− λ)ω∗(~x2)

= λωa(~x1) + (1− λ)ωa(~x2)

= ωa(λ~x1 + (1− λ)~x2)

(14)

where the first equality is due to the definition of ~x1, ~x2, and the second equality is due to

the assumption that ωa(~x) is an affine function. On the other hand, by definition of ω∗(~x),

we have

ω∗(λ~x1 + (1− λ)~x2) ≥ ωa(λ~x1 + (1− λ)~x2). (15)

By Equations (14) and (15), ω∗(λ~x1 + (1− λ)~x2) = ωa(λ~x1 + (1− λ)~x2), and hence, λ~x1 +

(1− λ)~x2 ∈ X∗
a .
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A.1.5 Proof of Proposition 6

We first show that the assumptions of Proposition 6 lead to the result that ~m(ρ, n, z)−~lxn is

NIV for all ρ ≥ n and n ≤ N − 1. It is straightforward to show that ~m(ρ,N − 1, z)−~lxN−1

is NIV for all ρ ≥ N − 1. Assume for all ρ ≥ n+ 1, ~m(ρ, n+ 1, z)−~lxn+1 is NIV. There are

two cases:

Case 1 ρ > n: By Lemma 4(iv), βP (~m(ρ, n+1, z)−~lxn+1) is NIV, and by Lemma 4(ii), it

is sufficient that

[~m(ρ, n, z)−~lxn]− βP [~m(ρ, n+ 1, z)−~lxn+1] (16)

is NIV in order for [~m(ρ, n, z)−~lxn] to be NIV. We note that Equation (16) equals c(n, n+

1)~e+ βP~lxn+1 −~lxn, which is NIV by assumption.

Case 2 ρ = n: Let ~η(n+1, z) = (η0, η1, . . . , ηS) be such that ηs = max{~ms(ρ, n+ 1, z), ρ ≥
n + 1, ls(n+ 1, z)}. Then, (~η(n + 1, z) − ~lxn+1)s = max{(~m(ρ, n+ 1, z) − ~lxn+1)s, ρ ≥ n +

1, ln+1 + βn+1z}, which is NIV due to Lemma 4(v). Again, it is sufficient that

[~m(n, n, z)−~lxn]− βP [~η(n+ 1, z)−~lxn+1] (17)

is NIV in order for (~m(n, n, z)−~lxn) to be NIV. We note that Equation (17) equals (c(n, n+

1) +M)~e+ βP~lxn+1 −~lxn, which is NIV by assumption.

Thus, the result holds by induction.

Based on the result above, we next prove the result in this proposition. Since π∗(n, ~x) ∈
{NI, I}, there is a ρ ≥ n such that ~x~l(n, z) ≤ ~x~m(ρ, n, z) or equivalently, ln + βnz ≤
~x(~m(ρ, n, z) − ~lxn). By Lemma 4(iii), ~x′~l(n, z) ≤ ~x′ ~m(ρ, n, z) ≤ max{~x′ ~m(ρ, n, z), ∀ρ ≥
n, ~x′~l(n, z)}, and hence π∗(n, ~x′) can be chosen so that π∗(n, ~x′) 6= A.

Remark 1 In this proof, we show that the condition that βP~lxn+1 − ~lxn is NIV implies

the condition that (~m(ρ, n, z) − ~lxn) is NIV. The implication of the latter condition (i.e.,

(~m(ρ, n, z)−~lxn) is NIV for all ρ ≥ n) is that as quality of a freight decreases at a location n,

an incentive to move toward the destination (actions NI or I) relative to abort the current

trip (action A) decreases. In general, rewards at the destination must be much higher than

ones at a secondary market; otherwise, the shipping business to the destination may not be

valid, and no further discussion is required.
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A.1.6 Proof of Proposition 7

(a) We remark that for each n ∈ {0, 1, . . . , N}, there are only a finite number of points

in X = {(x0, . . . , xS) :
∑S

i=0 xi = 1, xi ≥ 0, i = 0, . . . , S} that can be reached.

That is, it is sufficient to only consider the finite subset S of the state space where

S ≡ {0, 1, . . . , N} × (X0 ∪ X1 ∪ · · · ∪ XN ), X0 = {~x∗}, and for n ≥ 1, Xn =

{~x∗Pn, ~esP
n−1, . . . , ~es, s = 0, 1, . . . , S}. We now prove the result by induction. The

result is clearly true for any (N,~x, z) such that ~x ∈ XN . Assume that the result holds

for any (n + 1, ~x, z) such that ~x ∈ Xn+1. Thus, there is a finite set VM (n + 1, ~x, z)

such that

ω′(n+ 1, ~x, z;M) = max{aM + b : (a, b) ∈ VM (n+ 1, ~x, z)}

where a ≥ 0 for all (a, b) ∈ VM (n+ 1, ~x, z) for all ~x ∈ Xn+1. Note that

c(n, n+ 1) + βω′(n+ 1, ~xP, z;M)

= c(n, n+ 1) + βmax{aM + b : (a, b) ∈ VM (n+ 1, ~xP, z)}

= max{βaM + c(n, n+ 1) + βb : (a, b) ∈ VM (n+ 1, ~xP, z)}.

In addition,

c(n, n+ 1) +M + β~xP~ω′(n+ 1, z;M)

= c(n, n+ 1) +M + β

S∑

s=0

~es~xP max{asM + bs : (as, bs) ∈ VM (n+ 1, ~es, z)}

= max{
(
1 + β

S∑

s=0

~es~xPas

)
M + c(n, n+ 1)

+ β
S∑

s=0

~es~xPbs : (as, bs) ∈ VM (n+ 1, ~es, z)}.

Further,

ln + ~x~lxn + βnmax{aM + b : (a, b) ∈ VM (0, ~x∗, z)}

= max{βnaM + ln + ~x~lxn + βnb : (a, b) ∈ VM (0, ~x∗, z)}.

We observe that if a is nonnegative, then so are βa, (1 + β
∑S

s=0 ~es~xPas), and βna.

Thus, the expressions c(n, n+1)+βω′(n+1, ~xP, z;M), c(n, n+1)+M +β~xP~ω′(n+
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1, z;M) and ln+~x~lxn+βz are piecewise-linear, convex and isotone in M , which is also

true for their maximum, ω′(n, ~x, z;M). The result then follows by induction.

(b) Proof for this case follows (a) analogously.

(c) Let ~m(ρ, n, z;P ) be ~m(ρ, n, z) with explicit dependence on P . When n = N − 1,

according to C.1, ~m(N − 1, N − 1, z;P ) ≤ ~m(N,N − 1, z;P ), implying that action

NI dominates action I. Thus, we are only interested in whether ~m(N,N − 1, z;P ) ≤
~m(N,N − 1, z;P ′) holds so that ω′(N − 1, x, z;P ) ≤ ω′(N − 1, x, z;P ′). Note that

~l(n, z) is independent of P . Since ~ps ≺ ~p′s, ~m(N,N, z;P ) = ~m(N,N, z;P ′), and

~m(N,N, z) is NIV, ~ps ~m(N,N, z;P ) ≤ ~ps ~m(N,N, z;P ′) holds for all s, and hence,

~m(N,N − 1, z;P ) ≤ ~m(N,N − 1, z;P ′) holds. Therefore, ω′(N − 1, x, z;P ) ≤ ω′(N −
1, x, z;P ′) for all x. Assume that ~m(ρ, n+ 1, z;P ) ≤ ~m(ρ, n+ 1, z;P ′) for all ρ ≥
n + 1 so that ω′(n + 1, x, z;P ) ≤ ω′(n + 1, x, z;P ′) holds. Since ~ps ≺ ~p′s for all

s, P ~m(ρ, n+ 1, z;P ) ≤ P ′ ~m(ρ, n+ 1, z;P ), and the induction hypothesis leads to

P ′ ~m(ρ, n+ 1, z;P ) ≤ P ′ ~m(ρ, n+ 1, z;P ′). Thus, for ρ ≥ n + 1, ~m(ρ, n, z;P ) ≤
~m(ρ, n, z;P ′) by its definition. Likewise, due to the induction hypothesis, ~η(n +

1, z;P ) ≤ ~η(n+1, z;P ′) where ~η(n, z;P ) is ~η(n, z) defined as before, explicitly recogniz-

ing the dependence on P , and hence, it is straightforward to show that ~m(n, n, z;P ) ≤
~m(n, n, z;P ′) also holds. Therefore, ω′(n, x, z;P ) ≤ ω′(n, x, z;P ′) holds, and this com-

pletes the proof by induction.

A.1.7 Proof of Proposition 8

Note that

c(n, n+ 1) + βωLL(n+ 1, ~x∗Pn+1) = c(n, n+ 1) + β(c(n+ 1, n+ 2) + βωLL(n+ 2, ~x∗Pn+2))

≥ ~x∗Pn~l(n, ωLL(0, ~x
∗))

≥ ~x∗Pn
[
c(n, n+ 1)~e+ βP~l(n+ 1, ωLL(0, ~x

∗))
]

= c(n, n+ 1) + β~x∗Pn+1~l(n+ 1, ωLL(0, ~x
∗)),

which implies the result.
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A.1.8 Proof of Proposition 9

(i) It follows from Proposition 4 (π∗(n,~eS) = A) and Proposition 6 (both π∗(n, ~x) = I and

~x ≺ ~x′ imply π∗(n, ~x′) 6= A, where we note ~es+1 ≺ ~es).

(ii) Let zU = ωU (0, ~x
∗). By the definition of s̄(n), ωU (n,~ek) = ~ek~l(n, zU ) = lk(n, zU ) if and

only if k ≥ s̄(n). Note that

ωU (n,~ei) = max
{
~ei ~m(n, n, zU ), ~ei~l(n, zU )

}
= max





c(n, n+ 1) + β
∑

j pijωU (n+ 1, ~ej),

~ei~l(n, zU ) = li(n, zU )





.

Let i = s̄(n+ 1). Then,

∑

j

pijωU (n+ 1, ~ej) =
∑

j≥i

pijlj(n+ 1, zU ).

Thus,

ωU (n,~ei) = max





c(n, n+ 1) + β
∑

j≥i pijlj(n+ 1, zU ),

li(n, zU )





= li(n, zU )

due to A1, and hence, s̄(n+ 1) ≥ s̄(n).

A.2 Proofs in Chapter 4

A.2.1 Proof of Proposition 10

We note that d−max{0, α− z} is isotone in z, and hence v(d−max{0, α− z}) is antitone
in z if v is antitone. Note also that f(z, a) is antitone in z for fixed a. The weighted sum

of antitone functions is antitone. Thus, h(z, a, v) is antitone in z for fixed a if v is antitone.

The minimum of antitone functions is antitone. Thus, if v is antitone, Hv is antitone. Since

the limit of antitone functions is antitone, v∗ is antitone.

A.2.2 Proof of Proposition 11

The result follows directly from the fact that if z ≤ 0, then for all a ≥ 0,

h(z, a, v) = ca+ (p− (p− h))Y(a) + p|z|+ β
∑
α

P (α|a)v(d− |z| − α).
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A.2.3 Proof of Proposition 12

If 0 ≤ a ≤ z, then h(z, a, v) = ca−(p−h)Y(a)+βv(d) ≥ cz−(p−h)Y(a)+βv(d) = h(z, z, v).

A.2.4 Proof of Proposition 13

Noting that A5 implies A4, Proposition 12 guarantees that for z ≥ 0, there is an optimal

policy δ∗ such that δ∗(z) ≥ z. Hence, there is a γ ≥ 0 such that δ∗(z) = z+γ. It is therefore

sufficient for

h(z, z+ γ, v)− h(z, z+ γ+1, v) ≤ h(z+1, (z+1)+ γ, v)− h(z+1, (z+1)+ γ+1, v) (18)

given v is antitone. Note that this inequality is associated with subadditivity, given the

structure of an optimal policy described in Proposition 12 (see Puterman [50]). We note

that the equation (18) is equivalent to

− (p− h)[Y(z + γ)− Y(z + γ + 1)]

+ p̄
∑
α

[P (α|z + γ)− P (α|z + γ + 1)]max{0, α− z}

+ β
∑

ξ

[P (ξ|z, z + γ)− P (ξ|z, z + γ + 1)]v(ξ)

≤− (p− h)[Y(z + 1 + γ)− Y(z + 1 + γ + 1)] + p̄
∑
α

[P (α|z + 1 + γ)

− P (α|z + 1 + γ + 1)]max{0, α− z − 1}

+ β
∑

ξ

[P (ξ|z + 1, z + 1 + γ)− P (ξ|z + 1, z + 1 + γ + 1)]v(ξ).

This inequality holds if

(a) Y(z + γ + 1)− Y(z + γ) ≤ Y(z + γ + 2)− Y(z + γ + 1)

(b)
∑

α[P (α|z + γ)− P (α|z + γ + 1)]max{0, α− z} ≤ ∑
α[P (α|z + 1 + γ)− P (α|z + 2 +

γ)]max{0, α− z − 1}

(c)
∑

ξ[P (ξ|z, z + γ)− P (ξ|z, z + γ + 1)]v(ξ) ≤ ∑
ξ[P (ξ|z + 1, z + 1+ γ)− P (ξ|z + 1, z +

1 + γ + 1)]v(ξ).

Note that (a) holds by assumption. Lemma 4.7.2 in Puterman [50] guarantees that (b)

holds and that (c) holds if Q(k|z, z+γ+1)−Q(k|z, z+γ) is isotone in z where Q(k|z, a) =
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∑
ξ≥k P (ξ|z, a) =

∑z+d−k
α=0 P (α|a). It is straightforward to show that Q(k|z, a) = 1 −

∑
α≥k′ P (α|a) for k′ = z+ d− k+1. Thus, the isotonicity of q(k|a)− q(k|a+1) guarantees

the isotonicity of Q(k|z, a+ 1)−Q(k|z, a).

A.3 Proofs in Chapter 5

A.3.1 Proof of Lemma 2

Let m be such that 0 ∈ M(m|i, e), and assume m < N . Then,

I(f(x, i, a, e,D)) =

N∑

n=1

gN−1
n (fn(x, i, a, e,D)) + fN (x, i, a, e,D)

= gN−1
m

(
gm−1
0 (a|i, e) +

∑

k∈M(m|i,e)
k 6=0

gm−1
k (xk)

)

+

N−1∑
n>m

gN−1
n

( ∑

k∈M(n|i,e)
gn−1
k (xk)

)
+ xN −D +

∑

k∈M(N |i,e)
gN−1
k (xk)

= gN−1
0 (a|i, e) +

N−1∑

n=1

gN−1
n (xn) + xN −D.

where the last equality is due to the assumption. Proof of them = N case is straightforward.
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A.3.2 Proof of Lemma 3

(a)

βEe,D

[
v′(f(x, i, a, e,D), Q(i, e))

]

= ELN

[LN−2∑

j=0

βj+1hED

{
Ee,ej+1,Dj+1

[N−1∑

n=1

∑

k∈Mj+1(n|i,ej+1)

gn−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

+
∑

k∈Mj+1(N |i,ej+1)

gN−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)
+

N−1∑

n=1

∑

k∈Mj+1(n|i,ej+1)

gn−1
k

( ∑

u∈M(k|i,e)
gk−1
u (xu)

)

+
∑

k∈Mj+1(N |i,ej+1)

gN−1
k

( ∑

u∈M(k|i,e)
gk−1
u (xu)

)
+ gNN (xN )−D −Dj+1

]}]

= ELN

[LN−2∑

j=0

βj+1hEe,ej+1,ej+2,Dj+2

{N−1∑

n=1

∑

k∈Mj+1(n|i,ej+1)

gn−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

+
∑

k∈Mj+1(N |i,ej+1)

gN−1
k


 ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)


+

N−1∑

n=1

∑

k∈Mj+2(n|i,ej+2)

gn−1
k (xk)

+
∑

k∈Mj+2(N |i,ej+2)

gN−1
k (xk) + gNN (xN )−Dj+2

}]

= ELN

[LN−1∑

j=1

βjhEe,ej

{N−1∑

n=1

∑

k∈Mj(n|i,ej)
gn−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

+
∑

k∈Mj(N |i,ej)
gN−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)}]

+ ELN

[LN−1∑

j=1

βjhEej+1,Dj+1

{N−1∑

n=1

∑

k∈Mj+1(n|i,ej+1)

gn−1
k (xk)

+
∑

k∈Mj+1(N |i,ej+1)

gN−1
k (xk) + gNN (xN )−Dj+1

}]
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= ELN

[LN−2∑

j=1

βjhEej

{N−1∑

n=1

∑

k∈Mj(n|i,ej)
gn−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

+
∑

k∈Mj(N |i,ej)
gN−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

︸ ︷︷ ︸
=0

}]

+ ELN

[
βLN−1hEe,eLN−1

{N−1∑

n=1

∑

k∈MLN−1(n|i,eLN−1)

gn−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

︸ ︷︷ ︸
=0

+
∑

k∈MLN−1(N |i,eLN−1)

gN−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

︸ ︷︷ ︸
=gN−1

0 (a|i,e)

}]

+ ELN

[LN−2∑

j=0

βjhEej+1,Dj+1

{ N∑

n=1

∑

k∈Mj+1(n|i,ej+1)

gn−1
k (xk) + gNN (xN )−Dj+1

}]

︸ ︷︷ ︸
=v′(x,i)

+ ELN

[
βLN−1hEeLN

,DLN

{N−1∑

n=1

∑

k∈MLN (n|i,eLN
)

gn−1
k (xk)

︸ ︷︷ ︸
=0

+
∑

k∈MLN (N |i,eLN
)

gN−1
k (xk) + gNN (xN )

︸ ︷︷ ︸
=I(x)

−DLN

}]

− hEe,D

[ N∑

n=1

∑

k∈M(n|i,e)
gn−1
k (xk) + gNN (xN )−D

]

= ELN

[LN−2∑

j=1

βjhEe,ej

{N−1∑

n=1

∑

k∈Mj(n|i,ej)
gn−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)}]
+ v′(x|i)

+ ELN

[
βLN−1hEe,DLN

{
gN0 (a|i, e) + I(~x)−DLN

}]

− hEe,D

[ N∑

n=1

∑

k∈M(n|i,e)
gn−1
k (xk) + xN −D

]
.
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(b)

βEe,D

[
v′′(f(x, i, a, e,D), Q(i, e))

]

= −ELN

{LN−2∑

j=0

βj+1ED

[
Ee,Dj+1

{
(h+ σ)

[ j+1∑

l=1

∑

k∈Ml(N |i,el)
gNk

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

+

j+1∑

l=1

∑

k∈Ml(N |i,el)
gNk

( ∑

u∈M(k|i,e)
gk−1
u (xu)

)

+ gNN

( ∑

k∈M(N |i,e)
gN−1
k (xk) + xN −D

)
−Dj+1

]−}]}

= −ELN

{LN−2∑

j=0

βj+1Ee,Dj+2

[
(h+ σ)

( j+1∑

l=1

∑

k∈Ml(N |i,el)
gNk

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

+

j+1∑

l=1

∑

k∈Ml+1(N |i,el+1)

gNk (xk) +
∑

k∈M(N |i,e)
gNk (xk) + gNN (xN )−Dj+2

)−]}

= −ELN

{LN−2∑

j=0

βj+1Ee,Dj+2

[
(h+ σ)

( j+1∑

l=1

∑

k∈Ml(N |i,el)
gNk

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

+

j+2∑

l=1

∑

k∈Ml(N |i,el)
gNk (xk) + gNN (xN )−Dj+2

)−]}

= −ELN

{LN−1∑

j=1

βjEe,Dj+1

[
(h+ σ)

( j∑

l=1

∑

k∈Ml(N |i,el)
gNk

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

+

j+1∑

l=1

∑

k∈Ml(N |i,el)
gNk (xk) + gNN (xN )−Dj+1

)−]}

=
−ELN

{∑LN−2
j=0 βjEe,Dj+1

[
(h+ σ)

(
=0︷ ︸︸ ︷

j∑

l=1

∑

k∈Ml(N |i,el)
gNk

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

+
∑j+1

l=1

∑
k∈Ml(N |i,el) g

N
k (xk) + gNN (xN )−Dj+1

)−]}

︸ ︷︷ ︸
=v′′(x,i)

+ (h+ σ)Ee,D

[( ∑

k∈M(N |i,e)
gNk (xk) + xN −D

)−]

− ELN

[
βLN−1(h+ σ)Ee,DLN

{( LN−1∑

l=1

∑

k∈Ml(N |i,el)
gNk

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)

︸ ︷︷ ︸
=gN0 (a|i,e)

+

LN∑

l=1

∑

k∈Ml(N |i,el)
gNk (xk)

︸ ︷︷ ︸
=I(x)

−DLN

)−}]
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(c)

c(x, i, a) + βEe,D

[
v′(f(x, i, a, e,D), Q(i, e))

]
+ βEe,D

[
v′′(f(x, i, a, e,D), Q(i, e))

]

= Kδ(a) + ca+ hEe

[N−1∑

n=1

∑

0∈M(n|i,e)
gn−1
1 (g(a|i, e))

]

+

{
hEe,D

[ N∑

n=1

∑

k∈M(n|i,e)
gn−1
k (xk) + xN −D

]
+ βEe,D

[
v′(f(x, i, a, e,D), Q(i, e))

]}

+

{
−(h+ σ)Ee,D

[( ∑

k∈M(N |i,e)
gNk (xk) + xN −D

)−]
+ βEe,D

[
v′′(f(x, i, a, e,D), Q(i, e))

]}

= Kδ(a) + ca+ hEe

[N−1∑

n=1

∑

0∈M(n|i,e)
gn−1
0 (a|i, e)

]

+

{
ELN

[LN−2∑

j=1

βjhEe,ej

[N−1∑

n=1

∑

k∈Mj(n|i,ej)
gn−1
k

( ∑

0∈M(k|i,e)
gk−1
0 (a|i, e)

)]]

+ ELN

[
βLN−1hEe,DLN

[
gN0 (a|i, e) + I(x)−DLN

]]
+v′(x, i)

}

+

{
−ELN

[
βLN−1(h+ σ)Ee,DLN

[(
gN0 (a|i, e) + I(x)−DLN

)−]]
+ v′′(x, i)

}

= c◦(I(x), i, a) + v′(x, i) + v′′(x, i)

where the second equality is due to (a) and (b).

A.3.3 Proof of Proposition 14

We prove this proposition by induction. Let vk+1 = Hvk with v0 = v′+v′′, and v◦k+1 = H◦v◦k

with v◦0 = 0.

v1(x, i) = [Hv0](x, i)

= min
a

{
c(x, i, a) + βE [v0(f(x, i, a, e,D), Q(i, e))]

}

= min
a

{
c(x, i, a) + βE

[
v′(f(x, i, a, e,D), Q(i, e))

]
+ βE

[
v′′(f(x, i, a, e,D), Q(i, e))

] }

= min
a

{
c◦(I(x), i, a) + v′(x, i) + v′′(x, i)

}

= v◦1(x, i) + v′(x, i) + v′′(x, i)

where the third equality is due to Lemma 3(c).

97



We now assume that vk−1(x, i) = v◦k−1(x, i) + v′(x, i) + v′′(x, i). Then,

vk(x, i) = [Hvk−1](x, i)

= min
a

{
c(x, i, a) + βE [vk−1(f(x, i, a, e,D), Q(i, e))]

}

= min
a

{
c(x, i, a) + βE

[
v◦k−1(f(x, i, a, e,D), Q(i, e))

]

+ βE
[
v′(f(x, i, a, e,D), Q(i, e))

]
+ βE

[
v′′(f(x, i, a, e,D), Q(i, e))

] }

= min
a

{
c◦(I(x), i, a) + βE

[
v◦k−1(f(x, i, a, e,D), Q(i, e))

]
+ v′(x, i) + v′′(x, i)

}

= v◦k(x, i) + v′(x, i) + v′′(x, i)

where the third equality is due to the induction hypothesis, and the fourth equality is again

due to Lemma 3(c). This completess the proof by induction.
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APPENDIX B

APPENDICES IN CHAPTER 2

B.1 Determination of q(s′|n, s, n′)

We now determine q(s′|n, s, n′), assuming the conditional probabilities P (s(t+1)|s(t)) and
P (∆(t+1)|∆(t), s(t)) are given (presumably derived from historic traffic data), where ∆(t) ∈
{0, 1, . . . , d(n, n′)} is the distance remaining to n′ at time t, the trip from n to n′ began

at t = 0, and d(n, n′) is the total distance from n to n′. We remark that Section III in

Kim et al. [33] presents the details of data collection (Section III-A) and the construction

of the Markov chain [P (s(t+ 1)|s(t))] or [q(s′|n, s, n′)] (Section III-B). Yeon et al. [68]

also presents both data collection and the development of the discrete-time Markov chain

[P (s(t+ 1)|s(t))] whose state representation is same as ours (see Section 4 in Yeon et al.

[68]). Let τ be the (random) length of time required to travel from n to n′.

Then,

q(s′|n, s, n′) = P (s(τ) = s′|s(0) = s)

=
∑

ξ≥1 P (s(τ) = s′, τ = ξ|s(0) = s)

=
∑

ξ≥1 P (s(τ) = s′|τ = ξ, s(0) = s)P (τ = ξ|s(0) = s)

=
∑

ξ≥1 P (s(ξ) = s′|s(0) = s)P (τ = ξ|s(0) = s).

We use Kolmogorov equations to determine P (s(ξ) = s′|s(0) = s), given P (s(t+1)|s(t)).
We now seek P (τ = ξ|s(0)). Note that τ = ξ if and only if ∆(ξ) = 0 and ∆(ξ − 1) 6= 0.

Then,

P (τ = ξ|s(0))
=

∑
∆(ξ−1)>0 P (∆(ξ) = 0,∆(ξ − 1)|s(0))

=
∑

∆(ξ−1)>0

∑
s(ξ−1) P (∆(ξ) = 0, s(ξ − 1),∆(ξ − 1)|s(0))

=
∑

∆(ξ−1)>0

∑
s(ξ−1) P (∆(ξ) = 0|s(ξ − 1),∆(ξ − 1))P (∆(ξ − 1)|s(0))P (s(ξ − 1)|s(0)).

Therefore, it is sufficient to know P (∆(t)|s(0)) in order to determine P (τ = ξ|s(0)) and
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hence q(s′|n, s, n′). We note that

P (∆(t+ 1)|s(0)) =
∑

∆(t)

∑
s(t) P (∆(t+ 1), s(t),∆(t)|s(0))

=
∑

∆(t)

∑
s(t) P (∆(t+ 1)|s(t),∆(t))P (s(t)|s(0))P (∆(t)|s(0)).

As an initial condition, P (∆(0) = d(n, n′)|s(0)) = 1 for all s(0). Hence,

P (∆(1)|s(0)) = P (∆(1)|∆(0) = d(n, n′), s(0)).

B.2 Optimal Policy for Example 2

State Action Expected Cost State Action Expected Cost
N/n/s n′ v(N,n, s) N/n/s n′ v(N,n, s)

/0/000 3 51.48 0.3/6/101 2 44.00
/0/100 10 52.73 0.3/6/100 2 44.00
/0/010 10 52.75 0.3/11/111 5 46.00
/0/001 3 51.64 0.3/11/000 5 46.00
/0/110 10 53.89 0.3/11/110 5 46.00
/0/101 10 52.93 0.3/11/001 5 46.00
/0/011 10 52.94 0.3/11/010 5 46.00
/0/111 10 52.93 0.3/11/011 5 46.00
0/3/100 6 49.20 0.3/11/101 5 46.00
0/3/101 6 49.20 0.3/11/100 5 46.00
0/3/111 11 51.00 0.10/8/100 4 44.00
0/3/010 11 51.00 0.10/8/101 4 44.00
0/3/011 11 51.00 0.10/8/111 4 44.00
0/3/000 6 49.20 0.10/8/000 4 44.00
0/3/001 6 49.20 0.10/8/110 4 44.00
0/3/110 11 51.00 0.10/8/010 4 44.00
0/10/110 8 48.00 0.10/8/011 4 44.00
0/10/001 3 47.62 0.10/8/001 4 44.00
0/10/111 8 48.00 0.10/3/100 6 42.20
0/10/101 8 48.00 0.10/3/010 11 47.00
0/10/010 8 48.00 0.10/3/011 9 47.00
0/10/011 8 48.00 0.10/3/101 6 42.20
0/10/100 3 47.66 0.10/3/110 9 47.00
0/10/000 3 47.08 0.10/3/111 9 47.00
0.3/6/010 2 44.00 0.10/3/000 6 42.20
0.3/6/011 2 44.00 0.10/3/001 6 42.20
0.3/6/001 2 44.00 0.3.6/2/111 7 38.00
0.3/6/111 2 44.00 0.3.6/2/011 7 38.00
0.3/6/000 2 44.00 0.3.6/2/010 7 38.00
0.3/6/110 2 44.00 0.3.6/2/110 7 38.00
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0.3.6/2/000 7 38.00 0.2.3.6/7/000 8 36.00
0.3.6/2/001 7 38.00 0.2.3.6/7/001 8 36.00
0.3.6/2/101 7 38.00 0.2.3.6/7/111 8 36.00
0.3.6/2/100 7 38.00 0.2.3.6/7/110 8 36.00
0.3.11/5/110 1 43.00 0.2.3.6/7/010 8 36.00
0.3.11/5/111 1 43.00 0.2.3.6/7/101 8 36.00
0.3.11/5/011 1 43.00 0.2.3.6/7/100 8 36.00
0.3.11/5/010 1 43.00 0.3.5.11/1/111 9 40.00
0.3.11/5/101 1 43.00 0.3.5.11/1/101 9 40.00
0.3.11/5/001 1 43.00 0.3.5.11/1/100 9 40.00
0.3.11/5/100 1 43.00 0.3.5.11/1/011 9 40.00
0.3.11/5/000 1 43.00 0.3.5.11/1/010 9 40.00
0.8.10/4/110 9 37.00 0.3.5.11/1/001 9 40.00
0.8.10/4/100 9 37.00 0.3.5.11/1/110 9 40.00
0.8.10/4/101 9 37.00 0.3.5.11/1/000 9 40.00
0.8.10/4/111 9 37.00 0.4.8.10/9/100 1 33.00
0.8.10/4/010 9 37.00 0.4.8.10/9/010 1 33.00
0.8.10/4/011 9 37.00 0.4.8.10/9/011 1 33.00
0.8.10/4/000 9 37.00 0.4.8.10/9/101 1 33.00
0.8.10/4/001 9 37.00 0.4.8.10/9/000 1 33.00
0.3.10/6/010 2 37.00 0.4.8.10/9/001 1 33.00
0.3.10/6/011 2 37.00 0.4.8.10/9/111 1 33.00
0.3.10/6/101 2 37.00 0.4.8.10/9/110 1 33.00
0.3.10/6/100 2 37.00 0.3.6.10/2/100 7 31.00
0.3.10/6/001 2 37.00 0.3.6.10/2/101 7 31.00
0.3.10/6/000 2 37.00 0.3.6.10/2/010 7 31.00
0.3.10/6/111 2 37.00 0.3.6.10/2/011 7 31.00
0.3.10/6/110 2 37.00 0.3.6.10/2/110 7 31.00
0.3.10/11/100 6 42.00 0.3.6.10/2/001 7 31.00
0.3.10/11/101 6 42.00 0.3.6.10/2/111 7 31.00
0.3.10/11/000 6 42.00 0.3.6.10/2/000 7 31.00
0.3.10/11/001 6 42.00 0.3.10.11/6/100 2 36.00
0.3.10/11/010 6 42.00 0.3.10.11/6/011 2 36.00
0.3.10/11/111 6 42.00 0.3.10.11/6/111 2 36.00
0.3.10/11/011 6 42.00 0.3.10.11/6/110 2 36.00
0.3.10/11/110 6 42.00 0.3.10.11/6/010 2 36.00
0.3.10/9/101 11 41.00 0.3.10.11/6/101 2 36.00
0.3.10/9/111 11 41.00 0.3.10.11/6/000 2 36.00
0.3.10/9/100 11 41.00 0.3.10.11/6/001 2 36.00
0.3.10/9/110 11 41.00 0.3.9.10/11/101 6 38.00
0.3.10/9/000 11 41.00 0.3.9.10/11/100 6 38.00
0.3.10/9/011 11 41.00 0.3.9.10/11/111 6 38.00
0.3.10/9/010 11 41.00 0.3.9.10/11/110 6 38.00
0.3.10/9/001 11 41.00 0.3.9.10/11/011 6 38.00
0.2.3.6/7/011 8 36.00 0.3.9.10/11/010 6 38.00
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0.3.9.10/11/000 6 38.00 0.3.9.10.11/6/100 2 32.00
0.3.9.10/11/001 6 38.00 0.3.9.10.11/6/110 2 32.00
0.2.3.6.7/8/000 10 30.00 0.3.9.10.11/6/001 2 32.00
0.2.3.6.7/8/001 11 30.00 0.3.9.10.11/6/000 2 32.00
0.2.3.6.7/8/110 10 30.00 0.3.9.10.11/6/111 2 32.00
0.2.3.6.7/8/111 10 30.00 0.2.3.6.7.8/10/001 4 19.00
0.2.3.6.7/8/101 4 30.00 0.2.3.6.7.8/10/110 4 19.00
0.2.3.6.7/8/100 4 30.00 0.2.3.6.7.8/10/000 4 19.00
0.2.3.6.7/8/011 4 30.00 0.2.3.6.7.8/10/111 4 19.00
0.2.3.6.7/8/010 10 30.00 0.2.3.6.7.8/10/101 4 19.00
0.1.3.5.11/9/111 7 37.00 0.2.3.6.7.8/10/100 4 19.00
0.1.3.5.11/9/000 7 37.00 0.2.3.6.7.8/10/010 4 19.00
0.1.3.5.11/9/101 7 37.00 0.2.3.6.7.8/10/011 4 19.00
0.1.3.5.11/9/110 7 37.00 0.2.3.6.7.8/11/100 5 21.00
0.1.3.5.11/9/001 7 37.00 0.2.3.6.7.8/11/101 5 21.00
0.1.3.5.11/9/011 7 37.00 0.2.3.6.7.8/11/000 5 21.00
0.1.3.5.11/9/010 7 37.00 0.2.3.6.7.8/11/011 5 21.00
0.1.3.5.11/9/100 7 37.00 0.2.3.6.7.8/11/001 5 21.00
0.4.8.9.10/1/100 11 28.00 0.2.3.6.7.8/11/111 5 21.00
0.4.8.9.10/1/101 11 28.00 0.2.3.6.7.8/11/010 5 21.00
0.4.8.9.10/1/111 11 28.00 0.2.3.6.7.8/11/110 5 21.00
0.4.8.9.10/1/110 11 28.00 0.2.3.6.7.8/4/111 9 23.00
0.4.8.9.10/1/000 11 28.00 0.2.3.6.7.8/4/110 9 23.00
0.4.8.9.10/1/001 11 28.00 0.2.3.6.7.8/4/101 9 23.00
0.4.8.9.10/1/010 11 28.00 0.2.3.6.7.8/4/011 9 23.00
0.4.8.9.10/1/011 11 28.00 0.2.3.6.7.8/4/000 9 23.00
0.2.3.6.10/7/000 8 29.00 0.2.3.6.7.8/4/001 9 23.00
0.2.3.6.10/7/001 8 29.00 0.2.3.6.7.8/4/010 9 23.00
0.2.3.6.10/7/010 8 29.00 0.2.3.6.7.8/4/100 9 23.00
0.2.3.6.10/7/011 8 29.00 0.1.3.5.9.11/7/100 6 31.00
0.2.3.6.10/7/100 8 29.00 0.1.3.5.9.11/7/101 6 31.00
0.2.3.6.10/7/101 8 29.00 0.1.3.5.9.11/7/110 6 31.00
0.2.3.6.10/7/110 8 29.00 0.1.3.5.9.11/7/001 6 31.00
0.2.3.6.10/7/111 8 29.00 0.1.3.5.9.11/7/111 6 31.00
0.3.6.10.11/2/010 7 30.00 0.1.3.5.9.11/7/000 6 31.00
0.3.6.10.11/2/100 7 30.00 0.1.3.5.9.11/7/011 6 31.00
0.3.6.10.11/2/011 7 30.00 0.1.3.5.9.11/7/010 6 31.00
0.3.6.10.11/2/101 7 30.00 0.1.4.8.9.10/11/100 5 27.00
0.3.6.10.11/2/110 7 30.00 0.1.4.8.9.10/11/101 5 27.00
0.3.6.10.11/2/001 7 30.00 0.1.4.8.9.10/11/111 5 27.00
0.3.6.10.11/2/111 7 30.00 0.1.4.8.9.10/11/110 5 27.00
0.3.6.10.11/2/000 7 30.00 0.1.4.8.9.10/11/001 5 27.00
0.3.9.10.11/6/011 2 32.00 0.1.4.8.9.10/11/000 5 27.00
0.3.9.10.11/6/101 2 32.00 0.1.4.8.9.10/11/010 5 27.00
0.3.9.10.11/6/010 2 32.00 0.1.4.8.9.10/11/011 5 27.00
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0.2.3.6.7.10/8/000 4 23.00 0.2.3.4.6.7.8/9/111 11 19.00
0.2.3.6.7.10/8/111 4 23.00 0.2.3.4.6.7.8/9/100 11 19.00
0.2.3.6.7.10/8/101 4 23.00 0.2.3.4.6.7.8/9/101 11 19.00
0.2.3.6.7.10/8/001 4 23.00 0.1.3.5.7.9.11/6/011 2 27.00
0.2.3.6.7.10/8/100 4 23.00 0.1.3.5.7.9.11/6/110 2 27.00
0.2.3.6.7.10/8/110 4 23.00 0.1.3.5.7.9.11/6/010 2 27.00
0.2.3.6.7.10/8/010 4 23.00 0.1.3.5.7.9.11/6/111 2 27.00
0.2.3.6.7.10/8/011 4 23.00 0.1.3.5.7.9.11/6/100 2 27.00
0.2.3.6.10.11/7/111 8 28.00 0.1.3.5.7.9.11/6/101 2 27.00
0.2.3.6.10.11/7/101 8 28.00 0.1.3.5.7.9.11/6/001 2 27.00
0.2.3.6.10.11/7/110 8 28.00 0.1.3.5.7.9.11/6/000 2 27.00
0.2.3.6.10.11/7/100 8 28.00 0.1.4.8.9.10.11/5/110 2 24.00
0.2.3.6.10.11/7/000 8 28.00 0.1.4.8.9.10.11/5/111 2 24.00
0.2.3.6.10.11/7/011 8 28.00 0.1.4.8.9.10.11/5/100 2 24.00
0.2.3.6.10.11/7/010 8 28.00 0.1.4.8.9.10.11/5/010 2 24.00
0.2.3.6.10.11/7/001 8 28.00 0.1.4.8.9.10.11/5/011 2 24.00
0.3.6.9.10.11/2/010 7 26.00 0.1.4.8.9.10.11/5/101 2 24.00
0.3.6.9.10.11/2/011 7 26.00 0.1.4.8.9.10.11/5/000 2 24.00
0.3.6.9.10.11/2/110 7 26.00 0.1.4.8.9.10.11/5/001 2 24.00
0.3.6.9.10.11/2/001 7 26.00 0.2.3.6.7.10.11/8/111 4 22.00
0.3.6.9.10.11/2/111 7 26.00 0.2.3.6.7.10.11/8/101 4 22.00
0.3.6.9.10.11/2/101 7 26.00 0.2.3.6.7.10.11/8/100 4 22.00
0.3.6.9.10.11/2/100 7 26.00 0.2.3.6.7.10.11/8/001 4 22.00
0.3.6.9.10.11/2/000 7 26.00 0.2.3.6.7.10.11/8/000 4 22.00
0.2.3.6.7.8.10/4/101 9 16.00 0.2.3.6.7.10.11/8/011 4 22.00
0.2.3.6.7.8.10/4/100 9 16.00 0.2.3.6.7.10.11/8/110 4 22.00
0.2.3.6.7.8.10/4/001 9 16.00 0.2.3.6.7.10.11/8/010 4 22.00
0.2.3.6.7.8.10/4/000 9 16.00 0.2.3.6.9.10.11/7/111 8 24.00
0.2.3.6.7.8.10/4/011 9 16.00 0.2.3.6.9.10.11/7/110 8 24.00
0.2.3.6.7.8.10/4/010 9 16.00 0.2.3.6.9.10.11/7/010 8 24.00
0.2.3.6.7.8.10/4/111 9 16.00 0.2.3.6.9.10.11/7/101 8 24.00
0.2.3.6.7.8.10/4/110 9 16.00 0.2.3.6.9.10.11/7/100 8 24.00
0.2.3.6.7.8.11/5/100 1 18.00 0.2.3.6.9.10.11/7/011 8 24.00
0.2.3.6.7.8.11/5/101 1 18.00 0.2.3.6.9.10.11/7/001 8 24.00
0.2.3.6.7.8.11/5/111 1 18.00 0.2.3.6.9.10.11/7/000 8 24.00
0.2.3.6.7.8.11/5/110 1 18.00 0.2.3.4.6.7.8.10/9/001 11 12.00
0.2.3.6.7.8.11/5/001 1 18.00 0.2.3.4.6.7.8.10/9/000 11 12.00
0.2.3.6.7.8.11/5/010 1 18.00 0.2.3.4.6.7.8.10/9/011 11 12.00
0.2.3.6.7.8.11/5/000 1 18.00 0.2.3.4.6.7.8.10/9/111 11 12.00
0.2.3.6.7.8.11/5/011 1 18.00 0.2.3.4.6.7.8.10/9/110 11 12.00
0.2.3.4.6.7.8/9/110 11 19.00 0.2.3.4.6.7.8.10/9/100 11 12.00
0.2.3.4.6.7.8/9/000 11 19.00 0.2.3.4.6.7.8.10/9/101 11 12.00
0.2.3.4.6.7.8/9/001 11 19.00 0.2.3.4.6.7.8.10/9/010 11 12.00
0.2.3.4.6.7.8/9/011 11 19.00 0.2.3.5.6.7.8.11/1/010 9 15.00
0.2.3.4.6.7.8/9/010 11 19.00 0.2.3.5.6.7.8.11/1/111 9 15.00
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0.2.3.5.6.7.8.11/1/110 9 15.00 0.2.3.6.7.9.10.11/8/010 4 18.00
0.2.3.5.6.7.8.11/1/100 9 15.00 0.2.3.4.6.7.8.9.10/11/100 5 9.00
0.2.3.5.6.7.8.11/1/011 9 15.00 0.2.3.4.6.7.8.9.10/11/101 5 9.00
0.2.3.5.6.7.8.11/1/000 9 15.00 0.2.3.4.6.7.8.9.10/11/000 5 9.00
0.2.3.5.6.7.8.11/1/001 9 15.00 0.2.3.4.6.7.8.9.10/11/001 5 9.00
0.2.3.5.6.7.8.11/1/101 9 15.00 0.2.3.4.6.7.8.9.10/11/010 5 9.00
0.2.3.4.6.7.8.9/11/100 5 16.00 0.2.3.4.6.7.8.9.10/11/011 5 9.00
0.2.3.4.6.7.8.9/11/101 5 16.00 0.2.3.4.6.7.8.9.10/11/111 5 9.00
0.2.3.4.6.7.8.9/11/011 5 16.00 0.2.3.4.6.7.8.9.10/11/110 5 9.00
0.2.3.4.6.7.8.9/11/010 5 16.00 0.1.2.3.5.6.7.8.11/9/001 10 12.00
0.2.3.4.6.7.8.9/11/110 5 16.00 0.1.2.3.5.6.7.8.11/9/100 10 12.00
0.2.3.4.6.7.8.9/11/111 5 16.00 0.1.2.3.5.6.7.8.11/9/101 10 12.00
0.2.3.4.6.7.8.9/11/001 5 16.00 0.1.2.3.5.6.7.8.11/9/000 10 12.00
0.2.3.4.6.7.8.9/11/000 5 16.00 0.1.2.3.5.6.7.8.11/9/010 10 12.00
0.1.3.5.6.7.9.11/2/011 10 21.00 0.1.2.3.5.6.7.8.11/9/011 10 12.00
0.1.3.5.6.7.9.11/2/100 10 21.00 0.1.2.3.5.6.7.8.11/9/110 10 12.00
0.1.3.5.6.7.9.11/2/101 10 21.00 0.1.2.3.5.6.7.8.11/9/111 10 12.00
0.1.3.5.6.7.9.11/2/010 10 21.00 0.2.3.4.6.7.8.9.11/5/001 10 13.00
0.1.3.5.6.7.9.11/2/000 10 21.00 0.2.3.4.6.7.8.9.11/5/000 10 13.00
0.1.3.5.6.7.9.11/2/111 10 21.00 0.2.3.4.6.7.8.9.11/5/010 10 13.00
0.1.3.5.6.7.9.11/2/110 10 21.00 0.2.3.4.6.7.8.9.11/5/011 10 13.00
0.1.3.5.6.7.9.11/2/001 10 21.00 0.2.3.4.6.7.8.9.11/5/101 10 13.00
0.1.4.5.8.9.10.11/2/010 7 15.00 0.2.3.4.6.7.8.9.11/5/100 10 13.00
0.1.4.5.8.9.10.11/2/110 7 15.00 0.2.3.4.6.7.8.9.11/5/111 10 13.00
0.1.4.5.8.9.10.11/2/111 7 15.00 0.2.3.4.6.7.8.9.11/5/110 10 13.00
0.1.4.5.8.9.10.11/2/011 7 15.00 0.1.2.3.5.6.7.9.11/10/110 8 15.00
0.1.4.5.8.9.10.11/2/100 7 15.00 0.1.2.3.5.6.7.9.11/10/111 8 15.00
0.1.4.5.8.9.10.11/2/000 7 15.00 0.1.2.3.5.6.7.9.11/10/000 8 15.00
0.1.4.5.8.9.10.11/2/001 7 15.00 0.1.2.3.5.6.7.9.11/10/001 8 15.00
0.1.4.5.8.9.10.11/2/101 7 15.00 0.1.2.3.5.6.7.9.11/10/100 8 15.00
0.2.3.6.7.8.10.11/4/000 5 15.00 0.1.2.3.5.6.7.9.11/10/011 8 15.00
0.2.3.6.7.8.10.11/4/001 5 15.00 0.1.2.3.5.6.7.9.11/10/010 8 15.00
0.2.3.6.7.8.10.11/4/011 5 15.00 0.1.2.3.5.6.7.9.11/10/101 8 15.00
0.2.3.6.7.8.10.11/4/010 5 15.00 0.1.2.4.5.8.9.10.11/7/100 6 13.00
0.2.3.6.7.8.10.11/4/110 5 15.00 0.1.2.4.5.8.9.10.11/7/101 6 13.00
0.2.3.6.7.8.10.11/4/111 5 15.00 0.1.2.4.5.8.9.10.11/7/000 6 13.00
0.2.3.6.7.8.10.11/4/100 5 15.00 0.1.2.4.5.8.9.10.11/7/110 6 13.00
0.2.3.6.7.8.10.11/4/101 5 15.00 0.1.2.4.5.8.9.10.11/7/001 6 13.00
0.2.3.6.7.9.10.11/8/001 4 18.00 0.1.2.4.5.8.9.10.11/7/111 6 13.00
0.2.3.6.7.9.10.11/8/000 4 18.00 0.1.2.4.5.8.9.10.11/7/011 6 13.00
0.2.3.6.7.9.10.11/8/101 4 18.00 0.1.2.4.5.8.9.10.11/7/010 6 13.00
0.2.3.6.7.9.10.11/8/100 4 18.00 0.2.3.4.6.7.8.10.11/5/010 1 10.00
0.2.3.6.7.9.10.11/8/111 4 18.00 0.2.3.4.6.7.8.10.11/5/101 1 10.00
0.2.3.6.7.9.10.11/8/110 4 18.00 0.2.3.4.6.7.8.10.11/5/100 1 10.00
0.2.3.6.7.9.10.11/8/011 4 18.00 0.2.3.4.6.7.8.10.11/5/011 1 10.00
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0.2.3.4.6.7.8.10.11/5/001 1 10.00 0.1.2.4.5.7.8.9.10.11/6/110 3 9.00
0.2.3.4.6.7.8.10.11/5/000 1 10.00 0.1.2.4.5.7.8.9.10.11/6/111 3 9.00
0.2.3.4.6.7.8.10.11/5/111 1 10.00 0.1.2.4.5.7.8.9.10.11/6/100 3 9.00
0.2.3.4.6.7.8.10.11/5/110 1 10.00 0.1.2.4.5.7.8.9.10.11/6/101 3 9.00
0.2.3.6.7.8.9.10.11/4/110 5 11.00 0.1.2.4.5.7.8.9.10.11/6/000 3 9.00
0.2.3.6.7.8.9.10.11/4/111 5 11.00 0.1.2.4.5.7.8.9.10.11/6/001 3 9.00
0.2.3.6.7.8.9.10.11/4/101 5 11.00 0.2.3.4.5.6.7.8.10.11/1/100 9 7.00
0.2.3.6.7.8.9.10.11/4/011 5 11.00 0.2.3.4.5.6.7.8.10.11/1/101 9 7.00
0.2.3.6.7.8.9.10.11/4/010 5 11.00 0.2.3.4.5.6.7.8.10.11/1/001 9 7.00
0.2.3.6.7.8.9.10.11/4/100 5 11.00 0.2.3.4.5.6.7.8.10.11/1/000 9 7.00
0.2.3.6.7.8.9.10.11/4/001 5 11.00 0.2.3.4.5.6.7.8.10.11/1/111 9 7.00
0.2.3.6.7.8.9.10.11/4/000 5 11.00 0.2.3.4.5.6.7.8.10.11/1/011 9 7.00
0.2.3.4.6.7.8.9.10.11/5/111 1 6.00 0.2.3.4.5.6.7.8.10.11/1/110 9 7.00
0.2.3.4.6.7.8.9.10.11/5/101 1 6.00 0.2.3.4.5.6.7.8.10.11/1/010 9 7.00
0.2.3.4.6.7.8.9.10.11/5/100 1 6.00 0.2.3.4.5.6.7.8.9.10.11/1/010 0 3.00
0.2.3.4.6.7.8.9.10.11/5/110 1 6.00 0.2.3.4.5.6.7.8.9.10.11/1/011 0 3.00
0.2.3.4.6.7.8.9.10.11/5/001 1 6.00 0.2.3.4.5.6.7.8.9.10.11/1/000 0 3.00
0.2.3.4.6.7.8.9.10.11/5/010 1 6.00 0.2.3.4.5.6.7.8.9.10.11/1/001 0 3.00
0.2.3.4.6.7.8.9.10.11/5/011 1 6.00 0.2.3.4.5.6.7.8.9.10.11/1/101 0 3.00
0.2.3.4.6.7.8.9.10.11/5/000 1 6.00 0.2.3.4.5.6.7.8.9.10.11/1/100 0 3.00
0.1.2.3.5.6.7.8.9.11/10/011 4 7.00 0.2.3.4.5.6.7.8.9.10.11/1/110 0 3.00
0.1.2.3.5.6.7.8.9.11/10/100 4 7.00 0.2.3.4.5.6.7.8.9.10.11/1/111 0 3.00
0.1.2.3.5.6.7.8.9.11/10/101 4 7.00 0.1.2.3.5.6.7.8.9.10.11/4/010 0 4.00
0.1.2.3.5.6.7.8.9.11/10/010 4 7.00 0.1.2.3.5.6.7.8.9.10.11/4/011 0 4.00
0.1.2.3.5.6.7.8.9.11/10/111 4 7.00 0.1.2.3.5.6.7.8.9.10.11/4/000 0 4.00
0.1.2.3.5.6.7.8.9.11/10/110 4 7.00 0.1.2.3.5.6.7.8.9.10.11/4/001 0 4.00
0.1.2.3.5.6.7.8.9.11/10/001 4 7.00 0.1.2.3.5.6.7.8.9.10.11/4/110 0 4.00
0.1.2.3.5.6.7.8.9.11/10/000 4 7.00 0.1.2.3.5.6.7.8.9.10.11/4/100 0 4.00
0.2.3.4.5.6.7.8.9.11/10/111 1 7.00 0.1.2.3.5.6.7.8.9.10.11/4/111 0 4.00
0.2.3.4.5.6.7.8.9.11/10/000 1 7.00 0.1.2.3.5.6.7.8.9.10.11/4/101 0 4.00
0.2.3.4.5.6.7.8.9.11/10/101 1 7.00 0.1.2.4.5.6.7.8.9.10.11/3/111 0 6.00
0.2.3.4.5.6.7.8.9.11/10/001 1 7.00 0.1.2.4.5.6.7.8.9.10.11/3/011 0 6.00
0.2.3.4.5.6.7.8.9.11/10/100 1 7.00 0.1.2.4.5.6.7.8.9.10.11/3/110 0 6.00
0.2.3.4.5.6.7.8.9.11/10/110 1 7.00 0.1.2.4.5.6.7.8.9.10.11/3/010 0 6.00
0.2.3.4.5.6.7.8.9.11/10/010 1 7.00 0.1.2.4.5.6.7.8.9.10.11/3/101 0 6.00
0.2.3.4.5.6.7.8.9.11/10/011 1 7.00 0.1.2.4.5.6.7.8.9.10.11/3/100 0 6.00
0.1.2.3.5.6.7.9.10.11/8/001 4 11.00 0.1.2.4.5.6.7.8.9.10.11/3/000 0 6.00
0.1.2.3.5.6.7.9.10.11/8/000 4 11.00 0.1.2.4.5.6.7.8.9.10.11/3/001 0 6.00
0.1.2.3.5.6.7.9.10.11/8/110 4 11.00 0.1.2.3.4.5.6.7.8.10.11/9/101 0 4.00
0.1.2.3.5.6.7.9.10.11/8/111 4 11.00 0.1.2.3.4.5.6.7.8.10.11/9/010 0 4.00
0.1.2.3.5.6.7.9.10.11/8/100 4 11.00 0.1.2.3.4.5.6.7.8.10.11/9/011 0 4.00
0.1.2.3.5.6.7.9.10.11/8/011 4 11.00 0.1.2.3.4.5.6.7.8.10.11/9/001 0 4.00
0.1.2.3.5.6.7.9.10.11/8/010 4 11.00 0.1.2.3.4.5.6.7.8.10.11/9/100 0 4.00
0.1.2.3.5.6.7.9.10.11/8/101 4 11.00 0.1.2.3.4.5.6.7.8.10.11/9/000 0 4.00
0.1.2.4.5.7.8.9.10.11/6/010 3 9.00 0.1.2.3.4.5.6.7.8.10.11/9/110 0 4.00
0.1.2.4.5.7.8.9.10.11/6/011 3 9.00 0.1.2.3.4.5.6.7.8.10.11/9/111 0 4.00
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APPENDIX C

APPENDICES IN CHAPTER 3

C.1 Facet Reduction

Returning to the general S ≥ 1 case and to Proposition 2, we note that ω(n, ~x, z) is described

by N − n+1 faces. We remark that a face ~x~m(z) is unnecessary to describe ω(·) if there is

another face ~x~m′(z) such that ~x~m(z) ≤ ~x~m′(z) for all ~x ∈ X . Thus, if ~m(z) ≤ ~m′(z), then

~x~m(z) is an unnecessary face and hence can be eliminated.

The proofs of the following result follow from straightforward application of the definition

of ~m(ρ, n, z) and Proposition 4.

Lemma 5 For 0 ≤ n + 1 ≤ ρ ≤ N − 1, ~ms(ρ, n, z) ≤ ~ms(ρ− 1, n, z) for s = 0, 1, . . . , S is

equivalent to

c(ρ, ρ+ 1) + β~esP
ρ+1−n~η(ρ+ 1, z) ≤ ~esP

ρ−n~η(ρ, z) +M
1− β

β
.

Additionally, if pSS = 1, ~mS(ρ, n, z) ≤ ~mS(ρ− 1, n, z) is equivalent to

c(ρ, ρ+ 1) + βlS(ρ+ 1, z) ≤ lS(ρ, z) +M
1− β

β
.

When ρ = N , ~esP
N−n ~m(N,N, z) = ~esP

N−n~η(N, z) > ~esP
N−n~η(N, z) + M

β for M <

0 and all s = 0, 1, . . . , S, which implies that ~m(N − 1, n, z) < ~m(N,n, z) for all n =

0, 1, . . . , N−1. For S = 1, ~m1(N,N, z) > l1(N, z)+M
β , which also implies that ~m1(N,n, z) >

~m1(N − 1, n, z), and Lemma 5 and Proposition 5 imply that ~m(N − 1, n, z) ≤ ~m(N,n, z)

for all n ≤ N − 1. Hence, for M < 0 and S ≥ 1, all the faces ~x~m(N − 1, n, z) for all n

are unnecessary. We observe, however, for sufficiently small |M |(1 − β)/β, ~mS(ρ, n, z) ≤
~mS(ρ− 1, n, z) and hence, it is unlikely to hold that ~m(ρ, n, z) > ~m(ρ− 1, n, z). Thus, with

the exception of the ρ = N − 1 case, it is unlikely that faces can be eliminated because

~mS(ρ, n, z) ≤ ~mS(ρ− 1, n, z). We further remark that procedures are presented in Lin et

al. [40] to identify and eliminate unnecessary faces for general POMDPs.
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C.2 Counterexample that π∗(n, ~x′) = NI if π∗(n, ~x) = NI and ~x ≺ ~x′

We present an example where π∗(n, ~x) = NI, ~x ≺ ~x′, and π∗(n, ~x′) = I. Thus, there are

situations where increased product freshness implies a greater need to inspect. Consider

the following parameter values:

β = 0.99, N = 10, S = 4, M = −8, W = −300,

P =




0.8 0.1 0.1 0.0 0.0

0.0 0.8 0.2 0.0 0.0

0.0 0.0 0.7 0.3 0.0

0.0 0.0 0.0 0.7 0.3

0.0 0.0 0.0 0.0 1.0




, c(n, n+ 1) =





−20, if n = 1

−15, if n = 3

−40, if n = 6

−10, otherwise

,

~x∗ = (0.4, 0.3, 0.3, 0.0, 0.0), ~R = (1600, 1500, 1400, 1300, 0)T ,

~lxn = (30, 20, 15, 10, 0)T , ln =
n−1∑

k=0

βn−1−kc(k, k + 1), and βn = βn.

Suppose that

~x1 =

[
0.00 0.00 0.00 0.00 1.00

]

~x2 =

[
0.00 0.01 0.69 0.25 0.05

]

~x3 =

[
0.00 0.25 0.45 0.25 0.05

]

~x4 =

[
0.20 0.15 0.55 0.05 0.05

]

and note ~x1 ≺ ~x2 ≺ ~x3 ≺ ~x4. Then, for n = 6,

π∗(6, ~x) =





A if ~x = ~x1

NI if ~x = ~x2

I if ~x = ~x3

NI if ~x = ~x4

,

We note that A1 holds for all n.
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This example may indicate a possible scenario that a freight which is less fresher than

a certain quality threshold may not be worth to have a costly inspection although it is still

expected to generate more revenue at the destination than at the secondary market near

by the current location. However, fresher freight may be more valuable and thus warrant

the cost of an inspection.

C.3 Conditions on ωL(n, ~x) = ωLL(n, ~x)

We present an inequality that the reward vector ~R must satisfy in order that the inequality

(8) holds when n = 1, and hence ωLL(n, ~x) = ωL(n, ~x) for all n and ~x. It is straightforward

to show that ωLL(1, ~x
∗P ) ≥ l1 + ~x∗P~lx1 + β1ωLL(0, ~x

∗) is equivalent to

[
βN−1(1− ββ1)

(1− βNβN )

]
~x∗PN ~R ≥ −

N−1∑

k=1

βk−1c(k, k + 1)− βN−1[lN + ~x∗PN~lxN + βNζL]

+ l1 + ~x∗P~lx1 + β1ζL,

where ωLL(0, ~x
∗) = ζL + ~ξL ~R such that ζL =

{
W +

∑N−1
n=0 βnc(n, n + 1) + βN [lN +

~x∗PN~lxN ]
}
/(1− βNβN ) and ~ξL = βN~x∗PN/(1− βNβN ).

We remark that a reward structure that guarantees the “always travel from origin to

destination” policy is optimal when there is no opportunity to inspect the product in-

transit does not guarantee profitability. We now seek conditions that guarantee ω(n, ~x) ≥
0 for all n and ~x, and note that ω(n, ~x) ≥ ωL(n, ~x) ≥ ~x~l(n, ωL(0, ~x

∗)). If, given z =

ωL(0, ~x
∗), ~eS~l(n, z) ≥ ~eS~l(n+ 1, z) for n = 1, 2, . . . , N − 1 (i.e., for totally spoiled freight,

the corresponding cost incurred to select an action A at a location is non-decreasing as

the location at which action A is made gets closer to the destination), then ~x~l(n, z) ≥
~eS~l(n, z) ≥ ~eS~l(N, z). Our next result follows from this argument and the fact that the

inequality ~eS~l(N,ωL(0, ~x
∗)) ≥ 0 is equivalent to ~ξL ~R ≥ −ζL − (lN + ~eS~l

x
N )/βN .

Proposition 15 Let z = ζL + ~ξL ~R ≥ 0. If lS(n, z) ≥ lS(n+ 1, z) for n = 1, 2, . . . , N − 1,

and ~ξL ~R ≥ −ζL − (lN + ~eS~l
x
N )/βN , then ω(n, ~x) ≥ 0 for all n and ~x.
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C.4 Closed-form Formula for the Upper Bound Case When P is Upper-
triangular

We now present a closed-form formula for the upper bound of ω(n, ~x) when P is upper-

triangular. Thus, we restrict our attention to policies having the structural properties found

in Proposition 9. Let {s(n) : n = 1, . . . , N−1} be given, where s(n) ≤ s(n+1) for all n and

where the policy under consideration, π, is such that π(n,~es) = A(I) if s ≥ s(n) (s < s(n)).

Let ~ωU be the resulting reward function vector.

Let EU , FU and GU be such that ~ωU (n, zU ) = EU (n) + FU (n)~R + zUGU (n) where

zU = ωU (0, x
∗) under the policy π above. Note that EU (N) = lN~e, FU (N) = I, and

GU (N) = βN~e. Define the diagonal (S + 1) × (S + 1) matrix I(n) as having 1 (0) as its

(s, s)-th entry if s < s(n) (s ≥ s(n)), and let I ′(n) = I − I(n). It is then straightforward to

show that

EU (n) = c(n, n+ 1)~e+ βPI ′(n+ 1)(~lxn+1 + ln+1~e) + βPI(n+ 1)EU (n+ 1),

FU (n) = βPI(n+ 1)FU (n+ 1), and

GU (n) = βP
[
I(n+ 1)GU (n+ 1) + βn+1I

′(n+ 1)~e
]

where for n = 0, W~e is added to EU (n).

Then, zU = ~x∗(EU (0)+FU (0)~R+ zUGU (0)), and hence zU = ~x∗(EU (0)+FU (0)~R)/(1−
~x∗GU (0)), assuming 1− ~x∗GU (0) 6= 0. Therefore, a closed-form solution for zU is given as

zU = ζU + ~ξU ~R , where ζU = ~x∗EU (0)/(1− ~x∗GU (0)) and ~ξU = ~x∗FU (0)/(1− ~x∗Gu(0)).

C.5 Bounds on the Productivity Measure by Inspection

As discussed in Section 3.5.4, with respect to the value of inspection information as a

function of M , consider Figure 2, which is a graph of ω(0, ~x∗;M) as a function of M . It

is straightforward to show that ω(0, ~x∗;M) is piecewise linear, convex and isotone in M .

We recall that the ratio (ωU (0, ~x
∗)−ωL(0, ~x

∗))/ωL(0, ~x
∗) represents an upper bound on the

fraction of productivity gained by optimal freight inspection. Under the case when S = 1

and the suboptimal policies stated below are optimal for each lower and upper bound, we

now show that this ratio, as a function of the reward vector ~R, is antitone in general.
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S=1 (2 states) Case We assume that the following suboptimal policies are optimal for

lower and upper bounds:

(i) Lower bound: always travel directly from the origin to the destination

(ii) Upper bound: when in the fresh state (s = 0), proceed toward the destination and

when in the spoiled state (s = 1), abort the trip (i.e., s̄(n) = 1 for n = 1, . . . , N − 1).

According to Section 3.6.1 and C.4, ωL(0, ~x
∗) = ~ξL ~R + ζL and ωU (0, ~x

∗) = ~ξU ~R + ζU .

Moreover, since ~R = [R0, 0]
T , ωL(0, ~x

∗) = (~ξL)0R0+ζL and ωU (0, x
∗) = (~ξU )0R0+ζL where

(~ξi)0 is the first entry of a vector ~ξi, i = L,U . Let EL(0) = W +
∑N−1

n=0 βnc(n, n + 1) +

βN
[
~x∗PN~lxN + lN

]
so that ζL = EL(0)/(1− βNβN ).

Lemma 6 Assume (i) S = 1, (ii) ~R guarantees that the aforementioned suboptimal policies

are optimal for lower and upper bounds respectively, and (iii) ωL(0, ~x
∗) > 0. Then, the ratio

(ωU (0, ~x
∗)− ωL(0, ~x

∗))/ωL(0, ~x
∗) is antitone in ~R if and only if EL(0) ≤ ~x∗EU (0).

Proof: Define ∆1 = ζU − ζL and ∆2 = (~ξU )0 − (~ξL)0, and note

ωU (0, ~x
∗)− ωL(0, ~x

∗)
ωL(0, ~x∗)

=
∆1 +∆2R0

(~ξL)0R0 + ζL
,

which has as its derivative, with respect to R0, the following:

[
((~ξL)0R0 + ζL)∆2 − (∆1 +∆2R0) (~ξL)0

]

((~ξL)0R0 + ζL)2
=

ζL(~ξU )0 − ζU (~ξL)0

((~ξL)0R0 + ζL)2
.

We now show that the above numerator is negative, i.e., ζL(~ξU )0 ≤ ζU (~ξL)0, or equiv-

alently EL(0)
x∗
0γ

N ≤ ~x∗EU (0)
(x∗FU (0))0

. It is straightforward to show that (~x∗FU (0))0 = x∗0γ
N . Hence,

the derivative of (ωU (0, ~x
∗)−ωL(0, ~x

∗))/ωL(0, ~x
∗) with respect to ~R, is negative if and only

if EL(0) ≤ ~x∗EU (0).

We now present circumstances for which EL(0) ≤ ~x∗EU (0).

Lemma 7 Assume that ln +~e1~l
x
n ≥ ln+1 +~e1~l

x
n+1 for all n = 1, . . . , N − 1. If (i) x∗ = [1, 0]

and α = 0, or (ii) β = 1, then EL(0) ≤ ~x∗EU (0).
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Proof: First, it is straightforward to see that

(EU (n))0 =





lN + ~e0~l
x
N if n = N

c(N − 1, N) + βlN + β
[
(1− α)~e0~l

x
N + α~e1~l

x
N

]
if n = N − 1

c(n, n+ 1) + αβ(ln+1 + ~e1~l
x
n+1) + β(1− α) (EU (n+ 1))0 if 1 ≤ n < N − 1

and

~x∗EU (0) = W + c(0, 1) + β(1− x∗0(1− α))(l1 + ~e1~l
x
1) + βx∗0(1− α) (EU (1))0

since x∗ = [x∗0, 1− x∗0], P =



1− α α

0 1


 and I(n) =



1 0

0 0


 for n = 1, . . . , N − 1. Observe

that, for 1 ≤ n < N − 1,

(EU (n))0 =

N−1∑

k=n

γk−nc(k, k + 1) + αβ

N−1∑

k=n

γk−n(lk+1 + ~e1~l
x
k+1) + (1− α)βγN−1−n(lN + ~e0~l

x
N )

and, for n = 0,

EL(0) = W +

N−1∑

k=0

βkc(k, k + 1) + βN
[
lN + x∗0(1− α)N~e0~l

x
N + (1− x∗0(1− α)N )~e1~l

x
N

]
,

~x∗EU (0) = W +

{
c(0, 1) + x∗0

N−1∑

k=1

γkc(k, k + 1)

}
+

{
β(1− x∗0(1− α))(l1 + ~e1~l

x
1)

+ x∗0
[
αβ

N−1∑

k=1

γk(lk+1 + ~e1~l
x
k+1) + (1− α)βγN−1(lN + ~e0~l

x
N )

]}
.

Thus,

(i) If ~x∗ = [1, 0] and α = 0, then

EL(0) = W +

N−1∑

k=0

βkc(k, k + 1) + βN
[
lN + ~e0~l

x
N

]

~x∗EU (0) = W +

{
c(0, 1) +

N−1∑

k=1

βkc(k, k + 1)

}
+ βN

[
lN + ~e0~l

x
N

]

= W +
N−1∑

k=0

βkc(k, k + 1) + βN
[
lN + ~e0~l

x
N

]

and hence, EL(0) = ~x∗EU (0).
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(ii) If β = 1, for n = 0,

EL(0) = W +
N−1∑

k=0

c(k, k + 1) + [lN + x∗0(1− α)N~e0~l
x
N + (1− x∗0(1− α)N )~e1~l

x
N ], and

~x∗EU (0) = W +

{
c(0, 1) + x∗0

N−1∑

k=1

(1− α)kc(k, k + 1)

}
+

{
(1− x∗0(1− α))(l1 + ~e1~l

x
1)

+ x∗0
[
(1− α)N (lN + ~e0~l

x
N ) + α

N−1∑

k=1

(1− α)k(lk+1 + ~e1~l
x
k+1)

]}

Thus,

~x∗EU (0)− EL(0) = −
N−1∑

k=1

((1− x∗0(1− α)k)c(k, k + 1)) + (1− x∗0(1− α))(l1 + ~e1~l
x
1)

+ x∗0α
N−2∑

k=1

(1− α)k(~lk+1 + ~e1~l
x
k+1)− (1− x∗0(1− α)N−1)(lN + ~e1~l

x
N )

≥ −
N−1∑

k=1

((1− x∗0(1− α)k)c(k, k + 1)) + (1− x∗0(1− α))(lN + ~e1~l
x
N )

+ x∗0α
N−2∑

k=1

(1− α)k(lN + ~e1~l
x
N )− (1− x∗0(1− α)N−1)(lN + ~e1~l

x
N )

= −
N−1∑

k=1

((1− x∗0(1− α)k)c(k, k + 1)) + (1− x∗0(1− α)N−1)(lN + ~e1~l
x
N )

− (1− x∗0(1− α)N−1)(lN + ~e1~l
x
N )

= −
N−1∑

k=1

((1− x∗0(1− α)k)c(k, k + 1)) ≥ 0

where the first and second inequalities are due to the assumption, and the third inequality

is due to the fact that c(n, n+ 1) < 0.

Thus, for β sufficiently close to 1, EL(0) ≤ ~x∗EU (0) under reasonable conditions.
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APPENDIX D

APPENDICES IN CHAPTER 4

D.1 Alternative Representation of The Single-period Cost Function

The single-period cost function (Equation (9)) in Section 4.2 can model overage and under-

age costs accrued at the end of each period. Observe that

• min{x+ α, d} = d− (d− x− α)+ where (a)+ = max{a, 0}, and

• (x+α) = max{x+α, d}−max{d−x−α, 0} = max{x+α−d, 0}+d−max{d−x−α, 0} =

d+ (x+ α− d)+ − (d− x− α)+.

Therefore,

ca+ h
∑
α

(x+ α)P (α|a)− p
∑
α

min{x+ α, d}P (α|a)

= ca+ h
∑
α

[
d+ (x+ α− d)+ − (d− x− α)+

]
P (α|a)− p

∑
α

[
d− (d− x− α)+

]
P (α|a)

= −(p− h)d︸ ︷︷ ︸
(a)

+





ca︸︷︷︸
(b)

+h
∑
α

(x+ α− d)+P (α|a)
︸ ︷︷ ︸

(c)

+(p− h)
∑
α

(d− x− α)+P (α|a)
︸ ︷︷ ︸

(d)





.

Note that:

• The term (a) is constant, consistent for each period throughout infinite horizon, and

independent of a.

• The term (b) is the ordering cost, assuming that the retailer pays the wholesaler on

the basis of the number of items ordered.

• The term (c) is the overage cost with unit holding cost h at the end of a period.

• The term (d) is the underage (shortage) cost with unit shortage penalty s = (p− h)

at the end of a period, and this cost term indeed corresponds to penalties for the lost

sales.
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D.2 Construction of V = A+ βPV

Assuming d ≥ γL, for each ζ ∈ {0, 1, . . . , γL}, there exists l(ζ) ∈ {0, 1, 2, . . . , L} such that

zl(ζ)−1 < d− ζ ≤ zl(ζ). Then,

vδ(d− ζ) = f(d− ζ, d− ζ + γl(ζ)) + β

d−ζ∑

α=0

P (α|d− ζ + γl(ζ))vδ(d)

+ βP (d− ζ + 1|d− ζ + γl(ζ))vδ(d− 1) + · · ·

+ βP (d− ζ + γl(ζ)|d− ζ + γl(ζ))vδ(d− γl(ζ)),

which suggests the following matrix formulation:




vδ(d)

...

vδ(d− γL)




︸ ︷︷ ︸
=V

=




f(d, d+ γL)

...

f(d− γL, d− γL + γl(γ
L))




︸ ︷︷ ︸
=A

+ β




∑d
α=0 P (α|d+ γL) · · · P (d+ γL|d+ γL)

... · · · ...

∑d−γL

α=0 P (α|d− γL + γl(γ
L)) · · · ·




︸ ︷︷ ︸
=P




vδ(d)

...

vδ(d− γL)




︸ ︷︷ ︸
=V

.
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