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PREFACE

The role of theoretical chemistry is to offer insight into chemical phenomena that can

not be easily explained through experiment alone, and to make predictions either ahead

of or in conjunction with experiment. Nowhere is theoretical chemistry more important

than in the understanding of noncovalent interactions. Due to the transient nature of

many noncovalent complexes, experimental studies are fraught with difficulty. Additionally,

noncovalent interactions often appear in large, complex systems (e.g. proteins and nucleic

acids); isolating the effect of a specific interaction becomes a nearly impossible task. Using

theoretical methods, it is possible to probe the nature of specific interactions within extended

systems. It is also possible to study how changes to a molecule affect the way it interacts.

This opens up the possibility, for example, to perform in silico drug design. At present, we

are limited only by our ability to apply accurate theoretical methods to systems that are

large enough to include all of the relevant effects.

The vast majority of recognized chemical problems could be solved with existing theoret-

ical methods; their application to these problems depends only on the size of the problem

and the scalability of current implementations of the theory. Unfortunately, these limi-

tations are often quite prohibitive. This leads directly to a major thrust in theoretical

chemistry research: the introduction of new approximations to theoretical methods. While

these approximations take many different forms, the goal of producing scalable implementa-

tions of theoretical methods remains the same. This is coupled to developments in computer

hardware that also increase the size of systems that can be studied. Together, algorithmic

and technological advances are creating vast possibilities for the applications of theoretical

chemistry.
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SUMMARY

Noncovalent interactions play a vital role throughout much of chemistry. The under-

standing and characterization of these interactions is an area where theoretical chemistry

can provide unique insight. While many methods have been developed to study noncovalent

interactions, symmetry-adapted perturbation theory (SAPT) stands out as one of the most

robust. In addition to providing energetic information about an interaction, it provides

insight into the underlying physics of the interaction by decomposing the interaction en-

ergy into contributions from electrostatics, induction, exchange-repulsion, and dispersion.

Therefore, SAPT is capable of not only answering questions about how strongly a complex is

bound, but also why it is bound. This proves to be an invaluable tool for the understanding

of noncovalent interactions in complex systems.

The wavefunction-based formulation of SAPT can provide qualitative results for large

systems as well as quantitative results for smaller systems. In order to extend the applica-

bility of this method, approximations to the two-electron integrals must be introduced. At

low-order, the introduction of density fitting approximations allows SAPT computations to

be performed on systems with up to 220 atoms and 2850 basis functions. Higher-orders

of SAPT, which boast accuracy rivaling the best conventional theoretical methods, can be

applied to systems with over 40 atoms. Additionally, higher-order SAPT benefits from

approximations that attempt to truncate unnecessary unoccupied orbitals.

SAPT has proven especially useful in the study of heteroatom effects on π-π interactions.

Here, benzene-pyridine and pyridine dimer complexes were used as a model for understand-

ing the effect of nitrogen substitutions. SAPT computations implicate the introduction of

a dipole, a reduction in polarizability, and a reduction in the spatial extent of the π orbitals

for the changes in interaction energy. The indole-benzene complex contains many possible

T-shaped configurations as well as several local minima on the π stacked potential energy

surface. SAPT computations illustrate the origin of the energetic differences between all

xvi



of these geometries. Acene dimers are prototypes for π-π interactions in extended systems.

The changes in these interactions with increasing linear acene length provide a glimpse into

the nature of π-π interactions. Highly polarizable molecules and those containing high de-

grees of delocalization are often problematic for many theoretical methods; molecules that

are both highly polarizable and delocalized can cause catastrophic failures in those meth-

ods. Different levels of SAPT are used to probe the problematic dispersion interactions in

these types of complexes and locate the origin of some of these failures. Finally, the ques-

tion of how substituents tune π-π interactions has been hotly contested amongst theoretical

chemists for the last ten years. The most recent development has been the finding that

both electron donating and electron withdrawing substituents increase the strength of the

electrostatic interaction, which contradicts conventional wisdom. The application of SAPT

clearly explains the origin of this surprising effect.

xvii



CHAPTER I

INTRODUCTION

1.1 Noncovalent Interactions

Noncovalent interactions are ubiquitous in chemistry. Solvation effects are governed by the

noncovalent solvent-solvent and solvent-solute interactions.40,222, 223 Organic crystal struc-

tures and energetics are also determined through nonbonded interactions.38,173, 174, 183 In

biochemistry, the secondary structure of macromolecules contain significant contributions

from noncovalent interactions. The structure of proteins involves interactions between side

chains and the backbone.23,28, 142, 181, 182 Hydrogen bonding interactions give rise to the

adenine-thymine (AT) and guanine-cytosine (GC) specificity observed in DNA. Stacking

of base pairs contributes to the preference for different forms of DNA (e.g. A-form or

B-form).52,116, 117, 188, 199, 206 In addition to influencing secondary structure, noncovalent in-

teractions govern the binding of small molecules to nucleic acids and proteins. Drug binding

to proteins and nucleic acids as well as the intercalation of DNA are all dominated by non-

covalent interactions.18,53, 88, 126, 129, 132, 135, 150

All noncovalent interactions are composed of the same four basic components: electro-

statics, exchange-repulsion, induction, and dispersion. The distinction between different

classes of noncovalent interactions is based on which effects dominate the interaction. For

example, hydrogen bonding interactions are dominated by electrostatic effects, while π-π

stacking interactions are dominated by dispersion effects. These individual components and

their physical origins will be discussed in subsequent sections. In order to accurately describe

noncovalent interactions, coupled-cluster with singles and doubles including perturbative

triples [CCSD(T)]176 is relied upon. Beyond computing highly accurate interaction energies,

it is often useful to obtain a decomposition of the energy into these four basic components.

There are various energy decomposition techniques available,12,27, 36, 86, 111, 122, 152, 170, 207 but

perhaps the most well-defined and robust is the symmetry-adapted perturbation theory
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(SAPT).111

A review by Jeziorski et al. describes the development and applications of wavefunction-

based SAPT.111 In order to obtain accurate interaction energies from SAPT, there must

be some account of the intramonomer electron correlation. The wavefunction-based formu-

lation of SAPT including second-order intramonomer electron correlation corrections has

been influential in the understanding of π-π interactions,120,133, 134, 171, 202, 203 XH-π interac-

tions,181,217, 218, 220 and ion-π interactions.46,119 Despite the successes of this method, current

applications are typically limited to systems no larger than substituted benzene dimers. Re-

cent work by Singh et al. included a particularly extensive application of wavefunction-based

SAPT.200 The largest system studied in this work was the benzene dimethyl-bipyridinium

complex with a 6-31+G* basis. This system contains 40 atoms and roughly 500 basis func-

tions; it is likely the largest wavefunction-based SAPT computation performed to date that

includes some account of intramonomer electron correlation. In that work, however, only

the electrostatic and exchange terms are corrected to account for intramonomer electron

correlation.

1.1.1 Electrostatics

To a first approximation, electrostatic interactions between molecules can be described

as the interactions between the permanent multipole moments of the monomers. This

approximation is valid at long-range, but breaks down at short range as molecular orbital

overlap increases and leads to significant amounts of charge penetration. A proper account

of electrostatics requires the integration over the electron density of each monomer. The

electrostatic interaction involves the electron repulsion between electrons of A and electrons

of B, the electron-nuclear attraction between electrons of A and nuclei of B, the electron-

nuclear attraction between electrons of B and nuclei of A, and the nuclear repulsion between

nuclei of A and nuclei of B.210

Contributions to electrostatics from charge penetration are very important at short-

range. To illustrate the origin of this effect, we will consider the interaction between two

helium atoms. At long-range, the electrostatic interaction is zero, because the helium atoms
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are spherically symmetric (thus they do not have permanent multipole moments). This al-

lows all four contributions to electrostatics to be approximated as point charge interactions.

At short-range, the orbitals of the two helium atoms overlap. This leads to deviations from

idealized 1/r behavior in the electron-electron and electron-nuclear terms. Under the Born-

Oppenheimer approximation, the nuclear-nuclear term is still treated with point charges.

Each electron-nuclear term depends on one diffuse quantity (the helium 1s orbital), while the

electron-electron term depends on two diffuse quantities. This leads to larger deviations in

the electron-electron term (which becomes less repulsive) than in the electron-nuclear term

(which becomes less attractive). The net effect is that the electrostatic interaction becomes

attractive at short-range. This attractive interaction increases exponentially as the overlap

between molecular orbitals increases.

1.1.2 Exchange-Repulsion

The primary repulsive component of the interaction energy is a result of exchange. This is a

short-range effect resulting from the Pauli exclusion principle. As molecular orbitals overlap,

electrons are repelled from the area between the monomers in order to satisfy the Pauli

exclusion principle. This rearrangement of electrons raises the interaction energy. Exchange

effects will be discussed elsewhere in the context of symmetry-adapted perturbation theory.

The exchange-repulsion increases exponentially as molecular orbital overlap increases. In

many force field type approaches, the exchange-repulsion is modeled as the 1/r12 term in

a Lennard-Jones potential. Other, more robust, force fields will use the proper exponential

form for exchange; even more infrequently, it is modelled with overlap integrals.62,210

1.1.3 Induction

Induction is, to a first approximation, the interaction between the permanent multipole

moments of one monomer with the induced moments of the other. Additional, “self con-

sistency” effects would include the interaction between induced moments. In general, any

relaxation of a monomer wavefunction in response to the mean field of the other is classified

as a type of induction. This definition includes intermolecular charge transfer as an induc-

tion interaction. Charge transfer in the context of SAPT will be discussed in detail later.
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Many force field approaches do not include any account of induction. Only polarizable force

fields attempt to capture the induction energy. Even then, the induction is partitioned into

polarization, usually modelled with inducible atom-centered dipoles (and possibly higher

order multipoles), and charge transfer. This partitioning into local and nonlocal induction

contributions is not present in the quantum mechanical description of induction. Gener-

ally speaking, the inclusion of induction is most important for describing the interaction of

polar molecules or charged species. This is especially true in cooperative hydrogen bonded

complexes (e.g. HF trimer).

1.1.4 Dispersion

When the interaction of nonpolar molecules is considered, dispersion is usually the domi-

nant attractive force. Dispersion is a result of interactions between instantaneous charge

fluctuations. The leading contribution to dispersion is due to instantaneous dipole-dipole

interactions, which gives rise to the 1/r6 dependence of the dispersion energy. From an

electronic structure perspective, dispersion is purely a correlation effect; it can be thought

of as correlating an electron on one monomer with an electron on the other monomer. As

such, dispersion is not included in Hartree-Fock (HF) and poorly described (or neglected

entirely) by standard density functionals. Empirical dispersion terms usually come from

pairwise C6/r
6 estimates, where C6 comes from atomic polarizabilities and ionization po-

tentials. This approach is found in most force fields and many dispersion corrected density

functional theory (DFT) approaches. Higher-order dispersion terms, C8/r
8 or C10/r

10, are

occasionally included.

Three-body dispersion effects (here, body refers to electrons) can be important in the

context of dimer interactions as well as trimer interactions. These effects can be rationalized

qualitatively for helium trimer. If an electron on monomer A induces instantaneous dipoles

on monomers B and C, the instantaneous dipoles on B and C will interact with each

other. If the trimer is arranged in a compact, equilateral triangle, this will lead to a

repulsive interaction. This qualitative description can be used to explain the form of the

Axilrod-Teller-Muto dispersion term and its 1/r9 dependence.11,156 It is important to note
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that Axilrod-Teller-Muto dispersion assumes spherical monomers (e.g. noble gas trimers).

Although this correction has been applied to molecular species, it is unlikely that this is

a generally reliable approach. Where possible, a fully quantum mechanical treatment of

three-body dispersion should be preferred.

1.2 Computing Noncovalent Interactions

Noncovalent interactions can be computed using either supermolecular or perturbational

approaches. Supermolecular computations of the interaction energy involve the computation

of the total dimer and monomer energies.

Eint = EDimer − EMonomerA − EMonomerB (1)

Perturbational approaches treat the interaction as a perturbation and solve for the inter-

action energy directly (i.e. without computing the total energy of the dimer). The most

rigorous perturbational approach is the symmetry-adapted perturbation theory (SAPT),111

which will be discussed briefly in this section and at great length elsewhere. Interaction

energies can be computed with either wavefunction-based (WFN) methods or approaches

from density functional theory (DFT).

In accurate quantum mechanical computations, a high degree of electron correlation

must be included to reliably account for dispersion interactions. The current standard for

accurately computing the interaction energy within a small, noncovalently bound complex

is coupled-cluster with singles and doubles including perturbative triples [CCSD(T)].176 Un-

fortunately, the applicability of CCSD(T) is hindered by the formal O(N7) complexity of the

method (more specifically, O(o3v4), where o and v are the number of occupied and virtual

orbitals, respectively); to describe noncovalent interactions in large systems, less computa-

tionally expensive methods must be employed. The recently developed214 spin-component

scaled (SCS) CCSD has been shown to produce results which closely match CCSD(T);

however, the formal scaling of this approach remains high at O(N6). Second-order Møller-

Plesset perturbation theory (MP2) offers another approach for describing noncovalent inter-

actions; with formal O(N5) complexity, MP2 can be extended to much larger systems than

are accessible with coupled-cluster methods. However, MP2 is substantially less accurate
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than the more rigorous coupled-cluster approaches.203 While spin-component scaling44,67, 87

significantly improves the accuracy of MP2 on average, there are nevertheless cases where

the accuracy is not as good as desired, or the system is too large for the computation to

be feasible. More efficient methods that can effectively treat noncovalent interactions are

necessary if complexes with 100 atoms or more are to be studied routinely. One approach is

to reduce the computational scaling of coupled-cluster methods, and this is being actively

pursued by several research groups.56,189, 193, 211 Another approach is to attempt to improve

the reliability of methods which are already applicable to larger systems.

There are many approximate methods that attempt to correct the description of dis-

persion by MP2 or CCSD. The SCS methods, originally introduced by Grimme, attempt

to correct the correlation energy by empirically scaling the same- and opposite-spin com-

ponents.67,214 There are several different parameterizations of MP2, including some specif-

ically for noncovalent interactions;44,87 unfortunately, it is not clear that any one set of

parameters is reliable for all types of interactions.65,213, 215 The SCS-CCSD method214 has

been shown to be much more reliable than SCS-MP2 for treating all types of noncovalent

interactions.65 However, this method requires an iterative O(N6) procedure to compute

an interaction energy, which limits its applicability. The MP2.5 method of Hobza and

co-workers167 is comparable to SCS-CCSD with regard to accuracy, yet does not require

an iterative O(N6) energy evaluation. Of the reliable, approximate wavefunction based

methods, the least computationally expensive [noniterative O(N5)] and the most physically

justified is the MP2C method of Hesselmann.84,165 This method attempts to correct the

behavior of MP2 by evaluating dispersion with frequency-dependent polarizabilities from

time-dependent density functional theory (TDDFT).

DFT is widely used today for examining a variety of chemical systems with dozens of

atoms or more.161 The application of DFT to noncovalently bound complexes has been lim-

ited due to the failure of most density functionals to describe dispersion interactions, which

can be critical for noncovalent complexes. Dispersion interactions are inherently long-range

electron correlation effects, which are not captured by the popular local or semi-local den-

sity functionals.4,34, 90, 114, 128, 130, 225 Several approaches exist for improving existing density
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functionals to handle dispersion effects. Among the more physically motivated approaches,

Röthlisberger and co-workers have added effective atom-centered nonlocal potentials which

have been fit to benchmark ab initio data;232,233 Langreth, Lundqvist, and co-workers have

introduced a van der Waals density functional (vdW-DF) which adds nonlocal terms to

the correlation energy functional;43 and Becke has proposed a novel approach that formu-

lates the dispersion interaction in terms of the dipole moment that would be created when

considering an electron and its exchange hole.14,15, 112

A more pragmatic and simple approach is to add empirical terms that model dispersion

interactions68,69, 115, 248, 255 These DFT-D approaches require only computation of interac-

tions between atoms pairs; therefore, the additional computational expense is negligible.

The DFT-D approach of Grimme is a widely applicable method for correcting the perfor-

mance of standard density functionals.68,69, 74 This method utilizes a damped R−6 term to

model the dispersion interactions (Equations 2, 3, and 4).

EDFT−D = EDFT − s6

N−1
∑

i=1

N
∑

j>i

Cij
6

R6
ij

fdmp(Rij), (2)

Cij
6 =

√

Ci
6C

j
6 , (3)

fdmp(Rij , Rr, d) =
1

1 + e−d(Rij/Rr−1)
. (4)

The recently developed -D3 correction73 includes R−6 and R−8 terms computed with atomic

dispersion coefficients that depend on the chemical environment (through the steric numbers

of the atoms). A possible improvement to DFT-D methods is to apply the dispersion

correction to long-range corrected functionals that are parameterized in the presence of the

dispersion correction; the ωB97X-D is such a functional35 and appears to be particularly

robust for noncovalent interactions when used with augmented triple-ζ basis sets.29 The so

called “double hybrid” functionals contain an MP2-like term that accounts for dispersion.

These functionals also appear well suited to describe noncovalent interactions. The B2PLYP

and XYG3 functionals are two examples of double hybrid functionals that have been shown

to perform well.29,70, 192, 231, 249
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1.2.1 Computational Considerations

In this section, we will highlight some of the important considerations regarding the com-

putation of noncovalent interactions.

1.2.1.1 One-Particle Basis Sets

The proper choice of one-particle basis is inexorably tied to both the choice of method

and the system of interest. In this section, we will limit our discussion to standard WFN

approaches (Møller-Plesset perturbation theory, coupled-cluster theory, etc.), which have

well understood convergence behavior (the basis set dependence of DFT methods will be

mentioned briefly in other sections and can be found elsewhere in great detail29).

In general, the use of large, diffuse basis sets is recommended for computing noncovalent

interactions.78,105, 123, 225, 227 This is because the dispersion energy, a dynamical electron

correlation effect, is known to be slowly convergent with respect to the size of basis.76

Additionally, the dispersion energy is related to the molecular polarizability, which is known

to benefit from the inclusion of diffuse basis functions. Since large basis coupled-cluster

computations cannot be routinely performed, extrapolation schemes are utilized to remove

the basis set incompleteness error in the interaction energy with lower-scaling methods

(usually second-order Møller-Plesset perturbation theory); higher-order correlation effects

are then evaluated in a smaller basis.101,204

1.2.1.2 Basis Set Superposition Error

The use of a finite basis set for supermolecular computations of intermolecular interactions

results in the so-called basis set superposition error (BSSE). Typically, the computation of

a dimer energy uses atom-centered basis functions on the nuclei of both monomers. If the

monomer computations use basis functions centered only on the nuclei of that monomer,

the basis used to describe the dimer will have more flexibility. The most common solution

to this problem is the Boys-Bernardi counterpoise (CP) correction, where the monomer

energies are computed in a dimer centered basis,21

ECP
interaction = Edimer

dimer − Edimer
monomerA

− Edimer
monomerB

, (5)

8



where the superscripts define the basis in which the energy is computed. This gives rise to

the typical definition of BSSE:

EBSSE = (Edimer
monomerA

− EmonomerA
monomerA

) + (Edimer
monomerB

− EmonomerB
monomerB

). (6)

This definition for BSSE is not exact and has proven to be a source of much contention.136,177, 230

Typically, qualitative descriptions of BSSE involve one monomer “stealing” the basis

functions of the other monomer. This description does not sufficiently reflect the complexity

of BSSE and seems to suggest that the CP correction is an exact solution to BSSE. A better

description of BSSE is that the finite basis sets used for the dimer and monomers are not

uniformly flexible. If monomers are treated in a monomer-centered basis set, there is more

flexibility to describe the monomer (in the dimer computation) in the dimer-centered basis.

Unfortunately, if the monomers are treated in a dimer-centered basis, then there is less

flexibility to treat the monomers in the dimer computation. This is a result of the Pauli

exclusion principle; in a finite basis, there is more flexibility to describe NA electrons than

there is to describe NA + NB electrons. As a result, the CP correction overcorrects the

interaction energy for BSSE.

In certain circumstances, the convergence of unCP corrected interaction energies with

respect to the size of the basis set is more rapid than the convergence of CP corrected

interaction energies.78,224 In some cases, the CP corrected interaction energies tend to

underestimate estimated complete basis interaction energies with the same magnitude as

unCP corrected results overestimate it. This has lead to the averaging of CP and unCP

corrected results.120 In general, the convergence of CP corrected interaction energies with

respect to the basis set is smooth, but slow. The convergence of unCP corrected results is

more unpredictable; it can be more rapid, slower, or oscillatory. Interaction energies that

are obtained with methods that are free from BSSE (i.e. SAPT) typically follow the same

convergence behavior as CP corrected energies.

1.2.1.3 Interaction and Binding Energies

There is an important distinction between the interaction energy of a complex and the

binding energy of a complex. Unfortunately, these are often used interchangeably in the
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literature. One main distinction involves the geometries of the monomers; the other distinc-

tion is a matter of convention. Interaction energies do not include the effect of geometric

distortion and attractive interactions are defined to be negative.

Einteraction = Ecomplex
dimer −Ecomplex

monomerA
− Ecomplex

monomerB
(7)

Here, the subscript labels each energy with its corresponding moiety and the superscript

denotes the origin of each geometry. In contrast to interaction energies, binding energies

include geometric effects and favorable binding energies are defined to be positive.

Ebinding = Eisolated
monomerA

+ Eisolated
monomerB

− Ecomplex
dimer (8)

Interaction energies are used to describe the energetic changes of a complex at a fixed

geometry due to noncovalent interactions. Using the partitioned Hamiltonian from inter-

molecular perturbation theory, the interaction energy is the difference between the dimer

energy with contributions from the intermolecular operator, V , and without it. Binding

energies are more physically motivated, they describe the change in energy when isolated

monomers are brought together to form a complex. This includes the change in energy due

to the distortion of the isolated monomer geometry to its geometry in the complex.

Often, it is possible to compute energies at a higher level of theory than geometries.

In many cases, reasonable geometries can be obtained with methods that will not produce

particularly reliable interaction energies. In these situations, it is useful to decouple the

interaction energy and geometric effects that are contained in the binding energy.

Ebinding = (Eisolated
monomerA

− Ecomplex
monomerA

) + (Eisolated
monomerB

− Ecomplex
monomerB

)− Einteraction (9)

In this picture, the geometric distortion effects are treated separately, which allows the

energetic changes resulting geometric considerations to be treated at a different level of

theory from the interaction energy. It is important to note that a consistent level of the-

ory MUST be used to compute the monomer and complex geometries and the geometric

distortion energy. Otherwise, it is possible for Eisolated
monomer − Ecomplex

monomer to be positive, which

is unphysical. Additionally, this decoupling of geometric and energetic effects proves to be

especially useful for correcting binding energies for BSSE. If BSSE corrected interaction
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energies and geometric distortion energies are computed entirely in the monomer basis, a

BSSE corrected binding energy can be obtained.

Binding energies are the preferred quantity for comparisons with experiment. Beyond

what has been described above, zero-point vibrational energy (ZPVE) corrections should be

included in the binding energy. For computations of thermodynamic quantities (∆H, ∆G,

etc.), finite temperature corrections from the molecular partition functions are required.

These can be obtained from the computations required to obtain the ZPVE. Typically,

harmonic potentials are used to obtain these corrections, however, noncovalent complexes

may have strongly anharmonic potentials necessitating a more robust treatment.

1.2.2 Wavefunction-based Methods

In this section, we will highlight a few methods that were designed to treat noncovalent

interactions.

1.2.2.1 Spin-Component Scaled Methods

In correlated wavefunction theories, the most important excited Slater determinants (be-

yond the Hartree–Fock reference determinant) are usually the doubly-excited ones. If the

two excited electrons have the same spin, these correlation amplitudes might be called “same

spin” terms, otherwise they might be called “opposite spin” terms. Noting that the quality

of the energetic contributions from these two types of terms may differ in approximate ab

initio methods, Grimme67 proposed to simply scale these contributions by different factors.

This led to the spin-component-scaled MP2 (SCS-MP2) method, with an energy defined as

ESCS−MP2 = EHF + pSSEcorr
SS−MP2 + pOSEcorr

OS−MP2, (10)

where EHF is the Hartree–Fock energy, Ecorr
SS−MP2 is the same-spin component of the MP2

correlation energy, Ecorr
OS−MP2 is the opposite-spin component of the MP2 correlation energy,

and pSS and pOS are the two scale-factors. The addition of these two parameters means

that the method acquires a somewhat “semi-empirical” flavor, although this is perhaps

not an accurate description, because Grimme fit these parameters to a set of 51 high-

quality CCSD(T)/cc-pVQZ reaction energies, rather than to experimental data. In this
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sense, it is perhaps more accurate to describe this as a parameterized first-principles model.

Because the parameters were obtained by fitting to reaction energies, it is not surprising

that the method exhibits improved results for reaction energies. However, it also exhibits

significantly improved results for noncovalent interactions, and this (along with improved

predictions for atomization energies, geometries, and vibrational frequencies)67 suggests

that the scaling is truly a general improvement.

SCS-MP2 was highlighted as a promising alternative to expensive CCSD(T) computa-

tions for noncovalent interactions, especially after a very impressive demonstration of errors

less than 0.2 kcal mol−1 for the very difficult benzene dimer.89 Other studies showed definite

improvements over canonical MP2 for various noncovalent interactions.60,215 Hill and Platts

re-parameterized the model specifically for noncovalent interactions in 2007,87 introducing

a variant denoted SCSN-MP2. Similarly, DiStasio and Head-Gordon introduced the spin-

component-scaled for molecular interactions MP2, or SCS(MI)-MP2, which uses yet another

pair of scale factors obtained by fits to the S22 set.44 SCS(MI)-MP2 parameters were fit

separately for each Dunning cc-pVXZ basis set, which can help improve results when using

smaller basis sets; also, fitting to non-augmented basis sets means that the computations

are less expensive.

Antony and Grimme6 evaluated the reliability of SCS-MP2 for the JSCH test set.117

Rather good results were obtained using SCS-MP2 in conjunction with triple-ζ basis sets

(TZVPP or cc-pVTZ) without the need for counterpoise correction (due to favorable error

cancellation). However, the authors noted that interaction energies for n-alkane dimers

were poor for SCS-MP2, because canonical MP2 tends to do well for these, and the scaling

procedure spoils the good agreement. Similarly, scaling also provides poorer results for

H-bonded systems. Mixed results for SCS-MP2 vs. conventional MP2 were found by King

for the ethylene dimer.121 The three main variants of SCS-MP2 have also been evaluated

against the NBC10 test set of potential energy curves,198,215 and against the S22x5 test

set,65 where they exhibit errors of several tenths up to one kcal mol−1. SCS(MI)-MP2 was

found to be somewhat better than SCS-MP2 or SCSN-MP2 for these tests. All three SCS-

MP2 variants underbound methane dimer by a significant fraction of the binding energy

12



(although the error remains only tenths of one kcal mol−1 on an absolute scale).198 Eval-

uations of SCS(MI)-MP2 by Hobza and co-workers179 for potential curves of 7 additional

dimers provided similar results.

Reasoning that spin-component scaling could work even better for a more robust wave-

function, Takatani et al.214 introduced spin-component scaled coupled-cluster singles and

doubles (SCS-CCSD), in which the double excitation amplitudes are scaled just as in MP2.

The two scaling parameters were fit to reaction energies, using most of the reactions em-

ployed by Grimme to fit SCS-MP2.67 The resulting method is of very high quality, especially

for noncovalent interactions. It is robust for cases where scaling degrades the quality of MP2

(as in the methane dimer),214 and it exhibits a mean absolute deviation of only 0.24 kcal

mol−1 for the S22A test set.213 Hobza and co-workers have proposed five statistical criteria

which are desirable for methods treating noncovalent interactions, and out of a large pool

of promising approaches, the SCS-CCSD method was essentially tied with MP2C (see be-

low) for providing the best performance for the S22x5 test set.65 Even better performance

by SCS-CCSD for noncovalent interactions was realized by Pitoňák, Řezáč, and Hobza by

reparameterizing against the S22 test.169 This new method, SCS(MI)-CCSD, has a remark-

able mean absolute deviation of only 0.03 kcal mol−1 for the noncovalent databases of Zhao

and Truhlar.252 The disadvantage of the approach is, of course, that CCSD computations

are expensive, scaling as O(o2v4). However, local correlation, density fitting, and other

techniques can already reduce this cost significantly;79,189, 191 the local density-fitted CCSD

implemented by Schütz and Manby has been used for systems as large as (Gly)16.
190

Pitoňák et al. also pursued scaling in conjunction with accurate wavefunction theories.167

Their MP2.5 method improves upon MP2 by adding the third-order correlation energy,

scaled by a fitted scaling factor. Their initial tests indicated that good results were obtained

when adding one-half of the third-order term (hence the name MP2.5). This approach

is somewhat less expensive than SCS-CCSD and provides results which are not quite as

good, but which improve over various forms of SCS-MP2 for the S22x5 test set.65 Roughly,

the cost of MP2.5 is equivalent to a single CCSD iteration, with a computational cost

O(o2v4). MP2.5 computations were reported for the porphine dimer, demonstrating that
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it is applicable to much larger systems than those accessible by CCSD(T).167

1.2.2.2 MP2C

The poor performance of MP2 for π-π interactions is related to its overestimation of the

dispersion energy, which can be written as

E
(2)
disp = −

1

2π

∫ ∞

0
dω

∫

dr1dr2dr3dr4χA(r1, r3, ω)χB(r2, r4, ω)
1

r12

1

r34
, (11)

where χ is a monomer response function. In MP2, these are uncoupled Hartree–Fock

(UCHF) response functions. In the context of SAPT(DFT), accurate dispersion energies

are obtained by evaluating Equation 11 with coupled response functions obtained from

time-dependent density functional theory (TDDFT).147 Heßelmann has proposed to use the

difference between E
(2)
disp evaluated with UCHF and TDDFT response functions (∆MP2C =

E
(2)
disp[TDDFT]−E

(2)
disp[UCHF]) as a correction to supermolecular MP2 interaction energies.84

The resulting coupled MP2 method (MP2C) is more physically justified than MP2 and

provides similar accuracy to SCS-CCSD and MP2.5.65 Additionally, the evaluation of the

∆MP2C correction scales as O(n4), therefore, in principle, this method is only as expensive

as a supermolecular MP2 interaction energy, O(n5).165 At present, this method appears to

be the most promising for accurately treating π-π interactions in extended systems.

1.2.2.3 SAPT

In SAPT, the dimer Hamiltonian is partitioned into contributions from the Fock operator of

each monomer (F ), the interaction between the monomers (V ), and the fluctuation potential

of each monomer (W ).

H = FA + FB + V + WA + WB (12)

The interaction energy can be written as a perturbation series,

Eint =
∞
∑

n=1

∞
∑

k=0

∞
∑

l=0

(E
(nkl)
pol + E

(nkl)
exch ), (13)

where n denotes the order in V , and k and l denote the order in WA and WB , respectively.

Here, the Epol terms originate from the polarization expansion and Eexch are repulsive

terms resulting from the antisymmetry of the wavefunction with respect to the exchange
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of electrons between monomers. A more complete description of SAPT can be found in

Reference 111.

The SAPT series can be carried out to various degrees of completeness depending on the

size of the system being studied and the accuracy desired. Historically, several truncations

of this series have been defined.

ESAPT0 = EHF + E
(20)
disp + E

(20)
exch−disp (14)

ESAPT2 = ESAPT0 + E
(12)
elst,r + ǫ

(1)
exch(2) + tE

(22)
ind + tE

(22)
exch−ind (15)

ESAPT = ESAPT0 +E
(12)
elst,r +E

(13)
elst,r + ǫ

(1)
exch(CCSD)+ tE

(22)
ind + tE

(22)
exch−ind +E

(21)
disp +E

(22)
disp (16)

Notation for the SAPT terms follows from Equation 13, where the E(vw) defines the order

in V and in WA + WB. EHF is the Hartree–Fock interaction energy. In Equation 15,

ǫ
(1)
exch(2) = E

(11)
exch + E

(12)
exch, whereas in Equation 16, ǫ

(1)
exch(CCSD) refers to the intramonomer

correlation correction to exchange evaluated with converged CCSD amplitudes. The r

subscript indicates that contributions due to orbital response are included.

The methods defined in Equations 14-16 reflect the mid–1990s state of the art in both

computer implementation and theoretical development of SAPT. Since then, advances in

both areas have made other groupings of SAPT terms (and the inclusion of additional

higher-order terms) more practical:

ESAPT2+ = ESAPT2 + E
(21)
disp + E

(22)
disp, (17)

ESAPT2+(3) = ESAPT2+ + E
(13)
elst,r + E

(30)
disp, (18)

ESAPT2+3 = ESAPT2+ + E
(13)
elst,r + E

(30)
disp + E

(30)
exch−disp + E

(30)
ind−disp + E

(30)
exch−ind−disp. (19)

The introduction of density fitting has made the evaluation of the intramonomer correlation

corrections more efficient94 (although this performance gain is lost if CCSD amplitudes are

employed as in equation 16). To compute accurate dispersion energies, one must include

the triples contribution, which scales as O(N7). Fortunately, natural orbitals can be used

to dramatically reduce the cost of this term.95 Following from Reference 162, the triples

contribution to E
(30)
exch−disp is neglected due to its O(N7) scaling and relative unimportance

within E
(30)
exch−disp.

15



Often a δEHF term is defined as the difference between the HF interaction energy and

SAPT terms that it contains:

δE
(2)
HF = EHF

int −
(

E
(10)
elst + E

(10)
exch + E

(20)
ind,r + E

(20)
exch−ind,r

)

, (20)

δE
(3)
HF = EHF

int −
(

E
(10)
elst + E

(10)
exch + E

(20)
ind,r + E

(20)
exch−ind,r + E

(30)
ind + E

(30)
exch−ind

)

. (21)

This term is sometimes included as a way to capture some higher-order terms not explic-

itly evaluated by SAPT. In second-order SAPT, it is often helpful to include δE
(2)
HF , as

it incorporates certain third-order terms. However, for third-order SAPT methods, it is

sometimes better to use a pure SAPT approach and to omit the δE
(3)
HF correction.162 The

δEHF term contains higher-order induction and exchange-induction interactions as well as

some unphysical exchange effects.109,153 In dimers containing polar molecules, the higher-

order induction effects dominate the δEHF term and it should be included in the interaction

energy. For nonpolar molecules, the induction effects are relatively unimportant and more

accurate results can be obtained by omitting this term.162

A useful byproduct of the perturbative expansion of the interaction energy is the de-

composition into physically meaningful components (i.e., electrostatics, exchange, induction,

and dispersion).

Eelectrostatic = E
(10)
elst + E

(12)
elst,r + E

(13)
elst,r (22)

Eexchange = E
(10)
exch + E

(11)
exch + E

(12)
exch (23)

Einduction = E
(20)
ind,r + E

(20)
exch−ind,r + E

(30)
ind + E

(30)
exch−ind + tE

(22)
ind + tE

(22)
exch−ind + δE

(3)
HF (24)

Edispersion = E
(20)
disp + E

(30)
disp + E

(21)
disp + E

(22)
disp + E

(20)
exch−disp + E

(30)
exch−disp (25)

The above grouping of Eexch−ind and Eexch−disp terms with induction and dispersion, respec-

tively, rather than exchange is somewhat arbitrary and represents a chemical interpretation

of the terms rather than a mathematical one. The Eind and Edisp terms are artificially low-

ered in energy by unphysical contributions that violate the Pauli exclusion principle. Their

exchange counterparts remove these unphysical terms and allow for a more intuitive inter-

pretation of the SAPT decomposition. Rigorously, the E
(30)
ind−disp term cannot be grouped as

induction or dispersion. Physically, this term can be interpreted as the change in dispersion
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due to the induced orbital deformation, so, for simplicity, E
(30)
ind−disp and E

(30)
exch−ind−disp will

be added to Edispersion.

The zeroth-order wavefunction in SAPT is a product of monomer wavefunctions. The

monomer wavefunctions can be computed in either a “monomer centered basis” (MCB) or a

“dimer centered basis” (DCB), where the latter includes the basis functions from the other

monomer (as used in counterpoise correction). In practice, the difference in the choice of

basis affects only a few parts of the computation (ignoring the obvious effect on basis set

completeness). One of these effects is on exchange; there are two approaches to deriving

the exchange terms. One approach uses interaction density matrices and leads to equations

valid in either choice of basis, the other approach uses second quantization and leads to

equations valid only in the dimer centered basis. Another important consequence of the

choice of basis is related to the inclusion of charge-transfer excitations. In the dimer centered

basis, the induction terms will include charge-transfer. In the monomer centered basis, the

space required for charge-transfer excitations is no longer included. Misquitta and Stone

have shown that the charge-transfer energy can be computed with SAPT as:209

Echarge−transfer =
(

E
(20)
ind,r(DCB) + E

(20)
exch−ind,r(DCB)

)

− (26)

(

E
(20)
ind,r(MCB) + E

(20)
exch−ind,r(MCB)

)

.

Hybrids of the dimer and monomer centered basis, where a basis contains all the functions

of one monomer and select functions from the other, are also valid. It is also possible to

include bond functions in addition to the monomer or dimer centered basis.

1.3 Approximations for Electron Repulsion Integrals

The use of approximate representations of two-electron integrals has become popular as

a means to speed up their evaluation and reduce storage requirements. There are several

closely related approaches to approximate two-electron integrals. The two discussed in this

work are the density fitting approximation (DF, also called resolution-of-the-identity or

RI)47,48, 55, 178, 228, 236, 239, 244 and the Cholesky decomposition (CD).9,16, 125, 186 In practice,

both methods approximate the two-electron, four-index quantities as a linear combination
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of three-index quantities. The DF approach utilizes three-index integrals where one index

corresponds to a pre-optimized auxiliary basis set of atom-centered Gaussians (the auxiliary

basis is typically a few times larger than the size of the chosen AO basis set). This is very

similar to the pseudospectral approximation,57,139 which evaluates the third index on a grid.

The CD approach guarantees the AO integrals to a certain accuracy, and is independent of

particular electronic structure method. It has a slightly larger overhead associated with the

computation of AO three-index quantities as compared to DF, but the result is an unbiased,

method-independent approximation of the two-electron integrals A general comparison of

DF and CD methods has recently been published by Weigend, Kattannek, and Ahlrichs.237

1.3.1 Density Fitting

The two-electron integrals in the DF approximation are given by

(µν|ρσ) ≈
∑

PQ

(µν|P )[J−1]PQ(Q|ρσ). (27)

The two index quantity, [J−1]PQ, is the inverse of the Coulomb metric evaluated in an

auxiliary basis set:

[J ]PQ =

∫

P (r1)
1

r12
Q(r2)d

3r1d
3r2. (28)

Ignoring any sparsity due to large distances between centers, there are O(Ndf N2
ao) three-

index integrals in the DF approach, compared to O(N4
ao) two-electron integrals. It is con-

venient to rewrite Equation 27 with different three-index quantities,

(̃µν|Q) =
∑

P

(µν|P )[J− 1
2 ]PQ, (29)

(µν|ρσ) ≈
∑

Q

˜(µν|Q)(̃Q|ρσ) (30)

In SAPT, the three index terms must be transformed into the molecular orbital basis of

each monomer,

(̃ij|Q) =
∑

µν

CM†
µi (̃µν|Q)CN

νj (31)

where CM and CN represent the SCF coefficient matrices of monomers M and N , and

where i and j are MOs resulting from the Hartree-Fock computations on monomers M and
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N , respectively. All the two-electron integrals necessary in SAPT can be formed from the

(̃ij|Q) quantities through the MO basis analogue of Equation 30.

1.3.2 Cholesky Decompositions

The intermediate quantities that result from a Cholesky decomposition (CD), LQ
µν , are

analogous to the ˜(µν|Q) three center integrals:

(µν|ρσ) ≈
∑

Q

LQ
µνL

Q
ρσ. (32)

The Cholesky vectors are defined recursively through

Lρσ
ρσ =

√

√

√

√(ρσ|ρσ) −

ρσmax−1
∑

n=0

Ln
ρσLn

ρσ, (33)

Lρσ
µν =

1

Lρσ
ρσ

(

(µν|ρσ)−

ρσmax−1
∑

n=0

Ln
µνL

n
ρσ

)

, µν 6= ρσ. (34)

The Cholesky vectors can be transformed for SAPT using an analogue of Equation 31.

LQ
ij =

∑

µν

CM†
µi LQ

µνC
N
νj (35)

The atomic orbital two-electron integrals can be approximated to an accuracy of δ using

the Cholesky procedure. If the (ρσ|ρσ) integrals are ordered from largest to smallest, only

the Cholesky vectors where Lρσ
ρσLρσ

ρσ > δ need to be formed. A further approximation can

be made to the Cholesky decomposition by including only ρσ pairs where ρ and σ are

centered on the same nucleus. This is referred to as a one-center Cholesky decomposition

(1C-CD).7,8 Although formally it removes the error bound on the approximate integrals, in

practice, the error made in the one-center approximation is minimal.

1.3.3 Density Fitting in Symmetry-Adapted Perturbation Theory

The DF approximation has been applied to SAPT in the context of SAPT(DFT).27,86, 170

This approximation reduces the bottleneck associated with the evaluation of the dispersion

term from the SAPT(DFT) computation and allows the method to be applicable to larger

systems. SAPT(DFT) computations have been performed on the benzene dimer using an

aug-cc-pVQZ basis set, which includes more than 1500 basis functions.86 One of the largest
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systems studied with the SAPT(DFT) method is the 2(H2)-C60 complex with a TZVPP ba-

sis set by Korona et al.127 There are several considerations for SAPT(DFT) computations

that are not necessary in wavefunction based SAPT. To produce reasonable interaction

energies, SAPT(DFT) requires an asymptotic correction. One of the more widely used cor-

rections requires the ionization potentials of the monomers. The evaluation of the dispersion

interaction in SAPT(DFT) scales as O(N6), and density fitting can reduce this to O(N4)

for pure density functionals, and to O(N5) with hybrid functionals (including Hartree-Fock

exchange). The hybrid functionals are usually more accurate,27 but the available imple-

mentations of DF-SAPT(DFT) do not include exact (Hartree-Fock) exchange when the

dispersion term is evaluated.25,151 To circumvent this problem, the dispersion energy can

be evaluated with an LDA kernel; this introduces less than 1% deviation from the disper-

sion evaluated with GGA kernels.148,170 This approximation recovers the accuracy of the

hybrid functionals, through the use of the hybrid GGA orbitals, while still scaling O(N4).

Finally, the inclusion of induced-multipole induced-multipole interactions in SAPT is not

done explicitly, but rather by computing a δHF term. This term is computed as the differ-

ence between the SAPT0 energy (excluding dispersion) and the HF interaction energy. This

cannot be computed from SAPT(DFT), and if it is needed, a separate wavefunction-based

SAPT0 computation is required.

Recently, we have developed an SAPT program that uses the density fitting (DF) ap-

proximation to evaluate the necessary two-electron integrals.93 We demonstrated that great

speedups could be achieved simply by replacing the conventional integral transformation

with one employing approximate DF integrals. The possibility of using the three-index

integrals directly in the energy evaluations was not exploited in our initial implementation.

For computations with less than 1000 basis functions, this is not necessary and, in some

cases, it can be more efficient not to use the three-index integrals. However, when large

SAPT0 computations are considered (i.e., >1500 basis functions), the disk I/O associated

with four-index arrays begins to dominate, and it is advantageous to introduce three-index

quantities where ever possible. Additionally, we have performed the largest SAPT com-

putations to date that account for the triples correction to dispersion with this DF-SAPT
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program.94 While these advances have made SAPT computations much faster, the computa-

tions nevertheless remain very demanding if triples are included, and for such computations,

our DF-SAPT program remains limited to systems roughly the size of a nucleic acid base

pair (with a double-ζ basis set). The triples dispersion correction includes terms that scale

as O(o3v4) and O(o4v3) (where o is the number of occupied orbitals and v is the number

of virtual or unoccupied orbitals). Since the number of virtual orbitals is usually much

larger than the number of occupied orbitals (this is required for an accurate description of

dispersion), the overall scaling will be O(o3v4).

1.4 Prototypical Noncovalent Complexes

In this section we will discuss prototypes for different classes of noncovalent interactions.

We will address the important interaction components for each complex and considerations

for analyzing SAPT results for these types of interactions.

1.4.1 Dispersion Dominated Complexes

Certain noncovalent complexes that are characterized by the presence of strong London

dispersion forces and the absence of strong electrostatic or inductive forces are classified

as dispersion dominated; these complexes typically include neutral, nonpolar molecules.

The interactions between rare gases, hydrocarbons, and base pair stacking in DNA all fall

under the heading of dispersion dominated. These interactions are typically weaker than

electrostatic dominated interactions and are non-directional.

1.4.1.1 Argon Dimer

The argon dimer is a prototypical dispersion bound complex. Here, we will consider a near

equilibrium geometry: 3.75 Å separation. The primary attractive interactions are London

dispersion forces; the lack of permanent multipole moments results in weak electrostatic

interactions (at long range) and weak inductive forces. SAPT2+(3)/aug-cc-pVTZ compu-

tations (Table 1) quantify the forces at play in the argon dimer. Indeed, the dispersion

energy is more than a factor of 3 larger than the electrostatic energy and more than a fac-

tor of 20 larger than the induction energy. At first glance, the electrostatic energy is larger
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Figure 1: The geometries of prototypical noncovalent complexes studied in this work: (a)
argon dimer, (b) methane dimer, (c) π-stacked benzene dimer, (d) water dimer, (e) formic
acid dimer, (f) Watson-Crick adenine thymine, (g) water-benzene, (h) T-shaped benzene
dimer, and (i) π-stacked uracil dimer.

than might have been expected. This is a result of charge penetration; orbital overlap be-

tween the argon atoms leads to a net attractive electrostatic interaction. It is interesting

to note that the leading induction term, E
(20)
ind,r, is almost exactly cancelled by the leading

exchange-induction term, E
(20)
exch−ind,r(S

2). This behavior is fairly typical for interactions

between nonpolar molecules (e.g. compare Tables 1 and 3). For this reason, we recommend

classifying exchange-induction terms as part of the total induction interaction. This is even

more important when third-order interactions are considered; E
(30)
ind and E

(30)
exch−ind terms

often diverge, however, their sum remains physically reasonable.

Argon dimer makes a useful test case, because it is both small and difficult to describe

with low levels of theory. Its small size allows the convergence of each of the SAPT terms

to be analyzed with respect to the size of the basis set (see Table 2). Immediately, it can

be seen that the electrostatic and exchange terms are relatively insensitive to the choice

22



Table 1: SAPT2+(3)/aug-cc-pVTZ results for dispersion dominated complexes in kcal
mol−1.

(Ar)2 (CH3)2 (C6H6)2 Stacked

E
(10)
elst,r -0.12 -0.14 -2.86

E
(12)
elst,r -0.02 -0.03 0.07

E
(13)
elst,r 0.01 0.01 0.27

E
(10)
exch(S2) 0.42 0.53 9.13

E
(11)
exch(S2) 0.01 0.02 0.57

E
(12)
exch(S2) 0.02 0.04 -0.75

E
(20)
ind,r -0.15 -0.06 -4.29

E
(22)
ind -0.02 -0.01 0.28

E
(20)
exch−ind,r(S

2) 0.15 0.06 4.01

E
(22)
exch−ind(S

2) 0.02 0.01 -0.27

δHF -0.02 -0.02 -0.64

E
(20)
disp -0.58 -0.96 -12.00

E
(30)
disp 0.01 0.02 0.41

E
(21)
disp 0.10 0.00 3.71

E
(22)
disp(SDQ) 0.01 0.06 0.68

E
(22)
disp(T) -0.08 -0.12 -2.74

E
(20)
exch−disp(S

2) 0.03 0.06 1.74

Eelst -0.14 -0.15 -2.52
Eexch 0.45 0.59 8.96
Eind -0.02 -0.03 -0.90
Edisp -0.50 -0.94 -8.21

ESAPT0 -0.27 -0.53 -4.91
ESAPT2 -0.25 -0.50 -4.99
ESAPT2+ -0.22 -0.56 -3.35
ESAPT2+(3) -0.21 -0.53 -2.67

of basis; the induction terms are slightly more sensitive. For the argon dimer, reasonable

estimates for the electrostatic, exchange, and induction terms can be obtained in a small,

cc-pVTZ basis. The dispersion energy, however, converges very slowly with respect to basis

set size and is extremely sensitive to the inclusion of diffuse basis functions. The aug-cc-

pVTZ basis (100 functions) recovers a larger fraction of the dispersion energy than the

large, cc-pV5Z basis (190 function). Consequently, diffuse basis functions must be included

to effectively study dispersion bound complexes.
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It is also interesting to examine the convergence and relative importance of the intra-

monomer correlation corrections. The intramonomer corrections to electrostatics, exchange,

and induction are relatively unimportant, however, their convergence with respect to basis

differs from the rate of the leading terms significantly. For example, the E
(12)
exch(S

2) term

changes by 0.06 kcal mol−1 while the E
(10)
exch term does not change at all. This is because

electron correlation effects are slowly convergent (i.e. the E
(12)
exch(S2) term) while E

(10)
exch is a

Hartree-Fock-like term that converges rapidly with respect to basis. The change in sign is

a result of E
(12)
exch(S2) being composed of five separate terms, each with their own conver-

gence behavior. The intramonomer corrections to dispersion are much more important. At

aug-cc-pV5Z, the net intramonomer correction should be 0.04 kcal mol−1. Unfortunately,

the terms that scale O(N6), E
(21)
disp and E

(22)
disp(SDQ), are not a good approximation to the

intramonomer correction. The expensive (O(N7)) E
(22)
disp(T) term must be included for a

balanced treatment of the intramonomer electron correlation.

1.4.1.2 Methane Dimer

The methane dimer interaction is composed of an even larger fraction of dispersion than

the argon dimer interaction. The methane dimer configuration considered here is reported

in Ref. 117. In addition to being larger, the dispersion energy in the methane dimer has

different properties with regard to the inclusion of intramonomer electron correlation. In

this case, the intramonomer correction to dispersion tends to stabilize the complex; again,

the E
(22)
disp(T) correction is important for the accurate determination of the dispersion energy.

It is interesting to note that the exchange and dispersion energies for the methane dimer are

significantly larger than for the argon dimer, but the electrostatics are nearly equivalent.

This is a result of the permanent multipole moments possessed by methane, but not argon.

A multipole based electrostatic analysis would predict a repulsive potential, which would

be repulsive by 0.11 kcal mol−1 at the geometry considered here. The charge penetration

effects are able to overcome this repulsion resulting in a net attractive electrostatic term.
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Table 2: SAPT results for the argon dimer computed with various basis sets.a Energies are
reported in kcal mol−1.

DZ TZ QZ 5Z aDZ aTZ aQZ a5Z

E
(10)
elst,r -0.12 -0.13 -0.12 -0.12 -0.13 -0.12 -0.12 -0.12

E
(12)
elst,r -0.02 -0.02 -0.01 -0.01 -0.02 -0.02 -0.01 -0.01

E
(13)
elst,r 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01

E
(10)
exch 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

E
(10)
exch(S2) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

E
(11)
exch(S2) -0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02

E
(12)
exch(S2) 0.03 0.01 0.00 -0.01 0.05 0.02 0.00 -0.01

E
(20)
ind,r -0.13 -0.16 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15

E
(22)
ind -0.02 -0.02 -0.01 -0.01 -0.03 -0.02 -0.01 -0.01

E
(20)
exch−ind,r(S

2) 0.13 0.16 0.15 0.15 0.15 0.15 0.15 0.15

E
(22)
exch−ind(S

2) 0.02 0.02 0.01 0.01 0.03 0.02 0.01 0.01

δHF -0.02 -0.01 -0.02 -0.02 -0.01 -0.02 -0.02 -0.02

E
(20)
disp -0.15 -0.36 -0.49 -0.54 -0.46 -0.58 -0.62 -0.65

E
(30)
disp 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01

E
(21)
disp 0.03 0.09 0.10 0.10 0.09 0.10 0.10 0.10

E
(22)
disp(SDQ) 0.00 0.01 0.02 0.03 -0.01 0.01 0.03 0.04

E
(22)
disp(T) -0.01 -0.03 -0.06 -0.07 -0.04 -0.08 -0.09 -0.10

E
(20)
exch−disp(S

2) 0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.04

Eelst -0.13 -0.14 -0.13 -0.13 -0.15 -0.14 -0.13 -0.13
Eexch 0.44 0.44 0.44 0.43 0.48 0.45 0.44 0.43
Eind -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
Edisp -0.11 -0.27 -0.40 -0.44 -0.39 -0.50 -0.54 -0.56

ESAPT0 0.15 -0.06 -0.18 -0.23 -0.16 -0.27 -0.31 -0.33
ESAPT2 0.16 -0.05 -0.18 -0.23 -0.13 -0.25 -0.30 -0.33
ESAPT2+ 0.18 0.01 -0.12 -0.17 -0.09 -0.22 -0.27 -0.29
ESAPT2+(3) 0.18 0.01 -0.11 -0.16 -0.08 -0.21 -0.25 -0.27

aXZ abbreviates cc-pVXZ and aXZ abbreviates aug-cc-pVXZ.

1.4.1.3 π-Stacked Benzene Dimer

The π-π interactions present in the benzene dimer are unique from both a geometric and

an electronic structure perspective. The planar geometry of benzene allows the rings to get

close together and interact strongly. Although the total interaction energy of the benzene

dimer is only 5 times larger than the methane dimer, the individual components range from

8-30 times larger in the benzene dimer. This is a direct result of the benzene dimer geometry.
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The dispersion energy is much more difficult to compute in the benzene dimer. This is a

result of the motion of electrons in the π-orbitals. London dispersion forces originate from

instantaneous charge fluctuations; in the case of the benzene dimer, these fluctuations can

be very large due to the polarizability of the π-orbitals. The charge fluctuations must

be allowed to damp each other, or their effect will be significantly overestimated. As a

result, the intramonomer correlation corrections to dispersion for the benzene dimer are

destabilizing by roughly 2 kcal mol−1.

1.4.2 Electrostatic Dominated Complexes

Electrostatic dominated complexes typically involve two polar molecules. The most common

examples include hydrogen bonds, but electrostatic dominated complexes are not limited

to those involving hydrogen bonds. Halogen bonded complexes and those with strong

dipolar interactions can all be classified as electrostatic dominated. Ionic complexes are not

typically included in discussions of noncovalent interactions, although these are strongly

bound by electrostatic interactions. Electrostatic dominated complexes, especially those

with hydrogen bonds, often contain significant contributions from induction.

1.4.2.1 Water Dimer

The water dimer is a common example of a complex bound by electrostatic interactions. At

this geometry (from Ref. 117), the electrostatic interactions are more than 3 times stronger

than the induction and dispersion forces. In contrast to dispersion bound complexes, these

electrostatics can be qualitatively described in a multipole picture. The multipole interac-

tions would account for roughly -7.5 kcal mol−1 of the total electrostatics, however, this

implies that charge penetration effects are responsible for the remaining 1 kcal mol−1. The

induction forces in the water dimer are much more important than they are in dispersion

bound complexes. These strong inductive forces give rise to cooperativity in larger hydro-

gen bonded clusters. Dispersion is non-negligible and roughly equivalent to induction for

the water dimer. The non-dispersion intramonomer correlation corrections are much more

important for the water dimer than they are for dispersion bound complexes. In particular,

the E
(12)
exch(S2) term is worth 1 kcal mol−1.
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Table 3: SAPT2+(3)/aug-cc-pVTZ results for electrostatic dominated complexes in kcal
mol−1.

(H2O)2 (CHO2H)2 WC A-T

E
(10)
elst,r -8.33 -33.66 -27.27

E
(12)
elst,r 0.06 1.37 0.52

E
(13)
elst,r 0.16 0.08 0.17

E
(10)
exch(S2) 6.98 35.33 27.82

E
(11)
exch(S2) 0.09 0.18 0.15

E
(12)
exch(S2) 1.01 5.05 3.25

E
(20)
ind,r -3.01 -21.09 -14.13

E
(22)
ind -0.45 -3.06 -1.97

E
(20)
exch−ind,r(S

2) 1.67 11.13 8.03

E
(22)
exch−ind(S

2) 0.25 1.61 1.12

δHF -0.86 -6.91 -4.94

E
(20)
disp -2.55 -10.99 -11.74

E
(30)
disp 0.09 0.38 0.40

E
(21)
disp 0.04 0.94 1.25

E
(22)
disp(SDQ) -0.04 -0.38 -0.09

E
(22)
disp(T) -0.43 -2.11 -2.49

E
(20)
exch−disp(S

2) 0.47 2.25 2.06

Eelst -8.11 -32.20 -26.58
Eexch 8.08 40.55 31.22
Eind -2.40 -18.30 -11.88
Edisp -2.41 -9.91 -10.61

ESAPT0 -5.63 -23.93 -20.17
ESAPT2 -4.67 -18.78 -17.10
ESAPT2+ -5.10 -20.33 -18.43
ESAPT2+(3) -4.85 -19.87 -17.85

It is also possible to assess the convergence rates of different SAPT terms with respect

to basis set for the water dimer. The electrostatic energy in the water dimer is much more

sensitive to the size of the basis than it is in the argon dimer. This results from the descrip-

tion of the multipole moments of the water molecules. These interactions are less sensitive

to the presence of diffuse functions than are purely dispersion bound complexes. Even so,

the convergence rate of cc-pVXZ basis sets seems to be one cardinal number slower than the

aug-cc-pVXZ series. This is better than the dispersion complexes, where the convergence
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rate was slower by two cardinal numbers. Unfortunately, the aug-cc-pVTZ basis (184 func-

tions) is nearly as large as the cc-pVQZ basis (230 functions). As interesting aside, there

have been reports of the convergence rates of CP and unCP corrected interactions energies

for the water dimer that show the unCP corrected results are well converged at haug-cc-

pVQZ, where diffuse functions are removed from hydrogen atoms.51,224 Remembering that

SAPT energies are free from BSSE, it is obvious from Table 4 that this observation is a

result of fortuitous error cancellation.

Table 4: SAPT results for the water dimer computed with various basis sets.a Energies are
reported in kcal mol−1.

DZ TZ QZ 5Z aDZ aTZ aQZ a5Z

E
(10)
elst,r -9.10 -8.53 -8.41 -8.36 -8.39 -8.33 -8.34 -8.34

E
(12)
elst,r -0.26 -0.06 0.01 0.04 0.03 0.06 0.05 0.05

E
(13)
elst,r 0.32 0.24 0.18 0.16 0.17 0.16 0.15 0.15

E
(10)
exch 7.45 7.16 7.06 7.02 7.04 7.03 7.02 7.01

E
(10)
exch(S2) 7.39 7.11 7.01 6.97 6.99 6.98 6.97 6.97

E
(11)
exch(S2) -0.02 0.08 0.11 0.12 0.03 0.09 0.12 0.13

E
(12)
exch(S2) 1.24 0.95 0.84 0.79 1.35 1.01 0.86 0.79

E
(20)
ind,r -2.80 -2.99 -3.00 -3.00 -2.87 -3.01 -3.01 -3.01

E
(22)
ind -0.46 -0.41 -0.39 -0.38 -0.53 -0.45 -0.41 -0.39

E
(20)
exch−ind,r(S

2) 1.61 1.70 1.67 1.66 1.56 1.67 1.66 1.66

E
(22)
exch−ind(S

2) 0.26 0.24 0.22 0.21 0.28 0.25 0.23 0.22

δHF -0.84 -0.89 -0.90 -0.91 -0.90 -0.91 -0.92 -0.92

E
(20)
disp -1.50 -2.23 -2.49 -2.61 -2.22 -2.55 -2.64 -2.67

E
(30)
disp 0.03 0.07 0.10 0.12 0.04 0.09 0.13 0.14

E
(21)
disp 0.04 0.07 0.05 0.04 0.07 0.04 0.03 0.03

E
(22)
disp(SDQ) -0.05 -0.01 0.02 0.03 -0.11 -0.04 0.00 0.02

E
(22)
disp(T) -0.17 -0.33 -0.40 -0.43 -0.34 -0.43 -0.45 -0.45

E
(20)
exch−disp(S

2) 0.35 0.43 0.47 0.49 0.41 0.47 0.49 0.50

Eelst -9.04 -8.35 -8.22 -8.16 -8.20 -8.11 -8.14 -8.14
Eexch 8.67 8.20 8.01 7.93 8.42 8.13 7.99 7.93
Eind -2.22 -2.37 -2.40 -2.42 -2.46 -2.45 -2.44 -2.44
Edisp -1.30 -2.00 -2.25 -2.37 -2.16 -2.41 -2.44 -2.43

ESAPT0 -4.83 -5.35 -5.60 -5.71 -5.39 -5.63 -5.73 -5.75
ESAPT2 -4.06 -4.55 -4.81 -4.93 -4.22 -4.67 -4.89 -4.96
ESAPT2+ -4.25 -4.82 -5.14 -5.30 -4.61 -5.10 -5.30 -5.37
ESAPT2+(3) -3.90 -4.52 -4.86 -5.02 -4.40 -4.85 -5.03 -5.08

aXZ abbreviates cc-pVXZ and aXZ abbreviates aug-cc-pVXZ.
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1.4.2.2 Formic Acid Dimer

The formic acid dimer differs from the water dimer in that it contains two hydrogen bonds

and that the hydrogens are much more acidic. This results in a stronger interaction by

roughly a factor of 4; only the induction term grows disproportionately between the water

dimer and formic acid dimer. The intramonomer corrections become much more important

for the formic acid dimer. In this case, the corrections to electrostatics and exchange are

destabilizing by 6.5 kcal mol−1; this is an unusually large intramonomer correction. The

self consistency effects captured by the δHF term are also remarkably important at -7 kcal

mol−1. This illustrates the importance of higher-order induction effects; the inclusion of

third-order induction would reduce the δHF term to -4.5 kcal mol−1.

1.4.2.3 Watson-Crick Adenine-Thymine

The Watson-Crick structure of adenine-thymine also contains two hydrogen bonds, but the

hydrogens are not as acidic as they are in formic acid. Additionally, adenine-thymine con-

tains long-range dispersion interactions between the π systems. This dimer has decreased

electrostatics, exchange, and induction relative to the formic acid dimer resulting from

longer hydrogen bond distances (1.67 Å in the formic acid dimer compared to 1.82Å and

1.92 Å in adenine-thymine). The dispersion, however, increases as a result of the long-

range interactions. It has been noted that certain methods that neglect long-range disper-

sion (namely, M05-2X and M06-2X) will systematically underestimate the interaction of

hydrogen bonded base pairs.91

1.4.3 Mixed Influence Complexes

Another class of interactions exist that contain roughly equivalent contributions from elec-

trostatics and dispersion. XH-π interactions, such water-benzene, ammonia-benzene, or

HCN-benzene, are all prototypical mixed influence complexes. Detailed SAPT analysis of

certain π stacking interactions has shown them to be mixed influence complexes rather

than dispersion dominated as originally thought. The T-shaped benzene dimer, on the

other hand, was thought to be of mixed influence, but is actually dominated by dispersion.
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Table 5: SAPT2+(3)/aug-cc-pVTZ results for mixed influence complexes in kcal mol−1.

H2O-C6H6 (C6H6)2 T-shaped U-U Stacked

E
(10)
elst,r -2.97 -2.09 -8.99

E
(12)
elst,r 0.21 -0.04 0.24

E
(13)
elst,r 0.05 0.13 0.23

E
(10)
exch(S2) 3.00 4.26 10.72

E
(11)
exch(S2) 0.12 0.13 0.21

E
(12)
exch(S2) 0.18 0.15 0.73

E
(20)
ind,r -1.31 -1.17 -4.71

E
(22)
ind -0.06 -0.11 -0.20

E
(20)
exch−ind,r(S

2) 0.68 0.91 3.56

E
(22)
exch−ind(S

2) 0.03 0.08 0.15

δHF -0.33 -0.39 -0.54

E
(20)
disp -3.28 -6.03 -13.83

E
(30)
disp 0.11 0.19 0.33

E
(21)
disp 0.53 1.37 3.59

E
(22)
disp(SDQ) 0.08 0.34 -0.47

E
(22)
disp(T) -0.67 -1.27 -3.14

E
(20)
exch−disp(S

2) 0.34 0.63 1.38

Eelst -2.72 -2.00 -8.51
Eexch 3.30 4.54 11.66
Eind -0.99 -0.68 -1.73
Edisp -2.90 -4.77 -12.14

ESAPT0 -3.88 -3.88 -12.40
ESAPT2 -3.40 -3.66 -11.26
ESAPT2+ -3.47 -3.22 -11.29
ESAPT2+(3) -3.31 -2.91 -10.73

1.4.3.1 Water-Benzene

The water-benzene complex contains what is often described as a π hydrogen bond, where

the π system of benzene is the hydrogen bond acceptor. This leads to favorable electrostatic

interactions between the positively charged hydrogen and the benzene’s negatively charged π

electrons. Due to the proximity of the water molecule to benzene, there is also a significant

dispersion force. The hydrogen is able to polarize the π orbitals of benzene leading to

significant induction. The electrostatic interactions in this complex are well described as

interacting multipoles; the contribution from charge penetration is approximately -0.2 kcal
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mol−1.

1.4.3.2 T-shaped Benzene Dimer

The T-shaped benzene dimer had been classified as a mixed influence complex based on

chemical intuition; there are CH-π and favorable quadrapole-quadrapole interactions present

in this complex. Subsequent analysis with SAPT shows that this complex is actually dom-

inated by dispersion. It is interesting to note that the electrostatic energy is larger in the

stacked benzene dimer than in the T-shaped benzene dimer. This is a result of the de-

creased charge penetration in the T-shaped configuration. In the T-shaped configuration,

charge penetration accounts for roughly -1.35 kcal mol−1 of the total electrostatic energy

(-2.1 kcal mol−1). In contrast, the stacked configuration is repulsive electrostatically on

the basis of multipole interactions. In this case, the charge penetration (-4.2 kcal mol−1) is

entirely responsible for the attractive electrostatic interaction (-2.9 kcal mol−1). The attrac-

tive components of the benzene dimer interaction (electrostatics, induction and dispersion)

are roughly 71% dispersion in the stacked configuration; in the T-shaped configuration, the

relative amount of dispersion is reduced (64%), but not reduced significantly.

1.4.3.3 π-Stacked Uracil Dimer

Another complex that was inappropriately classified is the stacked uracil dimer. In this

case, it was classified as dispersion dominated as a result of its stacked geometry. This

complex has strong electrostatic interactions due to the four NH· · ·O contacts that are

present. Since these electrostatic interactions are not in their ideal geometry, they are

not as strong as they would be in a hydrogen bonded uracil dimer. In addition, there is

roughly -3.4 kcal mol−1 of charge penetration present in this complex. As a result, the

attractive components of the stacked uracil dimer interaction are composed of roughly 55%

dispersion. If charge penetration or the “classical” electrostatic components were neglected,

this would shift the apparent nature of the interaction sufficiently to classify this interaction

as dispersion dominated (according to the scheme in Ref. 65).
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CHAPTER II

DENSITY FITTING IN SYMMETRY-ADAPTED PERTURBATION

THEORY

2.1 Notation and Definitions

The notation used here is chosen to remain consistent with the literature describing many-

body SAPT. Certain terms will not be defined below, but rather in the text before they are

used. We will use the Einstein summation convention where sums over repeated indices are

implied. Any terms that are listed, but not defined, will be addressed subsequently.

Indices

µ, ν, ρ, σ Index atomic orbitals

i, j, k, l Index all molecular orbitals

a Indexes occupied molecular orbitals of monomer A

b Indexes occupied molecular orbitals of monomer B

r Indexes virtual molecular orbitals of monomer A

s Indexes virtual molecular orbitals of monomer B

P , Q Index auxiliary (DF) basis functions

L, M Index Laplace quadrature points

Miscellaneous

NA Number of electrons of monomer A

NB Number of electrons of monomer B

V0 Intermolecular nuclear repulsion energy

ǫi Orbital energy

Cµi HF coefficient matrix

Aµi HF coefficient matrix (of monomer A)

Bµi HF coefficient matrix (of monomer B)

∆kl
ij = 1

ǫi+ǫj−ǫk−ǫl
Energy denominator
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dL
ij Laplace factorization of an energy denominator (∆kl

ij ≈ dL
ikd

L
jl)

Integrals

Sj
i Overlap integrals: (i|j)

(νA)ji Nuclear attraction integrals (to the nuclei of monomer A): (i|νA|j)

(νB)ji Nuclear attraction integrals (to the nuclei of monomer B): (i|νB |j)

νjl
ik Two electron integrals: (ij|kl) or 〈ik|jl〉

(ωA)ji = (νA)ji + 2νja
ia Electrostatic potential integrals (of monomer A)

(ωB)ji = (νB)ji + 2νjb
ib Electrostatic potential integrals (of monomer B)

ν̃jl
ik Generalized two electron integrals

[J ]PQ =
∫

P (r1)
1

r12
Q(r2)d

3r1d
3r2 The Coulomb metric

CP
ij = (ij|Q)[J−1/2]PQ Symmetric factorization of DF integrals (bare)

gij
kl = 2νij

kl − νij
lk Antisymmetrized two-electron integrals

AP
ij Generalized symmetric factorization of DF integrals (monomer A)

BP
ij Generalized symmetric factorization of DF integrals (monomer B)

Amplitudes

sr
a CPHF coefficients of monomer A

ss
b CPHF coefficients of monomer B

(0)
s r

a = (ωB)ra∆
r
a Zeroth-order induction amplitudes of monomer A

(0)
s s

b = (ωA)sb∆
s
b Zeroth-order induction amplitudes of monomer B

trs
ab = νrs

ab∆
rs
ab Dispersion amplitudes

tr1r2
a1a2

= νr1r2
a1a2

∆r1r2
a1a2

Monomer A doubles amplitudes

ts1s2
b1b2

= νs1s2
b1b2

∆s1s2
b1b2

Monomer B doubles amplitudes

θr1r2
a1a2

= 2tr1r2
a1a2
− tr2r1

a1a2
Antisymmetrized monomer A doubles amplitudes

θs1s2
b1b2

= 2ts1s2
b1b2
− ts2s1

b1b2
Antisymmetrized monomer B doubles amplitudes

(2)
t r1r2

a1a2
Second-order monomer A doubles amplitudes

(2)
t s1s2

b1b2
Second-order monomer B doubles amplitudes

(2)

θ r1r2
a1a2

= 2
(2)
t r1r2

a1a2
−

(2)
t r2r1

a1a2
Antisymmetrized second-order monomer A doubles amplitudes

(2)

θ s1s2
b1b2

= 2
(2)
t s1s2

b1b2
−

(2)
t s2s1

b1b2
Antisymmetrized second-order monomer B doubles amplitudes

ta1
r1

Second-order monomer A singles amplitudes
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tb1s1
Second-order monomer B singles amplitudes

Common Intermediates

ãP = AP
aa Diagonal occupied-occupied generalized DF integrals of monomer A

b̃P = BP
bb Diagonal occupied-occupied generalized DF integrals of monomer B

TP
ar = trs

abB
P
bs Generalized dispersion intermediates

TP
bs = trs

abA
P
ar Generalized dispersion intermediates

ΘP
a1r1

= θr1r2
a1a2

AP
a2r2

ΘP
b1s1

= θs1s2
b1b2

BP
b2s2

(2)

ΘP
a1r1

=
(2)

θ r1r2
a1a2

AP
a2r2

(2)

ΘP
b1s1

=
(2)

θ s1s2
b1b2

BP
b2s2

Ṽ a1
r1

Monomer A exchange-induction integrals

Ṽ b1
s1

Monomer B exchange-induction integrals

Ṽ r1s1
a1b1

Exchange-dispersion integrals

AGa1b1
r1s1

= gr1a2
a1r2

tr2s1
a2b1

BGa1b1
r1s1

= gs1b2
b1s2

tr1s2
a1b2

2.1.1 Generalized Two Electron Integrals

The exchange terms in SAPT present unique challenges for the introduction of DF in-

tegrals. The exchange interactions can be formulated in terms of second-quantization or

interaction density matrices.154,155 The second-quantization approach leads to equations

which depend only on Coulomb type two-electron integrals [(AA|BB), where A(B) refers

to any index on monomer A (B)] and are amenable to the introduction of DF integrals.94

The interaction density matrix approach leads to more complex equations that include

Coulomb, exchange [(AB|AB)], and hybrid [(AA|AB)] integrals. However, this approach

involves integrals with fewer virtual indices than the second-quantization approach. Sub-

sequently, the exchange corrections derived with the interaction density matrix approach

have a lower computational scaling. However, the interaction density matrix approach uses

generalized two-electron integrals rather than the bare two-electron integrals found in the
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second-quantization approach. The generalized two-electron integrals are given as:110

ν̃jl
ik = νjl

ik + (i|j)
(k|νA|l)

NA
+ (k|l)

(i|νB |j)

NB
+ (i|j) (k|l)

V0

NANB
. (36)

Under the DF approximation, the generalized two-electron integrals are written as:

ν̃jl
ik ≈ CP

ij C
P
kl + (i|j)

(k|νA|l)

NA
+ (k|l)

(i|νB |j)

NB
+ (i|j) (k|l)

V0

NANB
. (37)

Our initial implementation of DF-SAPT evaluated generalized two-electron integrals as

shown above; the approximate four-index integrals were formed and then dressed with one-

electron contributions. It is possible to define DF intermediates that include the one-electron

contributions by adding three additional entries to the auxiliary index:

A1
ij = C1

ij

...

A
Ndf

ij = C
Ndf

ij

A
Ndf +1
ij = (i|j)

A
Ndf +2
ij =

(i|νB |j)

NB

A
Ndf +3
ij = (i|j)

√

V0

NANB
, (38)

and

B1
ij = C1

ij

...

B
Ndf

ij = C
Ndf

ij

B
Ndf +1
ij =

(i|νA|j)

NA

B
Ndf +2
ij = (i|j)

B
Ndf +3
ij = (i|j)

√

V0

NANB
. (39)

Now, the length of the auxiliary index is equal to the number of DF basis functions plus

three (Naux = Ndf +3); from this point forward, we will neglect the difference between Naux
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and Ndf for generalized DF integrals when considering scalings. This allows the generalized

two-electron integrals to be formed directly as:

ν̃jl
ik ≈ AP

ijB
P
kl. (40)

In practice, the A and B quantities are not explicitly stored; rather, the C type DF integrals

are stored and the three additional auxiliary indices are appended as necessary when these

integrals are read into memory. The memory requirements for the DF integrals needed to

evaluate Eqn. 40 for two-electron integrals with bra-ket symmetry [i.e. (ij|ij) type integrals]

would be, in principle, doubled. However, in practice, this doubling is only encountered for

(ab|ab) integrals, where the o2Ndf DF integrals can easily be stored in memory. The (as|as)

and (rb|rb) integrals appear only once, and the symmetry of the DF integrals cannot be

exploited in the most efficient factorization of those exchange terms. Finally, the (rs|rs)

two-electron integrals do not appear in the SAPT exchange corrections. Therefore, the

potential loss of symmetry in the formation of generalized two-electron integrals is not a

problem.

2.1.2 Second-order Singles Amplitudes

Several intramonomer correlation corrections require the second-order singles amplitudes.110

ta1
r1

=
[

θa3a1
r3r2

νr3r2
a3r1
− θa3a2

r3r1
νr3a1

a3a2

]

∆r1
a1

(41)

These can be efficiently evaluated through the introduction of DF intermediates.

ta1
r1

=
[

ΘP
a1r2

CP
r1r2
−ΘP

a2r1
CP

a1a2

]

∆r1
a1

(42)

These two terms are a subset of those required during the evaluation of the E
(12)
elst,r correction.

It is possible to store the second-order singles amplitudes during the evaluation of this term

to avoid redundant work.
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2.1.3 Second-order Doubles Amplitudes

The most demanding step in the evaluation of intramonomer electron correlation effects in

SAPT2 is the formation of the second-order double excitation amplitudes,110

(2)
t r1r2

a1a2
=
[

νr3r4
r1r2

ta1a2
r3r4

+ νa1a2
a3a4

ta3a4
r1r2

+ νa2r3
r2a3

θa1a3
r1r3

+ νa1r3
r1a3

θa2a3
r2r3

− νa2r3
a3r2

ta1a3
r1r3
− νa1r3

a3r1
ta2a3
r2r3
− νa1r3

a3r2
ta3a2
r1r3
− νa2r3

a3r1
ta1a3
r3r2

]

∆r1r2
a1a2

. (43)

Unfortunately, the formation of the second-order amplitudes is not particularly amenable

to the introduction of DF intermediates. The third and fourth terms can be rewritten with

the DF integrals and the Θ intermediates as

ΘP
a1r1

CP
a2r2

+ CP
a1r1

ΘP
a2r2

, (44)

which reduces the scaling of these terms from O(o3v3) to O(o2v2Ndf ). In principle, the fifth

and sixth terms could also be evaluated in O(N5) if density fitting integrals and Laplace

transformed energy denominators were introduced.

−νa2r3
a3r2

CP
a1r1

CP
a3r3

dL
a1r1

dL
a3r3
− νa1r3

a3r1
CP

a2r2
CP

a3r3
dL

a2r2
dL

a3r3
(45)

However, in practice, this is simply evaluated conventionally with O(o3v3) work. Including

the contribution from the v4 integrals in the first term scales as O(o2v4). A conventional

SAPT program must have access to this large group of integrals in order to evaluate this

term. There are two types of v4 integrals needed for SAPT (r4 and s4); additionally, to

evaluate the E
(30)
disp term the r2s2 integrals are required. While DF cannot improve the scaling

of steps with v4 dependence, DF can still improve the efficiency of the SAPT algorithm.

For example, each of the r4 integrals are needed only once during the SAPT computation

(this is true of all v4 integrals); when they are approximated with DF, it is practical to

form these integrals “on the fly” (from the BP three index DF integrals) and evaluate their

contribution to
(2)
t a1a2

r1r2
without storing them. The temporary batches of integrals should be

as large as the system’s memory will allow.
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2.1.4 Exchange-Induction Integrals

Certain collections of exchange integrals are convenient to form, because they can be reused

to evaluate several different corrections. The integrals needed to evaluate the E
(20)
exch−ind,r

term also appear in the E
(12)
exchKf

2 and E
(30)
exch−ind corrections.162

Ṽ r1
a1

=ν̃b1r1
a1b1

+ 2Sb1
a1

ν̃a2r1
a2b1
− Sb1

a2
ν̃a2r1

a1b1

+ 2Sb1
a2

ν̃r1a2
a1b1
− Sb1

a1
ν̃r1a2

a2b1

+ 2Sr1
b2

ν̃b2b1
a1b1
− Sr1

b2
ν̃b1b2

a1b1

− 2Sb1
a1

Sr1
b2

ν̃a2b2
a2b1
− 2Sb2

a2
Sr1

b2
ν̃a2b1

a1b1
+ Sb1

a2
Sr1

b2
ν̃a2b2

a1b1

− 2Sb1
a2

Sa2
b2

ν̃r1b2
a1b1
− 2Sb2

a1
Sa2

b2
ν̃r1b1

a2b1
+ Sb1

a1
Sa2

b2
ν̃r1b2

a2b1
(46)

This quantity can be efficiently evaluated with the introduction of the generalized DF

integrals. In order to apply these integrals to the E
(12)
exchKf

2 correction, they must be stored

separately with the last six terms (those that are quadratic in S) scaled by a factor of 2.

2.1.5 Exchange-Dispersion Integrals

A similar quantity can be formed to evaluate the E
(20)
exch−disp term and reused to evaluate a

portion of the E
(30)
exch−disp term.162

Ṽ a1b1
r1s1

=ν̃s1r1
a1b1

+ Ss1
a1

(2ν̃a2r1
a2b1
− ν̃r1a2

a2b1
) + Ss1

a2
(2ν̃r1a2

a1b1
− ν̃a2r1

a1b1
)

+ Sr1
b1

(2ν̃s1b2
a1b2
− ν̃b2s1

a1b2
) + Sr1

b2
(2ν̃b2s1

a1b1
− ν̃s1b2

a1b1
)

+ Sr1
b1

Sb2
a2

ν̃a2s1
a1b2
− 2Sr1

b2
Sb2

a2
ν̃a2s1

a1b1
− 2Sr1

b1
Sb2

a1
ν̃a2s1

a2b2
+ 4Sr1

b2
Sb2

a1
ν̃a2s1

a2b1

+ Ss1
a1

Sa2
b2

ν̃r1b2
a2b1
− 2Ss1

a2
Sa2

b2
ν̃r1b2

a1b1
− 2Ss1

a1
Sa2

b1
ν̃r1b2

a2b2
+ 4Ss1

a2
Sa2

b1
ν̃r1b2

a1b2

+ Sr1
b2

Ss1
a2

ν̃a2b2
a1b1
− 2Sr1

b1
Ss1

a2
ν̃a2b2

a1b2
− 2Sr1

b2
Ss1

a1
ν̃a2b2

a2b1

+ Sa2
b1

Sb2
a1

ν̃r1s1
a2b2
− 2Sa2

b1
Sb2

a2
ν̃r1s1

a1b2
− 2Sa2

b2
Sb2

a1
ν̃r1s1

a2b1
(47)

A more efficient formulation of the E
(20)
exch−disp correction is described below for use in SAPT0

computations. When higher-order term are included, however, the efficient formulation is

not necessary due to its O(o2v2Ndf ) scaling.
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2.1.6 gar
ra × tab

rs

This contraction appears several times in the intramonomer correlation corrections to dis-

persion. The evaluation of this contraction canonically scales O(o3v3). The introduction

of DF integrals can only factor the coulomb portion of the g integrals. If Laplace trans-

formed energy denominators are applied, the DF integrals can be applied in the dispersion

amplitudes and the entire term can be factored in O(N5).110

AGa1b1
r1s1

= gr1a2
a1r2

tr2s1
a2b1

(48)

XP,L
a1r1

= (2νa1a2
r1r2
− νa1r1

a2r2
)CP

a2r2
dL

a2r2
(49)

AGa1b1
r1s1

= XP,L
a1r1

CP
b1s1

dL
b1s1

(50)

This factorization scales O(o2v2Ndf )Nδ , which is a significant improvement over the canoni-

cal evaluation. This intermediate can be used in the E
(21)
disp, E

(211)
disp , and E

(22)
disp(D) corrections.

2.2 DF-SAPT0

2.2.1 DF Integral Formation

The formation of the density-fitted integrals is the first step in the SAPT0 procedure and

one that must be implemented efficiently. First the AO DF integrals, (µν|P ), must be

generated. Then, they must be transformed by the inverse square root of the Coulomb

metric:

CP
µν ← (µν|Q)[J−1/2]PQ. (51)

The square brackets around the Coulomb metric are to clarify that we need the PQth

element of the inverse square root of J , not the inverse square root of the PQth element of

J . The resulting symmetric factorization of the AO DF integrals must now be transformed

to the MO basis. For SAPT0 computations, there are 9 unique types of MO DF integrals

required. In general,

CP
ij ← CµiCνjC

P
µν , (52)

where, CP
a1a2

, CP
a1r1

, CP
r1r2

, CP
b1b2

, CP
b1s1

, CP
s1s2

, CP
a1b1

, CP
a1s1

and CP
r1b1

must be formed. The

most expensive step of this process is the multiplication of the AO DF integrals by J−1/2,

which scales O(N2
aoN

2
df ). The AO to MO transformation scales O(N2

aoNmoNdf ); this is less
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expensive by roughly a factor of six in typical cases, because Ndf ≈ 3Nao and there is

a two-fold permutational symmetry in the AO DF integrals that can be exploited in the

multiplication by J−1/2, but not the AO to MO transformation.

Algorithm 1 Pseudocode to compute the symmetric factorization of the MO DF integrals.

for µshell < #AOShells do
for νshell <= µshell do

for Pshell < #DFShells do
if Above the Schwarz tolerance then

Compute (µshellνshell|Pshell)
end if

end for
if Out of memory OR last µshellνshell then

CP
µν ← (µν|Q)[J−1/2]PQ

Write CP
µν block, transposed, to disk

end if
end for

end for
for Pblock < #Pblocks do

Read CP
µν block

for P < #Pblock do
Unpack CP

µν permutational symmetry

CP
ij ← AµiAνjC

P
µν

Store CP
a1a2

, CP
a1r1

, CP
r1r2

CP
ij ← AµiBνjC

P
µν

Store CP
a1b1

, CP
a1s1

, CP
r1b1

CP
ij ← BµiBνjC

P
µν

Store CP
b1b2

, CP
b1s1

, CP
s1s2

end for
Write CP

a1a2
, CP

a1r1
, CP

r1r2
block to disk

Write CP
a1b1

, CP
a1s1

, CP
r1b1

block to disk

Write CP
b1b2

, CP
b1s1

, CP
s1s2

block to disk
end for

This algorithm computes the symmetric factorization of the MO DF integrals with one

pass through the AO DF integrals. The memory requirement for this algorithm is minimal

(2N2
df will always be sufficient) and arrays on disk are only written and read once. The

bottleneck associated with this procedure is the disk based transposition of CP
µν . There is

roughly 3N2
aoNdf disk storage required; this does not begin to become prohibitive on many

computers until Nao > 2000.
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2.2.2 E
(10)
elst,r

The leading electrostatic term is given by:110

E
(10)
elst,r = 4ν̃a1b1

a1b1
. (53)

This can be evaluated simply with generalized DF integrals:

E
(10)
elst,r = 4AP

a1a1
BP

b1b1 = 4ãP b̃P . (54)

2.2.3 E
(10)
exch(S2)

The leading exchange term, under the S2 approximation, is given by:110

E
(10)
exch(S

2) =− 2ν̃b1a1
a1b1
− 2Sb1

a2
(2ν̃a1a2

a1b1
− ν̃a2a1

a1b1
)− 2Sa1

b2
(2ν̃b2b1

a1b1
− ν̃b1b2

a1b1
)

+ 4Sb1
a2

Sa2
b2

ν̃a1b2
a1b1

+ 4Sb2
a2

Sa1
b2

ν̃a2b1
a1b1
− 2Sb1

a2
Sa1

b2
ν̃a2b2

a1b1
. (55)

The E
(10)
exch(S2) term can be rewritten in terms of generalized DF integrals and a few simple

intermediates,

Xb1b2 = Sb1
a2

Sa2
b2

(56)

Xa1a2 = Sb2
a2

Sa1
b2

, (57)

in a form that can be efficiently implemented without forming four-index arrays.

E
(10)
exch(S2) =− 2AP

a1b1B
P
a1b1

− 2Sb1
a2

(2ãP BP
a2b1 −AP

a1a2
BP

a1b1)

− 2Sa1
b2

(2AP
a1b2 b̃

P −AP
a1b1B

P
b1b2)

+ 4Xb1b2 ã
P BP

b1b2 + 4Xa1a2A
P
a1a2

b̃P − 2Sb1
a2

Sa1
b2

AP
a1a2

BP
b1b2 (58)

This formulation of the E
(10)
exch(S2) term allows for a memory efficient implementation by

blocking over the P index.
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2.2.4 E
(10)
exch

The leading exchange term, can also be evaluated through infinite-order in S. This is

achieved by completely orthogonalizing the molecular orbitals of monomer A and B.109

P =







1 Sb1
a1

Sa1
b1

1







−1

−







1 0

0 1







The exact E
(10)
exch evaluation is more involved than it is under the S2 approximation. However,

the both exact and S2 E
(10)
exch are a negligible fraction of the total SAPT0 computation time.

E
(10)
exch =− 2ν̃b1a1

a1b1
− 2P a2

a1
(2ν̃a2b1

a1b1
− ν̃b1a2

a1b1
)− 2P b2

b1
(2ν̃a1b2

a1b1
− ν̃b1a1

a1b2
)

+ 2P b1
a1

(2ν̃a2b1
a2a1
− ν̃a2b1

a1a2
) + 2P b1

a1
(2ν̃b1b2

a1b2
− ν̃b2b1

a1b2
)

+ 2P b1
a1

P b3
b2

(2ν̃b1b3
a1b2
− ν̃b3b1

a1b2
) + 2P a3

a2
P b1

a1
(2ν̃a3b1

a2a1
− ν̃a3b1

a1a2
)

+ 2P a2
a1

P b2
b1

(2ν̃a2b2
a1b1
− ν̃b2a2

a1b1
) + 2P b1

a1
P b2

a2
(2ν̃b1a2

a1b2
− ν̃a2b1

a1b2
) (59)

In structure, the E
(10)
exch terms are identical to the E

(10)
exch(S2) terms, therefore, the factoriza-

tion of these terms follow directly from the E
(10)
exch(S2) correction.

2.2.5 E
(20)
ind,r

The leading induction term contains two contributions: the changes to the electron density

of monomer A induced by monomer B’s electrostatic potential and the changes to the

electron density of monomer B induced by monomer A’s electrostatic potential. Through

second-order in V , these changes are not coupled to each other.110

E
(20)
ind,r(A← B) = 2sr1

a1
(ωB)r1

a1

E
(20)
ind,r(B ← A) = 2ss1

b1
(ωA)b1s1

(60)

This term can be evaluated with or without orbital response; the difference is the origin of

the s coefficients. Here, we will discuss only the more rigorous formulation that includes

the effect of orbital response. In this case, sr1
a1

and ss1
b1

are solutions to the CPHF equations

for their corresponding monomer. Obviously, the work associated with the evaluation of

this correction is entirely in the solution of the CPHF equations,

sr1
a1

=
(

[4νa1a2
r1r2
− νa2a1

r1r2
− νa1r1

a2r2
]sr1

a1
+ (ωB)r1

a1

)

/ (ǫa1 − ǫr1) . (61)
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It should be noted that these equations can be solved exactly, rather than iteratively, how-

ever, this would scale O(o3v3). The iterative solution of these equations scales O(o2v2) (per

iteration), although the formation of the required matrix will scale O(N5) (the exact scaling

is dependant on the algorithm; under the DF approximation, the scaling is O(o2v2Ndf )).

To avoid the O(N5) step and its associated storage requirements, the DF representation of

the two-electron integrals is introduced and the multiplication by s is distributed.

sr1
a1

=
(

4CP
a1r1

CP
a2r2

sr2
a2
− CP

a2r1
CP

a1r2
sr2
a2
− CP

a1a2
CP

r1r2
sr2
a2

+ (ωB)r1
a1

)

/ (ǫa1 − ǫr1) (62)

This allows contributions from νa1a2
r1r2

sr1
a1

to be evaluated as O(ovNdf ), νa2a1
r1r2

sr1
a1

as O(o2vNdf ),

and νa1r1
a2r2

sr1
a1

as O(ov2Ndf ). The bottleneck associated with this implementation is the disk

I/O associated with the CP
r1r2

sr2
a2

contraction. To improve the efficiency of this algorithm,

the two-fold permutational symmetry of the CP
r1r2

DF integrals is exploited in their storage.

Algorithm 2 Pseudocode to solve for the CPHF coefficients of monomer A.

while sr
a NOT converged do

for Pblock < #Pblocks do
Read CP

ar block
for P < #Pblock do

XP ← CP
a2r2

sr2
a2

Zr1
a1
← 4CP

a1r1
XP

Xa1a2 ← CP
a1r2

sr2
a2

Zr1
a1
← −CP

a2r1
Xa1a2

end for
end for
for Pblock < #Pblocks do

Read CP
aa and CP

rr blocks
for P < #Pblock do

Unpack CP
rr permutational symmetry

Xa2r1 ← CP
r1r2

sr2
a2

Zr1
a1
← −CP

a1a2
Xa2r1

end for
end for
sr1
a1

=
(

Zr1
a1

+ (ωB)r1
a1

)

/ (ǫa1 − ǫr1)
end while
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2.2.6 E
(20)
exch−ind,r(S

2)

The E
(20)
ind,r term is evaluated while maintaining only the antisymmetry of the monomer

wavefunctions, not the antisymmetry of the monomer A wavefunction with the monomer B

wavefunction. This additional exchange interaction is computed under the S2 approxima-

tion with the CPHF coefficients used to evaluate E
(20)
ind,r.

110

E
(20)
exch−ind,r(A← B) =− 2sa1

r1
ν̃b1r1

a1b1

− 4sa2
r1

Sb1
a2

ν̃a1r1
a1b1

+ 2sa1
r1

Sb1
a2

ν̃a2r1
a1b1

− 4sa1
r1

Sb1
a2

ν̃r1a2
a1b1

+ 2sa2
r1

Sb1
a2

ν̃r1a1
a1b1

− 4sa1
r1

Sr1
b2

ν̃b2b1
a1b1

+ 2sa1
r1

Sr1
b2

ν̃b1b2
a1b1

+ 4sa2
r1

Sb1
a2

Sr1
b2

ν̃a1b2
a1b1

+ 4sa1
r1

Sb2
a2

Sr1
b2

ν̃a2b1
a1b1
− 2sa1

r1
Sb1

a2
Sr1

b2
ν̃a2b2

a1b1

+ 4sa1
r1

Sb1
a2

Sa2
b2

ν̃r1b2
a1b1

+ 4sa2
r1

Sb2
a2

Sa1
b2

ν̃r1b1
a1b1
− 2sa2

r1
Sb1

a2
Sa1

b2
ν̃r1b2

a1b1
(63)

This term is factorized in a similar manner to the E
(10)
exch term; the difference here is that

virtual orbitals and CPHF coefficients appear in the expression. This term is also negligible

compared to the rest of a SAPT0 computation, however, for very large systems, the use of

generalized DF integrals is necessary to avoid the formation of four-index integrals, which

will be too large to store in memory. By blocking the evaluation of E
(20)
ind,r over the P index,

this term can be easily evaluated with a minimal memory requirement.

2.2.7 E
(20)
disp

When the interaction of nonpolar monomers is considered, the E
(20)
disp correction provides the

leading contribution to the interaction energy. This term has a very simple form,110

E
(20)
disp = 4tr1s1

a1b1
νa1b1

r1s1
, (64)

however, this formulation requires the explicit formation of the trs
ab amplitudes resulting in

a scaling of O(o2v2Ndf ) if the DF approximation is applied. To clarify, this is a result of

the energy denominator that appears in the expression,

E
(20)
disp = 4νr1s1

a1b1
νa1b1

r1s1
∆r1s1

a1b1
. (65)
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If we write the denominator,

∆r1s1
a1b1

=
1

ǫa1 + ǫb1 − ǫr1 − ǫs1

, (66)

and then take the Laplace transform of the energy denominator.5,80

1

x
=

∫ ∞

0
e−xtdt (67)

∫ ∞

0
e−(ǫa1+ǫb1

−ǫr1−ǫs1 )tdt =

∫ ∞

0
e(ǫr1−ǫa1)te(ǫs1−ǫb1

)tdt = ∆r1s1
a1b1

(68)

In practice, we will evaluate this integral numerically,22,216 which leads to:

∆r1s1
a1b1
≈ dL

a1r1
dL

b1s1
, (69)

where L indexes the integration points. Now, the E
(20)
disp correction can be written with

approximate, Laplace transformed denominators as,

E
(20)
disp = 4νr1s1

a1b1
νa1b1

r1s1
dL

a1r1
dL

b1s1
, (70)

the utility of which becomes obvious when we also invoke the DF representation of the two

electron integrals:

E
(20)
disp = 4CP

a1r1
CP

b1s1
CQ

a1r1
CQ

b1s1
dL

a1r1
dL

b1s1
. (71)

Although it may not appear that the application of a Laplace transform leads to a simpler

formulation of E
(20)
disp, the scaling of this term is reduced from O(N5) to, per integration

point, O(N4). In practice, only 6-10 integration points are required for sufficient accuracy

in typical systems.

2.2.8 E
(20)
exch−disp(S

2)

The E
(20)
exch−disp evaluation is the most computationally demanding portion of a SAPT0 com-

putation. Under the approximations considered, it is the only SAPT0 term that unavoidably
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Algorithm 3 Pseudocode to evaluate E
(20)
disp with Laplace transformed energy denominators.

for Pblock < #Pblocks do
Read CP

ar and CP
bs blocks

for Qblock < #Qblocks do
Read CQ

ar and CQ
bs blocks

for L < #IntegrationPoints do
TQ

a1r1 ← CQ
a1r1d

L
a1r1

TQ
b1s1
← CQ

b1s1
dL

b1s1

XPQ ← CP
a1r1

TQ
a1r1

YPQ ← CP
b1s1

TQ
b1s1

E
(20)
disp = −4XPQYPQ

end for
end for

end for

scales O(N5). First, we will consider the canonical form of this correction:110

E
(20)
exch−disp(S

2) =− 2ta1b1
r1s1

[

ν̃s1r1
a1b1

+ Ss1
a1

(2ν̃a2r1
a2b1
− ν̃r1a2

a2b1
) + Ss1

a2
(2ν̃r1a2

a1b1
− ν̃a2r1

a1b1
)

+ Sr1
b1

(2ν̃s1b2
a1b2
− ν̃b2s1

a1b2
) + Sr1

b2
(2ν̃b2s1

a1b1
− ν̃s1b2

a1b1
)

+ Sr1
b1

Sb2
a2

ν̃a2s1
a1b2
− 2Sr1

b2
Sb2

a2
ν̃a2s1

a1b1
− 2Sr1

b1
Sb2

a1
ν̃a2s1

a2b2
+ 4Sr1

b2
Sb2

a1
ν̃a2s1

a2b1

+ Ss1
a1

Sa2
b2

ν̃r1b2
a2b1
− 2Ss1

a2
Sa2

b2
ν̃r1b2

a1b1
− 2Ss1

a1
Sa2

b1
ν̃r1b2

a2b2
+ 4Ss1

a2
Sa2

b1
ν̃r1b2

a1b2

+ Sr1
b2

Ss1
a2

ν̃a2b2
a1b1
− 2Sr1

b1
Ss1

a2
ν̃a2b2

a1b2
− 2Sr1

b2
Ss1

a1
ν̃a2b2

a2b1

+ Sa2
b1

Sb2
a1

ν̃r1s1
a2b2
− 2Sa2

b1
Sb2

a2
ν̃r1s1

a1b2
− 2Sa2

b2
Sb2

a1
ν̃r1s1

a2b1

]

. (72)

Note that this formula contains errors as given in Ref. 110. As written above, this term

can be implemented with O(o3v2) scaling. Heßelmann and Jansen propose a O(o2v2Ndf )

factorization of the ta1b1
r1s1

Sa2
b1

Sb2
a1

ν̃r1s1
a2b2

term that uses DF integrals. It is also possible to use a

O(o4v2) algorithm to evaluate some of these terms; for small systems, the O(N6) algorithm

is surprisingly competitive with the others.

To find the optimal factorization of the E
(20)
exch−disp term, we will examine each term sep-

arately and group similar terms together. First, we will look at the terms that unavoidably
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scale, with DF integrals and Laplace transformed energy denominators, O(N5).

E
(20)
exch−disp(S

2)(N5) =− 2ta1b1
r1s1

[

ν̃s1r1
a1b1
− Ss1

a2
ν̃a2r1

a1b1
− Sr1

b2
ν̃s1b2

a1b1

+ Sr1
b2

Ss1
a2

ν̃a2b2
a1b1

+ Sa2
b1

Sb2
a1

ν̃r1s1
a2b2

]

(73)

Due to the exchange integrals that appear in this expression, the use of Laplace transformed

energy denominators does not lead to any computational savings. The introduction of DF

integrals, however, is helpful. First we will define a few simple intermediates:

XP
a1s1

= Ss1
a2

AP
a1a2

XP
b1r1

= Sr1
b2

BP
b1b2

Y P
a1s1

= Sb2
a1

CP
b2s1

Y P
b1r1

= Sa2
b1

CP
a2r1

. (74)

These intermediates allow us to rewrite these O(N5) terms in a particularly simple form.

E
(20)
exch−disp(S

2)(N5) =− 2ta1b1
r1s1

(AP
a1s1
−XP

a1s1
)(BP

b1r1
−XP

b1r1
)

− 2ta1b1
r1s1

Y P
a1s1

Y P
b1r1

(75)

With this factorization, the contributions from these five terms can be evaluated with

three O(o2v2Ndf ) multiplications. The dispersion amplitudes do need to be formed, but

they do not need to be stored. As a byproduct of this procedure, the E
(20)
disp term can

be obtained. Up to this point, it has been convenient to store the DF integrals with the

auxiliary index running slowest, now, since two auxiliary indices appear in each term, it is

better to transpose the DF integrals. This is also an opportunity to remove frozen occupied

orbitals from the DF integral arrays.

While the Laplace transformed energy denominators does not help with all of the

E
(20)
exch−disp terms, it can reduce the scaling of some of the terms.

E
(20)
exch−disp(S

2)(L) =− 2ta1b1
r1s1

[

2Ss1
a2

ν̃r1a2
a1b1
− 2Ss1

a2
Sa2

b2
ν̃r1b2

a1b1
− 2Sa2

b1
Sb2

a2
ν̃r1s1

a1b2

]

− 2ta1b1
r1s1

[

2Sr1
b2

ν̃b2s1
a1b1
− 2Sr1

b2
Sb2

a2
ν̃a2s1

a1b1
− 2Sa2

b2
Sb2

a1
ν̃r1s1

a2b1

]

(76)
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Algorithm 4 Pseudocode to evaluate the E
(20)
exch−disp(S

2)(N5) contributions.

for Pblock < #Pblocks do
Read active CP

ar block
Transpose and write CP

ar block to disk
end for
for Pblock < #Pblocks do

Read active CP
bs block

Transpose and write CP
bs block to disk

end for
for Pblock < #Pblocks do

Read AP
aa and AP

as blocks
XP

a1s1
← AP

a1s1
− Ss1

a2
AP

a1a2

Transpose and write XP
as block to disk

end for
for Pblock < #Pblocks do

Read BP
bb and BP

rb blocks
XP

b1r1
← BP

r1b1
− Sr1

b2
BP

b1b2

Transpose and write XP
br block to disk

end for
for Pblock < #Pblocks do

Read CP
ar block

Y P
b1r1
← Sa2

b1
CP

a2r1

Transpose and write Y P
br block to disk

end for
for Pblock < #Pblocks do

Read CP
bs block

Y P
a1s1
← Sb2

a1
CP

b2s1

Transpose and write Y P
as block to disk

end for
for Ablock < #Ablocks do

Read CP
ar, XP

as, and Y P
as blocks

for Bblock < #Bblocks do
Read CP

bs, XP
br, and Y P

br blocks
for a < #Ablock do

for b < #Bblock do
tr1s1
a1b1
← CP

a1r1
CP

b1s1
∆r1s1

a1b1

E
(20)
exch−disp ← −2tr1s1

a1b1
XP

a1s1
XP

b1r1

E
(20)
exch−disp ← −2tr1s1

a1b1
Y P

a1s1
Y P

b1r1

end for
end for

end for
end for
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To explicitly show the origin of this savings, we first must recognize two useful intermediates

that could be formed.

TP
a1r1

= ta1b1
r1s1

BP
b1s1
≈ −CQ

a1r1
CQ

b1s1
BP

b1s1
dL

a1r1
dL

b1s1

TP
b1s1

= ta1b1
r1s1

AP
a1r1
≈ −CQ

a1r1
CQ

b1s1
AP

a1r1
dL

a1r1
dL

b1s1
(77)

This allows us to write:

E
(20)
exch−disp(S

2)(L) =− 2TP
b1s1

[

2Ss1
a2

BP
a2b1 − 2Ss1

a2
Sa2

b2
BP

b1b2 − 2Sa2
b1

Sb2
a2

BP
b2s1

]

− 2TP
a1r1

[

2Sr1
b2

AP
a1b2 − 2Sr1

b2
Sb2

a2
AP

a1a2
− 2Sa2

b2
Sb2

a1
AP

a2r1

]

. (78)

Using canonical energy denominators, the formation of these intermediates would scale

O(o2v2Ndf ); if the Laplace transform is applied to the energy denominator, this scaling

can be reduced to O(ovN2
df ). Once these intermediates are available, their contribution to

E
(20)
exch−disp can be evaluated simply by contracting the overlap integrals with the DF integrals

that appear in a certain term and then multiplying by the appropriate T type intermediate.

The remaining terms can be reduced to a dispersion amplitude and two two-index arrays.

Structurally, there are two types of these terms, ta1b1
r1s1

Xa1r1Yb1s1 and ta1b1
r1s1

Xa1s1Yb1r1 . When

the dispersion amplitudes are written with Laplace transformed energy denominators and

DF integrals, the former can be evaluated with O(ovNdf ) work, whereas the latter can be

evaluated with O(o2vNdf ) work.

E
(20)
exch−disp(S

2)(N3, N4) =− 2ta1b1
r1s1

[

Ss1
a1

(2ν̃a2r1
a2b1
− ν̃r1a2

a2b1
) + Sr1

b1
(2ν̃s1b2

a1b2
− ν̃b2s1

a1b2
)

+ Sr1
b1

Sb2
a2

ν̃a2s1
a1b2
− 2Sr1

b1
Sb2

a1
ν̃a2s1

a2b2
+ 4Sr1

b2
Sb2

a1
ν̃a2s1

a2b1

+ Ss1
a1

Sa2
b2

ν̃r1b2
a2b1
− 2Ss1

a1
Sa2

b1
ν̃r1b2

a2b2
+ 4Ss1

a2
Sa2

b1
ν̃r1b2

a1b2

− 2Sr1
b1

Ss1
a2

ν̃a2b2
a1b2
− 2Sr1

b2
Ss1

a1
ν̃a2b2

a2b1

]

(79)

2.3 Intramonomer Correlation Corrections

2.3.1 E
(12)
elst,r

The E
(12)
elst,r correction attempts to correct the electrostatic energy by using second-order

correlation corrections to the density to improve the electrostatic energies computed with
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Algorithm 5 Pseudocode to form TP
ar intermediates with Laplace transformed energy de-

nominators.
for Pblock < #Pblocks do

Read BP
bs block

for Qblock < #Qblocks do
Read CQ

bs block
for L < #IntegrationPoints do

DQ
b1s1
← CQ

b1s1
dL

b1s1

XL
PQ ← BP

b1s1
DQ

b1s1

end for
end for

end for
for Ablock < #Ablocks do

Read CP
ar block

for a < #Ablock do
for L < #IntegrationPoints do

DP
a1r1
← CP

a1r1
dL

a1r1

TQ
a1r1 ← XL

PQDP
a1r1

end for
Transpose and write TQ

ar to disk
end for

end for

Algorithm 6 Pseudocode to evaluate the types of terms that appear in E
(20)
exch−disp(N

3, N4).

for Pblock < #Pblocks do
Read CP

ar and CP
bs blocks

for L < #IntegrationPoints do
DP

a1r1
← CP

a1r1
dL

a1r1

DP
b1s1
← CP

b1s1
dL

b1s1

XP ← DP
a1r1

Xa1r1

Y P ← DP
b1s1

Yb1s1

E
(20)
exch−disp ← XP Y P

for P < #Pblock do
Xa1b1 ← DP

a1r1
Xb1r1

Ya1b1 ← DP
b1s1

Ya1s1

E
(20)
exch−disp ← Xa1b1Ya1b1

end for
end for

end for
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Hartree-Fock densities.110

E
(120)
elst,resp = 2θa1a2

r1r2
tr1r3
a1a2

(ωB)r2
r3
− 2θa1a2

r1r2
tr1r2
a1a3

(ωB)a2
a3

+ 4Re
(2)

Y a1
r1

sr1
a1

(80)

Here, sr1
a1

is a solution to the CPHF equations. The first two terms can be evaluated

efficiently by realizing that the contraction of the amplitudes results in the oo and vv blocks

of the unrelaxed MP2 one-particle density matrix (OPDM).

P a2
a3

=θa1a2
r1r2

tr1r2
a1a3

(81)

P r2
r3

=θa1a2
r1r2

tr1r3
a1a2

(82)

This results in a simpler form for the correction:

E
(120)
elst,resp = 2P r2

r1
(ωB)r1

r2
− 2P a2

a1
(ωB)a1

a2
+ 4Re

(2)

Y a1
r1

sr1
a1

. (83)

The work in evaluating the E
(12)
elst,r correction is in the formation of

(2)

Y .

(2)

Y a1
r1

= θa4a2
r4r2

tr4r3
a4a2

(2νa1r2
r1r3
− νr2a1

r1r3
)− θa4a2

r4r2
tr4r2
a4a3

(2νa1a3
r1a2
− νa3a1

r1a2
)

+θa3a1
r3r2

νr3r2
a3r1
− θa3a2

r3r1
νr3a1

a3a2
(84)

This is the first place where the formation of the ΘP
a1r1

intermediates is useful.

ΘP
a1r1

= θr1r2
a1a2

AP
a2r2

(85)

The introduction of ΘP
a1r1

intermediates along with density fitting integrals and MP2 OPDM

allows the
(2)

Y a1
r1

to be written as:

(2)

Y a1
r1

= 2P r2
r3

CP
a1r1

CP
r2r3
− P r2

r3
CP

a1r3
CP

r1r2
− 2P a2

a3
CP

a1r1
CP

a2a3
+ P a2

a3
CP

a3r1
CP

a1a2

+ΘP
a1r2

CP
r1r2
−ΘP

a2r1
CP

a1a2
. (86)

This factorization of the E
(12)
elst,r correction does not reduce the scaling, O(N5), but rather

avoids the need to from and operate on the four-index ovvv integrals. By reformulating the

equations in terms of three-index quantities, this potential I/O bottleneck is removed.
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2.3.2 E
(13)
elst,r

The third-order correction to the electrostatic energy was a similar form to E
(12)
elst,r, however,

the amplitudes required to evaluate this correction are more involved.110

E
(130)
elst,resp = 4Re(

(2)

θ a1a2
r1r2

tr1r3
a1a2

(ωB)r2
r3
−

(2)

θ a1a2
r1r2

tr1r2
a1a3

(ωB)a2
a3

+
(3)

Y a1
r1

sr1
a1

) (87)

The first two terms can be evaluated in a similar manner to the E
(12)
elst,r correction with the

following contractions:

Qa2
a3

=
(2)

θ a1a2
r1r2

tr1r2
a1a3

(88)

Qr2
r3

=
(2)

θ a1a2
r1r2

tr1r3
a1a2

. (89)

Again, the more involved step in the evaluation of this term is the formation of the
(3)

Y ,

(3)

Y a1
r1

=
[ (2)

θ a3a1
r3r2

νr3r2
a3r1
−

(2)

θ a3a2
r3r1

νr3a1
a3a2

+
(2)

θ a4a2
r4r2

tr4r3
a4a2

(2νa1r2
r1r3
− νr2a1

r1r3
) + θa4a2

r4r2

(2)
t r4r3

a4a2
(2νa1r2

r1r3
− νr2a1

r1r3
)

−
(2)

θ a4a2
r4r2

tr4r2
a4a3

(2νa1a3
r1a2
− νa3a1

r1a2
)− θa4a2

r4r2

(2)
t r4r2

a4a3
(2νa1a3

r1a2
− νa3a1

r1a2
)

+
(2)
γ a1a2

a4a3
(2νa4a3

r1a2
− νa3a4

r1a2
)−

(2)
γ r4r3

r1r2
(2νa1r2

r4r3
− νr2a1

r4r3
)

+
(2)
γ a1r3

r2a3
(2νa3r2

r3r1
− νr2a3

r3r1
)−

(2)
γ̄ a1r3

r2a3
(2νr2a3

r3r1
− νa3r2

r3r1
)

−
(2)
γ a2r3

r1a3
(2νa1a3

a2r3
− νa3a1

a2r3
) +

(2)
γ̄ a2r3

r1a3
(2νa3a1

a2r3
− νa1a3

a2r3
)
]

∆r1
a1

, (90)

where the
(2)
γ quantities are defined as:

(2)
γ a1a2

a4a3
= tr1r2

a4a3
ta1a2
r1r2

(91)

(2)
γ r4r3

r1r2
= tr4r3

a1a2
ta1a2
r1r2

(92)

(2)
γ a1r2

r1a2
= θa1a3

r1r3
ta3a2
r3r2
− ta1a3

r1r3
tr2r3
a3a2

(93)

(2)
γ̄ a1r2

r1a2
= ta3a1

r1r3
tr3r2
a2a3

. (94)

The first six terms that contribute to
(3)

Y are structurally identical to the
(2)

Y and can be

evaluated simply. This uses the Q intermediates defined above as well as:

Q̄a2
a3

= θa1a2
r1r2

(2)
t r1r2

a1a3
(95)

Q̄r2
r3

= θa1a2
r1r2

(2)
t r1r3

a1a2
. (96)
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It is the
(2)
γ quantities that are problematic; in particular, the

(2)
γ r4r3

r1r2
term is especially

difficult. To directly form this quantity would scale O(o2v4) and, therefore, must be avoided.

The preferred method is described below.

Xa1r2
a2a3

= tr4r3
a2a3

(2νa1r2
r4r3
− νr2a1

r4r3
) (97)

(3)

Y a1
r1
← Xa1r2

a2a3
ta2a3
r1r2

(98)

The formation of the ovvv integrals scales as O(ov3Ndf ), followed by the contraction of these

integrals with the doubles amplitudes, which scales as O(o3v3). The ovvv integrals can be

formed in batches and do not need to be stored. The
(2)
γ a1a2

a4a3
term scales O(o4v2) to form

followed by an O(o4v) contraction to evaluate its contribution to
(3)

Y . The
(2)
γ a1r3

r2a3
and

(2)
γ̄ a1r3

r2a3

quantities are also evaluated canonically (scaling O(o3v3)), but DF integrals are introduced

in order to evaluate their contribution to
(3)

Y . By defining a few new intermediates,

Y P
a1r2

=
(2)
γ a1r3

r2a3
CP

a3r3
(99)

Ȳ P
a1r2

=
(2)
γ̄ a1r3

r2a3
CP

a3r3
(100)

Y P
a1a3

=
(2)
γ a1r3

r2a3
CP

r2r3
(101)

Y P
r1r3

=
(2)
γ a2r3

r1a3
CP

a2a3
(102)

Ȳ P
a1a3

=
(2)
γ̄ a1r3

r2a3
CP

r2r3
(103)

Ȳ P
r1r3

=
(2)
γ̄ a2r3

r1a3
CP

a2a3
, (104)

we can rewrite the entirety of the E
(130)
elst,r correction in a form that describes its implemen-

tation.

E
(130)
elst,resp = 4Re(Qr3

r2
(ωB)r2

r3
−Qa3

a2
(ωB)a2

a3
+

(3)

Y a1
r1

sr1
a1

) (105)

53



(3)

Y a1
r1

=
[ (2)

ΘP
a1r2

CP
r1r2
−

(2)

ΘP
a2r1

CP
a1a2

+Qr2
r3

(2νa1r2
r1r3
− νr2a1

r1r3
) + Q̄r2

r3
(2νa1r2

r1r3
− νr2a1

r1r3
)

−Qa2
a3

(2νa1a3
r1a2
− νa3a1

r1a2
)− Q̄a2

a3
(2νa1a3

r1a2
− νa3a1

r1a2
)

+
(2)
γ a1a2

a4a3
(2νa4a3

r1a2
− νa3a4

r1a2
)−Xa1r2

a2a3
ta2a3
r1r2

+2Y P
a1r2

CP
r1r2
− Y P

a1a3
CP

a3r1
− 2Ȳ P

a1a3
CP

a3r1
+ Ȳ P

a1r2
CP

r1r2

−2Y P
a2r1

CP
a1a2

+ Y P
r1r3

CP
a1r3

+ 2Ȳ P
r1r3

CP
a1r3
− Ȳ P

a2r1
CP

a1a2

]

∆r1
a1

(106)

The equations for the E
(13)
elst,r correction as given in Ref. 110 contain errors.

2.3.3 E
(11)
exch

The first-order intramonomer correction to exchange, E
(110)
exch , it the first example of gener-

alized DF integrals used in higher-order SAPT. In our previous work, the second quantized

form of correction was evaluated in order to exploit DF factorizations. Now, the more ef-

ficient interaction density matrix formulation of the term can be used. This correction is

given as:154

E
(110)
exch =− 2θr1r2

a1a2
ν̃a1a2

r1b1
Sb1

r2
− 2θa1a2

r1r2
ν̃r1r2

a1b1
Sb1

a2

+ 4Reθa1a2
r1r2

(ν̃r2b2
a2b1

Sb1
a1

Sr1
b2
− 2ν̃r2b1

a2b1
Sb2

a1
Sr1

b2
). (107)

Using intermediates that have been formed with the appropriate generalized DF integrals,

we can rewrite E
(110)
exch as:

E
(110)
exch =− 2ΘP

a2r2
BP

a2b1S
b1
r2
− 2ΘP

a2r2
BP

r2b1S
b1
a2

+ 4ΘP
a1r1

BP
b1b2S

b1
a1

Sr1
b2
− 8ΘP

a1r1
BP

b1b1S
b2
a1

Sr1
b2

. (108)

This allows the E
(110)
exch correction to be evaluated in terms of dressed DF integrals, ampli-

tudes, and overlap integrals. Ignoring the formation of Θ, the scaling of the E
(110)
exch evaluation

is changed from O(o3v2) to O(o2vNdf ); in practice, this is almost always a reduction. As

written in Ref. 110, this formula (and subsequently, the formula for E
(12)
exchKu

2 ) contain errors.
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2.3.4 E
(111)
exch

The bilinear exchange term is given as:154

E
(111)
exch = −4Reθr1r2

a1a2
θs1s2
b1b2

ν̃a1b1
r1s1

Sb2
r2

Sa2
s2
− 4Reθa1a2

r1r2
θb1b2
s1s2

ν̃r1b1
a1s1

Sr2
s2

Sb2
a2

. (109)

For this correction, particularly great savings can be realized, since the canonical evaluation

of the term is O(o3v3). The scaling of this term can be reduced to O(o2v2Ndf ) if appropriate

intermediates are formed.

E
(111)
exch = −4ReΘP

a1r1
ΘP

b1s1
Sb1

r1
Sa1

s1
− 4ReΘP

a1r1
ΘP

b1s1
Sr1

s1
Sb1

a1
(110)

This particularly convenient form of E
(111)
exch justifies the use of the Θ type intermediates in

other terms (e.g. E
(110)
exch ) that scale better than O(o2v2Ndf ) canonically.

2.3.5 E
(12)
exchKu

2

This second-order intramonomer correlation correction is identical to the E
(11)
exch correction

with the exception that the doubles amplitudes that appear in this correction are the second-

order doubles amplitudes,
(2)
t r1r2

a1a2
. As such, it can be evaluated in an identical manner using

slightly different intermediates.110

E
(120)
exch Ku

2 =− 2
(2)

ΘP
a2r2

BP
a2b1S

b1
r2
− 2

(2)

ΘP
a2r2

BP
r2b1S

b1
a2

+ 4
(2)

ΘP
a1r1

BP
b1b2S

b1
a1

Sr1
b2
− 8

(2)

ΘP
a1r1

BP
b1b1S

b2
a1

Sr1
b2

. (111)

2.3.6 E
(12)
exchKf

2

Another of the second-order intramonomer correlation correction to exchange is given by:110

E
(120)
exch Kf

2 =− 2tr1
a1

ν̃b1a1
r1b1
− 2ta1

r1
ν̃b1r1

a1b1
− 4ta2

r1
Sb1

a2
ν̃a1r1

a1b1
− 4tr1

a1
Sb1

a2
ν̃a1a2

r1b1

− 4ta1
r1

Sb1
a2

ν̃r1a2
a1b1
− 4tr1

a2
Sb1

r1
ν̃a1a2

a1b1
+ 2tr1

a2
Sb1

r1
ν̃a2a1

a1b1
+ 2ta2

r1
Sb1

a2
ν̃r1a1

a1b1

+ 2tr1
a1

Sb1
a2

ν̃a2a1
r1b1

+ 2ta1
r1

Sb1
a2

ν̃a2r1
a1b1
− 4ta1

r1
Sr1

b2
ν̃b2b1

a1b1
− 4tr1

a1
Sa1

b2
ν̃b2b1

r1b1

+ 2ta1
r1

Sr1
b2

ν̃b1b2
a1b1

+ 2tr1
a1

Sa1
b2

ν̃b1b2
r1b1

+ 8Reta2
r1

Sb1
a2

Sr1
b2

ν̃a1b2
a1b1

+ 8Reta1
r1

Sb1
a2

Sa2
b2

ν̃r1b2
a1b1

+ 8Reta1
r1

Sb2
a2

Sr1
b2

ν̃a2b1
a1b1

+ 8Reta2
r1

Sb2
a2

Sa1
b2

ν̃r1b1
a1b1

− 4Reta1
r1

Sb1
a2

Sr1
b2

ν̃a2b2
a1b1
− 4Reta2

r1
Sb1

a2
Sa1

b2
ν̃r1b2

a1b1
. (112)
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This corrections can be rewritten with the Ṽ a1
r1

exchange-induction integrals to simplify the

expression (remembering that certain terms contributing to Ṽ a1
r1

must be scaled differently

in this case).

E
(120)
exch Kf

2 =− 2tr1
a1

Ṽ a1
r1
− 2tr1

a1
AP

r1b1B
P
a1b1 − 4tr1

a2
Sb1

r1
ãP BP

a2b1

+ 2tr1
a2

Sb1
r1

AP
a1a2

BP
a1b1 + 2tr1

a1
Sb1

a2
AP

a2r1
BP

a1b2

− 4tr1
a1

Sa1
b2

AP
r1b2 b̃

P + 2tr1
a1

Sa1
b2

AP
r1b1B

P
b1b2 (113)

The E
(12)
exchKf

2 term can be evaluated more efficiently than most of the other correlation

corrections; the use of generalized DF integrals makes this term especially easy to evaluate.

2.3.7 E
(12)
exchKu

11

The most involved of the second-order intramonomer correlation corrections to exchange is

the E
(12)
exchKu

11 term. Given as:110

E
(120)
exch Ku

11 = −θr1r2
a1a2

ta1a2
r3r2

(

2ν̃b1r3
r1b1

+ 4Sb1
a3

ν̃r3a3
r1b1
− 2Sb1

a3
ν̃a3r3

r1b1
+ 4Sb1

r1
ν̃a3r3

a3b1

− 2Sb1
r1

ν̃r3a3
a3b1

+ 4Sr3
b2

ν̃b2b1
r1b1
− 2Sr3

b2
ν̃b1b2

r1b1
− 4Sb1

a3
Sa3

b2
ν̃r3b2

r1b1

− 4Sb1
r1

Sr3
b2

ν̃a3b2
a3b1
− 8Sb1

r1
Sa3

b1
ν̃r3b2

a3b2
+ 4Sb1

r1
Sa3

b2
ν̃r3b2

a3b1

)

+ θr1r2
a1a2

ta3a2
r1r2

(

2ν̃b1a1
a3b1

+ 4Sb1
a4

ν̃a1a4
a3b1
− 2Sb1

a4
ν̃a4a1

a3b1
+ 4Sb1

a3
ν̃a4a1

a4b1

− 2Sb1
a3

ν̃a1a4
a4b1

+ 4Sa1
b2

ν̃b2b1
a3b1
− 2Sa1

b2
ν̃b1b2

a3b1
− 4Sb1

a4
Sa4

b2
ν̃a1b2

a3b1

− 4Sb1
a3

Sa1
b2

ν̃a4b2
a4b1
− 8Sb1

a3
Sa4

b1
ν̃a1b2

a4b2
+ 4Sb1

a3
Sa4

b2
ν̃a1b2

a4b1

)

− θr1r2
a1a2

ta1a2
r3r4

(

2Sb1
r2

ν̃r3r4
r1b1

+ 4Sb2
r2

Sr4
b2

ν̃r3b1
r1b1
− 2Sb1

r2
Sr4

b2
ν̃r3b2

r1b1

)

− θr1r2
a1a2

ta3a4
r1r2

(

2Sb1
a4

ν̃a1a2
a3b1

+ 4Sb2
a4

Sa2
b2

ν̃a1b1
a3b1
− 2Sb1

a4
Sa2

b2
ν̃a1b2

a3b1

)

− 2θr1r3
a1a3

θa2a1
r2r1

(

Sb1
a2

ν̃a3r2
r3b1

+ Sb1
r3

ν̃r2a3
a2b1
− 2Sb1

r3
Sa3

b2
ν̃r2b2

a2b1
+ 4Sb2

r3
Sa3

b2
ν̃r2b1

a2b1

)

−
(

3ta1a2
r1r2

tr1r3
a1a3

+ θa2a1
r1r2

θr1r3
a3a1

)(

−Sb1
a2

ν̃r2a3
r3b1
− Sb1

r3
ν̃a3r2

a2b1

− 2Sb2
r3

Sr2
b2

ν̃a3b1
a2b1
− 2Sb2

a2
Sa3

b2
ν̃r2b1

r3b1
+ Sb1

a2
Sa3

b2
ν̃r2b2

r3b1
+ Sb1

r3
Sr2

b2
ν̃a3b2

a2b1

)

, (114)

this term contains some particularly expensive contractions if they are not optimally imple-

mented. Note that this formula contains errors as given in Ref. 110. First, we will consider

the first two groups of terms that appear in this correction. If the θ and t amplitudes are
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contracted directly, the result (P r3
r1

and P a3
a1

, respectively) is identical to the two P quantities

that appear in the E
(12)
elst,r and E

(13)
elst,r corrections. The introduction of these intermediates

allows these two groups of terms to be easily evaluated after generalized DF integrals are

introduced. The third group of terms is the most expensive, therefore, we will address it in

detail.

E
(120)
exch Ku

11 ← −θr1r2
a1a2

ta1a2
r3r4

(

2Sb1
r2

ν̃r3r4
r1b1

+ 4Sb2
r2

Sr4
b2

ν̃r3b1
r1b1
− 2Sb1

r2
Sr4

b2
ν̃r3b2

r1b1

)

(115)

Direct contraction of the θ and t amplitudes, in this case, would scale as O(o2v4) and,

therefore, should be avoided. However, if the amplitudes are first contracted with the

overlap integrals, the resultants can be directly contracted with, at worst, O(o3v3) cost. In

the case of the second term, the two-electron integrals can be internally contracted to a

two-index quantity, which can also be contracted with the amplitudes.

U r1b1
a1a2

= θr1r2
a1a2

Sb1
r2

W r1b1
r3r4

= U r1b1
a1a2

ta1a2
r3r4

Xr1r2
a1a2

= ta1a2
r3r4

Sb2
r2

Sr4
b2

AP
r1r3

b̃P

Y a1a2
r3b2

= ta1a2
r3r4

Sb2
r4

Zr1b1
r3b2

= U r1b1
a1a2

Y a1a2
r3b2

(116)

With these new intermediates, the third group of terms in E
(120)
exch Ku

11 can be evaluated with

O(o3v3) effort.

E
(120)
exch Ku

11 ← −2W r1b1
r3r4

ν̃r3r4
r1b1
− 4Xr1r2

a1a2
θr1r2
a1a2

+ 2Zr1b1
r3b2

ν̃r3b2
r1b1

(117)

The fourth group of terms is much easier to handle; the amplitudes can be directly con-

tracted, removing all the virtual indices. This contraction scales as O(o4v2) and the resul-

tant is an oooo quantity. The fourth and fifth terms are evaluated similarly, the amplitudes

are directly contracted, scaling O(o3v3), and the resultant is contracted with the overlap

integrals and two-electron integrals to evaluate the contribution to E
(120)
exch Ku

11.

2.3.8 tE
(22)
ind

The equation for the second-order correction to induction is taken from reference 212,

however, the formula presented in that work contains errors. This correction has two parts,
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tE
(220)
ind (A ← B) and tE

(220)
ind (A → B). Here, (A ← B) refers to the interaction of monomer

A with the electric field of monomer B and (A → B) refers to the interaction of monomer

B with the electric field of monomer A. Both of these corrections can be evaluated more

efficiently through the introduction of DF intermediates. The tE
(220)
ind (A← B) correction is

given by

tE
(220)
ind (A← B) = (2Xr1r2

a1a2
−Xr2r1

a1a2
)Xa1a2

r1r2
∆r1r2

a1a2
+ 4tr1

a1
za1
r1

− 2θa1a2
r1r2

Ia3
r3

((ωB)r2
a3

tr3r1
a2a1

+ (ωB)r3
a2

tr2r1
a3a1

)

− 2θr1r2
a1a2

Ir3
a3

(Ia2
r3

νa3a1
r2r1

+ Ia3
r2

νa2a1
r3r1

)

+ 2Ir1
a1

Ir2
a2

(2)

θ a1a2
r1r2

/∆r1r2
a1a2
− 4Ir1

a1
Ir2
a2

(2νa1r3
r1a3
− νr3a1

r1a3
)θa3a2

r3r2
, (118)

where

Ia1
r1

= (ωB)a1
r1

∆r1
a1

(119)

and

za1
r1

= (ωB)r2
r1

Ia1
r2
− (ωB)a1

a2
Ia2
r1

. (120)

The Xa1a2
r1r2

quantity is given as

Xa1a2
r1r2

= (ωB)r3
r1

ta1a2
r3r2

+ (ωB)r3
r2

ta1a2
r1r3
− (ωB)a1

a3
ta3a2
r1r2
− (ωB)a2

a3
ta1a3
r1r2

νa1r3
r1r2

Ia2
r3

+ νr3a2
r1r2

Ia1
r3
− νa1a2

r1a3
Ia3
r2
− νa1a2

a3r2
Ia3
r1

. (121)

DF intermediates can only be used in the first, fourth and sixth terms of tE
(220)
ind (A ← B).

First, we will examine the formation of Xa1a2
r1r2

. The first four terms of Xa1a2
r1r2

cannot use DF

intermediates. Including the contributions from the last two terms conventionally scales as

O(o3v2). Using DF intermediates would lead to a scaling of O(o2v2nri), therefore we will

not use DF intermediates to evaluate this term. The fifth and sixth terms depend on the

ov3 integrals and can be evaluated by defining an intermediate as

DP
a1r1

= CP
r3r1

Ia1
r3

. (122)

This contribution to Xa1a2
r1r2

can be evaluated by forming another quantity,

Y a1a2
r1r2

= DP
a1r1

CP
a2r2

, (123)
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and adding

Xa1a2
r1r2

= Y a1a2
r1r2

+ Y a2a1
r2r1

. (124)

To evaluate the fourth tE
(220)
ind (A← B) term, the Θ intermediates can be reused along with

two new quantities:

EP
a2r2

= Ir3
a3

Ia2
r3

CP
a3r2

(125)

and

FP
a2r2

= Ir3
a3

Ia3
r2

CP
a2r3

. (126)

With these quantities, this contribution to tE
(220)
ind (A← B) can be evaluated as

−2ΘP
a2r2

(EP
a2r2

+ FP
a2r2

) (127)

The sixth term contributing to tE
(220)
ind (A← B) can be evaluated conventionally as O(o2v2).

The introduction of DF intermediates leads to a scaling of O(ov2nri), so DF intermediates

may not be optimal in this case.

A conventional evaluation of tE
(220)
ind (A ← B) will scale O(o2v3). Specifically, the first,

third and fourth terms exhibit this scaling, while the fifth and sixth terms will scale O(o2v2).

The purpose of introducing DF intermediates into the tE
(220)
ind (A ← B) evaluation was to

remove the need to deal with a type of ov3 integrals explicitly. The two terms where DF

intermediates were introduced scale O(o2v2nri).

The tE
(220)
ind (A→ B) contributions to tE

(220)
ind can be written as

tE
(220)
ind (A→ B) = −8θa3a2

r1r2
tr1r2
a3a1

νa1s1
a2b1

Ib1
s1

+ 8θa1a2
r3r2

tr3r1
a1a2

νr1s1
r2b1

Ib1
s1

+ 16ta1
r1

νa1s1
r1b1

Ib1
s1

. (128)

This can be evaluated by substituting some of the intermediates (including the P quantities

used in several places) defined earlier:

tE
(220)
ind (A→ B) =− 8(P a1

a2
CP

a1a2
)(CP

b1s1
Ib1
s1

) + 8(P r1
r2

CP
r1r2

)(CP
b1s1

Ib1
s1

)

+ 16(ta1
r1

CP
a1r1

)(CP
b1s1

Ib1
s1

). (129)

The quantities inside of the parenthesis should be fully contracted, then this term can

be evaluated as a series of dot products. Conventionally, this term scales O(ov3); the
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DF implementation scales O(v2nri) and avoids the r2bs integrals. By introducing DF

intermediates into the tE
(220)
ind evaluation, the computation of two types of ov3 integrals has

been avoided.

2.3.9 E
(21)
disp

The first-order intramonomer correlation correction to dispersion is given as:110

E
(210)
disp = 4ta1b1

r1s1
tr2s1
a2b1

(2νr1a2
a1r2
− νa1r1

a2r2
) + 8Reta1b1

r1s1
νa2b1

r2s1
θr1r2
a1a2

. (130)

Canonically, this term involves two O(o3v3) contractions. At first glance, it is obvious

that DF intermediates can be applied to the second term, but it does not appear that

the first term will benefit from the introduction of DF integrals. Indeed, DF integrals

alone cannot improve the scaling of the first term, however, if Laplace transformed energy

denominators are also introduced, the scaling can be reduced. We will consider two paths

to the contraction,

Za1a2
r1r2

= ta1b1
r1s1

tr2s1
a2b1

(131)

through the introduction of DF integrals and Laplace transformed energy denominators.

First, we will apply Laplace transformed energy denominators to one of the amplitudes and

leave the other in its canonical form.

W P,L
a1r1

= ta1b1
r1s1

CP
b1s1

dL
b1s1

(132)

Za1a2
r1r2

= W P,L
a1r1

CP
a2r2

dL
a2r2

(133)

Here, there are two steps, each of which scale O(o2v2Ndf )Nδ This will out perform a canon-

ical implementation for realistic systems (i.e. o >> 1). Next, we will apply Laplace

transforms and DF integrals to both of the amplitudes.

XLM
PQ = CP

b1s1
CQ

b1s1
dL

b1s1
dM

b1s1
(134)

Y P,M
a1r1

= CQ
a1r1

XLM
PQ dL

a1r1
(135)

Za1a2
r1r2

= Y P,M
a1r1

CP
a2r2

dM
a2r2

(136)

Here there are two steps that scale asO(ovN2
df )N2

δ and a final step that scalesO(o2v2Ndf )Nδ .

It is uncertain which of these factorizations will be faster in general. In theory, the second
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factorization can be no more than 2 times faster than the first factorization, however, it

also could be infinitely slower. The factorization of the ta1b1
r1s1

tr2s1
a2b1

contraction was shown for

illustrative purposes. In practice, it is better to contract one of the dispersion amplitudes

with the antisymmetrized two-electron integrals. This contraction also appears in the E
(211)
disp

and E
(22)
disp(D) corrections, therefore, it can be reused. As such, the final form for the E

(21)
disp

correction is:

E
(210)
disp = 4AGa1b1

r1s1
tr1s1
a1b1

+ 8ReTP
a1r1

ΘP
a1r1

. (137)

2.3.10 E
(211)
disp

Much like for the exchange corrections, the second-order intramonomer correlations correc-

tions to dispersion contain a “bilinear term.” Given as:110

E
(211)
disp = 8ReXa1b1

r1s1
Y r1s1

a1b1
∆a1b1

r1s1
+ 8Reθa1a2

r1r2
θb1b2
s1s2

νr2s1
a2b1

ta1b2
r1s2

, (138)

where

Xa1b1
r1s1

= θb1b2
s1s2

νa1s2
r1b2

+ ta1b2
r1s2

(2νb1b2
s1s2
− νb1s1

b2s2
) (139)

Y a1b1
r1s1

= θa1a2
r1r2

νb1r2
s1a2

+ ta2b1
r2s1

(2νa1a2
r1r2
− νa1r1

a2r2
), (140)

canonically, this correction scales O(o3v3). The second term in E
(211)
disp is immediately

amenable to the introduction of DF intermediates; the scaling of this term is reduced to

O(o2v2Ndf ). Likewise, the first term that appears in the X and Y quantities can benefit

from the introduction of DF intermediates. The scaling of the second term that appears

in these quantities can also be reduced if Laplace transformed energy denominators are

applied. With the AG and BG intermediates, the X and Y quantities can be rewritten in a

manner that illustrates a more efficient implementation.

Xa1b1
r1s1

= CP
a1r1

ΘP
b1s1

+BGa1b1
r1s1

(141)

Y a1b1
r1s1

= ΘP
a1r1

CP
b1s1

+AGa1b1
r1s1

(142)

This allows the E
(211)
disp correction to be written in a form that will scale O(N5) instead of

O(N6).

E
(211)
disp = 8ReXa1b1

r1s1
Y r1s1

a1b1
∆a1b1

r1s1
+ 8ReΘP

a1r1
ΘP

b1s1
ta1b1
r1s1

(143)
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2.3.11 E
(22)
disp(S)

The singles contribution to E
(22)
disp has a particularly simple form:110

E
(22)
disp(S) = 8Reta1

r1
Xr1

a1
∆a1

r1
, (144)

where

Xr1
a1

= νr1b1
r2s1

tr2s1
a1b1
− νa2b1

a1s1
tr1s1
a2b1

. (145)

The X quantity can be rewritten entirely in terms of three-index quantities.

Xr1
a1

= TP
a1r2

CP
r1r2
− TP

a2r1
CP

a1a2
(146)

This does not lower the scaling of the E
(22)
disp(S) correction, since, canonically it is already

O(N5). The advantage of the DF factorization is that the ovvv integrals do not need to be

formed.

2.3.12 E
(22)
disp(D)

The doubles contribution to E
(22)
disp is given as:110

E
(22)
disp(D) = 4Re(2Xa1a2

r1r2
−Xa1a2

r2r1
)
(2)
t r1r2

a1a2
+ 4Y r1s1

a1b1
Y a1b1

r1s1
∆r1s1

a1b1
, (147)

where

Xa1a2
r1r2

= νa1s1
r1b1

ta2b1
r2s1

+ νa2s1
r2b1

ta1b1
r1s1

(148)

Y a1b1
r1s1

= νa2s1
r2b1

θa1a2
r1r2

+ (2νa1r2
r1a2
− νa1r1

a2r2
)ta2b1

r2s1
(149)

Note that the definition of U in Ref. 110 is equivalent to the
(2)
t amplitudes; the different

multiplicative factors are a result of a slightly different definition for θ. The X quantity can

be formed with existing DF intermediates. Additionally, the first term contributing to Y

can use existing DF intermediates. The second term can be factored in O(N5) if Laplace

transformed energy denominators are applied. This gives a more convenient form for the

X and Y quantities.

Xa1a2
r1r2

= CP
a1r1

TP
a2r2

+ TP
a1r1

CP
a2r2

(150)

Y a1b1
r1s1

= ΘP
a1r1

CP
b1s1

+AGa1b1
r1s1

(151)
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The quantities required to evaluate the E
(22)
disp(D) correction can now be formed with O(N5)

effort. This neglects, obviously, the formation of the second-order doubles amplitudes.

2.3.13 E
(22)
disp(T)

The most computationally intensive intramonomer dispersion correction is the triples con-

tribution to E
(22)
disp. This term is essential to obtain accurate dispersion energies from

wavefunction-based SAPT, unfortunately, the canonical scaling of this correction is O(o3v4).

This correction is given as110

E
(220)
disp (T) = (4W a1a2b1

r1r2s1
− 2W a2a1b1

r1r2s1
)W r1r2s1

a1a2b1
∆r1r2s1

a1a2b1
, (152)

where the triples amplitudes are defined as

W a1a2b1
r1r2s1

= νr3b1
r2s1

ta1a2
r1r3

+ νr3b1
r1s1

ta1a2
r3r2
− νa2b1

a3s1
ta1a3
r1r2
− νa1b1

a3s1
ta3a2
r1r2

+νr3a2
r1r2

ta1b1
r3s1

+ νa1r3
r1r2

ta2b1
r3s1
− νa1a2

a3r2
ta3b1
r1s1
− νa1a2

r1a3
ta3b1
r2s1

. (153)

In practice, the four symmetry unique terms that appear in Equation 153 are evaluated and

the resulting amplitudes are symmetrized. The energy contribution from these amplitudes

is then evaluated with Equation 152. Since the triples amplitudes must be formed in blocks,

existing implementations of this term use one of two possible loop structures to evaluate

E
(22)
disp using Equations 153 and 152. Blocking over a1, a2, and b1, which is how the term is

implemented in SAPT2008,25 leads to an algorithm with O(o3v3) disk I/O. Alternatively,

the loop can be blocked over b1 and s1; this is used in the parallel implementation of SAPT26

and in the present context. While canonically inferior, due to O(o2v4) disk I/O, this loop

structure is more amenable to the introduction of DF integrals.

The large amount of disk I/O required to evaluate this correction is a result of the

ov3 integrals, which cannot be held in memory for most computations. With the b1s1

loop structure, all of the (ar|rr) integrals are required for each b1 and s1. To avoid this

bottleneck, the DF representation of these integrals is introduced.

DP
a1r1

= CP
r3r1

ta1b1
r3s1

(154)

νr3a2
r1r2

ta1b1
r3s1
≈ DP

a1r1
CP

a2r2
(155)
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The refactored equations now scale slightly worse at O(o3v3Ndf ), however, the redundant

disk I/O has been removed. The memory requirement for this algorithm is modest con-

sidering the O(N7) scaling of the term. It is worthy of note that this correction could be

evaluated by inserting Equations 153 into Equation 152 and expanding the 128 possible

terms, many of which will be equivalent by symmetry. This approach has not been im-

plemented, but would likely result in an algorithm scaling O(N6) if Laplace transformed

energy denominators were applied.

Algorithm 7 Pseudocode to evaluate the E
(220)
disp (T) correction with DF integrals.

Read/Form ta1a2
r1r2

Read/Form νa1a2
a3r1

Read CP
a1r1

Read CP
r1r2

for b1 < #OccupiedB do
for s1 < #VirtualB do

Read/Form ta1b1
r1s1

Read/Form νr1b1
r2s1

Read/Form νa1b1
a2s1

V a1a2
r1r2

← νr3b1
r2s1

ta1a2
r1r3

V a1a2
r1r2

← νa2b1
a3s1

ta1a3
r1r2

V a1a2
r1r2

← νa1a2
a3r2

ta3b1
r1s1

DP
a1r1
← CP

r3r1
ta1b1
r3s1

V a1a2
r1r2

← DP
a1r1

CP
a2r2

E
(220)
disp (T← (4W a1a2

r1r2
− 2W a2a1

r1r2
)W r1r2

a1a2
∆r1r2s1

a1a2b1
end for

end for

2.3.14 E
(22)
disp(Q)

The final second-order intramonomer correlation correction to dispersion is the quadruples

contribution to E
(22)
disp given as:110

E
(22)
disp(Q) = 4

(

νr3s1
a3b1

θr1r2
a1a2

θa2a3
r2r3

ta1b1
r1s1
− ta1a2

r1r3
θr1r2
a1a2

νa3b1
r2s1

ta3b1
r3s1
− ta1a3

r1r2
θr1r2
a1a2

νa2b1
r3s1

ta3b1
r3s1

+tr3s1
a3b1

gr1r2
a1a2

θa2a3
r2r3

ta1b1
r1s1
− tr1r3

a1a2
ga1a2
r1r2

ta3b1
r3s1

tr2s1
a3b1
− tr1r2

a1a3
ga1a2
r1r2

ta3b1
r3s1

tr3s1
a2b1

)

(156)

The first term can be easily factored with DF intermediates that have been previously

defined. The second and third terms can be efficiently evaluated canonically if the P type
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intermediates are introduced as well as:

Qr3
r2

= CP
a3r2

TP
a3r3

(157)

Qa3
a2

= CP
a2r3

TP
a3r3

. (158)

The fourth term requires the introduction of DF integrals and Laplace transformed energy

denominators in order to achieve the optimal factorization.

W P,L
a2r2

= gr1r2
a1a2

CP
a1r1

dL
a1r1

(159)

Xa2b1
r2s1

= W P,L
a2r2

CP
b1s1

dL
b1s1

(160)

Y P,L
a2r2

= Xa2b1
r2s1

CP
b1s1

dL
b1s1

(161)

Za2a3
r2r3

= Y P,L
a2r2

CP
a3r3

dL
a3r3

(162)

The fifth and sixth terms can be evaluated canonically after performing a few familiar

contractions.

Rr3
r2

= tr1r3
a1a2

ga1a2
r1r2

(163)

Ra3
a2

= tr1r2
a1a3

ga1a2
r1r2

(164)

Sr3
r2

= ta3b1
r3s1

tr2s1
a3b1

(165)

Sa3
a2

= ta3b1
r3s1

tr3s1
a2b1

(166)

Now the quadruples contribution to E
(22)
disp can be written in a much more compact form:

E
(22)
disp(Q) = 4

(

TP
a1r1

ΘP
a2r2

θr1r2
a1a2
− P r1

r2
Qr2

r1
− P a1

a2
Qa2

a1

+Za1a2
r1r2

θa1a2
r1r2
−Rr1

r2
Sr2

r1
−Ra1

a2
Sa2

a1

)

(167)

This factorization reduces the scaling of E
(22)
disp(Q) from O(N6) to O(N5).

2.4 Third-order Corrections

2.4.1 E
(30)
ind

The third-order induction energy begins to included induced multipole-induced multipole

interactions. The form of this correction is given by:162

E
(30)
ind =2

(0)
s r1

a1
(ωB)r2

r1

(0)
s a1

r2
− 2

(0)
s r1

a1
(ωB)a1

a2

(0)
s a1

r2
+ 2

(0)
s s1

b1
(ωB)s2

s1

(0)
s b1

s2

−2
(0)
s s1

b1
(ωB)b1b2

(0)
s b1

s2
+ 16

(0)
s r1

a1
νa1b1

r1s1

(0)
s s1

b1
. (168)
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In practice, the E
(30)
ind should not be included in the interaction energy without it exchange

counterpart, E
(30)
exch−ind. The E

(30)
exch−ind correction is written, in part, in terms of third-

order induction amplitudes. Therefore, it is useful to rewrite E
(30)
ind in terms of third-order

induction amplitudes, since they will be needed elsewhere.

(uind)
a1
r1

=
[

(ωB)r2
r1

(0)
s a1

r2
− (ωB)a1

a2

(0)
s a2

r1
+ 2νa1b1

r1s1

(0)
s b1

s1
+ 2(ωA)s1

b1
ta1b1
r1s1

]

∆r1
a1

(169)

(uind)
b1
s1

=
[

(ωA)s2
s1

(0)
s b1

s2
− (ωA)b1b2

(0)
s b2

s1
+ 2νa1b1

r1s1

(0)
s a1

r1
+ 2(ωB)r1

a1
ta1b1
r1s1

]

∆s1
b1

(170)

This allows the energy to be written in terms of induction amplitudes and ω integrals.

E
(30)
ind = 2(ωB)r1

a1
(uind)

a1
r1

+ 2(ωA)s1
b1

(uind)
b1
s1

(171)

Since this correction can be evaluated very easily, no further elaboration is required.

2.4.2 E
(30)
exch−ind

The third-order exchange-induction is extremely important if third-order induction effects

are to be included. The induction series tends to diverge; exchange effects are required to

remove this divergence. The E
(30)
exch−ind term contains five separate contributions; conve-

niently, three of these contributions can be written in terms of the Ṽ collection of exchange

integrals that was introduced earlier. Using these definitions, the form of the E
(30)
exch−ind

correction is given by:162

E
(30)
exch−ind = −2

[

(uind)
a1
r1

Ṽ r1
a1

+ (uind)
b1
s1

Ṽ s1
b1

+
(0)
s a1

r1

(0)
s b1

s1

(

Ṽ r1s1
a1b1
− 4Ss1

a2
Sa2

b1
ν̃r1b2

a1b2
− 4Sb2

a1
Sr1

b2
ν̃a2s1

a2b1

)

]

+2
(0)
s a1

r1

(0)
s a2

r2

(

Sb1
a2

ν̃r2r1
a1b1
− 2Sb1

a1
ν̃r2r1

a2b1
+ 2Sb1

a2
Sr1

b1
ν̃r2b2

a1b2

−Sb1
a2

Sr1
b2

ν̃r2b2
a1b1

+ 2Sb1
a1

Sr1
b2

ν̃r2b2
a2b1

)

+2
(0)
s b1

s1

(0)
s b2

s2

(

Sa1
b2

ν̃s2s1
b1a1
− 2Sa1

b1
ν̃s2s1

b2a1
+ 2Sa1

b2
Ss1

a1
ν̃s2a2

b1a2

−Sa1
b2

Ss1
a2

ν̃s2a2
b1a1

+ 2Sa1
b1

Ss1
a2

ν̃s2a2
b2a1

)

. (172)

Much like E
(30)
ind , its exchange counterpart is fairly straightforward to implement. The

remaining terms can be easily evaluated if the generalized DF integrals are introduced.
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2.4.3 E
(30)
ind−disp

The induction-dispersion term includes the coupling between induction and dispersion in-

teractions; i.e. how does the induced polarization affect dispersion. The E
(30)
ind−disp term is

given as:162

E
(30)
ind−disp =8

(0)
s r1

a1
νr2s1

r1b1
ta1b1
r2s1
− 8

(0)
s r1

a1
νa1s1

a2b1
ta2b1
r1s1

+8
(0)
s s1

b1
νr1s2

a1s1
ta1b1
r1s2
− 8

(0)
s s1

b1
νr1b1

a1b2
ta1b2
r1s1

+4tr1s1
a1b1

(ωB)r2
r1

ta1b1
r2s1
− 4tr1s1

a1b1
(ωB)a1

a2
ta2b1
r1s1

+4tr1s1
a1b1

(ωA)s2
s1

ta1b1
r1s2
− 4tr1s1

a1b1
(ωA)b1b2t

a1b2
r1s1

. (173)

As was the case for E
(30)
ind , in practice, this correction is evaluated through the formation

of induction-dispersion amplitudes so that they can be reused during the evaluation of

E
(30)
exch−ind−disp. The relevant amplitudes are given as:

(uind−disp)
a1
r1

=
[

2νr2s1
r1b1

ta1b1
r2s1
− 2νa1s1

a2b1
ta2b1
r1s1

]

∆r1
a1

(174)

(uind−disp)
b1
s1

=
[

2νr1s2
a1s1

ta1b1
r1s2
− 2νr1b1

a1b2
ta1b2
r1s1

]

∆s1
b1

(175)

(uind−disp)
a1b1
r1s1

=
[

νr2s1
r1b1

(0)
s a1

r2
− νa1s1

a2b1

(0)
s a2

r1
+ νr1s2

a1s1

(0)
s b1

s2
− νr1b1

a1b2

(0)
s b2

s1

+(ωB)r2
r1

ta1b1
r2s1
− (ωB)a1

a2
ta2b1
r1s1

+ (ωA)s2
s1

ta1b1
r1s2
− (ωA)b1b2t

a1b2
r1s1

]

∆r1s1
a1b1

. (176)

DF integrals should be introduced into these amplitude equations in order to avoid the

need for ovvv integrals. The T intermediates as well as a few new intermediates should be

applied.

XP
a1r1

= CP
r1r2

(0)
s a1

r2
(177)

Y P
a1r1

= CP
a1a2

(0)
s a2

r1
(178)

XP
b1s1

= CP
s1s2

(0)
s b1

s2
(179)

Y P
b1s1

= CP
b1b2

(0)
s b2

s1
(180)
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This allows the amplitude equations to be rewritten:

(uind−disp)
a1
r1

=
[

2TP
a1r2

CP
r1r2
− 2TP

a2r1
CP

a1a2

]

∆r1
a1

(181)

(uind−disp)
b1
s1

=
[

2TP
b1s2

CP
s1s2
− 2TP

b2s1
CP

b1b2

]

∆s1
b1

(182)

(uind−disp)
a1b1
r1s1

=
[

XP
a1r1

CP
b1s1
− Y P

a1r1
CP

b1s1
+ CP

a1r1
XP

b1s1
− CP

a1r1
Y P

b1s1

+(ωB)r2
r1

ta1b1
r2s1
− (ωB)a1

a2
ta2b1
r1s1

+ (ωA)s2
s1

ta1b1
r1s2
− (ωA)b1b2t

a1b2
r1s1

]

∆r1s1
a1b1

. (183)

Once the amplitudes are available, the energy can be easily computed.

E
(30)
ind−disp =2(uind−disp)

a1
r1

(ωB)r1
a1

+ 2(uind−disp)
b1
s1

(ωA)s1
b1

+ 4(uind−disp)
a1b1
r1s1

νr1s1
a1b1

(184)

As was the case with E
(30)
ind , the E

(30)
ind−disp should never be included in the interaction energy

without its exchange counterpart, E
(30)
exch−ind−disp.

2.4.4 E
(30)
exch−ind−disp

The evaluation of the E
(30)
exch−ind−disp term is significantly more involved than the E

(30)
ind−disp

term. Following from Ref. 162, this exchange correction can be written as a sum of five

components.

E
(30)
exch−ind−disp =E

(30)
exch−ind−disp(10) + E

(30)
exch−ind−disp(01) + E

(30)
exch−ind−disp(11)

+E
(30)
exch−ind−disp(21) + E

(30)
exch−ind−disp(12) (185)

Here, the first three terms are defined in terms of induction-dispersion amplitudes and the

Ṽ integrals.

E
(30)
exch−ind−disp(10) = −2(uind−disp)

a1
r1

Ṽ r1
a1

(186)

E
(30)
exch−ind−disp(01) = −2(uind−disp)

b1
s1

Ṽ s1
b1

(187)

E
(30)
exch−ind−disp(11) = −2(uind−disp)

a1b1
r1s1

Ṽ r1s1
a1b1

(188)
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The remaining terms are significantly more complex. Only one of the corrections here, since

the definition and factorization of E
(30)
exch−ind−disp(12) can be inferred from E

(30)
exch−ind−disp(21).

E
(30)
exch−ind−disp(21) =2

(

(0)
s a1

r1
ta2b1
r2s1

+
(0)
s a2

r2
ta1b1
r1s1

)(

Ss1
a1

ν̃r1r2
a2b1
− 2Ss1

a2
ν̃r1r2

a1b1
− Sb2

a2
Sr1

b1
ν̃r2s1

a1b2

+2Sb2
a2

Sr1
b2

ν̃r2s1
a1b1

+ 2Sb2
a1

Sr1
b1

ν̃r2s1
a2b2
− Ss1

a2
Sr1

b2
ν̃r2b2

a1b1
+ 2Ss1

a1
Sr1

b2
ν̃r2b2

a2b1

+2Ss1
a2

Sr1
b1

ν̃r2b2
a1b2

)

− 8
(0)
s a2

r2
ta1b1
r1s1

Sb2
a1

Sr1
b2

ν̃r2s1
a2b1
− 8

(0)
s a1

r1
ta2b1
r2s1

Ss1
a1

Sr1
b1

ν̃r2b2
a2b2

(189)

As written above, some of the complexity is hidden; the amplitudes involved in this ex-

pression cannot be joined into a six-index quantity in an efficient implementation. This

requires that the multiplication by the amplitudes is distributed, doubling the number of

terms present. A few of these terms can benefit from the introduction of T intermediates,

but perhaps the most straightforward way to implement this correction is to introduce gen-

eralized DF integrals and immediately contract the overlap integrals,
(0)
s amplitudes, and

two-electron integrals. This will eventually reduce each term to a dispersion amplitude and

either one four-index quantity or two two-index quantities. This will allow each of the terms

to be evaluated in O(N4) or O(N5).

2.4.5 E
(30)
disp

The third-order dispersion term accounts for Axilrod-Teller-Muto-like terms within a dimer.11,156

This correction has a simple form, but is quite expensive to evaluate:162

E
(30)
disp = 4

(

tr1s1
a1b1

νr2s2
r1s1

ta1b1
r2s2
− tr1s1

a1b1
νr2b1

r1b2
ta1b2
r2s1
− tr1s1

a1b1
νa1s2

a2s1
ta2b1
r1s2

+ tr1s1
a1b1

νa1b1
a2b2

ta2b2
r1s1

)

. (190)

The term in this correction that involves the vvvv integrals scales as O(o2v4). Unfortunately,

the introduction of DF integrals does not improve the scaling of any of the four terms (all

of which scale O(N6)). Henceforth, we will limit our discussion to the term involving the

vvvv integrals. This term is unique in that the implementation of it depends on what

level of SAPT is going to be computed. At SAPT2+(3), the E
(30)
exch−disp correction will be

neglected and the E
(30)
disp energy can be evaluated as shown above. At SAPT2+3 and beyond,

the E
(30)
exch−disp correction will be included and the third-order dispersion amplitudes are

required. First, we will address the evaluation of this correction through the formation of

69



third-order dispersion amplitudes, then we will discuss a more efficient evaluation of the

E
(30)
disp energy directly. The third-order dispersion amplitudes are given as:

(udisp)
a1b1
r1s1

=
[

νr2s2
r1s1

ta1b1
r2s2
− νr2b1

r1b2
ta1b2
r2s1
− νa1s2

a2s1
ta2b1
r1s2

+ νa1b1
a2b2

ta2b2
r1s1

]

∆r1s1
a1b1

. (191)

There is little that can be done to improve the efficiency of the formation of these ampli-

tudes. In principle, the full, four-fold permutational symmetry of the νr2s2
r1s1

integrals could

be exploited during their formation if sufficient reordering was done to allow their contrac-

tion with ta1b1
r2s2

. The E
(30)
disp energy can be evaluated easily once the third-order dispersion

amplitudes have been obtained.

E
(30)
disp = 4(udisp)

a1b1
r1s1

νr1s1
a1b1

(192)

If the amplitudes are not required, it is possible to evaluate the E
(30)
disp energy more effi-

ciently by contracting the dispersion amplitudes and subsequently multiplying by the vvvv

integrals. It is possible to exploit the four-fold symmetry of the vvvv integrals in their

formation, which scales O(v4Ndf ), and a two-fold symmetry in the contraction of the dis-

persion amplitudes, which scales O(o2v4). It should be noted that the resultant of the

contraction of the dispersion amplitudes has four-fold symmetry, but that this cannot be

exploited if the contraction is to be cast as a matrix multiply. As the evaluation of the E
(30)
disp

term in SAPT2+(3) computation can take a sizable fraction of the total time, pseudocode

is presented to elaborate on an optimal implementation. The bulk of the work is spent in

two matrix multiplies, each called v times. The restriction that r2 <= r1 can be placed

explicitly in the matrix multiply calls.

2.4.6 E
(30)
exch−disp

The E
(30)
exch−disp is not as crucial as the E

(30)
exch−ind or E

(30)
exch−ind−disp due to the generally small

magnitude of E
(30)
disp. The E

(30)
exch−disp correction contains terms that scale O(N7) that we will

neglect (following from Ref. 162), otherwise E
(30)
exch−disp is relatively inexpensive to evaluate

once the third-order dispersion amplitudes have been formed. The portions of E
(30)
exch−disp

that we will consider are:162

E
(30)
exch−disp =E

(30)
exch−disp(11) + E

(30)
exch−disp(20) + E

(30)
exch−disp(02) + E

(30)
exch−disp(22), (193)
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Algorithm 8 Pseudocode to evaluate the E
(30)
disp correction.

Read/Form ta1b1
r1s1

with a1b1 as the fast running index
Read CP

r1r2
with permutational symmetry

Read CP
s1s2

with permutational symmetry
for P < #DF Functions do

for r1 < #VirtualA do
for r2 < r1 do

CP
r1r2
← 2CP

r1r2

end for
end for

end for
for P < #DF Functions do

for s1 < #VirtualB do
for s2 < s1 do

CP
s1s2
← 2CP

s1s2

end for
end for

end for
for r1 < #VirtualA do

for r2 <= r1 do
Xs1s2 ← ta1b1

r1s1
tr2s2
a1b1

Ys1s2 ← CP
r1r2

CP
s1s2

for s1 < #VirtualB do
for s2 <= s1 do

Zs1s2 ← Xs1s2 + Xs2s1

end for
end for
E

(30)
disp ← 2Ys1s2Zs1s2

end for
end for
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where

E
(30)
exch−disp(11) =− 2(udisp)

a1b1
r1s1

Ṽ r1s1
a1b1

(194)

E
(30)
exch−disp(20) =4

(

[

νa1s1
r1b1

ta2b1
r2s1

+ νa2s1
r2b1

ta1b1
r1s1

]

∆r1r2
a1a2

)(

Sb1
a2

ν̃r2r1
a1b1
− 2Sb1

a1
ν̃r2r1

a2b1

+2Sb1
a2

Sr1
b1

ν̃r2b2
a1b2
− 4Sb1

a1
Sr1

b1
ν̃r2b2

a2b2
− Sb1

a2
Sr1

b2
ν̃r2b2

a1b1
+ 2Sb1

a1
Sr1

b2
ν̃r2b2

a2b1

)

(195)

E
(30)
exch−disp(22) =2ta1b1

r1s1
ta2b2
r2s2

(

2Ss2
a2

Sr2
b1

ν̃r1s1
a1b2

+ 2Ss1
a2

Sr2
b2

ν̃r1s2
a1b1
− 4Ss1

a2
Sr2

b1
ν̃r1s2

a1b2

+2Ss2
a1

Sr2
b2

ν̃r1s1
a2b1
− Ss2

a1
Sr2

b1
ν̃r1s1

a2b2
− Ss1

a1
Sr2

b2
ν̃r1s2

a2b1
+ 2Ss1

a1
Sr2

b1
ν̃r1s2

a2b2

)

. (196)

Again, the (02) term can be inferred from the (20) term, so it won’t be addressed explicitly.

First, we will consider the implementation of the E
(30)
exch−disp(20) term. Here, the most

expensive portion is the O(o3v3) contraction of dispersion amplitudes and integrals. This

can be avoided if the T intermediates are introduced.

[

νa1s1
r1b1

ta2b1
r2s1

+ νa2s1
r2b1

ta1b1
r1s1

]

∆r1r2
a1a2

=
[

CP
a1r1

TP
a2r2

+ TP
a1r1

CP
a2r2

]

∆r1r2
a1a2

(197)

This substitution reduces the scaling to O(o2v2Ndf ). The remaining work can be handled

easily if the DF integrals are introduced and the overlap integrals are contracted with them

to form ovov quantities. These can then be multiplied by the amplitudes to evaluate their

contribution to E
(30)
exch−disp. The E

(30)
exch−disp(22) term is slightly trickier, but, again, the

introduction of the T intermediates greatly improves the efficiency.

E
(30)
exch−disp(22) =4TP

b1s1
CP

b2s1
Ss2

a2
Sr2

b1
ta2b2
r2s2

+ 4TP
b1s1

CP
b1s2

Ss1
a2

Sr2
b2

ta2b2
r2s2
− 8TP

a2r2
TP

b1s1
Ss1

a2
Sr2

b1

+4TP
a1r1

CP
a2r1

Ss2
a1

Sr2
b2

ta2b2
r2s2
− 2ta1b1

r1s1
ta2b2
r2s2

Ss2
a1

Sr2
b1

ν̃r1s1
a2b2

−2ta1b1
r1s1

ta2b2
r2s2

Ss1
a1

Sr2
b2

ν̃r1s2
a2b1

+ 4TP
a2r2

CP
a2r1

Ss1
a1

Sr2
b1

ta1b1
r1s1

(198)

Of the two terms that cannot use the T intermediates, the second is very easily evalu-

ated (contraction of the S integrals with the dispersion amplitudes leads to two two-index

quantities); evaluation of the other term scales O(o4v2) if it is properly factored.

Xa2b2
b1a1

= ta2b2
r2s2

Ss2
a1

Sr2
b1

(199)

Y a2b2
r1s1

= ta1b1
r1s1

Xa2b2
b1a1

(200)

−2ta1b1
r1s1

ta2b2
r2s2

Ss2
a1

Sr2
b1

ν̃r1s1
a2b2

= −2Y a2b2
r1s1

ν̃r1s1
a2b2

(201)
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With these factorizations, all but one contraction (above) in E
(30)
exch−disp can be evaluated

in O(N5). Assuming that the third-order dispersion amplitudes have been formed, the

evaluation of their exchange counterpart is trivial.

2.5 Natural Orbitals in SAPT

2.5.1 Triples Correction to Dispersion

The following is adapted from Ref. 95.

We use MP2 naturals orbitals (NOs)42,137 instead of HF molecular orbitals (MOs) to

evaluate the triples correction; this allows an appreciable fraction of the virtual orbitals

to be removed from the computation without significant loss of accuracy. Natural orbitals

are those orbitals which diagonalize the one-particle density matrix (OPDM).137 For a

two-electron system, natural orbitals comprise the basis which requires the fewest config-

urations to reach a given accuracy in the energy,138 and in general, the natural orbitals

tend to concentrate the electron correlation energy into the those virtual NOs with the

largest occupation numbers (one-particle density matrix eigenvalues). Conversely, the vir-

tual NOs with the smallest eigenvalues contribute very little to the correlation energy and

may be neglected. Natural orbitals have been used to select active spaces or as guess or-

bitals in multi-configurational self-consistent-field (MCSCF) computations,108,175, 187 or as

replacements for fully-optimized MCSCF orbitals.2,17 They have also been used in highly-

correlated configuration interaction computations1,30–33, 66, 196 and coupled-cluster compu-

tations.124,131, 219 The optimized virtual orbital subspace (OVOS) approach of Adamowicz

and Bartlett3 is an alternative technique with the same goal of limiting the number of vir-

tual orbitals for highly-correlated computations; this approach has been reformulated by

Urban and co-workers159 and used to reduce the cost of CCSD(T) computations,166 includ-

ing an impressive recent study of the benzene dimer.168 A related approach to truncate

the virtual space using pair natural orbitals (PNOs)50,143, 144 has been recently explored by

Neese et. al. in the context of the coupled-electron pair approximation (CEPA), CCSD,

and quadratic configuration interaction with single and double excitations (QCISD).157,158

Although shown to have many promising applications, these methods may not be well suited
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for the study of weakly interacting systems.157

Reducing the number of virtual orbitals in the evaluation of E
(22)
disp(T) is extremely ben-

eficial due to its O(o3v4) scaling. However, only a small number of virtual HF MOs can

be removed before the accuracy of the computation is severely impacted. To avoid this

problem, we will use MP2 NOs in place of the HF MOs. The (unrelaxed) MP2 OPDM is

given as:

Pij = −2
[2(ia|kb) − (ib|ka)](ja|kb)

Dab
ik Dab

jk

, (202)

Pab = 2
[2(ia|jc) − (ic|ja)](ib|jc)

Dac
ij Dbc

ij

, (203)

where i, j, k correspond to occupied orbitals and a, b, c correspond to unoccupied orbitals and

Dab
ij = ǫi+ǫj−ǫa−ǫb. Summation over repeated indices is implied. In an SAPT computation,

the MP2 OPDM is used to compute the E
(12)
elst term, so, it will already be available. In this

work, we will correlate all electrons in the MP2 OPDM formation regardless of whether or

not they are correlated in the E
(22)
disp(T) evaluation.

The equation for E
(22)
dispT) presented above assumes that the Fock matrix for each monomer

is diagonal. MP2 NOs do not diagonalize the Fock matrix, so they must be modified before

they can be used to evaluate E
(22)
disp(T). Our procedure for generating a set of usable MP2

NOs is summarized below:

1. Form the MP2 OPDM in the HF MO basis.

2. Diagonalize the MP2 OPDM to obtain MP2 NOs (in the HF MO basis).

3. Truncate the MP2 NO virtual space.

4. Transform the MO based Fock matrix into the truncated MP2 NO basis.

5. Diagonalize the NO based Fock matrix to obtain semicanonical MP2 NOs (in the MP2

NO basis) and orbital energies.

6. Express the semicanonical MP2 NOs in terms of the AOs.
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7. Using the above NO/AO transformation matrix, transform the integrals needed to

evaluate E
(22)
disp(T) from the AO basis into the semicanonical MP2 NO basis and eval-

uate this term as usual.

The eigenvalues of the MP2 OPDM are occupation numbers that represent the number

of electrons in each NO. These eigenvalues are a convenient metric for removing virtual

orbitals from the computation. Since the unrelaxed MP2 OPDM is used, the occupied HF

orbitals are recovered (the NO based Fock matrix is block diagonal); this is often called the

“frozen natural orbital” procedure. If no virtual orbitals are removed, the virtual HF MOs

are also recovered in the semicanonicalization process.

The use of MP2 NOs is based on the experience that NOs are more efficient than HF

MOs for capturing electron correlation in the low-lying (or most heavily occupied) orbitals.

This can be demonstrated in the present case for the evaluation of E
(22)
disp(T) by removing

virtual HF MOs and MP2 NOs at the same rate and determining how much error arises

from the reduced virtual space. The results of such a test are shown in Figure 2 for the

ammonia dimer (95 virtual orbitals), water dimer (77 virtual orbitals), and methane dimer

(113 virtual orbitals). The MP2 NOs are clearly superior to HF MOs for reproducing

the E
(22)
disp(T) correction with a smaller virtual space. However, the error associated with

removing virtual MP2 NOs still increases too rapidly to remove more than roughly one

third of the virtual orbitals if the error is to be kept negligible (greater fractions may be

removed if small to modest errors may be tolerated). This is a great improvement over the

HF MOs; only the few most high lying virtual HF MOs can be removed before significant

errors begin to accrue.

As previously mentioned, the scaling of the E
(22)
disp(T) correction is O(o3v4). Assum-

ing ideal behavior, removing one third of the virtual orbitals would lead to roughly a 5X

speedup. If one half of the virtual orbitals could be removed, it would result in a 16X

speedup. In Figure 2, the error created by removing half of the NOs is below 0.05 kcal

mol−1 (or less than 15% of the total E
(22)
disp(T) contribution), which is probably acceptable

in many or most applications. However, here we wish to explore ways in which we may

achieve this level of computational savings while allowing truly negligible errors. To improve
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Figure 2: Errors (in kcal mol−1) of the E
(22)
disp(T) correction evaluated with the aug-cc-pVDZ

basis set as virtual orbitals (HF MO or MP2 NO) are removed from the computation. The

total E
(22)
disp(T) correction for these test cases are -0.281 (ammonia dimer), -0.344 (water

dimer), and -0.102 kcal mol−1 (methane dimer).
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this approximation, we will assume that the magnitude of the E
(22)
disp(T) correction changes

at the same rate as E
(20)
disp when virtual orbitals are removed, viz.:

E
(22)
disp(T)exact

E
(22)
disp(T)approx

≈
E

(20)
disp,exact

E
(20)
disp,approx

. (204)

The E
(20)
disp term scales as O(o2v2), so, for a given system, if it is possible to evaluate the

E
(22)
disp(T) correction, it is trivial to evaluate E

(20)
disp. We will denote the E

(22)
disp(T) correction

evaluated using this approximation as Est. E
(22)
disp(T) to signify that the value is estimated,

not computed explicitly. In order to determine whether or not this approximation is valid,

E
(22)
disp(T) and Est.E

(22)
disp(T) are computed for the 11 smallest complexes from the S22 test set.

Virtual orbitals are removed to determine how effective the removal of virtual orbitals will

be for increasing computational efficiency. The results of this analysis are shown in Figure

3. The Est.E
(22)
disp(T) correction performs much better than the unscaled correction. Simply

removing a certain fraction of the virtual orbitals (as is the case in Figure 3) can provide a

16X speedup with only 1.25% error. The unscaled E
(22)
disp(T) can only provide a 3X speedup

with the same accuracy. Clearly, the approximation of Equation 204 significantly increases

the number of virtual orbitals that can be removed while keeping the error negligible.

To this point, the number of virtual orbitals removed was not physically motivated.

Each natural orbital has occupation associated with it (eigenvalues of the MP2 OPDM).

We will use these values as a metric to determine which virtual orbitals can be removed.

In Figure 4, again, E
(22)
disp(T) and Est. E

(22)
disp(T) are computed for the smallest 11 complexes

in the S22 test set with different cutoffs based on the number of electrons in an orbital.

Once again, the Est. E
(22)
disp(T) correction is far superior to the unscaled correction. With

this scaling, a cutoff of 10−6 electrons creates less than 1% error. In addition to the reduced

virtual space, the computations shown in Figure 4 were performed under the frozen core

approximation. It should be noted that E
(20)
disp,approx in Equation 204 should include all

relevant approximations (i.e. in this case it was computed with the core electrons frozen).

This leads to our recommendation for evaluating the E
(22)
disp(T) correction: virtual orbitals

with less than 10−6 electrons should be removed, core electrons should be frozen, and the

result should be scaled according to Equation 204. This procedure introduces only negligible
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Figure 3: Percent errors for the E
(22)
disp(T) correction (scaled and unscaled) averaged over

the 11 smallest complexes from the S22 test set117 as virtual MP2 NOs are removed from
the computation to achieve a certain percentage of deleted virtual orbitals (top panel) or
to obtain a specified idealized speedup (bottom panel).
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errors but greatly reduces computational costs. Of course, in very large molecules, one may

wish to employ somewhat more aggressive truncations.

The accuracy of the approximations outlined above is assessed in Table 6 for the entire

S22 test set. The E
(22)
disp(T) values in this table were all computed using the DF approxima-

tion of the two-electron integrals; errors due to the DF approximation have been considered

previously93,94 and are generally in the hundredths of one kcal mol−1 or less. The errors re-

ported in Table 6 reflect the removal of virtual orbitals, the frozen core approximation, and

the scaling shown in Equation 204. These approximations introduce only modest errors into

the computation; the largest error is only 0.02 kcal mol−1 (appearing twice in the table, for

78



Figure 4: Percent errors for the E
(22)
disp(T) correction (scaled and unscaled) as virtual orbitals

with less than a specified number of electrons are removed from the computation for the 11
smallest complexes from the S22 test set.117
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molecules with total E
(22)
disp(T) contributions of -2.765 and -4.598 kcal mol−1); such a small

error seems acceptable for nearly any application. For these cases and the aug-cc-pVDZ

basis set, a threshold of 10−6 electrons for the removal of virtual orbitals typically removes

about half of the virtual orbitals. However, for cases where one monomer is much larger

than the other (e.g., benzene-methane), the majority of the smaller monomer’s virtual or-

bitals can be removed. Note that in this implementation of SAPT, all computations are

performed in the dimer basis. Because of this, some of the virtual orbitals will be composed

mainly of basis functions centered on the other monomer. The procedure of removing MP2

NOs is a way of removing these extraneous virtual orbitals while retaining the important

orbitals. It follows from this consideration that the hydrogen bonded and mixed complexes

in the S22 will benefit the most from the removal of virtual orbitals, since they will have

more spatially distant basis functions.

As defined above, the truncation of the virtual space using MP2 NO occupations will

not result in a continuous potential energy surface. At two adjacent points, it is possible

that different numbers of virtual orbitals will be removed. Due to the excellent performance

of this approximation, however, discontinuities are likely to be unnoticeably small. Addi-

tionally, derivatives of SAPT energies are not typically computed. If continuity becomes
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Table 6: The effect of the MP2 NO and frozen core approximations on the E
(22)
disp(T) cor-

rection evaluated with the aug-cc-pVDZ basis set for the complexes of the S22 test set
(Ref. 117).a

E
(22)
disp

(T)exact Errorb HF MOsc MP2 NOsd

A B A B
H-Bonded Complexes

(NH3)2 -0.281 0.003 95 95 46 46
(H2O)2 -0.344 0.003 77 77 36 39
Formic Acid Dimer -1.767 0.008 162 162 83 83
Formamide Dimer -1.389 0.010 180 180 90 90
Uracil Dimer -1.838 0.005 411 411 194 194
2-Pyridoxine·2-Aminopyridine -2.098 0.006 396 396 183 191
Adenine·Thymine WC -2.153 0.004 501 503 241 229

Dispersion Dominated Complexes
(CH4)2 -0.102 0.002 113 113 53 53
(C2H4)2 -0.342 0.005 156 156 75 75
Benzene·CH4 -0.514 0.006 230 246 165 55
PD Benzene Dimer -2.396 0.008 363 363 174 174
Pyrazine Dimer -2.601 0.004 327 327 159 159
Uracil Dimer -2.765 0.020 411 411 231 231
Stacked Indole·Benzene -3.708 0.004 441 431 179 242
Stacked Adenine·Thymine -4.598 0.020 501 503 255 241

Mixed Complexes
Ethene·Ethine -0.232 0.001 138 139 74 54
Benzene·H2O -0.568 0.008 212 228 164 40
Benzene·NH3 -0.552 0.007 221 237 165 48
Benzene·HCN -0.736 0.005 226 240 167 52
T-shaped Benzene Dimer -1.119 0.007 363 363 168 172
T-shaped Indole Benzene -1.624 0.009 441 431 174 230
Phenol Dimer -1.445 0.005 405 405 190 190

aMP2 NOs with occupancies less than 10−6 electrons are removed. Errors given in kcal mol−1. bSigned error

computed as Est.E
(22)
disp

(T)approx−E
(22)
disp

(T)exact. cNumber of unoccupied HF MOs for monomer A and B. dNumber

of virtual MP2 NOs remaining after orbitals are removed.
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an issue, we recommend determining a reasonable number of virtual orbitals to remove and

fixing that number for the entire surface.

2.5.2 vvvv Two-Electron Integrals

Similar DF and NO based approximations can be applied100 to the CCD+ST(CCD) dis-

persion approach of Williams et al.247 (vide infra). This method has been found to be

extremely accurate; however, it has been all but abandoned due to computational expense.

We will refer to this approach as ǫ
(2)
disp(CCD) throughout the present work. Asymptotically,

the expense of this method is no different than any of the other higher-order SAPT meth-

ods; it also scales O(o3v4). The difference is that the evaluation of ǫ
(2)
disp(CCD) requires the

iterative solution of four sets of monomer CCD amplitudes, each of which scales as O(o2v4).

Additionally, there are dispersion amplitudes that require iterative O(o3v3) work to solve.

As is the case with any CCD or CCSD implementation, the majority of the work is the

evaluation of the term involving v4 integrals,

ta1a2
r1r2
← νr1r2

r3r4
ta1a2
r3r4

. (205)

In an effort to improve the efficiency of this term, we apply the same NO approximations

that were successful for the E
(22)
disp(T) evaluation. First, we transform the virtual orbitals to

the NO basis (we will denote the MO to NO transformation matrix V and label virtual NO

indices with ρ).

ta1a2
ρ1ρ2

= V r1
ρ1

ta1a2
r1r2

V r2
ρ2

(206)

Once the amplitudes are transformed to the NO basis, the term is evaluated as usual with

v4 integrals also in the NO basis.

ta1a2
ρ1ρ2
← νρ1ρ2

ρ3ρ4
ta1a2
ρ3ρ4

(207)

Finally, this result is backtransformed to the MO basis and added to the CCD amplitudes.

ta1a2
r1r2

= V r1
ρ1

ta1a2
ρ1ρ2

V r2
ρ2

(208)

The remainder of the CCD terms are evaluated in the MO basis. In practice, we have found

that this approximation leads to significant speedups and introduces negligible errors. The
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triples contribution to ǫ
(2)
disp(CCD) is also evaluated in the NO basis. This is accomplished by

transforming the CCD amplitudes to the NO basis and proceeding identically to the E
(22)
disp(T)

evaluation.100 This approach immediately extends to the second-order doubles amplitudes

that appear in SAPT2 (and higher) corrections. Unfortunately, the E
(30)
disp correction, which

contains (rr|ss) integrals, cannot be accurately computed with a reduced virtual space.

2.6 Density Fitting Errors in SAPT

2.6.1 DF/CD-SAPT0

The following was adapted from Ref. 93.

The approximate SAPT0 methods were assessed on the basis of their ability to reproduce

the necessary MO integrals and on the deviation of the SAPT0 components. In this work,

we will utilize the naming convention for MO indices common in the SAPT literature. The

occupied and virtual orbitals of monomer A will be labeled a and r, respectively. The

occupied and virtual orbitals of monomer B will be labeled b and s, respectively. It is

important to note that the Cholesky decomposition (CD) guarantees the AO integrals to

a specified accuracy; however, this error bound does not apply to the transformed MO

integrals. For the purpose of computing SAPT0 energies, it was found that a CD threshold

of 10−3-10−4 Eh was reasonable. For a given AO basis, the former value tends to create a

slightly smaller Cholesky basis than the corresponding DF basis, while the latter value will

create a significantly larger Cholesky basis. This is illustrated in Table 7, which compares

fitting basis size and errors in the SAPT0 energy components for the water, ammonia, and

methane dimers.

Through a comparison of the approximate DF and CD MO integrals with the exact

integrals, it was determined that the largest errors occur for the integrals centered entirely

on one monomer in both cases. This includes the aarr, arar, bbss, and bsbs classes of

integrals. Because these integrals are greater in magnitude than those which span both

monomers, this result is not surprising. The largest errors for these integrals tend to be

on the order of 10−1 Eh. In SAPT0, these integrals are used only to compute the orbital

response coefficients that are involved in the evaluation of the E
(20)
ind,resp and E

(20)
exch−ind,resp
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Table 7: Deviation (in microhartree) from conventional SAPT0/aug-cc-pVDZ for water
dimer, ammonia dimer, and methane dimer.a

DF-SAPT CD-SAPT 1C-CD-SAPT
10−3 10−4 10−3 10−4

Water Dimer

Nb 236 221 389 213 316

E
(10)
elst

1.52 -2.16 0.04 0.08 0.08

E
(10)
exch

4.63 6.43 0.55 5.10 0.69

E
(20)
ind,resp

1.28 -0.03 0.05 -0.71 0.05

E
(20)
exch−ind,resp

-0.24 -0.04 -0.01 0.09 0.01

E
(20)
disp

0.49 -0.25 -0.09 -1.35 -0.04

E
(20)
exch−disp

-1.76 -2.75 -0.13 -0.95 -0.22

ESAPT0 5.93 1.20 0.41 2.25 0.57
Ammonia Dimer

Nb 282 247 412 244 355

E
(10)
elst

-1.07 -0.86 -0.12 -1.24 0.09

E
(10)
exch

5.15 8.37 1.13 7.14 2.11

E
(20)
ind,resp

0.03 -0.05 0.00 0.31 -0.10

E
(20)
exch−ind,resp

-0.03 0.00 -0.02 -0.29 -0.01

E
(20)
disp

-0.35 -0.19 -0.12 -1.66 0.04

E
(20)
exch−disp

-1.24 -2.58 -0.27 -1.78 -0.55

ESAPT0 2.50 4.69 0.59 2.46 1.58
Methane Dimer

Nb 328 278 450 260 392

E
(10)
elst

-4.35 -0.06 -0.01 0.07 -0.10

E
(10)
exch

2.53 2.70 0.64 2.81 0.67

E
(20)
ind,resp

-0.02 0.01 0.00 0.01 0.00

E
(20)
exch−ind,resp

0.01 -0.01 0.00 -0.01 0.00

E
(20)
disp

-0.38 -0.25 0.01 -0.47 -0.06

E
(20)
exch−disp

-0.68 -1.13 -0.29 -0.97 -0.27

ESAPT0 -2.90 1.27 0.34 1.43 0.24

aThe geometries are taken from the S22 test set (Ref. 117). bNumber of functions in the DF or CD basis.
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terms. These integrals do not directly contribute to the SAPT0 energy, but they affect the

energy indirectly when the response coefficients are contracted against the arbb or aabs type

integrals. As shown in Tables 7 and 8, the error incurred in the evaluation of the E
(20)
ind,resp

and E
(20)
exch−ind,resp terms with approximate integrals is negligible.

Table 8: Errors (in kcal mol−1) of DF-SAPT and 1C-CD-SAPT for the S22 test set
(Ref. 117) relative to conventional SAPT0/aug-cc-pVDZ.

MAXa MSEb MUEc RMSd

DF-SAPT

E
(10)
elst

0.003 0.000 0.001 0.001

E
(10)
exch

0.014 0.005 0.005 0.007

E
(20)
ind,resp

0.002 0.000 0.000 0.001

E
(20)
exch−ind,resp

0.000 0.000 0.000 0.000

E
(20)
disp

0.002 0.000 0.001 0.001

E
(20)
exch−disp

0.007 -0.003 0.003 0.003

ESAPT0 0.006 0.002 0.003 0.003
1C-CD-SAPTe

E
(10)
elst

0.006 0.000 0.001 0.002

E
(10)
exch

0.057 0.011 0.011 0.017

E
(20)
ind,resp

0.006 -0.001 0.001 0.002

E
(20)
exch−ind,resp

0.002 0.000 0.000 0.001

E
(20)
disp

0.003 -0.001 0.001 0.001

E
(20)
exch−disp

0.038 -0.007 0.007 0.011

ESAPT0 0.023 0.002 0.003 0.006

aMaximum absolute error. bMean signed error. cMean unsigned error. dRoot mean square error. eAO integrals

computed with a tolerance of 10−3 Eh.

As indicated in Table 7, the 1C-CD-SAPT results are very similar to those for CD-

SAPT and for low tolerances, the size of the Cholesky basis is not reduced significantly.

However, the automatic exclusion of two-center terms from the Cholesky basis makes the

1C-CD algorithm more efficient than the full CD algorithm. It is apparent that for the

three small test systems in Table 7, a CD tolerance of 10−3 is acceptable for obtaining very

accurate SAPT0 energy components, with errors of less than 0.01 millihartree (0.006 kcal

mol−1). Of the CD methods shown in Table 7, the 1C-CD-SAPT with a tolerance of 10−3

appears to have the most promise for general applicability.

At this point, it should be noted that, in practice, the error associated with the three-

index integral approximations for the SAPT0 total interaction energy may only depend on

the E
(20)
disp and E

(20)
exch−disp terms (assuming the integral approximations are not also used
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for the Hartree-Fock computations). Often, a δE
(HF )
ind,resp term is computed from the HF

interaction energy as:

δE
(HF )
ind,resp = EHF

int −
(

E
(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch−ind,resp

)

. (209)

This term captures induced-multipole induced-multipole interactions that are not described

by the E
(20)
ind,resp and E

(20)
exch−ind,resp terms. In CD- or DF-SAPT0, adding this term also has

the effect of removing some fitting error from the total SAPT0 energy, since our SAPT

implementation uses exact HF computations as a starting point. It is also important to

note that SAPT computations are generally used to get a qualitative understanding of the

fundamental physics of nonbonded interactions. A deviation of a few hundredths of one kcal

mol−1 does not affect the SAPT results qualitatively. It should also be noted that SAPT

is a perturbational method of computing interaction energies directly; as a consequence,

the fitting error that occurs with SAPT is much smaller than the fitting error that occurs

in an MP2 total energy, for example. This is somewhat similar to the observation by

Böstrom et al.19,20 that the CD threshold does not need to be as tight for excitation energy

computations as it is for total energy computations.

To assess the performance of the 1C-CD-SAPT0 with a tolerance of 10−3, this method

and DF-SAPT0 were applied to the S22 test set. These results are shown in Table 8. As

mentioned previously, the errors for the induction terms are negligible; for these cases, the

error is always less than a hundredth of a kcal mol−1. Perhaps surprisingly, the error in

the electrostatic term is also very low. This term contains a small number of fairly large

two-electron integrals; evidently, the aabb type integrals are approximated well by both

methods. The largest errors occur in the evaluation of the exchange term; a large number

of oooo type integrals (all occupied orbitals) are involved in the evaluation of this term. It is

possible (and seems likely) that systematic errors accumulate during the evaluation of this

term. The accuracy of the 1C-CD-SAPT0 with the chosen tolerance is not quite as good

as that of DF-SAPT0, but the errors incurred by 1C-CD-SAPT0 are acceptable given the

smaller CD basis.

The number of basis functions needed for each complex in the S22 test set is shown in
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Table 9. For the larger complexes in the set, a CD basis needs to be only about 75-80%

of the DF basis size. Once the three-index AO quantities (DF three-index integrals or CD

vectors, which we will refer to generically as three-index integrals) have been computed, the

first step of the transformation to the MO basis scales as O(NauxN2
aoNmo). By reducing

the size of the auxiliary basis, the expense of this step as well as the storage requirements

for the three-index integrals are reduced. The next step is the formation of the four-

index MO integrals from the transformed three-index integrals. Assuming that all the MO

integrals are needed (and ignoring any sparsity), this step scales as O(NauxN4
mo). The most

computational savings from a smaller fitting basis is possible in this step. Due to the fact

that the formation of the Cholesky basis is much more intensive than the formation of the

DF integrals, to be competitive with density fitting the Cholesky basis needs to be smaller

than a DF basis that performs with comparable accuracy. As systems become larger,

the work associated with the formation of the three-index CD or DF integrals becomes

negligible compared to the rest of the computation. At some point, the formation of the

MO four-index integrals from the three-index integrals should become much more time

consuming, and beyond this point 1C-CD-SAPT may become significantly more efficient

than DF-SAPT.

2.6.2 DF-SAPT: Intramonomer Corrections

The following was adapted from Ref. 94.

In the previous section on DF-SAPT0, the errors introduced through the DF approxi-

mation of the two-electron integrals was negligible.93 In that work, we report errors of, at

most, about 0.01 kcal mol−1 for any of the zeroth-order components of the interaction en-

ergy. Additionally, previous works on DF-SAPT(DFT) report only negligible errors created

by the DF integrals.27,86, 170 More generally, we are not aware of any case reported in the lit-

erature where DF approximations created problematic errors for interaction energies. Here,

we will report the DF error associated with the second-order corrections to electrostatics,

exchange, and induction for 15 complexes selected from the S22 test set. The accuracy

of the density fitting is assessed against conventional SAPT energies computed with the
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Table 9: Number of auxiliary basis functions required for each complex in the S22 test
set.117a

DF-SAPTb 1C-CD-SAPTc

H-Bonded Complexes
(NH3)2 282 244
(H2O)2 236 213
Formic Acid Dimer 524 465
Formamide Dimer 570 488
Uracil Dimer 1336 1073
2-Pyridoxine·2-Aminopyridine 1261 970
Adenine·Thymine WC 1621 1270

Dispersion Dominated Complexes
(CH4)2 328 260
(C2H4)2 472 375
Benzene·CH4 734 549
PD Benzene Dimer 1140 848
Pyrazine Dimer 1048 810
Uracil Dimer 1336 1080
Stacked Indole·Benzene 1379 1016
Stacked Adenine·Thymine 1621 1265

Mixed Complexes
Ethene·Ethine 426 349
Benzene·H2O 688 540
Benzene·NH3 711 545
Benzene·HCN 737 572
T-shaped Benzene Dimer 1140 847
T-shaped Indole Benzene 1379 1030
Phenol Dimer 1284 978

aComputations performed with the aug-cc-pVDZ basis. bThe aug-cc-pVDZ-RI basis was used. cAO integrals com-

puted with a tolerance of 10−3 Eh.
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SAPT2008 program.25 The results of this analysis are shown in Table 10. It is evident that

DF errors are negligibly small for the second-order corrections to SAPT. The max error

for the cases considered was less than 0.01 kcal mol−1 and the average errors are on the

order of a few thousandths of a kcal mol−1 at the most. Due to the excellent performance

of these second-order terms and the expense associated with the conventional dispersion

corrections, we will not present results for the second-order dispersion corrections.

Table 10: Errors (in kcal mol−1) of DF-SAPT2/aug-cc-pVDZ for selected complexes from
the S22 test set (Ref. 117) relative to conventional SAPT2/aug-cc-pVDZ.a

MAXa MSEb MUEc RMSd

E
(12)
elst,resp

0.009 0.002 0.002 0.003

E
(11)
exch

+ E
(12)
exch

-0.001 0.000 0.000 0.000

E
(22)
ind,resp

0.002 0.000 0.000 0.001

aSAPT2 energies for 15 of the 22 complexes were computed with SAPT2008.25 Density fitting errors for the compo-

nents of DF-SAPT0 have been analyzed in Ref. 93. bMaximum absolute error. cMean signed error. dMean unsigned

error. eRoot mean square error.

2.7 Performance of DF-SAPT

2.7.1 DF/CD-SAPT0

The following was adapted from Ref. 93.

We have performed timings of our SAPT program to understand the practical aspects

of the DF and CD approximations in SAPT0. All the computations reported in this section

were run on a quad-core Intel Xeon E5430 processor clocked at 2.66 GHz. We also compared

the timings of our conventional integral transformation to the SAPT2008 program.25 Both

programs perform very similarly, so we will only show timings from our SAPT program.

DF- and CD-SAPT0 energies were computed for formic acid dimer, methane-benzene,

T-shaped benzene dimer, T-shaped indole-benzene, and hydrogen bonded adenine-thymine.

All of these complexes are taken from the S22 test set, and energies were computed with

an aug-cc-pVDZ basis. The timings of the computation of the integrals required for the

SAPT0 evaluation are shown in Figure 5. The “MO 3-index” timing refers to the formation

of AO 3-index integrals (i.e., Equation 29 or 33-34) and their transformation to the MO

basis. The “MO 4-index” timing refers to the formation of the approximate 4-index MO
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integrals from the 3-index MO integrals. Performing a CD is more expensive than DF in

the formation of AO 3-index quantities, but the reduction in size of the fitting basis recovers

the overhead of the CD in the subsequent steps. The overall time for integral processing is

nearly identical for the DF and CD approaches, with the CD approach becoming slightly

more efficient beyond about 450 orbitals. Both CD and DF are much more efficient than

the conventional integral transformation.

Figure 5: Timings of DF, CD, and conventional integral evaluation for SAPT0 computations
on selected complexes from the S22 test set (Ref. 117) with an aug-cc-pVDZ basis. “4-index”
timings refer to the construction of the 4-index integrals from the 3-index integrals.
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The tolerance chosen for the CD led to slightly larger errors in the SAPT energy compo-

nents than in the DF approach; however, the errors remain no larger than a few hundredths

of 1 kcal mol−1 (see Table 8). However, with the desire to study much larger systems and

higher order corrections to the SAPT energy (which require additional groups of integrals

such as the expensive vvvv type) the CD-SAPT approach could become significantly more

efficient than DF-SAPT.

Figure 6 shows the timings for the DF-SAPT0 computations performed on the T-shaped
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acene dimers. As the size of the DF-SAPT0 computations approaches 1000 MO’s, formation

of the four-index MO integrals dominates; the scaling of this step is O(Nauxo2v2). This

step is far more costly than the energy evaluation. The most expensive portion of the

SAPT0 energy evaluation is the E
(20)
exch−disp term. This term conventionally scales asO(o3v2);

Hesselmann and co-workers present equations in their DFT SAPT approach that use the

DF representation of the two-electron integrals to evaluate the E
(20)
exch−disp term in a manner

that scales as O(Nauxo2v2).86 Such a formulation of the E
(20)
exch−disp term is more memory

efficient, but slightly more costly than the conventional implementation. By reducing the

size of NAUX relative to DF, such terms will be more efficient using the CD approach. Our

implementation of the E
(20)
exch−disp term uses the conventional algorithm for smaller systems

and Hesselmann’s approach for larger systems. The remaining terms in SAPT0 scale as

O(o2v2) or better.

Figure 6: Timings of DF-SAPT computations on T-shaped acene dimers with the aug-cc-
pVDZ′ basis. “4-index” timings refer to the construction of the 4-index integrals from the
3-index integrals.
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It is interesting to compare the scaling of SAPT0 to that of the supermolecular MP2

method. First, we will look at the scaling of SAPT0. As is evident from Figures 5 and

6, the construction of the 4-index MO integrals (whether by conventional transformation

or by DF/CD approximations) is much more expensive than the energy evaluation (which

scales as O(o3v2)). There are several types of 4-index integrals required for SAPT0 that
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are potentially similar in size: the aarr, bbss, arar, bsbs and arbs type integrals. It is

possible to take advantage of the permutational symmetry of these integrals; the arar and

bsbs type integrals have 2-fold symmetry and the aarr and bbss type integrals have 4-fold

symmetry. The arbs type integrals do not have any permutational symmetry, which makes

them potentially the most expensive to compute. It is important to remember that for

SAPT computations, the occupied orbitals are divided into those from monomer A and

those from monomer B. This makes a general comparison of the size of the various types

of integrals impossible without knowing the relative sizes of the monomers. For simplicity,

we will assume that the number of occupied orbitals on monomer A and monomer B are

equal (a = b). Additionally we will assume that there are many more virtual orbitals than

occupied orbital, since this is required for an accurate description of dispersion interactions

(a << r and b << s). With these assumptions, the asymptotic complexity of SAPT0 is

O(aN4
ao) for conventional SAPT0 and O(arbsNaux) for DF/CD SAPT0.

A counterpoise-corrected, supermolecular MP2 interaction energy requires three sepa-

rate MP2 energy evaluations. The scaling of MP2 (much like SAPT0) is dominated by

the formation of the 4-index MO integrals. Each MP2 computation requires the construc-

tion of an o2v2 group of integrals and then and energy evaluation, which scales as only

O(o2v2). For the monomer computations, MP2 requires arar and bsbs integrals (and recall

that counterpoise-corrected MP2 and SAPT0 both use the full dimer basis to describe each

monomer). These integrals have a 2-fold symmetry and are identical to those found in

SAPT0. The dimer MP2 computation uses a larger occupied space than any of the stages

in SAPT0. Here, o = a + b and v = NMO − a− b. With this definition of the occupied and

virtual space, the integrals needed for the dimer MP2 computation are o2v2 in size. This

is noticeably larger than any of the types of integrals in SAPT0 despite the 2-fold symme-

try of these integrals. Therefore, the asymptotic complexity of an MP2 interaction energy

computation is O(oN4
ao) for a conventional MP2 computation and O(o2v2Naux) for DF/CD

MP2. Thus, the scaling of a supermolecular DF-MP2 interaction energy is worse than the

scaling of DF/CD-SAPT0. In practice, however, each MO integral is only needed once to

compute an MP2 energy, whereas each ovov integral is needed multiple times in SAPT0.
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For large systems, where the ovov arrays do not fit into memory, it is likely that it would

be faster to compute an MP2 interaction energy than to compute an SAPT0 interaction

energy, despite the scalings.

2.7.2 Additional Improvements to DF-SAPT0

The following was adapted from Ref. 99.

Our previous implementation of DF-SAPT0 primarily used the DF approximation to

avoid the two-electron integral AO to MO transformation.93 Additionally, the DF integrals

were used to factor one contribution to E
(20)
exch−disp in which the ovov type integrals appear

(this approach was described in Ref. 86). Despite this relatively simple approach, SAPT0

computations with as many as 116 atoms could be routinely performed with the program

developed in Ref. 93. Unfortunately, this approach is not tractable for much larger systems.

We will use the largest intercalator complex studied in this work as a concrete example of

the deficiencies in our previous implementation. The solution of the CPHF equations in

the MO basis involves iterative matrix-vector multiplies with a matrix that is ov × ov. For

the Pf·CGA complex, this matrix can become as large as 9.3 TB. The evaluation of the

E
(20)
exch−disp term could be written as a dot product between the dispersion amplitudes and a

collection of integrals contracted with overlap integrals (see Equation 72). While this was

done explicitly in our previous implementation, many of the contributions were evaluated as

dot products between ov × ov matrices. The dispersion amplitudes can also become rather

large, 650 GB or 1.3 TB for the Pf·CGA complex, depending on the use of the frozen core

approximation. For the remaining exchange terms, even o3v arrays can get as large as 250

GB.

Since our previous implementation was limited by the size of four-index arrays, the DF-

SAPT0 algorithm developed in the present work minimizes the number of these arrays that

must ever be formed. As a result, the new algorithm allows SAPT0 computations to be

performed for much larger systems. Additionally, the factorization of the generalized two-

electron integrals described above allows for increased efficiency with regard to memory

usage; the evaluation of exchange terms can now be trivially blocked over the auxiliary
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Figure 7: Timings of SAPT0/aug-cc-pVDZ′ computations on T-shaped acenes: benzene
through pentacene. The “Old DF-SAPT0” implementation is described in Ref. 93; the
“New DF-SAPT0” implementation is described in the present work. These computations
were performed on dual quad-core IntelR© Xeon R© processors clocked at 2.66 GHz.

Figure 8: Timing of a SAPT0/aug-cc-pVDZ′ computation on the Pf·CGA complex with
220 atoms and 2800 basis functions. This computation took 61.7 hours running on dual
quad-core IntelR© Xeon R© processors clocked at 2.66 GHz.
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index. Possibly the greatest advantage of our new implementation of SAPT0 is that the

improvements in terms of tractability and memory efficiency does not come at the cost

of performance. Figure 7 shows the timings for a series of T-shaped acenes (described in
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Ref. 93). For the largest system considered here, pentacene dimer, the new implementation

of SAPT0 is over 12 times more efficient.

The advances described above have allowed the application of SAPT0 to large biological

complexes. Here, we will highlight the Pf·CGA complex, which consists of 220 atoms and

2800 basis functions. This computation was performed using only modest computational

resources: dual quad-core IntelR© Xeon R© processors clocked at 2.66, 40 GB of memory, and

just over 2.5 days of wall time. Based on this performance, we estimate that our current

DF-SAPT0 implementation should be scalable to 4000 basis functions. The timing of the

computation on the Pf·CGA complex is shown in detail in Figure 8. The time of a SAPT0

computation is dominated by the evaluation of E
(20)
exch−disp, which takes nearly 2/3 of the

total time. The evaluation of the DF integrals (including formation of the AO integrals,

multiplication by [JAB ]−1/2, and AO to MO transformation) takes roughly 1/5 of the time,

with the bulk of the remainder being spent in the solution of the CPHF equations. To

improve efficiency in terms with heavy disk I/O requirements (the DF integrals and CPHF

evaluation), the disk I/O is done asynchronously. In the CPHF equations, for example,

reading of the CP
r1r2

DF integrals is “hidden” under the contractions described in Equation

62. The remaining terms, E
(10)
elst,resp, E

(10)
exch, etc., are trivial in comparison.

2.7.3 Higher-order SAPT

The following was adapted from Ref. 94.

We will begin by examining the improvement of the E
(111)
exch evaluation due to the in-

troduction of DF intermediates because it scales O(o3v3), which is as costly as any energy

evaluation in SAPT2 (the formation of second-order double excitation amplitudes is slightly

more expensive at O(o2v4)). Additionally, due to the simple form of this correction, it is

possible to compare the timings of the DF algorithm to a nearly optimal conventional algo-

rithm. When DF intermediates are introduced, the scaling of the E
(111)
exch term is reduced to

O(o2v2Ndf ) and depends on the formation of the ΘP
a1r1 and ΘP

b1s1 intermediates that exhibit

O(o2v2Ndf ) scaling. As illustrated by Figure 9, this is a significant improvement over the

O(o3v3) conventional algorithm. These timings show that for systems with 600 molecular
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orbitals, there is more than a factor of 7 speedup; this factor will continue to increase for

larger systems.

Figure 9: Timings of the conventional and DF evaluation of E
(111)
exch with an aug-cc-pVDZ

orbital basis and an aug-cc-pVDZ-RI fitting basis.
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Our implementation of DF-SAPT has an advantage over conventional SAPT since it

reduces the number of MO 4-index integrals that must be computed or stored. In addition

to removing the need to store the v4 integrals, there are contributions to the SAPT energy

(evaluated as described above) from 6 types of ov3 integrals. The E
(12)
elst,resp term requires ar3

and bs3 type integrals; the E
(12)
exch Kf

2 term requires r2bs and s2ar type integrals. The tE
(22)
ind

term and the singles contribution to E
(22)
disp require all 4 of these ov3 integrals. Through the

use of DF intermediates these four types of ov3 integrals do not need to be stored or even

computed. Only two types of ov3 integrals, which are needed for the E
(12)
exch Ku

11 term must

be computed and stored on disk. Thus, an obvious advantage of a DF based algorithm is

that only 2 of the 6 types of ov3 integrals ever need to be computed. The E
(13)
elst,resp term

requires the ar3 and bs3 type integrals; while it is possible to avoid forming these integrals,

it is not advantageous to do so. However, these ov3 integrals are only needed once, so

they do not need to be stored; they are computed from the three-index DF integrals (BP ).

Another advantage of the DF based algorithm is that the 3 types of v4 integrals do not

need to be stored.
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In order to understand how our DF-SAPT code performs relative to a conventional

SAPT code, we compare the timings of our DF-SAPT code to the SAPT2008 program.25

All of the timings reported in this work were run on a quad-core Intel R© Xeon E5430 proces-

sor clocked at 2.66 GHz. Both programs were allocated a maximum of 16 GB of memory,

which allows the conventional integral transformation in SAPT2008 to be performed “in

core.” The timings assume that the results of HF computations on the monomers are already

available. In order to assure a fair comparison between the two programs, the following en-

ergy terms were included in the SAPT timing: E
(10)
elst , E

(10)
exch, E

(20)
ind,resp, E

(20)
exch−ind,resp, E

(20)
disp,

E
(20)
exch−disp, E

(12)
elst,resp, E

(11)
exch, E

(12)
exch, tE

(22)
ind , and E

(21)
disp. Additionally, the integral transforma-

tion is also included in the timing; for conventional SAPT this includes only the AO to MO

transformation. For DF-SAPT this includes the formation of AO 3-index quantities, the

AO to MO transformation of the 3-index quantities, and the formation of the necessary DF

4-index MO integrals from the 3-index MO integrals. SAPT2008 utilizes a CCSD program

to compute the second-order double excitation amplitudes, while our program forms these

quantities directly. The time spent in the CCSD program is included in the SAPT2008

timing. Although the CCSD amplitudes are not iterated until convergence, this may still

be including some additional work in the SAPT2008 timing that is not included in the DF-

SAPT timing; however, this time must be included in order to include the rate determining

step into the SAPT timing.

At this point it should be noted that the timing differences between SAPT2008 and

our DF-SAPT program are primarily a result of the introduction of DF integrals into the

computation. Our conventional integral transformation and the energy terms which cannot

benefit from DF perform similarly to those in SAPT2008. The timings of conventional

SAPT and DF-SAPT are shown in Figure 10. At 350 orbitals, DF-SAPT is roughly a

factor of 8 faster than the conventional SAPT. This speedup will grow for larger systems,

as shown in Figure 9, since the overall scaling of certain terms is reduced. It is difficult

to get meaningful timings past 350 orbitals because the conventional SAPT computations

become I/O bound, therefore the timings would be strongly dependent on the available

hardware.
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Figure 10: Timings of the conventional and DF-SAPT2 computations of selected complexes
from the S22 test set117 with an aug-cc-pVDZ orbital basis and an aug-cc-pVDZ-RI fitting
basis.
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Figure 11: Timings of threaded DF-SAPT2 computations with an aug-cc-pVDZ orbital
basis and an aug-cc-pVDZ-RI fitting basis.
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In practice, we get additional improvements due to the threading of the DF-SAPT

energy evaluation. Since most modern computers are built with multi-core processors, our

DF-SAPT code exploits the availability of these additional processors. The timings of our

DF-SAPT with multiple threads are shown in Figure 11. Although to date we have only

made trivial modifications to our code to allow for threading, even this minor effort has

been useful for extending our code to larger systems. Since the most time consuming steps
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in the DF-SAPT computation are cast as matrix multiplications, we use threaded IntelR©

MKL BLAS routines. Other parts of our program that could not be cast as BLAS routines,

such as the 3-index integral evaluation, are threaded using OpenMP. The timings shown in

Figure 11 were run on dual quad-core IntelR© Xeon E5430 processors clocked at 2.66 GHz.

For the T-shaped indole-benzene, the SAPT/aug-cc-pVDZ (462 orbitals) computations get

a factor of 1.92 speedup from 1 to 2 threads. The efficiency degrades slightly from 2 to

4 threads with only an additional factor of 1.82 speedup. When the both processors are

fully utilized, we only see a factor of 1.64 moving from 4 to 8 threads. Nevertheless, these

speedups are encouraging given how straightforward they were to achieve. We intend to

pursue larger-scale parallelization in future work.

2.7.4 Improvements from Natural Orbitals

The following was adapted from Ref. 95.

To evaluate this correction more efficiently, we use threaded IntelR© MKL BLAS rou-

tines to form the triples amplitudes in Equation 153; the energy evaluation is threaded

using OpenMP. The timings shown in Figure 12 were run on dual quad-core IntelR© Xeon

E5430 processors clocked at 2.66 GHz with 8 threads. The largest computation shown in

this figure corresponds to hydrogen bonded adenine-thymine. Run with 1 thread, without

any approximations (other than the DF integrals), this computation would take roughly 2

months. Our threaded code reduces this to 9 days, and with the frozen core approxima-

tion the computation takes a more manageable 3 days. When the virtual space is reduced,

E
(22)
disp(T) can be computed in less than 4 hours. For the systems considered, the combination

of the frozen core and MP2 NO approximations result in a remarkable 50-60X speedup.

It is possible to realize even greater speedups for larger basis sets (to this point, we have

only shown results for the modest aug-cc-pVDZ basis). For larger basis sets, truncation

with a certain occupation threshold will remove a larger fraction of the virtual orbitals.

The speedups for the E
(22)
disp(T) evaluation with the aug-cc-pVDZ, aug-cc-pVTZ, and aug-

cc-pVQZ bases are shown in Figure 13. Due to the expense of triples corrections in an

aug-cc-pVQZ basis, we only show results for three small dimers from the S22 test set. The
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Figure 12: Timings of the evaluation of E
(22)
disp(T) correction with the aug-cc-pVDZ basis set

as various approximations are applied for (from left to right) formic acid dimer, methane-
benzene, T-shaped benzene dimer, T-shaped indole-benzene, and hydrogen bonded adenine-
thymine.
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Figure 13: Average speedup for the E
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disp(T) correction of water dimer, ammonia dimer,
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average speedups that result from the truncation of MP2 NOs increase with the size of the

basis set to an impressive 45X with the aug-cc-pVQZ basis. When the truncated virtual

space is combined with the frozen core approximation, the overall speedup increases to 85X

with the aug-cc-pVQZ basis. In our limited test cases, for a particular system, the amount
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of error introduced by the deletion of NOs with occupation numbers smaller than 10−6

remains similar as one goes to larger basis sets.

2.8 Accuracy of SAPT

The following was adapted from Ref. 96.

The SAPT methods described above have been applied to the S22 test set of Hobza

and co-workers117 (as revised in the S22A benchmarks213) in order to gauge their accu-

racy and basis set requirements. The complexes of the S22 are grouped by interaction type:

electrostatics-dominated, dispersion-dominated, and mixed-influence. These groupings were

initially assigned intuitively; recently, they have been revised using SAPT(DFT) decompo-

sitions.65 In this more rigorous approach, complexes are considered electrostatics-dominated

if Eelectrostatic is more than twice Edispersion and dispersion-dominated if Edispersion is

more than twice Eelectrostatic. Mixed-influence complexes are those that are not either

electrostatic- or dispersion-dominated. The original, intuitive groupings were found to be

in good agreement with the SAPT(DFT) decompositions. The stacked uracil dimer and

stacked adenine-thymine complex were found to be mixed-influence rather than dispersion-

dominated; the T-shaped benzene dimer was found to be dispersion-dominated rather than

mixed-influence. Our SAPT decompositions agree with the SAPT(DFT) decompositions

regarding the classification of S22 complexes with the exception of benzene-HCN. Orig-

inally, this complex was considered to be of mixed-influence. The SAPT(DFT) decom-

positions suggest that it should be considered electrostatics-dominated; however, at the

SAPT2+3/aug-cc-pVTZ level, Eelectrostatic ≈ Edispersion (-3.84 and -3.72 kcal mol−1, re-

spectively). Therefore, the original designation of the benzene-HCN interaction as mixed-

influence is more appropriate.

In Tables 11-14, we report the performance of SAPT for the entire S22 test set and

its subsets. The methods considered are defined by Equations 14-15 and 17-19. It has

been suggested that explicit third-order induction terms are sufficient in certain complexes,

making the inclusion of δE
(3)
HF unnecessary.162 To test this hypothesis, we report SAPT2+3
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energies with and without the δE
(3)
HF term. A truncated aug-cc-pVDZ basis, denoted aug-

cc-pVDZ′, removes all diffuse functions from hydrogen atoms and the diffuse d functions on

non-hydrogen atoms. This basis is used to encourage error cancellation for methods with

a MP2-like account of dispersion, namely SAPT0 and SAPT2. It is not reasonable to pair

higher-order SAPT methods with this basis set, so we do not report such results here.

Table 11: Accuracy of various SAPT methods for the entire S22 test set117 relative to the
estimated CCSD(T) CBS limit interaction energies of Reference 213.a

MSE MSRE MUE MURE MAX MAXRb

aug-cc-pVDZ′

SAPT0 -0.19 5.10 0.47 11.74 -1.73 67.67
SAPT2 1.23 20.13 1.32 22.68 4.05 73.69

aug-cc-pVDZ
SAPT0 -1.43 -20.50 1.45 22.03 -3.81 -69.19
SAPT2 0.06 -3.72 0.94 16.53 -2.62 -67.61
SAPT2+ 0.03 1.41 0.32 6.05 -1.22 13.29
SAPT2+(3) 0.32 7.42 0.39 8.05 0.82 20.30

SAPT2+3 - δE
(3)
HF

1.19 16.42 1.24 16.90 4.61 29.90
SAPT2+3 0.04 2.96 0.27 5.77 -1.32 16.20

aug-cc-pVTZc

SAPT0 -1.74 -29.26 1.74 29.26 -5.12 -87.23
SAPT2 -0.63 -17.33 0.78 19.37 -3.43 -90.48
SAPT2+ -0.60 -10.71 0.60 10.71 -1.55 -27.71
SAPT2+(3) -0.25 -2.58 0.28 3.48 -1.06 -10.13

SAPT2+3 - δE
(3)
HF

0.54 6.00 0.66 7.42 2.72 16.06
SAPT2+3 -0.55 -8.16 0.56 8.33 -1.86 -17.94

aErrors given in kcal mol−1; relative errors given as percentages. bFrom left to right, mean signed error, mean signed

relative error, mean unsigned error, mean unsigned relative error, max error, and max relative error. Signed errors

are reported as: ESAPT − Eref . cThe aug-cc-pVTZ computations exclude the two adenine-thymine dimers.

As we have previously documented,93 the simplest SAPT method, SAPT0, performs

remarkably well when paired with the aug-cc-pVDZ′ basis. For studies involving large sys-

tems or requiring large numbers of computations, SAPT0/aug-cc-pVDZ′ can be a practical

solution. However, its performance depends entirely on error cancellation within the disper-

sion term. For most of the complexes in the S22 set, the SAPT0 treatment of the dispersion

energy (in a large basis) is a poor approximation to the exact dispersion energy (overesti-

mating it by as much as a factor of two in some cases). It is well known that dispersion

terms converge slowly with respect to basis set size; by using a very small basis, one can

hope to underestimate the complete basis SAPT0 dispersion energy by roughly the same

amount that it overestimates the exact dispersion energy. Unfortunately, this error cancella-

tion is not guaranteed to occur. For S22A, the most notable example is the methane dimer.
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Table 12: Accuracy of various SAPT methods for the electrostatics-dominated subset of
the S22 test set117 relative to the estimated CCSD(T) CBS limit interaction energies of
Reference 213.a

MSE MSRE MUE MURE MAX MAXRb

aug-cc-pVDZ′

SAPT0 -0.68 -2.43 0.77 5.44 -1.73 10.52
SAPT2 2.61 18.84 2.61 18.84 4.05 22.41

aug-cc-pVDZ
SAPT0 -1.98 -11.38 2.00 11.94 -3.81 -20.27
SAPT2 1.39 11.13 1.39 11.13 2.12 16.71
SAPT2+ 0.41 4.02 0.42 4.12 0.86 9.17
SAPT2+(3) 0.67 6.74 0.67 6.74 0.82 13.83

SAPT2+3 - δE
(3)
HF

2.89 20.87 2.89 20.87 4.61 24.50
SAPT2+3 0.31 4.29 0.31 4.29 0.56 11.81

aug-cc-pVTZc

SAPT0 -2.69 -16.87 2.69 16.87 -5.12 -27.22
SAPT2 0.19 2.20 0.30 2.84 0.62 7.87
SAPT2+ -0.77 -5.10 0.77 5.10 -1.52 -8.70
SAPT2+(3) -0.42 -1.42 0.52 3.63 -1.06 -5.63

SAPT2+3 - δE
(3)
HF

1.73 12.36 1.73 12.36 2.72 14.44
SAPT2+3 -0.85 -4.53 0.88 5.08 -1.86 -9.88

aErrors given in kcal mol−1; relative errors given as percentages. Here, we use the definition of electrostatics-dominated

from Reference 117. bFrom left to right, mean signed error, mean signed relative error, mean unsigned error, mean

unsigned relative error, max error, and max relative error. Signed errors are reported as: ESAPT − Eref . cThe

aug-cc-pVTZ computations exclude hydrogen bonded adenine-thymine.

Table 13: Accuracy of various SAPT methods for the dispersion-dominated subset of
the S22 test set117 relative to the estimated CCSD(T) CBS limit interaction energies of
Reference 213.a

MSE MSRE MUE MURE MAX MAXRb

aug-cc-pVDZ′

SAPT0 0.03 15.59 0.38 24.71 0.71 67.67
SAPT2 0.15 21.79 0.44 29.80 0.91 73.69

aug-cc-pVDZ
SAPT0 -1.09 -30.62 1.12 34.88 -2.83 -69.19
SAPT2 -0.90 -21.88 1.01 32.80 -2.62 -67.61
SAPT2+ -0.13 -0.92 0.22 8.48 -0.59 13.29
SAPT2+(3) 0.18 9.69 0.18 9.69 0.30 20.30

SAPT2+3 - δE
(3)
HF

0.38 16.79 0.38 16.79 0.61 26.06
SAPT2+3 -0.01 3.44 0.14 6.97 -0.25 16.20

aug-cc-pVTZ
SAPT0 -1.43 -44.23 1.43 44.23 -3.49 -87.23
SAPT2 -1.37 -40.22 1.37 41.73 -3.43 -90.48
SAPT2+ -0.52 -17.20 0.52 17.20 -1.25 -27.71
SAPT2+(3) -0.11 -2.86 0.11 3.28 -0.27 -7.33

SAPT2+3 - δE
(3)
HF

0.07 3.50 0.10 4.30 0.26 10.05
SAPT2+3 -0.35 -10.76 0.35 10.76 -0.76 -17.94

aErrors given in kcal mol−1; relative errors given as percentages. Here, we use the definition of dispersion-dominated

from Reference 65. bFrom left to right, mean signed error, mean signed relative error, mean unsigned error, mean

unsigned relative error, max error, and max relative error. Signed errors are reported as: ESAPT − Eref .
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Table 14: Accuracy of various SAPT methods for the mixed-character subset of the S22
test set117 relative to the estimated CCSD(T) CBS limit interaction energies of Reference
213.a

MSE MSRE MUE MURE MAX MAXRb

aug-cc-pVDZ′

SAPT0 0.05 2.51 0.28 5.92 0.57 12.54
SAPT2 0.96 19.81 0.96 19.81 1.85 31.16

aug-cc-pVDZ
SAPT0 -1.26 -19.62 1.26 19.62 -3.71 -31.83
SAPT2 -0.26 -0.82 0.47 7.02 -1.85 -15.86
SAPT2+ -0.15 1.15 0.33 5.61 -1.22 -10.44
SAPT2+(3) 0.14 6.02 0.33 7.75 -0.56 14.53

SAPT2+3 - δE
(3)
HF

0.40 12.21 0.54 13.53 1.08 29.90
SAPT2+3 -0.14 1.37 0.36 6.02 -1.32 -11.29

aug-cc-pVTZc

SAPT0 -1.23 -24.91 1.23 24.91 -2.66 -33.20
SAPT2 -0.60 -11.18 0.60 11.18 -1.52 -19.87
SAPT2+ -0.53 -9.03 0.53 9.03 -1.55 -15.92
SAPT2+(3) -0.24 -3.29 0.24 3.54 -0.99 -10.13

SAPT2+3 - δE
(3)
HF

-0.01 3.03 0.31 6.30 -1.11 16.06
SAPT2+3 -0.50 -8.68 0.50 8.68 -1.57 -16.10

aErrors given in kcal mol−1; relative errors given as percentages. Here, we use the definition of mixed-character

from Reference 65 with the exception of the benzene-HCN complex, which we include here. bFrom left to right,

mean signed error, mean signed relative error, mean unsigned error, mean unsigned relative error, max error, and

max relative error. Signed errors are reported as: ESAPT − Eref . cThe aug-cc-pVTZ computations exclude stacked

adenine-thymine.

Here, SAPT0/aug-cc-pVDZ′ underestimates the (admittedly small) interaction energy by

almost 70%; SAPT0/aug-cc-pVDZ underestimates the interaction energy by 12%. With

the aug-cc-pVTZ basis, SAPT0 will accurately compute the interaction energy of methane

dimer (0.4% error). These trends for methane dimer should generalize to any alkane-alkane

interaction; therefore, SAPT0/aug-cc-pVDZ′ is a very poor choice to describe these interac-

tions. We should also note that the S22 test set contains quite a few π interactions (perhaps

overemphasizing their importance compared to a typical study of noncovalent interactions).

Thus, the good performance of SAPT0/aug-cc-pVDZ′ for the S22 molecules may not be

indicative of its general applicability.

One of the most commonly applied many-body SAPT methods is SAPT2, which includes

terms to second-order with respect to electron correlation. The performance of this method

tends to be very similar to MP2. For electrostatics-dominated complexes, the performance

of SAPT2/aug-cc-pVTZ is the best of any level of SAPT tested. SAPT2/aug-cc-pVDZ′
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performs fairly well for dispersion dominated complexes, but very poorly for electrostatics-

dominated complexes. Across the entire S22 test set, the performance of SAPT2 is fairly

poor; it can only be recommended for application to electrostatics-dominated complexes

with an aug-cc-pVTZ basis.

The higher-order methods SAPT2+ and SAPT2+(3) differ only by the E
(13)
elst,resp and

E
(30)
disp terms that are included in the latter. Both of these methods are reliable for any

interaction type considered when paired with an aug-cc-pVDZ basis; it should be noted

that with this basis, SAPT2+(3) will be, on average, underbound relative to the CCSD(T)

benchmark, whereas SAPT2+ is neither consistently underbound nor overbound. It follows

that increasing the size of the basis to aug-cc-pVTZ leads to an improvement for SAPT2+(3)

and a worsening for SAPT2+. Since the additional terms in SAPT2+(3) scale O(N6)

while, overall, the method scales O(N7), and given the similar accuracy of SAPT2+ and

SAPT2+(3) in an aug-cc-pVDZ basis, there does not seem to be a compelling reason to

use SAPT2+ instead of the more complete SAPT2+(3). Perhaps the most accurate level

of SAPT tested was SAPT2+(3)/aug-cc-pVTZ. This level of SAPT is, on average, slightly

overbound, but within 1 kcal mol−1 of the CCSD(T) benchmark. The performance of this

method is based around the error cancellation that occurs by including the E
(30)
disp term

without its exchange counterpart. The E
(30)
disp term is usually small (less than 0.6 kcal mol−1

in all cases considered) and repulsive. The E
(13)
elst,resp term is also small and usually repulsive.

The addition of these terms to SAPT2+, which tends to overbind, results in a method that,

fortuitously, predicts accurate interaction energies.

The SAPT2+3 method includes a proper and complete description of third-order inter-

actions. Despite including several additional terms, the cost of SAPT2+3 is nearly identical

to SAPT2+(3). One of the most robust levels of SAPT that we tested is SAPT2+3/aug-cc-

pVDZ. This level is equally well suited for studying electrostatic- and dispersion-dominated

complexes. With this small basis, the δE
(3)
HF term should be included in all cases as it

compensates for the basis set incompleteness in the dispersion term. With the larger, aug-

cc-pVTZ basis, δE
(3)
HF should only be included for electrostatics-dominated complexes, where

the higher-order induction terms it captures become important. For dispersion-dominated
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and mixed-influence complexes, it appears that the induction series is sufficiently converged

at third-order and δE
(3)
HF should be omitted. This finding is in agreement with the work

of Patkowski et al.162 It is possible that accounting for the effect of orbital response on

the third-order induction, which is not considered here, would improve the performance of

SAPT2+3 for the mixed-influence interactions.163

The levels of SAPT described above contain two different approximations to the exact

second-order dispersion energy, ǫ
(2)
disp. The E

(20)
disp term is the simplest approximation to ǫ

(2)
disp

and is found in the SAPT0 and SAPT2 methods. This description of dispersion is similar to

that of MP2. The treatment of dispersion in SAPT2+ and higher SAPT methods is similar

to that of MP4, which we will denote ǫ
(2)
disp[2], and sums the intramonomer corrections to

E
(20)
disp through second order:

ǫ
(2)
disp[2] = E

(20)
disp + E

(21)
disp + E

(22)
disp. (210)

At times, finite-order perturbation theory is insufficient to accurately compute dispersion

energies. It is also possible to evaluate the second-order dispersion energy using a coupled-

cluster based approach. The variant we will discuss was developed by Williams et al.247 and

is based on a CCD treatment of dispersion and the intramonomer correlation corrections to

dispersion. This is augmented by a perturbative treatment of singles and triples. We refer

to this treatment of dispersion as:

ǫ
(2)
disp[CCD + ST(CCD)] = E

(2)
disp[CCD] + E

(2)
disp[S(CCD)] + E

(2)
disp[T(CCD)]. (211)

When we replace the ǫ
(2)
disp[2] treatment of dispersion with ǫ

(2)
disp[CCD + ST(CCD)] in the

SAPT2+3 method, we will denote it as SAPT2+3(CCD).

In figures 14-16, SAPT is compared to CCSD(T) within the same basis, in contrast to

the analysis of the S22A test set, where we compared to estimated complete basis CCSD(T)

results. Here, we want to explore the accuracy of different treatments of dispersion without

examining any error cancellation that occurs due to basis set incompleteness. The first

case we will consider is the methane dimer (Figure 14). The dispersion interactions in the

methane dimer are easily described, and all three SAPT methods are in good agreement

with CCSD(T). Dispersion interactions involving delocalized π-orbitals are known to be
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Figure 14: Methane dimer potential energy curves computed with various levels of
SAPT/aug-cc-pVQZ (defined in Equations 14 and 19) and with CCSD(T)/aug-cc-pVQZ.
The SAPT2+3 and SAPT2+3(CCD) curves are nearly coincident.

Figure 15: Methane-benzene potential curves computed with various levels of SAPT/aug-
cc-pVDZ (defined in Equations 14 and 19) and with CCSD(T)/aug-cc-pVDZ.

more difficult to accurately compute. The methane-benzene complex is an example of such

an interaction; the results for this system are shown in Figure 15. Here, the E
(20)
disp term

alone cannot accurately predict the dispersion in the methane-benzene complex. Some

account of intramonomer correlation must be included to obtain a reliable dispersion energy

for this system; either the ǫ
(2)
disp[2] or ǫ

(2)
disp[CCD + ST(CCD)] treatment of dispersion is

sufficient. Dispersion interactions in the benzene dimer involve delocalized π-orbitals on

both monomers and require a high degree of electron correlation to predict quantitatively.

The SAPT results for the parallel-displaced benzene dimer are shown in Figure 16. For the
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Figure 16: Parallel-displaced benzene dimer potential curves computed with various levels
of SAPT/aug-cc-pVDZ (defined in Equations 14 and 19) and with CCSD(T)/aug-cc-pVDZ
at a vertical separation of 3.6 Å. Although SAPT0 compares poorly to CCSD(T) in this case
for a fixed basis set, SAPT0/aug-cc-pVDZ′ compares reasonably well with CCSD(T)/CBS
estimates due to favorable error cancellation (see Ref. 94).

benzene dimer, the E
(20)
disp term overestimates dispersion by roughly 2 kcal mol−1 for all the

horizontal displacements considered. The ǫ
(2)
disp[2] treatment of dispersion is also insufficient

in this case; although it is a significant improvement, there are still errors on the order of

0.5 kcal mol−1. These problems can be addressed with the ǫ
(2)
disp[CCD + ST(CCD)] account

of dispersion and leads to remarkable agreement with the CCSD(T) results.

These test cases demonstrate that dispersion interactions cannot all be treated with the

same approximations. For simple alkane-alkane interactions, the E
(20)
disp term, without any

account of intramonomer electron correlation, is sufficient to accurately compute the disper-

sion energy. Other, more challenging interactions, such as methane–benzene, are reliably

treated by intermediate descriptions of dispersion (i.e., ǫ
(2)
disp[2]). For the notoriously diffi-

cult π-π interactions, a rigorous ǫ
(2)
disp[CCD + ST(CCD)] treatment of dispersion is required

if error cancellation is not to be relied upon. By applying DF and NO approximations,

accurate dispersion energies can be computed with the many-body formulation of SAPT

for much larger systems than were previously accessible.
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CHAPTER III

APPLICATIONS OF SYMMETRY-ADAPTED PERTURBATION

THEORY

3.1 Heteroatom effects on π-π interactions

The following was adapted from Ref. 92.

3.1.1 Introduction

Bimolecular complexes involving pyridine have been studied theoretically by several groups.

Some of the first work studying the pyridine dimer was conducted by Megiel et al.;140 the

dependence of the chemical shift of the pyridine nitrogen was studied as a function of pyri-

dine concentration in n-heptane, and hydrogen bonded configurations of the pyridine dimer

were examined with Hartree-Fock and density functional theory (DFT). Optimized geome-

tries and binding energies of the pyridine dimer were computed by Piacenza and Grimme

using dispersion corrected density functional theory (DFT-D), second-order Møller-Plesset

perturbation theory (MP2), and spin-component-scaled MP2 methods.164 Binding energies

for pyridine dimers and trimers were also computed by Mishra and Sathyamurthy at the

MP2/6-311++G** level of theory.146 Geerlings and co-workers studied complexes of pyri-

dine, pyrimidine, and imidazole with substituted benzenes at the MP2/6-31G*(0.25) level

of theory to examine the effect of substitution on binding energies and the H-bonding ability

of the nitrogen lone pairs.145 Tsuzuki et al.226 have examined benzene-pyridine at a high

level of theory as part of a study on interactions between benzene and pyridinium cations.

However, relatively little work has sought to systematically explore the fundamental ques-

tion of how heteroatoms affect π-π interactions. As this article was being prepared, two

additional relevant studies were published. Tschumper and co-workers have examined com-

plexes involving benzene, 1,3,5-triazine, cyanogen, and diacetylene.13 Wang and Hobza234

have presented high-quality interaction energies for selected configurations of benzene with

isoelectronic nitrogen-containing heterocycles.
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In this study, quantum chemical methods are used to compute benchmark quality bind-

ing energies and potential energy curves for benzene-pyridine and the pyridine dimer. Pre-

vious works have presented fully optimized geometries for these complexes,164,226, 234 which

are important for understanding their spectroscopy. However, our present interest is not

the spectroscopy of these clusters, but rather how heteroatoms tune π-π interactions across

the energy landscape. Such information can be valuable because heteroatom-containing

π-π interactions may occur in a wide variety of geometries in complex systems such as

biopolymers. Because full six-dimensional intermolecular potential surfaces are difficult to

visualize and compute, our strategy here is to compare several interesting configurations

of the pyridine dimer to corresponding configurations in benzene-pyridine and the benzene

dimer to ascertain the heteroatom effect. In addition, we plot selected potential energy

curves.

To better understand the nature of heteroatom-influenced π-π interactions, it is also

useful to analyze the interaction energy in terms of electrostatic, induction, dispersion, and

exchange-repulsion components. Previous work on benzene-pyridine has considered such an

analysis using approximate energy decomposition schemes.226 Here we employ the rigorous

symmetry-adapted perturbation theory (SAPT)111,246 to analyze the sandwich, T-shaped,

and parallel-displaced configurations of both benzene-pyridine and pyridine dimer, and we

find that SAPT leads to somewhat different conclusions than previous analyses.

3.1.2 Theoretical Methods

Single-point energy computations were performed using second order perturbation theory

(MP2) as well as coupled-cluster with singles and doubles including perturbative triples

[CCSD(T)].176 These methods were used with Dunning’s aug-cc-pVDZ, aug-cc-pVTZ, and

aug-cc-pVQZ basis sets.49,118 In addition, the spin-component-scaled second-order pertur-

bation theory (SCS-MP2) method of Grimme was used to analyze parallel-displaced con-

figurations.67 Within each complex, the monomer geometries were held rigid as the inter-

monomer distance was varied. Experimental geometries for each monomer were used. The

benzene monomer geometry is that recommended by Gauss and Stanton: rCC = 1.3915
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Å and rCH = 1.0800 Å.59 The monomer geometry of pyridine used in this study is that

reported by Innes et al.103 The sandwich and T-shaped benzene dimer curves were obtained

in a separate work.198

In order to correct for basis set superposition error, the Boys-Bernardi counterpoise

correction scheme was employed for all energy computations.21 Large-basis CCSD(T) re-

sults are estimated using an additive scheme which adds a “coupled-cluster correction,”

∆CCSD(T) = Esmall−basis
CCSD(T) − Esmall−basis

MP2 , to a large-basis MP2 result: Elarge−basis
CCSD(T) ≈

Elarge−basis
MP2 + ∆CCSD(T). Previous work suggests that this correction is fairly well con-

verged with the aug-cc-pVDZ basis set,203 although more recent work suggests that the size

of the correction might grow slightly if larger basis sets could be employed.107

Dunning’s correlation consistent basis sets have been shown to systematically approach

the complete-basis-set (CBS) limit; this was exploited to obtain estimates of the MP2/CBS

binding energies by using the two point extrapolation scheme of Halkier et al.78 with aug-cc-

pVTZ and aug-cc-pVQZ basis sets. All CCSD(T) and MP2 computations were performed

with the core electrons frozen using the PSI 3.3 and MOLPRO programs.41,151 A natural

population analysis of benzene and pyridine for Hartree-Fock/6-311++G** wavefunction

was performed using Jaguar.106

Energy component analysis is performed using symmetry adapted perturbation theory

(SAPT).111,246 All terms through second-order with respect to electron correlation are in-

cluded in this work, thus designating this truncation of SAPT theory SAPT2. All SAPT2

computations were performed using the SAPT2006 program.25 These computations were

performed using the aug-cc-pVDZ′ basis set, which consists of the cc-pVDZ basis set with

the diffuse s and p functions of aug-cc-pVDZ added to non-hydrogen atoms. In our expe-

rience, the SAPT2/aug-cc-pVDZ′ results are good approximations to large-basis CCSD(T)

results through a favorable cancellation of errors.203

The configurations of benzene dimer, benzene-pyridine, and pyridine dimer studied here

fall into three categories: sandwich (Figure 17), T-shaped (Figure 18) and parallel-displaced

(Figure 19). For all configurations, the monomers were aligned based on the geometric cen-

ters of their rings. The vertical inter-monomer separation in all cases was measured from
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these centers and is denoted as R. For the parallel-displaced configurations, the horizontal

displacement is labeled H. The pyridine dimer has the most possible unique configurations,

and because of this, the focus of this work was on the configurations that represented ex-

tremes for pyridine dimer: placing the nitrogen atoms as close and as far away from one

another as possible, and aligning the dipole moments in parallel and anti-parallel arrange-

ments. The analogous configurations for benzene-pyridine were also studied. Each of these

configurations were compared to a similar configuration of benzene dimer. For convenience

in the following discussion, we will frequently abbreviate pyridine as Py and benzene as Bz.

Figure 17: Sandwich and T-shaped configurations of benzene dimer, benzene-pyridine, and
pyridine dimer.
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N
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N N

(Bz)2 S Bz-Py S

(Py)2 S1 (Py)2 S2

Potential energy curves were computed for sandwich configurations of benzene-pyridine

and pyridine dimer at the estimated CCSD(T) complete basis set limit. These computations

show (Py)2 S2 to be the most favorable sandwich configuration, followed by Bz-Py S (see

Table 15). With a binding energy of 2.95 kcal mol−1, (Py)2 S2 binds nearly twice as strongly

as (Bz)2 S. The least favorable configuration, and the only configuration to be less favorable

than the benzene dimer sandwich configuration, is (Py)2 S1.

Five of the more favorable T-shaped configurations of (Py)2 or Bz-Py were analyzed

at the estimated CCSD(T) CBS limit, and potential curves for the remaining T-shaped

configurations from Figure 18 were computed at the estimated CCSD(T)/aug-cc-pVTZ
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Figure 18: Sandwich and T-shaped configurations of benzene dimer, benzene-pyridine, and
pyridine dimer.
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level of theory. The most favorable T-shaped configuration was found to be Bz-Py T1, with

(Py)2 T3 being the second most favorable. These were the only two configurations found

to be more favorable than (Bz)2 T at the CCSD(T) CBS limit. Configurations of the T2
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Figure 19: Parallel-displaced configurations of benzene dimer, benzene-pyridine, and pyri-
dine dimer.

type (with a nitrogen of one ring pointed down at the center of another ring) were found

to be more weakly bound with a shorter optimized inter-monomer separation.

Potential energy curves for the parallel-displaced configurations (Figure 19) were com-

puted at vertical inter-monomer separations of 3.2, 3.4, 3.5, 3.6, and 3.8 Å. Horizontal

displacements as large as 6 Å were considered. The parallel-displaced configurations of

type a exhibit displacements over a vertex, while configurations of type b were displaced

over a bond. Because of the large number of single point energies required for a thorough

analysis of these configurations, CCSD(T) curves proved to be far too costly. Instead,

the less computationally expensive SCS-MP2 method was employed.67 Figure 20 clearly

shows that the SCS-MP2/aug-cc-pVTZ curves are an excellent estimate of the estimated

CCSD(T)/aug-cc-pVTZ curves. The SCSN scaling of MP287 was tested but did not work

as well as SCS-MP2 for these complexes. These favorable results allowed SCS-MP2 to be
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Table 15: Interaction energies of sandwich and T-shaped configurations of benzene dimer,
benzene-pyridine, and pyridine dimer at various levels of theory.

SCS-MP2/aTZ Est. CCSD(T)/aTZ Est. CCSD(T)/CBS
∆Ea Rb ∆Ea Rb ∆Ea Rb

(Bz)2 S -1.76 3.9 -1.64 3.9 -1.76 3.9
Bz-Py S -2.19 3.8 -2.07 3.8 -2.22 3.8
(Py)2 S1 -1.56 3.8 -1.48 3.9 -1.61 3.8
(Py)2 S2 -2.88 3.7 -2.77 3.7 -2.95 3.7
(Bz)2 T -2.33 5.0 -2.59 4.9 -2.73 5.0
Bz-Py T1 -2.74 5.0 -3.02 5.0 -3.18 4.9
Bz-Py T2 -0.39 4.8 -0.64 4.7 — —
Bz-Py T3 -1.80 5.1 -2.08 5.0 -2.20 5.0
Bz-Py T4 -2.36 5.0 -2.61 5.0 -2.74 5.0
(Py)2 T1 -2.02 5.1 -2.32 5.0 -2.46 5.0
(Py)2 T2 -0.95 4.7 -1.23 4.6 — —
(Py)2 T3 -2.55 5.0 -2.80 4.9 -2.95 4.9
(Py)2 T4 -1.87 5.0 -2.15 5.0 — —

aCCSD(T) estimated CBS limit interaction energies in kcal mol−1. bInter-monomer sepa-
ration in Å.

confidently applied to the remainder of the configurations. For completeness, SCS-MP2

can be compared to estimated CCSD(T) results with the aug-cc-pVTZ basis set for all

complexes considered in this work (Table 15). SCS-MP2 performs well for sandwich con-

figurations, further justifying its use for examining parallel-displaced complexes. The most

favorable configuration of all those considered in this work is (Py)2 P2b at R = 3.4 Å. This

has a binding energy of 3.84 kcal mol−1 at the SCS-MP2/aug-cc-pVTZ level (Table 16).

The most favorable benzene-pyridine configuration was Bz-Py P1a(-) at R = 3.5 Å with a

binding energy of 3.23 kcal mol−1.

The presence of nitrogen atoms in pyridine allows for the possibility of planar complexes

with favorable CH· · ·N interactions. In a previous work by Piacenza and Grimme,164 a

configuration of pyridine dimer with C2h symmetry containing two CH· · ·N interactions

was examined. There are no analogous benzene dimer or benzene-pyridine configurations,

and this configuration is the least significant for the π-π interactions which are the focus

of this work. Nevertheless, due to the magnitude of the favorable interactions within this

complex and the importance of hydrogen bonded interactions in biological complexes, the
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Figure 20: Comparison of Bz-Py P1a(+,-) potential energy curves computed with various
methods. Interaction energies in kcal mol−1.

-5.00

-4.50

-4.00

-3.50

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

In
te

ra
ct

io
n 

E
ne

rg
y

H (Angstrom)

SCS-MP2/aug-cc-pVTZ
SCSN-MP2/aug-cc-pVTZ

Est. CCSD(T)/aug-cc-pVTZ

Table 16: Interaction energies of parallel-displaced configurations of benzene dimer,
benzene-pyridine, and pyridine dimer computed at the SCS-MP2/aug-cc-pVTZ level of
theory.

SCS-MP2/aTZ
∆Ea Rb Hb

(Bz)2 P1a -2.71 3.5 1.6
(Bz)2 P1b -2.70 3.5 1.6
Bz-Py P1a(+) -2.36 3.5 1.4
Bz-Py P1a(-) -3.23 3.5 1.6
Bz-Py P1b -3.14 3.5 1.6
(Py)2 P1a -2.24 3.5 1.6
(Py)2 P1b -2.54 3.5 1.6
(Py)2 P2a(+) -2.78 3.5 1.4
(Py)2 P2a(-) -3.70 3.5 1.2
(Py)2 P2b -3.84 3.4 1.6

aSCS-MP2/aug-cc-pVTZ interaction energies in kcal mol−1. bDistances given in Å.

hydrogen bonded pyridine dimer is interesting in its own right. A potential energy curve

for this complex was computed at the estimated CCSD(T)/aug-cc-pVTZ level of theory

(Figure 21). This complex is bound by 3.56 kcal mol−1 at an inter-monomer separation

of 5.8 Å with CH· · ·N hydrogen bond distances of 2.5 Å. SCS-MP2 and SCSN-MP2 were

tested for this hydrogen bonded pyridine dimer; MP2 and SCSN-MP2 perform well, while

SCS-MP2 significantly underestimates the magnitude of the attractive interaction. Using
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DFT-D, a much less computationally demanding technique than CCSD(T), Piacenza and

Grimme report binding energies of 3.5-3.7 kcal mol−1 for the planar hydrogen bonded

pyridine dimer.164 These are in excellent agreement with our benchmark CCSD(T) results.

Figure 21: Potential energy curves for the hydrogen bonded pyridine dimer computed at
the estimated CCSD(T)/aug-cc-pVTZ level of theory. Interaction energies in kcal mol−1.

3.1.3 Sandwich Configurations

The most obvious difference in the intermolecular interactions of the (Py)2 S1 and (Py)2

S2 configurations is that they feature dipole-dipole interactions with opposite signs. The

(Py)2 S1 configuration has an unfavorable dipole-dipole interaction because the dipoles

are parallel, while (Py)2 S2 has a favorable dipole-dipole interaction because the dipoles

are anti-parallel. In Bz-Py S, dipole-induced-dipole interactions are expected to contribute

favorably to the binding energy. Note that all of these electrostatic interactions differ quali-

tatively from those in the benzene dimer, which lacks dipoles on the monomers; instead, the

benzene dimer features quadrapole-quadrapole interactions. However, all of the sandwiches

considered here, as well as the benzene dimer, do have in common favorable charge inter

penetration terms due to an overlap of the π clouds.

Dispersion is also important in weakly bonded systems, and its magnitude can be related

to the polarizability of the monomers. Pyridine is less polarizable than benzene.45 This

causes the dispersion interactions in complexes containing pyridine to be weaker than those
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containing benzene. On the other hand, the contraction of the π electron cloud due to

the heteroatom not only decreases the size of the favorable dispersion interactions, but it

also decreases unfavorable exchange-repulsion interactions. Predictions about the relative

size of these two changes are difficult to make; analysis with SAPT2 proves invaluable for

quantifying these effects.

The SAPT2 results for the sandwich configurations at a separation of 3.8 Å (Table

17) generally confirm the above qualitative predictions about the various contributions to

the interaction energy. Note that SAPT2 provides the same energetic ordering of sand-

wich complexes as does CCSD(T) estimated at the CBS limit. The (Py)2 S2 configuration

is predicted to have the most favorable electrostatic interactions and the least amount of

dispersion, exchange-repulsion, and induction. These results stem from the reduced polar-

izability of pyridine and the anti-parallel alignment of the dipoles. As well as producing

favorable electrostatic interactions, this alignment of the dipoles also maximizes separation

of the electron density, thus lowering dispersion and exchange-repulsion. Each successive

substitution of a pyridine for a benzene lowers the exchange-repulsion by roughly 0.5 kcal

mol−1. However, the magnitude of the favorable dispersion interaction is reduced by only

about 0.3 kcal mol−1 per pyridine monomer. Because of this, the sum of dispersion and

exchange-repulsion (“net dispersion”) tends to become more favorable as benzenes are re-

placed by pyridines. As expected, the (Py)2 S1 configuration is much less favorable than

(Py)2 S2 or (Bz)2 S because of the parallel alignment of dipoles; this is reflected in a much

less attractive electrostatic interaction in this configuration. The Bz-Py S configuration

has a somewhat more favorable electrostatic contribution than (Bz)2 S, but less favorable

than that due to the anti-parallel dipoles of (Py)2 S2. Perhaps surprisingly, the expected

stabilization of Bz-Py S due to dipole-induced-dipole terms is not realized in the SAPT

results; instead, the induction contribution for Bz-Py S is less attractive than in (Bz)2 S.

This unimportance of dipole-induced-dipole interactions has also been noted in substituted

benzene dimers.185,202

Figure 22 shows the potential energy of the sandwich configurations as a function of

the inter-monomer separation. For all distances considered, the Bz-Py heterodimer energy
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Table 17: SAPT2 results for sandwich configurations of benzene dimer, benzene-pyridine,
and pyridine dimer.a

Rb Eelst Eind Eexch Edisp Enet disp
c ESAPT2

d

(Bz)2 S 3.8 -0.477 -0.275 4.516 -5.682 -1.166 -1.917
Bz-Py S 3.8 -0.800 -0.257 3.999 -5.335 -1.336 -2.393
(Py)2 S1 3.8 -0.049 -0.208 3.565 -4.999 -1.435 -1.691
(Py)2 S2 3.8 -1.294 -0.245 3.488 -4.996 -1.508 -3.047

aComputations performed using the aug-cc-pVDZ′ basis set. Energies in kcal mol−1 and
distances in Å. bInter-monomer separation in Å. cNet dispersion is the sum of the exchange
and dispersion components. dTotal SAPT2 interaction energy.

lies in between those of the (Bz)2 S and (Py)2 S2 dimers, although the energy is somewhat

closer to that of (Bz)2 S. The (Py)2 S1 configuration is the least favorable sandwich except

at short distances (R < 3.5 Å) when it becomes slightly more favorable than (Bz)2 S. This

is due to the reduced spatial extent of the electron density for a pyridine monomer reducing

the rate at which exchange-repulsion increases with decreasing inter-monomer separation

relative to (Bz)2 S.

3.1.4 T-shaped Configurations

The behavior of the T-shaped configurations containing pyridine monomers can be under-

stood by examining how the interactions that stabilize the T-shaped benzene dimer are

changed by the introduction of a heteroatom. As demonstrated by SAPT analysis (Table

18), the dominant stabilizing interaction in most of the T-shaped configurations is electro-

static; exchange-repulsion and dispersion terms are also large, but they tend to cancel, so

their sum (net dispersion) is relatively small. The favorable electrostatic interaction can

be rationalized by considering the attraction that will result between the negative π cloud

on one ring and the positive charge on the hydrogen pointed toward it. In pyridine, the

nitrogen atom pulls electron density away from the hydrogen para to it, increasing that

hydrogen’s positive charge relative to its value in benzene, making pyridine more effective

as a “π hydrogen bond” donor. However, because the presence of this nitrogen also distorts

the π electron cloud by pulling electron density away from the center of the ring and toward
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Figure 22: Potential energy curves for sandwich and T-shaped configurations computed at
the estimated CCSD(T) CBS limit. Interaction energies in kcal mol−1.
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the nitrogen (see Figure 23), one might expect that this makes pyridine somewhat less ef-

fective than benzene as a “π hydrogen bond” acceptor; indeed, Bz-Py T3 is less favorable

than (Bz)2 T, and (Py)2 T1 is less favorable than Bz-Py T1. The Bz-Py T1 configuration
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should be the most favorable of those considered, and this conclusion is supported by the

estimated CCSD(T) CBS limit potential energy curves (see Table 15 and Figure 22). Be-

cause (Py)2 T1 is not as strongly bound as (Bz)2 T, it appears that nitrogen heteroatoms

have a larger unfavorable effect on “π hydrogen bond” accepting ability than they have a

favorable effect on “π hydrogen bond” donating ability. The weak binding in the Bz-Py T2

and (Py)2 T2 complexes occurs because the electrostatic contribution is much less favorable

or even unfavorable as the negative charge on nitrogen points down at the negative π cloud

below (see Table 15 and Figure 24). These complexes remain weakly bound because of

favorable induction and dispersion contributions. The minimum energy geometries of these

two complexes have shorter inter-monomer separations than the other T-shaped complexes.

Table 18: SAPT2 results for T-shaped configurations of benzene dimer, benzene-pyridine,
and pyridine dimer.a

Rb Eelst Eind Eexch Edisp Enet disp
c ESAPT2

d

(Bz)2 T 5.0 -1.753 -0.518 3.517 -3.730 -0.213 -2.484
Bz-Py T1 5.0 -2.118 -0.635 3.540 -3.696 -0.156 -2.909
Bz-Py T2 4.7 0.329 -0.616 3.381 -3.754 -0.372 -0.659
Bz-Py T3 5.0 -1.209 -0.399 3.271 -3.512 -0.241 -1.850
Bz-Py T4 5.0 -1.804 -0.485 3.209 -3.359 -0.150 -2.439
(Py)2 T1 5.0 -1.391 -0.498 3.288 -3.477 -0.189 -2.078
(Py)2 T2 4.7 -0.392 -0.536 3.171 -3.534 -0.363 -1.292
(Py)2 T3 5.0 -1.780 -0.378 2.674 -3.106 -0.431 -2.589
(Py)2 T4 5.0 -1.138 -0.383 2.776 -3.124 -0.348 -1.869

aComputations performed using the aug-cc-pVDZ′ basis set. Energies in kcal mol−1 and
distances in Å. bInter-monomer separation in Å. cNet dispersion is the sum of the exchange
and dispersion components. dTotal SAPT2 interaction energy.

In complexes (Py)2 T3 and (Py)2 T4, the top pyridine is rotated 90o, leading to sig-

nificant contributions from dipole-dipole interactions. We also examined a similar Bz-Py

configuration, T4. The direct interaction between a single hydrogen with the π electron

cloud below it is replaced by a less direct interaction of two hydrogens with the π cloud.

The estimated CCSD(T) CBS limit potential energy curves show (Py)2 T3 to be the most

favorable of these three configurations, which would be expected because this configuration

features anti-parallel dipoles. This is the most favorable T-shaped pyridine dimer consid-

ered, and the only one that binds more strongly than (Bz)2 T. Bz-Py T4 binds more weakly
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Figure 23: Electrostatic potential computed at the Hartree-Fock/6-31G* level of theory.
The scale is -25 (red) to 25 (blue) kcal mol−1. A benzene molecule is shown on the left,
pyridine is on the right.

Figure 24: Potential energy curves for T-shaped configurations computed at the estimated
CCSD(T)/aug-cc-pVTZ level of theory. Interaction energies in kcal mol−1.
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than the benzene dimer by a small amount. The least favorable complex is of course (Py)2

T4, in which the dipoles are parallel.

To quantify the change in the positive charge on the interacting hydrogen, natural

population analysis charges were computed for benzene and pyridine with a Hartree-Fock/6-

311++G** wavefunction. The para carbon and hydrogen in pyridine become more positive

relative to benzene. This causes the electrostatic interaction between the para position and

the π cloud of the benzene monomer below it to be larger in Bz-Py T1 than in (Bz)2 T.

As shown in Table 18, the sum of dispersion and exchange-repulsion is comparable to the

size of the electrostatic contribution only in the case of the weakly bound Bz-Py T2 and

(Py)2 T2 complexes; for all other configurations, the electrostatic contribution dominates

and is stabilizing by one kcal mol−1 or more. The SAPT2 computations show that inductive

effects are also an important factor stabilizing the T-shaped complexes. This contribution is

stabilizing by 0.52 kcal mol−1 in the benzene dimer due to the quadrapole induced-multipole

interactions, and perhaps surprisingly it remains close to this size in all of the Bz-Py and

(Py)2 T-shaped complexes considered, even though pyridine features a dipole rather than

a quadrapole moment. Because pyridine is less polarizable than benzene, configurations in

which the lower monomer is pyridine tend to have less favorable induction contributions

than the benzene dimer. Induction is enhanced in the two Bz-Py T-shaped configurations

(T1 and T2) in which the dipole of pyridine is parallel to the C6 axis of the benzene below

it.

3.1.5 Parallel-Displaced Configurations

The parallel-displaced configurations were analyzed at the SCS-MP2/aug-cc-pVTZ level

of theory. The sign of the horizontal displacement is shown by (+) and (-) for the cases

that are not symmetric with respect to horizontal displacements away from the sandwich

configuration; in all of the “edgewise” displaced configurations, labeled b, the geometries are

symmetric with respect to the horizontal displacement. The dipole-dipole interactions and

the interplay between dispersion and exchange-repulsion seen in sandwich configurations

are also observed in the parallel-displaced complexes. The interactions between hydrogen
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atoms and π electron clouds important in the T-shaped configurations are also seen here.

Due to the complicated interplay between these various contributions, SAPT2 analysis and

potential energy curves relative to benzene dimer are essential to understanding the behavior

of these interactions.

The potential energy curves for the parallel-displaced configurations at a vertical sepa-

ration of 3.5 Å are shown in Figure 25. The most favorable geometries found in this work

and their corresponding interaction energies are contained in Table 16. The most favorable

of the complexes examined is (Py)2 P2b; this is the (Py)2 S2 geometry displaced “edge-

wise.” (Py)2 P2a(-) lies only 0.14 kcal mol−1 above (Py)2 P2b; both of these complexes

contain anti-parallel dipoles. The next most favorable complex is Bz-Py P1a(-), and also in

this case the Bz-Py P1b complex is nearly isoenergetic, differing by only 0.09 kcal mol−1.

In this case the “edgewise” displacement is not as favorable as the “over vertex” displace-

ment. As a result of the higher symmetry in benzene compared to pyridine, the difference

between displacements over a vertex or over an edge is even smaller in the benzene dimer,

merely 0.01 kcal mol−1 at the SCS-MP2/aug-cc-pVTZ level of theory. The most favorable

pyridine-containing parallel-displaced complexes are bound more strongly than the benzene

dimer. Not surprisingly, the (Py)2 P1a and (Py)2 P1b dimers are the least favorable as a

result of their parallel dipoles. With regard to the conclusion that the Bz-Py P1a(-) con-

figuration is the most favorable benzene-pyridine complex, the data reported in this work

agrees with that of Tsuzuki et al.226 Tsuzuki et al. report estimated CCSD(T) CBS limit

binding energies of 3.04 and 2.22 kcal mol−1 for complexes very similar to our (Py)2 P2a(-)

and (Py)2 P2a(+) configurations, respectively. This is in good agreement with the less

computationally demanding SCS-MP2/aug-cc-pVTZ binding energies reported in this work

of 3.23 and 2.36 kcal mol−1, respectively.

The parallel-displaced complexes pass through sandwich configurations at H = 0. As

can be seen in Figure 25, all of the pyridine containing complexes are more favorable than

the benzene dimer at H = 0 Å for a vertical distance of R = 3.5 Å (although the (Py)2 P1

configurations are less favorable than benzene dimer at larger vertical separations due to

the parallel pyridine dipoles). This is likely due to the contracted π electron clouds seen in
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Figure 25: Potential energy curves for parallel-displaced configurations computed at a
vertical displacement of 3.5 Å. Potential curves relative to (Bz)2 P1a for a configurations
or (Bz)2 P1b for b configurations are also shown. Interaction energies in kcal mol−1.
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pyridine monomers. As discussed above, the contraction of these clouds leads to a reduction

in exchange-repulsion relative to benzene dimer. In all of the complexes except (Py)2 P1,

there is also an increased electrostatic attraction. The “edgewise” displaced Bz-Py P1b

and (Py)2 P2b complexes remain more favorable than benzene dimer for the entire range

of horizontal displacements examined. The Bz-Py P1a(+) and (Py)2 P2a(+) complexes

become less favorable than the benzene dimer as the nitrogen in the pyridine monomers

begins interacting with the π electron cloud of the other monomer. The (Py)2 P1a and

(Py)2 P1b dimers become less favorable than the benzene dimer once the horizontal dis-

placement increases sufficiently to lessen the importance of the reduced exchange-repulsion.

Although these complexes remain less favorable than the benzene dimer for all horizontal
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displacements studied past the sandwich-like configurations, one can infer from the slope

of the (Py)2 P1a potential energy curve that it will become more favorable than the ben-

zene dimer at larger horizontal displacements. This is likely due to slightly more favorable

electrostatic interactions at large separations.

The SAPT2 decomposition of the interaction energies within these parallel-displaced

complexes at a vertical separation of 3.4 Å and horizontal separation of 1.6 Å is presented

in Table 19. The distance between ring centers at this displacement is comparable to

that examined for the sandwich configurations (roughly 3.76 Å compared to 3.8 Å). The

electrostatic and induction energies play a major role in the binding of these complexes.

The net dispersion terms computed here are all repulsive for these complexes except for

(Py)2 P2a(+) and (Py)2 P2b, although this may be different at other geometries. Both

electrostatics and net dispersion can change significantly among the different complexes

and orientations considered. The orientation of the dipoles is obviously important for the

electrostatic interactions. However, the orientation of the pyridine monomers can also

strongly influence the exchange-repulsion and dispersion terms. The induction terms, which

depend on polarizability, are weakly affected by heteroatoms in parallel-displaced complexes,

decreasing by about 0.1-0.2 kcal mol−1 compared to their value in the benzene dimer. At

the geometry considered, the electrostatic term is larger than induction or net dispersion

for the parallel-displaced configurations.

In a recent work by Tsuzuki et al.,226 the interaction energy of parallel-displaced benzene-

pyridine is decomposed into its physically relevant components, but with significantly dif-

ferent results than we present in this work using SAPT2. Those authors conclude that

parallel-displaced pyridine-benzene complexes are bound primarily by net dispersion in-

teractions. Although we concur that dispersion is the largest single stabilizing factor, our

SAPT2 results suggest that net dispersion (the sum of dispersion and exchange-repulsion) is

generally less important than electrostatics in these configurations. To examine this discrep-

ancy, we performed a decomposition of the interaction energies for the geometries reported

in Tsuzuki et al.226 using SAPT2. The results are presented in Table 20. For the Bz-Py P1a
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Table 19: SAPT2 results for parallel-displaced configurations of benzene dimer, benzene-
pyridine, and pyridine dimer.a

Rb Hc Eelst Eind Eexch Edisp Enet disp
d ESAPT2

e

(Bz)2 P1a 3.4 1.6 -2.774 -0.882 8.584 -7.879 0.705 -2.952
(Bz)2 P1b 3.4 1.6 -2.805 -0.912 8.677 -7.883 0.795 -2.922
Bz-Py P1a(+) 3.4 1.6 -1.905 -0.733 7.244 -7.156 0.088 -2.550
Bz-Py P1a(-) 3.4 1.6 -3.235 -0.853 8.248 -7.587 0.661 -3.427
Bz-Py P1b 3.4 1.6 -2.948 -0.807 7.768 -7.383 0.386 -3.369
(Py)2 P1a 3.4 1.6 -1.742 -0.682 6.969 -6.897 0.072 -2.353
(Py)2 P1b 3.4 1.6 -2.039 -0.663 7.008 -6.927 0.081 -2.621
(Py)2 P2a(+) 3.4 1.6 -1.781 -0.655 5.904 -6.456 -0.553 -2.988
(Py)2 P2a(-) 3.4 1.6 -3.538 -0.786 7.926 -7.302 0.624 -3.701
(Py)2 P2b 3.4 1.6 -3.258 -0.703 6.851 -6.894 -0.043 -4.004

aComputations performed using the aug-cc-pVDZ′ basis set. Energies in kcal mol−1 and
distances in Å. bVertical separation in Å. cHorizontal separation in Å. dNet dispersion is
the sum of the exchange and dispersion components. eTotal SAPT2 interaction energy.

geometries, the most striking difference is seen in the electrostatic contributions to the inter-

action. Our quantum mechanically based SAPT2 results predict electrostatic interactions to

be a major factor stabilizing these complexes, while the decomposition from Tsuzuki et al.

predicts that electrostatic interactions destabilize these complexes. This discrepancy results

from Tsuzuki et al. using distributed multipoles to compute the electrostatic interaction.

This procedure does not account for the favorable electrostatic interactions originating from

the interpenetration of π electrons, an effect which has been shown to be important for the

stabilization of the benzene dimer.202 The lower exchange energies obtained by Tsuzuki et

al. are a direct result of the method used for the computation of the electrostatic interac-

tion because the exchange energy was reported as the remainder of the interaction energy

after dispersion, electrostatic, and induction energy had been computed explicitly. For com-

pleteness, we also used SAPT2 to examine the T-shaped complexes reported by Tsuzuki

et al. As would be expected, the electrostatic interactions in the T-shaped complexes are

described fairly well by the multipole analysis.
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Table 20: Energy component analysis for optimized benzene-pyridine complexes; present
results using SAPT2, literature results (from Ref. 226) in parentheses.a

Eelst Eind Eexch Edisp Enet disp
c ∆Ed

Bz-Py P1a(+) -1.012 -0.503 4.915 -6.000 -1.085 -2.599
(0.99) (-0.21) (2.85) (-5.84) (-2.99) (-2.22)

Bz-Py P1a(-) -2.497 -0.698 6.472 -6.807 -0.334 -3.529
(0.39) (-0.22) (3.27) (-6.48) (-3.21) (-3.04)

Bz-Py T1 -1.882 -0.555 2.858 -3.343 -0.485 -2.922
(-1.01) (-0.20) (1.26) (-2.86) (-1.60) (-2.81)

Bz-Py T3 -1.382 -0.328 2.227 -3.074 -0.847 -2.557
(-0.57) (-0.08) (0.88) (-2.80) (-1.92) (-2.57)

Bz-Py T4 -2.003 -0.523 3.177 -3.626 -0.449 -2.976
(-0.96) (-0.19) (1.60) (-3.31) (-1.71) (-2.87)

aEnergies in kcal mol−1. SAPT2 Computations preformed using the aug-cc-pVDZ′ basis
set using geometries reported by Tsuzuki et al.226 bDecomposition performed by Tsuzuki
et al.226 cNet dispersion is the sum of the exchange and dispersion components. dTotal
interaction energy.

3.1.6 Conclusions

The parallel-displaced configurations of benzene-pyridine and pyridine dimer were the most

favorable complexes studied in this work. In the case of the benzene dimer, the T-shaped

and parallel-displaced configurations are nearly isoenergetic; by substituting nitrogen atoms

(and consequently introducing dipole moments), the parallel-displaced configurations be-

come favored. (Py)2 P2b and Bz-Py P1a(-) were the most favorable configurations found

for the pyridine dimer and benzene-pyridine complex, respectively. The most favorable

benzene-pyridine complex was found to bind more strongly than benzene dimer by roughly

0.5 kcal mol−1. The most favorable pyridine dimer was found to bind about 1 kcal mol−1

more strongly than benzene dimer. The inter-monomer separation for the minimum energy

structures of each configuration of benzene-pyridine and pyridine dimer did not change

substantially relative to benzene dimer.

The substitution of a nitrogen atom into a benzene molecule creates a dipole in the

molecule, reduces its polarizability, and reduces the spatial extent of the electron den-

sity. The presence of a heteroatom in pyridine makes the electrostatic interactions within
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pyridine-containing dimers much more sensitive to the orientation of the monomers. In gen-

eral, the substitution of benzene monomers in benzene dimer with pyridine molecules will

reduce the magnitude of the dispersion and induction interactions as a result of the reduced

polarizability of pyridine. Similarly, the reduced spatial extent of the π-electron cloud in a

pyridine molecule leads to reduced exchange-repulsion. These general trends observed here

can be expected to persist in larger and more complex heteroatom-containing π systems.

For sandwich and parallel-displaced configurations, pyridine monomers cause dipole-

induced-dipole interactions in benzene-pyridine and dipole-dipole interactions in pyridine

dimer. The former is found to be relatively unimportant, while the latter is very impor-

tant and can lead to more favorable or less favorable electrostatic interactions, depending

on the configuration. The other important considerations, stemming from the decreased

polarizability and reduced spatial extent of the electron density, are a reduction in the mag-

nitude of the dispersion and exchange-repulsion energies relative to benzene dimer. Because

the exchange-repulsion and dispersion terms are of opposite sign but with roughly equal

magnitude, it is convenient to consider their sum, “net dispersion.” The electrostatic and

net dispersion interactions both play an important role in the interaction energy of the

sandwich configurations. Limited SAPT2 analysis at selected geometries suggests that the

electrostatic term tends to dominate the interaction energy near the equilibrium geometries

of parallel-displaced configurations; in addition, the most strongly bound parallel-displaced

pyridine-containing complexes studied in this work had electrostatic interactions that were

much more favorable than the complexes which were bound more weakly. Generally speak-

ing, electrostatics are also the dominant stabilizing factor in the T-shaped complexes, al-

though there are also favorable induction and net dispersion contributions; in the (Bz)2 T,

Bz-Py T1, Bz-Py T3 and (Py)2 T1 complexes the electrostatic attraction is related to what

might be called a “π hydrogen bond.” For Bz-Py T4 and (Py)2 T3 the favorable electro-

statics originate from dipole effects. The less favorable Bz-Py T2, (Py)2 T2 and (Py)2 T4

complexes do not contain either the “π hydrogen bonds” or stabilizing dipole effects. In all

the configurations considered, there were benzene-pyridine and pyridine dimer complexes

found that were more favorable than the analogous benzene dimer complex.
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Previous work had indicated that parallel-displaced benzene-pyridine complexes are

bound primarily due to dispersion effects. Our SAPT-based analysis indicates that dis-

persion is a major stabilizing force, but it is mostly canceled be exchange-repulsion. The

sum of these two terms is usually repulsive at the near-equilibrium geometries considered.

Electrostatic interactions are very important and are significantly stabilizing according to

the quantum-mechanical SAPT method, which can capture charge interpenetration effects

neglected in a multipole analysis.

3.1.7 Epilogue

The work described above can be found in Ref. 92. The question of heteroatom effects

was subsquently studied by Kim and co-workers,61 who examined dimers with multiple

heteroatom substitutions. The conclusions from Ref. 92 were shown to generalize; additional

heteroatom substitutions continue to reduce polarizability and the spatial extent of the π-

orbitals. The benzene-pyridine and pyridine dimer complexes were also explored with the

effective fragment potential method (EFP) by Slipchenko and co-workers.205 The potential

energy curves and SAPT2 decompositions reported in Ref. 92 were used extensively as a

benckmark for the performance of the EFPs.

3.2 Characterizing the indole-benzene complex

The following was adapted from Ref. 60.

The interaction energy of selected T-shaped configurations of the indole-benzene com-

plex was decomposed using symmetry-adapted perturbation theory (SAPT).111,246 For ease

of comparison of energy components between similar dimer configurations, for all axial T-

shaped configurations SAPT results were evaluated for the same distance between the center

of benzene and the plane of indole (4.9 Å); likewise, for all equatorial T-shaped configura-

tions, a fixed distance of 2.48 Å was used for the distance betwen the center of benzene to

the closest hydrogen in indole. The SAPT0 computations were performed with a truncated

aug-cc-pVDZ basis set denoted aug-cc-pVDZ′. This basis set removes all diffuse functions

from hydrogen atoms and diffuse d functions from non-hydrogen atoms. In our experience,

fortuitous error cancellation occurs for π-π interactions when this basis set is paired with
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MP2-like methods.203 The two-electron integrals necessary for SAPT0 were computed with

the density fitting (DF) approximation. A truncated version of the aug-cc-pVDZ-RI fitting

basis set81 was designed to match the aug-cc-pVDZ′ orbital basis. The diffuse functions were

removed from the fitting basis for hydrogen atoms and diffuse f functions were removed for

non-hydrogen atoms.

The benzene monomer geometry was set to those suggested by Gauss and Stanton,

R(C-C)=1.3915 Å and R(C-H)=1.0800 Å.59 The indole monomer geometry was optimized

at the MP2/aug-cc-pVDZ level. Monomer geometries were kept frozen as the intermolecular

distances were varied. Three “axial” T-shaped configurations are shown in Figure 26 and

seven “equatorial” T-shaped configurations are shown in Figure 27 (where the plane of the

indole ring is defined as the ‘equator’).

N

H

N

H

N

H

H H

TA3TA1 TA2

H H

Figure 26: Three axial T-shaped configurations of the indole-benzene complex.

The trend observed in Figure 28 can be explained by examining the electrostatic po-

tentials (ESPs) of benzene and indole as shown in Figure 29 and the decomposition of the

interaction energies with SAPT as shown in Table 21. Favorable interactions occur for all

configurations due to the interaction between the positive hydrogens of benzene and the

negative π-cloud of indole. Furthermore, these interactions are enhanced via favorable dis-

persion interactions between the π-clouds of indole and benzene. Considering the ESP of

indole, one might expect configuration TA1 to be more favorable than TA3 due to stronger

electrostatic interactions; the ESP above the 6-membered ring appears more negative than

above the 5-membered ring. However, the SAPT analysis of Table 21 indicates that TA3

has an electrostatic attraction about 0.4 kcal mol−1 stronger than that in TA1. A compari-

sion of electrostatics and exchange for the TA1 and TA3 configurations shows, surprisingly,
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Figure 27: Seven equatorial T-shaped configurations of the indole-benzene complex.

larger values for the TA3 configuration. This is possibly indicative of increased charge pen-

etration for the TA3 configuration. Net dispersion (the sum of dispersion and exchange)92

is more favorable (by 0.6 kcal mol−1) for TA1, in which the benzene is above the larger

6-membered ring. Overall, the interaction energies of TA1 and TA3 are very similar, with

TA1 being slightly favored in the MP2, SCS-MP2, and SAPT computations.

Figure 28: MP2 and SCS-MP2/aug-cc-pVDZ interaction energies (kcal mol−1) for the three
axial T-shaped configurations.

The center configuration, TA2, is more favorable than TA1 or TA3 because it has two

C-H/π contacts and allows the benzene ring to interact with the π-clouds of both the 5- and
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Figure 29: B3LYP/6-31G* electrostatic potential mapping for benzene (left) and indole
(right), where blue is positive and red is negative. Numbers are the hydrogen atomic
charges.

Table 21: Physical components (kcal mol−1) of the total interaction energy determined
using SAPT0 for the axial T-shaped configurations.a,b

Eelst Eexch Eind Edisp Enet disp
c ESAPT0

TA1 -1.94 3.13 -0.57 -4.32 -1.19 -3.70
TA2 -2.19 3.25 -0.60 -4.95 -1.71 -4.49
TA3 -2.32 4.27 -0.68 -4.83 -0.56 -3.55

TE1 -1.71 3.77 -0.55 -4.28 -0.50 -2.77
TE2 -2.31 3.48 -0.72 -3.74 -0.26 -3.29
TE3 -3.31 3.09 -1.01 -4.16 -1.07 -5.40
TE4 -2.18 4.05 -0.76 -4.63 -0.57 -3.46
TE5 -1.66 3.83 -0.53 -4.19 -0.36 -2.55
TE6 -1.71 3.74 -0.54 -4.15 -0.41 -2.66
TE7 -1.86 4.02 -0.58 -4.70 -0.68 -3.12

PD(MP2) -3.24 10.49 -1.22 -11.00 -0.51 -4.96
PD(SCS) -2.99 6.37 -0.91 -7.58 -1.21 -5.11

aComputed using the aug-cc-pVDZ′ basis set. bFor TA configurations, distances from the
center of benzene to the plane of indole are 4.9 Å. For TE configurations, distances from the
center of benzene to each respective hydrogen of indole are 2.48 Å. For PD configurations,
minima are (R1=3.4, R2=0.1, R3=-1.0 Å, MP2/aug-cc-pVDZ) and (R1=3.4, R2=1.3, R3=-
1.8 Å, SCS-MP2/aug-cc-pVDZ). cNet dispersion is the sum of the exchange and dispersion
components.

6-member rings of indole. A similar trend was observed for the methane-indole complex in a

study by Ringer et al.181 For that system, a decomposition of the interaction energy through

SAPT suggested that the configuration in which two hydrogens of methane point toward

the rings of indole is stabilized primarily by increased electrostatic attraction relative to the

configurations with one interacting hydrogen. However, in the case of the indole-benzene

complex, the electrostatic interaction of configuration TA2 strengthens compared to that in
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configuration TA1, but it does not become as strong as that in TA3. Instead, the increased

net dispersion from the interaction of the benzene ring with both π-clouds is the primary

component that stabilizes configuration TA2 over configurations TA1 and TA3; the net

dispersion of configuration TA2 is more favorable than configurations TA1 and TA3 by

0.52 kcal mol−1 and 1.15 kcal mol−1, respectively. Unlike the indole-methane complex, the

benzene molecule has the potential for long-range CH-π interactions in the TA1 and TA3

configurations (due to the hydrogen pointing downwards 60◦ off-axis); in indole-methane,

the analogous TA1 and TA3 configurations have three hydrogens pointing upwards. These

long-range contacts may be responsible for the increased electrostatic interactions in the

TA1 and TA3 configurations.

The equatorial T-shaped indole-benzene interaction energy trend (Figure 30) can be

partially rationalized by examining the ESPs and hydrogen atomic charges in Figure 29,

and more completely by the components of SAPT in Table 21. The hydrogen bonded to

the nitrogen of the 5-member indole ring exhibits the largest positive charge. Therefore,

the most favorable interaction is TE3, where the most positive hydrogen interacts with

the negative benzene π-cloud. The SAPT analysis confirms that this configuration has

the most stabilizing electrostatic interaction by 1.0 kcal mol−1. The partial charges of the

other hydrogens in indole are all fairly similar, and so we might expect that configurations

besides TE3 would have similar electrostatic contributions. Instead, we see a significant

stabilization (0.3 - 0.7 kcal mol−1) of configurations TE2 and TE4 relative to the remaining

configurations. The hydrogens pointed at benzene in these configurations are those hydro-

gens which are on either side of the most positive hydrogen, and we believe that the extra

electrostatic stabilization of these configurations is due to longer-range attractions between

the π-cloud of benzene and that most positive hydrogen. We note that the configurations

with the largest electrostatic stabilization also have the largest induction contributions; the

polarization of the benzene π-orbitals seems to correlate with the partial charge on the in-

dole hydrogens. We also note that configurations TE1, TE3, TE4, and TE7 are those with

the largest net dispersion interaction; in the other configurations, the benzene is much closer

to one ring than the other, and so interactions with the second ring are greatly diminished.
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Figure 30: MP2 and SCS-MP2/aug-cc-pVDZ interaction energies (kcal mol−1) for the seven
equatorial T-shaped configurations.

The parallel configurations are stabilized by π-π dispersion interactions between the

benzene ring and the two rings of indole, as well as favorable electrostatic effects due to

charge interpenetration. As shown by the top views of Figure 31, the MP2 method locates

a minimum corresponding to the center of the benzene ring laying over the shared bond of

indole and shifted towards the nitrogen. On the other hand, at this same vertical separation,

the SCS-MP2 minimum places the center of the benzene ring almost directly over the

nitrogen of indole. The SAPT investigation on these two structures, shown in Table 21,

suggests that the SCS-MP2 minimum is preferred over the MP2 minimum (according to

SAPT) due to a dramatic decrease in the exchange contribution, which leads to a more

favorable net dispersion interaction. The total SAPT interaction energies, utilizing the

truncated basis set, indicates that the SCS-MP2 minimum is slightly more favored than

the MP2 minimum. Further analysis by coupled-cluster methods demonstrate that the

minimum predicted by SCS-MP2 is indeed lower in energy than the minimum predicted

by MP2 (-4.64 and -4.46 kcal mol−1, respectively). More advanced SAPT computations,

SAPT2+(3)/aug-cc-pVDZ, are in excellent agreement with CCSD(T) (-4.72 and -4.38 kcal

mol−1, respectively). The SAPT computations suggest that the failure of MP2 to predict

the correct PD minimum is a result of its overestimation of the dispersion energy.
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Figure 31: Representation of the minimum parallel displaced geometries predicted by the
MP2 (left column) and SCS-MP2 (right column) methods.

3.3 π-π interactions in linear acenes

The following was adapted from Ref. 93.

Our DF-SAPT0 program has been applied to study the differences between parallel-

displaced and T-shaped configurations of linear acenes as shown in Figure 32. We will

consider the n = 1 (benzene dimer) through n = 5 (pentacene dimer) cases. In order to

isolate the changes in the interaction due to the additional rings, the CC and CH bond

distances are held at their lengths in benzene, 1.3915 and 1.080 Å respectively.59 Addi-

tionally, the intermolecular displacements are fixed at the values that are optimal for the

benzene dimer.198 For comparison purposes, we also considered saturated, stacked dimers

beginning with the cyclohexane dimer, using the geometry of Grimme.71 Larger saturated

dimers were constructed from the cyclohexane dimer without reoptimization of geometrical

coordinates (consistent with our method of constructing the aromatic dimer geometries).

These constraints greatly simplify the energy component analysis because some of the terms

are very sensitive to geometry and therefore difficult to compare in dimers with different

intermolecular distances. The SAPT0 computations on the acene dimers were performed

with a truncated aug-cc-pVDZ basis set denoted aug-cc-pVDZ′. This basis set removes all

diffuse functions from hydrogen atoms and diffuse d functions from carbon atoms. In our

experience, fortuitous error cancellation occurs for aromatic dimers when this basis set is
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paired with MP2-like methods.203 This basis is somewhat smaller than needed for accurate

interaction energies of the saturated dimers (see below), but it should suffice for a semi-

quantitative analysis of the energy components. A truncated aug-cc-pVDZ-RI fitting basis

set was paired with the aug-cc-pVDZ′ orbital basis: the diffuse functions were removed from

the fitting basis for hydrogen atoms and diffuse f functions were removed for carbon atoms.

Figure 32: Geometries of (a) T-shaped, (b) parallel-displaced pentacene dimer and (c)
the saturated analogue of naphthalene dimer. The centers of the rings in the T-shaped
dimers are separated by 5.0 Å. The parallel-displaced geometries are separated by 3.5 Å
vertically and 1.7 Å horizontally. These intermolecular distances are those which are optimal
for the benzene dimer.198 The carbon atoms in the saturated dimers are all separated by
approximately 4.3 Å.71

The results for the SAPT0 decomposition of the acene dimers are given in Table 22.

The total SAPT0 interaction energies for the acene dimers show good agreement with the

SCS-MP2 and B97-D values reported by Grimme.71 For the saturated stacked dimers, the

dimers are somewhat underbound (by 27-45%) compared to Grimme’s MP2 results. We

ascribe this difference to poorer error cancellation for the SAPT0/aug-cc-pVDZ′ level of

theory for the saturated systems. Nevertheless, we believe the qualitative trends in the

SAPT energy components will be reliable enough for our analysis; we will focus particularly

on the dispersion energies, and our SAPT dispersion energies are quite similar to Grimme’s
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B2PLYP-D/TZV(2d,p) dispersion energies.71

Table 22: SAPT0 decomposition of the interactions within aromatic T-shaped and parallel-
displaced acene dimers as well as the stacked, saturated dimers.a

N Eelst Eexch Eabab
b Eind Edisp −C6

R6
c ESAPT0

Parallel-Displaced, Aromatic

1 -1.62 6.08 -4.42 -0.67 -6.66 -4.73 -2.87
2 -2.95 9.65 -8.86 -0.90 -13.07 -8.97 -7.27
3 -4.31 13.15 -13.64 -1.13 -19.95 -13.32 -12.24
4 -5.69 16.60 -18.62 -1.38 -27.03 -17.69 -17.49
5 -7.07 20.01 -23.74 -1.66 -34.20 -22.06 -22.91

T-Shaped, Aromatic

1 -1.74 3.19 -2.35 -0.50 -3.73 -3.24 -2.78
2 -3.03 6.09 -5.47 -0.93 -7.95 -6.57 -5.81
3 -4.25 8.94 -9.06 -1.35 -12.48 -9.98 -9.13
4 -5.46 11.77 -12.93 -1.78 -17.13 -13.40 -12.60
5 -6.66 14.58 -16.98 -2.22 -21.84 -16.83 -16.15

Stacked, Saturated

1 -2.72 8.75 -6.36 -0.84 -6.57 -7.56 -1.37
2 -5.24 16.46 -14.46 -1.56 -13.09 -14.32 -3.43
3 -7.75 24.17 -23.77 -2.28 -19.70 -21.20 -5.55
4 -10.26 31.89 -33.83 -2.99 -26.33 -28.10 -7.69
5 -12.77 39.60 -44.38 -3.71 -32.97 -35.01 -9.85

aComputations performed with the aug-cc-pVDZ′ basis. Energies given in kcal mol−1.
bContribution to the exchange energy from abab type elements of the intermolecular poten-
tial. cAtomic C6 values taken from Reference 69.

For the acene dimers, the SAPT decomposition shows a linear increase in the Eexch, Eelst,

and Eind terms with the number of rings. The Edisp term shows a nonlinear increase that is

consistent with the decomposition reported by Grimme.71 Since the dispersion energy can be

approximated as a pairwise −C6R
−6 interaction, a nonlinear increase is expected. However,

as shown in Table 23, because of the finite range of the empirical dispersion correction, it

increases only linearly past anthracene dimer, whereas the quantum mechanical SAPT0

dispersion energy shows nonlinearity in all the cases considered. It is important to note

that this same behavior is seen in both the parallel-displaced and T-shaped dimers. The

magnitude of the dispersion energy in the parallel-displaced dimers is obviously greater due

to the closer interaction between π-clouds. These observations lead to the conclusion that

the intrinsic dispersion interaction between π-electrons in both configurations is the same
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qualitatively. The difference in magnitude is simply a result of the separation between

π-clouds. The second order dispersion energy in SAPT is computed as 4 (ar|bs)2 /(ǫa +

ǫb − ǫr − ǫs) where ǫ represents a HF orbital energy. As the separation between monomers

increases, obviously, the (ar|bs) integrals will decrease in magnitude.

Table 23: Changes in energy components of aromatic and saturated interactions (in kcal
mol−1) as the number of rings are increased.a

N1 → N2 ∆Eelst ∆Eexch ∆Eind ∆Edisp ∆(−C6R−6) ∆ESAPT0

Parallel-Displaced, Aromatic
1 → 2 -1.33 3.57 -0.23 -6.41 -4.24 -4.40
2 → 3 -1.37 3.50 -0.23 -6.88 -4.35 -4.97
3 → 4 -1.38 3.45 -0.25 -7.08 -4.37 -5.25
4 → 5 -1.38 3.41 -0.29 -7.17 -4.37 -5.42

T-Shaped, Aromatic
1 → 2 -1.28 2.89 -0.43 -4.22 -3.33 -3.03
2 → 3 -1.23 2.85 -0.42 -4.52 -3.41 -3.32
3 → 4 -1.21 2.83 -0.43 -4.65 -3.43 -3.46
4 → 5 -1.20 2.81 -0.44 -4.72 -3.43 -3.55

Stacked, Saturated
1 → 2 -2.52 7.71 -0.72 -6.53 -6.76 -2.06
2 → 3 -2.51 7.71 -0.72 -6.60 -6.88 -2.11
3 → 4 -2.51 7.72 -0.72 -6.63 -6.90 -2.15
4 → 5 -2.51 7.72 -0.72 -6.64 -6.91 -2.15

aComputations performed with the aug-cc-pVDZ′ basis. Energy differences are computed as EN2
- EN1

.

In Tables 22 and 23, the only geometric changes that occur are the addition of rings to the

monomers. This isolates the electronic effects from geometric effects. Our analysis suggests

that the nonlinear increase of the dispersion interaction seen in the aromatic complexes is

purely an electronic effect that originates from the interaction of large, delocalized π-orbitals

in relatively close proximity. In contrast to the aromatic dimers, the saturated dimers do

not show a nonlinearity in the dispersion term beyond what is expected. Moreover, the

changes in all of the energy components for the saturated complexes are more linear than

in the aromatic complexes.

The n = 1 to n = 4 cases were previously studied by Grimme71 in an attempt to

determine if there is anything unique about π-π interactions. That work relies upon the

results from a Morokuma style energy decomposition analysis (EDA).122,152 The specifics

of the EDA implementation used by Grimme are explained in Reference 74. The EDA is

benchmarked against SAPT and a discrepancy for the electrostatic and exchange terms is

noted:74 “Larger systematic differences between SAPT and EDA are observed for Eexr and
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Ees, i.e., the former is higher and latter is always lower in EDA. The reasons for this are

presently not clear and deserve more research.” When this approach is applied to acene

dimers, the electrostatic term appears to be more attractive than the dispersion term by

about a factor of two. This is curious since the interaction between non-polar molecules is

expected to be dispersion-dominated. Due to this counter-intuitive result, Grimme uses the

sum of the exchange and electrostatic terms in his analysis.

In the implementation of EDA used by Grimme, the stabilizing abab type two-electron

integrals that enter the HF energy expression are incorrectly included in the electrostatic

term instead of the exchange term. In Table 22, we show the contribution from the abab

interaction to the E
(10)
exch term separately. In the case of pentacene dimer, this stabilizing

interaction is actually three times as large as the entire electrostatic term. By misplacing

these contributions, the exchange and electrostatic results from Grimme’s EDA appear

much too large in magnitude and are difficult to reconcile physically. It should be noted that

Eabab, reported here, is computed from complete elements of the intermolecular potential,

whereas the terms misplaced in Grimme’s EDA are only the two-electron contribution to

Eabab. The EDA implementation reported in Ref. 74 could be fixed by separating the two-

electron energy into coulomb and exchange contributions and adding each to the appropriate

grouping. This issue is symptomatic of the specific implementation, not of the EDA outlined

by Morokuma.

Because Grimme sums the exchange and electrostatic terms into a total first order

interaction in his work on acene dimers, the problem with the EDA implementation did not

affect the final conclusions of the paper, namely, that the increase in interaction energy with

respect to system size is similar for T-shaped acenes and saturated hydrocarbons, whereas

it is significantly larger in magnitude for parallel-displaced acenes. Moreover, there is a

non-linear increase in the interaction energy for the parallel-displaced acene dimers. Based

on these considerations, Grimme concludes that stacked aromatics feature a “special” π-π

interaction, not present in saturated hydrocarbons, which results from stabilizing electron

correlation terms that only become significant when the two monomers are in close contact

(leading to dispersion contributions which are more favorable than would be predicted by
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pairwise −C6R
−6 terms). While our SAPT results and analysis support these conclusions,

we note that the T-shaped configurations also feature a non-linear increase in interaction

energy, which is not present in the saturated hydrocarbons, all the way up to the largest

dimer considered (pentacene dimer). Moreover, the dispersion energies for the T-shaped

dimers are also larger than predicted by pairwise −C6R
−6 terms. Hence, we see evidence

in the T-shaped configurations, as well as the parallel-displaced configurations, of “special”

π-π interactions. The dispersion terms in the T-shaped configurations are certainly smaller

than in the parallel-displaced configurations, but they remain about 60% as large. The

difference between the SAPT dispersion energy and the empirical −C6R
−6 estimate remains

about 40% as large. On this basis, even though the interaction energy of T-shaped acenes

remains similar to that of stacked, saturated hydrocarbons of the same size, in our view

special π-π interactions are also present in the T-shaped configurations, albeit to a lesser

(but non-negligible) degree. This leads us to conclude that the close agreement between T-

shaped acenes and stacked saturated dimers in plots of the interaction energy vs. dimer size

(see Figure 2 of Grimme’s work71) is not an indication that the nature of the interactions

is similar, but is an accident resulting from the very different geometries of those two

sets of molecules. One could attempt to probe this hypothesis directly, by computing T-

shaped saturated dimer energies, but unfortunately we could not come up with a reasonable

chemical model that wold fit this description without adding too many additional short-

range contacts.

We have applied our DF-SAPT code to the interactions within acene dimers. The new

code is efficient enough that we were easily able to include the pentacene dimer in our tests.

We determined the source of a discrepancy between SAPT and the EDA implementation

previously used to study acene dimers by Grimme.71 This difference was due to a problem

with the EDA implementation. Both the T-shaped and the parallel-displaced configura-

tions feature a non-linear increase in interaction energy with respect to system size, all the

way through pentacene dimer. Moreover, both types of configurations feature dispersion

energies which are significantly larger than one would predict using pairwise −C6R
−6 terms.

Although these effects are smaller in magnitude for the T-shaped configurations due to the
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larger separation between the π-clouds, they do not become negligible. This suggests that

special π-π interactions are present not only in parallel-displaced configurations, but also

in T-shaped configurations of aromatic hydrocarbons.

3.4 Dispersion in problematic complexes: homogeneous dimers of NCCN,

P2 and PCCP

The following was adapted from Ref. 98.

3.4.1 Introduction

With the number of recently developed methods aimed at describing noncovalent interac-

tions, it is important to have reliable and challenging benchmarks available. One of the

most popular is the S22 test set of Hobza and co-workers.117 This set of benchmark in-

teraction energies has been used extensively to test and train new methods.180 For most

wavefunction based methods, two of the most difficult systems in this test set are the stacked

benzene dimer and indole-benzene complexes.172,213 Even the original benchmark energy for

the stacked indole-benzene differs by approximately 15% from the best estimate currently

available.172,213 It is useful to study systems that contain dispersion interactions similar

to the stacked aromatic π-π complexes in the S22 test set, but for which more accurate

benchmarks can be established.

Here, we examine NCCN, P2, and PCCP dimer as such model systems. All three of

these systems are much smaller than the benzene dimer or indole-benzene allowing for

the computation of the non-relativistic, electronic interaction energy in the complete basis

set limit. We apply our new CCD+ST(CCD) SAPT program to examine the nature of

the dispersion interactions present in NCCN, P2, and PCCP dimer compared to those in

stacked aromatic π-π complexes. Through this analysis, the problems encountered by finite-

order perturbation theory are explored. Furthermore, we compare the molecular interaction

between an extensive set of the aforementioned methods and our new benchmark data over

multiple slices of the interaction potential for these three dimers.
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3.4.2 Theoretical Methods

Rigid, linear monomer geometries were adopted for all computations. Experimental bond

lengths were taken from Herzberg82,83 for P2 and NCCN [R(PP) = 1.8943Å, R(CC) =

1.3839 Å and R(CN) = 1.1578 Å]. Although PCCP has been observed experimentally,

structural characterization was not feasible, and no experimentally inferred geometrical

parameters were reported.24 As such, the bond lengths for PCCP used in this study

[R(CC)=1.35560Å and R(CP)=1.58597 Å] were obtained from a low-level geometry op-

timization. These values, however, are entirely consistent with CCSD(T) optimizations

with correlation consistent triple-ζ basis sets.75

Potential energy curves (PECs) of the dimer structures were computed in three different

configurations: cross (X), parallel-displaced (PD) and T-shaped (T) that belong to the D2d,

C2h and C2v point groups, respectively. These configurations are depicted in Figure 33 for

(PCCP)2, but the general definitions of the intermolecular geometrical parameters also

apply to (P2)2 and (NCCN)2. The D2d cross configuration is depicted in Figure 33(a),

where the arrow indicates the intermolecular distance (R) between the mid-points of the

central bond of each monomer. For the C2v T-shaped structures, the arrow shown in

Figure 33(b) denotes the intermolecular distance (R) from the mid-point of the central

bond that is perpendicular to the C2 rotational axis of symmetry to the nearest atom

in the other monomer that lies on the C2 axis of symmetry. The C2h parallel displaced

structures are defined by 2 intermolecular parameters. R is again used to indicate the

separation between the monomers, specifically the distance between the two parallel lines

defined by the linear monomers (denoted by the vertical arrow in Figure 33(c)). The other

intermolecular geometrical parameter for the PD configurations is the displacement of the

monomers along the aforementioned parallel lines relative to a rectangular (or sandwich)

D2h structure. In Figure 33(c), this “horizontal slip” distance is labeled RS and denoted

by the horizontal arrow. The RS coordinate was fixed at a value of 2.80 Å for (NCCN)2

and 2.31 Å for (P2)2, 2.66 Å for (PCCP)2. These values roughly correspond to the average

of MP2 and CCSD(T) optimized RS parameters.

The PECs in this work were generated by scanning over R for each configuration of
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Figure 33: Three prototypical dimer configurations of NCCN, PCCP and P2 dimers in-
cluded in this study.

the three homogeneous dimers. HF, MP2, CCSD and CCSD(T) electronic energies were

computed at each point along the curve with the aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-

pVQZ basis sets. Larger, aug-cc-pV(X+d)Z type basis sets were determined to provide

nearly identical results. The 1s-like core orbitals of C and N were constrained to be doubly

occupied during the electron correlation computations, whereas this constraint was applied

to the 1s-, 2s- and 2p-like core orbitals of P (i.e., the frozen core approximation). The

electronic energies were converged to at least 1 × 10−10 Eh for the SCF and 1 × 10−8 Eh

for the coupled-cluster procedures. The single point energy computations were performed

using both the 2006.1 and 2010.1 versions of the Molpro software package.151

Electronic interaction energies were computed at the complete basis set (CBS) limit

along the PECs for the X, PD, and T configurations of (NCCN)2, (P2)2, and (PCCP)2

by extrapolating the energy with respect to the cardinal number of the basis set. Within

the supermolecular approach, CBS-limit interaction energies are computed by subtracting

the extrapolated monomer electronic energies from the extrapolated electronic energies of

the complex. Extrapolations were performed for the monomer energies in the monomer

basis and for the dimer energies in the dimer basis. The electronic energy was separated

into Hartree-Fock and correlation energies. HF energies were extrapolated with aug-cc-

pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ according to a three-parameter formula.54,77 The

correlation energies were extrapolated to the CBS limit using the two-point formula of

Halkier et al. with aug-cc-pVTZ and aug-cc-pVQZ basis sets.76
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The simplest wavefunction based methods tested in this work are the spin-component

scaled MP2 methods. These methods have been shown to be capable of accurately com-

puting noncovalent interactions with a triple-ζ quality basis.44,67, 215 In this work, the orig-

inal parameterization, SCS-MP2, and a molecular interaction specific parameterization,

SCS(MI)-MP2, are tested.44,67 The SCS- and SCS(MI)-MP2 computations in this work use

the cc-pVTZ basis;49,118 the HF and MP2 computations are performed under the DF ap-

proximation using the cc-pVTZ-JK and cc-pVTZ-RI auxiliary basis sets, respectively.236,238

The spin-component scaled CCSD method of Takatani et al., SCS-CCSD,214 and its recent

reparameterization for molecular interactions, SCS(MI)-CCSD,169 are also tested. The

SCS-CCSD method has been found to yield excellent results with large basis sets;65 in the

present work, SCS-CCSD/aug-cc-pVQZ and SCS(MI)-CCSD/aug-cc-pVQZ interaction en-

ergies are computed. The SCS parameters for these methods can be found in Table 3.4.2.

The midground in terms of computation expense between SCS-MP2 and SCS-CCSD is the

scaled MP3 method (MP2.5) of Pitoňak et al.167 This method includes half of the third-

order correction to MP2 (or, equivalently, averages MP2 and MP3 energies). Similarly to

SCS-CCSD, this method performs well with large basis sets, and MP2.5/aug-cc-pVQZ inter-

action energies are reported. The counterpoise correction is applied to these wavefunction

based methods.21 These computations are performed with Molpro.151

Table 24: Scaling parameters for opposite-spin (Sos) and same-spin (Sss) components of
the correlation energy.

Sos Sss

SCS-MP2 1.20 0.33
SCS(MI)-MP2 0.17 1.75
SCS-CCSD 1.27 1.13
SCS(MI)-CCSD 1.11 1.28

We also test the promising MP2C method.84,165 This method is a composite of a coun-

terpoise corrected MP2 interaction energy and dispersion energies from intermolecular per-

turbation theory. The uncoupled Hartree-Fock (UCHF) dispersion energy contained in

MP2 is replaced with a dispersion energy computed with time-dependent density functional
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theory (TDDFT) response functions.

EMP2C = EMP2 − Edisp(UCHF) + Edisp(TDDFT) (212)

The MP2C interaction energies are computed with an aug-cc-pVQZ basis and use aug-cc-

pVQZ-JK and aug-cc-pVQZ-RI auxiliary basis sets. The HF and MP2 energies required for

the MP2 interaction energy are computed under the DF approximation. The UCHF disper-

sion energy is computed with DF-HF eigenvectors and eigenvalues and is evaluated under

the DF approximation. The TDDFT dispersion is computed with local HF eigenvectors

and eigenvalues and the TDDFT response functions are evaluated with the adiabatic local

density approximation exchange-correlation kernel.84 For the PCCP dimer aug-cc-pVTZ,

aug-cc-pVTZ-JK and aug-cc-pVTZ-RI basis sets were used. A related method (in terms

of its description of dispersion) is density functional based symmetry-adapted perturbation

theory, SAPT(DFT).85,147–149,245 Here, we use PBE0 with local HF exchange to describe

the monomers. One caveat of SAPT(DFT) is that the monomer DFT computations need

to be asymptotically corrected in order to produce accurate interaction energies; this re-

quires the ionization potential of the monomers, which we compute at the PBE0/TZVPP

level. The SAPT(DFT) computations use the DF approximation and the same basis sets as

the MP2C computations. The MP2C and SAPT(DFT) computations are performed with

Molpro.151

Many DFT methods have been developed in recent years that attempt to accurately

describe noncovalent interactions.72 Here we test two hybrid meta-GGA functionals, M05-

2X and M06-2X.250,251, 253 These functionals have been found to perform well when paired

with the aug-cc-pVDZ and aug-cc-pVTZ basis sets, respectively.29 Meta-GGA’s are known

to be susceptible to numerical errors related to the integration grid.113 For this reason,

we use a large, 100,302 (radial points, angular points) grid for the M05-2X and M06-2X

computations. The ωB97X-D of method of Chai and Head-Gordon35 and Grimme’s B97-D3

method69 are both evaluated with aug-cc-pVTZ basis sets.29 A dense numerical integration

grid was employed for the ωB97X-D computations, a pruned grid composed of 99 radial

shells and 590 angular points per shell. We also test two double-hybrid DFT methods that
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include a perturbative MP2-like correlation correction, specifically, B2PLYP-D3/aug-cc-

pVTZ and XYG3/6-311+G(3df,2p).29,70, 249 The XYG3 functional is evaluated with B3LYP

orbitals and densities.64 Only the ωB97X-D interaction energies are counterpoise corrected.

The M05-2X and M06-2X computations were performed with QChem 3.2.195 The ωB97X-

D computations were performed with the Gaussian 09 software package.58 The B97-D3,

B2PLYP-D3, and XYG3 computations were performed with NWChem 6.0.229

Wavefunction-based SAPT computations were performed with a development version

of the PSI4 program.41,93 All SAPT computations use the density fitting approximation.

SAPT computations were performed with the aug-cc-pVQZ basis and use the aug-cc-pVQZ-

RI auxiliary basis (with the exception of the PCCP dimer, where aug-cc-pVTZ and aug-cc-

pVTZ-RI sets were used). To reduce the expense of including triple excitations, a truncated

virtual space constructed from MP2 natural orbitals is used. This approximation has been

shown to greatly improve efficiency without introducing significant errors.95 A similar ap-

proximation can be applied to the evaluation of the CCD dispersion energy and will be

discussed in a forthcoming publication.100 The highest level of SAPT applied in this work

is denoted SAPT2+3(CCD), which is defined as follows:

ESAPT2+3(CCD) = E
(10)
elst,resp + E

(12)
elst,resp + E

(13)
elst,resp + E

(10)
exch + E

(11)
exch(S2) + E

(12)
exch(S2)

+ E
(20)
ind,resp + E

(20)
exch-ind,resp(S

2) + E
(30)
ind + E

(30)
exch-ind(S

2) + tE
(22)
ind + tE

(22)
exch-ind

+ ǫ
(2)
disp[CCD + ST(CCD)] + E

(30)
disp + E

(20)
exch-disp + E

(30)
exch-disp

+ E
(30)
ind-disp + E

(30)
exch-ind-disp. (213)

Following from Reference 162, the supermolecular HF interaction energy is not included in

the SAPT energy, since the third-order treatment of induction is expected to be sufficient

when nonpolar monomers are considered. Approximate exchange terms are scaled according

to E
(10)
exch/E

(10)
exch(S2) in order to account for higher-order exchange effects that are neglected

in the S2 approximation.
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3.4.3 SAPT Analysis of the Dispersion Energy

The SAPT computations on the NCCN, PCCP, and P2 dimers allow the dispersion en-

ergy to be analyzed separately from the total interaction energy. The dependence of in-

teraction energies on the theoretical treatment of dispersion can be estimated from the

relative importance of the dispersion component. To identify which systems would most

likely be sensitive to the treatment of dispersion, Table 25 shows the magnitude of the

dispersion energy relative to the total SAPT2+3(CCD) interaction energy computed at the

estimated CCSD(T)/CBS limit equilibrium geometry. In the cross configurations of the

NCCN, PCCP, and P2 dimers, for example, the magnitude of the dispersion energy is 2–3

times larger than the total interaction energy. The relative contribution from dispersion

is appreciably smaller for the PD and T-shaped configurations of the NCCN dimer, but

remains large for P2 and PCCP dimers. From this simple analysis, one would expect the

PCCP and P2 dimers to be more sensitive to the treatment of dispersion than the NCCN

dimer.

Table 25: The magnitude of the dispersion energy relative to the total SAPT2+3(CCD)
interaction energy at estimated CCSD(T)/CBS limit equilibrium geometries.

NCCN PCCP P2

Cross 333% 205% 240%
PD 116% 216% 250%
T-shaped 96% 194% 234%

A more detailed analysis of the dispersion energy in these complexes can be found in

Table 26. Here, the dispersion energy is reported as computed at various truncations of

the MBPT expansion. For the moment, we will consider only the Edisp(2), Edisp(4), and

Edisp(CCD) treatments of the dispersion energy. The Edisp(2) term is an MP2-like (UCHF)

dispersion energy. The Edisp(4) term contains perturbative intramonomer correlation cor-

rections to dispersion through second-order. The Edisp(CCD) dispersion is the most reliable,

and uses CCD wavefunctions to correct the dispersion energy for intramonomer correlation.

The dispersion energies are also presented as a percentage of the Edisp(2) dispersion energy.

These percentages can be used as a means of gauging how difficult the dispersion energies
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in a given complex are to compute. For simple systems, there will be little change between

Edisp(2) and Edisp(CCD). For more difficult systems, there will be a significant difference

between Edisp(2) and Edisp(4), but not Edisp(4) and Edisp(CCD). For the most difficult

systems, there will be large differences between all three of these treatments of dispersion.

Table 26: Dispersion energies computed with various levels of SAPT.a

Edisp(2)b Edisp(3)c Edisp(2.5)d Edisp(4)e Edisp(CCD)f

(NCCN)2 Cross -2.3 -1.5 (65%) -1.9 (83%) -2.0 (85%) -1.9 (81%)
(NCCN)2 PD -2.9 -1.8 (65%) -2.4 (82%) -2.5 (87%) -2.3 (82%)
(NCCN)2 T-shaped -2.5 -1.6 (66%) -2.1 (83%) -2.3 (92%) -2.2 (87%)
(PCCP)2 Cross -8.0 -3.9 (49%) -6.0 (74%) -6.3 (79%) -5.8 (72%)
(PCCP)2 PD -7.9 -3.7 (47%) -5.8 (73%) -6.5 (82%) -5.8 (73%)
(PCCP)2 T-shaped -4.7 -2.6 (55%) -3.7 (77%) -4.0 (85%) -3.7 (78%)
(P2)2 Cross -3.2 -1.9 (58%) -2.5 (79%) -2.4 (74%) -2.4 (75%)
(P2)2 PD -3.6 -2.1 (58%) -2.8 (79%) -2.8 (78%) -2.8 (78%)
(P2)2 T-shaped -2.0 -1.2 (58%) -1.6 (79%) -1.7 (82%) -1.6 (79%)
(CH4)2 -1.3 -1.2 (97%) -1.2 (99%) -1.3 (103%) -1.3 (106%)
CH4-Bz -2.9 -2.4 (82%) -2.7 (91%) -2.7 (93%) -2.7 (93%)
(Bz)2 PD -7.9 -5.2 (65%) -6.6 (83%) -6.7 (84%) -6.5 (82%)

aDispersion energies are given in kcal mol−1 and as percentages of Edisp(2). bEdisp(2) = E
(20)
disp

. cEdisp(3) =

E
(20)
disp

+ E
(30)
disp

+ E
(21)
disp

. dEdisp(2.5) = E
(20)
disp

+ 1
2
(E

(30)
disp

+ E
(21)
disp

). eEdisp(4) = E
(20)
disp

+ E
(30)
disp

+ E
(21)
disp

+ E
(22)
disp

.

f Edisp(CCD) = E
(2)
disp

(CCD) + E
(22)
disp

(ST)(CCD).

For the sake of comparison with more commonly studied systems, methane dimer,

methane-benzene, and benzene dimer dispersion energies are also presented in Table 26.

For typical interactions, such as these, the Edisp(4) treatment of dispersion has been found

previously to be quite reliable.94 The dispersion interactions between alkanes can be treated

accurately with Edisp(2). The interactions involving π orbitals are more difficult and re-

quire, at least, the Edisp(4) treatment of dispersion. Dispersion within the NCCN dimer

is comparable to the dispersion in the benzene dimer. There is a large difference between

Edisp(2) and Edisp(4) and a small difference between Edisp(4) and Edisp(CCD). The P2

dimer differs in that there is an even larger difference between Edisp(2) and Edisp(4), but

the Edisp(CCD) correction is unimportant. The PCCP dimer has the most difficult dis-

persion interactions to compute. In this case, not only is the difference between Edisp(2)

and Edisp(4) large, but the difference between Edisp(4) and Edisp(CCD) can be as large as

0.7 kcal mol−1. This analysis shows that only the most robust methods will be capable of

accurately computing dispersion interactions within the PCCP dimer.
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3.4.4 Performance of Supermolecular Methods

The methods tested in this work can be grouped in terms of their treatments of the dis-

persion interaction. We test four methods that contain highly parameterized dispersion

corrections (M05-2X, M06-2X, B97-D3, and ωB97X-D). We test four methods that con-

tain empirically corrected MP2-like dispersion terms (SCS-MP2, SCS(MI)-MP2, XYG3,

and B2PLYP-D3). The other methods compute dispersion with more robust techniques

than MP2; MP2.5 contains contributions from MP3, SCS- and SCS(MI)-CCSD contain a

CCSD treatment of dispersion, and MP2C and SAPT(DFT) use TDDFT-based dispersion

corrections.

Figure 34: Errors for NCCN, PCCP and P2 dimers computed at equilibrium with various
methods.
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First, we will consider the M05-2X and M06-2X density functionals. Although these

functionals do not contain the correct physics to describe long-range dispersion interactions,

through extensive parameterization they appear to capture “medium-range” dispersion (up

to perhaps 4-5 Å).29,91, 198, 221, 251, 254 This deficiency is evident in Figures 35-43; M05-2X

tends to predict reasonable interaction energies near equilibrium and underbinds at long

range. M06-2X often predicts reasonable interaction energies but equilibrium distances that

are too short; at long-range, the performance of M06-2X degrades quickly. The PD PCCP
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dimer (Figure 43) is an example of typical behavior for M05-2X and M06-2X. Although

lacking long-range dispersion interactions, these functionals can provide reasonable inter-

action energies for small, closely interacting complexes with relatively low computational

expense. In Figure 34, the average errors of each method are presented for the equilibrium

configurations of the nine dimers considered in this work. For these equilibrium geometries,

the performance of M05-2X and M06-2X is slightly better than the DFT-D methods. Their

performance for the difficult dispersion interactions included in this work is similar to their

performance for less difficult dispersion bound systems included in other test sets (e.g. the

S22 and NBC10 test sets).29 The fact that the accuracy of these functionals does not degrade

for more difficult systems is a desirable characteristic. These functionals can be a practical

solution for studying near-equilibrium configurations of dispersion bound complexes.

The B97-D3 and ωB97X-D methods rely entirely on pairwise C6R
−6 terms to account

for dispersion. Therefore, the accuracy of these functionals for dispersion bound complexes

is tied to the empirical parameterization of these -D terms. B97-D3 uses C6 coefficients

that are provided some information about the chemical environment of each atom.73 This

is done through a rather ingenious atom typing procedure that is completely black-box

and varies continuously with the molecular geometry. The performance of these DFT-D

methods at equilibrium is not as good as the M0N-2X methods; however, at long-range, the

behavior of these functionals improves rather than degrading (see Figures 35-43). ωB97X-D

tended to be underbound relative to the CCSD(T) benchmark, which could be indicative

of C6 coefficients that were not optimal for these highly polarizable molecules. Overall, the

B97-D3 functional outperforms ωB97X-D for the dimers considered in this work. This is a

useful result, since the B97-D3 functional exhibits O(N3) scaling as opposed to the O(N4)

scaling of the hybrid ωB97X-D method.

Two promising double hybrid density functionals, XYG3 and B2PLYP-D3, were applied

to the NCCN, P2, and PCCP dimers. XYG3 accounts for dispersion with an MP2-like term

that is evaluated using B3LYP orbitals and scaled by 0.3211. This small scaling parameter

is required because short-range correlation is included elsewhere in the functional; addi-

tionally, the DFT orbitals have, relative to Hartree-Fock orbitals, a smaller HOMO-LUMO
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Figure 35: Cross NCCN dimer potential energy curves computed with various methods.
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gap, resulting in a larger perturbative correction. The B2PLYP functional contains a similar

scaled perturbative correction, but still requires a small empirical dispersion correction in

order to provide accurate results for dispersion bound complexes. The results for B2PLYP-

D3 for these dimers is very poor. Perhaps the limited data set used to parameterize this
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Figure 36: T-shaped NCCN dimer potential energy curves computed with various methods.
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functional, which contains no third row elements, contributes to this failing. This poor

performance is unusual, as the B2PLYP-D3 method is typically reliable for treating disper-

sion dominated interactions.29 XYG3 performs as well as any DFT based method that was

tested; this is consistent with previous findings for other test sets.29,231 Unfortunately, it
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Figure 37: Parallel-displaced NCCN dimer potential energy curves computed with various
methods.
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merely equals the performance of M05-2X and M06-2X, which both scale O(N4) whereas

XYG3 scales O(N5) due to the perturbative correction. An important observation is that

XYG3 does not inherit the poor performance of MP2 in its own perturbative correction,
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Figure 38: Cross P2 dimer potential energy curves computed with various methods.
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even for these particularly difficult cases. This can be attributed to the small fraction of

the perturbative correction that needs to be included.

The SCS-MP2 methods we tested offer tremendous improvement over unscaled MP2
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Figure 39: T-shaped P2 dimer potential energy curves computed with various methods.
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interaction energies. However, their performance is erratic; SCS(MI)-MP2, which was pa-

rameterized against the S22 test set, performs brilliantly for NCCN and P2 dimers, but

severely overbinds the PCCP dimer. The SCS-MP2 method is more consistent, but under-

binds every dimer considered. It is probable that SCS-MP2/aug-cc-pVTZ would provide
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Figure 40: Parallel-displaced P2 dimer potential energy curves computed with various
methods.
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better results than SCS-MP2/cc-pVTZ, which is tested here. However, SCS-MP2 methods

have an underlying problem that prevents any single parameterization from providing accu-

rate results for a wide variety of dispersion bound complexes. The leading dispersion term,
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Figure 41: Cross PCCP dimer potential energy curves computed with various methods.
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E
(20)
disp, which is included in MP2, is composed of 1

2 same-spin and 1
2 opposite-spin correlation

(assuming a closed shell reference). For an SCS-MP2 method, this means that the scaling of

the dispersion term is effectively an average of the same-spin and opposite-spin parameters,
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Figure 42: T-shaped PCCP dimer potential energy curves computed with various methods.
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i.e.,

E
(20)
disp(SCS-MP2) =

Sos + Sss

2
E

(20)
disp(MP2). (214)

With this in mind, the percentages of E
(20)
disp in Table 26 given for Edisp(CCD) represent
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Figure 43: Parallel-displaced PCCP dimer potential energy curves computed with various
methods.
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nearly ideal values of (Sos + Sss)/2 for each dimer considered. For the dimers in Table 26,

the ideal value for (Sos + Sss)/2 ranges from 1.06 to 0.72. In SCS-MP2 and SCS(MI)-MP2

these averaged values are 0.77 and 0.96, respectively. The use of a non-augmented basis set,
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cc-pVTZ, essentially has the same effect as scaling the dispersion energy. The realization

that the dispersion energy is scaled by a single parameter shows that it is not possible

to find one set of SCS parameters that will provide consistent results for a diverse set of

nonbonded interactions.

The problems encountered by SCS-MP2 methods are a result of the inconsistent be-

havior of MP2 for treating dispersion interactions. The SCS-CCSD methods circumvent

this problem by attempting to correct a method that behaves in a much more consistent

manner. Previous benchmarking of SCS-CCSD has shown that the only drawback is the

O(N6) scaling of CCSD; admittedly, this is a considerable limitation. The tests of SCS-

and SCS(MI)-CCSD for NCCN dimer were consistent with previous results, indeed, the

SCS-CCSD methods provide interaction energies within the uncertainties of the CCSD(T)

benchmarks. For the P2 and PCCP dimers, however, their performance was not as good.

Both parameterizations of SCS-CCSD consistently underbind both of these dimers. Despite

this slight problem, the overall performance of both SCS-CCSD methods was still excellent.

The new SCS(MI) parameterization outperforms the original SCS-CCSD parameters for

nearly all of the test cases, but, on average, only by a few hundredths of one kcal mol−1.

The parameters themselves are very similar; the original opposite- and same-spin scaling

parameters of 1.27 and 1.13, respectively, and the SCS(MI) parameters of 1.11 and 1.28.

The apparent insensitivity of SCS-CCSD methods to the choice of parameters is an obvious

advantage of SCS-CCSD over SCS-MP2 and a desirable trait in general for an SCS method

to possess.

In a similar spirit to SCS-MP2 and SCS-CCSD, MP2.5 attempts to correct the behavior

of MP2 and MP3 by combining their energies in an empirical manner. MP2.5 is an average

of MP2 and MP3 interaction energies; equivalently, it is also MP2 plus half of the third-order

correction. The motivation for this method is obvious from the results in Table 26. The

third-order dispersion energy [Edisp(3)] is always higher than the second-order dispersion

energy [Edisp(2)]. In the cases where the second-order dispersion energy is a good estimate of

the CCD dispersion energy [Edisp(CCD)], the third-order correction to the dispersion energy

is small. Where there is a large difference between the second-order dispersion energy and
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the CCD dispersion energy, there is an even larger difference between the second-order and

third-order dispersion energies. We also report the second-order dispersion energy with half

of the third-order correction included [Edisp(2.5)]. There is excellent agreement between

Edisp(2.5) and our best estimate of the dispersion energy, Edisp(CCD); this is the origin

of the excellent performance of MP2.5 for dispersion bound complexes. For the complexes

considered in this work, the performance of MP2.5 is slightly better than SCS-MP2 methods

and slightly worse than SCS-CCSD methods. MP2.5 tends to overbind somewhat relative

to the CCSD(T) benchmark. For more typical interactions, the simple averaging of MP2

and MP3 in the MP2.5 method provides rather accurate results.65 For these more difficult

dispersion bound complexes, a larger fraction of MP3 would need to be included for similar

accuracy.

The least empirical method tested for these complexes is the MP2C method of Hes-

selmann.84,165 This method uses TDDFT response functions to correct the account of dis-

persion in MP2. The initial tests of this method have been very promising.65,165 Here,

we apply MP2C to more difficult systems than were included in the previous tests. The

performance of this method, however, does not degrade for these systems. The performance

of MP2C is slightly better than the SCS-CCSD methods at greatly reduced cost. A related

method, in terms of the treatment of dispersion, SAPT(DFT) also performs extremely well

for these complexes. These methods perform better than any of the other approximate

methods tested in this work. Additionally, both MP2C and SAPT(DFT) scale O(N5),

which is better than or equivalent to all but the DFT methods (excluding the double hy-

brids). SAPT(DFT) is slightly better than MP2C, and this is likely due to a more accurate

treatment of dispersion and a more rigorous treatment of exchange-dispersion. Both of

these methods contain a treatment of the dispersion energy that does not degrade for more

difficult systems. They can both be recommended as generally applicable for the study of

nonbonded interactions.
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3.4.5 Conclusions

We have introduced the NCCN, P2, and PCCP dimers as model systems for dispersion

dominated π-π interactions. These dimers involve dispersion interactions that are problem-

atic to study computationally. Dispersion interactions of this type are typically found in

much larger complexes (e.g. benzene dimer or indole-benzene). SAPT computations show

that the dispersion in NCCN dimer is similar in nature to the dispersion in the benzene

dimer, while dispersion in P2 and PCCP dimers is potentially more difficult to accurately

characterize. The advantage of these model systems lies in their relatively small size; near

complete basis set limit CCSD(T) interaction energies were obtained for NCCN, P2, and

PCCP dimers.

The performance of many recently developed quantum mechanical methods was tested

for the NCCN, P2, and PCCP dimers. DFT based methods provide reasonable results at

relatively low computational expense. An advantage of these methods is that their perfor-

mance does not degrade for these more difficult systems. Spin-component scaled methods

perform much better than their unscaled, parent methods; although generally good, the

performance of SCS methods can be somewhat erratic. The best results for the NCCN,

P2, and PCCP dimers come from the methods that use TDDFT response functions to de-

scribe dispersion interactions, MP2C and SAPT(DFT). These methods provide accuracy

that could otherwise only be achieved through the inclusion of the effect of triple excita-

tions on the dispersion energy. However, there are some limitations for general applicability

of MP2C and SAPT(DFT) due to their roots in intermolecular perturbation theory (i.e.

the need to fragment the system and the current lack of analytic gradients). Despite this,

both methods are very promising for accurately characterizing π-π dispersion interactions

in extended systems.

3.5 The Influence of Electrostatics on Substituent Effects in π-π Inter-

actions

The following was adapted from Ref. 97.

Understanding how π-π interactions can be modified by substituents is of fundamental
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importance for advances in drug design, exploration of non-natural nucleic acid analogs, and

crystal engineering of organic materials. The conventional wisdom, inferred from numer-

ous experiments, is encoded in the Hunter-Sanders rules,102 which state that substituent

effects can be understood in terms of how substituents change electrostatic energies by

donating or withdrawing electron density from the π cloud. Theoretical studies of gas-

phase mono-substituted benzene dimers, however, indicated that both electron-donating

and electron-withdrawing substituents increase the attraction between two benzenes in

an idealized face-to-face (sandwich) orientation,201 contradicting this picture. Moreover,

symmetry-adapted perturbation theory (SAPT)111 analysis indicates that for substituents

like methyl, the majority of the substituent effect is due to dispersion, not electrostat-

ics.201 T-shaped and parallel-displaced configurations are more prevalent in actual chemical

systems, and some studies have explored their substituent effects as well.10,134, 194, 202, 241

Nevertheless, near-sandwich configurations are observed in some model systems,37,39, 141, 243

and the sandwich structures have remained popular in theoretical studies because they are

simpler geometrically.

Wheeler and Houk made the amazing discovery that computed substituent effects in

sandwich C6H5X · · · C6H6 complexes are essentially the same as they are in HX · · · C6H6

complexes in corresponding geometries.240 That is, the substituent effects are due to direct

substituent-π interactions, and not to tuning of the π-π interaction itself. For an expanded

collection of substituents, a good correlation was observed between stabilization due to

substituent and the Hammett parameter σm of the substituent, suggesting that electrostatic

effects do determine the trend with respect to substituents, while dispersion merely serves to

shift the trend line down from the origin (stabilizing even complexes with electron-donating

substituents, in agreement with earlier theoretical studies).

However, if dispersion effects are noticeable in mono-substituted benzene dimers, then

they should become large in multiply-substituted benzene dimers. Indeed, Ringer and Sher-

rill184 showed that the correlation between relative binding energy and
∑

σm is destroyed

for multiply-substituted sandwich dimers. Moreover, several monomers with radically dif-

ferent electrostatic potentials all exhibited similar binding to benzene. This data appears
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to support the hypothesis that differential dispersion effects can be large in multiply substi-

tuted benzene dimers, and that electrostatics effects alone are not sufficient to understand

substituent effects in sandwich benzene dimers. However, energy decompositions were not

reported.

While an energy component analysis was being performed in our laboratory, a similar

study was published by Lewis and co-workers.235 Their study found a good correlation

between computed binding energies and a model containing σm and Mr values, where Mr

is the molar refractivity, taken to describe the polarizability of a substituent (which should

be proportional to its dispersion contribution). However, SAPT analysis indicated that

the sum of dispersion, exchange-repulsion, and induction was relatively constant for the

substituted dimers (variations of a few tenths of one kcal mol−1), whereas changes in the

electrostatic term were much larger. Counterintuitively, the electrostatic term itself was

found to be more favorable than in benzene dimer for all substituents. While increased

binding for electron-donating substituents is easy to rationalize as arising from dispersion

terms, it is not obvious how electron-donating substituents could lead to increased binding

in the electrostatic term itself. Here we explain this surprising result.

Figure 44: Depiction of the substituted sandwich benzene dimers considered; only one of
the benzene rings is substituted, according to the substitution pattern displayed. Only
hexahydroxybenzene is omitted.

SAPT0/aug-cc-pVDZ′ interaction energies were computed for substituted sandwich ben-

zene dimers using a development version of the PSI4 program.41,93 This level of theory can
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accurately predict benzene dimer interaction energies.94 The benzene and substituted ben-

zene monomer geometries are optimized at the MP2/aug-cc-pVDZ level of theory using

Q-Chem 3.2.195 The sandwich configurations of the substituted benzene dimers from Refer-

ence 184 are considered and are aligned on the geometric center of the benzene rings. The

specific substituents and geometries considered are shown in Figure 44.

Figure 45: SAPT electrostatic, dispersion, and total interaction energies of substituted
benzene dimers relative to the unsubstituted benzene dimer at their respective equilibrium
geometries. For comparison, relative electrostatic energies computed from a distributed
multipole analysis (DMA) are also included.
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In Figure 45, we present the SAPT electrostatic, dispersion, and total interaction ener-

gies of each substituted benzene dimer relative to the unsubstituted benzene dimer, each at

their equilibrium geometries. We also include relative electrostatic energies estimated by a

distributed multipole analysis (DMA), to be discussed below. The reader may notice that

the relative energies and dispersion energies for dimers with
∑

σm < 0 appear to form two

separate trend lines; one line results from dimers various numbers of -NH2 substituents, and

the other line results from dimers various numbers of -CH3 substituents (substituent effects

in sandwich dimers tend to be additive185). Dimers with more total electron-withdrawing

character (positive
∑

σm), have stronger interactions, and the electrostatic energies behave

similarly to the total interaction energies for these substituents. These results are in accord

with the Hunter-Sanders rules.102 Dimers with more electron-donating character are also
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more strongly bound, in agreement with Reference 184 but in contradiction to the Hunter-

Sanders rules. This increase in binding is consistent with the stronger dispersion terms

exhibited by all substituents (which grow with the number of substituents), as anticipated

by Reference 184. The surprising result is that the SAPT electrostatic energy itself also

becomes more attractive with more strongly electron-donating substituents, as reported by

Lewis and co-workers.235

In order to understand the origin of this curious effect, the multipole picture of electro-

statics must be abandoned. As monomer electron densities begin to overlap, charge penetra-

tion effects become important.210 These are attractive electrostatic interactions due to the

interaction of the electrons of one monomer with the nuclei of the other, and they increase

with orbital overlap. At long range, the sandwich benzene dimer has repulsive electrostat-

ics due to unfavorable quadrapole-quadrapole interactions. At short range, however, it has

attractive electrostatic interactions due to charge penetration. Any typical multipole-based

description of the electrostatics in the benzene dimer would incorrectly predict repulsive

electrostatics at short range. To demonstrate the limitations of the multipole model explic-

itly, a distributed multipole analysis (DMA)208 was performed on Hartree-Fock/6-311G**

densities for all the monomer geometries considered here, using the Molpro program.151

Using an in-house program developed for the purpose, electrostatic energies based on the

multipole analysis were computed for the unsubstituted and substituted benzene dimers,

including terms through quadrapole-quadrapole. Figure 45 compares the DMA-predicted

electrostatic energies vs. the more rigorous SAPT electrostatic energies. We clearly see that

the DMA electrostatic energies fail to capture the charge penetration terms that become

important at the equilibrium intermolecular separations.

The fact that all substituents lead to an increased electrostatic interaction at equilibrium

separations is a direct result of increased charge penetration. Any substituent increases the

spatial extent of the substituted benzene’s electron density and thus increases the overlap

with the unsubstituted benzene (with the possible exception of fluorine). Therefore, both

electron donating and electron withdrawing substituents increase the electrostatic interac-

tion as a result of increased charge penetration.
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Figure 46: SAPT electrostatic energies of substituted benzene dimers relative to the un-
substituted benzene dimer at fixed intermolecular displacements (given in Ångströms).
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The effect of charge penetration on the results in Figure 45 is, perhaps, exaggerated

because all substituted benzene dimers have shorter intermolecular distances than the un-

substituted benzene dimer. To simplify the analysis, in Figure 46 we present relative elec-

trostatic energies at various fixed intermolecular distances. At long range, 5 to 7 Å, the

electrostatic interactions in the substituted benzene dimers correlate with
∑

σm (as might

be predicted by the Hunter-Sanders rules). The electron withdrawing substituents have

attractive electrostatic interactions that become stronger as the intermonomer separation

is reduced; the electron donating substituents have repulsive electrostatic interactions that

become more repulsive at shorter intermonomer separations. At short range, 3 to 4 Å,

the correlation falls apart. The electron withdrawing substituents continue to behave as
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expected, but the electron donating substituents have increasingly more attractive electro-

static interactions as the intermonomer separation is reduced. At long range, there is very

little charge penetration present; multipole-multipole interactions dominate the electrostatic

interaction. As the separation is reduced and orbital overlap increases, charge penetration

begins to dominate the electrostatic interaction. Notably, the equilibrium geometries here

are all in the region (3.45–3.95 Å, see Table 27) where charge penetration effects are very

important.

Table 27: The electrostatic, exchange, induction and dispersion components of substituted
benzene dimer interactions at equilibrium. Results from SAPT0/aug-cc-pVDZ′ computa-
tions in kcal mol−1.

P

σm R (Å) Elst Exch Ind Disp SAPT0
C6H6 · · · C6H6 0.00 3.95 0.52 3.15 -0.24 -4.77 -1.34
C6H5F · · · C6H6 0.34 3.85 -0.35 3.96 -0.24 -5.39 -2.03
C6H4F2 · · · C6H6 0.68 3.75 -1.39 5.00 -0.26 -6.10 -2.75
C6H3F3 · · · C6H6 1.02 3.70 -2.29 5.53 -0.31 -6.47 -3.53
C6F6 · · · C6H6 2.04 3.55 -5.40 7.67 -0.73 -7.81 -6.27
C6H5CN · · · C6H6 0.56 3.80 -1.23 4.63 -0.26 -6.26 -3.11
C6H4(CN)2 · · · C6H6 1.12 3.70 -2.94 6.02 -0.38 -7.60 -4.90
C6H3(CN)3 · · · C6H6 1.68 3.60 -4.91 7.85 -0.72 -9.19 -6.97
C6(CN)6 · · · C6H6 3.36 3.45 -9.36 12.11 -2.02 -13.29 -12.56
C6H5CH3 · · · C6H6 -0.07 3.85 0.20 4.26 -0.34 -6.01 -1.89
C6H4(CH3)2 · · · C6H6 -0.14 3.80 -0.01 4.97 -0.40 -6.98 -2.43
C6H3(CH3)3 · · · C6H6 -0.21 3.75 -0.26 5.80 -0.52 -8.06 -3.03
C6(CH3)6 · · · C6H6 -0.42 3.60 -1.29 8.61 -0.69 -11.48 -4.85
C6H5NH2 · · · C6H6 -0.16 3.80 0.11 4.60 -0.39 -6.18 -1.86
C6H4(NH2)2 · · · C6H6 -0.32 3.70 -0.42 5.81 -0.51 -7.40 -2.52
C6H3(NH2)3 · · · C6H6 -0.48 3.60 -1.05 7.53 -0.74 -8.88 -3.13
C6(NH2)6 · · · C6H6 -0.96 3.50 -2.29 9.81 -0.80 -11.78 -5.07
C6H5OH · · · C6H6 0.12 3.85 0.05 4.02 -0.29 -5.59 -1.81
C6H4(OH)2 · · · C6H6 0.24 3.75 -0.58 5.13 -0.33 -6.53 -2.30
C6H3(OH)3 · · · C6H6 0.36 3.70 -1.01 5.74 -0.38 -7.10 -2.75

Although Figure 45 emphasizes the two most important attractive forces (electrostatics

and dispersion), it is worth commenting on the other SAPT components, induction and

exchange-repulsion. In previous work,92,185, 202 we have found that although substituents

or heteroatoms create a dipole not present in unsubstituted benzene, the resulting dipole-

induced dipole forces (included in the induction term) are relatively weak. Figures 47-53

show that variations in the induction term due to substituents are quite modest (typically

a few tenths of one kcal mol−1) and are generally much smaller than variations in the other

energy components.

For π-π interactions, the dispersion and exchange-repulsion terms are often of roughly
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Figure 47: Electrostatic, exchange, induction, dispersion, and and total interaction energies
of substituted benzene dimers relative to the unsubstituted benzene dimer at their respective
equilibrium geometries. The signs of the relative exchange energies are reversed for ease of
comparison.
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Figure 48: Electrostatic, exchange, induction, dispersion, and and total interaction energies
of substituted benzene dimers relative to the unsubstituted benzene dimer at constant
3.0 Å displacements. The signs of the relative exchange energies are reversed for ease of
comparison.
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equal magnitude (but opposite sign), leading them to approximately cancel.92,202 This is

not a general phenomenon, as exchange-repulsion will tend to cancel whatever the dominant

attraction is in the complex; for hydrogen-bonded systems, exchange is closer in magnitude

to the dominant electrostatic term than it is to the dispersion term.221 Figure 47 shows

169



Figure 49: Electrostatic, exchange, induction, dispersion, and and total interaction energies
of substituted benzene dimers relative to the unsubstituted benzene dimer at constant
3.5 Å displacements. The signs of the relative exchange energies are reversed for ease of
comparison.
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Figure 50: Electrostatic, exchange, induction, dispersion, and and total interaction energies
of substituted benzene dimers relative to the unsubstituted benzene dimer at constant
4.0 Å displacements. The signs of the relative exchange energies are reversed for ease of
comparison.
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that exchange roughly cancels dispersion at equilibrium, although there are significant dif-

ferences (up to 2.9 kcal mol−1) in some cases. However, much of this appears to be a

geometry effect arising because the substituted benzene dimers are bound more strongly

and achieve shorter intermolecular separations. At fixed separations of from 3.0–4.0 Å, the
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Figure 51: Electrostatic, exchange, induction, dispersion, and and total interaction energies
of substituted benzene dimers relative to the unsubstituted benzene dimer at constant
5.0 Å displacements. The signs of the relative exchange energies are reversed for ease of
comparison.
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Figure 52: Electrostatic, exchange, induction, dispersion, and and total interaction energies
of substituted benzene dimers relative to the unsubstituted benzene dimer at constant
6.0 Å displacements. The signs of the relative exchange energies are reversed for ease of
comparison.
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substituted dimers usually feature less unfavorable exchange-repulsion than in the benzene

dimer. This is surprising given that, on the Wheeler-Houk view,240–242 the main effect of the

substituent should be direct exchange-repulsion between the substituent and the unsubsti-

tuted benzene, which one would imagine as always being more repulsive than in the benzene
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Figure 53: Electrostatic, exchange, induction, dispersion, and and total interaction energies
of substituted benzene dimers relative to the unsubstituted benzene dimer at constant
7.0 Å displacements. The signs of the relative exchange energies are reversed for ease of
comparison.
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dimer. We hypothesize that because exchange-repulsion is such a short-range phenomenon

and so sensitive to the orbital overlap, it remains dominated by small changes in the π-

electron density induced by substituents. All electron-withdrawing substituents considered

here lead to reduced exchange repulsion, whereas the electron-donating methyl groups lead

to enhanced exchange repulsion. (Curiously, the electron-donating amine group breaks this

pattern and leads to reduced exchange repulsion). Although the behavior of the relative

exchange-repulsion term is hard to reconcile with the Wheeler-Houk view, the magnitude of

this term is typically comparable to or smaller than the relative dispersion and electrostatic

terms (see Figures 48-53), so that substituent effects on the total interaction energy may

remain well-described by the Wheeler-Houk picture.

Finally, we wish to further explore the other intriguing finding of Lewis and co-workers,235

that the sum of all non-electrostatic terms is roughly constant (thus commending the elec-

trostatic term as the primary descriptor for substituent effects). Similar results have been

noted134,194 for parallel-displaced configurations of substituted benzene dimers at their equi-

librium positions. For the present sandwich systems at their equilibrium separations, the

upper panel of Figure 54 plots the electrostatic, non-electrostatic (exchange + induction
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Figure 54: Electrostatic, non-electrostatic, and total interaction energies of substituted
benzene dimers relative to the unsubstituted benzene dimer at (upper panel) equilibrium
geometries and (lower panel) at an intermolecular separation of 3.5 Å.
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+ dispersion), and total SAPT energies vs.
∑

σm. Consistent with the findings of Lewis

and co-workers,235 the electrostatic energies generally track the total interaction energies

(although there are differences as large as 3.6 kcal mol−1), and the non-electrostatic terms

are roughly constant and near zero (although they can be as large as 1.7 kcal mol−1). We

find a good correlation (R2 = 0.94, see Table 28) between the SAPT electrostatic energies

and the total SAPT energies.

Unfortunately, however, the quality of this correlation degrades significantly for non-

equilibrium geometries. π-π and other non-covalent interactions often occur in the context

of larger systems, where backbone constraints or competing interactions prevent individual

contacts from reaching what would otherwise be their optimal geometries. Hence, for a
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Table 28: Correlation (R2) between interaction energies (relative to benzene dimer) and
various energy components,

∑

σm, and
∑

|σm|, at various intermolecular distances.

Elst (SAPT) Elst (DMA)a Exch+Ind+Disp Disp
P

σm

P

|σm|

3.0 Å 0.73 0.59 0.91 0.23 0.42 0.85
3.5 Å 0.76 0.68 0.69 0.28 0.56 0.90
4.0 Å 0.81 0.79 0.48 0.25 0.67 0.92
5.0 Å 0.91 0.90 0.28 0.18 0.79 0.91
6.0 Å 0.96 0.95 0.21 0.15 0.84 0.88
7.0 Å 0.98 0.97 0.19 0.14 0.85 0.85
Req

b 0.94 0.71 0.14 0.64 0.60 0.91

aDistributed multipole analysis is performed with HF/6-31G* densities. Electrostatic interactions through

quadrupole-quadrupole are included. bDimers are at their respective equilibrium geometries.

correlation to remain useful, it must hold at a range of geometries. As shown in the lower

panel of Figure 54, for fixed separations, the relative non-electrostatic energies are no longer

nearly constant, varying as much as 6.0 kcal mol−1 at 3.5 Å or as much as 3.2 kcal mol−1

at 4.0 Å for C6(CN)6. As shown in Table 28, the R2 metric of the correlation between

the relative electrostatic and total energies reduces to 0.81 at 4.0 Å, and to only 0.76 at

3.5 Å (where the correlation with the non-electrostatic components, 0.69, starts to become

as good). The correlation between relative interaction energies and electrostatic energies

improves at larger distances where other contributions start to die off. Interestingly, the

good correlation noted by Lewis and co-workers235 between relative interaction energies and

the sum of the absolute values of the Hammett parameters,
∑

|σm|, persists here (although

somewhat diminished in quality), with R2 ranging from 0.85 to 0.92, depending on the

intermolecular distance. However, as there is no precedent or theoretical justification for

using
∑

|σm| as a descriptor of interaction energies, without additional testing we are unsure

whether it will prove useful in future studies.

The present study has shown that charge penetration effects are crucial for understand-

ing the electrostatic component of π-π interactions and their substituent effects. There is no

reason to expect that Hammett σm parameters should be capable of describing complicated

effects such as charge penetration, and indeed at shorter ranges, correlation between the

electrostatic energy and
∑

σm breaks down. As shown previously,184 for multiply-substitued

sandwich benzene dimers, there is not a good correlation between relative binding energies

and
∑

σm (see also Table 28). In agreement with Lewis and co-workers,235 we do find a
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fairly good correlation between relative binding energies and
∑

|σm|, but we are reluctant

to advocate use of these parameters without further study.

Although additional questions remain, we are optimistic that all of the main funda-

mental concepts necessary for an understanding of substituent effects in the simplest π-π

model system (gas-phase sandwich benzene dimer) are now recognized. These appear to

be: (a) Except at large intermolecular separations (∼ 6 Å or more) all substituents lead

to increased binding, regardless of electron-donating or electron-withdrawing character.201

(b) Substituent effects are largely due to direct substituent-π interactions, not an indi-

rect modulation of π density240 (although as indicated here, this may not be true for the

particular contribution from exchange). (c) Substituents influence not only electrostatic

contributions, but also exchange, induction, and London dispersion contributions.202 Al-

though substituent effects in sandwich and parallel-displaced configurations correlate well

with just the (SAPT) electrostatic contribution at equilibrium,134,194, 235 at other geome-

tries this correlation is not nearly as good. (d) The electrostatic contributions are modified

by a substituent not only through changes in dipoles, quadrupoles, etc., but also through

charge penetration effects that are not easily modeled by multipoles (and certainly not

by atom-centered charges197). To demonstrate this point, a simplified electrostatic model

complete through quadrupole-quadrupole interactions was shown to fail at reproducing the

more rigorous SAPT electrostatic energy. We stress that parallel π-π interactions are often

observed for interplanar distances of 3.6 Å or less (3.3 Å in B-DNA), and that charge pen-

etration effects are large (i.e., multipole models fail) at these distances. It now remains to

explore how these fundamental concepts in the physics of π-π interactions play out in other

geometrical arrangements, for larger systems, and in the presence of solvent.
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CHAPTER IV

CONCLUSION

The application of density fitting (DF) and Cholesky decomposition (CD) approximations

to wavefunction-based SAPT has proven to greatly improve its scalability. Both DF and CD

approaches have negligibly small errors compared to SAPT results using standard electron

repulsion integrals. For our test cases, the auxiliary basis required for the one-center CD

approach is smaller than the corresponding DF basis. This could prove very useful for

computations on large systems, where the expense associated with the formation of the

three-index integrals is negligible compared to the formation of four-index MO integrals

from three-index integrals. Recent algorithmic advances have allowed us to perform SAPT0

computations on systems with as many as 220 atoms and 2850 basis functions.

Likewise, the application of DF approximations to the treatment of intramonomer elec-

tron correlation in higher-order SAPT is also fruitful. Through the formation of a group

of reusable intermediates based on the DF representation of the two-electron integrals, we

are able to greatly improve the efficiency of our DF-SAPT program. In some cases, the DF

intermediates are used to reduce the overall scaling of certain SAPT corrections. These in-

termediates can also be used to avoid the need to handle certain classes of integrals explicitly.

As a result the dependence on disk I/O, which has plagued other SAPT implementations,

is greatly reduced in our program. In order to get highly accurate interaction energies

from SAPT, the triples contribution to dispersion must be included; this terms scales as

O(o3v4). By using DF intermediates, the evaluation of this term can be streamlined to avoid

a bottleneck due to excessive disk I/O. Our implementation of DF-SAPT has allowed us to

perform the largest SAPT computations to date that include all intramonomer correlation

corrections through second-order.

Despite the improvements from introduction of density fitting approximations, the

176



triples correction to dispersion remained a bottleneck in SAPT computations. The de-

velopment of an approximation to the triples correction to dispersion in SAPT that uses

MP2 natural orbitals (NOs) to reduce the number of virtual orbitals and a scaling relation

to reduce the size of the error incurred has significantly reduced this bottleneck. By trun-

cating the virtual space and scaling the resulting energy according to Equation 204, roughly

half of the virtual orbitals can be removed with negligible errors. When this approximation

is used in conjunction with the frozen core approximation, E
(22)
disp(T) can be evaluated 50-

60 times faster for the aug-cc-pVDZ basis set, with even greater speedups for larger basis

sets. For the S22 test set, these approximations result in errors of, at most, only a few

hundredths of one kcal mol−1. With the approximations developed in this work, it should

now be possible to include the important E
(22)
disp(T) term for most systems where SAPT2 is

applicable. The introduction of density fitting and MP2 NO approximations have allowed

us to perform correlated SAPT computations on systems with as many as 44 atoms and 840

basis functions (a double-ζ quality basis) or 30 atoms and 1130 basis functions (a triple-ζ

quality basis).

The advances we have made in the development of an efficient wavefunction-based SAPT

implementation have allowed us to perform the largest such computations to date. The en-

ergy decompositions provided by our SAPT program have been used to elucidate the nature

of interactions in many complex systems. The first chemical application of our SAPT pro-

gram was to the indole-benzene complex, where qualitative explanations for the energetic

ordering of numerous geometries were desired.60 The fundamental nature of π-π interactions

in extended systems was probed with SAPT0 to determine how different energy components

change with the length of linear acenes.93 After the higher-order SAPT terms were efficiently

implented, correlated SAPT computations were performed on small hydrogen bonded com-

plexes in order to study the distance dependance of the interactions.221 We have performed

high-level SAPT computations on the protonated benzene dimer (the benzene-benzenium

interaction) in order to illustrate the difference between T-shaped and parallel displaced

configurations of the complex; the SAPT analysis allowed the protonated complex to be
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compared to the neutral benzene dimer.104 Our CCD dispersion program, the first pro-

duction level implementation of the ǫ
(2)
disp(CCD + ST(CCD)) correction, was applied to the

pathological dispersion interactions in the NCCN, PCCP, and P2 dimers.98 Our new imple-

mentation of SAPT0 has allowed large data sets and large molecules to be treated efficiently.

This has allowed us to explore the rise and twist of stacked DNA base pair duplexes.160

We have also applied our SAPT0 program to study the interactions in dimers of arsenolite

(As4O6) and realgar (As4S4).
63 We have probed the nature of electrostatic interactions in

substituted benzene dimers to ascertain the importance of charge penetration.97 Using the

scalability of the SAPT0 implementation, we have studied the intercalation of DNA by

proflavine, while including backbone and next-nearest neighbor interactions.99 SAPT is an

extremely useful tool for providing chemical insight into the nature of noncovalent interac-

tions. Our new DF-SAPT implementation makes a wider range of systems accessible with

wavefunction-based SAPT.
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symmetry-adapted intermolecular perturbation theory with density fitting: A new ef-
ficient method to study intermolecular interaction energies,” J. Chem. Phys., vol. 122,
p. 014103, 2005.

[87] Hill, J. G. and Platts, J. A., “Spin-component scaling methods for weak and
stacking interactions,” J. Chem. Theory Comput., vol. 3, pp. 80–85, 2007.

185



[88] Hill, J. G. and Platts, J. A., “Local electron correlation descriptions of the in-
termolecular stacking interactions between aromatic intercalators and nucleic acids,”
Chem. Phys. Lett., vol. 479, pp. 279–283, 2009.

[89] Hill, J. G., Platts, J. A., and Werner, H., “Calculation of intermolecular in-
teractions in the benzene dimer using coupled-cluster and local electron correlation
methods,” Phys. Chem. Chem. Phys., vol. 8, pp. 4072–4078, 2006.
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[138] Löwdin, P.-O. and Shull, H., “Natural orbitals in the quantum theory of two-
electron systems,” Phys. Rev., vol. 101, pp. 1730–1739, 1956.

[139] Martinez, T. J. and Carter, E. A., “Pseudospectral methods applied to the elec-
tron correlation problem,” in Modern Electronic Structure Theory (Yarkony, D. R.,
ed.), vol. 2 of Advanced Series in Physical Chemistry, pp. 1132–1165, Singapore:
World Scientific, 1995.

[140] Megiel, E., Kasprzycka-Guttman, T., Jagielska, A., and Wroblewska, L.,
“A theoretical and experimental N-14 NMR study of association of pyridine,” J. Mol.

Struct., vol. 569, pp. 111–119, 2001.

189



[141] Mei, X. and Wolf, C., “Highly congested nondistorted diheteroarylnaphthalenes:
Model compounds for the investigation of intramolecular pi-stacking interactions,” J.

Org. Chem., vol. 70, p. 2299, 2005.

[142] Meyer, E. A., Castellano, R. K., and Diederich, F., “Interactions with aro-
matic rings in chemical and biological recognition,” Angew. Chem., Int. Ed. Engl.,
vol. 42, no. 11, pp. 1210–1250, 2003.

[143] Meyer, W. Int. J. Quantum Chem. Symp., vol. 5, p. 341, 1971.

[144] Meyer, W., “PNO-CI studies of electron correlation effects. I. Configuration expan-
sion by means of nonorthogonal orbitals, and application to the ground state and
ionized states of methane,” J. Chem. Phys., vol. 58, pp. 1017–1035, 1973.

[145] Mignon, P., Loverix, S., Proft, F. D., and Geerlings, P., “Influence of stack-
ing on hydrogen bonding: Quantum chemical study on pyridine-benzene model com-
plexes,” J. Phys. Chem. A, vol. 108, p. 6038, 2004.

[146] Mishra, B. K. and Sathyamurthy, N., “π-π interaction in pyridine,” J. Phys.

Chem. A, vol. 109, pp. 6–8, 2005.

[147] Misquitta, A. J., Jeziorski, B., and Szalewicz, K., “Dispersion energy from
density-functional theory description of monomers,” Phys. Rev. Lett., vol. 91,
p. 033201, 2003.

[148] Misquitta, A. J., Podeszwa, R., Jeziorski, B., and Szalewicz, K., “Inter-
molecular potentials based on symmetry-adapted perturbation theory with disper-
sion energies from time-dependent density-functional calculations,” J. Chem. Phys.,
vol. 123, p. 214103, 2005.

[149] Misquitta, A. J. and Szalewicz, K., “Intermolecular forces from asymptotically
corrected density functional description of monomers,” Chem. Phys. Lett., vol. 357,
pp. 301–306, 2002.

[150] Mobley, D. L., Graves, A. P., Chodera, J. D., McReynolds, A. C.,
Shoichet, B. K., and Dill, K. A., “Predicting absolute binding free energies to a
simple model site,” J. Mol. Biol., vol. 371, pp. 1118–1134, 2007.

[151] MOLPRO, version 2010.1, a package of ab initio programs, Werner, H.-J.,
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