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Abstract—With the increasing use of cyberinfrastruc-
ture and popularity of e-Science initiatives, science is
becoming truly globalized, reducing barriers to entry
and enabling formation of open and global networked
innovation communities. In this study, we characterize
such networks as complex adaptive communication sys-
tems that exhibit traits of self-organized creative artifi-
cial ecosystems. A simulation-based exploratory study is
conducted to better understand community traits that
confer increased diversity and resilience in such global
participatory systems. Five types of interaction topologies
are identified and simulated using agent simulation as a
method of inquiry. Simulation results show that scale-free
network has the highest resilience as compared to random
and random group network.

I. INTRODUCTION

Scholarly communication and organizational
forms of science is undergoing rapid and dramatic
change. These changes are being driven by advances
in computer and communication technologies and
collective social, economic, cultural, and commu-
nicative processes that we call globalization. The
practice of science is becoming more open and
global, as the access to knowledge, as well as
its production is becoming increasingly transparent.
Service oriented science [1] and e-Science [2] ini-
tiatives lead to emergence of scientific communities,
where domain knowledge is no longer solely docu-
mented in the journal articles or patents, but is also
embodied in software, simulations, and databases.
We call such open source science as Global Partici-
patory Science (GPS). Among the examples of such
communities include Open Biomedical Ontologies
(OBO) Foundry [3] and NanoHub [4].

Sustainability of GPS communities require avail-
ability of open challenges, problems, and resources
so that participants can get motivated and stimu-
lated. Participants seek resources by inhabiting and
constructing cognitive niches or parts of the knowl-
edge ecosystem where such resources exist. In sci-
ence, resources may include knowledge, people with
skills and abilities, financial support and/or (global)
access to tools and instruments. What forms of
collaboration structures and processes are conducive
to sustained knowledge production and novelty in
such open socio-ecological communities is critical
to future development of virtual scientific collabora-
tories. It is recognized that the small world network
structures with low absorption capacities result in
higher innovation capacity and potential [5]. Hence,
given the potential role of network recruitment and
management on innovation potential, hub organi-
zations (e.g., NSF, NIH) that orchestrate collective
knowledge creation need to better understand the
effects of different network topologies.

Since collective creativity and innovation are elu-
sive and difficult to measure, we leverage two proxy
metrics that are known to have positive influence
on innovativeness: diversity and resilience. Diver-
sity facilitates interdisciplinarity that fosters inno-
vativeness and causes breakthrough in science [6].
Adaptability and transformability enables resilience,
which is an attribute of socio-ecological systems
with sustained innovative behavior [7]. Understand-
ing the emergence and co-evolution of such global
communities as a complex system requires explor-
ing mechanisms that guide communication as well
as the trajectories of the underlying fields guided



by the typology of networks they are embedded and
the rules of attachment that steer members’ choice
of collaborators.

To examine the impact of structural context and
environment on diversity and resilience, we intro-
duce a model in which scientific communities co-
evolve within selected topologies (i.e., 1D grid, 2D
grid, random network, random group network, and
scale-free network) and observe emergent commu-
nities in relation to their innovation performance.
Future work will allow emergence of arbitrary net-
work patterns based on alternative communication
strategies. In this study, we are interested in explor-
ing the following question:

What is the impact of scientific
community traits and environmental
constraints (i.e. interaction topologies,
carrying capacity, distribution of external
funding) on the diversity and resilience
of GPS?

Development of the model is based on under-
standing knowledge creation and community for-
mation, growth, and dissolution as consequences
of socio-ecological processes under given environ-
mental constraints. Therefore, we first establish a
metaphor between dynamics of GPS and artificial
creative ecosystems. The artificial ecosystem con-
cept [8] that is leveraged here is based on selected
processes found in biology.

The rest of the paper is organized as follows. In
section 2 we overview processes in artificial life and
ecologies and relate them to open science to provide
a basis for InnoScape model, which is introduced in
section 3. Section 4 presents the implementation and
validation of the model, followed by overview of
preliminary simulation results and their discussion
in section 5. We conclude in section 6 by summa-
rizing findings and pointing out potential avenues
of future research.

II. BACKGROUND

In biological and ecological research, an ecosys-
tem is defined in terms of interactions of species
with each other and their physical environment.
The idea of abstracting processes from biological
phenomena and applying them to other domains is

not new. Development and use of Genetic Algo-
rithms to mimic evolutionary processes in search
for optimal solutions and design exploration is
one such example. In regard to application of the
artificial ecosystem concept to open science, the
central question in mapping ecological novelty to
creative novelty involves identification of structural
analogies and behavioral processes common to both
systems.

A. Science as an Artificial Creative Ecosystem
Artificial ecosystem models involve interacting

agents (e.g., species) that compete to gain resources
from their environment to survive and grow, while
also cooperating to develop symbiosis and improve
their chance for survival. Among the application of
such methods to modeling problems include eco-
nomics [9], ecology [10], and social science [11].
Basic concepts and processes of artificial ecosys-
tems as they relate to science are as follows:
• Each scientific community has a phenotype

that defines its domain or discipline that is
comprised of norms, practices, and skills that
are deemed to be critical to collective creativity
within the field of study.

• Each community is comprised of individuals
that relate to members of species in ecological
models. Science accommodates multiple com-
munities that interact and co-evolve with each
other through processes of learning, transfor-
mation, and mobility.

• Individuals are distributed and (optionally) mi-
grate across communities and disciplines that
serve as cognitive niches to individuals seeking
environments conducive to creative problem
solving.

• Individuals within scientific communities have
the ability to change and modify their environ-
ment as a result of their development within,
and interaction with, the environment.

• Individuals and scientific communities are as-
sociated with a scalar health or fitness measure
indicating success in their environment.

• Scientific communities undergo stages of coa-
lescing, growth, stability, and renewal that may
affect its behavior.

• An explicit model of environment (e.g., funding
agencies) that influences decisions of individu-



als and communities by altering the availability
and distribution of resources.

• An explicit model of knowledge production
that converts human, financial, and knowledge
capital into resources (e.g., open problems
skills), which are then transformed into so-
lutions and products. This is similar to the
energy-metabolism dynamics in ecological sys-
tems where energy is converted into resources
utilized by the species in the environment to
perform actions.

B. Science as a Communication System

Communication is the essence of scholarship.
With the dynamics of globalization and increasing
role that it plays to shape the flow of knowledge,
expertise, and resources, there is further impetus to
study social communication within the context of
scientific knowledge ecosystems. Science is inher-
ently a social activity, because generic processes
of creation and leveraging of knowledge such as
knowledge sharing and combination are contextual
and relational. Communities construct knowledge as
they interact in a social context, which in turn influ-
ences future preferences and behavior of scientists.
These communities have been described as thought
collectives [12], communities of practice [13], and
knowledge value collectives.

C. Open Science Communities

Recently a number of virtual scientific collabo-
ratories emerged and continue to successfully bring
together scientists over the globe to not only share
and aggregate data, but also to create new knowl-
edge. Such virtual collaboratories include Open
Source Science (OSS) communities such as OBO
Foundry (Open Biomedical Ontologies) [3], which
is a form of GPS. Furthermore, compared with
traditional scientific teams, OSS is driven by a
distributed network of scientists with an open and
transparent decentralized decision-making style. Be-
sides OBO, the following are among successful
open science communities: NanoHUB (Simulation
Education Technology for Nano Technology) [4],
and NEES Grid (Network for Earthquake Engineer-
ing Cyberinfrastructure).

(a) 2D (b) Scale Free

Fig. 1. Snapshots of InnoScape Model

III. INNOSCAPE: MODELING BOUNDARY
PROCESSES

Globalization is theorized in [14] as a confluence
of multiple flows, called scapes: ethnoscape,
technoscape, financescape, mediascape, and
ideoscape. Inspired by this characterization,
InnoScape focuses on modeling flow of knowledge,
expertise, and skills among communities of
practice through boundary processes such
as communication, learning, and innovation.
InnoScape is conceptualized as a multi-community
ecosystem of knowledge producing and diffusing
communities.

A. Genotype

Three major components are used to specify
growth and development of scientific communities:
domain, maturity, and resources. Domain refers to
discipline, whereas maturity indicates the degree of
development in that specific domain. Resources hold
by a community are vital to undertake scientific
activities. In order to visually depict the evolving
states of communities, the HSB color model is used.
Hue indicates the domain of a community. Satura-
tion within the color spectrum represents maturity.
The degree of brightness corresponds to the level
resource.

Figure 1 depicts the snapshots of our model with
grid and network topology respectively, where each
cell represents a community whose color corre-
sponds to its internal state. As shown in the figure,
the state space of communities exhibits a color
landscape.



B. Process

As shown in Figure 2 the behavior of scientific
communities in InnoScape is comprised of six sub-
processes: resource allocation, interaction within
community, learning, innovation, growth, and fade.
Resource allocation refers to strategies to distribute
resources to communities. Interaction within com-
munity refers to scientific activities at the macro
level i.e. community is driven by funding to im-
prove its maturity. Learning and innovation between
communities mimic the boundary processes among
communities i.e. communities affect and are influ-
enced by peer communities. Growth is defined as
the process through which communities improve
their sizes so as to increase their influences. Fade
refers to disappearance of the community due to loss
of resources. These six sub-processes are discussed
in detail in the following sections.

Fig. 2. Process Model

1) Resource Allocation: Although it can be var-
ied, the strategy for resource allocation adopted in
the current model is uniform allocation, that is the
total resources are distributed among all communi-

ties equally. The total amount of resources available
for allocation is equal to sum of the contributions of
communities and external funding. Contributions by
communities are based on the assumption that pro-
duced knowledge can be transferred to technology
which in turn results in economic growth. Contribu-
tions provided by a community is moderated by the
product of its maturity and resource, based on the
hypothesis that communities with higher maturity
and resources are expected to be more productive
This is expressed as follows:

Rt =
#communities∑

i=1

(Fi,t + Si,t ×Bi,t) (1)

where, Rt indicates the total resource available at
time t. Fi,t denotes the external funding allocated
to community i at the time t. Si,t and Bi,t indicate
maturity and resources of community i respectively.

2) Sustaining the Community: Every time step
during the simulation, each community receives
resources via funding. However, not all available
resources can be used to improve maturity of com-
munity i.e. only part of the resource helps advance
maturity, because learning and innovation processes
also require resource. How much saturation the
community can gain by these resources is deter-
mined as follows:

St+1 = St + αt × (1− St)×Rs,t (2)

where, St+1 is the maturity of the community
at the time t + 1. Rs,t is the resources that could
be used to increase maturity, which is a proportion
of available remaining resources after maintenance
(e.g., equipment, infrastructure). αt adjusts increase
in saturation, which is an exponential decay function
over time, to reflect inertia and the increasing cost of
further maturation after dominant norms are settled.
As maturity increases, it is necessary to consume
resources because technology develops based on
research and development costs.

Bt+1 = Bt +Rt −Rm,t −Rs,t (3)

where, Bt+1 is the new resource level. Rm,t is the
resource needed to maintain the current state.



3) Learning: According to homophily theory
[15], influences that communities exert or receive
are based on their interaction frequency. Interaction
frequency between communities is depicted by the
weights associated with links between them in the
evolving communication graph. The intensity of
community j’s influence on community i is defined
as follows:

{
Wji,t = Wji,t−1 + CW Iji,t(1−Wji,t−1) Iji,t ≥ 0
Wji,t = Wji,t−1 + CW Iji,tWji,t−1 otherwise

(4)
where, Wji,t is at the current time. CW is between

0 and 1 and is inversely proportional to inertia
(resistance to change in a community). Iji,t is the
intensity of change in the influence.

Iji,t = (1−Dji,t)
4 − (1−Di,t)

4 (5)

where, Dji,t is the dissimilarity defined as the
distance between community i and community j in
terms of their current hue (e.g., discipline tendency)
at the time t. Di,t is the average distance between
community i and all its neighbors at the time t.
This function grows much faster when dissimilarity
between i and j becomes smaller in comparison
to average dissimilarity, resulting in more intense
influence Iji,t.

Formally, dissimilarity between communities i
and j is defined as follows.

Dji,t = Dissimilarity(Hi,t, Hj,t) (6)

where, Hi,t is the hue of community i at the time
tick t. Hj,t is the hue of community j at the time j.

Dissimilarity(x, y) =

{ |x−y|
180

|x− y| ≤ 180
360−|x−y|

180
otherwise

(7)
Normalization for the weights of neighbors is re-

quired, where β is the receptivity of the community.

W ′
ji,t = β × Wji,t∑#neighbors

k=1 Wki,t

(8)

Learning among communities affects both the sat-
uration and the discipline. Maturity of a domain in a
discipline is affected as scientists use cross lineage
to adopt and transfer knowledge from other do-
mains, resulting in knowledge spillover. The closer

two interacting domains in the discipline (i.e., hue)
spectrum, the larger the positive impact of spillover
on maturity. Alternatively, as the distance increases,
new knowledge may result in reconsideration of
earlier assumptions and result in reconstruction and
redirection. This is formalized as

Si,t+1 = Si,t +S×
#neighbors∑

j=0

Wji,t×Sj,t× cos(αji,t)

(9)
where, Si,t+1 refers to the saturation of commu-

nity i at the time t + 1. αji,t refers to the angle
between hues of community i and community j. S
is the susceptibility of the community i to influence,
which defined as an exponential decay function
of resources held by the community. Furthermore,
learning leads the current community to change its
hue i.e. discipline (specific norms, practices, and
relevant skills) due to the influences of neighbor
communities. At the same time, the community
itself is inclined to realize its own target goals within
the objective discipline:

Hcurrent
i,t+1 = Hcurrent

i,t + S ×Hc (10)

Hc =
#neighbors∑

j=1

(Wji,t(H
current
j,t −Hcurrent

i,t )) + C

(11)

C = Wi,t(H
target
i,t −Hcurrent

i,t ) (12)

where, Hcurrent
i,t+1 refers to the new hue after the

learning process and Hc is the change in hue mod-
erated by susceptibility to change, S. The parameter
C represents degree of conservativeness of the dis-
cipline, which pulls the community toward original
target hue set for the discipline.

4) Innovation: Innovation changes the norms of
the community i.e. target hue in the InnoScape
model because changing of target hue is a strat-
egy for a community to adapt to its environment.
Moving target hue of a community toward its cur-
rent hue can decrease resource consumption during
the learning process, which in turn improve its
sustainability. When the distance between current
and target hue of a discipline exceeds the tolerance



threshold, Tinnovation, conditions for innovation is
established.

Dii,t ≥ TInnovation (13)

In the InnoScape model, a community innovates
in two ways: reorganization or specialization. By
reorganization a community transforms itself by
moving its accepted target toward the current state.
On the other hand, specialization involves branching
out new subcommunities. In the InnoScape model,
whether reorganization or specialization happens is
determined by a parameter, called reorganization
tendency.

5) Fade: After the innovation process, if the
resource of a community cannot maintain its current
state, then Rs,t is decreased, and the processes of
interaction, learning and innovation are started over.
The iteration process continues until the resources
left can maintain the current state or Rs,t is equal
to 0. When Rs,t is equal to 0, the community fades
and is removed from the current context.

6) Grow: If the community has enough resources
to maintain and the neighbor cell is empty, then the
community is likely to extend to occupy the neigh-
bor cells with a small probability. This captures evo-
lutionary dynamics by retaining those communities
that are fit to survive in the current environment.

IV. METRICS AND INDICATORS FOR
MEASURING INNOVATION POTENTIAL

Since we are interested in observing potential
relations between the structure of the social network
and innovation capacity of a community, two types
of metrics are considered: innovation metrics and
network structure metrics that pertain to integrated
differentiation that is related to innovation potential
[16].

The process of knowledge creation is based on
combination and elaboration of existing knowledge.
Diverse sources of knowledge challenge existing
solutions, ignite new ideas and lead to novel so-
lutions [17]. So, diversity is a proxy indicator for
innovation potential and capacity. There are three
dimensions related to diversity: variety, balance,
and disparity [18]. Variety can be computed as
the number of clusters of communities within the
environment. Each cluster is comprised of similar

communities and derived using the QT clustering
algorithm [19]. Balance is defined as the equality in
terms of resources each community holds, which is
calculated using the Gini coefficient [20]. Disparity
refers to the degree of difference of each com-
munity, which is formalized using the dissimilarity
metric discussed earlier.

Innovation is the process of finding alternative,
more effective ways to address challenges and seize
opportunities. On the other hand, resilience is the
capacity to adapt, restore in constructive ways while
undergoing changes so as to still retain essentially
the same function. Innovation is change, but re-
silience is survival. Due to presence of uncertainty
in the evolution of the innovation landscape, re-
silience is an essential property for a scientific com-
munity to sustain its innovation capacity. Resilience
is the capacity of a system to absorb disturbance
and reorganize while undergoing change so as to
still retain its identity and feedbacks [7]. Based on
this definition, we define resilience as the extent
of disturbance of the system that reduces the ratio
of active communities to initial set of communities
below a specific threshold.

Structural properties of networks as they relate to
creative output pertain to integrated differentiation
[16]. As a general measure of the degree of social
interaction, we use density, centrality, clustering
coefficient so as to determine their potential role
in and relation to innovativeness.

V. IMPLEMENTATION AND FACE
VALIDITY

Figure 3 presents evolving states of communities
over time during a single run of the InnoScape
model. Initially, the colors of communities are grey
due to their low maturity. As the simulation unfolds,
states of communities become increasingly color-
ful due to increasing maturity through community
sustainment, interaction, learning, and innovation
processes. After a long run, clusters with similar
color patterns emerge, which suggest formation of
related disciplines as a result of communication and
boundary processes.

Table I is the comparison of network metrics
generated by InnoScape model and the correspond-
ing metrics from empirical OBO data (expected
values in the table). Since the confidence intervals



Fig. 3. Growth and Formation of Community Clusters

of metrics derived from the simulation data con-
tain the corresponding values of OBO network. we
can conclude that InnoScape model can generate
similar network structures compared to OBO. In
addition, the best configuration parameters against
the network of OBO has a medium level tolerance
(0.6), high receptivity (0.9), and high degree of
communication frequency (1.0). These are peculiar
characteristics of open source science communities.

TABLE I
SIMULATION VS. OBO DATA

Metrics Mean
Value

Standard
Devia-
tion

Confidence In-
terval at 90%

OBO

Number
of
Com-
muni-
ties

55.633 25.594 [46.076,
65.190]

49

Density 0.605 0.225 [0.521, 0.689] 0.549
Clustering
Coeffi-
cient

0.846 0.092 [0.812, 0.881] 0.880

Centrality 0.355 0.140 [0.302, 0.407] 0.405

Figure 4(a) depicts the inequality of communities
in terms of resources. Most communities hold the
relatively few resources, while a small part of com-
munities hold the relatively many resources. This
observation is indicative of the presence of power
law. The power law exists in many social systems,
for instance, the number of papers published by
authors, the citation index of papers etc [21]. Figure
4(b) shows the relationship between the log value of
number of communities and their resources, as well
as the corresponding linear regression curve. Since
the R2 for this fitting is 0.86, the InnoScape model
suggests the presence of power law in resource
distribution.

(a)

(b)

Fig. 4. Resource Distribution

VI. PRELIMINARY EXPERIMENTS AND
EVALUATION

A. Configuration Parameters

Table II denotes the configuration parameters and
their initial values. We conducted a series of sen-
sitivity analysis experiments to gain insight about
diversity and resilience.

B. Topologies of Interaction Context

The experiments in this section test five types of
interaction topologies and their effects on diversity
and resilience:

1) One-dimensional grid: each community has
two neighbors, one on the left and one on the
right.

2) Two-dimensional grid: each community has
eight neighbors around it. Figure 1(a) presents
a snapshot of the 2D grid environment.

3) Random network: the edges between any pair
of nodes are created with equal probability.

4) Random group network: the nodes within a
group have higher probability to build links
than those between different groups.

5) Scale-free network: the nodes with more links
are more likely to be selected to build links.



TABLE II
CONFIGURATION PARAMETERS AND THEIR INITIAL VALUES

Parameter Description Range Initial Value
Carrying
Capacity

Initial number
of communities

[10, 200] 100

Stop Time Time to run [1,∞) 1000
Fi,t in Eq. 1 External fund-

ing
[0.1, 1] 0.5

TInnovation in
Eq. 13

Tolerance [0, 1] 0.2

Reorganization
Tendency

Reorganization
happening
frequence

[0, 1] 0.5

Neighbor Size Influential
radius of
community

[1,∞] 1

Wji,t in Eq. 4 Initial weight
of neighbor

[0, 1] Random

CW in Eq. 4 Resistance to
change

[0, 1] 0.5

β in Eq. 8 Receptivity [0, 1] 0.5
Current Color State of com-

munity
HSB range Random

Target Color Target of com-
munity

HSB range Random

Figure 1(b) illustrates a snapshot of scale-free
network.

C. Diversity vs. Carrying Capacity

In this experiment, we explore variation of di-
versity in relation to initial community numbers
within a specific topology. Figure 5 evaluates variety
and disparity across combination of two factors,
number of communities and 1D/2D topology, and
their varying levels.

In Figure 5, we observe that variety and disparity
increase with the initial community size. In the
2D topology, disparity increases as the size of
the community increases up to a critical threshold,
after which further increase in community size does
not result in further dissimilarity. Computation of
variety is based on clustering algorithm which in
turn is based on the pre-selected diameter that is
defined as the maximum difference of members
within a cluster. In this experiment, the diameter
is set to 10, which means the differences of hue
of communities within a cluster can be up to 10.
Therefore, the maximum variety is 360/10= 36 i.e.
diversity cannot increase infinitely along with initial
community number. Furthermore, based on Figure

(a)

(b)

Fig. 5. Diversity vs. Initial Community Numbers

5(b), the comparison between 1D and 2D suggests
that 2D topology is not only more effective in
fostering variety with a lower degree of uncertainty
in comparison to 1D topology, which has a more
restricted sphere of communication. This limitation
inhibits propagation of influence and hence takes
more time to reach equilibrium.

Fig. 6. Variety vs. Neighbor Size in 1D

To test the impact of neighbor size in the 1D
topology, we gradually increased the interaction
window from 2 to 8 neighbors. Observations de-
picted in Figure 6 suggest that interaction window
positively affects variety and underlying uncertainty



(i.e., dispersion) up to a level, beyond which variety
stops improving and uncertainty starts increasing.

D. Diversity vs. External Resource
Figure 7 depicts the trend of diversity with re-

spect to size of external resource injected into the
environment.

Fig. 7. Diversity vs. Resource Allocated Per Time

The abscissa indicates the amount of resources
allocated to each community per time tick. In the
1D topology, the rate of increase in variety slows
and stabilizes over time. On the other hand, 2D
topology seems to be less sensitive to external
resource, which suggests higher degree of potential
for resilience than 1D.

E. Diversity vs. Receptivity
In this experiment, we considered multiple in-

teraction contexts based on the selected network
topologies. Figure 8 shows the change in diver-
sity with respect to varying levels of receptivity
and connectedness. Receptivity of a community is
defined as the ratio of neighbor influence to iner-
tia. Connectedness is defined as the probability of
building links between nodes. Figure 8 indicates that
there is a critical receptivity threshold, after which
the behavior of low and high density communities
diverge. Under environments with high receptivity,
variety favors low connectivity. However, communi-
ties with various levels of connectivity examined in
this experiment converge to the same stable level
of variety. Similar patterns are observed in both
random and random group networks.

F. Resilience of Different Network Topologies
Resilience is defined as the extent of disturbance

of the system that significantly reduces the ratio
of active communities to number of communities

observed when external resource is set to maximum.
To calculate resilience, the number of communities
under maximum resource availability is set as the
base reference level for each topology. As resources
are incrementally reduced, the ratio (ρ) of number
of communities to the reference is computed. The
loss ratio is defined as 1− ρ and ranked to identify
resilient topologies. According to Table III, scale-
free network has the highest resilience, and random
group network has higher resilience than random
network, because the loss ratio of scale free network
is smallest and the loss ratio of random network
is largest when external resources decrease to 0.7.
Based on Figure 9, it is clear that random group
network has higher resilience than random network
.

Fig. 8. Variety in Random and Random Group Network

G. Relationship between Diversity and Network
Metrics

To examine the relationship between variety and
density, we plotted in Figure 10 average variety
values for each level of density in both rando and
random group networks. The data suggests that va-
riety improves with increasing density up to a point,
which can be considered as a low connectivity.
As the density increase beyond 0.2, we observe a
general trend toward non-monotonic reduction in
degree of variety.



Fig. 9. Comparison of Random and Random Group Network on
Resilience

Fig. 10. Variety vs. Density in Random and Random Group Network

As shown in Figure 11, a similar pattern is
observed in regard to average degree centrality and
variety. Both observation support our expectation
that increasing degree of connectivity beyond a
critical threshold results in more homogeneity due
to loss of differentiation.

VII. CONCLUSION

In this study, we conceptualized growth and de-
velopment of scientific communities in terms of
a complex adaptive communication system that
follow principles of creative artificial ecosystems.
Based on the preliminary experiments, some of
which are not presented in this paper, we draw the
following conclusion. The size of carrying capacity

Fig. 11. Variety vs. Centrality in Random and Random Group
Network

of the knowledge ecosystem has positive effects on
diversity. Yet, there is a point of diminishing returns.
Also, diversity does not monotonically increase with
increasing levels of external resource. Additionally,
our observations suggest that the 2D topology is
more resilient than 1D topology, and scale-free net-
works have higher resilience than random and ran-
dom group networks. Furthermore, In low density
networks, increasing levels of receptivity improves
diversity up to a level. Similarly, variety increases
with density and centrality up to a point, beyond
which diversity is inhibited.
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TABLE III
RESILIENCE OF DIFFERENT NETWORK TOPOLOGIES

Random Random Group Scale Free
Resources Number of

Communities
Loss Ratio Number of

Communities
Loss Ratio Number of

Communities
Loss Ratio

1 43.77 0 35.57 0 71.43 0
0.9 42.3 0.03 34.27 0.04 66.47 0.07
0.8 37.43 0.14 30.63 0.14 60.7 0.15
0.7 25.33 0.42 22.83 0.36 52.2 0.27


