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Abstract—The growth of smartphone capability has led to
an explosion of new applications. Many of the most useful
apps use context-sensitive data, such as GPS location or social
network information. In these cases, users may not be willing
to release personal information to untrusted parties. Currently,
the solutions to performing computation on encrypted inputs
use garbled circuits combined with a variety of optimizations.
However, the capability of resource-constrained smartphones
for evaluating garbled circuits in any variation is uncertain in
practice. In [1], it is shown that certain garbled circuit eval-
uations can be optimized by using homomorphic encryption.
In this paper, we take this concept to its logical extreme with
Efficient Mobile Oblivious Computation (EMOC), a technique
that completely replaces garbled circuits with homomorphic
operations on ciphertexts. We develop applications to securely
solve the millionaire’s problem, send tweets based on location,
and compute common friends in a social network, then prove
equivalent privacy guarantees to analogous constructions using
garbled circuits. We then demonstrate up to 68% runtime
reduction from the most efficient garbled circuit implemen-
tation. In so doing, we demonstrate a practical technique
for developing privacy-preserving applications on the mobile
platform.

I. INTRODUCTION

The confluence of high-speed connectivity and device
capability have led to the recent surge in mobile application
development. While software common to desktop computing
(e.g., word processing, email) exists in this space, the
most popular mobile applications often provide services
based on a user’s current context (e.g., location [2], social
interconnections [3], etc.). Such applications allow users to
make more informed decisions based on their surroundings.
However, these applications also regularly expose sensitive
data to potentially untrusted parties.

Cryptographers have long worked to develop mechanisms
that allow two parties to compute shared results without ex-
posing either individual’s sensitive inputs or requiring assis-
tance from a trusted third-party. Such techniques are referred
to as Secure Function Evaluation (SFE), and provide a set
of powerful primitives for privacy-preserving computation.
While theoretical constructions have been known for nearly
30 years [4], efficient realizations of such schemes have
only become possible within the last few years [5], [6], [1],

[7], [8]. These tools are beginning to produce increasingly
efficient privacy-preserving applications for desktop and
server-class machines. However, their application to mobile
devices, where the use of context sensitive information
is the norm and not the exception, has just begun to be
assessed [9]. While efforts to improve the performance of
SFE have largely focused on optimizing garbled circuit
constructions, another option exists. As demonstrated by
Henecka, homomorphic encryption can be used to replace
selected garbled circuit functions [1]. However, this idea has
yet to be taken to its logical extreme – the construction of
privacy-preserving applications exclusively constructed with
partially homomorphic cryptosystems.

In this paper, we test this hypothesis and develop more
efficient alternatives to garbled circuits that are capable of
running on mobile platforms. Instead of relying on expensive
garbled circuit techniques, our Efficient Mobile Oblivious
Computation (EMOC) techniques restate such applications
as a series of simple arithmetic operations. Using partially
homomorphic cryptosystems allows us to perform operations
on pairs of ciphertexts that, when decrypted, represent the
same operations on their corresponding plaintext values.
We design and implement two privacy-preserving examples
of popular application classes: location-based Twitter feeds
and a social networking tool to identify nearby “friends
of friends”. In addition to providing equivalent guarantees
of data privacy to garbled circuit-based techniques, we
demonstrate that our applications can produce the same
results at computational and memory costs reduced by orders
of magnitude in some cases.

In so doing, we make the following contributions:
• Provide a new approach to efficient privacy-

preserving computation: Rather than attempting to
further optimize the garbled circuit construction, we
follow the concept of replacing some garbled circuits
with homomorphic encryption to its logical extreme,
designing the first privacy-preserving mobile applica-
tions to employ purely homomorphic encryption.

• Design privacy-preserving mobile applications re-
placing garbled-circuit constructions with ho-
momorphic cryptographic primitives: We design



privacy-preserving versions of programs representative
of two of the most popular mobile application classes:
location-based messaging and social networking. For
clarity and completeness, we also define a third applica-
tion based on the canonical example of secure two-party
computing - the Millionaire’s Problem. We prove that
our applications provide equivalent security guarantees
to their SFE-based counterparts.

• Characterize EMOC and traditional SFE mobile
performance profiles: We conduct an extensive per-
formance analysis of both our approach and tradi-
tional SFE techniques on the Android mobile platform.
We demonstrate that EMOC offers performance im-
provements upwards of 68% over the most optimized
previous techniques. Moreover, we compare two top
performing garbled circuit optimizations using Ordered
Binary Decision Diagram (OBDD) [6] and pipelined
circuits [7] on the mobile platform.

While our technique is not yet generalized for computing
arbitrary functions, our performance evaluations demonstrate
that the performance gains achievable through partially
homomorphic cryptography constructions merit special con-
structions for certain functions. In the past, optimization
of secure computation for specialized applications has led
to significant progress within this field of research [10].
Although garbled circuits have the capability of computing
arbitrary functions, the specific functions we examine are
especially pertinent to the mobile platform and require
maximum efficiency to be of practical value to the user.

The remainder of this paper is organized as follows: Sec-
tion II discusses previous research in mobile privacy, two-
party computation, and private search; Section III describes
basic cryptographic concepts necessary to our protocols as
well as the security assumptions used in proving the security
of our applications; Section IV describes our protocols for
each of the three example applications; Section V lays out
the technical proofs of the security of each application;
Section VI describes our performance evaluation procedures
and discusses the results; Section VII offers concluding
remarks.

II. RELATED WORK

The majority of the research on mobile privacy focuses
on data queries to a server. The earliest technique developed
for this purpose was the concept of k-anonymity [11], which
reveals a user’s private information to a server only if that
information is indistinguishable from k � 1 other users,
preventing the server from identifying a connection between
a specific user and their private information. This concept
has been used in numerous mobile protocols since its de-
velopment [12], [13], [14]. Other protocols expand upon k-
anonymity by implementing an added parameter, l-diversity.
This expansion seeks to make tracking distinct users in a
k-anonymous system more difficult by preventing a server

from tracing any user through more than l locations [15].
Other systems have attempted to obscure location through
the use of dummy information and camouflage [16], [17],
[18], [19]. Puttaswamy and Zhao instead proposed that appli-
cation servers be treated as encrypted repositories, with users
downloading their private information to the device before
the application performs any computation [20]. Narayanan et
al. developed a scheme for proximity testing by examining
the characteristics of the surrounding area (e.g., wireless
access points, packets crossing wireless networks, active
bluetooth devices), and comparing these characteristics with
those collected by another user [21]. This technique does
not allow for proximity testing beyond the range of a
single wireless access point, and also assumes that the two
computing parties will have some level of friendship or trust
that is previously established. The defining characteristic of
all these systems is that they provide privacy for a client
accessing an application server. However, some applications
require that two users who do not trust one another be able to
compute results based on their private information. None of
these tools are appropriate for performing such computation
between two peer users.

With the development of the Secure Function Evaluation
(SFE) protocol, Yao demonstrated the possibility of two
peer users computing a function without exposing their
private inputs [4]. For years following, implementations
of the protocol were too computationally intensive for
practical use. In 2004, Malkhi et al. produced the first
practical implementation of SFE in the program Fairplay [5].
Fairplay provided a language and compiler for building
the “garbled circuits” that are used to compute functions
securely (i.e., without revealing either party’s inputs to the
other). Fairplay offers the same privacy guarantees as the
trusted third party model without requiring an actual third
party. Building upon the Fairplay compiler, Kruger et al.
developed a technique for replacing garbled circuits with
ordered boolean diagrams [6] to improve Fairplay’s speed
for certain functions. Most recently, Huang et al. developed a
technique for pipelining circuit construction and evaluation,
allowing for circuits to scale to any size without filling up
the memory of the constructing machine [7]. These efforts
have produced a practical means for performing secure
computation in a desktop environment. However, garbled
circuit evaluation still requires significant processor and
memory overhead when producing and evaluating circuits,
and exchanging encrypted inputs. Even with the improved
performance of Kruger’s OBDD and Huang’s pipelining
approach, and considering Kerschbaum’s assertion that com-
munication overhead is of little importance in secure com-
putation [22], garbled circuits are likely to be too expensive
for the hardware constraints of mobile devices. Huang et
al. began exploring this question in a work examining the
performance of pipelined circuits on mobile phones [9]. We
thoroughly evaluate this assertion directly as part of this
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work.
One possible solution to this problem lies in the relatively

young area of homomorphic encryption. Several protocols
for private information retrieval [23] and private stream
search [24], [25] leverage this property of certain encryption
schemes to search and compare encrypted data in a man-
ner that prevents the machine performing the search from
learning anything about the data. The technique has already
been shown to be useful in applications such as voting [26]
and distributed location privacy [27], and Gentry’s devel-
opment of the fully homomorphic encryption scheme [28],
although still highly impractical, demonstrates the potential
of outsourced computation with privacy guarantees. The
benefit of the currently available partially homomorphic
encryption schemes is that they are efficient, even on mobile
devices [29]. More recently, Henecka et al. showed that
homomorphic encryption can be used to speed up Fairplay
garbled circuits for a specific set of functions [1]. This work
in particular begs the question, if using homomorphic cryp-
tography can optimize the performance of garbled circuits,
could it be used to completely replace garbled circuits? To
demonstrate the feasibility of this notion, and to optimize
secure computation to the point where it is usable on
mobile devices, our paper presents three sample applications
that restate secure computation functions as private search
operations over homomorphically encrypted data. This re-
statement of secure function evaluation as private search
removes many of the computational inefficiencies of SFE
while providing equivalent privacy guarantees.

III. CRYPTOGRAPHIC ASSUMPTIONS

Before we define and prove the security of our appli-
cations, we specify the requirements for the encryption
schemes used. We also state basic assumptions that are
necessary for the security of our protocols to hold.

A. Homomorphic Cryptography
The main tool our protocols use in guaranteeing the

privacy of all inputs is the homomorphic property of certain
cryptosystems. For a cryptosystem to be homomorphic,
there must be some operation that, when performed on two
ciphertexts, causes some predictable change to the underly-
ing plaintexts. Specifically, for a homomorphic encryption
scheme Ek(), given two plaintext messages X,Y 2 M ;
ciphertexts C,D : Ek(X) = C,Ek(Y ) = D; and operations
· and ⇧,

C ·D = Ek(X ⇧ Y ) (1)

The protocols described in this paper capitalize on one
particular type of homomorphic property: multiplicative ho-
momorphisms. In a multiplicative homomorphic scheme, the
product of two ciphertexts is equal to an encryption of the
product of two plaintexts:

C ⇥D = Ek(X ⇥ Y ) (2)

B. Public Key Encryption

The second requirement for cryptosystems used in our
protocols is that they be public key encryption schemes.
All of these protocols require that one of the participants
in a two-party computation must perform homomorphic
operations over encrypted data. This user must be able to
encrypt his own inputs, but be unable to decrypt the result
of the homomorphic operations. This operation is clearly
only feasible in a public key cryptosystem, where the user
performing homomorphic operations does not possess the
decryption key.

C. Encryption Scheme Security

Any encryption scheme used in our applications must
be provably indistinguishable under an adaptive chosen-
plaintext attack (IND-CPA). That is, any non-uniform, prob-
abilistic polynomial-time adversary A can be given access
to an encryption oracle. This encryption oracle, given two
message inputs, always encrypts either the left input or the
right input, depending on the random bit b chosen at the
start of the experiment. The goal of the adversary is to
distinguish whether the oracle is encrypting the left input or
the right input. Given a security parameter n, the adversary’s
advantage is 1:

Adv(A) = Prpk[ExpEnc1k(·,·)(A) = 1]

� Prpk[ExpEnc0k(·,·)(A) = 1]  negl(n) (3)

Our protocols require that only a limited number of
known values be encrypted and revealed to another party.
The cryptosystem used must guarantee that encryptions of
these known plaintext values are indistinguishable. In the
most extreme example, one protocol generates an array
of encrypted values, each being either a ‘1’ or ‘2’. Each
entry in the array can be thought of as a query to the
IND-CPA oracle in the experiment described above. For
some polynomial number of queries, any adversary has the
following advantage:

Adv(A) = Prpk[ExpEnc1k(1,2)(A) = 1]

� Prpk[ExpEnc0k(1,2)(A) = 1]  negl(n) (4)

which implies that no adversary can determine the under-
lying value with probability better than a random guess.
Intuitively, the IND-CPA definition of security implies that
the cryptosystem must be probabilistic, generating many dif-
ferent ciphertexts that all decrypt to the same plaintext. Thus,
an encrypted array containing only two distinct plaintext
values will have a multitude of ciphertext values, effectively
obscuring the difference between each entry.

1For a more thorough treatment on IND-CPA security, see [30].
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Figure 1. The Millionaire’s Problem Protocol: Bob has $3M, so he multiplies E(1) with the third entry.

D. Threat Model

In developing the protocols used in our applications, we
make two assumptions to provide results in a fair and secure
manner. The first is that finding a trusted third party is
difficult or impossible. As an example, while a number of
websites currently offer to provide the location of friends
within a certain physical radius, they can not be trusted to
not process, store or sell such data.

The second assumption is that all privacy guarantees in
Section V hold against a semi-honest adversary. As defined
in Lindell and Pinkas’ work [31], this means that an adver-
sary will follow the protocol as written, using valid inputs,
but will attempt to learn as much as possible outside the
jointly computed results by studying logs of all communi-
cations. Since this protocol is meant to guarantee the privacy
of inputs, we can do nothing if the user chooses false inputs
designed to corrupt the protocol. Secure Function Evaluation
also makes this same assumption, proving security based on
semi-honest adversaries [5], [6], [1], [7], [31]. Not only is
our model equivalent to the current security model for two-
party computation, we assert that this model is realistic and
useful for certain context-sensitive mobile applications in
the market. Our protocols developed under this threat model
will also provide a foundation for seeking protocols that can
guarantee privacy against other adversarial models.

IV. EMOC APPLICATION PROTOCOLS

In this section, we describe in detail the protocols for
our three sample applications. We first present the EMOC
version of the millionaire’s problem - the canonical two-
party secure computation example and a simple initial case.
We then present the EMOC version of a Location-Based
Twitter application, which allows Alice to subscribe to
Bob’s tweets without either party revealing their location.
Finally, we present the EMOC version of our Social Graph
connectivity tool, which allows Alice and Bob to determine
where their social networks overlap without exposing the
identities of all of their friends - an application with potential
use when meeting new (potentially untrusted) people.

A. The Millionaire’s Problem
The millionaire’s problem represents the canonical ex-

ample of two-party computation. Although solving this
problem has limited practical applications, it can be used
to demonstrate general needs of all two-party computation
applications. It is for this reason that we developed our
applications starting with this problem.

1) Definition of the Millionaire’s Problem: Assume two
millionaires, Alice and Bob, who wish to compute which
millionaire has more wealth without either party revealing
the exact size of his or her fortune. Both Alice and Bob input
a value from 1-N representing the size of their fortune (in
millions of dollars), and receive a Boolean value indicating
whether or not Bob is richer than Alice.

2) Description of the protocol: Before the protocol is
initiated, both parties must define the following elements:

• A multiplicative homomorphic encryption scheme
Epk(·). In all figures, this will be denoted as E(·).

• An integer value N which represents some number of
millions that is greater than the wealth of either party.

When Alice wishes to initiate the millionaire’s problem
protocol, she begins by generating an encrypted query
(Figure 1). First, Alice generates a public and private key
pairing in the predefined homomorphic encryption scheme.
Alice then creates an array of size N and stores a ‘2’ in
every entry with an index less than or equal to the number
of millions she possesses. For example, if N = 5 and Alice
has 2 million dollars, then she would store a ‘2’ in the first
and second entries. She then fills the rest of the entries with
the value ‘1’. Once this is complete, Alice encrypts each
entry in her query using her public key. She then sends her
encrypted query array QA and her public key pkA to Bob.

Upon receiving QA and pkA, Bob first selects the entry in
Alice’s array QA that corresponds to the number of millions
he possesses. For example, if Alice sends an array N = 5
and Bob has 3 million dollars, he selects the third entry
(Figure 1).

At this stage, Bob cannot simply select an encrypted value
and return it to Alice, as she would be able to correlate
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Alice (red pin) selects the area she is willing to receive messages 
within.  Bob's location (blue pin) is within this area.

Bob selects the entries from Alice's matrix that correspond 
to his region and multiplies by E(1).

Alice decrypts Bob's
products and finds a 

plaintext 2 x 1 = 2

Figure 2. The Location-Based Messaging Protocol. Alice builds a location matrix with encryptions of ‘1’ in every entry except those that correspond
to the area she is willing to receive tweets within. In her travel area, she enters encryptions of ‘2’. Bob selects the entries that corresponds to his region,
multiplies by an encryption of ‘1’, and returns the product to Alice. When Alice decrypts, she knows that: if any value is a ‘2’, Bob’s tweet is relevant to
her. If every value is a ‘1’, Bob’s message is not relevant to her current location.

the unique ciphertext with the location it came from in
her query array. Therefore, Bob encrypts the number ‘1’
under Alice’s public key and multiplies the encrypted entry
he selected with this encrypted value, re-randomizing the
ciphertext and yielding the result R. Bob completes this
phase of computation by sending R back to Alice.

Upon receiving the encrypted value from Bob, Alice
decrypts R using her private key, which yields the plaintext
value ‘1’ or ‘2’, depending on which value Bob selected
from Alice’s query. To complete the communication, Alice
sends this decrypted result to Bob so that he can learn the
output of computation. If the final output is a ‘1’, the index
he selected in Alice’s query is greater than the number
of millions Alice possesses. Therefore, Bob’s number of
millions is higher than Alice’s, and he is the wealthier of
the two. If the outcome is a ‘2’, Bob’s number of millions
is less than or equal to Alice’s.

B. Location-Based Messaging
Location-based messaging, especially for advertisements,

has recently received significant attention. Beyond advertis-
ing based on location, it offers the potential for useful ap-
plications such as a proximity test to alert two people when
they are close enough to arrange a meeting. It could also
be combined with applications including Twitter to allow
for location-based tweet filtering and following. However,
all of these applications must query the physical location of
mobile users, which could compromise the user’s privacy.
To resolve this information leakage, we present a technique
that will obscure the user’s precise location, only allowing
the querying party to know if the user is in a general region.

1) Problem Definition: Assume two Twitter users, a fol-
lower Alice and a tweeter Bob. Since Bob generally tweets
about events in his general vicinity, Alice wishes to receive
tweets from Bob only when she is nearby. Alice selects as
her input an area around her current location where, if Bob
tweets close to this area, she wants to receive the tweet. Bob

inputs an area around his current location where his tweets
would be relevant. The goal is to compute whether the area
where Alice wishes to receive Bob’s tweets intersects with
the area where Bob’s tweets are relevant.

2) Description of the Protocol: Before the protocol is
initiated, both parties must define the following elements:

• A multiplicative homomorphic encryption scheme
Epk(·). In all figures, this will be denoted as E(·).

• A matrix of size M ⇥N where each cell corresponds
to a physical region within the city where Alice and
Bob are located. Imagine the matrix as a grid laid over
a city map. Each cell has a publicly known correlation
to the city location beneath it.

This problem expands upon the protocol for solving
the millionaires problem. Before receiving any of Bob’s
location-based tweets, Alice selects an area of her city of
any shape or size that defines the area where she wants to
receive tweets (Figure 2). She then generates an M ⇥ N
location matrix LA. For each cell, Alice inputs a ‘2’ if that
cell corresponds to the area where she wishes to receive
tweets, and ‘1’ if it does not. She then encrypts each cell
in the matrix with her public key pkA. When Alice checks
Bob’s Twitter feed, she initiates the protocol by sending LA

to Bob.
When Bob receives Alice’s location matrix LA, Bob then

selects the cells in LA that correspond to the region where
his tweet is relevant, and for each of the n cells, he re-
randomizes the entry by multiplying in an encryption of the
value ‘1’, as in the Millionaire’s problem. Bob then returns
an array of the n results R to Alice. Upon receiving R,
Alice decrypts the values using her private key to find n
values, either ‘1’ or ‘2’. She then sends this decrypted array
of values back to Bob to complete the computation.

If any of the values returned is a ‘2’, the area where
Bob’s tweet is relevant intersected with the area where Alice
wished to receive tweets, and Bob can respond by delivering
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his latest tweet. If all the values returned are ‘1’, the area
where Bob’s tweet is relevant does not intersect with the area
Alice wishes to receive tweets, and Bob need not respond. In
this manner, Alice never gets to see Bob’s precise location
and vice versa.

It is relevant to note that this protocol, while used for
a specific application here, can be expanded into a general
proximity test. If Alice and Bob choose their input regions
as the area they are willing to search for the other party,
they can test to see if the two are within this desired range.
The ability to specify an input region of any shape or size
allows the proximity test to provide a result at any desired
granularity, from the same building to the same city.

C. Social Graph Privacy
Social networking applications are a popular channel for

communicating with a mobile device. However, they are
also a potential channel to leak private information about a
mobile user’s social life. If two mobile users were to meet at
a party or conference, one might only want to allow the other
into her social network based on the friends they already
have in common. However, there is currently no application
which allows this without revealing both users’ entire social
graphs. This application offers a means for securely reveal-
ing only the friends common to both users while maintaining
the privacy of the rest of both social graphs. Differing from
the previous two problems, which simply find whether or
not a set intersection exists, the Social Graph application
finds an intersection of two sets and returns all the elements
within that intersection. This is useful when a user’s privacy
must be maintained for information unique to that user. As
an example, when determining whether or not to add a friend
on a social network, the requester (or recipient) often looks
to see what friends he has in common with the other party.
Rather than exposing the other party’s entire social graph
to determine common friends, our application only reveals
common connections, keeping the remainder of the other
party’s social graph private.

1) Definition of the Social Graph Problem: Assume two
participants, Alice and Bob, who are both members of a
social network. Each participant assigns a subset of the
social network members as their friends. Given both Alice
and Bob’s lists of friends, we wish to compute which
members of the social network are friends with both Alice
and Bob while keeping the rest of their friend lists private.

2) Description of the protocol: Before the protocol can
be initiated, the following elements must be defined:

• A multiplicative homomorphic encryption scheme
Epk(·) which allows for modular multiplication over
some cyclic group G. In all figures, this will be denoted
as E(·).

• A secure keyed hash algorithm.
• A security parameter t.
• A predetermined number of friends N to be compared.

E(H("Charlie"))

E(H("Dale"))

E(H("Erika"))

E(H("Francis"))

E(H-1("Betty"))

E(H-1("Charlie"))

E(H-1("Garrett"))

E(H-1("Erika"))

Alice encrypts the hashes of her friends, 
while Bob encrypts the inverse of the 

hashes of his friends.

Figure 3. Social Graph query: Alice and Bob build encrypted arrays of
their friends by hashing their names using a keyed hash. No ordering need
be considered in this setup.

When Alice wishes to initiate the Social Graph protocol,
she begins by generating a query array QA of size N . She
does this by generating a hash key KH and hashing each of
her friends’ names. She then stores these hashes in random
order in QA. Alice then generates a public key pair, encrypts
each entry with her public key pkA and then sends QA, KH ,
and pkA to Bob.

Upon receiving QA, Bob hashes each member of his
friend list using KH . Then, he finds the multiplicative
inverse of each hash within the group G which is the group
of elements over which Alice’s public key can encrypt. As
we will later observe, if one of Bob’s hashes matches one
of Alice’s, the product of her hash and his inverted 2 hash
will be ‘1’. At this point, Bob encrypts each of his inverted
hashes with Alice’s public key pkA. He then generates two
arrays of length N2. For the first array, he homomorphically
multiplies each of his encrypted and inverted hash values
by all of Alice’s encrypted hash values, performing N2

comparisons. In the second list, he generates N2 random
elements of the group G, which he also encrypts with
Alice’s public key. He then homomorphically multiplies the
elements in this array of blinding factors B with the elements
in his array of compared values, generating the result of
homomorphic computation R (Figure 4). Finally, Bob sends
R back to Alice.

When Alice receives R, she decrypts each element using
her private key, which yields an array of N2 random values
from the group G due to Bob’s blinding factors. She then
sends back only the t least significant bits of each decrypted
value to Bob.

Bob receives the decrypted values from Alice and for each
entry in her results, he compares the bits returned with the
least significant t bits of the blinding factor he multiplied
into that entry. If the results match, it means that entry
contained a ‘1’, implying that a friend matched. To calculate

2This does not mean Bob inverts the hash to recover the preimage; rather,
the mathematical inverse of the hash value mod p.
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which friend matched, Bob simply uses integer division on
the index, where i÷N is the original index of the matching
friend. Thus, Bob can identify which members’ of the social
network he shares with Alice. Bob then sends the list of
names in the intersection back to Alice to complete the
computation.

3) Correctness Argument: We quantify here the proba-
bility that Bob will have a false positive when matching
the last t bits of the blinding factor with Alice’s returned
result. Since the hash function is assumed to be pseu-
dorandom, multiplying a pseudorandom number x by the
multiplicative inverse of a pseudorandom number y�1 yields
a pseudorandom number z. After this value is multiplied
by a random blinding factor b and truncated to the least
significant t bits, it is apparent that the probability of the
least significant t bits of b matching the least significant t
bits of z ⇤ b, is 1

t2 , or no better than randomly selecting bits.
This value can be increased to yield a higher probability of
correctness or decreased to hide more information about the
resulting hashes. The amount of information revealed by t
bit truncation is defined in section V.

V. PRIVACY GUARANTEES

In this section, we define our threat model and prove
the privacy guarantees of each protocol from the previous
section. For each protocol, we show two properties: the
security of the two-party computation and the amount of
information revealed by the result of computation.

A. Definitions

In all of our protocols, we assume the standard defini-
tion of a semi-honest adversary, described in Lindell and
Pinkas’ [31]. Essentially, this states that both parties will
follow the protocol as written but will attempt to learn
information beyond the computed result from transcripts of
the interaction. This assumption is also made by related
efforts in this space [5], [6], [1], [7], [31]. To prove a
protocol secure against semi-honest adversaries, we use
the concept of indistinguishability between Alice’s view in
a real execution and a simulator’s generation in an ideal
execution. In the ideal world, two participants A,B send
their inputs a, b to a trusted third party which performs some
computation and returns the result f(a, b). The proof idea is
to show that a simulator S in the ideal world can simulate
A’s view in the real protocol.

Definition 1. Semi-honest security: For any deterministic
functionality f(x, y) and semi-honest parties P1 and P2,
we say that protocol ⇡ securely computes f in the pres-
ence of semi-honest adversaries if there exists probabilistic
polynomial-time algorithms S1 and S2 such that:

S1(x, f(x, y))x,y2{0,1}⇤
c⇡

view⇡
1 ((x, y), output

⇡(x, y))x,y2{0,1}⇤ (5)

S2(x, f(x, y))x,y2{0,1}⇤
c⇡

view⇡
2 ((x, y), output

⇡(x, y))x,y2{0,1}⇤ (6)

B. Millionaire Privacy
1) Protocol Security:

Theorem 1. Millionaire Privacy: Assuming that the encryp-
tion scheme used in the Millionaire’s protocol is semanti-
cally secure (i.e., indistinguishable under adaptive chosen-
plaintext attack), the Millionaire’s protocol is secure in the
presence of semi-honest adversaries.

Proof: We prove separately the security of the
Millionaire’s Protocol when Alice is corrupt and when Bob
is corrupt:

Alice is corrupt: Throughout the proof, f(x, y) is defined
as the boolean function x < y, which is the function being
computed by our Millionaire’s protocol. We construct the
simulator SA as follows:

SA is given input (x, f(x, y)), where x is the number of
millions Alice possesses and f(x, y) is defined as above .
Upon receiving the initial message from Alice containing
her array of encrypted values A and her public key, SA

generates an encryption of the value f(x, y) using Alice’s
public key and returns the message m1 = E(f(x, y)),
completing Alice’s view of the interaction.

We now demonstrate that the message sent by SA, com-
prising Alice’s view, is computationally indistinguishable
from an interaction with Bob. For the first message, two
points must be shown. First, we know that:

m1 = E(f(x, y))
c⇡ E(1 ⇤ 1) c⇡ E(1 ⇤ 2) (7)

Based on the semantic security of our encryption scheme,
SA’s encryption of the result is indistinguishable from ei-
ther of Bob’s result gained by homomorphic multiplication.
Second, we know trivially that the decrypted value in both
the simulated view and the real execution is f(x, y)

Therefore, the Millionaire’s Problem protocol is secure
when Alice is corrupt.

Bob is corrupt: We prove security by constructing
a simulator SB as follows: the simulator is given input
(y, f(x, y)), where y is the number of millions Bob pos-
sesses, and f(x, y) is defined as above. Upon receiving
input, SB generates an array A of length n where each
entry contains the value f(x, y). SB randomly generates an
encryption key pair SKSB and PKSB . It then individually
encrypts each entry in A using PKSB , producing E(A).
Finally, it sends to Bob m1 = E(A)||PKSB . Upon receiving
Bob’s reply containing the result of the homomorphic opera-
tion R, S2 generates m2 = D(SKSB , R) (i.e. the decryption
of Bob’s message) and sends it to Bob.

We now demonstrate that the messages sent by SB are
indistinguishable from Bob’s view in a real execution. For
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Figure 4. Social Graph protocol: For each entry in Bob’s array, he homomorphically multiplies it by every entry in Alice’s array. He then multiplies in
a unique blinding factor for all of the resulting values. Alice receives these values, decrypts them, and truncates all but the least significant t bits, which
she returns. If these t bits match the least significant t bits of the blinding factor multiplied in that entry, Bob knows there is a match.

each entry in the array of m1, we know that:

E(f(x, y))
c⇡ E(1)

c⇡ E(2) (8)

Based on the semantic security of our encryption scheme,
each encryption of the result is indistinguishable from the
two possible entries for each cell in a real execution. The
second part of m1, the public key, is trivially indistin-
guishable, as both the simulator and Alice would randomly
generate a key pair.

The second message is again trivially shown to be indis-
tinguishable, as both Alice’s message and the simulator’s
message are f(x, y).

Therefore, the Millionaire’s Problem protocol is secure
when Bob is corrupt.

2) Information Revealed: Having demonstrated that both
parties only receive the output of the function f(x, y), we
now quantify the probability of either party learning the
other party’s input from f(x, y). Given an instance of the
protocol, with parameters n (the maximum input), x, and
y (the inputs of both parties), the resulting boolean value
allows each party to guess the other party’s input with the
following probability: for the wealthier party W , without
loss of generality, the probability of guessing the other
party’s input is 1

x , where x is W ’s input. For the less wealthy
party L, the probability of guessing the other party’s input
is 1

n�y , where y is L’s input.

C. Location Privacy

1) Protocol Security:

Theorem 2. Location Privacy: Assuming the encryption
scheme used in the Location-Based Messaging protocol is
semantically secure, the Location-Based Messaging protocol
is secure in the presence of semi-honest adversaries.

Proof: Again, we prove the security of the Location-
Based Messaging protocol separately for each participant.

Alice is corrupt: For the Location-Based Messaging
protocol, we define f(x, y) as follows: given inputs (x, y)
that are the grid locations where Alice and Bob wish to
send and receive messages, f(x, y) is a shuffled set of size
c grid locations which, if an intersection exists, contains the
intersecting grid locations. The variable c is defined as the
size of the area where Bob will be sending messages. We
now prove that a simulator SA operating in the ideal world
can simulate the view of Alice, our semi-honest aborting
adversary in the real world. SA is constructed as follows:

SA is given input (x, f(x, y)), where x is the grid
locations where Alice is willing to receive messages, and
f(x, y) is as defined above. Upon receiving Alice’s initial
message containing her encrypted location matrix LA, SA

encrypts each element in f(x, y) with Alice’s public key
and returns m1 = E(f(x, y)), completing Alice’s view of
the interaction.

We now show that SA’s message is indistinguishable from
Alice’s view of a real protocol execution. First, we know that
for any encrypted element in f(x, y) at location i:

E(f(x, y)i)
c⇡ E(1 ⇤ 1) c⇡ E(1 ⇤ 2) (9)

Based on the semantic security of our encryption scheme,
each encryption of an entry in f(x, y) is indistinguishable
from an encryption of the result of Bob’s homomorphic
operations. Second, we know trivially that the decrypted
values in m1 are identical to Bob’s message in a real
interaction, as both simply contain the values in f(x, y).

Therefore, the Location-Based Messaging protocol is
secure when Alice is corrupt.
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Bob is corrupt: We construct the simulator SB as fol-
lows: SB is given (y, f(x, y)), where y the grid locations
where Bob will be sending messages, and f(x, y) is the
result as defined above. SB prepares a location matrix LA

by storing the values in f(x, y) in the grid locations in y.
For any grid location not in y, SB stores a ‘1’. SB then
generates an encryption key pair and encrypts each entry of
LA under the public key PKSB . It then sends the message
m1 = E(LA)||PKSB . When SB receives the shuffled array
R containing the result of Bob’s homomorphic operations,
SB simply decrypts each entry in R using SKSB and returns
m2 = D(R).

We show that Bob’s view in a real execution of the
protocol and an interaction with SB are indistinguishable.
For each element of f(x, y) and for each entry in the matrix
LA:

E(f(x, y)i)
c⇡ E(1)

c⇡ E(2) (10)

Based on the semantic security of the encryption scheme,
Bob cannot distinguish between encryptions of the resulting
values and encryptions of the values Alice would encrypt in
a real interaction. The public key PKSB , being randomly
generated, is clearly indistinguishable from Alice’s public
key.

The second message is clearly indistinguishable, since in
both the real view and the simulated view, the message
contains a randomly ordered array containing the values of
f(x, y).

Therefore, the Location-Based Messaging protocol is se-
cure when Bob is corrupt.

2) Information Revealed: We now show the probability
of either participant guessing the exact location of the other
participant. Given Alice and Bob’s areas of willingness to
send/receive messages x, y, the number of entries in the
location matrix n, and the result of the protocol f(x, y),
both parties know the size of the intersection between their
send/receive areas as well as the number of cells in Bob’s
sending area. In the worst case, either all of Bob’s sending
area is contained within Alice’s receiving area or vice versa.
Consider if Bob’s area is contained within Alice’s, without
loss of generality. Alice has probability 1

|x| of guessing
which cell contains Bob’s actual location, and Bob has
probability 1

n of guessing Alice’s location since he does not
know the size or shape of Alice’s receiving area outside of
his own sending area. Thus, given g = max(|x|, |y|), the
upper bound on the probability of guessing the other party’s
location is 1

g .

D. Social Graph Privacy

1) Protocol Security:

Theorem 3. Social Graph Privacy: Assuming the encryption
scheme used in the Social Graph Protocol is semantically
secure and that the secure hash function used is pseudoran-

dom and one-way, the Social Graph protocol is secure in
the presence of semi-honest adversaries.

Proof: Again, we prove separately the security of our
protocol when Alice and Bob are corrupt.

Alice is corrupt: For the Social Graph protocol, we define
f(x, y) as follows: given inputs (x, y), which are the list of
friends for Alice and Bob respectively, f(x, y) = x\ y. We
now construct a simulator SA in the ideal world that, given
x and f(x, y), is capable of simulating Alice’s view of a
real interaction:

SA is given (x, f(x, y)) as defined above. Upon receiving
Alice’s initial message containing an array of encrypted
friend hashes, SA generates an array of n2 random blinding
factors B1, ..., Bn2 2 G, encrypts them with Alice’s public
key, and returns message m1 = E(B). Upon receiving
Alice’s second message, the decryption and truncation of
m1, SA responds with message m2 = f(x, y).

We now show that both of SA’s messages are indistin-
guishable from their counterparts in Alice’s view of a real
execution. For the first message, we again make two points.
First, we know that, for i = 1...n2 and friend names x, y:

E(Bi)
c⇡ E(H(x) ⇤H�1(y) ⇤Bi) (11)

Based on the semantic security of the encryption system,
SA’s encryption of the blinding factor is indistinguishable
from Bob’s result gained by homomorphic multiplication.
Second, we know for any two names x, y:

Bi
s⇡ H(x) ⇤H�1(y) ⇤Bi (12)

Based on the definition of statistical indistinguishability, the
result Alice sees in both a simulated and a real interaction
appears random.

Therefore, the Social Graph protocol is secure when
Alice is corrupt.

Bob is corrupt: We construct simulator SB as follows:
SB is given (y, f(x, y)). SB begins by generating a random
key Kh for the agreed symmetric hash, a random public
key encryption pair PKSB , SKSB , and an array F of the
pre-defined length n. SB then enters the hashes of the
names in f(x, y) in uniformly random indices of F . For the
remaining unfilled entries, SB generates random numbers
from the range of the hash. Bob then encrypts each entry
with PKSB and sends m1 = E(F )||PKSB ||Kh. Upon
receiving Bob’s response R, SB decrypts the response with
SKSB and returns m2, which is the last t bits of each entry
in D(R), where t is the predetermined security parameter
for the length of the resulting values.

We show that Bob’s view in a real execution of the
protocol and an interaction with SB are indistinguishable.
Considering m1, for each entry in F and for each hashed
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name x, given a uniformly random group element r:

E(r)
c⇡ E(x) (13)

Based on the semantic security of our encryption scheme,
Bob cannot distinguish between an encryption of a hashed
name and an encryption of a random number. Again, since
SB and Alice both generate their hash keys and public keys
randomly, they are trivially indistinguishable.

Considering m2, we see that, given a random key, for any
two names x, y:

H(x)
c⇡ U c⇡ H(y) (14)

Based on the pseudorandomness of the hash function, any
hashes produced will be indistinguishable from randomness.
Because of this, these samples will remain indistinguishable
after any polynomial time operations are performed over
them. Therefore, for any non-matching entry in m2 and any
names x, y, z, where x is in Bob’s friend list, y is in Alice’s,
and z is randomly chosen by SB :

T (H(x) ⇤H�1(y))
c⇡ T (H(x) ⇤H�1(z)) (15)

Where T () is the truncation function.
Therefore, the Social Graph protocol is secure when Bob

is corrupt.
2) Information Revealed: We now show the probability

of either party guessing the input of the other party. For
an instance of the protocol we are given inputs x, y that
are the inputs of both parties (without loss of generality),
some number t which is the number of bits returned by
Alice in the third message, some number n which is the
security parameter of the hash function being used, and
f(x, y) which is the intersection of these two lists. Alice
receives only the list of names in f(x, y), so the probability
of her guessing any friend in Bob’s friend list outside of this
intersection is random selection over all possible friends.
Bob receives the last t bits of Alice’s hash values multiplied
by the inverse of his own hash values. To reverse this value
back into the name of one of Alice’s friends, Bob must
examine all possible values for the n � t truncated bits,
and must then reverse the hash of Alice’s friend’s name.
Therefore, Bob’s ability to learn any of Alice’s friends
not in the intersection is no better than random over the
possible truncated values and the possible hash pre images,

1
(n�t)2⇤n2 .

We do note a slight difference in the security guarantees
provided by our protocol and the guarantees of garbled
circuits. While garbled circuit constructions keep all data
cryptographically secured by the garbling function, our
scheme reveals to Bob t bits of each of Alice’s hashed inputs
multiplied by the multiplicative inverse of Bob’s hashed
inputs. However, based on the pseudorandomness and one-
wayness of a secure keyed hash, we maintain that in practice
it is still computationally infeasible to recover the remaining

bits of the hashed value and reverse the hashed value to the
exact preimage that generated it.

VI. PERFORMANCE ANALYSIS

We have developed new protocols for solving specific
two-party computation problems and proven the privacy
guarantees of each protocol. However, the primary benefit of
these protocols is the efficiency they demonstrate over the
current model for two-party computation, garbled circuits.
To rigorously demonstrate this performance improvement,
we implemented our example applications on three plat-
forms: using the EMOC technique in C, the Secure Function
Definition Language (SFDL) used by Fairplay, and the
pipelined circuit evaluation technique developed by Huang et
al. [7]. We chose these two garbled circuit optimizations be-
cause they represent two of the most efficient optimizations
currently available. In addition, the performance of OBDD
compiled circuits relative to pipelined circuits has never
been evaluated. Because the optimizations used in Henecka’s
work are largely done by hand on a per-application basis,
we chose not to evaluate the TASTY framework [1]. Our
goal in these evaluations is to provide an objective com-
parison against general-purpose garbled circuit compilation
techniques.

In our implementations, we used ElGamal [32] as a mul-
tiplicative homomorphic, public-key encryption scheme and
HMAC-md5 as a secure keyed hash function. In ElGamal,
we use a 1024-bit modulus and exponent keys of 160 bits,
which is common secure practice with this scheme [33]. For
our C implementations, we cross-compiled each program
using the Android Toolchain [34], allowing us to execute
our tests on the ARM processor in our mobile device. To
compile and test the Fairplay versions of our applications,
we first ported the Fairplay runtime environment, written in
Java, into an Android application. For our first experiment,
we compiled the garbled circuits used for evaluation using
the standard Fairplay compiler as well as an SFDL compiler
using Ordered Binary Decision Diagrams (OBDD) [6]. The
OBDD compiler creates more efficient circuits than the
standard compiler for a large number of functions, and still
executes in the Fairplay runtime environment. To test the
pipelined circuit technique, we used the platform code built
by Huang in Java for the Android OS.

Our performance evaluations were run on an HTC Nexus
S containing a 1 GHz processor and 512 MB of RAM. The
operating system used was Android 2.3. All execution times
given are averaged over at least ten executions and shown
with a confidence interval of 95%.

A. Experiment Setup
To provide the most accurate comparison to other two-

party computation techniques, we broke our experiments into
two groups. In the first group of experiments, we compared
our technique to Fairplay, using circuits compiled with the
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Figure 5. Millionaire’s Problem online execution times versus Fairplay.
Note that for all input sizes, our application runs in a fixed amount of time
while both circuits compiled for Fairplay show increasing execution times
with increasing input size.

Fairplay compiler and the OBDD compiler. In both our
applications and Fairplay, we divided the execution into a
preprocessing phase (for circuit generation in Fairplay and
encrypted query generation in EMOC), and online execution.
Since both the Fairplay compiler or the OBDD compiler
required too much memory to be executed on the mobile
device, we compiled circuits on a desktop machine and
compared only the online execution times of both techniques
on the mobile device. The preprocessing required by EMOC,
generating encrypted query values, can be amortized over
spare clock cycles prior to the initiation of computation.
To minimize the use of battery power, these operations
could be set to only execute while the phone is charging.
The encrypted values generated during preprocessing, which
are approximately 3 KB each, could easily be stored until
needed. Thus, the majority of our preprocessing time could
be reduced to the time required to populate an array with
stored values.

In our second group of experiments, we compared our
technique to the pipelined circuit technique developed by
Huang et al. This technique splits circuit generation into lay-
ers, generating and evaluating one layer of circuits at a time
during the execution of the protocol. As such, there is no
logical separation of preprocessing and online computation.
Therefore, when comparing EMOC to the pipelined circuits,
we compared the entire execution time. It is relevant to note
that, although these comparisons do not reflect it, EMOC
is still capable of amortizing preprocessing time, allowing
users to execute only the online computation in practice.

B. The Millionaire’s Problem
To accurately compare all techniques, we built each

application to execute the millionaire’s problem given inputs
within the range 1...N . In both Fairplay and pipelined
circuits, this is represented by an input of log2(N) bits. In
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Figure 6. Millionaire’s Problem total execution times versus pipelined
circuits. Note that the pipelined circuits outperformed EMOC for one input
size due to the simplicity of the function being evaluated. The majority of
the EMOC execution time can be amortized through preprocessing.

EMOC, this is represented by query table of length N . In
our first comparison, between Fairplay and EMOC, the exe-
cution time of our protocol outperformed circuits compiled
both with the Fairplay compiler and the OBDD compiler,
as seen in Figure 5. Even for the smallest tested input
size, N = 16, our protocol ran in 0.009 seconds(±0.0001
seconds), while the OBDD-compiled circuits ran in 0.33
seconds (±0.0191 seconds), a 97.27% reduction, and the
Fairplay-compiled circuits ran in 0.45 seconds (±0.0202
seconds), a 98.00% improvement in execution time. As
input sizes increased, the time to evaluate both Fairplay
and OBDD circuits increased as well, while the single
multiplication required in EMOC allowed for a constant
evaluation time across all input sizes.

In our second comparison with pipelined circuits, EMOC
outperformed the pipelined circuits for all test input sizes ex-
cept for the largest, N = 1024. For N = 16, EMOC demon-
strated a total execution of only 0.11 seconds (±0.0006
seconds), a 95.93% reduction from pipelined circuits, which
took 2.7 seconds (±0.0169 seconds). However, for the
largest input, N = 1024, EMOC ran in 6.26 seconds
(±0.0068 seconds), while pipelined circuits ran in 2.8 sec-
onds (±0.0514 seconds). The reason for this discrepancy is
in the representation of the inputs. The input for pipelined
circuits is simply a 1024-bit integer, while EMOC requires
1024 encrypted integers. It is also important to recall that the
majority of the EMOC execution time for this application
can potentially be amortized through preprocessing, while
the pipelined circuit requires that the circuits be generated
at execution time. We demonstrate with the next two ap-
plications that even a small increase in the complexity of
the function results in a significant increase in the execution
time, while the execution times of EMOC remain within a
feasible range for practical use.
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Figure 7. Location-Based Messaging online execution times versus
Fairplay. Note that, as with the Millionaire’s Problem, for all input sizes
our application runs in a fixed amount of time while the OBDD circuits
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C. Location-Based Messaging

For the Location-Based messaging program, we examined
performance over two different input size variables. The first
variable is performance as the size of the grid increases,
where inputs are represented as an M ⇥ N matrix. The
second variable is performance as the size of Alice and Bob’s
query areas increase, where the overall size of the location
matrix is a fixed-sized M⇥N matrix and the query areas are
represented as Q grid locations within the location matrix. In
our comparison with Fairplay, the improvement of EMOC
was apparent even before running our experiments. When
compiling circuits using the Fairplay compiler, we found that
even on a desktop machine, the standard Fairplay compiler
was unable to compile this application for inputs larger than
approximately M⇥N = 20. Thus, our Fairplay performance
evaluation only used circuits compiled with OBDD. For an
M ⇥ N = 500 grid, EMOC executed the online phase in
0.03 seconds (±0.0002 seconds), while the OBDD-compiled
circuit took 23.15 seconds (±0.0351 seconds), a 99.87%
improvement on our part. Again, as in the Millionaire’s
Problem, our execution times remain constant when the
query areas of Alice and Bob remain constant. When we
examined increasing the query area size, EMOC remained
the most efficient choice. Even for query areas as large
as 100 entries, EMOC executed in 0.17 seconds (±0.0061
seconds), while the OBDD-compiled circuit took a constant
12.13 seconds (±0.0424 seconds) for all query area sizes.

In our second comparison, the performance advantage of
EMOC became apparent. For the largest examined input of
size M⇥N = 500, EMOC performed the total setup and ex-
ecution in 3.06 seconds (±0.0071 seconds), while pipelined
circuits ran in 11.13 seconds (±0.0332 seconds), a 72.51%
reduction. As above, when we compare the execution for
variable query sizes, EMOC again outperformed pipelined
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Figure 9. Social Graph Privacy online execution times versus Fairplay.
We were only able to run experiments up to inputs of size 20 due to the
large memory requirements of Fairplay.

circuits by 76.33%, running in 1.69 seconds (±0.0061
seconds) compared to the pipelined circuits time of 7.14
seconds (±0.0330 seconds) From these results, it is clear that
for even slightly more complex functions, EMOC provides
the more efficient solution.

D. Social Graph Privacy

With the Social Graph Privacy application, we consider
two parameters when comparing applications. The first
parameter, which we vary within our experiments, is the
size of the friend lists being compared, represented in
every application as the size of the input array. The second
parameter, which we fix for each application, is the number
of unique members that can be represented within the social
network. EMOC uses a secure 128-bit hash taken from the
string representation of an individual’s name, allowing 2128

different unique identifiers. For OBDD-compiled circuits,
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Figure 10. Social Graph Privacy total execution times versus pipelined
circuits. Note that input sizes are a more practical number than with
Fairplay.

we use an 8-bit identifier for each member of the social
network because, as we demonstrate later, circuits evaluating
over larger identifiers could not be compiled. For pipelined
circuits, we used a 30-bit hash to represent each member
of the social network. Because the security of pipelined
circuits does not depend on the security of this hash, we
felt it was unnecessary to use a full 128-bit hash when
performing these evaluations. However, taking Facebook as
an example social network, we wanted to be able to uniquely
represent at least this 700 million member population with
unique hash values. Accordingly, our performance values
differ from those generated by Huang et al. because we
support larger inputs.

In our first comparison, we were again unable to compile
circuits for any size input using the Fairplay compiler, so
our experiments only examined OBDD-compiled circuits.
Additionally, we were only able to execute circuits com-
paring friend lists of size N = 20 before the phone ran
out of memory and crashed with each attempted execution.
Even at this unrealistically small input size, the difference
in execution times was significant, with EMOC executing in
3.84 seconds (±0.0034 seconds) and the OBDD-compiled
circuit executing in 124.49 seconds (±0.2809 seconds), a
96.92% improvement.

To demonstrate the effectiveness of our application for
practical input sizes, we compared EMOC to the pipelined
circuits technique for input sizes up to N = 256. As
expected, our application again demonstrated significantly
improved performance over garbled circuits. At the largest
input size, EMOC evaluated in 632.43 seconds (±0.3728
seconds), while pipelined circuits evaluated in 1129.58 sec-
onds (±3.2322 seconds). If we drop the input size by half,
EMOC executes in as little as 158.84 seconds (±0.0291
seconds), while pipelined circuits required 496.11 seconds
(±1.2560 seconds), an improvement of 67.98%. These re-

sults clearly show that, for specific two-party computation
problems, partially homomorphic encryption offers a practi-
cal technique for secure oblivious computation even on the
restricted resources of the mobile platform.

VII. CONCLUSION

As mobile phones become more popular for computing
tasks, new techniques will be needed to protect the private
information used in many of their applications. Garbled
circuit constructions effectively solve this problem in the
desktop space, but are too processor and memory intensive
to be practical on the mobile platform. By replacing gar-
bled circuits with homomorphic encryption operations, our
EMOC protocols demonstrate that certain privacy-preserving
functions can be evaluated with great efficiency on the
mobile platform. Through our performance evaluation, we
demonstrate improvements greater than 68% over the most
efficient garbled circuit constructions. Based on these re-
sults, we present our protocols as an efficient method for
implementing provable privacy into some location-based and
social networking applications.
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