
Planning in Logistics: A survey

Pushkar Kolhe
Georgia Institute of Technology
pushkar@cc.gatech.edu

Henrik Christensen
Georgia Institute of Technology

hic@cc.gatech.edu

ABSTRACT
Planning is an essential part of any logistics system. The
paper tries to generalize the view of a logistics planner by
framing it as a knapsack problem. We show how the various
variants of the knapsack problem compare for different types
of industries. We also introduce the pallet stacking problem
and survey some of the recent advances made towards this
problem.

Keywords
Planning, Logistics, Bin Packing Problem, Warehouse Man-
agement

1. INTRODUCTION
Logistics integrates all the operations in an industry. It

is a planning system that is supposed to model, analyze
and optimize the entire supply chain. Naturally improving
the logistics is a key step in industrial automation. De-
spite significant progress in improving efficiency in pick and
place robots, there exists many important problems and
much room for improvement. At present many solutions
are designed for a particular manufacturer or have many as-
sumptions. The article attempts to bridge the gap between
current research and real world problems in logistics. We
provide a general overview of the problem and give an intro-
duction to some of the most basic techniques used to solve
these problems.

Consider the special cases of a shipping industry or a au-
tomated storage and retrieval system where the goal is to
improve throughput of the system under some constraints.
This can be formulated as a constraint problem, specifically
the knapsack problem (KP). We show that logistics opera-
tions can be studied theoretically and their performance can
be guaranteed by a theoretical upper bound. It is possible
the most optimal performance that the system can achieve.
If an industry successfully models its logistics as a KP con-
straint problem, then it is possible to determine the worst
case performance of their planner when it is compared to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PerMIS’10 September 28-30, 2010, Baltimore, MD, USA
Copyright 2010 ACM 978-1-4503-0290-6-9/28/10 ...$10.00.

an optimal planner. New research tools from combinatorics
can be used for improving a logistics planner.

We also consider the pallet stacking problem and show
some of the recent advancement made in this field. We then
list some open problems in logistics from our view point
that can be improved solely by providing a good theoretical
context to logistics.

2. HISTORICAL OVERVIEW
Most recent work in warehouse management systems has

focused on satisfying needs of a particular industry. How-
ever there has been less work in improving logistics planners.
On the other hand the pallet stacking problem, which is
closely related to the bin packing problem, has made great
advances in the field of combinatorics. It is a well known
fact that mixed palletizing is NP-hard, but there are many
polynomial and pseudo-polynomial planners which can give
an approximate solution which can have a lower bound on
its optimality. [31] gives a good overview of the mixed pal-
letizing problem and proves that it is indeed a variant of
the KP problem. There is also some work in optimizing
robot motion to improve performance of mixed palletizing
systems. For example, [28] shows how robot movements can
be minimized while packing a pallet. There has also been
significant development of software tools to solve this prob-
lem. [18] provides an overview of the combinatorial knap-
sack problem with a few examples for solving the palletizing
problem.

The paper is divided into three parts. Section 3 shows how
an entire warehouse management process can be formulated
mathematically as a knapsack problem. We show how vari-
ous variants of the knapsack problem can represent logistics
for different types of industries. Section 4 introduces some
of the most common knapsack problem solving techniques.
Section 5 is dedicated to the pallet stacking problem where
we show some of the most common techniques used for solv-
ing such kind of problems. We refer to a comprehensive list
of references as we introduce new concepts.

3. LOGISTICS
Logistics is a key part of a warehouse management system.

A logistics problem can be framed as a decision problem
can be represented numerically as profit, loss or weight, cost
value. This has two main advantages: 1. The entire ware-
house management system can be framed mathematically
and 2. Different approaches can be compared with respect
to some benchmarks. Many other industrial problems can
be formulated as knapsack problems: cargo loading, cutting

stock, project selection and budget control.
Consider the simple example of managing logistics for a

shipping industry. Packages are usually shipped through
cargo trucks or planes. Every package has a certain weight
but the cargo vehicle has a fixed capacity. The cost of send-
ing a package usually does not depend on the weight, since
dispatchers get paid on a contract. The dispatchers, there-
fore, try to maximize their profit by packing efficiently and
shipping the maximum weight in a fixed volume. Such a
problem can be framed as a optimization problem.

3.1 The Knapsack Problem
We can formulate the above logistics problem as a knap-

sack problem (KP). Consider a knapsack with item set N,
consisting on n items, where the jth item has profit pj and
weight wj , and the capacity is c. Then, the objective func-
tion can be formulated as:

max

n∑
j=1

pjxj (1)

subject to

max

n∑
j=1

wjxj ≤ c (2)

xj ∈ {0, 1}, j = 1, . . . , n. (3)

In equation (2), xj can only take integral values and it
denotes whether the jth item is included in the knapsack
or not. Finding the optimum solution vector x∗ having an
optimum profit z∗ is non-trivial and known to be NP-hard.

However the logistics involved in shipping industries is not
as simple as stated above. There can be several additional
constraints. For example, a few packages might have to be
delivered urgently and so packages also have a priority asso-
ciated with them. Some packages have to be delivered within
a particular time window and some package has exception-
ally low weight, but high volume. Because of constraints
like these, the definition of profit in equation (1) can change.
This leads to many variations in the above problem.

In the above example, if optimal number of packages are
transported by shipping the maximum possible weight in a
given volume then pj = wj in equation (1). This is called
the subset sum problem. Solutions of the subset problems
can be used for designing better lower bounds for scheduling
problems [12].

Frequently, a large number of the boxes that are shipped
have the same size and weight. To reduce the size of the
knapsack problem, xj can be used to represent a class of
boxes rather than a single box. If there are bj boxes of a
class j, then equation (3) becomes:

0 ≤ xj ≤ bj , j = 1, . . . , n. (4)

This problem is then called the bounded knapsack prob-
lem. If bj is large or unknown, then it is called the un-
bounded knapsack problem.

If you take into account the shipping example again and
consider that the boxes have weight as well as volume and
both have a maximum bound, then equation (2) should
change. After generalizing the problem to include additional
constraints we get a d-dimensional knapsack problem.
We can rewrite equation (2) as:

max

n∑
j=1

wijxj ≤ ci, i = 1, . . . , n. (5)

The knapsack problem given by equations (2), (4) and (5)
constitute the most generic of the mixed palletizing prob-
lems. In theoretical computer science, this problem is also
referred to as the 3D bin packing problem. If the mixed
palletizer has to generate rainbow pallets, then equation (1)
will be modified to reflect choice of at least two types of
boxes together. This will yield the quadratic knapsack
problem as:

max

n∑
i,j=1

pijxixj (6)

3.2 More variants of KP
Consider the generic example of mixed palletizing we for-

mulated in equations (2), (4) and (5). These equations can
be further extended as variations of KP to represent entire
logistics operations. For example, a shipping industry usu-
ally has several cargo vehicles making daily trips between
popular locations. In that case the dispatcher has to decide
if a particular package goes on a particular trip or the next
one. If there are n items on the list of transportation re-
quests and m trips available on a route, we use nm binary
variables xij for representing if a particular item goes on the
mth trip.

The mathematical programming formulation of such a
problem is called as the multiple knapsack problem and
is given by:

max

m∑
i=1

n∑
j=1

pjxij (7)

subject to

n∑
j=1

wjxij ≤ ci, i = 1, . . . ,m, (8)

m∑
i=1

xij ≤ 1, j = 1, . . . , n, (9)

xij ∈ {0, 1}, i, j = 1, . . . , n. (10)

Consider an example of an automated storage retrieval
system. In such a system if the items were evenly dis-
tributed throughout the warehouse, they could be retrieved
efficiently. Each pallet can store only one variant of each
type of item, so that the overall utility value is maximized
without exceeding the capacity constraint. This problem
can be expressed as the following multiple-choice knapsack
problem. Using the decision variable xij to denote whether
variant j was chosen from the set Ni, the following model
appears:

max

m∑
i=1

∑
j∈Ni

pijxij (11)

subject to

m∑
i=1

∑
j∈Ni

wijxij ≤ c, (12)

∑
j∈Ni

= 1, i = 1, . . . ,m, (13)

xij ∈ {0, 1}, i = 1, . . . ,m, j ∈ Ni. (14)

Evaluating the efficiency of a warehouse system is an im-
portant factor in logistics. There are at least two ways in
which we can measure the efficiency of a logistics scheme.
Firstly, we can look at the output of the supply chain. For a
shipping industry these may be factors like number of pack-
ages shipped, packages arriving late, wrongly delivered pack-
ages. These factors describe the quantity and quality of the
items coming through the supply chain. Secondly, we can
look at the planning algorithm and determine the efficiency
of the logistics planner. Comparing the planner means com-
paring the algorithm that solves the effective knapsack prob-
lem which the logistics operation represents. Many such
techniques are described in [18] and [25].

3.3 Comparing Algorithms
Algorithms that solve the knapsack problem are not sim-

ilar. Algorithms that find the most optimum solution often
do so by doing a exhaustive search. They are computation-
ally very inefficient when compared to approximate algo-
rithms which are computationally far more efficient. How-
ever, approximate algorithms have the drawback that they
can only find a near optimum solution. It is also important
to note the complexity for each algorithm. Simple algo-
rithms which are easy to implement are desired. However,
performance can be improved by adding appropriate com-
plexity, for example, storing items in a tree instead of a list
improves running time.

Algorithms that solve NP-hard problems can be divided
into two parts: exact algorithms and approximate al-
gorithms. Exact algorithms find the most optimal solution
of a given problem whereas approximate algorithms find an
approximate solution. Usually, approximate algorithms are
faster because they only find a near optimal solution. Be-
cause of this, running time becomes an important criteria in
comparing exact algorithms while approximate algorithms
can be compared by finding out how close they come to the
most optimal solution.

It is not always possible to do an exhaustive search over a
problem space. Algorithms are usually run over several data
sets and their performance is determined analytically. One
of the most common way to check is to compare running
time of the algorithm after the data set is doubled. The
time required to find the solution should not increase expo-
nentially for polynomial or pseudo polynomial algorithms.

The most common way to measure the performance of
an algorithm is to perform the worst-case analysis. It is
denoted by the big-Oh notation as described in [5]. The
most efficient algorithms have a polynomial running time
bounded by O(n), O(n logn), O(nk). Pseudo-polynomial
algorithms have running time bounded by O(nc) which is
better than O(2n) or O(3n) for non-polynomial algorithms
[18].

3.4 Designing the KP problem
It is not obvious how a logistics problem can be formulated

as a KP problem. Answering this question involves further
research into studying and understanding industry specific
parameters. The problem is to design the profit, that is (1),
and weight constraints, that is (2), for a logistics problem.

Profit depends on several factors. In a shipping industry
it will depend on the throughput, that is number of ship-
ments per hour, the correctness of the delivery and the total
number of cargo vehicles used. The relationship between
profit and all these factors is non-linear, in the sense that
they depend on each other or improving throughput comes
through compromising the number of vehicles used. Simi-
lar problems arise when designing the relationship between
maximum capacity and actual industrial constraints.

However, the simplest way to formulate the problem is to
simply formulate profit or capacity as a linear combination
of all the parameters that influence profit and capacity. The
weights used will decided by the industry depending upon
their specific needs and requirements. Similarly a system
of equations can be formulated for a warehouse. The main
idea is to formulate the logistics in such a way that it can
tell us back what are the specific operations that can be
compromised upon and still performing near the optimum.

4. LOGISTICS PLANNERS
As we have seen in Section 3.2 a logistics system can be ex-

pressed as a Knapsack problem. This gives us many insights
into logistics. There are lower bounds available from theo-
retical computer science, which give a theoretical indication
that the running time of an exact algorithm for (KP) can
not beat a certain threshold under reasonable assumptions
on the model of computation. Many (KP) instances can be
solved within reasonable time by exact solution methods.
This fact is due to algorithms like primal-dual dynamic pro-
gramming recursions, the concept of solving a core, and the
separation of cover inequalities to tighten the formulation
[18].

4.1 Basic Algorithms
The greedy algorithm is perhaps the most basic algorithm

that can be used to solve the KP problem. We also ex-
plain the basic idea behind exact algorithms like branch and
bound, dynamic programming and approximate algorithms
like polynomial time approximate schemes (PTAS) and fully
PTAS.

4.1.1 The Greedy Algorithm
This is by far the most popular algorithm currently used to

solve the bin packing problem. For every item, an efficiency
factor is calculated as,

ej :=
pj
wj

. (15)

We want the first bin to have the maximum profit to weight
ratio. All items are arranged in a descending order based on
its efficiency factor. Items are selected to be in the knapsack
in this order until equation (2) is not violated.

The Greedy solution is arbitrarily bad as compared to the
optimal solution, but it can yield at least a 0.5 of the optimal
solution [18].

4.1.2 Branch and Bound
The general idea of the branch and bound technique is

to intelligently enumerate the entire solution space and pick
the best solution. It basically consists for two fundamental

principles: branching and bounding. In the branching part,
the solution space is divided and the optimum solution is
found locally. In the bounding part, the algorithm derives
upper and lower bounds of the solution space. The upper
bound is found trivially in O(n) by relaxing the KP integral
constraint given in equation (3). Thus, 0 ≤ xj ≤ 1. The
upper bound is used to prune parts of solution space whose
optimum value is less than this value. The lower bound is
the most optimum solution if no other local solution space
has a greater lower bound.

To make the search process more efficient, the entire solu-
tion space can be divided so that it forms a tree structure.
This way the search for the most optimum value can be done
with a recursive depth-first or breadth-first search.

4.1.3 Dynamic Programming
Instead of optimizing the knapsack problem over all items,

dynamic programming only optimizes the knapsack for a
small subset of items. Then it adds an item iteratively to
the problem and the solution. (KP) has the property of an
optimal substructure, that is, if x∗ is an optimum solution
of a knapsack with capacity c, then x∗ − j is an optimum
solution of a knapsack with capacity c − wj . KP has the
property of an optimal substructure as described in [5].

A simple dynamic programming approach to solve this
problem would involve using the Bellman recursion. Con-
sider l items which are a subset of the original j items.
We formally solve the KP problem for l items and a knap-
sack capacity of d ≤ c. The optimal solution at this point
is given by zj−1(d). For a new item j, if d ≥ wj and
zj−1(d− wj) > zj−1(d), then it is added into the knapsack.

4.1.4 Polynomial Time Approximation Schemes (PTAS)
Algorithms that solve the knapsack problem either com-

promise on running time to get an optimal solution or run
in pseudo-polynomial time to get an approximate solution.
PTAS algorithms are also more formally known as the ε-
approximation scheme. ε will determine how close the solu-
tion is to the optimal solution. Running time will increase
if a solution near the optimal is desired.

These algorithms have the basic idea of guessing a cer-
tain set of items included in the optimal solution by go-
ing through all the possible candidate sets and then filling
the remaining capacity in a greedy way [18]. In a simple
scheme, the Greedy algorithm can be extended so that a
subset of item are compared before inserting them in the
bin. Item with maximum efficiency factor given by equation
(15) within the subset is selected. The size of the subset de-
termines the running time of this algorithm. The classical

PTAS in [27] requires O(n
1
ε) time. The CKPP algorithm

given in [4] had an improved runtime over the one in [4].
They explored the monotonicity of the arranged items for
the Greedy algorithm to create subsets. This reduced their
search space and time. The running time for their algorithm

is O(n
1
ε
−2) for ε < 1

3
.

4.1.5 Fully Polynomial Time Approximation Schemes
(FPTAS)

Dynamic programming techniques discussed in 4.1.3 can
be modified so that they can run in polynomial time. The
earliest FPTAS technique for KP was given in [15]. Later
[21] and [16] introduced new partition techniques for parti-
tioning the profit space which improved the FPTAS algo-
rithm further. Some of the most recent work in improving

on these algorithms was done by [17, 16].
The basic idea behind the FPTAS technique is to scale

the profits values or the weight values and then apply a dy-
namic programming technique. The optimal solution value
of the scaled instance will always be at least as large as the
scaled profits of the items of the original optimal solution
[18]. Usually, the upper bound on the most optimal solution
is found out using a Greedy method and the scaling factor
is determined whose value determines the approximation of
the solution. Most of the earlier solutions were impractical
because they compromised memory to get better running
time. However, some of the new techniques given in [17, 16]
have a running time of approximately O(n logn log 1

ε
) and

space complexity of O(n + 1
ε2

).

4.2 All capacities problem
In several planning problem, the exact capacity is not

known in advance, but it may be changed based on the pro-
posed solutions. For example, carrying huge amounts of
loads also increases transportation cost. There is obviously
a non-linear relationship between actual profit and profit as
defined by the KP problem. A natural way to overcome this
problem is to calculate optimal solutions for each capacities
including cmax > c to find the most optimal solution. As
we have stated earlier KP has the property of an optimal
substructure [5]. The dynamic programming techniques ex-
ploit this property to solve the KP problem along with the
all capacities problem.

5. 3D BIN PACKING PROBLEM
Packaging or storing is an integral part of many ware-

house systems. Hence, many logistics planners are designed
to optimize packing and storing of goods or items. As we
have seen in Section 3.1, this problem can be represented
as a variant of the knapsack problem. It is a well studied
problem in literature. It is closely related to other three
dimensional container loading problems: Knapsack loading,
where the problem is to find a subset of items that will fit
into a single bin; Container Loading, where the problem is
to find a feasible arrangement of items in which the height of
the bin filled is minimum and Bin Packing, where the items
are packed into finite sized bins and the problem is to find
the solution with the minimum number of bins.

To formulate orthogonal packaging or cutting constraints
for packaging into the bin packing problem it has to be ex-
pressed as an integer programming problem, that is, con-
dition (3) should hold. Many methods add constraints to
this problem to get a structured pallet. Usually a pallet
layer can be formulated as an integer programming problem
and a feasible packing can be found. This is referred to as
the cutting problem. There are two widely studied cutting
problems: guillotine and non-guillotine cutting problems.
Guillotine patterns refer to pattern that are cuttable. Most
bin packing algorithms will have a two step process: one
which selects the most profitable items to go in a bin fol-
lowed by a feasibility check to see if these items can fit the
bin.

Integer Programming formulations for packaging have been
studied by [1, 13, 3]. Algorithms that solve the 2DKP us-
ing a branch and bound algorithm and then run a feasibility
check which checks for overlaps for every new assignment are
described in [9, 10, 8]. An enumeration technique for check-
ing feasibility of an assignment is shown in [24]. Recent work

in using advanced graphical technique to feasibility check an
assignment called sequence triple is introduced in [7]. [6] is
some earlier work that discusses some exact algorithms and
heuristic techniques to solve the packaging problem.

5.1 Heuristics for the packing problem
The problem we consider in this section is that of selecting

a subset of items and assigning coordinates (xj , yj , zj) to
each item, such that no item goes outside the bin, no two
items overlap and the total volume of the items does not
exceed the maximum capacity. We assume that the origin
of the coordinate system is in the left-bottom-back corner
of the bin. We have the obvious constraints

0 ≤ xi ≤W − wi,

0 ≤ yi ≤ H − hi,

0 ≤ zi ≤ D − di.

To ensure that no two packed boxes i, j overlap we will
add more constraints

xi + wi ≤ xj ,

yi + hi ≤ yj ,

zi + di ≤ zj ,

xj + wj ≤ xi,

yj + hj ≤ yi,

zj + dj ≤ zi.

These ensure that the boxes i and j are packed and that
they must be located on the left, right, up, down, above or
below each other. In the packaging sense, these constraints
are enough. Many methods that solve the bin packing prob-
lem [7, 22] use the above constraints. However, in practice
there are many other issues that concern the stability of a
bin or pallet. These can be added as additional constraints
to the above integer programming problem. The stability
of a pallet is more when it has a lower center of mass, the
distribution of pressure and weight is even and there are
interlocking boxes. Interlocking can be guaranteed by maxi-
mizing the surface area of a box that will touch other boxes.
Many of these factors are application specific but the prob-
lem of assigning constraints to maximize stability of a pallet
remains an open problem.

Heuristic techniques use statistics to determine the most
optimal packaging. As the size of the problem increases, ex-
act algorithms’ runtime complexity increases exponentially.
Here, heuristic solutions are very popular. [7, 29] use a
heuristic simulated annealing procedure to pack boxes to-
gether. [22, 14] presents a good overview of heuristic tech-
niques to solve the bin packing problem.

5.2 On-Line bin packing problem
Consider a bin packing example, where boxes are coming

down a conveyor and a pick and place robot is arranging the
boxes onto a pallet. In this scenario the data of the items
and their number is unknown. As soon as the item is seen
by the sensor the on-line planner has to decide whether to
pack the item or discard it. In literature on-line algorithms
are analyzed for their worst case when their solutions is com-
pared with the optimal solution given by an exact algorithm
with complete input data. This analysis is called the com-
petitive analysis and it is widely studied and surveyed in [2,

11].
[18] provides a brief overview of this problem and some so-

lutions. A programming compiler usually can optimize the
program by modeling breaks in the program. This way it
can avoid processor cache misses and improve efficiency of
the processor. Similarly a KP algorithm can also create a
stochastic model of the distribution of profit and weights of
items. This can give rise to a simple on-line greedy algo-
rithm. From the a-priori knowledge of the distribution one
can determine a threshold for efficiency given by equation
(15). The planner will pack all items that have efficiency
more than this threshold. If the knowledge about distribu-
tion of profits and weights is known a lower bound can be
determined on the performance on this algorithm as shown
in [23].

5.2.1 Time Dependent On-Line bin packing problem
In this model the time dependence is explicitly taken into

account. For example on a shipping yard, transportation re-
quests are made randomly and they have to be accepted or
rejected without delay. If they are accepted they consume a
resource and gain some price, but if they are rejected then
their is no resource lost but price is lost due to cost in storage
space, customer goodwill etc.. [18]. These problems are for-
mally known as dynamic and stochastic knapsack problems
and they were extensively studied in [20, 26, 19].

In stochastic models discussed in the literature the re-
quests arrive by a stochastic process, usually a Poisson pro-
cess. The entire setup can be modeled as a Markov decision
process. The time dependence does not allow us to compare
performance of these algorithms with the classical knap-
sack problem. However, the achieved results contain gen-
eral characterizations of optimal policy and optimal thresh-
old policy for greedy algorithms. Some recursive algorithms
in the context of freight transportation and scheduling in
batch processes are discussed in [19]. A similar problem in
the context of airline yield management problem is discussed
in [30]. They also extend their work to include a stochastic
version of the multidimensional knapsack problem (d-KP).

Recent work in designing algorithms for solving the pal-
letizing problem on-line uses statistical methods. The idea
behind these methods is very intuitive. In greedy methods
items need to be arranged in the descending order of their
efficiency and then they are added in the bin in order. In
the on-line variation, statistical methods are used to predict
the rank of an item around the last n items based on pre-
vious observations. If the efficiency of an item is below the
threshold efficiency it is discarded, otherwise it is added to
the bin.

6. OPEN PROBLEMS
Many algorithms and techniques to solve logistics and

mixed palletizing are industry specific. On of the advantages
of providing a theoretical context is to generalize this prob-
lem and use a theoretical framework to improve logistics.
However there are many open questions. As we discussed in
section 3.4 every industry is different and converting their
entire logistics into constraints that can be fed to a com-
binatorics problem is an open question. In the context of
mixed palletizing the most important question remains of
improving stability. There are very few solutions that also
accommodate stability into their problem formulation.

7. CONCLUSIONS

We showed how the logistics planner can be formulated
as the knapsack problem. We can use this to determine the-
oretical performance measure over a logistics system. We
also introduced a 3D bin packing algorithm and provided a
comprehensive reference to some of the latest work in com-
binatorics for solving it.

We have tried to generalize the common planning prob-
lem in industries so that they can be studied theoretically.
Our future work will involve understanding and surveying
various industries and grounding their logistics planner in
combinatorics. We also think that if the gap between in-
dustrial logistics and theoretical computer science research
were closed, we can widely improve the scope of industrial
automation.

8. ACKNOWLEDGEMENT
The work has been sponsored by the United States De-

partment of Commerce/National Institute of Standards and
Technology (NIST) under the grant - Logistics Design and
Benchmarking Manufacturing System. Their support is grate-
fully acknowledged.

9. REFERENCES
[1] J. Beasley. Algorithms for unconstrained

two-dimensional guillotine cutting. Journal of the
Operational Research Society, pages 297–306, 1985.

[2] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis. Cambridge University Press
Cambridge, 1998.

[3] M. Boschetti, A. Mingozzi, and E. Hadjiconstantinou.
New upper bounds for the two-dimensional orthogonal
non-guillotine cutting stock problem. IMA Journal of
Management Mathematics, 13(2):95, 2002.

[4] A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger.
Approximation algorithms for knapsack problems with
cardinality constraints. European Journal of
Operational Research, 123(2):333–345, 2000.

[5] T. Cormen. Introduction to algorithms. The MIT
press, 2001.

[6] K. Dowsland and W. Dowsland. Packing problems.
European Journal of Operational Research, 56(1):2–14,
1992.

[7] J. Egeblad and D. Pisinger. Heuristic approaches for
the two-and three-dimensional knapsack packing
problem. Computers & Operations Research,
36(4):1026–1049, 2009.

[8] S. Fekete and J. Schepers. A new exact algorithm for
general orthogonal d-dimensional knapsack problems.
In AlgorithmsâĂŤESA’97, pages 144–156. Springer,
1997.

[9] S. Fekete and J. Schepers. On more-dimensional
packing III: Exact algorithms. Discrete Applied
Mathematics, 1997.

[10] S. Fekete, J. Schepers, and J. van der Veen. An exact
algorithm for higher-dimensional orthogonal packing.
Arxiv preprint cs/0604045, 2006.

[11] A. Fiat and G. Woeginger. Online algorithms: The
state of the art. Springer Berlin, 1998.

[12] C. Guéret and C. Prins. A new lower bound for the
open-shop problem. Annals of Operations Research,
92:165–183, 1999.

[13] E. Hadjiconstantinou and N. Christofides. An exact
algorithm for general, orthogonal, two-dimensional
knapsack problems. European Journal of Operational
Research, 83(1):39–56, 1995.

[14] E. Hopper and B. Turton. An empirical investigation
of meta-heuristic and heuristic algorithms for a 2D
packing problem. European Journal of Operational
Research, 128(1):34–57, 2001.

[15] O. Ibarra and C. Kim. Fast approximation algorithms
for the knapsack and sum of subset problems. Journal
of the ACM (JACM), 22(4):463–468, 1975.

[16] H. Kellerer and U. Pferschy. A new fully polynomial
approximation scheme for the knapsack problem.
Approximation Algorithms for Combinatiorial
Optimization, pages 123–134, 1998.

[17] H. Kellerer and U. Pferschy. Improved dynamic
programming in connection with an FPTAS for the
knapsack problem. Journal of Combinatorial
Optimization, 8(1):5–11, 2004.

[18] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack
problems. Springer Verlag, 2004.

[19] A. Kleywegt and J. Papastavrou. The dynamic and
stochastic knapsack problem. Operations Research,
46(1):17–35, 1998.

[20] A. Kleywegt and J. Papastavrou. The dynamic and
stochastic knapsack problem with random sized items.
Operations Research, pages 26–41, 2001.

[21] E. Lawler. Fast approximation algorithms for knapsack
problems. In 18th Annual Symposium on Foundations
of Computer Science, 1977., pages 206–213, 1977.

[22] A. Lodi, S. Martello, and D. Vigo. Heuristic and
metaheuristic approaches for a class of
two-dimensional bin packing problems. INFORMS
Journal on Computing, 11(4):345–357, 1999.

[23] A. Marchetti-Spaccamela and C. Vercellis. Stochastic
on-line knapsack problems. Mathematical
Programming, 68(1):73–104, 1995.

[24] S. Martello, M. Monaci, and D. Vigo. An exact
approach to the strip-packing problem. INFORMS
Journal on Computing, 15(3):310, 2003.

[25] S. Martello and P. Toth. Knapsack problems:
algorithms and computer implementations. 1990.

[26] J. Papastavrou, S. Rajagopalan, and A. Kleywegt.
The dynamic and stochastic knapsack problem with
deadlines. Management Science, 42(12):1706–1718,
1996.

[27] S. Sahni. Approximate algorithms for the 0/1
knapsack problem. Journal of the ACM (JACM),
22(1):115–124, 1975.

[28] S. Taboun and S. Bhole. A simulator for an
automated warehousing system. Computers &
Industrial Engineering, 24(2):281–290, 1993.

[29] R. Tsai, E. Malstrom, and W. Kuo. A three
dimensional dynamic palletizing heuristic. Progress in
Material Handling and Logistics, 2:181–201.

[30] R. Van Slyke and Y. Young. Finite horizon stochastic
knapsacks with applications to yield management.
Operations Research, 48(1):155–172, 2000.

[31] H. Yaman and A. Sen. Manufacturer’s mixed pallet
design problem. European Journal of Operational
Research, 186(2):826–840, 2008.

