Project No. \qquad Project Director: \qquad		
Sponsor: Rockwell Intemational Corp., Columbus, or		
TYpe Agreament: Agreement for Services V161-SA-113203		
Award Period: From 6/1/81 To (Performance) (Reports)		
Sponsor Amount: $\$ 10,000$ Contracted through:		

Title: Development of Tank RCS Model
ADAINISTRATTVE DATA OCA CONTACT William F. Brown $x 4820$

1) Sponsor Technical Contact: Mr. R. C. Perry, Manager; Systems Engineering; Missile System Division; 2. O. Box 1259; Columbus, OH 43216
2) Sponsor Admin./Contractual Contact: Mr. A. George Miller, Senior Buyer, RockwellIntermational Corp. . Missile Systemis Division; 4300 E. 5th Ave.; P. O. Box 1259;Columbus, OH 43215 (614) 239-2440
Reports: See Deliverable Schecule Security Classification: nonenone
RESTRTCTIO:US

Travel: Eoreign travel must have prior approval - Contact OCA in each case. Domestic travel requires sponsor approval where total will exceed greater of $\$ 500$ or 125% of approved proposal budget category.

Equipment: Title vests with none proposed

Wing -

 COMMENTS $=+2$
COPIES TO:

Administrative coordinator, 4 , Research Security Services

\square Final Invoice or Final Fiscal Report
\square Closing Documents
\square Final Report of Inventions

Govt. Property Inventory \& Related Certificate

Classified Material Certificate
\square Other

Continues Project No.

\qquad Continued by Projact No.

COPIES TO:

Project Director

Library

Research Administrative Network
Research Property Management
GTRI
\qquad

Accounting
Procurement/EES Supply Services
Research Communications (2)
Project File
Research Security Services
Reports Coordinator (OCAD
Legal Services
Form OCA 60:1028

COMPLEX SCATTERING. RADAR CROSS .SECTION MODEL

by

D. A. Newton

Phase One Final Technical Report GIT/EES Project A-2986

Prepared under
Rockwell International
Purchase Order V161-SA-113203

GEORGIA INSTITUTE OF TECHNOLOGY Engineering Experiment Station Atlanta, Georgia 30332

SECTION Page
1 MODEL METHODOLOGY. 1
1.1 SCATTERER SHAPES 1
1.2 TOTAL TARGET RCS 2
1.3 MODEL LIMITATIONS 5
2 T-72 TANK RCS MODEL 5
2.1 SCATTERER COORDINATE DETERMINATION. 6
2.2 SCATTERER IDENTIFICATION CODES. 9
2.3 SCATTERER WEIGHTING FACTORS 9
2.4 DATA FILE MANIPULATION. 9
REFERENCES 17
FIGURE TITLE PAGE
1 Triangular flat plate 3
2 Truncated cone frustum 3
3 Blueprint of the $T-72$ turret used in thestrip mode digitization method 84 Computer-generated drawing illustrating theREFLECT capability of EDITR. 11
5 Computer-generated drawing illustrating theROTATE capability of EDITR 12
6 Computer model of the Soviet T-72 tank at anelevation angle of 90°147 Computer model of the $T-72$ turret at an elevationangle of 30° and an azimuth angle of 45°. 15
8 Computer model of the $T-72$ at an elevation angle of 30° and an azimuth angle of 45° 16

COMPLEX SCATTERING RADAR CROSS SECTION MODEL

A mathematical model has been developed at Georgia Tech for estimating the radar cross section (RCS) of complex targets. The model was originally developed to predict the RCS of submarine masts and periscopes [1,2], and later expanded to include larger targets such as patrol boats, amphibious assault landing craft, ships, and tanks [3,4,5]. Under Purchase Order V161-SA-113203 from Rockwell International, these RCS modeling techniques have now been applied to the Soviet T-72 Main Battle Tank.

1. MODEL METHODOLOGY

The target is represented as a collection of many scatterers of simple geometric shapes. The major types of scatterers handled by the model at this time are triangular flat plates, spheres, truncated cone frusta, and dihedral and trihedral corners. The computer model calculates the RCS of the individual scatterers on the target by physical optics methods and forms the phasor sum to arrive at the total cross section. This RCS value is the effective cross section since the model takes into account the multipath effects. RCS calculations based on the use of physical optics theory to derive a closed form analytic solution for the cross section of the simple geometric shapes are preferable to "brute force" numerical integration techniques when considering the enormous amount of computer time to implement the latter.

1.1 SCATTERER SHAPES

The geometric shapes chosen to be scatterer types are general enough to be implemented in a variety of modeling tasks including ships, landing craft and planes, as well as the Soviet T-72 Main Battle Tank modeled for Rockwell International. Flat plates, the most conmon and versatile of the scatterer types representing the $T-72$, are used to model flat areas of the tank, such as the walls, and many rows of small flat plates are utilized in areas with some curvature, such as the turret. The second most prevalent geometric
shape used on the $T-72$ is a cylinder. The gun barrel is composed of a collection of cylinders with different radii. Also the modeling scheme includes dihedrals and trihedrals which are used when two or three flat plates meet at near right angles, creating effective corner reflectors.

The triangle is chosen as the geometric shape for flat plate scatterers for several important reasons. For one, three noncolinear points define a plane. A polygon of more than three points is not used because of the difficulty encountered when locating more than three coplanar points. Thus, it is much easier with triangles to ensure that scatterers lie in the plane of the two-dimensional drawings used to construct the model. Another reason for choosing triangles is that any contoured surface can be approximated with triangles. The tank turret is a prime example of the use of triangles to approximate smooth contours. Triangular flat plates are defined by the Cartesian coordinates of the vertices as shown in Figure 1. These plates are assumed to be one-sided so that a counterclockwise numbering scheme of the vertices defines the direction of the outward pointing normal n as shown. This one-sidedness is useful in shadowing algorithms to determine whether the plate is facing towards or away from the radar.

The truncated cone frustum is another very general shape including both the cylinder and the cone as special cases. It is defined by the coordinates of the two ends of its central axis and by the radil of the two ends (see Figure 2). Note that when the two radii are equal, the frustum reduces to a cylinder, and when one of them is zero, it becomes a cone. All frusta are assumed open ended, so only the side of the frustum is modeled, not the ends or the interior. If the ends of a particular frustum are of importance, they can be covered by one or more flat plate scatterers.

1.2 TOTAL TARGET RCS

For each scatterer on the target, an effective RCS value is calculated by taking into account the multipath effects from the earth's surface. Multipath is the interference between the radar waves that travel directly from the radar to the scatterer and those that bounce off the earth's surface before and/or after reaching the scatterer. The model utilizes inputs from the user to calculate the attenuation of the signal that bounces off the earth's surface.

Figure 1.

Truncated cone frustum.
Figure 2.

The computer model has several options for adding the returns from the individual scatterers to form an RCS for the entire tank. One of the methods is known as a coherent summation in which the relative phase angle of each scatterer is included in the summation. This can cause effects such as constructive and destructive interference between the scatterers. The phase of the return signal from each scatterer can also be calculated in one of two ways, depending upon whether the target is in the near or far field. The far field is where the incident waves are approximately planar as opposed to spherical. The usual criterion for determining whether a target is in the far field is:

$$
R>2 d^{2} / \lambda
$$

where R is the range from the radar to the target, d is the maximum dimension of the target element, and λ is the radar wavelength. Whether the target is in the far field or the near field, the length of the path from the radar to each particular scatterer is correctly calculated to determine that scatterer's phase angle. Note that the model always assumes a plane wave over the dimensions of an individual scatterer. It is only in looking at the target as a whole and in the relative phases between the scatterers that the near/ far effects are considered.

Another method for finding the total RCS of a target is known as incoherent summation. Here, the phase angles are not considered so only the magnitudes are added. An incoherent summation would be deemed more useful when the main question is detectability, since in detection analysis, the target will usually be quite some distance from the radar and the radar return will typically be integrated over some number of radar pulses. At these distances, the target subtends a very small solid angle with respect to the radar so a plane wave front of constant phase is incident over the entire target, and pulse-to-pulse phase effects are averaged out over the integration time of the radar signal processor. The major differences between coherent and incoherent predictions are in the depth and frequency of the nulls and the heights of the peaks, due to phase effects.

For much closer ranges, however, a coherent summation is used, since a near field prediction is totally dependent on the phase of each
scatterer's return. Calculations on a pulse-by-pulse basis, such as those required for an impact point prediction for a seeker, also depend strongly on phase effects. For this case, a coherent summation is used.

Before a scatterer's RCS is added to the total sum, it is multiplied by a weighting factor known in the program as WT. This "weighting factor" can be any real number between 0 and 1 , where a $W T=1$ represents a perfectly reflecting metallic surface. These WTs are used quite extensively to simulate nonmetallic scatterers such as dielectrics (fiberglass, for example) or radar absorbent material (RAM).

1.3 MODEL LIMITATIONS

One feature not considered by the model is the effect of cavities, or re-entrant features, such as the driver's hatch. The theoretical problems associated with developing an accurate analytical description of the return from arbitrary re-entrant structures are practically insurmountable at the present time. Another scatterer type not considered in the model is the general doubly curved surface (hyperboloid, ellipsoid, etc.). The only doubly curved surface available is the spheroid, which is used mainly to represent antenna radomes on ships and other naval craft. The major feature with a doubly curved shape on the $T-72$ is the turret, but the radii of curvature of the curved sections of the turret are generally so large that, to a good approximation, the turret is relatively flat over small regions. Thus, the turret is most easily modeled as a collection of triangular facets (flat plates), and there is no need to consider general doublycurved surfaces as a unique scatterer type.

2. T-72 TANK RCS MODEL

Any results derived from the analysis of a model are no better than the model itself. Consequently, a crucial consideration in evaluating the results of this project is the fitness of the model. However, before one can examine the question of the fitness of a model, one must establish a measure of
fitness; that is, one must examine the function or purpose of a model and determine how well the model satisfies this function or purpose.

The model is first and foremost a radar model. The fitness of the model is a function only of how well it simulates what a radar would "see" when illuminating a real tank. The modeling effort is not intended to be a scaled down replica of the actual target, correct in every detail. Rather it is an attempt to simulate the target as it appears to a radar at milimeter wavelengths. Most details are significant to the radar at millimeter wavelengths, therefore the model includes many small structures that would be excluded if the model were to be constructed solely for use at longer wavelengths. Yet, there are details that are significant to the human eye which are insignificant to the radar; for example, the support brackets used to carry the snorkel on the left side of the turret. These brackets are partially obscured by the snorkel and may not be constructed of metal. Items like these are not good reflectors and are usually excluded from the model whether it is created for microwave or millimeter wavelengths. Nonetheless, details which are significant to the radar are present and are modeled to simulate as nearly as is feasible what the radar would actually "see" when illuminating the actual tank.

The above introductory remarks aside, the following discussion examines how the individual components of a typical tank model are determined, how the model is structured in the computer, how the model is handled and manipulated by the user, and how various features of the tank are modeled. Before surveying the model as a whole, one must examine each of the individual components.

2.1 SCATTERER COORDINATE DETERMINATION

First, the question of how these components are initially created must be addressed. The creation of a component is actually the determination of the weight factor, identification code, and coordinates of a particular element of the model and the entry of this information into a data file. Since weight factors (to be discussed later) are determined by straightforward calculation, and identification codes (also to be discussed later) by some reasonable, although often arbitrary, naming scheme, the discussion to follow will focus on the determination of component coordinates.

Three methods are available for use in the development of the tank model for determining component coordinates and entering these coordinates into a data file. The Strip Mode Digitization (SMD) method is the most efficient way to enter coordinates. In this digitization process, one first places a photograph or drawing of some portion of the tank on a digitizer tablet and enters three reference points of known coordinates. After entering the reference points, one enters unknown points from the drawing or photograph, and the computer then determines the coordinates of these points and enters them in a data file.

The SMD method can be illustrated by considering the turret of the $T-72$. Figure 3 shows the turret at an 90° elevation angle, hence the observer is looking straight down on the turret. The cross-sectional lines which are drawn for the front left quarter of the turret represent cuts through the tank in given $z-p l a n e s . ~ I n ~ g e n e r a l, ~ i f ~ t h e ~ c o n t o u r ~ l i n e s ~ o f ~ t h e ~ t u r r e t, ~$ in the $x-y$ plane, are defined by N rows of M points per row, one would have to digitize M points per row and enter Z-coordinates of each rib cross section. The digitization algorithm then fills in each of the M-1 strips from the base of the turret to the top of the turret with triangles.

The second method of entering coordinates is the manual calculation of these coordinates from the tank drawings. The coordinates are then entered into a data file by hand. This method, although very simple and straightforward, is quite tedious and time consuming. The digitization process, as a whole, is much faster than the manual one, yet for some of the tank armament, it is more efficient to enter the points by hand because of the complexity of the armament. An example of this is the laser rangefinder.

A third method for entering coordinates is automatic digitization (AD). This method was developed to speed the manual coordinate determination and hand entry process. The difference in the $A D$ process and the $S M D$ process is that this method utilizes detailed drawings of two perspectives of the same portion of the tank simutaneously [6]. The available drawings of the $T-72$ were not adequate to use this process. This method, although not as efficient or accurate as the $S M D$ method, could be used to determine the coordinates more precisely and probably quicker than the hand entry process for the equipment on the turret.

Figure 3. Blueprint of the $\mathrm{T}-72$ turret used in the strip mode digitization method. Each cross-sectional line, as illustrated in the front left quarter, represents a cut through the turret in a given z - plane.

2.2 SCATTERER IDENTIFICATION CODES

A model can represent a large data file, requiring many kilobytes of computer storage. Because of volume, the data are stored as a binary rather than ASCII file to reduce memory requirements. Furthermore, it is a random access file, which minimizes the time required to access any given record within the file. Each record within the data file represents a single component in the tank model, and among other information, each record contains a unique record number and unique identification code. Whereas record numbers represent merely a sequential ordering of the components, without regard for function or physical location within the model, the identification code is much more informative from a model standpoint. For example, one record may have the identification code TURRET.HATCH.GUNNER.00040. This record is the fortieth triangular flat plate which, together with the other plates identified as TURRET.HATCH. GUNNER.*, composes the gunner's hatch located on the turret. Another example of the identification code is TURRET. BARREL. 000001 . This component is the first cylinder attached to the turret and, as the label suggests, is a portion of the gun barrel. The entire gun barrel is constructed with cylinders which are identified by the label TURRET. BARREL.*. These examples indicate the ease with which the records pertaining to any given portion of the model can be accessed in the data file.

2.3 SCATTERER WEIGHTING FACTORS

In addition to a unique number and identification code, each record also contains a weight factor (reflection coefficient) which is proportional to the attenuation of the electric field reflected by the component when illuminated by a radar. Such a weight factor can be used to take into account the presence of RAM on a particular model component, as well as the frequencydependent attenuation of waves illuminating non-metallic surfaces.

2.4 DATA FILE MANIPULATION

Because of the size and structure of a typical tank data file, an efficient means is needed to access and manipulate records within the file. This requirement is satisfied by a computer program called EDITR. Among other capabilities
this program permits the user to specify (by identification code or record number) and display a single record or a range of records. Thus, one might display the 114 th and the 115 th records in the file, or, by specifying TURRET.HATCH.GUNNER.*, for example, one can display the entire gunner hatch on the turret. Clearly, any portion of the model can be easily accessed by using the identification code scheme in conjunction with the wild card character *.

In addition to the two access modes described above, EDITR can delete a range of records or transfer a range of records from one tank file into another. Thus, one can easily investigate the effect on RCS of removing or adding equipment on the turret, such as tool boxes or supply drums, for example.

In addition to adding and deleting records from a data file, one can also use EDITR to modify existing records within that file. The user can modify the coordinates, the identification code, and the weight factor for any range of records, that range again being specified either by record numbers or by identification codes. The user also can shift a range of components by given distances in the x, y, and z directions. Using this capability, one can easily investigate the effects of moving a part of the tank, for example, a tool box, to another storage location. The EDITR also provides the capability of reflecting or rotating a specified range of records. In reflecting a range of records, EDITR creates the reflection of a given range of components about a plane specified by the user. The reflection capability of EDITR is illustrated in Figure 4. Obviously, such a tool can greatly reduce the amount of work in creating a model where symmetry exists, as in the case of the track and wheels, since one can create the left side of the tank and then obtain the right side by reflecting the left portion about the y plane.

The rotate option, illustrated in Figure 5, is another powerful tool for manipulating a model. To use the option, one merely specifies a line and an angle of rotation about the line. Thus, for example, to rotate a segment of the turret 30° off center, one simply specifies two points on the line determined by the intersection of the base of the tank and the turret, and the angle 30°. EDITR deletes the existing portion of the turret which was specified, and replaces it with the corresponding rotated segment.

Figure 4. Computer-generated drawing illustrating the REFLECT capability of EDITR. Shown in the drawing are the left tracks and wheels and the right track and wheels are constructed by reflecting the left portion about the x -plane.

Figure 5. Computer-generated drawing illustrating the ROTATE capability of EDITR. Shown in the drawing is the entire turret of the $T-72$ rotated 30° from the center line of the tank.

The above discussion of the EDITR, while not exhaustive, is sufficient to indicate the great power of this program for manipulating models. Although a data file may be quite large, manipulating such a file is quite easy. With a basic knowledge of the identification code scheme used for the tank and a familiarity with the capabilities of EDITR, one can examine with a few command lines the RCS effects on a given tank of a great number of variations and changes: rotating the turret and moving the snorkel from its storage position on the side of the turret into its upright functional position on the top of the turret, or replacing the existing machine gun with a gun of different caliber. The list is endless.

Figures 6 through 8 illustrate the radar models of the Soviet T-72 Main Battle Tank which are developed using the techniques described above. Obviously, the value of any study of tank RCS performed on the computer is directly proportional to the radar accuracy of the model. That is, the model must approximate as nearly as possible the actual tank from a radar point of view. Features which seem important to the human eye may or may not be important from the standpoint of the radar. One should keep this distinction firmly in mind, for the model is first and foremost a radar model. The radar model of the tank is modeled specifically for millimeter wavelengths; therefore most small details which are normally omitted at longer wavelengths, are included in this model. Some features which might seem important to a casual observer (for example, the support brackets on the left rear side of the turret) are judged to be relatively insignifcant to the eye of the radar and are not included in the model. The features which are excluded normally are excluded because they are poor reflectors, not simply because of size. In each case, the question of whether to include a particular feature or not is answered by consulting the radar rather than the eye.

Figure 6. Computer model of the Soviet T-72 tank at an elevation angle of 90°.

Figure 7. Computer model of the T-72 turret at an elevation angle of 30° and an azimuth angle of 45°. (Note: 0° and 90° azimuth angles represent the center front and the right side of the tank respectively).

Figure 8. Computer model of the $T-72$ at an elevation angle of 30° and an azimuth angle of 45°.

REFERENCES

1. M.T. Tuley, M.M. Horst, and K.B. Langseth, "Radar Modeling Studies (U)," Task 7 Final Report on APL Subcontract 600403, Georgia Institute of Technology, Engineering Experiment Station, July 1978, SECRET, XGDS.
2. M.M. Horst, D.A. Newton, and R.B. Rakes, "RCS Modeling of Submarine Masts (U)," Task 2 Final Technical Report on Contract N00039-79-C0467, Georgia Institute of Technology, Engineering Experiment Station, June 1981, SECRET.
3. M.T. Tuley, W.M. O'Dowd, and F. B. Dyer, "Radar Cross Section Reduction of Ships (U)," Phase One Final Technical Report on Contract NOOO39-79-C-0676, Georgia Institute of Technology, Engineering Experiment Station, April 1975, SECRET, XGDS.
4. M.M. Horst, D.A. Newton, and E.E. Martin, "JEFF AALC RSC Measurements and Modeling (U)," Final Report on Contract N00612-79-D-8004 HR-18, Georgia Institute of Technology, Engineering Experiment Station, January 1981, SECRET NOFORN.
5. M.M. Horst, et al., "Ship Radar Cross Section Preditions (U)," Final Report on Contract N00167-80-C-0048, Georgia Institute of Technology, Engineering Experiment Station, March 1981, SECRET.
6. J. E. Sutherland, "Three Dimensional Data Input by Tablet," Proc. IEEE, Vol. 62, No. 4, April 1974.

Phase II

PROGRESS REVIEW

Rockwell International
Purchase Order V161-SA-113203

17 September 1981

GEORGIA INSTITUTE OF TECHNOLOGY Engineering Experiment Station Atlanta, Ceorgia 30332

GIT/EES Project A-2986 Deliverable Number 2

A-2986
PROGRESS REVIEW
17 September 1981

A review of Phase II efforts under Rockwel1 Purchase Order V161-SA-113203 was held at Georgia Tech on 17 September 1981. Those present were Carl Bates and Bob Bensinger from Rockwell International, and Margaret Horst, Bruce Rakes, and Debbie Newton from Georgia Tech. The overall effort of the project was discussed by phase, with emphasis on Phase II efforts.

Phase I

A preliminary copy of the Phase I Final Report, " A Complex Scatterer RCS Mode1" was given to Carl Bates. Included in the report are line drawings of the T-72 computer model from different perspectives. Color reproductions of these line drawings as well as color pictures of the $T-72$ computer model using a light shadowig algorithm were also given to Carl Bates.

A demonstration of the completed computer model of the $\mathrm{T}-72$ tank was presented to Cari Bates and Bob Bensinger using the VAX $11 / 780$ computer and the Chromatics, an eight-color high resolution graphics device. Some of the capabilities of other Georgia Tech software were illustrated also, including the program EDITR, which accesses, edits, manipulates, and displays records within the model data file. A video presentation, which included the T-72 as well as other models developed by Georgia Tech, was given by Bruce Rakes. The possibility of Bruce presenting this short video tape of Georgia Tech's modeling capabilities to others at Rockwell was also discussed.

Phase II

A flow chart of the computer simulation to be developed under Phase II is presented on the following page. The Rockwell Driver was not discussed in detail. The remaining routines in the flow chart were discussed in detail and are to be supplied to Rockwell by Georgia Tech.

Figure 1. Flow chart of RCS and Track Error routines to be developed under Phase II.

CROSS MAIN is the main program which calls the remaining portion of the Radar Cross Section (RCS) and Track Error program. Basically, CROSS MAIN receives the inputs from the Rockwell driver, initializes and converts the inputs to their correct units, and calls the Read in Scatterer procedure.

This procedure reads in the record of each individual scatterer of the target model, including its record number, its scatterer type (either a flat plate or a cylinder), its identification code, its weighting factor, and either three end points, if the scatterer type is a flat plate, or two end points and two radii if the scatterer type is a cylinder. The routine then determines if the scatterer is visible to the radar. If the scatterer cannot be seen by the radar (e.g., a flat plate facing away from the radar), its contribution to target RCS is zero, and the routine proceeds to the next scatterer in the file.

The next step in calculating the RCS of a scatterer that is visible to the radar is determination of the complex reflection coefficient of the surface, which is needed for the multipath calculations. The reflection coefficient, ρ, can be either calculated using the Calculate Complex Rho routine, or can be an input, in which case this routine will be ignored. In both cases a value for p will be needed in the input file. If a calculated value for p is desired, then the value for p in the input file is a flag for the program to calculate a complex p for each scatterer. If the value for ρ in tin input file is the actual value, then the value will be used as a flag to skip the Calculate Complex ρ procedure and call the Find $\sqrt{\sigma}$ routine directly.
$\sqrt{\sigma}$, the quantity calculated in the routine named Find $\sqrt{\sigma}$, is the complex scattering length. The quantity desired from the model is Radar Cross Section, σ, which has units of area, and is a real number associated with received power in the radar equation. Since the return comprises several contributions, the complex voltages, $\sqrt{\sigma}$, should be summed before the amplitude is found and squared. The scattering length is determined from:

$$
\begin{equation*}
\sqrt{\sigma}=G_{f}+2 \rho G_{d}+\rho^{2} G_{I} \tag{I}
\end{equation*}
$$

$\rho=$ complex voltage reflection coefficient
$G_{f}=$ component of return due to the target, the direct-direct path, as if the ocean were not present (the free space contribution)
$G_{I}=$ component of return due to the image, the indirect-indirect path. This term must be multiplied by the square of the voltage reflection coefficient of the ocean surface, because the path involves two bounces from the surface.
$G_{d}=$ component of return due to the diplane term, the indirectdirect path or the direct-indirect path. This term must be multiplied by the voltage coefficient because of the single bounce and doubled because of the two reciprocal propagation paths.

After a value for the scattering length is found for a scatterer, the program calls the Antenna Pattern routine. This routine uses a standard antenna pattern and multiplies the antenna gain in the appropriate direction by $\sqrt{\sigma}$. This value is then passed to the Sum and Difference routine to determine the sum and dizference patterns, which are needed for the Track Error calculation.

The next step of the program decides if there are more scatterers left in the model which have not been read into the program. If so, the program calls the Read in Scatterer routine and each appropriate subsequent routine through the Sum and Difference routine. When all the scatterers in the model have been stepped through, the clutter routine is then called.

The clutter zoutine is a standard algorithm which calculates the clutcer from a flat hczogencus earth and then calculates the antenna gain for the clutter contribution. The Sum and Difference patterns are updated with clutter information, and the Track Error is calculated in both the azimuth and elevation directions in the Track Error routine. The track errors in elevation and azimuth are proportional to the difference signal divided by the sum signal. These values are then passed to CROSS MAIN and are returned to the Rockwell Driver.

The inputs fron the Rockwell Driver to the CROSS MAIN program were, also discussed in detail. The following are the radar parameters to be supplied by Rockwell: frequency (GHz), pulse width ($\mu \mathrm{s}$), and azimuth and elevation beamwidth (degrees). Clutter per unit area ($\mathrm{dBsm} / \mathrm{m}^{2}$) and the complex reflection coefficient, ρ, will also be inputs. The position of the target is specified as an input. The x, y, and z coordinates of the tank, from the radar, are specified in feet, along with the distance, Δx, to the center of the tank (feet).

The orientation of the model can be specified by the yaw, pitch, and roll angles (degrees) which are input by the Rockwell Driver. Yaw, pitch, and roll are right handed rotations about the z, x and y axes, respectively. The fixed body rotations are as follows: a positive yaw rotates the tank to the left, a positive pitch rotates the tank upwards, and a positive roll rotates the tank to the right.

The T-72 tank model can probably be used to simulate the newer T-80 tank; however, there is a possibility that the $T-80$ tank is equipped with a hydraulic system which elevates the tank some unknown distance. Because of the limited availability of information on the $T-80$, it is not known when the tank is raised (while moving or stationary) or the elevation to which it is raised. Therefore, to accomodate for the unknown, the height of the target can be manipulated by changing the orientation of the tank in the z-position. Hence, if more information becomes available in this area, the model can accomodate either a $T-72$ or $T-80$ model.

Phase III

The last major topic of discussion for the Review meeting involved suggestions and recommendations for further work. Several tasks were identified ョs immediately necessary or desirable as part of Phase III:
(1) Develop software for the coordinate transformations necessary to make the GIT RCS model and Track Error routines compatible with the Rockwell aissile simulation; i.e., write the software interface between the Rockwell Driver and CROSS MATN.
(2) Deliver to Rockwell International a digital magnetic tape containing:
a) Source code for GIT RCS/Track Error model and software
interface to Rockwell Driver.
b) Source code for FLECS preprocessor
c) Data file for the tank model developed under Phase I.
d) Data file for one simple test target.
e) Source code for a simplified translator program for target
data files.
(3) Deliver User Documentation for the GIT RCS/Track Error model, including documentation on model methodology.
(4) Provide support to Rockwell International in Columbus, Ohio, to aid in implementing the software delivered in (2) above, to verify that the software performs accurately on their PDP-1l computer, and to train Rockwell personnel in exercising the software.
(5) As part of the validation effort to ensure that the software is properly installed on Rockwell's PDP-Il, prepare a set of benchmark runs at Georgia Tech for comparison with results obtained at Rockwell. The benchmark data set shall include, at a minimum, 360° azimuthal polar plots of tank RCS and track error angle at 1° azimuthal increments for elevations of 15° and 25°. The main beam of the antenna shall be directed toward the defined origin for the tank data file coordinates.
(6) Analyze the effects of the "poor man's" hidden surface removal algorithm delivered with the GIT RCS model, as compared to a more sophisticated hidden surface removal algorithm, by computing RCS and track error using full hidden surface removal for a selected subset of conditions covered by the benchnark data described in (5) above. Compare the results with the benchmark data and make recomendations in a short memorandum report.
(7) Provide a table of suggested values for σ° (clutter cross section per unit area), σ_{s} (rms surface roughness), and ρ (the complex reflection coefficient), for different types of terrain of interest (e.g., open field, forest, urban area, snow), in a brief memorandum report explaining the suggested choices.

Other tasks identified as desirable outgrowths of current and proposed efforts, but probably scheduled for farther downstream, include: \quad.
(8) Explore means of identifying missile impact points on the tank, possibly through identification of the scatterer in the tank model whose midpoint is closest to the impact point. Assist Rockwell Intemational in the preparation of visual aids (photographs, slides, vu-graphs) depicting results of selected simulations, utilizing GIT computer graphics software and output devices.
(9) Implement a diffuse scattering term in the RCS model to allow for surface roughness in target e?ements.
(10) Validate the RCS model by comparing predicted RCS with actual measured data. This could be accomplished in one of three ways:
a) Georgia Tech could be tasked to develop a computer model for a specific target for which high quality, well-calibrated measured RCS data at frequencies of interest already exist in the literature (open or classified).
b) Georgia Tech or some other agency could be tasked to record calibrated RCS data at the appropriate radar frequencies on the $T-72$, for geometries similar to those encountered in the simulation.
c) A vehicle other than the $T-72$ could be selected; Georgia Tech tasked to model it; and Georgia Tech or some other agency tasked to measure its RCS.

Option (a) would probably have the lowest cost and, not surprisingly, the greatest uncertainty in the results. It is very difficult to conduct a model validation using data not gathered specifically for that purpose and possibly not Eocmented adequately for that purpose. Option (b) is reasomable, subject to the availability of a T-72 tank. Georgia Tech possesses the appropriate instrmentation radars and expertise to carry out such a measurement progran, or to act in an advisory capacity to others. If an appropriate $T-72$ is notavailable, Option (c) is a possibility. The vehicle choice would depend on availability as well as interest in the vehicle; if possible, selection of a vehicle for which some measured RCS data exist in the literature would provide an independent check on measurement accuracy as well as model validity.

RADAR GLINT MODEL

By

R. B. Rakes

Prepared for
ROCKWELL INTERNATIONAL MISSILE SYSTEMS DIVISION COLUMBUS, OHIO 43216

APRIL 1982

Software User Documentation

Georgia Tech/EES Project A-2986

RADAR GLINT MODEL

By
R. B. Bakes

```
Prepared for
Rockwell International Missile Systems Division Columbus, Ohio 43216
under Agreement V161-SA-113203
Prepared by
GEORGIA INSTITUTE OF TECHNOLOGY
Engineering Experiment Station Atlanta, Georgia 303332
```

April 1982

TABLE OF CONTENTS

SECTION TITLE PAGE
1 INTRODUCTION 1
2 IMPLEMENTATION OF PROGRAM MODULES 3
3 INPUT DATA FILE FORMATS 7
3.1 INTRODUCTION 7
3.2 GEOMETRY DATA FILE. 7
3.3 TARGET DATA FILE 13
4 REFERENCES 22
APPENDIX. 23

LIST OF FIGURES

FIGURE TITLE PAGE
1 Simplified flow chart of a typical Missile model illustrating the placement of calls of the Track Error/RCS subroutines 4
2 Comparison of the average backscatter per unit area for vertical and horizontal polarizations; 35 GHz 10
3Comparison of the average backscatter per unitarea for vertical and horizontal polarizations;95 GHz11
4 Target coordinate axes with rotation angles 12
5 Triangular flat plate geometry 14
6 Truncated cone frustum geometry. 15
(a) Dihedral and (b) trihedral geometry 16
8 Typical target drawn by SAMURAI. 18

LIST OF TABLES

1 DIELECTRIC CONSTANTS OF TERRAINS FOR COMPUTATION OF REFLECTION COEFFICIENTS... 9

SECTION 1. INTRODUCTION

This user's manual for the Georgia Tech Radar G1int computer model is intended as an aid for the programmer in the implementation of these routines into an existing missile seeker model. It is also meant to be used as a reference by the user of the missile model to aid in constructing the data files used by the Radar Glint routines.

The Radar Glint model enhances a missile model by simulating a monopulse tracking radar employed on the missile. The primary outputs of the model are the azimuth (yaw) and elevation (pitch) track errors which are used as inputs to the guidance portion of the missile simulation. One of the main advantages of this program is that the target of the missile is modeled as an extended target, i.e., as a large collection of individual scatterers, for the calculation of the radar cross section (RCS) as opposed to a single point target with a constant cross section. This allows for the effects of glint to be modeled more accurately. Another advantage of this computer model is that the effects of multipath and clutter from the ground plane are also included. As an added bonus, the program returns the location of the missile's impact point on the target (assuming it didn't miss!).

The implementation of these routines is relatively straightforward. Due to the modular nature of the Radar Glint model, the missile program needs to be modified at only two points with a minimum number of variables being passed. For ease of readability, these routines were written in FLECS (an extended version of Fortran) and developed on a Vax $11 / 780$ computer. They are also avallable for a SYSTEMS $32 / 7780$ computer. Detailed instructions for the implementation of the Radar Glint Model are found in Section 2.

Two data files are used for input to the Radar Glint model. The first of these is a geometry file that describes the spacial orientation of the target in a fixed reference frame. This data file also contains the terrain parameters for multipath and clutter. The other data file is the target model itself. It is a direct access, record oriented file that contains the three dimensional coordinate information to describe each of the scatterers that make up the target. The format of the target data file as well as the geometry file are described thoroughly in Section 3. As an additional
programmer's aid, a listing of the entire program as it presently exists on the $\operatorname{VAX} 11 / 780$ is included in Appendix A.

The Radar Glint model was developed from two earlier Georgia Tech computer programs: the Multipath/Clutter routines for the TAC ZINGER program [1] and the Radar Cross Section (RCS) model known as CROSS.[2] The Multipath/Clutter model produces track errors for monopulse radar, but is restricted to a single point target. The CROSS model was originally designed to calculate the RCS of ships, but has since been adapted to find the near field RCS of many other three dimensional targets including land as well as sea targets. Thus, a very powerful tool has been developed by combining these two programs into the present Radar Glint algorithm.

The Radar Glint model is designed as a set of subprograms to be inserted into a missile seeker program. The purpose of this section is to describe the procedures involved in implementing these routines.

The set of subroutines that make up the Radar Glint model is written in a structured superset of Fortran 77 known as FLECS (Fortran Language Extended Control Structures). Before these routines can be compiled by the Fortran compiler, they must be run through the FLECS preprocessor to translate the FLECS sources to standard Fortran. The FLECS preprocessor is available for the VAX $11 / 780$ and the PDP 11 family as well as many other computers. Since FLECS is completely compatible with standard Fortran, there should be no problem in interfacing the Radar Glint model with a missile model written in standard Fortran.

To simplify the implementation of this model, only two subroutines are to be called directly by the main missile program with a minimum number of arguments being passed. The I / O used by the Radar Glint routines such as the handing of the target and geometry data files (see Section 3) is taken care of entirely by the subprograms and should not interfere at all with the operation of the main routine. Thus, the only modification to the main missile model should be the placement of the two subroutine calls. To aid in this placement, Figure 1 illustrates a simplified flow chart showing the primary Radar Glint modules and how they would interface with a typical missile model. The modules surrounded by the dashed lines represent the Radar Glint subroutine calls.

The first of the two subroutine calls to be placed in the missile program is a call to the subroutine MULTIN (for MULTIpath INitialization). This subroutine call should be inserted in the initialization portion of the missile program and should only be called once since it serves to initialize the Radar Glint model. The MULTIN routine opens three data files used internally by the Radar Glint model. The programmer must insure that the unit numbers used for these three data files are unique, i.e., they must not be used anywhere else in the missile program. The unit numbers currently used in the Radar Glint routines are 2,3 , and 5 , which refer to the target data file,

Figure 1. Simplified flow chart of a typical Missile model illustrating the placement of calls to the Track Error/RCS subroutines.
the geometry file, and the scratchpad data file, respectively. For details on the formats of these data files, see Section 3.

The subroutine MILTIN passes only three real arguments and will appear as shown below:

CALL MULTIN (XTARG, YTARG, ZTARG)

The arguments XTARG, YTARG, and ZTARG are the X, Y, and Z coordinates in feet of the target's position in a fixed earth reference frame. Since the target actually covers an extended volume, this XYZ location is the position of the origin of the target's internal coordinate system. This information is returned from MULTIN where it is read from the geometry data file and then passed to the main missile program. These coordinates will then remain unchanged throughout the remainder of the simulation since the target is assumed to be stationary. It is especially important to remember that the arguments for MULTIN must be variables and NOT constants since the data are to be returned from MULTIN to the missile program and not the other way around.

Another purpose for the MULTIN subroutine is to set the radar parameters for the missile seeker system. The parameters used by the Radar Glint program are the frequency, the pulse width, and the antenna beamwidths. These parameters are set by inserting several assignment statements at the beginning of the MILTTIN subroutine. The variable FREQ must be set to the frequency in Gigahertz. The variable PW is the pulse width in nanoseconds. The variables BWTL and BWT2 are the transmitted 3 dB elevation and azimuth beamwidths, respectively. The variables BTUR1 and BWR2 are the recelved elevation and azimuth beamwidths, respectively.

The other subroutine to be called by the missile model is MULIP (for MILTIPath, track error, and RCS). Since its purpose is to return the azimuth and elevation track errors which need to be supplied to the rissile guidance algorithm, it should be placed inside the main loop of the program where it can be called once for every update of the missile's position and velocity vectors as well as the radar's boresight direction. The call to MULTIP has 10 real arguments and will appear as follows:

CALL MULTIP (XS,YS,ZS,XT,YT,ZT,AZS,ELS,AZERR,ELERR)

The first eight of the arguments are the input variables to MULTIP. The variables $X S, Y S$, and $Z S$ are the X, Y, and Z coordinates in feet of the seeker position in the fixed earth frame. XT, YT, and ZT are the coordinates of the target's origin, also in feet. The variables AZS and ELS are the azimuthal (yaw) and elevation (pitch) directions of the missile's radar boresight. They are both measured in radians. The range of values for the azimuth is from 0 to 2 , measured clockwise from the Y-axis in the fixed earth frame. The positive sense for the elevation is above the horizontal plane.

The two output variables are AZERR and ELERR which are the azimuthal and elevation track errors. These two values indicate the direction off boresight at which the phase center of the target appears. Thus, these are the values that need to be input to the missile guidance algorithm so that the missile may make the proper adjustments in tracking the target. Both of the track error angles are measured in radians, with respect to the boresight. The positive sense of the azimuthal error is to the right of the boresight, and for the elevation error, the positive sense is up.

3.1 INTRODUCTION

The Georgia Tech Radar Glint program utilizes three data files in its operation. Two of these are input data files for describing the orientation and position of the target as well as its shape. The third data file is an Internal unformatted file used solely as 'scratch pad' memory by the program due to memory limitations of most minicomputers. The primary purpose of this section is to describe the format of the two input files to aid the user in both the maintenance and understanding of existing data files as well as the creation of new data files for the running of different scenarios.

3.2 GEOMETRY DATA FILE

The geometry data file is a relatively simple data file that describes the orientation and position of the missile's target. It is an ASCII data file that can be easily updated or created by most text editors. The geometry file is opened, read, and closed by the module MULTIN which uses device number 2 as its input channe1. This number could be changed, of course, if it conflicts with any files opened by the main missile program.

The format of the geometry data file is as follows:

$$
\begin{aligned}
& \text { Line } 1: \text { ROJJGH, DEC, SIGODB } \\
& 2: \text { XTARG, YTARG, ZTARG } \\
& 3: \\
& 4 \text { IORDER } \\
& \text { ALPHA, RETA, GAMMA }
\end{aligned}
$$

Since this data file is read in using a free field format, no special columnar formatting is needed. Commas, spaces, and/or carriage returns may be used as variable delimiters.

The variables on line 1 of the geometry data file refer to the electrical characteristics of the ground plane. The Radar Glint model assumes a flat, homogeneous terrain upon which the target sits. Multipath reflection of the radar's signal as well as background clutter can occur from the ground plane, hence the necessary parameters to describe these phenomena are found in line

1. The real variable $R O U G H$ is the root-mean-square surface roughness in feet of the terrain. DEC is a complex variable that contains the complex dielectric constant of the terrain. The last variable, SIGODB, is a clutter parameter for the terrain. This real variable represents the average cross section per unit area of the clutter (ι^{0}), measured in decibels (dB). Some typical values for the complex dielectric constant for various terrain types are listed in Table 1. Figures 2 and 3 are supplied to give some indication of possible values for σ°. These graphs present some land clutter data taken by Georgia Tech in 1975.[3]

Line 2 of the geometry data file contains the X, Y, and Z coordinates of the target's position as expressed by the variables XTARG, YTARG, and ZTARG. The Radar Glint model assumes a fixed earth, right handed Cartesian coordinate system in which the Z axis points towards the zenith and $Z=0$ is on the earth's surface. The "target's position" is defined as being the origin of its own internal coordinate system, i.e., the point on the target from which all the internal target's coordinates are measured as described by the target data file (see Section 3.3).

The third line in this input data file is the integer array IORDER which is dimensioned to three. This array describes the order of rotations which may be performed on the target to obtain the desired orientation. By default, the target is oriented in the directions shown in Figure 4. That is, the front of the target points in the Y direction and the right side of the target points in the X direction. The vertical direction of the target is parallel to the Z axis. Successive yaws, pitches, and rolls may be performed to reorient the target into a new position. The definition of yaw, pitch, and roll in the context of the target's orientation are defined in Figure 4. Yaw may be thought of as rotation about the Z axis, pitch as a rotation about the X axis, and roll as a rotation about the Y axis. The positive sense for all three rotations is counterclockwise.

The purpose of the IORDER array is to define the order of these rotations since doing a yaw before a pitch has a different outcome than performing a pitch before a yaw. The rotations of yaw, pitch, and roll are designated by the integers 1,2 , and 3 , respectively. The first angle to be rotated is IORDER(1), the second is IORDER(2), and the third is IORDER(3). An example of IORDER is $2,1,3$ which means do pitch first, yaw next, and roll last. Another

TABLE 1

DIELECTRIC CONSTANTS OF TERRAINS FOR COMPUTATION OF REFLECTION COEFFICIENTS

Terrain Type		ε_{1}	ε_{2}
1. Bare Soil	dry wet	2.44 20.0	.00267
2. Grass	dry	2.0	
	wet	20.0	0
3. Sand	dry	2.55	0

where ε_{r} is the complex dielectric constant
and $\quad \varepsilon_{r}=\varepsilon_{1}-j \varepsilon_{2}$

Figure 2. Comparison of the average backscatter per unit area for vertical and horizontal
polarizations; 35 GHz .

Figure 3. Comparison of the average backscatter per unit area for vertical and horizontal polarizations; 95 GHz .

Figure 4. Target coordinate axes with rotation angles.
example would be $3,1,2$ which means do roll first, then yaw, and finally pitch. The integers 1,2 , and 3 must each be used once and only once in the array IORDER. Thus IORDER $=2,2,1$ is obviously unacceptable.

The last line of the geometry input file contains the rotation angles themselves for the amount of yaw, pitch, and roll to be performed. Here, ALPHA is the amount of the first rotation specified by IORDER, measured in degrees. BETA corresponds to the second rotation, and GAMMA is the third rotation. Thus if IORDER $=3,2,1$, then ALPHA, BETA, and GAMMA would correspond to the amounts of roll, pitch, and yaw, respectively. Remember that a positive value for any of these angles means a counterclockwise rotation.

3.2 TARGET DATA FILE

The target data file describes the missile's target by representing it as a discrete set of radar scattering elements. A typical target may contain as many as several thousand of these scattering elements which will henceforth be referred to simply as scatterers. The Radar Glint model presently handles five types of scatterers. They are the triangular flat plate, the truncated cone frustum, a dihedral corner, a trihedral corner, and an ellipsoid.

The triangular flat plate is the most prevalent scattering type in a target model. Because almost any surface can be defined as a mesh of triangular facets. In the Radar Glint model, the triangular flat plate is described by the X, Y, and Z coordinates of the three vertices. Since these flat plates are considered to be single sided, the direction of the outward pointing normal to the surface is defined by a counterclockwise ordering (right-handed) of the vertices as illustrated in Figure 5. The right circular truncated cone frustum scattering type covers many singly curved surfaces. It is defined by the X, Y, and Z coordinates of the centers of the two end faces as shown in Figure 6. The radil of both the faces are also necessary to completely define the cone frustum. Note that the first end point is always the one with the larger radius. Two special cases of this scattering type are the cylinder (both end radii are equal) and the cone (the second end radius equals zero).

The other two scattering types are the multifaceted dihedral and trihedral which are illustrated in Figure 7. The purpose for defining these

Figure 5. Triangular flat plate geometry.

Figure 6. Truncated cone frustum geometry.

Figure 7. (a) Dihedral and (b) trihedral geometry.
scatterers as a separate type is to take into account the multiple bounce effects that enhance the RCS wherever right-angled corners occur. These corners could not be described by individual triangles since the Track Error RCS model has no provision for multiple scatterer interactions. The trihedral is made up of three quadrilaterals whose points are ordered counterclockwise to orient the outward pointing normals. The central vertex of the trihedral is defined as point 1 for each of the three quadrilateral faces. The dihedral is defined similarly, except that there are only two quadrilaterals. In this case, point 1 for each face is defined to be the leftmost common vertex.

Due to the immense size of the target models, a special editor has been written to create or modify a target data file. This editor is known as SAMURAI, for Simulation And Modeling Used in Radar Analytical Investigations. It was designed at Georgia Tech and was originally intended for the building of ship data files, but has since been used for other targets such as airplanes and tanks as well. The SAMURAI editor is a very powerful editor in that it allows a user to both edit andor graphically display the contents of the data base for the three dimensional model. The editor's command structure is line oriented with a complete HELP facility. All commands may be entered directly from the keyboard or from a separate command file. Commands include translation, reflection, rotation, scaling, deletion, and merging as well as many graphical display commands. Along with the geometric information, the editor tags each record with a descriptive identifier which may be referenced by many of the commands to allow operation on a single element or a selected subset of elements.

SAMURAI supports a number of graphic output devices as well as a variety of display formats. Displays may be simple line drawings with no hidden line removal, line drawings with "poor man's" hidden surface removal, or a shaded image with complete hidden surface removal. Shaded drawings may also be used to display radar information by allowing the intensity of color of each displayed scatterer to represent the relative radar return due to that scatterer. SAMURAI currently supports four color raster displays, two incremental plotters and a dot matrix printer/plotter; the addition of more devices is a relatively simple task. Figure 8 illustrates a typical target data file created using SAMURAI and drawn by SAMURAI.

Figure 8. Typical target drawn by SAMURAI.

The format of the target data files created by SAMURAI and used by the Radar Glint program is a direct access disk file with fixed length records (128 bytes per record). The first 66 records of each file form a header block and are reserved for information which identifies the target being modeled and the date and time of creation for the file. The remaining records contain the information about the individual scatterers and are arranged as a doubly linked list.

Of the 66 records at the beginning of the file, only the first five are currently used. The rest are reserved for future enhancements. The first record contains the name of the target, while the second record has the name of the original author of the data file. The next three records are used to record the date and time of creation of the file. The most important record in the header block is record 66. The first two bytes of this record contain the pointer to the first scatterer in the data file. This pointer is stored in an INTEGER*2 format and has an offset of 66. That is, if this pointer contained the value 1 , it would actually reference the 67 th record in the data file. The programmer would have to add the offset of 66 to the pointer value to actually reference the specified data record. The other important information stored in the $66 t h$ record is the total number of scatterers contained in this target data file. This value is also stored as an INTEGER*2 value and is found in bytes 9 and 10 of the 66 th record.

The rest of the file is made up of the data records that describe the scatterers which form the target model. In general, one record is used to describe a single scatterer. In some special cases, an additional record is needed to supply more coordinate information for a complicated scatterer (dihedral or trihedral). The standard format for a data record is as follows:

FIELD DESCRIPTIONS

4 bytes, the first three bytes are the initials of the last person to edit this particular record.

IDSTRING 60 bytes which are used to store an identification code unique to the particular scatterer. This code may be used in a large number of selective search operations. Each ID consists of a number of text fields separated by periods. A possible ID could be:

TURRET.GUN. BARREL.000010

This would identify this scatterer as a component of the main gun which is part of the entire turret structure.

TIME 4 bytes which contain the date and time of the last update made to this scatterer. The time is given as the number of minutes since $1-J A N-80$ 00:00.

TYPE 2 bytes which contain an integer that identifies the type of scatterer. The current types are:

1 - A truncated cone frustum.
2 - A triangular flat plate.
3 - An ellipsoid.
4 - A trihedral.
5 - A dihedral.

FPTR 2 bytes which contain a pointer to the next scatterer in the file. A value of 0 indicates that this is the last scatterer in the file. All pointers have the intrinsic offset of 66 as described above.

BPTR 2 bytes which contain a pointer to the previous scatterer in the file. A value of 0 for this pointer indicates that this is the first scatterer in the file.

SPECL

2 bytes which contain a pointer to an auxiliary record which is used to hold additional coordinate data for trihedral and dihedral reflector types. A value of 0 indicates that there are no other records associated with this scatterer.

4 bytes which contain a real floating point value used as a weighting factor for this particular scatterer. This weighting factor is usually the reflection coefficient of the material that this particular scatterer is made of. It can be used to simulate dielectrics or Radar Absorbent Material (RAM). For metal scatterers, the value is usually 1.

48 bytes which contain 12 real values treated as an array of coordinates which define the actual scatterer. If there is an auxiliary record specified, it is treated as an extension of this field. These values are best thought of as an array dimensioned as COORD (3, 4, 3). The first index selects the X, Y, or Z value of the vertex which is specified by the second index. The third index identifies which plate of a trihedral or dihedral is to be used. For frusta, the first two XYZ points are the centers of the faces of the frustum, and the next two reals are their respective radif.

SECTION 4. REFERENCES

1. S. P. Zehner and M. T. Tuley, Eds. "Development and Validation of Multipath and Clutter Models for TAC ZINGER In Low Altitude Scenarios," Final Report on Contract No. F49620-78-C-0121, Georgia Institute of Technology, Engineering Experiment Station, March 1978, UNCLASSIFIED.
2. M. M. Horst et al., "Ship RCS Predictions (U)," Final Report on Contract N00167-82-M-0737, Engineering Experiment Station, Georgia Institute of Technology, January 1982, SECRET.
3. N. C. Currie et al., "Radar Land Clutter Measurements at Frequencies of $9.5,16,35$, and $95 \mathrm{GHz}, "$ Technical Report No. 3 on Contract DAAA 25-73-C-0256, Engineering Experiment Station, Georgia Institute of Technology, 2 April 1975, UNCLASSIFIED.

APPENDIX
RADAR GLINT MODEL
PROGRAM LISTING

00001		TRERR3. FLX - TRACK ERROR CALCULATIONS.
00002		
00003		MODIFIED 日Y R. ${ }^{\text {g. RAKES ON 2/23/82 }}$
00004		
00005		
00006	1	PROGRAM DRIVER
00007		
00008		This stand-alone program is a front end driver for the QA. TECH.
00009		Track Error/RCS model. It is used only as debuging tool and will not be included in the implementation of these routines into
00010		
00011		en existing missile seeker program.
00012		
00013		
00014	2	PARAMETER PI = 3.141593
00015		
00016	3	COMMON /RCS/ TOTAL_RCS : Used only in this driver a MULTIP
00017		
00018		
00019	4	OPEN (UNIT = O, NAME = 'OUT*FILE', TYPE = 'NEW')
00020		
00021	5	CALL Multin (xt, Yt, $2 T$) : Initialize multipath and clutter.
00022		
00023	6	XTARE $=X T$
00024	7	YTARO $=$ YT
00025	8	ZTARE $=\mathbf{Z T}$
00026		
00027	9	TYPE *, 'siant range (ft), elevation (deg) : ${ }^{\text {(}}$
00029	10	ACCEPT *, RANGE, ELDEC
00029	11	TYPE *'Azimuth : Inital, final, \& increment (deg) =.
00030	12	ACCEPT *, AZI, AZF, AZINC
00031		
00032	13	WRITE (0 , * AZI, AZF, ALINC
00033		
00034	14	
00035	15	
00036		AZDEG = AZI
00037	16	REPEAT UNTIL (AZDEG. GT. AZF)
00038	18	- AZ = AZDEG * PI / 180.
00039	19	
00040	20	. UNTIL (AZ_BORE . CE. O.) AZ_BORE = AZ_BORE + 2. \#PI
00041	22	- EL_BORE E-EL
00042	24	- $\mathrm{XS}=\mathrm{RANGE*COS(EL)*SIN(AZ)}$
00043	25	- YS = RANGE*COS(EL)*COS(AZ)
00044	26	. $\mathbf{Z S}=$ RANGE*SIN(EL)
00046	27	
00047	28	
00048	29	- ZT = ZTARE
00049		
00050	30	. CALL MULTIP(XS, YS, 2S, XT, YT, ZT, AZ_BORE, EL_BORE, 1. AZER, ELER) !COMPUTE MUTIPATH, CLUTTER, TRACK ERROR.
00051		
00053	31	. AZERDEG = AZER * 180./PI

00054
00055
00056
00057 00058
00059 00060

32
33
34
35
ELERDEG = ELER - 180./PI
. WRITE (O. . AZERDEC, ELERDEG,TOTAL_RCS
4 . AZDEC = AZDEC + AZINC
..FIN
(FLECS 77 VERSION 22.38)
MODULE CONTAINS NO MINDR ERRORS MODULE CONTAINS NO MAJOR ERRDRS

00114 00115 00116 00117 00118 00119 00120 00121 00122 00123 00124 00125 00126 00127 00128 00129 00130 00131 00132 00133 00134 00135 00136 00137 00139 00139 00140 00141 00142 00143 00144 00145 00146 00147 00148 00149 00150 00151 00152 00153 00154 00155 00156 00157 00158 00159 00160 00161 00162 00163 00164 00165 00166 00167 00168 00169

15
C*
16

C
\&MATBI (3, 3), MATCI (3, 3), VF゙ $3,4,3,3$
COMPLEX DEC, ZERO. EYE

DATA ZHAT/O., O., 1./.VERTICAL/.FALSE./.EYE/(0.,1.)/

Initialize matrices to identity metrices.
DATA MATA/1., 3*0., 1.,3*0.,1.1
DATA MATAI/1.,3*0., 1.,3*0.,1./
DATA MATB/1., 3*0., 1.,3*0.1.1
DATA MATBI/1.,3*0., 1.,3*0.,1./
DATA MATC/1.,3*0., 1., 3*0., 1.1
DATA MATC I/1.,3*O., 1.,3*0.,1./

ZERD=CMPLX(0., O.)
$P I=3.141393$
OLDNFACET = 100

OPEN-TARCET-FILE
OPEN(UNIT=3, NAME= 'TARGFFILE', TYPE='OLD')
OPEN(UNI T=3, FILE=TARGFILE, STATUS='OLD', BLOCKED=. TRUE.) !SEL OPEN
OPEN(UNIT=2, NAME='GEDM\$FILE',TYPE='OLD')
DPEN(UNIT=5, NAME='RTS. BIN',FORM='UNFORMATTED') ! Scratchpad date file.
READ-IN-GEOMETRY-DATA
FLENGTH = 500. /. 3048 ! Length of around facet (or increment HEIOHT $:$ i.e. 10 facets for an orignal range of 5 km HEIGHT_INCREMENT = 12. ! 12. it. intervals in ht. for rho cal

INITIAL VALUE FOR CLUTTER CROSS SECTION FOR EIEC
RSIGC=. 0000001

INITIALIZE FREGUENCY, BEAMWIDTH, AND PULSEWIDTH
DEFAULT
FREQ=95.0 : GHz
BWR1=1.0
BWT1=1.0 Receiver beamwidth - Elevation (deg)
BWR2=1.0 : Receiver Azimuth -
BWT2=1.0 : Transmitter m n
$\mathrm{PW}=600$. : Pulsewidth (nanoseconds)

WL=. 984252/FREO ! Wavelength in feet.
$X K=2$. $\mathrm{PFI}^{\mathrm{P}} \mathrm{WL}$! Wave number (raditt)
CO=SGRT(2.)*XK
CO1*4. *SGRT (PI)
SET-UP-ROTATI ON-MATRIX-FOR-YAW-PITCH-AND-ROLL

```
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
0 0 1 9 1
00192
00193
00194
00195
00196
0 0 1 9 7
0 0 1 9 8
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
0 0 2 1 1
00212
00213
00214
00215
00216
00217
0021B
00219
0 0 2 2 0
0 0 2 2 1
00222
```

```
    C BEAMWIDTH IN ALPHA(1) (DEGREES TO RADIANS)
```

 C BEAMWIDTH IN ALPHA(1) (DEGREES TO RADIANS)
 47 EWRI=EWR1 \#PI/180.
47 EWRI=EWR1 \#PI/180.
4B BWRI=.7992*BWR1
4B BWRI=.7992*BWR1
EWT1= EWT1\#PI/1EO.
EWT1= EWT1\#PI/1EO.
BWT1=.7992*EWT1
BWT1=.7992*EWT1
C
C
C BEAMWIDTH IN BETA(2) (DEGREES TO RADIANS)
C BEAMWIDTH IN BETA(2) (DEGREES TO RADIANS)
EWR2=EWR2\#PI/1BO.
EWR2=EWR2\#PI/1BO.
BWR2=.7902*EWR2
BWR2=.7902*EWR2
BWTR=[WT2\#P1/180.
BWTR=[WT2\#P1/180.
BWAZ=EWTR ! This unmodified az beamuidth is used with clutter
BWAZ=EWTR ! This unmodified az beamuidth is used with clutter
BWT2=. 7992\#EWT2
BWT2=. 7992\#EWT2
SBW1=EWR1%.O1
SBW1=EWR1%.O1
SBW2=\#WR2*.O1
SBW2=\#WR2*.O1
CALL PATT(D1, D2, SS,SEW1,SEW2, BWR1, BWR2)
CALL PATT(D1, D2, SS,SEW1,SEW2, BWR1, BWR2)
P1=SEW1*SS/D1
P1=SEW1*SS/D1
P2=SEW2*SS/D2
P2=SEW2*SS/D2
C
C
C PW IS PULSEWIDTH IN NANOSECONDS
C PW IS PULSEWIDTH IN NANOSECONDS
C3mPWH. 5 : C3 IS C\#TAU/2
C3mPWH. 5 : C3 IS C\#TAU/2
C31=C3/SGRT(2)
C31=C3/SGRT(2)
C OROUND CORRELATION
C OROUND CORRELATION
DC=30.1.3048 ! in feet.
DC=30.1.3048 ! in feet.
RETURN
RETURN
68
69
7 0
C . The following section of commented code may be used if the comput
C . The following section of commented code may be used if the comput
C . read the entire target data file into main memory.
C . DO(II=1, NUMBER_OF_SCATTERERS)
C C DO<II=1,NUMBER OF S
c - READ(3'IRECORD) (IBUFF(I,II),I=1,12E)
DO(I=1,2)
POINTERTEMP(I)=IEUFF(70+I, II)
TRIPTEMP(I)=IEUFF(74+I,II)
FIN
IF(TRIPOINTER. NE.O)
IREC=TRIPOINTER+6G : Read in remeining dihedral or trihedral
READ(3'IREC) (IBUFF(I,II),I=129,256) ! coordinates.
TO OPEN-TARGET-FILE
. DPEN(UNIT=3,NAME='TARG\$FILE',TYPE='OLD', ACCESS='DIRECT',
\&. FORM='UNFORMATTED', RECORDSIZE=32, RECORDTYPE='FIXED',
8. ASSOCIATEVARIABLE=ICRUD)
READ(3'66) (BUFF(I),I=1,128)
IFIRST=IFIRSTTEMP
NUMEER OF SCATTERERS=NSCATTEMP
POINTER=IFIRST
C . The following section of commented code may be used if the compute

```

C0223 00224 00225 00226 00227

C . FIN
c
C FIN
CLOSE (UNIT=3)
FIN

00228
00229 00230 00231 00232 00233 00234 00235 00236 00237 00238 00239 00240

71 TO READ-IN-GEDMETRY-DATA
73 . READ (2,*) ROUGH, DEC, SIGODB ! RMS sutface roughness (ft) 74 . READ (2,*) XT, YT, ZT ! Initial target coordinates (ft.) 75 . READ \((2, *)\) IORDER 76 : READ (2,*) ALPHA, BETA, GAMMA ! Yaw, pitch, and roli ang 77 CLOSE (UNIT=2)
78 :- IF (ROUGH. LE. O.) ROUGHm. 0001 ! To prevent division by 0 79 . SICO = 10.**(SIGODB/10.) ! Un-dB" sigma O (elutter)

80 . ALPHA \(=\) ALPHANPI/180. !
E1 : BETA \(=\) BETA*PI/180. \(\quad>\) Convert degrees to radians.
82
82
GAMMA = GAMMAHPI/18O. ! /
```

FIN
00241
00242 00243 00244 00245 00246 00247 00248 00249 00250 00251 00252 00253 00254

```

TO SET-UP-ROTATION-MATRIX-FOR-YAW-PITCH-AND-ROLL
85
85
87
88 89 90 91 92 93 94
. CALL YPR (ALPHA, MATA, MATAI, IORDER (1))
CALL YPR(BETA , MATB, MATBI, IORDER (2))
CALL YPR (GAMMA, MATC, MATCI, IORDER (3))
CALL MATMU(MATB, MATA, S, 3,3,3) : Matrix \(\quad\) : times matrix \(A=\) matr
CALL MATMU(MATAI, MATEI, 5I, 3,3,3)
CALL MATMU(MATC, \(S, G, 3,3,3): 0\) ROTATES A VECTOR TO TARGET'S FRAME.
CALL MATMU(SI, MATCI, GI, 3,3,3) ! GI IS INVERSE (TRANSPOSE) OF \(Q\).
CALL MATMU(0, ZHAT, ZHATP, 3, 3, 1)
FIN
END

\section*{PROCEDURE CROSS-REFERENCE TABLE}
```

00200 OPEN-TARGET-FILE

```
00200 OPEN-TARGET-FILE
    00137
    00137
0022B READ-IN-GEDMETRY-DATA
    00143
00241 SET-UP-ROTATION-MATRIX-FOR-YAW-PITCH-AND-ROLL
    00169
    (FLECS 77 VERSION 22.3B)
MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS
```


00297 00297 00297 00297 00297 00297 00297 00297 00297 00297 00297 00297 00297 00297 00297 00297 00297

00299 00299 00300 00301 00302 00303 00304 00305 00306 00307 00309 00309 00310 00311 00312 00313 00314 00315 00316 00317 00318 00319 00320 00321 00322 00323 00324 00325 00326 00327 00328 00329 00330 00331 00332 00333 00334 00335

00549229
00550
00351231
00352232
00553233
00554234
00355236
00556237
00357238
00558239
00559240
00560241
00561243
00362244
00563245
00364246
00565248
00566249
00367232
00568253
00369254
00370235
00571237
00572238
00373261
00574
00575262
00376264
00577266
00578268
00379269
00380
00581270 C

```
TO CONVERT-SCATTERER-MIDPOINT-TO-FIXED-EARTH-FRAME
    SELECT(ITYPE)
        (1)
        . PTI(3)=PTI(3)+OWL ! Add distance from origin to waterline
                PT2(3)=PT2(3)+OWL ! z-coordinates. (Redefine origin to waterl
        - DO(I=1,3) ROP(I)=(PTI(I)+PT2(I))/2. : FTustum midpoint.
        ...FIN
        (2)
            PTi(3)=PT1(3)+\squareWL ! Triangular flat plate.
            PT2(3)=PT2(3)+OWL
            PT3(3)=PT3(3)+OWL
                DO(I=1,3) ROP(I)=(PTI(I)+PT2(I)+PT3(I))/3.
            FIN
        (4)
            DO(KK=1,3)
                DO(JJ=1,4) VF(3, JJ,KK)=VF(3, JJ,KK)+OWL ! Trihedral.
            ..FIN
            DO(I=1,3) ROP(I)=MF(I,1,1)
            FIN
        (5)
            DO(KK=1,2)
                DO(JJ=1,4) VF(3,JJ,KK)=VF(3,JJ,KK)+DWLL ! Dinedral.
                    .FIN
                DO(I=1,3) ROP(I)=VF(I, 1,1)
                .FIN
        FIN
    CALL MATMU(GI, ROP, RO, 3, 3,1) : ROTATE ROP TO EARTH'S FRAME.
    DO(I=1,3) RO(I)=RO(I)+TAREET_POSITION(I)
    XT=RO(1)
    YT=RO(2)
    2T=RO(3)
    FIN
. POS5=2S
    POST=2T
    G=SORT((XT-XS)**2+(YT-YS)**2) ! GROUND RANOE
    R=SQRT(G*O+(POST-POSS)**2) !DIRECT RANGE FROM ANTENNA TO TARGET.
    .FIN
TO FIND-AZ-AND-EL-DFF-BORESIOHT
ELT=ATAN( (RO(3)-25)/0)
AZT=ATAN3((ROC1)-XS), (RO(2)-YS))
TEI=ELT-ELS ! Target levation (pitch), wrt boresight(UP? +) TAI =AZT-AIS ! Target azimuth (yaw), wrt boresight (elockwise + UNTIL (TAI . OT. -PI) TAI = TAI + TWOPI
```

00382271
00583272
00584273
00385
00586274
00587275

00589	276
00590	278
00591	279
00592	280
00593	281
00594	282


```
00696 383
00697 385
00698 386
00679 387
00700
0 0 7 0 1 3 8 8
00702
391
END
    PROCEDURE CROSS-REFERENCE TAGLE
    00597 ADD-IN-MULTIPATH-CONTRIBUTIDNS
        00508
    00464 CALCULATE-TRACK-ERROR
        00352
    005B2 COMPUTE-HEICHTS-AND-RANGES
        00477 00342
    OOS49 CONVEAT-SCATTEAER-MIDPOINT-TO-FIXED-EARTH-FRAME
        00476
    00678 DETERMINE-NEAREST-HEIGHT-INCREMENT
        00598
    00701 EVALUATE-RTS-INDEX
        00640
    00389 FIND-AZ-AND-EL-OFF-BORESIGHT
        00478
    00358 FIND-CLUTTER-RCS
        00343
    006B9 FIND-PATH-LENGTHS
        00643 00610
    00696 INCREMENT-CDUNTER
        00353
        00381 PERFORM-MULTIPATH-CALCULATIONS-FDR-CDMPLEX-RHD
        00349
    00534 READ-IN-SCATTERER-CODRDINATES
        00475
(FLECS 77 VERSION 22.39)
MODULE CONTAINS NO MINOR ERRORS
MODULE CONTAINS ND MAJOR ERRORS
```



```
00033
0 0 0 3 4
00035
0 0 0 3 6
00037
00038
00039
00040
0 0 0 4 1
00042
0 0 0 4 3
0 0 0 4 4
0 0 0 4 5
00046
00047
    1 FUNCTION ATAN3 (YPARM, XPARM)
    C#ABSTRACT ARC TANGENT FUNCTION FOR ANGLE BETWEEN O AND 2 PI
    C
    C
    2 PIX2=8.*ATAN(1.)
    C
    X X=XPARM
    4 Y=YPARM
    C
    C COMPUTE TANGENT
    5 ATAN3=ATAN2 (Y, X)
    6 IF(ATANS.LT.O. JATANB=PIX2+ATANS
    7 RETURN
    END
    (FLECS 77 VERSION 22.39)
MODULE CONTAINS NO MINOR ERRORS
MODULE CONTAINS ND MAJOR ERRORS
```

```
00049 1 FUNCTION EXP2(X)
00049
00050
00051
00052
00053
00054
00055
00056
00057
1 FUNCTION EXP2(X)
    C
    C*ABSTRACT CHECK LIMITS ON EXPONENT OVERFLOW AND UNDERFLOW
    c
    c
2 WHEN(X.LT. -BB. O2B) EXPZ=O.
4 ELSE EXP2 = EXP(X)
C
RETURN
END
    (FLECS 77 VERSION 22. 3B)
MODULE CDNTAINS NO MINOR ERRDRS
MODULE CONTAINS NO MAJOR ERRORS
```

```
00058 1 COMPLEX FUNCTION RICE(A,B)
00059
00060
00061
00062
00063
00064
00065
00066
    C SUBPROGRAMS CALLED
    C UNIRAN - UNIFORM RANDOM NUMBER GENERATOR
    2 COMPLEX A
    3 UR=UNIRAN(O.)*6. 2931日53
    4 XR=E*SGRT(-ALOG(UNIRAN(O.)))
    5 RICE=CMPLX(REAL(A)+XR*COS(UR),AIMAG(A)+XR*SIN(UR))
    6 RETURN
    7 END
    (FLECS 77 VERSION 22.39)
```

MODULE CONTAINS NO MINDR ERRORS
MODULE CONTAINS NO MAJOR ERRORS


```
00083 1 FUNCTION FUNCA(RM, DEL)
00084
00085
00086
00067
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100 19
00100 120
00100 19
    FUNCA =0.
    CONDITIONAL
        (RM .EQ. O.) RETURN
        (RM.LT. O.)
        RM = -RM
        SIGN = 1.
        FIN
        (RM.GT. O.) SIGN=1.
        ...FIN
        MI=INT(RM)
        A=RM-MI
        CONDITIONAL
        (A.GE. (1-DEL)) FUNCA=SIGN*(2*(MI+1.)*DEL+A-1.)
        . (A .GE. DEL) FUNCA=SIGN*(DEL*(2*MI+1.))
        (OTHERWISE) FUNCA=SIGN*(2*MI*DEL+A)
        FIN
        RETURN
END
    (FLECS 77 VERSION 22. 36)
MODULE CONTAINS NO MINOR ERRORS
MODULE CONTAINS NO MAJOR ERRORS
```


00002 00003 00004 00005 00006 00007 0000日 00009 00010 00011 00012 00013 00014 00015 00016 00017 00019 00019 00020 00021 00022 00023 00024 00025 00026 00027 00029 00029 00030 00031 00032 00033 00034 00035 00036 00037 00038 00039 00040 00041 00042 00043 00044 00045 00046 00047 0004θ 00049 00050 00051 00052 00053 00054

RCS. FLX 10/7/日1

C This version of CROSS is used as a subroutine for TRERR. FLX.
C Inciudes trihedrali and dihedrals also.
C A new scaterer - partial frustum - is included.

1
2 DIMENSION COORDS(36),P1(3),P2(3),P3(3), VFIN(36)
DIMENSION VF (3, 4, 3), TEMP (3), 2HAT(3), AN(3)
DIMENSION EHAT(3), DHAT (3), RO(3), ROIMAQE(3)
DIMENSION PP1(3), PP2(3), PP3(3)
REAL DO
INTEOERE2 ITYPE
REAL IHAT (3), SHAT (3), NHAT (3), B1 (3), B2(3)
COMPLEX EYE, IK, RTS
LOGICAL CANTSEE, VERTICAL
C*COMMON
COMMON/EXTRA/TWOP I, ROOTPI, EYE, IK, PI, PIO4 COMMON/PHASE/RD, DO

COMMON/DATUM/CNUT, FTM, NTM, PIO2 !Deg to Rad. Feet to Meters, NMI to EQUIVALENCE (COORDS(1), P1(1)), (COORDS(4), P2(1)), (COORDS(7), P3(1)), \&
(CODRDS(7), RADIUS1), (COORDS (9), RADIUS2)
EQUIVALENCE (COORDS(1), UF(1, 1, 1))

DO(I=1.36) CODRD(I)=VFIN(I) : Since you cannot equiv a subr. para
DO=UMAG(AN) !Distance between radar and ship origin. Note th ! AN is the vector between the present ship origin !and the radar antenna.
DO(I=1,3) DHAT(I) = -AN(I)/DO ! Unit vector pointing from radar t IK=EYE*XK
RTS=(0., O.)
CANTSEEE. FALSE.
HT=RO(3)
C POOR MAN'S HIDDEN SURFACE ALOORITHM
IF (ITYPE. EQ. 2)
DO(I=1,3)
29
29
. $B 1(I)=P 2(I)-P I(I)$
. $82(I)=P 3(I)-P I(I)$


```
00105 83 . . . FIND-EHAT
00106 85
00107
00108
00109
0 0 1 1 0
```

83 85 86 88
88
...FIN

```
FIND-EHAT
CALL DIPLANE (VF, XK, IHAT, SHAT, EHAT, RO, VERTICAL, RTS)
FIN
(OTHERWISE) RTSm(0.,O.)
. FIN
```

00111
00112
00113 00114 00115 00116 00117

00118
00119
00120
00121
00122
00123
00124
00125 00126
00127 00128 00127

89 TO RE-DRIOIN-TRIANGLES-COORDINATES-TO-CENTRUID
91 . $D O(I=1,3)$
92
92
-PP3(I) -P3(I) - RO(I)
PP3(I) - P3(I) - RO(I)
FIN
FIN

96 TO FIND-EHAT
C Incident electric field unit vector.
WHEN(VERTICAL)
. CALL VCROSS(IHAT, ZHAT, TEMP)
CALL VCROSS(TEMP, IHAT, EHAT)
...FIN
ELSE CALL VCROSS(IHAT, IHAT, EHAT)
CALL NORMLZ(EHAT, EHAT)
.FIN
END

```
            PROCEDURE CROSS-REFERENCE TAGLE
        00091 CALCULATE-RTS
            00062
        OO118 FIND-EHAT
            00105 00101
        00067 FIND-PATH-LENGTH-DIFFERENCES
            00061
        00111 RE-QRIGIN-TRIANGLES-CODRDINATES-TO-CENTROID
            00097
    (FLECS 77 VERSION 22.38)
```

MODULE CONTAINS NO MINOR ERRORS
MODULE CONTAINS ND MAJOR ERRORS

00045	46	.
00046	47	\cdot
00047		MATI $(3,1)=S I N A$
00048	48	\ldots END

Procedure cross-reference table

00028 FIND-PITCH

 0001400038 FIND-ROLL 00015

00018 FIND-YAW 00013

(FLECS 77 VERSION 22. 38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

PROCEDURE CROSS-REFERENCE TABLE

00114 CALCULATE-COMPLEX-TERM

 0007400081 DO-PRELIMINARY-CALCULATIONS 00069

00100 FIND-VECTOR-RELATIONS 00073
(FLECS 77 VERSION 22.38)

```
MODULE CONTAINS NO MINOR ERRORS
MODULE CONTAINS NO MAJOR ERRORS
```



```
0 0 1 9 1
00192
    37
    .. FIN
```

$00193 \quad 38$
0019440 00195 00196
00197
00198
00199 00200
00201 00202
00203 00204 00205 00206 00207 00208 00209
00210 00211 41 41 42 44 46 47 49 51 53 54 35 57 58 59 60 61

``` FIN
TO CALCULATE-COMPLEX-TERM
O \(=\mathrm{P}+\mathrm{T}\) TANT COEF=COST/T DO(I=1,3) NHAT(I)=-COEF*(G*AHAT(I)+IMS(I))
KG=K*O
ARG=KG*L/2.
WHEN(ARG.EQ. O.) TERM=1.
ELSE TERM=SIN(ARG)/ARG
UNLESS (TANT. EQ. O.)
TOKQA=TANT/(KG\#AMEAN)
TERM=TERM*CMPLX(1., -TOKGA)+CMPLX(O., COS (ARG)*TOKOA)
...FIN
ARG=P IO4-KA*T
TERM=CMPLX(COS (ARG), SIN(ARG))*TERM
TERM=TERM*VDOT (NHAT, IMS)/2. !Polarization term. TERM=-TERM/SGRT(T) : Minus sign added 3/11/82; RBR FIN
END
```


PROCEDURE CROSS-REFERENCE TABLE

```
00193 CALCULATE-COMPLEX-TERM 00175
OO1E1 DC-PRELIMINARY-CALCULATIONS 00166
(FLECS 77 VERSION 22.3日)
MODULE CONTAINS NO MINOR ERRGRS MODULE CONTAINS NO MAJOR ERRORS
```



```
00377
00378 110
00379 111
00380 112
00391 113
003日2
00383
003日4
00395
00386
00387 114
00388 115
00389 116
00390 117
0 0 3 9 1
00392
00393
00394 11日
00395 119
00396 120
00397 121
00398
0 0 3 9 9
00400
00401
00402
00403
00404
00405 129
00406 130
00407
00408 132
00409 133
00410 134
0 0 4 1 1
0041
00413
00414 13日
00415 139
00416 140
00417 141
00418
00419
00420
0 0 4 2 1
00422
0 0 4 2 3
00424
00425
00426
0 0 4 2 7 ~ 1 4 6
00428 147
00429 14E
00430 149
00431
00432
```C
```

c

```114
```

```115
 C
 123
 124
 124
 c IT TURNS OUT WE HAVE TO REVERSE THE SENSE OF VA FOR ALL }6\mathrm{ COMBINA-
 12
 129
 131
 131
 135
 136
 139
 140
 141
 142
 143
 C
 144
 C GET THE TRIPLE-BOUNCE SCATTERING.
 - MFIN
 ...FIN
 IF (ONE.GT.O.)
 DO (I=1,2)
 O=VB(1,2)
 VB(1,2)=VB(I,4)
 VB(I, 4)=Q
 FIN
 FIN
 GET THE DOUBLY ILLUMINATED PATCH ON FACE KK AND CONVERT BACK TO 3D.
 FIND-COMMON-REGION
 CALL SCAT(IS,S,N(1,KK),AK,VD,NC,SUM)
 SUM=-ONE*SUM
 G=TRIPLE(ERHAT, HHS, N(1, KK))
 SS=5S+O*SUM
 CONTINUE
 FIN
 NA=NC
 J2=kK
 DO(J=1,4)
 DO(I=1,3) VE(I, J)=VF(I, J, J2)
 ...FIN
 PRDJECT-FACE
 GET THE IMAGE DIRECTION OF THE REFLECTED DIRECTION OFF THE SECOND
 FACE, but be sure we're looking at the Front side of face kK when
 SEEN ALONG THIS DIRECTION.
 CALL IMAGE(IE,N(1,NJ),I5)
 Q=VDOT(IE,N(1,KK))
 IF (G. GE.O.O) CO TO 300
 CALL IMAGE(HHS,N(1,JJ),HHS)
 CALL SCAT(IS,S,N(1,JJ), AK, VD,NC, SUM)
 SUM=-DNE*SUM
 Q=TRIPLE(ERHAT, HHS, N(1,JJ))
 SS=SS+G*SUM
 FIND THE PROJECTIONS AND CONVERT TO 2D
 TIONS INVOLUING A TRIPLE BOUNCE, BUT VB FOR ONLY 3.
 LL*NC/2+1
 DO (J=2,LL)
 L=NC-J+2
 DO (I=1,2)
 G=VA(I,L)
 VA(I,L)=VA(I,J)
 ..VVA(I,L)=VA
```



```
00480 201
00481
00482
00483
00485
00485
00486
00487
0048B
00489
00490
```

204
206 207 208 210 211 212

```
 .VB(2,J)=VDOT(VE(1,J),V(1,J2))
 NB=NE
 FIN
FIN
--
00484 204
202
203
\begin{tabular}{ll}
00480 & 201 \\
00481 & 202 \\
00482 & \\
00483 & 203 \\
& \\
& \\
00484 & 204 \\
00485 & 206 \\
00486 & 207 \\
00487 & 208 \\
00488 & 210 \\
00489 & 211 \\
00490 & 212
\end{tabular}
```


## TO FIND-COMMON-REGIDN

```
CALL PATCHES(NA, 4, NC, VA, VB, VC, SHADOW, YES)
DO (J=1,NC)
. . \(\quad \operatorname{DO}(1=1,3) \quad V D(I, J)=V C(1, J)=U(1, J 2)+V C(2, J) * V(I, J 2)\)
- ...FIN
. . FIN
END
```



PROCEDURE CROSS-REFERENCE TABLE
00439 CALCULATE-UNIT-NDRMALS 00256

00450 CALCULATE-UNSHADOWED-REGION 00311 0030s

00484 FIND-COMMON-REOION 00465004230373

00468 PROJECT-FACE 00459003990
(FLECS 77 VERSION 22. 38)
MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

00491 00492 00493 00494 00495 00496 00497 00498 00499 00500 00501 00502 00503 00504 00505 00506 00507 00508 00509 00510 00511 00512 00513 00514 00515 00516 00517 0051 E 00519 00520 00521 00522 00523 00524 00525 00526 00527 00528 00529 00530 00531 00532 00533 00534 00535 00536 00537 00539 00539 00540 00541 00542 00543

C	DIPLANE. FLX E.F. Knott R R. B. Rakes 11/12/80
C	DRCHESTRATES THE VARIDUS SUBPROGRAMS USED IN COMPUTING THE RADAR
C	ECHD FROM AN ARBITRARY DIHEDRAL CORNER REFLECTOR. THE CDORDI-
C	ATES OF THE VERTICES DF THE THREE FACES COMPRISING THE REFLECTOR
C	MUST BE READ FROM THE FILE IFACE(2). THIE ROUTINE IS A MUCH SIMPLER
C	VERSION DF CORMER. FLX WHICH CALCULATES TRIHEDRAL RETURNS.
	gUBRQUTINE DIPLANE(VE, AK, INK, S, EHAT, RO, VERTICAL, RTE)
	INTEGER ONE
	REAL INK(3), N(3, 3), IS(3), IMS(3)
	COMPLEX SS, SUM, RTS, EYE, IK
	LDGICAL VERTICAL, SHADOW, YES
	DIMENSIDN S(3), A (3), B(3), EHAT (3), HHAT (3), U(3, 2), V(3, 2), D(3)
	DIMENSIDN IFACE (5), LIST (6), HHS (3), RO(3)
	DIMENSIDN VA 2,20$), \operatorname{VB}(2,20), \operatorname{VC}(2,20), \operatorname{VF}(3,4,3), \operatorname{VD}(3,20)$
	DIMENSION ERHAT (3), VE(3, 4, 3)
C	INCLUDE CROSS (COMMON)
	COMMON JEXTRA/ TWOPI, ROOTPI, EYE, IK, PI, PIO4
C	VA AND UB CDNTAIN THE LDCAL $X$, $Y$ CODRDINATES OF THE VERTICES OF A
c	PAIR DF PLANE POLYGONS WHOSE COMMON AREA IS TO BE FOUND. THESE
C	CAN BE PRDJECTIONS OF OTHER POINTS ONTO THE PLANE OF A PARTICULAR
C	TRIHEDRAL FACE. THE ARRAY VC CONTAINS THE 2D CDORDINATES DF THE
C	COMMON AREA. VF CONTAINS THE $X, Y, z$ COORDINATES OF THE FOUR VER-
C	TICES IF THE THREE FACES AND IS READ FROM THE DATA FILE, ALONS
C	WITH THE COORDINATES OF THE FACE NDRMALS N AND UNIT VECTORS U,V.
C	LIMEAR DIMENSIONS ARE ASSUMED GIVEN IN FEET.
C	Translate points such that the main vertex is now the origin. DO(K=1,2)
	- $\mathrm{DO}(J=1,4)$
	. . $\quad \mathrm{DO}(1=1,3) \operatorname{VF}(1, J, K)=V \in(1, J, K)-V \in(I, 1,1)$
	. ...FIN
	...FIN
	CALCULATE-UNIT-NORMALS
	CALL VCROSS(INK, EHAT, HHAT)
	WHEN(VERTICAL) CALL VCROSS (S, HHAT, ERHAT)
	ELSE
	. DO(I=1,3) ERHAT (I)=EHAT (I)
	...FIN
C	INK AND S ARE THE DIRECTIONS OF INCIDENCE AND SCATTERING, RESPEC-
C	TIVELY. EHAT AND HHAT ARE THE UNIT VECTORS ALONG THE INCIDENT ELEC-
C	TRIC AND MAGNETIC FIELDS RESPECTIVELY. ERHAT IS ALONE THE RECEIVED
c	ELECTRIC FIELD.

00544 00545 00546 00547 00548 00549 00550 00551 00552 00553 00554 00555 00556 00557 00558 00559 00560 00561 00562 00563 00564 00565 00566 00567 00568 00569 00570 00571 00572 00573 00574 00575 00576 00577 00578 00579 00580 00581 00582 00583 00584 00585 00586 00597 00588 00589 00590 00591 00592 00593 00594 00595 00596 00597 00598 00599

29
29 30
DEPENDING ON WHICH PARTICULAR FACE COMBINATION WE'RE WORKING WITH,
c the sense of one or the other polygon has to be reversed.
WHEN(ONE. LE. O)
DO (I=1,2)
- $\quad G=V A(I, 2)$
$\operatorname{VA}(1,2)=V A(1,4)$
$V A(I, 4)=Q$
FIN
. . Fin
ELse
DO ( $1=1,2$ )
. $\quad Q=V B(1,2)$
. VB(I, 2) $=V B(I, 4)$
$\mathrm{VB}(1,4)=0$
FIN
. FiN
SS=CMPLX(O., O.)
ONE $=-1$
$J J=2$
C THERE ARE ONLY 2 single-bounce contributions.
DO(II=1,2)
ONE $=-$ ONE
G=VDOT(INK, N(1, II))
IF(O. GE. O. O) COTO 300
G=VDOT(INK,N(1, JJ))
WHEN(Q. OT. O. O) CALCULATE-UNSHADOWED-REGION
ELSE
NC=4
DO (J=1,4)
. $\operatorname{DO}(I=1,3) \quad \operatorname{VD}(I, J)=V F(I, J, I I)$
...FIN
. . FIN
CALL SCAT(INK, E, N(1, II), AK, VD, NC, SUM)
Q=TRIPLE(ERHAT, HHAT, N(1, II))
SS=SS+Q*SUM
WE HAVE TO BE LOOKINO AT THE FRONT SIDE OF FACE II IN ORDER TO IN-
CLUDE ITS RCS CONTRIBUTION. THE UNIT VECTOR IS POINTS ALONG THE
C DIRECTION OF A RAY REFLECTED FROM FACE II, WHEN WE LOOK ALONG THIS
C DIRECTIDN, WE HAVE TO SEE THE FRONT SIDE OF FACE JJ IN DRDER TO
tally a double-bounce conribution.
CALL IMAGE(INK,N(1, II),18)
Q=VDOT(IS, N(1, JJ))
IF (G. GE. O. O) 60 TO 300
we also have to find the image of the magnetic polarization.
CALL IMAGE(HHAT, N(1, II), HHS)
PROJECT-FACE
61
ELse

00600 00601 00602 00603 00604 00605 00606 00607 0060日 00609 00610 00611 00612 00613 00614 00615 00616 00617 00618 00619 00620

00621 00622 00623 00624 00625 00626 00627 00629 00629 00630 00631 00632

69
C NDW FIND THE COMMDN AREA AND CONVERT THE 2D COODINATES BACK TO 3 D .
70 . SHADOW=. FALSE.
71 . FIND-COMMON-REGION
C Get the scattering from the resulting polygon and tally all the
C POLARIZATION COMEINATIONS FDR THE DOUBLEEBOUNCE RETURNS.
73 . CALL SCAT (IS, S,N(1, JJ), AK, VD, NC, SUM)
SUM = ONE*SUM
O=TRIPLE(ERHAT, HHS, N(1, JJ))
SS=S5+0*SUM
CONTINUE
$\boldsymbol{J} \boldsymbol{J}=1$
...FIN
RTS = EYE
RETURN

```
82 TO CALCULATE-UNIT-NORMALS
83 . DO(J=1,2)
 DO(I=1,3)
 - A(1)=VF(1,2,J)-VF(1,1,J)
 . B(I)=VF(I,4,J)-VF(I,1,J)
 ..FIN
 CALL VCROSS(A,B,N(1,J))
 CALL NORMLZ(N(1,J),N(1,J))
 CALL NORMLZ(A,U(1,J)) ! U and V are orthogonal unit vectors
 CALL VCROSS(N(1,J),U(1,J),V(1,J)) ! in the plane of the face.
 ..FIN
 FIN
```

00633
00634
00635
00636
00637
$0063 E$
00639104
00640105
00641
00642106
00643108
00644110
93
95
97
97
99
102
03
103
12
TO CALCULATE-UNSHADOWED-REGION
SWAP-II-AND-JJ
DO (I=1,3) IS(I) =INK(I)
PROJECT-FACE
DO ( $1=1,2$ )
TEMP=VA(1.2) : Change numbering order sense of polygon $A$
VA(1, 2seva(I, 4) ! to counterciockwise to remain cansistent
VA(1.4)=TEMP ! with polygon B.
FIN
SHADOW=. TRUE
FIND-CDMMON-RECION
SWAP-II-AND-JJ
IF(YES) COTO 300 : Region B is completely shadowed by $A$.
...FIN

```
\begin{tabular}{|c|c|c|}
\hline 00647 & 113 & TO SWAP-II-AND-J \\
\hline 00648 & 115 & ITEMP = II \\
\hline 00649 & 116 & IIEJJ \\
\hline 00650 & 117 & JJ=I TEMP \\
\hline 00651 & & FIN \\
\hline
\end{tabular}
 c NOW find the projection of face II onto the plaNe of face JJ.
 120 . DO (J=1,4)
 121 . . CALL PROJECT(VF(1,J,II),18,N(1,JJ),VD(1,J))
 122
 123
 124
 125
 126
0 0 6 6 4 1 2 7
00665 129
00666 130
00667 131
00668 133
00669 134
00670 135
```

00652 00653 00654 00655 00656 00657 00658 00659 00660 00661 00662 00663

```
 VA(1, J)=VDOT(VD(1, j),U(1, Jj))
 VA(2,j)=VDOT(VD (1, J),V(1, Jj))
 VB(1,J)=VDOT(VF (1, J,JJ),U(1, JJ))
 VB (2, J)=VDOT(VF (1, J, JJ),V(1, JJ))
 ...FIN
 .FIN
 TO FIND-COMMON-REGION
 CALL PATCHES(4, 4, NC, VA, VB, VC, SHADOW, YEE)
 DO (J=1,NC)
 - DO (I=1,3) VD(I,J)=VC(1,J)#U(I,JJ)+VC(2,J)*V(I,JJ)
 ..FIN
 FIN
 END
```


## PROCEDURE CRDSS-REFERENCE TABLE

```
00621 CALCULATE-UNIT-NDRMALS 00531
00633 CALCULATE-UNSHADOWED-REEION 00556
00664 FIND-COMMON-REGION 0064300604
00652 PROJECT-FACE 0063600581
00647 SWAP-II-AND-JJ 0064400634
(FLECS 77 VERSION 22. 38)
MODULE CONTAINS ND MINOR ERRORS MODULE CONTAINS NO MAJDR ERRORS
```

00671
00672 00673 00674 00675 00676 00677 00678 00679 00680 00681 00682 00683 00684 00685 00686 00687 0068日 00689 00690 00691 00692 00693 00694 00695 00696 00697 00698 00699 00700 00701 00702 00703 00704 00705 00706 00707 00708 00709 00710 00711 00712 00713 00714 00715 00716 00717 00718 00719

C

のnのnの

1
2
3
4
5

6
8
9
11
13
15
16
17
18
19
20
21
22
23
25
27
29
30
31
33
34
35
36
37
38
40

## 41

43
44

SCAT．FLX
11／12／80
SUBRDUTINE RETURNS THE COMPLEX SCATTERINO FROM AN ARBITRARY PLANE POLYGON．IT NEEDS THE DIRECTIONS OF INCIDENCE AND SCAT－ TERING（INC AND S）．THE UNIT SURFACE NORMAL N，THE WAVENUMBER AK（EXPRESSED IN RADIANS PER FODT），THE 3D CDORDINATES DF THE POLYGON VERTICES VD，AND THE NUMBER DF VERTICES NC．THE COM－ PLEX SCATTERING AMPLITUDE IS RETURNED IN BUM．

SUBRDUTINE SCAT（INK，S，N，AK，VD，NC，SUM）
COMPLEX SUM
REAL N（3），INK（3）
DIMENSION S（3），VD（3，20），P（3），W（3），AM（3），RM（3）
RODTPI＝1．772454
PI＝3． 141593
SUM＝CMPLX（0．0，0．0）
IF（NC．LE． 2 ）RETURN
DEL $=0.0001$
MC $=N C+1$
DO（I＝1，3） $\operatorname{VD}(I, M C)=V D(I, 1)$
CALL MINUS（S，INK，W）
CALL VCROSS（N，W，P）
$G=V M A G(P)$
IF（G．©T．DEL）
T＝TRIPLE（P，N，W）
DO（J＝1，NC）
$J F=J+1$
CALL MINUS（VD（1，J），VD（1，JF），AM）
T1＝．5＊AK $\quad$ VDOT（ $W, ~ A M$ ）
WHEN（ABS（TI）．LT．DEL）TI＝1．0
ELSE T1＝SIN（T1）／T1
CALL PLUS（VD（1，J），VD（1，JF），RAs）
T2＝．5\＃AK\＃VDOT（W，RM）
SUMmSUM＋T1＊VDOT（P，AM）＊CMPLX（COS（T2），SIN（T2））
FIN
－SUM＝SUM／（ROOTPI＊T）
RETURN
．．FIN
DO（J＝3，NC）
$\sqrt{ } F=\sqrt{ }=1$
CALL MINUS（VD（1，1），VD（1，J），AM）
CALL MINUS（VD（1，1），VD（1，JF），RM）
$G=T R I P L E(A M, R M, N)$
SUM＝SUM－CMPLX（0．0，0）
FIN
SUM＝SUM＊AK／（2．＊ROOTPI）
RETURN
END
（FLECS 77 VERSION 22．39）
MODULE CONTAINS NO MINOR ERRORE
MODULE CONTAINS NO MAJOR ERRORS

$\begin{aligned} & 00720 \\ & 00721 \end{aligned}$	c	SPOTTER. FLX
00722	c	CONTAINS A DIFFERENT VERSION DF PATCHES. THIS VERSION IS A BRUTE
00723	c	FORCE ASSEMBLY OF VERTICES, SOME DF WHICH HAVE TD BE DELETED BE-
00724	c	CaUSE SOME "INSIDE* POINTS COINCIDE WITH SOME INTERSECTIONS.
00725		
00726	1	SUBRDUTINE PATCHES(NA,N日, NC, VA, VB, VC, SHADDW, YES)
00727	2	DIMENSION VA 2,20$)$, VB $(2,20)$, VC $(2,20)$, ANE (20)
00728	3	LOEICAL PAB (20), PBA (20), SHADOW, TEST, YES
00729	4	DIMENSION $A(2), 8(2), C(2), E A(2,20), E B(2,20)$
00730	5	DEL $=0.00001$
00731	6	PI=3. 141592654
00732		
00733	C	FIRST, FORM THE EDGE VECTORE.
00734		
00735	7	DO ( $\quad=1=1, N A)$
00736	8	JFal
00737	9	- IF (J.EQ. NA) JF=1
00738	10	
00739		. FIN
00740	11	DO ( $K=1, N B$ )
00741	13	KF=K+1
00742	14	. IF (K.EQ. NB) KF=1
00743	15	. CALL PMINUS(VB(1,K), VB(1,KF), EB(1,K))
00744		. FIN
00745	16	
00746	C	COTTA ESTABLISH THE PROPER SENSE FOR WALKING AROUND THE POLYGONS,
00747	C	because half the time they're passed in the reverrsed sense.
00748		
00749	17	DO(J=1,NA)
00750	18	- J2=J+1
00751	19	IF(J.EG.NA) J2mi
00752	20	G=PCROSS(EA(1, 3), EA(1, J2)
00753	21	WhEN(J.EQ. 1) SENSE=SICN(1., 0)
00754	23	ELSE
00755	24	. SENSE2-SIGN(1.,0)
00756	25	- IF (SENSE. NE. SENSE2)
00757	26	. . YESm.FALSE. ! Impossible quadralateral. Go ahead and return with
00758	27	. NC=NB ! VB being unshadowed.
00739	28	- DO(K=1,NC)
00760	29	. . . $\mathrm{DO}(1=1,3) \mathrm{VC}(1, K)=V B(1, K)$
00761	31	...FIN
00762	32	RETURN
00763		...FIN
00764	34	. ...FIN
00765	35	...FIN
00766	36	
00767		
00768	c	ESTABLISH WHETHER THE VERTICES DF VA ARE INSIDE OR OUTSIDE VB.
00769		
00770	37	DO (J=1,NA)
00771	38	. PAB (J) =. FALSE.
00772	39	DO(K=1,NB)


00773	40	
00774	41	- O=SENSE* (EB(2,K)*C(1)-EB(1,K)*C(2) \%
00775	42	. IF(G.GT. O.) PAB (J)m. TRUE.
00776		. FIN
00777	43	. FIN
00778	44	
00779	c	AND NOW do the same for vertices of vi in va.
00780		
00781	45	DO ( $K=1, N B$ )
00782	46	$\operatorname{PBA}(\mathrm{K})=$. FALSE.
00783	47	DO(J=1,NA)
00784	48	. CALL PMINUS(VA( $1, J$ ), VB( $1, K), C$ )
00785	49	. . Q=SENSE*(EA(2, J)*C(1)-EA(1, J)\#C(2))
00786	50	. . IF(Q. OT. O. ) PBA $(K)=$. TRUE.
00797		. ...fin
00788	51	...FIN
00789	52	
00790	53	VES*. TRUE.
00791	54	DO(K=1,NB)
00792	35	- IF(PBA(K) ) YES=. FALSE.
00793		...FIN
00794	56	IF (YES. AND. SHADOW) RETURN : Scatterer is completely shadoued
00795		
00796	c	all inside vertices become vertices of the common area vc.
00797		
00798	58	L=0
00799	59	DO ( $\mathrm{J}=1, \mathrm{NA}$ )
00800	60	UNLESS(PAB(J) )
00801	61	- . LmL 1
00802	62	. . DO (IE1, 2) VC(I, Li $=$ VA(I, J)
00803	64	$\ldots F I N$
00804	63	$\cdots \mathrm{FIN}$
00805	66	DO ( $K=1, N B$ )
00806	68	WHEN(SHADOW) TEST=PBA(K)
00807	70	ELSE TEST=. NOT. PBA (K)
00808	72	IF (TEST)
00809	74	
00810	75	- . $\mathrm{DO}_{\text {( }}(I=1,2) \operatorname{VC}(1, L)=\cup \mathrm{VB}(I, K)$
00811	77	FINFIN
00812	78	FIN
00813 00814	79	
$\begin{aligned} & 00814 \\ & 00815 \end{aligned}$	c	all intersections are also vertices of the common area.
00816	80	DO (J=1,NA)
00817	81	DO ( $K=1, N B$ )
00818	82	- CALL PMINUS(VA(1, J), VB ( $1, \mathrm{~K}$ ), C)
00819	83	- T1=PCROSS (EA $(1, J), E B(1, K))$
00820	84	- T2=PCROSS (C, EA $(1, J)$ )
00021	85	- T3=PCROSS(C, EB(1,K) )
00822	86	. IF (ABS(T1).NE, O.0)
00823	87	- . $\mathrm{P}=$ T2/T1
00824	88	. . $\quad$ = T3/Ti
00825	89	- . UNLESS(P.LT. O. O. OR.P. OT. 1. O. OR.G.LT. O. O. OR. G. ©t. 1. O)
00826	90	. . L=L+i
00827	91	. . . DO $(1=1,2) V C(I, L)=V A(I, J)+Q \# E A(I, J)$
00828	93	...FIN

```
00829
00830
00831
00832
00833
00834
00835
00836
00837
00838
00839
00840
00841
00842
00843 107
00844 108
00845 109
00846 110
00847 111
00848
00849 112
00850 113
00851
00852
00853
00854
00855
00856
00857
00858
00859
00860
00861
00862
00863
00864 123
00865 125
00866 126
00867 00868 00869 00870 00871 00872 00873128 00874129 00875130 00876131 00877132 00878133 00879 00880134 00881 136 00882138 00883 00884140
```

8 95 96
97 98

C BUT THERE WILL BE DUPLICATIONS, SO LET'S WEED 'EM OUT.
C THE GET THE SHORTENED LIST OF VERTICES IN THE PROPER ORDER, FIRST
C FIND THE CENTROID OF THE COMMON AREA.
C(1)=0.0
C(2)=0.0
DO (J=1,NC)
-C(1)=C(1)+VC(1,J)
C(2)=C(2)+VC(2,J)
FIN
UNLESS(NC.LE.O)
UNLESS(NC.LE.O)
C(1)=C(1)/NC
C(2)=C(2)/NC
...FIN
C NOW CALCulate the angle subtended by the vector between a given
THE CENTROID.
CALL PMINUS(VC(1,NC),C,A)
DO (L=1,NC)
CALL PMINUS(VC(1,L),C,B)
P=PCROSS(A,B)
G=A(1)*B(1)+A(2)*B(2)
WHEN(O.EQ.O.O)
CONDITIONAL
(P.LT. O.) ANO(L)=-0. S\#SENSE*PI
(P.EG. O.) ANC(L)=0.0
(P.GT. O.) ANE(L)=0. 5*SENSE*PI
..FIN
FIN

```

\begin{tabular}{|c|c|c|}
\hline 00912 & c & SHRIMRAT STRADDLE Point-in-polygon routine. \\
\hline 00913 & c & CALLING PROGRAM SENDS THE \(X-Y\) Coordinates of the point to be \\
\hline 00914 & c & TESTED. SUBROUTINE RETURNS 1 IF POINT IS INSIDE POLYGON, -1 \\
\hline 00915 & c & if point is a vertex of the polyeon (and thus on the goundary), \\
\hline 00916 & c & AND O IF OUTSIDE THE POLYEON. \\
\hline 00917 & c & CALLING PROGRAM MUST CLISE POLYEON BY SETTING (NPTS+i)st Value to \\
\hline 00918 & c & THE PARAMETER M = NPTS+1, WHERE NPTS 15 THE NODES IN THE POLYOD \\
\hline 00919 & \(c\) & \\
\hline 00920 & 1 & SUBROUTINE PIP (XO, YO, RESULT, POLY, NN) \\
\hline 00921 & 2 & INTEGER RESULT, M, NPTS, \(K_{\text {, }}\), J \\
\hline 00922 & 3 & \\
\hline 00923 & 4 & REAL RHD, DELTA \\
\hline 00924 & & \\
\hline 00925 & 5 & RESULT \(=1\) \\
\hline 00926 & & \\
\hline 00927 & 6 & \(M=N N+1\) \\
\hline 00928 & 7 & DO \((J=1, m)\) \\
\hline 00929 & 日 & - \(X(J)=P O L Y(1, J)\) \\
\hline 00930 & 9 & . \(Y(J)=P O L Y(2, J)\) \\
\hline 00931 & & ...FIN \\
\hline 00932 & 10 & \(X(M)=P O L Y(1,1)\) \\
\hline 00933 & 12 & \(Y(M)=P O L Y(2,1)\) \\
\hline 00934 & & \\
\hline 00935 & c & TRANSLATE VERTICES OF THE POLYOON SO (XO, yo) IS LOCATED AT \\
\hline 00936 & c & THE ORIGIN. IF ANY TRANSLATED VERTEX IS ZERD, THE POINT IN \\
\hline 00937 & C & QUESTION IS A VERTEX. \\
\hline 00938 & & \\
\hline 00939 & 13 & NPTS=M-1 \\
\hline 00940 & 14 & DO 10 1=1, M \\
\hline 00941 & 15 & \(\mathrm{XX}(\mathrm{I})=\mathrm{X}(\mathrm{I})-\mathrm{XO}\) \\
\hline 00942 & 16 & YY(I) \(=\mathrm{Y}(1)-Y 0\) \\
\hline 00943 & 17 & IF (XX(I)) \(10,9,10\) \\
\hline 00944 & 189 & IF (YY(I)) \(10,70,10\) \\
\hline 00945 & 1910 & CONTINUE \\
\hline 00946 & & \\
\hline 00947 & 20 & \(K=0\) \\
\hline 00948 & c & INITIALIZE INTERSECTION COUNT \\
\hline 00949 & & \\
\hline 00950 & 21 & DO \(50 \mathrm{~J}=1\), NPTS \\
\hline 00951 & 22 & IF (YY(J)) 11,30,12 \\
\hline 00952 & 2311 & IF (YY(J+1) \({ }^{\text {(}}\) 50,31,13 \\
\hline 00953 & 2412 & IF (YY(J+1)) 13,31,50 \\
\hline 00954 & 2513 & IF (XX(J)) 14,31,15 \\
\hline 00955 & 2614 & IF \(\operatorname{exx}(\mathrm{J}+1)\)) 50,50,18 \\
\hline 00956 & 2715 & IF \((X X(J+1)\)) \(18,45,45\) \\
\hline 00957 & 2818 & DELTA \(=\) YY(J)-YY(\(\mathrm{l}+1)\) \\
\hline 00958 & 29 & IF (DELTA) 16,50,16 \\
\hline 00959 & 3016 & LAMDA \(=-Y Y(1+1) /\) DELTA \\
\hline 00960 & 31 & RHO \(=(\mathrm{YY}(\mathrm{J}) * \mathrm{XX}(\mathrm{J}+1)-\mathrm{XX}(\mathrm{J}) * Y Y(\mathrm{l}+1)\))/DELTA \\
\hline 00961 & 32 & IF (RHD) 50, 20,20 \\
\hline 00962 & 3320 & If (LAMDA) 50, 25, 25 \\
\hline 00963 & 3425 & IF (LAMDA-1.) 45, 50, 50 \\
\hline 00964 & & \\
\hline
\end{tabular}

```

00979
00980
00981
00982
00983
00984
00985
00986
00987
C IMAGE. FLX
1
2 $\quad$ SUBRDUTINE IMAGE(A,N, VECT)

```

MODULE CONTAINS NO MINDR ERRORS MODULE CONTAINS NO MAJOR ERRORS
\begin{tabular}{|c|c|c|}
\hline 00988 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{c PROJECT. FLX}} \\
\hline 00989 & & \\
\hline 00990 & 1 & SUBROUTINE PROJECT(A, B, N, PROJ) \\
\hline 00991 & 2 & REAL N(3) \\
\hline 00992 & 3 & DIMENSIDN A(3), B(3), C(3), D(3), PROJ(3) \\
\hline 00993 & 4 & CALL VCROSS (\(\mathrm{A}, \mathrm{B}, \mathrm{C}\)) \\
\hline 00994 & 5 & CALL VCROSS (\(\mathrm{N}, \mathrm{C}, \mathrm{D}\)) \\
\hline 00995 & 6 & \(\mathrm{P}=\mathrm{VDOT}(\mathrm{N}, \mathrm{B}\)) \\
\hline 00996 & 7 & DO (I=1,3) PRDJ(I)=D(I)/P \\
\hline 00997 & 9 & RETURN \\
\hline 00998 & 11 & END \\
\hline
\end{tabular}
(FLECS 77 VERSION 22.38)
MODULE CONTAINS NO MINDR ERRDRSMODULE CONTAINS NO MAJJR ERRORS

00999 01000 01001 01002 01003 01004 01005 01006

C TRIPLE.FLX
1 FUNCTION TRIPLE(A, B,C)
2 DIMENSION A(3),B(3),C(3),D(3)

\section*{CALL VCROSS(A, B, D)} TRIPLE=VDOT(C,D) RETURN END
(FLECS 77 VERSION 22. 39)
MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

01014
01015
01016
01017 01018
01019 01020

C MINUS.FLX
SUBROUTINE MINUS (A, B, C)
DIMENSION A(3), B(3),C(3) DO (I=1, 3) \(C(I)=B(I)-A(I)\) RETURN
END
(FLECS 77 VERSION 22. 38)

MODULE CONTAINS NO MINDR ERRORS MODULE CONTAINS ND MAJOR ERRORS
\begin{tabular}{|c|c|c|}
\hline 01021 & \multicolumn{2}{|r|}{C PCROSS. FLX} \\
\hline 01022 & & \\
\hline 01023 & 1 & FUNCTION PCROSS (\(A, B\)) \\
\hline 01024 & 2 & DIMENSION \(A(2), B(2)\) \\
\hline 01025 & 3 & PCROSS \(=A(1) * B(2)-A(2) * B(1)\) \\
\hline 01026 & 4 & RETURN \\
\hline 01027 & 5 & END \\
\hline & & 577 VERSION 22.38) \\
\hline
\end{tabular}

\section*{Module contains no mindi errdrs MODULE CONTAINS NO MAJJR ERRDRS}

01028
01029 01030 01031 01032 01033 01034
c PMINUS. FLX

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS
\begin{tabular}{|c|c|c|}
\hline 01035 & \multirow[t]{2}{*}{c} & PSIIE. FLX \\
\hline 01036 & & \\
\hline 01037 & 1 & FUNCTION PSIRE(A) \\
\hline 01038 & 2 & DIMENSION A(2) \\
\hline 01039 & 3 & PSIZE=SGRT(A(1)*A(1)+A(2)*A(2) \\
\hline 01040 & 4 & RETURN \\
\hline 01041 & 5 & END \\
\hline & & 77 VERSION 22.39) \\
\hline
\end{tabular}

MODULE CONTAINS ND MINDR ERRORS MODULE CONTAINS ND MAJOR ERRORS
```

O1042 1 BlOCK DATA
01043 2 COMPLEX EYE, IK
01044
01045
01046
01047
01048
01049
01050
0 1 0 5 1
REAL NTM
COMMON/EXTRA/TWOP I, RODTPI, EVE, IK, PI, PIO4
COMMDN/PHASE/RDD, RDI,RII
COMMON/DATUM/ CNVT, FTM, NTM, PIDR
DATA CNVT, FTM, NTM/. 01745329, . 3048, 1851.965/
DATA PI, TWOPI, ROOTPI, PIO4, EVE/3. 141594, 6. 283185, 1. 772454, . 785398,
\&<0.,1.)/,PIO2/1.370796327/
END
(FLECS 77 VERSION 22.38)
MODULE CDNTAINS NO MINDR ERRDRS
MODULE CONTAINS NO MAJDR ERRORS

```
```

0 0 0 0 1
00002
00003
00004
00005
00006
00007
0000E
00009
00010
0 0 0 1 1
00012
00013
00014
0 0 0 1 5

```

00001 00002 00003 00004 00005 00006 00007 000: 00009 0010 00011 00012 00013 00015
```

C VECPTOR LIBRARY

```
C VECPTOR LIBRARY
 1 SUBROUTINE MATMU(A,B,C,L,M,N)
 1 SUBROUTINE MATMU(A,B,C,L,M,N)
 2 DIMENSION A(L,M),B(M,N),C(L,N)
 2 DIMENSION A(L,M),B(M,N),C(L,N)
 C MATRIX MULTIPLICATION
 C MATRIX MULTIPLICATION
 DO(I=1,L)
 DO(I=1,L)
 DO(J=1,N)
 DO(J=1,N)
 DO(K=1,M)
 DO(K=1,M)
 WHEN(K, EQ. 1) C(I,J)=A(I,K)*B(K,J)
 WHEN(K, EQ. 1) C(I,J)=A(I,K)*B(K,J)
 ELSE C(I,J)=C(I,J)+A(I,K)*B(K,J)
 ELSE C(I,J)=C(I,J)+A(I,K)*B(K,J)
 FIN
 FIN
 FIN
 FIN
 FIN
 FIN
 RETURN
 RETURN
 END
 END
 (FLECS 77 VERSION 22. 38)
 MDDULE CONTAINS NO MINDR ERRORS
 MODULE CONTAINS NO MAJOR ERRORS
```

00016	1		SUBROUTINE VCROSS(A, B, C)
00017	2		DIMENSIDN A(3), B(3), C(3)
00018	3	c	$C=A \times B$
00019	4	c	VECTOR DR CROSS PRODUCT
00020	5		$C(1)=A(2) * B(3)-A(3) * B(2)$
00021	6		$C(2)=A(3) * B(1)-A(1) * B(3)$
00022	7		$C(3)=A(1) * B(2)-A(2) * B(1)$
00023	8		RETURN
00024	9		END

MODULE CONTAINS ND MINDR ERRDRS MODULE CONTAINS ND MAJOR ERRDRS

```
1 FUNCTION VDOT (A,B)
00026
00027
00028
00029
2 DIMENSION A(3),B(3
3 VDOT=A(1)*B(1)+A(2)*B(2)+A(3)*B(3)
4 RETURN
5 END
(FLECS 77 VERSION 22.3日)
MODULE CONTAINS NO MINOR ERRORS
MODULE CONTAINS NO MAJOR ERRORS
```

00030	1	SUBROUTINE NORMLZ $(A, B)$
00031	2	DIMENSION $A(3), B(3)$
00032	3	$D=V M A G(A)$
00033	4	$B(1)=A(1) / D$
00034	5	$B(2)=A(2) / D$
00035	6	$B(3)=A(3) / D$
00036	7	RETURN
00037	$G$	END
(FLECS 77 VERSION 22. 38)		
MODULE CONTAINS NO MINOR ERRORS		
MODULE CONTAINS NO MAJOR ERRORS		

```
00038 1 FUNCTIDN VMAG(A)
00039
00040
00041
00042
2 DIMENSIDN A(3)
VMAG=SQRT(A(1)*A(1)+A(2)*A(2)+A(3)*A(3))
RETURN
END
(FLECS 77 VERSIDN 22.38)
MODULE CONTAINS NO MINOR ERRORS
MODULE CONTAINS ND MAJOR ERRORS
```


# RADAR GLINT MODEL METHODOLOGY 

## By

R. B. Rakes and M. M. Horst

Prepared for
ROCKWELL INTERNATIONAL
MISSILE SYSTEMS DIVISION
COLUMBUS, OHIO 43216

May 1982
GEORGIA INSTITUTE OF TECHNOLOGY
A Unit of the University System of Georgia Engineering Experiment Station Atlanta, Georgia 30332
Technical Report
Georgia Tech/EES Project A-2986
RADAR GLINT MODEL METHODOLOGY
By
R. B. Rakes and M. M. Horst
Prepared for
Rockwell International
Missile Systems DivisionColumbus, Ohio 43216
under Agreement V161-SA-113203
Prepared by
GEORGIA INSTITUTE OF TECHNOLOGY
Engineering Experiment StationAtlanta, Georgia 30332May 1982

## TABLE OF CONTENTS

SECTION TITLE ..... PAGE
1 INTRODUCTION ..... 1
2
TRACK ERROR MODEL ..... 3
3 CROSS COMPUTER MODEL ..... 11
3.1 Physical Optics Equations. ..... 12
3.1.1 Flat Plates ..... 13
3.1.2 Cone Frusta. ..... 15
3.1.3 Dihedrals And Trihedrals. ..... 17
3.1.4 Ellipsoids ..... 24
3.2 Geometrical Considerations ..... 26
3.3 Multipath. ..... 34
3.4 Near Field Approximation ..... 35
3.5 Reflection From The Earth's Surface. ..... 35
4 REFERENCES ..... 37

## LIST OF FIGURES

## FIGURE

1. 
2. 
3. Triangular flat plate geometry........................................... 14
4. Truncated cone frustum geometry.......................................... 16
5. The shaded areas represent: (a) and (b) the of the incident wave intercepted by face 1 and reflected onto the plane of face 2 ; (c) and (d) the portion of face 2 illuminated by a reflection off face 1 , and reflected onto the plane of face 321
6. (a) Dihedral and (b) trihedral geometry. ..... 23
7.8. Relative positions of initial coordinatesystems28
7. Definition of "bearing" ..... 28
8. Multipath geometry illustrating the direct and indirect incident vectors. ..... 33

## LIST OF TABLES

TABLETITLEPAGE1. THE VARIOUS SIGNALS ARRIVING AT THE ANTENNA. ..... 6

## SECTION 1

## INTRODUCTION

The Georgia Tech Radar Glint model is a set of subroutines to predict seeker track errors due to radar glint from vehicular targets. The model is intended for use as a "plug-in" module into existing missile seeker programs, although it may be used in a stand-alone mode. This Radar Glint model, written in FLECS (an extended version of Fortran 77), was developed entirely at Georgia Tech and implemented on a VAX $11 / 780$ computer. A working version of the model is also available for a SYSTEMS $32 / 7780$ computer. The purpose of this technical manual is to provide the basic equations and algorithms used by the Radar Glint model. For information on implementing this model as well as a complete program listing, refer to the Software Documentation manual titled "Radar Glint Model" [1].

The Radar Glint model supports a missile model by simulating a monopulse tracking radar employed on the missile. The primary outputs of the model are the azimuth (yaw) and elevation (pitch) track errors which are used as inputs to the guidance portion of the missile simulation. One of the main advantages of this program is that the target of the missile is modeled as an extended target (i.e., as a large collection of individual scatterers, for the calculation of the radar cross section) as opposed to a single point target with a constant cross section. This allows for the effects of glint to be modeled more accurately. Another advantage of this computer model is that the effects of multipath and clutter from the ground plane are also included. As an added bonus, the program returns the location of the missile's impact point on the target.

The Radar Glint model was developed from two earlier Georgia Tech computer programs: The multipath/clutter routines for the TAC/ZINGER program [2] and the radar cross section (RCS) model known as CROSS [3]. The multipath/clutter model, described in Section 2, produces track errors for a monopulse radar, but is restricted to a single point target. The CROSS model,
described in Section 3, was originally designed to calculate the RCS of ships, but has since been adapted to find the near field RCS of other three dimensional targets, including land as well as sea targets.

## SECTION 2

TRACK ERROR MODEL

For a typical monopulse system with four equal beams, the track errors in elevation $\left(\varepsilon_{e}\right)$ and azimuth $\left(\varepsilon_{a}\right)$ are proportional to the difference channel divided by the sum channel:

$$
\begin{align*}
& \varepsilon_{a}=P_{a} \frac{D_{a}}{S}  \tag{1}\\
& \varepsilon_{a}=P_{e} \frac{D_{e}}{S} \tag{2}
\end{align*}
$$

where the subscripts denote azimuth and elevation. The proportionality constants, $P_{e}$ and $P_{a}$, can be found by noting that, for $a$ single target and small errors, the error signal should be exactly the negative of the off-axis angle [2].

Denoting the oneway voltage pattern by $f\left(\theta_{e}, \theta_{a}\right)$, where $\theta_{e}$ and $\theta_{a}$ are the angles off boresight in elevation and azimuth, the sum and difference signals can be expressed in terms of the four voltage patterns:

$$
\begin{align*}
S & =f\left(\theta_{e}+\beta_{e} \theta_{q}, \theta_{a}-\beta_{a} \theta_{q}\right)+f\left(\theta_{e}-\beta_{e} \theta_{q}, \theta_{a}-\beta_{a} \theta_{q}\right) \\
& +f\left(\theta_{e}+\beta_{e} \theta_{q}, \theta_{a}+\beta_{a} \theta_{q}\right)+f\left(\theta_{e}-\beta_{e} \theta_{q}, \theta_{a}+\beta_{a} \theta_{q}\right)  \tag{3}\\
D_{e} & =-f\left(\theta_{e}+\beta_{e} \theta_{q}, \theta_{a}-\beta_{a} \theta_{q}\right)+f\left(\theta_{e}-\beta_{e} \theta_{q}, \theta_{a}-\beta_{a} \theta_{q}\right) \\
& -f\left(\theta_{e}+\beta_{e} \theta_{q}, \theta_{a}+\beta_{a} \theta_{q}\right)-f\left(\theta_{e}-\beta_{e} \theta_{q}, \theta_{a}+\beta_{a} \theta_{q}\right)  \tag{4}\\
D_{a} & =f\left(\theta_{e}+\beta_{e} \theta_{q}, \theta_{a}+\beta_{a} \theta_{q}\right)+f\left(\theta_{e}-\beta_{e} \theta_{q}, \theta_{a}-\beta_{a} \theta_{q}\right) \\
& -f\left(\theta_{e}+\beta_{e} \theta_{q}, \theta_{a}+\beta_{a} \theta_{q}\right)-f\left(\theta_{e}-\beta_{e} \theta_{q}, \theta_{a}+\beta_{a} \theta_{q}\right) \tag{5}
\end{align*}
$$

where $\beta_{i} \theta_{q}$ is the squint angle (i.e., the angle between the center of each beam and each boresight axis), and $\theta_{q}$ was taken to be equal to 0.3 for each beam.

For the present application, the antenna pattern $f\left(\theta_{e}, \theta_{a}\right)$ for each beam was taken to be:

$$
\begin{align*}
f\left(\theta_{e}, \theta_{a}\right) & =\left(\frac{3}{2+\Delta}\right)\left[\frac{\Delta \sin u}{u}+2(1-\Delta)\left(\frac{\sin u}{u^{3}}-\frac{\cos u}{u^{2}}\right)\right] \\
\Delta & =0.1818 \sqrt{\left(\frac{\theta_{e}}{\theta_{e}}\right)^{2}+\left(\frac{\theta_{a}}{\theta_{a}}\right)^{2}}  \tag{6}\\
u & =2.7831 /
\end{align*}
$$

$\beta_{e}, \beta_{a}$ are the $3 d B$ beamwidths.

For a single point target, the expressions for azimuth and elevation error are:

$$
\begin{equation*}
\varepsilon=P \cdot \operatorname{Re}\left[\frac{D S^{T} \sqrt{\sigma_{T}}+D_{c} \sqrt{\sigma_{c}}}{S^{R} S^{T} \sqrt{\sigma_{T}}+S_{c} \sqrt{\sigma_{c}}}\right] \tag{7}
\end{equation*}
$$

where the subscripts a and e for azimuth and elevation have been omitted, and $R e$ means the real part of the complex quantity in brackets. The superscripts $R$ and $T$ denote received and transmitted one-way voltage patterns:

$$
\begin{aligned}
D & =\text { Difference pattern for received signal } \\
& =D_{D}+\sum_{i} D_{i} \rho_{i} \\
S^{T} & =\text { Sum pattern for transmitted signal } \\
& =S_{D}^{T}+\sum_{i} S_{i}^{T} \rho_{i} \\
D_{c} & =\text { Difference pattern for clutter signal } \\
S^{R} & =S_{i m} \text { pattern for received signal } \\
& =S_{D}^{R}+\sum_{i}^{R} \rho_{i}^{R} \\
S_{c} & =S u m \text { pattern for clutter signal }
\end{aligned}
$$

$$
\begin{aligned}
& D_{D}, S_{D}^{T}, S_{R}^{R}=\text { Direct path pattern } \\
& D_{i}, S_{i}^{T}, S_{i}^{R}=\text { Indirect pattern for } i^{\text {th }} \text { facet } \\
& \sqrt{\sigma_{T}}=\quad \begin{array}{l}
\text { Free space scattering length of the point } \\
\text { target }
\end{array} \\
& \sqrt{\sigma_{c}}=\text { Clutter scattering length } \\
& \sum_{i}=\text { Sum over ground facets between target and radar } \\
& \rho_{i} \quad=\text { Combination of specular and diffuse reflection }
\end{aligned}
$$

Table 1 presents the various signals to be included in the summation in order to compute the angular errors. The signal amplitudes, phases, and directions are identified by type in the table.

Note that to generate $\varepsilon_{e}$ and $\varepsilon_{a}$ as functions of time, the diffuse and clutter terms are random variables and the expressions given in the multipath and clutter sections above give the rms value of the $\rho_{d i}$ and the average of $\sigma_{c}$. Instantaneous values of these variables are generated for use in the above expressions using bivariate. Gaussian distributions having standard deviations $\rho_{d i}$ (the diffuse reflection coefficient from facet 1 ) and $\sqrt{\sigma_{c}}$. This generator produces the correct amplitude and phase distributions for the radar variables.

Equation 7 above represents the track errors in azimuth and elevation for a single point target. For multiple spatially separated point targets, $D S^{T} \sqrt{\sigma_{T}}$ and $S^{R} S^{T} \sqrt{\sigma_{T}}$ in Equation (7) are replaced by the phasor sums of similar terms for each point target.

The difficulty arises when the target is not a point target or a collection of point targets, but rather is an extended target or a collection of extended targets. The extension from one to many targets carried over, but the relatively simple form of Equation 7 is further complicated by the replacement of the free space scattering length of the target, $\sqrt{\sigma_{T}}$, by the combination of the free space, fmage, and the diplane scattering lengths,

## table 1. the various signals arriving at the antenna


where
$\theta_{8 e}, \theta_{8 \Omega}$ - radar main axis elevation and azimuth angles, respectively
$\theta_{t e}{ }^{\theta} \theta_{t a}$ - target elevation and azimuth angle
$\boldsymbol{\theta}_{11} \quad=$ depression angle to facet 1
$\bar{\theta}_{1} \quad$ average depression angle to clutter cell
$\eta_{1} \quad$ - apparent azimuthal location of $i^{\text {th }}$ scattering center [2]
with each being multiplied by the appropriate reflection coefficients, and all cross terms being carried along. Specifically, for a single extended target, such as one triangular flat plate element:

$$
\begin{align*}
& S^{T} \sqrt{\sigma_{T}} \rightarrow D_{D} S_{D}^{T} \sqrt{\sigma_{f}}+\sum_{i} \rho_{i} \sqrt{\sigma_{d i}}\left(D_{D} S_{i}^{T}+S_{D} D_{i}^{T}\right)  \tag{8}\\
&+\sum_{k, \ell} D_{k} S_{\ell}^{T} \rho_{k} \rho_{\ell} \sqrt{\sigma_{k \ell}} \\
& S^{R} S^{T} \sqrt{\sigma_{T}} \rightarrow S_{D}^{R} S_{D}^{T} \sqrt{\sigma_{f}}+\sum_{i} \rho_{i} \sqrt{\sigma_{d i}}\left(S_{D}^{T} S_{i}^{R}+S_{i}^{T} S_{D}^{R}\right)  \tag{9}\\
&+\sum_{k, \ell} S_{k} R_{l}^{T} \rho_{k} \rho_{\ell} \sqrt{\sigma_{k \ell}}
\end{align*}
$$

$$
\begin{aligned}
& \text { Where } \sqrt{\sigma_{f}}=\text { free space scattering length of element } \\
& \sqrt{\sigma_{d i}}=\operatorname{diplane}^{\text {ith indirect path }} \text { patering length of element for } \\
& \sqrt{\sigma_{k \ell}}=\begin{array}{l}
\text { image scattering length of element for indirect } \\
\\
\text { paths } k \text { and } \ell .
\end{array}
\end{aligned}
$$

Figure 1 illustrates the multipath geometry, showing the four ways in which the signal can travel from the radar to the target and back, resulting in three terms for target scattering length. The diplane scattering length is assumed to be the same for the direct-indirect and the indirect-direct paths.

Equations 8 and 9 apply in the case of a single extended scatterer. For a large extended target described as a collection of scatterers, each of the terms in Equations 8 and 9 must be calculated for each scatterer and the phasor sum must be computed. The angle error is then found as the real part of the complex sum.

Although a bit cumbersome, formulations such as Equations 8 and 9 are nonetheless straightforward to code on a digital computer. However, the number of calculations to be performed by the computer rapidly escalates to unmanageable proportions. For diffuse reflection with $\mathrm{n}_{\mathrm{g}}$ ground reflection points, the total number of possible paths $n_{t}$ is $\left(n_{g}+1\right)^{2}$. With tank target files numbering thousands of scatterers, the program cannot afford the
computation time to calculate each term for every scatterer and ten to twenty ground reflection points for the diffuse reflection.

Therefore the following approximations were made to the exact equations:

1. Restrict the number of ground facets to ten between missile starting point and target. Then, as the missile crosses over a new facet on its way toward the target, eliminate that facet from the calculations.
2. Rather than calculating indirect incidence angles to each scatterer on the target for each of the ten facets, select ten scatterer heights and precalculate indirect incidence angles for the array of ten ground facets and ten scatterer heights. Then use the indirect incidence angle for the height closest to the height of the center of each scatterer in RCS calculations. Figure 2 illustrates some of the possible paths described by this array.
3. Pre-calculate the specular and diffuse reflection coefficient for each combination of ground facet and scatterer height, and store in the array with the indirect incidence angles. This array is updated every time the missile crosses over a new ground facet.
4. Re-calculate scatterer RCS every $N$ steps of the missile fly-out model, where $N$ is the number of facets currently between the missile and the target.


Figure 1. Multipath geometry, showing the origin of the terms in Equations 8 and 9 , where $X$ is either $D$ or $\mathbf{s}^{R}$.


Figure 2. Some of the possible paths. For $n_{g}$ ground facets and $n_{h}$ scatterer heights, an ( $n_{g} \times$ $n_{h}$ ) array containing specular and diffuse reflection coefficients and local incidence angles for all paths is pre-calculated once for every update of missile position, and the results stored for access by the scatterer RCS and multipath routines.

CROSS (Coherent Radar cross sections $\underline{\text { Of }}$ Surface Ships) is a computer program developed and implemented at Georgia Tech. This model was developed in particular to calculate the effective radar cross section (RCS) of ships, but is general enough to handle most extended targets in a wide variety of scenarios. CROSS uses many of the features developed in its predecessor CROW (Coherent Radar cross section Over Water) [4], which was used to calculate the RCS of submarine masts and other small targets on or above the sea surface. The program CROSS has the advantage over CROW in that it can handle a complete three-dimensional target stored in one data file rather than a separate data file for each aspect of the target. This is because CROSS has a sophisticated hidden surface algorithm not found in CROW.

CROSS finds the total RCS of a target by calculating the RCS return for each individual scatterer and adding the results either coherently or incoherently. The program allows the target to move with respect to the radar in any straight line path on the earth's surface. The target can be incremented through any combination of yaw, pitch, and roll in any order. The model takes into account the curvature of the earth, multipath from the sea surface, and variable sea states. The types of scatterer it can presently handle are: triangular flat plates, truncated cone frusta, ellipsoids, dihedrals, and trihedrals.

There are two possible ways in which the RCS returns from the individual scatterers can be summed: coherently or incoherently. The CROSS program can handle either method depending on the user's preference. A coherent summation is one in which the phase angles of the individual scatterers are retained. It is accomplished by the program as

$$
\begin{equation*}
\sigma=\left|\sum_{i=1}^{n} w_{i} \sqrt{\sigma_{i}}\right|_{2} \tag{10}
\end{equation*}
$$

where $\sigma$ is the total cross section, $n$ is the number of scatterers, $\sqrt{\sigma_{1}}$ is the complex scattering length for an individual scatterer, and $W_{i}$ is a weighting
factor for the scatterer. Since $\sqrt{\sigma_{i}}$ is computed as a complex number, the phase is automatically included. The weighting factor $W_{i}$ is a real number between zero and one that allows for the handling of imperfectly reflecting surfaces such as dielectrics or radar absorbent material (RAM). If an incoherent sumation is desired, the expression for $\sigma$ is

$$
\begin{equation*}
\sigma=\sum_{i=1}^{n}\left|w_{i} \sqrt{\sigma_{i}}\right|^{2} \tag{11}
\end{equation*}
$$

where the square of the modulus is found before the addition as opposed to the coherent summation where the modulus is not found until after the sum is completed.
3.1. PHYSICAL OPTICS EQUATIONS

The basic physical optics formula used in deriving the bistatic scattering equation is

$$
\begin{align*}
& \sqrt{\sigma}=\frac{ \pm 1 k}{\sqrt{\pi}} \exp \left[i k \vec{r}_{o} \cdot(\hat{i}-\hat{s})\right] I \\
& I=\int_{A} \hat{n} \cdot \hat{h}_{i} \times \hat{e}_{r} \exp [i k \vec{r} \cdot(\hat{i}-\hat{s})] d a \tag{12}
\end{align*}
$$

where $k=2 \pi / \lambda$ is the free space wave number of the incident wave, $\hat{i}$ and $\hat{s}$ are unit vectors aligned along the directions of propagation of the incident and scattered waves, $\hat{h}_{i}$ is the incident magnetic field unit vector, and $\hat{e}_{r}$ is the reflected electric field unit vector. The position vector $\vec{r}_{0}$ runs from some fixed origin to an auxiliary origin in or on the scatterer (such as the midpoint of a frustum or flat plate), and the position vector $\vec{r}$ is attached to the auxiliary origin and sweeps over the surface of integration $A$. The unit vector $\hat{n}$ is an outward normal erected on the surface element da and the integration is performed only over the scatterer surfaces that are illuminated by the incident plane wave. Only $\hat{n}$ and $\vec{r}$ vary over this surface, with $\hat{h}_{i} \times \hat{e}_{r}$ and ( $\hat{i}-\hat{s}$ ) being independent of the variable of integration. The phase convention $e^{i \omega t}$ is assumed throughout.

### 3.1.1 FLAT PLATES

The above integral has a closed form analytic solution for the simple geometric shapes implemented as scatterer types in CROSS. For a triangular flat plate, the result is

$$
\begin{align*}
& \sqrt{\sigma}=\frac{\hat{n} \cdot \hat{e}_{r} \times \hat{h}_{i}}{\sqrt{\pi} T} e^{\left(i k r_{o}\right.} \cdot \overrightarrow{w)}\left\{\hat{p} \cdot \underset{a}{\left.\overrightarrow{a_{e}} e^{\left(i k r_{a}\right.} \cdot \vec{w}\right)}\left[\frac{\sin \left(\frac{1}{2} k \vec{a} \cdot \vec{w}\right)}{\frac{1}{2} k \vec{a} \cdot \vec{w}}\right]\right. \\
& \left.+\hat{p} \cdot \overrightarrow{\left(i k \vec{r}_{b}\right.} \cdot \vec{w}\right) \sin \left(\frac{1}{2} k \vec{b} \cdot \vec{w}\right)  \tag{13}\\
& \left.+\hat{p} \cdot \vec{c} e^{\left(i k r_{c}\right.} \cdot \vec{w}\right) \frac{1}{\frac{1}{2} \mathrm{~kb} \cdot \vec{w}} \frac{\sin \left(\frac{1}{2} \mathrm{kc} \cdot \overrightarrow{\mathrm{w}}\right)}{\frac{1}{2} \mathrm{kc} \cdot \overrightarrow{\mathrm{w}}} \\
& \text { where } \hat{w}=\hat{i}-\hat{s}  \tag{14}\\
& \hat{p}=\frac{\hat{n} \times \vec{w}}{|\hat{n} \times \vec{w}|}  \tag{15}\\
& T=|\hat{n} \times \vec{w}| \tag{16}
\end{align*}
$$

The vector $\hat{n}$ represents the unit normal to the plate surface. Its direction is defined by a right-handed (counterclockwise) ordering of the vertices. Thus,

$$
\begin{equation*}
\hat{n}=\frac{-\hat{a} \times \vec{c}}{|\hat{a} \times \vec{c}|} \tag{17}
\end{equation*}
$$

where $\hat{a}, \hat{b}$, and $\hat{c}$ are unit vectors aligned along the three edges of the plate as illustrated in Figure 3. The vectors $\vec{a}, \vec{b}$, and $\vec{c}$ are defined as

$$
\begin{align*}
& \vec{a}=a \hat{a} \\
& \vec{b}=b \hat{b}  \tag{18}\\
& \vec{c}=c \hat{c}
\end{align*}
$$



Figure 3. Triangular flat plate geometry.
where $a, b$, and $c$ are the lengths of the three edges, respectively. The vector $\vec{r}_{0}$ is the position vector of the centroid of the plate with respect to the main origin of the target and is found only in the plane wave phase term $\exp \left(i k \vec{r}_{0}\right.$ w) in (4). The vectors $\vec{r}_{a}, \vec{r}_{b}$, and $\vec{r}_{c}$ are position vectors of the midpoints of the edges with respect to the centroid of the plate. The variable $T$ in the denominator of (13) is the projection of $\vec{w}$ onto the plane of the plate. When $T=0$, a specular condition occurs where the contribution of all three edges at a far field point are in phase, but (13) becomes singular for this case. Thus, a check is made for the case when $T=0$ where $\sqrt{\sigma}$ is now found by

$$
\begin{equation*}
\sqrt{\sigma}=\frac{\hat{n} \cdot \hat{e}_{r} \times \hat{h}_{i}}{\sqrt{\pi}} e^{i k \vec{r}_{0} \cdot \vec{w}} A \tag{19}
\end{equation*}
$$

and $A$.is just the area of the triangle found by

$$
\begin{equation*}
A=\frac{1}{2}|\vec{a} \times \vec{b}| \tag{20}
\end{equation*}
$$

## 3:1.2 CONE FRUSTA

The closed form solution of Equation (12) for a truncated cone frustum is

$$
\begin{align*}
& \sqrt{\sigma}=-i s \sqrt{\frac{2 k a}{T}} \hat{n}_{0} \cdot \hat{h}_{i} \times \hat{e}_{r} \exp \left[i k \vec{r}_{0} \cdot(\hat{i}-\hat{s})\right]  \tag{21}\\
& \quad \exp [-i(k a T-\pi / 4)] G
\end{align*}
$$

where $G=F\left(1-\frac{i \tan \tau}{k Q a}\right)+\frac{i \cos \left[\frac{1}{2} k Q \ell\right] \tan \tau}{k Q a}$
and

$$
\begin{equation*}
F=\frac{\sin \left[\frac{1}{2} k Q \ell\right]}{\frac{1}{2} k Q \ell} \tag{23}
\end{equation*}
$$

Figure 4 is an illustration of the geometry of the truncated cone frustum. The points $P_{1}$ and $P_{2}$ are the Cartesian coordinates (with respect to the target origin 0 ) of the endpoints of the frustum along the central axis.


Figure 4. Truncated cone frustum geometry.

The radif at the two ends are $a_{1}$ and $a_{2}$. The axial length of the frustum is designated by $\ell$, while the slant length is $s$. The cone half-angle is $\tau$, but $\tau$ need not be found explicitly since tan $\tau$ is the only form in which $\tau$ appears in (22). Thus, $\tan \tau$ is found by
$\tan \tau=\left(a_{1}-a_{2}\right) / \ell$

The symbol a in Equations (21) through (23) represents the mean radius of the frustum. It is found by averaging the radii of the two ends; $a_{1}$ and $a_{2}$. The vector $\vec{r}_{0}$ is the position vector of the center of the frustum with respect to the target origin. The quantity $Q$ in Equations (22) and (23) is defined by

$$
\begin{equation*}
\mathrm{Q}=\mathrm{P}+\mathrm{T} \tan \tau \tag{25}
\end{equation*}
$$

where $\mathrm{p}=(\hat{i}-\hat{s}) \cdot \hat{A}$
and $\quad T=|\hat{A} \times(\hat{i}-\hat{s})|$

The unit vector $\hat{A}$ is oriented along the main axis of the frustum and points from the small end toward the large end.

In the case where $a_{1}=a_{2}$, the frustum degenerates to a cylinder. For this case, the imaginary components of $G$ in (22) are omitted, otherwise they would be singular. Thus, for a cylinder, $G=F$. Another special case is the cone, which is found when $a_{2}=0$. Equations (21) through (23) can handle this case without adjustments.

### 3.1.3 DIHEDRALS AND TRIHEDRALS

A major analytical undertaking in the expansion of ship modeling techniques was the development of a procedure for predicting the return from arbitrary dihedrals and trihedrals. The radar return from re-entrant rightangled corner is large and persists over wide viewing angles, hence the corner is a dominant scatterer. However, echo area reductions of 20 dB or more can
be achieved if the faces of the corner can be tilted away from perpendicularity. This non-perpendicular case is modeled in more or less routine fashion. [5]

Despite the reference to "arbitrary" corners, there is an implicit restriction: the model accounts for multiple internal interactions in which no trihedral face participates more than once. Thus, although the prescription works for up to three internal reflections, a triple reflection involving only two faces is not taken into account. This can occur only if some of the angles between faces are acute, hence the theory is applicable only to obtuse, but otherwise arbitrary, trihedral reflectors. There is no restriction on the use of acute angles, of course, but the model will not accurately include all the interactions.

The model has these salient features:

1. a marriage of geometrical optics (ray tracing) and physical optics approximations;
2. a physical optics prescription for the bistatic scattering from a perfectly conducting polygonal plate; and
3. a procedure for describing or identifying the common area shared by a pair of overlapping polygons.

The approach is to allow all interactions between the faces to follow the laws of geometric optics (GO), except for the final one, and to apply the physical optics (PO) prescription only then. In essence, the faces act like mirrors for all except the final reflection, which is treated by PO methods instead of GO. The procedure then allows the use of the standard bistatic far field PO scattering formula for flat surfaces.

Some care must be exercised in applying this concept. The direction followed by a ray when reflected from a flat surface can easily be determined by reversing the normal component of the incident ray - but one must also reverse the normal component of the incident magnetic field. The images of both the direction of propagation and of the magnetic field must be used in the bistatic $P O$ scattering expression for a polygonal plate.

$$
\begin{align*}
& \text { Extending Equation (13) from triangles to M-sided polygons, [6] } \\
& \sqrt{\sigma}=\frac{\hat{n} \bullet \hat{e}_{r} \times \hat{h}_{1}}{\sqrt{\pi} T} e^{1 k \vec{r}_{o} \bullet \vec{w}} \sum_{m=1}^{M} \hat{p \bullet \vec{a}_{m}} e^{1 k \vec{r}_{m} \bullet \vec{w}}\left[\frac{\sin \left(\frac{1}{2} k \vec{a}_{m} \bullet \vec{w}\right)}{\frac{1}{2} k \vec{a}_{m} \bullet \vec{w}}\right] \tag{28}
\end{align*}
$$

In equation (28),

```
\sigma = bistatic radar cross section of the plate,
n = unit normal to the plate surface,
\mp@subsup{\hat{e}}{r}{}}=\mathrm{ unit vector along the electric vector of a far field receiver,
\mp@subsup{h}{1}{}}=\mathrm{ unit vector along the incident magnetic polarization,
\mp@subsup{r}{0}{}}=\mathrm{ position vector of the origin of the coordinate system in which the
 plate vertex positions are described,
\vec{w}}=\hat{i}-\hat{\mathbf{s}
i = unit vector along the direction of incidence,
\hat{s}}
 recelver,
\mp@subsup{\vec{a}}{m}{}}=\textrm{a}\mathrm{ vector describing the length and orientation of the m}\mp@subsup{m}{}{th}\mathrm{ edge of
 the plate; the edge vectors must be arranged tip-to-tail around the
 perimeter of the polygon,
\mp@subsup{\vec{r}}{m}{}}=\mathrm{ position vector of the midpoint of the m
T = length of the projection of \vec{w}}\mathrm{ onto the plane of the plate,
\hat{p}}={\hat{n}\mp@subsup{\hat{x}}{\vec{W}}{\hat{w}
M = number of plate edges.
```

The summation in (28) has the dimension of a length and includes the discrete contribution of each plate edge. $T=0$ defines a specular condition for which the contributions of all the edges at a far field point are in
phase, but (28) becomes singular in the specular direction. However, the expression reduces to a simpler form for specular scattering, namely

$$
\begin{equation*}
\sqrt{\sigma}=-i k A \frac{\hat{n} \bullet \hat{e}_{r} \times \hat{h}_{i}}{\sqrt{\pi}} e^{i k \vec{r}_{o} \cdot \stackrel{\rightharpoonup}{w}} \tag{29}
\end{equation*}
$$

where $A$ is the geometric area of the plate. For numerical purposes, it is better to switch from (28) to (29) when $T$ is small but finite, instead of at precisely $T=0$. In the model, the switch is made whenever $|T|<10^{-2}$, and this finite switching point has a negligible effect on the predicted scattering.

Figure 5 illustrates the tracing of the reflections of incident beams from one face to another. If a face is fully illuminated by a beam or by the incident wave, only that part of the beam intercepted by the face is reflected, as shown in Figure 5(a). If it were not for the presence of the third face (shown in outline by the dashed line), the full reflection would be as shown. But, in actual fact, the third face will prevent the rightmost third of the reflected beam from ever reaching the plane of the third face. Hence the portion of the second face receiving a reflection of the incident wave from face 1, is shown in Figure 5(b).

The image direction $\tilde{i}$ of the incident wave is the effective direction of incidence for this patch of surface, and if the scattering direction is specified, along with the coordinates of the vertices of the illuminated patch, the scattering due to the interaction can be calculated by the use of Equation (28) or (29). Since two faces are involved in the far field scattering, this is called a "double-bounce" contribution to the echo.

A second reflection can occur in which face 2 reflects the beam it receives onto the plane of face 3, as shown in Figure 5(c). As in the reflection from face 1 , the reflected direction from face 2 is found by reversing the normal component of the wave propagation direction. Thus the


Figure 5. The shaded areas represent: (a) and (b) the portion of the incident wave intercepted by face 1 and reflected onto the plane of face 2; (c) and (d) the portion of face 2 illuminated by a reflection off face 1 , and reflected onto the plane of face 3.
doubly imaged direction of propagation of the incident wave is used, imaged first in the plane of face 1 , which image is then imaged in the plane of face 2. The doubly imaged direction is such as to cast the illuminated patch (shown shaded in Figure 5(c) onto the plane of face 2).

However, face 3 does not intercept the entire doubly-reflected beam. The rightmost tip of the patch will be clipped off because it extends past the physical boundaries of the third face. Thus, the actual size and shape of the "active" surface patch is shown in Figure 5(d). Again, a knowledge of the effective direction of the wave that generated the patch, along with the spatial positions of the patch vertices, allows the calculation of the far field scattering. In this case, the contribution would be a "triple-bounce" term, since three faces participated in the scattering.

This is one of six possible ways the three faces of a trihedral corner c'an participate in the far field scattering. The reflection of the incident wave onto face 3 by face 1 in the Figure 5(a) and the other combinations were not taken into consideration. The following list includes the six possible permutations for an obtuse trihedral corner:
123
231
312
213
321
132

These include six double-bounce and six triple-bounce contributions.
Finally, there are three single-bounce contributions to tally, and these do not involve interactions between the faces. They are the returns from the three faces when illuminated by the incident wave. The vertex positions and the directions of incidence and scattering can be used immediately in the PO formulas (28) or (29). The single-bounce scattering contributions are important for the backscattering case only when one of the faces is within a few degrees of its orientation for specular scattering. Nevertheless, the model continues to include the single-bounce scattering even when the face orientation is well away from the specular orientation. Figure 6 illustrates the definitions of dihedrals and trihedrals for input to the CROSS model.


Figure 6. (a) Dihedral and (b) trihedral geometry.

### 3.1.4 ELLIPSOIDS

The geometrical-optics formulation for the radar cross section of an ellipsoid is given by

$$
\begin{equation*}
\sigma=\pi R_{1} R_{2} \tag{30}
\end{equation*}
$$

where $R_{1}$ and $R_{2}$ are the two principal radii of curvature in orthogonal directions at the specular point on the ellipsoid's surface. Note that the product $R_{1} R_{2}$ is the reciprocal of the "Gaussian curvature". Gaussian curvature at a point on a surface is defined as the product of the principal curvatures, and the principal curvatures are the reciprocals of the principal radii of curvature [7]. Thus, without calculating $R_{1}$ and $R_{2}$ separately, the radar cross section of an ellipsoid can be computed as

$$
\begin{equation*}
\sigma=\frac{\pi}{k} \tag{31}
\end{equation*}
$$

where $k$ is the Gaussian curvature at the specular point. Because it is easier to calculate $k$ directly than to find $R_{1}$ and $R_{2}$ separately, the formulation for the ellipsoid in Equation (31) simplifies the RCS computation.

The first step in finding the Gaussian curvature at a point on an ellipsoid is to describe the ellipsoidal surface as a vector function of two parameters $\phi$ and $\theta$. For the ellipsoid defined by

$$
\left(\frac{x}{A}\right)^{2}+\left(\frac{y}{B}\right)^{2}+\left(\frac{z}{C}\right)^{2}=1
$$

This can be done by describing the ellipsoid in spherical coordinates:

$$
\begin{equation*}
\vec{x}=(A \sin \phi \cos \theta, B \sin \phi \sin \theta, C \cos \phi) . \tag{32}
\end{equation*}
$$

The Gaussian curvature at the specular point is then described in terms of the first and second order derivatives at the specular point. Specifically,

$$
\begin{equation*}
k=\frac{L N-M^{2}}{E G-F^{2}} \tag{33}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{L} & =\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{~V}}_{11} \\
\mathrm{M} & =\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{~V}}_{12} \\
\mathrm{~N} & =\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{~V}}_{22} \\
\overrightarrow{\mathrm{n}} & =\text { the unit normal to the surface at the specular point } \\
& =\left(\vec{V}_{1} \times \vec{V}_{2}\right) /\left|\overrightarrow{\mathrm{V}}_{1} \times \vec{V}_{2}\right| \\
\mathrm{E} & =\vec{V}_{1} \cdot \overrightarrow{\mathrm{~V}}_{1} \\
\mathrm{~F} & =\vec{V}_{1} \cdot \overrightarrow{\mathrm{~V}}_{2} \\
G & =\vec{V}_{2} \cdot \vec{V}_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \vec{V}_{1}=\frac{d \vec{x}}{d \phi}=(A \cos \phi \cos \theta, B \cos \phi \sin \theta,-C \sin \phi) \\
& \vec{V}_{2}=\frac{d \vec{x}}{d \theta}=(-A \sin \phi \cos \theta, B \sin \phi \cos \theta, 0) \\
& \vec{V}_{12}=\frac{d^{2} \vec{x}}{d \phi d \theta}=(-A \cos \phi \sin \theta, B \cos \phi \cos \theta, 0) \\
& \vec{V}_{11}=\frac{d^{2} \vec{x}}{d \phi^{2}}=(-A \sin \phi \cos \theta,-B \sin \phi \sin \theta,-C \cos \phi) \\
& \vec{V}_{22}=\frac{d^{2} \vec{x}}{d \theta^{2}}=(-A \sin \phi \cos \theta,-B \sin \phi \sin \theta, 0)
\end{aligned}
$$

The derivative vectors $\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{12}, \vec{V}_{11}$, and $\vec{V}_{22}$ are all evaluated at the specular point whose coordinates are known (and therefore $\phi$ and $\theta$ are known). Once the derivative vectors and the normal vector are defined, the Gaussian curvature is easily computed from (33) using the vector manipulation
library subroutines. Figure 7 illustrates the geometry for ellipsoid scatterers.

### 3.2. GEOMETRICAL CONSIDERATIONS

The geometry relating the target to the radar in a spherical earth environment can become quite complicated, so to provide a scheme that is both general and practical, the following assumptions are made:

* Flat earth
* Target constrained to lie on the earth's surface
* Radar fixed but target allowed to move
* Cartesian coordinate system.

The primary reason for staying with Cartesian coordinates is ease of programming as well as the mathematics. A library of FORTRAN functions and subroutines exists to help simplify standard vector operations (dot product, cross product, etc.), but they are only defined for Cartesian coordinates.

The origin of the initial coordinate system is located on the earth's surface. The $x$ and $y$ axes are tangential to the earth's surface and the $z$ axis normal to it. This coordinate system (as well as all others in this report), is "right-handed." The radar is fixed on the $z$-axis at a height $h_{a}$ above the origin.

Since the target is constrained to lie on the earth's surface, only two coordinates are necessary to define its initial position. The two coordinates used here are range ( $\mathrm{R}_{\mathrm{a}}$ ) and azimuth ( $\phi$ ) . The range is defined as the distance between the origin and the target as measured along the earth's surface. The azimuth is the angle between the $x$-axis and the target measured counterclockwise. (See Figure 8.)

To express the coordinates of the target in $x, y, z$ coordinates, an initial range vector $\vec{R}^{1}$ to the target can be set up.

$$
\vec{R}^{i}=\left(\begin{array}{ccc}
R_{a} & \cos & \phi  \tag{34}\\
R_{a}^{a} & \sin & \phi \\
0 &
\end{array}\right)
$$



Figure 7. Ellipsoid geometry.


Figure 8. Relative positions of initial coordinate systems.


Figure 9. Definition of "bearing".

To facilitate computations, transformations are made from the initial coordinate system (fixed earth) to the fixed target coordinate system rather than conversely. This greatly reduces the number of vectors to be transformed since there are many more target scatterers than position vectors (radar position, etc.) in the initial coordinate system.

An intermediate coordinate system is defined at the initial target position ( $x^{0}, y^{0}, z^{0}$ ) such that the $z^{0}$ axis is normal to the earth's surface, and the $y^{0}$ axis is orthogonal to the displacement vector $\vec{R}^{i}$, as in Figure 8. The rotation matrix to transform to this frame of reference is defined as

$$
\operatorname{Rot}_{\phi}=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0  \tag{35}\\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Now, for an arbitrary vector $\overrightarrow{\mathbf{r}}$ in xyz , a translation in xyz must occur before rotation, so

$$
\begin{equation*}
\vec{r}=\operatorname{Rot}_{\phi}\left(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{R}}^{\mathbf{i}}\right) \tag{36}
\end{equation*}
$$

or

$$
\begin{equation*}
\overrightarrow{\mathbf{r}}^{+0}=\overrightarrow{\mathrm{B}}\left(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{R}}^{\mathbf{1}}\right) \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{B}=\operatorname{Rot}_{\phi} \tag{38}
\end{equation*}
$$

To allow for motion of the target, a "path" is defined by defining a direction and a distance (along the earth's surface, of course). Let $\phi_{2}$ be a "bearing" of the target such that $\phi_{2}$ is measured clockwise from the $y^{0}$ axis. (See Figure 9.) The associated rotation matrix is

$$
\operatorname{Rot} \phi_{2}=\left(\begin{array}{lll}
\cos \phi_{2} & -\sin \phi_{2} & 0  \tag{39}\\
\sin \phi_{2} & \cos \phi_{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\begin{equation*}
\tilde{\mathrm{C}}=\operatorname{Rot} \phi_{2} \tilde{\mathrm{~B}} \tag{40}
\end{equation*}
$$

The target can now be allowed to move a range increment $\Delta R$ between successive RCS predictions in the new direction. A transformation to each new position of the target is as follows

$$
\Delta \vec{R}=\left(\begin{array}{c}
0  \tag{41}\\
\Delta R_{a} \\
0
\end{array}\right)
$$

Now,

$$
\begin{equation*}
\overrightarrow{\mathbf{r}}^{\mathrm{N}}=\operatorname{Rot} \phi_{2} \overrightarrow{\mathrm{r}}+\Delta \overrightarrow{\mathrm{R}} \tag{42}
\end{equation*}
$$

For successive movements of the target, the program sets $\vec{r}^{0}=\vec{r}^{N}$ and uses Equation (42) to transform to the new coordinates of the target where $\phi_{2}$ is the new "bearing." If the direction of motion remains unchanged between successive range steps, it uses

$$
\begin{equation*}
\overrightarrow{\mathbf{r}}^{\mathrm{N}}=\overrightarrow{\mathbf{r}}^{0}-\Delta \overrightarrow{\mathrm{R}} \tag{43}
\end{equation*}
$$

instead of (42) after the initial calculation of $\vec{r}^{N}$.

Now that the target location and the related transformations have been specified, the target orientation needs to be defined. The most logical scheme for specifying the orientation is to use yaw, pitch, and roll. Here, yaw, pitch, and roll are defined as counterclockwise rotations about the $\mathrm{Z}^{\mathrm{N}}$, $\mathrm{X}^{\mathrm{N}}$, and $\mathrm{Y}^{\mathrm{N}}$ axes, respectively. Since the order of rotations is important, the computer program allows for optional orders of rotation (pitch before yaw, roll before pitch, etc.). The transformation matrices are defined below.

$$
\left.\begin{array}{l}
\tilde{Y}=\left(\begin{array}{lll}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right) \\
\tilde{P}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \beta & \sin \beta \\
0 & -\sin \beta & \cos \beta
\end{array}\right) \\
\tilde{R}=\left(\begin{array}{ll}
\cos \gamma & 0
\end{array} \quad-\sin \gamma\right.  \tag{46}\\
0
\end{array} \quad 1 \quad 0 \quad \cos \gamma \quad \begin{array}{l}
\sin \gamma \\
\tilde{R}
\end{array}\right)
$$

Thus, the final transformation of a vector $\stackrel{\mathrm{r}}{ }_{\mathrm{N}}$ to the fixed target frame is

$$
\begin{equation*}
\overrightarrow{\mathrm{r}}^{\prime}=\tilde{\mathrm{R}} \quad \tilde{\mathrm{P}} \quad \tilde{\mathrm{Y}} \quad \overrightarrow{\mathrm{r}}^{\mathrm{N}} \tag{47}
\end{equation*}
$$

(in any order)

To calculate the RCS of a target, the two unit incident vectors (direct and indirect) must be specified. To find the direct incident vector $\hat{i}$, the vector denoting the position of the radar antenna must be transformed to target coordinates. Let $\mathbb{A}$ represent the antenna coordinates in the initial frame. Thus,

$$
\overrightarrow{\mathrm{A}}=\left(0,0, \mathrm{~h}_{\mathrm{a}}\right)
$$

where $h_{a}$ is the height of the antenna above the surface.

$$
\begin{equation*}
\vec{A}^{\prime}=\tilde{R} \tilde{P} \tilde{Y} \vec{A}^{N} \tag{48}
\end{equation*}
$$

and $\vec{A}^{\mathbb{N}}$ is defined by either transformation (42) or (43), whichever is appropriate. Now,

$$
\begin{equation*}
\hat{i}^{\prime}=\frac{\vec{r}_{0}^{\prime}-\vec{A}^{\prime}}{\left|\vec{r}_{0}^{\prime}-\vec{A}^{\prime}\right|} \tag{49}
\end{equation*}
$$

where $\vec{r}_{0}$ is the position of the centroid of a particular scatterer in the target frame.

The indirect incident vector $\hat{i}_{2}^{\prime}$ is not difficult to find since a flat earth is assumed and an image technique may be used (See Figure 10). Since the plane in which both $\hat{i}$ and $\hat{i}_{2}^{\prime}$ lie must be perpendicular to the earth's surface, then $\hat{i}_{2}^{\prime}$ is found as follows

$$
\begin{equation*}
\tilde{Q}=\tilde{R} \tilde{P} \tilde{Y} \tag{50}
\end{equation*}
$$

and $\quad \tilde{Q}^{-1}=\tilde{\mathrm{Y}}^{-1} \quad \tilde{\mathrm{P}}^{-1} \quad \tilde{\mathrm{R}}^{-1}=\tilde{\mathrm{Y}}^{T} \tilde{\mathrm{P}}^{T} \tilde{\mathrm{R}}^{T}$
(Note: Since rotation matrices are orthogonal, the inverse is simply the transpose of the matrix.)

$$
\begin{equation*}
\vec{r}_{0}^{n}=\tilde{Q}^{-1} \vec{r}_{0}^{1} \tag{52}
\end{equation*}
$$

Now the image of the scatterer can be formed by simply negating the $z$ coordinate of scatterer's position vector:

$$
\begin{align*}
& \vec{r}_{0}^{i}=\left(x_{0}^{n}, y_{0}^{n},-z_{0}^{n}\right)  \tag{53}\\
& \hat{i}_{2}^{1}=\frac{\vec{r}_{0}^{i}-\vec{A}^{n}}{\left|\vec{r}_{0}^{i}-\vec{A}^{n}\right|} \tag{54}
\end{align*}
$$

Finally, the $z$ coordinate of $\hat{i}_{2}^{i}$ must be negated and the resulting vector rotated back into the target's (primed) coordinate system.


Figure 10. Multipath geometry illustrating the direct and indirect incident vectors.

$$
\begin{align*}
& \hat{i}_{2}^{n}=\left(i_{x}^{i}, i_{z}^{i},-i_{z}^{i}\right)  \tag{55}\\
& \hat{i}_{2}^{1}=\tilde{Q} \hat{i}_{2}^{n} \tag{56}
\end{align*}
$$

### 3.3. MULTIPATH

Equation (12) is the physical optics integral for free space scattering. To handle the multipath due to the earth's surface, the return from a scatterer can be represented as the sum of three contributions, one to the target as if the surface were not present (the free space contribution), another due to the target image, and the third due to the diplane effect. The image term must be multiplied by the square of the reflection coefficient of the earth's surface, because this contribution involves a double bounce. The diplane term must be multiplied by twice the reflection coefficient because only one bounce off the earth's surface occurs, but two distinct propagation paths exist. For each of the types of scatterers, the total scattering can be represented as the sum

$$
\begin{equation*}
\sqrt{\sigma}=\sqrt{\sigma_{f}}+\rho^{2} \sqrt{\sigma_{i}}+2 \rho \sqrt{\sigma_{d}} \tag{57}
\end{equation*}
$$

where $\rho$ is the complex reflection coefficient of the earth's surface and $\sqrt{\sigma_{f}}, \sqrt{\sigma_{i}}$, and $\sqrt{\sigma_{d}}$ are the free space, image, and diplane contributions respectively. All three contributions are found from Equation (12) depending on the scatterer type. Note that the equation contains the scattering vector $\hat{i}-\hat{s}$. The free space term $\sqrt{\sigma_{f}}$ is found by setting $\hat{i}$ equal to the direct incident vector $\hat{i^{\prime}}$ defined in Equation (49) and by setting $\hat{s}=-\hat{i}$. For the diplane term, $\hat{i}=\hat{i}$ as above, but $\hat{s}=-\hat{i}_{2}^{\prime}$ where $\hat{i}_{2}^{\prime}$ is the indirect incident vector from the earth's surface defined in Equation (56). Similarly, the image term $\sqrt{\sigma_{i}}$ is found by setting $\hat{i}=\hat{i}_{2}^{\prime}$ and $\hat{s}=-\hat{i}_{2}$.

### 3.4. NEAR FIELD APPROXIMATION

In its present form, Equation (12) assumes the far field approximation that planes of constant phase are present over the entire target. CROSS allows the user to choose a near field approximation if desired. That is, the phase term for each scatterer can be calculated separately by using the distance from the radar to the centroid of the scatterer. This simulates a spherical wave front over the entire target, although the return from each scatterer is still calculated as if it had a plane wave over its surface. This is accomplished by replacing the relative phase term $e^{\hat{i k r_{0}}(\hat{i}-\hat{s})}$ found in Equation (12) with the near field phase term $e^{i k \Delta r}$, where $\Delta r$ is the difference between the length of the vector from the radar to the target's origin and the length of the propagation path for the scatterer of interest.

### 3.5. REFLECTION FROM THE EARTH'S SURFACE

The complex reflection coefficient $\rho$ is a function of the incident angle at the earth's surface ( $\Psi$ ), the surface roughness, and the complex permittivity of the reflecting surface which the program requires the as an input. The reflection coefficient $\rho$ is expressed as the product of the Fresnel reflection coefficient for smooth surfaces [10] and the Rayleigh roughness factor [11]. The Fresnel reflection coefficient is polarization dependent. The angle of reflection $\Psi$ can be found from the indirect incident vector $\hat{i}_{2}^{n}$ defined in equation (55).

$$
\begin{equation*}
\Psi=\pi / 2-\hat{i}_{2}^{n} \quad \hat{z} \tag{58}
\end{equation*}
$$

For horizontal polarization

$$
\begin{equation*}
r=\frac{\sin \Psi-\sqrt{\varepsilon-\cos ^{2} \Psi}}{\sin \Psi+\sqrt{\varepsilon-\cos ^{2} \Psi}} \tag{59}
\end{equation*}
$$

and for vertical polarization

$$
\begin{equation*}
\mathrm{r}=\frac{\varepsilon \sin \Psi-\sqrt{\varepsilon-\cos ^{2} \Psi}}{\varepsilon \sin \Psi+\sqrt{\varepsilon-\cos ^{2} \Psi}} \tag{60}
\end{equation*}
$$

Now, the Rayleigh roughness factor is

$$
\begin{equation*}
\rho_{s}=\left\{\exp \quad \frac{-1}{2}\left[\frac{\left(4 \pi \sigma_{H} \sin \Psi\right)^{2}}{\lambda}\right]\right\} \tag{61}
\end{equation*}
$$

where $\sigma_{H}$ is the standard deviation of the wave height. Thus,

$$
\begin{equation*}
\rho=r \rho_{s} \tag{62}
\end{equation*}
$$

SECTION 4
REFERENCES

1. R. B. Rakes, "Radar Glint Model," Software Documentation Report on Rockwell International Purchase Order V161-5A-113203 Georgia Institute of Technology, Engineering Experiment Station, April 1982, UNCLASSIFIED.
2. S. P. Zehner and M. T. Tuley, "Development and Validation of Multipath and Clutter Models for TAC ZINGER in Low Altitude Scenarios," Final Report on Contract F49620-78-C-0121, March 1979, UNCLASSIFIED.
3. M. M. Horst, et al., "Ship RCS Predictions (U)," Final Report on Contract Nool67-82-M-0737, Georgia Institute of Technology, Engineering Experiment Station, January 1982, SECRET.
4. M. T. Tuley, M. M. Horst, and K. B. Langseth, "Radar Modeling Studies (U)," Task 7 Final Report on APL Subcontract 600403, Georgia Institute of Technology, Engineering Experiment Station, July 1978, SECRET, XGDS.
5. E. F. Knott, "A Tool for Predicting the Radar Cross Section of a Trihedral Corner," Paper presented at IEEE Southeast Conf. '81, Huntsville, Alabama, 6-8 April 1981, Published in IEEE Publication 81-$\mathrm{CH}-1650-1$, pp. 17-20.
6. W. B. Gordon, "Far-field Approximation of the Kirchoff-Helmholtz Representation of Scattered Fields," IEEE Transactions on Antennas and Propagation, AP-23, July 1975, pp. 590-592.
7. W. Gellert, H. Kustner, M. Hellwich, and H. Kastner, Editors, The VNR Concise Encyclopedia of Mathematics, pp. 565-571, Van Nostrand Reinhold Company, New York, 1977.
8. H. Flanders, R. Korfhage, and J. Price, A Second Course in Calculus, p. 501, Academic Press, New York, 1974.
9. E. Shotland and R. Rollin, "The Complex Reflection Coefficient Over a Smooth Sea in the Micro and Millimeter-Wave Bands for Linear and Circular Polarization," The John Hopkins University, APL, March 1976.
10. J.A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, New York, 1941, pp. 492-511.
11. P. Beckman and A. Spizzichino, The Scattering of Electromagnetic Waves From Rough Surfaces, (New York: The McMillan Company, 1963), pp. 80-81.

# ENGINEERING EXPERIMENT STATION <br> georgia institute of technology - atlanta, georgia 30332 

## 21 June 1982

Mr. Carl Bates
Rockwell International
Missile Systems Division
P. O. Box 1259

Columbus, Ohio 43216
Dear Carl:
Enclosed are the results of the Simulation Verification data run by the Georgia Tech Radar Glint model. These include Track Error and RCS predictions for both variation with range and variation with aspect. If any problem is encountered in attempting to match these results with your program, please feel free to call me anytime.

Sincerely,
R. Bruce Rakes
Research Scientist I

SWC
Enclosure - Simulation Verification data results

## TRACK ERROR/RCS Benchmark

## Variation of Aspect

Elevation $=15^{\circ}$, Slant Range $=679^{\circ}$
$\sigma_{h}=0.1 \mathrm{ft.}, \quad \sigma^{\circ}=-17.5 \mathrm{~dB}$
$=(2.44,0.00267)$

Track Error   AZ (deg)	Track Error   El (deg)	RCS
1. $4917186 E-02$	7. $8193314 \mathrm{E}-02$	-11.66653
0. 1012685	3. $8093068 \mathrm{E}-02$	-4.729362
7. $6000090 \mathrm{E}-03$	0. 5996329	25. 54455
4. 2801026E-02	0. 2332899	4. 329116
7. 4208438E-O2	0.1547721	1.707733

0. 6000569
1. 4268321
2. 19216
3. 9245617
4. 2220081
5. 3098174
6. 26637
7. 2524590
8. 3191296
-0.7222527
-4 . $8491564 \mathrm{E}-02$
30.79765 2. 880258

$9.8208282 E-03$	0.1101521	-8.688541
$-5.5280502 E-04$	$9.2625953 E-02$	-11.51835
$-8.6806461 E-02$	0.2581288	-0.2211581
$-9.7268699 E-03$	0.1596832	-4.905655
$-2.2283677 E-02$	0.2067052	3.348537


0. 1051137
O. 1294527
0. 1760707
0. 1816531
0. 2171304
$-12.86676$
2. 982919
21. 70618
4. 863090
$-6.635852$
Final Az = 20
Az Step = 10

```
```

```
Initial Az = - 20
```

```
```

Initial Az = - 20

```
Final \(\mathrm{Az}=920\)
```

Initial Az = 2230
Final Az = 2270
Az Step = 10

```
\[
\text { Initial } \mathrm{Az}=88^{\circ}
\]
\[
\text { Az Step }=10
\]
```

Initial Az = 133
Final Az = 1370
Az Step = 10

```
```

Initial Az = 178

```
Initial Az = 178
Final Az = 1820
Final Az = 1820
Az Step = 10
```

Az Step = 10

```
3. \(3235546 E-02\)
\(-1.0232148 E-02\)
0. 2351657
3. 629490
\(-14.17316\)
\(-15.70564\)
\(-7.138330\)
\(-8.843243\)
```

    Variation with Aspect
    Elevation = 15 , Slant Range = 679 ft.
    Track Error Track Error
    Az (deg) EL (deg)
        RCS
    -1.3064086E-03
-1. 1134183E-02
-7.7350549E-02
-1.0944321E-02
1.6181894E-02

```

EL (deg)
RCS
\(-12.90181\)
\(-5.838790\)
-9. 296549
\(-13.06730\)
-2. 269258
```

-0.3047307	-0.5423833	-3.486520
2. $1760428 E-02$	$3.6029760 E-02$	-10.50823
$6.0479820 E-02$	$8.2971193 E-02$	-9.157353
$1.8063786 E-02$	$-3.7682410 E-05$	-13.66778
$-6.6842869 E-02$	-0.2566604	-8.927942
2. $9440064 E-02$	-0.3291941	-6.914072

```
0. 6000569
0. 4268321
0. 9245617
0. 2220081
0. 2524590
0. 3098174
0. 3191296
-0.7222527
\(-0.7957122\)
-4. \(8491564 \mathrm{E}-02\)
0. 1240494
0. 2301475
0. 3590895
0. 1475474
2. \(8979480 E-02\)
0. 1421916
-0. 2459276
0. 2557647
-0. 2160972
0. 2142867
10. 19216
24. 26637
14. 04780
30. 79765 2. 880258

Initial \(\mathrm{Az}=313^{\circ}\)
Final \(\mathrm{Az}=317{ }^{\circ}\)
Az Step \(=1^{\circ}\)

> Initial \(\mathrm{Az}=44.8^{\circ}\)
> Final Az \(=45.3^{\circ}\)
> Az Step \(=0.1^{\circ}\)

Initial \(\mathrm{Az}=88^{\circ}\)
Final \(\mathrm{Az}=92^{\circ}\)
Az Step \(=1^{\circ}\)
15. 43640
5. 057254

Final \(\mathrm{Az}=270.2^{\circ}\)
11.63514 Az Step \(=0.1^{\circ}\)

Elevation \(=45^{\circ}, \quad\) Slant Range \(=928 \mathrm{ft}\).
\begin{tabular}{cl}
Track Error & Track Error \\
Az (deg) & E1 (deg)
\end{tabular}

RCS
-1.9274877E-02 -2. 2689503E-02
3. \(4068629 E-02-0.1611469\)
2. \(4577057 \mathrm{E}-02\)
0. 6706424
-3. \(5952434 \mathrm{E}-02\)
-0. 2544481
-6. 2617145E-02-4. 2861851E-04
-2. 542281
-4. 411059
20. 59393
\(-19.27741\)
-3. 577843
```

Initial Az = -20
Final Az = 20
Az Step = 10

```
\[
\begin{array}{rr}
\text { 4. } 2926678 \mathrm{E}-03 & -0.4959759 \\
-0.1564836 & 0.3106360 \\
0.1287092 & 0.2740144 \\
\text { 1.5138185E-02 } & 0.2336436 \\
\text { 2. } 5987023 \mathrm{E}-02 & 0.2988815
\end{array}
\]
-7. \(4495883 E-03-1.5718155 E-03\)
3. \(6409266 \mathrm{E}-02-0.1131416\)
-4. 1325737E-02 -3. \(5774961 E-02\)
1. \(6667228 \mathrm{E}-02\)
1. \(3446214 \mathrm{E}-02\)
8. \(1879966 \mathrm{E}-02\)
0. 1833812
\(-31.37795\)
\(-8.609474\)
\(-19.34916\)
\(-16.36296\)
18. 65425
15. 35856
22. 00022
10. 95899
7. 872255 \(-0.7816853\)
\[
\begin{aligned}
& \text { Initial } \mathrm{Az}=133^{\circ} \\
& \text { Final } \mathrm{Az}=137^{\circ} \\
& \mathrm{Az} \text { Step }=1^{\circ}
\end{aligned}
\]
\begin{tabular}{rrr}
-0.2119371 & \(8.6204693 E-02\) & -11.61060 \\
\(-2.2932965 E-02\) & -0.3513575 & 3.498105 \\
\(5.9584049 E-03\) & -0.1978338 & 27.88261 \\
-0.3124326 & -0.4548050 & -3.274962 \\
\(9.1297589 E-02\) & \(9.5918082 E-02\) & 5.607147
\end{tabular}
```

Initial Az = 880
Final Az = 920
Az Step = 10

```

Initial \(\mathrm{Az}=178^{\circ}\)
Final \(\mathrm{Az}=182^{\circ}\)
Az Step \(=1^{\circ}\)

6. \(9532908 \mathrm{E}-02-6.188841\)
1. \(9587083 \mathrm{E}-02\)-13.90251 Initial \(\mathrm{Az}=223^{\circ}\)
\(-0.5096098-4.639563\)
-1. \(9107087 E-02\)
-2. \(8811533 E-02\)
.
-24.74454 Az Step \(=1^{\circ}\)
-12. 33971
\begin{tabular}{ccl}
Elevation \(=45^{\circ}\), & Slant Range \(=928 \mathrm{ft}\). \\
Track Error & Track Error & \\
AZ (deg) & EL (deg) & \\
5. \(0766252 E-02\) & \(1.8673576 E-02\) & -5.516499 \\
\(1.9176574 E-02\) & \(1.9454479 E-02\) & -16.16605 \\
\(1.5347627 E-02\) & \(7.6911777 E-02\) & -4.118290 \\
\(-4.5549266 E-02\) & \(2.1738037 E-02\) & -2.678010 \\
\(4.5443572 E-02\) & \(3.0895209 E-02\) & -10.36890
\end{tabular}

\section*{-1.7437069E-02 \\ -3. \(9793797 E-02\) \\ 8. 1778161E-04 \\ -4. \(3971192 E-02\) \\ 2. 5747382E-O2 \\ -5. 9530873E-02}
8. \(5160486 E-02\)
5. \(9714567 E-02\)
-7. 9572191E-03
0.1123019
-2. \(5159303 E-02\)
6. 3213855E-02
\(-0.4634165\)
\(-5.484707\) \(-13.96669\) \(-0.4220569\) \(-16.97661\) \(-5.524306\)
```

Initial AZ = 3130
Fina! AZ = 3170
AZ St }2=1

```
4. 2926678E-03
0.4959759
\(-0.1564836\)
0. 3106360
0. 1287092
0. 2740144
1. \(5138185 E-02\)
0. 2336436
2. 5987023E-02
0. 2988815
15. 35856
22. 00022
10.95899
7.872255

Initial \(A Z=88^{\circ}\)
Initial \(A Z=44.8^{\circ}\)
Final \(A Z=45.3^{\circ}\)
AZ Step \(=0.1^{\circ}\)
\(-0.7816853\)
Final \(A Z=92^{\circ}\)
\(A Z\) Step \(=1^{\circ}\)
0. 1507022
0. 192114 B
\(-0.2697877\)
0. 8945019
-4. \(7635950 E-02\)
0. 3799199
-8. \(7587938 E-02\)
0. 3708959
-0. 1651377
0. 3518490
9. 461764
16. 23875

Initial AZ \(=269.8^{\circ}\)
20. 14245

Final \(A Z=270.2^{\circ}\)
14. 52001

AZ Step \(=0.1^{\circ}\)

\section*{Elevation \(=15\) degrees}
\begin{tabular}{|c|c|c|c|}
\hline Slant Range & Track Error & Track Ertor & R.CS \\
\hline (feet) & \(A Z\) (deg) & EL (deg) & \\
\hline 1020.000 & 5. \(0061331 E-03\) & 0.4993497 & 20. 11643 \\
\hline 850.0000 & 4. 42E3173E-03 & 0. 4867148 & 26. 09033 \\
\hline te0. 0000 & -7.3807300E-03 & O. 5950443 & 25. 583.56 \\
\hline 510.0000 & 2. \(8371245 E-03\) & 1.024202 & 24.70302 \\
\hline 340.0000 & -3. 6155514E-03 & 0. 4436491 & 27. 22073 \\
\hline 170.0000 & -1.50991E1E-O2 & - E. E6759E3E-02 & 27. 13674 \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
1020.000 & 0.2612238 & 0.1562295 & 15.85933 \\
850.0000 & -0.8101477 & 0.3949793 & 7.254593 \\
680.0000 & 0.2543402 & 0.2943910 & 13.20210 \\
510.0000 & 0.1019797 & 0.2819632 & 15.98870 \\
340.0000 & 0.3291698 & 0.4264002 & 13.34318 \\
170.0000 & 0.5785391 & 0.1595181 & 15.77669
\end{tabular}

> 1020.000 850.0000 680.0000 510.0000 340.0000 170.0000
\[
\begin{array}{rl}
\text { B. } 423655 E E-04 & 7.293773 E E-02 \\
-4.290 E 260 E-04 & 0.1205537 \\
4.2360471 E-04 & 0.175832 E \\
4.3997159 E-03 & 0.6104326 \\
4.2263950 E-05 & 0.251649 E \\
1.1080918 E-04 & 0.3764351
\end{array}
\]
27. 35988
25. 24064
21. 67067
15. 25537
\(A x=180 \mathrm{deg}\)
26. 40305
25. 99878
\begin{tabular}{cccc}
1020.000 & 0.1729786 & 0.2754012 & \(14.202 E 8\) \\
\(E 50.0000\) & -0.5209087 & \(6.9691445 E-02\) & 2.496394 \\
680.0000 & \(2.1545710 E-02\) & 0.1604084 & 14.58973 \\
510.0000 & \(7.6774158 E-02\) & \(5.5852821 E-03\) & 15.02606 \\
340.0000 & 0.1917440 & 0.1952392 & 11.34717 \\
170.0000 & -0.4512213 & -0.1968714 & 7.818293
\end{tabular}

\section*{Variation with Range}

Elevation \(=45\) degrees
\begin{tabular}{cccc}
Slant Range & Track Error & Track Error & RCS \\
(feet) & \(A Z\) (deg) & EL (deg;
\end{tabular}

\author{
1392.000
}
1160.000
928.0000
696.0000
464. 0000
232. 0000

```

0. 3971903
$-2.5184453 E-03$
-1. 2370380E-02
1. 3866917
2. 9494504E-02
3. 6621591
$-0.1362364 \quad-3.4903526 E-02$
```
25. 36010
24. 46605
20. 74256
1392. Oco 1160.000 929.0000 696.0000 464. 0000 232.0000
0. 1009403
9. \(7273618 \mathrm{E}-02\)
0. 2273987
9. \(8801769 E-02\)
0. 2748711
0. 1165720
0. \(224411 t\)
0. \(106 t 830\)
0. 2849002
-1. 1346.363E-02
16. 60512
23. \(6 \in 253\)
26. 46243
14. 88155
12. 57011
10. 85851
15.91226
\(A z=90 \mathrm{deg}\)
\[
A z=90 \text { deg }
\]
5. 193667
10.58290
\[
A z=0 \text { deg }
\]
36. 12967
31.75100
27. 73532
29. 42298
\(A z=180 \mathrm{deg}\)
26. 01520
14. 04557
11. 91391
20. 20825
9. 183858
15.89808
7. 652482
\(A z=270 \mathrm{deg}\)
16. 99524
1392. 000
1160.000 928.0000 696.0000 464. 0000 232.0000
3. \(5835656 E-03-0.1465807\)
-1.8315621E-03-0.1992521
5. 3459797E-03 -0. 1968702
3. 2525361E-03 -0. 3056.52t
2. \(6337963 \mathrm{E}-03-0.5891231\)
1. 2147897E-03-0. 7972733```

