	DRRECTED	
PROJECT ADM	AINISTRATION DATA SHEET	
		REVISION NO.
Project No. A-2989	DATE	7/23/81
Project Director: H. L. Bassett	Setter Lab	RAIL/MAD
Sponsor: Rockwell International Co	orp., Columbus, OH	
Type Agreement: Agreement for Servi	ces V161-5A-113203	
Award Period: From <u>6/1/81</u> To	(Performance)	(Report
Cost Sharing none	3/3-/73	
mitter Development of Tank BCS Model	4/30/X2	GIRI/GHT.
TILIE: Development of function matt	an a	and the second
ter and the second s		
	og com an William F	Brown v/820
ADMINISTRATIVE DATA	OCA CONTACT MIIIIAM I	- Browni A4020
1) Sponsor Technical Contact: Mr.	R. C. Perry, Manager; System	is Engineering; Missile
System Division; P. O. Box 125	59; Columbus, OH 43216	
2) Sponsor Admin./Contractual Contact International Corp., Missile S	: Mr. A. George Miller, S Systems Division; 4300 E. 5th	Senior Buyer, Rockwell h Ave.; P. O. Box 1259;
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239-	: Mr. A. George Miller, S Systems Division; 4300 E. 5th -2440	Senior Buyer, Rockwell h Ave.; P. O. Box 1259;
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule	Mr. A. George Miller, S Systems Division; 4300 E. 5th -2440 Security Classification:	Senior Buyer, Rockwell h Ave.; P. O. Box 1259; none
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating:	Mr. A. George Miller, S Systems Division; 4300 E. 5th -2440 Security Classification: none	Senior Buyer, Rockwell h Ave.; P. O. Box 1259; none
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating:	Mr. A. George Miller, S Systems Division; 4300 E. 5th -2440 Security Classification: none	Senior Buyer, Rockwell h Ave.; P. O. Box 1259; none
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating:	: Mr. A. George Miller, S Systems Division; 4300 E. 5th -2440 Security Classification:	Senior Buyer, Rockwell n Ave.; P. O. Box 1259; none
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating: RESTRICTIONS See Attached Su	Mr. A. George Miller, S System's Division; 4300 E. 5th -2440 Security Classification:	Senior Buyer, Rockwell h Ave.; P. O. Box 1259; none for Additional Requir
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating: RESTRICTIONS See Attached Su Travel: Foreign travel must have pri travel requires sponsor appr 1253 of approved proposal bu	Mr. A. George Miller, S. System's Division; 4300 E. 5th -2440 Security Classification: 	Senior Buyer, Rockwell Ave.; P. O. Box 1259; none for Additional Requir each case. Domestic greater of \$500 or
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating: RESTRICTIONS See AttachedSu Travel: Foreign travel must have pri travel requires sponsor appr 1253 of approved proposal bu Equipment: Title vests with	Mr. A. George Miller, S Systems Division; 4300 E. 5th -2440 Security Classification: none pplemental Information Sheet for approval - Contact OCA in coval where total will exceed adget category. none proposed	Senior Buyer, Rockwell n Ave.; P. O. Box 1259 none for Additional Requir leach case. Domestic greater of \$500 or
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating: RESTRICTIONS See AttachedSu Travel: Foreign travel must have pri travel requires sponsor appr 1253 of approved proposal bu Equipment: Title vests with	<pre>Mr. A. George Miller, S System's Division; 4300 E. 5th -2440 Security Classification: none pplemental Information Sheet or approval - Contact OCA in coval where total will exceed adget category. none proposed</pre>	Senior Buyer, Rockwell h Ave.; P. O. Box 1259 none for Additional Requin each case. Domestic greater of \$500 or
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating: RESTRICTIONS See Attached Su Travel: Foreign travel must have pri travel requires sponsor appr 1253 of approved proposal bu Equipment: Title vests with	Mr. A. George Miller, S. System's Division; 4300 E. 5th -2440 Security Classification: 	Senior Buyer, Rockwell h Ave.; P. O. Box 1259 none for Additional Requin each case. Domestic greater of \$500 or
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating: <u>RESTRICTIONS</u> See AttachedSu <u>Travel</u> : Foreign travel must have pri travel requires sponsor appr 1253 of approved proposal bu <u>Equipment</u> : Title vests with	<pre>Mr. A. George Miller, S System's Division; 4300 E. 5th -2440 Security Classification:</pre>	Senior Buyer, Rockwell Ave.; P. O. Box 1259 none for Additional Requir each case. Domestic greater of \$500 or
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating: RESTRICTIONS See Attached Su Travel: Foreign travel must have pri travel requires sponsor appr 125% of approved proposal bu Equipment: Title vests with COMMENTS:	Mr. A. George Miller, S System's Division; 4300 E. 5th -2440 Security Classification: 	Senior Buyer, Rockwell Ave.; P. O. Box 1259 none for Additional Requin each case. Domestic greater of \$500 or 123456
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating: <u>RESTRICTIONS</u> See AttachedSu <u>Travel</u> : Foreign travel must have pri travel requires sponsor appr 1253 of approved proposal bu <u>Equipment</u> : Title vests with <u>COMMENTS</u> :	Mr. A. George Miller, S System's Division; 4300 E. 5th -2440 Security Classification: none hpplemental Information Sheet for approval - Contact OCA in toval where total will exceed adget category. none proposed	Senior Buyer, Rockwell Ave.; P. O. Box 1259 none for Additional Requin teach case. Domestic greater of \$500 or 123456
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating: <u>RESTRICTIONS</u> See Attached Su <u>Travel</u> : Foreign travel must have pri travel requires sponsor appr 1253 of approved proposal bu <u>Equipment</u> : Title vests with <u>COMMENTS</u> :	<pre>Mr. A. George Miller, S System's Division; 4300 E. 5th -2440 Security Classification: </pre>	Senior Buyer, Rockwell Ave.; P. O. Box 1259 none for Additional Requin teach case. Domestic greater of \$500 or 123456 17981
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating: RESTRICTIONS See Attached Su Travel: Foreign travel must have pri travel requires sponsor appr 125% of approved proposal bu Equipment: Title vests with COMMENTS:	<pre>Mr. A. George Miller, S System's Division; 4300 E. 5th -2440 Security Classification:</pre>	Senior Buyer, Rockwell Ave.; P. O. Box 1259 none for Additional Requin teach case. Domestic greater of \$500 or 123456 123456
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating: <u>RESTRICTIONS</u> See AttachedSu <u>Travel</u> : Foreign travel must have pri travel requires sponsor appr 1253 of approved proposal bu <u>Equipment</u> : Title vests with COMMENTS:	<pre>Mr. A. George Miller, S System's Division; 4300 E. 5th -2440 Security Classification:</pre>	Senior Buyer, Rockwell Ave.; P. O. Box 1259; none for Additional Requir each case. Domestic greater of \$500 or 123456 123456
2) Sponsor Admin./Contractual Contact International Corp., Missile S Columbus, OH 43216 (614) 239- Reports: See Deliverable Schedule Defense Priority Rating: <u>RESTRICTIONS</u> See Attached Su <u>Travel</u> : Foreign travel must have pri travel requires sponsor appr 1253 of approved proposal bu <u>Equipment</u> : Title vests with <u>COMMENTS</u> : <u>COPIES TO</u> :	<pre>Mr. A. George Miller, S System's Division; 4300 E. 5th -2440 Security Classification: </pre>	Senior Buyer, Rockwell h Ave.; P. O. Box 1259 none for Additional Requi each case. Domestic greater of \$500 or 123456 1981

GEORGIA INSTITUTE OF TECHNOLOGY

.

OFFICE OF CONTRACT ADMINISTRATION

5

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

24/2			April	10, 1984	т. "А
X A-2086		Date	······		
Project No.		_ X	XXXXXLab	RAIL-MSD	
ncludes Subproject No.(s)					4 44. 4
H.L. Bassett	· · · · · · · · · · · · · · · · · · ·				
				GTR	I / XOLINIX
	Sec. 1	-			
Sponsor Rockwell International Corporation, C	olumbus,	Ohio			
Howals and a C Task DOC Madala					
Title Development of Tank RCS Model		•••••••••			
				Sec. 12	
A/30/82		Porte	urmance)	4/30/82	(Reports)
Closing Documents				4	<i>(</i> 4)
Final Report of Inventions					
Govt. Property Inventory & Related Cer	rtificate				
Classified Material Certificate			$\tilde{2}$	مين مين ميني الماريني	
Other					
Canadiana Blai	~		d he Destant		S
	C	onunue	u by rroject	THO. Sectors	
COPIES TO:					
Project Director		Librar	Y		
Research Administrative Network		GTRI			ې نور کې در کېښو ۲۰۰۰ کې د
Research Property Management		Resear	rch Commun	nications (2)	
Accounting		Projec	t File	an and a second	
Procurement/EES Supply Services		Other	13. 	Sec. No.	
Research Security Services					
Reports Coordinator (OCA)					
Form OCA 60:1028					

COMPLEX SCATTERING RADAR CROSS SECTION MODEL

by

D. A. Newton

Phase One Final Technical Report GIT/EES Project A-2986

Prepared under

Rockwell International Purchase Order V161-SA-113203

GEORGIA INSTITUTE OF TECHNOLOGY Engineering Experiment Station Atlanta, Georgia 30332

September 1981

- · · ·

TABLE OF CONTENTS

.

SECTION		Page
1	MODEL METHODOLOGY	. 1
	1.1 SCATTERER SHAPES	. 1 . 2
	1.3 MODEL LIMITATIONS	. 5
2	T-72 TANK RCS MODEL	. 5
	2.1SCATTERER COORDINATE DETERMINATION.2.2SCATTERER IDENTIFICATION CODES.	.6 .9
	2.3 SCATTERER WEIGHTING FACTORS	.9 .9
	REFERENCES	.17

ii

LIST OF FIGURES

FIGURE	TITLE	PAC	ΞE
1	Triangular flat plate	•	3
2	Truncated cone frustum	•	3
3	Blueprint of the T-72 turret used in the strip mode digitization method	•	8
4	Computer-generated drawing illustrating the REFLECT capability of EDITR	.]	11
5	Computer-generated drawing illustrating the ROTATE capability of EDITR	• -	12
6	Computer model of the Soviet T-72 tank at an elevation angle of 90°	• 3	14
7	Computer model of the T-72 turret at an elevation angle of 30° and an azimuth angle of 45°	•	15
8	Computer model of the T-72 at an elevation angle of 30° and an azimuth angle of 45°	•	16

ς.

iii

COMPLEX SCATTERING RADAR CROSS SECTION MODEL

A mathematical model has been developed at Georgia Tech for estimating the radar cross section (RCS) of complex targets. The model was originally developed to predict the RCS of submarine masts and periscopes [1,2], and later expanded to include larger targets such as patrol boats, amphibious assault landing craft, ships, and tanks [3,4,5]. Under Purchase Order V161-SA-113203 from Rockwell International, these RCS modeling techniques have now been applied to the Soviet T-72 Main Battle Tank.

1. MODEL METHODOLOGY

The target is represented as a collection of many scatterers of simple geometric shapes. The major types of scatterers handled by the model at this time are triangular flat plates, spheres, truncated cone frusta, and dihedral and trihedral corners. The computer model calculates the RCS of the individual scatterers on the target by physical optics methods and forms the phasor sum to arrive at the total cross section. This RCS value is the effective cross section since the model takes into account the multipath effects. RCS calculations based on the use of physical optics theory to derive a closed form analytic solution for the cross section of the simple geometric shapes are preferable to "brute force" numerical integration techniques when considering the enormous amount of computer time to implement the latter.

1.1 SCATTERER SHAPES

The geometric shapes chosen to be scatterer types are general enough to be implemented in a variety of modeling tasks including ships, landing craft and planes, as well as the Soviet T-72 Main Battle Tank modeled for Rockwell International. Flat plates, the most common and versatile of the scatterer types representing the T-72, are used to model flat areas of the tank, such as the walls, and many rows of small flat plates are utilized in areas with some curvature, such as the turret. The second most prevalent geometric shape used on the T-72 is a cylinder. The gun barrel is composed of a collection of cylinders with different radii. Also the modeling scheme includes dihedrals and trihedrals which are used when two or three flat plates meet at near right angles, creating effective corner reflectors.

The triangle is chosen as the geometric shape for flat plate scatterers for several important reasons. For one, three noncolinear points define a plane. A polygon of more than three points is not used because of the difficulty encountered when locating more than three coplanar points. Thus, it is much easier with triangles to ensure that scatterers lie in the plane of the two-dimensional drawings used to construct the model. Another reason for choosing triangles is that any contoured surface can be approximated with triangles. The tank turret is a prime example of the use of triangles to approximate smooth contours. Triangular flat plates are defined by the Cartesian coordinates of the vertices as shown in Figure 1. These plates are assumed to be one-sided so that a counterclockwise numbering scheme of the vertices defines the direction of the outward pointing normal n as shown. This one-sidedness is useful in shadowing algorithms to determine whether the plate is facing towards or away from the radar.

The truncated cone frustum is another very general shape including both the cylinder and the cone as special cases. It is defined by the coordinates of the two ends of its central axis and by the radii of the two ends (see Figure 2). Note that when the two radii are equal, the frustum reduces to a cylinder, and when one of them is zero, it becomes a cone. All frusta are assumed open ended, so only the side of the frustum is modeled, not the ends or the interior. If the ends of a particular frustum are of importance, they can be covered by one or more flat plate scatterers.

1.2 TOTAL TARGET RCS

For each scatterer on the target, an effective RCS value is calculated by taking into account the multipath effects from the earth's surface. Multipath is the interference between the radar waves that travel directly from the radar to the scatterer and those that bounce off the earth's surface before and/or after reaching the scatterer. The model utilizes inputs from the user to calculate the attenuation of the signal that bounces off the earth's surface.

.

The computer model has several options for adding the returns from the individual scatterers to form an RCS for the entire tank. One of the methods is known as a coherent summation in which the relative phase angle of each scatterer is included in the summation. This can cause effects such as constructive and destructive interference between the scatterers. The phase of the return signal from each scatterer can also be calculated in one of two ways, depending upon whether the target is in the near or far field. The far field is where the incident waves are approximately planar as opposed to spherical. The usual criterion for determining whether a target is in the far field is:

$$R > 2d^2/\lambda$$

where R is the range from the radar to the target, d is the maximum dimension of the target element, and λ is the radar wavelength. Whether the target is in the far field or the near field, the length of the path from the radar to each particular scatterer is correctly calculated to determine that scatterer's phase angle. Note that the model always assumes a plane wave over the dimensions of an individual scatterer. It is only in looking at the target as a whole and in the relative phases between the scatterers that the near/ far effects are considered.

Another method for finding the total RCS of a target is known as incoherent summation. Here, the phase angles are not considered so only the magnitudes are added. An incoherent summation would be deemed more useful when the main question is detectability, since in detection analysis, the target will usually be quite some distance from the radar and the radar return will typically be integrated over some number of radar pulses. At these distances, the target subtends a very small solid angle with respect to the radar so a plane wave front of constant phase is incident over the entire target, and pulse-to-pulse phase effects are averaged out over the integration time of the radar signal processor. The major differences between coherent and incoherent predictions are in the depth and frequency of the nulls and the heights of the peaks, due to phase effects.

For much closer ranges, however, a coherent summation is used, since a near field prediction is totally dependent on the phase of each

scatterer's return. Calculations on a pulse-by-pulse basis, such as those required for an impact point prediction for a seeker, also depend strongly on phase effects. For this case, a coherent summation is used.

Before a scatterer's RCS is added to the total sum, it is multiplied by a weighting factor known in the program as WT. This "weighting factor" can be any real number between 0 and 1, where a WT = 1 represents a perfectly reflecting metallic surface. These WTs are used quite extensively to simulate nonmetallic scatterers such as dielectrics (fiberglass, for example) or radar absorbent material (RAM).

1.3 MODEL LIMITATIONS

One feature not considered by the model is the effect of cavities, or re-entrant features, such as the driver's hatch. The theoretical problems associated with developing an accurate analytical description of the return from arbitrary re-entrant structures are practically insurmountable at the present time. Another scatterer type not considered in the model is the general doubly curved surface (hyperboloid, ellipsoid, etc.). The only doubly curved surface available is the spheroid, which is used mainly to represent antenna radomes on ships and other naval craft. The major feature with a doubly curved shape on the T-72 is the turret, but the radii of curvature of the curved sections of the turret are generally so large that, to a good approximation, the turret is relatively flat over small regions. Thus, the turret is most easily modeled as a collection of triangular facets (flat plates), and there is no need to consider general doublycurved surfaces as a unique scatterer type.

2. T-72 TANK RCS MODEL

Any results derived from the analysis of a model are no better than the model itself. Consequently, a crucial consideration in evaluating the results of this project is the fitness of the model. However, before one can examine the question of the fitness of a model, one must establish a measure of

fitness; that is, one must examine the function or purpose of a model and determine how well the model satisfies this function or purpose.

The model is first and foremost a radar model. The fitness of the model is a function only of how well it simulates what a radar would "see" when illuminating a real tank. The modeling effort is not intended to be a scaled down replica of the actual target, correct in every detail. Rather it is an attempt to simulate the target as it appears to a radar at millimeter wavelengths. Most details are significant to the radar at millimeter wavelengths, therefore the model includes many small structures that would be excluded if the model were to be constructed solely for use at longer wavelengths. Yet, there are details that are significant to the human eye which are insignificant to the radar; for example, the support brackets used to carry the snorkel on the left side of the turret. These brackets are partially obscured by the snorkel and may not be constructed of metal. Items like these are not good reflectors and are usually excluded from the model whether it is created for microwave or millimeter wavelengths. Nonetheless, details which are significant to the radar are present and are modeled to simulate as nearly as is feasible what the radar would actually "see" when illuminating the actual tank.

The above introductory remarks aside, the following discussion examines how the individual components of a typical tank model are determined, how the model is structured in the computer, how the model is handled and manipulated by the user, and how various features of the tank are modeled. Before surveying the model as a whole, one must examine each of the individual components.

2.1 SCATTERER COORDINATE DETERMINATION

First, the question of how these components are initially created must be addressed. The creation of a component is actually the determination of the weight factor, identification code, and coordinates of a particular element of the model and the entry of this information into a data file. Since weight factors (to be discussed later) are determined by straightforward calculation, and identification codes (also to be discussed later) by some reasonable, although often arbitrary, naming scheme, the discussion to follow will focus on the determination of component coordinates. Three methods are available for use in the development of the tank model for determining component coordinates and entering these coordinates into a data file. The Strip Mode Digitization (SMD) method is the most efficient way to enter coordinates. In this digitization process, one first places a photograph or drawing of some portion of the tank on a digitizer tablet and enters three reference points of known coordinates. After entering the reference points, one enters unknown points from the drawing or photograph, and the computer then determines the coordinates of these points and enters them in a data file.

The SMD method can be illustrated by considering the turret of the T-72. Figure 3 shows the turret at an 90° elevation angle, hence the observer is looking straight down on the turret. The cross-sectional lines which are drawn for the front left quarter of the turret represent cuts through the tank in given z-planes. In general, if the contour lines of the turret, in the x-y plane, are defined by N rows of M points per row, one would have to digitize M points per row and enter Z-coordinates of each rib cross section. The digitization algorithm then fills in each of the M-1 strips from the base of the turret to the top of the turret with triangles.

The second method of entering coordinates is the manual calculation of these coordinates from the tank drawings. The coordinates are then entered into a data file by hand. This method, although very simple and straightforward, is quite tedious and time consuming. The digitization process, as a whole, is much faster than the manual one, yet for some of the tank armament, it is more efficient to enter the points by hand because of the complexity of the armament. An example of this is the laser rangefinder.

A third method for entering coordinates is automatic digitization (AD). This method was developed to speed the manual coordinate determination and hand entry process. The difference in the AD process and the SMD process is that this method utilizes detailed drawings of two perspectives of the same portion of the tank simutaneously [6]. The available drawings of the T-72 were not adequate to use this process. This method, although not as efficient or accurate as the SMD method, could be used to determine the coordinates more precisely and probably quicker than the hand entry process for the equipment on the turret.

Figure 3. Blueprint of the T-72 turnet used in the strip mode digitization method. Each cross-sectional line, as illustrated in the front left quarter, represents a cut through the turnet in a given z - plane.

2.2 SCATTERER IDENTIFICATION CODES

A model can represent a large data file, requiring many kilobytes of computer storage. Because of volume, the data are stored as a binary rather than ASCII file to reduce memory requirements. Furthermore, it is a random access file, which minimizes the time required to access any given record within the file. Each record within the data file represents a single component in the tank model, and among other information, each record contains a unique record number and unique identification code. Whereas record numbers represent merely a sequential ordering of the components, without regard for function or physical location within the model, the identification code is much more informative from a model standpoint. For example, one record may have the identification code TURRET.HATCH.GUNNER.00040. This record is the fortieth triangular flat plate which, together with the other plates identified as TURRET.HATCH.GUNNER.*, composes the gunner's hatch located on the turret. Another example of the identification code is TURRET.BARREL.000001. This component is the first cylinder attached to the turret and, as the label suggests, is a portion of the gun barrel. The entire gun barrel is constructed with cylinders which are identified by the label TURRET.BARREL.*. These examples indicate the ease with which the records pertaining to any given portion of the model can be accessed in the data file.

2.3 SCATTERER WEIGHTING FACTORS

In addition to a unique number and identification code, each record also contains a weight factor (reflection coefficient) which is proportional to the attenuation of the electric field reflected by the component when illuminated by a radar. Such a weight factor can be used to take into account the presence of RAM on a particular model component, as well as the frequencydependent attenuation of waves illuminating non-metallic surfaces.

2.4 DATA FILE MANIPULATION

Because of the size and structure of a typical tank data file, an efficient means is needed to access and manipulate records within the file. This requirement is satisfied by a computer program called EDITR. Among other capabilities

this program permits the user to specify (by identification code or record number) and display a single record or a range of records. Thus, one might display the 114th and the 115th records in the file, or, by specifying TURRET.HATCH.GUNNER.*, for example, one can display the entire gunner hatch on the turret. Clearly, any portion of the model can be easily accessed by using the identification code scheme in conjunction with the wild card character *.

In addition to the two access modes described above, EDITR can delete a range of records or transfer a range of records from one tank file into another. Thus, one can easily investigate the effect on RCS of removing or adding equipment on the turret, such as tool boxes or supply drums, for example.

In addition to adding and deleting records from a data file, one can also use EDITR to modify existing records within that file. The user can modify the coordinates, the identification code, and the weight factor for any range of records, that range again being specified either by record numbers or by identification codes. The user also can shift a range of components by given distances in the x, y, and z directions. Using this capability, one can easily investigate the effects of moving a part of the tank, for example, a tool box, to another storage location. The EDITR also provides the capability of reflecting or rotating a specified range of records. In reflecting a range of records, EDITR creates the reflection of a given range of components about a plane specified by the user. The reflection capability of EDITR is illustrated in Figure 4. Obviously, such a tool can greatly reduce the amount of work in creating a model where symmetry exists, as in the case of the track and wheels, since one can create the left side of the tank and then obtain the right side by reflecting the left portion about the y plane.

The rotate option, illustrated in Figure 5, is another powerful tool for manipulating a model. To use the option, one merely specifies a line and an angle of rotation about the line. Thus, for example, to rotate a segment of the turret 30° off center, one simply specifies two points on the line determined by the intersection of the base of the tank and the turret, and the angle 30° . EDITR deletes the existing portion of the turret which was specified, and replaces it with the corresponding rotated segment.

Figure 4. Computer-generated drawing illustrating the REFLECT capability of EDITR. Shown in the drawing are the left tracks and wheels and the right track and wheels are constructed by reflecting the left portion about the x-plane.

Figure 5. Computer-generated drawing illustrating the ROTATE capability of EDITR. Shown in the drawing is the entire turret of the T-72 rotated 30° from the center line of the tank.

The above discussion of the EDITR, while not exhaustive, is sufficient to indicate the great power of this program for manipulating models. Although a data file may be quite large, manipulating such a file is quite easy. With a basic knowledge of the identification code scheme used for the tank and a familiarity with the capabilities of EDITR, one can examine with a few command lines the RCS effects on a given tank of a great number of variations and changes: rotating the turret and moving the snorkel from its storage position on the side of the turret into its upright functional position on the top of the turret, or replacing the existing machine gun with a gun of different caliber. The list is endless.

Figures 6 through 8 illustrate the radar models of the Soviet T-72 Main Battle Tank which are developed using the techniques described above. Obviously, the value of any study of tank RCS performed on the computer is directly proportional to the radar accuracy of the model. That is, the model must approximate as nearly as possible the actual tank from a radar point of view. Features which seem important to the human eye may or may not be important from the standpoint of the radar. One should keep this distinction firmly in mind, for the model is first and foremost a radar model. The radar model of the tank is modeled specifically for millimeter wavelengths; therefore most small details which are normally omitted at longer wavelengths, are included in this model. Some features which might seem important to a casual observer (for example, the support brackets on the left rear side of the turret) are judged to be relatively insignifcant to the eye of the radar and are not included in the model. The features which are excluded normally are excluded because they are poor reflectors, not simply because of size. In each case, the question of whether to include a particular feature or not is answered by consulting the radar rather than the eye.

Figure 6. Computer model of the Soviet T-72 tank at an elevation angle of 90° .

Figure 7. Computer model of the T-72 turret at an elevation angle of 30° and an azimuth angle of 45° . (Note: 0° and 90° azimuth angles represent the center front and the right side of the tank respectively).

Figure 8. Computer model of the T-72 at an elevation angle of 30° and an azimuth angle of 45° .

,

REFERENCES

- M.T. Tuley, M.M. Horst, and K.B. Langseth, "Radar Modeling Studies (U)," Task 7 Final Report on APL Subcontract 600403, Georgia Institute of Technology, Engineering Experiment Station, July 1978, SECRET, XGDS.
- M.M. Horst, D.A. Newton, and R.B. Rakes, "RCS Modeling of Submarine Masts (U)," Task 2 Final Technical Report on Contract N00039-79-C-0467, Georgia Institute of Technology, Engineering Experiment Station, June 1981, SECRET.
- M.T. Tuley, W.M. O'Dowd, and F. B. Dyer, "Radar Cross Section Reduction of Ships (U)," Phase One Final Technical Report on Contract N00039-79-C-0676, Georgia Institute of Technology, Engineering Experiment Station, April 1975, SECRET, XGDS.
- M.M. Horst, D.A. Newton, and E.E. Martin, "JEFF AALC RSC Measurements and Modeling (U)," Final Report on Contract N00612-79-D-8004 HR-18, Georgia Institute of Technology, Engineering Experiment Station, January 1981, SECRET NOFORN.
- 5. M.M. Horst, et al., "Ship Radar Cross Section Preditions (U)," Final Report on Contract N00167-80-C-0048, Georgia Institute of Technology, Engineering Experiment Station, March 1981, SECRET.
- 6. J. E. Sutherland, "Three Dimensional Data Input by Tablet," <u>Proc. IEEE</u>, Vol. 62, No. 4, April 1974.

Phase II PROGRESS REVIEW

11 11 16

Rockwell International Purchase Order V161-SA-113203

ì

17 September 1981

GEORGIA INSTITUTE OF TECHNOLOGY Engineering Experiment Station Atlanta, Georgia 30332

> GIT/EES Project A-2986 Deliverable Number 2

A-2986 PROGRESS REVIEW 17 September 1981

A review of Phase II efforts under Rockwell Purchase Order V161-SA-113203 was held at Georgia Tech on 17 September 1981. Those present were Carl Bates and Bob Bensinger from Rockwell International, and Margaret Horst, Bruce Rakes, and Debbie Newton from Georgia Tech. The overall effort of the project was discussed by phase, with emphasis on Phase II efforts.

Phase I

A preliminary copy of the Phase I Final Report, " A Complex Scatterer RCS Model" was given to Carl Bates. Included in the report are line drawings of the T-72 computer model from different perspectives. Color reproductions of these line drawings as well as color pictures of the T-72 computer model using a light shadowing algorithm were also given to Carl Bates.

A demonstration of the completed computer model of the T-72 tank was presented to Carl Bates and Bob Bensinger using the VAX 11/780 computer and the Chromatics, an eight-color high resolution graphics device. Some of the capabilities of other Georgia Tech software were illustrated also, including the program EDITR, which accesses, edits, manipulates, and displays records within the model data file. A video presentation, which included the T-72 as well as other models developed by Georgia Tech, was given by Bruce Rakes. The possibility of Bruce presenting this short video tape of Georgia Tech's modeling capabilities to others at Rockwell was also discussed.

Phase II

A flow chart of the computer simulation to be developed under Phase II is presented on the following page. The Rockwell Driver was not discussed in detail. The remaining routines in the flow chart were discussed in detail and are to be supplied to Rockwell by Georgia Tech.

CROSS MAIN is the main program which calls the remaining portion of the Radar Cross Section (RCS) and Track Error program. Basically, CROSS MAIN receives the inputs from the Rockwell driver, initializes and converts the inputs to their correct units, and calls the Read in Scatterer procedure.

This procedure reads in the record of each individual scatterer of the target model, including its record number, its scatterer type (either a flat plate or a cylinder), its identification code, its weighting factor, and either three end points, if the scatterer type is a flat plate, or two end points and two radii if the scatterer type is a cylinder. The routine then determines if the scatterer is visible to the radar. If the scatterer cannot be seen by the radar (e.g., a flat plate facing away from the radar), its contribution to target RCS is zero, and the routine proceeds to the next scatterer in the file.

The next step in calculating the RCS of a scatterer that is visible to the radar is determination of the complex reflection coefficient of the surface, which is needed for the multipath calculations. The reflection coefficient, ρ , can be either calculated using the Calculate Complex Rho routine, or can be an input, in which case this routine will be ignored. In both cases a value for ρ will be needed in the input file. If a calculated value for ρ is desired, then the value for ρ in the input file is a flag for the program to calculate a complex ρ for each scatterer. If the value for ρ in the input file is the actual value, then the value will be used as a flag to skip the Calculate Complex ρ procedure and call the Find $\sqrt{\sigma}$ routine directly.

 $\sqrt{\sigma}$, the quantity calculated in the routine named Find $\sqrt{\sigma}$, is the complex scattering length. The quantity desired from the model is Radar Cross Section, σ , which has units of area, and is a real number associated with received power in the radar equation. Since the return comprises several contributions, the complex voltages, $\sqrt{\sigma}$, should be summed before the amplitude is found and squared. The scattering length is determined from:

$$\sqrt{\sigma} = G_f + 2\rho G_d + \rho^2 G_I$$
(1)

ρ = complex voltage reflection coefficient

G_f = component of return due to the target, the direct-direct path, as if the ocean were not present (the free space contribution)

- G_I = component of return due to the image, the indirect-indirect
 path. This term must be multiplied by the square of the
 voltage reflection coefficient of the ocean surface, because
 the path involves two bounces from the surface.
- G_d = component of return due to the diplane term, the indirectdirect path or the direct-indirect path. This term must be multiplied by the voltage coefficient because of the single bounce and doubled because of the two reciprocal propagation paths.

After a value for the scattering length is found for a scatterer, the program calls the Antenna Pattern routine. This routine uses a standard antenna pattern and multiplies the antenna gain in the appropriate direction by $\sqrt{\sigma}$. This value is then passed to the Sum and Difference routine to determine the sum and difference patterns, which are needed for the Track Error calculation.

The next step of the program decides if there are more scatterers left in the model which have not been read into the program. If so, the program calls the Read in Scatterer routine and each appropriate subsequent routine through the Sum and Difference routine. When all the scatterers in the model have been stepped through, the clutter routine is then called.

The clutter routine is a standard algorithm which calculates the clutter from a flat homogenous earth and then calculates the antenna gain for the clutter contribution. The Sum and Difference patterns are updated with clutter information, and the Track Error is calculated in both the azimuth and elevation directions in the Track Error routine. The track errors in elevation and azimuth are proportional to the difference signal divided by the sum signal. These values are then passed to CROSS MAIN and are returned to the Rockwell Driver.

The inputs from the Rockwell Driver to the CROSS MAIN program were also discussed in detail. The following are the radar parameters to be supplied by Rockwell: frequency (GHz), pulse width (μ s), and azimuth and elevation beamwidth (degrees). Clutter per unit area (dBsm/m²) and the complex reflection coefficient, ρ , will also be inputs. The position of the target is specified as an input. The x, y, and z coordinates of the tank, from the radar, are specified in feet, along with the distance, Δ x, to the center of the tank (feet).

The orientation of the model can be specified by the yaw, pitch, and roll angles (degrees) which are input by the Rockwell Driver. Yaw, pitch, and roll are right handed rotations about the z, x and y axes, respectively. The fixed body rotations are as follows: a positive yaw rotates the tank to the left, a positive pitch rotates the tank upwards, and a positive roll rotates the tank to the right.

The T-72 tank model can probably be used to simulate the newer T-80 tank; however, there is a possibility that the T-80 tank is equipped with a hydraulic system which elevates the tank some unknown distance. Because of the limited availability of information on the T-80, it is not known when the tank is raised (while moving or stationary) or the elevation to which it is raised. Therefore, to accommodate for the unknown, the height of the target can be manipulated by changing the orientation of the tank in the z-position. Hence, if more information becomes available in this area, the model can accommodate either a T-72 or T-80 model.

Phase III

The last major topic of discussion for the Review meeting involved suggestions and recommendations for further work. Several tasks were identified as immediately necessary or desirable as part of Phase III:

(1) Develop software for the coordinate transformations necessary to make the GIT RCS model and Track Error routines compatible with the Rockwell missile simulation; i.e., write the software interface between the Rockwell Driver and CROSS MAIN.

(2) Deliver to Rockwell International a digital magnetic tape containing:

a) Source code for GIT RCS/Track Error model and software interface to Rockwell Driver.

b) Source code for FLECS preprocessor

c) Data file for the tank model developed under Phase I.

d) Data file for one simple test target.

e) Source code for a simplified translator program for target data files.

(3) Deliver User Documentation for the GIT RCS/Track Error model, including documentation on model methodology.

(4) Provide support to Rockwell International in Columbus, Ohio, to aid in implementing the software delivered in (2) above, to verify that the software performs accurately on their PDP-11 computer, and to train Rockwell personnel in exercising the software.

(5) As part of the validation effort to ensure that the software is properly installed on Rockwell's PDP-11, prepare a set of benchmark runs at Georgia Tech for comparison with results obtained at Rockwell. The benchmark data set shall include, at a minimum, 360° azimuthal polar plots of tank RCS and track error angle at 1° azimuthal increments for elevations of 15° and 25° . The main beam of the antenna shall be directed toward the defined origin for the tank data file coordinates.

(6) Analyze the effects of the "poor man's" hidden surface removal algorithm delivered with the GIT RCS model, as compared to a more sophisticated hidden surface removal algorithm, by computing RCS and track error using full hidden surface removal for a selected subset of conditions covered by the benchmark data described in (5) above. Compare the results with the benchmark data and make recommendations in a short memorandum report.

(7) Provide a table of suggested values for σ° (clutter cross section per unit area), σ_{s} (rms surface roughness), and ρ (the complex reflection coefficient), for different types of terrain of interest (e.g., open field, forest, urban area, snow), in a brief memorandum report explaining the suggested choices.

Other tasks identified as desirable outgrowths of current and proposed efforts, but probably scheduled for farther downstream, include:

(8) Explore means of identifying missile impact points on the tank, possibly through identification of the scatterer in the tank model whose midpoint is closest to the impact point. Assist Rockwell International in the preparation of visual aids (photographs, slides, vu-graphs) depicting results of selected simulations, utilizing GIT computer graphics software and output devices.

(9) Implement a diffuse scattering term in the RCS model to allow for surface roughness in target elements.

(10) Validate the RCS model by comparing predicted RCS with actual measured data. This could be accomplished in one of three ways:

a) Georgia Tech could be tasked to develop a computer model for a specific target for which high quality, well-calibrated measured RCS data at frequencies of interest already exist in the literature (open or classified).

b) Georgia Tech or some other agency could be tasked to record calibrated RCS data at the appropriate radar frequencies on the T-72, for geometries similar to those encountered in the simulation.

c) A vehicle other than the T-72 could be selected; Georgia Tech tasked to model it; and Georgia Tech or some other agency tasked to measure its RCS.

Option (a) would probably have the lowest cost and, not surprisingly, the greatest uncertainty in the results. It is very difficult to conduct a model validation using data not gathered specifically for that purpose and possibly not documented adequately for that purpose. Option (b) is reasonable, subject to the availability of a T-72 tank. Georgia Tech possesses the appropriate instrumentation radars and expertise to carry out such a measurement program, or to act in an advisory capacity to others. If an appropriate T-72 is not available, Option (c) is a possibility. The vehicle choice would depend on availability as well as interest in the vehicle; if possible, selection of a vehicle for which some measured RCS data exist in the literature would provide an independent check on measurement accuracy as well as model validity.

SOFTWARE USER DOCUMENTATION PROJECT NO. A-2986

RADAR GLINT MODEL

By

R. B. Rakes

Prepared for ROCKWELL INTERNATIONAL MISSILE SYSTEMS DIVISION COLUMBUS, OHIO 43216

APRIL 1982

GEORGIA INSTITUTE OF TECHNOLOGY

A Unit of the University System of Georgia Engineering Experiment Station Atlanta, Georgia 30332

A 240

Software User Documentation

1

Georgia Tech/EES Project A-2986

RADAR GLINT MODEL

Bу

R. B. Bakes

Prepared for Rockwell International Missile Systems Division Columbus, Ohio 43216

under Agreement V161-SA-113203

Prepared by

GEORGIA INSTITUTE OF TECHNOLOGY Engineering Experiment Station Atlanta, Georgia 303332

April 1982

TABLE OF CONTENTS

E E

SECTION	TITLE	PAGE
1	INTRODUCTION	1
2	IMPLEMENTATION OF PROGRAM MODULES	3
3	INPUT DATA FILE FORMATS	7
3.1	INTRODUCTION	7
3.2	GEOMETRY DATA FILE	7
3.3	TARGET DATA FILE	13
4	REFERENCES	22
	APPENDIX	23

.

LIST OF FIGURES

1 I

FIGURE	TITLE	PAGE
1	Simplified flow chart of a typical Missile model illustrating the placement of calls of the Track Error/RCS subroutines	4
2	Comparison of the average backscatter per unit area for vertical and horizontal polarizations; 35 GHz	10
3	Comparison of the average backscatter per unit area for vertical and horizontal polarizations; 95 GHz	11
4	Target coordinate axes with rotation angles	12
5	Triangular flat plate geometry	14
6	Truncated cone frustum geometry	15
7	(a) Dihedral and (b) trihedral geometry	16
8	Typical target drawn by SAMURAI	18

-

LIST OF TABLES

TABLES	TITLE	PAGE
1	DIELECTRIC CONSTANTS OF TERRAINS FOR COMPUTATION OF REFLECTION COEFFICIENTS	9

This user's manual for the Georgia Tech Radar Glint computer model is intended as an aid for the programmer in the implementation of these routines into an existing missile seeker model. It is also meant to be used as a reference by the user of the missile model to aid in constructing the data files used by the Radar Glint routines.

The Radar Glint model enhances a missile model by simulating a monopulse tracking radar employed on the missile. The primary outputs of the model are the azimuth (yaw) and elevation (pitch) track errors which are used as inputs to the guidance portion of the missile simulation. One of the main advantages of this program is that the target of the missile is modeled as an extended target, i.e., as a large collection of individual scatterers, for the calculation of the radar cross section (RCS) as opposed to a single point target with a constant cross section. This allows for the effects of glint to be modeled more accurately. Another advantage of this computer model is that the effects of multipath and clutter from the ground plane are also included. As an added bonus, the program returns the location of the missile's impact point on the target (assuming it didn't miss!).

The implementation of these routines is relatively straightforward. Due to the modular nature of the Radar Glint model, the missile program needs to be modified at only two points with a minimum number of variables being passed. For ease of readability, these routines were written in FLECS (an extended version of Fortran) and developed on a Vax 11/780 computer. They are also available for a SYSTEMS 32/7780 computer. Detailed instructions for the implementation of the Radar Glint Model are found in Section 2.

Two data files are used for input to the Radar Glint model. The first of these is a geometry file that describes the spacial orientation of the target in a fixed reference frame. This data file also contains the terrain parameters for multipath and clutter. The other data file is the target model itself. It is a direct access, record oriented file that contains the three dimensional coordinate information to describe each of the scatterers that make up the target. The format of the target data file as well as the geometry file are described thoroughly in Section 3. As an additional
programmer's aid, a listing of the entire program as it presently exists on the VAX 11/780 is included in Appendix A.

The Radar Glint model was developed from two earlier Georgia Tech computer programs: the Multipath/Clutter routines for the TAC ZINGER program^[1] and the Radar Cross Section (RCS) model known as CROSS.^[2] The Multipath/Clutter model produces track errors for a monopulse radar, but is restricted to a single point target. The CROSS model was originally designed to calculate the RCS of ships, but has since been adapted to find the near field RCS of many other three dimensional targets including land as well as sea targets. Thus, a very powerful tool has been developed by combining these two programs into the present Radar Glint algorithm.

SECTION 2. IMPLEMENTATION OF PROGRAM MODULES

The Radar Glint model is designed as a set of subprograms to be inserted into a missile seeker program. The purpose of this section is to describe the procedures involved in implementing these routines.

The set of subroutines that make up the Radar Glint model is written in a structured superset of Fortran 77 known as FLECS (Fortran Language Extended Control Structures). Before these routines can be compiled by the Fortran compiler, they must be run through the FLECS preprocessor to translate the FLECS sources to standard Fortran. The FLECS preprocessor is available for the VAX 11/780 and the PDP 11 family as well as many other computers. Since FLECS is completely compatible with standard Fortran, there should be no problem in interfacing the Radar Glint model with a missile model written in standard Fortran.

To simplify the implementation of this model, only two subroutines are to be called directly by the main missile program with a minimum number of arguments being passed. The I/O used by the Radar Glint routines such as the handling of the target and geometry data files (see Section 3) is taken care of entirely by the subprograms and should not interfere at all with the operation of the main routine. Thus, the only modification to the main missile model should be the placement of the two subroutine calls. To aid in this placement, Figure 1 illustrates a simplified flow chart showing the primary Radar Glint modules and how they would interface with a typical missile model. The modules surrounded by the dashed lines represent the Radar Glint subroutine calls.

The first of the two subroutine calls to be placed in the missile program is a call to the subroutine MULTIN (for MULTIpath INitialization). This subroutine call should be inserted in the initialization portion of the missile program and should only be called once since it serves to initialize the Radar Glint model. The MULTIN routine opens three data files used internally by the Radar Glint model. The programmer must insure that the unit numbers used for these three data files are unique, i.e., they must not be used anywhere else in the missile program. The unit numbers currently used in the Radar Glint routines are 2, 3, and 5, which refer to the target data file,

Figure 1. Simplified flow chart of a typical Missile model illustrating the placement of calls to the Track Error/RCS subroutines.

the geometry file, and the scratchpad data file, respectively. For details on the formats of these data files, see Section 3.

The subroutine MULTIN passes only three real arguments and will appear as shown below:

CALL MULTIN (XTARG, YTARG, ZTARG)

The arguments XTARG, YTARG, and ZTARG are the X, Y, and Z coordinates in feet of the target's position in a fixed earth reference frame. Since the target actually covers an extended volume, this XYZ location is the position of the origin of the target's internal coordinate system. This information is returned from MULTIN where it is read from the geometry data file and then passed to the main missile program. These coordinates will then remain unchanged throughout the remainder of the simulation since the target is assumed to be stationary. It is especially important to remember that the arguments for MULTIN must be variables and NOT constants since the data are to be returned from MULTIN to the missile program and not the other way around.

Another purpose for the MULTIN subroutine is to set the radar parameters for the missile seeker system. The parameters used by the Radar Glint program are the frequency, the pulse width, and the antenna beamwidths. These parameters are set by inserting several assignment statements at the beginning of the MULTIN subroutine. The variable FREQ must be set to the frequency in Gigahertz. The variable PW is the pulse width in nanoseconds. The variables BWT1 and BWT2 are the transmitted 3 dB elevation and azimuth beamwidths, respectively. The variables BWR1 and BWR2 are the received elevation and azimuth beamwidths, respectively.

The other subroutine to be called by the missile model is MULTIP (for MULTIPath, track error, and RCS). Since its purpose is to return the azimuth and elevation track errors which need to be supplied to the missile guidance algorithm, it should be placed inside the main loop of the program where it can be called once for every update of the missile's position and velocity vectors as well as the radar's boresight direction. The call to MULTIP has 10 real arguments and will appear as follows:

CALL MULTIP (XS, YS, ZS, XT, YT, ZT, AZS, ELS, AZERR, ELERR)

The first eight of the arguments are the input variables to MULTIP. The variables XS, YS, and ZS are the X, Y, and Z coordinates in feet of the seeker position in the fixed earth frame. XT, YT, and ZT are the coordinates of the target's origin, also in feet. The variables AZS and ELS are the azimuthal (yaw) and elevation (pitch) directions of the missile's radar boresight. They are both measured in radians. The range of values for the azimuth is from 0 to 2π , measured clockwise from the Y-axis in the fixed earth frame. The positive sense for the elevation is above the horizontal plane.

The two output variables are AZERR and ELERR which are the azimuthal and elevation track errors. These two values indicate the direction off boresight at which the phase center of the target appears. Thus, these are the values that need to be input to the missile guidance algorithm so that the missile may make the proper adjustments in tracking the target. Both of the track error angles are measured in radians, with respect to the boresight. The positive sense of the azimuthal error is to the right of the boresight, and for the elevation error, the positive sense is up.

3.1 INTRODUCTION

The Georgia Tech Radar Glint program utilizes three data files in its operation. Two of these are input data files for describing the orientation and position of the target as well as its shape. The third data file is an internal unformatted file used solely as 'scratch pad' memory by the program due to memory limitations of most minicomputers. The primary purpose of this section is to describe the format of the two input files to aid the user in both the maintenance and understanding of existing data files as well as the creation of new data files for the running of different scenarios.

3.2 GEOMETRY DATA FILE

The geometry data file is a relatively simple data file that describes the orientation and position of the missile's target. It is an ASCII data file that can be easily updated or created by most text editors. The geometry file is opened, read, and closed by the module MULTIN which uses device number 2 as its input channel. This number could be changed, of course, if it conflicts with any files opened by the main missile program.

The format of the geometry data file is as follows:

Line	1	:	ROUGH, DEC, SIGODB
	2	:	XTARG, YTARG, ZTARG
	3	:	IORDER
	4	:	ALPHA, BETA, GAMMA

Since this data file is read in using a free field format, no special columnar formatting is needed. Commas, spaces, and/or carriage returns may be used as variable delimiters.

The variables on line 1 of the geometry data file refer to the electrical characteristics of the ground plane. The Radar Glint model assumes a flat, homogeneous terrain upon which the target sits. Multipath reflection of the radar's signal as well as background clutter can occur from the ground plane, hence the necessary parameters to describe these phenomena are found in line

1. The real variable ROUGH is the root-mean-square surface roughness in feet of the terrain. DEC is a complex variable that contains the complex dielectric constant of the terrain. The last variable, SIGODB, is a clutter parameter for the terrain. This real variable represents the average cross section per unit area of the clutter ($_{0}^{0}$), measured in decibels (dB). Some typical values for the complex dielectric constant for various terrain types are listed in Table 1. Figures 2 and 3 are supplied to give some indication of possible values for σ^{0} . These graphs present some land clutter data taken by Georgia Tech in 1975.^[3]

Line 2 of the geometry data file contains the X, Y, and Z coordinates of the target's position as expressed by the variables XTARG, YTARG, and ZTARG. The Radar Glint model assumes a fixed earth, right handed Cartesian coordinate system in which the Z axis points towards the zenith and Z = 0 is on the earth's surface. The "target's position" is defined as being the origin of its own internal coordinate system, i.e., the point on the target from which all the internal target's coordinates are measured as described by the target data file (see Section 3.3).

The third line in this input data file is the integer array IORDER which is dimensioned to three. This array describes the order of rotations which may be performed on the target to obtain the desired orientation. By default, the target is oriented in the directions shown in Figure 4. That is, the front of the target points in the Y direction and the right side of the target points in the X direction. The vertical direction of the target is parallel to the Z axis. Successive yaws, pitches, and rolls may be performed to reorient the target into a new position. The definition of yaw, pitch, and roll in the context of the target's orientation are defined in Figure 4. Yaw may be thought of as rotation about the Z axis, pitch as a rotation about the X axis, and roll as a rotation about the Y axis. The positive sense for all three rotations is counterclockwise.

The purpose of the IORDER array is to define the order of these rotations since doing a yaw before a pitch has a different outcome than performing a pitch before a yaw. The rotations of yaw, pitch, and roll are designated by the integers 1, 2, and 3, respectively. The first angle to be rotated is IORDER(1), the second is IORDER(2), and the third is IORDER(3). An example of IORDER is 2,1,3 which means do pitch first, yaw next, and roll last. Another

TABLE 1

DIELECTRIC CONSTANTS OF TERRAINS FOR COMPUTATION OF REFLECTION COEFFICIENTS

Terrain Type		² 1	ε2
1. Bare Soil	dry	2.44	.00267
	wet	20.0	2.4
2. Grass	dry	2.0	0
	wet	20.0	0
3. Sand	dry	2.55	.016
	wet	20.0	.26

where e_r is the complex dielectric constant

and $\varepsilon_r = \varepsilon_1 - j \varepsilon_2$

Depression Angle (Degrees)

Figure 2. Comparison of the average backscatter per unit area for vertical and horizontal polarizations; 35 GHz.

Figure 3. Comparison of the average backscatter per unit area for vertical and horizontal polarizations; 95 GHz.

Figure 4. Target coordinate axes with rotation angles.

example would be 3,1,2 which means do roll first, then yaw, and finally pitch. The integers 1,2, and 3 must each be used once and only once in the array IORDER. Thus IORDER = 2,2,1 is obviously unacceptable.

The last line of the geometry input file contains the rotation angles themselves for the amount of yaw, pitch, and roll to be performed. Here, ALPHA is the amount of the first rotation specified by IORDER, measured in degrees. BETA corresponds to the second rotation, and GAMMA is the third rotation. Thus if IORDER = 3,2,1, then ALPHA, BETA, and GAMMA would correspond to the amounts of roll, pitch, and yaw, respectively. Remember that a positive value for any of these angles means a counterclockwise rotation.

3.2 TARGET DATA FILE

The target data file describes the missile's target by representing it as a discrete set of radar scattering elements. A typical target may contain as many as several thousand of these scattering elements which will henceforth be referred to simply as scatterers. The Radar Glint model presently handles five types of scatterers. They are the triangular flat plate, the truncated cone frustum, a dihedral corner, a trihedral corner, and an ellipsoid.

The triangular flat plate is the most prevalent scattering type in a target model. Because almost any surface can be defined as a mesh of triangular facets. In the Radar Glint model, the triangular flat plate is described by the X, Y, and Z coordinates of the three vertices. Since these flat plates are considered to be single sided, the direction of the outward pointing normal to the surface is defined by a counterclockwise ordering (right-handed) of the vertices as illustrated in Figure 5. The right circular truncated cone frustum scattering type covers many singly curved surfaces. It is defined by the X, Y, and Z coordinates of the centers of the two end faces as shown in Figure 6. The radii of both the faces are also necessary to completely define the cone frustum. Note that the first end point is always the one with the larger radius. Two special cases of this scattering type are the cylinder (both end radii are equal) and the cone (the second end radius equals zero).

The other two scattering types are the multifaceted dihedral and trihedral which are illustrated in Figure 7. The purpose for defining these

Figure 6. Truncated cone frustum geometry.

Figure 7. (a) Dihedral and (b) trihedral geometry.

.

•

scatterers as a separate type is to take into account the multiple bounce effects that enhance the RCS wherever right-angled corners occur. These corners could not be described by individual triangles since the Track Error RCS model has no provision for multiple scatterer interactions. The trihedral is made up of three quadrilaterals whose points are ordered counterclockwise to orient the outward pointing normals. The central vertex of the trihedral is defined as point 1 for each of the three quadrilateral faces. The dihedral is defined similarly, except that there are only two quadrilaterals. In this case, point 1 for each face is defined to be the leftmost common vertex.

Due to the immense size of the target models, a special editor has been written to create or modify a target data file. This editor is known as SAMURAI. for Simulation And Analytical Modeling Used in Radar Investigations. It was designed at Georgia Tech and was originally intended for the building of ship data files, but has since been used for other targets such as airplanes and tanks as well. The SAMURAI editor is a very powerful editor in that it allows a user to both edit and/or graphically display the contents of the data base for the three dimensional model. The editor's command structure is line oriented with a complete HELP facility. A11 commands may be entered directly from the keyboard or from a separate command file. Commands include translation, reflection, rotation, scaling, deletion, and merging as well as many graphical display commands. Along with the geometric information, the editor tags each record with a descriptive identifier which may be referenced by many of the commands to allow operation on a single element or a selected subset of elements.

SAMURAI supports a number of graphic output devices as well as a variety of display formats. Displays may be simple line drawings with no hidden line removal, line drawings with "poor man's" hidden surface removal, or a shaded image with complete hidden surface removal. Shaded drawings may also be used to display radar information by allowing the intensity of color of each displayed scatterer to represent the relative radar return due to that scatterer. SAMURAI currently supports four color raster displays, two incremental plotters and a dot matrix printer/plotter; the addition of more devices is a relatively simple task. Figure 8 illustrates a typical target data file created using SAMURAI and drawn by SAMURAI.

Figure 8. Typical target drawn by SAMURAI.

The format of the target data files created by SAMURAI and used by the Radar Glint program is a direct access disk file with fixed length records (128 bytes per record). The first 66 records of each file form a header block and are reserved for information which identifies the target being modeled and the date and time of creation for the file. The remaining records contain the information about the individual scatterers and are arranged as a doubly linked list.

Of the 66 records at the beginning of the file, only the first five are The rest are reserved for future enhancements. currently used. The first record contains the name of the target, while the second record has the name of the original author of the data file. The next three records are used to record the date and time of creation of the file. The most important record in the header block is record 66. The first two bytes of this record contain the pointer to the first scatterer in the data file. This pointer is stored in an INTEGER*2 format and has an offset of 66. That is, if this pointer contained the value 1, it would actually reference the 67th record in the data file. The programmer would have to add the offset of 66 to the pointer value to actually reference the specified data record. The other important information stored in the 66th record is the total number of scatterers contained in this target data file. This value is also stored as an INTEGER*2 value and is found in bytes 9 and 10 of the 66th record.

The rest of the file is made up of the data records that describe the scatterers which form the target model. In general, one record is used to describe a single scatterer. In some special cases, an additional record is needed to supply more coordinate information for a complicated scatterer (dihedral or trihedral). The standard format for a data record is as follows:

+-		-		+-		L				+-		L-		+		₽		-
1	WHO	!	IDSTRING	1	TIME	!	TYPE	!	FPTR	1	BPTR	!	SPECL	!	WT	!	COORD	1
0		4	6	<u>.</u>	6	8	7	0	7	2	74	4	7	6	80	5	12	7

FIELD DESCRIPTIONS

WHO

4 bytes, the first three bytes are the initials of the last person to edit this particular record.

IDSTRING 60 bytes which are used to store an identification code unique to the particular scatterer. This code may be used in a large number of selective search operations. Each ID consists of a number of text fields separated by periods. A possible ID could be:

TURRET.GUN.BARREL.000010

This would identify this scatterer as a component of the main gun which is part of the entire turret structure.

TIME 4 bytes which contain the date and time of the last update made to this scatterer. The time is given as the number of minutes since 1-JAN-80 00:00.

TYPE 2 bytes which contain an integer that identifies the type of scatterer. The current types are:

A truncated cone frustum.
A triangular flat plate.
An ellipsoid.
A trihedral.
A dihedral.

- FPTR 2 bytes which contain a pointer to the next scatterer in the file. A value of 0 indicates that this is the last scatterer in the file. All pointers have the intrinsic offset of 66 as described above.
- BPTR 2 bytes which contain a pointer to the previous scatterer in the file. A value of 0 for this pointer indicates that this is the first scatterer in the file.

- SPECL 2 bytes which contain a pointer to an auxiliary record which is used to hold additional coordinate data for trihedral and dihedral reflector types. A value of 0 indicates that there are no other records associated with this scatterer.
- WT 4 bytes which contain a real floating point value used as a weighting factor for this particular scatterer. This weighting factor is usually the reflection coefficient of the material that this particular scatterer is made of. It can be used to simulate dielectrics or Radar Absorbent Material (RAM). For metal scatterers, the value is usually 1.
- COORD 48 bytes which contain 12 real values treated as an array of coordinates which define the actual scatterer. If there is an auxiliary record specified, it is treated as an extension of this field. These values are best thought of as an array dimensioned as COORD (3, 4, 3). The first index selects the X, Y, or Z value of the vertex which is specified by the second index. The third index identifies which plate of a trihedral or dihedral is to be used. For frusta, the first two XYZ points are the centers of the faces of the frustum, and the next two reals are their respective radii.

SECTION 4. REFERENCES

- S. P. Zehner and M. T. Tuley, Eds. "Development and Validation of Multipath and Clutter Models for TAC ZINGER In Low Altitude Scenarios," Final Report on Contract No. F49620-78-C-0121, Georgia Institute of Technology, Engineering Experiment Station, March 1978, UNCLASSIFIED.
- M. M. Horst et al., "Ship RCS Predictions (U)," Final Report on Contract N00167-82-M-0737, Engineering Experiment Station, Georgia Institute of Technology, January 1982, SECRET.
- 3. N. C. Currie et al., "Radar Land Clutter Measurements at Frequencies of 9.5, 16, 35, and 95 GHz," Technical Report No. 3 on Contract DAAA 25-73-C-0256, Engineering Experiment Station, Georgia Institute of Technology, 2 April 1975, UNCLASSIFIED.

APPENDIX RADAR GLINT MODEL PROGRAM LISTING .

00001 С TRERRO. FLX - TRACK ERROR CALCULATIONS. 00002 С 00003 С MODIFIED BY R. B. RAKES ON 2/23/82 00004 00005 C PROGRAM DRIVER 00006 1 00007 С 00008 This stand-alone program is a front end driver for the GA. TECH. 00007 С Track Error/RCS model. It is used only as a debugging tool and 00010 С will not be included in the implementation of these routines into 00011 С an existing missile seeker program. 00012 C 00013 00014 2 PARAMETER PI = 3. 141593 00015 00016 З COMMON /RCS/ TOTAL_RCS ! Used only in this driver & MULTIP 00017 00018 OPEN (UNIT = 0, NAME = 'OUT\$FILE', TYPE = 'NEW') 00019 4 00020 5 00021 CALL MULTIN (XT,YT,ZT) ! Initialize multipath and clutter. 00022 00023 XTARG = XT 6 00024 7 YTARG = YT 00025 8 ZTARG = ZT 00026 00027 9 TYPE #, 'Slant range (#t), elevation (deg) : ' ACCEPT #, RANGE, ELDEG 00028 10 00029 11 TYPE #, 'Azimuth : Inital, final, & increment (deg) = ' ACCEPT #, AZI, AZF, AZINC 00030 12 00031 00032 13 WRITE (0, #) AZI, AZF, AZINC 00033 00034 14 EL = ELDEG * PI / 180. 00035 AZDEG = AZI 15 00036 00037 REPEAT UNTIL (AZDEG . GT. AZF) 16 . AZ = AZDEG + PI / 180. 00038 18 00039 19 AZ_BORE = AZ - PI UNTIL (AZ_BORE . QE. O.) AZ_BORE = AZ_BORE + 2. +PI 00040 20 . 00041 22 EL_BORE = -EL . XS = RANGE+COS(EL)+SIN(AZ) 00042 24 . 00043 25 YS = RANGE*COS(EL)*COS(AZ) . 00044 ZS = RANGE + SIN(EL)26 00045 . 00046 27 XT = XTARG . YT = YTARG 00047 28 . 00048 29 ZT = ZTARG . 00049 00050 30 CALL MULTIP(XS, YS, ZS, XT, YT, ZT, AZ_BORE, EL_BORE, . 1. AZER, ELER) !COMPUTE MUTIPATH, CLUTTER, TRACK ERROR. 00051 00052 . AZERDEG = AZER + 180./PI 00053 31

00054	32	. ELERDEG = ELER + 180. /PI
00055		· · ·
00056	33	. WRITE (0, +) AZERDEG, ELERDEG, TOTAL_RCS
00057		· -
00058	34	. AZDEG = AZDEG + AZINC
00059		FIN
00060	35	END
		· · · · · · · · · · · · · · · · · · ·

•.

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

.

00061 SUBROUTINE MULTIN(XT, YT, ZT) 1 00062 С 00063 CHABSTRACT INITIALIZE MULTIPATH AND CLUTTER CONSTANTS 00064 С 00065 COPURPOSE INITIALIZE FREQUENCY, BEAMWIDTH AND PULSE WIDTH DEPENDING ON MISSILE MODEL USED. COMPUTE GROUND CORRELATION CONSTANTS. 00066 С 00067 С 00068 C REFERENCES 'DEVELOPMENT AND VALIDATION OF MULTIPATH AND CLUTTER MODELS FOR TAC ZINGER IN LOW ALTITUDE SCENARIOS', CONTRACT NO 00069 С 00070 F49620-78-C-0121, HQ USAF/SAGF, WASHINGTON, D. C. 20330. С 00071 MARCH 1979 С 00072 00073 С INPUT VARIABLES : 00074 00075 С none 00076 00077 С OUTPUT VARIABLES : 00078 С 00079 XT, YT, ZT The x, y, and z coordinates of the target' 00080 origin expressed in a fixed earth, right-С 00081 handed Cartesian coordinate system. These С 00082 coordinates are read in from the geometry С 00083 data file and are in units of feet. С 00084 С 00085 NOTE: All variables dimensioned to three are assumed to be 3 dimensional vectors. If a vector's variable name includes the letters 'HAT', then it is a unit vector. If the vector 00086 С 00087 С 00088 С ends with the letter 'P', then it is measured in the target's 00089 С (primed) coordinate system. 00090 00091 C*COMMONS 00092 2 COMMON/COUNTERS/ COUNTER COMMON/FACET/ OLDNFACET COMMON/CTARA/ ROUGH 3 00093 00094 4 00095 5 COMMON/MULCLT/DEC, ZERO, DC, NUMBER_OF_SCATTERERS \$, PI, CO, CO1, C3, C31, XK, BWT1, BWT2, ZHATP 00096 00097 \$, BWR1, BWR2, P1, P2, IFCL, RSIGC, HEIGHT_INCREMENT \$, WL, FREG, R, HAV, BWAZ, FLENGTH, EYE, ZHAT, VERTICAL, G, GI 00098 00099 S. SIGO INTEGER+2 POINTER, TRIPOINTER, ITYPE, IFIRST, IFIRSTTEMP, NSCATTEMP 00100 6 00101 7 BYTE BUFF (256), POINTERTEMP (2), TRIPTEMP (2) INTEGER PRESENT_RECORD, COUNTER 00102 8 00103 9 COMMON /BUFF/ IFIRST 00104 00105 00106 10 EQUIVALENCE (BUFF(69), ITYPE), (BUFF(71), POINTER), &(BUFF(75),TRIPOINTER),(BUFF(77),WT),(BUFF(81),VF(1,1,1)), 00107 00108 &(BUFF(1), IFIRSTTEMP), (BUFF(9), NSCATTEMP) 00107 11 EQUIVALENCE (POINTERTEMP(1), POINTER), (TRIPTEMP(1), TRIPOINTER) 00110 LOGICAL VERTICAL 12 00111 DIMENSION ZHAT(3), IORDER(3), Q(3, 3), QI(3, 3), S(3, 3), SI(3, 3) 00112 13 REAL MATA (3, 3), MATB (3, 3), MATC (3, 3), MATAI (3, 3), ZHATP (3), 00113 14

00114		&MATBI(3,3), MATCI(3,3), VF(3,4,3)
00115		
00116	15	COMPLEX DEC, ZERD, EYE
00117	C	C#
00118		
00119	16	DATA ZHAT/0.,0.,1./,VERTICAL/.FALSE./,EYE/(0.,1.)/
00120		
00121		
00122	C () Initialize matrices to identity matrices.
00123	17	DATA MATA/1., 3+0., 1., 3+0., 1./
00124	18	DATA MATAI/1.,3+0.,1.,3+0.,1./
00125	19	DATA MATB/1., 3+0., 1., 3+0., 1./
00126	20	DATA MATBI/1., 3+0., 1., 3+0., 1./
00127	21	DATA MATC/1., 3+0., 1., 3+0., 1./
00128	22	DATA MATCI/1., 3+0., 1., 3+0., 1./
00129		
00130	C	
00131	C	
00132	23	ZERD=CMPLX(0.,0.)
00133	24	PI = 3.141593
00134	25	OLDNFACET = 100
00135		
00136		
00137	26	OPEN-TARGET-FILE
00138	c	COPEN(UNIT=3,NAME=.'TARG\$FILE' ,TYPE='OLD')
00139	C	COPEN(UNIT=3,FILE=TARGFILE,STATUS='OLD',BLOCKED=.TRUE.) !SEL OPEN
00140		
00141	28	OPEN(UNIT=2,NAME='GEOM\$FILE',TYPE='OLD')
00142	29	OPEN(UNIT=5,NAME='RTS.BIN',FORM='UNFORMATTED') ! Scratchpad data file.
00143	30	READ-IN-GEOMETRY-DATA
00144		
00145	32	FLENGTH = 500./.3048 ! Length of a ground facet (or increment
00146	C	:
00147	33	HEIGHT_INCREMENT = 12. ! 12. ft. intervals in ht. for rho cal
00148		
00149	C (C INITIAL VALUE FOR CLUTTER CROSS SECTION FOR SIGC
00150	34	RSIGC=. 0000001
00151		
00152	(
00153	C	: INITIALIZE FREQUENCY, BEAMWIDTH, AND PULSEWIDTH
00154		
00155	C	C DEFAULT
00156	35	FREQ=95.0 ! GHz
00157	36	BWR1=1.0 ! Receiver beamwidth - Elevation (deg)
00158	37	BWT1=1.0 ! Transmitter " "
00159	38	BWR2=1.0 ! Receiver " Azimuth "
00160	39	BWT2=1.0 ! Transmitter " " "
00161	40	PW=60D. ! Pulsewidth (nanoseconds)
00162		
00163	C	
00164	41	WL=,984252/FREQ ! Wavelength in feet.
00165	42	XK=2.#PI/WL ! Wave number (rad/ft)
00166	43	CO=SQRT(2.)+XK
00167	44	CO1=4. #SGRT(PI)
00168		
00169	45	SET-UP-RUTATION-MATRIX-FOR-YAW-PITCH-AND-ROLL

.

00170			
00171			
00172		С	BEAMWIDTH IN ALPHA(1) (DEGREES TO RADIANS)
00173	47		BWR1=BWR1+PI/180.
00174	48		BUR1=, 7992+BUR1
00175	49		BWT1=BWT1+PI/180.
00176	50		BWT1=, 7992+BWT1
00177		С	
00178		Ċ	BEAMWIDTH IN BETA(2) (DECREES TO RADIANS)
00179	51		BWR2=BWR2+PI/180.
00180	52		BUR2=, 7992+BUR2
00181	53		BWT2=BWT2+PI/180.
00182	54		BWAZ≖BWT2 ! This unmodified as beamwidth is used with clutter
00183	55		BWT2=, 7992+BWT2
00184	56		SBW1=BWR1+.01
00185	57		SBW2=BWR2+.01
00186	58		CALL PATT (D1, D2, SS, SBW1, SBW2, BWR1, BWR2)
00187	59		P1=SBW1+SS/D1
00188	60		P2=SBW2+SS/D2
00189		С	
00190		-	
00191		С	PW IS PULSEWIDTH IN NANDSECONDS
00192	61	-	C3=PW+ 5 ! C3 IS C+TAU/2
00193	62		C31=C3/SGRT(2)
00194		С	
00195		ē	GROUND CORRELATION
00196	63	-	DC=30 / 304R / in feet
00197		С	
00198	64	•	RETURN
00199			
00200	48		
00200	- 6J - 44		OFEN-INKVEITILE OPEN/INVIATA NAME-(TADAETIE(TYPE-(DID/ ACCESS-(DIDECT/
00201	00		. UPENIONI-SINANCE - INKUPILE / TITE- ULD / ACCESS- DIRECT /
00202			a. FURTH ONFURTHINED RECORDSTREED, RECORDITES FIRED ;
00203	47		BEAD/3/141/BLE/TO TOJ 1981
00204	40		IFIDETALE DETTEMP
00205	40		
00208			. NUMBER_UF_STATIERERS=NSCATIENF
00207	/0		. FUINIER-IFIRGI
00208		~	·
00209		5	. The following section of commented code may be used if the compute
00210			. program is being run on nas enough memory (or virtual memory) to
00211		C	. read the entire target data file into main memory.
00212		_	
00213		C	. DU(11=1, NUMBER_UF_SCATTERERS)
00214		U A	. IRECURDEPUINIER+66
00215		C	. KEMU(3'IKECUKU) (IBUFF(I,II),I=1,128)
00216		C	
00217		C	. PUINTERTEMP(I)=IBUFF(70+1,II)
00218		C	. IKIPIEMP(1)=IBUFF(74+1,11)
00219		C	
00220		C	. IF (IRIPDINTER. NE. 0)
00221		C	IREC=TRIPDINTER+66 ! Read in remaining dihedral or trihedral
00222		С	READ(3'IREC) (IBUFF(1,II),I=129,256) ! coordinates.

• •

·• .--

0223	с	. FIN
00224	Ē	FIN
00225	ē	CLOSE (UNITE3)
00226	-	
00227		
	_	
00000	71	
00220	71	
00227	73	. READ(2, *) RUUGH, DEC, SIGUDB : RHS SUTTACE TOUGHNESS (FT)
00230	74	. READ(2)() XIIII: INITIAL TATGET COORDINATES (FC.)
00231	73	. READ(2) =) LURDER
00232	/0	. READ(2) W) AETAA DETA WAANA : TAB, pitch, and toll ang
00233	77	CUSE (ONITE)
00234	78	. IF (RUUGH. LE. 0.) RUUGH=: 0001 : 10 prevent division by 0
00235	74	. SIGO = 10. ++(SIGODB/10.) ! 'Un-dB' sigma O (Clutter)
00236		·
00237	80	ALPHA = ALPHA*PI/180.
00238	81	. BETA = BETA+P1/180. ! > Convert degrees to radians.
00239	82	. CAMMA = CAMMA*PI/180. ! /
00240	_	FIN
00241	. 83	TO SET-UP-ROTATION-MATRIX-FOR-YAW-PITCH-AND-ROLL
00242	85	CALL YPR (ALPHA, MATA, MATAI, IORDER (1))
00243	86	. CALL YPR(BETA , MATB, MATBI, IORDER(2))
00244	87	. CALL YPR(GAMMA, MATC, MATCI, IORDER(3))
00245		
00246	88	. CALL MATMU(MATB,MATA,S,3,3,3) ! Matrix B times matrix A = matr
00247	89	. CALL MATMU(MATAI, MATBI, SI, 3, 3, 3)
00248	90	. CALL MATMU(MATC, S, Q, 3, 3, 3) ! Q ROTATES A VECTOR TO TARGET'S FRAME.
00249	91	CALL MATMU(SI, MATCI, GI, 3, 3, 3) ! GI IS INVERSE (TRANSPOSE) OF G.
00250	-	
00251	92	CALL MATHU(Q, ZHAT, ZHATP, 3, 3, 1)
00252		FIN
00253	93	
00254	94	END

PROCEDURE CROSS-REFERENCE TABLE

00200 OPEN-TARGET-FILE 00137

00228 READ-IN-GEOMETRY-DATA 00143

00241 SET-UP-ROTATION-MATRIX-FOR-YAW-PITCH-AND-ROLL 00169

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

00256	1	SUBROUTINE MULTIP (XS, YS, ZS, XT, YT, ZT
00257	_	1, AZS, ELS, AZERR, ELERR)
00258	C	
00259	C	
00260	C	REFERENCES DEVELOPMENT AND VALIDATION OF MULTIPATH AND CLUTTER MODELS
00261	C	FOR TAC ZINGER IN LOW ALTITUDE SCENARIDS', CONTRACT NO
00262	C	F49620-78-C-0121, HQ USAF/SAGF, WASHINGTON, D. C. 20330.
00263	C	MARCH 1979
00264	_	
00265	C	INPUT VARIABLES :
00266	_	
00267	C	. XS: YS: ZS - The x; y; and z coordinates of the seeker in
00268	C	a right-handed, fixed earth Cartesian referen
00269	C	frame. The z-direction points towards the
00270	C	zenith (up). Zero z is always on the ground.
00271	C	(feet)
00272	_	
00273	C	XT, YT, ZT - The x, y, and z coordinates of the target's
00274	C	intrinsic origin specified in the same frame
00275	C	as XS, YS, and ZS. (feet)
00276	_	
00277	C	AZS, ELS - The azimuth and elevation directions of the
00278	C	boresight in radians. AZS is measured
00279	C	clockwise from the Y-axis and ELS is the angl
00280	C	of elevation above the horizontal, also in
00281	C	radians.
00282	_	
00283	C	OUTPUT VARIABLES :
00284	-	
00285	C	AZERR, ELERR - The azimuth and elevation track errors
00286	C	measured with respect to the boresight.
00287	C	AZERR is considered positive to the right,
00288	C	and ELERR is positive up. Both are in radian
00287	C	
00290	C	NOTE : An exp(jut) phase convention is assumed throughout this
00291	C	model except in the CROSS portions. Thus, the need for
00292	C	the complex conjugating of the output of CRDSS (or RCS).
00273	C	
00294	_	
00295	2	PARAMETER TWOPI = 6.28318406
00296		
00297		INCLUDE TRERR3. FLX (COMMONS)
	6	*******
00297	ຼັ	
00297	3	CUMUN/COUNTERS/ CUUNTER
00297	4	COMMUN/FACET/ OLDNFACET
00297	5	
00297	6	CUMMUN/MULCLI/DEC, ZERO, DC, NUMBER_DF_SCATTERERS
00297		5, P1, C0, C01, C3, C31, XK, BWT1, BWT2, ZHATP
00297		5, BWR1, BWR2, P1, P2, IFCL, R5IGC, HEIGHT_INCREMENT
00297		S, WL, FREG, R, HAV, BWAZ, FLENGTH, EYE, ZHAT, VERTICAL, G, GI
00297		5.5100

00297	7	INTEGER#2 POINTER, TRIPOINTER, ITYPE, IFIRST, IFIRSTTEMP, NSCATTEMP
00297	ė	BYTE BUFF(256), POINTERTEMP(2), TRIPTEMP(2)
00297	9	INTEGER PRESENT RECORD. COUNTER
00297		
00297	10	COMMON /BUFF/ IFIRST
00297		
00297	4 1	FAUTUALENCE (RUFE(49), TTYPE), (RUFE(71), PATATER),
00297	• •	\mathcal{L}
00297		L BUEF (1), TET DETTEMPL, (BUEF (0), NCATTEMPL
00297	12	CALIVALENCE (DITATEDEMP(1), DUTATED (TRIBETEMP(1), TRIDUTATED)
00297	**	
00297	13	
00297	14	DURENCION THAT(3), INPREP(3), 0(3, 3), 01(3, 3), 8(3, 3), 81(3, 3)
00297	15	$P_{A} = P_{A} $
00277	1.	MATDI (3, 3), MATCI (3, 3), METCI (3, 3), MATCI (3, 3), ZHATT (3),
00297		
00297	14	COMPLEY DEC 7500 EVE
00277	1.0	
00298	00.00	***************************************
00299	17	COMMON /PHASE/ PD. DO I Path length difference for share
00200	.,	Control (Finde, Karbo): Feen rengen sitterenze for phase.
00300	10	COMMON /PCC/ TOTAL PCC light only in the front and driven
00301	10	Control Acay forme_Aca : Used birly in the front and priver.
00302	10	COMPLEY BUD/10, 10, BUDD EACO EACO 7151 71510 EE EA
00303	20	CONFLEX ROAD TOTT ROUT PAGE FACE ALLAST LIKEFEFE
00304	21	CONDIEX BES DOOL COMMANNEL NOIME, FINDE
00305	22	DEAL THAT (3), TOUAT (3), THATP(3), TOUATD(3), CHATP(3), TOUAT(3),
00303	~~	LDAAD DOCTION(3) THEAT (3) THEAT (3) BUNKING (3) ISAAT (3)
00309	c	
00309	23	I DETCAL SPECIE AR
00310	20	
00311	24	DIMENSION COORDS(36), TARGET POSITION(3), ANP(3)
00312	25	DIMENSION 80(3), 809(3), 811(3), 872(3), 873(3)
00313	26	DIMENSION AN(3)
00314	27	
00315		
00316	28	FOUTVALENCE (COORDS(1), PT1(1)), (COORDS(4), PT2(1)).
00317		
00318		
00319	28	
00320	27	
00320	20	DATA COUNTED /1/
00322	30	DATH COUNTER / I/
00322	~	
00323	31	CONDIEV BICE TEMP
00324	33	
00325	Je	CHARACTER#O TARGETLE
00320	22	
00329	34	$m_{\rm rec} = 0$; with ground there is the remember $M_{\rm rec}$
00320	25	BCC CIM = (, ,)
00320	30	
00330	24	PADAD DECITION(1) - YE
00331	37	PADAD POSTING(1) = AD
00332	3/	RADAR_CIGITIU(2) = 18
00333	30	KUNUK_LADIIIAN(3) = 19
00334	20	TABACT DOGITION(1) - YT
00333	37	IMRVEI_FUSTITUN(1) = XI

31

-

00336	40		TARGET_POSITION(2) = YT
00337	41		TARGET_POSITION(3) = ZT
00338			
00339	- 42		DO(I=1,3) AN(I)=RADAR_POSITION(I) - TARGET_POSITION(I)
00340	- 44		CALL MATMU(Q;AN,ANP,3,3,1) ! Radar antenna's position in target fr
00341			
00342	46		CDMPUTE-HEIGHTS-AND-RANGES
00343	48		FIND-CLUTTER-RCS
00344	=0		NEADER - AVELENATURE A NOTE, Each understable adaption in America
00345	50		NFACEI = G/FLENGIN : NUIE: FACET UNGEFNEATH FADAT 15 IGNOFED.
00346	51		IF (NFACEI, GI, IO) NFACEI = 10
00347	72		NFACEL = 0 : TO SIMULATE THE SPACET:: Tel Negoet Are de Diegoet And Negoet As 15
00348	33		DEFENDENT ALL CALON ATTACK SOB CONSIGN AND
00347	34		ETN
00350			
00351	30		
00352	27		
00353	01		Increment - COONTER
00354	43		BETIMN
00355	63		RE I URN
00355			
00358	64		TO FIND-CLUTTER-RCS
00359			
00360		С	* * * * * CLUTTER SECTION * * * * * * * * * * * * * * *
00361	65	-	SIGOB=0.
00362	66		IFCL=1
00363		C	
00364		Ċ	
00365	67		THETA=ATAN(PDSS/Q)
00366	68		. SIGOB=SIGO*R+BWAZ ! DK.
00367	69		. WHEN(SIGOB. GE. 1. E-7)
00368	70		EPSC=THETA+ELS
00369	71		AZCLUT=0. ! Clutter in same azimuthal direction as boresight
00370	72		RSIGC=SGRT(SIGOB+C31)
00371			FIN
00372	73		. ELSE
00373	74		IFCL=0
00374	75		RSIGC=. 0000001
00375			FIN
00376	76		
00377		С	. * * * * * * * END OF CLUTTER SECTION * * * * * * * * * * * * * * * * * * *
00378			
00379			FIN
00380	77		
00381	78		TO PERFORM-MULTIPATH-CALCULATIONS-FOR-COMPLEX-RHD
00382		с	* * * * * * MULTIPATH SECTION * * * * * * * * * * * * *
00383		-	
00384	79		DD(IHT=1,10)
00385	80		DD(K=1, NFACET)

•

00386	81		. RHOD(K, IHT)=0.
00387	82		RHD(K, IHT)=ZERO
00388	С		
00389	83		. H1=POSS ! Height of reder above ground plane.
00390	84		H2=IHT+HEIGHT INCREMENT
00391	85		. Q1=G-K#FLENGTH-FLENGTH/2. !Ground distance from radar to facet cen
00372	86		. 62=6-61
00393	87		. IF (ELS+ATAN(H1/01), 0T. 20, +BWT1) 00T0 997
00394	С		
00375	88		. R1=SQRT(G1+G1+H1+H1)
00396	89		R2=SQRT(G2+C2+H2+H2)
00397	90		. DELO=R1+R2-R ! Path length difference.
00398	91		. IF (DELO, GE, C3) GOTD 997
00399	С		
00400	92		BETAM=1.
00401	93		. SH=ROUGH ! RMS surface roughness (ft.)
00402	94		. BETAO=2. +SH/DC
00403	95		. THETA1(K/IHT)= ATAN(H1 / G1) ! Depression angle from rad. to f
00404	96		. THETA2 = ATAN(H2/G2) ! " " " TARGET "
00405	97		. PSI1=THETA1(K, IHT)
00406	98	• •	. IF (PSI1, LE, O,) GD TO 997
00407	99		BETA = (THETA2-THETA1(K, IHT))/2.
00408	100		. ABETA = ABS(BETA)
00409	101		. H1H2M=H1+H2
00410	102		. RL=G*SGRT(1.+XK#DELO/PI)/(1.+(H1H2M)##2/(WL#G)) !1st Fresnel zone
00411	103		. RL2=RL/2.
00412	104		. GA=G1-RL2
00413	105		. GB=G1+RL2
00414	С		. BETA_TEST = WL+SGRT(1.+2.+DELO/WL)/(4.+PSI1+R1)
00415	106		. G2SPEC = G*H2/H1H2M
00416	107		. GTEST1 = (K-1)*FLENGTH
00417	108		. GTEST2 = K*FLENGTH
00418	107		. WHEN (G2SPEC. GT. GTEST1. AND. G2SPEC. LE. GTEST2) SPECULAR = . TRUE.
00419	111		. ELSE SPECULAR = . FALSE.
00420	113		. RHOS2=0.
00421	115		. RHOS1=0.
00422	116		. SINP=SIN(PSI1)
00423	117		. SINP2=SIN(THETA2)
00424	118		. COSP=COS(PSI1)
00425	119		. FAC1=CO#SH ! SQRT(2) * XK * SIQMA H
00426	120		. FAC4=FAC1*SINP
00427	121		. IF(FAC4.LT.7.) RHOS1=EXP2(-1.+FAC4+FAC4)
00428	122		. FAC4=FAC1*SINP2
00429	123		. IF(FAC4.LT.7.) RH052=EXP2(-1.#FAC4#FAC4)
00430	124		. FAC2=CSQRT(DEC-CDSP+COSP)
00431	125		. WHEN(VERTICAL) FAC3=DEC+SINP
00432	127		. ELSE FAC3=SINP
00433	129		FE=FAC3-FAC2
00434	131	· • •	. FA=FAC3+FAC2
00435	132		. RHOP=FE/FA ! Fresnel reflection coefficient.
00436			
00437	133	• •	. RHOD(K, IHT)=0.
00438			
00439	134		. NEVER
00440	С		NOTE: Assume specular reflection only for tank target.
00441	С		For the time being that is.
			-

00442			•	
00443			•	
00444	135		•	RHUSIS=0.
00445	136		•	RHOS2S=0.
00446	137		•	IF (RHDS1. GT. I. OE-10) RHDS1S=RHDS1*RHDS1
00447	138		•	RHOS2S = RHOS2*RHOS2
0044B	139		•	FD2=SGRT((1, -RHOS1S)*(1, -RHOS2S))
00449	140		•	B_OVERO=BETA/BETAO
00450	141			RHOD2=R+FD2+(THETA1(K, IHT)+THETA2)+FLENGTH+EXP(-B_OVERO+B_OVERO)+
00451			L .	RHDP*CDNJG(RHDP)/(R1+R2*CO1*BETAO)
00452	142		•	IF (RHOD2. GT. 1.) RHOD2=1.
00453	143		•	RHUD(K,IHT)=SGRT(RHUD2) ! Diffuse reflection coefficient.
00454			•	FIN
00455	144		•	IF(.NDT. SPECULAR) GOTD 997
00456	145	994	•	CONTINUE
00457	146		•	RHD(K,IHT)=RHOP+RHOS1 ! Fresnel times Rayleigh roughness.
00458	1 47	997	•	CONTINUE
00459		С	•	* * * * * END OF MULTIPATH SECTION * * * * * * * * * *
00460			•	• •
00461			•	FIN
00462	148		•	FIN
00463	149			FIN
00464 00465 00466	150	с		CALCULATE-TRACK-ERROR MONOPULSE NUMEL = ZERD ! Numerator for elevation diff/sum ratio.
00467	153		•	NUMAZ = ZERU : " " azimuth " "
00468	154		•	DENDA = ZERU
00469	•	-	•	
00470		C	•	READ (3.*) NORBER_UF_SCATTERERS
00471	100		•	
00472	136		•	
004/3	157		•	DU (J=1, NUMBER_DF_SCATTERERS)
00474	158		•	DO (1=1,66) ROOT SIGMA(1) = ZERU
00475	160		•	. READ-IN-SCATTERER-COURDINATES
00476	163		•	CONVERT-SCATTERER-MIDPUINT-TU-FIXED-EARTH-FRAME
00477	165		•	CUMPOIL-HEIGHIS-AND-RANGES
00478	16/		•	+ IND-AZ-AND-EL-UFF-BURESIGNI
00479	169	~	•	. UNLESS(RUIS) . LI. U.)
00480		C .	٠	GNECK FOR SCATTERER UNGER WATER.
00481			•	
00482	170		•	CALL FAIL(RD1/RD2/RD) IL1/IA1/BWR(1/BWR2) : RECEIVING DATTETN.
00483	1/1		•	CALL PAILLDUME, DUME, 101, 121, 121, 121, 2011, 2011, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012,
00484			•	
00485	1/2		•	WHENICOUNTER . EQ. I
00486	173		٠	DU(I=I/3) IMA(I)=KO(I)=KO(I)=KO(I)
00487	175		•	CALL NURFILZ(IMAI) IMAI)
00488	177		•	CALL MAINUG, IMAN, IMANP, 3, 3, 1) ! Incident unit vector in target fr
00489	178		•	DU(I=1,3) SHAIP(I)=-IHAIP(I) ! Scattered unit vector.
00490	180		•	
00491	181		• •	UALL RCS(ITYPE, VF, ROP, ZHATP, ANP, IHATP, SHATP, XK,
00492			4 .	VENTIGAL/RTB) ! Freespace term.
00493			•	
00494	182		•	RUUT_SIGMA(1)=CUNJQ(RTS)+CEXP(-EYE+XK+2.+RD)+WT

00495		FIN
00496	183	ELSE READ (5) ROOT_SIGMA
00497	185	RCS_SUM = RCS_SUM + RODT_SIGMA(1)
00498		
00499	С	PHASE ANGLE = ATAN2(AIMAG(ROOT SIGMA(1)).
00500	2	
00500	č	
00001	107	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
00302	107	
00503	188	NOMEL=RDI+IEMP + NOMEL
00304	187	NUMAZ=RD2#TEMP + NUMAZ
00505	190	DENOM=RS+TEMP + DENOM
00506		· · ·
00507	191	UNLESS (NFACET .EQ. O)
00508	192	DO (K = 1, NFACET) ADD-IN-MULTIPATH-CONTRIBUTIONS
00509	195	FIN
00510	197	
00511		FIN
00512	178	FIN
00513	199	. IF (COUNTER .EQ. 1) WRITE (5) ROOT SIGMA
00514	201	UNLESS (IFCL. EQ. 0)
00515	c	CHECKED FOR NO CLUTTER
00516	202	ZTRIERICE (ZERO, RSIEC)
00517	203	FCLUTE-FPSC
00519	204	
00518	205	CALL BATTONCO DOCO COB ECULT ACULT BUDA BUDON
00517	203	CALL FRINDICT/ MECT/ BCC/ ECLUIA ACLUI/ BWRT/ BWRE/
00520	208	
00521	207	
00522	208	NOMAZENUMAZEZ TRIEDZCP
00523		FIN
00524	209	•
00525	210	ELERR = P1*REAL(NUMEL/DENOM)
00526	211	. AZERR = P2*REAL(NUMAZ/DENOM)
00527		•
00528	212	. RCS_SUM = RCS_SUM + .3048 ! Convert Feet to Meters.
00529		
00530	213	. WHEN (RCS_SUM .EQ. (0.,0.)) TOTAL_RCS = -500 .
00531	215	. ELSE TOTAL_RCS = 20. +ALOG10(CABS(RCS_SUM))
00532	217	FIN
00533	218	
00534	219	TO READ-IN-SCATTERER-COORDINATES
00535		
00536	220	. KEAU (3'PUINTER+66) (BUFF(I), I=1, 128)
00537	221	. DO(I=1,2)
00538	222	. POINTERTEMP(I) = BUFF(70+I)
00539	223	TRIPTEMP(I) = BUFF(74+I)
00540		FIN
00541	224	. IF (TRIPDINTER .NE. O)
00542	226	IREC = TRIPOINTER + 66
00543	227	READ (3'IREC) (BUFF(I),I=129,256)
00544		FIN
00545	228	
00546	C	. $DO(I=1,256)$ BUFF(I)=IBUFF(I,J)
00547	_	

•

00840	222	
00347	ZZ 7	O CONVERT-SCATTERER-MIDPOINT-TO-FIXED-EARTH-FRAME
00000	991	
00331	∠ JI	
00352	232	P(1(3)=P(1(3)+GWL : Add distance from origin to waterline
00553	233	PI2(3)=PI2(3)+DWL : Z-COOTGINATES. (Redefine origin to water)
00554	234	DD([=1,3) ROP([)=(P(1([)+P(2([))/2 Prustum midpoint.
00555	236	
00336	237	
00557	238	Pli(3)=Pli(3)+DWL ! Itiangular flat plate.
00558	239	PT2(3)=PT2(3)+DWL
00339	240	PT3(3)=PT3(3)+OWL
00560	241	DO(I=1,3) ROP(I)=(PT1(I)+PT2(I)+PT3(I))/3.
00561	243	FIN
00562	244	(4)
00563	245	DO(KK=1,3)
00564	246	DD(JJ=1,4) VF(3,JJ,KK)=VF(3,JJ,KK)+OWL ! Trihedral.
00565	248	
00566	249	DD(I=1,3) ROP(I)=VF(I,1,1)
00567	252	FIN
00568	253	(5)
00569	254	DO(KK=1,2)
00570	255	DO(JJ=1,4) VF(3,JJ,KK)=VF(3,JJ,KK)+OWL ! Dihedral.
00571	257	
00572	258	DO(I=1,3) ROP(I)=VF(I,1,1)
00573	261	FIN
00574		FIN
00375	262	. CALL MATMU(GI,ROP,RO,3,3,1) ! ROTATE ROP TO EARTH'S FRAME.
00576	264	. DO(I=1,3) RO(I)=RO(I)+TARGET_POSITION(I)
00577	266	. XT=RO(1)
00578	268	. YT=R0(2)
00579	269	. ZT=RD(3)
00580		FIN
00581	270 C	
00582	271	TO COMPUTE-HEIGHTS-AND-RANGES
00583	272	. POSS=ZS
00584	273	. POST=ZT
00585		
00586	274	G=SQRT((XT-XS)++2+(YT-YS)++2) ! GROUND RANGE
00587	275	R=SGRT(G*C+(POST-POSS)**2) !DIRECT RANGE FROM ANTENNA TO TARGET.
00588		FIN
00589	276	TO FIND-AZ-AND-EL-OFF-BORESIGHT
00590	278	. ELT=ATAN((RO(3)-ZS)/0)
00591	279	. AZT=ATAN3((R0(1)-XS),(R0(2)-YS))
00592	280	. TEI=ELT-ELS ! Target elevation (pitch), wrt boresight(UP? +)
00593	281	. TAI=AZT-AZS ! Target azimuth (yaw) , wrt boresight (clockwise +
00594	282	. UNTIL (TAI . GTPI) TAI = TAI + TWOPI

00595	284	. UNTIL (TAI .LE. PI) TAI = TAI - TWOPI
00596	287	FIN
00597	288	TO ADD-IN-MULTIPATH-CONTRIBUTIONS
00598	290	. DETERMINE-NEAREST-HEIGHT-INCREMENT
00599	292	. TEI=(-THETA1(K, IHT)-ELS) ! OK if ELS & TEI are defined positive
00600	293	TAN=TAI
00601	294	. UNLESS (RHO(K, IHT), EQ. ZERO, AND, RHOD(K, IHT), LE. O.)
00602	295	. ZTRI=RHO(K, IHT)
00603	296	. IF(RHOD(K, IHT). QT. 0.) ZTRI=RICE(RHO(K, IHT), RHOD(K, IHT))
00604	297	CALL PATT(RD1N, RD2N, RSN, TEI, TAN, BWR1, BWR2)
00605	298	CALL PATT(DUME, DUME, TSN, TEI, TAN, BWT1, BWT2)
00606		• •
00607	299	. INDX = 1 + K
00608	300	IF (COUNTER . EQ. 1)
00609	301	II - K
00610	302	FIND-PATH-LENGTHS
00611	304	I2HAT(1)=COS(THETA2)+SIN(AZT) ! Assuming AZT is measured
00612	305	I2HAT(2)=COS(THETA2)+COS(AZT) ! clockwise from the Y-axis.
00613	306	I2HAT(3)= SIN(THETA2)
00614	307	CALL MATMU(Q, 12HAT, 12HATP, 3, 3, 1) !Indirect incident vector i
00615		• • •
00616	308	DO(I=1,3) SHATP(I)=-IHATP(I)
00617	310	CALL RCS(ITYPE,VF,ROP,ZHATP,ANP,I2HATP,SHATP,XK,
00618		& VERTICAL/RTS) ! Diplane term.
00619	_	· · ·
00620	312	DELTA=R1+R2-DO
00621	313	PHASE=CEXP(-EYE+XK+(RD+DELTA))
00622	314	RODT_SIGMA(INDX)=CONJG(RTS)*PHASE+WT
00623		
00624	315	RCS_SUM = RCS_SUM + ROOT_SIGMA(INDX) + ZTRI+2.
00625		
00626	317	. TEMP=TSN+ROOT_SIGMA(INDX)+ZTRI
00627	318	. NUMEL=RDI#TEMP + NUMEL ! Cross terms.
00628	319	NUMAZERDZETEMP + NUMAZ
00629	320	DENUMERS#IEMP + DENUM
00630		
00831	321	. IEMPEISIERUUI_SIGMA(INDX)#21KI
00632	322	NUMEL=RUIN+IEMP + NUMEL : MOTE CTOSS VETMS.
00633	323	CALON-SCHATEND + DENOM
00634	324	
00635	725	DO(L-K.NEACET)
00638	324	
00439	327	
00639	JE/	
00640	328	EVALUATE-RTS-INDEX
00641	330	IF COUNTER FG 1)
00642	331	
00643	332	FIND-PATH-LENGTHS
00644		
00645	334	I3HAT(1)=COS(THETA2)+SIN(AZT)
00646	335	I3HAT(2)=COS(THETA2)+COS(AZT)
00647	336	I3HAT(3)= SIN(THETA2)

~
00648	337	CALL MATMU(9, 13HAT, 13HATP, 3, 3, 1)
00649	338	D((1=1,3) SHATP(1)=-13HATP(1)
00650	340	
00451	241	
00651	341	CALL RESITTE FF ROF LANT ARE ADD
00052		e VERILALIRIS) : INDITECT INDITECT TETM.
00853		
00654	342	DEL TA2=R1+R2-D0
00655	343	PHASE=CEXP(-EYE*XK*(DELTA+DELTA2))
00656	344	RODT_SIGMA(INDX)=CONJG(RTS)+PHASE+WT
00657		FIN
00658	345	
00659	346	RCS_SUM = RCS_SUM + ROOT SIGMA(INDX) + ZTRI + ZTRI2
00660	347	$\cdot \cdot \cdot \cdot \cdot = (-THETA1(L, IHT) - ELS)$
00661	348	CALL PATT (RD11, RD21, RS1, TE1, TAN, BWR1, BWR2)
00662	349	CALL PATT (DUME, DUME, TSI, TEI, TAN, BHT1, BHT2)
00663	•••	
00664	250	
00004	330	IEIE - IONTROUI_DIUNAAAAAAAAA
00863	351	NOTEL=RDIITERP + NOTEL
00000	332	NOMAZ=RDZI=IEMP + NOMAZ
00667	353	DENUMERSIETEMP + DENUM
00668		• • • •
00669	354	UNLESS(K.EQ.L)
00670	355	TEMP=TSI#ROOT_SIGMA(INDX)#ZTRI#ZTRI2
00671	356	NUMEL=RDIN*TEMP + NUMEL
00672	357	NUMAZ=RD2N+TEMP + NUMAZ
00673	358	DENOM=RSN+TEMP + DENOM
00674		
00675	359	FIN
00676	360	FIN
00677	341	ETN
008//	301	· · · F AN
00478	343	TO DETERMINE_NEADERT_UETOUT_INCREMENT
00678	306	ID DETERMINE NEAREST - NEIGHT - INCREMENT
008/9	304	NRIERU(3)/HEIGHI_INCKEMENI
00680		. CUNDITIONAL
00681	365	(NHT.GE.10) IMT=10
00682	367	(NHT.LE.1) IHT= 1
00683	369	(OTHERWISE)
00684	370	WHEN(RO(3).GT.(NHT+.5)#HEIGHT_INCREMENT) IHT=NHT+1
00685	372	ELSE INT=NHT
00686	374	FIN
00687		FIN
00688	375	FIN
00689	376	
00690	370	
00491	370	$ \begin{array}{c} \bullet \bullet$
00071	3/7	. VI~V~UZ Turta
00692	380	$\frac{1}{2} = \frac{1}{2} $
00693	381	. K1#50K1(25#25+01#01)
00694	382	. RZ=SQRT(/T#/T+Q2#G2)
~~/~		ETN .
00043		

00696 00697 00698 00699 00699 00700	383 385 386 387	TO INCREMENT-COUNTER . COUNTER = COUNTER + 1 ! RCS calculated only once per 10 track loop . IF (COUNTER . GT. NFACET) COUNTER = 1 . COUNTER = 1 ! Always calculate RCS. FIN
00701 00702	388 391	TO EVALUATE-RTS-INDEX INDX=(K-1)+10+L-(K-1)+K/2+11 END
		PROCEDURE CROSS-REFERENCE TABLE
		00597 ADD-IN-MULTIPATH-CONTRIBUTIONS 00508
		00464 CALCULATE-TRACK-ERROR 00352
		00582 COMPUTE-HEIGHTS-AND-RANGES 00477 00342
		00549 CONVERT-SCATTERER-MIDPOINT-TO-FIXED-EARTH-FRAME 00476
		00678 DETERMINE-NEAREST-HEIGHT-INCREMENT 00598
		00701 EVALUATE-RTS-INDEX 00640
		00589 FIND-AZ-AND-EL-OFF-BORESIGHT 00478
		00358 FIND-CLUTTER-RCS 00343
		00689 FIND-PATH-LENGTHS 00643 00610
		00696 INCREMENT-COUNTER 00353
		00381 PERFORM-MULTIPATH-CALCULATIONS-FOR-COMPLEX-RHD 00349
		00534 READ-IN-SCATTERER-COORDINATES 00475
		(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

00001	1	SUBROUTINE PATT(D1,D2,S,T1,T2,B1,B2)
00002		C
00003		C#PURPOSE
00004		C COMPUTES SUM AND 2 DIFFERENCE PATTERNS
00005		C FOR 4 SYMMETRICALLY PLACED FEEDS
00006		С
00007		C#PARAMETER DESCRIPTOR
00008		COUT D1 - DIFFERENCE IN THE 1 DIRECTION
00009		COUT D2 - DIFFERENCE IN THE 2 DIRECTION
00010		COUT S - SUM PATTERN
00011		CIN T1 - POSITION IN THE 1 DIRECTION
00012		CIN T2 - POSITION IN THE 2 DIRECTION
00013		CIN B1 -BEAMWIDTH IN THE 1 DIRECTION
00014		CIN B2 BEAMWIDTH IN THE 2 DIRECTION
00015		C
00016	2	A=. 3
00017	Э	TQ1=B1*A
00018	4	TQ2=B2#A
00019	5	TP1=T1+TQ1
00020	6	TM1=T1-TQ1
00021	7	TP2=T2+TQ2
00022	8	TM2=T2-TQ2
00023	9	P1=FBEAM(TP1,TM2,B1,B2)
00024	10	P2=FBEAM(TM1,TM2,B1,B2)
00025	11	P3=FBEAM(TP1,TP2,B1,B2)
00026	12	P4=FBEAM(TM1, TP2, B1, B2)
00027	13	S=P1+P2+P3+P4
00028	14	D2=P1+P2-P3-P4
00029	15	D1=P2+P4-P1-P3
00030	16	RETURN
00031	17	END
		(FLECS 77 VERSION 22.38)

00032	1	FUNCTION ATAN3(YPARM, XPARM)
00033		c
00034		C#ABSTRACT ARC TANGENT FUNCTION FOR ANGLE BETWEEN O AND 2 PI
00035		c
00036		c
00037	2	PIX2=8. *ATAN(1.)
00038		c
00039	з	X=XPARM
00040	4	Y=YPARM
00041		c
00042		c
00043		C COMPUTE TANGENT
00044	5	ATAN3=ATAN2(Y,X)
00045	6	IF (ATAN3. LT. O.)ATAN3=PIX2+ATAN3
00046	7	RETURN
00047	8	END

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

.

.

00048	1	FUNCTION EXP2(X)
00049	с	
00050	C#AB	STRACT CHECK LIMITS ON EXPONENT OVERFLOW AND UNDERFLOW
00051	С	
00052	с	
00053	2	WHEN(X.LT88.028) EXP2=0.
00054	4	ELSE EXP2 = EXP(X)
00055	6 C	
00056	7	RETURN
00057	B	END
	(FLE	CS 77 VERSION 22.38)

00058	1	COMPLEX FUNCTION RICE(A,B)
00059	с	SUBPROGRAMS CALLED
00060	с	UNIRAN - UNIFORM RANDOM NUMBER GENERATOR
00061	2	COMPLEX A
00062	3	UR≖UNIRAN(0.)*6,2831853
00063	4	XR=B*SGRT(-ALOG(UNIRAN(0,)))
00064	5	RICE=CMPLX(REAL(A)+XR*COS(UR),AIMAG(A)+XR*SIN(UR))
00065	6	RETURN
00066	7	END

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

.

-

00068	1	FUNCTION UNIRAN(X)	SIMULATE A RANDOM # GENERATOR.
00069	2	UNIRAN = .5	
00070	3	RETURN	
	-		

00071 4 END

(FLECS 77 VERSION 22.38)

00072	1	FUNCTION ENVEL(A, B1, B2)
00073	С	
00074	C#F	PURPOSE
00075	С	COMPUTES THE FIELD PATTERN EFFECT FOR USE IN CLUTTER CALCULATION
00076	С	INPUTS REGUIRED AND ITS PRINCIPAL OUTPUTS; ALSO INDICATE
00077	с	ANY RESTRICTIONS OR OPTIONS BUILT INTO THE PROGRAM
00078	С	
00079	с	INSTALLED 17 JUNE BY S. P. STUK
00080	2	ENVEL=1.
00081	З	RETURN
00082	4	END
	(FL	ECS 77 VERSION 22.38)

00083	1	FUNCTION FUNCA(RM, DEL)
00084	2	FUNCA = 0.
00085		CONDITIONAL
00086	3	. (RM.EQ. O.) RETURN
00087	5	. (RM.LT. O.)
00088	6	RM =RM
00089	7	SIĜN = 1.
00090		FIN
00091	8	. (RM .GT. O.) SIGN = 1.
00092		FIN
00093	10	MI=INT(RM)
00094	12	A=RM-MI
00095		CONDITIONAL
00096	13	. (A .GE. (1-DEL)) FUNCA=SIGN*(2*(MI+1.)*DEL+A-1.)
00097	15	. (A .GE. DEL) FUNCA=SIGN*(DEL*(2*MI+1.))
00098	17	. (DTHERWISE) FUNCA=SIGN*(2*MI*DEL+A)
00099		FIN
00100	19	RETURN
00101	21	END

(FLECS 77 VERSION 22.38)

- FUNCTION FBEAM(A1, A2, B1, B2) ры. D=. 3
- CO1=3/(2.+D)
- 4 U=2.7831*SQRT((A1/B1)**2+(A2/B2)**2)
- U2=U+U
- 7 CO2=2*(1-D)/U2
- SU=SIN(U)/U
- FBEAM=CD1*(D*SU+CD2*(SU-CDS(U)))
- RETURN
- END

(FLECS 77 VERSION 22.38)

MODULE	CONTAINS	NO	MINOR	ERRORS
MODULE	CONTAINS	NO	MAJOR	ERRORS

		-			_	_			
00002		C	RCS. FLX	10/7/81	R.	U.	Raxes		
00003									
00004									
00005		~	This was also at	00000 40				TOEDD EL Y	
00008		5	This version of	r CRUBD 15 USPO	at a t ud 11	TOU	SINE FOR	IRERR. PLA.	
00007		ž		erais and dined	-415 4150 -416 - 41	•	- 1		
00008		6	A NEW SCALLEPH	- perciet vru	SCUM - 15	100			
00007									
00010				CO / TTYDE UETN		A.M			DTCI
00012	*		SOBROOTINE P	(CO (IIIIE)AFIN			INALI ONALI	ANI VER I IGNEI I	K13/
00012	-		DIMENSION CO	00000(34).01(3)		(2)	UETNICAL		
00014			DIMENSION VE	(7. A. 7). TEMP(7	1. 74AT(3)		(3)		
00015	J		DIMENSION EN	AT(3), DUAT(3).	PO(3). POT		(37 E/3)		
00014			DIMENSION P	1(7).995(7).99	7(7) 7(7)				
00017	ž		REAL DO	1.0//// 6.0////	3(3)				
00019	7		INTEGERAS II	TYPE					
00018			INIEVEN#E I						
00017	•		DEAL THAT (7)	BUAT (2) . NHAT (21. B1/21.1	Bor	21		
00020	0		COMPLEX EVE.	TK. DTC	3// 01 (3//)		37		
00023				ININIQ					
00022	10		FORTCAL CANT	SEE. UEDTICAL					
00020	10		CONTERE CAN						
00025		C #4	COMMON						
00025	11				EVE. TK. DT		n a		
00020	19			/PD. DO			_ ~		
00027	• •	C #	COMINNERASE	.,					
00020	13	u =		CONUT. ETM. NTM.	PTO2 IDea	+-	Bad . East	t to Matans. N	MT +o
00020					TUE .Deg				
00031	14		FOUTVAL ENCE	(COORDS(1), P1(1)). (COOR	ns (4	A). P2(1)).	(COORDS(7).P	3(1)).
00032	* T		L	(COORDS(7)	RADIUSI	. (CC	10805(9).F		
00033			-	(000,00,77					
00034	15		EQUIVALENCE	(COORDS(1), VE(1.1.1))				
00035			22011/1221102						
00036									
00037									
00038	16		DD(I=1.36) (OORDS(I)=VEIN(I) I Sinc		ou cannot	anuiv a subr	DATA
00039	18								
00040	19		DO=VMAG(AN)	!Distance	between 1	rada	er and shi	la origin No	ote th
00041		C!		AN is the v	ector bet		n the pres	ent shin orig	ain
00042		Č!		and the rad	ar antenn	a .			,
00043	20	• ·	D0(I=1,3) DH	AT(1) = -AN(1)	ZDO ! Un	it v	vector noi	inting from r/	adar t
00044	22		IK=EYE+XK						
00045	24		RTS=(0, , 0,)						
00046	25		CANTSEE	SE.					
00047	26		HT=RO(3)						
00048								-	
00049		С	POOR MAN'S	HIDDEN SURFACE	ALGORITH	M			
00050		-				•			
00051	27		IF (ITYPE, FO	2)					
00052	28		DD(I=1.3)						
00053	29		B1(T)=	P2(I)-P1(I)					
00054	30		B2(I)=	P3(I)-P1(I)					

•

00055		FIN
00056	31	. CALL VCROSS(B1, B2, NHAT)
00057	33	. IF (VDDT (NHAT, IHAT), QT. 0) CANTSEE=, TRUE.
00058		FIN
00059	34	
00060	35	UNLESS (CANTSEE)
00061	36	. FIND-PATH-LENGTH-DIFFERENCES
00062	38	. CALCULATE-RTS
00063		FIN
00064	40	
00065	42	RETURN
00066		
00047	43	TO FIND-PATH-I ENGTH-DIFFERENCES
00068	44	D(I=1,2) ROMACF(I)=RO(I)
00069	46	BOIMAQE(3) = -RO(3)
00070	48	DO(I=1,3) TEMP(I)=RO(I)-AN(I)
00071	50	RS=VMAG(TEMP) ! Direct distance from antenna to center of scatte
00072	52	DD(I=1,3) TEMP(I)=ROIMAGE(I)-AN(I)
00073	54	RSIEUMAC(TEMP) : Indirect distance from ant to center of scattere
00074	56	DELTA = RS-RSI : Difference between direct 2 indirect asth lengths
00075	57	
00076	58	RDERS-DO Difference between direct nath and distance between
00077	C 1	Tradar and origin of ship.
00078	••	FIN FIN
00079	59	
00080	60	RESUDET (RO, DHAT) ! Plane wave term
00081	61	CALL VCROSS(RO, DHAT, TEMP) / Find near field correction
00082	62	COST=VDOT(IHAT, DHAT)
00083	63	IE (COST (T - 1)) COST = 1
00084	64	
00085	65	RD=RD+VMAG(TEMP)*SORT((1, -COST)/(1+COST)) ! Tangent half-angle for
00086		FIN
00087	66	RDD=2 #RD /direct-direct
00088	68	RIJERDD+2 +DELTA 'indirect-indirect
00089	69	RDI#RDD+DFLTA /direct-indirectwindirect-direct
00090		FIN
00091	70	TO CALCULATE-RTS
00092	• •	SELECT(ITYPE)
00093	72	
00094	73	CALL FRUST (P1, P2, RADIUS1, RADIUS2, RO, XK, IHAT, SHAT, RTS)
00095		FIN
00076	74	
00097	75	RE-ORIGIN-TRIANGLES-COORDINATES-TO-CENTROID
0007B	77	CALL TRIPLATE (PP1, PP2, PP3, RO. XK, 1HAT, SHAT, RTS)
00099		FIN
00100	78	
00101	79	FIND-EHAT
00102	81	CALL CORNER(VF, XK, IHAT, SHAT, EHAT, RO, VERTICAL, RTS)
00103		FIN
00104	82	. (5)

00105 00106 00107 00108	83 85 86	FIND-EHAT CALL DIPLANE(VF, XK, IHAT, SHAT, EHAT, RO, VERTICAL, RTS) FIN FIN
00109		FIN
00110	88	FIN
00111	87	TO RE-DRIGIN-TRIANGLES-COORDINATES-TD-CENTROID
00112	91	. DO(I=1,3)
00113	92	PP1(I) = P1(I) - RO(I)
00114	93	, PP2(I) = P2(I) - RO(I)
00115	94	$PP3(I) = P3(I) - RO(I)$
00116		FIN
00117	95	FIN
001 18	96	TO FIND-EHAT
00119		•
00120		C Incident electric field unit vector.
00121		•
00122	98	. WHEN(VERTICAL)
00123	99	CALL VCROSS(IHAT, ZHAT, TEMP)
00124	100	CALL VCROSS(TEMP, IHAT, EHAT)
00125		FIN
00126	101	ELSE CALL VCROSS(IHAT, ZHAT, EHAT)
00127	103	- CALL NORMLZ(EHAT, EHAT)
00128		FIN
00129	105	END

PROCEDURE CROSS-REFERENCE TABLE

00091 CALCULATE-RTS 00062

00118 FIND-EHAT 00105 00101

00067 FIND-PATH-LENGTH-DIFFERENCES 00061

00111 RE-DRIGIN-TRIANGLES-CODRDINATES-TD-CENTROID 00097

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

.

		•	
00001		C Y	PR.FR R. B. Rakes 4/13/80
00002		с т	his subroutine is used to select the order of yaw,pitch,and roll.
00003		C A	11 angles are measured counter-clockwise or "right-handed". MATL
00004		C 1	s the inverse matrix of MAT.
00005			
00006			
00007		C11	DOULTINE VOD/ANC. MAT. MATT. TODDED)
00007	-		DRUGTING TERCHNYTHATTINGTITTURDER/
00008	2	RE.	AL HAT(3,3), HA(1(3,3)
00009			
00010	Э	CO	SA=COS (ANG)
00011	- 4	SI	NA=SIN(ANG)
00012		SE	LECT (IORDER)
00013	5		(1) FIND-YAW
00014		•	(2) FIND-BITCH
00015	10	•	
00013	47	•	
00018	10	··-	. FIN
00017	17	RE	TURN
00018	19	то	FIND-YAW
00019	20		MAT(1,1)=COSA
00020	21	•	MAT (2, 2)=(1)54
00020	22	•	
00021	~~~	•	
00022	23	•	TAI(2,1)=-SINA
00023	24	•	MATI(1,1)=COSA
00024	25		MATI(2,2)=COSA
00025	26	•	MATI(1,2)=-SINA
00026	27		MATI(2,1)=SINA
00027			FIN
		_*	
00028	28	TO	FIND-PITCH
00029	30		MAT (2, 2)=CDSA
00030	31	•	MAT (2, 2) = CDSA
00031	33	•	MATCO 27-000A
00031		•	
25000	99	•	MA!(3,2)=-51NA
66000	34	•	MATI(2,2)=COSA
00034	35		MATI(3,3)=COSA
00035	36		MATI(2,3)=-SINA
00036	37		MATI(3,2)=SINA
00037			FIN
00038	38	тп	FIND-ROLL
00039	40	.0	MAT(1,1)=CDSA
00040		٠	MATTER SCOR
00040	41	•	
00041	42	•	
00042	43	•	MAT (3, 17=SINA
00043	44	•	MATI(1,1)=COSA
00044	45	•	MATI(3,3)=COSA

-

51

00045	46	. MATI(3,1)=SINA
00046	47	. MATI(1,3)=-SINA
00047		FIN
00048	48	END

PROCEDURE CROSS-REFERENCE TABLE

00028 FIND-PITCH 00014

00038 FIND-ROLL 00015

00018 FIND-YAW 00013

(FLECS 77 VERSION 22.38)

00049		С	TRIPLATE2.FR R.B. Rakes 6/3/80
00050			
00051		С	This subroutine calculates the complex square root of the RCS for
00052		С	a triangular flat plate scatterer. The vertices are specified by
00053		С	the vectors P1,P2,P2 such that the normal vector is defined right
00034		С	handedly. IHAT is the incident vector.
00055		Ċ	NOTE: All vectors denoted by MAT are unit vectors.
00056		-	
00057		С	Modified for TRERR.FL on 10/7/81 by RBR.
00058		-	
00039	1		SUBROUTINE TRIPLATE (P1, P2, P3, RO. K. IHAT, SHAT, RTS)
00060	2		DIMENSION P1(3), P2(3), P3(3), TEMP(3), A(3), B(3), C(3),
00061	-		1CMINUS (3), THAT (3), TAU(3), BO(3), BA(3), BR(3), BC(3)
00062	3		DEAL NUAT(3), IMAT(3), SUAT(3), IMS(3), K. KT
00062			
00065			ANNOL EY DIG. EVE. 14. TEDM. TEDMITEMB
00065		~	
00065	-	6	INCLUDE RCS. FLA ACUMMUNA Common (System) Those rootes eve in bi bioa
	3		CORMON /EXTRA/ TWOP1, ROUTE1, ETE, IR, P1, P104
			70 - 00004
00068	<u>e</u>		
00069	7		DU-PRELIMINARY-CALCULATIONS
00070	_		
00071	9		DQ(I=1,3) IMS(I)=IHAT(I)-SHAT(I) ! Find incident minus scatter vec
00072	11		
00073	12		FIND-VECTOR-RELATIONS
00074	- 14		CALCULATE-COMPLEX-TERM
00075	16		IF(CABS(TERM).GT.TERMO) TERM= CMPLX(TERMO,O.)
00076	17	100	CONTINUE
00077			
00078	18		RTS=-EYE#K#TERM/ROOTPI
00079			
00080	19		RETURN
			B [_]
00081			
00081	21		
00082	22		. DU(1=1;3) A/T)=07/T)=01/T)
00083	~~~~		$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
00084	23		
00085	24		
00086	25		A = A = A = A = A = A = A = A = A = A =
00087	26		RB(I) = (P2(I) + P3(I))/2
00088	27		RC(I)=(P3(I)+P1(I))/2.
00089			FIN
00090	28		DO(I=1,3) CMINUS(I) = -C(I)
00091	31		CALL VCROSS (A, CMINUS, TEMP)
00092	33		. AREA2=VMAG(TEMP)
00093	34		. IF (AREA2, LE. O.)
00094	35		RTS=(0.,0.)
00095	36		RETURN
00096			FIN
00097	37		. TERMO=AREA2/2.

00098 39 . DD(I=1,3) NHAT(I)=TEMP(I)/AREA2

الا المرجية المالية الم

00099	41	FIN
	-	
00100	42	
00101	44	CALL VCRUSS(NHAI, INS, IERF)
00102	43	. CALL VCRUSS(IEMP, NHAI, IAU)
00103	46	. TEVMAG(IAU)
00104	47	. IF(T. LT. TOL)
00105	48	TERM=CMPLX(TERMO, O.)
00106		• •
00107		• •
00108	49	60TO 100
00109		FIN
00110	50	- KT=K+T
00111	52	. DO(I=1,3) THAT(I)=TAU(I)/T
00112	54	FIN
00113	55	
	_	<u> </u>
00114	56	TO CALCULATE-COMPLEX-TERM
00115	57	. CALL VCRDSS(NHAT, THAT, TEMP)
00116	58	. CALL SIDE (A, RA, IMS, K, TEMP, TERM)
00117	59	. CALL SIDE(B, RB, IMS, K, TEMP, TERMTEMP)
00118	60	. TERM=TERM+TERMTEMP
00119	61	. CALL SIDE(C, RC, IMS, K, TEMP, TERMTEMP)
00120	62	. TERM=TERM+TERMTEMP
00121	63	. TERM=-TERM/(EYE*KT) ! Minus sign added 3/11/82, RBR
00122	64	. POLTERM=VDOT(NHAT,IMS)/2. ! Polarization term.
00123	65	. IF(POLTERM.GE.O.) TERM=0. ! Poor man's hidden surface check.
00124	66	. TERM=TERM+POLTERM
00125		FIN
00126	67	END

PROCEDURE CROSS-REFERENCE TABLE

00114 CALCULATE-COMPLEX-TERM 00074

00081 DD-PRELIMINARY-CALCULATIONS 00069

00100 FIND-VECTOR-RELATIONS 00073

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

- SUBROUTINE SIDE (X, RX, IMS, K, TEMP, TERM)
- DIMENSION X(3), RX(3), IMS(3), TEMP(3)
- З REAL K. IMS
- COMPLEX TERM
- ARG=K#VDOT(X, IMS)/2.
- WHEN (ARG. EG. O.) TERM=1. ELSE TERM=SIN(ARG)/ARG
- TERM=VDOT (TEMP, X)+TERM ARG=K*VDDT(RX, IMS)
- TERM=TERM*CMPLX(CDS(ARG), SIN(ARG))
- RETURN
- END

(FLECS 77 VERSION 22.38)

						•	
00141		С	FRUST. FR	7/1/80	R	t. B.	Rakes
00142		-				_	
00143		C	This subrout	ine calcula	ites the co	omp 1 e	ex square root of the radar
00144		C	cross section	on for a fru	istum. All	Vat	iables are in MKS units.
00145		C	Inputs are a	as follows:			
00146							
00147		C	P1,P2 :	XYZ coordi	inates of t	;he 1	large and small ends of the a
00148		C	of 1	the frustum	respective	1 y .	
00149		C	A1, A2 ; **	dii of the	large and	smal	l ends respectively.
00150		C	RO : XY	Z position	of the cen	ter.	of the frustum.
00151		C	K : wax	/e number (2	2#pi/lamda)	·.	
00152		C	IHAT :	incident v	/ector (uni	t ma	ignitude).
00153		C	SHAT	: 1	scattered v	ecto	er.
00154							
00155		C	Modified for	TRERR. FL C	n 10/7/81	by R	BR.
00156						-	
00157							
00158	1		SUBROUTINE FR	RUST (P1, P2, A	1. A2. RO. K.	IHAT	, SHAT, RTS)
00159							
00160	2		DIMENSION P1	(3), P2(3), AF	AT(3), AXIS	3(3),	TEMP (3), RO(3), THAT (3)
00161	Э		REAL K, KA, KQ,	L, IHAT(3), 8	SHAT(3), IMS	3(3),	NHAT (3)
00162	.4		COMPLEX RTS, 6	EYE, IK, TERM			
00163		С	INCLUDE CROSS	5. FLX (COM	10N)		
00164	5		COMMON /EXTRA	V TWOPI, ROO	TPI, EYE, IK	G PI.	P104
00165							
00166	6		DO-PRELIMINAP	RY-CALCULAT	ONS		
00167							
00168		С	Find incider	nt vector ma	inus scatte	r ve	(i - s).
00169	8		DO(I=1.3) IMS	5(I) = IHAT((I) - SHAT (1)	
00170	10		P=-VDOT(IMS, A	AHAT)	projection	of	i — s on frustum axis.
00171	12		CALL VCROSS (A	AHAT, IMS, TEN	1P)		
00172	13		T=VMAG(TEMP)		!projectio	n of	<pre>i - s onto plane perpendicu</pre>
00173		C !		to	frustum ax	15.	
00174	-14		WHEN (T .L.T.	.0001) TERM	1=(0.,0.)		
00175	16		ELSE CALCULAT	E-COMPLEX-1	TERM		
00176	19						
00177	21		RTS=-EYE+S+S(BRT (2. +KA)+1	TERM		
00178							
00179	22		RETURN				
00180							
						-	
00181	23		TO DO-PRELIM	NARY-CALCUL	ATIONS		
00182	24		. DO(I=1,3)	AXIS(I)=P1	(I)-P2(I)		
00183	26		. L=VMAG(AX)	(5)	! lenat	h of	frustum axis.
00184	28		. DO(I=1,3)	AHAT(I)=AX	(S(I)/L		
00185	30		AP=A1-A2		difference	bet	ween large and small radii.
00186	32		. AMEAN= (A1+	A2)/2.			
00187	33		. KA=K+AMEAN	4			
00188	34		. TANT=AP/L		!tangent o	of ha	lf-angle tau.
00189	35		. S=SORT (API	AP+L#L)	!slant 1	engt	

00190 36 . SINT=AP/S

00191 00192	37	. COST=L/S FIN
00193	38	TO CALCULATE-COMPLEX-TERM
00194	40	. G=P+T+TANT
00195	41	. COEF=COST/T
00196	42	. DO(I=1,3) NHAT(I)=-COEF+(G*AHAT(I)+IMS(I))
00197	44	. KG=K+G
00198	46	. ARC=KG+L/2.
00199	47	. WHEN (ARG. EG. 0.) TERM=1.
00200	49	. ELSE TERM=SIN(ARG)/ARG
00201	51	. UNLESS (TANT. EQ. 0.)
00202	53	TOKQA=TANT/(KG+AMEAN)
00203	54	TERM=TERM+CMPLX(1.,-TOKQA)+CMPLX(0.,COS(ARG)+TOKQA)
00204		FIN
00205	55	. ARG=PIO4-KA+T
00206	57	_ TERM=CMPLX(COS(ARG),SIN(ARG))+TERM
00207	58	. TERM=TERM#VDOT(NHAT,IMS)/2. Polarization term.
00208	59	. TERM=-TERM/SQRT(T) ! Minus sign added 3/11/82; RBR
00209		FIN
00210	60	
00211	61	END

PROCEDURE CROSS-REFERENCE TABLE

00193 CALCULATE-COMPLEX-TERM 00175

00181 DD-PRELIMINARY-CALCULATIONS 00166

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

57

.

00212	4	C (CORNER.FLX E.F. Knott & R.B. Rakes 11/12/80
00213			
00214		C I	ORCHESTRATES THE VARIOUS SUBPROGRAMS USED IN COMPUTING THE RADAR
00215		C I	ECHO FROM AN ARBITRARY TRIHEDRAL CORNER REFLECTOR. THE COORDI-
00216	•	C (ATES OF THE VERTICES OF THE THREE FACES COMPRISING THE REFLECTOR
00217		C 1	MUST BE READ FROM THE FILE IFACE(2).
00218	•	C	This version of corner also includes multipath effects from the
00219	4	C ·	sea surface and shadowing from the backs of plates.
00220		С	
00221	4	C	Modified for TRERR.FL on 10/7/81 by RBR.
00222			
00223			
00224	1		SUBROUTINE CORNER(VG, AK, INK, S, EHAT, ROP, VERTICAL, RTS)
00225			
00226	2		INTEGER ONE
00227	3		REAL INK(3), N(3,3), IS(3), I2HAT(3), IHAT(3), IMS(3)
00228	4		COMPLEX SS, SUM, RTS, EYE, IN
00229	5		LOGICAL VERTICAL, SHADOW, YES
00230			
00231	6		DIMENSION 8(3), A(3), B(3), EHAT(3), HHAT(3), U(3,3), V(3,3)
00232	7		DIMENSION IFACE(5), LIST(6), HHS(3), ROP(3)
00233	8		DIMENSION VA(2, 20), VB(2, 20), VC(2, 20), VF(3, 4, 3), VD(3, 20), VE(3, 20)
00234	9		DIMENSION ERHAT(3), VQ(3,4,3)
00235			
00236		C	INCLUDE CROSS (COMMON)
00237	10	_	COMMON /EXTRA/ TWOPI, ROOTPI, EYE, IK, PI, PIO4
00238			
00237			
00240		с	VA AND VB CONTAIN THE LOCAL X, Y COORDINATES OF THE VERTICES OF A
00241		ē I	PAIR OF PLANE POLYGONS WHOSE COMMON AREA IS TO BE FOUND. THESE
00242		č	CAN BE PROJECTIONS OF OTHER POINTS ONTO THE PLANE OF A PARTICULAR
00243		ē	TRIHEDRAL FACE THE ARRAY VC CONTAINS THE 2D COORDINATES OF THE
00244		č	COMMON AREA. VF CONTAINS THE X, Y, Z COORDINATES OF THE FOUR YER-
00245		ē '	TICES IF THE THREE FACES AND IS READ FROM THE DATA FILE, ALONG
00246		ē	WITH THE COORDINATES OF THE FACE NORMALS N AND UNIT VECTORS U.V.
00247		č .	LINEAR DIMENSIONS ARE ASSUMED GIVEN IN FEET
00248		•	
00247		с т	ranslate points such that the main vertex is the new pricin
00250	11		DD(K=1,3)
00251	12		DD(J=1, 4)
00252	13		DD(I=1,3) $VF(I,J,K)=VQ(I,J,K)-VQ(I,1,1)$
00253	15		FIN
00254	16		FIN
00255	17		
00256	18		
00257			
00258	20		CALL VCROSS(INK, FHAT, HHAT)
00259	21		WHEN(VERTICAL) CALL VCROSS(S, HHAT, ERHAT)
00260	23		FL SF
00261	24		D(I=1,3) ERHAT(I)=EHAT(I)
00262	24		
00263	27		
00264	-/		

00265		С	INK AND S ARE THE DIRECTIONS OF INCIDENCE AND SCATTERING, RESPEC-
00266		č	TIVELY FHAT AND HEAT ARE THE UNIT VECTORS ALONG THE INCIDENT FLEC-
00247		ž	TRIC AND MACHETIC FIELDE DESERTIVELY EDUATION THE BECEIVED
00207		ž	THE AND MADE TO FIELDS RESPECTIVELT. ERANT IS ALONG THE RECEIVED
00208		č	ELECTRIC FIELD. II, JO, RA ARE FACE ID NORBERS WHICH WILL BE FERHOTED
00269		C	TO GIVE & POSSIBLE COMBINATIONS OF INTERACTIONS.
00270			
00271	28		SS=CMPLX(0.,0.)
00272	27		ONE=-1
00273	30		13=1
00274	31		
00274	32		
00275	32		
00276		-	
00277		С	KLUX IS JUST A DUMMY INDEX AND DOES NOTHING ELSE.
00278			
00279	33		DD (KLUX =1,6)
00280	34		
00281	25		
00201	34		
00282	30		WHEN COME. LE. OF
00283	3/		JJ=11
00284	38		II-KU
00285			FIN
00286	39		. ELSE
00287	40		J-J-KK
00288	A1		
00200			
00287			
00290	42	_	·
00291		С	THERE ARE ONLY 3 SINGLE-BOUNCE CONTRIBUTIONS, SO WE SKIP THE CALL
00292		С	TO SCAT HALF THE TIME.
00293			
00294	43		IF(YDDT(INK, N(1, II)), GE, O) GDTD 300
00295			
00275	48		
00278	45		
00297	46		
00278	47		. NE≠4
00299	48		J2=II
00300	47		DD (J=1,4)
00301	50		DD (I=1,3) VD(I,J)=VF(I,J,II)
00302	52		EIN
00302	82		
00303	33		
00304	22		
00305	56		CALCULATE-UNSHADDWED-REGION
00306			FIN
00307	58		IF (VDDT (INK, N(1, KK)). GT. 0.)
00308	61		I2=KK
00309	62		NEENC
00310	43		
00310	63		
00311	04		GALGULAIE-UNSHADUWED-KEGIUN
00312			FIN
00313	66		
00314		C	VD is now what is left of the original plate after shadowing (if anu)
00315			· · ·
00316	48	-	CALL SCAT(TNK, S.N(1, TT), AK, VD. NC. SUM)
00317	10		
00317	7		eeeeacim
00318	70		
00319	_		FIN
00320	71		

00321 00322	72		. SHADDW = . FALSE.
00323		С	WE HAVE TO BE LOOKING AT THE FRONT SIDE OF FACE II IN ORDER TO IN-
00324		С	CLUDE ITS RCS CONTRIBUTION. THE UNIT VECTOR IS POINTS ALONG THE
00325		C	DIRECTION OF A RAY REFLECTED FROM FACE II; WHEN WE LOOK ALONG THIS
00326		ē	DIRECTION, WE HAVE TO SEE THE FRONT SIDE OF FACE JJ IN ORDER TO
00327		č	TALLY & DOUBLE-BOUNCE CONSTRUCTION
00328		•	THEET H DOUBLE DOUBLE DOUBLE DOUTLON.
00328	72		
00327	73		
00330	73		
00331	/3		. IF (4. 42. 0. 0) 40 10 300
00332		~	
00333		C	WE ALSU MAVE IN FIND THE IMAGE OF THE MAGNETIC FULARIZATION.
00334	-		
00335	/6		. CALL IMAGE(HHAT, N(1, II), HH5)
00336		_	
00337		C	NOW FIND THE PROJECTION OF FACE II ONTO THE PLANE OF FACE JJ.
00338			•
00337	77		. NC=4
00340	78		. NE=4
00341	79		. J2=JJ
00342	80		. IF (ONE. LT. 0)
00343	81		. DO(J=1,4)
00344	82		$\dots DO(I=1,3) VD(I,J)=VF(I,J,II)$
00345	84		FIN
00346	85		FIN
00347	86		. DO(J=1,4)
00348	88		. , $DO(I=1,3)$ $VE(I,J)=VF(I,J,J2)$
00349	90		FIN
00350	91		PROJECT-FACE
00351			
00352		С	DEPENDING ON WHICH PARTICULAR FACE COMBINATION WE'RE WORKING WITH.
00353		ē	THE SENSE OF ONE OR THE OTHER POLYCON HAS TO BE REVERSED
00354		•	
00355	94		
00354	95		
00357	96		
00359	97		
00350			
00340	70		
00360	00		
00361	100		
00362	100		
00363	101		
00364	102		
00365	103		VB(1, 2) = VB(1, 4)
00366	104		VB(1, 4) = 0
00367			FIN
00368	105		FIN
00369	106	_	
00370		С	NOW FIND THE COMMON AREA AND CONVERT THE 2D CODDINATES BACK TO 3D.
00371			•
00372	107		. NA=4
00373	108		. FIND-COMMON-REGION
00374		_	• • • • • • • • • • • • • • • • • • • •
00375		С	GET THE SCATTERING FROM THE RESULTING POLYGON AND TALLY ALL THE
00376		С	POLARIZATION COMBINATIONS FOR THE DOUBLE-BOUNCE RETURNS.

-

		•
110		. CALL SCAT(IS,S,N(1,JJ),AK,VD,NC,SUM)
111		. SUM=-DNE+SUM
112		. Q=TRIPLE(ERHAT, HHS, N(1, JJ))
113		. SS=SS+Q+SUM
	С	GET THE IMAGE DIRECTION OF THE REFLECTED DIRECTION OFF THE SECOND
	Ē	FACE, BUT BE SURE WE'RE LOOKING AT THE FRONT SIDE OF FACE KK WHEN
	č	SEEN ALONG THIS DIRECTION
	•	
114		CALL THACE/TE N/1 LLI TEL
115		
115		
110		
11/		CALL IMAGE (HHS; N(1, JU); HHS)
	-	
	C	FIND THE PROJECTIONS AND CONVERT TO 2D
118		NA=NC
117		J2=KK
120		. DC(J=1,4)
121		$DO(I=1,3) VE(I,J)=VF(I,J,J2)$
123		FIN
124		. PROJECT-FACE
	С	IT TURNS OUT WE HAVE TO REVERSE THE SENSE OF VA FOR ALL & COMBINA-
•	ē	TIONS INVOLVING & TRIPLE BOUNCE, BUT VE FOR ONLY 3
	•	
1 27	200	
130	200	
120		
130		$\begin{array}{c} \cdot \\ \cdot $
131		
132		\ldots $G=VA(I,L)$
133		VA(I, L) = VA(I, J)
134		$\ldots \qquad \forall A(1; J) = G$
		FIN
135		FIN
136		IF (ONE. GT. O.)
138		DB (I=1,2)
139		
140		VB(I,2) = VB(I,4)
141		VB(I,4)=Q
1		
142		FIN
143		
	С	OFT THE DOUBLY TILLUMINATED PATCH ON FACE KK AND CONVERT BACK TO 3D
1	•	
144		
4-7-4		
	~	AFT THE TRABLE POLINCE CONTERING
	C	GET THE TRIFLE-BOUNCE BLATTERING.
146		. CALL SCAT(IS, S, N(1, KK), AK, VD, NC, SUM)
147		. SUM=-ONE+SUM
148		<u>G</u> =TRIPLE(ERHAT, HHS, N(1, KK))
149		. 55=55+Q+SUM
1 50	300	. CONTINUE
		FIN
	110 111 112 113 114 115 116 117 118 117 120 121 123 124 127 129 130 131 132 133 134 135 136 138 139 140 141 142 143 144 144 144 145 150 150 150 150 150 150 150 15	110 111 112 113 C C C C 114 115 116 117 C 118 117 120 121 123 124 C C 127 200 121 123 124 C C 127 200 131 132 133 134 135 136 138 137 140 141 142 143 C C C C 144 155 166 177 200 131 132 133 134 135 136 138 137 140 141 142 143 137 140 141 155 136 137 136 137 130 131 132 133 134 135 136 137 140 141 142 143 C C C C C 144 155 136 137 136 137 136 137 136 137 136 137 136 137 140 141 142 143 C C C C C C C C C C C C C

.

.

\$

00433 00434 00435	151 152	RTS = SS
00436 00437	153	RETURN
00438	154	TO CALCULATE-UNIT-NORMALS
00439	155	. DO(J=1,3)
00440	156	DO(I=1,3)
00441	157	A(I)=VF(I,2,J)-VF(I,1,J)
00442	158	B(I)=VF(I,4,J)-VF(I,1,J)
00443		
00444	159	CALL VCROSS(A, B, N(1, J))
00445	161	. CALL NORMLZ(N(1, J), N(1, J))
00446	162	CALL NORMLZ(A,U(1,J)) ! U and V are orthogonal unit vectors
00447	163	CALL VCROSS(N(1,J),U(1,J),V(1,J)) ! in the plane of the face.
00448	164	FIN
00450	165	TO CALCULATE-UNSHADOWED-REGION
00451	149	D(1-1,3) = 1 N(1) = 1 N(1)
00452	171	
00453	173	
00455	174	
00456	176	DO(1=1,3) VD(1,J)=VF(1,J,12)
00457	178	FIN
00458	179	PROJECT-FACE
00459	182	. DO(I=1,2)
00460	183	TEMP=VA(1,2) ! Change numbering order sense of polygon A
00461	184	VA(I,2)=VA(I,4) ! to counterclockwise to remain consistent
00462	185	VA(I,4)=TEMP ! with polygon B.
00463		FIN
00464	186	SHADOW=. TRUE.
00465	188	FIND-COMMON-REGION
00465	140	. IF (YES) GUIU 300 : Region B is completely shadowed by A. FIN
00468		TO PROJECT-FACE
00469 00470 00471	c	Now find the projection of face I2 onto the plane of face J2.
00472	193	DD(J=1, NC)
00473	194	CALL PROJECT(VD(1, J), IS, N(1, J2), VD(1, J))
00474	195	VA(1, J)=VD0T(VD(1, J), U(1, J2))
00475	196	VA(2, J)=VDOT(VD(1, J), V(1, J2))
00476	197	NA=NC
00477	· - -	FIN
00478	178	DD(J=1, NE)
00479	200	VB(1,J)=VDDT(VE(1,J),U(1,J2))

00480	201		. VB(2, J)=VDOT(VE(1, J), V(1, J2))
00481	202		. NB=NE
00482			FIN
00483	203	1	FIN

00484	204	TO FIND-COMMON-REGION
00485	206	. CALL PATCHES (NA, 4, NC, VA, VB, VC, SHADOW, YES)
00486	207	. DO(J=1, NC)
00487	208	DO(I=1,3) VD(I,J)=VC(1,J)+U(I,J2)+VC(2,J)+V(I,J2)
00488	210	FIN
00489	211	FIN
00490	212	END

ي ٿون و ک ڪ ڪ بندان ڪ جن ڪ ٿين ڪ پر ڪ جن ڪ ٿين ڪ ڪ ڪ ڪ ڪ ڪ ڪ ڪ ڪ ڪ پر اين ک

PROCEDURE CROSS-REFERENCE TABLE

00438 CALCULATE-UNIT-NORMALS 00256

00450 CALCULATE-UNSHADDWED-REGION 00311 00305

00484 FIND-COMMON-REGION 00465 00423 00373

00468 PRDJECT-FACE 00458 00399 00350

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

00491	С	DIPLANE.FLX E.F. Knott & R.B. Rakes 11/12/80
00492		
00493	С	ORCHESTRATES THE VARIOUS SUBPROGRAMS USED IN COMPUTING THE RADAR
00494	С	ECHO FROM AN ARBITRARY DIHEDRAL CORNER REFLECTOR. THE COORDI-
00495	Č	ATES OF THE VERTICES OF THE THREE FACES COMPRISING THE REFLECTOR
00496	Č	MUST BE READ FROM THE FILE IFACE (2). THIS ROUTINE IS A MUCH SIMPLER
00497	Č	VERSION OF CORNER, FLX WHICH CALCULATES TRIHEDRAL RETURNS.
00498	-	
00499		
00500		
00501	1	SUBROUTINE DIPLANE (VG, AK, INK, S, EHAT, RO, VERTICAL, RTS)
00502		
00503	2	INTEGER ONE
00504	3	REAL INK(3), N(3,3), IS(3), IMS(3)
00505	4	COMPLEX SS, SUM, RTS, EYE, IK
00506	5	LOGICAL VERTICAL, SHADOW, YES
00507	6	DIMENSION S(3), A(3), B(3), EHAT(3), HHAT(3), U(3, 2), V(3, 2), D(3)
00508	7	DIMENSION IFACE (5), LIST (6), HHS (3), RO (3)
00509	8	DIMENSION VA(2, 20), VB(2, 20), VC(2, 20), VF(3, 4, 3), VD(3, 20)
00510	9	DIMENSION ERHAT(3), VQ(3,4,3)
00511		
00512	с	INCLUDE CROSS (COMMON)
00513	10	COMMON /EXTRA/ TWOPI, ROOTPI, EYE, IK, PI, PI04
00514		
00515	с	VA AND VE CONTAIN THE LOCAL X.Y COORDINATES OF THE VERTICES OF A
00516	č	PAIR OF PLANE POLYGONS WHOSE COMMON AREA IS TO BE FOUND. THESE
00517	č	CAN BE PROJECTIONS OF OTHER POINTS ONTO THE PLANE OF A PARTICULAR
00518	č	TRIHEDRAL FACE. THE ARRAY VC CONTAINS THE 2D COORDINATES OF THE
00519	č	COMMON AREA. VF CONTAINS THE X, Y, Z COORDINATES OF THE FOUR VER-
00520	č	TICES IF THE THREE FACES AND IS READ FROM THE DATA FILE, ALONG
00521	č	WITH THE COORDINATES OF THE FACE NORMALS N AND UNIT VECTORS U.V.
00522	č	LINEAR DIMENSIONS ARE ASSUMED GIVEN IN FEET.
00523	-	
00524	С	Translate points such that the main vertex is now the origin.
00525	11	DO(K=1,2)
00526	12	DD(J=1,4)
00527	13	DD(I=1/3) VF(I,J,K)=VG(I,J,K)-VG(I,1,1)
00528	15	FIN
00529	16	FIN
00530	17	
00531	18	CALCULATE-UNIT-NORMALS
00532		
00533	20	CALL VCROSS(INK, EHAT, HHAT)
00534	21	WHEN(VERTICAL) CALL VCROBS(S,HHAT,ERHAT)
00535	23	ELSE
00536	24	. DD(I=1,3) ERHAT(I)=EHAT(I)
00537	26	FIN
00538	27	
00539		
00540	С	INK AND S ARE THE DIRECTIONS OF INCIDENCE AND SCATTERING, RESPEC-
00541	С	TIVELY. EHAT AND HHAT ARE THE UNIT VECTORS ALONG THE INCIDENT ELEC-
00542	С	TRIC AND MAGNETIC FIELDS RESPECTIVELY. ERHAT IS ALONG THE RECEIVED
00543	С	FLECTRIC FIELD.

00544			
00545	28		\$\$=CMPLX(0,,0,)
00546	29		QNE=-1
00547	30		
00548			
00549		С	THERE ARE ONLY 2 SINGLE-BOUNCE CONTRIBUTIONS
00550		•	
00551	31		DO(II=1,2)
00552	32		
00553	22		
00554	34		
00555	35		
00556	34		
00557	20		
00559	A 1		
00559	42		
00540	43		D = (1 - 1) +
00561	45		
00562	46		ETN
00563	47		
00564	49		GETRIP(F(FRHAT, HIAT, N(1, II))
00565	50		
00566	••		
00567		С	WE HAVE TO BE LOOKING AT THE FRONT SIDE OF FACE IT IN ORDER TO IN-
00568		ē	CLUDE ITS BCS CONTRIBUTION THE UNIT VECTOR IS POINTS ALONG THE
00569		č	DIRECTION DE A RAY REFIECTED FROM FACE II: WHEN WE LOOK ALONG THIS
00570		č	DIRECTION. WE HAVE TO SEE THE FRONT SIDE OF FACE JU IN ORDER TO
00571		č	TALLY & DOUBLE-BOUNCE CONFIBUTION
00572		-	
00573	51		CALL IMAGE(INK, N(1, II), IS)
00574	52		G=VDDT(IS, N(1, JJ))
00575	53		IF (0. GE. 0. 0) GD TO 300
00576			
00577		С	WE ALSO HAVE TO FIND THE IMAGE OF THE MAGNETIC POLARIZATION.
00578			
00579	54		. CALL IMAGE(HHAT, N(1, II), HHS)
00580			•
00581	55		. PROJECT-FACE
00582			•
00583		С	DEPENDING ON WHICH PARTICULAR FACE COMBINATION WE'RE WORKING WITH,
00584		С	THE SENSE OF ONE OR THE OTHER POLYGON HAS TO BE REVERSED.
00585			•
00586	57		, WHEN(DNE.LE.O)
00587	58		DD (I=1,2)
00588	59		G=VA(I,2)
00589	60		VA(I,2)=VA(I,4)
00590	61		VA(I,4)=Q
00591			
00592	62		FIN
00593	63		. ELSE
00594	64		DO (I=1,2)
00595	65		
00596	66		VB(I,2)=VB(I,4)
00597	67		VB(I,4)=G
00578	•		FIN
00599	68		FIN

00600	69	
00601		C NOW FIND THE COMMON AREA AND CONVERT THE 2D COODINATES BACK TO 3D.
00602		
00603	70	SHADOW=, FALSE.
00604	71	FIND-COMMON-REGION
00605		
00606		C GET THE SCATTERING FROM THE RESULTING POLYGON AND TALLY ALL THE
00607		
00608		
00608	73	- CALL SCAT(TO C.N(1LI) AK. UD. NC. CIMI)
00610	74	
00610	74	A DIRE CREWARD AND AND AND AND AND AND AND AND AND AN
00611	75	
00012	~~	
00613		300 . CONTINUE
00614	78	
00615		FIN
00616	79	
00617	80	RTS = EYE
00618		
00619	81	RETURN
00620		
00621	82	TO CALCULATE-UNIT-NORMALS
00622	83	. DC(J=1,2)
00623	84	DO(I=1,3)
00624	85	A(I)=VF(I,2,J)-VF(I,1,J)
00625	86	B(I)=VF(I,4,J)-VF(I,1,J)
00626		FIN
00627	87	CALL VCROSS(A, B, N(1, J))
00628	87	CALL NORMLZ(N(1,J),N(1,J))
00629	90	CALL NORMLZ(A,U(1,J)) ! U and V are orthogonal unit vectors
00630	91	. CALL VCRDSS(N(1,J),U(1,J),V(1,J)) ! in the plane of the face.
00631		FIN
00632	92	FIN
00633	93	TO CALCULATE-UNSHADDWED-REGION
00634	95	. SWAP-II-AND-JJ
00635	97	DO(I=1,3) IS(I)=INK(I)
00636	99	PROJECT-FACE
00637	102	DD(I=1,2)
00638	103	TEMP=VA(1.2) ! Change numbering order sense of polygon A
00639	104	VA(1,2) = VA(1,4) to counterclockwise to remain consistent
00640	105	VA(1, A) = TRMP with polyaon R
00641		ETN
00442	104	
00642	100	EIND-COMMON-BEATON
00043	100	· FINDEURINDEREGIUN
00044	110	, SWAF-II-AND-UU
00645	112	. IF (TES) GUIU 300 : Region 8 is completely shadowed by A.
00646		F1N

ø

00647	113	TO SWAP-II-AND-JJ
00648	115	. ITEMP=II
00649	116	. II=JJ
00650	117	JJ=ITEMP
00651		FIN

00652	118		т) PRC	JECT-	FACE										
00653																
00654		С	NOW	FIND	THE	PROJ	ECTI	ON DF	FACE	II	ONTO	THE	PLANE	OF	FACE	JJ.
00655																
00656	120			DO	(J=1)	4)										
00657	121				CALL	PROJ	ECT (VF(1)	J, II)	, 16	N(1)	JJ),	VD(1, J))		
00658	122		•		VA(1	J)=V	DOT (VD(1)	J), U(1, J	J))					
00657	123			•	VA(2	J)=V	DOT	VD(1)	J), V(1. J	J))					
00660	124				VB(1)	J}=V	DOT (VF (1,	J, JJ)	, U C	1, JJ)	>				
00661	125				VB (2	J)=V	DOT (VF (1,	J, JJ)	, VC	1, JJ)	>				
00662					FIN											
00663	126			FIN	I											

00664	127	TO FIND-COMMON-REGION
00665	129	. CALL PATCHES (4, 4, NC, VA, VB, VC, SHADOW, YEB)
00666	130	. DO (J=1, NC)
00667	131	DD (I=1,3) VD(I,J)=VC(1,J)+U(I,JJ)+VC(2,J)+V(I,JJ)
00668	133	FIN
00669	134	FIN
00670	135	END

.

PROCEDURE CROSS-REFERENCE TABLE

- 00621 CALCULATE-UNIT-NORMALS 00531
- 00633 CALCULATE-UNSHADOWED-REGION 00556
- 00664 FIND-COMMON-REGION 00643 00604
- 00652 PROJECT-FACE 00636 00581
- 00647 SWAP-II-AND-JJ 00644 00634

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

1

00671	C	SCAT. FLX 11/12/80
00672		
00673	С	SUBROUTINE RETURNS THE COMPLEX SCATTERING FROM AN ARBITRARY
00674	С	PLANE POLYGON. IT NEEDS THE DIRECTIONS OF INCIDENCE AND SCAT-
00675	С	TERING (INC AND S), THE UNIT SURFACE NORMAL N, THE WAVENUMBER
00676	С	AK (EXPRESSED IN RADIANS PER FOOT), THE 3D COORDINATES OF THE
00677	С	POLYGON VERTICES VD, AND THE NUMBER OF VERTICES NC. THE COM-
00678	C	PLEX SCATTERING AMPLITUDE IS RETURNED IN SUM.
00679		
00680	1	SUBROUTINE SCAT(INK, S, N, AK, VD, NC, SUM)
00681	2	COMPLEX SUM
00682	3	REAL N(3), INK(3)
00683	Ā	DIMENSION S(3), VD(3,20), P(3), H(3), AN(3), RM(3)
00684	5	ROOTPI=1 772454
00685	Å	PIE3 141593
00686	7	
00687	é	
00688		
99300	10	
00690	11	DD (1=1.3) UD(1.MC)=UD(1.1)
00691	17	
00692	15	
00693	14	
00675	17	
00495	10	
00675	10	
00078	20	
00677	21	OF - OT I MINING (UD/1. IN UD/1. IEN AM)
00678	22	TIL SAVAUNTI AN
000700	22	$\frac{11}{100}$
00700	23	WHEN (MDD(11).L).DEL/ 11-1.U
00701	27	$\begin{array}{c} \cdot \\ \cdot $
00702	20	$T_{2} = S_{2} (S_{2} $
00703	20	- IZT.JTARTYDUI(W,RT/ Rimerimitikunotip Amikrompiv/coc/ta) (th/ta))
00704	30	ETA
00705	-	
00708	31	
00707	33	
00708		FIN
00704	34	
00710	35	
00711	36	
00/12	37	CALL HINDS(VD(1,1), VD(1,3), AH)
00713	38	= CALL FINDS(VD(1,1), VD(1, JF), RM)
00714	39	
00715	40	. SUN-SUN-CAPLX(0.0,0)
00716		FIN
00717	41	SUM=SUM#AK/(2. #ROOTPI)
00718	43	REIURN
00719	44	END

(FLECS 77 VERSION 22.38)

MODULE	CONTAINS	ND	MINOR	ERRORS
MODULE	CONTAINS	NO	MAJOR	ERRORS

00720	С	SPOTTER. FLX
00721	_	
00722	С	CONTAINS A DIFFERENT VERSION OF PATCHES. THIS VERSION IS A BRUTE
00723	С	FORCE ASSEMBLY OF VERTICES, SOME OF WHICH HAVE TO BE DELETED BE-
00724	С	CAUSE SOME "INSIDE" POINTS COINCIDE WITH SOME INTERSECTIONS.
00725		
00726	1	SUBROUTINE PATCHES(NA, NB, NC, VA, VB, VC, SHADDW, YES)
00727	2	DIMENSION VA(2,20),VB(2,20),VC(2,20),ANG(20)
00728	3	LOGICAL PAB(20), PBA(20), SHADOW, TEST, YES
00729	4	DIMENSION A(2), B(2), C(2), EA(2, 20), EB(2, 20)
00730	5	DEL=0.00001
00731	6	PI=3. 141592654
00732		
00733	С	FIRST, FORM THE EDGE VECTOR8.
00734		·
00735	7	DO (J=1, NA)
00736	8	. JF=J+1
00737	9	. IF (J.EG.NA) JF=1
00738	10	. CALL PMINUS(VA(1,J),VA(1,JF),EA(1,J))
00739		FIN
00740	11	DO (K=1,NB)
00741	13	. KF=X+1
00742	14	. IF (K. EQ. NB) KF=1
00743	15	. CALL PMINUS(VB(1,K),VB(1,KF),EB(1,K))
00744		FIN
00745	16	
00746	С	GOTTA ESTABLISH THE PROPER SENSE FOR WALKING AROUND THE POLYGONS,
00747	С	BECAUSE HALF THE TIME THEY'RE PASSED IN THE REVERSED SENSE.
00748		
00749	17	DD (J=1, NA)
00750	18	. J2=J+1
00751	19	. IF (J. EQ. NA) J2=1
00752	20	. G=PCROSS(EA(1, J), EA(1, J2))
00753	21	. WHEN (J. EQ. 1) SENSE=SIGN(1.,Q)
00754	23	. ELSE
00755	24	. SENSE2=SIGN(1.,G)
00756	25	IF (SENSE. NE. SENSE2)
00757	26	YES=.FALSE. ! Impossible quadralateral. Go ahead and return with
00758	27	NC=NB ! VB being unshadowed.
00759	28	DD(K=1,NC)
00760	29	DO(I=1/3) VC(I/K)=VB(I/K)
00761	31	
00762	32	RETURN
00763		
00764	34	FIN
00765	35	FIN
00766	36	
00767		
00768	С	ESTABLISH WHETHER THE VERTICES OF VA ARE INSIDE OR OUTSIDE VB.
00769	-	
00770	37	DD (J=1, NA)
00771	38	PAB(J)=, FALSE.
00772	39	DO(K=1, NB)
		· · · · · · · · · · · · · · · · · · ·

. . . CALL PMINUS(v3(1,3(),VA(1,J),C) 00773 40 . . Q=SENSE*(EB(2,K)*C(1)-EB(1,K)*C(2)) 00774 41 . IF (Q. GT. 0.) PAB (J)=. TRUE. 00775 42 . 00776 ...FIN . 00777 43 ...FIN 00778 44 00779 С AND NOW DO THE SAME FOR VERTICES OF VB IN VA. 00780 00781 45 DO (K=1,NB) . PBA (K) =. FALSE. 00782 46 00783 47 DO(J=1,NA) . . . CALL PMINUS(VA(1, J), VB(1, K), C) 00784 48 . . Q=SENSE+(EA(2, J)+C(1)-EA(1, J)+C(2)) 00785 49 . . IF (Q. QT. O.) PBA(K) =. TRUE. 00786 50 00787 ...FIN 00788 51 ...FIN 00789 52 00790 53 YES*. TRUE. 00791 54 DO(K=1, NB) 00792 55 . IF (PBA (K)) YES=. FALSE. 00793 ...FIN 00794 56 IF (YES. AND. SHADOW) RETURN ! Scatterer is completely shadowed 00795 С ALL INSIDE VERTICES BECOME VERTICES OF THE COMMON AREA VC. 00796 00797 00798 58 I = 000799 59 DO (J=1,NA) . UNLESS (PAB (J)) 00800 60 . . L=L+1 00801 61 . DO (I=1,2) VC(I,L)=VA(I,J) 00802 62 • 00803FIN 64 ...FIN 00804 65 DO (K=1,NB) 00805 66 . WHEN(SHADOW) TEST=PBA(K) 00806 68 00807 70 . ELSE TEST=. NOT. PBA(K) 00808 72 IF (TEST) • 00809 . L=L+1 74 . . . DO (I=1,2) VC(I,L)=VB(I,K) 00810 75 00811 77FIN 00812 78 ...FIN 00813 79 С 00814 ALL INTERSECTIONS ARE ALSO VERTICES OF THE COMMON AREA. 00815 00816 80 DO (J=1, NA) 00817 . DO (K=1, NB) 81 CALL PMINUS(VA(1, J), VB(1, K), C) 00818 82 . 00819 83 T1=PCROSS(EA(1, J), EB(1, K)) • . T2=PCROSS(C,EA(1,J)) 00820 84 • • 00821 85 T3=PCROSS(C, EB(1, K)) • . 00822 IF (ABS(T1). NE. 0. 0) 86 P=T2/T1 00823 87 . Q=T3/T1 00824 88 • . 00825 89 UNLESS (P. LT. O. O. OR. P. GT. 1. O. OR. G. LT. O. O. OR. G. OT. 1. O) . . 90 . . L=L+1 00826 . . . DO (I=1,2) VC(I,L)=VA(I,J)+Q*EA(I,J) 00827 91 . •FIN 00828 93 . .

00829	94	FIN	
00830	95	FIN	
00831	96	FIN	
00832	97		
00833	98	NC =L	
00834			
00835		C BUT THERE WILL BE DUPLICATIONS, SO LET'S WEED 'EM OUT.	
00836			
00837	99	L=0	
00838	100	DO (J=1,NC)	
00839	101		
00840	102	DO(I=1,2) VC(I,L)=VC(I,J)	
00841	104		
00842	106	IF (J NF K)	
00843	107		
00844	108		
00845	100		
00946	110		
00040	111		
00047	***		
00040	110		
00047	112	FIN Eta	
00850	113		
00851	114	130 . CUNTINGE	
00052			
00853	110		
00034		A THE ART THE SUBSTENES LIST OF MENTIONS IN THE SPACE OBSER OF	ot
00855		C THE VETTHE SHORTENED LIST OF VERTICES IN THE FROMER ORDER, FIR	31
00858		C FIND THE CENTROID OF THE COMMON AREA.	
000007			
00858	110		
00834	117		
00060	120		
00861	121	C(1) = C(1) + VC(1, 3)	
00862	122	C(2) = C(2) + VC(2, 3)	
00863			
00864	123	UNLESS(NC.LE.O)	
00865	125	C(1) = C(1) / NC	
00865	126	. C(2)=C(2)/NC	
00867		FIN	
00868	127		
00869		C NOW CALCULATE THE ANGLE SUBTENDED BY THE VECTOR BETWEEN A GIVEN	
00870		C VERTEX AND THE CENTRUID AND THE VECTOR BETWEEN THE LAST VERTEX (AND
008/1		C THE CENTROID.	
00872			
008/3	128	CALL PHINDS(VC(1, NC), C, A)	
00874	129	DO (L=1,NC)	
00875	130	. CALL PMINUS(VC(1,L),C,B)	
00876	131	P=PCRUSS(A,B)	
00877	132	Q=A(1)+B(1)+A(2)+B(2)	
00878	133	. WHEN (G. EG. O. O)	
00879	~ - -	. CONDITIONAL	
00880	134	(P. LT. O.) ANG(L) = -0.5 * SENSE * PI	
00881	136	(P. EG. O.) ANG(L)=0. 0	
00882	138	(P.GT.O.) ANG(L)=0.5*SENSE*PI	
00883			
00884	140	FIN	

.

\$

00885	141		. ELSE ANG(L)=SENSE+ATAN2(P,Q)	
00886	143		FIN	
00887	144			
00888		С	FINALLY, ALL WE HAVE TO DO IS USE THE ANGLES TO REARRANGE THE VER	-
00889		С	TICES IN THE PROPER ORDER.	
00890				
00891	145		DO (J=1,NC)	
00892	146		. DD (K=J,NC)	
00893	147		IF (K.NE.J)	
00894	148		IF (ANG(J), GT, ANG(K))	
00895	149		DO (I=1,2)	
00896	150			
00897	151			
00898	152		$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \nabla C(1, \mathbf{K}) = \mathbf{G}$	
00899				
00900	153			
00901	155		ANG(J) = ANG(K)	
00902	156		ANG(K) = G	
00903			FIN	•
00904	157		FIN	
00905	158		FIN	
00906	159		FIN	
00907	160			
00908		С	AND RETURN VC TO THE CALLING PROGRAM.	
00909		-		
00910	161		RETURN	
00911	162		END	
		(FL	LECS 77 VERSION 22.38)	

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

.

•

.

.

,

00912	С	SHRIMRAT STRADDLE Point-in-polygon routine.
00913	С	CALLING PROGRAM SENDS THE X-Y COORDINATES OF THE POINT TO BE
00914	С	TESTED. SUBROUTINE RETURNS 1 IF POINT IS INSIDE POLYGON, -1
00915	С	IF POINT IS A VERTEX OF THE POLYCON (AND THUS ON THE BOUNDARY),
00916	С	AND O IF OUTSIDE THE POLYCON.
00917	С	CALLING PROGRAM MUST CLOSE POLYGON BY SETTING (NPTS+1)st VALUE TO
00918	C	THE PARAMETER M = NPTS+1, WHERE NPTS IS THE # NODES IN THE POLYOD
00919	Ċ	
00920	1	SUBROUTINE PIP (XO, YO, RESULT, POLY, NN)
00921	2	INTEGER RESULT, M. NPTS, K. J
00922	3	REAL X(21), Y(21), XO, YO, LAMBDA, XX(21), YY(21), PDLY(2,20)
00923	4	REAL RHO, DELTA
00924	•	
00925	5	PFSIM T=1
00926	•	
00927	4	ManN+1
00929	7	
00720	é	
00920	<u> </u>	
00730	7	
00731	10	
00732	10	
00733	1 🛋	Y(n)=FULY(2,1)
00734	•	TRANSLATE MERTINGS OF THE ROLLINGS OF AND NON TO LOCATED AT
00935	C C	TRANSLATE VERTICES OF THE FOLYGON SU (10, YO) IS LUCATED AT
00936	C	THE DRIGIN. IF ANY TRANSLATED VERTEX IS ZERD, THE PDINT IN
00937	C	GUESTION IS A VERTEX.
00938		
00939	13	NPTS=M-1
00940	14	DC 10 I=1,M
00941	15	XX(I) = X(I) - XO
00942	16	YY(I)=Y(I)-YO
00943	17	IF (XX(I)) 10, 9, 10
00944	18 9	IF (YY(I)) 10,70,10
00945	19 10	CONTINUE
00946		
00947	20	K=O
00948	C	INITIALIZE INTERSECTION COUNT
00949		
00950	21	DO 50 J=1,NPTS
00951	22	IF (YY(J)) 11,30,12
00952	23 11	IF (YY(J+1)) 50,31,13
00953	24 12	IF (YY(J+1)) 13,31,50
00954	25 13	IF (XX(J)) 14,31,15
00955	26 14	IF (XX(J+1)) 50,50,18
00956	27 15	IF (XX(J+1)) 18,45,45
00957	28 18	DELTA=YY(J)-YY(J+1)
00958	29	IF (DELTA) 16, 50, 16
009 59	30 16	LAMDA=-YY(J+1)/DELTA
00960	31	RHD=(YY(J)+XX(J+1)-XX(J)+YY(J+1))/DELTA
00961	32	IF (RHD) 50, 20, 20
00962	33 20	IF (LAMDA) 50,25,25
00963	34 25	IF (LAMDA-1.) 43,50,50
00964		

00965	С	HANDLE SPECIAL CASES
00966	35 30	IF (XX(J)) 50,60,60
00967	36 31	IF (XX(J+1)) 50,60,60
00968	37 45	K=K+1
00969	38 50	CONTINUE
00970		
00971	39	IF (MOD(K,2)) 65,60,65
00972	40 60	RESULT=0
00973	41 65	RETURN
00974	42 70	RESULT=-1
00975	43	RETURN
00976		
00977	44	END

(FLECS 77 VERSION 22.38)

MODULE	CONTAINS	NO	MINOR	ERRORS
MODULE	CONTAINS	ND	MAJOR	ERRORS

..

00979	С	IMAGE. FLX
00980		
00981	1	SUBROUTINE IMAGE(A, N, VECT)
00982	2	DIMENSION A(3), VECT(3)
00983	Э	REAL N(3)
00984	4	D=2.0+VDDT(N,A)
00785	5	DO (I=1,3) VECT(I)=A(I)-D+N(I)
00986	7	RETURN
00987	9	END

(FLECS 77 VERSION 22. 38)

MODULE	CONTAINS	NO	MINOR	ERRORS
MODULE	CONTAINS	NO	MAJOR	ERRORS

`

С	PROJECT. FLX
1	SUBROUTINE PROJECT(A, B, N, PROJ)
2	REAL N(3)
З	DIMENSION A(3), B(3), C(3), D(3), PROJ(3)
4	CALL VCROSS(A, B, C)
5	CALL VCROSS(N, C, D)
6	P=VDOT(N, B)
7	DQ (I=1,3) PROJ(I)=D(I)/P
9	RETURN
11	END
	C 1 2 3 4 5 6 7 9 11

_

.

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

-

00999	С	TRIPLE. FLX
01000		
01001	1	FUNCTION TRIPLE(A, B, C)
01002	2	DIMENSION A(3), B(3), C(3), D(3)
01003	3	CALL VCROSS(A, B, D)
01004	4	TRIPLE=VDOT(C,D)
01005	5	RETURN
01006	6	END

(FLECS 77 VERSION 22.38)

MODULE	CONTAINS	NO	MINOR	ERRORS
MODULE	CONTAINS	NO	MAJOR	ERRORS

01007	С	PLUS. FLX
01008		
01007	1	SUBROUTINE PLUS(A, B, C)
01010	2	DIMENSION A(3), B(3), C(3)
01011	3	DO (I=1,3) C(I)=A(I)+B(I)
01012	5	RETURN
01013	7	END

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

.

.

•

01014	С	MINUS. FLX
01015		
01016	1	SUBROUTINE MINUS(A, B, C)
01017	2	DIMENSION A(3), B(3), C(3)
01018	3	DO (I=1,3) C(I)=B(I)-A(I)
01017	5	RETURN
01020	7	END

(FLECS 77 VERSION 22.38)

MODULE	CONTAINS	NO	MINOR	ERRORS
MODULE	CONTAINS	NO	MAJOR	ERRORS

.

01021	С	PCROSS. FLX
01022		
01023	1	FUNCTION PCROSS(A, B)
01024	2	DIMENSION A(2), B(2)
01025	З	PCROSS=A(1)+B(2)-A(2)+B(1)
01026	4	RETURN
01027	5	END

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

.

01028	с	PMINUS. FLX
01029		
01030	1	SUBROUTINE PMINUS(A, B, C)
01031	2	DIMENSION A(2), B(2), C(2)
01032	3	DO (I=1,2) C(I)=B(I)-A(I)
01033	5	RETURN
01034	7	END

(FLECS 77 VERSION 22.38)

MODULE	CONTAINS	NO	MINOR	ERRORS
MODULE	CONTAINS	NO	MAJOR	ERRORS

01035 C PSIZE. FLX

01036		
01037	1	FUNCTION PSIZE(A)
01038	2	DIMENSION A(2)
01039	Э	PSIZE=SGRT(A(1)+A(1)+A(2)+A(2))
01040	4	RETURN
01041	5	END

(FLECS 77 VERSION 22.38)

MODULE	CONTAINS	NO	MINOR	ERRORS
MODULE	CONTAINS	NO	MAJOR	ERRORS

- 01042 1 BLOCK DATA
- 01043 COMPLEX EYE, IK
- 23 01044 REAL NTM
- 01045 4 COMMON/EXTRA/TWOPI, ROOTPI, EYE, IK, PI, PIO4
- 01046 5 COMMON/PHASE/RDD, RDI, RII
- 6 7 01047 COMMON/DATUM/ CNVT, FTM, NTM, PIO2
- 01048 DATA CNVT, FTM, NTM/. 01745329, . 3048, 1851. 965/
- 01049 8 DATA PI, TWOPI, ROOTPI, PIO4, EYE/3. 141594, 6. 283185, 1. 772454, . 785398,
- &(0.,1.)/,PI02/1.570796327/ 01050 END
- 01051 9

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

00001		с	VEÇTOR LIBRARY
00002			
00003	1		SUBROUTINE MATMU(A, B, C, L, M, N)
00004	2		DIMENSION A(L,M),B(M,N),C(L,N)
00005	3	С	MATRIX MULTIPLICATION
00006	4		DO(I=1,L)
00007	5		. DO(J=1,N)
00008	6		DO(K=1,M)
00009	7		WHEN(K.EQ.1) C(I,J)=A(I,K)*B(K,J)
00010	9		ELSE C(I,J)=C(I,J)+A(I,K)*B(K,J)
00011	11		FIN
00012	12		, FIN
00013	13		FIN
00014	14		RETURN
00015	16		END

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

•

00016	1		SUBROUTINE VCROSS(A, B, C)
00017	2		DIMENSION A(3), B(3), C(3)
00018	3 (C	C = A X B
00019	4	C	VECTOR OR CROSS PRODUCT
00020	5		C(1)=A(2)*B(3)-A(3)*B(2)
00021	6		C(2)=A(3)*B(1)-A(1)*B(3)
00022	7		C(3)=A(1)*B(2)-A(2)*B(1)
00023	8		RETURN
00024	9		END

(FLECS 77 VERSION 22.38)

MODULE	CONTAINS	NO	MINOR	ERRORS
MODULE	CONTAINS	ND	MAJOR	ERRORS

-

.

.

00025	1	FUNCTION VDOT(A,B)
00026	2	DIMENSION A(3), B(3)
00027	3	VDOT=A(1)*B(1)+A(2)*B(2)+A(3)*B(3)
00028	4	RETURN
00029	5	END

(FLECS 77 VERSION 22.38)

MODULE	CONTAINS	NO	MINOR	ERRORS
MODULE	CONTAINS	NO	MAJOR	ERRORS

.

.

.

.

1	SUBROUTINE NORMLZ(A, B)
2	DIMENSION A(3), B(3)
3	D=VMAG(A)
4	B(1) = A(1)/D
5	B(2)=A(2)/D
6	B(3)=A(3)/D
7	RETURN
8	END
	1 2 3 4 5 6 7 8

(FLECS 77 VERSION 22.38)

MODULE CONTAINS NO MINOR ERRORS MODULE CONTAINS NO MAJOR ERRORS

.

•

00038 00039 00040 00041 00042	1 2 3 4	FUNCTION VMAG(A) DIMENSION A(3) VMAG=SQRT(A(1)*A(1)+A(2)*A(2)+A(3)*A(3)) RETURN END
00042	5	END

(FLECS 77 VERSION 22.38)

MODULE	CONTAINS	NO	MINOR	ERRORS
MODULE	CONTAINS	ND	MAJOR	ERRORS

-

.

.

TECHNICAL REPORT PROJECT NO. A-2986

RADAR GLINT MODEL METHODOLOGY

By R. B. Rakes and M. M. Horst

Prepared for ROCKWELL INTERNATIONAL MISSILE SYSTEMS DIVISION COLUMBUS, OHIO 43216

May 1982

GEORGIA INSTITUTE OF TECHNOLOGY

A Unit of the University System of Georgia Engineering Experiment Station Atlanta, Georgia 30332

11 246

Technical Report

Georgia Tech/EES Project A-2986

RADAR GLINT MODEL METHODOLOGY

By

,

R. B. Rakes and M. M. Horst

Prepared for Rockwell International Missile Systems Division Columbus, Ohio 43216

under Agreement V161-SA-113203

Prepared by

GEORGIA INSTITUTE OF TECHNOLOGY Engineering Experiment Station Atlanta, Georgia 30332

May 1982

TABLE OF CONTENTS

PAGE

.

TITLE	PAG
INTRODUCTION	1
TRACK ERROR MODEL	3
CROSS COMPUTER MODEL	11
Physical Optics Equations	12
Flat Plates	13
Cone Frusta	15
Dihedrals And Trihedrals	17
Ellipsoids	24
Geometrical Considerations	
Multipath	
Near Field Approximation	
Reflection From The Earth's Surface	
	TITLE INTRODUCTION. TRACK ERROR MODEL. CROSS COMPUTER MODEL. Physical Optics Equations. Flat Plates. Cone Frusta. Dihedrals And Trihedrals. Ellipsoids. Geometrical Considerations. Multipath. Near Field Approximation. Reflection From The Earth's Surface.

4

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.	Multipath geometry, showing the origin of the terms in Equations 8 and 9, where X is either D or S ^R	9
2.	Some of the possible paths. For n ground facets and n _h scatter heights, an (n _g v ^g n _h) array containing specular and diffuse reflection coefficents and local incidence angles for all paths is pre-calculated once for every update of missile position, and the results stored for access by the scatterer RCS and multipath routines.	10
ʻ 3.	Triangular flat plate geometry	14
4.	Truncated cone frustum geometry	16
5.	The shaded areas represent: (a) and (b) the of the incident wave intercepted by face 1 and reflected onto the plane of face 2; (c) and (d) the portion of face 2 illuminated by a reflection off face 1, and reflected onto the plane of face 3	21
6.	(a) Dihedral and (b) trihedral geometry	23
7.	Ellipsoid geometry	27
8.	Relative positions of initial coordinate systems	28
9.	Definition of "bearing"	28
10.	Multipath geometry illustrating the direct and indirect incident vectors	33

LIST OF TABLES

TABLE	TITLE	PAGE
1.	THE VARIOUS SIGNALS ARRIVING AT THE ANTENNA	6

,

SECTION 1 INTRODUCTION

The Georgia Tech Radar Glint model is a set of subroutines to predict seeker track errors due to radar glint from vehicular targets. The model is intended for use as a "plug-in" module into existing missile seeker programs, although it may be used in a stand-alone mode. This Radar Glint model, written in FLECS (an extended version of Fortran 77), was developed entirely at Georgia Tech and implemented on a VAX 11/780 computer. A working version of the model is also available for a SYSTEMS 32/7780 computer. The purpose of this technical manual is to provide the basic equations and algorithms used by the Radar Glint model. For information on implementing this model as well as a complete program listing, refer to the Software Documentation manual titled "Radar Glint Model" [1].

The Radar Glint model supports a missile model by simulating a monopulse tracking radar employed on the missile. The primary outputs of the model are the azimuth (yaw) and elevation (pitch) track errors which are used as inputs to the guidance portion of the missile simulation. One of the main advantages of this program is that the target of the missile is modeled as an extended target (i.e., as a large collection of individual scatterers, for the calculation of the radar cross section) as opposed to a single point target with a constant cross section. This allows for the effects of glint to be modeled more accurately. Another advantage of this computer model is that the effects of multipath and clutter from the ground plane are also included. As an added bonus, the program returns the location of the missile's impact point on the target.

The Radar Glint model was developed from two earlier Georgia Tech computer programs: The multipath/clutter routines for the TAC/ZINGER program [2] and the radar cross section (RCS) model known as CROSS [3]. The multipath/clutter model, described in Section 2, produces track errors for a monopulse radar, but is restricted to a single point target. The CROSS model, described in Section 3, was originally designed to calculate the RCS of ships, but has since been adapted to find the near field RCS of other three dimensional targets, including land as well as sea targets.

SECTION 2 TRACK ERROR MODEL

For a typical monopulse system with four equal beams, the track errors in elevation (ε_e) and azimuth (ε_a) are proportional to the difference channel divided by the sum channel:

$$\varepsilon_{a} = P_{a} \frac{a}{S}$$
(1)

$$\varepsilon_{a} = P_{e} \frac{D_{e}}{S}$$
(2)

where the subscripts denote azimuth and elevation. The proportionality constants, P_e and P_a , can be found by noting that, for a single target and small errors, the error signal should be exactly the negative of the off-axis angle [2].

Denoting the one-way voltage pattern by $f(\theta_e, \theta_a)$, where θ_e and θ_a are the angles off boresight in elevation and azimuth, the sum and difference signals can be expressed in terms of the four voltage patterns:

$$S = f(\theta_{e} + \beta_{e} \theta_{q}, \theta_{a} - \beta_{a} \theta_{q}) + f(\theta_{e} - \beta_{e} \theta_{q}, \theta_{a} - \beta_{a} \theta_{q})$$

$$+ f(\theta_{e} + \beta_{e} \theta_{q}, \theta_{a} + \beta_{a} \theta_{q}) + f(\theta_{e} - \beta_{e} \theta_{q}, \theta_{a} + \beta_{a} \theta_{q})$$
(3)

$$D_{e} = -f(\theta_{e} + \beta_{e}\theta_{q}, \theta_{a} - \beta_{a}\theta_{q}) + f(\theta_{e} - \beta_{e}\theta_{q}, \theta_{a} - \beta_{a}\theta_{q})$$

$$- f(\theta_{e} + \beta_{e}\theta_{q}, \theta_{a} + \beta_{a}\theta_{q}) - f(\theta_{e} - \beta_{e}\theta_{q}, \theta_{a} + \beta_{a}\theta_{q})$$
(4)

$$D_{a} = f(\theta_{e} + \beta_{e}\theta_{q}, \theta_{a} + \beta_{a}\theta_{q}) + f(\theta_{e} - \beta_{e}\theta_{q}, \theta_{a} - \beta_{a}\theta_{q})$$

$$- f(\theta_{e} + \beta_{e}\theta_{q}, \theta_{a} + \beta_{a}\theta_{q}) - f(\theta_{e} - \beta_{e}\theta_{q}, \theta_{a} + \beta_{a}\theta_{q})$$
(5)

where $\beta_{\substack{i \ q}} \theta_{\substack{i \ q}}$ is the squint angle (i.e., the angle between the center of each beam and each boresight axis), and $\theta_{\substack{q}}$ was taken to be equal to 0.3 for each beam.

For the present application, the antenna pattern $f(\theta_e, \theta_a)$ for each beam was taken to be:

$$f(\theta_{e}, \theta_{a}) = \left(\frac{3}{2+\Delta}\right) \left[\frac{\Delta \sin u}{u} + 2(1-\Delta) \left(\frac{\sin u}{u^{3}} - \frac{\cos u}{u^{2}}\right)\right]$$

$$\Delta = 0.1818$$

$$u = 2.7831 \sqrt{\left(\frac{\theta_{e}}{\theta_{e}}\right)^{2} + \left(\frac{\theta_{a}}{\theta_{a}}\right)^{2}}$$
(6)

 β_e , β_a are the 3 dB beamwidths.

,

For a single point target, the expressions for azimuth and elevation error are:

$$\varepsilon = P \cdot Re \left[\frac{D S^{T} \sqrt{\sigma_{T}} + D_{c} \sqrt{\sigma_{c}}}{S^{R}S^{T} \sqrt{\sigma_{T}} + S_{c} \sqrt{\sigma_{c}}} \right]$$
(7)

where the subscripts a and e for azimuth and elevation have been omitted, and Re means the real part of the complex quantity in brackets. The superscripts R and T denote received and transmitted one-way voltage patterns:

D = Difference pattern for received signal
=
$$D_D + \sum_i D_i \rho_i$$

 S^{T} = Sum pattern for transmitted signal

$$= s_{D}^{T} + \sum_{i} s_{i}^{T} \rho_{i}$$

 D_c = Difference pattern for clutter signal

 S^{R} = Sum pattern for received signal

$$= s_{D}^{R} + \sum_{i} s_{i}^{R} \circ_{i}$$

S_c = Sum pattern for clutter signal

Table 1 presents the various signals to be included in the summation in order to compute the angular errors. The signal amplitudes, phases, and directions are identified by type in the table.

Note that to generate ε_e and ε_a as functions of time, the diffuse and clutter terms are random variables and the expressions given in the multipath and clutter sections above give the rms value of the ρ_{di} and the average of σ_c . Instantaneous values of these variables are generated for use in the above expressions using bivariate Gaussian distributions having standard deviations ρ_{di} (the diffuse reflection coefficient from facet i) and $\sqrt{\sigma_c}$. This generator produces the correct amplitude and phase distributions for the radar variables.

Equation 7 above represents the track errors in azimuth and elevation for a single point target. For multiple spatially separated point targets, $DS^T \sqrt{\sigma_T}$ and $S^R S^T \sqrt{\sigma_T}$ in Equation (7) are replaced by the phasor sums of similar terms for each point target.

The difficulty arises when the target is not a point target or a collection of point targets, but rather is an extended target or a collection of extended targets. The extension from one to many targets carried over, but the relatively simple form of Equation 7 is further complicated by the replacement of the free space scattering length of the target, $\sqrt{\sigma_{\rm T}}$, by the combination of the free space, image, and the diplane scattering lengths,

5

TABLE 1. THE VARIOUS SIGNALS ARRIVING AT THE ANTENNA

•

PATH	REFLECTION COEFFICIENT (P ₁)		ANGLE ERROR DIRECTION	
	Magnitude	Phase	Elevation	Azimuth
1. Direct	1	reference	θ - θ te se	θ - θ ta sa
2. Diffuse	15 ⁰	uniform	$-(\theta_{se} + \theta_{1i})$	θ _{ta} - θ _{sa} + η _i
3. Specular	p	κô _o	$-(\theta_{se} + \theta_{1i})$	$\theta_{ta} - \theta_{sa} + \eta_{i}$
4. Clutter	1	uniform	$-(\theta_{se} - \overline{\theta}_{1})$	η

where

 θ_{se}, θ_{sa} = radar main axis elevation and azimuth angles, respectively

- θ_{te}, θ_{ta} = target elevation and azimuth angle
- θ_{1i} = depression angle to facet 1
- $\bar{\theta}_1$ = average depression angle to clutter cell
- n_i = apparent azimuthal location of ith scattering center [2]

with each being multiplied by the appropriate reflection coefficients, and all cross terms being carried along. Specifically, for a single extended target, such as one triangular flat plate element:

$$DS^{T} \sqrt{\sigma_{T}} \rightarrow D_{D}S_{D}^{T} \sqrt{\sigma_{f}} + \sum_{i} \rho_{i}\sqrt{\sigma_{di}} (D_{D}S_{i}^{T} + S_{D}D_{i}^{T}) \qquad (8)$$

$$+ \sum_{k,\ell} D_{k}S_{\ell}^{T} \rho_{k}\rho_{\ell} \sqrt{\sigma_{k\ell}}$$

$$S^{R}S^{T} \sqrt{\sigma_{T}} \rightarrow S_{D}^{R} S_{D}^{T} \sqrt{\sigma_{f}} + \sum_{i} \rho_{i} \sqrt{\sigma_{di}} (S_{D}^{T} S_{i}^{R} + S_{i}^{T} S_{D}^{R})$$

$$+ \sum_{k,\ell} S_{k}^{R}S_{\ell}^{T} \rho_{k}\rho_{\ell} \sqrt{\sigma_{k\ell}} \qquad (9)$$

Where
$$\sqrt{\sigma_{f}}$$
 = free space scattering length of element
 $\sqrt{\sigma_{di}}$ = diplane scattering length of element for
 i^{th} indirect path
 $\sqrt{\sigma_{k\ell}}$ = image scattering length of element for indirect
paths k and ℓ .

Figure 1 illustrates the multipath geometry, showing the four ways in which the signal can travel from the radar to the target and back, resulting in three terms for target scattering length. The diplane scattering length is assumed to be the same for the direct-indirect and the indirect-direct paths.

Equations 8 and 9 apply in the case of a single extended scatterer. For a large extended target described as a collection of scatterers, each of the terms in Equations 8 and 9 must be calculated for each scatterer and the phasor sum must be computed. The angle error is then found as the real part of the complex sum.

Although a bit cumbersome, formulations such as Equations 8 and 9 are nonetheless straightforward to code on a digital computer. However, the number of calculations to be performed by the computer rapidly escalates to unmanageable proportions. For diffuse reflection with n ground reflection points, the total number of possible paths n_t is $(n_g + 1)^2$. With tank target files numbering thousands of scatterers, the program cannot afford the

7

computation time to calculate each term for every scatterer and ten to twenty ground reflection points for the diffuse reflection.

Therefore the following approximations were made to the exact equations:

- Restrict the number of ground facets to ten between missile starting point and target. Then, as the missile crosses over a new facet on its way toward the target, eliminate that facet from the calculations.
- 2. Rather than calculating indirect incidence angles to each scatterer on the target for each of the ten facets, select ten scatterer heights and precalculate indirect incidence angles for the array of ten ground facets and ten scatterer heights. Then use the indirect incidence angle for the height closest to the height of the center of each scatterer in RCS calculations. Figure 2 illustrates some of the possible paths described by this array.
- 3. Pre-calculate the specular and diffuse reflection coefficient for each combination of ground facet and scatterer height, and store in the array with the indirect incidence angles. This array is updated every time the missile crosses over a new ground facet.
- 4. Re-calculate scatterer RCS every N steps of the missile fly-out model, where N is the number of facets currently between the missile and the target.

Figure 1. Multipath geometry, showing the origin of the terms in Equations 8 and 9, where X is either D or S^R.

a talan sa katalan kat Katalan katalan

21.

Figure 2. Some of the possible paths. For ng ground facets and n_h scatterer heights, an (ng × n_h) array containing specular and diffuse reflection coefficients and local incidence angles for all paths is pre-calculated once for every update of missile position, and the results stored for access by the scatterer RCS and multipath routines.

SECTION 3 CROSS COMPUTER MODEL

CROSS (<u>Coherent Radar cross sections Of Surface Ships</u>) is a computer program developed and implemented at Georgia Tech. This model was developed in particular to calculate the effective radar cross section (RCS) of ships, but is general enough to handle most extended targets in a wide variety of scenarios. CROSS uses many of the features developed in its predecessor CROW (<u>Coherent Radar cross section Over Water</u>) [4], which was used to calculate the RCS of submarine masts and other small targets on or above the sea surface. The program CROSS has the advantage over CROW in that it can handle a complete three-dimensional target stored in one data file rather than a separate data file for each aspect of the target. This is because CROSS has a sophisticated hidden surface algorithm not found in CROW.

CROSS finds the total RCS of a target by calculating the RCS return for each individual scatterer and adding the results either coherently or incoherently. The program allows the target to move with respect to the radar in any straight line path on the earth's surface. The target can be incremented through any combination of yaw, pitch, and roll in any order. The model takes into account the curvature of the earth, multipath from the sea surface, and variable sea states. The types of scatterer it can presently handle are: triangular flat plates, truncated cone frusta, ellipsoids, dihedrals, and trihedrals.

There are two possible ways in which the RCS returns from the individual scatterers can be summed: coherently or incoherently. The CROSS program can handle either method depending on the user's preference. A coherent summation is one in which the phase angles of the individual scatterers are retained. It is accomplished by the program as

$$\sigma = \left| \sum_{i=1}^{n} W_{i} \sqrt{\sigma_{i}} \right|^{2}$$
(10)

where σ is the total cross section, n is the number of scatterers, $\sqrt{\sigma_i}$ is the complex scattering length for an individual scatterer, and W_i is a weighting

11

factor for the scatterer. Since $\sqrt{\sigma_i}$ is computed as a complex number, the phase is automatically included. The weighting factor W_i is a real number between zero and one that allows for the handling of imperfectly reflecting surfaces such as dielectrics or radar absorbent material (RAM). If an incoherent summation is desired, the expression for σ is

$$\sigma = \sum_{i=1}^{n} |W_i \sqrt{\sigma_i}|^2$$
(11)

where the square of the modulus is found before the addition as opposed to the coherent summation where the modulus is not found until after the sum is completed.

3.1. PHYSICAL OPTICS EQUATIONS

The basic physical optics formula used in deriving the bistatic scattering equation is

$$\sqrt{\sigma} = \frac{\pm ik}{\sqrt{\pi}} \exp[ik\vec{r}_{0} \cdot (\hat{i} - \hat{s})] I$$

$$I = \int_{A} \hat{n} \cdot \hat{h}_{i} \times \hat{e}_{r} \exp[ik\vec{r} \cdot (\hat{i} - \hat{s})] da$$
(12)

where $k = 2\pi/\lambda$ is the free space wave number of the incident wave, i and s are unit vectors aligned along the directions of propagation of the incident and scattered waves, $\hat{h_i}$ is the incident magnetic field unit vector, and $\hat{e_r}$ is the reflected electric field unit vector. The position vector $\vec{r_o}$ runs from some fixed origin to an auxiliary origin in or on the scatterer (such as the midpoint of a frustum or flat plate), and the position vector \vec{r} is attached to the auxiliary origin and sweeps over the surface of integration A. The unit vector \hat{n} is an outward normal erected on the surface element da and the integration is performed only over the scatterer surfaces that are illuminated by the incident plane wave. Only \hat{n} and \vec{r} vary over this surface, with $\hat{h_i} \propto \hat{e_r}$ and $(\hat{i} - \hat{s})$ being independent of the variable of integration. The phase convention $e^{i\omega t}$ is assumed throughout.

3.1.1 FLAT PLATES

The above integral has a closed form analytic solution for the simple geometric shapes implemented as scatterer types in CROSS. For a triangular flat plate, the result is

$$\begin{aligned}
\nabla \sigma &= \frac{\hat{\mathbf{n}} \cdot \hat{\mathbf{e}}_{\mathbf{r}} \times \hat{\mathbf{h}}_{\mathbf{i}}}{\sqrt{\pi} \tau} e^{(\mathbf{i} \mathbf{k} \cdot \mathbf{r}_{0}} \cdot \mathbf{w})} \begin{cases} \hat{\mathbf{p}} \cdot \hat{\mathbf{a}} e^{(\mathbf{i} \mathbf{k} \cdot \mathbf{r}_{a}} \cdot \mathbf{w})} \\ \hat{\mathbf{p}} \cdot \hat{\mathbf{a}} e^{(\mathbf{i} \mathbf{k} \cdot \mathbf{r}_{a}} \cdot \mathbf{w})} \\ \frac{\hat{\mathbf{p}} \cdot \hat{\mathbf{a}} e^{(\mathbf{i} \mathbf{k} \cdot \mathbf{r}_{a}} \cdot \mathbf{w})}{\frac{1}{2} \mathbf{k} \cdot \mathbf{k}} \\ \frac{\hat{\mathbf{k}} \cdot \mathbf{w}}{\frac{1}{2} \mathbf{k} \cdot \mathbf{k}}} \\ \frac{\hat{\mathbf{k}} \cdot \mathbf{w}}{\frac{1}{2} \mathbf{k} \cdot \mathbf{k}} \\ \frac{\hat{\mathbf{k}} \cdot \mathbf{w}}{\frac{1}{2} \mathbf{k} \cdot \mathbf{k}} \\ \frac{\hat{\mathbf{k}} \cdot \mathbf{w}}{\frac{1}{2} \mathbf{k} \cdot \mathbf{k}}} \end{cases} \end{aligned}$$

$$(13)$$
where $\mathbf{w} = \hat{\mathbf{i}} - \hat{\mathbf{s}}$

where w = 1

$$\hat{\mathbf{p}} = \frac{\hat{\mathbf{n}} \cdot \mathbf{x} \cdot \mathbf{w}}{|\hat{\mathbf{n}} \cdot \mathbf{x} \cdot \mathbf{w}|}$$
(15)

$$T = |\hat{n} \times \vec{w}|$$
(16)

The vector n represents the unit normal to the plate surface. Its direction is defined by a right-handed (counterclockwise) ordering of the vertices. Thus,

$$\hat{\mathbf{n}} = \frac{-\hat{\mathbf{a}} \times \hat{\mathbf{c}}}{|\hat{\mathbf{a}} \times \hat{\mathbf{c}}|}$$
(17)

where a, b, and c are unit vectors aligned along the three edges of the plate as illustrated in Figure 3. The vectors \vec{a} , \vec{b} , and \vec{c} are defined as

$$\dot{a} = a \dot{a}$$

$$\dot{b} = b \dot{b}$$

$$\dot{c} = c \dot{c}$$
(18)

Figure 3. Triangular flat plate geometry.

where a, b, and c are the lengths of the three edges, respectively. The vector $\vec{r_0}$ is the position vector of the centroid of the plate with respect to the main origin of the target and is found only in the plane wave phase term $\exp(ik \vec{r_0} \bullet \vec{w})$ in (4). The vectors $\vec{r_a}$, $\vec{r_b}$, and $\vec{r_c}$ are position vectors of the midpoints of the edges with respect to the centroid of the plate. The variable T in the denominator of (13) is the projection of \vec{w} onto the plane of the plate. When T = 0, a specular condition occurs where the contribution of all three edges at a far field point are in phase, but (13) becomes singular for this case. Thus, a check is made for the case when T = 0 where $\sqrt{\sigma}$ is now found by

$$\overline{\sqrt{\sigma}} = \frac{\hat{n} \cdot \hat{e}_{r} \times \hat{h}_{i}}{\sqrt{\pi}} e^{ik\vec{r}} \cdot \vec{w}} A \qquad (19)$$

and A is just the area of the triangle found by

$$A = \frac{1}{2} \begin{vmatrix} \dot{a} & x & \dot{b} \end{vmatrix}$$
(20)

3.1.2 CONE FRUSTA

The closed form solution of Equation (12) for a truncated cone frustum is

$$\sqrt{\sigma} = -is \sqrt{\frac{2ka}{T}} \hat{n}_{o} \cdot \hat{h}_{i} \times \hat{e}_{r} \exp[ik\vec{r}_{o} \cdot (\hat{i} - \hat{s})]$$

$$exp[-i (kaT - \pi/4)]G$$
(21)

where
$$G = F(1 - \frac{i \tan \tau}{kQa}) + \frac{i \cos[\frac{1}{2} kQl] \tan \tau}{kQa}$$
 (22)

and

$$F = \frac{\sin\left[\frac{1}{2} \ kQ \ell\right]}{\frac{1}{2} \ kQ \ell}$$
(23)

Figure 4 is an illustration of the geometry of the truncated cone frustum. The points P_1 and P_2 are the Cartesian coordinates (with respect to the target origin 0) of the endpoints of the frustum along the central axis.

Figure 4. Truncated cone frustum geometry.

The radii at the two ends are a_1 and a_2 . The axial length of the frustum is designated by l, while the slant length is s. The cone half-angle is τ , but τ need not be found explicitly since tan τ is the only form in which τ appears in (22). Thus, tan τ is found by

$$\tan \tau = (a_1 - a_2)/l$$
 (24)

The symbol a in Equations (21) through (23) represents the mean radius of the frustum. It is found by averaging the radii of the two ends; a_1 and a_2 . The vector \vec{r}_0 is the position vector of the center of the frustum with respect to the target origin. The quantity Q in Equations (22) and (23) is defined by

$$Q = P + T \tan \tau$$
(25)

where
$$P = (1 - s) \cdot A$$
 (26)

and
$$T = |A \times (i - s)|$$
 (27)

The unit vector A is oriented along the main axis of the frustum and points from the small end toward the large end.

In the case where $a_1 = a_2$, the frustum degenerates to a cylinder. For this case, the imaginary components of G in (22) are omitted, otherwise they would be singular. Thus, for a cylinder, G = F. Another special case is the cone, which is found when $a_2 = 0$. Equations (21) through (23) can handle this case without adjustments.

3.1.3 DIHEDRALS AND TRIHEDRALS

A major analytical undertaking in the expansion of ship modeling techniques was the development of a procedure for predicting the return from arbitrary dihedrals and trihedrals. The radar return from re-entrant rightangled corner is large and persists over wide viewing angles, hence the corner is a dominant scatterer. However, echo area reductions of 20 dB or more can be achieved if the faces of the corner can be tilted away from perpendicularity. This non-perpendicular case is modeled in more or less routine fashion. [5]

Despite the reference to "arbitrary" corners, there is an implicit restriction: the model accounts for multiple internal interactions in which no trihedral face participates more than once. Thus, although the prescription works for up to three internal reflections, a triple reflection involving only two faces is not taken into account. This can occur only if some of the angles between faces are acute, hence the theory is applicable only to obtuse, but otherwise arbitrary, trihedral reflectors. There is no restriction on the use of acute angles, of course, but the model will not accurately include all the interactions.

The model has these salient features:

- a marriage of geometrical optics (ray tracing) and physical optics approximations;
- 2. a physical optics prescription for the bistatic scattering from a perfectly conducting polygonal plate; and
- 3. a procedure for describing or identifying the common area shared by a pair of overlapping polygons.

The approach is to allow all interactions between the faces to follow the laws of geometric optics (GO), except for the final one, and to apply the physical optics (PO) prescription only then. In essence, the faces act like mirrors for all except the final reflection, which is treated by PO methods instead of GO. The procedure then allows the use of the standard bistatic far field PO scattering formula for flat surfaces.

Some care must be exercised in applying this concept. The direction followed by a ray when reflected from a flat surface can easily be determined by reversing the normal component of the incident ray — but one must also reverse the normal component of the incident magnetic field. The images of both the direction of propagation and of the magnetic field must be used in the bistatic PO scattering expression for a polygonal plate.

Extending Equation (13) from triangles to M-sided polygons, [6]

$$\sqrt{\sigma} = \frac{\hat{\mathbf{n}} \cdot \hat{\mathbf{e}}_{\mathbf{r}} \times \hat{\mathbf{h}}_{\mathbf{i}}}{\sqrt{\pi} \mathbf{T}} e^{i\mathbf{k} \cdot \hat{\mathbf{r}}_{\mathbf{0}} \cdot \hat{\mathbf{w}}} \sum_{\mathbf{m}=1}^{\mathbf{M}} \hat{\mathbf{p}} \cdot \hat{\mathbf{a}}_{\mathbf{m}} e^{i\mathbf{k} \cdot \hat{\mathbf{r}}_{\mathbf{m}} \cdot \hat{\mathbf{w}}} \left[\frac{\sin(\frac{1}{2} \mathbf{k} \hat{\mathbf{a}}_{\mathbf{m}} \cdot \hat{\mathbf{w}})}{\frac{1}{2} \mathbf{k} \hat{\mathbf{a}}_{\mathbf{m}} \cdot \hat{\mathbf{w}}} \right]$$
(28)

In equation (28),

= bistatic radar cross section of the plate, σ = unit normal to the plate surface, n = unit vector along the electric vector of a far field receiver, e_ h, = unit vector along the incident magnetic polarization, = position vector of the origin of the coordinate system in which the plate vertex positions are described, = i - s ÷ ₩ 1 = unit vector along the direction of incidence, = unit vector along the direction from the origin to the far field s receiver. a n = a vector describing the length and orientation of the m^{th} edge of the plate; the edge vectors must be arranged tip-to-tail around the perimeter of the polygon, \dot{r}_{m} = position vector of the midpoint of the mth edge, = length of the projection of \vec{w} onto the plane of the plate, Т = $\hat{n} \times \hat{w} / |\hat{n} \times \hat{w}|$ = unit vector in the plane of the plate perpendicular Ρ to w, Μ = number of plate edges.

The summation in (28) has the dimension of a length and includes the discrete contribution of each plate edge. T = 0 defines a specular condition for which the contributions of all the edges at a far field point are in

phase, but (28) becomes singular in the specular direction. However, the expression reduces to a simpler form for specular scattering, namely

$$\sqrt{\sigma} = -ikA \frac{\hat{n} \cdot \hat{e}_r \times \hat{h}_i}{\sqrt{\pi}} e^{ik\vec{r}} \cdot \vec{w}$$
(29)

where A is the geometric area of the plate. For numerical purposes, it is better to switch from (28) to (29) when T is small but finite, instead of at precisely T = 0. In the model, the switch is made whenever $|T| < 10^{-2}$, and this finite switching point has a negligible effect on the predicted scattering.

Figure 5 illustrates the tracing of the reflections of incident beams from one face to another. If a face is fully illuminated by a beam or by the incident wave, only that part of the beam intercepted by the face is reflected, as shown in Figure 5(a). If it were not for the presence of the third face (shown in outline by the dashed line), the full reflection would be as shown. But, in actual fact, the third face will prevent the rightmost third of the reflected beam from ever reaching the plane of the third face. Hence the portion of the second face receiving a reflection of the incident wave from face 1, is shown in Figure 5(b).

The image direction i of the incident wave is the effective direction of incidence for this patch of surface, and if the scattering direction is specified, along with the coordinates of the vertices of the illuminated patch, the scattering due to the interaction can be calculated by the use of Equation (28) or (29). Since two faces are involved in the far field scattering, this is called a "double-bounce" contribution to the echo.

A second reflection can occur in which face 2 reflects the beam it receives onto the plane of face 3, as shown in Figure 5(c). As in the reflection from face 1, the reflected direction from face 2 is found by reversing the normal component of the wave propagation direction. Thus the

(a)

Figure 5. The shaded areas represent: (a) and (b) the portion of the incident wave intercepted by face 1 and reflected onto the plane of face 2; (c) and (d) the portion of face 2 illuminated by a reflection off face 1, and reflected onto the plane of face 3.

doubly imaged direction of propagation of the incident wave is used, imaged first in the plane of face 1, which image is then imaged in the plane of face 2. The doubly imaged direction is such as to cast the illuminated patch (shown shaded in Figure 5(c) onto the plane of face 2).

However, face 3 does not intercept the entire doubly-reflected beam. The rightmost tip of the patch will be clipped off because it extends past the physical boundaries of the third face. Thus, the actual size and shape of the "active" surface patch is shown in Figure 5(d). Again, a knowledge of the effective direction of the wave that generated the patch, along with the spatial positions of the patch vertices, allows the calculation of the far field scattering. In this case, the contribution would be a "triple-bounce" term, since three faces participated in the scattering.

This is one of six possible ways the three faces of a trihedral corner can participate in the far field scattering. The reflection of the incident wave onto face 3 by face 1 in the Figure 5(a) and the other combinations were not taken into consideration. The following list includes the six possible permutations for an obtuse trihedral corner:

1	2	3	2	3	1	3	1	2
2	1	3	3	2	1	1	3	2

These include six double-bounce and six triple-bounce contributions.

Finally, there are three single-bounce contributions to tally, and these do not involve interactions between the faces. They are the returns from the three faces when illuminated by the incident wave. The vertex positions and the directions of incidence and scattering can be used immediately in the PO formulas (28) or (29). The single-bounce scattering contributions are important for the backscattering case only when one of the faces is within a few degrees of its orientation for specular scattering. Nevertheless, the model continues to include the single-bounce scattering even when the face orientation is well away from the specular orientation. Figure 6 illustrates the definitions of dihedrals and trihedrals for input to the CROSS model.

5

Figure 6. (a) Dihedral and (b) trihedral geometry.

•

3.1.4 ELLIPSOIDS

The geometrical-optics formulation for the radar cross section of an ellipsoid is given by

$$\sigma = \pi R_1 R_2, \tag{30}$$

where R_1 and R_2 are the two principal radii of curvature in orthogonal directions at the specular point on the ellipsoid's surface. Note that the product R_1R_2 is the reciprocal of the "Gaussian curvature". Gaussian curvature at a point on a surface is defined as the product of the principal curvatures, and the principal curvatures are the reciprocals of the principal radii of curvature [7]. Thus, without calculating R_1 and R_2 separately, the radar cross section of an ellipsoid can be computed as

$$\sigma = \frac{\pi}{\kappa} \tag{31}$$

where κ is the Gaussian curvature at the specular point. Because it is easier to calculate κ directly than to find R₁ and R₂ separately, the formulation for the ellipsoid in Equation (31) simplifies the RCS computation.

The first step in finding the Gaussian curvature at a point on an ellipsoid is to describe the ellipsoidal surface as a vector function of two parameters ϕ and θ . For the ellipsoid defined by

$$\left(\frac{\mathbf{x}}{A}\right)^2 + \left(\frac{\mathbf{y}}{B}\right)^2 + \left(\frac{\mathbf{z}}{C}\right)^2 = 1$$

This can be done by describing the ellipsoid in spherical coordinates:

$$\dot{\mathbf{x}} = (\mathbf{A} \sin \phi \cos \theta, \mathbf{B} \sin \phi \sin \theta, \mathbf{C} \cos \phi).$$
 (32)

The Gaussian curvature at the specular point is then described in terms of the first and second order derivatives at the specular point. Specifically,

$$\kappa = \frac{LN - M^2}{EG - F^2}$$
(33)

where

$$L = \dot{n} \cdot \vec{v}_{11}$$

$$M = \dot{\vec{n}} \cdot \vec{v}_{12}$$

$$N = \dot{\vec{n}} \cdot \vec{v}_{22}$$

$$\vec{\vec{n}} = \text{the unit normal to the surface at the specular point}$$

$$= (\vec{v}_1 \times \vec{v}_2) / |\vec{v}_1 \times \vec{v}_2|$$

$$E = \vec{v}_1 \cdot \vec{v}_1$$

$$F = \vec{v}_1 \cdot \vec{v}_2$$

$$G = \vec{v}_2 \cdot \vec{v}_2$$

and

$$\vec{v}_{1} = \frac{d\vec{x}}{d\phi} = (A \cos\phi \cos\theta, B \cos\phi \sin\theta, -C \sin\phi)$$

$$\vec{v}_{2} = \frac{d\vec{x}}{d\theta} = (-A \sin\phi \cos\theta, B \sin\phi \cos\theta, 0)$$

$$\vec{v}_{12} = \frac{d^{2} \vec{x}}{d\phi d\theta} = (-A \cos\phi \sin\theta, B \cos\phi \cos\theta, 0)$$

$$\vec{v}_{11} = \frac{d^{2} \vec{x}}{d\phi^{2}} = (-A \sin\phi \cos\theta, -B \sin\phi \sin\theta, -C \cos\phi)$$

$$\vec{v}_{22} = \frac{d^{2} \vec{x}}{d\theta^{2}} = (-A \sin\phi \cos\theta, -B \sin\phi \sin\theta, 0)$$

The derivative vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_{12} , \vec{v}_{11} , and \vec{v}_{22} are all evaluated at the specular point whose coordinates are known (and therefore ϕ and θ are known). Once the derivative vectors and the normal vector are defined, the Gaussian curvature is easily computed from (33) using the vector manipulation

library subroutines. Figure 7 illustrates the geometry for ellipsoid scatterers.

3.2. GEOMETRICAL CONSIDERATIONS

The geometry relating the target to the radar in a spherical earth environment can become quite complicated, so to provide a scheme that is both general and practical, the following assumptions are made:

- * Flat earth
- * Target constrained to lie on the earth's surface
- * Radar fixed but target allowed to move
- * Cartesian coordinate system.

The primary reason for staying with Cartesian coordinates is ease of programming as well as the mathematics. A library of FORTRAN functions and subroutines exists to help simplify standard vector operations (dot product, cross product, etc.), but they are only defined for Cartesian coordinates.

The origin of the initial coordinate system is located on the earth's surface. The x and y axes are tangential to the earth's surface and the z axis normal to it. This coordinate system (as well as all others in this report), is "right-handed." The radar is fixed on the z-axis at a height h_a above the origin.

Since the target is constrained to lie on the earth's surface, only two coordinates are necessary to define its initial position. The two coordinates used here are range (R_a) and azimuth (ϕ) . The range is defined as the distance between the origin and the target as measured along the earth's surface. The azimuth is the angle between the x-axis and the target measured counterclockwise. (See Figure 8.)

To express the coordinates of the target in x,y,z coordinates, an initial range vector \vec{R}^{1} to the target can be set up.

$$\vec{R}^{i} = \begin{pmatrix} R_{a} \cos \phi \\ R_{a} \sin \phi \\ 0 \end{pmatrix}$$
(34)

,

Figure 7. Ellipsoid geometry.

Figure 8. Relative positions of initial coordinate systems.

Figure 9. Definition of "bearing".

To facilitate computations, transformations are made from the initial coordinate system (fixed earth) to the fixed target coordinate system rather than conversely. This greatly reduces the number of vectors to be transformed since there are many more target scatterers than position vectors (radar position, etc.) in the initial coordinate system.

An intermediate coordinate system is defined at the initial target position (x^{o}, y^{o}, z^{o}) such that the z^{o} axis is normal to the earth's surface, and the y^{o} axis is orthogonal to the displacement vector \vec{R}^{i} , as in Figure 8. The rotation matrix to transform to this frame of reference is defined as

$$\operatorname{Rot}_{\phi} = \begin{pmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(35)

Now, for an arbitrary vector \vec{r} in xyz, a translation in xyz must occur before rotation, so

$$\vec{r}^{o} = \operatorname{Rot}_{\phi} (\vec{r} - \vec{R}^{i})$$
 (36)

or

$$\vec{r}^{\circ} = \vec{B} (\vec{r} - \vec{R}^{1})$$
(37)

where

$$\tilde{B} = Rot_{\phi}$$
(38)

To allow for motion of the target, a "path" is defined by defining a direction and a distance (along the earth's surface, of course). Let ϕ_2 be a "bearing" of the target such that ϕ_2 is measured clockwise from the y⁰ axis. (See Figure 9.) The associated rotation matrix is

Rot
$$\phi_2 = \begin{cases} \cos \phi_2 & -\sin \phi_2 & 0 \\ \sin \phi_2 & \cos \phi_2 & 0 \\ 0 & 0 & 1 \end{cases}$$
 (39)

$$\tilde{C} = Rot \phi_2 \tilde{B}$$
 (40)

The target can now be allowed to move a range increment ΔR_a between successive RCS predictions in the new direction. A transformation to each new position of the target is as follows

$$\Delta \vec{R} = \begin{pmatrix} 0 \\ \Delta R_a \\ 0 \end{pmatrix}$$
(41)

Now,

$$\vec{r}^{N} = \text{Rot } \phi_{2} \text{ Rot } \phi \quad (\vec{r} - \vec{R}^{1}) - \Delta \vec{R}$$

$$\vec{r}^{N} = \text{Rot } \phi_{2} \quad \vec{r}^{0} - \Delta \vec{R}$$
(42)

For successive movements of the target, the program sets $\vec{r}^{\circ} = \vec{r}^{N}$ and uses Equation (42) to transform to the new coordinates of the target where ϕ_2 is the new "bearing." If the direction of motion remains unchanged between successive range steps, it uses

$$\dot{\vec{r}} = \vec{r} - \Delta \vec{R}$$
(43)

instead of (42) after the initial calculation of \vec{r}^N .

Now that the target location and the related transformations have been specified, the target orientation needs to be defined. The most logical scheme for specifying the orientation is to use yaw, pitch, and roll. Here, yaw, pitch, and roll are defined as counterclockwise rotations about the Z^N , X^N , and Y^N axes, respectively. Since the order of rotations is important, the computer program allows for optional orders of rotation (pitch before yaw, roll before pitch, etc.). The transformation matrices are defined below.

$$\tilde{Y} = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(44)

$$\tilde{\mathbf{P}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & \sin \beta \\ 0 & -\sin \beta & \cos \beta \end{pmatrix}$$
(45)

$$\tilde{\mathbf{R}} = \begin{pmatrix} \cos \gamma & 0 & -\sin \gamma \\ 0 & 1 & 0 \\ \sin \gamma & 0 & \cos \gamma \end{pmatrix}$$
(46)

Thus, the final transformation of a vector \vec{r} to the fixed target frame is

$$\dot{\mathbf{r}}' = \mathbf{\tilde{R}} \quad \mathbf{\tilde{P}} \quad \mathbf{\tilde{Y}} \quad \mathbf{\tilde{r}}^{N}$$
(47)
(in any order)

To calculate the RCS of a target, the two unit incident vectors (direct and indirect) must be specified. To find the direct incident vector \hat{i} , the vector denoting the position of the radar antenna must be transformed to target coordinates. Let \hat{A} represent the antenna coordinates in the initial frame. Thus,

 $\vec{A} = (0, 0, h_a)$

,

where h_a is the height of the antenna above the surface.

$$\vec{A}' = \tilde{R} \tilde{P} \tilde{Y} \tilde{A}^{N}$$
(48)

and \vec{A}^{N} is defined by either transformation (42) or (43), whichever is appropriate. Now,

$$\hat{i'} = \frac{\vec{r}_{0}' - \vec{A}'}{|\vec{r}_{0}' - \vec{A}'|}$$
(49)

where \dot{r}_{o} is the position of the centroid of a particular scatterer in the target frame.

The indirect incident vector i_2^{\prime} is not difficult to find since a flat earth is assumed and an image technique may be used (See Figure 10). Since the plane in which both i_1^{\prime} and i_2^{\prime} lie must be perpendicular to the earth's surface, then i_2^{\prime} is found as follows

$$\tilde{Q} = \tilde{R} \tilde{P} \tilde{Y}$$
(50)

and $\tilde{Q}^{-1} = \tilde{Y}^{-1} \tilde{P}^{-1} \tilde{R}^{-1} = \tilde{Y}^{T} \tilde{P}^{T} \tilde{R}^{T}$ (51)

(Note: Since rotation matrices are orthogonal, the inverse is simply the transpose of the matrix.)

$$\dot{\vec{r}}_{0}^{n} = \vec{Q}^{-1} \vec{r}_{0}^{\prime}$$
(52)

Now the image of the scatterer can be formed by simply negating the z coordinate of scatterer's position vector:

$$\dot{r}_{0}^{i} = (x_{0}^{n}, y_{0}^{n}, -z_{0}^{n})$$
 (53)

$$\hat{i}_{2}^{i} = \frac{\dot{r}_{o}^{i} - \dot{A}^{n}}{|\dot{r}_{o}^{i} - \dot{A}^{n}|}$$
(54)

Finally, the z coordinate of i_2^{i} must be negated and the resulting vector rotated back into the target's (primed) coordinate system.

$$\hat{i}_{2}^{n} = (i_{x}^{i}, i_{z}^{i}, -i_{z}^{i})$$
 (55)

$$\hat{i}_2^1 = \widetilde{Q} \quad \hat{i}_2^n \tag{56}$$

3.3. MULTIPATH

Equation (12) is the physical optics integral for free space scattering. To handle the multipath due to the earth's surface, the return from a scatterer can be represented as the sum of three contributions, one to the target as if the surface were not present (the free space contribution), another due to the target image, and the third due to the diplane effect. The image term must be multiplied by the square of the reflection coefficient of the earth's surface, because this contribution involves a double bounce. The diplane term must be multiplied by twice the reflection coefficient because only one bounce off the earth's surface occurs, but two distinct propagation paths exist. For each of the types of scatterers, the total scattering can be represented as the sum

$$\sqrt{\sigma} = \sqrt{\sigma_f} + \rho^2 \sqrt{\sigma_i} + 2\rho \sqrt{\sigma_i}$$
(57)

where ρ is the complex reflection coefficient of the earth's surface and $\sqrt{\sigma_f}$, $\sqrt{\sigma_i}$, and $\sqrt{\sigma_d}$ are the free space, image, and diplane contributions respectively. All three contributions are found from Equation (12) depending on the scatterer type. Note that the equation contains the scattering vector $\hat{i} - \hat{s}$. The free space term $\sqrt{\sigma_f}$ is found by setting \hat{i} equal to the direct incident vector \hat{i} defined in Equation (49) and by setting $\hat{s} = -\hat{i}'$. For the diplane term, $\hat{i} = \hat{i}'$ as above, but $\hat{s} = -\hat{i}'_2$ where \hat{i}'_2 is the indirect incident vector from the earth's surface defined in Equation (56). Similarly, the image term $\sqrt{\sigma_i}$ is found by setting $\hat{i} = \hat{i}'_2$ and $\hat{s} = -\hat{i}'_2$.

3.4. NEAR FIELD APPROXIMATION

In its present form, Equation (12) assumes the far field approximation that planes of constant phase are present over the entire target. CROSS allows the user to choose a near field approximation if desired. That is, the phase term for each scatterer can be calculated separately by using the distance from the radar to the centroid of the scatterer. This simulates a spherical wave front over the entire target, although the return from each scatterer is still calculated as if it had a plane wave over its surface. This is accomplished by replacing the relative phase ikr_{o} (i - s)

term e ^o found in Equation (12) with the near field phase term $e^{ik\Delta r}$, where Δr is the difference between the length of the vector from the radar to the target's origin and the length of the propagation path for the scatterer of interest.

3.5. REFLECTION FROM THE EARTH'S SURFACE

The complex reflection coefficient ρ is a function of the incident angle at the earth's surface (Ψ), the surface roughness, and the complex permittivity of the reflecting surface which the program requires the as an input. The reflection coefficient ρ is expressed as the product of the Fresnel reflection coefficient for smooth surfaces [10] and the Rayleigh roughness factor [11]. The Fresnel reflection coefficient is polarization dependent. The angle of reflection Ψ can be found from the indirect incident vector \hat{i}_2^n defined in equation (55).

$$\Psi = \pi/2 - \hat{i}_2^n \hat{z}$$
 (58)

For horizontal polarization

$$r = \frac{\sin \Psi - \sqrt{\varepsilon - \cos^2 \Psi}}{\sin \Psi + \sqrt{\varepsilon - \cos^2 \Psi}}$$
(59)

and for vertical polarization

$$r = \frac{\varepsilon \sin \Psi - \sqrt{\varepsilon - \cos^2 \Psi}}{\varepsilon \sin \Psi + \sqrt{\varepsilon - \cos^2 \Psi}}$$
(60)

Now, the Rayleigh roughness factor is

•

,

$$\rho_{\rm s} = \left\{ \exp \left[\frac{-1}{2} \left[\frac{(4\pi \ \sigma_{\rm H} \ \sin \ \Psi)}{\lambda}^2 \right] \right\}$$
(61)

where $\sigma_{\!\!\!\!\!\!H}$ is the standard deviation of the wave height. Thus,

$$\rho = r \rho_{s} \tag{62}$$

SECTION 4 REFERENCES

- R. B. Rakes, "Radar Glint Model," Software Documentation Report on Rockwell International Purchase Order V161-5A-113203 Georgia Institute of Technology, Engineering Experiment Station, April 1982, UNCLASSIFIED.
- 2. S. P. Zehner and M. T. Tuley, "Development and Validation of Multipath and Clutter Models for TAC ZINGER in Low Altitude Scenarios," Final Report on Contract F49620-78-C-0121, March 1979, UNCLASSIFIED.
- 3. M. M. Horst, et al., "Ship RCS Predictions (U)," Final Report on Contract Nool67-82-M-0737, Georgia Institute of Technology, Engineering Experiment Station, January 1982, SECRET.
- 4. M. T. Tuley, M. M. Horst, and K. B. Langseth, "Radar Modeling Studies (U)," Task 7 Final Report on APL Subcontract 600403, Georgia Institute of Technology, Engineering Experiment Station, July 1978, SECRET, XGDS.
- 5. E. F. Knott, "A Tool for Predicting the Radar Cross Section of a Trihedral Corner," Paper presented at IEEE Southeast Conf. '81, Huntsville, Alabama, 6-8 April 1981, Published in IEEE Publication 81-CH-1650-1, pp. 17-20.
- 6. W. B. Gordon, "Far-field Approximation of the Kirchoff-Helmholtz Representation of Scattered Fields," <u>IEEE Transactions on Antennas and</u> Propagation, AP-23, July 1975, pp. 590-592.
- 7. W. Gellert, H. Kustner, M. Hellwich, and H. Kastner, Editors, <u>The VNR</u> <u>Concise Encyclopedia of Mathematics</u>, pp. 565-571, Van Nostrand Reinhold Company, New York, 1977.
- 8. H. Flanders, R. Korfhage, and J. Price, <u>A Second Course in Calculus</u>, p. 501, Academic Press, New York, 1974.
- 9. E. Shotland and R. Rollin, "The Complex Reflection Coefficient Over a Smooth Sea in the Micro and Millimeter-Wave Bands for Linear and Circular Polarization," The John Hopkins University, APL, March 1976.
- 10. J.A. Stratton, <u>Electromagnetic Theory</u>, McGraw-Hill Book Company, New York, 1941, pp. 492-511.
- 11. P. Beckman and A. Spizzichino, <u>The Scattering Of Electromagnetic Waves</u> From Rough Surfaces, (New York: <u>The McMillan Company</u>, 1963), pp. 80-81.

ENGINEERING EXPERIMENT STATION GEORGIA INSTITUTE OF TECHNOLOGY • ATLANTA, GEORGIA 30332

21 June 1982

Mr. Carl Bates Rockwell International Missile Systems Division P. O. Box 1259 Columbus, Ohio 43216

Dear Carl:

Enclosed are the results of the Simulation Verification data run by the Georgia Tech Radar Glint model. These include Track Error and RCS predictions for both variation with range and variation with aspect. If any problem is encountered in attempting to match these results with your program, please feel free to call me anytime.

Sincerely,

R. Bruce Rakes Research Scientist I

SWC

Enclosure - Simulation Verification data results

TRACK ERROR/RCS Benchmark

. . .

<u>:</u>

Variation of Aspect

Elevation = 15°, Slant Range = 679° $\sigma_{\rm h}$ = 0.1 ft., σ° = -17.5 dB $\varepsilon_{\rm r}^{\rm h}$ = (2.44, 0.00267)

Track Error AZ (deg)	Track Error El (deg)	RCS	
-1. 4917186E-02 0. 1012685 -7. 6000090E-03 -4. 2801026E-02 7. 4208438E-02	7.8193314E-02 3.8093068E-02 0.5996329 0.2332899 0.1547721	-11.66653 -4.729362 25.54455 4.329116 1.707733	Initial Az = -2° Final Az = 2° Az Step = 1°

0.6000569	0.4268321	10. 19216	
0. 9245617	0. 2220081	24. 26637	Initial Az = 88º
0. 2524590	0. 3098174	14.04780	Final Az = 92°
-0. 7222527	0.3191296	30. 79765	Az Step = 1°
-0. 7957122	-4.8491564E-02	2.880258	

9.	8208282E-03	0. 1101521	-8.688541	
-5.	5280502E-04	9.2625953E-02	-11.51835	$T_{nitial} \Delta z = 133^{\circ}$
-8.	6806461E-02	0.2581288	-0.2211581	Final $\Delta z = 137^{\circ}$
-9.	7268699E-03	0.1596832	-4.905655	Az Step = 1°
-2.	2283677E-02	0. 2067052	3. 348537	

7.9131819E-02 0.2964405 1.8847820E-04 -0.3032177	0. 1051137 0. 1294527 0. 1760707 0. 1816531	-12.86676 2.982919 21.70618 4.863090	Initial Az = 178° Final Az = 182° Az Step = 1°
-1.6459955E-02	0. 2171304	-6. 635852	-

3. 3235546E-02	0. 2351657	3. 629490		
-1.0232148E-02	-9.0830155E-02	-14.17316	Initial Az	: = 223°
-2. 4799721E-03	5.3917691E-02	-15.70564	Final Az =	= 227°
8.8533349E-03	-7.2386903E-03	-7. 138330	Az Step =	1°
8.4184855E-03	-0. 1683839	-8.843243	•	

Variation with Aspect

.

-

Elevation = 15° , Slant Range = 679 ft.

Track Error Az (deg)	Track Error EL (deg)	RCS	
-1.3064086E-03 -1.1134183E-02 -7.7350549E-02 -1.0944321E-02 1.6181894E-02	1.2878230E-02 0.1332418 8.8500634E-02 -0.1152363 0.2733363	-12.90181 -5.838790 -9.296549 -13.06730 -2.269258	Initial Az = 313° Final Az = 317° Az Step = 1°
-0. 3047307 2. 1760428E-02 6. 0479820E-02 1. 8063786E-02 -6. 6842869E-02 2. 9440064E-02	-0. 5423833 3. 6029760E-02 8. 2971193E-02 -3. 7682410E-05 -0. 2566604 -0. 3291941	-3.486520 -10.50823 -9.157353 -13.66778 -8.927942 -6.914072	Initial Az = 44.8° Final Az = 45.3° Az Step = 0.1°
0. 6000569 0. 9245617 0. 2524590 -0. 7222527 -0. 7957122	0.4268321 0.2220081 0.3078174 0.3191296 -4.8491564E-02	10. 19216 24. 26637 14. 04780 30. 79765 2. 880258	Initial Az = 88° Final Az = 92° Az Step = 1°
0. 1240494 0. 3590895 2. 8979480E-02 -0. 2459276 -0. 2160972	0. 2301475 0. 1475474 0. 1421916 0. 2557647 0. 2142867	15.43640 5.057254 14.16871 11.63514 17.62584	Initial Az = 269.8° Final Az = 270.2° Az Step = 0.1°

Variation with Aspect Elevation = 45° , Slant Range = 928 ft. Track Error Az (deg) Track Error El (deg) RCS -1. 9274877E-02 -2. 2689503E-02 -2. 542281 **3.** 4068629E-02 -0. 1611469 -4. 411059

 2. 4577057E-02
 0. 6706424
 20. 59393

 -3. 5952434E-02
 -0. 2544481
 -19. 27741

 Initial Az = -2° Final Az = 20 Az Step = 1° -6.2617145E-02 -4.2861851E-04 -3.577843 4. 2926678E-03 -0. 4959759 15.35856 Initial Az = 88° -0. 15648360. 31063600. 12870920. 2740144 22.00022 Final Az = 92° 10. 95899 7.872255 Az Step = 1° 1. 5138185E-02 0. 2336436 2. 5987023E-02 0. 2988815 -0. 7816853 -7. 4495883E-03 -1. 5718155E-03 -31. 37795 3. 6409266E-02 -0. 1131416 -8. 60947**4** Initial Az = 133° -4. 1325737E-02 -3. 5774961E-02 -19. 34916 Final Az = 137° 1. 6667228E-02 1. 3446214E-02 -16. 36296 Az Step = 1° 8.1879966E-02 0.1833812 18. 65425 -0.2119371 8. 6204693E-02 -11. 61060 -2. 2732765E-02 -0. 3513575 3. 478105 Initial Az = 178° 5. 9584049E-03 -0. 1978338 27. 88261 Final Az = 182° -0. 4548050 -3. 274962 Az Step = 1° -0. 3124326 9. 1297589E-02 9. 5918082E-02 5. 607147 -1.0909708E-02 6.9532908E-02 -6.188841 -3. 4034748E-02 1. 9587083E-02 -13. 90251 Initial Az = 223° -4.639563 Final Az = 227° -0. 2595626 -0. 5096098 -2.8910710E-02 -1.9107087E-02 -24.74454 Az Step = 1° -5. 1068950E-02 -2. 8811533E-02 -12. 33971

Variation with Aspect

ς.

.

,

.

*

.

Elevation = 45°, Track Error AZ (deg) 5. 0766252E-02 1. 9176574E-02 1. 5347627E-02 -4. 5549266E-02 4. 5443572E-02	Slant Range = 92 Track Error EL (deg) 1.8673576E-02 1.9454479E-02 7.6911777E-02 2.1738037E-02 3.0895209E-02	8 ft. -5.516499 -16.16605 -4.118290 -2.678010 -10.36890	Initial AZ = 313° Fina! AZ = 317° AZ Si p = 1°
-1.7437069E-02 -3.9793797E-02 B.1778161E-04 -4.3971192E-02 2.5749382E-02 -5.9530873E-02	 B. 5160486E-02 5. 9714567E-02 -7. 9572191E-03 0. 1123019 -2. 5159303E-02 6. 3213855E-02 	-0.4634165 -5.484707 -13.96869 -0.4220569 -16.97661 -5.524306	Initial AZ = 44.8° Final AZ = 45.3° AZ Step = 0.1°
4. 2926678E-03 -0. 1564836 0. 1287092 1. 5138185E-02 2. 5987023E-02	-0. 4959759 0. 3106360 0. 2740144 0. 2336436 0. 2988815	15.35856 22.00022 10.95899 7.872255 -0.7816853	Initial AZ = 88° Final AZ = 92° AZ Step = 1°
0. 1507022 -0. 2697877 -4. 7635950E-02 -8. 7587938E-02 -0. 1651377	0. 1921148 0. 8945019 0. 3799199 0. 3708959 0. 3518490	9. 461764 16. 23875 20. 14245 14. 52001 18. 60176	Initial AZ = 269.8° Final AZ = 270.2° AZ Step = 0.1°

۰,

" "Variation with Range

• •

.

.

Elevation = 15 degrees

Slant Range	Track Error	Track Error	RCS	
(feet)	AZ (deg)	EL (deg)		
1020.000	5.0061331E-03	0.4993497	20.81643	Az = Ordeg
850.0000	4.4283173E-03	0.4867148	26.09033	
680.0000	-7.3807300E-03	0.5950443	25.58356	
510.0000	2.8371245E-03	1.024202	24.70302	
340.0000	-3.6155514E-03	0.4436491	27.82073	
170.0000	-1.5099181E-02	-8.8675983E-02	27.13674	
1020.000	0.2612238	0.1562295	15.85933	Az = 90 deg
850.0000	-0.8101477	0.3949793	7.254593	
680.0000	0.2563402	0.2943910	13.20210	
510.0000	0.1019797	0.2819632	15.98870	
340.0000	0.3291698	0.4264002	13.34318	
170.0000	0.5785391	0.1595181	15.77669	
1020.000	8.4236858E-04	9.2937738E-02	27.35988	Az = 180 deg
850.0000	-4.2908260E-04	0.1205537	25.24064	
480.0000	4.2360471E-04	0.1758326	21.67067	
510.0000	4.3997159E-03	0.6104326	15.25537	
340.0000	4.2263950E-05	0.2516498	26.40305	
170.0000	1.1080918E-04	0.3964351	25.99878	
1020,000	0. 1729786	0.2754012	14.20288	Az = 270 deg
850,0000	-0. 5209087	6.9691449E-02	2.496394	
680,0000	2. 1545710E-02	0.1604084	14.58973	
510,0000	7. 6774158E-02	5.5852821E-03	15.08606	
340,0000	0. 1917440	0.1952392	11.34719	
170,0000	-0. 4512213	-0.1868914	7.818293	

Variation with Range

Elevation = 45 degrees

.

.

Slant Range	Track Error	Track Error	RCS	
(feet)	AZ (deg)	EL (deg)		
1392,000	-2.5184453E-03	0.3971903	25.36010	Az = Odeg
1160,000	-1.2370380E-02	0.3866917	24.46605	
928,0000	2.9494504E-02	0.6621591	20.74256	
696,0000	-0.1362364	-3.4903526E-02	16.60512	
464,0000	-0.1028221	-0.1756750	23.66253	
232,0000	1.5592365E-02	-0.2130625	26.46243	
1392.000	0.1009403	9.7273618E-02	14.88155	Az = 90 deg
1160.000	9.8801769E-02	0.2273987	12.57011	
928.0000	0.1165720	0.2748711	10.85851	
696.0000	0.1066830	0.2244116	15.91226	
464.0000	-0.1799550	0.2849002	5.193667	
232.0000	-0.1177549	-1.1346363E-02	10.58290	
1392.000	3.5835656E-03	-0.1465807	36. 12967	Az = 180 deg
1160.000	-1.8315621E-03	-0.1992521	31. 75100	
928.0000	5.3459797E-03	-0.1968702	27. 73532	
696.0000	3.2525361E-03	-0.3056526	29. 42298	
464.0000	2.6337963E-03	-0.5881231	26. 01520	
232.0000	1.2147897E-03	-0.7972733	16. 99524	
1392.000	-0.4080007	0.7293573	14.04557	Az = 270 deg
1160.000	-0.4243019	1.738803	11.91391	
928.0000	-4.8317187E-02	0.3796228	20.20825	
696.0000	-6.2007017E-02	0.2290223	9.183858	
464.0000	-0.1811789	0.5283466	15.89808	
232.0000	-0.2259777	-0.5519359	7.652482	

. .

•

, , ,