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NSF Grant ECS-8001763:  
Progress Report for the Period 
July, 1980 to February, 1981  

We divide this progress report into two sections, and discuss 

separately our recent work in cutting-plane theory and in nonlinear 

programming. Most of our recent research has been in the theory of 

cutting-planes. 

1. 	Recent results in cutting-plane theory. 

At the conclusion of our previous grant (NSF grant ENG7900284) in 

the spring of 1980, an unexpected and favorable development occurred, 

which is treated in our joint paper [3]. During the present grant 

period, we have been continuing that earlier research. 

To be specific, we found it possible to give a simple, inductive 

characterization of the optimal value function of the pure integer 

program in rational data: 

min cx 
(IP)

b 	
subject to 	Ax = b 

x > 
x integer 

(In this section of the report, all quantities discussed are rational). 

The value function of (IP) b 
is defined by: 

(1) z(b) = min {cxLAx = b, x > 0 and integer] 

z(b) provides the optimal value of the integer program parametrically in 

its right-hand-side b. This value function z(b) embodies much of the 

"sensitivity analysis" information of importance in the applications. 

Value functions are, moreover, directly related to cutting-planes, 

as shown in [7]. If A = [a 3 ] (cols) in (IP) b, then a valid cutting-

plane for (IP) b  is: 
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(CP) 	 1 6.x. 	z(b) 
j=1 

In (CP), the 6. are arbitrary scalars satisfying 6. > z(a 6 ) for j = 

1,..., n. Moreover, as c varies in (IP) b, we obtain all valid cutting-

planes for (IP) b  via (CP). 

We found that the value functions of pure integer programs (IP)
b 

are exactly those functions built up from linear functions (such as 

2b
1
- b 2, or b

1 
+ b

2
) by rounding them up to the nearest integer, taking 

r 
 ,on-negative multiples of the round-ups (such as 7  2b 1  - b 2
1 
 + 3 rb i # 

b 21  , where rx1  is the least integer not less than x), taking maxima 

of the previous results, and iterating this process. For example, the 

function F(b 1 , b
2
) = -b

1 
+ max

2  r
2b

1 
 - b

2 
 + 3 r b

1 
 + b 21 1 	

1b 2 
- b 1  

+ 3b
1 
 } is the value function of some pure integer program. Moreover, 

for any pure integer program for which z(0) > - co (i.e., which is not 

unbounded in value), there is a function built up from linear functions 

inductively by non-negative addition, round-up, and maxima, which agrees 

with the value function z(b) of (IP) where z(b) is defined (i.e., for 

those r.h.s. b for which (IP) is consistent). We call the functions 

which are inductively built-up in this way, Gomory functions. 

As to the domain of definition of z(b), there is another Gomory 

function H which is a consistency tester  for (IP) b, i.e.: 

(2) H(b) c 0 - (IP) b  is consistent 

A much simpler inductive characterization of value functions z(b) 

seems unlikely, since the value functions of linear programs are those 

functions inductively built-up from linear functions by (non-negative) 

addition and maxima - only the round-up operation needs to be added to 

account for the optimal value of integer programs. Moreover, the 
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relationship between the integer programming value function, and the 

value function of its linear relaxation, is that the latter is obtained 

from the former by erasing round-up operations and collecting terms. 

For example, if the function F given earlier is the value function for 

(IP) b, then the linear program (LP)
b obtained when "x integer" is 

1, deleted as a constraint of (IP) b , is F(b) = -b
1 

+ max 1. 1142b
1 

- b
2
) + 

3(b
1 
+ b 2 ), (b

2 
- b

1
) + 3b 1 } = -b

1 
+ max {4b

1 	
5 

+ 	b 2, b
2 

+ 2b
1 
 } . 

In [3], we also obtained results regarding simultaneous variation 

in the r.h.s. b and the criterion function c of (IP) b, and identified an 

inductive class of functions in which the components of an optimal 

solution to (IP)
b 

lie. See the discussion of "Integer analogues" in 

[6, pages 6-10] for an alternate perspective on these results. 

In earlier papers [1], [2] we had derived certain properties of 

optimal value functions of mixed-integer programs in rationals. These 

are more general optimizations which permit continuous as well as 

integer variables: 

min cx + dy 
(MIP) b 
	

subject to Ax + By = b 
x, y > 0 

x integer 

However, our earlier work did not characterize mixed-integer value 

functions. Nor did our earlier work provide any inductive description 

of these value functions, and for good reason: this class of functions 

is not closed under the operations of non-negative addition, or 

maximization, or the taking of round-ups. For example, the fractional 

parts function F(b 1 ) = fractional part of b l  = b l  + r b 11  is a value 

function (for minty Ix 1  - x 2  + y = b l ; x l , x 2  integer; x l , x 2 , y > Ofj, 

and G(b 1 ) = Fb 'll is a value function (for minix i  - x 2 1x, - x 2  - y = 
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b l ; x l , x 2  integer; x l , x 2 , y > 0}), and H(b i ) = -b 1  is a value 

function, but their sum K(b 1 ) = F(b i ) + G(b i ) + H(b i ) = rb i' 

can be shown not to be a value function of any mixed integer program (as 

mixed-integer programs have directional derivatives at b
1 
 = 0 by results 

in [7], and K(b 1 ) does not have such derivatives). 

While the fact that mixed-integer value functions are not 

inductively constructed is indeed the primary barrier to a treatment of 

mixed-integer sensitivity analysis, at least one other complication 

rises, for we must enlarge the class of Gomory functions. For example, 

it can be shown that the value function of the mixed integer program 

min{y 1  + y21x1  - x 2  + y 1  - y 2  = b 1 , x l , x 2  integer; x l , x2 , y i , y 2  > 0i, 

which is in fact the distance from b
1 
 to the nearest integer, is not a 

Gomory function. 

We now describe some recent results we have obtained during the 

current grant period (since July 1980), regarding value functions and 

consistency testers for (MIP) b . 

 

First, since the Gomory functions are closed under the inductive 

construction, we sought to imbed the class of value functions inside 

another inductively-closed class. If F(v) is a Gomory function and C a 

rational matrix, then F(Cb) is trivially a Gomory function; hence the 

inductively-closed class must also have this property with respect to 

matrix multiplication. It therefore seems natural to study the "pre-

multiplied constraint sets" of the form: 

(PMIP)
b 

Ax + By = Cb 
x, y 3 0 

x integer 

and their "pre-multiplied" value functions z(b) = inf{cx + dyl(PMIP) b 

 holds}. Problems of the type (PMIP)
b 
would arise in practice when, for 
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example, the r.h.s. of certain constraints depended linearly on other 

right-hand-sides. 

It is easy to show that the consistency testers and value functions 

for (PMIP)
b 
are inductively-closed classes of functions. In fact, the 

Gomory functions are precisely the class of consistency testers for 

constraints of the form (PMIP) b . In other words, G(b) is a Gomory 

function if and only if there are rational matrices A, B, and C such 

that: 

(3) G(b) < 0 - (PMIP) b  is consistent 

Furthermore, we obtained a computational procedure which determines, 

given a Gomory function G, whether or not it is a consistency tester for 

a problem (MIP) b  (i.e., whether or not we can take C = identity matrix 

in (PMIP) b, for suitable A and B). Thus the class of consistency 

testers for (MIP)
b 

have been identified within the inductively-closed 

class of functions under study. 

It follows easily from the results cited in the previous paragraph, 

that z(b) is a pre-multiplied value function if and only if its epigraph 

is detemined by a Gomory function, i.e., if and only if there is a 

Gomory function G(w, b) with: 

(4) w ' z(b) if and only if G(w, b) 	0 

Therefore the class of functions F of the form 

(5) F(b) = the least w such that G(w, b) < 0 

is exactly the class of pre-multiplied value functions, and F is a value 

function for an (MIP)
b 

precisely if G(w, b) is a consistency tester for 

(MIP) b . 

We have also established that, if the continuous part dy of the 

criterian function of (PMIP) b  actually does not occur (i.e., if d = 0), 
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then the value function z(b) is a Gomory function. Moreover, z(b) is 

always a minimum of finitely many Gomory functions. 

We desire to have an inductive class of functions, which extend the 

Gomory functions by some further closure conditions, and which are 

identical with the value functions of (PMIP ). We are now very close to 

proving, we believe, that the closure of the Gomory functions under 

infimal convolution (see [9]) gives exactly these value functions. 

A paper containing these results is currently in preparation. We 

re also working on certain computability issues in connection with 

value functions and we recently obtained a procedure for determining 

when two Gomory functions F and G are the same (i.e., F(b) --=''G(b) for 

all b). More generally, given a vector P(b) of Gomory functions, 

rational matrices A
l 
and A

2 with rational r.h.s. d 1 
and d 2, we have a 

procedure for determining whether this mixed inequality system has a 

solution: 

(6) A i kb) < d i , A2 P(b) < d 2 . 

The procedure is in the class NP, i.e., is equivalent to solving an 

integer program. 

We believe that the refinements of earlier results, as described 

above, will sharpen many results of cutting—plane theory and will, in 

particular, prove valuable as we proceed to study constraint systems 

more complex than (MIP) b  or (PMIP) b . We plan to continue the research 

as described in the grant proposal. 
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2. 	Recent results in nonlinear programming. 

We are currently preparing a paper [5] on duality in semi—infinite 

linear programming, in which we study the linear optimization 

min cx 
(SI) 
	

subject to a x 	b. , iEI 

and its formal dual program 

sup 	A.b. 
iEI 

(D) 	 subject to 	L dia l  = c 

A. 	0, iEI 

(In (SI) and (D), I 	(;) is a possibly infinite index set, and any 

summation in the dual involves only finitely non—zero vectors A = 

(A.1iEI)). 

We say that the constraint system in (SI) yields uniform LP duality 

if, for every ceRn , exactly one of these cases hold: 	(a) Both programs 

are inconsistent; (b) One program is unbounded in value, and the other 

is inconsistent; (c) Both programs are consistent, have equal finite 

values, and the value in the dual (D) is attained. When (SI) is 

consistent, clearly only cases (b) and (c) can apply. 

The "uniformity" of the definition refers to the arbitrary choice 

of criterion function ceRn . Insofar as the usual "constraint 

qualifications" refer only to the constraints, they provide sufficient 

conditions for uniform LP duality (but see [8] for a sufficient 

condition which also involves the objective function). However, we are 

now studying constraint qualifications which are necessary as well as 

sufficient. 
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In [5], we show that the following condition is both necessary and 

sufficient, for uniform LP duality in (SI), when (SI) is consistent: 

there are sets S and T in R
n+1

, which generate the same cone as that 

generated by the set -Ka i , -b i )licIiti 1(0, 1)1, where S is finite and T 

is compact, and there exists x ER n  with: 

(7a) sx = s
n+1 

 for every (s, - s
n+1

) E S; 

(7b) tx > t
n+1 

 for every (t, - t
n+1

) E T. 

We also provide several other necessary and sufficient conditions. (In 

the preceeding, the cone generated by a set is obtained only by non-

negative multiples, and hence need not be closed; but it is a 

consequence of our results that the specific cones cited above are 

closed). 

We are currently using the results on uniform duality for semi-

infinite linear programs to obtain results for semi-infinite convex 

programs. We are studying constraint sets of the form: 

(C) 	 f
h
(x) < 0, hEH 

xEL 

where each f
h is a closed, convex function and L is a closed, convex 

set. The index set H * 4 may be of arbitrary cardinality. 

We say that (C) possesses uniform convex duality  if, for all 

closed, convex functions f defined on R
n
, whenever the value 

(8) v* = infif(x)If (x) < 0, hcH and xcLj 

is finite, there exists a finite 4)C=H' C=H and non-negative scalars 

0, - hEH', satisfying: 

(9) f(x) + 

	

	A f (x) > v * for all xEL. 
h h 

In other words, (C) possesses uniform convex duality if and only if it 

exhibits no duality gap, in Lagrangean duality, for all closed, convex 

objective functions. 
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To give an idea of the kind of results which can be established, we 

shall assume that (C) is consistent, that L = R n  and that all functions 

f
h' 

hcH, are finite-valued on R n . 

We shall also introduce some terminology. Specifically, we shall 

say that the closed, convex function g is a dominated implication  of the 

functions if
h
'hail if, either g(x) is identically a non positive 

constant, or if there exists a finite set 1-1 -  , 61-11(= H such that 

(10) g(x) < max f,(x) for all xeRn  
heti" " 

Finally, a set of functions fg k IkeKj is called compact  if, given a 

sequencegk(n) of functions drawn from the set (i.e., k(n)eK for 

n = 1, 2, ...), there exists a sequence n l  < n2  < n3 .... and a k*EK such 

that 

(11) g k* (x)
g 141 .0k(n ) (x) for all xeRn  

= 	 t  

With this terminology and these assumptions, it can be shown that 

(C) possesses uniform convex duality if and only if there exist a set 

1g IkcK
12

j of dominated implications, a point x ° , and strictly 

positive scalars 3k  for kcK 1 , such that: 

(12a) K2  is finite, g k  is linear affine and g k (x° ) = 0 for kcK 2 ; 

(12b) The collection of functions 'S I(  g k IkeK i j is compact, and 

g (x ) < 0 for kEK 1 . 

(12c) The set equality holds: 
ixig

k
(x) G 0, 1(60 

1 
 ./1:

2 
 j = ixlf

h
(x) < 0, he11j 

Since any finite collection of functions is trivially compact, the 

result cited above establishes the sufficiency of a common constraint 

qualification in the case that H is finite. However, here H may be 

infinite, and necessity of these suitably-generalized conditions is 

established, up to the concept of dominated implications. 
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We were led to explore convex Lagrangean duality because of its 

connection with exact penalties, through the "sectioning" approach 

discussed in our grant proposal. In future research, we shall bring our 

results and techniques from semi-infinite programming to the study of 

these penalty methods for nonconvex optimization. 
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Summary of Work to be Performed  
from the Present through June, 1982  

By the end of the current grant period, in June of 1981, we shall 

have written the papers [1] and [3], which are currently in preparation, 

and we expect to have completed [2], for which we have extensive notes. 

During the summer 1981, we shall complete a paper on facial and 

nonfacial constraints, and related issues of finite convergence and deep 

cuts, which includes the results announced in our grant proposal and 

`urther work. Much of the latter work exists now in note form. 

In terms of active, current research, which will continue into the 

second year of the grant period (July 1981 to June 1982), we,have two 

ongoing projects: 

(1) Investigations of exact norm penalties and limiting norm penalties, 

as discussed in our grant proposal. This will extend, to the 

nonconvex case, the lagrangean results we have obtained for the 

convex case, using primarily the "sectioning" method of the grant 

proposal; 

(2) Further work on the value funtion of mixed-integer programs, with 

an emphasis on, but not limited to, computational complexity issues 

in connection with the value function. At present, very little is 

known about the computational complexity of discrete programming 

problems as the right-hand-side parameters vary. It appears likely 

some new complexity heirarchies may be needed for certain of the 
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phenomena (although not always - for example, it is not hard to 

show that, given two pure integer programs with the same dimension 

for their right-hand-sides, it is only NP-complete to determine if 

they give the same value for all r.h.s.). 

Depending upon how the work on items (1) and (2) above progresses, 

we may address the following issues during the second year of the grant 

period: 

(3) The algorithmic utilization of our results on the value functions 

of mixed-integer programs, to improve the sensitivity and ranging 

analysis features of integer programming algorithms; 

(4) The extension of our results on the value function to more complex 

constraint sets, including complementarity constraints and the 

handling of (implicit) upper bounds on the variables. This work 

will include cut-strengthening procedures for these constraint 

sets, and will involve functions of a generalized subadditive type. 

During the current year, we saw two unexpected developments that 

will aid in this research. We did not expect to obtain an explicit, 

inductive description of pure-integer value functions, nor the extensive 

information on closed-form expressions for value functions for mixed-

integer and premultiplied mixed-integer constraint sets. It has been 

clearly both necessary and worthwhile to pursue these new leads, for 

they are certain to have far-reaching consequences for practical 

implementation and for other constraint sets (as e.g. items (2), (3), 
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and (4) above). Nor did we expect to find constraint qualifications for 

convex programs which (up to transformations we can exactly describe) 

are necessary as well as sufficient. We expect this latter work to 

sharpen our results on norm penalties (item (1) above). 

Papers in Preparation 

1. "Duality in Semi-Infinite Linear Programming", with R. J. Duffin 
and L. A. Karlovitz. 

2. "Duality in Semi-Infinite Convex Programming". 

3. "Sensitivity Analysis for Mixed-integer Programs", with C. E. 
Blair. 
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Other Support  

The Principal Investigator has no other grant support, and no grant 

proposals are current or contemplated. 
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Funds Remaining at the End of the  
Current Grant Period (June 1981)  

We expect to essentially use all funds of the current grant 

increment by the end of June. There may be some small amounts remaining 

in the minor categories (e.g., travel and supplies). 
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Publication Activity,  
July 1979 to February 1981  

Papers Published  

1. "Representations of Unbounded Optimizations as Integer Programs", 
Journal on Optimization Theory and Its Applications (30), 1980, 
pp. 339-351. 

2. "Lagrange Dual Problems with Linear Constraints on the 
Multipliers", with C. E. Blair, Constructive Approaches to  
Mathematical Models, C. V. Coffman and G. Fix (eds.), Academic 
Press, 1979, pp. 137-152. 

3. "An Introduction to the Theory of Cutting-Planes", Annals of  
Discrete Mathematics (5), 1979, pp. 71-95. 

4. "A Cutting-Plane Game for Facial Disjunctive Programs", SIAM  
Journal on Control and Optimization (18), 1980, pp. 264-281. 

5. "Strengthening Cuts for Mixed-integer Programs", with E. Balas, 
European Journal of Operations Research (4), 1980, pp. 224-234. 

Papers Accepted for Publication  

1. "A Limiting Lagrangean for Infinitely-constrained Convex 
Optimization in Rn", Journal of Optimization and Theory  
Applications. 

2. "Lagrangean Functions and Affine Minorants", with R. J. Duffin, 
Mathematical Programming. 

3. "An Exact Penalty Method for Mixed-integer Programs", with C. E. 
Blair, Mathematics of Operations Research. 

4. "The Value Function of an Integer Program", with C. E. Blair, 
Mathematical Programming. 

Other Papers Submitted for Publication 

1. "The Limiting Lagrangean", with R. J. Duffin, June 1979. 

2. "A Limiting Infisup Theorem", with C. E. Blair and R. J. Duffin, 
August 1979. 

3. "Some Influences of Generalized and Ordinary Convexity in 
Disjunctive and Integer Programming", August 1980. 
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Light hiking; swimming; jogging; weight training; reading in literature, 
archaeology and history. 

Published Articles  

1. "Consistency Statements in Formal Theories", Fundamentae Mathematicae, 
LXXXII (1971), pp. 17-40. 

2. "Non-effectiveness in S. Orey's Arithematical Compactness Theorem", 
Zeithschrift f. math. Logik and Grundlagen d. Math., Bd. 17, 1971, 
pp. 285-289. 

3. "On Semi-infinite Systems of Linear Inequalities", with K. O. Kortanek, 
Israel Journal of Mathematics, vol. 10, no. 2, 1971, pp. 252-258. 

4. "A Note on Some Classical Methods in Constrained Optimization and 
Positively Bounded Jacobians", with K. O. Kortanek, Operations  
Research, vol. 15, no. 5, 1967, pp. 964-969. 

5. "Comments on Integer Hulls of Two Linear Constraints", Operations  
Research, vol. 19, no. 4, July-August 1971, pp. 1061-1069. 

6. "On an Algorithm of Gomory", with K. O. Kortanek, SIAM Journal on  
Applied Mathematics, vol. 21, no. 1, July 1971, pp. 55-59. 

7. "Canonical Cuts on the Unit Hypercube", with E. Balas, SIAM Journal 
on Applied Mathematics, vol. 23, no. 1, July 1972, pp. 61-69. 

8. "There Cannot be any Algorithm for Integer Programming with Quadratic 
Constraints", Operations Research, Programming Volume, vol. 21, 
no. 1, January-February 1973, pp. 221-224. 

9. "Redundancies in the Hilbert-Bernays Derivability Conditions for 
Godel's Second Incompleteness Theorem", Journal of Symbolic Logic, 
vol. 38, no. 3, September 1973, pp. 359-367. 
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10. "Linear Programs Dependent on a Single Parameter", Discrete Mathematics  
(6), 1973, pp. 119-140. 

11. "The Simplex Algorithm with the Pivot Rule of Maximizing Criterion 
Improvement", Discrete Mathematics (4), 1973, pp. 367-378. 

12. "An Exposition on the Constructive Decomposition of the Group of Gomory 
Cuts and Gomory's Round-off Algorithm", with K. O. Kortanek, 
Cahiers du Centre d'Etudes de Recherche Operationnelle, no. 2, 
1971, pp. 63-84. 

13. "Asymptotic Linear Programming", Operations Research (21), 1973, 
pp. 1128-1141. 

14. "On Algorithms for Discrete Problems", Discrete Mathematics (7), 1974, 
pp. 273-280. 

15. "Trivial Integer Programs Unsolvable by Branch and Bound", Mathematical  
Programming (6), 1974, pp. 105-109. 

16. "On Defining Sets of Vertices of the Hypercube by Linear Inequalities", 
Discrete Mathematics (11), 1975, pp. 119-124. 

17. "A Generalization of a Theorem of Chvatal and Gomory", pp. 313-332 in 
Nonlinear Programming•2, edited by O. L. Mangasarian, R. R. Meyer, 
and S. M. Robinson, Academic Press, New York, 1975. 

18. "Experimental Results on Hillier's Linear Search", with T. H. C. Smith, 
Mathematical Programming (9), 1975, pp. 371-376. 

19. "Experimental Logics and 2 0-Theories", Journal of Philosophical  
Logic (4), 1975, pp. 253-267. 

20. "Cutting-plane Theory: Disjunctive Methods", Annals of Discrete  
Mathematics, vol. 1, May 1977, pp. 293-330. 

21. "Cutting-planes for Complementary Constraints", SIAM Journal on Control  
and Optimization, vol. 16, no. 1, January 1978, pp. 56-62. 

22. "Bracketing Discrete Problems by Two Problems of Linear Optimization", 
in Operations Research Verfahren (Methods of Operations Research)  
XXV, 1977, pp. 205-216, Verlag Anton Hain, Meisenheim an Glen. 

23. "The Value Function of a Mixed Integer Program: I", with C. E. Blair, 
Discrete Mathematics, vol. 19, 1977, pp. 121-138. 

24. "Some Basis Theorems for Integral Monoids", Mathematics of Operations  
Research 3, 1978, pp. 145-154. 

25. "Cutting-plane Theory: Algebraic Methods:, Discrete Mathematics 23, 
1978, pp. 121-150. 

26. "A Converse for Disjunctive Constraints", with C. E. Blair, Journal of  
Optimization Theory and Its Applications, June 1978. 
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27. "Some Relaxation Methods for Linear Inequalities", Cahiers du Centre  
d'Etudes de Recherche Operationnelle, vol. 21, no. 1, 1979, 
pp. 43-53. 

28. "The Value Function of a Mixed-Integer Program: II", with C. E. Blair, 
Discrete Mathematics (25), 1979, pp. 7-19. 

29. "Minimal Inequalities", Mathematical Programming (17), 1979, pp. 1-15. 

30. "Two Lectures on the Theory of Cutting-planes", for Combinatorial  
Optimization, edited by N. Christofides et al., John Wiley and 
Sons, Ltd. 

31. "Representations of Unbounded Optimizations as Integer Programs", 
Journal on Optimization Theory and Its Applications (30), 1980, 
pp. 339-351. 

32. "Lagrange Dual Problems with Linear Constraints on the Multipliers", 
with C. E. Blair, Constructive Approaches to Mathematical Models, 
C. V. Coffman and G. Fix (eds.), Academic Press, 1979, pp. 137-152. 

33. "An Introduction to the Theory of Cutting-planes", Annals of Discrete  
Mathematics (5), 1979, pp. 71-95. 

34. "A Cutting-plane Game for Facial Disjunctive Programs", SIAM Journal on  
Control and Optimization (18), 1980, pp. 264-281. 

35. "Strengthening Cuts for Mixed Integer Programs", with E. Balas, 
European Journal of Operations Research (4), 1980, pp. 224-234. 

Book Review 

M. R. Hestenes' Optimization Theory: The Finite-dimensional Case,  
reviewer in Bulletin of the American Mathematical Society (83), 
May 1977, pp. 324-334. 

Accepted for Publication  

1. "A Limiting Lagrangean for Infinitely-constrained Convex Optimization 
in Rn", Journal of Optimization Theory and Applications. 

2. "Lagrangean Functions and Affine Minorants", with R. J. Duffin, 
Mathematical Programming. 

3. "An Exact Penalty Method for Mixed Integer Programs", with C. E. Blair, 
Mathematics of Operations Research. 

4. "The Value Function of an Integer Program", with C. E. Blair, 
Mathematical Programming. 
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Submitted for Publication 

1. "The Limiting Lagrangean", with R. J. Duffin, June 1979. 

2. "A Limiting Infisup Theorem", with C. E. Blair and R. J. Duffin, 
August 1979. 

3. "Some Influences of Generalized and Ordinary Convexity in Disjunctive 
and Integer Programming", August 1980. 

Current Research (Papers in Preparation)  

1. "Duality in Semi-infinite Linear Programming", with R. J. Duffin and 
L. A. Karlovitz. 

2. ")uality in Semi-infinite Convex Programming". 

3. "Sensitivity Analysis for Mixed Integer Programs", with C. E. Blair. 

4. "Proceedings of the Second Annual Georgia Tech Colloquium on Strategic 
Planning", C. Suzman, co-editor. 

Invited Talks 

1. "On Godel's Consistency Theorem", University of Texas at Austin, 
October 1971. 

2. "K-descriptions", Lakehead University, Thunder Bay, Ontario, Canada, 
January 1972. 

3. "Asymptotic Linear Programming", Carnegie-Mellon University, February 
1972. 

4. "Trial-and-error Logics", State University of New York at Buffalo, 
February 1973. 

5. "On a Theorem of Chvatal and Gomory", SIGMAP-UW Symposium on Nonlinear 
Programming, University of Wisconsin, April 1974. 

6. "Proof Theory and Hilbert's Finitism", a series of nine lectures, 
Universita di Siena, Instituto di Matematica, Siena, Italy, May 
1974. 

7. "Cutting-planes for Relaxations of Integer Programs", ORSA/TIMS meeting 
in San Juan, P. R., October 1974. 

8. "Some Results and Constructions of Cutting-plane Theory", NSF Regional 
Conference on Convex Polytypes and Mathematical Programming, 
Tuscaloosa, Alabama, June 9-13, 1975. 

9. "Algebraic Methods, Disjunctive Methods", for the Workshop in Integer 
Programming, Bonn, Germany, September 8-11, 1975. 
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10. "Completeness Theorems for Cutting-planes", seminar at the University of 
North Carolina, November 13, 1975. 

11. "Minimal Inequalities", ORSA/TIMS meeting in Las Vegas, November 17-19, 
1975. 

12. "Completeness Results in Cutting-plane Theory", Centre de Recherches 
Mathematiques, Montreal, January 1976. 

13. "Cutting-planes for Complementary Constraints", IX International 
Symposium on Mathematical Programming, Budapest, August 1976. 

14. "Bracketing Discrete Problems by Two Problems of Linear Optimization", 
Symposium on Operations Research, Heidelberg, September 1976. 

15. "Treeless Searches", ORSA/TIMS Joint National Meeting (joint with C. E. 
Blair), Miami Beach, November 1976. 

16. "The Complexity of Certain Linear and Integer Programming Algorithms", 
University of Bonn, February 1977. 

17. "Subadditivity and Value Functions of Mixed-Integer Programs", 
University of Cologne, May 1977. 

18. "Linear Programs Dependent on a Single Parameter", University of Aachen, 
May 1977. 

19. "An Introduction to the Theory of Cutting-planes", Summer School on 
Combinatorial Optimization at Sogesta, in Urbino, Italy, June 1977. 

20. "An Introduction to the Theory of Cutting-planes", NATO Advanced 
Research Institute on Discrete Optimization and Systems 
Applications, Vancouver, August 1977. 

21. "Cutting-planes and Cutting-plane Algorithms for Complementary 
Constraints", International Symposium on Extremal Methods and 
Systems Analysis, Austin, September 1977. 

22. "A Cutting-plane Game and Its Algorithms", Georgia Institute of 
Technology, Atlanta, February 1978. 

23. "A Limiting Lagrangean for Infinitely Constrained Convex Optimization 
in Re", at Constructive Approaches to Mathematical Models, 
Pittsburgh, July 1978. 

24. "Representations of Unbounded Optimizations as Integer Programs", ORS?,/ 
TIMS meeting in New Orleans, April 30 - May 2, 1979. 

25. "Recent Results in Nonlinear and Integer Programming", at the meeting 
on Mathematical Programming, at Mathematisches Forschungsinstitut 
in Obersolfach, Germany, May 6-12, 1979. 

26. "A Limiting Infisup Theorem", at the Tenth International Symposium on 
Mathematical Programming, Montreal, August 27-31, 1979. 
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27. "Nonlinear Optimization Treated by Linear Inequalities", ORSA/TIMS 
meeting in Milwaukee, October 15-17, 1979. 

28. "Sensitivity Analysis for Integer Programs", ORSA/TIMS National Meeting 
at Colorado Springs, November 10-12, 1980. 

29. "Integer Analogues", Mathematical Sciences Department, University of 
Delaware, November 1980. 

30. "Sensitivity Analysis for Mixed Integer Programs", CORS/ORSA/TIMS Joint 
National Meeting, Toronto, May 3-6, 1981. 
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Robert G. Jeroslow 

NSF Grant ECS-8001763: 
Progress Report for the Period  
March, 1981 to February, 1982  

This section is a continuation of our "Progress Report for the Period 

July, 1980 to February, 1981," which we sent to NSF last year at this time. 

The research of the grant is on schedule with the section, "Summary of 

Work to be Performed from the Present through June, 1982," of our earlier 

report. Of the work cited there, the promised references 1., 2., and 3. 

have been written and submitted to publication. These occur below as items 

1., 2., and 3. of "Submitted for Publication," in our section below, 

"Publication Activity, 1980 to Date." The paper on facial and nonfacial 

constraints is item 4. of "Submitted for Publication." The research item 

(2) under "ongoing projects," on the computational complexity of value 

function questions, is currently being written up. Following that, research 

item (1), on norm penalties and limiting norm penalties, will be written. 

We anticipate the completion of all this work on time, by June 1982. 

In addition, a new direction has opened up, in our modelling work joint 

with J. Lowe (see item 5. of "Submitted for Publication"). 

The remainder of this progress report is divided into five subsections, 

A through F, as follows. 

In subsections A and B, we continue our discussions of some research 

which was current at the time of our earlier progress report. Basically, 

the final results went furthur than what we knew at the time of that report, 
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and we briefly summarize these extensions. Subsections A and B assume 

familiarity with our earlier progress report. 

In sections C through F, we discuss more recent developments. Some of 

these new results were known in part earlier, but most were not. 

A. Improvements of February 1981 Results on Uniform Convex Duality  

Consider the set of constraints: 

(C) 
	

fh (x) < 0 , h t H 

x t L 

where each f
h 

is a closed, convex function and L is a closed, convex set; 

each f
h' 

h t H, is defined on L; and there is a point x
o 

in the relative 

interior of L with f
h
(x

o
) < 0 for h t H. The index set H * p may be of 

arbitrary cardinality. 

We say that (C) possesses uniform convex duality (u.c.d.), if these 

constraints exhibit no duality gap, in finite Lagrangian duality, for all 

closed, convex objective functions. Equivalently, (C) possesses u.c.d. if, 

whenever the program value 

(1) v* = inf if(x) I fh (x) < 0, h E  H) 

is finite, there exists a finite subset 11 (  of H, and scalars A
h 	

0 for 

h f H', with: 

(2) f(x) + E Afh (x) > v* for all x e L. 
heH' 

In our earlier progress report, we provided necessary and sufficient 

conditions for (C) to possess ti.c.d. when L = R
n
. This case requires, in 

particular, that all fh , h E H, are finite-valued on R
n
. In the process of 
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completing this research, we were able to completely treat the case of a 

general closed, convex set L. The final result is very much like the one 

given for L = Rn , and we refer the reader to our paper (which is Appendix 

A). 

B. Improvements in February 1981 Results on the Value functions of Mixed  

Integer Programs  

In our previous progress report, we were studying the value functions 

of mixed integer programs: 

(3) inf cx + dy 
subject to Ax + By = b 

x,y > 0 and x integer 

(We always assume "rational data" - i.e. A, B, c, d, b rational). We were 

encountering difficulties, in part because the class of such value functions 

is not closed under the inductive formation operations of addition or 

maximum. We had, therefore, imbedded the problem (3) into the larger class 

of problems 

(4) min cx + dy 
subject to Ax + By = Cb 

x,y ) 0 and x integer 

of "premultiplied constraint sets." Problems of the type (4) arise if 

there is even one material balance equation, with right-hand-side zero. We 

had ascertained that the class of value functions for (4) is closed under 

addition and maximum. 
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(The term "premultiplied," refers to the rational matrix C which 

premultiplies b. There is no generality in value functions for 

premultiplied pure integer programs - these are the same as value functions 

for ordinary integer programs. Similarly, there is no generality in 

premultiplied linear programs. However, there is significant generality in 

(4) beyond (3), i.e. when both continuous and discrete variables are 

present). 

When we reported last, we had a conjecture on the value functions for 

(4), and it is correct. Specifically, it is true, that the class of value 

functions for (4) consists of the infimal convolution of Gomory functions 

restricted to the domain of definition of the value function. (We had 

earlier determined, that this domain of definition consists of those b for 

which an associated Gomory function is nonpositive). Once again, concepts 

from convexity - specifically, infimal convolution - have been useful in 

developing the algebraic theory of discrete programs. 

Our proof of this result revealed a second characterization of the 

value functions of (4). Specifically, this class of functions (where 

defined) is identical to those finite minima of Gomory functions, which 

yield a subadditive minimum. 

We have also made progress on identifying the value functions of 

ordinary mixed-integer programs (3) within the class of premultiplied ones 

(4). Specifically, we have provided a constructive proceedure such that, 

given a Gomory function G, it determines if there are rational matrices A 

and B with: 
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For some x,y > 0 with x integer <—> G(b) < 0 
(5) Ax + By = b 

for all b. 

In the language of our previous report, the proceedure determines if G 

is the "consistency tester" for some mixed integer program (3). From 

earlier results, Gomory functions are excactly the consistency testers for 

some program (4). By combining this proceedure with our earlier 

characterization of value functions for (4), we can obtain a 

characterization of the value functions for (3) within the class of value 

functions for (4). 

We have also determined an upper bound on the complexity of our 

proceedure — it is no more difficult than solving one pure integer program. 

This work is reported in Appendix B. 

C. New Research on Semi—infinite Duals  

In the usual semi—infinite dual, we consider the optimization 

supE 	b. 
i=1 Ai 

b. 

(6) subject to E 11  a. = c 

	

A-) 0 	for 1=1, 2, ... 

where all 1D. t R, a i ( Rn , and there is the further restriction: 

(7) "At most finitely many A i  are positive" 
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Our colleague Professor Dennis F. Karney brought to our attention an 

application of (6) in which (7) cold no longer be assumed. In joint 

research, we determined that (7) can be entirely dropped, in favor of the 

hypothesis that all sums indicated converge: the optimal value of (6) does 

not change (nor does attainment of this value). 

We are currently extending this result to more complex constraint sets, 

and also weakening the hypothesis of convergence. 

D. Extensions of Balas' Theorem  

In Appendix C, we report on several extensions of a theorem due to 

Balas, which provides a characterization of the convex hull of feasible 

solutions to large classes of programming problems. 

t 
To present this result, let P be a convex set; let I = U I. be a 

j=1 

unionofdisjoirafihiteindexsetsI.(and t may be finite or infinite), let 

Q i  for i e I be a convex set, and define inductively: 

(8a) PO 
= P 

(8b) P. = ciconv ( U (P ; l  rl Q i )) 
3 	 ifI. 	' 

3 

(8c) P,= 	P. 	if t = 
j=1 

In (8b), ciconv(S) denotes the closure of the convex hull conv(S) of a set 

S It11 .1,etP"..bedefinedasisP.,but with "cony -  replacing "ciconv" in 

(8b). 
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Balas showed the following in I1J: if P is a polytope, t is finite, and 

each Q.
1 
 for i t I is a face of P, then P' is the convex hull conv(F) of the 

feasible points F, where: 

(9) 	F = tx(P 1 for each j=1,...,t there is an i ( I, with x f Q i ) 

This result applies to pure zero-one integer programs and bounded 

generalized linear complementarity problems. With furthur analysis, it can 

be shown to yield the "deduction rule" of Blair 121 and generalizations of 

that rule 141, and the principle involved can be used to obtain finite 

primal or dual cutting-plane algorithms for the problems cited 01. 

We drop the hypotheses of boundedness and polyhedrality, and assuming 

only that each P n Q
i is an extreme subset of P, we verify Balas' result 

that P" = conv(F). Also, when P is closed and bounded, P
t 

= P". 

Actually, when P is not bounded, we feel that natural interest lies in 

P
t
, since the convex span alone may not be closed. Accordingly, we explore 

the set P. defined above - rather than the sets 11 :' originally defined - and 

for P and Q.
1 
 polyhedral, we achieve a characterization of P

t 
when all Pr) Q. 

1 

are faces of P (see Theorem 3.4 of Appendix C). Essentially, we determine 

that P
t 
= ciconv(F) + K, where K is a closed cone of recession directions, 

which is precisely characterized. 

We also depart entirely from the faciality hypothesis, and provide 

results on P
t 

for this very general case. (The case is relevant to general 

integer programming, which is not facial). Essentially, we show that 

"convergence -  to the convex hull conv(F) of feasible points occurs when P is 
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compact and convex and all Q. are closed, i.e. that Pco = conv(F). On the 

other hand, convergence may fail for any finite j (i.e. all P. 	conv(F) can 
J f 

occur). 

In contrast, "finite convergence" does occur when F = 0, and the 

PrevioushYPotheseshold,forthenwehaveP.=9 for large enough j. This 
J 

convergence is then applied to interpret the finite convergence properties 

of certain pure cutting-plane algorithms. 

E. The Computational Complexity of Some Questions of Parametric Programming  

In our forthcoming joint paper 13J, we begin the study of the 

computational complexity of certain question concerning value functions. 

For example: 

Data: Matrices A, A' and vectors c, c' (rational) 

Question: Does the following hold for all right-hand-size b: 

min{cx 1 Ax = b, x > 0} = 

(10) mintc"x" I A - x = b, x" > 0}. 

Using Khachian's result, it is easy to show that the question posed in (10) 

is solvable in polynomial time, i.e. is no harder than its nonparametric 

counterpart. However, it is less obvious that this question "jumps" in 

complexity: 

Data: Matrices A, A', C and vectors c, c'. 

Question: Does the following hold for all right-hand-sides b: 

min {cx I Ax = Cb, x ) 0} 

(11) = min ic'x' I A'x = b, x" > 0 

In fact, the question posed in (11) is NP-complete. 
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In (10), if the variables x and x -  are constrained to be integer, the 

question becomes NP-complete, again no harder than its non-parametric 

counterpart. An alternative way of asking parametric integer programming 

questions is by use of Gomory functions, since (by our earlier work on 

function classes) these provide the value functions for pure integer 

programs. Indeed we can show that the following question is NP-complete: 

Data: Gomory functions F and G 

Question: Does there exist a vector b 

(12) 	with F(b) $ G(b)? 

Actually, NP-completeness holds if F and G are only Chvatal functions. 

Nevertheless, it now seems that certain other related questions of 

parametric integer programming will be harder than NP. Indeed, it is not 

hard to show that merely writing the optimum to a subadditive dual can 

require exponential space - an interesting counterpart to examples where 

subadditive duality is exponentially faster than branch-and-bound. We plan 

to focus on the -harder-  parametric questions in our next paper on this 

topic. 

F. Modelling with Integer Variables  

Appendix D reports some joint work, where progress was unexpectedly 

made on basic questions, of modelling real-world problems by the use of 

integer variables. 
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R. R. Meyer initiated the study of such modelling, originally in terms 

of the existence or nonexistence of a modelling, and more recently, with 

emphasis on "relaxation optimal" modellings. "Relaxation optimal" modelling 

are the function version of what we call "sharp -  modellings; our treatment 

includes sets and functions. 	We have recovered his results, both in the 

case of a general-integer and a bounded-integer modelling, and extended 

these from functions of one variables to those of several variables. 

Similarly, we have extended the results on "sharp" modellings, by showing 

that these always exist, and - for bounded-integer modellings - by giving 

two general forms of a "sharp" modellings. When applied in standard, known 

cases, as in seperable programming, we recover the most efficient modellings 

known. In other cases, we find modellings not known to exist before, or new 

modellings with superior properties. 

We illustrate these points by three examples. 

First, consider the case of two products or transmission lines in a 

network, at quantities xl  and x2 , which have both individual fixed costs f 1 

and f2, and a joint fixed cost fb : 

(13) 	g(xl , x2 ) 

0 , if x i  = x 2  = 0; 
. 	fl , if 0 < x l  4 M 1 , x 2  = 0; 

f 2 , if x i  = 0, 	0 < x2  4 M2 ; 
fb , if 0 < x l  4 M 1 , 0 < x 2  4 M 2 . 

The function g describes the fixed cost in terms of x 1 
and x

2
. (This 

example is drawn from Section 4.4, pp. 38-42, of Appendix D). 

A joint fixed charge, as in (13), can arise when two products share 

common facilities. If the two products are made completely independently, 

then f
b 

= f
l 

+ f2, and actually (13) is the sum of two one-dimensioanl fixed 
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charges. If the products share a facility, and one can favorably employ 

some of the "set up" for the other, we have fb  < fl  + f2 . If they share a 

facility but interact unfavorably (e.g. some machines have to be cleaned 

after one product is run, in order to run the second), then we can have 

fb > fl 
	f2. 

In order for any integer representation (in rationals) of the joint 

fixed charge (13) to exist, it is necessary that: 

(14) 	0 4 f 	0 4 f2 , max {f 1, f2 < fb. 

Once (14) holds, actually a representation with zero-one variables is 

possible, and our methods supply two such representations, one of which is 

worked in detail in Appendix D. (Also, the upper bounds M 1  and M2  in (13) 

are needed for a modelling to exist in rationals; this is a result of 

Meyer). 

The modellings provided by our methods are "sharp," i.e., their linear 

relaxation gives the convex span of the epigraph of g, and no modelling can 

do better than this. This linear relaxation is used by branch-and-bound 

algorithms. 

By working out the details of this model, we can obtain simplifications 

of our general results for this case, which aids in implementation. As one 

example of such simplifications, consider the case f
l 

= f
2 

= f
b 

of "two set- 

ups for the price of one." Just by simple algebraic manipulation, we learn 
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that the linear relaxation is equal to the best (maximum) of the two 

independent relaxations, with an explicit formula that can be inserted in 

the formulation, if desired. 

Moreover, an interesting insight arises: when f b 
> f

l 
+ f2, then the 

linear relaxation is that of independent fixed costs f l  and f 2 , in the range 

of (x 1 , x
2
) with x1/M1 + x 2

/M
2 

< 1. The fact that the joint fixed cost f b 

does not show up in the linear relaxation of the problem for (x l ,x 2 ) in this 

range, indicates that branch-and-bound will not pick up very much useful 

information on such problems until deep into the tree, when many variables 

are arbitrated (set to values). I.e., branch-and-bound will have particular 

difficulty in solving such problems - beyond the normal difficulty with 

independent fixed charges. However, this kind of difficulty does not arise 

if fb < fl 

For our second example, we consider the fixed benefit function: 

0 , if x = 0 
(15) 	h(x) = 

-b , if x 	L 

where b, L > 0 are positive (rationals). For example, a vendor may offer a 

one-time cost reduction of b > 0 if at least L units are purchased. (More 

complex vendor offers result in more complex modellings). The benefit b is 

entered negatively (-b) since our framework is minimization. 

As regards the existence of modellings, the function of (15) does have 

an integer modelling, in fact one with a zero-one variable (this can be seen 

either by direct construction, or as a direct consequence of our work). 
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L > 0 is necessary for a modelling; i.e. there is no modelling for L = O. 

On the other hand, an upper bound on x is not needed to have a modelling. 

As regards efficient representations, our theory provides one which is 

sharp and compact. Next, a valuable insight also is available, by 

comparison of the convex span of the epigraph of h in (15) with that of any 

one-variable fixed charge. The convex span for (15) agrees with h for x = 0 

and x > L, and differs only in the interval 0 < x < L, where L is usually 

small. In contrast, the convex span for a fixed charge has error, usually 

substantial error, except at zero and the upper bound. Therefore, branch-

and-bound will far more easily solve fixed benefit problems, than fixed 

charge problems. 

For our third example, we have explored the conventional modelling of 

situations where some one of several set of linear constraints is to hold. 

This is a common instance of modelling a set (rather than a function), and 

we compared the modelling from our theory with the conventional one. The 

new modelling is about twice the size, involving more variables and 

constraints; however, the new modelling is sharp, and the previous is not 

sharp and its linear relaxation itroduces large errors. The conventional 

modelling, while a correct integer modelling, can be close to useless in 

branch-and-bound codes. The new modelling is the best which can be 

achieved. 

The examples above are only illustrations of our results, for Appendix 

D contains complete characterizations of integer and bounded integer 

modelling. 
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Technical Description of Project and Results  

During the grant period, we have pursued research activities in these 

four topics: semi-infinite programming (items 2, 3 and 4 of "Papers Written 

Under This Grant," page 3 above); value functions (items 1, 5, 7 and 12); 

computational complexity (items 9 and 10); and modelling problems as mixed-

integer programs (items 6, 8 and 11). 

In this Technical Description we will summarize our work in these four 

topics. We shall recapitulate main results in specific papers, add general 

comments and perspectives, and relate some more recent work which was in 

progress as of the end of the grant period (December 1983) and which 

continues to date. 

In the last sixteen to eighteen months, and primarily in the last eight 

months, we have experienced several experimental successes using the new 

techniques for modelling with integer variables. At the same time, we have 

been reading in the literature on decision support, including the techniques 

in artificial intelligence, and see approaches to combining our modelling 

work with the other approaches. We will relate some of these ideas in 

Section IV below, when we discuss modelling. 

It now seems likely that methodological work on decision support will 

become a major theme for my work in the next few years, although it was not 

anticipated as such in my grant proposal of Fall 1982. 

I. Semi-infinite Programming  

My work on semi-infinite programming has involved sharpening some basic 

knowledge about duality in the linear case (item 2 of "Papers Written Under 

This Grant) and about the dual for the linear case (item 4), as well as a 



5 

substantively new type of result on duality in the convex case (item 3). We 

also have generalized the linear primal-dual pair in our personal notes (see 

below), but this work has been temporarily put aside. 

In "Duality in Semi-infinite Linear Programming" (item 2), we provide a 

basic principle for semi-infinite linear programming. We used this 

principle heavily in item 3. 

The paper is concerned with conditions, which are necessary as well as 

sufficient, for there to be no duality gap between a consistent semi-

infinite linear program 

inf cx 	 max E A.b. 
icI 1 

i 
s.t. a x ) b i , idI 	and its dual 

s.t. 	E ka
i 

i 	= c 
i cI 

A. > 0, idI 
1 

01A. > 0} is finite 
i 
n 

for all objective functions c = (c 1  ,..., cn ) c R . In the above, the 

i 	n 
a 6  R , the Ai  and b i  are scalars, and I is an index set of arbitrary 

cardinality. (Of course, when III is finite, the above becomes a linear 

program and its dual). 

The need for special hypotheses to insure no duality gap (for III 

infinite) has been known for some time (Duffin and Karlovitz [19651; 

Charnes, Cooper and Kortanek [1965]. The content of this paper is that a 

small extension of commonly-used sufficient conditions are also necessary, 

when all possible objective functions are of concern. 
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The semi-infinite programming format has been used as one approach 

toward convex optimization in numerous theoretical and numerical settings. 

The volume in which 2. appear illustrates this and discusses applications. 

In "Cluster Sets of Vector Series," we explored whether or not the 

finiteness restriction in the dual semi-infinite program, on the set 

{iEI I A. > 0) of positive multipliers, was really significant. I.e., do 
1 

these two programs have the same value?: 

max E A.b. 	 max E A.b. 

	

i el 1 	 i eI 1 1  
i 

s.t. 	E A.j a = c 	 and 	(Do.) 	s. t. 	E A.a = c 

	

ieI 	 ieI 

A. = 0, ieI 1 	' 

{i1A.
1 
 > 0} is finite 

In fact, they do, and so the finiteness restriction is not of substance. 

There is some earlier related work in which the finiteness restriction 

is relaxed - see, for example, the discussion of "ideal convexity" in Holmes 

[1975] - but then other irrelevant conditions are added (which often amount 

to E A. < + c°). Moreover, we did our analysis of this question in a much 
ieI 1  

broader setting, that of "semi-convergence" of a formal series E d ia l to a 
i eI 

set over an index set I with a net structure. For I = {1,2,3,...) the 

integers with the usual net structure, we would say that E d ia l converges 
i eI 

to S if, for every integer n and e > 0, there is m > n with 1 E dia l 	vl< e 
i=1 

for some veS. The case S = {c) of a singleton set gave our results on (D) 

and (D ). Note that, with this definition of semi-convergence, the sum of 

ts.losemi-convergentrmiltipliers{A.licI} need not be semi-convergent, so a 
1 

direct line of argument is needed. 
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Our main result in 4 states this, for S a compact set: if there exists 

aformalseriesE),a i (all X. ) 0) which semi-converges to S, then there l 
ieI 

are some other multipliers {Xl 1 iEF} for some finite subset F C: 1 such that 

E dia l  E S. As mentioned in 4, the result is still true if S = C x P where .  
icF 

C is compact and P a polyhedron, and the result is not true for arbitrary 

sets S. 

In "Uniform Duality in Semi-infinite Convex Optimization" (item 3), we 

are concerned with the consistent semi-infinite program: 

(CP) 	 min f
0 
 (x) 

s.t. f
h
(x) < 0, 	hcH 

xEK 

where H is an index set of finite or of infinite cardinality, fh  for 

hE{0} U  H is a closed convex function, and K is a closed convex set, and 

some other mild hypotheses (which amount simply to consistency, if K=R n ) are 

made which are weaker than the "Slater point" condition. 

The Lagrangean dual for (CP) we consider is: 

(LD) 	 sup inf[fo (x) + E Vh (x)} 
xcA xeK 	hell 

where A = {A ) 0 1 X. is positive only for finitely many heH}, and the paper 

focuses on necessary and sufficient conditions for there to be no gap in 

duality between (CP) and (LD) for all convex objectives f 0 (x) on Rn . The 

lack of a gap for all f 0  is called uniform convex duality. 

To illustrate the idea of the main result, we consider the case that 

n 0 	 0 
K = R and there is a Slater point (i.e. an x with f h (x ) < 0 for all hcH), 

although such assumptions are not made in the main result. 
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A set of functions {g I pa} is called a positive derivant for the 

constraints of (CP) if two conditions hold: (i) The set of feasible 

solutions is the same (i.e. g
p
(x) < 0 for all p E P if f

h
(x) < 0 for all 

h e H); and (ii) For each function g = g p , p e P, either 

g(x) 4 0 for all x c Rn  

or 

g(x) 4 max fh (x) 
	

for all x e R
n

, 

where in (ii.2) H' is some finite subset of H. 

A set of functions {II I p c P} is called compact if it is compact in 

the topology of pointwise convergence. I.e. it is compact if, for any 

sequence of functions h
pl

,  h
p2, 

... drawn from {h I p e 13 1, there is an 

index p*cP and a subsequence h
pn(1), hpn(2) 	

with: 

(C) 	 hp * (x) = lim h pn(k) (x) 	for all x c R
n 

k+-1-co 

Any finite set of functions (IPI finite) is clearly compact. 

Here is our necessary and sufficient condition for uniform convex 

duality in the case considered (K=R , a Slater point exists): there is a 

positive derivant of closed, convex functions {g I p e P} for the 

constraints of (CP), a point x c R , and positive scalars 8 > 0 for p c P, 

with {8PgP  IpcP} compact. Also we show that, when uniform convex duality 

holds, the positive derivant can be taken with all g , p E P, linear affine. 

For IHI finite in this case, it is a basic result of convex 

optimization that uniform convex duality holds. That result follows 

directly from our main result (take P = H, g p =fh'  x = x0 , and all 8 = 1). 

The essential novelty here is that a compactness condition on functions 

replaces finiteness in the case of IHI infinite, and for general K and 
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simple consistency (i.e. no Slater point) we have necessary, as well as 

sufficient, hypotheses. The essential complication for IHI infinite, when 

necessary and sufficient conditions are desired, is that we have to consider 

possible "problem reformulations" - i.e. positive derivants - and this is a 

somewhat technical idea. 

Examples are given in 3. to illustrate the need for both clauses ii.1) 

and ii.2) above. Moreover, the precise results become further obscured by 

technical details in the case of a general closed, convex set K. See 3. for 

details. 

In our notes, we have explored a "symmetric dual" for semi-infinite 

linear programming. Here we are embarked upon "remedying" the fact that the 

usual primal-dual pair are not symmetric (i.e. the dual of the dual is not 

even defined - so certainly it cannot be the primal!) Our main decision 

thus far is that the semi-infinite dual is the more fundamental object. We 

have sought symmetry by generalizing the dual. 

Let two closed, convex sets U land V be explicitly given 

n 
representations U = {x 6 II I a x 	 I} and V = {x 6 Rn I aix < f3.,j 6J} 

j 	n 
for index sets I and J (with a , a ell and all b 1-, 13j  6R). The U-V 

program involves the V-representation, and it is: 

(U-V ) 

inf E O.S. 
j6J J 

s.t. 	E 0. a. E U 
j eJ J J 

O. ) 0, jeJ 

{j6J10. > 0} is finite 



Its dual is the V-U program, which involves the U-representation, and is: 

(V-U) 

sup E A.b. 
ia 1 

 1 

s.t. 	E A.
1
a c V 

A. > 0, isI 
1 

til A. > 01 is finite 
1 

The dual of the U-V program is then the V-U program, and conversely. 

For V = {c}, with explicit representation V = {x c Rn Ixk  < c k  and 

-x
k 

< -c
k 

for k=1 ,..., n} we recover the usual semi-infinite primal in 

(U-V). In fact, if either one of the index sets I or J are finite, there 

are easy algebraic manipulations which reduce the dual pair above to the 

usual linear semi-infinite study. However, for general (i.e. non- 

polyhedral) U and V, this appears to be a new construction. It can be shown 

that the optimal value of (V-U) never exceeds that of (U-V). 

To date, we have a number of results on equality of optimal values in 

(U-V) and (V-U) which tend to confirm the appropriateness of our 

construction, but furthur work is needed for full confirmation. 

II. Value Functions  

During the previous grant period, we explored several issues regarding 

the optimal value function z(b) = min {cxlAx = b, x > 0 and integer} of a 

pure integer program in Blair and Jeroslow - [1982]. The work continues 

into this grant and to the present. The work reported here is concerned 

10 
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primarily with the issue of characterizing the class of functions involved 

by an inductive definition insofar as possible. Our most recent work (now 

underway) is directly at practical implementation of right-hand-side 

sensitivity analysis in mixed-integer programming; however, some theoretical 

issues also remain. 

In "Some Influences of Generalized and Ordinary Convexity in 

Disjunctive and Integer Programming," which is item 1 of "Papers Written 

Under This Grant" (page 3 above), we are concerned with an analogy between 

linear and integer programming. This analogy is primarily in terms of 

results on value functions and duality, and the intuitive process behind 

much of the work in Blair and Jeroslow [1982]. The process of analogy has 

been since carried furthur; see below. 

Recall that a Chvatal function is obtained , from starting with linear 

functions, and then iteratively applying the process of rounding-up to the 

nearest integer ([ x ] = round-up of x) and taking nonnegative combinations. 

For example, f(b i , b 2 ) = [ 2 [ b 1  - 3b 2  ] + [ b2  ] ] + b 1  - b 2  is a Chvatal 

function, and it has a carrier f(b) = 2(b 1  - 3b2 ) + b2  + b l 	b2  = 3b 1  - 

6b
2 
obtained by erasing round-ups. 	The carrier is of course a linear 

function, and there will be a bound k 0 such that 0 4 T(b) - f(b) 4 k for 

all b = (b 1 	bin ) (here m = 2). A Chvatal function is a discrete  

analogue of a linear function. It is a "linear function with bumps," but 

the "bumps" must be strategically placed to make what follows be valid. 

Now just as the ordinary linear program 
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min cx 	 max Alp 

s.t. Ax = b 	has the dual 	s.t. Aa
(j) 	c. 

3 

x> 0 	 j= 1 	n 

where c = (c 1 	cn) and A = [a
(j)

] (cols), the linear integer program 

min cx 	 max f(b) 

s.t. Ax = b 	has the dual 	s.t. f(a (j) ) < c. 
J 

x> 0 	 j= 1 	n 

x integer 

with f Chvatal. When the integer program is consistent, it has the same 

value as its dual. Just as the ordinary linear program has a value function 

F(b) = min {cx1Ax = b, x > 0} which is a maximum of linear functions, the 

linear integer program has a value function G(b) = min {cxlAx = b, x > 0, x 

integer} which is a maximum of Chvatal functions, called a Gomory function. 

There are other 'integer analogues' of linear programming results given 

in 1., and also some limitations of the analogue process are cited there. 

Our interest in the analogue process, is that it provides an intuitive way 

of conjecturing results, although it does not provide proofs and some 

analogues must be refined in order to be valid. We have been interested in 

how far the analogy process can be taken, for we believe that pursuing it 

furthur will lead to new insights about mixed-integer programs. 

Here is one instance where the analogy process encountered a "snag" in 

terms of some unexpected technical conditions. If F(b) is a polyhedral 



function (a maximum of linear forms in b), there will be a matrix A such 

that: 

Ax = b, x 	0 	<--> 	F(b) 4 0 

is consistent. 

However, the 'integer analogue' of this result had the technical condition 

that b be an integer vector. I.e., if G is a Gomory function then there is 

a matrix A such that: 

	

Ax = b, x 0 integer 	<--> 	G(b) < 0 and b e Zm  

is consistent. 

When we dropped the integrality condition "be:en" we found that it 

described certain mixed-integer constraint sets Ax + By = Cb. I.e., if G is 

a Gomory function then there are rational matrices A, B, C such that 

Ax + By = Cb; 

	

x, y > 0; x integer 	<--> 	G(b) < 0 

is consistent. 

A converse also holds: for rational A, B, and C a Gomory function G exists 

with the above bi-conditional satisfied. This suggests the study of such 

"premultiplied mixed integer programs" or PHIP's - the adjective 

premultiplied" noting the occurrence of the matrix C. Unlike pure integer 

13 

programming or ordinary linear program, a (generally noninvertible) matric C 
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must occur. Such constraints are familiar from practice: generally the row 

of a material balance equation must have a right-hand-side of zero, although 

other r.h.s. may be permitted to vary. 

At the same time, in trying to inductively characterize the optimal 

value functions z(b) = min{cx + dy 1 Ax + By = b; x, y > 0; integer} of 

mixed-integer programs we had encountered the difficulty that this class of 

functions is not closed under any of the operations involved in Gomory 

functions - the class is not closed under addition, or maximum, or the 

taking of integer round-ups. For example, the distance to the nearest 

integer is an MIP value function 

z(b) = min{y ].  + y 2  I x l  - x 2  + y1  - y 2  = b; x l , x 2 , y l , y 2  ) 0; x l  and x 2 

 integer} but its round-up [ z(b) ], which is zero for b e Z and one for 

b 4 Z, can easily be seen not to be the value function of a mixed-integer 

program (as value functions have finite directional derivatives at the 

origin). Of course, [ z(b) ] is the value function of the PMIP 

min {x
3 I x 3 	Y 1 	Y2  > 0 , x l  - x 2  + Y 1  - y2 = b; x l , x 2 ) x 3 ,  Y 1 ,  

y 2  ) 0; x l , x 2 , x3  integer} in which one r.h.s. is to be fixed at zero. 

These facts suggested to us that, instead of seeking an inductive 

structure for MIP value functions, we seek one for PMIP value functions. 

Also, we knew that we must look in a larger class of functions than the 

Gomory functions, since the distance function z(b) above is not Gomory (a 

nontrivial fact). Nevertheless, we did not seem to need a function class 

which was far in distance from Gomory functions. 

Since the analogy process with just linear programs appeared to have 

ran out, we sought analogies with more general convex programs. In convex 

programming the infimal convolution operation occurs, and indeed it did turn 
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out to be the case that the infimal convolution of Gomory functions 

provides precisely the class of value functions of PMIP's (including the 

value function G(b) = — co which is identically - co), and issues regarding 

the domain of definition can be treated by Gomory functions (see 7. for 

precise results). 

We call these infimal convolutions "mixed-Gomory functions," and they 

are an inductively-defined class: i.e., the infimal convolution of mixed-

Gomory functions is mixed-Gomory. Also, in terms of distance, these 

functions are "nearly Gomory functions." I.e., if G is mixed Gomory and 

G(b) is finite for some b (i.e. we rule out only the G(b) = - ce function), 

then for any integer D there exists a Gomory function H(b) such that 

0 < H(b) - G(b) < 1/121 for all b. 

While our results do provide a characterization of PMIP value 

functions, they are not entirely satisfactory from the perspective of the 

analogue process. For example, they do not given an "adequate" analogue 

dual for a PMIP or an MIP, since mixed-Gomory functions are not "linear with 

bumps": they can get very far from any linear "approximation." 

In the pure integer case, Chvatal functions, which can be thought of as 

"subgradients" to Gomory functions, provide an adequate dual. What serves 

as "subgradients" to mixed-Gomory functions? - as judged by duality, for 

example. While this question is admittedly imprecise, it illustrates how 

the analogy process continues to guide our work in value funtions. 

We also found a second characterization of PMIP value functions: they 

are the finite minima of Gomory functions which turn out to be subadditive. 

This characterization is interesting, but not inductive. 

We also algorithmically identified that (non-inductive) class of Gomory 

functions G which in (*) allow one to take C = I for some A, B - i.e. which 
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test for the consistency of MP's, as opposed to PMIP's. While our 

algorithm is finite, it is fairly complex. The details are in 5. 

Toward the end of the grant period, we initiated work on the uses of 

subadditive concepts and constructions for practical sensitivity analysis in 

mixed-integer programs. In item 12. we showed how a subadditive function 

construction allowed the generation and retention of information gained at 

one node of branch-and-bound tree, for use at other nodes and in other 

search trees for different right-hand-sides. This infomation will improve 

the fathoming capabilities in later runs for other r.h.s. and reduce the 

size of later search trees. The work on this topic continues. 

III. Computational Complexity  

Our papers in computational complexity address different issues. In 9. 

of "Papers Written Under This Grant," we are concered with the P versus NP 

classification as in Cook [1971], Garey and Johnson [1979] and Karp [1972] 

in a discrete programming setting. In contrast, 10. is focused primarily 

on the polynomial hierarch above NP as a means of gaining insight into 

certain types of competitive (game-theoretic) behavior and related modelling 

issues. 

In "Computational Complexity of Some Problems in Parametric Discrete 

Programming, I," we initiated our study of the computational complexity 

associated with questions that concern families of programs, rather than 

specific programs. Our main discoveries were certain questions whose 

complexity remained as low as P or NP, together with one example (concerning 

subadditive duality) to show that this low complexity is not usually to be 

expected. In a follow-up paper with C. E. Blair, we plan to explore some 



higher-complexity questions. We chose parametric programming issues to 

provide the different program families, in part because the "what if?" 

questions in mixed-integer programming practice are often of a parametric 

type. 

Among the results of 9. are these: the question, as to whether or not 

two linear programs have the same optimal value for all right-hand-sides, 

remains in P; the question, as to whether two linear integer programs have 

the same optimal value for all right-hand-sides, remains in NP and is in 

fact NP-complete. Yet we also saw that complexity could jump suddenly by a 

relatively small change of the question: if certain right-hand-sides were 

to be fixed at zero, and we wished to know if the two linear programs had 

the same optimal value for all other r.h.s. variation, the complexity became 

NP-complete. In fact, NP-completeness is the complexity for r.h.s. 

restricted to cones which are described by their generators (a class which 

includes zero settings for specific r.h.s.). 

In 9. we also asked the optimal value questions in function form (as 

well as the matrix form above). For example, we discovered that the 

question, as to whether two Gomory functions had equal value for all 

arguments, is NP-complete; and the same is true for two Chvatal functions. 

In the process of these proofs, we developed lemmas on the computational 

complexity of systems of inequalities in Gomory functions, and of programs 

with a bilinear constraint. 

In contrast to the low complexity results cited above, we showed that 

the size of a Chvatal function which is optimal in the subadditive dual of a 

consistent and bounded integer program, is not necessarily polynomial in the 

size of the primal program. The primal programs used in 9. for our proof 

17 



18 

are very simple, so that the result indicates a very serious obstacle to the 

numerical use of subaddtive methods as the sole solution approach for 

general integer programs. However, for practitioners this new obstacle only 

furthur confirms the current tendency toward hybrid algorithms, as some 

integer programs are crucially aided by subadditive cuts (see Jeroslow 

[1974a]). However, our result does serve to show that some questions of 

integer programming - not of a parametric nature - can jump completely out 

of the polynomial hierarchy (as PSPACE is the union of the hierarchy, see 

Stockmeyer [1977]). 

In "The Polynomial Hierarchy and a Simple Model for Competitive 

Analysis," we addressed a fundamental issue in the modelling of game- 

theoretic situations. For a number of years, we have sought to understand 

why advances in competitive analysis by quantitative methods, particularly 

those related to numerical solutions and decision support, were so few, rare 

and specialized. 

Chvatal [1978] had shown that a very simple co-operative game was 

already NP-complete. NP-completeness, while challenging to deal with 

numerically, is of the same order of magnitude as the usual optimization 

models, such as mixed-integer programming, which do not involve other 

intelligent players. We had suspected that the intelligence of the other 

players would raise complexity beyond that seen before in quantitative 

method settings. Since the P=NP7 question remains unresolved, as well as 

many other questions dealing with polynomial hierarchy of Meyer, Stockmeyer 

and Karp (see Stockmeyer [1977]), we cannot be sure that the distinctions on 

computational difficulty will not someday disappear. However, that 

hierarchy and other complexity measures now seem to be among the most 
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fundamental constructions available to us, and minimally these constructions 

can relate our concerns in competitive analysis to basic questions of 

concern in the deepest investigations currently underway. 

In 10. we studied a sequenced-move game with perfect information, so 

that from a game perspective it has a simple structure. The interaction 

between the players consists of a common set of linear constraints which is 

imposed on the total set of continuous variables, and linear objective 

functions in which a later-moving player can influence an earlier one's 

payoff. (The case of p=1 player is simply linear programming). We showed 

that the problem, of determining only approximately the optimal value to the 

first-moving player, is at least  at level p of the polynomial hierarchy when 

there are (p+1) players. For two players, we placed the game at exactly 

level one, which of course is NP-completeness. 

The two-player case had arisen in the practical setting of policy 

setting by a government agency (first-moving player), in view of the 

anticipated reaction of the firms affected by the regulation (aggregated 

together for simplicity, and treated as a second-moving player). It was 

observed empirically that one gets dramatically different policy 

prescriptions if one does not treat the firms as having an intelligent 

"rational reaction" to regulations (see Candler and Townsley [1982] and 

their references). In this light, it is a good development that the two -

player case is only NP-complete. However, it seems to us to be one of the 

harder NP-complete problems; our work continues for this case with a 

graduate assistant who serves as a part-time programmer. 

Of course, the enormous complexity of even these simple competitive 

situations brings into question the practical utility of basic solution 
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concepts, such as Stackleberg equilibria (see Stackleberg [1934]). After 

all, a player cannot implement a move s/he does not know (numerically). 

Neither will other players implement such strategies, so the imperative to 

do so disappears. 

Particularly the specializations in the business areas - such as 

marketing, finance, and production - are affected by the limitation to 

models which cannot realistically treat competitive responses. This issue 

becomes quite serious in those business problems where the firm's actions 

are quickly visible externally and there is a short lead time on competitive 

reaction. This unfortunate situation can, we feel, be remedied in some ways 

by a substantial re-thinking of solution frameworks and concepts, as well as 

new results. 

IV. Modelling Using Integer Variables  

It is generally viewed that there are standard formulation techniques 

for modelling various practical problems as mixed-integer programs, which 

have been known for over twenty years and have long been in textbooks. Many 

believe that, while important representation issues arise here and there in 

practice, they are largely heuristic and don't seem to yield to 

methodological study. During this grant, we discovered that the 

conventional view above is mistaken and that the implications of correcting 

it are very substantial when one needs numerical solutions. While many 

results about the properties of the new representation techniques may 

require advanced mathematical background, sophisticated use of these 

techniques can quickly be learned by technically-trained individuals at the 

masters' level (as in a course now underway in our School of Industrial and 

Systems Engineering). 
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The importance of tight linear relaxations for mixed-integer 

formulations had been noted in Geoffrion and Graves [1974] and H.P. Williams 

[1974], and is stressed again in more recent work (e.g. Johnson, Kostreva 

and Suhl [1982]). However, a systematic theory for obtaining many of them 

was lacking, which we now can provide. Also, we have been able to clarify 

when a condition has an MIP-representation, and we have been able to make 

furthur distinctions which seem necessry, such as sharpness, hereditary 

sharpness, variable co-ordination, and the value of distributivity in the 

lattice of MIP representations (see below). We are in the process of taking 

up furthur matters in the representation theory (see below). In our work, 

we have heavily used concepts and results of the disjunctive methods (see 

Balas [1974], [1979], [1983] and Jeroslow [1974b], [1977]). 

The first question concerning representability, is whether a given 

(generally nonlinear) function or (generally nonconvex) set can be 

repKesented using linear constraints in continuous and integer variables. 

Actually, until the research of R. R. Meyer [1975], [1976] it was not widely 

appreciated that there were substantial issues in connection with the 

existence of representations. 

For simplicity in our discussion below, we will observe three 

restrictions: (1) We will consider only representations in rational data, 

since that covers the implementation needs; (2) We will consider only the 

use of binary (equivalently, bounded) integer variables in a representation, 

as the case of a truly general integer variable (with no bound) is quite 

rare in practice; (3) When functions are discussed, we shall assume that 

they appear only in a minimizing objective function, and not in the 

constraints. 



22 

If a single variable x is known to be restricted to a bounded interval 

[0,B] and a fixed charge of c > 0 is assessed when x > 0, this is viewed as 

modelling the function 

x = 0; 

, 0 < x GB. 

As is well known, this function f - appearing only in a (minimizing) 

criterion in an occurrence "+f(x)" - can be modelled by introducing a binary 

variable z e {0, 11, putting the term "+cz" in place of "+f(x)" in the 

criterion, and adding this new constraint: 

0 G x < Bz 

Now suppose that, in place of a charge, a benefit of c > 0 is obtained 

if x > 0. Then we must model this function: 

0 , if x = 0; 
f(x) = 

-c , if 0 < x 

(E.g., a manufacturer offers a one-time rebate for trying his product). 

This function cannot be modelled even if a bound x < B is added„, The fact 

that it cannot be modelled is seen from these necessary and sufficient 

conditions for an (bounded) integer modelling, from item 8 of "Papers 

Written Under This Grant": the epigraph epi(f) = (z,x) I z 	f(x)} of f is 

to be a finite union of polyhedra epi(f) = P 1  U 	UPt  with the same 

recession directions (rec(P) is independent of i, 1 G i G t). In fact, for 

the fixed benefit function above, epi(f) is not closed (as (-c/2, 0) 

cl(epi)\epi(f)) so it cannot be a finite union of polyhedra. 



If we change the fixed benefit function to have strictly positive 

minimum usage level 6 > 0 (e.g. the rebate requires that at least 6 be 

purchased), we can consider this function: 
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f(x) 

Then epi(f) = P
1 
UP

2' 
where P

1 
= {(z,x) 1 x 	0, z 	0), P

2 
 = {(z,x) 1 

x > 6, z 	c). Moreover, the two polyhedra have P 1  as common recession 

directions. Hence, there is a model for f - we will give one below. 

In yet another setting of a multi-period production problem, a fixed 

charge is to be assessed for set-up if a manufacturing process is to be run 

this period (y > 0) and it was idle last period (x=0). However, if it was 

run last period (x > 0) then no charge is assessed. For simplicity, let a 

known bound B apply when the process is run. We can conceptualize this as 

representing this function 

0 , if x> 0, x 4 B, 0 < y 4 B; 

f(x,y) = 
	

0 , if x = 0 and y = 0; 

c, if x = 0 and 0 < y 4 B 

If we do so, there is no representation, since epi(f) is not closed (for 

c > 0, B > 0, (z,x,y) = (0,0,B) 6  cl(epi(f)) yet (0,0, B) epi(f)). On 

the other hand, if we recognize a minimum level 6 > 0 for just x, we can 

consider this function: 
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, if x ) (5, x 4 B, and 0 4 y < B; 

o , if x = 0 and y = 0; 

c, if x = 0 and 0 < y < B 

 

g(x,y) = 

 

 

   

(Here values of x between 0 and 6 are not permitted). This latter function 

is representable, since epi(g) = P 1  U P2  Li P3 , where 

P 1  = {(z,x,y) 1 x = 0, y = 0, z ) 0), P 2  = ((z,x,y) 1 x = 0, 0 4 y 4 B, 

z 	c), P 3  = {(z,x,y) 1 x ) d, x < B, 0 < y 4 B, z 	0) and all recession 

sets rec(P.) = {(z,x,y) 1 x = y = 0, z 	0) are the same. 

In the practical applications, of course, the variables involved 

generally have both upper bounds and minimum levels. However, it takes a 

knowledge of representability to know if these data are to be used (and 

how). A lack of such knowledge has sometimes led to erroneous formulations 

which may or may not be later detected. Typically, such errors model the 

smallest representable set or function containing the nonrepresentable one, 

which in the case of the nonrepresentable multi-period function f above, 

would be the identically zero function (with no fixed charge). 

After one has treated the question of existence of a representation, 

one encounters the second issue of providing a representation when one 

exists. We have several methods for doing so. We will next illustrate one 

of these methods - the "extreme point formulation" - for the fixed benefit 

function f above with upper bound B on x and with minimum usage level 6 > 0. 

We have epi(f) = P
1 
 UP2 , and this method proceeds (for functions on 

bounded domains) by writing down the polyhedra and then listing their 

extreme points, each of which is then assigned a multiplier: 
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Polyhedron 	 Extreme Points 	Multiplier  

P
1 
= {(z,x)lx > 0, z > 0, x 	B} 	(0,0) 

11 

	

(0,B) 	 A 
'12 

P
2 
= {(z,x)lx > d, z > -c, x < B} 	(-c,45) 	 A

21 

	

(-c,B) 	 X
22 

Multiplier A.. > 0 is assigned to the j-th extreme point of the i-th 
ij 

polyhedronP.denotedv...ThepolyhedronP.is assigned a binary 'control 1 	 1j 	 1 

variable' X i (X i = 1 indicates that (z,x) e P i ). One writes equations 

A-=EX—sothat,whenL1  =0 all A.. = O.' 	 1 
while when X. = 1 the X.. are 1 	• 	13 	 1j 	 ij 

coefficients from a convex combination. Then the equation 

(z,x) = E E X.. v.. assures that (z,x) is the convex combination for the i 
j i 	

13 

withP.'activatecP(i.e.withA•=1). In this example, we obtain this 1. 

representation: 

A l 
= X

11 
+ A

12 
	 A

l 
+ A

2 
= 1 

A
2 
= A

21 
+ X

22 
	 X

1 , 
X
2 
binary 

all A.. > 0 
ij 

(z,x) = A ll (° ' °) 	Al2 (0 ' B) 	A21(-c'6) 
	A22(-c,B). 

After we take components in the last equality, we would enter z = A 11 •0 + 

X
12

.0 + X
21

(-c) + A
22

(-c) or -A2c for f(x) in the objective function, while 

retaining as a constraint x = A 12 B + X21 
+ X

22
B. 

When a function is on an unbounded domain, one must lastly add in 

recession directions of the epigraph of f in the (z,x) equation. 

For example, if there is no upper bound B on x in the representable 

fixed benefit problem, the extreme points (0,B) and (-c,B) do not occur, but 

the recession direction (0,1) occurs (the recession direction (1,0) can be 



omitted in a minimizing objective function). One then obtains this 

representation, which greatly simplifies: 

X
1 
= X

11 
	 X

1 
+ X

2 
= 1 

X2 = X21 
	 X1  , X2  binary 

X 11' X
12' 

a= 0 

(z,x) = X 11 (0,0) + X21 (-c,6) + a (0,1) 

Here we can disregard X 1  and X
11' 

call X
2 

E X, and remove X
21 

in favor of X. 

We get the constraint x = X 6 + a with a 0, X binary and with (z=) - X c 

to be entered in the objective function for f(x). (If x > 6, it is true 

that these constraints allow a feasible solution with A = 0, x = a. 

However, as c > 0, in a minimizing objective we would have at optimality 

X = 1, a = x - 6 if x) 6). 

A third issue now arises, of developing standards for choosing among 

various representations. One such standard is what we call 'sharpness': a 

representation is sharp, provided it has as tight (small) as possible a 

linear relaxation (LR). (The linear relaxation is the linear program 

arising, when all binary variables are relaxed to be in [0,1]). The linear 

relaxation of the representation for a function f must at least contain its 

epigraph, since that arises for binary values alone; as it is linear, it 

must at least contain the closed, convex span of epi(f). This issue was 

first taken up in Meyer [1981], and in item 8. above we showed that all our 

formulation techniques - such as the 'extreme point formulation' above - are 

sharp. We also showed that sharp representations give exactly the convex 

span of the epigraph, which for representable functions will be closed. 

Sharp representations are desirable, since most MIPs from industrial 

problems are solved by branch-and-bound codes, which use the LR as a 
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relaxation and as a guide for the search procedure. Most of the textbook 

formulations of the 'standard' one-dimensional functions, such as simple 

fixed charges or continuous piecewise-linear functions, are sharp. But in 

several important cases, the usual treatments recommend very poor 

formulations. 

Consider, for example, either/or constraints. Suppose two variables x 
1 

and x
2 

are always contrained by 0 < x 1 , x
2 

< 200 and that at least one of 

these two contraints are to hold: 

	

either -x
1 
 + x

2 
> 100 	or 	x

1 
- x

2 
> 100 

Since a lower bound on -x
1 

+ x
2 

and x
1 
- x

2 
is -200, the standard textbook 

treatments would model the above via a binary variable z, as follows: 

-x
1 
+ x

2 
> - 200 + 300z 

	

x 1 - x2 > 	100 - 300z 

This is an accurate modelling for z binary: if z = 1 the first inequality 

-x
1 
 + x

2 
> 100 holds, while if z = 0 the second inequality x

1 
 - x

2 
 > 100 

holds. 

However, if z is relaxed to simply be in [0,1], all (x l ,x2 ) are 

possible in the square 0 < x 1 , x
2 

< 200. (Just put y = x
1 
+ x

2 
and 

z = max{0, (100 + y)/300} and z e[0,1] if (x 1 , x2 ) is in the square). 

However, whichever of the two inequalities hold, we will have x
1 

+ x
2 

> 100, 

and this latter information is lost in the LR of this recommended 

formulation (even though best possible bounds were used). This information 

will not be lost in the relaxation of the sharp formulations. 

The importance of a tight LR has been empirically demonstrated in the 

context of this fixed-charge function, which occurs in the setting of flows 
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of commodities from a potential warehouse. The fact that the warehouse must 

be built, at a cost c > 0, if any flows from it are to be positive, leads to 

the issue of modelling this fixed-charge function, where the p
k 

> 0 are 

upper bounds on the flows xk : 

0, 	if all xk  = 0; 

f(x
1 '' 

x
t
) = 	c, 	if any xk  > 0, where 

0 4 x C Uk 	for k= 1 	t 

Many textbooks recommend that this modelling be used, where A is a 

binary varible and "+cA" has been entered into the objective function for 

"+f(x 	x )"• 1 	t 

xi  +...+ xt  C  (P I  + P2  +...+ lit )A 

Some textbooks also note that the following is a modelling: 

x
k 

< p
k
A 	k=1,...,t 

Despite the fact that the second modelling requires many more constraints 

than the first, experimenters concur that the second is much superior. In 

fact, some programs which do not run in an hour with the first 

representation, run in several minutes with the second. This outcome is 

attributed in Geoffrion and Graves [1974] to a better linear relaxation for 

the second, where the issue of easily producing such LR is first raised. 

Let us model the function f above by giving one of the sharp 

representations in item 8 for epi(f). We will use the 'polyhedral 

representation,' since there are exponentially many extreme points in 

epi(f). 

We write epi(f) = P I  LJP2 , where 
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P I  = {(z, x l ,...,x t ) 1 z > 0, x l  = ... = x t  = 0} and 

P 2  = {(z, x 1 ,..., xt ) 1 z > c, 	0 4 xk  4 uk  for k=1,...,t}. 

The 'polyhedral representation' arises first by writing down the 

inequalities for P. with variables superscripted by 'i,' and with a binary 
I 

control variable X i  used to 'homogenize the right-hand-side'. Then we write 

that each variable from the main program is the sum of the corresponding 

variables with superscripts. In this case we obtain: 

x
(1) 

= 0•X1 
	

0 < xk all k 	
(2) 

4 pkX2  all k 
 

z
(1) 

> 0•X1 	 z
(2) 

 > c A2 

(1) 	(2) 
xk = 

x
k 
l) 
	x  k 	all k = 1,...,t 

z = z
(1) 	(2) 

+ z 
 

X
1 
+ X

2 
= 1 

X
1, 

A
2 
binary 

(2) 	(2) 
Upon simplification, we have xk  = 0+xk  = xk  , hence we obtain 

0 4 xk  4 pkX2 . At a minimum z = cX2 (as z > 0 + cA2 ). Upon renaming X=X2 , 

our formulation above is identical to the one found to be preferable in 

experimental work. 

In item 11, we conducted two series of experiments on the new 

formulations, for both either/or constraints and single-variable piecewise 

linear functions with fixed charges. These experiments also confirmed the 

advantage of the new formulations. We leave the details to item 11, which 

also contains other examples worked by the 'extreme point' and 'polyhedral' 

methods. 
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A fourth issue arises, as to whether or not sharp representations can 

retain their sharpness - i.e. can be hereditarily sharp - as a branch-and-

bound algorithm proceeds to fix certain values of certain variables. 

Possibly, a reformulation might be needed at a node lower in the search 

tree: such reformulations can be needed if one obtains formulations from 

facets of the convex hull, for example (as a facet of the hull may not even 

touch the linear relaxation for the setting e.g. of x
3 
= 0 at some lower 

node). However, our sharp formulations are hereditarily sharp, and this is 

true whether or not one uses ordinary branching or (the preferred) special-

ordered-set type 1 branching on the constraint E Ai  = 1 that links control 

variables A.. 

Yet a fifth issue arises when one considers sums of representable 

functions. One can develop a modelling for two functions f 1  and f2  
2 

separately, and enter the two appropriate terms in the objective function, 

to model f = f
1 

+ f
2 . Alternatively, on can directly model f and enter one 

term for f in the objective; and this latter method is always better in 

terms of the LR. In fact, by use of the lattice of polyhedra ('meet' being 

intersection, 'join' being the closed, convex span of the union) one can 

exactly describe what is achieved by both modelling approaches, and one can 

prove the second to be better. (We will elaborate on such issues in a 

forthcoming paper.) 

We do not wish to furthur belabor the fact, that the subject of MIP 

modelling is rich in issues and subleties, and in mathematical structure, 

some of which we have explored and are continuing to explore. It is also a 

subject of significance to practice - one in 'the methodology of decision 

support'. 
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We conclude this section with a brief discussion of some more recent 

work in modelling, now in progress. 

Certain of the artificial intelligence techniques have been appearing 

in recent years in a decision support context (such as the MYCIN-like 

programs discussed in Davis, Buchanan, and Shortliffe [1977]). Whinston and 

other researchers (for a systematic treatment, see Bonczek, Holsapple and 

Whinston [1981]) advanced the view that AI techniques can be combined with 

earlier quantitative techniques of Operations Research in a fruitful way 

that will improve the technology for decision making. We concur with this 

view, and are looking for some unification in these two approaches in our 

current research. The fact that our Ph.D. degree and early research are in 

mathematical logic has helped our research, particularly since many AI 

approaches are logic-based. In the last year we have begun extensive 

reading in AI as well. 

We ran some experiments last fall on using MIP to do consistency 

testing in propositional logic. For example, the clauses of a conjunctive 

normal form give rise to a generalized set covering problem, which is an IP 

(integer program). As it turns out, APEX IV solves such problems generally 

in several seconds to a half-minute, for randomly-generated logic problems 

in 100 propositional letters with 150 to 600 clauses. (We have also 

artificially generated harder problems which APEX does not solve in several 

minutes). Such result are, I believe, significantly better than one expects 

using AI techniques, such as resolution or other search methods - simply 

because so much information is in the linear relaxation of the genera lized 

covering constraints (even though the logic representation we used is a 



textbook one and is not sharp). In any event, we are unaware of problem 

sets of this size in the literature. 

We plan to soon begin work with E. Balas in improving the 

representation of propositional logic problems. At the same time, we 

developing formulations of fragments of the predicate calculus as MIP 

are 

s and 

studying some of the issues in this context. Such work appears to provide 

the kind of decision support developed by Whinston, where the predicate 

calculus is needed. 

Other topics now under investigation include convex representabi ity 

and hierarchical MIP approaches. 
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