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We give hypotheses, valid in reflexive Banach spaces (such as 12 for co > p > 1 or Hilbert 
spaces), for a certain modification of the ordinary lagrangean to close the duality gap, in convex 
programs with (possibly) infinitely many constraint functions. 

Our modification of the ordinary lagrangean is to perturb the criterion function by a linear 
term, and to take the limit of this perturbed lagrangean as the norm of this term goes to zero. 

We also review the recent literature on this topic of the "limiting lagrangean". 

Key words: Convexity, Lagrangean, Nonlinear Programming. 

0. Introduction 

In an earlier paper [6], Duffin proved this result, for convex functions Fh defined 
on all of R": 

lim sup sup inf {Fo(x)+ ax + E A,F,(x)}= v(P). 	 (1) 
t-A1 +  aeR" A xER" 	 hEH 

In (1), v(P) is the value of the convex program 

(CP) 	 inf 	Fo(x) 

subject to 	Fh(X) 0, h E H 

where H is a finite, non-empty index set. 
A purpose of this paper is to extend (1) to proper lower semi-continuous 

(1.s.c.) convex functions defined on a convex subset of certain infinite-dimen-
sional spaces, specifically reflexive Banach spaces, and also to obtain in-
formation on "affine minorants" of the convex functions. The LP spaces for 

> p > 1 and Hilbert spaces are treated by our results. A goal of the paper will 

Partially supported by grant DAAG29-80—000317, Army Research Office, Research Triangle Park, 
North Carolina, U.S.A. 

Partially supported by grant ENG7900284 of the National Science Foundation. 
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be to establish the following result in this setting, under suitable hypotheses: 

	

(LL) 	lira sup sup inf fro(x)+ g(x)+ E A,F,(x)}=-- v(P) 
ex* A xEK 	 hEH 
gli<E 

where the index set H may be infinite, and K will be a convex subset of the 
space in which the variable x is constrained to lie by an explicit set constraint 
"x E K", in addition to functional constraints such as those in (CP) above (see 
(8) below). 

We use the theory of infinite sets of linear inequalities to obtain our results. 
Our approach has its source in the literature of "semi-infinite programming" (see 
e.g. [1] and [9]), and is the basic idea for proofs of various strengthenings and 
refinements of our result in infinite-dimensional spaces. 

Professor R.T. Rockafellar has informed us (private communication) that the 
result (LL) is implicit in his monograph [15], under suitable hypotheses, and it is 
indeed the case that [15, eq. (4.20)] can be applied to [15, example 4', p. 26] to 
derive (LL) under the hypotheses used in [15]. We strengthen the result due to 
the additional information in Theorem 6, and, as we will point out in Section 3, 
our mode of analysis easily extends to set-valued maps in locally convex spaces, 
without the hypotheses of semi-continuity used in [15]. See [2] for a counter-
example to (LL) when the semi-continuity hypothesis is dropped. 

Our present paper contains an exposition of a part of the semi-infinite 
approach to convex optimization. For related work which utilizes the theory of 
conjugate functions see [13], [14], and [15]. 

1. Preliminary results, conventions, and general assumptions 

Throughout the results, X will denote a reflexive Banach space. Thus 
X** = X, where Y* denotes the space of all continuous linear functionals on the 
linear topological space Y. 

The following result is well-known (see e.g. [5]). 

Theorem 1. Let C be a closed cone in a locally convex linear topological space 
Y. 

Then the following two statements are equivalent: 

(i) Yo E C; 

(ii) if f E Y*, and f(y)_. 0 for all y E C, then f(y o) 0. 

In what follows, we view functions as points, so that, e.g., f = h abbreviates 
f(x)= h(x) for all x E X. 

Corollary 2. Let {f,li E I} be a family of continuous linear functionals on the 
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reflexive Banach space X, and suppose that, for any x E X, 

fi (x) 0 for all i E / 

implies 

f(x)._ 0 

for the continuous linear functional f. 
Then for any real scalar E > 0 there exists a finite subset J C I and non-

negative numbers A, 0, j E J, and a continuous linear functional g, satisfying 
both these conditions: 

f = g + E 
	

(a) 

Ilgll <  E• 	 (0) 

Proof. Let C = cl(cone((fi  I i E /})), where cone (If, I  i E I}) is the cone (al-
gebraically) generated by the set If I  i E I}, and cl(S) denotes the closure, here in 
the norm topology, of the set S C X. 

The conclusion of this corollary can be restated as "1 E C", for if 
Ilf — E, E, 	e then g = f —E,FJ A,f, satisfies (a) and (p). 

Since C is a closed cone in the locally convex linear topological space X*, 
Theorem 1 applies. Thus if f E C, we reach a contradiction as follows, where we 
take yo  = f in Theorem 1. 

There exists a continuous linear functional P on X* with F(h) 0 for all 
h E C and P(f) < 0. In particular, P(fi). 0 for all i E /, and F(f) < 0. 

Since F E X ** , there exists z E X with P(h) = h(1) for all h E X. In 
particular, MI) 0 for all i E I and f(i) < 0, contradicting the hypothesis. This 
shows that f E C. ❑ 

In what follows, we view (y, h), where h is a function on X, and y E R, as the 
functional on R x X such that (y, h)(p, x) = h(x) + yp, for (p, x) E R x X. 

For any linear topological space Y, the continuous dual (R x Y)* of R x Y is 
(R x Y)* = R x Y*, with the evaluation (r, f)(s, y) = f(y)+ rs, where (r, f) E 
R x Y*, f E Y*, and (s, y) E R x Y, y E Y. In particular, as X is reflexive, 
(R x X)** = (R x X*)** = R x X** = R x X, so R x X is reflexive. We need this 
latter observation in the next result. 

Corollary 3. Let {f, I i E I} be a family of continuous linear functionals on the 
reflexive Banach space X and let {a, I i E I} be a correspondingly-indexed family 
of real scalars, such that there is a solution to 

L(x). 	i E I 	 (4) 
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Suppose that every solution x to (4) also satisfies 

f(x)_ a 	 (5) 

for the continuous linear functional f and scalar a E R. 
Then for any real scalar E > 0 there exists a finite subset J C I, non-negative 

numbers A,, j E J, a non-negative scalar 0 0, and a continuous linear functional 
g on X, and /3 E R, satisfying: 

f)= 0(1, 0) + (- 13, g)+ E 	 (a') 
jEJ 

1K- 	g)ll< E. 
	

(/3') 

In particular, 

f = g + E 	 (6a) 
jEJ 

ugh 	€, 	 (6b) 

a 5_ E E A jai. 	 (6c) 
jEJ 

Proof. The particular conclusions (6a)—(6c) follow from (a') and (0 by taking 
components in (a'), and noting that (0') implies lie < E and WI< E. We prove 
only (a') and (0. 

To do so, note that, in the space R x X, 

—a ir+ fi(x)_0, i E 
	

(4') 

implies 

—ar+ 	O. 	 (5') 

Indeed, if r > 0, (4') implies (5') by the fact that (4) implies (5) and through the 
linearity of the functionals ff, I i E I} and f. If r = 0, again (4') implies (5'), as we 
see by the following contradiction. 

Let x-  be such that 	0 for i E I yet f(i) <0. By hypothesis there exists 
x* with f,(x*): a i  for i E I. Then for any scalar p 0, f,(x* + pi)= 
f i (x*)+ WI) f,(x*)+ 0 ai  for all i E I. However for large p, f(x* + pit) = 
f(x*)+ pf(1)< a as Ai) < 0. This contradicts that (4) implies (5), and proves that 
(4') implies (5'). 

We apply Corollary 2 to the system (4'), (5') with (2) taken as (4'), and the 
functionals {f, I i E I} of (2) taken as {(— a,, E {(1, 0)}. Likewise the 
functional f of (3) is (—a, f) in (5'). The corollary applies since R x X is a 
reflexive Banach space. 

Upon application of Corollary 2, we at once obtain (a') and (0 since 0 is 
simply the multiplier of the functional (1, 0), where here "0" is the identically 
zero linear functional on X. ❑ 
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In what follows, we shall consider convex functions F on subsets of X, by 
which we mean a function F : D --> R where D is a non-empty convex subset of 
X. (We do not use the extended reals R = R U {—cc} U {+ here.) As usual, the 
epigraph epi(F) of F is defined as: 

epi (F)= {(z, x)ERxD1.z .  F(x)}. 	 (7) 

We say that F is closed if epi(F) is closed in R x X, i.e., if F is a proper lower 
semi-continuous convex function. 

This paper is concerned with the following convex program, where each 
function Fh  for h E H U {0} (H an index set of arbitrary cardinality) is finite and 
lower semi-continuous on a domain Dh, K is a non-empty and closed convex set 
in X, and Dh  D K for h E {0} U H: 

inf Fo(x), 
s.t. Fh(X) s  0, h E H, 	 (8) 

x E K. 

This program (8) is assumed to have a finite value v(P); thus (8) is assumed 
consistent, but the infimum need not be attained. 

We shall be concerned with this lagrangean, which we call the "limiting 
lagrangean": 

L(x, A, g)= Fo(x)+ g(x)+ E A hF,(x)• 	 (9) 
hEH 

In (9), x E X, A = (A h  h E H) is a vector of non-negative components A h  0 
only finitely many of which are non-zero, and g is a continuous linear functional 
on X. The summation in (9) is understood as: 

E Ah.Fh(x)= E Ah.Fh(x), 	 (10) 
hEH 	 heti' 

where H' is the finite set H' = {h E H I Ai, > (and summation over an empty 
set is taken to be zero). All infinite sums of this paper have finite support and are 
construed analogously. Thus the sum L EJ  Aj, on the right-hand side of (6a) will 
also be written E, Ei  Aff, with the understanding that we have set A, = 0 for 
i E I\J.  

With the notation (9), equation (LL) can be rewritten as: 

lim sup sup inf L(x, A, g) = v(P). 	 (LL') 
E-00+ gEX* A xEK 

Mg11<e 

It is the limiting operation in (LL) from which we derived the term "limiting 
lagrangean". If the limiting operation is deleted and one sets g = 0, one obtains 
an ordinary lagrangean. 

It turns out that the limiting lagrangean result (LL) holds with our present 
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assumptions, which are far weaker than the assumptions usually needed for a 
lagrangean result. For one thing, the index set H is not constrained in car-
dinality, yet the sums LEH AhFh(X) always have finite support. Also, even for H 
finite, the usual examples in R" of duality gaps involve closed functions (in fact, 
everywhere-defined functions), and no duality gap is possible with the limiting 
lagrangean in this case (or even for II/I infinite). 

The next preliminary result is relevant to the "easy part" of (LL). 

Lemma 4. 

lim sup sup sup inf L(x, A, g) v(P). 	 (11) 
E .C1+  gEr A xEK 

fig11<€ 

Proof. For each integer n 1, choose x (n'E K such that 

Fo(x ( n )) v(P) + —
1 

and Fh (x ( n ) ) 0 for h E H. 	 (12) 

Then for any g and A, as A 0 we have 

inf L(x, A, g) 5_ L(x ("', A, g) 	 (13) 
xEK 

5 Fax(")) AX (") ) 

v(P)+ g(x (" ) ) + 1n . 

From (13) it follows at once that 

sup inf L(x, A, g) 5_ v(P) + g(x (n ))+ 1 
A sEK 

and hence 

lim sup sup sup inf L(x, A, g) v(P) + 1. 
,,O+ gEX* A xEK 

Since (15) is valid for any n, so is (11). 0 

We remark that (11) can also be proven if v(P) = 

2. The main result 

We shall use these notations, which exist by the fact that a closed, convex set 
in a locally convex space X (or R x X) is the intersection of closed half spaces 
where the f, written below are continuous linear functions on X, and the a' are 

(14) 

(15) 
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real scalars: 

K = {x E X I f,(x)_- a', j i( - 1)} 	 (16a) 
i.e. 

x E K<-->f,(x) a', for all j e I(— 1), 

epi(Fh)= {(z, x) ER x X I biz + 	j E I(h)}, for h E{O}U H, 
i.e . 

(z, x) E epi(Fh )<-), blz + 	a', for all j E I(h). 

Since (z, x) E epi(Fh ) and z' > z implies (z', x) E epi(Fh ), we see that all b' 0. In 
(16) all the index sets I(h) for h E — 1} U {0} U H are (without loss of generality) 
disjoint. 

We will use the fact that all b, 0 in the proof of Theorem 6, and we will also 
use the fact that if b' = 0 then fi (x)__- a' for all x E K. The latter is a con-
sequence of our assumption that the domain of Fh contains K. Hence if x E K 
and b' = 0, and j E I(h), we have a' 0 • Fh (x) + .6(x) f,(x). 

With this notation, one preliminary result remains before we can obtain our 
main result (Theorem 6). 

Lemma 5. Every solution to the inequalities 

biz + f;(x).- al, j 	_1(0) 	 (17) 

ff(x) a', jEI(h)andh E{ — 1}UH 

also satisfies 

z 	v(P). 	 (18) 

Proof. It suffices to prove that if (z, x) ER x X satisfies (17), then (z, x) E epi(F0) 
and also x satisfies the constraints of (8). From the definitions of (16), this will be 
accomplished once we prove: 

Fh (x) <_ 0 if and only if L(x) a' for all j E I(h). 	 (19) 

However, (19) is immediate: 

Fh (x) _s_ 044(0, x) E epi(Fh ) 	 (20) 
<-4b' 0+ L(x) a' for all j E I(h) 

<--of,(x) 	a' 	for all j E I(h). ❑ 

Since Lemma 5 concerns an implication among linear functionals in the 
reflexive Banach space R x X, and since the constraints (17) are consistent (and 
in fact satisfied by any feasible solution x to (8), with z = Fo(x)), it is natural to 
wish to apply Corollary 3 to the "fully-infinite" system (17). If one does so, our 
next and main result is obtained after some purely algebraic manipulation. 
(Recall that an affine linear functional is a linear functional plus a constant.) 
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Theorem 6. Let X be a reflexive Banach space, assume that all functions F h, 
h E {0} U H are finite on a set Dh  D K, and are lower semi-continuous, that K is a 
non-empty, closed convex set in X, and that (8) is consistent. 

For any E > 0, there exists a finitely non-zero vector A = (A h  I h E 1-1) of 
non-negative components, continuous affine linear functionals g h  for h E 
{— 1} U {0} U H, a continuous linear functional p, and a scalar A0  > 0 satisfying 
these five conditions: 
Condition 1. g_ i (x) 0 for x E K; 
Condition 2. Fh(x)- -- gh (x) for h E {0} U H and x in the domain of Ph; 

Condition 3. 	< E ; 
Condition 4. IA 0 -1! < E; 

Condition 5. For all x E X, 

g_ i (x) + A ogo(x) + p(x) + hEH  A hgh (x).. v(P) — E. 	 (21) 

Proof. Note that z = z 1 + 0 x in (18), and z - 1 + 0 .x = (1, 0)(z, x), where 1 E R 
and 0 is the zero functional on X. The left-hand side of the inequalities in (17) 
are bjz + fi (x)= (by, f,)(z, x) for j E /(0), and are 0 z + fi (x) = (0, fi )(z, x) for 
j E I(h), hEHU{ - 1}. (We use the notation introduced above Corollary 3.) 

We apply Corollary 3 to the implication from (17) to (18), with {f, I i E I} taken 
as 

{(b ), fi) I j E I(0)} U 	U {(0, 	j E I(h)}, 

f taken as (1, 0), {a, I i E I} taken as U h E{_i, (*Acta' I j E 1(h)l, and a taken as 
v(P). The conclusions (6a), (6b) and (6c) of Corollary 3 become: 

(1, = (0, P) + E 	E 4h,,(3,i))+ E 	f,) 
	

(6a') 
hE{-1}1-1H jEl(h) 	 jEI(0) 

PA< 6 
	 (6b') 

v(P) E + E 	E 
	

(6c') 
hE1-1, 011/H jEI(h) 

In (6a'), (6b'), and (6c'), /3 is a real scalar, p is a continuous linear functional, and 
the quantities O h, j  a- 0 are non-negative real scalars, only finitely many of which 
are actually different from zero (i.e., for only finitely many h E {— 1, 0} U H there 
are only finitely many (p h,, > 0 for some j E I(h )). Thus we have Ilp II < e from 
(6b'), i.e., Condition 3. 

From the first components of the vectors of (6a'), we obtain 

= p + E 	b 
;cm) 

(22) 
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and from (6b') we infer 

< E. 	 (23) 

Therefore, upon setting, for h E {0} U H, 

Ah = E 	b 
	

(24) 
iEhh) 
b'>0 

and (upon recalling our convention, that the empty summation is zero) we obtain 
by (22) and (23) the result IA 0 — 11 < e, i.e. Condition 4. Without loss of generality, 
A 0 > 0 also (by taking E > 0 smaller if necessary). 

From the second components of the vectors in (6a'), recalling that b' = 0 for 
all j E I(— 1), and using an auspicious partitioning of the (actually finite) sum-
mation, we obtain: 

,E/(-1) 	hE 0 UH IEJ(h) 
b ) =0 

hEI:XUH b>1) 
(0h,, b')(0 bl). 	 (25) 

The same partitioning of the sum in (6c') yields: 

(

E 0_, • al+ 

	

	E 	a l ) ic.r(-0 	he CXUH jef(h) 
hi=0 

JUH jE,h)(4C'h'i b9( 1) ) ) v(P) — E. 	 (26) 
bi:>0 

We next evaluate the functionals of (25) at an arbitrary point x E X, and add the 
negative of the resulting real numbers to those of (26), keeping the partitioning. 
We find 

g_ i (x)+ p(x)+ E 	E (cb h,, b')((a' — f) (x))1b')_-_ v(P)— E. 	(27) 
j hE 0 UH Egh) 
bi>0 

In (27), we have used this notation: 

g-1(x) = E 0_,, (-f,(x)+cri)-i- 	E oh,,(-fico+ )• 	(28) 

	

ict(-1) 	 he 0 UH jEJ(h) 
b0 

Clearly, g_ 1 (x) is linear affine and continuous. From (16a), if h = —1, (-- f,(x)+ 
a') 0 for x E K; and we recall from our previous discussion that, for h E 
{0} U H and j E I(h) with b' = 0, we have (—Mx) + a') -.5 0 whenever x E K. 
Using this information in (28), we obtain g_ 1 (x) :5 0 for x E K, i.e. Condition 1. 

	

By the definition (16b), we have, for h E {0} U H, b' Fh (x) + 	a4 
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whenever x is in the domain of Fh ; thus if b' > 0 for j E I(h), 

Fi,(x) (a' - f,(x))16'. 	 (29) 

Now if A h  = 0, we let gh (x) be (a' - f,(x))I b' for any j E I(h) with b' A 0 (there 
is at least one such j E I(h), by our assumption that Fh is defined and finite on all 
of q5). We at once have Condition 2, and the part A, ligh (x) of the sum in (24) is 
zero, as is the corresponding part 

E coki b -90611 - fi(x))/b') 
iei(h) hi>0 

of the sum in (27) (since A h  = 0 implies O h, b' = 0 for all j E I(h), using Oh, 	0 
and b' > 0). 

In the case that A,, > 0, we use (29) to deduce this inequality (via the definition 
(24)): 

AhFh(x)=( E Oho )Fh(X) 	E 	b'(a' - fi (x))/1) 1 , 	(30) 
)ei(h) 	 1E1(h) 

61,0 

Upon setting 

gh(x)=—, E 	- .6(x)) 
jEl(h) 
b 3 >0 

(31) 

we at once obtain Condition 2 from (30) and (31) when A h  > 0. Moreover, (27) 
becomes 

	

g_,(x)+ p(x) + 
hE fOl 

E
eli 

Ah
1 E 	MO) v(P) - E. 	(27') 

A  h 
A h >0 	 b>>0 

which is identical to Condition 5. 
All five conditions have been verified, and the proof is complete. ❑ 

Corollary 7. Assume the hypotheses of Theorem 6. 
For any e > 0, there exists a finitely non-zero vector A' = (A;,1 h E H) of 

non-negative components, a continuous linear affine functional a(x), and a 
continuous linear functional q, satisfying these stipulations: 
Stipulation 1. liqiI < ; 
Stipulation 2. a(x) ^ 0 for x E K; 
Stipulation 3. For all x in the common domain of Fh, 

a(x)+ Fo(x)+ q(x)+ hEH  A 'hFh(X)-- v(P)(1+ E)/(1 + 2€)- 	(32) 

with h E {0} U H. 
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Proof. Put e' = 4(1 + e), so that e= e'l(1— Er), and note that E i  > 0. We apply 
Theorem 6 for E r  > 0. 

After dividing through in (21) by A 0  > 0, and using the facts that 

IIP(x)/Aoli = IIP(x)11/1A0l- IIP(x)11/( 1  — e') < E'/(1— 6') = E, 	 (33) 

EVA0 1s. E'/(1 — e)= 

v(P)/A0 ^ v(P)/(1 + 	v(P)(1 + E)/(1 +2E), 	 (34) 

we obtain this corollary at once, with these settings: 

a(x) = g-i(x)/A0, 	 (35a) 

q(x) = p(x)1A0 , 	 (35b) 

	

= An/A0 for h E H. ❑ 	
(35c) 

Note that, using Stipulation 2 of Corollary 7, the inequality (32) yields 

inftF0(x)+ q(x)+ E A '),Fh (x)1 v(P)(1+ E)/(1+ 2E)— E. 	 (36) h  
xEK 	 EH 

Thus, for any e> 0, there is a linear continuous functional q with 11q11< E and 

sup inf {Fo(x)+ q(x)+ E A hFh (x)} v(P)(1 + e)/(1 + 2E)— e. 	(37) h  
A xEK 	 EH 

It follows at once that 

lim inf sup inf {Fo(x) + g(x) + E 	v(P) 	 (38) 
U1\0+ A xEK 	 hEH 

From (38), one has 

lira inf sup sup inf L(x, A, g)_- v(P) 	 (39) 
E0+  ‘'g: A xEK 

with L as defined in (9). We now combine (39) with Lemma 4, and obtain the 
limiting lagrangean equation (LL). 

By use of the norm of the Banach space X, a result about the ordinary 
lagrangean can also be obtained, in the case that K is norm-bounded (but not 
necessarily compact) in X. In fact, let B = sup{IIx111x E K} < +00; then if Ilq11< 
(36), becomes 

inf {Fax) + E 
xEK 	 hEH 

A 'hFh (x)} v(P)(1 + E)/(1 + 2E) — eB — e. (36') 

We at once obtain our next and final result, as E > 0 is arbitrary. 

Corollary 8. Assume the hypotheses of Theorem 6 and also assume that K is 
bounded. 



R.J. Duffin, R.G. Jeroslowl Lagrangean functions and affine minorants 	 59 

Then 

sup inf {Fo(x)+ E A hF,(x)j= v(P). 
A xEK 	 hEH 

3. Related literature, concluding remarks 

The phenomenon of the "limiting lagrangean" (LL) was discovered by Duffin 
[6]. Jeroslow [11] showed that, for X = (LL) could be sharpened, in that the 
limit as g —> 0 could be taken to be one-dimensional. To be specific, for X = R" 
there exists one fixed w E R" such that, with the hypotheses of Theorem 6, 

lim sup inf {Fo(x) + Owx + E A hFh oo l = v(P). 
8->0 A xEK 	 hEH 

(41) 

An alternative proof of (41) has been provided by Borwein [3], using Helly's 
theorem. 

Extensions of the limiting lagrangean equation to infinite-dimensional spaces, 
in the form (LL), occur in [4] and [8]; the present paper presents a simpler result 
than [7], since only lower semi-continuous (convex) functions Fh are treated 
here. 

In the paper [4], an infinite set of real-valued convex functions and a single 
cone-convex constraining function are used; moreover, only a general reflexivity 
property is used and the space X need not be normed. 

In [8] the limiting lagrangean result is generalized to set-valued convex 
functions, and the need for a norm is dropped; and these results are further 
extended, in that a treatment is given of the case that the constraints are not 
lower semi-continuous. In addition, [8] has an extension of the result in [11], for 
X = R", to set-valued convex functions. It does not appear, at this writing, that 
the "most general" statement of limiting phenomena has been achieved; im-
provements will no doubt continue. 

It is significant that Borwein in [4] uses the elegant theory of convex conjugate 
functions (as developed in [14, 15]) to shorten proofs regarding the limiting 
lagrangean, by citation of results from that theory. In contrast, we have 
preferred to cite separation principles in order to get representations of the 
convex program (8) as an infinite system of linear inequalities (17), and then to 
manipulate the resulting linear system by elementary algebra. All the refinements 
and extensions of the results of this paper, as mentioned above, are obtained by 
our method also; in fact, proofs in the set-valued case actually simplify, as one 
does not need to use an auspicious partitioning (as in (25)) when affine minorant 
results are not of concern. For further results on affine minorants, see [13]. 

(40) 
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Summary of Progress from September 1978 to Date  

and Its Relation to Proposed Work  

In a recent paper ("The Limiting Lagrangean"), R. J. Duffin and the 

writer studied the program 

inf f (u) 

subject to 0 E g(u) 

where f is a multi-valued function from a locally convex space U into (sub-

sets of) the reals R, and g is a multi-valued function from U into a locally 

convex space W. The problem P is taken to be consistent with value 

v(P) < +00. 

Under suitable assumptions, we proved this "limiting lagrangean" 

statement: 

(la) 	lim sup sup infff(u) + u (u) + X g(u)} = v(P) 
M40 u *EM X *EW*  uEU 

In (la), the notation "M+0" indicates a net of neighborhoods with limit 

* 	* 	 * 
0 E U , where U is the continuous dual of U; also W is the continuous 

dual of W. In the case that the domain space U = Rn is finite-dimensional 

real space Rn , (la) can be strengthened, for then there is one fixed 

vector u E R
n 

such that 

(lb) 
* 

lim sup infff(x) + Oux + X g(x)1 = v(P) . 
040+  X *EW*  xERn  

Our exact hypotheses were: (1) f and g are closed convex (i.e. the 

sets {(z,u)iz E f(u)1 resp. [(w,u)lw E g(u)} are closed and convex in R x U 
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resp. W x U); (2) U is locally convex and U is semi-reflexive with dual 

** 
U (i.e. the continuous linear functionals u on U arise exactly from 

* 
point evaluations for a suitable point u E U : we have the identity 

* 
u** (u ) = u

*
(u) for all u

* 	
U
*
). 

The program P is a very general formulation into which point-valued 

programs can be put. For example: 

(2) inf f(x) 

subject to k(x) 5 0 

h(x) = 0 

x E K 

is formulated as P by setting 

(3) g(x) = {r E Rir 	k(x)} x {h(x)} x i(x) 

where i(x) is the set-valued function 

(4) , x E K 
i(x) = 

(1) 	, x 0 K ; 

(thus g(x) = 4 if x 0 K), and in P the zero vector abbreviates (0,0,0) E R3 . 

Our result (lb) applies to the convex program 

(5) 	 inf -y 

subject to (x2 + y2 ) - x 5 0 

of value v(P) = 0, with feasible solutions (x,0) for all x z 0. Yet the 

perturbation function of this program is given by 



page 6 

(6) 
	 p(u)  = infl-y i (x2 4. y2 ) 1/2 	

x 5 ul 

+cc (inconsistency) , if u < 0 ; 

	

0 	 , if u = 0 ; 

	

-00 	 , if u > 0 ; 

so that no lagrangean vector, or augmented lagrangean function with 

finite values can close the duality gap. We also have shown ("A Limiting 

Lagrangean for Infinitely-Constrained Convex Optimization in R n", [G32]) 

how the vector u E Rn of (lb) can be found. 

Our results extended R. J. Duffin's result [G20] and our earlier 

result on the limiting lagrangean [G32] by consideration of the infinite-

dimensional setting, the set-valued map, plus the determination of the 

limiting lagrangean value in all cases. Specifically, we defined a 

closure of the program P, if f and g are convex, and we showed that (la) 

and (lb) always hold if v(P) is replaced by the value v(P') of the closure 

(as one expects, if f and g are closed, P is its own closure). Thus (la) 

and (lb) hold exactly if v(P) = v(P'), and jointly with Blair and Borwein, 

we proved [G12] that the existence of a Slater point for a convex program 

in point-valued functions in Rn  implies v(P) = v(P') (yet from (5) and (6) 

above, the converse is not true). Although (la), (lb) are statements 

of very broad applicability, a simple example in [G12] shows they may 

fail (i.e. one can have v(P') < v(P) if no hypotheses are made on the 

convex functions f and g in P). In addition, for U = Rn  we have estab-

lished a lower bound on the convergence to v(P) as a function of 0 > 0. 

Our interest in (la) and (lb) is that they show how a small linear 

perturbation, which is sent to zero, can close duality gaps in convex 
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programming, when other complex methods cannot. 

Jointly with C. E. Blair and R. J. Duffin, we extended this kind of 

result to a general minimax problem, and proved the following, under suit-

able hypotheses: 

(7a) lim sup sup inf{x (x) + F(x,y)) = inf sup F(x,y) 
N+0 x*EM yED xEC 	 xEC yED 

The finite dimensional version (i.e. C s R 11 ) asserts the existence of a 

vector u E R
n 

such that 

(7b) lim sup inf{eux + F(x,y)} = inf sup F(x,y) 
yED xEC 	 xEC yED 

From (7b) of course follows the usual result on minimax problems (as in 

[G48])when C is compact, for then there is a uniform bound on lux!, and 

(7b) becomes: 

(8) 	 sup inf F(x,y) = inf sup F(x,y) 
yED xEC 	xEC yED 

The exact hypotheses are given in our joint paper, "A Limiting 

Infisup Theorem," August 1979, and they are: (1) C is a non-empty, 

closed convex set in a semi-reflexive locally convex space X; 

(2) inf sup F(x,y) <1- 03; (3) For each fixed y E Y, F(x,y) is a closed, 
xEC yED 

convex function of x E X; (4) F(x,y) is concavelike in y on C x D. 

Our proof proceeds by a reduction of an arbitrary minimax problem 

to a programming problem in infinitely many constraints. We showed that 

the same device allowed us to generalize results of Sion [G50] from which 

Sion derived the Kneser-Fan minimax theorem directly. 
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The writer's interest has turned to strongly nonconvex problems--

i.e. problems not reducible by transformations to convex programs, quasi-

or pseudo-convex programs, etc. Among the simpler versions of such non-

convex programs are those with an underlying linear structure, in which 

the non-convexity is introduced by integrality constraints and/or 

logical conditions. This simpler problem could, nevertheless, provide 

ideas and methods for further research. We studied this problem jointly 

with C. E. Blair: 

MIP 
	

inf cx + dy 

subject to Ax + By = b 

x,y z 0 

x integer 

where x and y are finite-dimensional vectors, as are b, c and d, while 

A and B are matrices, all conformally dimensioned. 

In our paper, "An Exact Penalty Method for Mixed-integer Programs," 

we proved an exact penalty result, assuming that MIP has finite value 

v(MIP) and all data (c, d, b, A and B) are rational (without the ration-

ality hypothesis, the penalty result can fail). Specifically, there is 

a finite value of the penalty parameter p Z 0, depending on b, such that 

(9) 
	

inf 	{cx + dy + pllb - Ax - Byil} = v(MIP) 

x integer 

and such that the infimum on the left-hand-side in (9) is attained pre-

cisely for the optima to MIP. We showed that a result completely analo-

gous to (9) still holds if complementarity constraints (e.g. x
1
x
2
x
3 

= 0) 
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are appended to MIP. 

While the techniques of proof we used to establish (9) in our paper 

are based on our earlier joint work on the value function for (MIP) (see 

[G11]), actually there is an alternative proof which derives from our 

work on the limiting lagrangean. It is this alternative proof which will 

extend to more general nonconvex frameworks than (MIP). 

Some of the ideas of the alternative proof will be sketched in the 

Description of Proposed Research. The proposed research is simply a 

continuation of our research to date under the current NSF grant ENG-

7900284. 
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Description of Proposed Research  

We propose to continue our research under the previous grant ENG-

7900284, in both the nonlinear programming and cutting-plane theory 

aspects of that grant. 

1. Proposed Research in Nonlinear Programming  

We shall study the program P in our "Summary of Progress to Date," 

from the point of view of extending our earlier results to highly non-

convex situations. It is expected that the lagrangean function will 

become a norm penalty in the nonconvex setting; the existence of an 

optimal dual vector in the lagrangean will correspond to an exact norm 

penalty; and the basic "limiting lagrangean" phenomenon discovered by 

R. J. Duffin in the convex case will go over to a "limiting double-

norm penalty" for the nonconvex case, in different senses, to be 

described below. 

The limiting double-norm penalty will allow reduction of con-

strained optimization to a sequence of unconstrained optimizations, 

even in cases when this is not possible by norm penalties (as for 

example in the case of the program (5) - (6) of the "Summary"). It is 

likely to yield an exceptionally broad treatment of the cases when such 

a reduction is possible. 

To indicate some of the ideas involved, particularly the concept of 

"sectioning," assume in P that f is linear (this involves no loss of 

generality). Let a polyhedral norm be defined on Rm , the range space of 
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g of P, as the maximum of finitely many linear forms: 

(10) 
	

= max f
i
w 

where the vectors fi  E Rm  for i = 1,...,t are chosen solely to satisfy 

max f1w 5 0 	w = 0 . 

(The other axioms for a norm always will be satisfied; only (11) is depen-

dent on the f 1 ). The choice of the vectors f 1 are at one's convenience; 

as few as (m + 1) can do, but the more convenient norm 

llwll = lw1 
+ lw2( + 	+ ! i w

m 
requires t = 2m. (The number t, however 

large, does not enter in the final results.) All such norms are of 

course equivalent, so that exact penalty results, etc., for one norm are 

true for any other. 

When a program P is nonconvex, it is natural to "section" it into 

pieces which either are convex, or can be convexified without disturbing 

the optimal value. We use the norm 1114 to provide the sections (although 

substantially more general constructions are also available), by defining 

the polyhedral cones 

(12)
k 	

C
k 

= {wlfkw z f1w for all i = 1,...,t} 

and in turn using these cones to define t optimization problems from P, 

namely 

P
k 
	 inf f(u) 

subject to 0 E gk(u) 
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In P
k
, g

k
(u) is a set-valued function given by 

(13) k 	 gk (u) = g(u) n Ck . 

It is then possible to show that each program Pk  has an optimal 

lagrange multiplier A k  E le satisfying 

(14)
k 	

f(u) + 
Ak 

g
k
(u) z v(P) for all u E U , 

i.e. r + X
k
w Z v(P) for all r E f(u), w E g(u), and u E U, if and only 

if there exists a global exact norm penalty, i.e. if and only if there 

exists p z 0, satisfying 

(15) f (u) + plIg(u)d z v (P) for all u E U . 

In fact, the size of p in (15) can easily be related to the norms NXk li of 

(14) k . The existence of an inexact norm penalty (i.e. equivalence of 

value as px+co) is likewise equivalent to the fact that the supremum of 

the lagrangean dual in each program P k  is v(P). In the framework of set-

valued functions, local (rather than global) exact or inexact penalties 

can be discussed by modifying the set function g(u) to be empty off some 

neighborhood of interest (compare with the function i(x) of (4) in the 

"Summary"). The sectioning operation (13) k  is natural precisely because 

we work with set-valued functions. 

Under suitable conditions on g, which are quite broad, our earlier 

work on the limiting lagrangean can be applied to the programs P k , and 

the kind of result one obtains is of the form 

(16) lim sup inf{f(x) + 6IIxJI + ioNg(x)111 = v(P) 
040+ f:110 xER

n 
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for the case U = R
n
. In (16), two norms appear (this is the "double-

norm penalty" we mentioned)--one for the domain space (114) and one for 

the value space (1174)--but they are asymmetrical, in that 00 1-  with no 

necessary effect on p z 0, and it can occur that p continually increases 

as 0 0
+ 

(always increasing to a finite  value, but one depending on 

> 0) in order to attain the limit of (16). Actually, substantially 

more information can be obtained than (16); but we are only attempting 

to illustrate the general direction of these kinds of limiting results. 

To cite one example of the kind of hypotheses which give (16), this 

hypothesis is both necessary and sufficient if (16) is to hold for all 

linear functions f(x) (the constraint function g(x) being held fixed): 

(17) 	For each k = 1,...,t the closure of the convex span 

of {(w,x)lw E gk (x)), when intersected with w = 0, 

is the closure of the convex span of {(0,x)I0 E gk (x)}. 

In particular, if the convex span of {(w,x)lw E gk (x)} is closed, (16) 

holds. The condition (17) often (but not always) holds because the flat 

w = 0 is always on the boundary of {(w,x)lw E g k (x)}, and each cone Ck 

 of (12)
k 

is pointed. Moreover, if one fixed function f(x) is considered, 

(17) can be further weakened as a sufficient condition. 

Generally the programs P
k 

are difficult to analyze by conventional 

means, even if they are convex, because the type of operation (13) k 

 involved in the definition of gk  is a "truncation" which a priori rules 

out the existence of a Slater point. However, a joint unpublished result 

we obtained earlier with R. J. Duffin is capable of dealing with many 

cases of such truncation, and still allows one to conclude the existence 
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of an optimal multiplier 
Ak 
 in (14) k . Several results in the literature 

can also be adapted to this end. Thus we do expect to obtain exact 

penalty results (15) by this kind of "sectioning" analysis. 

We also are interested in algorithms for the sectioned problems 

(14) k , which, under mild hypotheses, can be applied to suitable con-

vexifications of (14) k . However, consideration of algorithms will be 

deferred until the basic phenomena have been explored. 

2. Proposed Research on the Theory of Cutting-Planes  

We shall be continuing our work on the theory of cutting planes, as 

applied to discrete structures (see e.g. [G30], [G33], [G34], [G35]). 

Cutting-planes are finding wider use in applications (see e.g. [G5], [G6]). 

Under the current grant ENG 7900284, which runs to June 30, 1980, we 

are exploring a subadditive treatment of constraint sets of the type: 

(18) 	 Ax = v 

	

x z 0 
	

(x = (x
1r

)) 

x. E T. for j = 1,...,r 

x satisfies the logical constraints 

where . is of a generalized complementarity nature, e.g. 

= (x1x
5 
= 0 A x

l
x
3
x
7 

= 0). 

We had previously explored similar constraint sets [G33], from the 

point of view of the disjunctive methods; the subadditive treatment is 

of course an extension of the algebraic methods [G35]. The interrela-

tions between the two approaches is well-known for the mixed integer 
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program (MIP) below (see [G35]), but has not been worked out for problems 

of the form (18), as a subadditive treatment of (18) was not available. 

Recently Wolsey gave an economic interpretation [G51] of the earlier 

subadditive dual in [G30] for (MIP), as an analogue to Koopman's economic 

interpretation of linear programming duality, and such an interpretation 

may be possible in this case. 

We also plan to do further research on a result of Balas [G2], on 

"facial constraints," which plays a central role in the disjunctive 

approach to cutting-planes. 

To state Balas' construction in a broader setting, let S be a (not 

necessarily closed) convex set in R n , and let Al ,...,At  be sets which can 

be written in the form 

(18) i  A. = 	u 	E, 
1 	 3 

jEJ(i) 

for an index 	 are convex sets which 

are extreme in S. Balas considers the iterated operation 

(19a) 

(19b) 

so  = S 

Si .= conv(S. 	n A.) , 	s 	s t , 
1 	 1-1 	1 

where conv(T) is the convex span of the set T. Then it is true that 

(20) 	 S
t 

= conv(S n A
l (1 	n At ) . 

It is also known that (20) can fail when the extremality property of the 

E.'s in (18). are not present. 
1 
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Balas' original statement of (20) is for S a polytope, and for each 

E. an exposed subset (i.e. a face) of S (and II(i)Ifinite), but the result 

(20) is true in the generality above. For S compact, each set S. is com- 
i 

pact if each set E. is compact and JIM' is finite; and in this case 

the operation of convex closure is equivalent to (19b). In other words, 

if we set 

(19a)' SO ' = S 

(19b)' =s.1 	aconv (s:
-1  n 1 

A.) , lsisn 
1  

where cAconv(T) is the closure of the convex span of the set T, we have 

Si ' = S1 (1 s i 5 t) under the above compactness assumptions. In general 

'2S.and # can hold; there are simple (unbounded) polyhedral examples 

of S for which St' Ciconv(S (1 A
l 
n n At). Nevertheless, it also is 

possible to give a description of S t ', which we omit. 

One example of the construction (19), (20) occurs for complementarity 

constraints, where an underlying linear structure with nonnegativities 

(21) 	 Cx = d , x z 0 

is subject to several complementarity conditions. For example, the com-

plementarity constraints of c?:= (x
l
x
5 

= 0 A x
l
x

3
x

7 
= 0) can be represented 

with S = {xLCx = d, x z 0}, A l  = El  U E2 , A2  = El  U E3  U E7 , t = 2, where 

each E. = 	E Six. = 01. Then St  = conv(S fl Al  n A2 ) is the convex hull 
3 

of the points feasible for the complementarity problem. Also bivalent 

mixed-integer programming problems are examples of (19), (20). We are 

thus discussing a disjunctive programming approach to a problem for which 
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we are now developing a subadditive treatment. 

We have begun to discuss the issue of facial and nonfacial con-

straints with C. E. Blair, and plan collaboration with him on this topic. 

The nonfacial case is more complex; Blair has shown that any finite 

number of Balas' intersection operations (19b) may fail to produce the 

convex hull of feasible points (as in (20)); although for S compact con-

vex, countably many intersection operations do "converge" to the hull. 

We plan to continue work in this area. 

These discoveries raise several issues with regard to finiteness 

proofs for cutting-plane algorithms which do use the intersection opera-

tion (19b), even for nonfacial constraints, and which are nevertheless 

finitely convergent. Examples of such algorithms are Gomory's mixed-

integer algorithm [G26] (without the cut-strengthening for integer var-

iables) and an algorithm we described in [G34]. Essentially, while 

these algorithms do not necessarily reach the convex hull, they do 

compute "lexicographically maximal points" in a certain sense, and these 

points are sufficient to solve the programming problem. In contrast, 

our algorithm for facial constraints in [G37] can reach the hull. 

We plan to study the issue of finite convergence, and the related 

issue of efficient use of cuts, in greater detail. While there are now 

many proofs of finiteness for various algorithms on different classes 

of problems, there is not much understanding of what unifies them. 

Currently there are several different ideas about the choice of cuts. 

Blair has suggested that complexity measures be used, which are well-

ordered, and such that a cut never increases and (at least every so often) 

strictly decreases complexity (see [G10]); the specific measure he suggests 
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counts the intersection of faces of various dimensions with the extremal 

subsets. One programme which has never successfully been carried out is 

that of relating "deep cuts" (under some measure of "depth" or "strength") 

to faster finite convergence, or even to better relative progress after 

several cuts have been added. One rule frequently used now is to seek 

easily-computed facets of the convex hull of feasible points; this is 

often possible, at least in part, on problems with a very specific struc-

ture. 

Further research is needed to develop an understanding of which of 

the above approaches to the choice of a cut are most appropriate under 

different circumstances. 
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and Systems Analysis, Austin, September 1977. 

22. "A Cutting-Plane Game and Its Algorithms," Georgia Institute of 
Technology, Atlanta, February 1978. 

23. "A Limiting Lagrangean for Infinitely Constrained Convex Optimiza-
tion in Rn," at Constructive Approaches to Mathematical Models, 
Pittsburgh, July 1978. 

24. "Representations of Unbounded Optimizations as Integer Programs," 
ORSA/TIMS meeting in New Orleans, April 30-May 2, 1979. 

25. "Recent Results in Nonlinear and Integer Programming," at the meeting 
on mathematical programming, at Mathematisches Forschungsinstitut 
in Oberwolfach, Germany, May 6-12, 1979. 
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26. "A Limiting Infisup Theorem," at the Tenth International Symposium 
on Mathematical Programming, Montreal, August 27-31, 1979. 

27. "Nonlinear Optimization Treated by Linear Inequalities," ORSA/TIMS 
meeting in Milwaukee, October 15-17, 1979. 
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Papers Published,  

August 1978-August 1979  

1. "A Converse for Disjunctive Constraints," (with C. E. Blair), Jour- 
nal of Optimization Theory and Its Applications, June 1978. 

2. "Some Relaxation Methods for Linear Inequalities," Cahiers du Centre  
d'Etudes de Recherche Operationelle 21 (1979), pp. 43-53. 

3. "Cutting-plane Theory: Algebraic Methods," Discrete Mathematics 23 
(1978), pp. 121-150. 

4. "The Value Function of a Mixed Integer Program: II," (with C. E. 
Blair), Discrete Mathematics 24 (1979), pp. 7-19. 

5. "Minimal Inequalities," Mathematical Programming 17 (1979), pp. 1-15. 

6. "Two Lectures on the Theory of Cutting-planes," in Combinatorial  
Optimization, edited by N. Christofides et al., John Wiley and Sons, 
Ltd., 1979. 

Papers Accepted for Publication,  

August 1978-August 1979  

1. "A Cutting-Plane Game for Facial Disjunctive Programs," accepted 
for the SIAM Journal on Control and Optimization. 

2. "An Introduction to the Theory of Cutting-Planes," for volume based 
on NATO Advanced Research Institute on Discrete Optimization and 
Systems Applications (held in August, 1977). 

3. "Lagrange Dual Problems with Linear Constraints on the Multipliers," 
(with C. E. Blair), for proceedings of Constructive Approaches to 
Mathematical Models (held in July, 1978). 
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SUMMARY 
PROPOSAL BUDGET 

__— 

FOR NSF USE ONLY 

ORGANIZATION AND ADDRESS 

Georgia Tech Research Institute 
North Avenue, Atlanta, Georgia 	30332 

y  

PROPOSAL NO, 

DURATION 

PROPOSED 

(MONTHS) 

REVISED PRINCIPAL INVESTIGATOR/PROJECT DIRECTOR 

Robert G. Jeroslow 
A. SENIOR PERSONNEL (LIST BY NAME; SHOW NUMBERS OF PEOPLE IN 

BRACKETS; SALARY AMOUNTS MAY BE LISTED ON SEPARATE 
SCHEDULE) GPM 205.1b 

NSF FUNDED 
MAN MONTHS 

FUNDS 	 FUNDS 
REQUESTED BY GRANTED BY NSF 

PROPOSER 	(IF DIFFERENT) 

LPA./P.m Robert G. Jeroslow 6 s 44,464 	s 
2.c0pA4Rm 	none s s 

NSF 
USE 

3. CO P.I./P.D. $ 5 

$ 4. CO P.I./P.D. $ 

5. CO P.1./P.D. S 

11115 6. ( 	) 	 SUBTOTALS Al - A5 1 4 	 ► In= .1 	4 	A . 4 	$ 

FACULTY AND OTHER SENIOR ASSOCIATES u.":=.::;"vj "4" 

• 

f 4' jj7   A 
7.  $ $ 

8.  S S 

9.  $ $ 

10.  $ $ 

U. S $ 

11117 12. ( 	) SUBTOTALS A7 - All $ 0 	$ 41-- 

B. OTHER PERSONNEL 	(LIST NUMBERS IN BRACKETS) r 	,r /3 % , Ar/ 	4 
11141 1.( 	) 	POSTDOCTORAL ASSOCIATES $ 

11149 2. ( 	) 	OTHER PROFESSIONALS $ $ 

11150 3. ( 	) 	GRADUATE STUDENTS $ S 

11152 4. ( 	) 	UNDERGRADUATE STUDENTS $ S 

11182 5. ( 	) 	SECRETARIAL - CLERICAL $ S 

11183 6. f 	) 	TECHNICAL. SHOP, OTHER $ S 

TOTAL SALARIES AND WAGES (A+B) s 44,464 	S 

11200 C. FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS) 	(10.51% of 6. 	+ 12 4,673 	s 

23181 

TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A+B+C) s 49 137 	S 

D. EQUIPMENT (LIST ITEMS AND DOLLAR AMOUNTS FOR EACH ITESP 

none 

TOTAL EQUIPMENT 

•■‘_k\  

e.,0%/ / 

1 	.., 

,47 
:, 

7 

..i/ 
7,7 	Agi 

, 

S S 

E. MATERIALS AND SUPPLIES 

none 
r  
/ 

e ,.  Are 
/ , P/ 
/ 	.'' ,/,,, V ".,,c,A. 
/ 	.'-'' 	• • 

32630 S 

F. DOMESTIC TRAVEL 

42111 lir 	1111M11111111=111 
G. FOREIGN TRAVEL (LIST DESTINATION AND AMOUNT FOR EACH TRIP; GPM 731) 

Eleventh International Symposium on Mathematical 
Programming, Location to be in Europe 

\
 	

\
 \s

, 

/ 

' :77 

;''/ 	, 	,, 

..., 

42112 $ 	1,000 s 



NOTICE OF RESEARCH PROJECT 
SCIENCE INFORMATION EXCHANGE 

SMITHSONIAN INSTITUTION 

NATIONAL SCIENCE FOUNDATION 
PROJECT SUMMARY 

  

 

PROJECT NO. I Do not use 

this space) 

 

NSF AWARD NO .  

  

1. NAME OF INSTITUTION (INCLUDE BRANCH/CAMPUS & SCHOOL OR DIVISION) 

2.  MAILING ADDRESS 

3. 

I 

PRINCIPAL INVESTIGATOR AND FIELD OF SCIENCE/SPECIALTY 

I
4. TITLE OF PROJECT 

.... 	. 
. 	 ....„ OF Pxc ^ rv5nu  ...--- 

 (LIMIT • 
— 	PICA OR 

 .
C. 

FOR NSF USE ONLY 

((VISION (OFFICE) AND DIRECTORATE PROGRAM 

iECTION PROPOSAL NO. F.Y. 

FOR DGC USE ONLY 

TART AND ENO CATES 
	

I AMOUNT GRANTED 
	

1 

"CAM 4  7-- 78) 	1 .•oposal Folder 	3. Division at :;rants & Contracts 	5. Princioai investigator 	7 Assistant 

2. Program Suspense 4. Science information Exchange 	E. Off, of Govt. & a ub. P-ogs. Director 
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(continued) 
SUMMARY PROPOSAL BUDGET PROPOSAL NO. 

52500 

62315 

H. PUBLICATION COSTS/PAGE CHARGES S 	 900 
1. 	COMPUTER (AOPE) SERVICES f 	 600 

65001 

. CONSULTANT SERVICES 

none 

K. PARTICIPANT SUPPORT 

1. STIPENDS 

2. TRAVEL 

3. SUBSISTENCE 

4. OTHER • SPECIFY 

5.TOTAL PARTICIPANT 

L. ALL OTHER DIRECT 
work statements and 

none 

TOTAL OTHER 

costs 

AND 

DIRECT 

(IDENTIFY 

COSTS. IF 

none 

COSTS lK1 

COSTS (List 
budget, should 

COSTS 

• K2 

+Isms and 
be explained 

L) 

betels) 
-oil campus 

+ B) 

COSTS 

CONSULTANTS 

ALLOWED 

• K3 • K4) 

dollar amounts. 
In full 	in 

BY NAME 

GUIDE 

AND AMOUNT; GPM 516)  /./

%
7 

./.• 

\
\

.\
\\
\

,. 

\
\
,
\
 

\
 	

\
  %\

,"  
',\

\
\\

,\\
 

V
‘\
  

BY PROGRAM 

Details of 
proposal I 

subcontracts, 

$ 

5 

s 

$ 

t 

(ITEMIZE) GPM 518 r 

//e /".: .' 

/ 

8 
/ 

• ' 

i A., 
0 

-""/ 

/ 

/ 

,, 

;,''Y ..,. 

S 

'-''X, ' -!,  -t•-/ 
f% / 

•

• . 
/ 	- 

.,.,..../.4//,  

S 

i1 
fr/ including 

5 

M. TOTAL DIRECT 

N. INDIRECT COSTS 
Jdentifv itemized 

on campus: 

TOTAL INDIRECT 

0. TOTAL DIRECT 

COSTS 

(Specify 

(A THROUGH 

rata(%) and 
included in on 

73% of 	(A 

COSTS 

INDIRECT 

for onroff 
bases in 

(M • N) 

campus activity. 	Where both are involved 
remarks I 

S 	9 
V/ ///7. 	

' 
/  ,/ 

.' 'Y./-/. 	
4/ 

a„ 	•/, 
. • .,i,74V 

-i 	

"'/.-

-%' 	.2-  47 

 A 

- • ' 	 '- 

'OA:;a1;7, -.,. 
/, A 

74100 S 	32 459 	4  
s 	86,396 	Is 

7 4500 P. LESS RESIDUAL FUNDS (If for further support of current project; GPM 252 and 253) s 	 • 	Is 
75000 Q. AMOUNT OF THIS REQUEST (0 MINUS P) la6.....19.E_J, 

REMARKS 

Georgia Institute of 
Foundation policy 

FOR 

Technology will cost share in accordance with current 

NOTE: SIGNATURES REQUIRED ONLY REVISED BUDGET (GPM 233). THIS IS REVISION NO 

AND TITLE SIGNATURE OF PRINCIPAL INVESTIGATOR/PROJECT DIRECTOR DATE OF 
SIGNATURE 

TYPED OR PRINTED NAME 

SIGNATUR: OF AUTHORIZED ORGANIZATIONAL REPRESENTATIVE DATE OF 
SIGNATURE 

TYPED OR PRINTED NAME AND TITLE 

FOR NSF USE ONLY 

INDIRECT COST RATE VERIFICATION 	 rPROGRAM OFFICER APPROVAL 

Date Checked 	I Date of Rata Sheet 	1 Signature 

Grant Number A rand Institution • reanimation 1 Fu,4n  . Program Object 
I 	1 	1 	1 	1 	I 
1 	1 	1 	1 	1 	1 I 	I  

1 	1 	1 	i 	-T 
I 	I 	I 	I 

	

1 	1 	1 

	

11 	I 	1 
t 	1 	1 
1 	1 	I I 1 

I 	1 	1 	1 	I 	1 	1 
1 	1 	1 	1 	1 	1( 

1 1 
I( 

1 	1 	1 	1 	1 
1 	1 	1 	1 	1 

Proposal Number 

I 	1 	I 	1 	I 	1 

Our. 	Chg. 	Award Date 11111111111=11 Proposed Amount 	• M11111111111 '1 	1 	1 	1 	1 
i 	1 	1 	1 	i 	1 
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SUMMARY 
PROPOSAL BUDGET 

FOR NSF USE ONLY 

PRINCIPAL 

ORGANIZATION AND ADDRESS 

Georgia Tech Research Institute 
North Avenue, Atlanta, Georgia 	30332 

-- 

PROPOSAL NO. 

DURATION 

PROPOSED 

(MONTHS) 

INVESTIGATOR/PROJECT DI RECTOR 

Robert G. Jeroslow 
REVISED 

A. SENIOR PERSONNEL (LIST BY NAME; SHOW NUMBERS OF PEOPLE IN 
BRACKETS; SALARY AMOUNTS MAY BE LISTED ON SEPARATE 
SCHEDULE) GPM 205.1b 

NSF FUNDED 
MAN MONTHS 

r 	
FUNDS 

REQUESTED BY 
PROPOSER 

FUNDS 
GRANTED BY NSF 
(IF DIFFERENT) CAL. ACAG SUMR, 

I.P.I. /P.D. 	Robert G. 	Jeroslow 1 2 $ 13,433 s 
2. CO P.I./P.D. 	none s s 

NSF 
USE 

3. CO P.I./P.D. $ $ 

4, CO P.I./P.D. $ $ 

5. CO P.I./P.D. $ $ 

11115 6.) 	1.4- 	 SUBTOTALS Al - A5  

// Z 4 
$ 	∎  	 

//i'4' 44 

1 	 ►  
(ATTACH EXTRA SMUT 

FACULTY AND OTHER SENIOR ASSOCIATES 	mac sssss v) 

7.  $ 

8.  $ $ 

9.  $ $ 

10.  $ $ 

11.  $ $ 

11117 12. ( 

	

	) SUBTOTALS A7 - All 44-- I $ 

B. OTHER PERSONNEL 	(LIST NUMBERS IN BRACKETS) 4,  4 , :r 	Ar 4 
11141 1.( 	) 	POSTDOCTORAL ASSOCIATES 

11149 2. ( 	) 	OTHER PROFESSIONALS  

11150 3. ( 	) 	GRADUATE STUDENTS $ $ 

11152 4. ( 	) 	UNDERGRADUATE STUDENTS $ $ 

11182 5. ( 	) 	SECRETARIAL • CLERICAL 

11183 6.( 	) 	TECHNICAL, SHOP, OTHER $ $ 

TOTAL SALARIES AND WAGES (A+ B) s 13 433 s 
11200 C. FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS) 	 10,51% of 6. + 12k) 	1.412 s 

TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A+ B+C) $ 14 R4S 
D. EQUIPMENT (LIST ITEMS AND DOLLAR AMOUNTS FOR EACH ITEM) 

none 

TOTAL EQUIPMENT 

\
 
\
 	

\
‘‘ 

,
 	

\\  
, 	

N
 

"
■
;\\ 	

\\N
 	

:
•• •

 \  

\
 

V
A

 	
k, 

23181 
-, 0 $ 

E. MATERIALS AND SUPPLIES 

none 

X 

fe V/ 
/: 

eji 	r 

..4: 
32630 $ 

F. DOMESTIC TRAVEL 

42111  

_ 
4211' 

G. FOREIGN TRAVEL (LIST DESTINATION AND AMOUNT FOR EACH TRIP; GPM 731) 

none 

/ 

a 	' 
,,  

A 

r  

./,/  

/ //  
AgNi 



NOTICE OF RESEARCH PROJECT 

SCIENCE INFORMATION EXCHANGE 

SMITHSONIAN INSTITUTION 

NATIONAL SCIENCE FOUNDATION 
PROJECT SUMMARY 

  

 

PROJECT NO. (Do rot use 
trim space) 

 

NSF AWARD NO. 

  

I. NAME OF INSTITUTION (INCLUDE BRANCH/CAMPUS & SCHOOL OR (DIVISION/ 

2. MAILING ADDRESS 

Z. PRINCIPAL INVESTIGATOR AND FIELD OF SCIENCE/SPECIALTY 

4.  TITLE OF PROJECT 

5.  SUMMARY OF PROPOSED WORK (LIMIT 70 22 PICA OR 18 ELITE TYPEWRITTEN LINES) 

FOR NSF USE ONLY 

iIVISION (OFFICE) AND DIRECTORATE PROGRAM 

ECTION PROPOSAL NO. F.Y. 

FOR DGC USE ONLY 

TART AND ENO CATES 
	

)AMOUNT GRANTED 

FORM 4 ;7-78) 	1. Proposal Folder 	3. Division of Drams & Contracts 	5. Principal Investigator 	7. Assistant 

2. Program Suspense 4. Science Information Exchange 	6. Off, of Govt. & Pub. P•ogs. Director 
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( ) 
SUMMAR Y

continue 
 PROPOSAL 
 d 
BUDGET 

page 35 

52500 H. PUBLICATION COSTS/PAGE CHARGES 

62315 I. COMPUTER (ADPE) SERVICES 

J. CONSULTANT SERVICES (IDENTIFY CONSULTANTS BY NAME AND AMOUNT; GPM 516) 

none 

K. PARTICIPANT SUPPORT COSTS, IF ALLOWED BY PROGRAM GUIDE (ITEMIZE) GPM 518 

1. STIPENDS 

2. TRAVEL 

3. SUBSISTENCE 

4. OTHER - SPECIFY 

0-- 
L. ALL OTHER DIRECT COSTS (List Items end dollar amounts . Details of subcontracts, including 

work statements and budget, should be explained in full in proposal. I 

none 

s 
65001 	TOTAL OTHER DIRECT COSTS 

M. TOTAL DIRECT COSTS (A THROUGH L) 

N. INDIRECT COSTS (Specify retell) and beliefs) for on/off campus activity. Where both are involved 
identify itemized costs included in on'off campus bases in remarks.) 

on campus: 73% of (A + B) 

none 
S 

5 TOTAL. PARTICIPANT COSTS (K1 K2 • K3 -0 K4) 

S  

74100 TOTAL INDIRECT COSTS 

   

• 806 	s 

	

7C, 751 	is 

 

O. TOTAL DIRECT AND INDIRECT COSTS (N • N) 

   

74500 

75000 

P, LESS RESIDUAL FUNDS (If for further support Of current project; GPM 252 and 253) 

Q. AMOUNT OF THIS REQUEST (0 MINUS P) 

0 
	

IS 

1 
REMARKS 

Georgia Institute of Technology will provide cost sharing in accordance 
with current Foundation policy 

NOTE: SIGNATURES PEQUI RED ONLY FOR REVISED BUDGET (GPM 233). THIS IS REVISION NO 

SIGNATURE OF PRINCIPAL INVESTIGATOR/PROJECT DIRECTOR 	DATE OF 	TYPED OR PRINTED NAME AND TITLE 
SIGNATURE 

SIGNATURE OF AUTHORIZED ORGANIZATIONAL REPRESENTATIVE DATE OF 
SIGNATURE 

TYPED OR PRINTED NAME AND TITLE 

FOR NSF USE ONLY 

INDIRECT COST RATE VERIFICATION PROGRAM OFFICER APPROVAL 

Date Checked 	I 	1  Date of Rate Sheet 	Signature 

ad 
1il 

Grant Number 
	Amend 

Proposal Number 
1 	1 	1 	 I 

1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	I 	I 	I 
1 	1IIII  

ME22=115g11 
1111111111111111111111111111 

11161111111111111111111111 
Our. 	 Award Oats 	Proposed Amount 

Institution Program Object 
T 
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SUMMARY 
PROPOSAL BUDGET 

-.-......-. 

FOR NSF USE ONLY 

PRINCIPAL 

ORGANIZATION AND ADDRESS 

Georgia Tech Research Institute 

North Avenue, Atlanta, Georgia 	30332 

_... 

PROPOSAL NO. 

DURATION 

PROPOSED 1-  
(MONTHS) 

INVESTIGATOR/PROJECT DI RECTOR 

Robert G. Jeroslow 
REVISED 

A. SENIOR PERSONNEL (LIST BY NAME; SHOW NUMBERS OF PEOPLE IN 
BRACKETS; SALARY AMOUNTS MAY BE LISTED ON SEPARATE 
SCHEDULE) GPM 205.1b 

NSF FUNDED 
MAN MONTHS 

FUNDS 
REQUESTED BY 

PROPOSER 

FUNDS 
GRANTED BY NSF 
(IF DIFFERENT) CAL. ACAD. SUMP. 

1. P.I./P.D. 	Robert G. 	Jeroslow 1 2 $ 14,776  
$ 

$ 

$ 2. CO P.I./P.D. 	none 

NSF 

USE 

3. CO PA./P.D. S S 

$ 4. CO P.I./P.D. S 

5. CO PA./P.D. 

1 2 

$  

S 14,776 

AMEIMEMEEZEMEE 
$  

s 11115 6 3.- 	) 	 SUBTOTALS Al - AS .... 

FACULTY AND OTHER SENIOR ASSOCIATES ,r1.7:iss.  '' ''''...CI" I%  . 

7.  

8.  8 $ 

9.  S i 

10.  S S 

11.  S S 

11117 12. ( 	).41-- 	 SUBTOTALS A7 - All P S 	 0 S 

B. OTHER PERSONNEL 	(LIST NUMBERS IN BRACKETS) // ,/  // 
11141 1. ( 	) 	POSTDOCTORAL ASSOCIATES 

11149 2. ( 	 ) 	 OTHER PROFESSIONALS S 

11150 3.) 	) 	GRADUATE STUDENTS 

11152 4. ( 	) 	UNDERGRADUATE STUDENTS S S 

11182 5.) 	) 	SECRETARIAL - CLERICAL 

11183 6. ( 	) 	TECHNICAL, SHOP, OTHER S S 

TOTAL SALARIES AND WAGES (A+ B) $ 14,776 s 
11200 C. FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS) 	( 10 . 5 1% of 6. 	+ 12. s 	1,553 

16 329 

S  

TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A+B+C) 

13. EQUIPMENT (LIST ITEMS AND DOLLAR AMOUNTS FOR EACH ITEM) 

none 

TOTAL EQUIPMENT 

\\NI  

23181 S 	 S 

E. MATERIALS AND SUPPLIES 

none 

V/ / 	„‘,/ 

/ 	z  
/,  
// 

/ ../ 	// 	A 
32630 S 	 0  

F. DOMESTIC TRAVEL 

42111 s 	800 	s 

42 .'.12 

G. FOREIGN TRAVEL (LIST DESTINATION AND AMOUNT FOR EACH TRIP; GPM 731) 

none 

/7
 / 

,/
,//;,, ,/, 
'',,;
;̀
 ,' //, / ..',/ \\. 

•
 \ 

*
*
\
 \
  

\
,

,,,,,
,
\

,
 

S 	 0 



NOTICE OF RESEARCH PROJECT 

SCIENCE INFORMATION EXCHANGE 

SMITHSONIAN INSTITUTION 

NATIONAL SCIENCE FOUNDATION 
PROJECT SUMMARY 

  

 

PROJECT NO. tDo not use 

this space) 

 

NSF AWARD NO. 

  

I. NAME OF INSTITUTION (INCLUDE BRANCH/CAMPUS S SCHOOL OR DIVISION) 

2.  MAILING ADDRESS 

3.  PRINCIPAL INVESTIGATOR AND FIELD OF SCIENCE/SPECIALTY 

4.  TITLE OF PROJECT 

5.  SUMMARY OF PROPOSED ,NORK (LIMIT TO 22 PICA OR 18 ELITE TYPEWRITTEN LINES) 

FOR NSF USE ONLY 

IIVISION (OFFICE) AND DIRECTORATE PROGRAM 

(ECTION PROPOSAL NO. F.Y. 

FOR DGC USE ONLY 

TART AND ENO CATES 
	

I AMOUNT GRANTED 

1  

CAM 4  :7-78 ) 	0-00osai Folder 	3. Division of Grants & Contracts 	S. Principal Investigator 	7. Assistant 

Program Suspense 4. Science information Exchange 	6. Off. of Govt. di Pub. P,ogs. Director 
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(continued) 
SUMMARY PROPOSAL BUDGET 

52500 H. PUBLICATION COSTS/PAGE CHARGES 

62315 I. COMPUTER (ADP() SERVICES 

      

      

        

J. CONSULTANT SERVICES (IDENTIFY CONSULTANTS BY NAME AND AMOUNT; GPM 5161 

none 

K. PARTICIPANT SUPPORT COSTS, IF ALLOWED BY PROGRAM GUIDE (ITEMIZE) GPM 518 

1. STIPENDS 

2. TRAVEL 

3. SUBSISTENCE 
	 none 

4. OTHER SPECIFY 

5. TOTAL PARTICIPANT COSTS (K1 K2 K3 + K4) 

L. ALL OTHER DIRECT COSTS (List items and dollar amounts Details of subcontracts, including 
work statements and budget, should be explained in full in proposal 1 

none 

65001 
	

TOTAL OTHER DIRECT COSTS 

M. TOTAL DIRECT COSTS (A THROUGH L) 

N. INDIRECT COSTS (Specify rates) and besets) for on , off campus activity. Whore both are involved, 
identlfy Itemized costs included in on - off campus bases in remarks.) 

on campus: 73% of (A + B) 

74-1701  TOTAL INDIRECT COSTS 

0. TOTAL DIRECT AND INDIRECT COSTS (M N) 

74500 P. LESS RESIDUAL FUNDS (If for further support of current project, GPM 252 and 253) 

75000 Q. AMOUNT OF THIS REQUEST {0 MINUS P) 

I 
7 

Fun Amend Organization 

1 	I 	I 

Award Date 

Institution 

I 	I 	II 	I 	1 	1 	1 

ad 
Lir. Proposal Number 

--r 
1 I I I I 1 

—r 
I 	 1 	I 1 	I 	I 1 

	

Program 	 Object 
7- 7 

1111 	I 	1 	1 	 I 	I 	11 	11 
1 	I 	 t ) 

Proposed Amount 

I 	I 	1 	1 	1 	I 	1 
LI 	1 1 	I  

Grant Number 

1 	1 	1 	1 	1 	1 	1 	1 
I 	I 	1 	1 	.1 

REMARKS 

Georgia Institute of Technology will provide cost sharing in accordance 
with current Foundation policy 

NOTE; SIGNATURES REQUIRED ONLY FOR REVISED BUDGET (GPM 233). THIS 15 REVISION NO 

SIGNATURE OF PRINCIPAL INVESTIGATOR/PROJECT DIRECTOR 	DATE OF 	TYPED OR PRINTED NAME ANO TITLE 
SIGNATURE 

SIGNATURE OF AUTHORIZED ORGANIZATIONAL REPRESENTATIVE DATE OF 
SIGNATURE 

TYPED OR PRINTED NAME AND TITLE 

INDIRECT COST RATE VERIFICATION 

FOR NSF USE ONLY 

PROGRAM OFFICER APPROVAL 

Date Checked Date of Rate Sheet SIgnmum 
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SUMMARY 
PROPOSAL BUDGET 

FOR NSF USE ONLY 

ORGANIZATION  AND ADDRESS 

Georgia Tech Research Institute 
North_Avenue, Atlanta, Georgia 	lo112 

PROPOSAL NO. 

DURATION 

PROPOSED 

(MONTHS) 

PRINCIPAL INVESTIGATOR/PROJECT M RECTOR 

Robert G. Jeroslow 
REVISED 

A. SENIOR PERSONNEL (LIST BY NAME; SHOW NUMBERS OF PEOPLE IN 
BRACKETS; SALARY AMOUNTS MAY BE LISTED ON SEPARATE 
SCHEDULE) GPM 205.1b 

NSF FUNDED 
MAN MONTHS 

FUNDS 
REQUESTED BY 

PROPOSER 

FUNDS 
GRANTED BY NSF 
(IF DIFFERENT) CAL. ACAD. SUMR 

1.pA4p.o. 	Robert G. Jeroslow 1 2 s 	16,255 
s 

s 	  
S 2. CO P.I./P. a 

NSF 
USE 

3. CO P.1.03.0 S S. 

4.co P.L/P.a s s 

5. CO PA/P.D. S S 

11115 6. ( 

	

	) SUBTOTALS Al - A5 46 
a . 	, 

(ATTACH EXTRA. •I.IIEKT 
FACULTY AND OTHER SENIOR ASSOCIATES 	ir NKCIC 	 liSSAR 1 / .4 / V //: 
7.  $ 

8. s S 

9. S s 

10. s S 

11.  S S 

11117 12.1 	).---   SUBTOTALS A7 - All 	 ►  S 

B. OTHER PERSONNEL 	(LIST NUMBERS IN BRACKETS)  / 
, 	

/. 
11141 1.( 	) 	POSTDOCTORAL ASSOCIATES S 

11149 2. ( 	) 	OTHER PROFESSIONALS S S 

11150 3A 	) 	GRADUATE STUDENTS S s 

11152 4A 	) 	UNDERGRADUATE STUDENTS $ S 

11182 

11183 
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Expenditures to Date  

Under Existing NSF Contract  

ENG 7900284  

A. Senior Personnel 
P.I. Robert G. Jeroslow (2 summer mos.) 	 $ 7,777 

B. Other Personnel 
Graduate Students 	 0 

Total Salaries and Wages (A B) 	 7,777 

C. Fringe Benefits (9.83% of 6. + 12.) 	 764 

Total Salaries, Wages, and Fringe Benefits 	 8,541 

F. 	Domestic Travel 	 0 

H. Publication Costs 	 0 

I. Computer Services 	 0 

M. Total Direct Costs (A through L) 	 8,542 

N. Indirect Costs 
(on campus: 76% of (A B)) 	 5,910 

0. 	Total Direct and Indirect Costs, 
Total Expenditures to Date (9/11/79) 	 $14,452 
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Estimated Future Expenditures  

Under Contract ENG 7900284, Ending June 30, 1980,  

Including a Proposed Budget for Ensuing Period  

A. 

B. 

Senior Personnel 
Robert G. Jeroslow 

Other Personnel 
One Graduate Student 

Total Salaries and Wages (A + B) 

$ 	0 

3,600 

3,600 

C. Fringe Benefits 0 

Total Salaries, Wages, and Fringe Benefits 3,600 

F. Domestic Travel 600 

H. Publication Costs 200 

I. Computer Services 200 

M. Total Direct Costs (A through L) 4,600 

N. Indirect Costs 
(on campus: 	76% of (A + B)) 2,736 

O. Total Direct and Indirect Costs 
(Total Estimated Future Expenditures to June 30, 1979) $7,336 
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Description of Travel  

and Its Relationship to Proposed Research  

All travel is to professional conferences, where the Principal 

Investigator will give talks to disseminate research, listen to pro-

fessional talks, and enter into discussions on developments and results 

in Operations Research. 
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Current and Pending Support Statement  

The principal investigator does not have any other research support, 

and no other application is pending or contemplated. 
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We have extended the limiting lagrangean equation to a wide variety of 
infinite dimensional settings in its broadest (i.e., set-valued) formulation, 
and obtained the most general conditions known for the equation to hold. 	As 
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Our work has also provided "integer analogues" for concepts which occur 
in linear programming (eg., linear function, polyhedral function, dual program, 
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integer programming, perhaps with suitable regularity conditions. 
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b. Publication Citations for  

Papers Written Under this Grant  

(see also fl. for related information) 

Published  

1. "Lagrangean Functions and Affine Minorants," with R.J. Duffin, 
Mathematical Programming Study  no. 14, 1981, pp. 48-60. 

Accepted for Publication  

2. "An Exact Penalty Method for Mixed Integer Programs," with C.E. Blair, 
to appear in Mathematics of Operations Research. 

3. "The Value Function of an IntegerProgram," with C.E. Blair, to appear in 
Mathematical Programming. 

Submitted for Publication  

4. "The Limiting Lagrangean," with R.J. Duffin, June 1979. 

5. "A Limiting Infisup Theorem," with C.E. Blair and R.J. Duffin, August 1979. 
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e. Technical Description of Project and Results  

In citations here, we use the numbering of our papers as given on page 

three, for "b. Publication Citations for Papers Written Under this Grant." 

The five reports cited are given as appendices here (item f3. on page two, 

Table of Contents). We also refer to our paper, "Some Influences of 

Generalized and Ordinary Convexity in Disjunctive and Integer Programming," 

under the citation "[f4]," since it is given as item f4. on page two, Table 

of Contents, and is an Appendix here. (The latter paper was written after the 

funded part of the grant period and will be reported under a later grant.) 

A set-valued mapping h:X4Y froma linear space X to a linear space Y is 

called convex,  if {(x,y) I ych(x)lis a convex set in X x Y. This concept is 

evidently due to Blashke, and is more general than cone-convex functions. 

In [4] we study the optimization problem 

(P) 	
inf f(u) 

subject to Ocg(u) 

where g:U4-W and f:U-'R are convex set functions, U and W are locally convex 

linear topological spaces, and W is semi-reflexive. The usual convex program-

ming problem, with function constraints and a set constraint, can be cast 

in the form (P), as we show in [4], and the case U=Rn  and W=Rm  is a special 

instance. 

Suppose that (P) is consistent, and denote its value by v(P). In [4] we 

give necessary and sufficient conditions for this "limiting lagrangean equation" 

to hold: 

(LL) 	lim 	sup 	sup 	inf {f(u)+u*(u)+X*g(u)} = v(P) 
M-4-0 	u*c1,1 X*EW* 	ucU 
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* 
In (LL), U* respectively W* is thy dual of U resp. W, 11 is an open set in L , 

and "M4-0" denotes the filter consisting of a local base of open sets about 

OEU*. When U=Rn , the case of particular interest to us, (LL) can be simplified 

to this form, for some fixed vector u*ER
n 

(LL) n 	lim 	sup 	inf 	
. 

'fif(u)+11*
o 
 u+-Ag(u) = v(P) 

	

e40+ 2EW* 	LIEU 

From our results, it easily follows that (LL) and (LL) n  hold in instances in 

which the ordinary lagrangean has a duality gap, including many instances in 

which the convex functions involved are not closed. These results complement 

the usual Lagrangean duality results, for we show that, by adding a "limiting 

perturbation" (i.e., ell*
0 
 (u) in (LL)

n
) to the criterion function, most duality 

gaps are closed. While results of this type can be inferred from earlier 

results in conjugate duality, we explicitly exhibit (LL) and (LL) n  and have 

obtained the broadest hypotheses for which these equations, and similar ones, 

are valid. 

We use the work in [4] to obtain conditions sufficient for this "limiting 

infisup" equation, which we state in the particular case that X=R n : 

(LIS) n 	lim 	sup 	inf iex*.x+F(x,y)} = inf 	sup 	F(x,y) 

	

0+0+ yED 	xEC  xEC 	yED 

In (LIS)
n
, x*

0 
 E R

n 
 is some fixed vector, C is a convex set in R

n
, 

D is a convex set in the linear space Y, F:CxD+R satisfies 

some convexity/concavity assumptions, and some additional hypotheses are 

met, which are exactly specified in [5]. We provide the broadest hypotheses 

known for (LIS)
n
, and show how the "limiting perturbation" term "ex*.x" allows 

closure of duality gaps in situations where minimax or infisup results fail. 

In [5], we also provide conditions under which the following "finite 

infisup" result holds: 
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(FIS) 	sup 	inf 	F(x,y) = 	sup 	inf 	max 	F(x,y) 
yED 	xcC 	 GcD 	xEC 	yEC 

C finite 

In doing so, we generalize well-known results of Sion and Kneser and Fan 

(cited in [5]). 

The paper [1] is a specialized account of our work in [4], which 

illustrates our methods of proof and our approach to the equations (LL), (LL)
n

, 

and (LIS) n . 

The paper [2] concerns the mixed-integer program: 

(MIP) 	 inf cx+dy 

subject to Ax+Bv=b 

x,y>0 

x integer 

We always assume that A,B,b,c and d are rational, and that (MIP) is consistent 

of finite value v(P). We establish in 12] that there is a finite value 

po>0 for the "penalty parameter", such that the following "norm penalty" 

result holds: 

(NP) 	min 	{cx+dy+R.011Ax+by-bID=v(P) 
x,y>0 

x integer 

We also extend (NP) to more complex constraint sets, including complementarity 

constraints. The value of Po in (NP) varies (typically discontinuously) with 

the right -hand-side b. 

Our research inpaper[3]was done toward the end of the funded period of 

the grant, and represents a development which is surprising to us. 

Specifically, for the pure integer program 

(IP) min cx 

subject to Ax=b 

x>0 and integer x=(xl,...,xr ); A=[aj](cols.)) 
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in which no continuous variables occur, we were able to give, in principle, 

a closed form expression F(b) for the optimal value to (IP) as a function 

of its right-hand-side (rhs)b. These closed form expressions, called the 

"Gomory functions" in [3], are built up from the linear functions by 

inductive application of nonnegative combinations, maxima, and integer 

round-up operations. 

The optimal value function F(b) is of obvious importance in applications 

since it embodies all sensitivity analysis for the rhs. In [3] we also 

obtain sensitivity analysis information as the criterion function cx varies, 

and we obtain closed-form expressions for the optimal solution vector x 0 . 

Moreover, a study of the optimal value function is essentially a study 

of all the valid cutting-planes for (IP). It is well-known, for example, 

that for any optimal value function F the inequality 

(CP) 
	

r F(ai )x. > F(b) 
 j=1 	-  

is a valid cutting-plane for (IP); and moreover, cutting-planes of the form 

(CP) are all that are needed to obtain all valid cutting-planes (as the 

nonnegativity conditions x>0 are enforced via the pivoting of the simplex 

Algorithm). A converse is also true for a pair of Gomory functions F and G, 

when G satisfies a condition specified in [3] (G(b)>0 for b non-integer is 

one example of that condition): these exist an integer program (IP), 

consistent exactly when G(b)<O, having optimal value (when consistent) of 

F(b). In this manner, we have exactly identified the class of optimal value 

functions for (IP), in terms of the inductively-defined class of Gomory 

functions. 

Those closed form expressions which are built up from the linear functions 

by inductive application of nonnegative combinations and maxima alone (i.e., 



page eight 

no use of the integer round up) are the polyhedral convex functions. These 

can be shown to provide the class of optimal value functions of linear 

programs. Consequently, we cannot expect a characterization of (IP) value 

functions which is much simpler than the one we have obtained, as the use 

of integer round-up operations is a minimal concession to the occurence 

of integer variables in (IP). 

An alternative perspective on our results in [3] is provided in the 

brief discussion in jf4, pages 6-10] on "integer analogues." Put briefly, 

we have found discrete analogues of the linear concepts of "linear function," 

"polyhedral convex function," "polyhedral cone," etc. which allow a nearly 

automatic way of producing valid theorems in integer programming from known 

theorems of linear programming. Basically, if one inserts in a linear 

programming theorem the integer analogue names for the linear objects named 

there, one obtains a statement which is true, perhaps with some additional 

"regularity conditions". However, the proof of the linear programming 

theorem typically does not go over routinely to produce a proof of the integer 

programming theorem. New methods of proof have been necessary up to the 

present time. A discussion of this "nearly automatic" procedure for producing 

theorems, together with some remarks on its limitations, is in ff4]. 

In research previous to the grant that is the subject of this report, 

we saw no chance of an inductive characterization of the value function for 

(MIP). Indeed, the value functions for (MIP) are not closed under addition. 

We were fortunate in reconsidering this issue in the context of the more 

specialized problem (IP), and since the end of this grant we have obtained a 

(noninductive) characterization of the value functions for (MIP), using the 

results and concepts which occured in our study for (IP). 
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Publication Activity, 
July 1979 to March 1981  

Papers Published  

1. "Representations of Unbounded Optimizations as Integer Programs", 
Journal on Optimization Theory and Its Applications (30), 1980, 
pp. 339-351. 

2. "Lagrange Dual Problems with Linear Constraints on the Multipliers", 
with C.E. Blair, Constructive Approaches to Mathematical Models, 
C.V. Coffman and G. Fix (eds.), Academic Press, 1979, pp. 137-152. 

3. "An Introduction to the Theory of Cutting-Planes", Annals of Discrete  
Mathematics (5), 1979, pp. 71-95. 

4. "A Cutting-Plane Game for Facial Disjunctive Programs", SIAM Journal  
on Control and Optimization (18), 1980, pp. 264-281. 

5. "Strengthening Cuts for Mixed-Integer Programs", with E. Balas, 
European Journal of Operations Research (4), 1980, pp. 224-234. 

6. "Lagrangean Functions and Affine Minorants", with R.J. Duffin, 
Mathematical Programming Studies no. 14, 1981, pp. 48-60. 

Papers Accepted for Publication  

1. "A Limiting Lagrangean for Infinitely-Constrained Conves Optimization 
in Rn", Journal of Optimization and Theory Applications. 

2. "An Exact Penalty Method for Mixed-Integer Programs", with C.E. Blair, 
Mathematics of Operations Research. 

3. "The Value Function of an Integer Program", with C.E. Blair, 
Mathematical Programming. 

Other Papers Submitted for Publication  

1. "The Limiting Lagrangean", with R.J. Duffin, June 1979. 

2. "A Limiting Infisup Theorem", with C.E. Blair and R.J. Duffin, August 1979. 

3. "Some Influences of Generalized and Ordinary Convexity in Disjunctive 
and Integer Programming", August 1980. 
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Atlanta, Georgia 30332 	- 
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4735 Roswell Road, N. E. 
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Atlanta, Georgia 30342 
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Birthdate: 
Soc. Sec.: 
Citizenship: 
Business 

Address: 

ucation:  

B. S. 1964 	Columbia University 
School of Engineering 
Department of Industrial Engineering 

1964 - 1966 

Ph. D. 1969 

perience:  

Cornell University 
School of Engineering 
Department of Operations Research 
(completed Comprehensive Examination) 

Cornell University 
Department of Mathematics 
Professor Anil Nerode, Advisor 

University of Minnesota 
School of Mathematics 
September 1969 - August 1972 
Assistant Professor 

Carnegie-Mellon University 
Graduate School of Industrial Administration and 

Department of Mathematics 
Associate Professor 
September 1972 - August 1976 
Professor 
September 1976 - June 1980 
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Georgia Institute of Technology 
College of Management 
Professor 
September 1978 to date 

search Interests 

Mathematical programming, with emphasis on cutting-plane theory and 
its uses in integer programming and linear complementarity; nonlinear 
programming; integer programming; programming aspects of computational 
complexity; multicriteria optimization. Strategic planning systems, 
and the utilization of quantitative models to assist in nonquantitative 
decision making. 

aching Interests  

Research interests, plus production and applications of Operations 
Research techniques; management strategy. 

urnals 

Member of the Editorial Board (Associate Editor), Discrete Applied  
Mathematics, Mathematical Programming and Mathematical Programming  
Studies. 

Referee for Operations Research, SIAM Journal on Applied Mathematics, 
Management Science, Mathematical Programming, and Discrete Mathematics. 

Reviewer for Bulletin of the American Mathematical Society. 

ruts and Fellowships  

Ford A Fellowship 1964-1966 
NSF Graduate Fellowship 1966-1969 
NSF Research Grant GP 21067, Principle Investigator, 1971-1972 

(Grant Awarded 1970) 
NSF Research Grant GP-37510X, Associate Investigator, 1973-1975 
NSF Research Grant MCS76-12026, Co-Principle Investigator, 1976-1978 
Research Fellowship, January - June 1977, from the Center for 

Operations Research and Econometrics, Belgium 
NSF Research Grant ENG-79000284, Principle Investigator, 1979-1980 
NSF Research Grant ECS-8001763, Principle Investigator, 1980-1982 

anizational Responsibilities  

Representative to the Faculty Senate from the business school, 1977-1978 
Organizer of the Operations Research Seminar for the business school, 

1977-1978 
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Representative of the management college to the Seminar on Operations 
Research, 1978-1981 (co-sponsored with the School of Industrial 
Systems Engineering and the School of Mathematics) 

Member of the Program Committee of the symposium in honor of R. J. 
Duffin, Constructive Approaches to Mathematical Models, July 10-15, 
1978 

Co-organizer (with Cedric Suzman) of the Colloquiva on Strategic 
Planning, September 28, 1979, and October 10, 1980 (third 
Colloquium projected for Fall 1981) 

Member of the Organizing Committee of the 1981 International Symposium 
on Semi-infinite Programming and Applications 

Member of the Teaching Evaluation Committee in the College of Management 
Member of the Personnel Committee in the College of Management 

bies and Personal Interests  

Light hiking; swimming; jogging; weight training; reading in literature, 
archaeology and history. 

lisped Articles  

"Consistency Statements in Formal Theories", Fundamentae Mathematicae, 
LXXXII (1971), pp. 17-40. 

"Non-effectiveness in S. Orey's Arithematical Compactness Theorem", 
Zeithschrift f. math. Logik and Grundlagen d. Math., Bd. 17, 1971, 
pp. 285-289. 

"On Semi-infinite Systems of Linear Inequalities", with K. 0. Kortanek, 
Israel Journal of Mathematics, vol. 10, no. 2, 1971, pp. 252-258. 

"A Note on Some Classical Methods in Constrained Optimization and 
Positively Bounded Jacobians", with K. O. Kortanek, Operations  
Research, vol. 15, no. 5, 1967, pp. 964-969. 

"Comments on Integer Hulls of Two Linear Constraints", Operations  
Research, vol. 19, no. 4, July -August 1971, pp. 1061 - 1069. 
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ABSTRACT  

We give hypotheses, valid in reflexive Banach spaces (such as L P  for 

00 > p > 1 or Hilbert spaces), for a certain modification of the ordinary 

lagrangean to close the duality gap, in convex programs with (possibly) 

infinitely many constraint functions. 

Our modification of the ordinary lagrangean is to perturb the cri-

terion function by a linear term, and to take the limit of this perturbed 

lagrangean, as the norm of this term goes to zero. 

We also review the recent literature on this topic of the "limiting 

lagrangean." 
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Revised  

LAGRANGEAN FUNCTIONS AND AFFINE MINORANTS  

by R. J. Duffin l  and R. G. Jeroslow 2  

In an earlier paper [6], the first author proved this result, for 

convex functions F
h 

defined on all of Rn : 

1) 	in sup sup inf {F0 (x) + ax + E XhFh (x)} = v(P) . 

E-O aERn  X xERn 	
hEH 

E 

In 1), v(P) is the value of the convex program 

(CP) 	 inf Fo (x) 

subject to Fh  (x) < 0, hEH  - 

where H is a finite, non-empty index set. 

A purpose of this paper is to extend 1) to proper lower-semi-

continuous (l.s.c.) convex functions defined on a convex subset of cer-

tain infinite-dimensional spaces, specifically reflexive Banach spaces, 

and also to obtain information on "affine minorants" of the convex 

functions. The L P  spaces for co > p >,1 and Hilbert spaces are treated 

by our results. A goal of the paper will be to establish the following 

result in this setting, under suitable hypotheses: 

	

(LL) lim sup 	sup inf{F
0 
 (x) + g(x) + EX

h
F
h
(x)} = v(P) 

+ 	* 
E4-0 I  g I E  X xEK 	 ha 

< 
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048 of the U.S. Office of Naval Research. 



where the index set H may be infinite, and K will be a convex subset of 

the space in which the variable x is constrained to lie by an explicit 

set constraint "xEK," in addition to functional constraints such as 

those in (CP) above (see (8) below). 

We use the theory of infinite sets of linear inequalities to obtain 

our results. Our approach has its source in the literature of "semi-

infinite programming" (see e.g. [1] and [9]), and is the basic idea 

for proofs of various strengthenings and refinements of our result in 

infinite-dimensional spaces. 

Professor R. T. Rockfellar has informed us (private communication) 

that the result (LL) is implicit in his monograph [15], under suitable 

hypotheses, and it is indeed the case that [15, equation (4.20)] can 

be applied to [15, Example 4 , page 26] to derive (LL) under the hypotheses 

used in [15]. We strengthen the result due to the additional information 

in Theorem 6, and, as we will point out in Section III, our mode of 

analysis easily extends to set-valued maps in locally convex spaces, 

without the hypotheses of semi-continuity used in [15]. See [2] for a 

counter-example to (LL) when the semi-continuity hypothesis is dropped. 

Our present paper contains an exposition of a part of the semi-

infinite approach to convex optimization. For related work which 

utilizes the theory of conjugate functions see [13], [14], and [15]. 

2 



SECTION I: PRELIMINARY RESULTS, CONVENTIONS, AND  

GENERAL ASSUMPTIONS  

Throughout the results, X will denote a reflexive Banach space. 

** 
Thus X = X, where Y denotes the space of all continuous linear func- 

tionals on the linear topological space Y. 

The following result is well-known; see e.g. [5]. 

THEOREM 1:  Let C be a closed cone in a locally convex linear topological 

space Y. 

Then the following two statements are equivalent: 

(i) yo  E C; 

(ii)If f E Y* , and f(y) z 0 for all y E C, then f(yo) z 0. 

In what follows, we view functions as points, so that, e.g., f = h 

abbreviates f(x) = h(x) for all x E X. 

COROLLARY 2:  Let {f.li E I} be a family of continuous linear functionals 

on the reflexive Banach space X, and suppose that, for any x E X, 

2) f(x) z 0 for all i E I 

implies 

3) f(x) z 0 

for the continuous linear functional f. 

Then for any real scalar E > 0 there exists a. finite subset J I and 

non-negative numbers Xj  z 0, j E J, and a continuous linear functional g, 

satisfying both these conditions: 
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a) 	 f = g + E Xf. 
jEJ 3  

a) 	 llgfl < E 

PROOF:  Let C = cl(cone(ff i li E Il)), where cone ({fi li E I}) is the cone 

(algebraically) generated by the set ff i li E 	and cl(S) denotes the 

closure, here in the norm topology, of the set S Q X . 

The conclusion of this corollary can be restated as "f E C," for if 

- E Xfil <Etheng=f-E X.f. satisfies a) and 13). 
jEJ 	 jEJ " 
Since C is a closed cone in the locally convex linear topological 

* 
space X , Theorem 1 applies. Thus if f C, we reach a contradiction as 

follows, where we take y0  = f in Theorem 1. 

* 
There exists a continuous linear functional F on X with F(h) z 0 

for all h E C and !(f) < O. In particular, (f l ) z 0 for all i E I, and 

F(f) < O. 

** 
Since F E X , there exists x E X with .P(h) = h(i) for all h E X . 

In particular, f i (i) 0 for all i E I and f(i) < 0, contradicting the 

hypothesis. This shows that f E C. 

Q.E.D. 

In what follows, we view (y,h), where h is a function on X, and 

y E R, as the functional on X x  R such that (y,h) (p,x) = h(x) + yp, for 

(p,x) E R x  X. 

For any linear topological space Y, the continuous dual (R x X)* of 

R x Y is (R x Y)* = R x  Y*, with the evaluation (r,f)(s,y) = f(y) + rs, 

where (r,f) E R x Y, f E.. Y*, and (s,y) E R x Y, y E Y. In particular, as 
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** 	* ** 	** X is reflexive, (RxX) 	= (RxX ) 	=RxX = R x X, so R x X is 

reflexive. We need this latter observation in the next result. 

COROLLARY 3:  Let {fi li E 	be a family of continuous linear functionals 

on the reflexive Banach space X and let {adi E 	be a correspondingly- 

indexed family of real scalars, such that there is a solution to 

4) fi (x) Z ai , i E I . 

Suppose that every solution x to 4) also satisfies 

5) f(x) z a 

for the continuous linear functional f and scalar a E R. 

Then for any real scalar E > 0 there exists a finite subset J g I, 

non-negativenumbersA„j E J, a non-negative scalar 8 Z 0, and a con-

tinuous linear functional g on X, and s E R, satisfying: 

a) 
	

(-a,f) = e(1,0) + (-, g) + 	A (-a f ) . 
jEJ 

13,Y. 	 < E • 

In particular, 

6a) f =g+EX f. 
jEJ 	J  

6b) W < E 

6c) asE+ E X a. 
jEJ 
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PROOF:  Th, particular conclusions 6a)-6c) follow from a)" and 3r.  by 

taking components in a)", and noting that (3) -  implies 114 < E and 131 < E. 

We prove only a)" and (3)'. 

To do so, note that, in the space R X X, 

4) 
	

0, i E I 

0 

implies 

-ar + f(x) z 0 . 

Indeed, if r > 0, 4)".  implies 5r.  by the fact that 4) implies 5) and the 

linearity of the functionals {fi li E 	and f. If r = 0, again 4) -  implies 

5r, as we see by the following contradiction. 

Letibesuchthatf.(K) s 0 for i E I yet f(X) < O. By hypothesis 

there exists x with f.(x ) z ai  for i E I. Then for any scalar p a 0, 

fi (x
* 
 +p4=f(x)+pf(3 c ) + 0 z a for all i E I. However 

for large p, f(x + px) = f(x ) + pf(i) < a as f(i) < O. This contradicts 

that 4) implies 5), and proves that 4)".  implies 5r. 

We apply Corollary 2 to the system 4)% 5)" .  with 2) taken as 4)% and 

the functionals {f i li E I} of 2) taken as {(-a i ,f i)li E I} U {(1,0)}. 

Likewise the functional f of 3) is (-a,f) in 5)" . . The corollary applies 

since R X X is a reflexive Banach space. 

Upon application of Corollary 2, we at once obtain a)" and 3)% since 

8 is simply the multiplier of the functional (1,0), where here "0" is 

the identically zero linear functional on X. 

Q.E.D. 
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In what follows, we shall consider convex functions F on subsets of 

X, by which we mean a function F:D--R where D is a non-empty convex subset 

of X. (We do not use the extended reals R = R u {-°} u {4.00} here.) As 

usual, the epigraph epi(F) of F is defined as: 

7) 	 epi(F) = {(z,x) E R x 	F(x)1 . 

We say that F is closed  if epi(F) is closed in R x X, i.e., if F is a 

proper lower-semi-continuous convex function. 

This paper is concerned with the following convex program, where 

each function F
h 

for h E H U CO} (H an index set of arbitrary cardinality) 

is finite and lower-semi continuous on a domain D 1,, K is a non-empty and 

closed convex set in X, and Dh 
K for h E {0} U H: 

inf F0  (x) 

(8) 
	

subject to Fh (x) s 0, h E H 

and x E K 

This program (8) is assumed to have a finite value v(P); thus (8) is 

assumed consistent, but the infimum need not be attained. 

We shall be concerned with this Lagrangean, which we call the 

"limiting Lagrangean": 

9) 	 L(x,X,g) = F 0 (x) + g(x) + E XhFh (x) . 
hEH 

In 9), x E X, X = (Ah!h E H) is a vector of non-negative components 

Xh z 0 only finitely many of which are non-zero, and g is a continuous 

linear functional on X. The summation in 9) is understood as: 
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10) 	 E X
h
F
h
(x) = E 	X F (x) 

hEH 	
h h 

where H' is the finite set H" = {11 E HIXh  > 0} (and summation over an 

empty set is taken to be zero). All infinite sums of this paper have 

finite support and are construed analogously. Thus the sum E X.f. 
jEj  J 

on the r.h.s. of 6a) will also be written E X.f. with the understanding 
iE I 1 1  

that we have set X = 0 for i E 

With the notation (9), equation (LL) can be rewritten as: 

lim sup sup inf L(x,X,g) = v(P) 
(UL)

E- 01 	
* X xEK 

ga 
gk<E 

It is the limiting operation in (LL) from which we derived the term 

"limiting lagrangean." If the limiting operation is deleted and one 

sets g = 0, one obtains an ordinary lagrangean. 

It turns out that the limiting lagrangean result (LL) holds with 

our present assumptions, which are far weaker than the assumptions 

usually needed for a lagrangean result. For one thing, the index set 

H is not constrained in cardinality, yet the sums E X
h
r
h
(x) always 

hEH 
have finite support. Also, even for 'HI finite, the usual examples in Rn 

 of duality gaps involve closed functions (in fact, everywhere-defined 

functions), and no duality gap is possible with the limiting lagrangean 

in this case (or even for IHI infinite). 

The next preliminary result is relevant to the "easy part" of (LL). 



LEMMA 4: 

limsup sup sup inf L(x,X,g) s v(P) 
* 

E0
+ gam* 	xEK 

 
gri <E 

PROOF: For each integer n z 1, choose x (n) 
E K such that 

12) F
o
(x (n) ) s v(P) + 1 — and Fh (x (n) ) s 0 for h E H. 

Then for any g and A, as A z 0 we have 

13) inf L(x,A,g) s L(x (n) ,X,g) 
xEK 

s F0 (x
(n)

) + g(x
(n)

) 

s v(P) + g(x (n) 
 ) + 1  

From 13) it follows at once that 

14) sup inf L(x,A,g) s v(P) + g(x(a) 	1 ) + — 
n A xEK 

and hence 

15) 
limsup sup sup inf L(x,X,g) s v(P) + 1 — . 

E+0 	
* X xEK 

dgll<E 

Since 15) is valid for any n, so is 11). 

9 

11) 

Q.E.D. 

We remark that 11) can also be proven if v(P) = -=. 
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SECTION II: THE MAIN RESULT  

We shall use these notations, which exist by the fact that a closed, 

convex set in a locally convex space X (or R x X) is the intersection of 

closed half spaces where the f. written below are continuous linear 

functions on X, and the aj  are real scalars: 
16a) K= 	E )11 f.(x) Z aJ , j E I(-1)1 

aj , for all j E I(-1) 

16b) epi(Fh) = ((z,x) E R x XIbiz + fj (x) z aj , j E I(h)}, 

for h E {0} U H; 

i.e. (z,x) E epi(Fh)++ bi z + fj (x) z aj , for all j E I(h). 

Since (z,x) E epi(Fh) and z' z z implies (z',x) E epi(Fh ' ) we see that 

all bi  > O. In 16) all the index sets I(h) for hE (-1} U (01 U H 

are (without loss of generality) disjoint. 

We will use the fact that all b i  Z 0 in the proof of Theorem 6, and 

wewillalsousethefactnatilbjr..0then f.(x) z a1  for all x E K. 

The latter is a consequence of our assumption that the domain of F h 

 contains K. Hence if x E K and bi  = 0, and j E I(h), we have 

aj  s 0 • Fh 
 (x) 	

j 
f(x) 5 f.(x). 

With this notation, one preliminary result remains before we can 

obtain our main result (Theorem 6). 
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LEMMA 5:  Every solution to the inequali_ies 

17) 	 bi z 	f.(x) a a3 , j E I(0) 

f. (x) a a3 , j E I(h) and h E {-J.} U H 

also satisfies 

185 	 z 	v (1") . 

PROOF:  It suffices to prove that if (z,x) E R x X satisfies 17), then 

(z,x) E epi(F0  ) and also x satisfies the constraints of (8 ). From the 

definitions 16), this will be accomplished once we prove: 

19) Fil (1)50ifandonlyiff.(x) z a3  for all j E I(h) . 

However, 19) is immediate: 

20) Fh  (x) s 0 .4-1'(0,x) E epi(Fh) 

4-9-b3  • 0 + f (x) a a 3  for all j E I (h) 

++f. (x) Z a3  for all j E T(h) 

Q.E.D. 

Since Lemma 5 concerns an implication among linear functionals in the 

reflexive Banach space R x X, and since the constraints 17) are consistent 

(and in fact satisfied by any feasible solution x to (8 ), with z = F o (x)), 

it is natural to wish to apply Corollary 3 to the "fully-infinite" system 

(17). If one does so, our next, and !main, result is obtained after some 

purely algebraic manipulation. (Recall that an affine linear functional 

is a linear functional plus a constant.) 
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THEOREM 6:  Let X be a reflexive Banach space, assume that all functions 

Fh, h E {0} U H are finite on a set D h K, and are lower semi-continuous, 

that K is a non-empty, closed convex set in X, and that 8) is consistent. 

For any E > 0, there exists a finitely non-zero vector A = (A h lh E H) 

of non-negative components, continuous affine linear fimctionals gh  for 

h E {-1} U {0} U H, a continuous linear functional p, and a scalar A 0  > 0 

satisfying these five conditions: 

CONDITION 1:  g_1 (x) s 0 for x E K; 

CONDITION 2: Fh(x) z gh (x) for h E {0} U H and x in the domain of 

Fh;  

CONDITION 3:  dpd < E; 

CONDITION 4: IA0 
	<E; 

CONDITION 5:  For all x E K, 

21) 	g-1  (x) + X0  g0  (x) + p(x) + E Ahgh (x) z v(P ) - E - hEH 

PROOF: Note that z = z • 1 + 0 • x in 18), and z • 1 + 0 • x = (1,0)(z,x), 

where 1 E R and 0 is the zero functional on X. The left-hand-side of 

theinequalitiesin17)arebi z+f.(x) = (bj ,f.)(z,x) for j E I(0), and 

are 0 • z 	f.(x) 	(0,f )(z,x) for j E 1(h), h E H U {-1}. (We use the 

notation introduced above Corollary 3.) 

We apply Corollary 3 to the implication from 17) to 18), with 

ffiliElltalmnas{(b i /f.)1j E I(0)1 U 	U 	{(0,f 4 )1i E I(h)}, 
hE{-1}UH-- 7- 4  
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f taken as (1,0), 	E 	taken as 
hE{-1,0}UH {ailj E I(h)}, and 

a 

taken as v(P) . The conclusions 6a), 6b) and 6c) of Corollary 3 become: 

6a)" (1,0) = (13,-p) + 	E 	E 	(0,f.) + 	I (0, 4 (b i ,f.) 

	

hE{-1}UH jEI(h) "' J 	jEI(0) v" 

6b)" 11(13,-P)11 < E 

60" 
	

v(P) s E + 	I 	I J 
hE{-1,0}UH jEI(h) h ' j  

In 6a)", 6b)", and 6c)", a is a real scalar, p is a continuous linear 
functional, and the quantities(1)11,i z 0 are non-negative real scalars, 

only finitely many of which are actually different from zero (i.e., for 

only finitely many h E {-1,0} U H there are only finitely many(0 11,i  > 0 

for some j E I(h)). Thus we have [114 < E from 6b)", i.e., Condition 3. 

From the first components of the vectors of 6a)", we obtain 

22) 1 = S + 	I 	cOo 	bj  
JEI(0) 

and from 6b)" we infer 

23) 1131 < E 

Therefore, upon setting, for h E {0} U H, 

24)  Xh  = 	 . b 
JEI(h) ",3 

b>0 

(and upon recalling our convention, that the empty summation is zero), 

we'obtain by 22) and 23) the result 1X0  - 11 < E, i.e. Condition 4. 

• 
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Without loss of generality, A.0  > 0 also (by taking E > 0 smaller if 

necessary). 

From the second components of the vectors in 6a)", recalling that 

bj  = 0 for all j E and using an auspicious partitioning of the 

(actually finite) summat ion, we obtain: 

25) 0 = -P 	( 	E 	1121 	.f. + 	 E 	f.) 
- ' 3 3 	11E{O}I.JH jEI(h) "' j j  

bj =0 

+ 	E E 	(4)11,j bj)(f./bj) 
11E{0}01 134 0  

The same partitioning of the sum in 6c)" yields: 

26) ( E + 	E 
14)-1,j 	 E 	(1) h 	al) jEI(-l) 	 hE{0}UH jEI(h) 	' . 

bj =0 

+ 	E 	E 
(4h '

j bi )(ai /bj ) z v(P ) - E - 
hE{0}1JH jEI(h) 

bj >0 

We next evaluate the functionals of 25) at an arbitrary point x E X, 

and add the negative of the resulting real numbers to those of 26), 

keeping the partitioning. We find: 

27) g_1 (x) + gx) + 	E 	E 	(4), 	bj )((aj  - f (x))/b i ) 	v(P ) - E . 
hEIOUH jEI(h) "" 

b>0 

In 27), we have used this notation: 
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28) g-  (x) = 	I 	ciS 	j (-f (x) + aj ) 1 	 -1 
jEI(-1) 	

'j 

+ 	I 	I 	4), .(-f.(x) + aj ) 
hE{O}UH jEI(h)  

b3  =0 

Clearly, g_ 1 (x) is linear affine and continuous. From 16a), if 

h =-1,(-f.(x) + a3 ) 5 0 for x E K; and we recall from our previous 

discussion that, for h E Co} U H and j E I(h) with b 3  = 0, we have 

(-f.(x) + a)) 5 0 whenever x E K. Using this information in 28), we 

obtain 8_1 (x) 5 0 for x E K, i.e. Condition 1. 

By the definition 16b), we have, for h E {0} U H, b 3  Fh
(x) + 

f. (x) z aj  whenever x is in the domain of F h ; • thus if b3  > 0 for j E I(h), 

29) Fh (x) 	 *(3c))/bi . 

Now if Xh  = 0, we let gh (x). be (a3  - fi (x))/bj  for any j E I(h) 

with b3  ¢ 0 (there is at least one such j E I(h), by our assumption that 

Fh is defined and finite on all of K 0 4). We at once have Condition 

2, and the part Xhgh (x) of the sum in 24) is zero, as is the corresponding 

part 

((1)„ bj )(aJ  - f.(x))/b 3 ) 
j EI (h) 

b3 >0 

of the sum in 27) (since Xh  = 0 implies (1511,j  b3  = 0 for all j E I(h), 

using 
(15h,j 	0 and bj  > 0). 

In the case that Xh  > 0, we use 29) to deduce this inequality (via 

the definition 24)): 
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30) A F (x) = ( 	. b3 ) Fh (x) 
h h jEI(h) h 

b3  >0 

0h 
	
b3  (a3  - f.(x))/bj  

j EI(h) 

b3  >0 

Upon setting 

31) gh (x) = 	E 	(1)h  (aj  - fi  (x) ) 
JEI(h) 	'- 

b3  >0 

we at once obtain Condition 2 from 30) and 31) when X
h 

> O. Moreover, 

27) becomes 

27) -  g (x) + p(x) + 	E 
hE{O.A.J 

 X (---1  E 	0 .(aj  - f.(x))) z v(P ) - E. -1 	 1„H  "I X 	
1, 

h jEI(h) "3 	J 

Xh>0 	b3  >0 

which is identical to Condition 5. 

All five conditions have been verified, and the proof is complete. 

Q.E.D. 

COROLLARY 7:  Assume the hypotheses of Theorem 6. 

For any E > 0, there exists a finitely non-zero vector A.".  = 	E H) 

of non-negative components, a continuous linear affine functional a(x), and 

a continuous linear functional q, satisfying these stipulations: 

STIPULATION 1:  114 < E; 

STIPULATION 2:  a(x) s 0 for x E K; 
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STIPULATION 3: 

32) a(x) + Po (x) + q(x) + 

	

	 v(P)(1 + E)/(1 + 2E) 
hEH 

for all x in the common domain of Fh , h E Co} U H. 

PROOF: Put E" = E/(1 + E), so that E = E'/(1 - E'), and note that E".  > O. 

We apply Theorem 6 for 	> O. 

After dividing through in 21) by X 0  > 0, and using the facts that 

33) 11P(x)/ X0ii = lip(x)11/1X01s lip(x)11/(1 - 	< E -7(1 - 	 = E 

34) E"/X0  s E"/(1 - E ) = E 
	

v(P )/X0 	v(P )/(1 + E') z v(P )(1 + E)/(1 + 2E) , 

we obtain this corollary at once, with these settings: 

35a) a(x) = g-1(x)/X0 

35b) ci(x) = P(x)/x0 

35c) = Xh/X0  for h E H . 

Q.E.D. 

Note that, using Stipulation 2 of Corollary 7, the inequality 32) 

yields 

36) inf{F0 (x) + q(x) + I 	Fh(x)} 	v(P)(1 + E)/(1 + 2E) - E-. 
xElt 	 hEH 

Thus, for any E > 0, there is a linear continuous functional q with 

ligll < E and 
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37) sup inf{F0 (x) + q(x) + E Xh  Fh (x)1 	v(P)(1 + E)/(1 + 2E) - E. 
X xEK 	 hEH 

It follows at once that 

38) liminf sup inffyx) + g(x) + 	Xh  Fh (x)1 v(P) 
11gi;0+  A xEK 	 hEH 

From 38) , one has 

39) liminf sup sup inf L(x,X,g) z v(P) 

E 440+ gEx* X xEK 

with L as defined in 9). We now combine 39) with Lemma 4, and obtain 

the limiting lagrangean equation LL). 

By use of the norm of the Banach space X, a result about the ordinary 

lagrangean can also be obtained, in the case that K is norm-bounded (but 

not necessarily compact) in X. In fact, let B = supaxUlx E 	< 

then if Ali < E, 36) becomes 

36)' 	inf{Fo 	 h h (x) + I X' F (x)1 	v(P )(1 + E)/(1 + 2E) 
xEK 	hEH 	 -EB - E 

We at once obtain our next and final result, as E > 0 is arbitrary. 

COROLLARY 8:  Assume the hypotheses of Theorem 6 and also assume that K 

is bounded. 

Then 

40) sup inf{F0 (x) + I A Fh (x)1 = v(P) . 
X xEK 	hEH 
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SECTION III: RELATED LITERATURE, CONCLUDING REMARKS  

The phenomenon of the "limiting lagrangean" LL) was discovered by 

the first author [6]. The second author showed [11] that, for X = R n , 

LL) could be sharpened, in that the limit as g + 0 could be taken to be 

one-dimensional. To be specific, for X = R n  there exists one fixed 

w E Rn  such that, with the hypotheses of Theorem 6, 

41) 	lim sup inf{F0 (x) + ewx + E A
h 

F
h
(x)1 = v(P) 

e-4.0 A xEK 	 hER 

An alternate proof of 41) has been provided by Borwein [3], using 

Helly's theorem. 

Extensions of the limiting lagrangean equation to infinite-dimensional 

spaces, in the form LL), occur in [4] and [8]; the present paper presents 

a simpler result than [7], since only lower semi-continuous (convex) 

functions F
h are treated here. 

In the paper [4], an infinite set of real-valued convex functions 

and a single cone-convex constraining function are used; moreover, 

only a general reflexivity property is used and the space X need not 

be normed. 

In [8] the limiting lagrangean result is generalized to set-

valued convex functions, and the need for a norm is dropped; and 

these results are further extended, in that a treatment is given of the 

case that the constraints are not lower semi-continuous. In addition, [8] 

has an extension of the result in [11], for X = R n , to set-valued convex 

functions. It does not appear, at this writing, that the "most general" 
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statement of limiting phenomena has been achieved; improvements will no 

doubt continue. 

It is significant that Borwein in [41 uses the elegant theory of 

convex conjugate functions (as developed in [141, [151), to shorten proofs 

regarding the limiting lagrangean, by citation of results from that 

theory. In contrast, we have preferred to cite separation principles in 

order to get representations of the convex program 8) as an infinite 

system of linear inequalities 17), and then to manipulate the resulting 

linear system by elementary algebra. All the refinements and extensions 

of the results of this paper, as mentioned above, are obtained by our 

method also; in fact, proofs in the set-valued case actually simplify, 

as one does not need to use an auspicious partitioning (as in 25)) when 

affine minorant results are not of concern. For further results on 

affine minorants, see [13]. 

R. J. Duff in and R. G. Jeroslow 
November 20, 1978 
Revised July, 1979, and April 1980 
Carnegie-Mellon University and 
Georgia Institute of Technology 
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ABSTRACT  

It is shown that a norm penalty method is exact for mixed integer 

programs in rational data, in the sense that the minimization of the 

criterion plus penalty over the nonnegativities and integrality con-

straints has the same set of globally optimal solutions as does the 

mixed integer program with the equality constraints present. This 

result is then extended to mixed-integer programs with complementarity 

constraints. 

An example shows that no differentiable penalty can be exact for 

mixed integer programs. 
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AN EXACT PENALTY METHOD FOR 

MIXED-INTEGER PROGRAMS 

by C. E. Blair and R. G. Jeroslowl  

In [3] the authors studied the relationship between the integer pro- 

gram 

(IP) 
	

min cx 

subject to Ax = b 

x Z 0 and integer 

and the quadratic dual problem 

(QD)
X 	

min 	(c - XA)x + pllAx - be + Xb 

x integer 

We showed (3, Theorem 1.51 that, if (IP) is consistent and bounded in 

value, and A, b, and c are rational, then for any X, the optimum solutions 

to (QD) x  are the optimal solutions to (IP) when p becomes sufficiently 

large. Hence, as p increases, the value of (QD) x  becomes equal to the 

value of (IP). (QD) x  may be interpreted as an exact penalty method for (IP). 

The program (QD) x  does not work for (MIP), as shown by the following 

one-dimensional example: 

'The work of the second author has been partially supported by grant 
ENG-7900284 of the National Science Foundation. 
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(1) min y + z 

subject to 2x +y-z= 1 

x,y,z z 0, x integer 

which has an optimum solution x = 0, y = 1, z = 0 of value one. 

If F is any differentiable function with F(0) = 0 then the dual pro- 

gram 

(2) min 	y + z + F(1 - 2x - y + z) 
x,y,z01 

x integer 

fails to be exact and have the solution noted above for (1); in fact, it 

fails to have value one. If F'(0) 5 0, then for small E > 0, x = 0, 

y = 1 - E, z = 0 gives (1 - 	+ F (E) < 1. If F' (0) > 0 then x = 1, y = 0, 

z = 1 - E gives (1 - E) + F (-E) < 1. In particular, the differentiable 

function F(a) = Act + pa
2 
 fails to provide the same value as (1), regardless 

of A and p. For related results on exact penalties in the convex case, see 

Bertsekas [1]. 

For the general mixed-integer program 

(MIP ) 
	

min cx + dy 

subject to Ax + By = b 

x,y Z 0, x integer 

with A, B, c, d, and b rational, we propose a "norm-penalty" method 

(NP) 	 inf cx + dy + p jJb - Ax - Byil 

x,y Z 0, x integer. 
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Theorem: Suppose that A, B, c, d, and b are rational, and that (MIP) is 

consistent and has a finite value. 

Then for p sufficiently large, the optimal solutions to (NP) are 

exactly the optimal solutions to (MIP). In particular, the value of 

(NP) is that of (MIP) for p large. 

We begin by establishing a result from which our theorem follows 

easily. 

Lemma: Let G(z) denote the value of (MIP) with b replaced by z (+00 if 

the MIP is not feasible). There is a p' > 0 (depending on b) such that 

(3) 	 G(z) 2 G(b) - plz - bd for all z. 

Proof: In [2, Theorem 2.1(2)] we showed there are E,F 2 0 such that 

(4) IG(z) - G(b)! 5 Edz - bd + F for all z. 

Let p
1 
= E + F. Then if dz - bil 2 1 

(5) G(z) Z G(b) - IG(z) - G(b) I 2 G(b) - Edz - bil  - F 2 G(b) - p i dz - bd. 

* * 
Let (x ,y ) be an optimum solution to (MIP) with right-hand side b. 

* * 
(The existence of (x ,y ) is a result of Meyer [4]). In [2, Theorem 2.1(1)] 

we showed there are C,D > 0 such that if G(b') < +00 then (MIP) with r.h.s. 

* 
b' has an optimal solution x' with dx - 	5 Cdb - b' II + D. Let xl ,...xN  

* 
be those finitely-many integer vectors x' such that Nx - 	5 C + D. 

Then, if dz - bil 5 1 

(6) G(z) = inf cx. + L(z - Ax.) 
15i 	1 	 1  
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where L(w) is the linear programming value function 

(7) 
	

inf dy 

By = w 

y Z 0 . 

(L(111) is +co if the LP is not feasible.) It is well known from the theory 

of parametric linear programming that there are polyhedral cones Q1,...'Qm 

such that L is a linear function on each Qi  and L(w) = +03 for w f u Q.. 
1 

Forl5i5NdefineC...{z1L(z - Ax i ) < +0.}, and let Ci,1 ,...,Ci,m 

 denote polyhedra, with union Ci , in which some linear affine form 

equals cx. + L(z - Ax.). The collection of all these sets C. , for 
1 	 1 .7 

1 5 i 5 N and 1 5 j 5 M, intersected with {zIllz - 4 s 1}, forms closed 

setsS1 ,—,ST .Thentherearea.1  E R
m, where m is the dimension of z (i.e. 

the number of rows in A or B), and Si  R, such that, if Hz - loll 5 1, 

(9) G(z) = min a.z + S. 
iEJ(z) 1 	

1 

where J(z) = {ilz E Si } c {1,2,..., 11'}. 

Let p2  = max dai ll. Then for i E J(b) 
i (b) 

(9) 	a.z + (31  . = a .
1 	Si 1 

 b + . + a. (z - b) s G(b) - p 2  Hz - bll . 

Since the S. are closed, there is a S > 0 such that Hz - bll a S for all 

z E US. . Let p
3 
 = 1 — max{G(b) - G(z) 	- 	51}. If i g J(b) and 

WO' (b) 

z E S., then 

(10) 1 	G(z) = G(b) - (G(b) - G(z)) 2 G(b) - p 3 l l z - bll . 
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From (8), (9), and (10) we conclude that if llz  - bll  5 1, then 

G(z) Z G(b) - max{P
2 1P 3

)11z - 14. Therefore setting p' = max{p
1
,p

2
,p

3
1, 

we see that (3) holds. 

Q.E.D. 

We complete the proof of our theorem by noting that if p > p' and 

Ax + By_# b then 

(11) 	cx + dy + pilAx + By - 	G(Ax + By) + pdAx + By - b il> 

G(Ax + By) + plAx + By - 	G(b) = cx + dy . 

Hence the only optimal solutions to (NP) are optimum solutions to (MIP). 

Q.E.D. 

Norm penalties may also be used for mixed-integer programs with 

complementarity constraints. In detail if Pl ,P2 ,...,Pa  are J finite 

sets of variables, the program 

(MIPCa) 	 min cx + dy 

Ax + By = b 

x,y Z 0, x integer 

(MIPCb) 	atleastonevariablefromeachsetP.
1 
 is zero 

has the corresponding dual 

(NPC) 
	

min ax + dy + pliAx + By - bll 

x,y Z 0 x integer 

at least one variable from each set P. is zero 

Theorem: Suppose that A, B, c, d, b are rational, and MIPC is consistent 
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with finite value. Also assume that the program (MIPCa) alone is bounded 

below in value. 

Then if p becomes sufficiently large the optimum solutions to (NPC) 

are the optimal solutions to (MIPC). 

Lemma: If (MIP) is inconsistent, but is bounded below in value for some 

r.h.s. for which it is consistent, then as p4-00 the value of (NP) approaches 

infinity. 

Proof of Lemma:  If (MIP) is inconsistent the program 

(12) 	 min z + z' 

Ax + By + zI - z"I = b 

x,y,z,z" z 0, x integer 

has value >0, by theorem of Meyer [4]. Hence there is a S > 0 such that 

if G(w) < += then ilia - bli k 6. 

Let z
0 
 be such that G(z0 ) < +=. By (3) there is a p' such that 

G(z) Z G(z0 ) - plz - z 0 4 for all z, since a mixed integer program in 

rationals which is bounded below in value for one r.h.s., is also bounded 

below for all r.h.s. 

Let N be arbitrarily given. Also let liz0  - bli = 6 a 6 and let p 

be sufficiently large so that (p - p")6 + G(z 0 ) - 10'6 z N. Then if 

x,y Z 0, x integer, and Ax + By = z, we have by the triangle inequality 

liz - z011 
 5 

 llz - bll + 11z0  - bil, that cx + dy + p llz - bll Z G(z) + p llz - bil 

G(z
0 
 ) + pilz - 	- plz - z

0  N Z  (p - p-)N. - bil + G(z
o
) - p'6 Z (p - p')(3 + 

G(z
0 
 ) - p'0 Z N. 

As N is arbitrary, the Lemma is proven. 

Q.E.D. 
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Proof of Theorem: An assignment for (MIPC) is defined to be a subset S 

of the variables of (MIPC) such 	 for all i. Corresponding 

to each assignment S is an (MIPs) obtained by setting all the S-variables 

equal to zero. The optimum solution to (MIPC) is the optimum among the 

solutions to the (MIP
s
) for all assignments S. Similarly the optimum 

solution to (NPC) is the optimum solution to (NPs) for all assignments 

S. For those S such that (MIP
s
) is consistent the theorem gives a p

s 

such that the value of (MIP
s
). equals the value of (NP

s
). For those S 

such that (NIPS) is inconsistent the lemma gives a 	such that the 

value of (NP
s
) exceeds the value of (MIPC). Letting p = max p we obtain 

the desired result. 

Q.E.D. 

It is worth noting that the penalty parameter p, which makes (NP) 

an exact penalty for (MIP), can be unbounded in bounded regions of 

r.h.s. space b. Consider, for example, the mixed integer program 

(13) min y 

subject to x + y = b 

x,y Z 0, x integer 

which extracts the fractional part of the real number b Z 0. For b = 1 - E, 

E > 0 small, exactness of (NP) requires that 

(14) inf 	y 	P11(1 - 	- x - 	1 - E 
x,y0 

x integer 

S S 
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and so setting x = 1, y = 0, we have plIER z 1 - E, i.e. p z (1 - E)/E. 

Thus ps+co as Ex0+ . 

The University of Illinois 
and 

Georgia Institute of Technology 
August 21, 1979 
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Abstract  

We consider integer programs in which the objective function and con-

straint matrix are fixed while the right-hand side varies. The value function 

gives, for each feasible right-hand side, the criterion value of the optimal 

solution. We provide a precise characterization of the closed-form expres-

sion for any value function. 

The class of Gomory functions consists of those functions constructed 

from linear functions by taking maximums, sums, non-negative multiples, and 

ceiling (i.e. next highest integer) operations. 

The class of Gomory functions is identified with the class of all possible 

value functions by the following results: (1) For any Gomory function g, 

there is an integer program which is feasible for all integer vectors v and 

has g as value function; (2) For any integer program, there is a Gomory 

function g which is the value function for that program (for all feasible 

right-hand sides); (3) For any integer program there is a Gomory function f 

such that f(v) < 0 if and only if v is a feasible right-hand side. 

Applications of (1) - (3) are also given. 

Key Words: 

1) Integer programming 

2) Cutting-planes 

3) Subadditive duals 



THE VALUE FUNCTION OF AN INTEGER PROGRAM 
by 

C. E. Blair
1 
 and R. G. Jeroslow

2 

1. Introduction  

The value function of the pure integer program 

min cx 
(1.1) 	 subject to Ax = b 

x > 0, 	x integer 

provides the sensitivity analysis of (1.1) to changes in the right-hand-side b. 

Specifically, it is the function G such that G(b) is the optimal value of (1.1). 

When (1.1) is inconsistent (i.e. when there is no x > 0, x integer, with Ax = b) 

we put G(b) = +co. We also allow values G(b) = -co if no lower bound can be 

put on cx over the set of solutions to the constraints. We shall assume through-

out the paper that 

(1.2) 	 A, b, and c are rational matrices and vectors, 
and G(0) > - co 

The hypothesis G(0) > - ' discards only the trivial case that G(b) = .-C°  for all b 

such that (1.1) is feasible. 

This paper provides an exact description of the class of value functions, by 

showing how they are iteratively constructed by simple operations, and by showing 

also that all functions thus constructed are value functions. In order to give 

the intuitive content of our results, we provide this verbal sketch of the class 

of functions involved: they are exactly the functions (which we call 
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"Gomory functions" in Section 2 below) which are obtained by starting with the 

linear functions Xb, and finitely often repeating the operations of sums, 

maxima, and nonnegative multiples of functions already obtained, and rounding 

up to the nearest integer. Thus, for example the Gomory function G(b 1 , b2 ) = 

r 1 
max{ -3b

1 
+ 1lb

2 
, 	b

1
+ b

2 
+ b

2
/3 	) is the value function of some two- 

constraint pure integer program, where rr l  denotes the least integer which is 

greater than or equal to the real number r. 

Perhaps the main deficiency of our intuitive summary is that it ignores 

the domain of definition of the value function, which, as it turns out, is 

defined by the vectors for which a second Gomory function is not positive (see 

Theorem 3.13 and Theorem 5.2 below). In Section 2 below we give precise 

definitions for the terms to be used later on, further motivation and discussion 

of related literature, and some preliminary results. 

Our intuitive summary shows that, once the "technology matrix" A and "cri-

terion function" c are fixed in the integer program (1.1), there is a simple 

(although perhaps lengthy) closed form expression for the value of the solution 

in terms of the right-hand-side (r.h.s.) b. This result is in exact analogy to 

the similar result for a linear program: in fact, the value functions of linear 

programs are built up precisely in the same way, except that the rounding-up 

operation is not used. The characterization of linear programming value func-

tions does not require the rationality hypotheses in (1.2). 

This paper is a continuation of our earlier investigations [1], [ill. 

We extend work of Gomory [4], particularly from the perspective of [2], and 

we have benefitted from Shrijver's note [13] and two papers of Wolsey [14], 

1153. These are the most immediate influences on our results here, and recent 

related work has been done by Edmonds and Giles [3]. The literature on this 

topic, which is part of the theory of cutting-planes, is extensive and partially 
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summarized in the references of the survey [9 ]. 

This completes our introductory remarks. The plan of the remainder of the 

Raper is as follows. Section 2 defines the Gomory functions and establishes 

some of their important properties. In Section 3, we show that Gomory functions 

provide value functions, by means of the monoid basis results of [10]. Section 

4 is devoted to the proof of some elementary principles which are used later, 

and seem to have some interest in their own right. In Section 5 we prove that 

value functions are Gomory functions. Section 6 is devoted to the proof of two 

results (Theorem 6.2 and Theorem 6.3 ) which are closely related to our 

study of the value function, the first of which (Theorem 6.2 	) is a result an- 

nounced by Wolsey [15]. In Section 7 we work an example to illustrate our 

characterization of the value function. 

We conclude this section with some notational issues. In (1.1) A is an 

m by n matrix with columns denoted by a.: A = [a.] [cols]. Also b is an 

m by one vector, c is one by n, and x is n by one; for components we write 

c=(c.i )=(c1 ,c11),b=(b)=(b
1
,..—.,b),andx=(x.)= (x

1 	
x
n
). 

n 
With this notation, Ax = b can also be written Z a.x. = b, and we use the 

j=1 	J  

second form generally when some specific column of A has to be identified (as 

in Section 5 below). 

All variables below, such as the x,, are understood as continuous 

throughout, which here means rational; if a variable is to be restricted to be 

integer this will be explicity stated. In many contexts below, it does not 

actually matter whether our continuous variables are rationals or reals, but 
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we shall not treat the latter distinction. We let Q denote the rationals. 

If v and w are vectors we will use vw for the inner product. 

2. Chvgtal Functions and Gomory Functions; General Background  

The class 6 of Chvgtal functions consists of essentially the Gomory func-

tions built up without taking maximums. The exact definition follows. 

Definition 2.1: The class 6
m 

of m-dimensional Chvgtal functions is the smallest 

class 6 of functions with these properties: 

i) f E 6 if f(v) = Xv and X E Qm 
	

(here v = (v1 	v
m
)); 

ii) f, g Ed and a, j3> 0 with a, 8 E Q 

implies of + 8g E 6 

iii) f E t, implies 	E 
	

where r f"1 is the function defined by the 

condition 

(2.1) 
	 r f-r

(v) = 
r
f (v)

1  

Definition 2.2: The class 6 of Chvgtal functions is defined by 

= uf6' 	> 1, in integer) (2.2) 
m 

Note that, while non-negative multipliers a, 8 > 0 occur in clause (ii) 

of Definition 2.1, the vector A EQ
m 

of clause (i) is unrestricted in sign. 

We similarly obtain an exact definition of the class of Gomory functions. 

Definition 2.3: The classg mof m-dimensional Gomory functions is the smallest 

class 6 of functions with the properties (i) - (iii) of Definition 2.1, and 

also this fourth property: 

iv) f, g Ed implies maxff,g) Ed 

Definition 2.4: The class of Gomory functions is defined by 

(2.3) 	 = UtYrn im> 1, 	m integer) 
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In Definitions 2.1 and 2.3 the function notation is understood in the usual 

way. For example, the function af + $g of Definition 2.1 (ii) is defined by 

the condition: 

(2.4) 	(af + fig) (v) = of (v) + Pg(v) 	for all v E Qm  

Similarly, the defining condition for maxif,g1 in Definition 2.3 (iv) is 

maxff,g) (v) = max .[f(v), g(v)). Note that functions f E Srn  or f gin  are de- 

fined for all v EQ
m
, although in several instances below, we shall have 

occasion to restrict their domains to smaller sets, as e.g. integer vectors 

v E 
 

m 

Of course, the device of phrasing in 
and S

m 
in terms of smallest classes 

of functions, which contain the linear function, and have certain closure pro-

perties, is equivalent to saying that these clases are built up from the linear 

functions by iterative finite application of the operations defined in the 

closure properties. Our next definition makes the concept of "iterative 

application" exact. 

Definition 2.5: 	A function f has pre-rank zero if it is a linear function. It 

has pre-rank (r+1) exactly if there are functions g, h of pre-rank < r which 

satisfy at least one of these conditions: 

(i) f = ag + 1311 for some rational scalars a, (3 > 0; 

or 
(ii) f = maxfg,h) 

or 
(iii) f = 

In general, a function has several pre-ranks. 

Definition 2.6: If f has at least one pre-rank, its rank is its least pre-rank. 

We now can state and prove the equivalence of e.g. Definition 2.3 with one 

by iterative application. 
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Proposition 2.7: For an m-dimensional function f, f E am if and only if f has 

a pre-rank. 

Proof: Let Xbe the class of all m-dimensional functions f which have a pre-

rank. If f EX, one proves f E 	by induction on the rank of f. Thus 

Z 	. Conversely it is easy to prove that 	satisfies (i) to (iv) of 

Definition 2.3. Therefore 4.1• QX, hence 	= 
	 Q.E.D. 

Many results about Chvgtal and Gomory functions are most easily proven by 

induction on rank. We will sometimes use the phrase "induction on the forma-

tion of f" to mean induction on the rank of f. 

We next define a class of functions which we shall need in Section 5, to 

discuss the components of an optimal solution to (1.1). 

Definition 2.8: 	The class .mof unrestricted m-dimensional Gomory functions  

is the smallest class with properties (i) and (iii) of Definition 2.1, and (iv) 

of Definition 2.3 and also this property: 

(ii)' f, g el and a, 8, E Q implies of + f3g EL 

The class G
± 

is defined by 

(2.5) 	= U (CI  i m > 1, m integer) 
m 

We remark that the composition of unrestricted Gomory functions is an un-

restricted Gomory function. 

The rounding-up operation rr1 (actually, truncation Lrj, but rr -r = 

) occurs in Gomory's Method of Integer Forms. It also occurs in the 

following "rule of deduction" which is due to Chvital 12], which we here 

adapt to non-negative (rather than unconstrained) integer variables: 

(2.6) If the inequality 

a
l
x
1 
+ a

2
x
2 
+ 	+ax > a 

n n - o 
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is valid, and if the xj  are non-negative integers, then the 

inequality 

	

ra 	x 	ra 	x 	 ra 	x  > r a  
1 	1 	2 	2 	'"' 	n 	n 	o 

is also valid. 

1 
1 

For example, if --x > 1/6 (i.e. x 1 
 > 

1
) is valid, and if x

1 
is a non- 

3  	2 

negative integer, then x i  > 1 is valid. 

Chvgtal's rule can be justified in two steps. For if its hypothesis is 

valid, then by adding suitable multiples of the non-negativities x. > 0, we see 
J 

that the weaker statement 

r a 1 x + 
r a (2.7) 

	

1 	1 	
2 x + 	+ ran1  x > a 

	

x2 
	 n - o 

is valid. Since the left-hand-side of (2.7) is an integer for integral x , and 

is not less than a
o
, it also is not less than Sao?  . This justifies Chvgtal's 

rule. 

Chvgtal and Hoffman observed [2 ] that Gomory's algorithm proceeds by cer-

tain instances of the rule (2.6). The precise mode of its implementation of 

(2.6) is affected by the way it introduces variables for cuts, and in its given 

form Gomory's algorithm is not convenient for analysis. If the Chvgtal opera-

tion is repeatedly applied, and is viewed as parametric in the right-hand-side, 

it constructs a Chvgtal function [14]. 

The Chvgtal functions are essentially the discrete analogue of linear 

functions. We will see below that their carrier is linear and that they are 

nointwise close to it (Definition 2.9 and Proposition 2.10). Now if this analogy 

holds true, just as the value functions of linear programs are the finite maxi-

mum of linear functions, the value function of an integer program should be a 

finite maximum of Chvatal functions. That is why one might conjecture that 



value functions are Gomory functions, at least on their domain of definition. 

The technical difficulties toward establishing the equivalence of Gomory 

functions and integer value functions should be clear enough. For one thing 

further operations, beyond maxima, might be necessary. For another, 

it is conceivable that infinitely many different Chvgtal functions occur for 

the infinitely many possible right-hand-sides b. In fact, our result, that 

the value function G is a Gomory function, can be construed as a "hyper-

finiteness" result concerning Gomory-type algorithms based on the Chvgtal 

operation (2.6). 

We establish as a consequence of our work, that not only can such algo-

rithms be designed to be finitely convergent, but one uniform finite upper 

bound on the number of cuts needed is valid for all r.h.s. (once A and c are 

fixed in (1.1)). 

ee We associate with each Gomory function f E a set of homogeneous poly-

hedral functions called "carriers," in our next definition. The carrier will 

turn out to be unique. 

Definition 2.9: To every as
m 
we assign a set S(f) of functions inductively 

as follows: 

(i) If f E S
m 

is linear (i.e. f(v) = Xv for some AE Qm) then f E S(f). 

(ii) If f E S
M 

can be written as f = ag + 811 with 

a, S  E Q non-negative and g, h E, and if 

g"E S(g) and h" E S(h), then 	ag" + 8h" E S(f). 

(iii) If f E m
m 

can be written as f = r e with g E , and if 

S(g), then g" E S(f). 

(iv) If f E Sm can be written as f = max {g,h) with 

g, h E
M 

and if g" E S(g) and h"E S(h), then 

max{g', 11'. } E S(f). 

8 
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(v) The sets S(f), f E S , are formed by inductive application of rules 

(i) - (iv) preceeding. 

Because of clause (iii) in Definition 2.9 a carrier, i.e. an element of 

S(f), of f E am is trivially obtained by simply deleting the integer round-up 

operations. For example, if f(v) = max{ -b1 	2' 
+ lb 2b

1 
 + r-b 1 ), then one 

carrier of f is max {-b + —b b ). 
1 	2' 1 

Proposition 2.10: If f"E S(f), f ES, then f' is a homogeneous function 

iteratively constructed from linear functions by taking sums and maximums, and 

f' satisfies, for same constant k > 0 (depending on the formation of f"): 

(2.8) 	 0 < f(v) - f"(v) < k 	 for all v E Qm  

Moreover, if f E 6 	then f' is linear. 

Proof: The nature of f" is evident as the clauses (i) - (iv) of Definition 2.9 

do not involve the round-up operation, and such functions f" are easily proven 

to be homogenous by induction on their iterative formation. 

Similarly, the inequality f(v) > f"(v) is easily seen to be preserved in 

clauses (i) - (iv). For example, if f = ag + 8h, then since g > g" and h > h", 

and a, 8 > 0, we have f > ag" + 8h' = f'. We now examine the bound f(v) - 

f'(v) 4 k of (2.8) 

If f" is a carrier of f due to clause (1), k=0 since f=f". 

If f' is a carrier of f due to clause (ii), let k
1 
and k

2 
be such that 

(2.9) 	g(v) - g'(v) < k l 	 for all v E Rm  

h(v) - h' (v) < k2 	 for all v E Rm  

k1 
and k

2 
exist by induction on the number of steps in the inductive formation 

of g' and h" under the clauses of Definition 2.9. Then we have, 

as f" = ag" + Bh", 

(2.10) 	f(v) - f' (v) < a(g(v) - e(v))+ 8(h(v) - h"(v)) 

< ak
1 
 + 8k

2  

so we make take k = ak1  + 8k2 . 
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If f' is a carrier of f due to clause (iii), let k" be such that 

(2.11) 	 g(v) - g' (v) < k" 	 for all v E R
m 

Then as f" = g", we have 

(2.12) 	 f(v) - f"(v) = 	- g" (v) < k" + 1 

and we may take k = k" + 1. 

Clause (iv) formation is handled in a manner similar to clause (ii). For 
1 

f E 6, f' is linear, since no application of maximums (clause (iv)) occurs. 

Q.E.D. 

Corollary 2.11: For f E a, 	S(f) contains exactly one function. 

Proof: Clearly S(f) 	0 by induction on the rank of f. Let f i , f2 E S(f). 

If f"f" let v
o 
be such that r(v 

o  ) 
	

2 
f"(v 

o
). Let k

1, 
k
2 
be such that, 

2' 	 1  

for all v, 

(2.13) 	 0 < f(v) - fi (v) < k1 . 

0 < f(v) - f; (v) < k2 . 

For all I > 0, 	(2.13) applied to v = Xv
o 

gives 

(2.14) 	 Xlyvo) - f2(v0 )1 = Ifi. (Xvo ) - f2(a070 )1 

< lyXvo ) - f(Xv0)1 + If(Xvo ) - f2(Xv0 )1 

< k + k 
1 	2 

But (2.14) is impossible for X > (k1  + k2 )/(1c(vo) - f2(170 )1), and this contradicts 

f" 	f2. 	 Q.E.D. 
1  

Definition 2.12: A monoid is a set M of vectors ofQ
m 
which forms a semi-group 

under addition in Qm. To be precise: (i) 0 E M; and (ii) If v, w E M then 

v + w E M. The monoid M is integral if it contains only integer vectors. 

Any monoid M T  {0} contains infinitely many elements. Any set of vectors 

generates a monoid, by taking all non-negative integer combinations of vectors 

in the set. 
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A function f: M R, with M a monoid, is called subadditive if: 

	

(2.15) 	 f(v + w) < f(v) + f(w) 	 for all v, w E.M. 

The interest in subadditive functions is that they generate valid cutting-planes, 

as summarized in our next result. 

Proposition 2.13: [5], [11] 

If f is a subadditive function on the monoid generated by the columns of 

A = [a j ], then the inequality 

	

(2.16) 	 I f(a.)x. > f(b) 
j=1 	J J 

is satisfied by all solutions to (1.1). 

A converse to Proposition 2.13 is also true. 

Proposition 2.14: [11] 

Assume that (1.1) is consistent. If the inequality 
n 

	

(2.17) 	 I H.x. > II 
j=1J J° 

is satisfied by all solutions to (1.1), then there is a subadditive function f, 

defined on the monoid generated by the columns of A = [a j ], which satisfies 

	

(2.18) 	 f(0) = 0, f(a.) < H. for j=1 	n and f(b) >
o

. 

We remark that it is easy to derive (2.17) as a consequence of (2.18) and 

(2.16), if one simply notes that x > 0 for all solutions to (1.1). 

An alternate form of Propositions 2.13 and 2.14 is the "subadditive dual" 

we referred to earlier. 

Theorem 2.15: [11] 

If (1.1) is consistent and has a finite value, then this program has the 

same finite value: 

	

(2.19) 	 max f(b) 
subject to 	f(a ) < c. 	 j=1, 	n 

f subadditive on the monoid generated 
by the columns of A = [a.] 



12 

Moreover, the value function G is always an optimal solution to (2.19). 

We next relate subadditivity to Gomory functions (Proposition 2.17). 

Lemma 2.16:  Suppose that f and g are subadditive on M, and a, P,  > 0. Then the 

following functions are subadditive on M: 

(i) af + Sg 

(ii) rfi 

(iii) maxa,g). 

Proof:  Let v, w E M be given. Then we have 

	

(2.20) 	 (af + 13g)(v + w) = af(v + w) + fig(v + w) 

< af(v) + af(w) + 4(v) + Ps (w) 

< (af(v) + 13g (v)) + (a f(w) + lig(w) 

= (af + Sg)(v) + (af + 130(w) 

which establishes (i). Also 

r (v + w) = rf(v + w)
1 
 

	

(2.21) 	 < rf (v) + f (w)-1  

< r f (v)1 	r + f (w)i 	r = f
i 
 (v) + rf  7 

(w) 

which establishes (ii). The first inequality in (2.21) is due to the subadditiv-

ity of f (see (2.15)) and the fact that r is a non-decreasing function of r. 

The second inequality in (2.21) is due to the easily verified subadditivity of 

the function rrl . 

Moreover, for f and g subadditive, 

f(v + 	< f(v) + f(w) < max{f(v), g(v)) + max{f(w), g(w)) 

	

(2.22) 	 g(v +w ) < g(v) + g(w) < max{f(v), g(v)) + max{f(w), g(w)) 

By taking the maximum over both sides in (2.22), we prove (iii). 

Q.E.D. 
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Proposition 2.17: All Gomory functions f E 	are subadditive on Qm . 

Proof: By induction on the rank of f E 	 Q.E.D. 

Thus, Gomory functions can be used to obtain valid cutting-planes (in 

Proposition 2.13). 

The fact that Chvgtal functions are subadditive, and usually somewhere 

strictly subadditive (i.e. in (2.15) there is strict inequality for at least 

some choice of v, w), shows that the negative of a Chvgtal function is not 

usually subadditive. For example, - rv -1, is not subadditive (although it is a 

typical element of 	, because -1 = - r 1 = - 
	

r.5 + .5 > - 2 = 

, 	which contradicts (2.15). 

The following simple result is a "normal form" for Gomory functions. 

Proposition 2.18: 	Every Gomory function f E a
m 

is a maximum of finitely many 

Chvgtal functions: 

(2.23) 
	

f = maxfgl , 	g
t
), 	all gi  E 6m  

Proof: By induction on the rank of f. If f is a linear function the result is 

immediate. 

Suppose that f = ag + Sh where a, 13 > 0 are rational and g and h are of 

lower rank than f. We write 

g = max 
{g.) iEI 1  

(2.24) 	 h = maxfh.) 
if-3 3  

for finite non-empty  index sets I and J, where g i  and h. are Chvgtal functions. 

Then one easily verifies that 

(2.25) 	 f = maxfag. + (Th.) 
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Suppose f = r g1 , where g has lower rank than f. We may again assume 
(2.24) holds for g, and we can conclude 

(2.26) 	 f = maxf rg 1  
iEl 	I  

Suppose that f = maxfg, h), where g and h have lower rank than f. We 

again may assume (2.24), and we have 

(2.27) 	 f = maxfmaxfg.), maxfh.)) 
i€I 1  j€2 

so that again the inductive hypothesis is preserved. 	 Q.E.D. 

3. Gomory Functions are Value Functions  

Just as we have been using small letters f, g, h, ... for Chvgtal and 

Gomory functions we shall reserve capital letters F, G, H, ... for value func-

tions. 

In this section, we derive sufficient closure properties for value func-

tions, to insure that Gomory functions are value functions, at least when their 

domains are suitably restricted. The issue regarding the domain of definition 

is, of course, that value functions are defined, i.e. are not + co,only for 

certain r.h.s. b in (1.1), while Gomory functions are defined in all Q. 

In this section, we will confine ourselves to showing how Gomory functions 

arise in the setting of programs (1.1) with A, b, and c integral. The value 

functions associated with such programs we shall call integral value functions. 

The extension of our work to the rational case (i.e. hypothesis (1.2)) is 

straightforward; see e.g. Corollary 3.14 below. 

We proceed by use of certain results in [10], particularly Theorem 3.2 below. 

A set S L. Qm  is a slice [10] precisely if S has the form 

(3.1) 	 S = T + M 

where T # 11) is a finite set of integer vectors in Qm, and M is an integer 

monoid inQ
m 

which has a finite set of generators. 
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A monoid is the discrete analogue of a convex cone with vertex at the origin; 

a slice is the discrete analogue of a polyhedron. It is trivial for polyhedra, 

that their intersection is a polyhedron. The analogous result is true for slices 

(but see also [ 1], 110]  for a continuous result which has a false integer 

analogue). 

Theorem 3.1: [10] 

If T
1 

and T
2 

are slices and T
1 
 (l T 2 0, then 

T
1 
 (I T 2 is a slice. 

Corollary 3.2: 

If M
1 

and M
2 are integer monoids which are finitely generated, then 

M
1 
ri m2 is also a finitely generated monoid. 

Proof: It is trivial -that Mi()M2  is a monoid. 

Since M1  n M2  + TO), 	Ml  n m2  is a slice: 

(3.2) 	 M
1 

11 m
2 

= T + M 

where T is a non-empty finite set of integer vectors, and M is a finitely 

generated integer monoid. As M
1 
FIM

2 
is a monoid, so is T + M, hence 

(3.3) 	 T + T + M = (T + M) + (T + M) = T + M. 

Let T = {t 1 , 	ta} and let M be generated by s l 	sb . We claim 

that T + M is generated by U = ft l , 	t
a

, s
1

, 	s
b
). 

It is clear that any element t + m E T + M (tET,mEM) is generated 

by U. Conversely, let v be generated by U: 
a 

(3.4) 	 v= 	E n.t. + 	E m.s.. 
i=1 1 1 	j=1 

a 
One may easily prove, by induction on p = E n - , that any vector of the 

i= 1 
a 

form E ri"..1t i 
 is an element of T + M, using (3.3) for the inductive step, 

1=1 

and the fact that OET+Mfor p=0 (the latter by (3.2) and the fact that 

0 E M
1 

(l m2 ). 
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a 
Thus in (3.4) 	E n

i
t
i 

T + M, and 
1=1 

b 
as I m.s j  EM, we have vET+M+M=T+ M. 

j=1 

This completes the proof of our claim. 	 Q.E.D. 

We recall our assumption at the start of the section that A is integer. 

G(b) will be defined (i.e. G(b) < + co) only for certain integer vectors b. In 

what follows, we may interchangeably write row vectors as column vectors, or 

vice-versa, simply to improve readability. 

Lemma 3.3: 	If M1  ,..., Mr  are finitely generated integral monoids, so is 

their Cartesian product MI X ... X Mr . 

Proof:Withoutlossofgenerality,r=2.1,et14.
3 
 be generated by vjl 

vet 
 
for,j=1,2(wemaytakettobethesameasOEM.). Then M

1
xM

2 
is 

generated by 

(3.5) 

\ 

0 1 , . . . , ( 	

i lt ' 11 

V i i  , \NT
21 

0 v 	1 

, 	• • • 
Q.E.D. 

Lemma 3.4: If M is a finitely generated integral monoid, then so is the projec-

tion 

( 3.6) 
	

M
1 
 = fv

1 
 for some v 2 , (v1 , v

2
) t M) 

Proof: 	If M is generated by (v1  ,  v2j ) for j=1, 	t, 	then 

M is generated by v
lj 
 for j=1, 	t. 	 Q.E.D. 

Proposition 3.5: Let G be a function G: Qm  R1-1{-1-')U(')• 

Then G is the integral value function of some integer program (1.1) if 

and only if the set M defined by 
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(3.7) 	 M = f(z, b) I t is an integer and r > G(b)) 

is a finitely generated integer monoid. 

	

Proof: 	Suppose that M is a finitely generated integer monoid, and let its 

generators be (cj , aj ). Then 

( (9 1 there is an integer vector x with 

where A = [a.] (cols) and c = (c.). Then the value function of the integer 

program (1.1) for this A and c is 

minfcx I Ax = b, x > 0 and x integer) 

(3.9) 	 = minfz I (z, b)E M) = G(b) 

Conversely, if G(b) is the integral value function of (1.1), 

we have 

(3.10) (.(z )  z is integral) 
b I  and z > G(b) 

for some non-negative integers x 0
, 1 

 x , ...,x
m 

c . 
x0 
	+ z x. 	j) 

0 0/ 	j a. 
j= 1  

Q.E.D. 

Via the same ideas as in the proof of Proposition 3.5, one easily 

establishes the following result. 

Corollary 3.6: M is the domain of some integral value function G (i.e. M = 

{b I G(b) < + c°)) if and only if M is a finitely generated integer monoid. 

Throughout this paper, the infimum over an empty set is + c°. 

Theorem 3.7: Let H and Hi , 	Hr  be integral value functions and let Q and 

Q
1

, 	Q
r 
be matrices of rationals. 

Then the function defined by 

(3.8) 	 M = z = cx, 	Ax = b, x > 0 
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1-  (3.11) 	G(b) = inf 	H(w 	w ) 
1 ,  '''' 	r  

w
1

, 	wr  and b are integral, and 

there are integer vectors b
1

, 	b
r 

such that 
r 	. 	. 

Qb + E QJ 13 .3  > 0 
j=1 

and moreover all w. > H.(0), j=1, .. , r 
J 	J 

is an integral value function 

(in (3.11), w
1 , 	' wr 

are integers, the vectors b, b
1

, 	b
r 
may be 

of different dimensions, and the matrices, Q
1

, 	Q
r 

are dimensioned to make 

all expressions displayed compatible). 

Proof: The monoid 

(3.12) 	 M = /z w1 	

t is integer and 

t > 11(T/1 , 	wr) 

and the monoids 

(3.13) 
w is integer 

and w > H.(bi ) j=1, 	r 

    

are all integer monoids with a finite set of generators, by Proposition 3.5. 

By Lemma 3.3 so is 14)(Mix ... X Mr . 

It is well known that (the result goes back to Hilbert [8]; for one proof, 

see [10]) any monoid, defined by imposing integrality conditions on the 

solutions to homogeneous linear inequalities in rationals, has a finite set 

of generators. In particular, this monoid is finitely generated: 
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i wz 

1 

w
.

• 

. 
r 
w
1 

b
1 

• 

b 

• 
w
r 
r 

b 

z, 	 wr , w1 , b 1 , 	wr , b
r , and 

b are integral, and 

w. 

• 

= w, for j=1, 	r 

(3.14) 
and 

r 
Qb + E QJ ID J  > 0 

j=1 

By Corollary 3.2, the monoid 

(3.15) M".  = (Mx 11 1 X ... X Mr)11 P 

has a finite set of generators. Let M* denote the projection of M -  onto its 

co-ordinates (z, b). By Lemma 3.4, M* has a finite set of generators. One also 

checks from (3.11) that 

(3.16) (z, b) E M* if and only if 2 is integral and e > G(b). 

By Propositon 3.5, G is an integral value function. 	 Q.E.D. 

In what follows, when we write a composition of functions such as 

(3.17) 	 G(b) = H(H1 (b), 	Hr (b)) 

we shall understand that G(b) is defined (i.e. G(b) < + co) exactly if each 

quantity w. = H.(b) < + co and also H(w l , 	 w
r
) < + co, in which 

J 	J 

case 	G(b) = H(wl , 	 wr). 

Corollary 3.8:  If H is a monotone non-decreasing integral value function, 

and Hi , 	H
r 

are integral value functions which are nowhere - co,then the 

function G in (3.17) is an integral value function. 

Proof: 	Note that, by the monotonicity of H, 
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iw

i, ..., w
r

are integral and, there are 
(3.18) G(b) =ifHw 	•••, wr

) 	
integral bJ  = b with w. > H.(b

j
) for j=1, ..., r 

J - J 

Theorem 3.7 applies. 

Q.E.D. 

Corollary 3.9:  If H1  and H2  are integral value functions, nl  and n 2  are non-

negative integers, and D is an integer, then these three functions are integral 

value functions: 

i) G = ni  111  + n2  H2  

ii) G =
I Hl/Dl 

iii) max{H1 , H2 } 

Proof: 	In cases i) and iii), it suffices to show that G(b) = H(H 1 (b), H2 (b)), 

where H is a monotone non-decreasing value function. In case ii), we show 

that G(b) = H(H
1 
 (b)), where H is a monotone non-decreasing integral value 

function. Corollary 3.8 then yields the desired result. 

For i), the value function H is that of this two row integer program: 

inf 
nlx1 n2x2 

(3.19) 	 subject to 	x1 	= b 
1 	 1 

x
2 
= b

2 
xl , x2  integral 

where we can obtain a formulation in non-negative variables by setting x. = 

A 	 . . • A 
X. 	X .A , where xj

A 
 and x. 	are integral and nonnegative. The value function 

J 	3 	 J 

is non-decreasing because n
1
, n

2 .- 
0. 

For ii), the value function is that of the integer program 

inf x
1 

subject to Dx1  - x2  = b 

(3.20) 	 x
2 
 > 0 

xl , X2  integral, 
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and again a formulation in nonnegative variables easily follows. The function 

H(b) = rb/I? is clearly non-decreasing. 

For iii), H is the value function of the integer program 

inf 	x
1 

subject to 
	xi - x2 	 = b

1 

xi 

	

	 - x
3 

= b
2 

x 2 , x3  > 0 

x
1
, x

2
, x

3 
integer 

and the desired properties are easily verified. 	 Q.E.D. 

Proposition 3.10: If p is an integer vector, then the function F(v) = pv is an 

integral value function. 

Proof: F is the value function of this integer program: 

min px 

(3.22) 	subject to 	Ix = b 

x integer 

and by the usual device of setting x = x" - x" with x", x" > 0 we can put 

(3.22) in the form (1.1) 	 Q.E.D. 

The statement that "Gomory functions are value functions" has to be proper-

ly construed. The domain of a Gomory function g is all of Q m , while that of a 

value function G is some subset of the integer vectors Em ; hence a Gomory func-

tion g must first be restricted to Em  for any such statement to hold. A 

second issue derives from the fact that a Gomory function g need not have an 

integer value g(v) even for an integer vector v E gm, yet the value G(v) for 

a value function is always integral, since c is assumed integral in this section. 

A precise statement follows next. 



Theorem 3.11: If g is a Gomory function, there is an integral value function 

and non-negative integer D > 1 such that 

(3.23) 	 g(v) = G(v)/D 
	

for all v E E
m 

Proof: By induction on the rank of g. If g(v) = Xv for some A E Q m , write 

A = p/D for p integer and D > 1 integer. Then g(v) = pv/D and the result 

follows by Proposition 3.10. 

If g = ahl  + h2  where a = ni/D, and 	= n2 /D 2  are non-negative 

rationals, D
1 
 and D

2 
 > 1 , and h

1 
 and h

2 
are Gomory functions, let D

3 
and D

4 

 be non-negative integers such that 

(3.24) 	h
1 
 (v) = H

1 
 (v)/D

3 	
for all v E Em  

h
2
(v) = H

2
(v)/D

4 	
for all v E Em 

 for value functions H
1 
 and H

2
. Then for v E E

m
, 

n1H1 (v) 	n2H2 (v) 	(D2D4n1 )H1 (v) + (D iD3n2 ) H2 (v) 
(3.25) 	g(v) - 	 

D
1
D
3 	

D
2
D
4 	 D1

D
3
D
2
D
4 

Since n'; = D 2D4n1  and n; = D 1D 3n2  are non-negative integers, nc.H1  + n2H2  is a 

value function by Corollary 3.9 (i). 

If g = r h
1 
 let (3.24) hold. Then for v integer, g(v) = nH1 (v)/D

3 
-1 

and H1/D3 
	

is a value function by Corollary 3.9 (ii). 

If g = max fill , h2 1.  let (3.24) hold. For v E Em  we have 

(3.26) 	g(v) = maxfil
1
(v)/D

3' 
 H2 (v)/D 4 ) 

 

1  
max{D

4
H
1
(v)

' 
D
3
H
2
(v)} 

D
3
D
4 

Now D
4
H
1
(v) and D

3
H
2
(v) are value functions by Corollary 3.9 (1), and so is 

22 

max{D4H1, D3H21  by Corollary 3.9 (iii). 	 Q.E.D. 
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We also wish to be able to restrict Gomory functions g by a non- 

negativity condition h < 0 on another Gomory function h, and still have a 

value function. In this context, the domain of g and h will be Q
m
, not 2

m
, 

hence some hypothesis on the Gomory function h will be needed. This hypothe-

sis will take the form 

(3.27) 	 h(v) > 0 if v 	2m  

so that, in essence, the compositely-defined function is < + co only for v E 2 m . 

We proceed toward our goal in the next two results. 

Theorem 3.12: Let G and H be integral value functions. Then the function 

(3.28) 	 F(v) = 

defined by 
G(v), 	 if H(v) < 0; 

if H(v) > 0; 

is also an integral value function. 

Proof: We have F(v) = K(G(v), H(v)), where, for w 1, w2  

( 	 I wl, 	 if w2  < 0; 
3.29) 	 K(w) = 2 

	

+ co, 	 if w
2 

> O. 

K is non-decreasing, and it is the value function of this two-row integer 

= 

program: 

inf x
1 

(3.30) 	subject to 	1 
	 wl 

 

	

-x2 	
w2 

x2  

x
2 
 > 0 

xl , x2  integer 

Then F is a value function by Corollary 3.8. 	 Q.E.D. 
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Theorem 3.13:  Suppose that g and h are Gomory functions and that h satisfies 

(3.27). Let the function f be defined by 

(3.31) 
(g(v), 

f(v) = 
if 	h(v) < 0; 

if 	h(v) > 0. 

Then there is an integral value function F and an integer D > 1 with 

	

(3.32) 	 f(v) = F(v)/D 	 for all v E Qm  

Proof:  By Theorem 3.11 there are value functions G and H and integers D 1 , D
2 
 > 1 

with 

	

(3.33) 
	

g(v) = G(v)/D 1 	 for all v E Zm  

h(v) = H(v)/D 2 	 for all v E Ern  

Note that, by (3.27), 

	

(3.34) 	 h(v) < 0 	if and only if H(v) < 0 for all v E Qm . 

From (3.31), we have, using (3.33) 

(3.35) D
1
f(v) = 

if 	H(v) < 0; 

if 	H(v) > 0. 

By Theorem 3.12, D i f(v) is a value function. 	 Q.E.D. 

Corollary 3.14:  Suppose that g and h are Gomory functions and that there is a 

rational non-singular m by m matrix B such that, for all v E Q m , 

(3.36) 	 h(v) > 0 	 if By 	
gm 

Then there is a value function F arising from a program (1.1) with 

rational A, c such that 

(3.37) 
	 F (v) = f g (v), 	 if 	h(v) < 0; 

+ co , 	 if 	h(v) > 0. 
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Proof: Define h"(v) = h(B-1v), g'(v) = g(B-1v), and apply Theorem 3.13 to 

g', h" to obtain an integer matrix A"and an integer vector c", and an integer D, 

such that it has value function 

Dg(B-1v), 	if 	h(B
- 1

v) < 0; 

	

(3.38) 	 F"(v) 	
+ co 	 if 	h(B

- 1
v) > 0. 

Let c = c"/D, A = B 1A". Then the value function G of (1.1) satisfies 

	

(3.39) 	 F(v) = minfc'x/D I B-1A"x = v, x > 0 and integer) 

1 	 1 
minfc x A"x = Bv, x > 0 and integer) 

= .1 F(Bv 
if 	h(v) < 0; 

if 	h(v) > 0. 

Q.E.D. 

4. Some Results on the relation between an integer program and its LP  

Relaxation  

We begin with two results showing that if an integer program is incon-

sistent, then a perturbation of the linear programming relaxation is also in-

consistent. Throughout this section a
1
, ... a

n 
E Q

m 
are fixed, e 1.s a vector 

with all components equal to one. 

Theorem 4.1: There exists a k > 0 such that, for all v E R m , if there are 

no integer x. such that 

(4.1) 
n 
E a.x. > v 
1 J J 

then there are no x. such that 

n 
E a.x. > v + ke. 
1 J J 

(4.2) 
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Proof:  Let k be n times larger than any non-negative component of any a,. 

Ifx..(x1 ,...xdsatisfies(4.2)thenreplacingeachx.by the next lower 

integer provides an integer solution that satisfies (4.1). Hence if (4.1) 

has no integer solution (4.2) has no continous solution. 	 Q.E.D. 

Next we examine the analogous problem for integer programs whose constraints 

are given as equations rather than inequalities. 

For v E R
m 

define 

n 
(4.3) 	 117 .{(x1 ,...xdlEa

.JJ 
 x.=v;x.>0;x.integer) 
 J 1 

Theorem 4.2:  There exists a K
1 
 > 0 such that, for all v, either: (i) I

v 
is 

non-empty;or (ii) there are no integer x. ( positive or negative) such that 
n 

= v;or (iii) there is no x > K e such that E a.x. . v. 
J J 	 - 1 1 J J 

In other words, if an integer program with right-hand-side v is incon-

sistent, then either it remains inconsistent when the non-negativity con-

straints are dropped or else the LP relaxation is inconsistent if lower bounds 

of K
1 
are imposed on all the variables. 

Proof:  Let S = 	... a
n) 1 E a.a = 6). Let F c:Zn  be a basis for S. 

1 

Let K
1 
be larger than the dimension of S multiplied times the largest non-

negative component of any member of F. If v is such that (ii) and (iii) are 
n 

false then there is an integer x = (x l , 	 x ) such that E a.x. = v and 
1 

-1' 	-n 	 J -J 

. 
scalars a

f
,fEFsuch that x + E aff > K e. 	If a

f 
is the largest integer 

fEF f 
	1 

< a then x + E ef is integer, because F c:Z n, and non-negative because _ f 	- fEF f 

E (a".
f  -

a
f
)f> -K

1
e. 	Hence x +E a'f E I

v
. 

 
fEF 	 fEF 

Q.E.D. 
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Remark: An alternate form of theorem 4.2 replaces (iii) by (iii)": there is a 
n 

1 < J < n dependent on v such that {x 1 E a.x. = v; x > 	x
J  > 
	= 0. The k 

J 	-   1 

constructed here is n times the K1 
constructed in the proof of theorem 4.2. 

We will not use this result later, and omit the detailed proof. 

Next we present some results relating the optimal solution to an integer 

program to the optimal solution to linear programming problems. The results 

we require later are Theorem 4.6 and Corollar Y 4.7. These can be deduced from 

Ii ] but our presentation is self-contained. Also, we believe the value of 

the constant K
2 

is new. 

For v E Rm  define 

(4.4) 
	

L 	= {x l  Ea•J
x.
J 
 = v, x. > 0) 

(4.5) 
	

Re(v) = inf{cxjx E Lv ) 

(4.6) 
	

G(v) = inf{cxlx E I
v

) 

Lemma 4.3: There exists K
2 
> 0 and a finite F C:Z

n 
such that, for every c, 

if every component of x is either zero or > K
2 
 then either:(i) R 

cjj 
 (Ea.x.) = cx; 
 

or(ii)thereisyEFsuchthatEa.(x.+.)= Ea.x., 
J J 	 J 

c(x + y) < cx, and x + y > 0. 

Proof: For S C {1, 2, ... n) let 

(4.7) 	Us  = {xlEajxj  = -0 and xj  = 0 if j f s). 

For each S such that U is one-dimensional, let x E U be a non-zero integer 

vector. We take F to be x and -x 5  for all such S. K
2 

is chosen to be as 

large as any component of any member of F. If x, c are such that (i) is 
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false there is a z E R n  such that: (a) Ea.z. = t; (S) cz < 0; (y) z
. 

> 0 if 

* 
x
i 
 =0.Letz

* 
 satisfying(a)- 	

, i J 

	
0) is maximal. By 

definition of F, there is a w E F such that w. = 0 if z. = 0. 

We claim that z = Ow for some scalar 0. Let 0 be such that z' = z - Ow 

satisfies 

(4.8) 

(4. 9) 

z" > 0 	if 	z. > 0 
- 

z" < 0 	if 	z.
*  
 < 0 

j- 	 J 
 

(4.10) 	 For at least one j,z °  = 0 and z + 0. 

z" satisfies (a) and (y). (4.10) and the maximality property of z *  imply 

cz' > 0. If z # 0, we could find a scalar Cr.  such that z - O .'z' satisfies 

* 
(a) - (y) and has more zero components that z . Since this would contradict 

the maximality we must have z".  = 0, z = Ow, and our claim is established. 

Hence there is a y E F satisfying (a) - (y) [y =wor -w]. If every 

component of x is zero or > K 2 
 , then x + y > 0; hence (ii) holds. 	Q.E.D. 

Corollary 4.4:  Let the set F be as in Lemma 4.3. For xEZ n , x>-6, define x by 

(4.11) 
if xj  > K2 

 otherwise 

Then, for every c, either R
cj

) = cx or there exists y E F such that 

x + y > t and c(x + y) < cx. 

Proof:  Apply Lemma 4.3 to X. 	 Q.E.D. 

Lemma 4.5:  Let c, v be such that Iv 	
0 and G

c
(v) > - co . Then, for every 

x E I
v
, there is an x

* 
E Iv  such that 
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(4.12) 	 cx < cx 

* 
(4.13) 	 fa.1 x. > K

2  ) 
	is linearly independent 

 

(4.14) 	 R 
c 
 (Ea

j 
 x.) = 	cx 	[x defined by (4.11)] 

Proof: 	Apply Corollary 4.4 to x. Either R
c
(Ea

i
x
i
) = cx or there is an x -  = 

x + y E I
v 
with ex' < cx - min{cy I y E F, cy < 0). Then we apply 4.4 to x - 

 etc. Since G
c
(v) > - m we must eventually obtain an x (n) 

such that (4.12) 

and (4.14) hold. By (4.14) and the complementary slackness theorem there is 

- 
a w ERin suchthatwa.<c.foralljandwa.=c.if x(n)  > 0. If (4.13) 

J -  J 
failsthereisayEFauchthatcy<0,y..01i7((.°=0, and at least one com-

ponent of y is negative (recall G c (v) > - cc). For some integer 0 > 0, x + 0)7E1 v 
and 

x + Oy has fewer components > K2 . This process is repeated until an x is 

-* 
obtaineciallathat(4. 12)and(4. 13)hold,arld , hence 

_ -* 
we. = C. if x. > 0. To verify (4.14) note that if x > 0 and Za.x. = L.x. 

3 	3 J J 	J 3 

	

_* 	_* 
then cx > E(wa.)x. = w(Ea.x.) = w(Ea.x.) = cx . 

J 3 	J J 
Q.E.D. 

Theorem 4.6  : For any c, v such that I
v 

0 and G
c
(v) > - 00 there is an 

x E I
v 

satisfying (4.13), (4.14) and 

(4.15) 
	

G
c
(v) = cx 

Proof:  Any x E I
v 

can be decomposed as x plus a vector x' all of whose 

components are between 0 and K
2
. Since there are only finitely many x -  and 

at most one x E I
v 

satisfying (4.13) for each choice of x and linearly 

independent set, there are only finitely many x E I v  satisfying (4.13) and 

* (4.14). Let x be an x with cx minimal. 	 Q.E.D. 
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Corollary 4.7: 	For every c E Rn there is a K
3 

such that if I
v 

0 0 and R
c
(v) > 

- co then 

(4.16) 	R (v) < G (v) < R (v) + K 
c 	- c 	- c 	3 

Proof: 	Rc (v) < Gc (v) is immediate. Parametric linear programming theory 

implies that there is an M 1  such that IRc (v) - Rc (w)i < 	v - wH . Let M2  = 

n .1 -+ 
maxfIcxli 0 < x < K

2 
 e} 	Let M

3 
= maxf11 Ea.x. 11,0 < x < K

2 
 e1. From theorem 4.6 

 - -  1 

* 	 * 	 _* 	_* 
we know there is an x E I

v 
such that cx= Gc (v) and cx = R c (Za.x.). Since 

* _* 	 -* 	 _* 
0 <x-x <Kewe have G

c
(v) = cx < cx +M=R(Ea.x.) +M

2 
 < 

2 	 2 	c 	j j 	- 

Rc
(v) + M

1
M
3 
+ M

2' 
so we may take K

3 
= M

1
M
3 
+ M

2 
	 Q.E.D. 

* 
Thisfollowsfroulthefactalat axA.v,I..TheretheA.are the extreme 

points of the polyhedron, {X1,A•a.
J 
 <c,1<j< n}. We take M

1 
= maxi' A II • 
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5. Value Functions are Gomory Functions  

We will use notation (especially (4.3) - (4.6)) and results from section 

4. 

Let a 	... a
n 

E Q
m 

and c E Q
n 
be fixed. The two main results of this 

section are 

Theorem 5.1: There is a Gomory function f: Rm  R such that, for every v, 

f(v) < 0 if and only if Iv 	0. 

Theorem 5.2: There is a Gomory function g such that, for every v such that 

Iv 	0, g(v) = G c (v)• 

The function f is a "consistency tester" for the integer program. g is a 

function which is equal to the value function of the given integer program, 

whenever it is consistent. Our proof of 5.2 uses 5.1, which requires several 

preliminary results. The proofs are constructive. 

Lemma 5.3: Let 

(5.1) 	S = {viv = Ea.x , x. integer (positive or negative)) 
 

There is a linearly independent U C Qm  such that S = .rviv = E a u, a
u 

integer). 
uEU u  

Proof: Let H = {flsome member of S has first j-1 components zero and j 
th 

 

component positive). For each jE.H,u.EU is a vector where first (j-1) 

th 
components are zero and whose j 	component is the smallest possible positive 

number. Set U = {u.ljEH}. It is easy to show that if vES and the first (j-1) 

componentsofvarezero,thenv-ou.will have first j components zero, for 

some integer a. This process can be continued to yield a representation of 

v as an integer linear combination of the u.. 	 Q.E.D. 

Remark: The proof of lemma 5.3 consists essentially of taking the Smith 

normal form of A. 
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Corollary 5.4:  Let S be as in lemma 5.3. There is a Gomory function f
1 

such 

that vES if and only if f1 (v) < O. 

Proof: Let d be the dimension of L(S), the linear span of S. There are 

wv...ula_dEesuchthatva(s)ifandonlyi"7.v---P, 1 < i < m-d. There 

are z
u 

E Q
m 

such that if v E L(S) then v = E (z
u
v)u. Hence vES if 

uEU 
w v = 0 for all i and z

u
v is integer for all uEU. Hence we may take 

(5.2) 	fl (v) = nmx{w.
1
v, - w.

1
v; 1 < i < m-d;rz

u
vl  - zu'  v- uEU} - -  

Q.E.D. 

Theorem 4.2 says that if Iv  = 0 then either S above is empty or else 

inserting lower bounds of K
1 
on the variables produces an inconsistent linear 

program. 5.4 shows that the first situation can be detected by a Gomory 

function. Our next lemma is a fact from parametric linear programming. It 

states that if lower bounds produce an inconsistent LP, this inconsistency 

can be detected in a uniform manner over all v. 

Lemma 5.5:  There exist A
1 ,  •• 

. 	A
M 
 E Q

m 
such that 

(5.3) 	 X
i
a. < 0 for all 1 < i < M, 1 < j < n; 

(5.4) 	For every vERm , k >0,if there is no xEL
v 

with x > ke then, for  
n 

some i, X
1
v + k I (-A.a.) > O. 

 
j=1 

3 
 

Proof:  {w1a.w < 0 1 < j < n} is a cone. We apply the finite basis theorem 
J - 	_  

to obtain A1, — AM  X_ such that every member of the cone is a non-negative 

linear combination of the A.. 
1 

Standard results of linear programming show that if there is no xa v 

 with x > ke then there exists wERm  and scalars s
l' • sn 

 > 0 such that 

wa. + s. = 0, 1 < j < n and wv + k(Es.) > O. There are non-negative a. - - 

suchthatw=a0..Ifs..=-X.a.thens.=1 a.s..• Since 
1 1 	 1 3 	 1=1 1 13 

Eai (A1.17 -1-1(Esij
)=107+kEs.>0 there must be at least one i 

i=1 	 j=1 
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n 
such that X v + k E (-X

i
a
j
) > O. 	 Q.E.D. 

Our next result is motivated by the fact that Gomory functions, :being sub-

additive, generate valid inequalities. Suppose A and v are such that every 

x E I
v 

satisfies x
1 
 > p, for some integer p. Suppose we also know that every 

x E I
v-pa 	 JJ 

satisfies an inequality E8.x. > y. Then we can conclude that 
l  

every x E I
v 

satisfies E8.x. > y + 1
p. We will show that if there are Gomory 

J J - 

functions generating the first two inequalities, then one can construct a 

Gomory function that generates the third one. 

Lemma 5.6:  Let p be a Gomory function such that p(a
1
) = 1; p(a.) < 0 

2 < j < n [i.e., p generates an inequality of the form x
I 
 > something]. 

Let h be any Gomory function. Then there is a Gomory function s such that 

(5.5) 	 s(aj ) < h(a.
J
) 2 < j < n 

 

(5.6) 	 s(al) = h(a l ) 
1 

(5.7) 	 For any v, if p(v) is integer then 

p(v)s(a
1 
 ) + h(v - p(v)a ) = s(v) 

Proof: Our argument proceeds by induction on the formation of h. If h is 

linear we take s(v) = h(v). If h(v) = 1- h
I
(01  where h

1 
 is a Gomory function, 

then by induction hypothesis there is an s l  such that (5.5) - (5.7) hold for 

sl ,h1 . We define 

(5.8) 	 s(v) = rsi (v) + (rs i (a1 )-7  - si (a 1))p(vP 

For 2 < j < n s(a
j
) < r;1 (aj )1  f rh

1
(a

j 	
= h(a.), hence (5.5) holds. 

s(al ) = ral (a1 51  = rhi (a1)= h(al ) so (5.6) holds. If p(v) is integer 

s(v) = rsi (v) - si (ai )P(v)1 	rsi (a1 )1  P(v) = rhi (v-p(v)al )-1  + 

s(al )p(v) = h(v-p(v)a l ) + p(v)s(al) so (5.7) holds. 
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If h(v) = ah
1
(v) where a > 0 we take s(v) = as

1
(v) 

If h(v) = h
1
(v) + h

2
(v), we take s(v) = s

1 (v) + s 2
(v) 

If h(v) = maxfhl (v), h2 (v)) and hl (al ) > h2 (al ) we take 

(5.9) 	s(v) = maxfs
1
(v)

' 
s
2
(v) + (h

1
(a

1
) - h

2 (a1 ))P(v)). 

For 2 < j < n,s(a j ) < maxfsi (aj ), s2 (aj )) < maxlyaj ), h2 (aj )) = h(aj ). 

Also s(a
1) = s1 (a

1
) = h(a

1 
 ). If p(v) is integer, s(v) = maxfp(v)s 1  (a1 

 ) + 

hl (v - p(v)al ), h2 (v - p(v)al) + hl (al )p(v)) = p(v)sl (al ) + h(v - p(v)al ) 

so (5.5) - (5.7) hold in this case and the induction is complete. 

Q.E.D. 

Remark:  The construction of s is based on the idea that a Gomory function 

represents a method of obtaining valid inequalities, with each step in the 

formation of the function corresponding to the generation of a new valid 

inequality from those previously obtained. The function s represents the 

same sequence of operations on inequalities as the function h, except (see 

(5.8) and (5.9)) that whenever h uses the inequality x l  > 0, s uses the in-

equality xl  > p(v) generated by p. 

Our next task is to show how we can use information about the consistency 

of an integer program with n-1 columns to obtain valid inequalities for an 

integer program with n columns. Let 

n 
(5.10) 	 LI

v  = f(x2 
 , ... x 

nJJ 
 )IEa.x. = v,x. > 0 and integer) 

j - 2 

Suppose we know that x
1  > p (p non-negative integer) if xEIv and that LIv-pa 

1 

0. Then we may conclude thatx
1 
 > p + 1 if xEI

v . Our next result uses this 

idea in the context of Gomory functions. 



pk (al ) < 1 
 - 

p
k 
 (a

j 
 < ) 	0 

- 
2 < j < n 

For any v, pk (v) > k + 1 if Iv  = 0 

Lemma 5.7:  Suppose there is a Gomory function h such that h(v) < 0 if and 

only if LIv  0. Then for any k there is a Gomory function p k  such that 
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Proof:  We argue by induction on k. For k = 0 we may take po (v) = rah(v)1 

 for some a > O. If pk (v) satisfies (5.10) - (5.12) and p k (al ) < 1 we may take 

r- 1 	1 
Pk+1 (v)  = -

c;pk (v) where a = max{pk (a1),Y*. If h(al ) < 0 we may take pk+1 (7) 

(k + 2) 
r 
h(v) . 

The interesting case is p k (al ) = 1, h(al ) > O. By scaling we may assume 

h(a
1
) = 1. We apply lemma 5.6 with p = p

k 
to obtain s such that s(a.

J
) < 

h(ai ) < 0 and s(a l ) = h(a 1 ) = 1. We define p k.1.1 (v) = rmaxfpk(v), s(v))71 . 

If I
v 

= 0 then by (5.12) either p
k
(v) > k + 1 or p

k
(v) = k + 1. Since 

pk+1 (v) > 	
k
(v)1 we are done in the first case. If p

k
(v) = k + 1 then (5.7) 

 

implies s(v) = pk (v) + h(v - (k+l)al) > k + 1, hence Pk+l(v) a rs(vil  > k + 2 

We are ready to carry out 

Proof of Theorem 5.1:  Our proof proceeds by induction on n. 

First we deal with the case n=1. There are A l , ... Am.., such that v is 

a scalar multiple of a l  if Aj v = 0, 1 < j < m-1. There is w such that if 

v = aal  then a = wv (e.g. we may take w = (1/11 a 1 11 a l ). We may take 

f(v) = maxfXiv, - A iv, - wv, 1-Wv1 - wv). 

Now we deal with the induction step. We are assuming that for every n-1 

rational vectors there is a Gomory function f such that f(v) > 0 if and only 

if v is not a non-negative integer combination of the n-1 vectors. In 

* The original manuscript used an incorrect choice of a, as was remarked to us 
by P. Carstensen. 



36 

particularweareassumingthereareGomoryfunctionsh.,1 < j < n such that  

h.O.0>oifaruiordyifthereisnoxu v x.dthx.=0. We apply lemma 5.7 

with k = 1(1  to obtain functions T. such that 

T.(a.) < 1 
J J - 

T.(a ) < 0,i 	j 
J 	- 

T (v) > K
1 
 if there are no xEI

v 
with x. = 0 

-  

Let A1, 
	

Xm  be as in lemma 5.5. Define 

n 
(5.16) 	f

2
(v) = max{A v + E(-A

ia.)T.(v)) i 	 jj 1<i<M 	j=1 

(5.17) 	f(v) = max{f 1 (v), f 2 (v)} 

where f
1 
 (v) was constructed in lemma 5.4. 

If I
v 

= 0, then by lemma 4.2, either S = 0 (hence f
1
(v) > 0 by lemma 5.4) 

or there is no xEL
v 

with x > K
1 
 e. In this last case lemma 5.5 implies that, 
 

for some i„ A.1.7 	K
1 
 E (-A.a.) > O. Using (5.15), (5.3) j=1  1 	 1 j 

n 
f
2 
 (v) > A.v + 	

i 	j 
(-Aa.)T(v) > 0, hence f(v) > 0 if I

v = O. 1j 
j=1 

To show f(v) < 0 if I
v 	

0 it suffices to show f(a.) < 0 and use the 
J - 

subadditivity of f. f
1 
 (a.) < 0 by corollary 5.4. By (5.16), (5.3), (5.13), 

(5.14) f
2 
 (a.) < 0 hence f(a.) < O. 

Our next task is the proof of Theorem 5.2. 

Let N>0 be such that 

(5.18) 	Nc. is integer, 1 < j < n; N integer. 

Our method of proof is to deduce valid inequalities by making use of 

Q.E.D. 

information about I
v 

together with information about I
v
r“xl cx = p}. Suppose 
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we know that if xEl
v 

then cx > p, where Np is integer; and that if 

xEl
v 

and cx = p then ax > S. There should be some way of combining these 

two inequalities into a single inequality (a + Lc)x > 8 + Lp for some L > 0. 

The next result shows that this does happen when the inequalities are 

generated by Gomory functions. 

Lemma 5.8:  Let p: R
m 

-4- R be a Gomory function such that p(a.) < c for all j. 
J 

Let f:Rm+1 -4- R be any Gomory function. Let p' (v) = 1 
r 
Np(v) (p'(a.) < c 

J - 

by (5.18)). There is a Gomory function h: Rm  R and an L > 0 such that 

(5.19) 	 < f(c.,a.) + Lc. ; 1 < j < n - - 

	

(5.20) 	 For every v, 	h(v) > f(p"(v), v) + Lp' (v) 

Proof: We construct h by induction on the formation of f. 

If f is a linear functional f(r,v) = ar + wv with a < 0 we take 

h(v) = wv, L = -a and (5.19) and (5.20) hold as equations. 

If f(r,v) = ar + wv with a > 0 take h(v) = ap"(v) + wv, L = 0. 

(5.20) is an equation, (5.19) follows because p"(a j ) < cj . 

If f(r,v) = ri l (r,v)then by induction hypothesis there are h 1 , L1 

 such that (5.19), (5.20) hold. Take L = NrL1 and define 

	

(5.21) 	 h(v) = h
1
(v) + (L-L

1
)13"(v) = 1711

1
(v) - L

1p"(v) + Lp' (v) 

-1 Wellavel(a.)< 
V
111j(a)+0,-1,1 )cil = 1-111 (y-Lici -1-1,c.

J 
 <f(c.

J'
a.)-1-1x.

3' 
 so j - 	 J  

(5.19) holds. Also h(v) > f
1 
 (p'(v),v)

1  
+ Lp' (v) = f(p"(v),v) + Lp' (v) so 

(5.20) holds. 

If f(r,v) = af l (r,v), a > 0 we take h = ahl , L = aL
l  

If f(r,v) = fl (r,v) + f 2 (r,v) we take h = h l  + h2 , L = L1  + L2 . 

If f(r,v) = max{yr,v); f 2 (r,v)} with L1  > L2  take L = L 1  and 

3 	J 3 
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(5.22) 	 h(v) = maxfhl (v); h2 (v) + (L1  - L2 )p". (v)} 

We have h(a j ) < maxff i (ci , sj ) + Ll cj ; f 2 (c j , a.) + L icj ) = f(c j , aj ) + Lc,. 

Also h(v) > max f l (p""(v), v) + Lip .. (v); f2(p'(v),  v) + Lip'(v)) = 

f(P .. (v), v) + Lp'. (v) . Thus (5.19), (5.20) hold in this case and the induc-

tion is complete. 

Remark: The idea behind this construction is similar to that for lemma 5.6. 

The function h represents the same sequence of operations as the function f, 

except that at every step at which f uses the equation cx = p, h uses the 

inequality cx > p d.  generated by the Gomory function 

Corollary5.9:Foreveryk>OthereisaGotnoryfunction. Tk : Rm  + R such 

T
k  (aj  ) < c.;  - 

1<j <n 

For all v,NTk (v) is integer 

1 	 k, 
For all v, if I

v 	
0,T

k
(v) > minfCc (v), 	T NRc (v) . 

that 

(5.23) 

(5.24) 

(5.25) 

Recall N defined by (5.18), Rc  by (4.5). Note that (5.23) and sub-

additivity imply Tk (v) < Gc (v). 

* 
Proof: We argue by induction on k. We take T

o
(v) = --NR 

c 
 (v) . R 

c 
 (a.) < c 

N 	 3 - 

c
. 

is immediate and (5.23) follows because Nc. is integer. (5.24) and (5.25) 

are also easy. 

Suppose we have constructed Tk (v). By theorem 5.1 applied to a". = (c., a.) 
J 	J 

there is an f: R112-1-
1 ►  R such that f(r, v) < 0 if and only if there is an 

xEl such that cx = r. We apply lemma 5.8 with p = T k , f as described. 

By (5.24) 	= p = T
IC 

Define 

*R
c 

is a Gomory function by the remark at the end of Corollary 4.7. 
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i 
(5.26) 	 Tki_1 (v) = max{T

k
(v) —

N 
r 
Nh(v)/L 5, if L > 0 

(5.27) 	 Tk+1 (v) = maxfT
k
(v), T

k
(v) + rNh(v)1 1 if L = 0 

(5.23) holds for T kfl  because Tk (aj ) < cj  and f(ci , aj ) < 0, in (5.19). 

(5.24) is immediate. If Tk (v) = G
c
(v) we see that (5.25) holds for Tk+l, 

because Tic+I (v) > Tk (v). If Tk (v) < Gc (v), then f(Tk (v), v) = f(p'(v), v) > 0. 

(5.20) implies Tk+l
(v) > T

k
(v),which implies that Tk+l(v)  is a rational with 

i 
denominator N and hence T

k+1 
 (v) > --NR c 
	

(k+1) 
(v) + 	. Since NG

c
(v) is integer, 

- N r 

NTk (v) < G
c
(v) implies G 

c 
 (v) > — NR c 
	

(k1) 
(v) + 	hence (5.25) is established 

N  r 

for T
k+1 
	 Q.E.D. 

Now we can return to 

Proof of Theorem 5.2:  With K
3 

constructed by corollary 4.7
*
, we let f = i

NK 
 . 
3 

Using (4.16) condition (5.25) becomes T
NR

(v) > Gc (v). As remarked above, 
3 

(5.23) implies the opposite inequality, hence f(v) = G c (v). 

Q.E.D. 

Next we consider the dependence of the optimal solution to (IP) on 

the right-hand side v. Consider the one-row problem 

min x + y 

3x + y = v 

x,y > 0 and integer 

*The assumption R
c
(v) > - co needed to invoke corollary 4.7 is not restrictive. 

It is easy to show that if Rc (v) = -.00 for any v, then for all v, either I v -= 0 

or G
c
(v) = —co 
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The optimal solutions for v = 4, 5, 9 have x = 1, 1, 3 respectively. 

The optimal solution value for x is not a subadditive function of v, hence 

cannot be a Gomory function. However, our next result shows that the optimal 

solution can be obtained by using unrestricted Gomory functions (defined in 

2.7). 

To deal with cases involving more than one optimal solution, we define 

the lexicographically smallest optimal solution to be that optimal solution 

which makes x
1 

as small as possible. If there is more than one such x we make 

x
2 

as small as possible, given the specified value of x
1, 

etc. 

Corollary 5.1(2:  Assume R
c
(v) > - cc for all right-hand sides v. If I

v 
0 

* 	 * 
let xv be the lexicographically smallest member of Iv 

such that cx
v 

= G
c
(v) 

* 
ji.e. x

v 
is an optimal solution]. Then there are unrestricted Gomory functions 

4. such that if  iv + then  thej
th component o f xv i

s")* 3 
* 

Proof: The first component of x
v 

is the value of the optimal solution to the 

integer program 

min x1 

(5.28) 	subject to cx = ao  

Za.x. = v 
.7 .7 

x>t, x integer 

when we set a0  Gc (v). By theorem 5.2, there are Gomory functions g 0 (v), g i (a,v) 

such that g 0 (v) = Gc (v) and gi (ao , v) is the optimal value of (5.28). 

Then the first component of x
v 

is g1 (g 0 (v)
, 
v), which is an unrestricted 

Gomory function of v. Similarly, the second component of x
v 

is the value of 

the optimal solution to 
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min x
2 

(5.29) 	subject to cx = a0  

X
1 

= a
1 

Ea.x. = v 
3 3 

x >0, 	x integer j- 

where a
0 
 = g

0 
 (v),a

1 
= g

1
(g

0
(v), v). By theorem 5.2 there is a Gomory function 

g2 (a 0, al' v) which is the optimal value of (5.29). Hence the second component 

of x
v 

is g
2 (g0 (v),  g1 (g 0

(v)
, 
v), v). The other components of x

v 
are developed 

similarly. Q.E.D. 

We next present the analogues of theorems 5.1 and 5.2 for an integer 

program in inequality format: 

	

min c
1
x
1 
+ 	c

n
x
n 

(5.30) 	subject to a
1
x
1 
+ ... a 

n  xn 
 > v 

x , 	x > 0 and integer. 
1 	n - 

We will assume that the vectors a. have all components integer (the 

extension to the rational case is straightforward). Then (5.30) is equiva-

lent to the integer program in equation form 

	

min c
1
x
1 
+ 	c

n
x
n 

(5.31) 	subject to aixi  + 	a
n
x
n 

- e
l
y
l 

- 	e
m  ym 

 = 

x,y > 0 and integer 

where e.ERm  has one in ith component, zero in other components, and v is 

taken componentwise. Application of theorems 5.1, 5.2 yields 

Corollary 5.11:  There is a Gomory function f such that (5.30) is consistent 

if and only if 0-0) < 0. 
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Corollary 5.12: There is a Gomory function g such that g(Iv 1) is the value 

of (5.30) for any v for which f(rv 1) < 0. 

We can extract further information about f, g. A Gomory function h 

is specified by a definition giving the precise order in which the various 

operations (sums, round-ups, etc.) are carried out. A .  Gomory function can 

have several different definitions, e.g. -1 x 	defines the same function 2 
1 as x + 2 — x . We will use h to denote a definition of h. 

Definition 5.13: For agiven h we associate T(h)g Qm , the set of all A occuring 

in linear functionals used in h. Formally T(h) is defined by 

i) if h(v) = Av then T(h) = {A); 
A 	A 	 A to\ I 

ii) if h = ah
1 

or h = h
1 	

then T(h) = T(h
1 
 ). 

' 

iii) if h = h1  + h2  or h = max{111 , h2 ) then T(h) = T(h1 ) U T(h2 ) 

The class "6 consists of those Gomory functions h for which there 
is h such that every AET(h) has non-negative components. 

Every 11E0is a monotone non-decreasing Gomory function (the converse is 

also true, but non-trivial).
*  
 Ay is closed under composition in the sense that 

if f: RQ  R, and gi : Rm  R, 1 < i < Q, are in .165 then so is h(v) = 

f(g (v), 	g
Q
(v)). In particular, if W t, then h(v) = f(r171 )01 

Lemma 5.24 :  Let 1 < j < n. Let h 0  be a Chvgtal function defined by ho  such 

that h
0 
 (-e

j  ) < 0. Then there is a Chvgtal function h1 
 defined by h

1 
 such that: 
 

(i) h
1 
 (v) = h0 (v) for all v with integer components; (ii) If AET(h

1 
 ) then 

Ae
j 
 > 0; (iii) If AET(h

1 
 )' A = A' + ke

j
, where A".  is a non-negative linear 

combination of members of T(h
0 
 ). 

The proof is by induction on the formation of h. The key step is that if 

h = 	is a monotone Gomory function then for some linear function A, f + A 

and g - A are monotone Gomory functions. 



43 

Proof; We construct h
1 
by moving integer quantities through the round-up 

1 
1 

operationsr 'which occur in h0. 
	 3 
. For example, if h

o
(v) = 4-e v + 

r 	-1 	 1 
-2-e v we could take h (v) = 1-e v + -e v . 
. 2 1 	 1 	3 1 	r 1  

Formally, we proceed by induction on the number of round-up operations 
A 
	

A 

used in h0 . For any h define n(h) by 

A 

i) if h(v) = Xv , n(h) = 0; 

ii) if h = of , n(h) = n(f); 
A 	 A 	 A 

iii) if h = f + g , n(h) = n(f) + h(g); 
A 	rs•" _, 	 A 

iv) if h = f 	, n(h) = n(f) + 1. 

If n(h0) = 0 then we may take h1 (v) = Av, since h0  is linear. 

If n(h0) > 0 then there is XEQ
m
; al , ... ak  > 0; f l , ... fk  such that 

A 	 rA 1 	rA 1 	1-A 	1 	 A 

h
0
(v)=Av+al f1 (v)+a2 f2 (v)+...ak f.k (v)1.7heren(f.1) <n(h

o
). Since 

k 
110(1) < 0 there are integers  m0 , ml , ... mk  such that: (i) Am0  + Eaimi  = 0 

1 

(ii) Xe. + m < 0; (iii) r f.Ee.)1  + m. = 0. Define h (v) = (A - m e)v + 
3 	0- 	 i j 	i 	 1 	 0 j 

Zai ii i (v) where gi (v) = f i (v) - (n iej )v. hi (v) = h0 (v) for integer v by (i), 

and (ii), (iii) mean we may apply the induction hypothesis to produce 

suitable g i . 	 Q.E.D. 

Corollary 5.15: If h
0 
 is a Gomory function and h

0 
 (-e.) < 0 for all j, then 

there is an hOsuch that h(v) = h
0 
 (v) for all integer v. 

Proof: By proposition 2.16, h
0 
is a maximum of Chvgtal functions. Use 

lemma 5.13 on each Chvgtal function for each 1 < j < n to get the desired 

representation. 	 Q.E.D. 
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Now the strengthening of corollary 5.4 and 5.5 is immediate. 

Theorem 5.16:  There is an fEe0such that (5.30) is consistent if and only if 

f(v) < 0. 

Theorem 5.17:  There is a geiesuch that g(v) = optimum value of (5.30) if 

f(v) < 0. 

The next result was first proven by Wolsey [14] by an analysis of Gomory/s 

Method of Integer Forms [4]. However, [ 4 ] assumes that the initial linear 

programming relaxation has a tableau of lexicographically positive columns 

[4, bottom page 286; also p. 287 and p. 289]. Hence the method of proof in 

[14] cannot be used for all integer programs. 

Theorem 5.1a:  If (1.1) is consistent and has finite value, there is an 

optimal solution f to the subadditive dual problem (2.19) which is a Chvgtal 

function. 

Proof: By Theorem 2.15, the value function G of (1.1) optimally solves 

(2.19); hence by Theorem 5.2, there is a Gomory function g which is an optimum 

in (2.19). By Proposition 2.18, g = max{f l , ..., f t ) for certain Chvgtal 

functionsf.,1<i<t.Iff.issuchthatg(b)=f.N, then f. is an 
- - 

optimum for (2.19). 	 Q.E.D. 

Remark:  Several alternative proofs of Theorem 5.18 are possible. Schrivjer, 

building on work of Edmonds and Giles f 3], has recently established [13] 

that finitely many applications of Chvgtal / s operation (as in (2.6)) yields 

the convex hull of integer points for any integer program (without the 

restriction in [ 4]). This can be used to construct the appropriate f in 

Theorem 5.18. Another proof is based on (non-trivial) modifications of the 

method of integer forms so that it will work for all integer programs. 
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An interesting "separation principle" follows from Theorem 5.18 which we 

give next. 

Corollary 5.19: 

If b is not an element of a finitely generated integer monoid H, there is a 

Chvgtal function f such that: (i) f(m) < 0 for all m E M; and (ii) f(b) 	0. 

Proof: Let the generators of M be a l , ..., a
n
. Then the following integer pro-

gram is consistent and has finite value one: 

minimize 	xn 1 

n 
(5.32) 	 subject to E 	bx 	= b 

j=1 	n 	1  
x. > 0 and integer 

- 

The subadditive dual of (5.32) is the program: 

(5.33) 	 max F(b) 

subject to F(a.) < 0, j = 1, . 	n 
• 	J — 

and F(b) < 1 
and by Theorem 5.18, the optimum value of this dual is achieved by a Chvgtal 

function f; hence f(b) = 1. From f(a.) < 0 for j = 1, 	n one easily 
n 

derives f(m) < 0 for all m = E a.x. (x. > 0 and integer) by induction on 
j=1 3 3  

n 
a = E x.. 

j=1 3  
Q.E.D. 

We conclude this section with a result which relates the value function 

G of (1.1) to that of the linear relaxation. 

Theorem 5.20:  Let g be any Gomory function such that 

(5.34) 	 g(v) = G
c
(v) whenever I

v 	
0. 

We 

and let g be the carrier of g. Then 
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(5.35) 	 8( ) = R
c
(v) whenever R

c
(v) < + °3 .1 

Proof:  Suppose that there is a vo  with Rc (v0) < +co and g(v 0) 	Rc (v0). 

Then for suitably large integral D > 1, I
Dv 	

0, and as g and R
c 

are 
0 

•..• 

homogeneous functions, g(Dv 0) T  Rc (Dv 0
)• Then without loss of generality 

D= 1 and I
v 	0. 0 

We established in Proposition 2.10 that there exists k
I 
 > 0 with 

(5.36) 	 0 < g(v) - g(v) < kl  for all v 	Qm  

By Citrollary 4.7, there exists k 2 .>0 such that 

(5.37) 

and hence 

(5.38) 

0 

0 

< G 
c 
 (v) - R

c
(v) < k

2'  

< g(v) - R
c
(v) < k2 , 

whenever I
v 

whenever I
v 

0, 

0. 

Starting from (5.36) and (5.38), we may apply the kind of reasoning as 

in the proof of Corollary 2.11 (particularly as in the display (2.14)) to 

the homogeneous functions g and R c , and we obtain a contradiction from our 

supposition that g(v 0) T  Rc (v0 ). 	 Q.E.D. 

Theorem 5.20 has this interpretation: if we start with a closed-form 

Gomory expression g for the optimal value of (1.1), and simply go through 

the expression erasing all round-up symbols, we obtain a closed-form expression 

for the optiaml value of the linear relaxation of (1.1) 
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6. The Structure of G c
(v) as c Varies 

Throughout this section a l , ... a
n 
EQ

m 
will be fixed. In section 5 we 

determined the parametric form of the value of (1.1) in its right-hand-side; 

now we seek a simultaneous uniformity in the criterion vector c. 

We begin with a result which says that there is a finite set F such 

that, if x is any feasible but not not optimal solution to an integer program, 

there is a better feasible solution obtained by adding some member of F to x. 

The set F is independent of the criterion vector c. This type of result was 

first established by Graver [7 ]; we give an alternate proof (and a somewhat 

different statement of the result) via monoid basis results. 

Lemma 6.1:  There is a finite F c Zn  such that, for any ve, cERn , xEIv 

 either: (i) cx = G
c
(v); or (ii) for some yEF, x + )El

y 
and c(x + y) < cx. 

Proof: Define M Z
2n 

by 

(6.1) 	M = {(a.. a
n
, $ 	$ )IEa.a. 	Ea.$ a.,$ 	> 0 and integer} 

n 	3 	 - 

M is a monoid defined by rational polyhedral constraints. Theorem 7 of [10] 

(indeed, filbert's result [8 ])implies that there is a finite W C M such that 

every member of M is a non-negative integer combination of members of W. 

Define F Zn  by 

(6.2) 	F = {y[y = a -$ where (a, $) E W} 

If vet
m
, xEI

v 
and (i) fails there is a ztI

v 
with cz < cx. Since (z, x) E M 

there are non-negative integers nw  such that 

(6.3) 	 E n w = (z, x) 
wEW w  

Since cz < cx there is at least one w = (a, $) E W such that nw 
 > 1 and 

ca < c(3. As (Enw
w) w + (a, a) E M, x - S + aElv

. Then (a- $) E F and 

c(a- ) < 0. 	 Q.E.D. 
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Theorem 6.2: There is a finite set T = fd1, 
	

d
N 
 ) c Qn  

such that, for any cERn , vERm,if I
v 	

0 and G
c
(v) > -co there are a

d 
 > 0, 
 - 

dET such that: (i) 	E add = c and (ii) E adGd (v) = G c (v). 
dET 	 dET 

The algebraic content of Theorem 6.2 is that any inequality cx > G c (v) 
 

valid for I
v 

can be obtained by taking non-negative linear combinations of 

the inequalities dx > G
d
(v), dET. Geometrically, this means that for every v 

the finitely many inequalities dx > Gd (v), dET include the facets of I
v

, 

uniformly in v. 

Essentially the same result has been stated by Wolsey ;15, Theorem 

Proof: Define 

(6.4) 	 C = {cIfor some wERm
' 
 waj  < c 	1 < j < n}c Rn  

C is a polyhedral cone. If Iv  # 0, Gc (v) > - co if and only if 

cEC, since c€C if and only if Rc (v) > - 	(The "if" part is easy. The 

"only if" follows from the remark at the end of Theorem 5.2). 

Let F be as in Lemma 6.1. For each H e Fldefine the polyhedral cone 

(6.5) 	 B
H 
= {cictC and cy > 0 for every yEH} c R

n 

By the Finite Basis Theorem there is a finite A l  c BH  such that the cone 

generated by Au  is BB. We define 

(6.6) 
	

T = 	All  

We must establish that T has the desired properties. Let vtQ m , 

cER
n 

satisfy our hypotheses. By theorem 4.6(or [121) there is an !Elv 
with 

Ge (v) = cx. Let H = {yEFIx + yEI v}. Clearly cEBH . Hence (i) holds for 

some ad  > 0 where we may further specify a d  = 0 if d 0,n . By Lemma 6.1, 

Gd (v) = dx for every dEBH. Hence E adGd (v) = ( E add) 	= Gc (v), 
dEAH 	 dEAH  
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and (ii) holds. 	 Q.E.D. 

By Theorem 5.2, there is, for each dET, a Gomory function g d  such that 

g
d
(v) = G

d
(v) if I 	0. Also, it follows from the definition of G

d
(v) that 

Ea
d
G
d
(v) < Gc (v) for all non-negative a

d 
such that Ea

d
d = c. 

Thus we can strengthen Theorem 6.2: 

Theorem 6.3:  There are finitely many Gomory functions g d , dET such that, if 

IvT 0 and G c
(v) > - co, then G

c
(v) is the value of the optimal solution to 

this programming problem with linear constraints: 

(6.7) maximize 	E a
d
g
d
(v) 

dET 

subject to E add = c 
dET 

a
d 
 > 0 

Remark:  If c is fixed and v varies, only finitely many optimal solutions a 

to (6.7) arise, as each optimal a is an extreme point to the linear constraints. 

Each of the optimal solutions gives a Gomory function Ea g
d 
 (v) < Gc (v), where, 

 

for all v, G
c
(v) is the maximum of this finite family of Gomory functions. 

Thus we have extended Theorem 5.2 to cERn . 

7. Examples of Valid Inequalities Generated by Chvgtal Functions  

In [5 , p. 524] Gomory tabulates the facets of the group problem 

(7.1) 	 t
1 

+ 2t
2 
+ 3t

3 
+ 4t

4 
+ 5t

5 
E 0 (mod 6) 

t.
1 
 > 0; t.

1 
 integer; not all t.

1 
 = 0 

-  

This is equivalent to an integer programming problem with a single con-

straint 

(7.2) 	 x
1 
 + 2x

2 
+ 3x

3 
+ 4x

4 
+ 5x

5 
- 6x6 = 6 

x. > 0; x1  integer 
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One facet given in [ 4] is 

(7.3) 	 5t
1 
+ 4t

2 
+ 3t

3 
+ 2t

4 
+ t

5 > 
6 

This is generated by the Chvgtal function 

(7.4) 	 f (a) = 6 ra/5 1  - a 

More generally, the inequality 

(7.5) 	 kt1  + (k-1)t
2 
+ 	t

k 
k + 1 

is valid for the group program constraint 

(7.6) 	 t
1 
 + 2t

2 
+ 3t

3 
+ 	kt

k 	
0 (mod k+1) 

(7.5) is generated by the Chvgtal function f(a) = (k+urcuk-1 — a. 

Theorem 5.11 guarantees that for any valid inequality for an integer 

program with fixed right-hand side is generated by a Chvgtal functions. How-

ever, it seems too much to expect that the facets will be generated by particu-

larly simple functions. 

Another facet of (7.1) is [ 

(7.7) 	 4x
1 
 + 2x2 

+ 3x
3 
+ 4x

4 
+ 2x

5 
 > 6 

One function that generates (7.7) is 

r 2 	2 r 3  r 2 1 1 -71  
(7.8) 	 f(a) = 3 -5.a + 	(47 - 3a 	+ 4a 

(7.8) was obtained by using the method of integer forms [5] to solve (7.2) 

with objective function 4x 1  + 2x2  + 3x 3  + 4x4  + 2x5 . (7.7) can probably be 

generated by a simpler function, but it can be shown that (7.7) cannot be 

generated by a function of the form f(a) = A la + X
2
r X

3
a . There is room for 

further investigation. 
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SOME INFLUENCES OF GENERALIZED AND ORDINARY CONVEXITY IN 

DISJUNCTIVE AND INTEGER PROGRAMMING 

by 

Robert Jeroslow
1 

Abstract 

Three extensions of linear programming are convex, disjunctive, and 

integer programming. Each generalization represents a different direction, and 

is attuned to specific distinctive features of the phenomena studied. While 

e.g. in convexity, and certian of its generalizations, line segment containment 

provides the crucial property of polyhedra which is retained while a curvature 

of the feasible region is then permitted, in integer programming the linearity 

of the region is retained while the discrete nature of the variables departs 

entirely from the continuum and is the primary complicating factor. 

Nevertheless, developments in convex programming and its generalizations have 

influenced disjunctive and integer programming. 

Conversely, parts of the infinitary disjunctive programming may be useful 

in nonconvex nonlinear programming. Similarly "integer analogues" recently 

discovered in integer programming represent developments somewhat parallel to 

the generalized duality schemes which extend Lagrangean duality for convex 

'The author's research reported in this paper has been supported by grant ENG-
7900284 of the National Science Foundation. 
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programs to more general duality results for nonconvex programs. These integer 

analogues are in fact the primary focus of our present report. 

Most of the influence of convexity in disjunctive and integer programming 

is in the theory of cutting-planes, which we earlier surveyed in detail in 

Jeroslow (1977, 1978). Here we make some additional remarks from the somewhat 

different perspective of developments in nonlinear programming. 

Key Words  

Convexity, generalized concavity, disjunctive programming, integer 

programming, subadditive duality. 

1. 	Introduction  

Convexity is a generalization of linearity. If each linear constraint of 

a linear program is replaced by a convex constraint, a convex program arises. 

However, there are other ways of producing important extensions of the 

linear program, and these include: adding (generally non-convex) logical 

conditions, thereby producing what is called a disjunctive program in Balas 

(1979); or adding the requirement that the variables be integer, producing an 

integer program. 

These three extensions of the linear program are different in nature, but 

elementary results from convexity have been used in disjunctive programming and 

integer programming. We have surveyed these uses of convexity as part of the 

earlier papers Jeroslow (1977, 1978). Partially in order not to repeat 

ourselves, our emphasis here will be to reverse the perspective given earlier, 

and show how the ideas from disjunctive programming may be beneficial in 

nonconvex nonlinear programming. 

In addition, recent results in integer programming (see eg. Blair and 

Jeroslow (1980), Shrijver (1979), and Wolsey (1978, 1979)) have led to the 
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concept of an integer analogue to a statement of linear duality. The recent 

work has been strongly influenced by Gomory (1963). To some extent, this 

development corresponds to the development of generalized duality schemes for 

nonconvex programming. (see e.g. Tind and Wolsey (1978)). 

Our focus throughout is on cutting-planes, i.e. valid linear inequalities 

implied by a given set of constraints. The primary influence of convexity in 

disjunctive and integer programming has been on the theory of cutting-planes. 

Also, cutting-planes relate to nonlinear programming in a more direct fashion 

than one might first intuit. 

For example, an approach to the study of the general nonlinear program 

inf f(x) 
(1) subject to g(x) < 0, xcK, 

where f:R'+ R and g:Rn 	Rm, is to develop all the valid linear inequalities 

for the set S = {(z,w)I for some xeK, f(x) < z and g(x)<w}. 

as was done in Duffin and Jeroslow (1979) in the convex case. A valid linear 

inequality z u is equivalent to the Lagrangean statement: inf if(x) + 

EA.g.(x)1 > u. 

! 	 i 
For a second example, let ta

I 
 ,..., a

t 
 / be any finite set of vectors in 

i 1 	
ii 
k 

Rm , S
k 

= {(z,w) 1 (z,w) eS and a 
k 
w = maxa wl. If, for each k, z+EXwu is a i  

i valid linear inequality for S
k 
 it is not difficult to show that, for some p 

0, z + 00 > u is valid for S, where Ilwll denotes the norm of w. The latter 

fact is, in turn, equivalent to the norm-penalty statement: inf if(x) + 

pflg(x)01 > u. 

2. 	Disjunctive Programming: Co-propositions  

We consider a propositional logic, built up from finitary or infinitary 

uses of the logical connectives 'A' (for: 'and') and 'V' (for: 	'or'), starting 
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from linear inequality statements of the form ax > b (see Tait (1968) for such 

propositional logic). The symbol 'V' for 'or' is also called the 

'disjunction'. 

Any system of convex constraints can be stated in this logic, as e.g. the 

requirement of being in the level set of a quasi-convex function. In fact, the 

constraint z > x
2 
 is equivalent to 

	

z > 2x
0 

(x - x
o
) + x

o
2
, for all x

o
cR. 	

(2) 

2  
To state it another way, z > x is equivalent to this infinite 'and' statement 

of the propositional logic: A
cR 

 (z - 2x
o
x 	- xo

2
). The infinite 'and' is 

xo  

simply a notational variant of (2). Note that convex constraints constitute 

that part of the logic in which only the 'and' connective 'A' is used. The 

logic contains propositions asserting many nonconvex statements, via the 

disjunction 'V', as for example (x < 1) v (x > 2). 

We now describe an inductive assignment of closed convex cones to 

propositions of this logic, which is called the 'co-proposition assignment'. 

We denote propositions by Greek letters a, 0, y, etc., and the 'co-

proposition' assigned to a proposition a is denoted CT(a). On occasion, we 

write a(x) to emphasize the dependence of the proposition a on xeR n . 

If a is a linear inequality statement ax > b, let 

CT(a) = { 	-b) + 6(0,1) I A, 6 > 0; A, 6610 	(3) 

If a = hc AH ah' for H a (possibly infinite) index set, we define 

	

CT(a) = ciconv (0h 4 CT(ah ) I FCH, F finite l) 
	

(4) 

where h iF  CT(ah ) = 
hiF ah I a

h cCT(h) for each hal. If a = 
hc
V  H (1111 we define 

hc 
CT(a) = ()

H 
 CT(a

h
). 	 (5) 



5 

Quite possibly CT(a) = 1(0,b) 1 b < 01, which indicates that no non-

trivial linear inequalities are obtained from a. If H is finite and CT(a h ) 

is a polyhedral cone for hell, then (4) simplifies to: 

CT(a) = he E
H 	h 
CT(a ) 	 (4)' 

The co-proposition assignment has the property that: 

If a = a(x) is true for xell
n , and (R, -Tr

o
)eCT(a), then UX'›N

o 
is true. (6) 

Indeed, (6) is correct for the ground step (3) of our inductive construction, 

and it is a property preserved by the inductive steps (4) and (5). Indeed, (4) 

in essence provides that the sum of valid linear inequalities, and their 

closure, yield valid inequalities. Similarly (5) provides that those 

inequalities common to all propositions a
h' 

hcH, must be valid, provided only 

that at least one of these propositions holds. 

As one application of the co-propositions, we obtain cutting-planes from 

the nonconvex condition: 

x lC uy u2 .. uC and xX0 	
(7) 

where C
k 
= ixeR

n 
1 ax <b, (a,b)eH

k
1

' 
1 < k < t, is a closed convex set, and 

where H
k 

is an arbitrary non-empty index set. 

The co-propositions provide this family of inequalities: 

J
E
1
x.maxtkli kk (a

k
,b

k
)a.

k  
1(a

k
, b

k
) eHk  for k = 	t} 

= J 

min 	
k 1 

A 
 k‘ 

 fak ' bk) 
bk i (ak ,  . 

b
k, 

	

) 	

k 

for k = 
=  

In (8), x = (x 1 ,..., x
n
); a

k  . is the j-th component of ak ; and we are permitted 

to arbitrarily select A (a k , b k ) 	0 as (ak , bk) elk  varies. 

(8) 

I • 
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An interesting special case occurs when t = 1, all b
1 
> 0 and the choice 

A1  (a
1
, b

1
) = b

1 
 is made for each (a

k
, b

k
) = (a,b)cH = H 1 . This gives the 

cutting-planes: 

.4.1 x.i  max {a. /13 1 	(a,b)dH} 	> 1 
	

(8 )' 

For 1H
1
1 finite, these are some of the cuts obtained in Glover (1973) and Balas 

(1975); see Jeroslow (1977) for a discussion of relationships between 

disjunctive constructions and the intersection cut constructions. The co-

propositions were introduced in Jeroslow (1974) as a generalization of 

disjunctive constructions. 

For t=1, the cut is as drawn in Figure 1. Specifically, a plane is passed 

through the intersection points of the convex set C=C
1 
with the co-ordinate 

axes. Since 	C, we can restrict x to be in the half space that lies to the 

side of the hyperplane which does not contain the origin. For t=2, two cuts 

from the family of cuts are drawn in Figure 2. Both figures assume that the 

intercepts exists and that the origin lies in the interior of the convex 

regions, as depicted. 

Our limited space has required us to sketch only a few fundamental 

points about the disjunctive methods, which were first introduced in Balas 

(1975, 1979); in particular, Balas (1979) contains an important result on 

"facial constraints", which we have not touched on here and which has a number 

of consequences. 

3. 	Integer Programming: Analogues  

A Chvatal function is one which is built up from linear functions Ab, with 

A rational, by repeatedly rounding-up to the nearest integer, and then taking 



Figure 1  



Figure 2  
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rational non-negative combinations of the functions thus obtained. In the 

original linear functions Alp we can have A of arbitrary signs, but thereafter 

the non-negativity of multipliers must be observed. For example, a Chvatal 

function of two variables b
1, 

b
2 

is given by f(b 1, b
2
) = 31 -b

1 
+ 2b

2
] 	2(3b

1 

+ [-b 2 ]), where tu] denotes the round-up of the real number u (i.e., the 

smallest integer not smaller than u). 

Chvatal functions appear to play the role in integer programming, that 

linear functions play in the dual form of two equivalent linear statements. In 

other words, among the various equivalency theorems regarding linear 

inequalities, one tends to obtain true statements when the variables of the 

"primal" are required to be integer, and the linear functions of the "dual" are 

allowed to become Chvatal functions. We assume that all quantities of an 

integer program are rational, and that the proper choice of "primal" and "dual" 

statements has been made. 

For example, it is well known that the linear program 

min cx 
subject Ax = b 

x > 0 

has as its dual the program 

max eb 
subject 6A < c. 

According to the heuristic principle annunciated in the last paragraph, the 

dual of the integer program in rationals 

min cx 
subject Ax = b 
	

(9 ) ' 

x > 0 and x integer 

ought to be 

max f(b) 

subject to f(a ) < c. 
f Chvatal 3  

(10) ' 
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where A = [a 3 ] (cols) and c = (c ). Indeed, it is the case, that if (9)' is 

consistent, its value is that of (10)' (see Blair and Jeroslow (1980)). 

As a second illustration of the heuristic principle, recall the linear 

theorem that a finitely generated polyhedral cone, i.e. a set of the form lb 1 

there is an x > 0 with Ax = b}, has a definition in terms of homogeneous linear 

inequalities. If the later definition is termed "dual", then we would conclude 

that a set of the form 

{b 1 there is an integer x > 0 with Ax = b} 	 (11) 

will have a definition of the form 

{ b 1 	f. (b) 6 0, i = 	p} 	 (12) 
1 

for certain Chvatal functions f 1 ,..., f
p 

(at least when A is rational). This 

is indeed the case, though we remark that in (12) the direction of the 

homogeneous inequalities cannot be reversed. 

A third linear theorem is that the optimal value of a linear program, as a 

function of its right-hand-side (r.h.s.) b, i.e. the function given by 

L(b) = inf { cx 1 Ax = b, x > 0 } (13) 

is the maximum of a finite number of linear functions, where it is defined. 

(L(b) is defined precisely if there is x > 0 with Ax = b). And it is indeed 

the case that the value function of an integer program, given by 

G(b) = inf { cx 1 Ax = b, x > 0 and integer} 	 (14) 

is the maximum of finitely many Chvatal functions, where it is defined. A 

fourth linear theorem states that L(b) is defined exactly where a certain 

finite set of linear functions are all nonpositive; and, as one would expect, 

G(b) is defined where a certain finite set of Chvatal functions are all 

nonpositive. 
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The role of Chvatal functions as an integer analogue of linear functions 

is even more pronounced. To each Chvatal function f is associated a linear 

function f called its carrier. The carrier is, intuitively, obtained by 

erasing all round-up operations and collecting terms. The carrier of the 

Chvatal function in the first paragraph of this section is therefore f(b 

b2 )=3(-b 1  + 2b 2 ) + 2(3b 1  - b 2 ) = 3b 1  + 4b 2 . Now the role that the Chvatal 

function f plays in the discrete version of a linear theorem, appears to be the 

role its carrier f plays in the original theorem. For example, the carrier of 

G(b) in (14) is the linear optimal value L(b) of (13). 

A fifth linear theorem states that, if Ax = b, x > 0 is inconsistent, 

there is a linear form 6w such that OAx 4 0 for all x > 0 and Ob > 0. This 

linear theorem is a version of the Farkas Lemma; for other linear theorems of 

the alternative, see Mangasarian (1969, table 2.4.1). As one would expect, if 

there is no solution to Ax = b, x > 0 and integer, then there is a Chvatal 

function f with f(Ax) 4 0 for all integer x > 0, and f(b) > 0. 

A sixth linear theorem, the Finite Basis Theorem for Cones, states that 

the solution set to a finite set of homogeneous linear inequalities tb 1 Eb 4 

0} for some rational matrix E, has a finite basis, i.e. there is a matrix A 

such that Eb 4 0 if and only if Ax = b for some x > 0. Viewing the statement 

"Eb < 0" as the "dual" statement it turns out not to be the case that for all 

finite sets of Chvatal functions f l ,...,f t  there exists a rational matrix A 

with: 
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b rational and f.(b) < 0 for i = 	t if and only if there is 
an x > 0 integer with Ax = b. 

(15x) 

However, this conjecture was almost correct, as one need only change "rational" 

to "integer". Indeed, there is an integer matrix A with: 

b integer and f i (b) < 0 for i = 	t if and only if there is an 
(15) 

x> 0 integer with Ax = b 

The discovery of integer analogues is recent, and we do not know the 

extent and complete nature of the phenomenon. The mixed-integer program can be 

indirectly treated by the ideas presented here, but a direct treatment is not 

possible since optimal value functions of a mixed-integer program are not 

closed under the inductive operations which construct Chvatal functions. On 

the other hand, constraint sets of the form 

Ax + By = Cb 

x, y > 0 

x integer 

in which a general rational matrix C pre-multiplies the right-hand-side, do 

allow much of the treatment of integer programming to go over to the mixed 

case. We shall report our recent joint results in the near future. 

4. 	Conclusions  

We have shown how ideas from convexity and generalized convexity have 

influenced disjunctive programming, and we have indicated that even the concept 

of a linear function can be generalized and adapted to the discrete setting. 

The generalizations that one studies depend on which aspect of linearity 

or convexity is retained, and which new feature of some non-convexity one 

choses to underscore. We can expect furthur fruitful generalizations in the 

future. 
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Abstract. A somewhat modified form of the lagrangean closes the duality 

gap in convex opt*imi.nation, in many circumstances that the ordinary 

lagrangean and the augmented lagrangeans leave a duality gap. For exam-

ple, the duality gap for a consistent program is always zero using this 

modified lagrangean, when the objective function and constraints are 

closed, convex functions; in other instances, there are constraint quali-

fications, but these are typically weaker than the usual Slater point 

requirements. 

Key Words. Convex optimization, lagrangean, nonlinear programming. 



1. Introduction 

In Ref. 1, the first author showed that a certain kind of pertur-

bation in the ordinary lagrangean, involving only the addition of a • 

term for a linear functional, together with a limiting operation in 

which that functional is sent to zero, could close duality gaps in 

instances where there was a duality gap for the ordinary Lagrangean, 

and even for the augmented Lagrangeans in the sense of Ref. 2. The 

second. author (Ref. 3) extended the hypotheses in which this "limiting 

lagrangean" closed duality gaps in e, and also showed that in B a  the 

limiting process could be taken along a line to zero, i.e. is one-

dimensional, by utilizing the "ascent ray" analysis in Blair's Ref. 4. 

For an alternate proof of the one-dimensional limiting Lagrangean, and 

some additional results, see Ref. 5 and Ref._ 6. 

Either the multi-dimensional. Uniting Lagrangean of Ref- 1, or the 

one-dimensional limiting lagrangean of Ref. 3, puts duality gaps of the 

ordinary lagrangean .in a new perspective. Duality gaps are usually 

associated with the lack of a "constraint qualification," i.e. some 

"defect" in the constraints. Yet the limiting lagrangean shows how to 

close duality gaps by perturbations of the objective function. The 

constraints are also involved, but to a lesser degree. For example, as 

we shall see in this paper, if the convex functions and the convex set 

involved in the convex program are all closed, one need only assume that 

the program is consistent, for the multi-dimensional form of the limiting 

lagrangean to close the duality gap. For the one-dimensional limiting 

lagrangean in fe, it was shown in Ref. 7 that the duality gap is closed 
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under hypotheses substantially weaker than those sufficient conditions 

usually cited for a KUhn-Tucker vector to exist. 

The limiting lagrangean also allows a simultaneous treatment of an 

infinite set of convex constraining functions, with the same hypotheses 

as for a finite set of constraining functions. 

The purpose of this paper is to place the multi-dimensional limiting 

lagrangean in a broad setting, that of set-valued convex functions in a 

*Or 

locally convex space U, whose second continuous dual U is U under the 

usual injection map of U into U 

Our method of proof proceeds by an analysis of the valid implied 

inequalities ("cutting places") of an infinite system of linear inequal-

ities. It is thus an outgrowth of the work on "semi-infinite systems" 

of Charnes, Cooper, and Kortanek (Ref. 8), Duffin and Karlovitz (Ref. 9 ), 

and Blair (Ref.. 4), and also the linear analysis of Duffin (Ref. 10). 

Earlier versions: of some of the results, given here have appeared in Ref. 11.- 

2. Set-Valued Convex Functions 

Let U'and W be linear spaces, and let P(.) denote the set of all 

subsets (i.e., the power set) of the set denoted within the parentheses. 

Throughout the paper, R denotes the real numbers. 

We call a function g:U-4-Y/(W) convex, if the set epi(g) is convex 

in U x W, where: 

epi (g) 	(urw) 	E 13 and w E g (u) } 	 (1) 

We use this notion of a convex function because of its breadth. It 

allows convex functions to be completely identified with convex sets, 
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for, e.g., any convex set K ctIxW automatically defines the convex 

function g(u) aer 	E WI (u,w) E XL For the usual definitions of a con- 

vex function, only restricted kinds of epigraph sets epi(g) can arise, 

which e.g. generally contain vertical half-lines or other directions of 

recession (Ref. 12) that have zero as their u-coordinates. However, as 

our proofs below only require convexity of epi(g) , our present definition 

of a convex function is appropriate. The concept of a set-valued convex 

function appears to be due to Blaschke (see Ref. 13 v  pp. 32-34). 

	

The usual convex function g 	4- R U {ca} U {-=} of Ref. 12 can be 

cast in the fox= here by defining .  g:U 	(R) in this manner: 

, if g (x) 	; 

g(u) s  {r E air Z g*  (u) }, if g* (x) E R ; (2) 

	

0 	, if g 00 = 

Then epi.(g) of (1) becomes the, epigraph- of g in the sense of Ref. 12, me.  

hence is. convex. Note that the condition "g (u) 5 0' becomes "0 E g(u) 

Our present definition of a. convex function also has the convenience 

of permitting an entire collection of such functions g = X g a , for as 
ctEA 

arbitrary index set A. # 4), to be treated as one such function, through 

the dQfinitian. 

g(u) = X ga (u) 	 (3) 
aEA 

In fact if ga :17 	(W a), , then g:11 4- P( X Wa), and if each ga  is convex, 
ccEA 

clearly g is also. Note that g (u) = 4) if g a  Cu) = 4) for even one index 

a E A. 
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Finally, functions h:U W which are convex with respect to some 

convex cone C G; W also can be interpreted as convex by our present defi- 

nition. For such functions h, the convexity inequality hau l  + (1 - X)u2 ) 5 

X.h 	+ (1 - X)h(u2 ), where 0 5 A 5 1, is interpreted this way in the sense 

of the cone C: 

Ah(u1) + (1 - X)h(u2) - h(Xul  + (1 X)u2 ) EC. 	 (4) 

We simply define g by: . 

g (u) 	(u) 	 C 	 (5) 

and it is an easy exercise to show that epi(g) is convex. 

When U and W have topologies, to each convex function g:U 4-- P(W) one 

associates its closure et(g), where 

c.Z.(g) (u) 	{w E wl (u,w) E ce.(epi(g) )1 	 (6) 

By construction, epi.(Ct(g)) =3,  a(epi(g)). We say that g is closed  if 

g =It c..e(g). If each gx (cc. E A) is closed, so is g in (3) when the product 

topology is used. 

The kind of convex optimi ration we shall treat here is the infimi-

zation of a. convex function far 4--Y (R), subject to a membership constraint 

on a convex function g:U Poo . In detail, we consider the convex pro- 

gram: 

inf f (u) 
(7) 

subject to 0 E g(u) 

where, of course, 0 Ew. We always assume that (7) is consistent, i.e. 

(11 E U10 E g(u),f(u) 	# (1). 
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Because of the infimization operation in (7), f(u) may as well be 

taken to be convex in the sense of Ref. 12, and can be replaced by 

f (u) = inf f (u) , with f (u) = +.33  if f Cu) = 	Indeed, the infimization 

operation of (7) abbreviates 

inf z 

subject to z E f(u) 
	

(8) 

and. 0 E g(u) . 

However, typically g in. (7) cannot be replaced by a function convex with 

respect to scans cone. 

Our formulation (7) allows a set restriction to be present. For 

example, the program 

inf f (u) 

subject to 0 E gi. (u) 
	

(9) 

ancimEIC 

where IC is also convex, is cast into the form (7) by putting g s  (gL,i(X)), 

where the indicator function i (K) :LT 	(W) is defined by: 

{0} if u E K (here 0 E 	; 
(u) 
	

(10) 
otherwise 

Since K is convex, and epi(i(X)) = K x {0},, so is i(K) . We have epi (g) = 

C(I.wl'w2 )w1 	g1 	w2 1 	E 	(u). 	E i(K)(u)} = 	 1w1 
E 	 Cu)g

1 
	and u  E K} = 

(epi (g1) x {O}) 11 (K x W x w). If both gl  and K are closed, so are both 

sets in the intersection just mentioned; hence, g is also closed. 

The value of (7) is denoted v(P) (possibly v(P) = -03). 
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For further information on set-valued convex functions, see Ref. 15. 

3. Ordinary Lagrangeans and Extensions of Linear Inequalities: Motivation 

If the value v(P) of (7) is finite, this means that the linear 

inequality 

z .1+0.11a. v(F) 

is implied by the conditions . 

E VII) and 0 E g(u) 
	

(12) 

Now if (11) can be extended to an inequality 

z— 1 +0 - u, + X
0  w v(R) 
	

(13) 

le 	It 
where X

0 
E w , i denoting the continuous dual. of W (Ref. 14), and is 

valid. for the conditions 

E f(u) and w E g(u) 
	

(14) 

then we have the Lagrange= statement 

inf -Cf(u) + Xg(u)} z•v (P) 
	

(15) 
uEU 

and Lagrange dual vector X 0
. 

To write (15), we have used the obvious conventions: 

C + D {c + 	E C, d E D} 	 (16) 

for sets C, D (we set C + D = if C = 0 or if D = 0) , where C + v will 



abbreviate C + {v}, and 

X A 32 
 { X  ala E 
	

(17) 

7. 

* 	* 
if A E Z and Z is a linear topological space with A C Z. Also, inf A 

is the greatest lower bound of all elements in the set A c R (it is +m 

if A = 4)), and inf A(t) abbreviates inf inf A(t). 
t et, 	 t ET 

Of course, it is well-known that actually equality holds in (15), and 

that (15) implies 

max inf. (flu) + A g(u)1 = v(P) 	 (18) 

A*ET4"  uEtr 

Indeed, since (7) is consistent, 

inf {f(u) 	X g(u)1 S inf {f(u)10 E g(u)1 
uel 	 uEU 	

(19) 

v(P) ; 

and fro= (19) for arbitrary A EWr (18.) follows at once,. using (15) . 

The usual "perturbational analysis' of convex programs does not 

emphasize Lagrangean results as extension results for linear inequalities 

in the space R x U x W. This is possible because the coefficient of 'v." 

in. (11) is zero—i.e. "u." does not actually appear. This fact in. turn 

allows one to analyze only the set 

= {(s,w)lz E f(u) and w E g(u) for some u E 01 ' 	(20) 

in R x W in place of the set motivated by (14), i.e. 

= {(z,u,w)1z E f(u) and w E g(u)1 	 (21) 
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inRxtlxW. Then the extensionz+A
0
wav(P) ofzav(P) can be 

obtained by suitable separation principles in real linear topological 

spaces (as e.g. Ref. 14, Theorem 14.2) if K has non-void interior K9 # 

and in addition a suitable "constraint qualification" is met. See 

Borwein's paper (Ref. 15) for results using this technique. In finite-

dimensional spaces t, the relative interior K1 can be used in place of 

0 K , as in (Ref. 16, Theorem 6, 10.12), but the basic idea remains the same. 

Essentially, what is gained. by the reduction. franRxUxTftoRx W. 

is that one may have K°  # (la even if 1C-  has no interior. . 

Despite the value of this reduction device,- it is valuable to note 

that the idea of extensions of linear inequalities franRxUtoRxuxw 

is central to the Kuhn-Tucker results (18). For not only does this 

extension give (18) but, conversely, if g in (7) is such that (18) holds 

* 
for every  continuous linear function f (u) Cu. (u)} that is bounded 

below on {u.10 E g (u) } , then extensions exist. Indeed, denoting the lower 

bound again by v°(P) , we see that (12) implies 

* 
z 	0 4- 11 (u) z. v(P) 	 (22) 

* 	* 
Now if (18), or, equivalently, (15) , holds, then for some to  E W we have 

- 0 4- r 4- X w av (P) 
0 

(23) 

* 
whenever r E f(u) and w E g(u). Replacing r by its value u (u) in (23), 

we see that (23) becomes the desired extension of (22). 

The essential equivalence of linear inequality extension results with 

conjugate duality results in Ra  is discussed in (Ref. 16, Sec. 5.3). 
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, 

Once this equivalence is recognized, the natural issue arises, as 

to what reduction of constrained convex optimization (7) to unconstrained 

optimization (18) is possible when extensions fail to exist. Clearly, the 

usual interiority assumptions and constraint qualifications are simply 

sufficient, and not necessary, for the extensions of linear inequalities 

to exist, for these always exist, e.g., if g is polyhedral (epi (g) is 

the intersection of finitely many closed half-spaces) . On the other 

hand, without any additional hypotheses, extensions need not exist as 

e•g. when, glu) 114  W I 2: 12} for u E R and flu) = fill. In this latter 

case, of course v(P) = yet there is no extension of z +- 0 • w 0 

to z +- Xw z 0 with A E R- Indeed, if such an extension existed, of 

necessity A Z 0 and A # G. Then u + Xu
2 

0 is impossible for all 

u E R, as u. + Au = -1/4A < 0 at the minimum point 	-1/2A for A > 0. 

Its order to treat the case that extensions (13) (valid for (14)) 

fail to exist for inequalities (11) (valid for (12)) , one approach is 

to consider the case that inequalities which are valid for (14) , and 

"arbitrarily close" to the desired extension (13) , do exist. This 

approach does not lead to the usual lagrangean statement (18) but, as 

we shall see, to this "limiting lagrangean" statement: 

* 
Lim sup sup inf {flu) + u. (u) + A g(u)1 = -7(P) 	(24) 
bt+o tz*En x*Ew* ues 

* 
In the above, M is an open set in U , and "14+0" denotes the net (or filter) 

* 
consisting of a local base of open sets M which contain 0 E U . 

* 
In the setting in which we establish (24), the spaces U, W and U will 

have locally convex topologies. The exact hypotheses will be given in 
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Section 4. The local convexity of U and W allows one to use simply 

disjointness properties, rather than interiority assumptions, in order 

to get separation principles (as e.g. in (Ref. 14, Theorem 14.3)), so 

that the closure of a convex set is always defined as the intersection 

** 
of closed halfspaces; and the semi-reflexivity of U (i.e. U = U) 

allows one to derive generalizations of the Farkas Lemma (see Lemma 4.2 

below) which are needed to make (13) the limit of inequalities having 

the desired. extensions (as per the plan, of our work). 

Before- we proceed according to our plan, some simple observations 

on the generality implicit in. (24) (or e  for that matter, (18) also) 

are worth remarking. 

If we began with the program (9), and defined g = (g 1  ri(10) to 
* 	 * 

	

obtain. (7), then X 	(W x W) igt 	x W
* 
 has the form X =I,  (X

1
,X

2
). 

For g(u) # cir we need. i(K) (u) # (1), i.e., 11 E Kr in which case X 2w = 0  

	

for ws e 	(u.), =^ {0}. Thus (24) becomes 

fr 

tip sup*  inf {f(u) + u (u) + Xigi (u)} = v(P) (25) 
14+0 u EM. X:EW 11tK 

 

and we have relativized (24) to the set IC, as one would have desired. 

If, even further, gl  was itself a product function g l  = 2411.  ga.  Cu) , 

analogous to (3) for g, the continuous dual of the range space X W is 

* 	* aEA 

( X W ) = E W when each W is locally convex and ffausdorf and one 

	

a.EA a 	a EA a 
has the strong topology on each Wa.  (Ref. 14, p. 174). This direct sum 

E W is the "finite sequence space" of Charnes, Cooper, and Kortanek 
a EA a *  
(Ref. 8) when each W

a 
me R, i.e. Al in (25) is an element of the space of 

all multipliers (Act  ! a E A) such that Act  # 0 for only finitely many a E A. 
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Also in the case WM = R, if each g
a arises as in (2) from a convex func-

tion gm  in the ordinary sense (Ref. 12), since r E gm (u) can be arbitrarily 

increased, we infer that all A
a O. In the same manner, whenever g

1 (u) 

contains a convex cone C of recession directions for any u E X (i.e. 

g1 (u) + C = gl (u)), one easily shows that Ala Z 0 for all c E C. This 

recovers the usual "sign information," and indicates what (24) becomes 

in familiar settings. 

4- Some Lemmas on Linear- Inequalities 

The purpose of this section is to show that certain basic results 

on linear inequalities in Ra  are also true in a semi-reflexive locally 

convex setting. Beyond these fundamental results, only algebraic manip-

ulations are needed, to derive (24), and we defer those manipulations to 

the next section- 

For- purposes of this paper, at space. X is called semi-reflexive if 

** 	** 
its second continuous dual. X. is X (X = X) under the usual injection 

*iv 
of X into X_ . Thus if x E. X and x E X, and x (x) denotes the value of 

.** 
x at the point x, then the image I(x) of x in X is that functional I(x) 

on X such that Z(x) evaluated at x is x (x) (I(x)(x) = x (x)). Our 

** 
condition X = X of semi-reflexivity means that each functional Z(x) 

* 
(for x E X arbitrary) is continuous on X , and that all the continuous 

* 
linear functionals on X have the form I(x) for some x E X. All Hilbert 

spaces (including any Rn) are semi-reflexive in this sense, as are all 

spaces L fore > p > 1. 
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The following result is well-known; see e.g. (Ref. 10) or use 

(Ref. 14, Theorem 14.3). 

Lemma 4.4: Let C be a closed cone in a locally convex linear topo-••••■■••.....A..•4*••■• 

logical space X. 

Then the following two statements are equivalent: 

(i) YO E  C  

(ii) If f E xfr, and f (y) z 0 for all y E C, then f(yo ) z 0 

Lemns.4.2: Let {fili F I} be a. family of continuous linear fanctionals 

on the. semi-reflexive locally convex space X which has a locally convex 

continuous dual X . Suppose that, for any x E X, 

0 for all i E t 	 (26) 

implies 

	

f(x) z 0 	 (27) 

for the continuous linear functional f.. 

Then for any neighborhood M of 0 in X , there exists a finite subset 

aatatanal-negativenumbersA- z0, j E X, and a continuous linear 

functional g E X satisfying both these conditions: 

	

f = g + E X.f. 	 (28) 

jEJ 	3  

	

g E m 	 (29) 
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Proof: Let C = cl(cone({fi li E Il)y, where cone ({ iji E I}) is the 

cone (algebraically) generated by the set {f i li E /}, and c.1(S) denotes 

the closure, here in the topology of X . 

The conclusion of this corollary can be restated as "f E C," for 

then g = f - E X.f. satisfies (28) and (29). 
3 3 

367  
Since C is a closed cone in the locally convex linear topological 

space X
* (Ref- 13, 16.1), Lemma 4.1 applies. Thus if f E C, we 

reach, a. contradiction_ as follows,, where we take y 0  = f in Lemma. 4.1- 

There exists a continuous linear functional. F on. X with i(h) Z 0 

for all h. E  C and. i(f) < 0.. In particular, i(f) k. 0 for all i € I, 

and fr (f) < 0. 

Since F E X**, by semi-reflexivity there exists k E X with F (h) ms 

h(k) for all h 	In. particular, f(k) z. 0 for all i E l and f (I) < 0, 

contradicting the hypothesis. This shows that f E C. 

Lemma 4.3: Let tf I i. E.  II be a family of continuous linear functionals 

on the semi-reflexive locally convex space X with locally convex dual X . 

i  
3- 

E I} be a correspondingly-indexed family of real scalars, such 

that there is a solution to 

if.
3. 

(x) 	
3. 

a., 	E I . 	
( 3 0 ) 

Suppose that every solution x to (30) also satisfies 

f (x) z a 	 (31) 



14. 

fox- the continuous linear functional f and scalar a E R. 

Then for any real scalar E > 0, and neighborhood M of 0 in X ,

• 

 there 

existsafinitesubseta""fl-negativermstbersX.rj E J, a non-negative 

scalar 8 z 0, and a continuous linear functional g on X, and a E R, satis-

fying: 

(f. -a) mit 0(0,1) + (g,-13) + E A. (f., -a.) . 	 (32) 
jEj  3 3 	3 

T E M 	 (33) 

131 < E 	 (34) 

In particular, 

f=g+ E A j f. 
i6T 

+ E' 
3 I  j61 

Proof: The* particular conclusions (35), (36) follow from (32)-(34) 

by taking,  components is (32). We prove only (32), (33), (34). 

To do so, note that, in the locally convex space X X R, 

f. (x) - a.
3.
r  a 0, 	E I 
 

r 0 
(37) 

implies 

(35) 

(36) 

f(x) - ar Z0 . 	 (38) 
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Indeed, if r > 0, (37) implies (38) by the fact that (30) implies (31) 

and the linearity of the functionals E i} and f. If r = 0, again 

(39) implies (38), as we see by the following contradiction. 

icLet it be such that f 	2 0 for i E I yet f(i.c) < 0. By hypothe- 

sis there exists x with f. (x ) Z a.
3.  for i E I. Then for any scalar 

p Z 0, fl  (x f. 	) 	pt. (X) 	f. (x ) 	0 	a. for all i E I. a. 	 3- 

However for large p, f(x -I- pi) 	f(x ) pf(i) < a as f(X) < 0. This 

contradicts. that (30) implies (31), an& proves that (37) implies (38). 

** 	* * * ** 	** 
One easily proves that (X. x R) 	(x x R) =X x R aliX)c Rr 

i.e. X x R is semi-reflexive. 

We apply Lemma 4.2. to the system (37), (38) with (26) taken as (37), 

and the functionals: 	 E i} of (26) taken as { (f1,-ai) I i E I} U (0,1)}. 

Likewise the functional if of (27) is (f,-a) in (38) The lemma applies 

since (X R) = X x R is also locally convex. 

Erpcmt applicatiar of Lemma 4.2 with the neighborhoo& M x r-E,EI of 

a. 
(0,0) in X x Rr  we at once obtain (32)-(34) since e is simply the multi-

plier of the functional (0,1), where here "0" is the identically zero 

linear functional. on X. 

Q.E.D. 

5. The Main Result 

To the program (7), we associate a second program 

inf r 
(39) 

subject to (r,0) E CL(f,g) (u) 
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where (f,g) denotes the product function we denoted by f x g in (3). 

The value of (39) is denoted v(P'). 

We recall that 

epi(f,g) = {(u,r,w)Ir E f(u) and w E g(u)} 
	

(40) 

and that by definition 

GPI (euf,g)) 	C.Z(epi (f,g) ) 
	

(41) 

If f and g are closed, so is epi(f,g) and hence, in this case 

(r,0) E CL(f,g)(u) 44- (u,r,0) E epi(CL(f,g)) 	epi(f,g) 
(42) 

r E f(u) and 0 E g(u) 

Thus v(P") v(P) when. f and g are closed.. In general, however, we have 

only the direction. 

	

r E f(u) and 0 E g(u) -4- (u,r,0) E epi(f,g) 	c2.(epi(f,g)) 

epi(C.e(f,g)) 	(43) 

-4-  (r,0) E et(f,g) (u) 

and hence always 

v(P') S v(P) . 	 (44) 

It is always the case that 

(u,r,w) E CL(epi(f,g)) 	(u,r) E ce(epi(f)) 
(45) 

	

and (u,w) 	c.t.(epi(g)) . 
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One easily proves this from the definitions. However, the double impli-

cation 

(u,r,w) E c..e.(epi(f,g)) K (u,r) E ce(epi(f)) 
(46) 

and (u,w) E a(spi(g)) 

may be desired. 

For example, if both U and W are finite dimensional, there is always 

a point (uo,r-o ,wo) in the relative interior of epi(f,g). Then (u o  ,r0 ) is 

in the relative interior of epi(f) and (u o ,n) is in the relative interior 

of epi(g), provided that f and g have the same effective domain (i.e. 

tulf(u) # 4)} 	Cul g(u) # 01). Then if (u,r) E a(epi(f)) and 

(u,w) E c.e(epi(g)), the Accessibility Lemma. .(Ref. 16) establishes that 

X (uo ,ro ) -I- (1. - X) (u,r) E epi.(f) and X (u0 ,w0 ) 4- (1 	X) (u,r) E epi(g), 

whenever 0 < X s L. This gives. 

X.(tr
ct  or owrG  ) 	(L X) (u,r,w) E epi(f,g) 

	
(47) 

Hence (46) holds-. 

When (46) holds, (39) can be replaced by the somewhat simpler pro- 

gram 

inf a(f)(u) 
(48) 

subject to 0 E ce..(g) (u) 

We next state the main result of this paper. 

Theorem 5.1: If U, U , and W are locally convex, U is semi-reflexive, 

f and g in (7) are convex, and (7) is consistent, then 
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lint sup sup inf {flu) 	u (u) 	A g(u)} = v(P - ) 	(49) 
M.0.0 u*EM A*EW*  uEU 

where "M+0" denotes the net consisting of a local base of open sets M which 
* 

contain 0 E M 

Thus a necessary and sufficient condition for (24) is 

	

v(r) 	v(P) 	 (50) 

Corollary 5.2: With the hypotheses of Theorem 5.1, whenever f and 

g is (7) are closed, (24) holds. 

Proof: From the remark following (42), we see that (50) holds. 
4.4.1.06.4Alsoro 

The result then follows from Theorem. 5.1. 

Q.E.D. 

. 
In. R it was shown (Ref. 7) , that (50) (and. hence (24) ) held even 

for many ncaialosed situations under an hypothesis weaker than a Slater 

point.. In fact, the typical Slater point condition implied (50) (but 

the converse implication fails), so that the distinction between general 

convex and closed convex optimization disappears' if one assumes the usual 

hypotheses for Lagrangean duality. 

The proof of Theorem 5.1 requires two lemmas, and we give the 

easier one first. 

* 
Lemma 5.3: If U provides continuous linear functionals on U under 

* 
the natural pairing (u ,u) = u (u), then 

limsup sup sup inf f (u) + u (u) + g (u) } s v (P') 	(51) 
M+0 u EM X EW uEU 
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* 	* 	* 
Proof: Let u EU,X EW, and S> 0 be given, d 5 1. Then there 

exists u0  E U and v E R with (v,0) E ce(f,g) (u0 ), and such that 

v s v(P') + 5/2, if v(P") is finite, and v 5 -n - 1, if v(P") = 	(n ' 

arbitrary). 

Hence, for any open neighborhood N of 0 in U, and N' of 0 in W, 

there are v', ul  and wl  satisfying: 

wl E g (ul) 
	

(52) 

wL 
	 (53) 

E f(uL) 
	

(54) 

vi < 6/2 
	

(55) 

ui  E ua  N 
	

(56) 

Prom (51), v".  .v- (Er") 4- 6 i v(r) is finite and 	-n 	v(P") 

We therefore have 

inf (UL) 	(111) + X g (UL) S V (r) 	(UL) 1-  X WL 	(57) 

* 
Since N and N" are arbitrary, and u and X are continuous, (57) gives 

	

{f(u) 4- 1.1. (u) + X g(u)} s v(P") + u (uo ) + d 	(58) 
uezr 

from which 

* 	* 	 * 
sup inf {f(u) + u (u) + A g(u)} s v(P") 	11 (u ) 

 + 
	 (59) 

X*EW*  uEU 



20. 

follows by the arbitrary nature of X in (58). 'Taking the limsup on 

* 
both sides of (59) as u. 4'0, we obtain (51), since 8 > 0 was arbitrary. 

Q.E.D. 

Lemma 5.4: With the hypotheses of Theorem 5.1, 

* * 
lim inf sup sup inf Cf(u) + u (u) + A g(u)} z v(P") 	(60) 
M+0 u EM X EW uEDIT 

Proof: Since; R X U X Wt is locally convex andfand.gare convex, 

8P-1-(Cl (f, g))  "ct(aPilf,g)) 

, 
mk((u,r,101u.(12) 	r.r 	w(w)

0 	E II 
(61) 

where yi 4: is some index set (Ref. 14, Theorem 14.3). All functions u. 

r., and w
i 

are continuous.. Thus (r,0) E ct(frg)(u) is equivalent to 

uL(u) 4- rirz ao , i E z 	 (62) 

We are given that (62) is consistent, and that it implies 

r a v(P") 
	

(63) 

We now apply Lemma. 4.3 to the implication of (62) to (63). 

From (33), (34), (35) and (36) of Lonna 4.3,. for any  E > 0 and any 

neighborhood M of 0 in XI , there exist multipliers y i  Z 0, i E I, only 

finitely non-zero, a functional u E U, and a real r E R, satisfying 

E y.ajo. 	v(P') - E 	 (64) 
iEr 1  

* * 

iEI 
I y.(u.,r.) + (-u ,r) = (0,1) 

1 1 1 

	 (65) 



* 	* 
u E M 

I ri < E . 	 (67) 

* 
In (66), M is a barrel neighborhood of 0 in U with M 	(1 - E)M(E < 1). 
* 

M exists because (1 - E)M contains an open set about 0, and a locally 

convex space contains a local base which consists only of barrels (Ref. 

14, 6.5). 

Taking components in (65), we obtain. 

ihr 	* 

Z 	y. u. = 0 (68) 1 1 iEt 

I 	y . r. + r-  = 1 . (69) 
iET 

Or
- . 

 

Defining ha  = I yirL, we have 
iEt 

Ixa - LI < E (70) 

by (67). Next, applying-  both sides of (88), as a functional, to an arbi-

trary element. u. E D, and subtracting the result from. (64) , we obtain: 

(u) + I y. 	- u (u)) 	v(P') - E iEL a. 0 	i 
* 	

(71) 

Now we compare with the definition (61). If (r,w) E C.L.(f,g) (u), we 

have 

r 	w.r+w.() 	0 
	 (72) 

21. 

(66) 

Multiplying (72) by yi  Z 0 and adding, 



AOr + A w 	 rl.tr 	(14) ) 

EI 
1 A  1 

* 
E yi  (ao  - 	(u)) . 

iEI 

where we have defined 

* 
A = E y4 w 4  E W 

jEZ 

By combining (71) and (73) we have 

(u) + A 0r + X (w) av(P') - E 

if (r,w) E C.e(epi(f g)); thus (75) holds if r E f (u) and w E g(n). There-

fore from (75), 

inf.( X of(u.) + 	(u) + X g(u)} 2 v(P') - e 	(76) 

Since IX° - 11 < E and we may take E < 1, without loss of generality 

> 0.. 

*. We now divide both sides of (76) by X o . Clearly, X/X0  E W . Since 

1 * 
1X 0  - 11 < E, 	M 	M, and M. is a barrel, we have u/1 0  E M. In detail, 

if X
° 

1, then 0 < 1/1
0 
 s. 1, hence (as M*  is balanced), u.*/X E 3"-M*  M* , 

0 X 
* 	

0 
and. 	(1. E) 	M 	M, so /Xo E M. Also, if X° < 1, since 

(3. - E) -1 > 1/1 0  > 1 (as 11
0 - 11 < E), we have u */X E 	14* 	(1. - E) -1  M*  c M, 

0 X 
0 

so again u /10  E M. 

Thus in (76) we can assume that X
o 

= 1, if we replace the right-hand-

side by f (E) = v(P)/(1 + E) 	E/(3. + E). Since f (0) = v(P) and f is con- 

tinuous at E = 0, in fact we can retain v(P) - E as right-hand-side in (76). 

Now (76) with X
o 

= 1 gives (60), since E > 0 is arbitrary. 

Q.E.D. 

22. 

(73)  

(74)  

(75)  



23. 

The proof of (49) is obtained by simply combining (51) and (60). In 

this manner, Theorem 5.1 is proven. 

Results of a lagrangean type (18), but with "sup" replacing "max" 

in (18), can also be established by our methods, under suitable hypotheses 

of boundedness in (9). We need only apply the previous results to 

g = 	i(K)). 

Corollary 5.5: Suppose U is a. reflexive normed space (with the norm 

topology ort U ) , is locally convex, f,. gi  and IC in (9) are convex, and 

(9) is consistent.. If IC is bomded, then 

sup ilif{f(u) 	A g (11)1 v(P1 . 
X*EW*  uEK 

Thus a necessary and sufficient condition for 

ir 
sup inf {f(u) 	gL  (u) } v(P) 

X/rEw.*  uer. 

is that (50) hold- In particular, when f, gi  and K are closed, (78) holds. 

Proof: Since 0 E It for any open. set M of the origin in U , Lemma 5.3 

implies that a "e holds in (77).. Hence we need only prove that "k" holds 

* 	* 
in (77) , i.e. that for any E > 0 there exists A E W with 

inf{f(u) 	Xgi(u)} z v(P") - 
	 (79) 

for all u E K. 

Let L = 	E 	< +°3 . From (60) , for any neighborhood of 0 in U, 

say M = fu
* 

u
* , * 

II s pl, there exists u E M and A * E w
* 
 with 

(77) 

(7a) 



Laf{f(u) + u (u) + X g (141 Z v(F") - E/2 

for all u E K. Setting p = E/(2L), we have lu (u)I 5 E/2 in (80), which 

at once gives (79). 

Q.E.D. 

6. The Case U = RI  

In this section we give results for the case that the domain U of 

both multi-valued maps f and g ia (7) is finite-dimensional real-space 

a 
R Am before, the range W can be any locally convex space. This is a 

continuation of results. in [3]. We begin by citing a result from [3]. 

Theorem 6.1: [3, Theorem 3.3] Let I # 0 be an arbitrary index 

set, and suppose that the system. 

a 	tr. aLl i E t 
	

(81) 

. has a solution, 122. R 

Suppose also that (81) implies 

cx Z d 	 (82) 

for any x E 

Then there is a vector w E Ra  and a scalar w
0  E R, with the follow- 

ing property: 

For every 0 < 8 51 there are nonnegative scalars {X i li E I}, 

only finitely non-zero, which satisfy 

24. 

(80) 



c + 8w = E X.ai 	 (83) 
j-EI 

d + 8w
0 
 s E X.bi  

 x iEI 
	 (84) 

In fact, if (v,-v0 ) is any point in the relative interior of the 

set 

	

c"-  cone a 	 E 	U (0,1)}) 
	

(85) 

we may set 

(wr-w0 ) 	(v,-v0 ) - (c,-d) 	 (86) 

w 	- and w
0 
 =v0  - 

Lemma, 6.2. Suppose that the domain U of f and q in (7) is U Rn , 

W i.sr locally convex, f and g in. (7) are convex, and (7) is consistent. 

Theo there exists a fixed_ vector u. Rn  and scalars wo ,w E R with 

the following property: 

* 
For any a in the range 0 < 8 s 1, there exists A E W with . 

+ Aw)r + Aux + X w v(P') +Aw0 	 (87) 

whenever r E f Cx) and w E g (x) , for any x E Rn. 

Proof: The proof entirely parallels that of Lemma 5.4 up to (75), and 

differs primarily in citing Theorem 6.1 in place of Lemma 4.3. 

We have (61), and the fact that (62) implies (63), and now U = Rn. 

By Theorem 6.1, there exists a vector u E Rn and scalars w
0 
 and w

1 
in R, 



26. 

with the following property: for any 0 < A s 1, there are nonnegative 

scalars {Ail E I}, only finitely non-zero, which satisfy: 

* * 
(0,1) + 0 (-u,w1  ) = Z X. (u.,r

i 
 ) , 

iEI 

v(1:,#) + 0w s Z X.a
i 

0 	 0 
iEI 

Taking components in (88), we obtain 

E A.u. 

• 

- 8u =sr 0 
jet 

* 
1 +=Z 	r. 1 

iEI 

Applying both sides of (90), as a functional, to an arbitrary element 

x E Rn, and subtracting the result from (89), we obtain 

Z X. (a
l 

- u.x

• 

) v(Ey) + Ow 
a. 0 	3. 	 0 

iEt 

Again, as in (72), we have 

r 	wr+w.()a
i 

-u
i

• 

(x) iEI 
3.  

whenever (r,w) E C..e.(f,g) (x). Multiplying (93) by X i  Z 0, adding, and 

using (91), we have 

(1 + en) 	A ltw = Z(r. 	Tt.f7w) 
• 1 

iEI (94) 

x

• 

Z X.(ai 
- u.( )) • 0 

iEI 

(88)  

(89)  

(90)  

(91)  

(92)  

(93)  

where we have set 



* 	* 	* 
X avE X

i
w
i 
EW 

iEI 

Combining (92) and (95), we have 

(1 + Awl)  + Aux + A w z v(P") + 8w0  

if (r,w) E ce(f,g)(x). In particular, (96) holds if r E f(x) and w E g(x). 

Q.E.D. 

Theorem 6.3: Suppose that the domain TS of f and g in (7) is LT = RA , 

W is locally convex, f and g in. (7) are convex, and (7) is consistent. 

Then there exists a fixed vector u. ERA  such that 

Lim sup inf f (x) + Aux X g (x) } = v(13") 
9_,0+ x*Ew* xERn 

Therefore 

inf f 	+- Buz ks (x) 	v (p) 
8-004- A. ETA xotri- 

precisely if v(2) v(P') - In particular, (98) holds if f and g are, closed.. 

Prof The particular fact follows from the general one (97) as in 

Corollary-  5.2; we prove only (97). To this latter end, only the result 

Iiminf sup inf {f (x) + Aux + g (X) 	V (P A ) 
e4o# x*Ew xee 

(99) 

is necessary, by Lemma 5.3. 

However, (99) is itself a direct consequence of (87). Indeed, the 

variable 8 of (87) and El- 6/(1 + 6w1) each go to zero if the other 

27. 

(95)  

(96)  

(97)  

(98)  
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does, and hence for 0 -  > 0 sufficiently small that 1 + Aw l  > 0, we have 

from (87) that 

r + Er•ux + (X w)/(1 + Owl) a (17(P') + ew0 )/(1 + en. ) (100)  

if r E f(x) and w E g(x), i.e. 

inf {f(x) + 8"ux + (X g(x))/(1 + 8w1)} 
xER2  

a (v (P') + elfOv(l + 8w1) 
(101)  

Of course (101) implies 

sup*  inf (f(x) + Er.= + A g(x)1 	(v(P') + 814)/(1 + 8w1 ) (102) 
AEW 	xERP. 

1 

If we take the lim inf as 6' +
+ 

on both sides of (102), we obtain (99). 

Q.E.D. 
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Abstract  

We show that duality gaps can be closed under broad hypotheses in 

minimax problems, provided certain changes are made in the maximin part 

which increase its value. The primary device is to add a linear pertur-

bation to the saddle function, and send it to zero in the limit. Suprema 

replace maxima, and infima replace minima. In addition to the usual 

convexity-concavity type of assumptions on the saddle function and the sets, 

a form of semi-reflexivity is required for one of the two spaces of the 

saddle function. 

A sharpening of our result is possible when one of the spaces is 

finite-dimensional. 

A variant of the proof of the previous results leads to a general-

ization of a result of Sion, from which the theorem of Kneser and Fan 

follows. 

Key Words: 

1) Convexity 

2) Limiting Lagrangean 

3) Lagrangean 

4) Minimax 

NSF 9-f?,ky-ji-  Elk)  6:74110 



A LIMITING INFISUP THEOREM 

by 

C. E. Blair, R. J. Duffin, 1 
 and R. G. Jeroslow2  

A minimax theorem is one which asserts that, under suitable hypoth- 

eses, 

(1) max min F(x,y) = min max F(x,y) 
yED xEC 	 xEC yED 

for certain functions F and sets C, D. These have been of wide interest 

in the literature; see e.g. [9] and 112]. 

Recently, results have been obtained, motivated by the second author's 

paper [3], which indicate that in cases when lagrangean duality does not 

hold, a certain type of limiting lagrangean duality does hold (see e.g. 

[2], [ 5]). Here we extend these limiting phenomena to the general 

minimax setting, of which lagrangean duality is but one case, in which 

F(x,y) is the lagrangean function with y the dual multipliers (and hence 

D = R 4. and inf sup F(x,y) is the value of the primal program). 
xEC yZO 

We will establish, in place of (1), this result (see Theorem 3 below•: 

(2) lim sup sup inf{x (x) + F(x,y)} = inf sup F(x,y) 
M-.0 x EM yED xEC 	 xEC yED 

under suitable hypotheses. In (2), the notation "M40" indicates that M 

'This work is supported in part by grant DAAG29-77-0024, Army Research 
Office, Research Triangle Park, North Carolina. 

2This work is supported in part by grant ENG-7900284 of the National Science 
Foundation. 



is an arbitrary neighborhood of zero, in a net that tends to zero, in the 

dual space X of the space X in which the set C lies (C X). We then 

strengthen (2) in the case that X = R n . 

Our method of proof in Theorem 3, is to reduce minimax problems to 

programming problems, by finding a suitable program (given in equation (10) below) 

whose value is inf sup F(x,y), and then using the limiting lagrangean 
xEC yED 

dual for this primal  program, to obtain (2). The proof is somewhat 

complicated by a purely technical detail, as our reference paper [5] on 

this limiting lagrangean is done in the generality of set-valued convex 

functions, while here we only need point-valued convex functions. The 

reader will note below, that the devices we employ to convert a point-

valued program into its set-valued equivalent are those discussed in 

[5] for this transformation, and we have repeated them here to have the 

paper more self-contained. 

Following the proof of Theorem 3, we will indicate how an important 

special case of that result can be derived from the conjagate duality theory 

as developed by Rockafellar [10]. Related results can be found in [7], [8], 

and [13]. 

In a concluding section, we return to the primal program of 

equation (10), and by analyzing its finitely-constrained subprograms, 

we obtain a generalization of a result of Sion [11]. Essentially, our 

result shows how finite subprograms approach the value sup inf F(x,y), 
YED xEC 

and thus are also of a limiting nature; and the same kind of "finite 

approximation" is possible for the quantity inf sup F(x,y). 
xEC yED 



Section I: Limiting Linear Perturbations  

First, we establish the easy direction in (2). 

Lemma 1: If X provides continuous linear functionals on X , then 

(3) 	limsup sup sup inflx (x) + F(x,y)} s inf sup F(x,y) 
M740 x*EM yED xEC 	 xEC yED 

* 
Proof: Assume v = inf sup F(x,y) < +=; otherwise, there is nothing to 

xEC yED 
prove. 

* 	* 
Let x E X , an integer n, and 6 > 0 be given. Then there exists 

xo E C such that, for all y E D, 

c-,.. * 

	* 
v + 6 , if v is finite; 

From (4) it follows at once that, for any y E D, 

* 	 * 
(5) inf{x (x) + F(x,y)} s x (x 0 ) + F(x0 ,y) 

xEC 

v* 	* 	* + 6 + x(x0  ) , if v is finite; 

-n 	+ x(x0 ) , if v = 

After taking the supremum over y E D on the left-hand-side in (5), 

and noting, that as M -4- 0, if x E M, then x (x0 ) 	0, we have 

* 	 v + 6 , if v is finite; 
(6) limsup sup sup inf{x (x) 	F(x,y)} s 

M+0 x *EM yED xEC 	 -n 	if v = 

Since 6 > 0, or n, is arbitrary in (6), we obtain (3). 

3 

(4) * F(x ,y) s 0 
n 	, if v = ■ CO. 

Q.E.D. 



4 

We now recall the setting of the paper [5 1. Both f and g are set-

valued functions on a space U, f with subsets of the reals as values, 

and g with subsets of a space W as values, in this program of value v(P): 

(7) 	 inf f(u) 

subject to 0 E g(u) . 

We shall say that U is semi-reflexive, if these two conditions hold: 

* 	* 
(i) For each u E U, the function u (u) on U is continuous; (ii) For 

** 
every continuous linear functional u on U there exists u E U such that 

* u** 	
) = u

*
(u) for all u

* 
E U

*
. 

We now summarize Corollary 5.2 of [5 1. 

Theorem 2: [5 

* 
If U, U , and W are locally convex, U is semi-reflexive, f and g in 

(7)are closed and convex, and v(P) < 	then 

* 	* 
(8) lim sup sup inf(f(u) + u (u) + 	g(u)1 = v(P) . 

M40 u *EM A EW uEU 

We next present our main result. As regards the hypothesis 8) of 

Theorem 3, the definition of a concavelike function is as in [11]. 

Theorem 3: Suppose that X is a semi-reflexive locally convex space, X* 

is locally convex, and inf sup F(x,y) is not + 03. 
xEC yED 

Suppose in addition, that C is a non-empty, closed, convex set in X, 

D is a non-empty set in a space Y, and F(x,y) is a function with values 

in R U {+co}, such that: 

a) For each fixed yEY, F(x,y) is a closed convex function of xEX; 



( * 

	 * 
v + 6 , if v is finite; 

F(xo
,y) s * 

-n 	if v = -m. 

5 

13) F(x,y) is concavelike in yEY on CXD. 

Then (2) holds. 

Proof: Using (3) of Lemma 1, it suffices for us to prove 

(9) liminf sup sup inf{x (x) 	F(x,y)} 	v 
M7).0 x EM yED xEC 

where v = inf sup F(x,y). Let E > 0 be given, as well as a 
xEC yED 

neighborhood M of 0 E X . 

Consider this program: 

(10) inf t 

subject to F(x,y) - t s 0 , for all y E D. 
xEC 

If (x,t) is feasible in (10), for sane x E C we have t z sup F(x,y); 
YED 

hence t z v . On the other hand, if 6 > 0 and n are arbitrary, there is 

some x0 
E C such that, for all y E D, 

Putting 

(12) 	 t = 

( 	

* 
v + 6 , if v is finite; 

-n 	, if v = - 037 

we have a feasible solution to (10). Since 6 and n are arbitrary, the 

* 
value of (10) is exactly v . 



where we have 

(14) 	 gy  (x,t) = 
{wk./ z F(x,y) - t} , if x E C; 

, if x 9 C. ci) 

6 

Now (10) can be cast as a convex program (7) in the sense of [5 ]. 

We put f(x,t) = {t}, and f is on the space U = X x R, which is semi- 

reflexive, since X is. The function g(x,t) maps into the product space W = 

X R , where all R = R, of IDS  copies of the reals R. We set g to be 
yED Y  
a product function (as discussed in [5 ]) by putting, for each (x,t) E C X R 

(13) 	 g(x,t) = X g (x,t) 
yED Y  

Since C is closed and F(x,y) is closed in x E X for each fixed y E D, g is 

closed. It is easy to see that 0 E g(x,t) is equivalent to 0 E g (x,t) for 

all y E D, which is equivalent to 0 Z F(x,y) - t for each y E D. Therefore 

the program 

(7) " 	 inf f(x,t) 

subject to 0 E g(x,t) 

is entirely equivalent to the program (10), and so has value v < 

Thus Theorem 2 applies. 

The conjugate space W of W is W = e R , i.e. all finitely-non- 
yED 

zero vectors (X ly E D) indexed by y E D. We conclude the following from 

* 	* 
(8): for any E1  > 0, 1 > E2  > 0, there exists a functional z EX, a 

real number t E R, and a finitely non-zero vector of reals (X ly E D), 

with: 



(15a) t+z (x)+tt+ E A 

• 

w Zv - E1  
yED Y Y  

7 

for all x E C and t E R, and w
Y 
 E g

Y 
 (x,t); 

(15b) 
	

< E2 ; 

* * 
(15c) 
	

z E M ; 

where M is a convex, circled neighborhood of 0 such that M c (1 - E 2 )M. 

Since w E g (x,t) can be arbitrarily increased in (15a), we con-

clude that A *  z 0 for all y E D. Then (15a) is equivalent to (using 

w = F(x,y) - t) 

* * 	* 	 * 	 * 
(16) 	(1 + t - E A )t + z (x) + E A P(x,y) z v - El yED 	 yED Y  

for all t E R, x E C. 

Upon fixing x E C in (16), since t E R is arbitrary, we conclude that 

* * 
(17a) 1 + t = E A ; 

yED Y  

(17b) 
* 	* 	* 

z (x) + E A F(x,y) Z v - El  , 
yED Y  

for all x E C. 

* * 	* 	 * 
Putting x = z /(1 + t ), one can prove, using the fact that M is 

* 
circled, (15b), and M 	(1 - E2 )M, that 

(18) x E M . 

Putting 

(19) A; = Xy/(1 + t * ) , for y E D, 
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.• 

* 
and dividing both sides of (17b) by 1 + t , we obtain 

(20) x (x) + E X' F(x,y) Z (v - El)/(1 + t * ) 
yED 

for all x E C; 

* 
(21) All X' 	0 , and 	X' -

1 + t =1 . 
y yED y 1 + t* 

By a suitable preselection of El  and E2  so that (v - E1 )/(1 + E2 ) 2 
* 

v - E, using (15b), (20) becomes 

(22) x (x) + E X' F(x,y) 	v - E , 
yED Y  

for all x E C. 

Using (21) and the concavelike property of IrCx,y) in y e D (i.e., hypothesis 

$)) from (21) there exists y C D with F(x,g) Z E X' F(x,y) for any x E C. 
yED Y  

Hence by (22), 

(23) x (x) + F(x,g) 	v - E , for all x E C. 

From (23) it follows at once that 

	

* 	 * 
(24) sup infix (x) + F(x,Y)1 Z v - E . 

yED xEC 

* 
We have obtained (24) for M any neighborhood of 0 E X , yet (18) holds; 

hence 
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(25) liminf sup sup infix (x) + F(x,y)) Z v - E 
M40 .x EM yED xEC 

Since (25) holds for E > 0 arbitrary, we have (9). 

Q.E.D. 

An important special case of Theorem 3 can be deduced from the conjugate 

duality theory. Specifically, assume that (in place of hypothesis 8) of 

Theorem 3) F(x,y) is concave in y for each x E C, and that the closure condi-

tion of [10, (8.27) on page 50] holds (this is stronger than the closure 

condition a) above). Then one can establish the conclusion of Theorem 3 

using [10, (8.28) on page 51, (4.16) and (4.20) of page 21]. 

Corollary 4:  Suppose that the hypotheses of Theorem 3 hold, and that 

* 
also X and X are normed spaces, and the set C is bounded in X. Then 

(26) sup inf F(x,y) = inf sup F(x,y) . 
yED xEC 	xEC yED 

Proof: Since this proof entirely parallels the proof of Corollary 5.5 

from Theorem 2 in [5 ], we omit details. 

We next give a result for the case X = Rn , which is derived from 

15, Theorem 6.3] by use of the same argument as in the proof of Theorem 3 

above. 

Theorem 5: Suppose that the hypotheses of Theorem 3 hold, and in addi-

tion X = Rn . Then there is some fixed w E Rn  such that 

(27) lim sup inf{ewx + F(x,y)} = inf sup F(x,y) 
yED xEC 	 xEC yED 
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Theorem 6: Suppose that Y is a semi-reflexive locally convex space, Y 

is locally convex, and sup inf F(x,y) is not -03. 
yED xEC 

Suppose, in addition, that C is a non-empty set in a space X, D is 

a non-empty, closed, convex set in Y, and F(x,y) is a function iwth values 

in R U 	R the reels, such that: 

i) F(x,y) is a convexlike function of x e X on C x  D. 

ii) For each fixed x E X, F(x,y) is a closed, concave function of y E Y. 

Then 

* 
(2)' 	lim inf inf sup Cy (y) 	F(x,y)1 = sup inf F(x,y) 

M40 y*Em xEC yED 	 yED xEC 

Proof: Apply Theorem 3 to the function G(y,x) = -F(x,y). 

Q.E.D. 

We leave the derivation of a "sup inf" theorem, analogous to Theorem 

5, to the reader; as in the case of Theorem 6, it arises by applying Theorem 

5 to G(y,x) 	-F(x,y). 
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Section II: A Generalization of a Theorem of Sion  

By a further study of the program (10) of the preceding section, and 

our argument following it, we are able to derive a second result. Our 

general hypotheses change, in that no linear structure or topology is 

needed. We derive the results directly from the assumption that F is convex-

concavelike (see [11], [12] for the definitions). 

Theorem 7: Suppose that C and D are nonempty sets and F(x,y) is convex-

concavelike on C x D. 

Then 

(28) sup inf F(x,y) = 	sup 	inf max F(x,y) 
yED xEC 	 Gan xEC yEG 

G finite 

Proof: The direction (5) in (28) is trivial, since we may use singleton 

sets: 

(29) sup inf F(x,y) = sup inf F(x,y0 ) 
YED xEC 	 {yo}aD xEC 

= sup inf max F(x,y) 
{yo }QD xEC yE{y0 } 

5 	sup inf max F(x,y) 
GcD xEC yEG 

G finite 
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To obtain the reverse direction () in (28), we examine finite sub-

sets of the constraints of the program (10). 

Let G z D be finite. Then the value v (G) of the program 

(10) - 	 inf t 

subject to F(x,y) - t 5 0, for all y E G 
xEC 

* 
is v (G) = inf max F(x,y), by reasoning similar to that following equa-

xEC yEG 
tion (10) above. Note that v (G) < +=. Moreover, the program (10)' has 

a Slater point, for upon setting x = x 0  E C arbitrarily, and putting 

t = 1 + max F(x ,y), we see that each functional constraint in (10)' is 
0 	yEG 	0 

satisfied as a strict inequality. Now F(x,y) - t is convexlike in (x,t) 

on (C x R) x G, and so there exist Lagrange multipliers a
y 

0, y E G 

with 

(30) t + E A (F(x,y) - t) 2 inf max F(x,y) 
yEG 	 xEC yEG 

for all x E C and t E R. 

Since t E R is arbitrary in (30), we conclude that 

(31) E A = 1 
yEG 

and 

(32) E A F(x,y) z inf max F(x,y) 
y yEG 	 xEC yEG 

for all x E C. By the concavelike property of F(x,y) in y, there exists 

y E D with 
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(33) F(x,y) z inf max F(x,y) 
xEC yEG 

for all x E C. From (33) we immediately deduce 

(34) sup inf F(x,y) z inf max F(x,y) 
YED xEC 	xEC yEG 

and, since G D was an arbitrary finite set, we at once have the desired 

direction () in (28). 

Q.E.D. 

Theorem 8. With the hypotheses of Theorem 6, 

(35) inf sup F(x,y)-= 	inf 	sup min F(x,y) 
xEC yED 	 HNC yED xEH 

H finite 

Proof: Apply Theorem 7 to the convex-concavelike function G(y,x) = -F(x,y). 

Q.E.D. 

Corollary 9: [11, Theorem 4.1] 

Let C and D be nonempty sets and let F be convex-concavelike on C x D. 

If for any a < inf sup F(x,y) there exists a finite G a D such that, 
xEC yED 

for any x E C there is y E G with F(x,y) z a, then 

(36) sup inf F(x,y) = inf sup F(x,y) 
yED xEC 	xEC yED 

Proof: The hypotheses state that, for any a < inf sup F(x,y), we have 
xEC yED 

inf max F(x,y) Z a for some finite G D, and hence 
xEC yEG 



14 

(37) 	 inf sup F(x,y) 5 	sup 	inf max F(x,y) 
xEC yED 	 GgD xEC yEG 

G finite 

= sup inf F(x,y), 
yED xEC 

the last equality by (28) of Theorem 7. Since the reverse inequality 

(5) of (36) always holds, we obtain (36). 

Q.E.D. 

In a similar manner, (11,Theorem 4.1'] can be proven from Theorem 

8, and Sion gives a derivation of a result of Kneser and Fan E11, Theorem 

4.2] from these corollaries. 

We conclude with a result that shows how the quantification over finite 

sets in (28) can be replaced, if one wishes, by a limit over a suitable 

sequence. 

Corollary 10: Suppose that C and D are nonempty sets and F(x,y) is convex - 

concavelike on C x D. 

Then there is a sequence y i ,y2 ,y3 ,... in D such that 

(28)' 	 sup inf F(x,y) = lim inf max F(x,y) 
yED xEC 	 t+G. xEC yEGt  

where G
t = {y ,y 	 3'- 1 2 	t 

Proof: Let v, = 	sup 	inf max F(x,y). 
GQD xEC yEG 

G finite 

Inductivelydefinethesetsii.=fy
h(j)-1-1"..'Yh(j+1)

} by the conditions 

that h(1) = 0 and 
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1 	. v *  — 7- , if v < +cc ; 3  
(38) inf max F(x,y) 

xEC yEH. 	 j 	, if v* = 	. 

Then Gh(j+1)  = Hi  U H2  U 	U Hi , and so by (38) 

(39) inf 	max 	F(x,y) 
xEC yE 	 , if v* = +co Gh(j+1) 

Defining v(G) = inf max F(x,y) for finite subsets G of C, we observe the 
xEC yEG 

monotonicity property 

(40) G G" implies v(G) s v(G'). 

Combining (39) and (40), we have 

(41) lim inf max F(x,y) = v*  = 	sup 	inf max F(x,y) 
t++oo xEC yEGt 	 GQD xEC yEG 

G finite 

The result (28)" then follows from (28). 

Q.E.D. 

The University of Illinois 
Carnegie-Mellon University 

and 
Georgia Institute of Technology 
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