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OBJECTIVE

Antenna radiation battern analyses by computer simulations will be per-
formed for antenna systems utilized by the TDU-X tow target, BOMARC, and
wing tip pod for the BQM-34A drone. Portions of the analysis will be veri-

fied by scale model antenna radiation patterns.

WORK SUMMARY

There are three parallel efforts being performed: (1) a one-fifth size
model of the TDU-X is being fabricated and is about 90% complete, (2) full-
scale principal plane radiation patterns of the command receiver antenna are
being run as well as an efficiency test, and (3) the computer simulations

are being done for the TDU-X antenna radiation pattermns.

MAJOR EFFORTS

Scale model radiation patterns will begin on the TDU-X model. Additional

analyses will be made of the command antenna obtained from Mr. G. Hatcher.

WORK SCHEDULE

The program is on schedule. The complete TDU-X analysis will be com-
pleted during the first 3 months of the program. This includes the scale

model testing.

VISIT TO TARGETS BRANCH

Georgia Tech personnel visited Eglin AFB during October and had dis-
cussions with Messrs. Hatcher, Chancelior, and Hayes of the Targets Branch.
The TDU-X tow target and BOMARC target maintainence facilities were visited.

The antennas and antenna locations were the subjects of the visit.

PLANNED WORK

The computer analyses will be continued. The program for the circum-
ferential slot will be finished, and patterns will be calculated for the
DIGIDOPS scoring antenna system for the TDU-X tow target.
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OBJECTIVE

Antenna radiation pattern analyses by computer simulations will be per-
formed for antenna systems utilized by the TDU~X tow target, BOMARC, and
wing tip pod for the BQM-34A drone. Portions of the analysis will be veri-

fied by scale model antenna radiation patterns.

WORK SUMMARY

The scale model has been completed; scaled scoring antennas have been
mounted; and antenna radiation pattern measurements are being made. The
computer simulations are continuing. Patterns have been computed for the
scoring antennas for the cases of "no blockage" and '"blockage." These will

be discussed with the Project Monitor.

MAJOR EFFORIS

Scale model radiation patterns have begun on the TDU~-X scoring antenna
system. A photograph of the one-fifth size model is presented in Figure 1.
Note the pairs of slot antennas located on the top and bottom of the vehicle.
These slot antennas are loaded with Teflon.

Radiation pattern measurements have been completed on the Command an-
tenna, which was mounted onto a l4-inch diameter metal cylindrical ground
plane. The antenna possesses a very broad beam radiation pattern. The
approximate gain of the antenna was measured to be 20 dB below that of a

standard gain dipole.

WORK SCHEDULE

The program is slightly behind schedule, but the overall goals should

be met during the scheduled time frame.

PERSONNEL VISITS

Technical discussions have been held with Mr. W. Hayes concerning the

X~band augmentation radar antenna system. Mr. Hayes plans to send to



Georgia Tech a package containing drawings pertinent to this effort.
Mr. G. Hatcher of the Targets Branch will visit Georgia Tech on 21

November 1975 for a project review.

PLANNED WORK

The computer simulations will continue. The remaining TDU-X antenna
system parameters will be programmed and the patterns will be computed.
Principal plane radiation pattern measurements of these scaled antennas will

be performed.
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OBJECTIVE

Antenna radiation pattern analyses by computer simulations will be per-
formed for antenna systems utilized by the TDU-X tow target, BOMARC, and wing
tip pod for the BWM-34A drone. Portions of the analysis will be verified by

scale model antenna radiation patterns.

WORK SUMMARY

Scale model radiation pattern measurements have been completed on the
TDU-X scoring antenna, telemetry antenna and L-Band antenna systems. A photo-
graph of the TDU-X scale model mounted on the antenna range is presented in
Figure 1. Computer simulations have been completed on the TDU-X scoring an-

tennas. These will be discussed with the project monitor on 18 December 1975.

MAJOR EFFORTS

As noted in the Work Summary, the TDU-X scale model radiation patterns
have been completed with the exception of the X-Band antenna. These patterns
are being made on the "old" type antenna. The tail coverage of the scoring
antenna system is suprisingly good as noted in the scale model antenna radi-
ation patterns and in the computer simulations.

Isolation measurements between the Telemetry antenna and L-Band augmen-
tation antenna have been completed. These measurements indicate a minimum of
20 dB isolation in the 1 GHz to 2 GHz frequency range. Typically, the iso-
lation is greater than 30 dB.

The attached 3-D contour plot indicates the calculated coverage for the
TDU-X scoring antennas (Figure 2) as they are currently positioned. As indi-
cated from both the computed data and the scale model data, the proposed
positioning of the DIGIDCPS antennas will provide the required coverage. The
scale model of the wing tip pod of the BQM-34A drone is being fabricated. The

scoring antenna radiation pattern measurements will be completed on this model



during December.

WORK SCHEDULE

The program is slightly behind schedule, mainly due to the adverse
weather conditions on the antenna pattern range. It is felt that the work

will be completed as scheduled.

PLANNED WORK

The TDU-X X-Band antenna radiation patterns will be completed during the
coming month. In addition, the antennas on the wing tip pod of the BQM-34A
drone will be analyzed. Comparisons of scale model data versus computed data

will be made to verify the computer simulatioms.

FUNDS

As of 1 December, 1975, approximately $13,000 out of the total $34,155
have been expended. This leaves sufficient funds to complete the contractual

requirements.
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OBJECTIVE

Antenna radiation pattern analyses by computer simulations will be
performed for antenna systems utilized by the TDU-X tow target, BOMARC, and
wing tip pxnd for the BQOM~34 A drone. Portions of the analysis will be

verified by scale model antenna radiation patterns.
WORK SUMMARY

Scale model radiation pattern measurements have been completed on the
TDU~X tow target. The scoring antennas, located on the target as designated
by the Technical Project Monitor, provide good rear hemispherical coverage.
In fact, the tail coverage for both polarizations is more than adequate.

The coverage provided by the telemetry antenna, command antenna, and the
IL-Band augmentation antenna also provide adequate lower hemispherical
coverage.

Full-scale measurements were made on the X-Band augmentation antennas,
both the current antenna and the proposed conical spiral, and good rear
coverage 1is provided by both.

Scale model radiation pattern measurements have been completed con the
wing tip pod. These patterns will be discussed with the Technical Monitor
at the earliest possible date.

Drawings are in the shop for the BOMARC model fabrication.

MAJOR EFFORTS

The computer analysis for the DIGIDOPS antenna on the TDHU-X Tow Target
was completed including an analysis of the slot positions. The DIGIDOPS
antenna was modeled from the superposition of an axial slot and a circum-
ferential slot located on an infinite cylinder of radius 7 inches. The
slot positions were varied to determine the optimum location of the slots
on the target. Gains and power distribution curves were plotted and compared
and three dimensional plots were made of all of the patterns generated.

Figure 1 shows the total power (Eé + E%) for two crossed slots located
at the original position. The patterns for the slots located at different
positions are almost indistinguishable from this plot. Figure 2 shows the
same pattern which has had the blockage from the wings added.

The two DIGIDOPS antennas were varied in their spacings by 0, A/4, »/2.

The gains of these new patterns were calculated and found to be within 1 dB



of each other. The power distribution curves show (figure 3) that there
was no significant change in the coverage effected by moving the slots.
The original position of the DIGIDIPS offered as good a coverage as any
other.

» The contour plots of the measﬁred data on the TDU-X antenna system
are almost complete. The data from the scoring antenna plots will be
compared with the computed data to determine the feasibility of utilizing
computer simulations only for positioning antennas on the target vehicles.

A single scale model wing tip pod was used to determine scoring antenna

pattern coverage for the BOM-34 A drone. The patterns indicate very good
front and rear coverage with poor upper hemisphere coverage. These patterns

will be further discissed with the Technical Monitor.
WORK SCHEDULE

The program is behind schedule on a time basis and is on-schedule
on & cost basis. A no-cost extension to the contract has been requested.
This additional time will allow the BOMARC patterns to be completed and will
provide the necessary time for a detailed comparison of measured patterns

versus the computed patterns.
PLANNED WORK

The BOMARC scale model will be fabricated, and the scoring antenna
radiation patterns for this model will be measured. Antenna location

positions have been obtained from the Technical Monitor.

Comparisons of computed data versus the scale mo:.del pattern data for
the TDU-X will be completed during the next reporting period.

FUNDS

As of 1 January, 1976, approximately $20K out of the total $34,155 has

been expended. This leaves sufficient funds to complete the contractual

requirements.



Figure

1.

Calculated radiation pattern (E% + E%) for two pairs of crossed slots
(positioned on top and bottom as indicated by ADTC) on a conducting

right circular cylinder having the same diameter as the TDU-X
target. Wing and pod blockage was not included.
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OBJECTIVE

Antenna radiation pattern analyses by computer simulations will be
performed for antenna systems utilized by the TDU-X tow target, BOMARC, and
wing tip pod for the BQM-34A drone. Portions of the analysis will be verified

by scale model antenna radiation patterns.

WORK SUMMARY

Scale model antenna radiation pattern measurements have been completed
on the TDU-X tow target and the BQM-34A drone. Cbmputer calculations of the
radiation pattern coverage for antenna systems on the TDU-X tow target and the
BOMARC have been completed, and the BQM-34A drone analysis is 90% complete.
Thus, the remaining tasksto be completed are those of BOMARC scoring antenna
scale model measurements and the BQM-34A computer calculations.

" Comparisons have been made of the measured scale model radiation patterns
and the computed patterns of the TDU-X scoring antennas. The patterns compare
favorably, indicating that the computer simulation is an excellent technique
for determining the best location of antennas on a target for optimum
coverage, and if precise coverage data are required, scale model measurements
should be sufficient. 1In Figures 1-12 are shown both the scale model
principal plane radiation patterns and the calculated patterns for the TDU-X
scoring antennas. As indicated by the plots, reasonably good agreement exists.
Shown in Figures 13 and 14 are measured and calculated patterns for the
" TDU-X scoring antennas. The final two Figures, 15 and 16, are the calculated

patterns for the BOMARC scoring antennas.
MAJOR EFFORTS

Each task, as outlined in the statement of work, has been completed
with the exception of scale model BOMARC scoring antennas and computer

simulations of the wing tip pod scoring antennas. These will be completed

soon.



WORK SCHEDULE

A no cost extension to the contract has been requested so that the

BOMARC scale model patterns can be completed.
PLANNED WORK

Scale model BOMARC scoring antenna radiation patterns will be completed

along with wing tip pod computer simulations. Work has been initiated

on the Final Report.

FUNDS

As of 1 February, 1976, approximately $29,500 of the total $34,155 has

been expended. This leaves sufficient funds to complete the contract.
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PREFACE

This report was prepared by personnel of the Engineering Experiment
Station (EES) of the Georgia Institute of Technology, Atlanta, Georgia,
30332, under Contract F08635-76-C-0075 for the Air Force Armament Labora-
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SECTION 1
INTRODUCTION

1. BACKGROUND

Under Contract F08635-76-C-0075 with the Armament Laboratory at
Eglin Air Force Base, Florida, EES personnel undertook a program to
analyze the radiation properties of several antenna systems located
on three (TDU-X, BQM-34A, and BOMARC) target-type vehicles. Both compu-
tational and experimental investigations were conducted. Three basic
mathematical approaches were considered: (1) boundary value (2) geome-
trical theory of diffraction, and (3) moment methods.

It was desired to determine if the boundary value computational
method was sufficient for use in locating the antennas on the targets
to achieve required antenna pattern coverage characteristics. This
technique is simple and inexpensive as compared to the more complex
geometrical theory of diffraction technique (G.T.D.) and the moment
methods. Scale model measurements were made on each target in order
to validate the computer data.

The TDU-X tow target is a large center of gravity towed vehicle
that has the payload capacity to carry IRCM/ECM devices for airborne
testing. The target has subsystems to support the IRCM/ECM devices.
These subsystems are infrared/radar signatures, scoring, command receiver,
telemetry and beacons. Those subsystems that radiate or receive a signal
have unique antenna pattern requirements.

The major work presented is that of the antenna systems on the
TDU-X tow target. Computer techniques were utilized to model the TDU-X
tow target and to calculate antenna radiation pattern coverage for the
antenna systems. A scale model of the target was fabricated and the
computed patterns were verified by actual measurements.

The BQM-34A drone is the utility target for three services. The
augmentation and scoring equipment vary according to the user require-
ments. A recent requirement is to have radar augmentation and scoring
co-located on the wing tip. This was one of the driving requirements
for this particular contractual effort.

The BOMARC is an interceptor missile that has been converted to
a target. The BOMARC is a large target vehicle that has a typical altitude
speed range of 72,000 feet at 2.72 Mach. The primary zone of attack is



the frontal zone; thus, the scoring antennas must be located in the forward
half of the vehicle.

Only the DIGIDOPS scoring antenna radiation pattern coverage was
calculated for the BQM-34A drone and the BOMARC interceptor. These
patterns were also verified by scale model measurements.

Of significance is the fact that computer modeling techniques have
become sufficiently sophisticated to be used in determining the location
of antennas on a target for particular area coverages. Comparsions
between the computed data and the scale model measured data bear this
out.

2. SUMMARY OF TASKS

The effort was divided into three general tasks, one for each
target vehicle. Antenna locations were analyzed by computer and by
scale models for the three targets to determine optimum antenna mounting
locations for the required pattern coverage.
a. TDU-X Tow Target

Antenna radiation pattern analyses were performed on five antenna
systems:
DIGIDOPS scoring antennas
Command receiver antenna
Telemetry antenna

X-L Band augmentation antennas

vt W N =

and G-Band beacon antenna.

The DIGIDOPS scoring systems operate at 1775 MHz, and although
it was desired to have complete spherical coverage for this antenna
system, it was required that the antennas should be located to provide
complete coverage for the rear hemisphere and for this coverage to extend
toward the forward sector as far as possible.

The command receiver operates at 425 MHz, and lower hemisphere
pattern coverage was desired. The command receiver antenna is a flush
mounted tuned cavity.

The telemetry transmitter operates in the L-Band frequency region
and the desired pattern coverage was omni-directional with suggested

mounting on the lower part of the center fuselage.



The L-Band system of the X-L Band radar augmentation will be used
in tracking the target by ground based radar, and a lower hemisphere
omni-directional antenna pattern coverage was required. The X-Band
portion of this system provides radar augmentation for airborne tracking
radar, and it was required that this antenna system provide coverage
toward the stern.

The G-Band beacon is also used to ground track the target, and it
was required that the antenna pattern provide lower hemisphere coverage.
This system operates at 5650 MHz and at 5720 MHz.

b. BOMARC Missile

Antenna radiation pattern analyses were performed on the DIGIDOPS
scoring antenna operating at 1775 MHz. The primary zone of interest
was the front hemisphere with total hemispherical coverage desired.

c. BQM-34 Drone Augmentation Pod

The DIGIDOPS scoring and the X-Band augmentation systems will share
the same pod. Radiation pattern analyses were performed for antennas
mounted on the wing-tip pod. Each pod-mounted scoring antenna was to
provide hemispherical radiation pattern coverage toward the side of

the drone on which the antenna was mounted.



SECTION II

TECHNICAL APPROCACH

This section of the report contains a description of the computer
modeling technique and the scale model measurements completed by the
Engineering Experiment Station at Georgia Tech on this program for the
antenna systems of interest.

1. INITIAL ANTENNA LOCATIONS

Because of the radiation pattern coverage requirements of the TDU-X
telemetry, command, radar augmentation and G-Band beacon, these particular
antenna systems were located on the target as indicated in Figure 1. Com-
puter analyses and scale model radiation patterns were completed for these
particular antenna systems and these data are presented in a later section
of this report.

After considerable discussion it was decided to mount one of the
scoring antennas on the bottom of the TDU-X fuselage and the other on
the fuselage'top but slightly offset from the bottom antenna along the
fuselage axis. Varying offset distances were then modeled before the
final locations were fixed. This is discussed in the following section
on computer modeling of two target antenna patterns.

Based on past performance and location of the scoring antennas,
these were located on the outboard sides of the BQM-34A wing pods for
the computer analysis and scale model measurements. For the BOMARC
missile, the scoring antennas were mounted on the right and left side
of the fuselage forward of the wings.

The antenna systems were modeled for the locations as described
above and the majority of the computed data were verified by scale model
measurements.

2. COMPUTER MODELING TECHNIQUES
a. TDU-X DIGIDOPS Scoring Antenna System

(1) Mathematical Model

The computer model adopted was that resulting from a solution
to the wave equation (subject to the appropriate boundary conditions) for

radiation from rectangular slots on an infinite cylinder. This approach
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did not take into account the fact that the cylinders were not infinite
(end effects) and the problem of scattering from the wings (wing blockage
was considered). The DIGIDOPS antenna consists of two slots, one axial
and one circumferential, mounted together in a "T" configuration. The
antenna may be considered to be the superposition of two separate antennas
(no mutual coupling).

Many authors have discussed the modeling of axial and circumferential
slots on cylindrical surfaces. The basic approach used here is that
of Silver and Saunders [l]f which is an approximate form of the result
obtained by solving the boundary value problem. The far zone fields
of the slots can be written for the axial slot as (see Figure 2 for

geometric parameters)

%) B/2
~-jkr ) © n —i
e . jn?d

GA(z)esz cos edz ie 1

] jn(D
n=w Hn(z) (ka sin &) 2w FA(Q)e ae
1 -R/2

E =
il mr

Eg= 0, (1)

where the electric field across the slot is characterized by,

GA(z) cosCE?) ‘ (2)

FA(¢) 1.

Integrating tho =quations where necessary the ®-component of the

axial slot becomes,

- T .T
. _e jkr COS( > cos £) 1 enJ cos nd sin(ﬂg) .
& r sin 6 2 Z (2)' nB ’ (3)
T X n=0 H (ka sin 9) (_E
e =1, n =0,
n
e, © 2, n #0, x =ka sin 6.

*
References are indicated by [] and are included as Section V.



Figure 2. Ceometry for Axial Slot on a Cylinder



Patterns were generated for one axial slot located at 0 = 900,
¢ = 90° on a 7-inch radius cylinder. The pattern for this slot is shown
in Figure 3. The slot dimensions used were 1.0-inch by 3.327-inch.
This plot is a three dimensional one with the power pattern shown as
a function of the variables 6 and ¢. The height of the surface above
the floor is an indication of the power intensity along a particular
direction 6, ¢. Care should be exercised when interpreting such plots
since this coordinate transformation implies equal weighting of the
pole and equator regions of the farfield sphere; however, plots of this
type are useful for locating regions of low coverage.

The circumferential slot, unlike the axial, has both a 6 and a ¢
component. The equations describing the two components for a circum-

ferential slot are [ 2],

—'e—jkr 2 jkz cos © m\ ,ne—jn® 1 82 inf
n=-«~ sin 6 Hn (ka sin 0)
o/ 1 Bl
(4)
_‘kr 22 53] 4 (I)
- ] G (z)ejkz cos ed cot 6 njne in 1
D TL c ? ka sin © ;i;ﬂ) (2" 2m
zy H {(ka sin 96)
B2
[ FC(B)eJHBd 8
"B
1 > (5)

where the electric field across the slot is given by

Gc(z) =1,

FC(Q) = cos J%EO s (6)

and the geometric parameters are defined in Figure 4.
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Performing the integration as before, the following useful equations

are obtained.

. a co .
E - —je Jkr a sin [k(2 )cos € ] e 3 cos nd
8 [bs a . (2) ,
[k(2 Ycos 6] & sin 8 Hn (ka sin 8 )
nf
1 cos ( 2 ) (7)
B Gﬂ_)Z _ n2
B
. a o ) *
E = —Zje—Jkr a sin[k(Z)cos ] cot 8 2 : Ejnsin nd
- 1)
2 mr [k(é)cos 6] ka sin 6 - Hn(z) (ka sin 6)
2 n=0
nf
( )
é cos = 2 (8)
&H? - n’
B
These equations were programmed on a digital computer to generate
the pattern of a circumferential slot (see Figures 5,6). For small

values of 6, the above equations for E are invalid; therefore, for
6 = 00, the pattern was assumed to have the same value as for ¢ = 20.
The same dimensions were used for the circumferential slots as for the
axial.
The complete DIGIDOPS antenna pattern was produced by a superposition

of the axial and circumferential patterns. The basic equation used

to add the two patterns was

E_(8,0) = E_(8,0)e 3'1 + E (6,0)e 112

t ) a > EC s e (9)
where a and c¢ denote axial and circumferential patterns, respectively, and

Wl and Y, are the absolute phases of the two slot patterns at the farfield

point (i.e., total phase equal to initial phase plus path length dependence.
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The current configuration (for the models seen at Tyndall Air Force
Base) for the two DIGIDOPS antennas is shown in Figures 7 and 8. The
spacing along the z—axis between the center of the two antennas in 8
inches. Patterns were calculated for the case of two axial antennas, one
on top of the cylinder (® = 90°) and one on the bottom (? = -90°) with
the spacing along the z-axis as 7.0 inches. This pattern is demonstrated
three dimensionally in Figure 9. The Ei pattern for one crossed pair
of slots on the cylinder was calculated and shown in Figure 10. The
total power pattern for the complete system with two DIGIDOPS antennas
is given in Figure 11.

The spacing between the DIGIDOPS antennas was varied in steps of
M& from 0 to A/2 along the z-axis. The patterns for the antennas spaced
zero are given in Figures 12, 13, and 14. The patterns for the antennas
spaced A/4 are given in Figures 15, 16, and 17. The patterns for the
antennas spaced A/2 are given in Figures 18, 19, and 20. The first

. . 2
of the set of three patterns in each group is the EB component. The
2

. 2 . . .
second is the E¢ component, while the third is the total power (E% + E¢).

The plots show that there was no significant change in the coverage
for the three spacings.
(2) Wing Effects
Blockage for the TDU-X DIGIDOPS antennas was taken into account
by deriving an angular mask behind which the antenna patterns were set
to zero. This model assumes no forward or back scattering from the
wings and is sufficient to show the effect of the wings in coverage.

A blockage matrix was drawn up so that the blockage as a function
of 8 and ¢ could be entered into the computer analysis. This matrix
was specified in 2-degree increments in 9 and ¢ .

The blockage matrix for an antenna located above the wings ( %= 90°)
is given in Figure 21. The shaded areas indicate the angles at which
the pattern is set to zero. An example of the effect of the blockage
on a single axial slot located at ¢ = 90° is given in Figure 22.

The blockage matrix for an antenna located below the wings (& = -90°)
is given in Figure 23. 1In this figure, as in the previous matrix diagram,
the shaded areas indicate the angles at which the pattern is set to
zero. An example of the effect of this blockage on a single axial slot

at © = -90° is given in Figure 24.

14
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Figure 9. Calculated Radiation Pattern (E%) for Two Axial Slots
(Positioned on Top and Bottom as Indicated by AFATL) on a Conducting
Right Circular Cylinder Having the Same Diameter as the TDU-X Target.
Wing and Pod Blockage Was Not Included
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Figure 13. Calculated Radiation Pattern (E%) for Two Pairs of Crossed Slots
(Positioned on Top and Bottom as Indicated by AFATL) on a Conducting Right

Circular Cylinder Having the Same Diameter as the TDU-X Target. Wing and Pod
Blockage Was Not Included. (Zero Spacing Between Top and Bottom Antennas)
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Figure 16. Calculated Radiation Pattern (EZ) for Two Pairs of Crossed Slots
(Positioned on Top and Bottom as Indicated by AFATL) on a Conducting Right
Circular Cylinder Having the Same Diameter as the TDU-X Target. Wing and
Pod Blockage Was Not Included. ()\/4 Spacing Between Top and Bottom Antennas)
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Figure 17. Calculated Radiation Pattern (E% + E%) for Two Pairs of Crossed Slots

(Positioned on Top and Bottom as Indicated by AFATL) on a Conducting Right Circular
Cylinder Having the Same Diameter as the TDU-X Target. Wing and Pod Blockage Was
Not Included. ()A/4 Spacing Between Top and Bottom Antennas)
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Figure 18. Calculated Radiation Pattern (Eg) for Two Pairs of Crossed Slots
(Positioned on Top and Bottom as Indicated bv AFATL) on a Conducting Right
Circular Cylinder Having the Same Diameter as the TDU-X Target. Wing and
Pod Blockage Was Not Included. (A/2 Spacing Between Top and Bottom Antennas)
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Figure 19. Calculated Radiation Pattern (Eg) for Two Pairs of Crossed Slots
(Positioned on Top and Bottom as Indicated by AFATL) on a Conducting Right
Cylinder Having the Same Diameter as the TDU-X Target. Wing and Pod Blockage
Was Not Included. (Xx/2 Spacing Between Top and Bottom Antennas)
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(Positioned on Top and Bottom as Indicated by AFATL) on a Conducting Right Circular
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The effect of the total wing blockage for the actual configuration
of DIGIDOPS antennas is given in Figure 25. Where there is blockage,
there is a tendency for the other antenna to fill it. This is a pattern
showing total power (E% + Eﬁ). If the effect of scattering were to
be included the blockage would be filled in even more.

(3) Pattern Gain

The gains for these antenna patterns were calculated using

the basic equation

4WE2

max
G = 10 log 5 ’ (10)
10 ABAD Z sin 6 | Z E° (0, ¢,)]
i 3

Note that this calculation actually yields directivity since element
efficiency is not included. True gain is found by subtracting element
losses from directivity values.

The gains calculated for a single axial slot at ¢ = 90° was 5.35 dB.
The gain calculated for the total power (E% + Ei) of a pair of DIGIDOPS
antennas mounted in the present configuration was 4.1 dB. The gain
for the single slot with blockage was 5.9 dB and for the DIGIDOPS with
blockage was 4.5 dB.

(4) Power Coverage Functions

Power coverage functions are very similar to probability distri-

bution functions in that they depict the relative area of the farfield
sphere over which the power 1is below a certain level versus the level.
This is accomplished by numerically stepping through the data at one
power level at a time and adding up the spherical surface areas over
which the power is below the subject level. Such a plot shows at a
glance the amount of the pattern that is below any given power level.
The plot is a good method for comparing coverage for different antenna
configurations. A composite plot of the coverage functions was made
for the four different DIGIDOPS positions examined earlier to compare
the coverage. There were three different cases plotted, Figures 26,

27, and 28, which show the coverage for Eé, E2 and the total power

¢)
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(Positioned on Top and Bottom as Indicated by AFATL) on a Conducting Right Circular
Cylinder Having the Same Diameter as the TDU-X Target. Wing and Pod Rléckage

Was Included
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(Ez + Ei), respectively. The plots show that for this antenna configu-
ration the coverage does not change significantly with variations in
antenna location. The power coverage function for the total power
(Eg + Ei) for the original position with blockage iﬁcluded is shown
in Figure 29 for comparison.
(5) Summary of Computed Results
The analysis of the DIGIDOPS system on the TDU-X showed that
typically good coverage was attained for the antennas used. The blockage
included did not affect the coverage in the areas needed because of
the tendency of the antennas to fill in the gaps. The location of the
DIGIDOPS antennas on the TDU-X for the positions that were modeled was
not found to affect the antenna pattern nor the coverage significantly.
The principal plane patterns of the final configuration of the
TDU-X scoring antennas are presented in Figures 30 through 35. The
antenna gain is approximately O dBi. These patterns can be compared
with the scale model radiation patterns of Figures 41 through 46. This
comparison will be discussed in the data summary section of the TDU-X
later in this report.
b. TDU-X Command Receiver Antenna
The computer analysis for the command receiver antenna utilized
a slot on a cylinder and the equation presented previously. This pattern
is shown in Figure 36.
c¢. Telemetry Transmitter Antenna and L-Band Augmentation Antenna
The computer analysis for the TDU~X tow target Telemetry Transmitting
stub and L-Band Augmentation Antenna was accomplished by modeling the
antenna as a dipole on the surface of an infinite cylinder in a manner
similar to the DIGIDOP's antenna. As with the DIGIDOP's analysis, this
method does not consider the effect of the finite extent of the tow
target but is sufficient for modeling purposes.
The mathematical model used is that discussed by Carter [3]. The
basic equations used for the 8 and ¢ components of the electric field

are
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Figure 32. Principal Plane Pattern, E¢, TDU-X Scoring
Antennas, Roll Angle 909, Variable Pitch Angle
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Figure 33. Principal Plane Pattern, E8, TDU-X Scoring
Antennas, Roll Angle 90°, Variable Pitch Angle



Figure 34. Principal Plane Pattern, E¢, TDU-X Scoring
Antennas, Pitch and Roll Angles 0°, Variable Yaw Angle
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Figure 35. Principal Plane Pattern, EB8, TDU-X Scoring
Antennas, Roll and Pitch Angles 0°, Variable Yaw Angle
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. .n
EO = j cos 6 [DO + 2 E: j Dn cos ndl , (1)
n=1
T _(_._g__ . e — n .
o = (-3 35 sin ) 24 J nB sin n¢ (12)
n=1
where,
Jn(ka sin ©) (2)
Dn = Jn'(ka sin 9&) - D) Hn' (ka sin 8) , (13)
H " 'n(ka sin 8)
and
1 .
Bn = Jn(ka sin 6) - €2§ka sin 6) Hn(ka sin 8) , (14)
H'n (ka sin 6)
where a is the radius of the cylinder.
The stub antenna was located at ¢ = -90 degrees and the 6 and ¢ com-

ponents. were calculated separately, and the three dimensional patterns
plotted (Figure 37, 38).
3. MEASURED DATA - SCALE MODEL AND FULL SCALE PATTERNS

Scale models of the TDU-X tow target and the BQM-34A wing pod were
fabricated and used in obtaining measured antenna radiation pattern
data. A scale model BOMARC was obtained from Eglin AFB and was used
to model the DIGIDOPS scoring antenna system. Most of the measured
data were obtained on the TDU-X scale model. It should be noted that
this particular effort was done to verify the computed data.
a. TDU-X Tow Target

A one-fifth scale model of the TDU-X tow target was fabricated for
use in the measurement program. A photograph of this model is presented
in Figure 39. The antennas tested with the model were DIGIDOPS, Telemetry,
and L-Band Augmentation.

(1) Scoring Antennas

A photograph of one of the scale model DIGIDOPS scoring

antennas is presented in Figure 40. This antenna was fabricated from
sections of Ku—Band waveguide. Teflon plugs were used to load the cavity-

backed slots in a manner similar to the full scale antennas.
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Only the primary radiation patterns will be presented herein.

A number of patterns were run with a single antenna and were used to
verify computer input data. In addition, some radiation patterns were
made without the target fins to determine the effect on the patterns.

The principal plane plots for the two polarizations are plotted in Figures
41 through 46. A comparison of these data to that of Figures 30 through
35 reveals that the computer modeling, although not exact, is a sufficient
means of determining the coverage characteristics of two target antenna
systems.

Figure 41 shows a principal plane pattern of the TDU-X scoring an-
tennas in the roll plane with the target at a 90-degree pitch angle. Since
the antennas are mounted on the top and bottom of the vehicle, good
pattern coverage is provided in these areas. As a comparison, the computed
pattern is presented in Figure 30. Although the right and left side
coverage is predicted to be lower than the measured coverage, the com-—
parison is favorable.

The horizontal polarization roll plane pattern is presented in
Figure 42 and the expected coverage was obtained. The vertical polari-
zation pitch plane pattern is shown in Figure 43. The predicted pattern
of Figure 32 indicates deep nulls on the nose and tail of the target,
whereas the measured pattern indicates good tail coverage. This differ-
ence is caused by two factors: (1) the reflections from the fins and the
pods enhance the tail coverage and (2) the measured antennas do not
possess the ideal cross polarization characteristics of the antennas
utilized in the pattern predictions. The horizontally polarized pitch
plane pattern is presented in Figure 44. Good agreement exists between
these pattern cuts.

The yaw plane cuts are shown in Figures 45 and 46 for the TDU-X
scoring antennas. Note the blockage effects of the fins in Figures
34 and 35. Although the measured patterns indicate that the blockage
is not as severe as predicted, they do serve as good indicators of the
areas where coverage problems will arise.

The remaining individual @ ;¢ pattern cuts are not included in

this report. These data have been analyzed and summarized and are
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Figure 41. Principal Plane Plot, TDU-X Scoring Antennas, Vertical Polarization, Two

Antennas at Top and Bottom
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Figure 42. Principal Plane Plot, TDU-X Scoring Antennas, Horizontal Polarization, Two Antennas
Located at Top and Bottom
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presented herein in two ways. First, the data have been plotted

in contours as presented in Figures 47 and 48. These two plots are
cylindrical equal spaced projections. The equal spaced projections
distort the pattern contours, but the areas near the nose and tail
(poles) have been expanded. Since tail coverage was of keen interest,
it was felt that this presentation would be best. The plots of Figures
47 and 48 should not be used to determine percentage of total spherical
area covered by certain gain contours. The contour plots are based

on the measured pattern in the coordinate system of Figure 49.

These contour plots of measured data were graphed in another form
as shown in Figures 50 and 51. The second method of presenting the overall
data is the 3-D antenna pattern plots as previously presented (see Figure
25).

In all of the scoring antenna plots presented herein, the gain
of the antenna (i.e., the gain at the maximum power level) is 0 dB.

(2) Telemetry Antemna - TDU-X

The principal plane scale model radiation patterns of the
telemetry antenna are shown in Figures 52 through 55. Both horizontal
and vertical polarization are included.

Lower hemispherical coverage was desired and was obtained except
for the null directly beneath the antenna, which was expected.

(3) L-Band Augmentation Antenna - TDU-X

The principal plane plots of the forward L-Band antenna
are presented in Figures 56 and 57. These patterns are almost identical
to those of the telemetry antenna.

Isolation measurements between the telemetry antenna and the L-Band
augmentation antenna were made over the L-Band frequency range. Typically,
an isolation of 30 dB between these two antenna terminals is maintained
over this frequency range.

b. BQM-34A Drone
The DIGIDOPS scoring antennas were mounted on the outer edge

of the wing—-tip pods as indicated in Figure 58. Scale model antenna

58



66

(DEGREES)

® PITCH ANGLE

NOSE

30
45
60
15
90
105
120

135

165

TAIL

Figure 47.

320

¢ ROLL ANGLE (DEGREES)

Radiation Pattern Contour Plot, TDU-X Scoring Anteunas, Vertical Polarization




09

© PITCH ANGLE (DEGREES)

NOSE
15
30 —
45 —
60 —
75 =
50
105 —
120 ~

135 —

150 —

-6
_53

° Q-sc

Ay

-3

-3¢
_3(

165 =
- -10 —3<
TAIL = { v
T T 1T 1 [ T T 1 [ 1 1 T
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

-3
N
| |

¢ ROLL ANGLE (DEGREES)

Figure 48. Radiation Pattern Contour Plot, TDU~X Scoring Antennas, Horizontal Polarization




19

Figure 49.

0 =90°

Coordinate System to Interpret Radiation

180°

Pattern Contour Plots



AN T

A

Y

dINVE DIWVNAQ ap-0v

62

Nose

Two Antennas Located

Antennas (EG)‘

ing

.

Radiation Pattern Data for TDU-X Scor

Measured
at Top and Bottom

Figure 50.



¢). Two Antennas Located at Top

-X Scoring Antenna (E

Measured Radiation Pattern Data for TDU

Figure 57,
and Bottom

dONVY DIWVNAQ qpP-0t

63



WA ; .
; / ) 7 "~y
PN ; LY h

"y .
e sy e
Ry Ny T~
Sy e I.fftl{\

~7 bl

=

~

~—

paRtes
\ e
y ,.,\._J,\,?\rwuﬁ

31 \
R

Vil

SR
T
e

Tail

TDU-X Telemetry Antenna Radiation Pattern, Vertical

Figure 5Z.
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Figure 53.
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TDU-X Telemetry Antenna Radiation Pattern, Horizontal

Figure 54.

Polarization, Variable Yaw Angle
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TDU-X Telemetry Antenna Radiation Pattern, Horizontal

Polarization, Variable Roll Angle

Figure 55.
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TDU-X L-Band Augmentation Antenna Radiation Pattern,

Figure 56.

Vertical Polarization, Variable Yaw Angle
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Figure 57.

TDU-X L-Band Augmentation Antenna Radiation Pattern, Vertical
Polarization, Variable Roll Angle
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pattern measurements were taken on one T-slot antenna mounted on the
pod without utilizing the main body as a part of the ground. Principal
plane radiation pattern measurements for the scale model antenna (one
antenna only) are shown in Figures 59 through 62. Good coverage was obtained
from the antenna only on the side of the drone where the antenna was
mounted. It is felt that the two antennas, each mounted on the outbeard
side of the wing-tip pods, will act independently of one another.
c. BOMARC Scoring Antennas

The scaled antennas were mounted onto a one-eighth scale mode BOMARC
missile for the radiation pattern measurements. The antennas were mounted on
the left and right sides of the fuselage and forward of the wings at the
station recommended by AFATL. Radiation patterns were measured in the
yaw plane with the roll angle at 0°, 45°, and 90°. Presented in Figures
63 and 64 are the horizontal polarization plots for the 0° and 90° roll
angle cases. The pattern coverage is excellent except for small regions
off the nose and the tail.
d. Full-Scale Measurements

Two X-Band antennas, the cylindrically shaped antenna and the conical
spiral, were each mounted on a cylindrical ground plane for pattern measurements.
The cylindrical antenna had good omni-directional coverage, as expected, whereas
the conical spiral possessed a narrower beamwidth which made it directional.
Two principal plane radiation patterns of the conical spiral are presented
in Figures 65 through 68, which include both linear polarizations. This

particular antenna provides the design antenna pattern coverage.
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Figure 59.
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BQM-34A Scoring Antenna Radiation Pattern, Horizontal

Polarization, Variable Yaw Angle
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Figure 62. BQM-34A Scoring Antenna Radiation Pattern, Horizontal
Polarization, Variable Roll Angle
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Figure 63.
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BOMARC Scoring Antenna Radiation Pattern, Horizontal

Figure 64.

Polarization, Roll Angle 90°, Variable Yaw Angle
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Conical Spiral Radiation Pattern on l4-inch Diameter

Figure 65.

Cylinder, Vertical Polarization, Variable Yaw Angle (10 GHz)
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Figure 66. Conical Spiral Radiation Pattern on l4—inch Diameter
Cylinder, Vertical Polarization, Variable Roll Angle (10 GHz)
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Conical Spiral Radiation Pattern on l4-inch Diameter

Cylinder, Horizontal Polarization, Variable Yaw Angle (10 GHz)

Figure 67.
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Figure 68.
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SECTION III
RESULTS

In general, it can be stated that the computer modeling technique
utilized on this program is an economical approach to the calculation
of antenna radiation patterns of target vehicles. The wide beamwidth
characteristics of the antenna systems evaluated did have an effect
oun the depth and position of radiation pattern nulls in the cases where
two antennas formed the system, such as the DIGIDOPS scoring antennas.
But the envelope of the radiation patterns and the percent coverage of
each system were predicted relatively accurately.

The location of the mounting position for the TDU-X scoring antennas
was determined through the computer modeling technique as described
herein. It was determined that the two antennas should be positioned
on the top and bottom of the tow target and as far aft as possible.

It was determined that the antennas could be displaced from one another
along the fuselage axis without any serious degradation of the desired
rear coverage. Once the antenna positions were determined, based on

the computer prediction data and on the desire to locate the antennas

in a position compatible with other TDU-X equipment, scale model radiation
patterns were made that verified the coverage predicted by the computer
program.

The other TDU-X tow target antennas that were evaluated did provide
coverage in the areas that were predicted and expected. The computed
patterns were verified by measured data on the scaled model.

The wing-tip pod-mounted scoring antennas on the BQM-34A provide
pattern coverage toward each side of the vehicle with some spill-over
(top and bottom), but the percent spherical coverage is much less than
that of the TDU-X scoring antennas. This is caused by the near flat
shape of the outboard side of the pods. Each of the two scoring antennas
could be utilized individually or summed together without little change
in the radiation pattern coverage.

In summary, an economical method of predicting target antenna radiation
pattern coverage has been presented. For the cases where exact positions
of nulls are required, the described scale model measurements also proved

to be an inexpensive route to follow.
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SECTION IV
RECOMMENDATIONS

It is recommended that for future target antennas the following
considerations be made:
(a) Utilize the antenna pattern prediction technique for

determining the location of the antennas and for an esti-
mate of the percent coverage that will be obtained,

(b) Utilize the scale model measurements for the cases where
an antenna system 1s formed from two or more antenna elements
and where severe pattern blockages and/or reflections are
predicted,

(¢) Utilize the scale model measurements to provide reliable
contour plots that might be required by range instrumentation
personnel.

It is also recommended that consideration should be given to expanding
the current antenna pattern prediction computer program to include geome-
trical theory of diffraction techniques. This particular computer program,
although expensive to implement, would be used in situations where time
was an important factor and the scale model measurement program could
not be implemented.

A final recommendation concerns the design of antennas for targets.
It is felt that a program should be pursued that would address the design
of stripline-type, multi~antenna configurations. Microwave and antenna
technology has advanced to the point where these type antenna systems
are viable and economical. It is felt that by utilizing good design
techniques, target antenna systems could be built to be very efficient,
lightweight, and with very little structural out-cuts required. Typi-
cally, three to five antenna systems could be fabricated from a 10-
to 15-inch wide strip that wraps around the fuselage of the target.

In fact, a patch antenna design has recently been developed and tested
in—house that looks very promising for use on target vehicles.

As a final recommendation, the DIGIDOPS scoring antennas need to
be redesigned so that they are more flexible in their positioning on
a target. For example, the slot antennas could be replaced by printed
circuit antennas utilizing a flexible substrate. These antennas

could then conform to the outer surface of most any target of interest.
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At least two ideas have been discussed with the Technical Program Monitor
at ADTC/DLMQ. One of these approaches would specifically address the
targets that could utilize fin-mounted antennas. Because of the com—
plexity of the scoring problem, it is felt that the antenna system should
not be a contributor to any errors that might arise in the analysis of
scoring data. This implies a constant VSWR over a fairly broad band-
width and good radiation pattern coverage. These two requirements are
compatible and can be realized in relatively inexpensive antenna designs.
Since each of the targets has a number of radiating systems which
might cause interference between systems, it will be necessary to
implement a measurement program to determine the electromagnetic inter-
ference perturbations. Although analytical techniques are available
to predict these effects, past experience has shown that a measurement
program is necessary because of the complexity of the problem. With
the high number of transmitting and receiving systems now utilized by
each target, an EMI test program based on MIL-STD-461, which tests for

both emissions and susceptibilities, should be initiated.
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