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1. INTRODUCTION  

This project has had a dual purpose. From an abstract 

viewpoint, it had the academic goal of improving the capability 

to analyze mathematically key questions in nonlinear wave 

propagation. The practical purpose of the project, which was 

at least equally important, was to apply any newly developed 

techniques to practical problems in acoustics. The systems in 

which these problems arise share the common feature that the 

intensity of their signal is very high, e.g. 130 dB in air or 

210 dB in water. As a consequence, the usual results of 

linearized theories are invalidated. As will be revealed in 

the following, the project has been very successful in achieving 

its dual goal. 

2. PREVIOUS STATUS OF THE PROJECT  

Some basic analytical concepts were developed with National 

Science Foundation support while the Principal Investigator was 

a faculty member at Purdue University. Because the research 

project covered by this report is a continuation of that effort, 

it is appropriate to summarize the earlier accomplishments. 

Greater detail than presented here may be found in the overviews 

reported in References [1] and [2]. 

The general approach for studying the propagation of 

acoustic waves having finite amplitude involves formulating the 

problem in terms of a nonlinear (partial differential) wave 

equation. 
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This equation, which governs the velocity potential 0, is 

solved by expanding the potential in a perturbation series. 

0  = col + c202 

The first order term 0 1  is the one obtained from linear theory. 

It is used to represent the 	linear terms, which then become 

source terms for the second order potential 	It It is only 

necessary to solve for the portion of 02  which grows as the 

signal propagates, for it is such behavior which represents the 

cumulative nature of nonlinear distortion. At this stage, the 

potential will have the form 

0 = 6f1 (x1 ,x2 ,x3 ,t) + 6 2x1f2 (x1 ,x2 ,x3 ,t) + 0(6 2 ) 	 (3) 

where f 1 and f2 represent bounded functions of the spatial 

coordinates x1  and time t, with x 1  denoting the propagation 

direction. 

The next step after the potential function is determined 

is to use it to obtain the velocity components and pressure. 

As was true for the potential function, these state variables 

will also contain second order terms which grow. However, such 

behavior is not acceptable in state variables. Correcting this 

situation involves the introduction of a coordinate straining 

transformation. In essence, this step amounts to changing 

variables, under the condition that the change should remove 

any unacceptable terms. The general form of such a transformation 

may be described by letting a i  denote the variable corresponding 

(1)  

(2)  



to the position coordinates x i . Then 

xi  = a i  + cxi  gi (a l ,a 2 ,a 3 ,t) 

where gi  are functions to be determined. 

The research project began in 1974 by considering only 

systems fitting a formulation in terms of rectangular Cartesian 

coordinates. First, planar waves [3] and waves from plates 

[4-6] were studied. Each of these involved a single acoustic 

mode. The extension to multiple modes was achieved in a study 

of two dimensional wave propagation in a duct [7]. Each mode 

j in the small signal (linear) case had a propagation speed c j , 

and the spatial coordinates x i  for each mode were replaced 

by distinct sets of strained coordinates a ij. These qualities 

are described by the following general form for the pressure 

signal. 	N  

P = I: p.J(a .
1J 	.3 

- c.t, a
2J 

 ., a3j ) 
- j = 1  

where the relationship between the strained and physical 

coordinates must be evaluated for each mode j. 

Obviously, not all systems of engineering significance 

have a rectangular geometry. Thus a major emphasis was placed 

on extending the analytical method to curvilinear coordinates. 

This goal was achieved in the studies of cylindrical waves 

[8-9]. The difficulty in studying curvilinear geometries is 

that the source terms in the velocity potential become products 

of higher transcendental functions, such as Bessel functions. 

It does not seem possible to treat such terms directly. Instead 



the derived method infers the overall response by examing the 

response in the far field (the region far from the active boundary). 

This permits replacing complicated mathematical functions by their 

simpler asymptotic representations. After the coordinate 

straining is ascertained in the far field, returning to the near 

field involves concepts drawn from the method of matched 

asymptotic expansions. 

Although this technique was originally developed for a single 

cylindrical wave mode, it was extended to several modes [10] 

just before the principal investigator resigned from the faculty 

of Purdue University. At that time, another major expansion in 

the analytical technique was initiated. 

Integral transforms, such as those of Laplace and Fourier, 

are widely employed in linear acoustics. The same techniques 

cannot be applied directly to nonlinear systems because the 

principal of superposition is not valid. However, it was 

recognized that the perturbation equations that arise in the 

formulation of the velocity potential equations (1) and (2), 

were linear at each step. It seemed appropriate to employ 

integral transforms to solve those equations. 

The correctness of this approach was demonstrated in the case 

of planar waves [11], where a Laplace transform was used to treat 

an arbitrary time dependence. The last accomplishment at Purdue 

University was to begin to apply the foregoing concepts to a 

more complicated problem than any that had been explored 

previously. 



The ultimate goal was to describe the finite amplitude 

signal that radiates from a transducer, such as a loudspeaker, 

which is embedded in a wall. (This is called the "infinite 

baffle problem"). The complications in this system arise even 

in the linear case because the signal makes a transition from 

a quasi-planar wave near the transducer to a quasi-spherical 

wave in the far field, with diffraction effects playing a 

strong role everywhere. Nonlinearity in this case had been 

found experimentally to have a strange effect, in which the 

compression and rarefaction phases of the signal distort in 

different ways. 

The classical infinite baffle problem leads to an 

axisymmetric beam of sound, for which a formulation in terms 

of cylindrical coordinates is appropriate. Rather than 

addressing this complication simultaneously with developing 

the overall procedure, it was decided to study a simpler 

geometry. The transducer was considered to be situated on 

an infinitely long strip; this configuration could be treated 

by using only two Cartesian spatial coordinates, xl  oriented 

normal to the boundary and x2  transferse to the strip. The 

excitation driving the xl  component of particle velocity was 

then described as 

cef(x2)sin[wt-g(x2)];lx2 1 < a 

vlix1=°  = 	0;lx2 1 > a 

where f(x2) represents an arbitrary spatial dependence of the 

amplitude and g(x2) is a comparable phase lag. 



The first portion of the analysis of this problem [12-13] 

was performed before the project at Purdue University was 

terminated. That work was devoted to the evaluation of the 

velocity potential. The first order terms were obtained by 

using a Fourier cosine transform to describe the arbitrary 

spatial variation transverse to the transducer strip. Deter-

mining the second order potential proved to be a far more 

difficult task than in any previous study using the direct 

method. 

The first order term was a transform inversion featuring 

a continuous spectrum of transverse wave numbers k. 

vk 4) 1  = f -x—cos (t- Akxi- ek) cos (kx2) dt 

Ak  = ck(1-k2) 1/2 

where Vk  and ek  are transformed amplitudes and phase lags, 
respectively. 

Using such a representation to form the quadratic source 

terms which excite the second order potential leads to a double 

spectrum over wave number k and n. It was found that the 

portion of the latter which causes cumulative growth (the 

major nonlinear effect) was situated in the narrow band where 

n 	k. The evaluation of this contribution was achieved by 

means of an integration using the method of stationary phase. 

A subsidiary of that analysis was the solution of a pair of 

coupled second order ordinary differential equation which are 

singular in the region of interest. 



Thus, at the closure of the effort at Purdue University, a 

major advance in the analytical technique had been achieved. 

However, the strip transducer problem was not yet solved, 

because all that had been obtained was the velocity potential -- 

it still remained to evaluate the coordinate straining, the 

particle velocity, and the pressure. 

3. RESEARCH AT THE GEORGIA INSTITUTE OF TECHNOLOGY  

The first priority for the Principal Investigator in making 

the transition to his new institution was to become familiar 

with the new computer facility. Once that was achieved the 

remaining questions regarding the infinite strip problem could 

be addressed. 

The expression for the velocity potential that had been 

obtained could be differentiated to find the physical response 

variables. The second order terms in these quantities all 

exhibited a tendency to grow without bound. When u.is used 

to denote any of these variables, their mathematical form was 

found to be 

uj  = pc uj1 (t_Akxl ,x2) 

_2_ 1/2 
"1 	2 u.J  (t-Ak xl'  x2  ) ]dk 

The coordinate straining plays the role of correcting the growth 

tendency indicated by the x11/2 factor. This task was compli-

cated by the fact that equation (8) is in the form of an 

integral. After several attempts, the appropriate choice was 

found by recognizing an analogy with earlier developments. 

(8) 



An integral is essentially a summation, which suggested that 

equation (8) consists of an infinite number of modes having 

infinitesimal amplitudes; a different coordinate straining is 

usually required for each mode. For the infinite strip, such 

a requirement meant that the coordinate straining in equation 

(4) should be dependent on the value of the transverse wave 

number k for the mode forming the integrand in equation (8). 

Even with this basic detail identified, a major question 

still remained. It was found that not all of the growth terms 

could be removed. The appropriate choice for the coordinate 

straining could only be ascertained by developing numerical 

algorithms for digital computer evaluation of the results. 

Subsequently, it was proven analytically that the remaining 

growth term is required for satisfaction of the condition that 

the energy raditing from the boundary be finite. 

Upon conclusion of the analysis, the computer algorithm 

was refined to provide generality and convenience in viewing 

the predicted responses as spatial profiles and temporal wave-

forms. One difficulty that was encountered in the numerical 

work pertains to diffraction integrals whose integrand oscillates 

rapidly. In order to expedite obtaining quantitative results a 

simple Simpson's rule (equal interval) integration scheme was 

implemented. This required a large number of integration points. 

Also, the coordinate transformation, which consisted of a pair 

of simultaneous transcendental equations, had to be solved at 

each integration point by a Newton-Raphson (method of tangents) 



algorithm. In total, this led to a complicated computer program 

which was rather slow. Specifically, some of the spatial 

profiles that were evaluated consumed two minutes of CPU time 

on a CDC 7600 computer. NSF computer funds were quickly consumed 

in evaluating examples of a variety of excitation patterns. The 

analytical details of the coordinate straining, as well as the 

results for one example were described by the Principal Investi-

gator in References [14-16]. 

The major effort in the last part of the project was to 

extend the method for an infinite strip to that of a circular 

transducer. As was mentioned earlier, this involved a 

conversion from two dimensional Cartesian coordinates to 

cylindrical coordinates. At the point where project funds were 

fully expended, the basic approach had been developed. This 

involved a combination of the integral transform techniques 

fors the strip problem, and the inner and outer expansion ideas 

for curvilinear coordinates. The latter was necessary because 

the Hankel transform, whose kernel is a Bessel function, was 

required to treat the axisymmetric geometry. The prospective 

analysis was outlined in a presentation [17]; the details are 

only now being finalized. Final completion and validation of 

the results could prove to be one of the most significant 

developments in the realm of nonlinear acoustics. 



REFERENCES  

1. Ginsberg, J.H., "Recent Development for the Nonlinear 
Distortion of Non-Dispersive Acoustic Waves; Part 1: 
Planar Waves and the Basic Method," Shock and Vibration  
Digest, Vol. 11, No. 7, 1979. 

2. Ginsberg, J.H., "Recent Developments for the Nonlinear 
Distortion of Non-Dispersive Acoustic Waves; Part II: 
Multidimensional Systems," Shock and Vibration Digest, 
Vol. 11, No. 8, 1979, pp. 3-12. 

3. Ginsberg, J.H., "Multi-Dimensional Nonlinear Acoustic Wave 
Propagation: Part 1 -- An Alternative to the Method of 
Characteristics," Journal of Sound and Vibration, Vol. 40, 
No. 3, 1975, pp. 351-358. 

4. Ginsberg, J.H., "Multi-Dimensional Nonlinear Acoustic Wave 
Propagation: Part II--The Nonlinear Interaction of an 
Acoustic Fluid and a Plate under Harmonic Excitation," 
Journal of Sound and Vibration, Vol. 40, No. 3, 1975, 
pp. 359-379. 

	

' 5. 	Ginsberg, J.H., "A Re-Examination of the Nonlinear Interaction 
Between an Acoustic Fluid and a Flat Plate Undergoing 
Harmonic Excitation," Journal of Sound and Vibration, 
Vol. 60, No. 3, 1978, pp. 449-458. 

6. Ginsberg, J.H., "A New Viewpoint for the Two-Dimensional 
Nonlinear Acoustic Wave Radiating from a Harmonically 
Vibrating Flat Plate," Journal of Sound and Vibration, 
Vol. 63, No. 1, 1979, pp. 151-154. 

7. Ginsberg, J.H., "Finite Amplitude Two-Dimensional Waves in 
a Rectangular Duct Induced by Arbitrary Periodic Excitation," 
Journal of the Acoustical Society of America, Vol. 65, 
No. 5, 1979, pp. 1127-1133. 

8. Ginsberg, J.H., "Propagation of Nonlinear Acoustic Waves 
Induced by a Vibrating Cylinder; Part I: The Two-Dimensional 
Case," Journal of the Acoustical Society of America, Vol. 64, 
No. 6, 1978, pp. 1671-1678. 

9. Ginsberg, J.H., "Propagation of Nonlinear Acoustic Waves 
Induced by a Vibrating Cylinder; Part II: The Three-
Dimensional Case," Journal of the Acoustical Society of  
America, Vol. 64, No. 6, 1978, pp. 1679-1687. 

10. Obermann, S.W., "Propagation of Nonlinear Three-Dimensional 
Acoustic Waves Induced by Arbitray Periodic Excitation of 
a Cylinder," M.S. Thesis, Purdue University, 1980. 



11. Ginsberg, J.H., "An Integral Transform Derivation of Simple 
Non-linear Planar Waves in an Acoustic Medium," Journal of  
Sound and Vibration, Vol. 69, No. 4, 1980, pp. 622-625. 

12. Ginsberg, J.H., "On the Nonlinear Generation of Harmonics 
in Sound Radiation from a Vibrating Planar Boundary," 100th 
Meeting of the Acoustical Society of America, University 
of California at Los Angeles, November 17-21, 1980. 

13. Ginsberg, J.H., "Nonlinear Generation of Harmonics in Sound 
Radiation from a Vibrating Planar Boundary," Journal of the 
Acoustical Society of America, Vol. 69, No. 1, 1981, 
pp. 60-65. 

*14. Ginsberg, J.H., "Uniformly Accurate Description of Finite 
Amplitude Sound Radiation from a Harmonically Vibrating 
Planar Boundary," 101st Meeting of the Acoustical Society 
of America, Ottawa, Canada, May 18-22, 1981. 

*15. Ginsberg, J.H., "A Uniformly Accurate Description of Finite 
Amplitude Sound Radiation from a Harmonically Vibrating 
Planar Boundary," Journal of the Acoustical 'Society of  
America, Vol. 69, No. 4, 1981, pp. 929-936. 

*16. Ginsberg, J.H., "A Singular Perturbation Analysis of 
Axisymmetric, Finite Amplitude Sound Beams," 9th Inter-
national Symposium on Nonlinear Acoustics, University of 
Leeds, England, July 20-24, 1981. 

*17. Ginsberg, J.H., "Quantitative Response Patterns for Two-
Dimensional Finite Amplitude Sound Beams," 9th Inter-
national Symposium on Nonlinear Acoustics, University 
of Leeds, England, July 20-24, 1981. 

*These works were supported in part by NSF Grant CME 8026496. 



SCIENTIFIC COLLABORATORS  

Principal Investigator: 	Jerry H. Ginsberg, Professor 
of Mechanical Engineering 

Special Research Assistant: 	Jens F. Nyborg, IAESTE/ 
US Exchange Student from Denmark, 
Summer 1981 

Graduate Student: 	 Kazuhisa Kuda, Participant in a 
special project course, Summer 
1981. 



RECENT INVESTIGATIONS OF THE PROPAGATION OF FINITE 
AMPLITUDE MULTI-DIMENSIONAL ACOUSTIC WAVES 

J.H. Ginsberg* 

Abstract. Phenomena are described that arise in 
multi-dimensional systems in which wave intensity 
is not uniform transverse to the direction of propa-
gation. Use of the direct method and applications of 
integral transforms in the analysis of wave propaga-
tion are described. 

Earlier review articles [1, 2] described a variety of 

interesting phenomena that arise when acoustical 

waves have reasonably large amplitudes; e.g., in 

excess of 120 dB (re 20 pPa) in air or 210 dB (re 

1 14.Pa) in water. The phenomena of wave steepening 

and formation of shocks in planar waves are well-

documented. 

The effects that arise in multi-dimensional systems, 

in which wave intensity is not uniform transverse 

to the direction of propagation, are less familiar but 

equally dramatic. Various techniques have been em-

ployed to evaluate these effects. Multi-dimensional 

systems have resisted exact analytical solutions. As a 

result analytical solutions using perturbation methods 

have received a great deal of attention. 

GENERAL CONCEPTS 

Consider the case of linear waves when the signal 

strength is infinitesimal. In general, the acoustic 

medium is nondispersive; that is, a one-dimensional 
wave having infinitesimal amplitude will propagate 

at the speed of sound regardless of its wavelength. 

However, the speed at which nonuniform waves 

propagate is dependent on the rates of variation in 

the propagating and transverse directions, as might 

be measured by a ratio of wavelengths. In fact, waves 

having comparatively small transverse wavelengths 

decay exponentially rather than propagate [31. Be-

cause the phase speed for propagating waves is 

dependent on a ratio of wavelengths in orthogonal 

directions, individual waves are often found to 

propagate jointly. Thus an acoustic wave can be 

considered to be comprised of groups of waves having 

different wave speeds. 

Let p denote the acoustic pressure and v 1  , v2  , v3  the 

particle velocity components. Then 

p 

vl  

va 

v3  

M 
E 

i = 1 

V1 

V2 

V3 

(1) 

where i represents the group number. Each group has 

a unique phase speed, which is denoted as ci. 

Let x 1  be the direction of propagation. Then each 

group can be written as 

p 

vI  

V2 

V3 

M 
=z 

j - 1 

( P ) ii 
(V I )ii 

(v2 )ij 

(V3 
) ij 

(2) 

The terms to the right of the equality sign are func-
tions of t- /ci, x2 , and x 3 . 

The lack of dispersion for the individual contributors 

to a specific group i has a profound nonlinear effect. 

For discussion purposes nonlinearity can be con-

sidered to create source terms that excite a second 

order linear signal. Because these source terms propa-

gate at the speed of the group from which they are 

formed, a resonant-like condition is established. This 

leads to a cumulative growth of distortion effects 

as the group propagates. 

•School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 



PERIODIC GEOMETRIES 

The direct method described in preceding surveys 

[1, 2] has been particularly successful in evaluating 

nonlinear effects. The first step in the direct method 

is to formulate the problem in terms of the nonlinear 
hyperbolic wave equation governing the velocity 

potential [4] . This partial differential equation is 

solved asymptotically using a singular perturbation 

method [5] . Most investigators have used the method 

of renormalization, in which coordinate straining 

transformations are introduced to describe the dis-
tortion associated with nonlinearity. 

The systems treated in this section have repetitive 

geometric configurations. This permits the use of 

separation of variables to solve the linear differential 

equations. 

The study of two-dimensional waves in a hard-walled 

duct [6] was significant in the development of the 

direct method because of the general nature of the 

excitation. An arbitrary periodic input excited a 
variety of duct modes that were grouped according 

to phase speeds. It was found that the distortion of 

each mode forming a nondispersive group is a conse-

quence of all modes in that group. Furthermore, 

the distortion is not influenced by the responses 

in other groups. This conclusion resulted from the 

fact that a different coordinate straining was found 

for each group. Because the system was two dimen-

sional, two strained coordinates were introduced. 

For group i, they had the form 

= a i  + F ix i  (v i  ) i 

 x2  = P i  + G i x i  (v2  ) 

where Fi and Gi are constants. Each term (p)ii, 

(v i  )ij, and (v2  )ii (j = 1, 2  N) depends on the 

values of ai and Pi. A constant value of ai defines a 

wave front for group i, and constant p i  is a ray. Thus, 

equations (3) define a phenomenon of self-refraction, 

in which the wave fronts and rays for a group are 

distorted by the response in the group. 

A similar conclusion was obtained in an analysis of 

the acoustical waves that result when oppositely 

traveling waves propagate along an infinie plate [7] . 

The investigation followed the method of renormali-

zation for an inviscid medium. However, the method 

of multiple scales, with its increased generality and 

complexity was required to develop the coordinate 
straining in the presence of dissipation. 

The tendency for non-dispersive groups to interact 

only with themselves has been identified in general 

cylindrical [8, 9] and spherical [10, 11] waves. These 

analyses developed the solutions in terms of eigen-

modes of the respective curvilinear coordinate sys-

tem. The analytical techniques employed followed 

the grouping concepts developed for the duct prob-

lem. The method for evaluating the second order 

potential function in curvilinear coordinates was 

identical to that derived for excitation in a single 

cylinder harmonic [12, 13]. In that procedure the 

asymptotic expansion of the response in the far 

field is used to ascertain the coordinate straining. 

The result is then matched to the expansion of the 

response in the near field. 

The primary differences in the analyses of cylindrical 

and spherical waves arise from differences in the 

nature of the dispersion. In the far field, infinitesimal 
spherical waves propagate at the speed of sound, 

regardless of the spherical harmonic to which they 

correspond. Thus, only a single wave group existed 

in the spherical geometry. 

APPLICATIONS FEATURING INTEGRAL 
TRANSFORMS 

A key element in the foregoing analyses was the 

identification of the portion of the second order 

potential that grows as the wave propagates. Identifi-

cation was expedited by the fact that the analogous 

linearized system could be analyzed by separating 

variables in the governing partial differential equa-

tion. Many systems encountered in practice require 

more general solution techniques. The feasibility of 

using integral transforms in the context of the direct 

method was demonstrated in a study of planar waves 

[14]. The Laplace transform was used in the analysis 

to treat an arbitrary time dependence. The coordinate 

straining, which was performed in terms of the trans-

form, was shown to reduce to the result obtained by 
more conventional methods. 

Integral transforms have been implemented in the 

analysis of systems related to the infinite baffle 

problem. Such systems feature the oscillation of a 

(3) 



flat boundary, which results in a confined beam of 

sound when the frequency is sufficiently high. The 
linear solution of these problems is usually formu-

lated in terms of source theory, which leads to the 

Rayleigh integral [3]. However, al alternative formu-

lation using integral transforms has proven to be more 

convenient for nonlinear problems. 

The case of an infinitely long strip on the boundary 

was treated first. A Fourier cosine transform was 

used in an evaluation of the growth of harmonics 
[15] to treat the variation transverse to the axis of 

propagation. The propagating part of the first order 

signal was 
Vk 

= 
0 	

Ak  cos(t-Xkx 1  )cos(kx 2 )dk 	(4) 

where Ak = (1 - k 2
) % and Vk is a transform param-

eter for the excitation. A comparison of this repre-

sentation with equations (1) and (2) reveals that the 

sound beam is composed of a continuous spectrum 

of infinitesimal wave groups. Each group consists 

of a single harmonic that propagates at the non-

dimensional speed 1/Ak. 

Equation (4) leads to source terms occupying a 

double spectrum of transverse wave numbers k. An 

analysis [15] reduced the double spectrum to a single 

one by means of an asymptotic integration (the 
method of stationary phase). In essence this pro-

cedure describes the cancellations resulting from 

destructive interference between higher harmonics. 

The tart found in the integration represents the 

primary contribution to the far field. 

The potential function that resulted from this analy-

sis was the starting point for a companion study [16] 
to determine coordinate straining. It was found that 

the transformation is dependent on the transverse 

wave number, specifically 

t-Xkxi =1,1/k - eskxi %  sin(4/k-ir/4)cos(nk) 

(5) 

kx2 =17k - eskx2 cos(1(rk - tr/4)sin(nk)  

in the spectrum of transverse wavelets forms a wave-
let. Because the phase speed of the wavelet is an 

analytical function of its wave number, it forms an 

individually propagating group. The distortion of 

each group is independent of the response in other 

groups. 

The same type of analysis was employed to study the 

more realistic problem of axisymmetric sound beams 

[17]. The unique feature was the treatment of the 
variation of the signal transverse to the beam axis. 

Because it was convenient to use cylindrical coordi-

nates to treat the spatial dependence, a Henkel 

(Fourier-Hankel) transform was used. The analysis 
of the second order potential was achieved off the 

beam axis in order to simplify the representation of 

the Bessel functions that appear in the integral 
transform. The method whereby the off-axis response 

was matched to the on-axis result is derived from the 

treatment of cylindrical waves that propagate in the 

radial direction [12]. 

The waveform in both the strip and axisymmetric 

beam configurations displayed a type of distortion 

that is not observed in periodic geometries. Wave 

steepening due to amplitude dispersion occurs even 

in one-dimensional waves [3]. The figure displays 

some typical waveforms for the axisymmetric sound 
beam; it exhibits such distortion. (The dotted curves 

are the predictions of linear theory.) It can be seen 

that the shape of the compression phase is high and 

narrow; the rarefaction phase is broad. This predic-

tion is consistent with experimental observations [18, 

19]. 

where 'k  and nk  are the strained coordinates, and 

sk is a coefficient that depends on Vk and Ak. The 

variables Vik and n k  replace t-Xkx 2  and kx 2  respec-

tively in equation (4). 

This result is consistent with the earlier observation 	Waveforms on Axis in an Intense Sound Beam 

regarding wave groups. Each infinitesimal segment 	in Water. ka --- 20; maximum pressure, 240 dB 



Comparable predictions have been reported in the 
Soviet literature [20-251. In these analyses finite 

difference techniques were used to solve a modified 

version of Burger [26] that is often used as a proto-

typical equation for nonlinear waves. The modifi-

cation [27, 28] is intended to account for spreading 

transverse to the beam axis. However, the assump-

tions made in the derivation of the modified equation 
are prone to error when small scale diffraction effects 

are involved. 

Analyses and experimental observations of sound 

beams indicate that the asymmetry in the profile 

occurs when the excitation is sufficiently strong to 

cause significant distortion in the near field, where 

the beam resembles a quasi-planar wave [191. Less 

strong excitations result in a transition of the sound 
beam to a quasi-spherical in the far field [3] . The 

mechanism underlying this change in distortion type 

is a current research topic. 
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