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SUMMARY

Beams are structural members with one dimension much larger than the other

two. Examples of beams include propeller blades, helicopter rotor blades, and high aspect-

ratio aircraft wings in aerospace engineering; shafts and wind turbine blades in mechani-

cal engineering; towers, highways and bridges in civil engineering; and DNA modeling in

biomedical engineering. Beam analysis includes two sets of equations: a generally linear two-

dimensional problem over the cross-sectional plane and a nonlinear, global one-dimensional

analysis.

This research work deals with a relatively new set of equations for one-dimensional beam

analysis, namely the so-called fully intrinsic equations. Fully intrinsic equations comprise a

set of geometrically exact, nonlinear, first-order partial differential equations that is suitable

for analyzing initially curved and twisted anisotropic beams. A fully intrinsic formulation

is devoid of displacement and rotation variables, making it especially attractive because

of the absence of singularities, infinite-degree nonlinearities, and other undesirable features

associated with finite rotation variables.

In spite of the advantages of these equations, using them with certain boundary con-

ditions presents significant challenges. This research work will take a broad look at these

challenges of modeling various boundary conditions when using the fully intrinsic equations.

Hopefully it will clear the path for wider and easier use of the fully intrinsic equations in

future research.

This work also includes application of fully intrinsic equations in structural analysis of

joined-wing aircraft, different rotor blade configuration and LCO analysis of HALE aircraft.

xvii



CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

Beams are structural members with one dimension much larger than the other two. Ex-

amples of beams include propeller blades, helicopter rotor blades, and high aspect-ratio

aircraft wings in aerospace engineering; shafts and wind turbine blades in mechanical engi-

neering; towers, highways and bridges in civil engineering [34]; and DNA and vein modeling

in biomedical engineering. Beam analysis includes two sets of equations: a generally lin-

ear two-dimensional problem over the cross-sectional plane [20, 5, 65, 32] and a nonlinear,

global one-dimensional analysis. An extensive literature survey of the modern history of

beam analysis can be found in Ref. [32].

This work deals with a relatively new set of equations for one-dimensional beam analysis,

namely the so-called fully intrinsic equations [31]. Fully intrinsic equations comprise a set

of geometrically exact, nonlinear, first-order partial differential equations that is suitable

for analyzing initially curved and twisted anisotropic beams. A fully intrinsic formulation

is devoid of displacement and rotation variables, making it especially attractive because

of the absence of singularities, infinite-degree nonlinearities, and other undesirable features

associated with finite rotation variables.

Ref. [33] presents a wide literature review of the fully intrinsic equations. The concept of

fully intrinsic equations for dynamics of beams goes back over 25 years before the publication

of Ref. [31], at least back to the work of Hegemier and Nair [24]. However, the equations of

Ref. [31] appear to be unique in that (a) they constitute a geometrically exact, fully intrinsic,

dynamic formulation including initial curvature and twist, shear deformation, rotary inertia,

and general anisotropy and (b) their use is explicitly suggested for a dynamic formulation

without their being augmented with some form of angular displacement variables, such as

orientation angles, Rodrigues parameters, or the like used in mixed formulations [25].

Fully intrinsic formulations have been used to study the static equilibrium behavior of

1



statically determinate beams [40] and the dynamics of cables and DNA molecules [22]. These

equations have been applied to the aeroelastic analysis of HALE aircraft in the computer

code NATASHA (Nonlinear Aeroelastic Trim and Stability Analysis of HALE Aircraft)

[44, 11, 60]. They were also applied to the modeling helicopter rotor blades [46, 19] and to

the simulation of ground vibration testing of HALE aircraft [8]. Finally, and most recently,

detailed studies of the free-vibration [10] and stability [9] of curved beams were presented

using fully intrinsic equations.

The rest of this chapter presents a discussion of the motivations for this work, a brief

literature review on joined-wing aircraft, and helicopter rotor blades (two different applica-

tions of fully intrinsic equations which are addressed in this work). In Chapter 2 the fully

intrinsic equations are briefly introduced. Chapter 3 is devoted to some general insight

of using fully intrinsic equations with different boundary conditions. Chapter 4 presents

detailed introduction of the incremental method and joined-wing aircraft. Chapter 5 deals

with applications to helicopter rotor blade dynamics. Finally, conclusions and future work

will be presented in Chapter 6.

1.1 Motivation

In spite of all the advantages of fully intrinsic equations, using them with certain boundary

conditions can present some challenges. So far, these equations have been used to model

structures with simple boundary conditions [44, 11]. This research will take a broad look at

challenges of modeling various boundary conditions when using the fully intrinsic equations.

This research hopefully will clear the path for wider and easier use of the fully intrinsic

equations in future research. Next, the fully intrinsic equations are applied to more complex

structures such as joined-wing aircraft and helicopter rotor blades.

1.2 Joined-wing aircraft

The joined-wing concept, as introduced by Wolkovitch [63], features diamond-shapes in

the planform and front views. High-altitude long-endurance (HALE) aircraft usually have

high-aspect-ratio wings, resulting in greater flexibility than conventional aircraft. Recently,

the joined-wing concept has been revisited as a lighter alternative configuration for HALE
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aircraft. The analysis of such aircraft requires the development of nonlinear analysis and

special design tools. Due to the unusual topology of joined-wing airplane configurations,

the effects of structural deformation on the static aerodynamic and aeroelastic behavior are

more difficult to predict. Deformation of the structure at certain locations may produce

large changes in angle of attack at other locations of the lifting surfaces. Efforts to mini-

mize structural weight may create aeroelastic instabilities that are not encountered in more

conventional aircraft designs. For a joined-wing aircraft, the first sign of failure may be in

the buckling of the aft member as the structure is softened. Flutter and divergence may

also become problems in these members due to the reduction in natural frequencies as they

go into compression. As the aircraft becomes more flexible, the nature of the geometric

structural nonlinearities become more important.

Several analyses have been developed to address the unique features of joined-wing

aircraft. The oldest appears to be in 1991 [36] in which a parametric study of aerodynamic,

structural and geometric properties of joined-wing aircraft is performed. Rather than cite

individual works in the 1990s, we here refer to a survey by Livne [39] of works pertaining

to joined-wing aircraft and their aeroelastic behavior through 2001.

After 2001, we note works pertaining primarily to structural aspects separately from

those that consider aeroelastic phenomena. Primarily structures-oriented studies include

Refs. [2, 50], which focus on design of a joined-wing configuration with consideration of dif-

ferent structural and geometric properties. Patil performed a nonlinear structural analysis

of a joined-wing using a mixed formulation [43] and compared his results with experimental

data [17]. Ref. [37] performs a study on buckling phenomena in joined-wing aircraft. Ref.

[23] uses an equivalent static load and beam theory in optimization of joined-wing aircraft.

Finally, there are several experimental works on joined-wing aircraft [17, 47, 4] that are

primarily structural in nature.

Those analyses and investigations after 2001 that deal with aeroelastic effects begin with

Weisshaar and Lee [62] who investigate the effects of joined-wing aircraft geometry, mass

distribution and structural design on aeroelastic flutter mechanisms and aircraft weight.

They also show how weight, strength and stiffness should be distributed for an effective
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design. Their work relied on two different methods: a Rayleigh-Ritz method and the static

and dynamic aeroelastic analysis capabilities in ASTROS (Automated STRuctural Opti-

mization System) [62]. Cesnik et al. [7, 6] introduced an approach to effectively model

the nonlinear aeroelastic behavior of highly flexible aircraft. The analysis was based on

a nonlinear finite element framework in which nonlinear strain measures are the primary

variables instead of displacements and rotations. The resulting low-order formulation cap-

tures large deflections of the wings along with the unsteady subsonic aerodynamic forces

acting on them. An integrated process is presented in Ref. [3] that advances the design

of an aeroelastic joined-wing concept by incorporating physics-based results at the system

level. For example, this process replaces empirical mass estimation with a high-fidelity an-

alytical mass estimation. Elements of nonlinear structures, aerodynamics, and aeroelastic

analyses were incorporated along with vehicle configuration design using a traditional finite

element analysis. Ref. [13] focuses on the aeroelastic behavior of joined-wing aircraft with

particular attention to the effect of structural nonlinearity on divergence and flutter. Ref.

[14] uses a modal reduction method and meanwhile tries to capture nonlinearity effects.

Later, using the same method, Demasi et al. [15] performed an aeroelastic analysis of a

joined-wing aircraft model. Ref. [16] presented a parametric study on aeroelastic behavior

of two types of joined-wing aircraft. Ref. [38] studied a gust response sensitivity analysis for

a joined-wing model. Ref. [56] uses an incremental method to revisit some of the parametric

studies presented by Ref. [36]. A formulation for a symmetric and balanced maneuvering

load alleviation taking into account the aircraft flexibility has been derived in Ref. [41].

1.3 Helicopter rotor blades

As it is shown in chapter 3 fully intrinsic equations are very suitable for modeling rotating

beams. This research includes using fully intrinsic equations in dynamic response and

eigenvalue analysis. This part of work is sponsored by Bell Helicopter Textron.

Many papers have been published on the general subject of modeling helicopter blade

dynamics and aeroelasticity. The literature is so overwhelmingly rich that a comprehensive

literature review is clearly not within the scope of this work. Here are only a few examples:
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Refs. [28, 26, 64, 66] in structural dynamics of rotor blades and [29, 51, 61, 12] in aeroleastic

analysis of helicopter blades and/or rotors. Most approaches to helicopter structural or

aeroelastic analysis have made use of some kind of rotational parameters, such as orien-

tation angles or Rodrigues parameters. Using instead the fully intrinsic equations [31] is

both convenient and novel, since there is no need for rotational parameters, and the maxi-

mum degree of nonlinearity is only two. Ref. [46] and [19] used fully intrinsic equations to

study single-load-path bearingless helicopter rotor blades. This work uses the fully intrinsic

equations in more complex helicopter rotors, a contribution that is missing in the literature.
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CHAPTER II

GENERAL THEORY – FULLY INTRINSIC EQUATIONS

In this chapter the foundation of this thesis is reviewed. The fully intrinsic equations [31]

are introduced briefly, as well as typical solution procedures for these equations.

This chapter is mostly adopted from Refs. [44, 57], with the authors’ permission.

2.1 Frames of reference

Figure 1 shows a beam in its undeformed and deformed states. At each point along the

undeformed beam axis, a frame of reference b(x1) is introduced; and at each point along

the deformed beam axis, a frame of reference B(x1, t) is introduced. Here are other frames

of reference which are used in this work:

1. Inertial frame of reference, i. The unit vector i3 is in the opposite direction of gravity.

2. Aerodynamic frame of reference, a. Aerodynamic lift and moment are defined in this

frame. a2 and a3 are defined in the airfoil frame with a3 pointing perpendicular to

the aerodynamic surface.

The fully intrinsic equations contain variables that are expressed in the bases of frames

b and B and can be written in compact matrix form as [31]

F ′B + K̃BFB + fB = ṖB + Ω̃BPB

M ′B + K̃BMB + (ẽ1 + γ̃)ΩB +mB = ḢB + Ω̃BHB + ṼBPB

(1)

V ′B + K̃BVB + (ẽ1 + γ̃)ΩB = γ̇

Ω′B + K̃BΩB = κ̇

(2)

 γ

κ

 =

 R S

ST T


 FB

MB

 (3)
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Figure 1: Sketch of beam kinematics

 PB

HB

 =

µ∆ −µξ̃

µξ̃ I


 VB

ΩB

 (4)

Equations (1a) and (1b) are partial differential equations for linear and angular mo-

mentum balance, respectively. Equations (2) are kinematical partial differential equations.

Equations (3) and (4) are constitutive equations and generalized velocity-momentum equa-

tions. This is a complete and closed set of algebraic and first-order partial differential

equations. The strain- and velocity-displacement equations are implicit in the intrinsic

kinematical partial differential equations [31].

As mentioned before, fully intrinsic equations include neither displacement nor rotation

variables. However, displacement at any point and direction cosines for any vector of interest

can be calculated either during a simulation or as a post-processing step. For example, the
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direction cosines of bi and Bi may be found as

(Cbi)′ = −k̃Cbi

(CBi)′ = −(k̃ + κ̃)CBi
(5)

and the measure numbers of position vectors for the undeformed and deformed beam may

be found from

r′i = Cibe1

(ri + ui)′ = CiB(e1 + γ)
(6)

where the superscript i represents an inertial frame of reference.

2.2 Solution procedure

Equations (1) – (3) comprise a system of algebraic-partial differential equations. Fortunately

in case of linear constitutive laws, it is very easy to put the system into the form of partial

differential equations by substituting expressions for γ and κ from the algebraic Eqs. (3a)

and expressions for P and H from the algebraic Eqs. (3b) into Eqs. (1) and (2). This work

deals with the case of linear constitutive laws. In this case, the resulting system of governing

equations will consist of 12 partial differential equations, each one of which is first order in

x1 and t; the system thus needs 12 boundary conditions and 12 initial conditions.

One method to solve the partial differential equations is to simultaneously discretize

both in time and space [22], leading directly to a time simulation analysis. This approach

can be very costly. Common but less general approaches to solving these equations generally

consist of two steps: First, find a steady-state solution, and second linearize the governing

equations about the steady-state solution. The steady-state solution may or may not be

time-dependent. For example, the equations governing a static steady-state solution may

be found by dropping all time derivatives and all time-dependent terms. Then, a set of

nonlinear algebraic equations can be derived by applying a finite element or finite difference

spatial discretization [46]. In the second step, once a steady-state solution is found, one may

linearize about it. The resulting homogeneous, linearized, ordinary differential equations

may be time-varying, which is often the case in stability analysis of rotating systems. Even

in such cases, it is sometimes possible to reduce the solution to that of an eigenvalue problem

8



without periodic coefficients; for example, in the analysis of multibladed rotors one may do

so by employing the method of multi-blade coordinates. When this is possible, it obviates

the computationally expensive application of Floquet theory [18]. When the homogeneous,

linearized, ordinary differential equations are not time-varying, they can be discretized using

a finite element or finite difference spatial discretization, and the resulting linear algebraic

equations solved as a generalized eigenvalue problem. This work focuses on those challenges

regarding various boundary conditions for steady-state and constant-coefficient eigenvalue

problems.

Figure 2: Typical element of a beam

Figure 2 shows a typical discretization of a beam. One may use a simple central differ-

encing for force, moment, velocity and angular velocity or linear shape functions for these

variables. A discretized form of the fully intrinsic equations can be written in the form

F̂n+1
l − F̂nr

dl
+ (κ̃

n
+ k̃n)Fn + f

n − Ṗn − Ω̃
n
P
n = 0

M̂n+1
l − M̂n

r

dl
+ (κ̃

n
+ k̃n)Mn + (ẽ1 + γ̃

n
)Fn +mn − Ḣn − Ω̃

n
H
n − Ṽ

n
P
n = 0

V̂ n+1
l − V̂ n

r

dl
+ (κ̃

n
+ k̃n)V n + (ẽ1 + γ̃

n
)Ωn − γ̇n = 0

Ω̂n+1
l − Ω̂n

r

dl
+ (κ̃

n
+ k̃n)Ωn − κ̇n = 0

(7)

where fn and mn account for the external forces and moments applied on the nth element.

The element variables (Xn) are secondary variables, which are related to the primary nodal

variables as follows:

F
n =

F̂n+1
l + F̂nr

2

M
n =

M̂n+1
l + M̂n

r

2

V
n =

V̂ n+1
l + V̂ n

r

2

Ωn =
Ω̂n+1
l + Ω̂n

r

2

(8)
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Variables are assumed to be different at right and left side of each node, so one can easily

account for discontinuity at each node.

The fully intrinsic equations have been used in the computer code NATASHA (Non-

linear Aeroelastic Trim and Stability of HALE Aircraft). The present research includes a

wide validation study of NATASHA [60]. Another computer program that falls within the

scope of the present research has been developed for Bell Helicopter Textron, BAAR (Bell

Aeromechanics Analysis for Rotors).

2.3 Example

In order to illustrate the concept of fully intrinsic equation, the traditional displacement

equation of a uniform, isotropic beam is written in the form of fully intrinsic equations.

Figure 3 shows an element of a beam in b2− b1 plane. The following assumptions are used

in the most simplest beam theory for this problem.

Figure 3: Sketch of an element of a beam

• Euler- Bernoulli beam theory

• Neglecting the effect of rotary inertia

• Isotropic, uniform beam
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• Linear theory

Assumption of linear theory means deformed and undeformed configuration assumed to be

very close to each other; therefore, the equilibrium equations are written about undeformed

state instead of deformed state. The following equation shows the displacement based

governing equations of this beam.

(EIu′′)′′ + µü = f2 (9)

where u is transverse displacement in b2 direction, µ is mass per unit of length, f2 is the

transverse distributed load, ( )′ is derivative with respect to x and ˙( ) is derivative with

respect to time (t). The derivation of this equation can be found in Ref. [35]. Bending mo-

ment is proportional to curvature. One can find this relationship by writing the equilibrium

equation over the cross section of the beam. Curvature can be written as

κ3 = u′′ (10)

so

EIu′′ = M3 (11)

Substituting Eq. (10) in Eq. (11), one will have

κ3 =
M3

EI
(12)

Equation (12) is the simplified form of Eq. (3) for the simple problem at hand. One can

also write velocity as time derivative of displacement.

u̇ = V2 (13)

Therefore

ü = V̇2 (14)

Substituting Eq. (14) and Eq. (13) into Eq. (9)

M ′′3 + µV̇2 = f2 (15)
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and

µV2 = P2 (16)

Equation (16) is the simplified form of Eq. (4). Finally, Eq. (15) is simplified as

M ′′3 + Ṗ2 = f2 (17)

Using the following equilibrium (moment balance) equation, one can write Eq. (17) in first

order form.

M ′3 + F2 = 0 (18)

Substituting Eq. (18) into Eq. (17) one will have

F ′2 + f2 = Ṗ2 (19)

Equations (17) and (18) are the equations of motion for the problem at hand (simplified

form of Eq. (1)). One also needs to write strain-displacement equation. In this case strain-

displacement equations is Eq. (10). One can write the slope of the beam (θ3) as u′ because

of the Euler-Bernoulli assumption. Hence,

θ̇3 = Ω3 (20)

Therefore,

θ̇′3 = Ω′3 = u̇′′ = κ̇3 (21)

also

V ′2 = u̇′ = Ω3 (22)

Equations (21) and (22) are the simplified kinematical partial differential equations (Eqs.

(2)) for the problem at hand. Finally, the fully intrinsic equations for this simple example
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are

F ′2 + f2 = Ṗ2

M ′3 + F2 = 0

κ3 =
M3

EI

P2 = µV2

V ′2 − Ω3 = 0

Ω′3 = κ̇3

(23)
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CHAPTER III

FULLY INTRINSIC EQUATIONS AND BOUNDARY CONDITIONS

Fully Intrinsic Equations are geometrically exact and constitute a closed set of equations,

even though they include neither displacement nor rotation variables. They do not suffer

from the singularities and infinite-degree nonlinearities normally associated with finite ro-

tation variables. In fact, they have maximum degree of nonlinearity equal to two. In spite

of these and other advantages of these equations, using them for problems with certain

boundary conditions may not be straightforward. This chapter will examine the challenges

of modeling various boundary conditions using fully intrinsic equations, thus helping future

researchers to decide whether or not the fully intrinsic equations, are suitable for solving a

specific problem and elucidating pathways for their application to more general problems.

The material of this chapter is adapted from Refs. [57, 55].

In the fully intrinsic equations, the beam kinematics are described by velocity and

angular velocity variables instead of displacement and rotation. In a rotating beam, even

for a steady-state solution with no external forces or moments, the angular velocity is

nonzero and the velocity varies along the beam. As it will be shown later, when using

fully intrinsic equations to solve problems for rotating beams versus non-rotating beams,

nonzero values for velocity and/or angular velocity can make a fundamental difference. This

observation turns out to be quite helpful when solving fully intrinsic equations.

In this chapter, boundary conditions for steady-state solutions of non-rotating beams will

be discussed, followed by a parallel discussion relating to rotating beams. Later, boundary

conditions for the solution of the resulting eigenvalue problems will be discussed. Finally, a

series of simple examples will be solved to illustrate different methods of applying boundary

condition for fully intrinsic equations.
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3.1 Boundary condition for steady-state solution of non-rotating beams

For static or steady-state problems, either natural boundary conditions in terms of force

and moment (F and M) or geometric boundary conditions in terms of displacement (u)

and direction cosine matrix (CBi) may be prescribed. When velocity and angular velocity

(V and Ω) are not identically zero all along the beam, boundary conditions on displacement

may replaced with equivalent boundary conditions on velocity, and those on rotation with

equivalent conditions on angular velocity. When velocity and angular velocity (V and Ω)

are identically zero all along the beam, geometric boundary conditions on displacement and

rotation can be expressed in terms of integrals of strain (γ) and curvature (κ) measures

using Eqs. (5) and (6) , thus keeping the formulation intrinsic.

3.1.1 Statically determinate structures

Clamped-free beam: The boundary conditions for a clamped-free beam are

VB = 0

ΩB = 0

 at the clamped end (24)

FB = 0

MB = 0

 at the free end (25)

In this case, since every single equation has a boundary condition that can be associated

with it, the problem will be always well posed [60]. Boundary conditions can prescribe zero

or nonzero values at the end(s), e.g. consider a beam with a clamped root and a follower

force at its tip.

Note that in a problem involving only static behavior, V and Ω are identically zero, and

the structure is statically determinate. However, providing boundary conditions in terms

of each may avoid singularities in the numerical procedure in case it contains velocity and

angular velocity variables.

Clearly a clamped-free beam is the perfect problem to be solved with fully intrinsic

equations.
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Free-free beam: A practical problem of interest that is very well suited for the fully

intrinsic equations is a flying wing [44, 11, 59], which can be modeled as a free-free beam.

The boundary conditions for a flying wing are simply

FB = 0

MB = 0

 at both free ends (26)

Although this looks very simple and intuitive, it actually is a very special case. The problem

is physically well-posed only if the wing is under load (e.g. thrust, gravity and aerodynamic

loads). In the presence of these kinds of forces, the velocity and angular velocity equa-

tions will have enough coupling with force and moment equations that the above boundary

conditions on force and moment will allow the problem to be solved [44].

3.1.2 Statically indeterminate structures

Modeling statically indeterminate structures can be problematic with fully intrinsic equa-

tions, specially for non-rotating beams. When velocity and angular velocity are identically

zero, Eqs. (2) will be trivial and will not provide any new information. Hence, the remaining

equations, namely equations for equilibrium, Eqs. (1), and constitutive laws, Eqs. (3), are

not sufficient to solve the problem. Certain strain-displacement equations will be needed

in general. If the full nonlinear strain-displacement relations are used along with some

measure of rotation, the advantages of the fully intrinsic equations are lost. To avoid this,

the authors developed an alternative approach based on an incremental method [54]. This

method is introduced, validated and applied in modeling joined-wing aircraft in Chapter 4

In many cases fully intrinsic equations in their original form can be used for statically

indeterminate structures making use of Eqs. (5) and (6), especially when beam is initially

curved or twisted. Here are some classical examples:

Pinned-pinned beam: A pinned-pinned beam with immovable ends is statically inde-

terminate, but if all equations that are trivially satisfied (i.e. zero equals zero) are excluded

from the total set of governing equations, then the fully intrinsic equations in their original

form can be used [10] (Otherwise one should provide appropriate boundary conditions for
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trivially satisfied equations as well to avoid numerical difficulties). Note, however, that the

boundary conditions depend on the type of pin at each end. The boundary conditions on

force and moment are Fi = 0 or Mi = 0, where i is an appropriate axis (i =1, 2 or 3). The

remaining boundary conditions are of the geometric type, and they can be applied in terms

of relative displacement and rotation between the two ends of beam as follows:∫ N

M
r′idx1 = rNi − rMi =

∫ N

M
Cibe1dx1∫ N

M
(ri + ui)′dx1 = rNi − rMi =

∫ N

M
CiB(γ + e1)dx1

(27)

and

CiBM CBiN = ∆ (28)

where M and N identifies nodes at the two ends of the beam, and CiBN is the matrix of

direction cosines of the inertial frame relative to the deformed beam cross-sectional frame

at point N .

Clamped-clamped beam: For a clamped-clamped beam with immovable ends, all bound-

ary conditions are geometric and are imposed using Eqs. (27) and (28). For instance, for a

clamped-clamped beam with length L boundary conditions are∫ L

0
(ri + ui)′dx1 =

∫ L

0
CiB(γ + e1)dx1 = L (29)

and

CiBx1=0C
Bi
x1=L = ∆ (30)

In general, calculating an analytical Jacobian is very tedious for these equations, so in many

cases the use of a numerical Jacobian is inevitable. Moreover, for beams with zero initial

curvature and twist, finding a good initial guess for solving the resulting non-linear algebraic

equations can be difficult. Hence, in many cases the incremental method may be advisable.

This point will be illustrated in Chapter 4.

3.2 Beams restrained by translational and rotational springs

One straightforward method in modeling beam boundary conditions that are enforced by

rotational and/or linear springs is to introduce displacement or rotation variables only at the
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point(s) needed. This does not compromise any advantages of the fully intrinsic equations

since the displacement and rotation are local, and they will only add a few extra variables.

In most cases, the number of these extra variables is small compared to the total number

of variables needed to model the beam. The same approach can be taken for modeling

various joints. This approach was used in [8] to formulate equations for simulation of the

ground vibration test for HALE aircraft. In case velocity and angular velocity variables

are not identically zero, such as when modeling rotating blades or high-aspect-ratio wings

undergo aerodynamic forces, it is possible to express such extra variables in terms of velocity

and angular velocity variables, so that the equations and boundary conditions remain fully

intrinsic. Examples 3.5.2 and 3.5.3 pertain to this.

3.3 Boundary conditions for steady-state solution of rotating beams

Rotating beams are ideal problems to be solved using fully intrinsic equations, since ro-

tation implies nonzero values for V and Ω. In this case Eq. (2) is not trivially satisfied.

Hence, for rotating beams, both statically determinate and indeterminate structures can

be easily analyzed with fully intrinsic equations. A simple and quite fundamental example

of a statically indeterminate structure may be found in a clamped-clamped rotating beam

with immovable ends. Although it may not be of immense practical importance, it is a

good example to illustrate how nonzero velocity and/or angular velocity helps in describing

boundary conditions in the case of a statically indeterminate structure. This problem will

be addressed as Example 3.5.1.

Problems involving a beam with at least one end subject only to natural boundary

conditions, are actually easier to solve using the fully intrinsic equations since there will

be at least one direct boundary condition in term of force or moment. Fully intrinsic

equations are ideally suited for problems involving rotating beams with a free end, which

have applications in modeling helicopter and wind turbine rotor blades.

3.4 Boundary conditions for linearized free-vibration analysis

A generalized eigenvalue problem can be derived by linearizing the discretized, fully intrinsic

equations about a steady-state solution. Since the eigenvalue problem represents a dynamic
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problem, fully intrinsic equations work well for all kinds of boundary conditions. One needs

to enforce any displacement boundary conditions on velocity instead, and any rotation

boundary conditions on angular velocity instead. With the use of velocity and angular

velocity to describe geometric boundary conditions, however, rigid-body modes will not be

eliminated from the results.

If the structure is supported by linear and/or rotational springs extra local variables can

be introduced as was done in the steady-state case. In most cases, however, for dynamic

problems these boundary conditions can be transformed so as to be written in terms of

velocity and angular velocity variables instead. This allows the formulation to remain fully

intrinsic. Examples 3.5.2 and 3.5.3 below follow this approach.

3.5 Examples

3.5.1 Ex. 1: Clamped-clamped rotating beam

Figure 4: Schematic of a clamped-clamped rotating beam

Consider a rotating, clamped-clamped beam, undergoing steady-state deformation with-

out applied loads; Fig. 4 shows this structure. The only nonzero variables are axial force,

the angular velocity component about an inertially fixed axis, and the velocity component

perpendicular to the angular velocity vector. Assuming the beam has a prescribed angular

velocity in the B3 = b3 = i3 direction given by ω3, then it means that Ω3, V2 and F1

are the only nonzero variables. The governing equations for this deceptively simple-looking

problem are

Ω̄+
3 = 0

F̄+
1 = −Ω̄3V̄2

V̄ +
2 = 1 + F̄1α

2

(31)
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the boundary conditions of which are

V̄2(0) = 0

V̄2(1) = 1

Ω̄3(0) = 1

(32)

where

Ω̄3 =
Ω3

ω3

F̄1 =
F1

µω2
3R

2

V̄2 =
V2

Rω3

x =
x1

R

( )+ =
d( )
dx

α2 =
µω2

3R
2

EA

(33)

and where µ is the mass per unit length, and beam has length R. The axial strain γ11 is of

the order of α2 << 1.

This set of equations actually has an analytical solution of the form

F̄1 =
α csc (α) cos (xα)− 1

α2

V̄2 = csc (α) sin (xα)
(34)

Figs. 5 show axial force and velocity distribution for different values of α. Clearly, these

quantities are insensitive to α when it is small.

3.5.2 Ex. 2: Pinned-free beam restrained by rotational spring

Figure 6 shows a pinned-free beam that is restrained by a rotational spring at the pinned

end. The beam is assumed to be prismatic, of length R, rotating about an axis fixed in

space parallel to i3 and subject to no external loads. Both steady-state and eigenvalue

analyses are presented in terms of the fully intrinsic equations. Note that in the steady-

state solution, because the rotational spring does not deform, the steady-state problem is

governed by the same equations as for the clamped-free rotating beam example, and has

identical boundary conditions and solution; see the section on the clamped-free beam.
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Figure 5: Dimensionless axial force and velocity distribution along a clamped-clamped
rotating beam

Note that Ω̄3(x1) = ω3. Neglecting shear deformation, one obtains the linearized gov-

erning equations for the perturbation quantities F3(x1, t), M1(x1, t), M2(x1, t), V3(x1, t),

Figure 6: Schematic of a beam restrained by rotational spring
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Ω1(x1, t) and Ω2(x1, t) as

−M2(x1, t)F̄1(x1)
EI2

−mΩ1(x1, t)V̄2(x1)−mV (0,1)
3 (x1, t) + F

(1,0)
3 (x1, t) = 0

i2ω3Ω2(x1, t)− i3ω3Ω2(x1, t)− i1Ω(0,1)
1 (x1, t) +M

(1,0)
1 (x1, t) = 0

−i1ω3Ω1(x1, t) + i3ω3Ω1(x1, t)− i2Ω(0,1)
2 (x1, t) +M

(1,0)
2 (x1, t)− F3(x1, t)

[
1 +

F̄1(x1)
EA

]
= 0

Ω2(x1, t)
[
1 +

F̄1(x1)
EA

]
+
M1(x1, t)V̄2(x1)

GJ
+ V

(1,0)
3 (x1, t) = 0

ω3M2(x1, t)
EI2

− M
(0,1)
1 (x1, t)
GJ

+ Ω(1,0)
1 (x1, t) = 0

−ω3M1(x1, t)
GJ

− M
(0,1)
2 (x1, t)
EI2

+ Ω(1,0)
2 (x1, t) = 0

(35)

In Eqs. (35), ( )(0,1) indicates a partial derivative with respect to time, ( )(1,0) means a partial

derivative with respect to x1, and (̄ ) stands for steady-state values. Boundary conditions

for this problem are

F3(R, t) = 0

M1(R, t) = 0

M2(R, t) = 0

V3(0, t) = 0

M2(0, t) = kβ

Ω̇1(0, t) = ω3β

Ω2(0, t) = −β̇

(36)

where β is the angle of rotation across the spring and is an extra variable in Eq. (36).

Introducing an extra state variable such as β may be helpful when the value of β is of any

particular interest in and of itself. Note, however, that β can be eliminated from the last
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Table 1: Normalized natural frequencies of a pinned-free beam calculated with the fully
intrinsic equations

Number of elements η1 η2 η3 η4 η5

10 10.0000 29.9285 69.9326 141.604 265.044
20 10.0000 29.5633 66.3656 124.914 208.664
40 10.0000 29.4737 65.5295 121.306 197.844
60 10.0000 29.4571 65.3770 120.659 195.951
80 10.0000 29.4514 65.3237 120.434 195.297
100 10.0000 29.4487 65.2991 120.330 194.995

Exact 10.0000 29.4439 65.2554 120.146 194.462

three equations of Eqs. (36), leading to a set of fully intrinsic boundary conditions

F3(R, t) = 0

M1(R, t) = 0

M2(R, t) = 0

V3(0, t) = 0

Ω̇1(0, t) + ω3Ω2(0, t) = 0

Ṁ2(0, t) + kΩ2(0, t) = 0

(37)

If the beam is not restrained with the spring, the last boundary condition reduces to

Ṁ2(0, t) = 0, which implies that M2(0, t) = 0 when rigid-body modes are excluded. Finally,

letting ω3 = 0 will give the boundary conditions for a non-rotating beam. Table 1 shows the

normalized natural frequencies ηi of a pinned-free beam calculated with the fully intrinsic

equations. Results are compared with the exact solution [64]. These results are for λ = 10

where λ = ω3

√
mL4/EI2 and ηi = υi

√
mL4/EI2.

3.5.3 Ex. 3: Beam restrained by longitudinal spring

Figure 7 shows a beam reinforced with a longitudinal spring attached to its root. The beam

is under prescribed rotation as in the previous example (Ω = ω3i3). The complete set of
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Figure 7: Schematic of a beam restrained by longitudinal spring attached to its root

fully intrinsic equations can be solved along with boundary conditions

Ω̄1,2(0, t) = 0

Ω̄3(0, t) = 1

V̄1(0, t) =
d(ū)
dτ

V̄2,3(0, t) = 0

F̄i(1, t) = 0 for i=1,2,3

M̄i(1, t) = 0 for i=1,2,3

F̄1(0, t) = λū

(38)

where τ = ω3t is dimensionless time, R is the length of the beam, u is the spring stretch

(assuming an unstretched length of zero), ū = u/R, λ is k/(µω2
3R), k is the spring stiffness,

µ is the beam mass per unit length and the normalization of other variables for Eq. (38) is

the same as used above for Eq. (33).

For dynamic solution Eq. (38) can be written in fully intrinsic form by eliminating ū,

so that

Ω̄1,2(0, t) = 0

Ω̄3(0, t) = 1

V̄2,3(0, t) = 0

F̄1,2,3(1, t) = 0

M̄1,2,3(1, t) = 0

d(F̄1(0, t))
dτ

= λ
d(V̄1(0, t))

dτ

(39)

This configuration can be unstable when the angular speed is sufficiently high [27].

The real and imaginary parts of the eigenvalues are shown in Fig. 8, revealing a static
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(buckling) type instability for a beam with the properties given in Table 2. Figure 9 shows

the steady-state axial force distribution for this problem at ω3 = 20 rad/s.
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Figure 8: Real and imaginary parts of the eigenvalues versus angular speed for a rotating
beam restrained at its root by a longitudinal spring.

In the next chapter, the application of the fully intrinsic equations on statically indeter-

minate structures will be studied. In this regard, an incremental method will be developed

and validated. Finally, the incremental method will be applied to a joined-wing aircraft

configuration.
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Figure 9: Steady-state axial force distribution for example 3.5.3

Table 2: Beam properties, English units

Length 10 [ft]
Axial stiffness 0.1322× 107 [lb]
Torsional stiffness 0.0221× 105[lb ft2]
Out-of-plane bending stiffness 0.0172× 105 [lb ft2]
In-plane bending stiffness 1.0989× 105 [lb ft2]
Mass per unit length 0.0127 [slug/ft]
Mass polar moment of inertia per unit length 0.0011 [ft3]
Spring stiffness 100 [lb/ft]
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CHAPTER IV

INCREMENTAL METHOD FOR STRUCTURAL ANALYSIS OF

JOINED-WING AIRCRAFT

This chapter is mostly adopted from Refs. [42]. Joined-wing aircraft are characterized by

statically indeterminate structures: structures with multiple load paths. A new way of

analyzing these configurations is introduced in this chapter. This new formulation is based

on the fully intrinsic equations, which introduce neither singularities nor infinite-degree

nonlinearities caused by finite rotation. The formulation makes use of an incremental form

of the kinematical equations, which preserves the main advantages of the fully intrinsic

equations. The method is applied and verified for a joined-wing structure.

The special case of joined-wing aircraft presents a challenge for a fully intrinsic for-

mulation because of its static indeterminacy. The absence of displacement and rotation

variables can create a mismatch in the number of quantities that must be specified at the

boundaries versus the information known there. For example, a formulation with velocity

variables instead of displacement variables presents no challenge in a dynamic formulation,

but in a static problem where all velocities are zero, there is insufficient information at the

boundaries to solve the resulting equations. Hence, analysis of a joined-wing aircraft using

the fully intrinsic equations boils down to analyzing static behavior of a statically indeter-

minate structure. In this chapter the solution of statically indeterminate structures using

the fully intrinsic equations is addressed, and the method is applied to joined-wing aircraft

as an example of its capability. Here a slightly different definition of intrinsic equations is

used, which means a formulation without displacement and rotation parameterization.

4.1 Theory

4.1.1 Boundary condition challenges

Figure 10 shows sketch of four different configurations of HALE aircraft structures. These

configurations can be easily modeled as a combination of beams. Configurations (1) and
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Figure 10: Sketch of different configurations of HALE aircraft structures

(2) show a flying wing and a conventional aircraft, respectively. These configurations are

statically determinate so that in the static case, the equilibrium equation (i.e. Eqs. 1 and

2) are sufficient to solve these structures. Moreover, in a flying wing or a conventional con-

figuration, there are sufficient boundary conditions on force, moment, velocity and angular

velocity because each beam has at least one free end. This facilitates numerical solutions

for solving steady-state problems [55]. On the other hand, configurations (3) and (4) are

joined-wing configurations and obviously statically indeterminate structures. In static anal-

ysis when velocity and angular velocity are identically zero, Eqs. (3) and (4) are trivially

satisfied. Since these structures are statically indeterminate, equilibrium equations are in-

sufficient for solving for the behavior. An incremental method is introduced to overcome

this difficulty associated with finding the static equilibrium state of statically indeterminate

structures such as joined-wing aircraft. After the equilibrium state is found, the fully in-

trinsic equations can be linearized about the static equilibrium state for dynamical analysis.

The incremental method is based on repeatedly solving linear systems of equations as the

load is gradually increased. The governing equations for dynamics of small motions about

the equilibrium state can then be reduced to a generalized eigenvalue problem.

4.1.2 Incremental method

The incremental method consists of sets of linear equations of motion, which are obtained

by dropping all time derivatives from the governing equations and linearizing them. Thus,

28



the fully intrinsic equations of motion become

F̌ ′B + ˜̄KBF̌B − ˜̄FBǨB + f̌B = ˜̄ΩBP̌B − ˜̄PBΩ̌B

M̌ ′B + ˜̄KBM̌B − ˜̄MBǨB + (ẽ1 + ˜̄γ)F̌B − ˜̄FB γ̌ + m̌B = ˜̄ΩBȞB − ˜̄HBΩ̌B + ˜̄V BP̌B − ˜̄PBV̌B
(40)

and the fully intrinsic kinematical equations are

V̌ ′B + ˜̄KBV̌B − ˜̄V BǨB + (ẽ1 + ˜̄γ)Ω̌B − ˜̄ΩB γ̌ = 0

Ω̌′B + ˜̄KBΩ̌B − ˜̄ΩBǨB = 0
(41)

making use of the linear constitutive equations γ̌

κ̌

 =

 R S

ST T


 F̌B

M̌B

 (42)

and generalized velocity-momentum equations P̌B

ȞB

 =

µ∆ −µξ̃

µξ̃ I


 V̌B

Ω̌B

 (43)

In these equations the (̄ ) quantities are known from the previous loading step, and the (̌ )

quantities are the unknowns at each step. An exception to this is that f̌ and m̌ are small,

specified increments of applied force and moment.

In the incremental method, equations that govern incremental displacement and rotation

must also be included. These have the form

γ̌ =q̌′B + ˜̄KB q̌B + (ẽ1 + ˜̄γ)ψ̌B

κ̌ =ψ̌′B + ˜̄KBψ̌B

(44)

Although incremental displacements and rotations are introduced, the governing equations

are linear, and there are neither infinite-degree nonlinearities nor singularities associated

with introducing finite rotation. Hence, the two main advantages of the fully intrinsic equa-

tions, namely avoiding nonlinearities of orders higher than second and avoiding singularities,

are kept.

Equations 40 – 44 should be solved at each step due to an incremental loading. After

each step all variables except the direction cosine matrix, q̄ and ψ̄ are updated using relations
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of the form

X̄new = X̄old + X̌ (45)

while q and ψ do not need to be updated. The direction cosine matrix, C, is updated using

Cnew =
(

∆− ˜̌ψ)Cold (46)

It turns out that this first-order update for direction cosine matrix, C, has been sufficient in

all cases run so far; however, a second-order update may be used if desired. Displacement

can be calculated by either using Eq. 6b at the end of the solution procedure as a post-

processing task or by updating a variable such as q̄ with q̌ at every step, so that

q̄new = q̄old + CiB q̌ (47)

4.1.2.1 Modeling gravity using the incremental method

As mentioned before, externally applied loads should be applied incrementally in this

method. These externally applied loads f̌ and m̌ may include any kind of applied forces,

such as gravity, thrust, or aerodynamic forces. For modeling dead forces such as gravity, the

direction cosine matrix plays an essential role. A distributed gravitational force is written

as

fgi = −µgi3 ·Bi so that fg = −µgCBie3 (48)

Thus, the incremental term may be written as

f̌g = − ˇ(µg)CBie3 − µgČBie3 (49)

Here ˇ(µg)CBie3 is an inhomogeneous term, with ˇ(µg) as the incremental value in each step;

and µgČBie3 is a homogeneous term. Note that CBi = CBbCbi = CCbi and Č = −˜̌ψC. If

there is an offset between the center of mass and the beam reference line, then the moment

caused by gravity can be developed in the same way, viz.,

mgi = [ξαBα × (−µgi3)] ·Bi so that mg = −µgξ̃CBie3 (50)

where α takes on values 2 and 3, and repeated indices are summed over their range. Thus,

the incremental term may be written as

m̌g = − ˇ(µg)ξ̃CBie3 − µgξ̃ČBie3 (51)
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4.1.2.2 Modeling aerodynamic force/moment in the incremental method

A two-dimensional (2D) aerodynamic model is used to calculate the aerodynamic loads

generated by wings and control surfaces such as flaperons. The quasi-steady aerodynamic

model has been changed to an unsteady model by adding the effect of induced flow from

the 2D induced flow model of Peters et al. [48], along with apparent mass/inertia terms in

the force and moment equations. The final force and moment equations, respectively, take

the form [44]

fa = ρb


0

−(Cl0 + Clββ)VTVa3 + Clα(Va3 + λ0)− Cd0VTVa2

(Cl0 + Clββ)VTVa2 − 2πV̇a3b/2− ClαVa2(Va3 + λ0) + 2πVa2Ωa1b/2− Cd0VTVa3


(52)

and

ma = 2ρb2


(Cm0 + Cmββ)V 2

T − CmαVTVa3 − b
Clα
8 Va2Ωa1 − 2π( b

2

32 Ω̇a1 − b
8 V̇a3)

0

0

 (53)

and where Va2 and Va3 are the second and third elements of velocity vector in the aerody-

namic frame of reference, and VT =
√
V 2
a2

+ V 2
a3

.

For the steady-state solution, the applied aerodynamic force and moment will be, re-

spectively,

fa = ρb


0

−(Cl0 + Clββ)VTVa3 + ClαV
2
a3
− Cd0VTVa2

(Cl0 + Clββ)VTVa2 − ClαVa2Va3 + 2πVa2Ωa1b/2− Cd0VTVa3

 (54)

and

ma = 2ρb2


(Cm0 + Cmββ)V 2

T − CmαVTVa3 − b
8ClαVa2Ωa1

0

0

 (55)

So for the incremental method f̌a and m̌a are

f̌a1 = 0 (56)
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f̌a2 = −bρ

[
Cd0 V̄

2
a2

V̄T
+

(
Cl0 + βClβ

)
V̄a3 V̄a2

V̄T
+ Cd0 V̄T

]
V̌a2+

− bρ

[(
Cl0 + βClβ

)
V̄ 2
a3

V̄T
− 2Clα V̄a3 +

Cd0 V̄a2 V̄a3

V̄T
+
(
Cl0 + βClβ

)
V̄T

]
V̌a3

(57)

f̌a3 = bρ

[(
Cl0 + βClβ

)
V̄ 2
a2

V̄T
− Cd0 V̄a3 V̄a2

V̄T
+
(
Cl0 + βClβ

)
V̄T − Clα V̄a3 + πbΩ̄a1

]
V̌a2+

bρ

[
−
Cd0 V̄

2
a3

V̄T
+

(
Cl0 + βClβ

)
V̄a2 V̄a3

V̄T
− Cd0 V̄T − Clα V̄a2

]
V̌a3+

b2ρπV̄a2Ω̌a1

(58)

m̌a1 = 2b2ρ
[
2
(
Cm0 + βCmβ

)
V̄a2 −

1
8
bClαΩ̄a1

]
V̌a2+

2b2ρ
[
2
(
Cm0 + βCmβ

)
V̄a3 − Cmα V̄T

]
V̌a3−

1
4
b3ρClα V̄a2Ω̌a1

m̌a2 = 0

m̌a3 = 0

(59)

where V̄T =
√
V̄ 2
a2

+ V̄ 2
a3

. Applied loads fa and ma should be transferred to the B frame by

use of

fB =Cafa

mB =Cama + Caỹacfa

(60)

4.1.3 Stability Analysis

A generalized eigenvalue problem can be derived by linearizing the discretized, fully intrinsic

equations about a constant steady-state solution, which is computed using the incremental

method. Since the eigenvalue problem represents a dynamics problem, the fully intrin-

sic equations work well for the vibration and forced response of statically indeterminate

structures. One needs simply to replace displacement boundary conditions with boundary

conditions on velocity, and similarly replace boundary conditions on rotation with boundary

conditions on angular velocity. With the use of velocity and angular velocity to describe

geometric boundary conditions, however, zero frequencies may occur which are due to lack

of enough boundary conditions on force and moment in a statically indeterminate structure.
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4.2 Verification of Incremental Method

In this section the incremental method is first verified by study of a clamped-clamped non-

rotating beam under a distributed load and a clamped-clamped rotating beam. As a second

example, the incremental method is verified against available experimental results [17] and

against results obtained from the mixed formulation [43], including eigenvalues. The simple

aerodynamic model is verified against that found in NATASHA (Nonlinear Aeroelastic Trim

And Stability for HALE Aircraft). Validation studies of NATASHA may be found in Ref.

[60]. Here the incremental method is applied to a clamped-free beam, and results obtained

are compared against those of NATASHA.

All units are in an English system in which mass is in slugs, time in seconds, force in

pounds and length in feet, unless otherwise specified. However, the input data and results

obtained and reported in the paper are correct in any consistent system of units.

4.2.1 Verification of the incremental method for a clamped-clamped non-rotating
beam

In this example we illustrate the benefit of the incremental method in obtaining a steady-

state solution for a statically indeterminate structure. For this purpose the easiest example

is a clamped-clamped beam. This problem is inherently nonlinear and serves our purpose

very well. A beam with the properties given in Table 3 is undergoing a distributed transverse

force of 10 lb/ft as shown in Fig. 11.

Figure 11: A clamped-clamped beam under distributed load

This problem has been solved by a mixed formulation, in which the geometric boundary
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Table 3: Beam properties, English units

Length 20 [ft]
Axial stiffness 1.322× 106 [lb]
Torsional stiffness 0.0221× 105 [lb ft2]
Out-of-plane bending stiffness 0.0172× 105 [lb ft2]
In-plane bending stiffness 1.0989× 105 [lb ft2]
Mass per unit length 0.0127 [slug/ft]
Mass polar moment of inertia per unit length 0.0011 [ft3]

conditions are expressed easily in terms of displacement and rotation parameters. Table 4

shows values of axial force (F1), bending moment (M2) and transverse displacement (u3)

at mid-span and shear force (F3) at the beam root for different number of elements using a

mixed formulation. This problem is also solved by the present incremental method. Results

from the incremental method are compared with those of the mixed formulation with 400

elements. The out-of-plane bending moment and axial force have their maximum values

at mid-span, and the shear force has its maximum value at the clamped ends. Hence the

errors are calculated for axial force and bending moment at mid-span and shear force at

the root (x1 = 0).

Figures 12, 13 and 14 show convergence of the axial and shear forces and bending

moment using the incremental method. As one can see clearly, the error decreases rapidly

with an increase in the number of steps. Figures 15 and 16 show axial and out-of-plane

displacement for the problem at hand. Displacements are calculated by virtue of Eq. 47.

Also, Figs. 17, 18 and 19 show axial force, shear force and out-of-plane bending moment

for the problem at hand.

Orthogonality of the direction matrix is of concern in this method, since the right hand

side of Eq. (46) is not an orthogonal matrix. However, the error is small at each step. One

needs to check the norm of CBiCiB − ∆ at given steps (not necessarily at each step). In

the case of large error, one should enforce the orthogonality constraint on C, (possibly by

use of Lagrangian multiplier).1 The norm of CBiCiB −∆, which should be identically zero,

1Technical discussion with Prof. Oliver Bauchau and Prof. Mayuresh Patil is gratefully acknowledged.
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Table 4: Mixed formulation results for clamped-clamped beam, English units

Number of CPU
elements F1 M2 F3 u3 time

[lb] [lb ft] [lb] [ft] [s]
10 1040.2602 16.5395 99.8917 0.3572 1.5223
20 1046.0439 16.3877 99.9122 0.3556 3.0232
30 1047.1065 16.3518 99.9168 0.3553 4.3092
40 1047.4775 16.3387 99.9185 0.3552 5.7290
50 1047.6490 16.3325 99.9194 0.3552 7.6265
80 1047.8347 16.3257 99.9202 0.3551 16.9257
100 1047.8775 16.3242 99.9204 0.3551 22.4882
120 1047.9008 16.3233 99.9205 0.3551 28.9707
140 1047.9148 16.3228 99.9206 0.3551 40.9120
160 1047.9239 16.3225 99.9207 0.3551 52.5070
400 1047.9489 16.3215 99.9208 0.3551 506.3128

was checked for each node at the end of solution procedure. It approximates zero with

a very good accuracy, so that orthogonality of direction cosine matrix is preserved in the

incremental method. Better accuracy is always achievable by using a second-order update

of C at each step instead of a first-order update. Table 5 shows the two-norm of CBiCiB−∆

for the problem under consideration with 20 elements and for different numbers of steps

when a first-order update is used for updating the direction cosine matrix. Table 6 shows

the same quantity for a second-order update. The small errors for the first-order update do

not seem to have any deleterious effect on the overall accuracy of the results, and the errors

in the second-order update approach machine precision. Figure 20 shows computational

time vs. number of steps for different number of elements. Figure 21 shows the relative

error of the first three natural frequencies of a clamped-clamped beam, calculated using

the fully intrinsic equations, versus the number of elements. Clearly, convergence is taking

place as the number of elements grows.
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Figure 12: Convergence of axial force
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Figure 14: Convergence of out of plane bending moment
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Figure 15: Axial displacement along the beam
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Figure 16: Out of plane displacement along the beam
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Figure 17: Axial force along the beam
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Figure 18: Shear force along the beam
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Figure 19: Out of plane bending moment along the beam
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Figure 20: Computational time for incremental method
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Figure 21: Relative error in natural frequency of a clamped-clamped beam versus number
of elements
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Table 5: Orthogonality error for CBi using first-order update

Node number 10 steps 100 steps 1000 steps
Node 1 0 0 0
Node 2 6.66E-007 6.65E-008 6.65E-009
Node 3 1.89E-006 1.89E-007 1.89E-008
Node 4 2.90E-006 2.90E-007 2.90E-008
Node 5 3.35E-006 3.35E-007 3.35E-008
Node 6 3.20E-006 3.19E-007 3.19E-008
Node 7 2.57E-006 2.56E-007 2.56E-008
Node 8 1.69E-006 1.69E-007 1.69E-008
Node 9 8.37E-007 8.36E-008 8.36E-009
Node 10 2.23E-007 2.22E-008 2.22E-009
Node 11 0 0 0
Node 12 2.23E-007 2.22E-008 2.22E-009
Node 13 8.37E-007 8.36E-008 8.36E-009
Node 14 1.69E-006 1.69E-007 1.69E-008
Node 15 2.57E-006 2.56E-007 2.56E-008
Node 16 3.20E-006 3.19E-007 3.19E-008
Node 17 3.35E-006 3.35E-007 3.35E-008
Node 18 2.90E-006 2.90E-007 2.90E-008
Node 19 1.89E-006 1.89E-007 1.89E-008
Node 20 6.66E-007 6.65E-008 6.65E-009
Node 21 0 0 0

43



Table 6: Orthogonality error for CBi using second-order update

Node number 10 steps 100 steps 1000 steps
Node 1 0 0 0
Node 2 1.11E-014 8.88E-016 5.77E-015
Node 3 8.93E-014 1.11E-015 1.24E-014
Node 4 2.10E-013 1.67E-015 2.55E-015
Node 5 2.81E-013 4.44E-016 1.03E-014
Node 6 2.56E-013 1.33E-015 7.22E-015
Node 7 1.65E-013 2.22E-016 1.61E-014
Node 8 7.17E-014 1.67E-015 2.31E-014
Node 9 1.73E-014 4.44E-016 1.51E-014
Node 10 8.88E-016 7.77E-016 6.33E-015
Node 11 0 0 0
Node 12 8.88E-016 7.77E-016 6.33E-015
Node 13 1.73E-014 4.44E-016 1.51E-014
Node 14 7.17E-014 1.67E-015 2.31E-014
Node 15 1.65E-013 2.22E-016 1.61E-014
Node 16 2.56E-013 1.33E-015 7.22E-015
Node 17 2.81E-013 4.44E-016 1.03E-014
Node 18 2.10E-013 1.67E-015 2.55E-015
Node 19 8.93E-014 1.11E-015 1.24E-014
Node 20 1.11E-014 8.88E-016 5.77E-015
Node 21 0 0 0
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4.2.2 Verification of the incremental method for a clamped-clamped rotating
beam

A clamped-clamped rotating beam (Fig. 22) can be solved with fully intrinsic equation,

although this structure is statically indeterminate. Actually there is an analytical solution

[55] for a rotating, clamped-clamped beam with no external loading. Assuming the beam

has a prescribed angular velocity in the B3 = b3 = i3 direction given by ω3, then it

means that Ω3, V2 and F1 are the only non-zero variables. Here this problem is solved

with incremental method and results of incremental method is compared versus analytical

results. Governing equations can be found in Refs. [55, 57]. The analytical solution for this

problem is as follows:

F̄1 =
α csc (α) cos (xα)− 1

α2

V̄2 = csc (α) sin (xα)
(61)

where

Ω̄3 =
Ω3

ω3

F̄1 =
F1

µω2
3R

2

V̄2 =
V2

Rω3

x =
x1

R

( )+ =
d( )
dx

α2 =
µω2

3R
2

EA

(62)

Figure 22: Top view of a clamped-clamped rotating beam; angular velocity is about b3.

Figure 23 shows convergence of axial force to analytical solution for different number of

elements versus number of steps. Figure 24 shows computational time for different number
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of elements and number of steps. Figure 25 and 26 shows axial force and velocity (in

chordwise direction) for 500 steps and 40 elements. Analytical solution and incremental

method solution are right on top of each other. For these results α2 = 0.00346.
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Figure 23: Axial force convergence for a clamped-clamped rotating beam
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Figure 24: Computational time for a clamped-clamped rotating beam
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Figure 25: Axial force distribution for clamped-clamped rotating beam
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Figure 26: Chordwise velocity distribution for a clamped-clamped rotating beam
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4.2.3 Validation vs. experimental results

Figure 27 is the case considered throughout this section. Table 7 shows the structural

properties of this configuration. Figure 30 shows the joint deflection versus a varying tip

load. Results from the incremental method are in excellent agreement with those of the

mixed formulation [43]. Neither formulation perfectly matches the experimental data [17]

after a certain point because of yielding of the joint [43]. Figure 31 shows the tip deflection of

the same structure under varying tip load for the incremental method, the mixed formulation

and experimental results. The mixed formulation and the incremental method are again

in excellent agreement with each other and are both close to the experimental results.

Figure 32 shows the out-of-plane bending deflection of the main wing of the same structure

under a constant load distribution [43]. Again results from the mixed formulation and the

incremental method are in excellent agreement.

Figure 27: Joined wing configuration under study

Table 7: Beam properties for configuration in Fig. 27, English units

Length of front wing 20 [in]
Length of aft wing 10 [in]
Joint position 10 [in]
α 60◦

Torsional stiffness 2214 [lb in2]
Out-of-plane bending stiffness 1.1017× 105 [lb in2]
In-plane bending stiffness 1721.4 [lb in2]
Mass per unit length 0.012675 [slug/in]
Mass moment of inertia per unit length for out-of-plane bending 1.6504 ×10−5 [in3]
Mass moment of inertia per unit length for in-plane bending 0.0010728 [in3]
Polar mass moment of inertia per unit length 0.0010728 [in3]
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4.2.4 Verification of the incremental method for a non-planar joined-wing con-
figuration

The incremental method is also verified for a nonplanar joined-wing configuration versus

results obtained from the mixed formulation [43]. Figure 28 shows transverse tip and joint

deflection of a joined wing versus magnitude of tip load, respectively. This test case is

exactly the same as one in Ref. [43]. 100 steps are used to achieve these results.
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Figure 28: Tip deflection for nonplanar joined-wing configuration
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Figure 29: Joint deflection for nonplanar joined-wing configuration

4.2.5 Verification of Eigenvalue Analysis vs. Mixed formulation

For validation of the eigenvalue solver, a structure the same as in Figure 27 with properties

the same as in Table 7 is used. The structure is under a constant distributed follower force

of 0.5 lb./ft. 100 steps were used to solve the steady-state equations. 80 elements were used
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in the front wing and 40 in the aft. Table 8 shows the first five eigenvalues calculated with

the incremental method based on fully intrinsic equations and with the mixed formulation.
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Figure 30: Joint deflection
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Figure 31: Tip deflection
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Figure 32: Out-of-plane bending deflection

Table 8: Eigenvalues [rad/s] from fully intrinsic equations vs. those from mixed formulation

Fully intrinsic equations Mixed formulation Percentage difference
5.03 5.02 -0.27
19.97 19.91 -0.28
57.58 57.38 -0.35
58.32 58.27 -0.10
94.07 93.34 -0.77
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4.2.6 Convergence study

Because the incremental method works by solving a sequence of linear problems to find the

steady-state solution for a joined-wing structure under a specific loading, the number of

steps plays a specific role. The clamped-clamped example shows a very good convergence

rate. Here convergence of incremental method for the same structure as Fig. 27 is studied.

Table 7 shows structural properties for the problem at hand. Both wings are loaded with

a follower force in the B3 direction, having a constant magnitude of 0.5 lb. Results are

compared with those using the mixed formulation for the same number of finite elements.

The front and aft wing roots and the joint (i.e. the junction) are critical points in this

configuration. Figures 33, 34 and 35 show percentage difference with respect to mixed

formulation’s results for these three points as number of steps increases.

There are three critical points in this configuration, i.e. the two clamped ends and the

joint position; see Fig. 27. Figures 33, 34 and 35 show the convergence of force and moment

measure numbers in the Bi basis at these three critical points. For this study the front wing

has 40 elements and the aft wing 20. The mixed formulation results for the same number

of finite elements is taken as the reference solution. Determination of the axial force (F1)

is an inherently nonlinear process for a joined-wing configuration, and it thus takes more

steps to converge to the exact solution. Figures 36 and 37 show the distributions of internal

force and moment in front and aft wing for the same problem. The number of steps for

these results is 100.

4.2.7 Verification of aerodynamics model implementation vs. NATASHA

Implementation of the aerodynamic formulation in the incremental method is verified by a

comparison of the results for a clamped-free beam under an aerodynamic load with results

from NATASHA. Table 9 shows aerodynamic properties of the beam. Figure 38 shows

the force and moment distributions for this beam. The good agreement attests to the

correctness of the aerodynamic modeling in the incremental method.
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Figure 36: Force (a – c) and moment (d – f) distributions in front wing
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Figure 37: Force (a – c) and moment (d – f) distributions in back wing
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Table 9: Aerodynamic properties

cl0 0
clα 2π
cd0 0.01
cm0 0.025
cmα −0.25
Velocity 10 ft/sec
Number of steps 500

4.3 Example: Instability Under Follower Force

In this section the effect of loading the front wing with a follower force in the chord-

wise direction is studied (resembling the thrust force of an engine). Figure 39 shows the

configuration and Table 10 provides the structural properties for the problem at hand. Four

forces are located at x1=2.5, 7.5, 12.5 and 17.5 ft, and each has a value of F lb. Figure

40 shows the eigenvalues analysis of a clamped-free beam (i.e. only the front wing) under

this loading. The first instability happens at F=40 lb. Figure 41 shows eigenvalue analysis

of a joined-wing configuration (Fig. 39). For this case the sweep angle is 50◦ and the joint

position is at x1 = 10 ft. There is a fundamental difference between a single-load-path

configuration (one beam) and a multiple-load-path configuration (joined-wing). The first

instability for one beam, a static buckling type instability, occurs at F=40 lb. However, for

a joined-wing configuration the first instability, which happens also to be at F=40 lb., is a

dynamic instability. For this configuration a static instability occurs at F=74 lb., which is

well beyond the first instability and, therefore, not of significance.

Table 10: Beam properties for configuration in Fig. 39, English units

Length of front wing 20 [ft]
Extensional stiffness 1.322× 106 [lb]
Torsional stiffness 2.2138× 103 [lb ft2]
Out-of-plane bending stiffness 1.72146× 103 [lb ft2]
In-plane bending stiffness 1.09890× 103 [lb ft2]
Mass per unit length 0.012675 [slug/ft]
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Figure 38: Force (a – c) and moment (d – f) distributions in clamped-free wing
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Figure 39: Sketch of configuration under thrust-like loading
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Figure 40: Eigenvalue analysis for one beam configuration
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Figure 41: Eigenvalue analysis for joined-wing configuration
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CHAPTER V

STABILITY AND DYNAMIC RESPONSE ANALYSIS OF ROTATING
BLADES USING FULLY INTRINSIC EQUATIONS

This chapter is mostly adopted from Ref. [58], with the authors’ permission.

As part of an ongoing investigation into potential advantages of fully intrinsic formula-

tions, this chapter presents application of these equations in the modeling of rotor blades, in

particular the modeling of hingeless and bearingless rotor configurations. Results obtained

are presented and compared with those obtained from DYMORE for verification purposes.

5.1 Rotor Blade Configurations

This chapter includes a formulation and numerical results for realistic helicopter rotor

blades. This formulation is based on fully intrinsic equations. Using this formulation a

fast, user friendly computer program has been developed. Such a computer program is

useful in preliminary design and optimization, in addition to stability analysis. Figure 42

shows topology of the simplest possible rotating blade. This configuration is a single-load-

path blade. In this configuration the root of the blade is attached rigidly to the hub. A

more realistic single-load-path configuration is shown in Fig. 43. In this configuration blade

is attached to the hub through a sequence of hinges. Each hinge in this case is a revolute

joint, which can be a flap, lead-lag or pitch hinge. This configuration is the simplest way

of modeling an articulated blade. Figures 44 and 45 show blades with multiple-load paths,

which are more realistic than those with single-load paths. These configurations include

two bearings (inboard and outboard), which are both modeled as flexible joints. Designers

can model different types of bearings by changing stiffness in the various directions. For

example, the inboard bearing can model a revolute joint in the flap direction by having stiff

springs in all directions except for rotation about a hinge in the flapping direction. In the

bearingless configuration, the end of the inboard bearing attaches to the flexbeam, whereas

in the hingeless configuration, the end of this bearing attaches to the hub through a rigid

connection.
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Figure 42: Schematic of blade with single-load path

Figure 43: Schematic of blade with single-load path using a sequence of revolute joints

5.2 Formulation

The fully intrinsic equations are used to model each configuration. These equations are a

system of PDEs, so one needs enough boundary and initial conditions to solve them. Geo-

metric boundary conditions are here prescribed on velocity and angular velocity variables

instead of displacement and rotation. Imposing natural boundary conditions is quite easy

with formulations in which force and moment are among primary variables. Flexible and

revolute joints are modeled by introducing extra degrees of freedom (deformation associated

with translational and rotational springs). Chapter 3 shows how one can eliminate these

extra degrees of freedom and come up with fully intrinsic equations for the whole structure

[57].

Figure 44: Schematic of hingeless blade with multiple-load paths
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Figure 45: Schematic of bearingless blade with multiple-load paths

5.2.1 Single-load-path configuration

This configuration is consist of one beam. In case of a clamped-free beam, boundary

conditions are simply

V = 0

Ω = 0

 at the root (63)

F = 0

M = 0

 at the tip (64)

Boundary conditions for a single-load-path blade with three different hinges can be

described through dynamics of hinges. Here l1 is the offset of the first hinge (J1) with

respect to the hub; l2 and l3 are the offsets of the second and third hinges from the first and

second hinges, respectively (Fig. 43). The offsets are assumed to be massless rigid bodies.

This is a good assumption considering the fact that in the systems being modeled the offsets

are much smaller than the blade length.

Frame H is attached to the hub with h1 along the first offset, frame D is attached to

the first joint (J1) with d1 along l2 and frame F is attached to J2 with f1 along l3. The

deformed beam cross-sectional frame of reference at root of the blade (x1 = 0) is attached

to J3. For simplicity, this frame is called B here. There is a rotational spring associated

with each joint: Joint J1 is a revolute joint with a rotational degree of freedom θ1 about

axis dm; J2 is a revolute joint with a rotational degree of freedom θ2 about axis fn; and J3

is a revolute joint with a rotational degree of freedom θ3 about axis Bq, where m, n and q

can be any distinct combination of 1, 2 and 3. Boundary conditions on velocity and angular

velocity at the root of the blade are

V −V∗ = 0

Ω−Ω∗ = 0

 at the root (65)
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Ω∗ = θ̇1dm + θ̇2fn + θ̇3Bq + Ωhub

V∗ = l1Ωhub × h1

+ l2(Ωhub + θ̇1dm)× h1

+ l3(Ωhub + θ̇1dm + θ̇2fn)× f1

m,n, q = 1, 2, 3

(66)

Three extra variables are introduced (θ1, θ2 and θ3); hence, three extra equations are needed.

These equations are the moment equilibrium about each hinge:

K1θ1 = dm ·M + l2(dm × h1) · F + l3(fn × f1) · F

K2θ2 = fn ·M + l3(fn × f1) · F

K3θ3 = Bq ·M

(67)

5.2.2 Dual-load-path configuration

Hingeless and bearingless configurations (Figs. 44 and 45) are dual-load-path configurations,

and two beams are used to model them. For each beam an appropriate number of boundary

conditions is needed. In addition one should model the inboard and outboard bearings.

Figures 46 and 47 show different frames of reference that are used in modeling the inboard

flexible joint in hingeless and bearingless configurations. The inboard bearing consists of

three translational springs and three rotational springs. Pitch-link dynamics has not yet

been incorporated in this model; instead, a pitch-control input angle is modeled as Θ0.

Figure 46: Inboard bearing in the hingeless configuration
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Figure 47: Inboard bearing in the bearingless configuration

5.2.2.1 Hingeless configuration

Boundary conditions for the lower beam (yoke) are

V −Vhub = 0

Ω−Ωhub = 0

 at the root (68)

and

F− Fjoint = 0

M−Mjoint = 0

 at the tip (69)

The second beam consists of a spindle and blade (upper beam in Fig. 44). Boundary

conditions for this beam are

V −V∗ = 0

Ω−Ω∗ = 0

 at the root (70)

V∗ = |rR0K0 |Ωhub × h1 + U̇ + Ωhub ×U

Ω∗ = Ωhub + Θ̇
(71)

F = 0

M = 0

 at the tip (72)

Extra equations associated with the inboard bearing can be derived with either a

Newton-Euler method or an energy approach. The resulting equations are

FB0 −Klin
U−Clin

U̇ = 0

MB0 −Krin
Θ−Crin

Θ̇ = 0
(73)
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These two equations are for the applied force and moment from the joint at the first node

of the upper beam (spindle).

5.2.2.2 Bearingless configuration

Boundary conditions for the lower beam (flexbeam) are

V −Vhub = 0

Ω−Ωhub = 0

 at the root (74)

F− Fjoint = 0

M−Mjoint = 0

 at the root (75)

The second beam consists of a cuff and a blade (upper beam in Fig. 44). Boundary

conditions for this beam are

V −V∗ = 0

Ω−Ω∗ = 0

 at the root (76)

V∗ = VN0 + U̇ + ΩN ×U + Θ̇×U

Ω∗ = ΩN + Θ̇
(77)

F = 0

M = 0

 at the tip (78)

Extra equations associated with the inboard bearing can be derived with either a Newton-

Euler method or an energy method. The resulting equations are

FB0 −Klin
U−Clin

U̇ = 0

MB0 −Krin
Θ−Crin

Θ̇ = 0
(79)

These two equations are for the applied force and moment from the joint at the first node

of the upper beam (cuff). In this configuration, unlike the hingeless configuration, the cuff

is attached to the flexbeam with both inboard and outboard bearings; therefore, there are

applied forces and moments on the connection node of the inboard bearing and flexbeam,

given by

FJ = FB0

MJ = |rR0K0 |h1 × FB0 + MB0

(80)
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5.2.2.3 Outboard bearing

Figures 48 and 49 show the components of the outboard bearing in the hingeless and bear-

ingless configurations. Displacement and orientation of nodes M and P can be calculated

from Eqs. (5) and (6). Hence, nodal forces and moments at nodes M and P in the local

frame of reference may be computed as

fMnodal = KlMP
CBIM ∆U

fPnodal = KlMP
CBIP ∆U

mM
nodal = KrMPC

BI
M ∆Θ

mP
nodal = KrMPC

BI
P ∆Θ

(81)

where ∆U is the relative displacement of nodes M and P in the inertial frame, KlMP
is a

3×3 diagonal matrix the elements of which are translational spring stiffness in the outboard

bearing, CBIM is the direction cosine matrix of the deformed beam cross-sectional frame at

node M , KrMP is a 3×3 diagonal matrix the elements of which are rotational spring stiffness

in the outboard bearing, and ∆Θ is the relative rotation which can be calculated from

∆̃Θ =
2(CMPT − CMP )
1 + Trace(CMP )

(82)

with CMP being the direction cosine matrix of the B frame (deformed beam cross-sectional

frame) at node P with respect to B frame at node M , viz.,

CMP = CBIP CIBM (83)

5.2.3 Flap or lead-lag hub connection

In order to consider a more realistic attachment of the blade to the hub, one can model the

hub attachment as a flap or lead-lag hinge with a rotational spring instead of a clamped

boundary condition. In this case boundary conditions for the flexbeam root are

V −Vhub = 0

Ω−Ωhub − β̇hm = 0

m = 2, 3

(84)
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Figure 48: Hingeless configuration, outboard bearing

m is 2 for a flap hinge and 3 for a lead-lag hinge. β is an extra degree of freedom associated

with the rotational deflection of flap (or lead-lag) hinge. One more extra equations is needed

for this configuration:

M · hm = kββ

}
at the root (85)

5.3 Solution Procedure

In this work three different types of solutions for each configuration are studied:

• Steady-state solution for rotating blades in hover: The fully intrinsic equations can

be specialized for a steady-state solution by dropping all time derivatives. Since the

B frame (the deformed beam cross-sectional frame of reference) is a rotating frame,

the steady-state equations are independent of the harmonics of rotor angular speed.

Hence, the steady-state equations are a system of time-independent, nonlinear ODEs

in space. A finite element or a simple finite difference discretization may be used to

obtain a system of nonlinear algebraic equations. The Newton-Raphson method is

then used to solve this set of equations and find the steady-state solution.

• Constant-coefficient eigenvalue analysis for studying stability of rotating blade in hover:

The nonlinear fully intrinsic equations can be linearized about a steady-state solution.

In hover these equations lead to a constant-coefficient, generalized eigenvalue problem.
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Figure 49: Bearingless configuration, outboard bearing

With an appropriate aerodynamics model the resulting eigenvalues may be then used

to assess the stability of the rotor about the blade steady-state solution.

• Dynamic response of rotating blade: The nonlinear fully intrinsic equations may be

discretized in both space and time and marched to a given time from specified initial

conditions. This way a fully nonlinear dynamic solution can be obtained.

5.4 Numerical Results

In this section the implementation of these formulations are verified against DYMORE [1]

results. Considerable verification has been done using textbook problems as well. In the this

section two examples are presented. Example one shows a typical section flutter analysis,

and example two shows static deflection of a hinged-free beam under its own weight in the

nonlinear regime.

5.4.1 Ex. 1: typical section flutter analysis

In this example the hingeless configuration is used to model typical section flutter. For

this purpose both beams of the hingeless configuration are rigid. All spring constants for

the outboard bearing are zero. All spring constants for the inboard bearing are very large
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except for spring stiffness in the pitch and plunge directions. The 2D induced flow theory

of Peters et al. [48] and strip theory are used to form the aerodynamic model [44]. For this

textbook case [35] the mass ratio µ is 2; the ratio of plunge frequency to pitch frequency

σ is 0.4; the dimensionless radius of gyration r is 0.49; and the elastic axis is behind the

aerodynamic center a distance of 0.1 half-chord. The pitch stiffness of the inboard bearing

is 10,000.1 Figure 50 shows the current results along with virtually identical results from

the solution found in Ref. [35]. It should be noted that these results are dimensional.
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Figure 50: Classical flutter analysis using hingeless configuration

5.4.2 Ex. 2: Static deflection of a beam under its own weight

The static deflection of a beam under its own weight is calculated using the same formulation

as the one used for the single-load-path configuration (Fig. 43). In this example all the

offsets are zero, and the model is based on two very stiff springs about the rotational hinges

in the pitch and lead-lag directions, and a spring of moderately large stiffness about the

flap direction. These results are compared with a numerical solution of the same equations

except that the rotational spring is modeled in intrinsic form. For this purpose two more

variables (i1, i2) are introduced, where i = bi1 i2 i3cT is a column matrix of the measure

1Note that all dimensional quantities used in this paper may be regarded as being expressed in any inter-
nally consistent system of units (e.g. pounds, feet, slugs, seconds or Newtons, meters, kilograms, seconds).
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numbers of a unit vector in the direction of gravity expressed in the B basis [44]. Thus,

F ′1 + µgi1 +
F3M2

EI
= 0

F ′3 − µgi3 +
F1M2

EI
= 0

M ′2 −
(

1 +
F1

EA

)
F3 = 0

i′1 +
i3M2

EI
= 0

i′3 −
i1M2

EI
= 0

(86)

An intrinsic form of the boundary conditions is

F1(L) = 0

F3(L) = 0

M2(L) = 0

i1(0)− sin
[
M2(0)
k

]
= 0

i3(0) + cos
[
M2(0)
k

]
= 0

(87)

Table 11 shows the properties of this test case, and Fig. 51 shows the results.
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Figure 51: Spring restrained pinned-free beam under its own weight

5.5 Verification Against DYMORE

In this section, the implementation of the fully intrinsic formulation is verified against

DYMORE for each configuration.
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Table 11: Properties, English unit system

Mass per unit of length 0.746 [slug/ft]
Bending stiffness 23.65× 106 [lb ft2]
Axial stiffness 108 [lb]
Rotational spring stiffness 1000.0 [lb ft/rad]
Length 20.0 [ft]
Gravitational constant 32.174 [ft/s2]

5.5.1 Single-load path

Structural properties for this case are the same as for the Goland wing [21]. Figure 52 shows

the internal force and moment distributions along the beam axis. For these results the beam

is loaded by its own weight, and the hub angular speed is 11 rad/s. 20 elements are used for

both DYMORE and the fully intrinsic equation model. Table 12 shows natural frequencies

of the same configuration when the center of mass offset is zero. Recall that DYMORE

elements are third-order elements, while the code based on fully intrinsic equations uses

first-order elements.
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Figure 52: Steady-state response of a clamped-free beam under its own weight

Figure 53 shows results obtained for the flapping natural frequencies of a rotating

clamped-free beam using fully intrinsic equations, which are compared with those from

Ref. [30]. Fig. 54 shows results obtained for the flapping natural frequencies of a rotating

pinned-free beam, which are compared versus the exact solution [64].

Dynamic response of a clamped-free blade under a harmonic load at the tip is studied.
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Table 12: Natural frequencies [rad/s] of clamped-free beam

DYMORE Fully Fully Fully
Intrinsic Intrinsic Intrinsic

20 elements 20 elements 40 elements 60 elements

49.055 49.093 49.065 49.059
87.017 87.062 87.028 87.022
261.052 262.266 261.354 261.186
292.478 295.093 293.128 292.767
435.087 440.765 436.490 435.709
476.875 477.192 476.954 476.910
609.119 624.942 612.986 610.831
764.058 781.328 768.316 765.945
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Figure 53: Natural frequencies ω
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mL4

EI of a clamped-free rotating beam; lines are results
obtained from the fully intrinsic equations, and symbols are from Ref. [30]

The beam has the properties of the Goland wing [21], but with zero offset of the center of

mass. The applied harmonic force at the tip is 10B3 sin(2πt/5). Figure 55 shows the force

and bending moment at the root of the blade, where they have their maximum values, over

one period.

5.5.2 Dual-load-path, hingeless configuration

The hingeless configuration (Fig. 44) is modeled in DYMORE and with fully intrinsic equa-

tions. The steady-state response, natural frequencies and dynamic response are compared

with DYMORE results. Table 13 shows properties of this test case.

Figure 56 shows the force and moment distributions in the blade loaded by its own

weight and the effect of rotation. Table 14 shows some of the natural frequencies versus
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Figure 55: Dynamic response of a clamped-free beam

DYMORE’s results. 22 first-order elements are used for the fully intrinsic solution, and

the same number of third-order elements is used in DYMORE. The difference in the orders

partially accounts for differences in the results.

Dynamic response of the hingeless configuration with properties given in Table 13 is

studied for the case of a harmonic load applied at the blade tip. The applied harmonic

force at the tip of the beam is 10B3 sin(2πt/5). Figure 57 shows force and moment at the

root of the blade over one period.
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Table 13: Properties for hingeless configuration, English unit system. Unit for translational
spring is [lb/ft] and unit for rotational spring is [lb ft/rad].

Rigid connection length 2.0 [ft]
Spindle length 2.0 [ft]
Yoke length 4.0 [ft]
Blade length 16.0 [ft]
Axial stiffness 108 [lb]
Out of plane
Bending stiffness 23.65× 106 [lb ft2]
In-plane bending stiffness 30.0× 107 [lb ft2]
Mass per unit of length 0.5 [slug/ft]
Mass moment of inertia per unit of length 0.002 [ft3]
Inboard spring stiffness (all) 107

Outboard translational
spring stiffness (all) 106

Outboard rotational
spring stiffness (all) 100.0
Gravitational constant 32.174 [ft/s2]
Hub angular velocity 10 [rad/s]
Harmonic load 10B3 sin(2πt/5) [lb]

5.5.3 Dual-load-path, bearingless configuration

The bearingless configuration (Fig. 45) is modeled via DYMORE and fully intrinsic equa-

tions. Results obtained from the current approach for steady-state response, natural fre-

quencies and dynamic response are compared with those obtained from DYMORE. Table

15 shows properties of this test case.

Figure 58 shows force and moment distributions in the blade loaded by its own weight

and the effect of rotation. Table 16 shows the natural frequencies versus those obtained from

Table 14: Natural frequencies [rad/s] of hingeless configuration

DYMORE Fully Intrinsic formulation Percentage difference
6.13 6.13 0
42.41 42.60 0.4
325.66 327.96 0.7
354.04 357.06 0.8
358.90 362.37 0.9
623.49 629.54 0.9
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Figure 56: Steady-state solution of hingeless configuration

0 1 2 3 4 5−20

−10

0

10

20

Time [s]

Fo
rc

e,
 [l

b]

 

 

0 1 2 3 4 5−200

−100

0

100

200

M
om

en
t, 

[lb
 ft

]

DYMORE
Fully intrinsic equations

Figure 57: Dynamic response of hingeless configuration

DYMORE. 22 first-order elements are used for the fully intrinsic solution, and the same

number of (third-order) elements is used in DYMORE. The difference in orders partially

accounts for the slightly different results obtained for frequencies of the higher modes.

Dynamic response of the hingeless configuration from a harmonic load applied at the

blade tip is studied using the properties given in Table 15 . The applied harmonic force at

the tip of the beam is 10B3 sin(2πt/5). Figure 59 shows the force and moment at the root

of the blade over one period.

5.5.4 Flap or lead-lag hub connection

Figure 60 shows shear force and bending moment distributions for the bearingless config-

uration having a spring-restrained flapping hinge attached to the hub and with a spring
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Table 15: Properties for bearingless configuration, English unit system, unit for transla-
tional spring is [lb/ft] and unit for rotational spring is [lb ft/rad].

Cuff length 2.0 [ft]
Flexbeam length 4.0 [ft]
Blade length 16.0 [ft]
Axial stiffness 107

Out of plane
bending stiffness 23.65× 106 [lb ft2]
In-plane bending stiffness 30.0× 107 [lb ft2]
Mass per unit of length 0.5 [slug/ft]
Mass moment of inertia 0.002 [ft3]
Inboard spring stiffness
spring stiffness (all) 106

Outboard translational
Outboard rotational
spring stiffness (all) 100.0
Gravitational constant 32.174 [ft/s2]
Hub angular velocity 10 [rad/s]
Harmonic load 10B3 sin(2πt/5) [ft]

constant of 1000. This configuration is loaded under its own weight and the effect of rota-

tion. Table 17 shows the natural frequencies for this case.

Figure 61 shows shear force and bending moment distributions for the bearingless config-

uration for the same case except with a spring-restrained lead-lag hinge instead of flapping

hinge. Table 18 shows the natural frequencies for this case. Figure 62 and 63 shows change

of natural frequencies with the change of rotational spring stiffness at the hub for flap hinge

and lead-lag hinge, respectively.

Table 16: Natural frequencies [rad/s] of hingeless configuration

DYMORE Fully Intrinsic formulation Percentage difference
6.142 6.142 0
61.022 61.364 0.5
373.184 375.034 0.5
1013.02 1022.81 0.9
1024.41 1037.99 1.3
1126.33 1132.53 0.5
1961.17 1973.21 0.6
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Figure 58: Steady-state solution of bearingless configuration
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Figure 59: Dynamic response of hingeless configuration
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Figure 60: Force and moment distribution in bearingless configuration with flap connection
to the hub
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Figure 61: Force and moment distribution in bearingless configuration with lead-lag con-
nection to the hub

Table 17: Natural frequencies [rad/s] of bearingless configuration with flap connection to
the hub

DYMORE Fully Intrinsic formulation
6.141 6.131
10.034 10.051
260.196 261.595
809.946 822.447
1012.90 1022.66

Table 18: Natural frequencies of bearingless [rad/s] configuration with lead-lag connection
to the hub

DYMORE Fully Intrinsic formulation
0.855 0.850
2.890 28.950
61.022 61.367
373.309 375.021
1012.87 1023.10
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Figure 62: Change of natural frequency [rad/s] with the change of spring stiffness in bear-
ingless configuration with flap connection to the hub
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Figure 63: Change of natural frequency [rad/s] with the change of spring stiffness in bear-
ingless configuration with lead-lag connection to the hub
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CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The fully intrinsic equations for beams comprise a relatively new set of equations for non-

linear modeling of structures comprised of beams. These equations are geometrically exact

and constitute a closed set of equations even though they include neither displacement nor

rotation variables. They do not suffer from the singularities and infinite-degree nonlinear-

ities normally associated with finite rotation variables and they have maximum degree of

nonlinearity equal to two. .

Given certain advantages of the fully intrinsic equations, it is of interest to explore how

they can be used for problems with certain boundary conditions, which as has been shown

herein can be a challenge. This work takes a first look at these challenges, most of which

occur in modeling statically indeterminate structures. Different methods are introduced to

overcome these obstacles in static equilibrium, steady-state motion and linearized dynamic

analyses. One of the purposes of this work is to help researchers decide whether or not

fully intrinsic equations are suitable for solving a specific problem. By presenting a set of

examples, a path has now been cleared for wider use of the fully intrinsic equations in future

research. Beams with one end free (or with prescribed values for moment and force) can

be solved easily using the fully intrinsic equations. It also is shown that the fully intrinsic

equations are especially well-suited for modeling rotating beams.

A new way of analyzing statically indeterminate structures (with multiple load paths

such as used in joined-wing aircraft), is introduced. The formulation is based on the fully

intrinsic equations of motion and kinematics and introduces neither singularities nor infinite-

degree nonlinearities caused by finite rotation. Instead it makes use of an incremental form

of the governing equations of motion and kinematics, augmented by an incremental equation

for change in displacement and orientation. This formulation leads to solution of a linear

system of equations at each incremental loading step, thus avoiding the numerical difficulties
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associated with solving nonlinear systems of equations such as finding suitable initial guesses

and achieving robust convergence. There is also no need to parameterize finite rotation with

orientation angles, Rodrigues parameters, etc. Consequently, there are neither singularities

nor infinite degree nonlinearities associated with finite rotation in the present formulation.

The main advantageous features of the fully intrinsic equations are thus preserved. The

method is verified and applied to a joined-wing structure. Results obtained indicate that

the method is (a) capable by itself of obtaining the nonlinear static or steady motion solution

for the static, dynamic or aeroelastic behavior of statically indeterminate structures and (b)

capable of providing an accurate set of initial guesses as needed or desired for a Newton-

Raphson solution of both statically determinate and indeterminate structures.

The nonlinear fully intrinsic equations are used in this work to study dynamic response

of helicopter blades as well. This approach leads to a computationally efficient and user-

friendly program that can be used in parametric studies as well as conceptual and pre-

liminary design. While the program has nowhere near the capability of general-purpose,

multi-flexible-body codes, such as DYMORE, it has the same level of accuracy for the cases

that it is set up to handle, providing an accurate dynamic model with low overhead that

can be used in conceptual design, preliminary design and optimization studies.

6.2 Future Work

Further research and development can be done along the following lines based on the studies

that have done in this work.

• Improvement of incremental method. A mathematical proof of convergence for the

incremental method is desirable. Also the non-orthogonality of update equation of

direction cosine matrix may be addressed in future. The rotation update equation

given in Refs. [53, 52] may be useful in addressing this deficiency of incremental

method, presented in this work.

• Aeroelastic analysis of blade. Dynamic stall flutter is an important phenomena in

helicopter aeroelasticity. The computational cost of such analysis is expensive. Using

fully intrinsic equations minimizes the use of direction cosine matrix. This reduces the
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computational cost significantly. Currently BAAR has the basic features for structural

dynamics analysis of helicopter rotor blades. An appropriate aerodynamic model

is needed to be coupled with fully intrinsic equations for an aerolestic analysis of

helicopter blade. Among many wake models, dynamic inflow [49] is one of the suitable

ones. The finite-state inflow model represents a 3D wake model for incompressible

flow. The wake is assumed to be cylindrical for the hovering flight condition.

• Aeroelastic analysis of helicopter rotor. Helicopter rotors are made of several blades.

Fully intrinsic equations can be used to study of helicopter rotor, based on the funda-

mental studies that are done in this research. The so-called Multi-Blade Coordinate

(MBC) transformation has been performed on displacement-based equations before;

however, this approach has not been applied to fully intrinsic equations. When the

MBC is applied to the hovering flight condition, the dependence of the equations

on the blade number disappears from the aeroelastic model, resulting in sets equa-

tions with constant coefficients. A similar manipulation can be performed on the

perturbed inflow equations to get sets of equations governing collective, differential

and cyclic modes, respectively, of finite-state inflow variables. Distinct sets of equa-

tions then are obtained for the perturbed motion of collective, differential and cyclic

modes, respectively. For the forward-flight regime, dependency on the blade num-

ber and time-dependent coefficients remain in the aeroelastic model. However, the

importance of the periodic-coefficient terms diminishes, making a constant-coefficient

approximation feasible. A harmonic balance approach may be used to find the trim

solution. This approach avoids time consuming time-integration trim solutions.

• Analyze Limit Cycle Oscillation (LCO) for HALE and conventional aircraft. The

linear theory of stability, when applied to aeroelasticity problems, typically leads to

a set of eigenvalues. It predicts that small disturbances of a system at an unstable

equilibrium grow exponentially. As far as it goes, linear theory is correct; that is,

small disturbances do grow exponentially, at least at first. However, one should not

regard the results of linear theory to have any significance whatsoever regarding the
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behavior of a system subjected to large disturbances, or after a long time elapses from

an initial small disturbance. For example, according to linear theory the system will

continuously go away from the unstable equilibrium to infinity (or material failure).

This does not always comport with experimental evidence, and nonlinear analysis

methodology has been developed to remedy this problem [45]. If a system has a

nonlinear stiffening term, then in most occasions the amplitude of oscillations will

grow until an LCO is reached. LCOs, though stable in the sense of Lyapunov, are not

asymptotically stable. That is, although the final state is bounded, the system will not

asymptotically approach its original equilibrium state as time grows. Moreover, LCOs

are not necessarily a result of a linear instability. LCOs can be induced by certain

disturbances, if sufficiently large, even when the given equilibrium state is stable.

Basically, if the disturbances are not small, then the response cannot be predicted by

theories that are linearized about a nonlinear steady-state solution. Depending on the

amplitude of the LCO, the structure may or may not experience immediate failure.

However, for an aircraft, LCOs pose significant problems in their own right. The

vibration caused by LCOs causes fatigue, reducing the useful life of the structure.

Thus, efficient prediction of LCOs is very important during design, especially for

aircraft flying near the limits of the linear assumptions [45]. The basic time-marching

capability of both NATASHA and BAAR can be improved to be able to capture

LCOs.
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