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SUMMARY

Hearing aids are tasked with the undesirable job of compensating an impaired,

highly-nonlinear auditory system. Historically, these devices have either employed

linear processing or relatively unsophisticated, nonlinear processing techniques. With

increasingly more accurate models of the auditory system, expanding computational

power, and many more objective measures which utilize these models, we are at a

turning point in hearing aid design.

Although subjective listener tests are often the most accepted methods for eval-

uating the quality and intelligibility of speech, they inherently treat the auditory

system as a “black box.” Conversely, model-based objective measures typically treat

the auditory system as a cascade of physical processes. As a result, objective mea-

sures have the potential to provide more detailed information about how sound is

processed and about where and why quality or intelligibility breaks down. Provided

that we can generalize model-based objective measures, we can use the measures as

tools for understanding how to best process degraded signals, and therefore, how to

best design hearing aids.

However, generalizability is a key requirement. Since many of the well-known

objective measures have been developed for normal-hearing listeners in the context of

audio codecs, we are unsure about the generalizability of these measures to predicting

quality and intelligibility for hearing-impaired listeners with “unknown” datasets (i.e.

a set on which it was not trained) and distortions which are specific to hearing aids.

Relatively recently, however, Kates and Arehart (Journal of the Audio Engineering

Society, 2010) proposed the Hearing Aid Speech Quality Index (HASQI), which is a

vi



model-based objective measure that predicts quality for normal-hearing and hearing-

impaired listeners by taking into account many of the distortions which hearing aids

introduce. HASQI solves many of our concerns of generalizability for predicting

quality, but it still remains to test HASQI’s ability to predict quality with datasets

on which it was not trained. Thus, we explore the robustness of HASQI by testing its

ability to predict quality for “unknown” de-noised speech, and we directly compare

its performance to some other metrics in the literature.
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CHAPTER I

INTRODUCTION

A simplified product development process for amplification devices starts with al-

gorithm development and is followed by normal-hearing (NH) listener testing. Some

number of iterations later, developers subsequently conduct hearing-impaired (HI) lis-

tener testing, and some number of iterations after that, algorithms are implemented

in products. This process is flawed in several ways. First, HI listener testing can be

costly and time-consuming, particularly for developers lacking direct access to test-

ing facilities and subject pools. Second, the relationship between NH and HI listener

preferences is unclear so initial testing with NH listeners may actually be prohibitive

or misleading. Third, the feedback from listener testing is typically qualitative in

nature. Put another way, the feedback does not tell developers directly where or why

distortion is occurring, nor how to fix it.

Addressing the first two issues, developers have turned to objective measures of

intelligibility and quality in place of expensive and time-consuming subjective mea-

sures. For many developers, clock cycles are faster and more economical than human

ears. Furthermore, objective measures have the potential to provide quantitative

feedback rather than just qualitative feedback. When using subjective listener test-

ing, the auditory system is inherently treated as a “black box.” Conversely, objective

measures can be designed to treat the system as a cascade of physical processes. In

this way, developers can look into the system to understand how sound is processed

and to figure out exactly where and why intelligibility or quality succeeds or fails.

Section 1.1 provides a very basic primer to the auditory system, and Section 1.2

briefly describes methods for measuring hearing by discussing both subjective and

1



objective types of measures. To conclude the chapter, Section 1.3 introduces the

notion of the generalizability of objective measures while also presenting the contents

of the remaining chapters.

1.1 Auditory system

The auditory system is often described as being made up of three compartments

(Figure 1): the outer, middle, and inner ear. The outer ear consists of the pinna and

external canal. Sound is reflected by the pinna into the canal and then travels through

the canal to the tympanic membrane. The tympanic membrane, which commences

the middle ear cavity, oscillates with the pressure waves from sound in the canal.

Then, the oscillations are transferred to the ossicular chain, which is a chain of three

small bones named the malleus, incus, and stapes.

Figure 1: Schematic of the auditory system (not drawn to scale). From J. L. Flana-
gan, Speech Analysis and Perception, Springer-Verlag, Berlin, 2nd edition, 1965.

Oscillations in the stapes are transferred to the inner ear via the oval window.

Movement of the fluid within the cochlea causes the basilar membrane to vibrate.

Inner hair cells (IHCs) located along the basilar membrane, which are mechano-

sensors tuned to specific frequencies, produce action potentials when the local basilar
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membrane displacement is large enough. Then, afferent neurons innervating the IHCs

transport the action potentials to the brain. Finally, feedback traveling along efferent

neurons from the brain innervate the outer hair cells (OHCs), which essentially serve

as pre-amplifiers and ultimately increase the dynamic range of hearing.

1.2 Measures of hearing

Typically, hearing is tested clinically through the measurement of auditory thresholds.

Listeners with thresholds in the range of 0 to 20 dB SPL are classified as having

normal hearing. Conversely, listeners with thresholds that fall outside of this range

are classified as having impaired hearing. Although threshold testing does provide

some information, it is quite limited. To start, air-conducted thresholds alone cannot

identify the source of hearing loss. Hearing loss caused by the blockage of conduction

through the middle ear (often called conductive hearing loss) is drastically different

than hearing loss caused by sensory or neural failure (often identified collectively as

sensorineural hearing loss). Moreover, sensorineural hearing loss caused by damage

to IHCs is different than hearing loss caused by damage to OHCs, and even more so,

different than hearing loss caused by damage to the auditory pathway. Each of these

types of hearing losses require different types of treatment.

Regardless of the source of the hearing loss though, the goal is usually to restore

hearing back to “normal.” One way of measuring the performance of the compensa-

tion is to measure aided-thresholds, which are the auditory thresholds obtained with

the assistance of a communication device. However, other common methods for eval-

uating the performance of compensation techniques include looking at quality and

intelligibility.

Quality and intelligibility are used in the evaluation of sound in many acoustic

applications, both before and after processing. Currently, the most accurate method

for measuring quality and intelligibility is through subjective listener tests. In the
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case of quality, this testing involves listeners rating on some pre-defined scale various

aspects of the sound quality including, for example, signal distortion, background

intrusiveness, or overall quality. In the case of intelligibility, this testing often involves

scoring listeners’ ability to identify words, sentences, or syllables.

Given that subjective listener tests are impractical in many situations and for

many researchers, objective measures of quality and intelligibility are often used in-

stead to predict subjective ratings. Considering the potential benefit of having good

predictors of quality and intelligibility, it is no surprise that the number of measures

which have been proposed is very extensive. Chapter 2 reviews many of the major

quality and intelligibility objective measures.

1.3 Generalizability of objective measures

A large number of objective measures have been developed in the context of audio

codecs and communication channels, while others in the context of hearing aids or

cochlear implants. Most are developed for NH listeners, while only a portion are

developed for HI listeners. Moreover, some are developed from a single dataset, while

others are more rigorously developed and tested for robustness across data. And still,

some measures are purely phenomenological, while others are model-based.

Since many of the objective measures have been developed in the context of speech

codecs and communication channels for NH listeners, there is often concern about

the generalizability of these metrics to predict quality and intelligibility, first, for HI

listeners, and second, for distortions which are introduced by hearing aid algorithms.

Moreover, there is concern about the generalization of using objective measures for

datasets and listener studies which are “unknown” to the measures. A metric which

was proposed relatively recently, the Hearing Aid Speech Quality Index (HASQI), is a

model-based objective measure of quality developed in the context of hearing aids for

NH and HI listeners [35]. HASQI solves the first two generalization issues for those
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interested in using objective measures for the design and evaluation of hearing aid

algorithms. However, HASQI has not been tested thus far on any datasets other than

the one on which it was trained. Chapter 3 presents an exploration of the robustness

of HASQI in predicting subjective quality. We use an “unknown” dataset of noisy

speech processed by noise suppression algorithms to compare the performance of

HASQI to the performance of several other objective measures. In closing, Chapter 4

presents conclusions and discusses future work.
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CHAPTER II

OBJECTIVE MEASURES

Currently, the most accurate evaluation of speech quality and intelligibility is through

subjective listener tests. However, listener tests can be time-consuming and expensive.

Given the large number of people interested in measuring quality and intelligibility

that do not have access to listener testing on a regular basis, it is no surprise that

so much work has gone into developing objective measures. To give an impression of

the vastness of the measures, we describe a selection of them.

Some of the earliest objective measures of quality were relatively simple measures

which quantified the difference between a degraded signal and its corresponding clean

version. Because of the relative lack of predict power with these simple measures,

developers shifted to more of a model-based approach. Through the years, many

new measures have been proposed to improve upon the ones before. Some of theses

model-based measures are developed from scratch, but many are just extensions and

combinations of earlier versions of measures.

2.1 Quality

Quackenbush, Barnwell, and Clements [49] reviewed many of the early, simple objec-

tive measures of quality. Most of these measures were developed in the context of

speech coding algorithms for NH listeners. Hu and Loizou re-reviewed some of these

basic measures more recently [28]. Starting with an obvious choice, a metric based on

the overall signal-to-noise ratio (SNR) was proposed, but after a few studies showed

overall SNR to lack predictive power, frame-based segmental SNR (segSNR) was pro-

posed in 1976 to take its place [46, 19]. Furthermore, frequency-weighted segmental

SNR (fwsegSNR) was proposed as an extension to segmental SNR, where the SNR in
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each frame is measured as the weighted average of the power in the signal and noise

[55]. In 1982, Klatt [36] proposed a weighted-slope spectral (WSS) distance, which

is a metric based on spectral slope differences near the peaks in the critical-band

spectra of a degraded signal and its reference signal. Other measures include the log-

likelihood ratio (LLR) measure and the Itakura-Saito (IS) distortion measure, which

both use linear prediction coefficients to predict quality [19, 28], and the cepstral

distance measure, which uses cepstral coefficients [28]. Additionally, Wang [57] pro-

posed a measure called Bark spectral distortion (BSD) which is the average squared

Euclidean distance between spectral vectors of the original and coded utterances.

These basic measures predict quality fairly well, but in the search for better per-

formance, many objectives have taken more of a modeling approach. In 1985, Kar-

jalainen [32] developed a psychoacoustic model to estimate loudness, which in turn,

could be used to predict quality. Kates [33] proposed a “central spectrum” model

which incorporated a critical-band filterbank, steady-state representations of the aver-

aged and synchronized firing rates, and temporal integration to predict the perception

of coloration in filtered Gaussian noise. Beerends and Stemerdink [3] developed a met-

ric they called the Perceptual Audio Quality Measure (PAQM) which used a model of

the psychoacoustic internal representation of sound based on time-frequency spread-

ing and level compression to determine subjective quality. Furthermore, Beerends and

Stemerdink also developed the Perceptual Speech-Quality Measure (PSQM), which

optimized level compression for music and speech coding [6]. PSQM was adopted in

1996 as the International Telecommunication Union’s Recommendation ITU-T P.861.

In 1998, ITU added an appendix to P.861 which included an alternate system based

on Measuring Normalizing Blocks (MNB) [56].

Beerends and Stemerdink’s PAQM model [3] was combined with several other

models to form the Perceptual Evaluation of Audio Quality (PEAQ) method. PEAQ

predicts wide-band audio by processing sound through an auditory filterbank and
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time and frequency masking. It then extracts features based on envelope modulation,

the loudness of the noise, differences in the loudness, the noise-to-masker ratio, and

the harmonic structure of the difference between the ref and degraded signals. These

features are put into a neural network, which is trained to reproduce the listener

quality judgements [54, 11]. PEAQ became ITU-R recommendation BS.1387 in 1998,

which has mainly been used in the prediction of low-bit-rate coded audio signals.

Also in 1996, Dau, Püschel, and Kohlrausch were developing another family of

models. They proposed a psychoacoustic model which produces an internal repre-

sentation of the information available to higher neural stages of perception, and they

proposed using this model to predict quality [14]. Hansen and Kollmeier use the same

psychoacoustic model to compute the quality measure, qC , which is the cross corre-

lation of the envelopes of the internal representations [20, 22]. Dau et al.’s metric

and qC differ only in the choice of template and normalization [22, 14]. Hansen and

Kollmeier also developed a measure for the continuous prediction of quality [21, 22].

In 2000, Hansen and Kollmeier introduced a new objective measure for the trans-

mission quality of low-bit-rate speech coding algorithms [23] to potentially replace

PEAQ.

In 2000, Rix and Hollier extended Wang’s BSD [57] to create the Perceptual Analy-

sis Measurement System (PAMS) [50], the first to focus on end-to-end behavior. How-

ever, this focus on end-to-end behavior made the performance of existing measures

seem poor. In response, PAMS and an updated and extended version of PSQM were

combined to produce the Perceptual Evaluation of Speech Quality (PESQ) [2, 51, 5],

which superseded ITU’s recommendation of PSQM (ITU-T P.862). PESQ is the ob-

jective measure recommended by ITU-T for speech quality assessment of narrow-band

handset telephony and narrow-band speech codecs. The basic components of PESQ

include time alignment, a psychoacoustic model which maps signals into perceived

loudness, disturbance processing, a cognitive model, aggregation of the disturbance
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in frequency and time, and finally, a mapping to the predicted subjective score [51].

In 2008, Beerends et al. [4] extended PESQ for HI listeners by adjusting for hearing

loss and level variations.

Despite the relative success of PESQ, the search continues for a better, more in-

tuitive, predictive measure, and many developers continue to propose new models or

extensions of previous models. Moore and Tan propose using magnitude differences

and spectral slope differences between the excitation patterns of degraded signals and

their reference signals to predict quality for speech and music which has been sub-

jected to bandwidth limitations, spectral slope, and spectral ripple [41]. Huber and

Kollmeier propose an extension of qC [20] (called PEMO-Q), which is based on Dau

et al.’s psychoacoustically validated, quantitative model of the “effective” peripheral

auditory [14, 15]. PEMO-Q computes a Perceptual Similarity Measure (PSM) as the

weighted average of the linear cross correlation coefficient across modulation channels,

as well as an instantaneous version of PSM (PSMt) by computing PSM every 10ms.

PEMO-Q is reported to be able to predict quality for narrow-band speech as well as

wide-band audio signals [29]. Chen and Parsa [12] suggest an objective measure based

on Moore and Glasberg’s loudness model [44] and Bayesian modeling. In addition

to these families of models, Kates and Arehart’s group published quite a few papers

which propose using coherence-based predictors of quality [1, 34, 37], whereas Tan

and Moore’s group were proposing normalized cross-correlation measures [52, 53].

Furthermore, Huo et al. focus on predicting, as they claim, the quality-relevant di-

mension “directness” and “frequency content” [30].

Not surprisingly, another extension of PEMO-Q, named PEMO-AQ, is reportedly

being developed by Huber [9]. Concurrently, Beerends is developing the Perceptual

Hearing Aid Quality Measure (PHAQM) based off of PAQM, PESQ, and PEAQ, and

Haubold and Schmafußare developing the Model of auditory Comfort for Hearing

Impaired persons—Revised version (MCHI-R) [9].
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Two relatively recent measures specifically look at predicting quality in the context

of hearing aid distortion. First, Parsa and Jamieson propose a measure based on an

“auditory distance” parameter, which computes the distance between the hearing

aid response and their model output [47]. Second, Kates and Arehart propose the

Hearing Aid Speech Quality Index (HASQI) which is made up of two components.

The first component captures the effects of noise and nonlinear distortion, and the

second component, a modification of Moore and Tan’s quality measure [41], captures

the effects of linear filtering [35].

Kates and Arehart considered additive, multiplicative, and L∞ combinations of

the two components of HASQI and found the multiplicative combination to be slightly

more accurate [35]. Several other noteworthy measures looked at the method of com-

bining components together. In contrast to Kates and Arehart, Moore et al. [42]

found an additive combination to be more effective than a multiplicative combina-

tion. Beerends et al., on the other hand, propose Lp averaging of their three compo-

nents, with p = 0.1 [5]. Further yet, many other metrics have components which are

combined using a neural network (e.g. [8, 11, 45]).

The plethora of measures presented here all require both the degraded signal and

its corresponding clean version, and therefore, are classified as intrusive measures.

The counterpart to this class is the non-intrusive class of measures. These measures

do not require a reference signal at all. Since non-intrusive measures are primarily

used in the framework of telecommunications, they are left out of the discussion here.

2.2 Intelligibility

Objective measures of intelligibility have similarly been the object of much research.

The Articulation Index (AI) and the Speech Transmission Index (STI) are the most

widely used predictors of speech intelligibility. AI was first proposed by French and

Steinberg [18]. At its core, AI computes a weighted average of the SNR within some
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number of frequency bands. Kryter validated many of the underlying principles of AI

[39] and proposed methods for its use in practical settings [38]. AI became the ANSI

standard in 1969 (ANSI S3.5-1969). Although many of the correction factors Kryter

introduced increased AI’s performance in predicting the effects of modulated noise,

peak clipping, and reverberation, AI is known to perform poorly in the presence of

some time-domain distortions [7].

Consequently, Houtgast and Steeneken proposed the Modulation Transfer Func-

tion (MTF) in 1973 to measure the loss of intelligibility due to echo and reverberation

[26]. Steeneken and Houtgast later extended this approach to include the loss of intel-

ligibility due to nonlinear distortions and branded the predictor as the Speech Trans-

mission Index (STI). STI was adopted as an ANSI standard in 1997 as the Speech

Intelligibility Index (SII), which is a revision of the AI standard (ANSI S3.5-1997)

[48].

However, STI still fails to accurately account for all distortions. For example,

it does not account for intraband masker nonlinearities or phase [7]. Based on the

premise that the best physical variable we have of the perceptual variable of intelligi-

bility is internal representations in the auditory pathway, many of the new objective

measures are model-based predictors. In 1999, Chi et al. [13] first proposed the

Spectro-temporal Modulation Index (STMI), which predicts intelligibility by employ-

ing a computational model of auditory processing. The model is composed of two

basic stages: the “early auditory system” and the “central auditory system.” The

“early auditory system” models the periphery and computes an auditory spectro-

gram. The “central auditory system” models higher, more central auditory stages,

primarily the primary auditory cortex, to estimate the spectral and temporal mod-

ulation content of the auditory spectrogram. Elhilali et al. has shown STMI to be

a flexible metric which can be used in many different situations; furthermore, they

have shown that STMI correlates well with subjective scores [17, 16].

11



Zilany and Bruce propose a modified version of STMI which uses their more

physiologically accurate model of the auditory periphery [60] in place of Elhilali,

Chi, and Shamma’s simple periphery model in order to increase the accuracy of

STMI. They show the modified STMI to be able to predict qualitatively the effects

of presentation level and cochlear impairment on intelligibility [58]. More recently,

Ibrahim and Bruce use the modified STMI to explore the interaction of envelope and

temporal fine structure cues in speech perception [31].

Another proposed objective measure of intelligibility which uses the Carney and

Bruce family of models [10, 60, 61, 59] is the Neural Articulation Index (NAI) [7].

NAI formulates a prediction of intelligibility in a manner which is similar to STI, but

which replaces SNR with an estimate of neural distortion. Bondy et al. estimate the

neural distortion by computing the distance between the auditory nerve response of

a degraded signal and the auditory nerve response of its clean reference signal. A

third, more recently developed approach by Hines and Harte, uses the Carney and

Bruce family of models to compute neurograms for a degraded signal and its reference,

where the “neurogram” is a representation of the discharge rates at the auditory nerve

across all time and frequency [58, 25]. Hines and Harte employ the Mean Structured

Similarity Index Measure (MSSIM) from the image processing community to compare

neurograms and, in turn, predict intelligibility.
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CHAPTER III

GENERALIZABILITY OF HASQI

Given the laundry list of objective measures presented in Chapter 2, it seems over-

whelming to choose which measure to use when. Although many consider intelligibil-

ity to be the more important problem, listeners will refuse to use devices which yield

bad quality even if the intelligibility improves. Thus, we need to be able to predict

quality as accurately as possible if we are going to make any progress using objective

measures to evaluate algorithms for the design of hearing aids.

Focusing on quality then, first we need an objective measure which is accessible.

Second, we need to be able to predict quality for HI listeners. Third, we need an

objective measure which can predict quality for the types of distortion which are

introduced specifically by hearing aid algorithms. And finally, we need an objective

measure which provides a good prediction of quality for datasets on which it was not

trained. Many of the objective measures mentioned in Chapter 2 fail the first criteria

since they are not available for us to use. Of the measures that are available to us, few

actually predict quality for HI listeners and even fewer focus on distortions produced

by hearing aids specifically.

Recently however, Kates and Arehart [35] developed an objective measure for

evaluating distortions introduced specifically by hearing aids for both NH and HI

listeners. Their metric, called the Hearing Aid Speech Quality Index (HASQI), aims

to capture the aspects of quality deemed important for rating speech processed by

hearing aids [1]. They report very high correlation, Pearson correlations of rp = 0.942

and rp = 0.978, between HASQI and subjective listener scores for NH and HI listeners,

respectively [35]. Given such high correlations, HASQI is a promising candidate as
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an evaluation and design tool for hearing aid algorithms.

What remains then, is to address whether or not HASQI generalizes across stud-

ies. The objective is to explore how HASQI performs with an “unknown” set of

speech samples and subjective ratings and to compare HASQI’s performance directly

with some other metrics in the literature, including segmental signal-to-noise ratio

(segSNR), frequency-weighted segmental signal-to-noise ratio (fwsegSNR), weighted-

slope spectral distance (WSS), Perceptual Evaluation of Speech Quality (PESQ), log-

likelihood ratio (LLR), Itakura-Saito distance measure (IS), and a cepstral distance

measure (CEP).

3.1 Methods

Hu and Loizou evaluated an extensive collection of common objective measures of

quality for NH listeners by comparing listener and predicted scores of the quality of

noisy speech enhanced by noise suppression algorithms [28]. We use the same set of

speech files, the same subjective scores, and the same analysis technique.

The speech samples were created using noisy sentences from the noisy speech

corpus NOIZEUS 1 and 13 different noise suppression algorithms, including spectral

subtractive, subspace, statistical-model-based, and Wiener-filtering type algorithms

[28, 40, 27]. With this wide range of algorithms, the dataset contains a wide range of

the distortions which are likely introduced during speech enhancement. The final set

of 1792 files includes 16 different sentences (sp01-sp04, sp06-sp09, sp11-sp14, sp16-

sp19), 14 algorithms (13 noise suppression algorithms plus the control case), four

noise types (babble, car, street, and train), and two signal-to-noise ratios (5 dB SNR

and 10 dB SNR).

The listener testing was conducted on the speech files by Dynastat, Inc. (Austin,

TX) according to the ITU-T P.835 standard. A total of 32 NH subjects were recruited

1Available online: http://www.utdallas.edu/~loizou/speech/noizeus/
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for the listening tests. Subjects were asked to focus on and to rate the speech files

sequentially based on signal distortion, background intrusiveness, and overall quality

[27, 28]. However, we focus only on overall quality. We compute an average sub-

jective score for each combination of algorithm, noise type, and SNR by averaging

across subjects and sentences. This averaging creates a total of 112 cases (13 noise

suppression algorithms plus the control, four noise types, and two SNRs).

For all 1792 speech files, we predict quality scores with each objective measure (see

Section 3.2). Then for each of the measures, we average across sentences to obtain

average objective scores for each of the 112 cases.

We use three measures to evaluate performance. The first, Pearson’s correlation

coefficient, measures the linear dependence between the objective measures, o, and

the subjective quality ratings, s, as

rp =

∑
i(oi − ō)(si − s̄)√∑

i(oi − ō)2)
√∑

i(si − s̄)2)
, (1)

where ō is the sample mean of o, and s̄ is the sample mean of s. The second measure,

an estimate of the standard deviation of the error when the objective measure is used

in place of the subjective measure, is computed by

σ̂e = σ̂s

√
1− r2

p, (2)

where σ̂s is the standard deviation of the sample of the subjective scores. Since σ̂e

depends only on rp and σ̂s, we are not actually reporting any new information by

including this measure. However, we are presenting the relationship between the

objective and subjective scores from a different perspective.

The third measure is Spearman’s rank correlation coefficient, rs, which quantifies

how well the relationship between two variables can be described by a monotonic

function. The Spearman correlation coefficient is defined as the Pearson correlation

coefficient between the ranked variables. In other words, the raw scores are converted
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to ranks in ascending or descending order and Spearman’s rank correlation coefficient

is computed from these ranked scores using Equation 1.

3.2 Objective measures

3.2.1 Hearing Aid Quality Index (HASQI)

HASQI is the product of two independent indices. The first index, Qnonlin, captures

the effects of noise and nonlinear distortion by targeting short-time signal envelope

behavior, and the second index, Qlin, captures the effects of linear filtering and spectral

changes by targeting differences in the long-term average spectra. Both indices are

computed on outputs of an auditory model, and since the model can represent a

normal or impaired periphery, the combined quality index serves as an objective

measure for both NH and HI listeners.

3.2.1.1 Auditory model

Kates and Arehart use relatively simple models of the auditory periphery for the

nonlinear and linear indices (Figures 2 and 3). In general, each model maps a sound

waveform to steady-state neural firing rate. The basic components of each of the

models are a middle ear filter, two parallel filterbank paths, compression, and a

logarithmic conversion. In the figures, the dashed boxes indicate the components

which are configured according to the health of the IHCs and OHCs and the thresholds

of hearing for the periphery the model is attempting to represent. In this way, the

model can represent a large number of hearing configurations.

The path through the first filterbank of each model, called the analysis filterbank,

makes up the main pathway, and the path through the second filterbank, called the

control filterbank, acts as a controller to the compression rule. The bandwidths of

the analysis filters are inversely proportional to the condition of the outer hair cells

(OHCs)—the more significant the hearing loss, the wider the bandwidths. Conversely,
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Figure 2: Schematic diagram of the auditory model for the computation of Qnonlin.
The dashed boxes indicate those components which are configured for different types
of hearing.
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Figure 3: Schematic diagram of the auditory model for the computation of Qlin. The
dashed boxes indicate those components which are configured for different types of
hearing.

the bandwidths of the control filters are constant and are set to the same bandwidths

as those of the analysis filters at maximum hearing loss.

The baseband envelopes at the output of the control filterbank become the in-

put to the compression, which is characterized by a typical compression rule. OHC

damage modifies the compression rule so as to shift auditory thresholds and reduce

the compression ratio. Cochlear gain at the output of compression is applied, and

then damage to the inner hair cells (IHCs) is incorporated via signal attenuation in

each frequency band. Finally, the signal is logarithmically scaled to approximate the

conversion from signal intensity to steady-state neural firing rate. Kates and Arehart
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originally claimed in [35] that the log conversion is an approximation of the conversion

from signal intensity to loudness, but a better statement is that the log conversion

is an approximate mapping of intensity to steady-state neural firing rate (J. Kates,

personal communication, 17 May 2011).

The main difference between the two models is in their treatment of time. In

the case of the nonlinear index, the output is the time-frequency representation of

steady-state firing rate such that the model captures changes in the signal over time.

Conversely, in the case of the linear index, the time-frequency representations are

averaged across time so that the output is an estimate of the long-term average

spectrum. For a more detailed description of the auditory models use, see Kates and

Arehart [35].

3.2.1.2 Nonlinear Index

To start, the reference signal, x(t), and the signal under test, y(t), are put through the

auditory model. Each of the resulting time-frequency representations are windowed

across time with an 8-ms raised-cosine (von Hann) window and 50% overlap. Each

time frame then contains a short-time log-magnitude spectra on an auditory frequency

scale. The inverse Fourier transform of the short-time log-magnitude spectra gives

something similar to the mel cepstrum. To increase efficiency, the cepstral coefficients

are computed with a cosine transform rather than the inverse Fourier transform [24].

Specifically, Kates and Arehart [35] compute the coefficients with a set of half-cosine

basis functions, φj(k), where j is the basis function number (or the jth “quefrency”

band) from 0 to J-1 (J = 6 for Kates and Arehart) and k is the gammatone filter

index from 0 to K-1 (K = 32 for Kates and Arehart). To be clear, for a signal with

N total time frames after windowing, the K by N spectra, X and Y , are transformed

to J by N “cepstrograms”, Cx and Cy. Let Φ be the set of φj(k) in columns such
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that Φ is K by J . Then,

Cx = ΦTX (3)

Cy = ΦTY. (4)

Let cx,j(n) and cy,j(n) be the jth cepstral coefficient (the jth rows of Cx and Cy) for

all N time frames. Then, ĉx,j(n) and ĉy,j(n) are cx,j(n) and cy,j(n) with the speech

pauses and means removed. The normalized cross-correlation, r(j), of ĉx,j(n) and

ĉy,j(n) is computed for j = 2 through j = J .

Finally, the average cepstral correlation is computed as the average of the 2nd to

the J th correlation. The nonlinear index is a second-order regression fit on the average

correlation, where different fits are reported in [35] for NH and HI listeners. Figure 4

provides a schematic diagram for computing Qnonlin.
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Figure 4: Schematic diagram for computing Qnonlin.

Conceptually, Qnonlin can be thought of in two ways. First, each cepstral coefficient

can be thought to describe the dynamics of a short-time spectrum through time.

For example, the second cepstral coefficient is a half-cosine, and therefore, captures

spectral tilt as a function of time. Furthermore, the correlation between each of the

cepstral coefficients of the signal under test and the reference measures the degree to

which the processing altered the dynamics of the short-term spectrum over time (J.

Kates, personal communication, 11 May 2011).

The second way of viewing Qnonlin is to think of the cepstrograms as just efficient

representations of the overall spectral shapes. By taking the average correlation then,

19



Qnonlin is just measuring how well the two cepstrograms match.

3.2.1.3 Linear Index

The linear index, Qlin, is based on Moore and Tan’s sound quality metric which

focuses on predicting quality due to distortions from spectral modifications [41]. The

Moore and Tan metric predicts quality based on the differences in excitation patterns

and the differences in the slopes of the excitation patterns. Kates and Arehart take a

similar approach, but replace the excitation pattern with the output of their auditory

model.

The output of the auditory model for the linear index is an estimate of the long-

term average spectra, X̄(k) and Ȳ (k), of x(t) and y(t). Let X̂(k) and Ŷ (k) be the

normalized versions of X̄(k) and Ȳ (k) (normalized to each have an RMS of one). If

we define d1(k) as the difference in the spectra, we can estimate it as

d1(k) = |Ŷ (k)| − |X̂(k)|, 0 ≤ k ≤ K − 1, (5)

Furthermore, if we define d2(k) as the difference in the spectral slopes, we can estimate

it as

d2(k) =
(
|Ŷ (k)| − |Ŷ (k − 1)|

)
− . . .(

|X̂(k)| − |X̂(k − 1)|
)
, 1 ≤ k ≤ K − 1. (6)

The standard deviation of both d1(k) and d2(k) is computed, and the linear index

is a linear combination of the standard deviations. Note again that different fits are

reported for the NH and HI listeners. Figure 5 provides a schematic diagram for

computing Qlin.

Conceptually, Qlin is much easier to understand than Qnonlin. Basically, Qlin is

capturing how large the majority of the differences are between the long-term average

spectra of the signal under test and the reference.
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Figure 5: Schematic diagram for computing Qlin.

3.2.2 Benchmarking objective measures

The benchmarking objective measures are reviewed briefly here. Refer to Hu and

Loizou [28] and Loizou [40], and the respective references within, for more details.

The time-domain segmental SNR (segSNR) is the average of the SNR across all time

frames. Frequency-weighted segmental SNR (fwsegSNR) is the average of the SNR in

each frame, where the SNR in each frame is computed as the weighted-average of the

SNR in K critical bands. The weighted-slope spectral distance (WSS) is computed as

the weighted average of the square of the differences between the spectral slopes. The

spectral slopes are estimated as the difference in the magnitudes between adjacent

bands.

PESQ is the objective measure recommended by ITU-T for speech quality as-

sessment of narrow-band handset telephony and narrow-band speech codecs (ITU-T

P.862, 2001). The basic components of PESQ include time alignment, a psychoa-

coustic model which maps signals into perceived loudness, disturbance processing,

cognitive modeling, aggregation of the disturbance in frequency and time, and finally,

a mapping to the predicted subjective score [51].

The log-likelihood ratio (LLR) distance at a given frame is defined as

dLLR = log
ayRxa

T
y

axRxaT
x

, (7)

where ax is the linear predictive coding (LPC) vector of the clean signal, x(t), ay is
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the LPC vector of the signal under test, y(t), and Rx is the autocorrelation matrix

of x(t). The LLR objective measure is the mean of the smallest 95% of the LLR

distances measured at each frame. Likewise, the Itakura-Saito measure (IS) is the

mean of the following distance in each frame.

dIS =
σ2

x

σ2
y

(
ayRxa

T
y

axRxaT
x

)
+ log

(
σ2

x

σ2
y

)
− 1, (8)

where σ2
x and σ2

y are the LPC gains of x(t) and y(t), respectively, and dIS is limited

between zero and 100. Finally, the cepstral distance measure (CEP) is the mean of a

mean-squared error calculation between cepstral coefficient vectors of x(t) and y(t) at

each frame. The cepstral coefficient vectors are computed recursively from the LPC

vectors and are limited between zero and ten.

We compute all metrics, except PESQ, by segmenting the sentences into 30-ms

frames using Hamming windows with 75% overlap between adjacent frames. Fur-

thermore, we compute the LPC-based objective measures (LLR, IS, and CEP) using

tenth-order LPC analysis.

3.3 Results

3.3.1 Pearson analysis

Figures 6 and 7 show the absolute value of the Pearson correlation and the estimate

of the standard deviation of the error, respectively. Kates and Arehart report a

correlation of rp = 0.942 for NH listeners [35], whereas we report a correlation of only

rp = 0.85. With the exception of the cepstral distance measure (CEP), all scores for

the benchmarking objective measures are within ±0.01 of those reported in Hu and

Loizou [28].

HASQI falls short of only PESQ and LLR in terms of the absolute value of the

Pearson correlation. With a Pearson correlation of |rp| = 0.85 between an “unknown”
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Figure 6: Absolute value of the Pearson correlation between objective and subjective
scores. Objective measures are sorted in order of best performance from top to
bottom.

dataset and listener scores, we have shown that HASQI is generalizable for NH lis-

teners in the context of de-noised speech. Furthermore, the standard deviation of the

error is small when HASQI is used in place of subjective scores (σ̂e = 0.25).

3.3.2 Spearman analysis

Figure 8 shows the absolute value of the Spearman rank correlation coefficient. A

Spearman rank correlation coefficient of one would be ideal since correct ordering of

the rank of perceptual quality would provide very valuable information when evalu-

ating hearing aid algorithms. However, HASQI actually performs worse here relative

to the other metrics than in the case of the Pearson analysis since it is only outper-

forming WSS, IS, and segSNR. Despite this initial appearance of breaking down, the

absolute correlation is not bad; it is still above 0.8.
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3.4 Discussion

Although we see a decrease in performance between the Pearson correlation reported

here and that which is reported by Kates and Arehart [35], we have shown that HASQI

generalizable. It has performed reasonably well given that it was trained on only a

single dataset. Furthermore, since HASQ has been validated for HI listeners, HASQI

remains an attractive option for future use in evaluating hearing aid algorithms.

It should be noted though that in this study, we have looked only at the robustness

of HASQI for NH listeners. Ideally we would have explored the robustness of HASQI

for the HI population as well. However, because we have shown that HASQI can

predict quality for “unknown” sets of speech samples and listener scores for NH

listeners, we suspect that HASQI will also be able to predict quality for “unknown”

sets of speech samples and listener scores for HI listeners.

It is noteworthy to mention that Kates and Arehart fit the second-order regression

on the average cepstral correlation in the nonlinear index to a dataset which contained
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average cepstral correlations only above about 0.5. As a result, Kates and Arehart

assume a linear fit for average cepstral correlations below 0.5. For the dataset in

this particular study, 72 of the 112 cases had average cepstral correlations below 0.5.

Therefore, HASQI might benefit from training with datasets that contain samples

with lower average correlations.

Since HASQI is based entirely on the signal envelope, distortions in the fine tem-

poral structure are ignored. This may be especially significant for NH listeners, since

they appear to make better use of temporal fine structure than HI listeners [35, 43].

Perhaps HASQI’s predictive power would improve with the use of an auditory model

which captures fine temporal structure.

As previously mentioned, all scores for the Pearson analysis were within ±0.01

of those reported by Hu and Loizou [28], with the exception of the cepstral distance

(CEP). We report |rp| = 0.83 and σ̂e = 0.26 here for CEP, whereas Hu and Loizou
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report |rp| = 0.79 and σ̂e = 0.29. The most probable explanation for the improvement

is that we used slightly different parameters than Hu and Loizou.

In conclusion, we have shown that HASQI is generalizable. Moreover, due to its

validated extension for HI listeners, HASQI makes a useful tool for those developing

algorithms specifically for the HI population.
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CHAPTER IV

CONCLUSION

Hearing aids are tasked with the unenviable job of compensating an impaired, highly-

nonlinear auditory system with severe power and size limitations. Historically, these

devices have either employed linear processing or relatively unsophisticated, nonlin-

ear processing techniques. With increasingly more accurate models of the auditory

periphery, we are at a turning point in hearing aid design.

Model-based objective measures often treat the auditory system as a cascade of

physical processes. As a result, they have the potential to provide more detailed

information about how sound is processed and about where and why quality or intel-

ligibility breaks down. Thus, provided that we can generalize model-based objective

measures, we can use them as tools for understanding how to best process degraded

signals, and therefore, how to best design hearing aids.

Many objective measures of quality and intelligibility have been proposed, and

with increasing accuracy and computational power, we are capable now more than

ever to utilize these measures as tools for the design and evaluation of algorithms.

Given our own uncertainty about the generalizability of objective measures though,

we conducted a large study on the generalizability of HASQI specifically. In doing

so, we have established confidence that HASQI can provide useful information about

quality. More generally though, this confidence translates to many other computa-

tional models and their corresponding objective measures.

Thus, we can look to use these computational models and objective measures

for algorithm evaluation in the future. As Quackenbush, Barnwell, and Clements

[49] point out, it is unlikely that any single objective measure will ever be able to
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accurately predict subjective quality across all possible distortions. Speech perception

is too complex of a process to be modeled so simply. Despite this barrier, objective

measures have still proven useful for predicting quality and evaluating algorithms.

After all, modest performance from an objective measure is better than no objective

measure at all.
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