
MICRO-SCHEDULING AND ITS INTERACTION WITH
CACHE PARTITIONING

A Thesis
Presented to

The Academic Faculty

by

Dhruv Choudhary

In Partial Fulfillment
of the Requirements for the Degree

Master of Sciences in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
August 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4758436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MICRO-SCHEDULING AND ITS INTERACTION WITH
CACHE PARTITIONING

Approved by:

Professor Sudhakar Yalamanchili, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor George Riley
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Hyesoon Kim
College of Computing
Georgia Institute of Technology

Date Approved: 1 July 2011

To my parents,

Sanjeev and Poonam Choudhary,

iii

PREFACE

This thesis represents a culmination of research that took place over two years from

Spring2009 to Spring2011. While the thesis addresses specific problems in building

asymmetric multicore architectures, a large part of my time was spent in developing

a cycle level simulator that could support a heterogeneous environment consisting of

different types of cores. A lot of the understanding and insight presented in the thesis

is a direct reflection of the hours of hard work put in designing models that perform

similar to commercial processors. The core models developed by me were directly

integrated into a larger multicore parallel simulation framework and thus I got expo-

sure to working on many aspects of large core count simulation environments. Apart

from my thesis I also worked on a couple of publications with my colleagues Mitchelle

Rasquinha and Syed Minhaj Hassan. The first conference publication appeared in

International Symposium of Low Power Electronic Design ’2010 and was based on

evaluation of on chip memory hierarchies constructed from magnetic Random Access

Memories (RAM) like Spin Torque Transfer RAM . The second publication is under

review at the time of writing this thesis. It highlights the interactions between on

chip networks and DRAM systems.

iv

ACKNOWLEDGEMENTS

There are many people who have helped me at various stages during the course of

these two years. I would like to express my gratitude to everyone who helped me

along the way.

I would like to thank my parents who are responsible for everything I have achieved

in my life. They completely supported my decision to spend a year more in school so

that I could finish my thesis to my satisfaction

I would also like to thank my advisor, Dr. Yalamanchili for providing me with a

platform where I could learn and research on state of the art technology. My colleagues

Mitchelle Rasquinha and Nawaf Almoosa have given me invaluable feedback time

and again and I have learnt a lot from them during my thesis. I thank all the other

colleagues at CASL who I have interacted with technically or otherwise. I would also

like to thank Tushar Kumar for helping me think more clearly about the problem I

was solving and giving me feedback on my solution quality.

v

TABLE OF CONTENTS

DEDICATION . iii

PREFACE . iv

ACKNOWLEDGEMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . x

I INTRODUCTION . 1

II ENERGY BEHAVIOR OF APPLICATIONS 4

2.1 Concept of micro-schedules : Motivation 7

2.2 Choosing Micro Scheduling Quantum 9

2.3 Primary Concept . 10

III ASYMMETRIC ARCHITECTURE CONFIGURATION 11

3.1 Performance metrics . 13

3.2 Operational Model . 14

IV THREAD UTILITY . 16

4.1 System Model Formulation and Assumptions 16

4.2 Cost-to-go ED2 function . 19

4.3 Weighted Quadratic approximation 23

4.3.1 γ1 and γ2 Values . 24

4.3.2 Adding factor for work left 24

V PERFORMANCE EVALUATION OF THREAD SCHEDULES 26

VI CO-ORDINATED CACHE PARTITIONING 30

VII RESULTS . 32

7.1 Co-ordinated Utility Scheduling and Cache Partitioning 32

vi

7.2 Gamma values and their effect . 33

7.3 Power envelope study . 34

7.4 Throughput Formulation . 37

VIIIPREVIOUS WORK . 39

IX CONCLUSION . 41

REFERENCES . 43

vii

LIST OF TABLES

1 Table of system configuration values 12

2 Table of workload mixes . 13

3 Metric parameters . 14

viii

LIST OF FIGURES

1 Workload variation on different core types. 2

2 Varying spectrum of slopes indicative of asymmetry in workloads. . . 6

3 Convex nature of weighted ED2 function. 8

4 Percentage overshoot error as migration intervals change. 9

5 Architecture of Asymmetric Configuration. 11

6 Sequence of thread migrations inside the scheduling quantum ’T’ . . . 17

7 Epoch Diagram for four threads. 19

8 Weighted PEM for Quad core workloads when optimized for ED2 . . 26

9 Harmonic PEM for Quad core workloads when optimized for ED2 . 27

10 Weighted Throughput for Quad core workloads when optimized for
ED2 . 28

11 Harmonic Throughput for Quad core workloads when optimized for
ED2 . 28

12 Weighted PEM for Quad core workloads with and without cache par-
titioning . 33

13 Harmonic PEM for Quad core workloads with and without cache par-
titioning . 33

14 Effect of gamma values on wPEM . 34

15 Effect of gamma values on Average Power. 35

16 Percentage overshoot error with decreasing power envelopes. 36

17 Weighted PEM for Quad core workloads as the power envelope is dialed
down . 36

18 Weighted Throughput for Quad core workloads when optimized for
Throughput . 37

19 Harmonic Throughput for Quad core workloads when optimized for
Throughput . 37

20 Weighted PEM for Quad core workloads when optimized for Through-
put . 38

21 Harmonic PEM for Quad core workloads when optimized for Through-
put . 38

ix

SUMMARY

This thesis explores the sources of energy inefficiency in asymmetric multi-

core architectures where energy efficiency is measured by the energy-delay squared

product. The insights gathered from this study drive the development of optimized

thread scheduling and coordinated cache management strategies in an important class

of asymmetric shared memory architectures. The proposed techniques are founded

on well known mathematical optimization techniques yet are lightweight enough to

be implemented in practical systems.

x

CHAPTER I

INTRODUCTION

While Moore’s law continues to produce more cores on a die, dies sizes are not increas-

ing at anywhere near the same rate. Consequently power densities continue to increase

while there is increasing pressure on the power budget per core or per tile. These

reduced budgets can manifest themselves in a number of different architecture config-

urations exploiting various forms of core asymmetry. Several recent works([14], [13])

have proposed frequency asymmetric systems where cores are designed to run at dif-

ferent frequencies and applications are mapped to cores according to their compute

requirements. Another form of asymmetry, that we evaluate in this thesis is that of

using cores custom designed at different energy-delay design points(assuming they

operate at the same frequency). This is similar to previous work([5], [8]) where fat

Merom type cores are coupled with thin ATOM-like cores giving us different energy-

delay design points in a chip multiprocessor (CMP). Figure 1 illustrates the behavior

of the SPEC2006 benchmarks on two different types of cores in terms of a perfor-

mance energy metric which we define in Chapter III. It illustrates that the energy

efficiency across applications is highly variant. This implies that applications have

Instruction Level Parallelism(ILP) and Energy per Instruction(EPI) characteristics

spread across a wide spectrum.

In this work we i) study the behavior of energy efficiency as the power budget per

core/tile decreases and ii) explore approaches to achieve maximum energy efficiency

in such an asymmetric environment. Energy efficiency is a growing issue not just for

mobile platforms but also for data centers and HPC environments. The two major

1

Figure 1: Workload variation on different core types.

energy related costs in a data center are that of the utility kWh charge and the power

cooling systems [2]. The reducing power budget per core exacerbates the energy effi-

ciency problem because we need to build simpler cores which consume less power but

they service workloads at a lower rate as well. Thus, the whole data center needs to

operate for much longer which might increase both the kWh utility cost as well as

the energy to cool down the data center.

While asymmetric architectures address the increasing constraint on power, the en-

ergy efficiency of these systems may still vary depending on the application character-

istics. This is because energy is dependent on the total execution time of a program.

Thus although we might use less power on a thin core, an energy efficiency metric

such as energy delay squared(ED2) might increase because the thin core might take

much longer to complete the same work compared to a fat core.

2

This thesis first explores the sources of energy inefficiency in asymmetric multicore ar-

chitectures where energy efficiency is measured by the energy-delay squared product.

The insights gathered from this study drive the development of optimized thread

scheduling and coordinated cache management strategies in an important class of

asymmetric shared memory architectures. The proposed techniques are founded on

well known mathematical optimization techniques yet are lightweight enough to be

implemented in practical systems. To summarize, we make the following contributions

in this thesis:

• We propose micro-scheduling - a technique to exploit performance and achieve

energy efficiency in asymmetric multicore architecture.

• We describe a low complexity optimization framework for the periodic on-line

computation of energy efficient thread schedules based on the notion of thread

utility - a measure of the threads affinity to a certain core type.

• We highlight how cache partitioning interacts with these thread schedules on an

asymmetric substrate and propose a co-ordinated thread scheduling and cache

partitioning scheme

• We provide a detailed analysis of our approach under increasingly stringent

power budgets.

3

CHAPTER II

ENERGY BEHAVIOR OF APPLICATIONS

This section explores the energy behavior of individual applications on cores of vary-

ing complexity. The experiments are carried out in a configuration where there is

one traditional out-of-order OOO) core called the fat core and one in-order, two-

way superscalar core called the thin core. A thread is executed on one core or the

other by a thread scheduler. We first study the behavior of a thread as it moves

between the fat core and the thin core. In particular we explore the behavior of a

the energy-delayed-squarded metric. All simulation are conducted using a full system

x86 multicore simulation infrastructure described in Chapter III.

Figure 1 indicates that applications have computational demands spread across the

spectrum. Thus it is not possible to build one core type for all the applications. Ide-

ally each phase of each application should execute on a core defined at a particular

design point that suits it, but this is not practical. Moreover applications are not

clustered into groups that we can define a core for each cluster. We need to design

core types in the middle of the spectrum and try to fit applications to the best pos-

sible energy-delay point.

Figure 2 illustrates the variation in ED2 as an increasing percentage of the work

that is executed on a fat core for 6 SPEC 2006 benchmarks. All applications have

higher values of ED2 on the thin core but as an increasing percentage of work is

executed on the fat core the ED2 drops by different amounts for different threads

which is indicative of variance in application ILP and EPI properties. The optimiza-

tion challenge then is to define time varying mappings between these applications and

the asymmetric cores to best utilize the system for energy efficiency. For traditional

4

symmetric multiprocessors this has been a responsibility of the operating system(OS)

which is responsible for mapping applications to cores while achieving objectives like

fairness and throughput. For asymmetric multiprocessors, an OS scheduling approach

sacrifices performance because an OS scheduling quantum is of the order of 100 to

200 msec and applications can have compute and memory phases much smaller than

that. Thus the OS scheduler may be unable to match application phases to the core

type that suits them. Reducing this quantum is certainly an option but that leads to

excessive overhead when the quantum is an order of magnitude less.

We propose a different approach where a hardware level custom circuit or micro con-

troller makes fast scheduling decisions for fast migrations of the order of 5 to 10 msec.

We term this Micro-scheduling. Migrating a thread at a granularity smaller than the

OS quantum has two main advantages. First, for performance, it allows us to be

much more responsive to program phases, for example we can run compute phases

on fat cores and memory phases on thin cores. Second, due to the decreasing power

envelope each technology generation, its is going to get tougher for an OS level sched-

uler to react to the sudden increases in power of applications. A micro-scheduler on

the other hand can be much more responsive to sudden surges of power.

Apart from the obvious difference in scheduling quanta between the OS scheduler

and the micro-scheduler, there are other subtle differences between the two. The

micro-scheduler needs to be much faster and complex scheduling policies and op-

timizations are infeasible. Although the micro-scheduler’s objective is maximizing

performance and energy efficiency, its fairness properties should not contradict OS

fairness policies. Micro-scheduler and OS policies should be co-ordinated. There are

other implications of using such micro-schedules in a real system. An OS level sched-

uler interacts very coarsely with the micro-architecture, but a micro-scheduler as the

name suggests interacts very closely. Let us take the example of the shared level2

cache. The micro-scheduler needs performance data of applications like Instructions

5

Figure 2: Varying spectrum of slopes indicative of asymmetry in workloads.

per Cycle(IPC) and Energy per Cycle(EPC). These values are collected from a run-

time performance monitoring unit. However, the measured values are dependent on

the way applications interact in the cache. The inherent asymmetry in the cores

creates inherent asymmetry in the rate at which threads demand cache resources.

Thus a particular schedule calculated by the micro-scheduler has an impact on the

cache behavior which in turn affects the measured IPC and EPC values. This cross

interdependence can lead to pathological behaviors where certain high IPC threads

dominate the low IPC threads starving them of the fat core and cache space. Con-

ventionally this problem has been solved by cache partitioning schemes like [11], [15]

but most of these techniques are oblivious to the thread scheduler and vice versa.

The partitioning calculated in one quantum of a micro-schedule might not be optimal

for the next schedule and may at worst be disruptive. Thus the cache partitioner can

make better decisions if it is aware of the changing micro-schedules.

In this work we use micro-schedules to design a highly energy efficient asymmetric

system. We do so by describing a scheduling framework that allocates applications

6

compute resources according to thread utility - a measure of the benefit of giving

an application ILP resources. We describe ways of computing this utility at runtime

at minimal cost. The thread utility has a relationship to power. A reducing power

budget would require the micro-scheduler to compute utilities that would adhere to

the power budget. We describe mechanisms by which the micro-scheduler can adapt

to the power budget while achieving the best energy efficiency possible.

We then use this thread utility concept to illustrate how a micro-scheduler should

be co-ordinated with shared level 2 cache partitioning. We do so by modifying cache

insertion and promotion policies to incorporate the thread utility values in a way that

the micro-scheduler and the partitioner share a symbiotic relationship.

2.1 Concept of micro-schedules : Motivation

Figure 2 explores the impact of scheduling a thread on a fat or thin core sharing a

level 2 cache. We evaluate the ED2 metric as a function of the percentage of time

the thread executes on the fat core. All applications are executed alone and they

have variable increase in ED2 on the thin core (points on the y-axis) compared to

that on the fat core. An application like astar has least benefit of being executed

on a fat core. In contrast bzip2 has the highest decrease in ED2 with the increasing

percentage of fat core.

Now consider the case when two applications are executed on a two core system

one fat core and one thin core sharing a tile. The performance is evaluated as the

weighted ED2 this is computed by normalizing the ED2 of a thread to its optimal

ED2 (obtained by executing this thread in isolation with an optimal schedule).The

optimal energy efficiency that can be achieved is dictated by the slopes of the curves

in Figure 2. Figure 3 plots the weighted ED2 of four applications pairs that execute

a varying percentage of their work on the fat core with respect to each other. The

graphs are U-shaped convex curves with the minima in each pair being a different

7

Figure 3: Convex nature of weighted ED2 function.

point which demonstrates the relative core-bias between the two applications. When

executed in isolation applications may achieve optimal energy efficiency on the fat

core or the thin core, or a combination of both if it has varying compute phases,

but when executed together they need to be given a fat core percentage according

to the cost that they expend in ED2 as they move along the curves in Figure 2.

This is because applications have various compute and memory phases and this min-

ima point changes accordingly. The role of a micro-scheduler is to adapt to these

changing minima. An OS scheduler due to its larger quanta has low reactivity to

these changing minima values. This phenomenon of adapting to frequent changes of

application phases is what we term as dynamic core sharing. This relative core bias

between threads is closely related to our concept of thread utility because it captures

the efficiency with which a thread executes on a particular core type.

8

2.2 Choosing Micro Scheduling Quantum

An advantage of using micro-schedules is its ability to react to sudden power surges.

Operationally, when a power surge (for example due to workload changes) occurs

threads can be rescheduled to reduce power consumption for example by moving high

IPC threads to the thin core. However, before thread migration can have an impact

the power may overshoot the budget for some period of time. Figure 4 plots the

Figure 4: Percentage overshoot error as migration intervals change.

percent overshoot error on log scale for different migration intervals starting from

2msec upto OS scheduling quantum of 100msec. Choosing the interval is a trade off

between thread migration costs and the scheduling algorithms ability to adhere to a

power budget. Scheduling intervals of 10 to 20 msec show lower power budget over-

shoot error than higher intervals, which indicates that the micro-scheduling quanta

must be at least an order of magnitude smaller than the OS scheduling quanta. We

choose 10msec (roughly 30 million cycles at 3 GHz) as the scheduling interval because

at 10msec and below our experiments indicate that we can compute schedules that

adhere to within 5% of the power budget. The few outliers are due to workloads

which are comprised of only high IPC threads. As we show later, for these kind of

9

workloads thread scheduling as a power management technique is not very effective.

All results presented hereafter will assume a scheduling interval of 30 million cycles

unless otherwise specified.

2.3 Primary Concept

Our study of the energy behavior of applications described in the preceding sections

leads to the following intuition - a thread should be allocated a share of the fat cores in

proportion to its demand for work, where work may be measured by IPC for example.

The demand for computation made by a thread is captured in the concept of thread

utility. Scheduling policies are driven by thread utility.

10

CHAPTER III

ASYMMETRIC ARCHITECTURE CONFIGURATION

Figure 5: Architecture of Asymmetric Configuration.

Asymmetric architectures can be constructed in many different system configura-

tions. Although the proposed policies and techniques can be extended to all config-

urations, we choose one that we think has several useful properties. Figure 5 shows

the system architecture where each tile of the CMP is assembled with a fat core and

few thin cores. A level 2 (L2) cache is banked across the whole chip and all cores

share the cache. This formation reduces migration costs and also reduces the cost

of verification and testing because the tiles are symmetric. The thin cores in a tile

share the level 1 (L1) cache. Although we use cores that are single threaded, most

commercial inorder cores are 2 to 4 way multi threaded eg. Niagara and ATOM.

Thus it is not an unreasonable assumption for 2 to 4 inorder cores to share a single

L1 cache.

Table 1 provides the machine configuration of fat, thin cores and the caches. We

11

Table 1: Table of system configuration values

Merom Atom
Branch Predictor TAGE(4KB), 2bC(1KB),

2K-entry/4-way BTB RAS-16 1K-entry BTB RAS-4
DTLB 16 entries/4-way 4 entries/4-way
ROB, RS, LDQ, STQ 96, 32, 32, 20 ByteQ-16 ByteQ-4
Decode/Issue uOP Queue 24, uOP Queue 8,

Dec 4-1-1-1 w/ fusion Dec 4-1
Pipeline Units 3 INT-FUs, 2 FP-FUs, 2-way superscalar 2 INT-FUs,

3 MEM units 2 FP-FUs
Pipeline Latency 3-cycle add, 3-cycle add,

5-cycle ,mult 8-cycle mult,
24-cycle div 40-cycle div

Instruction L1 (64KB) 4-way, 64 byte lines (64KB) 4-way, 64 byte lines
Data L1 Cache (64KB) 4-way, 64 byte lines, (64KB) 4-way,64 byte lines,

16 MSHR’s 32-MSHR
L2 Cache 1MB per bank/tile,2-banks,32-way,64 byte lines, 32-MSHR
Router 5-stage DOR, Round Robin SA
MC Policies FR-FCFS, Page Interleaving, Open Page

3 Ghz, MOESI Coherence

use a cycle accurate x86 simulator (Zesto [9]) which was modified to run with a QEMU

front-end that emulates a Linux image. The backend was interfaced with a MOESI

coherent cache-network simulator. Zesto handles micro-ops in the pipeline instead of

macro-ops and thus whenever we refer to committed instructions per cycle, we are

referring to the number of micro-ops committed rather than the number of macro-ops.

We use MCPAT [7] for energy and power modeling. We run most simulations for 2

billion instructions to assess the performance of micro-scheduling and its interaction

with the OS scheduler.

We choose 23 multiprogram workloads from SPEC2006 suite(Figure 1). We always

execute as many threads as the number of cores. The scheduling of a larger number of

threads than cores is handled by the OS scheduler. Figure 1 classifies the workloads

into high medium and low performance. From these we form 16 combinations of

workloads with high, medium and low inter-application variance. Workloads are

12

chosen to stress the scheduling and cache partitioner. We also choose a workload

with all high IPC threads which illustrates situations where the proposed techniques

fail.

Table 2: Table of workload mixes

WL0 bzip2-chk sphinx3 soplex-ref lbm
WL1 calculix sjeng astar-bigl mcf
WL2 h264 libq gcc-s04 mcf
WL3 gromacs bzip2-comb soplex-ref bzip2-lib
WL4 gromacs calculix xalancbmk gcc-g23
WL5 h264 h264 h264 h264
WL6 h264 hmmer-ret bzip2-comb sphinx3
WL7 h264-ref mcf bzip2-lib astar-riv
WL8 h264 perl-chk astar-rivers lbm
WL9 libq sjeng gcc-s04 soplex-ref
WL10 omnetpp xalancbmk hmmer-nph3 lbm
WL11 perl-diff dealII gcc-g23 bzip2-lib
WL12 perl-diff gromacs xalancbmkastar-riv
WL13 perl-diff omnetpp hmmer-ret perl-chk

3.1 Performance metrics

To quantify throughput we use a metric that can capture the amount of work per-

formed but without penalizing the low IPC threads. Thus we choose weighted IPC

and harmonic IPC which are defined as

wIPC =
n∑
i=1

(IPCshared)i/(IPCalone)i (1)

hIPC = n/

n∑
i=1

(IPCalone)i/(IPCshared)i (2)

Similarly when we define energy efficiency as a product of energy and delay, we

want to capture the best possible value without penalizing threads with the largest

ED2 value. The most commonly used energy efficiency metrics are Energy Delay

13

product(ED) or the Energy Delay-Squared product(ED2). For a given thread i

EDi = (ei ∗ (Mi)
2)/(IPCi)

2 (3)

Table 3 provides the nomenclature. As we saw in Figure 2, a given application would

get the optimal ED2 when run on the fat core or thin core or a combination of the

two(depending on compute and memory phases). Thus we need to weigh the energy

delay metric according to these optimal values. The square in the term shows that

Table 3: Metric parameters

ei energy per cycle for thread i
IPCi instructions per cycle for thread i
Mi work to be done in instructions for thread i

energy is a function of the delay as well. Thus our weighted performance energy

metric (wPEM) and harmonic performance energy metric (hPEM) analogous to ED

for n threads is

wPEM =
n∑
i=1

IPC2
i /ei

(IPC2
i /ei)opt

(4)

hPEM = n/
n∑
i=1

(IPC2
i)/ei)opt

IPC2
i /ei

(5)

If we instead optimize for the energy delay-squared (ED2) product all the quadratic

terms become cubic. Our baseline for comparison is round robin where all threads

operate at a point on the curve where they get equal share of the fat core.

3.2 Operational Model

With respect to Figure 5, the system comprises of two levels of schedulers - the OS

scheduler that runs at a higher temporal granularity and the hardware scheduler

or micro-scheduler that runs at much finer temporal granularity. The OS scheduler

makes scheduling decisions across the chip-multiprocessor (CMP), but the CMP may

consist of many micro-schedulers working independently of each other. Each micro-

scheduler may either consist of a single tile or multiple tiles. These tiles comprise

14

the region where thread migrations are confined to and is called the domain of the

micro-scheduler. The organization of tiles is motivated by an intuition that suggests

that to achieve energy efficiency we must i) make cores of varying energy efficiency

available to a thread, and ii) we must reduce the cost of thread migration. The pre-

ceding organization provides opportunities for both by have multiple core types that

share a level of the memory hierarchy, in this case the L2 cache.

The OS scheduler may be unaware of the asymmetric composition of cores in a tile

and schedules threads to micro-scheduler domains. The OS scheduler also provides

a power budget to each micro-scheduler domain. Micro schedulers operate inde-

pendently of each other. Each micro-scheduler assigns to each application (a single

thread) in its domain a value called the thread utility which indicates the utility of

executing an application on a certain core type. A thread’s utility changes over time

with its behavior as described in Chapter IV. In addition to making scheduling de-

cisions, thread utility values are also used to coordinate the sharing of the L2 cache.

The level 2 cache is banked and shared across all the micro-scheduler domains. The

cache partitioner is unaware of the domain to which a thread belongs. Instead it is

only concerned with the utility of a thread in making partitioning decisions.

Operationally the OS scheduling interval is divided into micro-scheduling intervals of

duration T cycles. Every T cycles the micro-scheduler is invoked, optimized schedul-

ing decisions are made, and threads migrated between the fat cores and thin cores in

the domain.

15

CHAPTER IV

THREAD UTILITY

Thread scheduling is often formulated as a graph assignment problem of mapping

threads to cores and has been studied in extensive detail at the OS level([5], [8]). We

have already shown the advantages of dynamically sharing cores between applications

at a finer granularity than the OS scheduling granularity. The problem with graph

assignment scheduling at the micro-scheduling level is that it burdens the scheduler

with high complexity assignment computation. This formulation makes it difficult

to define a system wide integrated cost in terms of the dynamic core sharing we de-

scribed in Chapter II.

We instead formulate a general framework that allows us to define a number of dif-

ferent cost functions such as throughput, uniform performance or energy efficiency.

To accomplish this we first define the concept of thread utility.

In general, the thread utility is a measure of the utility of executing a thread on a

specific type of core. It attempts to capture the benefit, in terms of energy efficiency,

of executing a thread on a specific core. In this thesis, the thread utility is repre-

sented as a number of cycles (or seconds) a thread executes on a particular core type

in a micro scheduling interval. This is different from a graph assignment formulation

because within every micro-scheduling interval, a thread receives a share of a core

proportional to its utility on that core. This enables fast scheduling decisions and

enables us to derive cost functions in terms of notions of utility.

4.1 System Model Formulation and Assumptions

One can envision a number of core types designed to occupy various points that trade-

off energy efficiency and performance. While, in the near future we probably do not

16

Figure 6: Sequence of thread migrations inside the scheduling quantum ’T’

17

expect to see more than 2-3 core types in commercial processors, the formulation of

the micro-scheduler is sufficiently general. We present it in its most general form

with n cores and n threads. Let us consider we have p different core types forming p

levels of asymmetry. We refer to a fat core like Merom as the highest level of asym-

metry and a thin core like Atom as the lowest level of asymmetry. Every T cycles

the micro-scheduler is invoked and it produces a sequence of schedules where each

thread spends at least some time on each core of the higher p−1 levels of asymmetry.

The vector Ui represents the time threadi spends on each core. Thus Ui =

u1i

u2i

· · ·

umi

where m is the number of cores in the higher p−1 levels of asymmetry. Thus we now

have a m × n matrix of times spent in cycles by each thread on each core (in every

scheduling interval). The reason we can ignore the times spent on the cores of the

lowest level of asymmetry is that it is implicitly captured in the time not spent on

the higher p− 1 levels. This is an important observation because we have many more

thin cores than the fat cores. Let us call this U matrix a Utility Matrix. Each element

of this matrix defines the utility of running a certain thread on a certain core. This is

what we refer to as thread utility. The total time spent by all the threads on a core,

should add upto T . Thus the first set of constraints that arise from this formulation

are, the linear equations formed by summing the rows of U .

n∑
i=1

uji = T for all j = 1 to m. (6)

The second constraint is that due to the power envelope.

m∑
j=1

n∑
i=1

eji ∗ uji +
n∑
i=1

eli ∗ (T −
m∑
j=1

uji) <= Pbudget ∗ T (7)

where eji is the energy per cycle of thread i on core j. There is an extra term in the

power budget to account for the power consumed by the lowest level of asymmetry

18

and eli is the average energy per cycle of thread i on the lowest level of asymmetry.

We now apply this generic formulation to our system where we have only two levels of

asymmetry. The utility matrix will consist of the time spent on each fat core. As for

the constraints, we have as many linear constraints as the number of fat cores. Thus

if we have a single fat core the only linear constraint apart from the power constraint

is, u1 + u2 + ...+ un = T . where ui is the time spent on the fat core by thread i. For

the majority of the paper we evaluate the configuration with the single fat core and

multiple thin cores for simplicity and ease of explanation. In the results section we

show that all results are equally applicable to multiple number of fat cores as well.

Figure 6 shows the sequence of migrations in a system with single fat core and three

thin cores. In this figure ui represents the time spent on the fat core and implicitly

the combined time spent on all the thin cores is T − ui. The purpose of defining a

U matrix is to formulate an energy efficiency objective function as described in the

next section.

4.2 Cost-to-go ED2 function

Figure 7: Epoch Diagram for four threads.

The ED2 metric is computed over the entire program execution while power is an

19

instantaneous rate. Therefore, if our objective is to minimize ED2, our solution tech-

nique must implicitly or explicitly estimate the remaining execution time or amount

of work (e.g., number of instructions) remaining for an application. After every T

interval the micro-scheduler is invoked and it estimates a combined cost of how much

work is left and then produces a schedule to minimize that cost under the system

constraints.

To estimate the future cost we assume that the IPC and energy profiles of thread are

constant till they complete, and the share of the fat core (according to their utility)

given to them per interval is the same throughout, they will end at different times.

The cost function should incorporate the time they spend and the energy they take

till they complete. Figure 7 shows a cost diagram where each epoch is marked by

the end of a threads execution. Here ui is the time spent by threadi on the fat core.

The threads migrate according to the micro-schedule every T interval as shown in

Figure 6. Even after a thread completes execution, some other thread may be sched-

uled by the OS to replace it, so our approximation is not unreasonable in assuming

that the ui’s of the remaining threads don’t change considerably. Eei and Dei are the

energy and delay of the thread that finishes in epochi. Let us assume that amount of

work left in each thread is Mi at any instant.

Let Xei be the work done in a scheduling interval T . Thus,

Xei = IPCefat−i ∗ uei + IPCethin−i ∗ (T − uei) (8)

where IPCefat−i, IPCethin−i are the measured instructions per cycle on the fat core

and thin core for thread finishing in epoch i. Let Y ei be the energy spent in a

scheduling interval T . Thus,

Y ei = EPCefat−i ∗ uei + EPCethin−i ∗ (T − uei) (9)

where EPCefat−i, EPCethin−i are the estimated energy per cycles on the fat and thin

20

core. Our assumption of uniform projection of instantaneous cost is not an unrea-

sonable one as long as the IPC’s change gradually and we re-evaluate this function

regularly to update the cost with instantaneous IPC and EPC values. In practice this

constant projection works quite well. But the drawback is that it works only if it is

evaluated regularly, so that the error in the model does not lead us to a non-optimal

path. Thus the delay and energy of a thread in an epoch is

Dei = (Mei ∗ T)/Xei, (10)

Eei = (Y ei ∗Dei)/T (11)

Thus our complete cost function is

minUL(U) =
n∑
i=1

(Eei ∗De2i) (12)

In practice this formulation is incomplete because threads with very high ED2 would

be penalized. Thus we need to weigh the individual terms appropriately to formulate

the final function. We describe in Chapter V how we can approximate these weights

at runtime. It should also be noted that the formulation is minimizing the inverse

of the harmonic Performance Energy Metric(hPEM). We also formulated it in the

weighted form, but the results were not significantly different, thus we omit them for

brevity. The constraint due to the Power envelope.

n∑
i=1

EPCefat−i ∗ uefat−i + EPCethin−i ∗ (T − uefat−i) <= Pbudget ∗ T (13)

This is a highly complex non-linear function. However, we saw in Chapter II

that it has a convex form. We first find the minima of this function assuming we

have infinite compute resources to see what is the best we can achieve. To do this

we use COBYLA(Constrained optimization by Linear Approximation) [10] algorithm,

because of our intuition that the function has a convex form. We empirically observed

that this algorithm converges in less than 100 iterations most of the time. We use

21

the NLopt [4] numerical Optimization library for the same.

In real systems it is unreasonable to expect that we know how much work (Mei value)

is left in a thread. But the advantage we have is that the micro-scheduler lives in the

framework of the OS scheduler and thus all its policies work in the bounds of the OS

scheduling quantum. Thus we need some notion of how much work can be done in an

OS quantum. In our function we use the amount of work the thread would have done

if run on the fat core for the whole OS quantum. To calculate this we multiply the

average IPC of the thread i in the previous quantum to the OS scheduling interval.

Alternatively these Mei values can factor in things like OS priority levels and quality

of service.

Similarly we can define other cost functions as well. For eg: to get predictability in

performance we can force the threads to finish close to each other by defining a cost

function of squared delay differences between threads. For throughput our objective

function can be defined as,

minUT (U) =
n∑
i=1

(Dei) (14)

Let us look at some of the things we need in this model. We need the thread per-

formance in the terms of IPC numbers which we get from performance counters. To

estimate the energy we build a linear regression model of the different counters like

load queues, reorder buffers, execution pipes, cache misses. The energy of the level2

cache is not significant and so we don’t include it in the model but we include it when

reporting results.

Given the complexity of this function it is quite clear that such a function is not

feasible to implement in hardware and be re-invoked frequently. We use the intuition

gathered in analyzing this function to define a weighted quadratic approximation that

we describe next.

22

4.3 Weighted Quadratic approximation

Weighted quadratic functions like the DeJong function have the nice property that

their minima can be easily calculated by using the Lagrange variable and the con-

straints. In our case we have one equality constraint and one inequality constraint of

power. Thus if we can approximate the above function by a DeJong function, we can

afford recomputation every T cycles. The generic form of the Weighted Quadratic

function is

L(U) =
n∑
k=1

ak ∗ (uk)
2 (15)

In our system uk represents the thread utility of thread k on the fat core. Thus if we

have a constraint g(U) = 0 then we can find the minima by solving the derivate of

the Lagrangian in U,

d

du
(L(U) + λg(U)) = 0.

In our formulation, there will be a uk term for each thread on each fat core that

represents the threads utility on that core. To choose the coefficients to the function

we use the notion of relative benefit of running a thread on a core with respect to the

core from the immediate lower level of asymmetry. This is because it is not only the

performance on the fat cores that differentiates threads, it is also their performance

on the thin cores that matters.

ai = (EPCfatj−i/IPCfatj−i)
γ1/(EPCthin−i/IPCthin−i)

γ2 (16)

where EPCfatj−i and IPCfatj−i are the measured EPC and IPC of thread i on fat

core j. EPCthin−i and IPCthin−i are the average EPC and IPC values collected on

the thin cores. Thus if a core has much better performance per joule on a more

powerful core, then its coefficient weight is lower and it consequently gets a higher

ui and hence higher performance. Our constraints are still the same as the complex

function. Similarly for throughput the coefficient weights can be defined as,

ai = (1/IPCfatj−i)
γ1/(1/IPCthin−i)

γ2 (17)

23

Again in our single fat core configuration the coefficients are,

ai = (EPCfat−i/IPCfat−i)
γ1/(EPCthin−i/IPCthin−i)

γ2 (18)

From hereon we refer to this scheme as Utility Scheduling (USCHED). We now discuss

the significance of the coefficient parameters in detail.

4.3.1 γ1 and γ2 Values

There are two potential benefits of the gamma values. First, changing the gamma

values allows us to shift the minima of the Dejong function to move it closer to the

actual minima. Second, if we look at the above equation without the γ parameters, it

gives us a set of ui values for each thread. But we need to solve this equation with an

inequality constraint of power. The γ values have a direct correlation to the Power

budget we need to adhere to. Thus this gives a very convenient tunable parameter

that can modulate our thread schedules in terms of the Power budget constraints.

This turns out very useful because inequality constraints are in general very difficult

to solve for and given our constraints a close approximation is good enough. The γ

values also help us trade in how much importance we give to high IPC threads with

respect to low IPC threads. This is important because it helps us trade in fairness

against importance for higher IPC threads. If we give equal weights to high IPC

threads and low IPC threads(ie. γ1 = 1, γ2 = 1), we get fairness but compromise on

throughput or ED2. As we increase γ1 we trade in fairness for better throughput or

ED2. Each set of applications has a different energy efficiency sweet spot for values

of γ1 and γ2 as we show in Chapter V.

4.3.2 Adding factor for work left

As we saw above we need to weigh applications according to the amount of work left

in a particular thread. So we modify our weighted quadratic function to add a term

24

for the work left in the thread Mi.

L(U) =
n∑
i=1

(ai ∗ (ui)
2 ∗ (1/(Mi)) (19)

25

CHAPTER V

PERFORMANCE EVALUATION OF THREAD

SCHEDULES

In this section we present the performance evaluation of using USCHED. Figure 8

shows the wPEM metric, for our chosen set of workloads. We show two USCHED

configurations with γ1 values of 2 and 3, hereby referred to as dj21 and dj31. The

choice of these values is explained in detail in Chapter VII. The power budget is un-

constrained for this plot. For COBYLA we used a constraint tolerance level of 1e−8,

and a relative tolerance for stopping criteria of 1e− 4. The starting condition for the

algorithm is set to equal u values. To convert this to weighted ED2 form, we need

to normalize the individual values with estimates of their optimal ED2. To calculate

the weights at runtime, we average the IPC’s on the fat core in the last five intervals

and extrapolate it to estimate the performance of the threads when executed on the

fat core only.

As we can see COBYLA is very agressive in finding the minima. On average

Figure 8: Weighted PEM for Quad core workloads when optimized for ED2

its wPEM is better than round robin by 22%. The dejong functions are not very

aggresive and dj21 and dj31 give mean improvement of 16% and 14% respectively.

26

Figure 9: Harmonic PEM for Quad core workloads when optimized for ED2

Workloads like WL1 and WL2 show more improvement with dj31, while others fare

better with dj21. This is because the Dejong function tries to approximate the min-

ima and for different workloads the minima lies at a different point. Thus gamma

parameters play a role in how close the Dejong minima is to the actual minima. Fig-

ure 9 shows the hPEM metric for the same configurations. Figure 10 shows that we

do not hurt weighted throughput when we optimize for weighted ED2.

Although the weighted improvements are significant, all minima finding techniques

can give unfair advantage to certain applications in trying to find their minima thus

hurting the fairness metric. There are two major reasons for that. First, our objec-

tive function has a squared delay term due to the ED2 metric. Thus the algorithm is

bound to favor the high IPC threads. The algorithm is very sensitive to even small

differences in IPC between threads. The extreme case of that is shown in WL5 which

is a quad workload of all four h264 applications. COBYLA gives a negative hPEM

for WL5. A small difference in the way the four threads run, which might be because

of the order in which they run or cache interference, can lead the algorithm to find a

minima which is artificially created by the system interference.

Second, one of the artifacts of using an asymmetric system of cores is that it creates

an asymmetry in resource demand, which creates asymmetry in resource utilization

leading to more change in demand. This cycle of interaction between applications and

their utility schedules can lead to a situation where shared resources like caches can

27

Figure 10: Weighted Throughput for Quad core workloads when optimized for ED2

Figure 11: Harmonic Throughput for Quad core workloads when optimized for ED2

cause pathological interference between threads leading to incorrect calculations of

utility schedules. We outline two scenarios that illustrate how this skewed capability

of cores may affect the micro-scheduler adversely.

Consider a case with two threads A (high IPC) and B (low IPC). Let us assume A has

a high miss rate and thus its demand rate to an L2 is high. Thread B has a reduced

demand rate because it runs on the thin core for a larger part of its execution. Thus

ThreadA ends up receiving a larger share of the L2 cache thereby reducing the IPC

of ThreadB further. An algorithm like COBYLA reacts to this by giving ThreadA

more share of the fat core, thereby starving ThreadB even further. Thus we can

see that hPEM for COBYLA is severely degraded. USCHED on the other hand is

slightly more robust because, a reduction in IPC of ThreadB reduces the weight of

ThreadB thereby increasing its share of the fat core. Thus USCHED has slightly

better hPEM performance. However, the underlying inefficiency still exists because

giving ThreadB a little more share of the fat core will reduce the performance of the

28

ThreadA. ThreadB on the other hand does not benefit much by the small increase in

fat core utility because it still suffers from the interference with ThreadA.

Consider a second case with two threads C (moderate IPC) and D (moderate IPC).

Let D be an application that shows thrashing behavior in the cache similar to the

ones shown in [11], [3]. In this case both threads will start with relatively equal

share of the fat core, but Thread C’s share of the fat core is reduced over time due to

the interference due to the thrashing in the cache. The micro scheduler is unaware

of these interactions and makes decisions based on measured IPC values which leads

it to make sub-optimal decisions. We address these inefficiencies in the next section

which motivates our co-ordinated cache-partitioning scheme.

29

CHAPTER VI

CO-ORDINATED CACHE PARTITIONING

Cache partitioning in symmetric systems is based on the assumption that the rate

at which threads inject requests into the memory system is only dependent on the

application characteristics and independent of the core since all cores are identical.

That assumption is no longer valid in an asymmetric architecture because application

demand is now also dependent on the core capability. A thread’s demand for cache

resources depends on the core on which it is executing. The high performance core

can issue memory requests significantly faster than the in-order cores. Consequently,

the footprint of the fat core in the cache grows as it aggressively fills up the cache.

This increases the interference with the thin core reducing its IPC and affecting

its utility based schedule. This cycle of interaction continues possibly significantly

degrading performance. This observation is particularly important in the context

of micro-scheduling since the the IPC of a thread is used to it compute the utility

values allocated to different threads. Thus, in general we need a scheme wherein the

cache partitioning can be coordinated with the thread scheduling to avoid negative

reinforcement between core usage and cache effects.

To this effect we propose a very simple prioritization scheme in the cache. The

principle is to give higher priority to threads with low thread utilities (computed

by the micro-scheduler). This higher priority is used to influence the cache insertion

policy. This is an adaptation of the insertion policy suggested in [15]. We hypothesize

that the thread utilities have an inverse relationship with the insertion priority in the

cache. A thread with a normalized utility u is inserted at a position u from the top

of the replacement stack. We always evict the least recently used line at the bottom

30

of the replacement stack. Whenever a line is hit, it is promoted to the most recently

used position similar to LRU policy.

31

CHAPTER VII

RESULTS

7.1 Co-ordinated Utility Scheduling and Cache Partition-
ing

For all results we present the percentage increase over the round robin thread schedul-

ing policy with the unmanaged shared cache (LRU replacement). We do not present

any more results with the COBYLA algorithm and all results use the USCHED algo-

rithm. Figure 12 gives the wPEM comparison between USCHED with and without

the co-ordinated cache partitioning scheme. The cache partitioning increase the ben-

efit of USCHED from 16% to 22% on average. Figure 13 shows that it increases the

hPEM from 5% to 9%. This was expected because low IPC threads now get priority

in the cache and thus the amount of work done by them on the thin cores increases

which allows USCHED to give a higher share of the fat core to the high IPC threads.

Thus the system ends up improving the fairness metric.

Consider the case of WL3. WL3 includes libquantum which can have phases of

moderate and low IPC, but its miss rate is generally high. Thus it starves a low IPC

application like mcf. The utility scheduler is unaware of this interaction. However, by

using the values of thread utility in the cache, mcf has higher priority than libquan-

tum. This increases the work done by mcf on the thin core which leads to better

performance and fairness. Libquantum on the other hand is fairly unaffected by the

reduced cache priority.

The other extreme case is that of WL12. Here the cache-partitioning using thread

utility has no benefit. Here perl has the maximum thread utility and astar has the

least. But the IPC of astar is unaffected by the cache partitioning because astar does

32

not benefit from increased cache space. However the IPC of perl decreases which

hurts wPEM slightly.

Figure 12: Weighted PEM for Quad core workloads with and without cache parti-
tioning

Figure 13: Harmonic PEM for Quad core workloads with and without cache parti-
tioning

7.2 Gamma values and their effect

Choosing the correct values of γ1 and γ2 is very important to the efficiency of utility

scheduling and adhering to the power budget. Figure 14 shows a wire frame plot of

gamma values and its effect on weighted ED2 for a representative workload(WL8).

γ2 is varied in steps of 0.1 from 0.5 to 1.5. γ2 is varied in steps of 0.2 from 1 to 3.

Each pair of gamma values defines a unique DeJong function. For this workload the

maximum wPEM is given by the point (γ1 = 2.6, γ2 = 0.9). Other workloads might

find a maxima at some other point. We analyzed such plots for all applications and

concluded that most maximas fall around γ1 = 2− 3 and γ2 = 0.8− 1.2. This is why

we present results for two configurations of (γ1 = 2, γ2 = 1) and (γ1 = 3, γ2 = 1).

33

Figure 15 shows a wireframe plot for average power consumed by all the cores with

the γ values. Given a power budget only certain points on the wireframe can satisfy

it. To adhere to the budget our Utility Scheduler follows an iterative algorithm to

change γ1 values. We keep the γ2 value constant at 1. The starting condition is

always (γ1 = 2, γ2 = 1). We increase the γ1 step size exponentially starting from

0.1. If we cannot adhere to the budget in three iterations, the algorithm exits with

the utility schedule at that point. We keep the number of iterations low because for

each iteration recomputation we pay in terms of time and energy.

Figure 14: Effect of gamma values on wPEM .

7.3 Power envelope study

Figure 16 shows how the utility scheduler adapts to decreasing power envelopes.

The maximum power achieved by a given group of applications may vary across our

workload sets. Thus setting the same power budget for each one of them is unfair.

Instead we need to find out what is the maximum power achievable by a set of four

threads and use that for our analysis. Fortunately this is not difficult because highest

power is consumed when the highest IPC thread runs on the fat core all the time.

Thus we calculate this maximum power for each workload and then dial it down in

34

Figure 15: Effect of gamma values on Average Power.

steps of 10 percent. The figure plots the percentage overshoot error on the log scale

as the budget is scaled down from 100% to 60% of maximum power. It should also

be noted that in reality the budget will not be calculated this way, this is just for the

sake of analysis so that we can stress test our algorithm.

The reason we evaluate a peak overshoot error is that our problem definition is not

one of power tracking and we only care about adhering to a budget and finding

a minima under it. At very low budgets many workloads do not have a feasible

solution to the inequality constraint. In such cases adhering to power budget is not

possible without resorting to complimentary techniques like switching of cores or

voltage-frequency scaling. In such a scenario we can either decrease the frequency of

the whole migration domain and start over or we can request the higher level thread

schedulers(HLTS) for more power budget. This can also be used as feedback to HLTS

for power demand of groups of threads.

Most workloads successfully adhere to budgets upto 75% of the maximum power

budget. Below that more often than not the solution is not feasible and the utility

scheduler gives the solution with lowest possible power. This shows that thread

scheduling for power management technique roughly has a power budget modulation

35

window of 25%.

Figure 16: Percentage overshoot error with decreasing power envelopes.

Figure 17 shows the effect of decreasing power budget on wPEM . As expected

the wPEM decreases with decreasing power budget. But the decrease is different for

different workloads. This is because the minima points for different workloads decides

the power at that point. For some workloads the power is inherently much lower than

the maximum power. They are less affected by reducing the power budget.

Figure 17: Weighted PEM for Quad core workloads as the power envelope is dialed
down

36

7.4 Throughput Formulation

We now try to see how our scheduler fares when we formulate the cost objective as

weighted throughput. Figure 18 shows the wIPC impact of Utility Scheduling and

COBYLA. As we can see there is no major qualitative difference between the two

formulations. In this case the wIPC has much higher improvement but the wPEM

has lesser gains than when we formulate the problem for ED2. Also it should be

noted that the hIPC is not as degraded as the one for the ED2 formulation. This is

because of the squared term in the ED2 formulation.

Figure 18: Weighted Throughput for Quad core workloads when optimized for
Throughput

Figure 19: Harmonic Throughput for Quad core workloads when optimized for
Throughput

37

Figure 20: Weighted PEM for Quad core workloads when optimized for Throughput

Figure 21: Harmonic PEM for Quad core workloads when optimized for Throughput

38

CHAPTER VIII

PREVIOUS WORK

There have been many proposals that have addressed thread scheduling for asymmet-

ric processors with a few major techniques proposed for micro-scheduling. Teodorescu

et al [13] formulated the DVFS problem as a linear programing technique and pro-

pose a variation-aware scheduler. Their technique cannot be used to define other

objectives like ED2. Krishna et al [12] proposed a fairness-aware throughput maxi-

mization algorithm. Their substrate is an SMP where asymmetry is due to operation

of cores at different frequencies. They aimed to achieve uniform performance at a

mean frequency inside an OS quantum by performing migrations on the order of

million cycles. Our migration interval is relatively higher and is aimed at power man-

agement. Winter et al [14] use the Hungarian algorithm to solve a graph assignment

formulation of the scheduling problem. The disadvantage of their algorithm is that

it is computationally demanding.

Many past works have focused on OS level scheduling where application performance

is sampled on different cores and the best assignment is run for a steady long phase.

These schedules suffer from low reactivity and some of the problems mentioned in

Chapter II. Kumar et al [5] were the first to propose asymmetric multiprocessors for

lower power operation. Bower et al [1] elaborate on the various sources of asymmetry

and the reasons why schedulers need to be aware of asymmetry. Sergey et al [16] have

looked at contention aware thread scheduling at the OS level. Tongli et al [8] have

proposed schedulers for shared ISA heterogeneous systems. Nagesh et al [6] proposed

age based scheduling for equal completion times of threads. Most of these techniques

handle migrations at a much higher level and thus it is difficult for them to adhere

39

to the lowering power budgets.

Cache Partitioning has been a major area of research for many years. Although there

are numerous proposals for cache-partitioning, we mention the relevant and recent

ones. Qureshi et al [11] suggested using cache utility monitors to allocate hard par-

titions in a cache. Our notion of thread utility is inspired by and is very similar to

their notion of cache utility. Xie et al [15] proposed a simple extension to the utility

cache partitioning scheme by defining new insertion policies that implicitly partition

caches without making hard partitions. We use their notion of insertion priority to

define our cache partitioning policy. Jaleel et al [3] suggested Thread Aware Dynamic

Insertion Policy which is thrashing resistant by choosing to insert lines at the bottom

of the stack or the top. All these techniques are targeted at symmetric multiproces-

sors. To the best of our knowledge there are no asymmetry aware cache partitioning

techniques.

40

CHAPTER IX

CONCLUSION

This thesis has focused on techniques for maximizing the energy efficiency for asym-

metric multicore architectures within a given power envelope. We have proposed

a micro-scheduling approach and an associated optimization for generating thread

micro-schedules. The micro-schedules are based on a notion of thread utility - in-

tended to capture the affinity of a thread for execution on a specific core type. Prac-

tically, thread utility varies over time and as a function of the thread demand (e.g.,

compute phase vs. memory phase). Thus, the proposed micro-scheduling framework

operates periodically every T cycles. Further, we observed that in an asymmetric

architecture, the demand for cache resources are also asymmetric leading to non-

uniform sharing of the cache the effects of which can feedback to the thread scheduler

with negative consequences. Consequently we propose that the micro-scheduling step

be coordinated with cache partitioning. We achieve this coordinated management

by using the thread utility to drive the sharing of the cache between the asymmetric

cores bu biasing the insertion policy as a function of thread utility.

Apart from describing the the advantages of micro-scheduling we would also like to

point out some issues facing the application of such a scheme in a real system. Migra-

tion costs can increase exorbitantly when micro-scheduling is scaled to larger number

of cores. Thus we envisage that such a micro-scheduling concept is going to be con-

tained in small domains of 4 to 8 cores. It is unclear if increasing domain size more

than that would have any incremental benefit with added increase in computation

and migration costs.

We have considered a particular form of asymmetry where the cores are of different

41

types but qualitatively our framework and insights can be applied to many other

forms of asymmetry such as voltage-frequency asymmetry or asymmetry due to pro-

cess variations. In systems that have cores operating at different frequency and volt-

age, the weighted quadratic function can be applied and this application also suffers

from the cache effects we have highlighted. Votage frequency changes can be applied

to a system we have proposed as well where the frequency of fat or thin cores can be

changed. The micro-scheduler in that scenario would take input values in terms of

seconds rather than cycles.

42

REFERENCES

[1] Bower, F. A., Sorin, D. J., and Cox, L. P., “The impact of dynamically
heterogeneous multicore processors on thread scheduling,” IEEE Micro, vol. 28,
pp. 17–25, May 2008.

[2] Hamilton, J., “Overall data center costs,”
http://perspectives.mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx.

[3] Jaleel, A., Hasenplaugh, W., Qureshi, M., Sebot, J., Steely, Jr.,
S., and Emer, J., “Adaptive insertion policies for managing shared caches,”
in Proceedings of the 17th international conference on Parallel architectures and
compilation techniques, PACT ’08, (New York, NY, USA), pp. 208–219, ACM,
2008.

[4] Johnson, S. G., “The nlopt nonlinear-optimization package,” http://ab-
initio.mit.edu/nlopt, vol. 2, 2003.

[5] Kumar, R., Farkas, K. I., Jouppi, N. P., Ranganathan, P., and
Tullsen, D. M., “Single-isa heterogeneous multi-core architectures: The po-
tential for processor power reduction,” pp. 81–92, 2003.

[6] Lakshminarayana, N. B., Lee, J., and Kim, H., “Age based scheduling for
asymmetric multiprocessors,” in Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, SC ’09, (New York, NY,
USA), pp. 25:1–25:12, ACM, 2009.

[7] Li, S., Ahn, J. H., Strong, R., Brockman, J., Tullsen, D., and Jouppi,
N., “Mcpat: An integrated power, area, and timing modeling framework for
multicore and manycore architectures,” in Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on, pp. 469 –480, Dec. 2009.

[8] Li, T., Brett, P., Knauerhase, R. C., Koufaty, D. A., Reddy, D.,
and Hahn, S., “Operating system support for overlapping-isa heterogeneous
multi-core architectures,” in HPCA, pp. 1–12, 2010.

[9] Loh, G. H., Subramaniam, S., and Xie, Y., “Zesto: A cycle-level simulator
for highly detailed microarchitecture exploration,” in In Proc. of the Int. Symp.
on Performance Analysis of Systems and Software, 2009.

[10] MJD, P., “A direct search optimization method that models the objective and
constraint functions by linear interpolation,” Advances in Optimization and Nu-
merical Analysis, Kluwer Academic, Dordrecht, 1994.

43

[11] Qureshi, M. K. and Patt, Y. N., “Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches,” in
Proceedings of the 39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 39, (Washington, DC, USA), pp. 423–432, IEEE Com-
puter Society, 2006.

[12] Rangan, K. K., Powell, M. D., Wei, G.-Y., and Brooks, D., “Achieving
uniform performance and maximizing throughput in the presence of heterogene-
ity,” in HPCA, pp. 3–14, 2011.

[13] Teodorescu, R. and Torrellas, J., “Variation-aware application schedul-
ing and power management for chip multiprocessors,” in Proceedings of the 35th
Annual International Symposium on Computer Architecture, ISCA ’08, (Wash-
ington, DC, USA), pp. 363–374, IEEE Computer Society, 2008.

[14] Winter, J. A., Albonesi, D. H., and Shoemaker, C. A., “Scalable thread
scheduling and global power management for heterogeneous many-core architec-
tures,” in Proceedings of the 19th international conference on Parallel architec-
tures and compilation techniques, PACT ’10, (New York, NY, USA), pp. 29–40,
ACM, 2010.

[15] Xie, Y. and Loh, G. H., “Pipp: promotion/insertion pseudo-partitioning of
multi-core shared caches,” in Proceedings of the 36th annual international sympo-
sium on Computer architecture, ISCA ’09, (New York, NY, USA), pp. 174–183,
ACM, 2009.

[16] Zhuravlev, S., Blagodurov, S., and Fedorova, A., “Addressing shared
resource contention in multicore processors via scheduling,” in Proceedings of the
fifteenth edition of ASPLOS on Architectural support for programming languages
and operating systems, ASPLOS ’10, (New York, NY, USA), pp. 129–142, ACM,
2010.

44

