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SUMMARY

Classical partitioning problems, like the Max-Cut problem, ask for partitions that opti-

mize one quantity, which are important to such fields as VLSI design, combinatorial opti-

mization, and computer science. Judicious partitioning problems on graphs or hypergraphs

ask for partitions that optimize several quantities simultaneously. In this dissertation, we

work on judicious partitions of graphs and hypergraphs, and solve or asymptotically solve

several open problems of Bollobás and Scott on judicious partitions, using the probabilistic

method and extremal techniques.

We establish a conjecture of Bollobás and Scott in [12], by showing that: for any integer

k ≥ 2 and any hypergraph G with mi edges of size i, i = 1, 2, there is a partition V1, . . . ,Vk of

V(G) such that for i = 1, . . . , k, Vi contains at most m1/k+m2/k2−o(m2) edges. This is best

possible since the expected bound in a random partition is m1/k+m2/k2. We also prove that:

for integer k ≥ 3, any hypergraph with mi edges of size i, i = 1, 2, has a partition V1, . . . ,Vk

such that each Vi meets at least m1/k + m2/(k − 1) − o(m2) edges. This result implies for

large graphs the conjecture of Bollobás and Scott [9] that every graph with m edges admits

a partition V1, . . . ,Vk such that each Vi meets at least 2m/(2k − 1) edges. For k = 2, we

prove that V(G) admits a partition into two sets each meeting at least m1/2+3m2/4−o(m2)

edges, which solves a special case of a more general problem of Bollobás and Scott in [12].

Bollobás and Scott [12] asked for the smallest f (k,m) such that for any integer k ≥ 2 and

any graph G with m edges, there is a partition V(G) =
⋃k

i=1 Vi such that for 1 ≤ i � j ≤ k,

e(Vi ∪ Vj) ≤ f (k,m). They conjectured that f (k,m) ≤ 12m
(k+1)(k+2)

+ O(n) for general graphs,

and f (k,m) ≤ 12m
(k+1)(k+2)

for dense graphs. We obtain a general bound on f (k,m), and prove

conjecture for dense graphs and for k = 3, 4, 5 asymptotically.

vi



We also work on a long standing conjecture of Bollobás and Thomason (see [7, 9, 11,

12]): for any integer r ≥ 3, the vertex set of any r-uniform hypergraph with m edges admits

a partition V1, ...,Vr such that for i = 1, ..., r, each Vi meets at least r
2r−1

m edges. We prove

the bound 0.65m − o(m) for r = 3, which for large graph, is better than 0.6m suggested by

this conjecture.
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CHAPTER I

INTRODUCTION

We study judicious partitioning problems on graphs and hypergraphs. We solve or asymp-

totically solve several open problems of Bollobás and Scott on judicious partitions, using

probabilistic method and extremal techniques. In this chapter we provide notation and

terminology necessary for the subsequent chapters.

1.1 Notation

Let G be a graph or hypergraph, and let S ⊆ V(G). We use G[S ] to denote the subgraph

of G consisting of S and all edges of G with all incident vertices in S . Let A, B be subsets

of V(G) or subgraphs of G, we use (A, B) to denote the set of edges of G that have incident

vertices in both A and B. For an edge (or hyperedge) e of G, we use V(e) to denote the set of

incident vertices of e. We write eG(S ) := |{e ∈ E(G) : V(e) ⊆ S }|, eG(S ,T ) := |{e ∈ E(G) :

V(e) ∩ S � ∅ � V(e) ∩ T }| for any T ⊆ V(G), and dG(S ) := |{e ∈ E(G) : V(e) ∩ S � ∅}|.
When understood, the reference to G in the subscript may be dropped. Let k ≥ 2 be an

integer, a k-partition of V(G) is a collection of subsets of V(G), V1,V2, ...,Vk, such that

V1 ∪ V2 ∪ ... ∪ Vk = V(G) and Vi ∩ Vj = ∅ for any 1 ≤ i < j ≤ k. We use b(G) to denote the

maximum number of edges in a bipartite subgraph of G.

We will also prove several results for weighted graphs. Let G be a graph and let w :

V(G) ∪ E(G)→ R+, where R+ represents the nonnegative reals. For S ⊆ V(G) we write

wG(S ) =
∑
u∈S

w(u) +
∑

{e∈E(G): V(e)⊆S }
w(e)

and

τG(S ) =
∑
u∈S

w(u) +
∑

{e∈E(G): V(e)∩S�∅}
w(e).
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If G is understood, we use τ(S ),w(S ) instead of τG(S ),wG(S ), respectively. We point out

that if H is an induced subgraph of G, then for any S ⊆ V(H), we have wH(S ) = wG(S ).

Also, note that when w(e) = 1 for all e ∈ E(G) and w(v) = 0 for all v ∈ V(G), we have

w(S ) = e(S ) and τ(S ) = d(S ).

We will use the standard notation of probability theory. Given a sample space, let X be

a random variable and A be an event. We use P(A) to denote the probability that A occurs,

E(X) to denote the expectation of random variable X, and E(X|A) to denote the expectation

of X conditional on A.

1.2 Background

Classical graph partitioning problems often ask for partitions of a graph that optimize a

single quantity. For example, the well-known Max-Cut Problem asks for a partition V1,V2

of V(G), where G is a weighted graph, that maximizes the total weight of edges with one

end in each Vi. This problem is NP-hard, see [29]. It is shown [6] that it is also NP-hard

to approximate the Max-Cut problem on cubic graphs beyond the ratio of 0.997. However,

the Max-Cut problem is polynomial time solvable for planar graphs, see [25,36]. Goemans

and Williamson [24] used semidefinite programming and hyperplane rounding to give a

randomized algorithm with expected performance guarantee of 0.87856. Feige, Karpinski

and Langberg [22] gave a similar randomized algorithm that improves this bound to 0.921

for subcubic graphs; a graph is called subcubic if it has maximum degree at most three.

The unweighted version of Max-cut problem is often called the Maximum Bipartite

Subgraph Problem: Given a graph G, find a partition V1,V2 of V(G) that maximizes

e(V1,V2), the number of edges with one end in each Vi. This is also NP-hard, see [21, 23].

Moreover, Yannakakis [49] showed that the Maximum Bipartite Subgraph Problem is NP-

hard even when restricted to triangle-free cubic graphs.

However, it is easy to prove that any graph with m edges has a partition V1,V2 with
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e(V1,V2) ≥ m/2: if one randomly picks a partition U1,U2, the probability of any edge be-

longs to (U1,U2) is exactly 1/2, therefore E(e(U1,U2)) = m/2 and the conclusion follows.

Edwards [17, 18] improved the lower bound to m/2 + 1
4
(
√

2m + 1/4 − 1/2). This is best

possible, as K2n+1 are extremal graphs. Alon [1] showed that for infinite many integers m,

there exist graphs Gm such that b(Gm) ≥ m/2 +
√

2m
4
+ Θ(m1/4), where e(Gm) = m, confirm-

ing a conjecture of Erdős in [20] that the gap between Edwards’ bound and the truth can be

arbitrary large. (Recall that b(G) is the maximum number of edges in a bipartite subgraph

of G.)

This lower bound may be improved by forbidding a fixed graph. For example, Erdős

and Lovász (see [19]), Poljak and Tuza [37] and Shearer [43] made progress on improving

the lower bound for triangle-free graphs. Alon [1] finally showed that b(G) ≥ m/2+Θ(m4/5)

for any triangle-free graph G with m edges, which is tight up to constant. For general H-

free graphs, the Maximum Bipartite Subgraph Problem is studied in [4], i.e. H is an even

cycle or a graph obtained by connecting a single vertex to all vertices of a fixed forest. But

the main term of the best lower bound of b(G) is still m/2, for H-free graph G with m edges,

where H is triangle or one of the graphs studied in [4].

For some classes of graphs, the main term of the lower bound can exceed |E(G)|/2.

Erdős [19] proved that if G is 2k-colorable then b(G) ≥ k
2k−1
|E(G)|. As a consequence, if

G is a graph with bounded maximum degree, then the lower bound can exceed |E(G)|/2.

In particular, Erdős’ result implies that b(G) ≥ 2
3
|E(G)| for cubic graph G. Locke [31]

and Stanton [44] showed that b(G) ≥ 7
9
|E(G)| if G is cubic and G is not K4. Hopkins and

Stanton [28] showed that b(G) ≥ 4
5
|E(G)| if G is triangle-free cubic graph. More discussion

on cubic (or subcubic) triangle-free graphs can be found in [12, 16, 35, 46, 48].

The Maximum Bipartite Subgraph Problem for integer weighted graphs also have been

studied in [3] by N. Alon and E. Halperin. For other subsequent work of the Maximum

Bipartition Subgraph Problem, we refer the reader to [30, 38, 45].
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In practice one often needs to find a partition of a given graph or hypergraph to opti-

mize several quantities simultaneously. Such problems are called Judicious Partitioning

Problems by Bollobás and Scott [8]. One such example is the problem of finding a parti-

tion V1,V2 of the vertex set of a graph G that minimizes max{e(V1), e(V2)}, or equivalently,

maximizes min{d(V1), d(V2)} (since d(Vi) = e(G) − e(V3−i) for i = 1, 2). This problem

is also known as the Bottleneck Bipartition Problem, raised by Entringer (see, for ex-

ample, [39, 40]). Shahrokhi and Székely [42] showed that this problem is also NP-hard.

Porter [39] proved that any graph with m edges has a partition of its vertex set into V1,V2

with e(Vi) ≤ m/4 + O(
√

m) for i = 1, 2. Bollobás and Scott [10] improved this bound by

proving

Theorem 1.2.1. (Bollobás and Scott [10]) For any graph G with m edges, there exists a

bipartition V1,V2 of V(G) such that for i = 1, 2

e(Vi) ≤ m
4
+

1

8
(
√

2m + 1/4 − 1/2).

They also showed that the complete graphs K2n+1 are the only extremal graphs (modulo

isolated vertices).

Bollobás and Scott [10] further proved that for any integer k ≥ 1 and any graph G with

m edges, V(G) has a k-partition V1, . . . ,Vk such that

e(Vi) ≤ m
k2
+

k − 1

2k2
(
√

2m + 1/4 − 1/2)

for i ∈ {1, 2, . . . , k}. The complete graphs of order kn + 1 are the only extremal graphs

(modulo isolated vertices).

In fact, Bollobás and Scott [10] proved an even stronger result that any graph with m

edges has a partition V1,V2 of its vertex set such that

e(V1,V2) ≥ m
2
+

1

4
(
√

2m + 1/4 − 1/2)

and for i = 1, 2,

e(Vi) ≤ m
4
+

1

8
(
√

2m + 1/4 − 1/2).
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Xu and Yu [47] recently generalized this result to k-partitions: any graph with m edges

has a k-partition V1, ...,Vk of its vertex set such that the number of edges whose incident

vertices are not in the same set

e(V1,V2, ...,Vk) ≥ k − 1

k
m +

1

2k
(
√

2m + 1/4 − 1/2)

and for i ∈ {1, 2, . . . , k},

e(Vi) ≤ m
k2
+

k − 1

2k2
(
√

2m + 1/4 − 1/2).

Alon et al. [2] showed that there is a connection between the Maximum Bipartite Sub-

graph Problem and the Bottleneck Bipartition Problem. More precisely, they proved the

following: Let G be a graph with m edges and largest cut of size m/2+ δ. If δ ≤ m/30 then

V(G) admits a partition V1,V2 such that for i = 1, 2,

e(Vi) ≤ m/4 − δ/2 + 10δ2/m + 3
√

m;

and if δ ≥ m/30 then V(G) admits a partition V1,V2 such that for i = 1, 2,

e(Vi) ≤ m/4 − m/100.

Bollobás and Scott [15] recently extended this result to k-partitions: there is also a connec-

tion between the generalized “Maximum k-Partite Subgraph Problem” and the generalized

“Bottleneck k-Partition Problem”.

In their paper [7,12,13,41], Bollobás and Scott studied k-partitions V1, ...,Vk in a graph

or hypergraph that minimize max{e(V1), e(V2), ..., e(Vk)}, or minimize max{e(Vi ∪ Vj) : 1 ≤
i < j ≤ k}, or maximize min{d(V1), d(V2), ..., d(Vk)}. We have seen that when k = 2,

minimizing max{e(V1), e(V2)} is equivalent to maximizing min{d(V1), d(V2)}. However,

when k ≥ 3, minimizing max{e(V1), e(V2), ..., e(Vk)} is very different from maximizing

min{d(V1), d(V2), ..., d(Vk)}. These problems become more difficult if one imposes restric-

tions on the sizes of Vi, 1 ≤ i ≤ k; for example, we have the Balanced Bipartition Problem

when k = 2 and ||V1| − |V2|| ≤ 1. For more problems and references, we refer the reader

to [12–14, 41].
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1.3 Problems and results

We discuss several judicious partitioning problems which we are interested in and present

our results to those problems in this section. In Section 1.3.1, we discuss several judicious

partitioning problems about graphs with requirement on edges as well as on vertices. In

Section 1.3.2, we consider judicious partitioning problems for bounding the size of all

pairs in a k-partition of a graph. In Section 1.3.3, we focus a long standing conjecture of

Bollobás and Thomason on 3-uniform hypergraphs. Our results on those problems can be

found in [32–34].

1.3.1 Hypergraphs with edge size at most 2

We discuss several judicious partitioning problems about graphs with requirement on edges

as well as on vertices, and such problems are called mixed partitioning problems. We follow

Bollobás and Scott [12] to use the term hypergraphs with edge size at most 2.

Our first result is

Theorem 1.3.1. If G is a hypergraph with mi edges of size i, i = 1, 2, then V(G) admits a

partition V1,V2 such that for i = 1, 2

d(Vi) ≥ m1/2 + 3m2/4 + o(m2).

Bollobás and Scott [12] suggested the lower bound (m1 − 1)/2 + 2m2/3 as a starting point

for a more general problem, and Theorem 1.3.1 verifies this for large graphs. Note that if

we take a partition V1,V2 randomly and uniformly, then E(d(Vi)) = m1/2 + 3m2/4.

Next we attempt to generalize Theorem 1.3.1 to k-partitions. In particular, we prove

Theorem 1.3.2. Let k ≥ 3 be an integer and let G be a hypergraph with mi edges of size i,

i = 1, 2. Then there is a k-partition V1, . . . ,Vk of V(G) such that for i = 1, . . . , k,

d(Vi) ≥ m1

k
+

m2

k − 1
+ o(m2).

6



Note, if we take a k-partition V1,V2, ...,Vk randomly and uniformly, then E(d(Vi)) = m1/k+

(2k − 1)m2/k2. Theorem 1.3.2 implies the following conjecture of Bollobás and Scott [11]

for graphs with sufficiently many edges

Conjecture 1.3.3. (Bollobás and Scott [11]) Every graph with m edges has a partition into

k sets, each meeting at least 2m/(2k − 1) edges.

We also consider a generalization of the Bottleneck Bipartition Problem to hypergraphs.

We have

Theorem 1.3.4. Let G be a hypergraph with mi edges of size i, i = 1, 2. Then for any

integer k ≥ 1, there is a k-partition V1, . . . ,Vk of V(G) such that for i = 1, . . . , k,

e(Vi) ≤ m1

k
+

m2

k2
+ o(m2).

Note that for a random k-partition V1, ...,Vk of V(G), we have E(e(Vi)) = m1/k + m2/k2. In

its special case, when m1 = o(m2), Theorem 1.3.4 follows from Eq.2 in [12]. Theorem 1.3.4

establishes a conjecture of Bollobás and Scott [12] for large graphs that: any hypergraph

with mi edges of size i,i = 1, 2, admits a k-partition V1, ...,Vk such that for i = 1, . . . , k,

e(Vi) ≤ m1

k
+

m2(
k+1

2

) + O(1).

In Chapter 2, we will prove weighted versions of Theorem 1.3.1,Theorem 1.3.2 and

Theorem 1.3.4.

1.3.2 Bounds for pairs in partitions of graphs

The following judicious partitioning problem is proposed in [12]:

Problem 1.3.5. (Bollobás and Scott [12]) What is the smallest f (k,m) such that for any

integer k ≥ 2, every graph G with m edges has a k-partition V1, ...,Vk of V(G) such that for

1 ≤ i < j ≤ k, e(Vi ∪ Vj) ≤ f (k,m)?

7



Note that the case k = 2 is trivial. For k = 3, we see that for each permutation i jk of

{1, 2, 3}, d(Vi) = m− e(Vj∪Vk); so Problem 1.3.5 asks for a lower bound on min{d(Vi) : i =

1, 2, 3}, and hence Theorem 1.3.2 provides an upper bound on f (3,m). For k ≥ 4, bounding

max{e(Vi∪Vj) : 1 ≤ i < j ≤ k} is much more difficult than bounding max{e(Vi) : 1 ≤ i ≤ k};
in the former case one needs to bound

(
k
2

)
quantities, while in the latter case one only needs

to bound k quantities.

We prove the following general bound on f (k,m):

Theorem 1.3.6. For any integer k ≥ 3, f (k,m) < 1.6m/k + o(m), and f (k,m) < 1.5m/k +

o(m) for k ≥ 23.

We now show that f (k,m) ≥ m/(k − 1), which is close to 1.6m/k when k is small. For

k ≥ 3, take the graph K1,n with n ≥ k − 1, and let x be the vertex of degree n. Let V1, ...,Vk

be a k-partition of V(G) with x ∈ V1. Without loss of generality, we may assume that

|V2| ≥ (n + 1 − |V1|)/(k − 1). Now e(V1 ∪ V2) ≥ (n + 1 − |V1|)/(k − 1) + (|V1| − 1) =

(n + (k − 2)(|V1| − 1))/(k − 1) ≥ n/(k − 1) = m/(k − 1), where m = n is the number of edges

in K1,n.

The complete graph Kk+2 has m =
(

k+2

2

)
edges, and any k-partition V1, ...,Vk of V(Kk+2)

has two sets, say V1,V2, such that |V1 ∪ V2| = 4. So e(V1 ∪ V2) = 6 = 12m
(k+1)(k+2)

. This

shows that f (k,m) ≥ 12m
(k+1)(k+2)

. For large n, a simple counting shows that for any k-partition

V1, ...,Vk of V(Kn), k ≥ 2, there exist Vi,Vj such that |Vi|+|Vj| ≥ 2n/k, and hence e(Vi∪Vj) ≥(
2n/k

2

)
. From this, we deduce that f (k,m) ≥ 4m/k2 + O(n), and this bound is achieved by

taking a balanced k-partition of V(Kn) (i.e., any two partition sets differ in size by at most

one).

The consideration of K1,n and Kk+2 lead Bollobás and Scott [12] to the following con-

jecture. Note that K1,n is sparse, i.e. the number of edges is O(n).

Conjecture 1.3.7. (Bollobás and Scott [12]) For each integer k ≥ 2, every graph G with m

8



edges and n vertices has a k-partition V1, ...,Vk of V(G) such that for 1 ≤ i < j ≤ k,

e(Vi ∪ Vj) ≤ 12m
(k + 1)(k + 2)

+ O(n).

Conjecture 1.3.7 is trivial for k = 2, as the bound becomes m + O(n). For k = 3, Conjec-

ture 1.3.7 is equivalent to the following problem: Find a partition V(G) = V1 ∪ V2 ∪ V3 so

that d(Vi) ≥ 2m/5 + O(n). We point out that Theorem 1.3.2 implies d(Vi) ≥ m/2 + o(m);

therefore Conjecture 1.3.7 holds for k = 3 and large m.

We show that Conjecture 1.3.7 holds for dense graphs as well:

Theorem 1.3.8. Let k ≥ 2 be an integer and let ε > 0. If G is a graph with m edges and

δ(G) ≥ εn, then there is a k-partition V1, . . . ,Vk of V(G) such that for 1 ≤ i < j ≤ k,

e(Vi ∪ Vj) ≤ 4

k2
m + oε(m).

Note that the main term 4m/k2 is tight because of the complete graphs Kn. Theorem 1.3.8

implies the following conjecture of Bollobás and Scott [12] for large graphs.

Conjecture 1.3.9. (Bollobás and Scott [12]) For each k ≥ 2 there is a constant ck > 0 such

that if G is a graph with m edges, n vertices, and minimum degree δ(G) ≥ ckn, then there is

a k-partition V1, ...,Vk of V(G) such that for 1 ≤ i < j ≤ k,

e(Vi ∪ Vj) ≤ 12m
(k + 1)(k + 2)

.

From Theorem 1.3.2, we have f (3,m) ≤ m/2 + o(m), which is less than 12m
(k+1)(k+2)

= 3
5
m

for large m. We will show that f (4,m) ≤ m/3 + o(m), which is less than 12m
(k+1)(k+2)

= 2
5
m for

large m. We will further show that f (5,m) ≤ 4m/15+o(m), which is less than 12m
(k+1)(k+2)

= 2
7
m

for large m. Therefore, Conjecture 1.3.7 holds for dense graph as well as for k = 3, 4, 5 and

large m.

We also study the problem of finding a k-partitions V1, . . . ,Vk of V(G) that satisfy

bounds on both max{e(Vi) : 1 ≤ i ≤ k} and max{e(Vi ∪ Vj) : 1 ≤ i < j ≤ k}. It is

proved in [10] that there exists a k-partition V1, ...,Vk of a graph with m edges such that
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e(Vi) ≤ m
k2 +

k−1
2k2 (
√

2m + 1/4 − 1/2) for 1 ≤ i ≤ k. Bollobás and Scott [12] asked whether it

is possible to find a k-partition V1, . . . ,Vk such that e(Vi) ≤ m
k2 +

k−1
2k2 (
√

2m + 1/4 − 1/2) for

1 ≤ i ≤ k, and e(Vi ∪ Vj) ≤ 12m
(k+1)(k+2)

+ O(n) for 1 ≤ i < j ≤ k. We will show that for k = 3

and k = 4 one can find a partition satisfying these bounds asymptotically.

1.3.3 3-Uniform hypergraphs

If V1,V2 is a bipartition of a graph G maximizing e(V1,V2), then each v ∈ Vi has at least as

many neighbors in V3−i as in Vi. Summing over all vertices in Vi, we get e(V1,V2) ≥ 2e(Vi)

for i = 1, 2. Hence e(Vi) ≤ m/3, where m is the number of edges in G, so d(Vi) ≥ m−m/3 =

2m/3 for i = 1, 2.

In an attempt to extend the above to hypergraphs, Bollobás and Thomason made the

following conjecture (see [7,9,11,12]), one of the early problems about judicious partitions.

Conjecture 1.3.10. (Bollobás and Thomason 1980s) For any integer r ≥ 3, the vertex set

of any r-uniform hypergraph with m edges admits a r-partition V1, . . . ,Vr such that for

i = 1, . . . , r,

d(Vi) ≥ r
2r − 1

m.

The conjectured bound is best possible; the complete r-uniform hypergraphs on 2r − 1

vertices are such extremal hypergraphs. To see this, note that such a hypergraph has m =(
2r−1

r

)
edges, and any r-partition of such a hypergraph has a partition set with just one vertex,

which meets
(

2r−2

r−1

)
edges.

Bollobás, Reed and Thomason [7] proved that every 3-uniform hypergraph with m

edges has a partition V1,V2,V3 such that d(Vi) ≥ (1 − 1/e)m ≈ 0.21m (here e is the base

of the natural logarithm). In [11], this bound is improved to (5/9)m by Bollobás and Scott

using the following approach: find a reasonable partition, and remove vertices of one set

and try to partition the remaining vertices into r − 1 parts in a better way. They [11] also

proved a bound for general case: d(Vi) ≥ 0.27m for any integer r ≥ 3 and 1 ≤ i ≤ r. Note

that the bound for r = 3 in Conjecture 1.3.10 is 0.6m. Halesgrave [26] extended the idea
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of Bollobás and Scott in [11] and solved the case r = 3 completely. (Bollobás informed

us that Halesgrave actually did it in 2006.) For large graphs, this bound may be improved.

We prove the following result, which for large m gives an even better bound than what

Conjecture 1.3.10 suggests for r = 3.

Theorem 1.3.11. Every 3-uniform hypergraph with m edges has a 3-partition V1,V2,V3

such that for i = 1, 2, 3,

d(Vi) ≥ 0.65m − o(m).

1.4 Azuma-Heoffding inequality

The approach we take is similar in spirit to that of Bollobás and Scott [9, 12]. First we

partition a set of large degree vertices, then we establish a random process to partition the

remaining vertices, and finally we apply a concentration inequality to bound the deviations.

The key is to pick the probabilities appropriately so that the expectations of the process will

be in a range that we want. This will be achieved by extremal techniques.

The concentration inequality we need is the Azuma-Heoffding inequality [5,27], which

bounds deviations in a random process. We use the version given in [9].

Lemma 1.4.1. (Azuma-Heoffding Inequality) Let Z1, . . . , Zn be independent random vari-

ables taking values in {1, . . . , k}, let Z := (Z1, . . . , Zn), and let f : {1, . . . , k}n → N such that

| f (Y) − f (Y ′)| ≤ ci for any Y,Y ′ ∈ {1, . . . , k}n which differ only in the ith coordinate. Then

for any z > 0,

P ( f (Z) ≥ E( f (Z)) + z) ≤ exp

( −2z2∑n
i=1 c2

i

)
,

P ( f (Z) ≤ E( f (Z)) − z) ≤ exp

( −2z2∑n
i=1 c2

i

)
.

Before applying Lemma 1.4.1, we fix a k-partition V1,V2, ...,Vk of the large degree ver-

tices. In the application of 3-uniform hypergraphs, this k-partition will be chosen to satisfy

certain requirements. We then order the remaining vertices as v1, v2, ..., vn, and design a

random process to assign every vi to Vj with probability pj
i independently, where pj

i will be

11



determined, 1 ≤ i ≤ n, 1 ≤ j ≤ k. Then the choice of vi goves a random variable Zi. The

quantities we are interested in, numbers of edges with certain requirements, are functions

of Z = (Z1, ..., Zn), which satisfy the condition in Lemma 1.4.1, namely, | f (Z) − f (Z′)| ≤ ci

for any Z,Z′ differing only in the ith coordinate Zi, where ci is the degree of vertex vi in

graph (or hypergrpah). This is because that if we change Zi, i.e. the choice of vertex vi, the

edges affected are those incident with vi; so the quantities change by at most the degree of

vi.

We have to make sure that those probabilities pj
i can be chosen such that our random

process gives us the desired expectations for the quantities we care. This turns out to be

quite difficult when dealing with several quantities. We will also make sure that we can

pick an appropriate set of large degree vertices, so that
∑n

i=1 c2
i is of order o(m2), where m is

the number of edges. This will guarantee that after applying Lemma 1.4.1, z can be chosen

to be of order o(m).

We organize the rest of this dissertation as follows. In Chapter 2, we prove Theorems

1.3.1, 1.3.2 and 1.3.4. Chapter 3 concentrates on the bounds for pairs in k-partitions of

graphs, where we will prove Theorems 1.3.6 and 1.3.8. In Chapter 4, we focus on 3-

uniform hypergraphs and prove Theorem 1.3.11.
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CHAPTER II

HYPERGRAPHS WITH EDGE SIZE AT MOST 2

There are three sections in this chapter. In Section 2.1, we prove Theorem 1.3.1. In Section

2.2, we prove Theorem 1.3.2. And in Section 2.3, we prove Theorem 1.3.4.

2.1 Bipartitions

In this section we consider the following problem of Bollobás and Scott [12]. Given a

hypergraph G with mi edges of size i, 1 ≤ i ≤ 2, does there exist a partition of V(G) into

sets V1 and V2 such that d(Vi) ≥ m1−1

2
+ 2

3
m2 for i = 1, 2. This problem was motivated by

Conjecture 1.3.10, the Bollobás-Thomason conjecture on r-uniform hypergraphs. Bollobás

and Scott [12] proved that if G is a hypergraph with mi edges of size i, i = 1, . . . , k, then

V(G) admits a partition V1,V2 such that for i = 1, 2,

d(Vi) ≥ m1 − 1

3
+

2m2

3
+ . . . +

kmk

k + 1
.

They then used this to show that every 3-uniform hypergraph with m edges can be parti-

tioned into three sets, each of which meets at least 5
9
m edges.

In [11], Bollobás and Scott suggest that the following might hold. Given a hypergraph

G with mi edges of size i, 1 ≤ i ≤ k, there exists a partition of V(G) into sets V1,V2 such

that for i = 1, 2,

d(Vi) ≥ m1 − 1

2
+

2m2

3
+ . . . +

kmk

k + 1
.

In fact, they suggest in [12] that asymptotically the bound may be much larger, i.e. for

i = 1, 2,

d(Vi) ≥ 1

2
m1 +

3

4
m2 + . . . +

(
1 − 1

2k

)
mk + o(m1 + . . . + mk).

In this section we confirm this for k = 2 by proving Theorem 2.1.3. Note that by taking a

random bipartition V1,V2, we have E(d(Vi)) =
m1

2
+ 3

4
m2 + ... + (1 − 1

2k )mk.
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We need a simple lemma to be used to pick probabilities in a random process.

Lemma 2.1.1. Let a, b, n ∈ R+ with a + b > 0. Then there exists p ∈ [0, 1] such that

min{(n + b)p + a, (n + a)(1 − p) + b} ≥ n
2
+

3

4
(a + b).

Proof. Setting (n + b)p + a = (n + a)(1 − p) + b, we obtain p = n+b
2n+a+b and

(n + b)p + a =
(n + b)2

2n + a + b
+ a.

Clearly p ∈ [0, 1]. It is straightforward to show that

(n + b)2

2n + a + b
+ a −

(
n
2
+

3

4
(a + b)

)
=

(a − b)2

4(2n + a + b)
≥ 0.

Hence, the assertion of the lemma holds.

Remark. Note that p =
n + b

2n + a + b
works for Lemma 2.1.1.

We now prove the main result in this section. Recall the notation τ(X).

Theorem 2.1.2. Let G be a graph with n vertices and m edges and let w : V(G) ∪ E(G)→
R+ such that w(e) > 0 for all e ∈ E(G). Let λ = max{w(x) : x ∈ V(G) ∪ E(G)}, w1 =∑

v∈V(G) w(v), and w2 =
∑

e∈E(G) w(e). Then there is a bipartition X,Y of V(G) such that

min{τ(X), τ(Y)} ≥ 1

2
w1 +

3

4
w2 − λ · O(m4/5).

Proof. We may assume that G is connected, since otherwise we simply consider the indi-

vidual components. Let V(G) = {v1, v2, . . . , vn} such that d(v1) ≥ d(v2) ≥ · · · ≥ d(vn).

First, we need to deal with an appropriate number of vertices so that the remaining

vertices have small degree (and hence will be useful when applying the Azuma-Hoeffding

inequality in Lemma 1.4.1). Since G is connected, n − 1 ≤ m < 1
2
n2. Fix 0 < α < 1

2
(to be

optimized later), and let V1 = {v1, . . . , vt} such that t = cmα�, where c is some constant and

c <
√

2. (Note that, since α < 1/2, c <
√

2, and m < 1
2
n2, we have t < n.) Then

e(V1) ≤
(
t
2

)
<

1

2
t2 ≤ 1

2
c2m2α.
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Since
∑t+1

i=1 d(vi) ≤ 2m,

d(vt+1) ≤ 2m
t + 1

≤ 2

c
m1−α.

Let V2 = V(G)\V1, and rename the vertices in V2 as {u1, u2, ..., un−t} such that e({ui},V1 ∪
{u1, ..., ui−1}) > 0 for i = 1, . . . , n−t; which can be done since we assume that G is connected.

We now define a random process. First, fix an arbitrary partition V1 = X0 ∪ Y0, and

assign color 1 to all vertices in X0 and color 2 to all vertices in Y0. The vertices ui ∈ V2 are

independently colored 1 with probability pi, and 2 with probability 1 − pi. (The pi’s are

constants to be determined recursively.) Let Zi denote the indicator random variable of the

event of coloring ui. Hence Zi = j, j ∈ {1, 2}, iff ui is assigned color j. When this process

stops we obtain a bipartition of V(G) into two sets X,Y , where X consists of all vertices

with color 1 and Y consists of all vertices of color 2 (and hence X0 ⊆ X and Y0 ⊆ Y).

We need additional notation to facilitate the choices of pi (1 ≤ i ≤ n − t), the compu-

tations of expectations of τ(X) and τ(Y), and the estimations of concentration bounds. Let

Gi = G[V1 ∪ {u1, u2, ..., ui}] for i = 1, . . . , n − t, let G0 = G[V1], and let the elements of

V(Gi) ∪ E(Gi) inherit their weights from G. Let x0 = τ(X0) and y0 = τ(Y0), and define, for

i = 1, . . . , n − t,

Xi = {vertices of Gi with color 1},
Yi = {vertices of Gi with color 2},
xi = τGi(Xi),

yi = τGi(Yi),

Δxi = xi − xi−1,

Δyi = yi − yi−1,

ai =
∑

e∈(ui,Xi−1)

w(e),

bi =
∑

e∈(ui,Yi−1)

w(e).

Note that xi and yi are random variables which depend on only (Z1,Z2, . . . , Zi); and ai and
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bi are random variables which depend on only (Z1,Z2, . . . , Zi−1). Thus,

E(Δxi| Z1, . . . , Zi−1) = pi(w(ui) + bi) + ai,

E(Δyi| Z1, . . . , Zi−1) = (1 − pi)(w(ui) + ai) + bi.

Hence,

E(Δxi) = E (E(Δxi|Z1, . . . , Zi−1))

=
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1) (pi(w(ui) + bi) + ai)

= pi

⎛⎜⎜⎜⎜⎜⎜⎝w(ui) +
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)bi

⎞⎟⎟⎟⎟⎟⎟⎠ +
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai.

Similarly,

E(Δyi) = (1 − pi)

⎛⎜⎜⎜⎜⎜⎜⎝w(ui) +
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai

⎞⎟⎟⎟⎟⎟⎟⎠ +
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)bi.

Let

αi =
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai,

βi =
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)bi.

Then

E(Δxi) = pi(w(ui) + βi) + αi,

E(Δyi) = (1 − pi)(w(ui) + αi) + βi.

Note that αi, βi are determined by p1, . . . , pi−1, since ai and bi are determined by Z1, . . . , Zi−1.

Also note that ei := ai + bi =
∑

e∈(ui, Gi−1) w(e) is the total weight of edges in (ui,V(Gi−1)),

which is independent of Z1, . . . , Zi−1 and is the same in both G and Gi. Further, ei > 0 by
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our choice of ui and the assumption that w(e) > 0 for all e ∈ E(G). Hence,

αi + βi =
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)(ai + bi)

=
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ei

= ei > 0.

Let pi =
w(ui) + βi

2w(ui) + αi + βi
. Note that pi is recursively defined, since αi and βi are determined

by p1, . . . , pi−1. It follows from Lemma 2.1.1 that pi ∈ [0, 1] and

min{E(Δxi),E(Δyi)} ≥ 1

2
w(ui) +

3

4
(αi + βi) =

1

2
w(ui) +

3

4
ei.

We can now compute the expectations of xn−t and yn−t:

E(xn−t) = E(x0) +

n−t∑
i=1

E(Δxi) ≥ E(x0) +
1

2

n−t∑
i=1

w(ui) +
3

4

n−t∑
i=1

ei,

E(yn−t) = E(y0) +

n−t∑
i=1

E(Δyi) ≥ E(y0) +
1

2

n−t∑
i=1

w(ui) +
3

4

n−t∑
i=1

ei.

Let X = Xn−t, Y = Yn−t. Then X ∪ Y = V(G) and X ∩ Y = ∅. Note that τ(X) =

xn−t, τ(Y) = yn−t, τ(X0) = x0, τ(Y0) = y0, E(x0) = x0, and E(y0) = y0. Also note that

w2 =
∑

V(e)⊆V1
w(e) +

∑n−t
i=1 ei. Hence

E(τ(X)) ≥ 1

2

⎛⎜⎜⎜⎜⎜⎝w1 −
t∑

i=1

w(vi)

⎞⎟⎟⎟⎟⎟⎠ + 3

4

⎛⎜⎜⎜⎜⎜⎜⎝w2 −
∑

V(e)⊆V1

w(e)

⎞⎟⎟⎟⎟⎟⎟⎠ + τ(X0)

≥ 1

2
w1 +

3

4
w2 −

⎛⎜⎜⎜⎜⎜⎜⎝12
t∑

i=1

w(vi) +
3

4

∑
V(e)⊆V1

w(e)

⎞⎟⎟⎟⎟⎟⎟⎠
≥ 1

2
w1 +

3

4
w2 − λ

(
1

2
t +

3

4
e(V1)

)

≥ 1

2
w1 +

3

4
w2 − λ

(
1

2
cmα +

3

8
c2m2α

)
.

Similarly,

E(τ(Y)) ≥ 1

2
w1 +

3

4
w2 − λ

(
1

2
cmα +

3

8
c2m2α

)
.
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Next we show that τ(X) and τ(Y) are concentrated around their respective means. Note

that changing the color of some ui would affect τ(X) and τ(Y) by at most d(ui)λ + w(ui) ≤
(d(ui) + 1)λ. Hence by applying Lemma 1.4.1, we have

P (τ(X) < E(τ(X)) − z) ≤ exp

(
− 2z2

λ2
∑n−t

i=1(d(ui) + 1)2

)

≤ exp

(
− 2z2

λ2
∑n−t

i=1(d(ui) + 1) · (d(vt+1) + 1)

)

< exp

⎛⎜⎜⎜⎜⎝− 2z2

λ2(1 + 2
c m1−α) · (2m + n − 1)

⎞⎟⎟⎟⎟⎠
< exp

⎛⎜⎜⎜⎜⎝− 2z2

2λ2 2
c m1−α · (2m + m)

⎞⎟⎟⎟⎟⎠
= exp

(
− cz2

6λ2m2−α

)
.

Let z = λ
(
6 ln 2

c

) 1
2

m1− α2 . Then

P (τ(X) < E(τ(X)) − z) <
1

2

and

P (τ(Y) < E(τ(Y)) − z) <
1

2
.

So there exists a partition V(G) = X ∪ Y such that

τ(X) ≥ E(τ(X)) − z ≥ 1

2
w1 +

3

4
w2 + λ · o(m)

and

τ(Y) ≥ E(τ(Y)) − z ≥ 1

2
w1 +

3

4
w2 + λ · o(m).

The o(m) term in the above expressions is

−
(
1

2
cmα +

3

8
c2m2α + (

6 ln 2

c
)

1
2 m1− α2

)
.

So picking α = 2/5 to minimize max{2α, 1 − α
2
}, we have

min{τ(X), τ(Y)} ≥ 1

2
w1 +

3

4
w2 − λ · O(m4/5).
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Note that a random bipartition V1,V2 shows that E(d(Vi)) = w1/2 + 3w2/4. When G

is a hypergraph whose edges are of size 1 or 2, we may view G as a weighted graph with

weight function w such that w(e) = 1 for all e ∈ E(G) with |V(e)| = 2, w(v) = 1 for all

v ∈ V(G) with {v} ∈ E(G), and w(v) = 0 for all v ∈ V(G) with {v} � E(G). Theorem 2.1.2

then gives the following result which, in turn, implies Theorem 1.3.1.

Theorem 2.1.3. Let G be a hypergraph with mi edges of size i, i = 1, 2. Then there is a

partition V1,V2 of V(G) such that for i = 1, 2,

d(Vi) ≥ 1

2
m1 +

3

4
m2 − O(m4/5

2
).

The following is a consequence of Theorem 2.1.3.

Corollary 2.1.4. Let k ≥ 2 be an integer and G be a hypergraph with mi edges of size

i, i = 1, 2, ..., k. Then there is a partition V1,V2 of V(G) such that for i = 1, 2, d(Vi) ≥
1
2
m1 +

3
4
(m2 + m3 + ... + mk) + o(m2 + m3 + ... + mk).

Proof. For each e ∈ E(G), if |V(e)| ≤ 2 then let e′ := e; otherwise, let e′ be some 2-element

subset of V(e). Let G′ denote the hypergraph with V(G′) = V(G) and E(G′) = {e′ : e ∈
E(G)}. Then G′ has m1 edges of size 1, and m2 + m3 + ... + mk edges of size 2.

By Theorem 2.1.3, V(G′) has a partition V1,V2 such that for i = 1, 2, d(Vi) ≥ m1

2
+

3
4
(m2 + ...+mk)+ o(m2 + ...+mk) edges. By the construction of G′, we see that V1,V2 is the

desired partition of V(G).

2.2 k-Partitions – bounding edges meeting each set

In this section, we prove Conjecture 1.3.3 for graphs with large m. For k = 2, Conjecture

1.3.3 follows from the fact that every graph with m edges has a bipartition V1,V2 such that

for i ∈ {1, 2}, each vertex in Vi has at least as many neighbors in V3−i as in Vi.

We use the same approach as in the previous section, namely, first partition an appropri-

ate set of vertices of larger degree, then establish a random process to compute expectations,
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and finally apply the Azuma-Hoeffding inequality to bound deviations. As before, we need

to pick probabilities pi in the process. To this end we need several lemmas. Our first lemma

will be used to take care of critical points when applying Lagrange multipliers to optimize

a function.

Lemma 2.2.1. Let ai = a > 0 for i = 1, . . . , l, and let a j = 0 for j = l + 1, . . . , k, where

k ≥ l ≥ 2. Let δ ≥ 0 and αi =
(∑k

j=1 aj

)
+ δ − ai. Then

1 +

k∑
i=1

ai

αi
≥
⎛⎜⎜⎜⎜⎜⎝δk +

2k − 1

k2

k∑
i=1

ai

⎞⎟⎟⎟⎟⎟⎠
k∑

i=1

1

αi
.

Proof. By the assumption of the lemma, we have αi = (l − 1)a + δ > 0 for 1 ≤ i ≤ l, and

αi = la + δ > 0 for l + 1 ≤ i ≤ k. Let

f := 1 +

k∑
i=1

ai

αi
−
⎛⎜⎜⎜⎜⎜⎝δk +

2k − 1

k2

k∑
i=1

ai

⎞⎟⎟⎟⎟⎟⎠
k∑

i=1

1

αi
.

We need to prove f ≥ 0. For convenience, let δ = aε. Then ε ≥ 0 and

f = 1 +
l

l − 1 + ε
−
(
ε

k
+

2k − 1

k2
l
) (

l
l − 1 + ε

+
k − l
l + ε

)
.

A straightforward calculation shows that

(l − 1 + ε)(l + ε) f =
l

k2
(k − 1)(k − l) ≥ 0.

Hence the assertion of the lemmas holds.

Note that in the lemma below we are unable to require pi ≥ 0, and hence they cannot

serve as probabilities in a random process. However, this lemma is needed to prove Lemma

2.2.3.

Lemma 2.2.2. Let δ ≥ 0 and, for i = 1, . . . , k, let ai ≥ 0 and αi =
(∑k

j=1 aj

)
+ δ − ai. Then

there exist pi, i = 1, . . . , k, such that
k∑

i=1

pi = 1 and, for 1 ≤ i ≤ k,

αi pi + ai ≥ δk +
2k − 1

k2

k∑
i=1

ai.
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Proof. For convenience let fi(p1, . . . , pk) := αi pi + ai, i = 1, . . . , k. If ai = 0 for i = 1, . . . , k,

then the assertion of the lemma holds by letting pi = 1/k for i = 1, . . . , k. So without loss

of generality we may assume a1 > 0.

Now assume ai = 0 for i = 2, . . . , k. Then f1 = δp1 + a1 and fi = (a1 + δ)pi for

2 ≤ i ≤ k. Setting fi = f1 for i = 2, . . . , k, we get pi =
δp1 + a1

a1 + δ
. Requiring

k∑
i=1

pi = 1, we

obtain p1 =
(2 − k)a1 + δ

a1 + kδ
. Hence for i = 1, . . . , k,

fi = δp1 + a1 =
(δ + a1)2

a1 + kδ
,

and so,

fi −
⎛⎜⎜⎜⎜⎜⎝δk +

2k − 1

k2

k∑
i=1

ai

⎞⎟⎟⎟⎟⎟⎠ = (k − 1)2a2
1

(a1 + kδ)k2
≥ 0.

Therefore, we may further assume that a2 > 0. Hence αi > 0 for all i = 1, . . . , k. Setting

fi = f1 for i = 2, . . . , k, we get pi =
α1 p1 + a1 − ai

αi
for i = 1, . . . , k. Requiring

k∑
i=1

pi = 1

and noting that ai − a1 = α1 − αi for 1 ≤ i ≤ k, we have

p1 =

1 +
k∑

i=1

ai − a1
αi

α1

k∑
i=1

1

αi

=

1 +
k∑

i=1

α1 − αi
αi

α1

k∑
i=1

1

αi

= 1 − k − 1

α1

k∑
i=1

1

αi

.

Indeed, for j = 1, . . . , k,

pj = 1 − k − 1

α j

k∑
i=1

1

αi

.

Note that α j + aj = αi + ai for any 1 ≤ i, j ≤ k. Hence for j = 1, 2, . . . , k, we have

f j = α j p j + aj =

k∑
i=1

α j+a j

αi
− (k − 1)

k∑
i=1

1
αi

=

k∑
i=1

αi+ai
αi
− (k − 1)

k∑
i=1

1
αi

=

1 +
k∑

i=1

ai
αi

k∑
i=1

1
αi

.

Now define

f (a1, a2, . . . , ak) = 1 +

k∑
i=1

ai

αi
−
⎛⎜⎜⎜⎜⎜⎝δk +

2k − 1

k2

k∑
i=1

ai

⎞⎟⎟⎟⎟⎟⎠
k∑

i=1

1

αi
.

To complete the proof of this lemma, we need to show f (a1, . . . , ak) ≥ 0.
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Case 1. δ = 0.

Then αi + ai =
∑k

j=1 aj for j = 1, ..., k. Set α =
∑k

j=1 aj; then
∑k

i=1 αi = (k − 1)α.

Moreover,

f (a1, ..., ak) = 1 +

k∑
i=1

ai

αi
− (2k − 1)α

k2

k∑
i=1

1

αi

= 1 +

k∑
i=1

α − αi

αi
− (2k − 1)α

k2

k∑
i=1

1

αi

=
(k − 1)2α

k2

k∑
i=1

1

αi
− (k − 1)

≥ (k − 1)2α

k2

k2∑k
i=1 αi

− (k − 1)

= 0.

Here the inequality follows from Cauchy-Schwarz, and the last equality follows from the

face that
∑k

i=1 αi = (k − 1)α.

Case 2. δ > 0.

Then αi > 0 for i = 1, ..., k. (So in this case we need not require a1 > 0 and a2 > 0.) Set

α =
∑k

j=1 aj.

Let gl(a1, . . . , al) = f (a1, . . . , al, 0, . . . , 0). It then suffices to show that gl(a1, . . . , al) ≥ 0

on the domain Dl := [0, α]l for l = 1, . . . , k.

First, we prove that for l ∈ {1, . . . , k}, gl ≥ 0 at all possible critical points of gl in Dl,

subject to
∑k

j=1 aj − α = 0. For j = 1, ..., l,

∂gl

∂aj
= −

k∑
i=1

ai

α2
i

+
aj

α2
j

+
1

α j
+
δ

k

⎛⎜⎜⎜⎜⎜⎝
k∑

i=1

1

α2
i

− 1

α2
j

⎞⎟⎟⎟⎟⎟⎠ − 2k − 1

k2

⎛⎜⎜⎜⎜⎜⎝
k∑

i=1

1

αi
−

k∑
i=1

ai

k∑
i=1

1

α2
i

+

k∑
i=1

ai

α2
j

⎞⎟⎟⎟⎟⎟⎠ .
Using the method of Lagrange multipliers, we have

∂gl
∂a j
= λ for all j = 1, ..., l. So

∂gl
∂a j
=
∂gl
∂a1

,

which gives

aj

α2
j

+
1

α j
− δ

k
1

α2
j

− 2k − 1

k2

k∑
i=1

ai

α2
j

=
a1

α2
1

+
1

α1

− δ
k

1

α2
1

− 2k − 1

k2

k∑
i=1

ai

α2
1

.

Since α j + aj = α1 + a1 =
∑k

i=1 ai + δ, we have

1

α2
j

⎛⎜⎜⎜⎜⎜⎝ (k − 1)2

k2

n∑
i=1

ai +
k − 1

k
δ

⎞⎟⎟⎟⎟⎟⎠ = 1

α2
1

⎛⎜⎜⎜⎜⎜⎝ (k − 1)2

k2

n∑
i=1

ai +
k − 1

k
δ

⎞⎟⎟⎟⎟⎟⎠ .
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Hence 1/α2
j = 1/α2

1 for all j = 1, . . . , l. Therefore, α j = α1 for j = 1, . . . , l. This implies

aj = a1 for j = 1, . . . , l. It now follows from Lemma 2.2.1 that gl ≥ 0 at all possible critical

points of gl in [0, α]l.

We now show that gl ≥ 0 on [0, α]l by applying induction on l. Suppose l = 1. Then

α = a1. So α1 = δ, and αi = a1 + δ for i = 2, ..., k. Hence,

g1(a1) = 1 +
a1

δ
−
(
δ

k
+

(2k − 1)a1

k2

) (
1

δ
+

k − 1

a1 + δ

)
=

(k − 1)2

k2

(
a2

1

δ(a1 + δ)

)
≥ 0.

So we may assume l ≥ 2 and gi ≥ 0 for all i = 1, . . . , l − 1. We now show gl ≥ 0

on the domain [0, α]l by proving it for all points in the boundary of [0, α]l (since gl ≥ 0

at all possible critical points of gl). Let (a1, . . . , al) be in the boundary of [0, α]l. Then

aj = 0 or aj = α for some j ∈ {1, . . . , l}. Note that gl is a symmetric function. So we may

assume without loss of generality that al = 0 or a1 = α. If al = 0, then gl(a1, . . . , al) =

gl−1(a1, . . . , al−1) ≥ 0 by induction hypothesis. If a1 = α then aj = 0 for j = 2, ..., l, and so,

gl(a1, ..., al) = g1(a1) ≥ 0. Again, we have gl(a1, ..., al) ≥ 0.

Note that in the proof of Lemma 2.2.2 when αi > 0, 1 ≤ i ≤ k, we have

pj = 1 − k − 1

α j

k∑
i=1

1

αi

for j = 1, . . . , k, which may be negative. We now apply Lemma 2.2.2 to prove the next

result which gives the pi’s needed in a random process.

Lemma 2.2.3. Let δ ≥ 0. For i = 1, . . . , k, where k ≥ 3, let ai ≥ 0 and αi = (
∑k

j=1 aj)+δ−ai.

Then there exist pi ∈ [0, 1], 1 ≤ i ≤ k, such that
k∑

i=1

pi = 1 and for 1 ≤ i ≤ k,

αi pi + ai ≥ δk +
1

k − 1

k∑
i=1

ai.

Proof. If ai = 0 for 1 ≤ i ≤ k, then the assertion of the lemma holds by taking pi = 1/k,

i = 1, . . . , k. So we may assume without loss of generality that a1 > 0. If ai = 0 for

2 ≤ i ≤ k and δ = 0, then α1 = 0 and αi = a1 for 2 ≤ i ≤ k; and the assertion of the lemma
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holds by setting p1 = 0 and pi =
1

k−1
for i = 2, . . . , k. Therefore, we may further assume

that a2 > 0 or δ > 0. As a consequence, we have αi > 0 for 1 ≤ i ≤ k.

We prove the assertion of this lemma by induction on k. For 1 ≤ i ≤ k, let

fi(p1, . . . , pk) := αi pi + ai.

For k = 3, it follows from Lemma 2.2.2 (and the remark following its proof) that there

exist p′1, p
′
2, p

′
3 such that p′1 + p′2 + p′3 = 1 and for i = 1, 2, 3,

p′i = 1 − 2

αi

3∑
i=1

1

α j

and fi(p′1, p
′
2, p

′
3) ≥ δ

3
+

5

9

3∑
i=1

ai.

If p′i ≥ 0 for i = 1, 2, 3, then the assertion of the lemma holds by taking pi := p′i , i = 1, 2, 3.

So we may assume that p′3 < 0, which implies a3 > α3 p′3 + a3 = f3(p′1, p
′
2, p

′
3) ≥ δ

3
+ 5

9

3∑
i=1

ai.

By Lemma 2.1.1 (with n := a3 + δ), there exist p1, p2 ∈ [0, 1] such that p1 + p2 = 1 and

f1(p1, p2, 0) = (a2 + a3 + δ)p1 + a1 ≥ a3 + δ

2
+

3

4
(a1 + a2),

f2(p1, p2, 0) = (a1 + a3 + δ)p2 + a2 ≥ a3 + δ

2
+

3

4
(a1 + a2).

Now, let p3 = 0. Then p1 + p2 + p3 = 1, pi ∈ [0, 1] for all 1 ≤ i ≤ 3, and

f1(p1, p2, p3) = α1 p1 + a1 ≥ δ
3
+

1

2
(a1 + a2 + a3),

f2(p1, p2, p3) = α2 p2 + a2 ≥ δ
3
+

1

2
(a1 + a2 + a3),

f3(p1, p2, p3) = a3 ≥ δ
3
+

1

2
(a1 + a2 + a3).

Hence Lemma 2.2.3 holds for k = 3.

Now let n ≥ 3 be an integer, and assume that the assertion of the lemma holds when

k = n. We prove the assertion of the lemma also holds when k = n + 1. By Lemma 2.2.2

(and the remark following its proof), there exist p′i , 1 ≤ i ≤ n+1, such that
∑n+1

i=1 p′i = 1 and

for i = 1, . . . , n + 1,

fi(p′1, . . . , p
′
n+1) ≥ δ

n + 1
+

2n + 1

(n + 1)2

n+1∑
i=1

ai,
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and

p′i = 1 − n

αi

n+1∑
j=1

1
α j

≤ 1.

If p′i ≥ 0 for 1 ≤ i ≤ n+1, then let pi := p′i ; and the lemma holds (since 2n+1
(n+1)2 >

1
n when

n ≥ 3). So we may assume without loss of generality that p′n+1 < 0. Then

an+1 > αn+1 p′n+1 + an+1

= fn+1(p′1, . . . , p
′
n+1)

≥ δ

n + 1
+

2n + 1

(n + 1)2

n+1∑
i=1

ai

≥ δ

n + 1
+

1

n

n+1∑
i=1

ai

Let δ′ = δ+an+1. Then for 1 ≤ i ≤ n we have αi = (
∑n

j=1 aj)+δ
′−ai. Hence by the induction

hypothesis, there exist pi ∈ [0, 1], 1 ≤ i ≤ n, such that
n∑

i=1

pi = 1 and, for i = 1, . . . , n,

αi pi + ai ≥ δ
′

n
+

1

n − 1

n∑
i=1

ai

=
δ

n
+

an+1

n
+

1

n − 1

n∑
i=1

ai.

Let pn+1 = 0. Then
n+1∑
i=1

pi = 1 and pi ∈ [0, 1] for all 1 ≤ i ≤ n + 1. Also, for any 1 ≤ i ≤ n,

fi(p1, . . . , pn+1) ≥ δ
n
+

an+1

n
+

1

n − 1

n∑
i=1

ai ≥ δ

n + 1
+

1

n

n+1∑
i=1

ai, and

fn+1(p1, . . . , pn+1) = an+1 ≥ δ

n + 1
+

1

n

n+1∑
i=1

ai.

Hence, Lemma 2.2.3 holds for k = n + 1, completing the proof of this lemma.

We can now prove the following partition result on weighted graphs.

Theorem 2.2.4. Let k ≥ 3 be an integer, let G be a graph with m edges, and let w : V(G)∪
E(G) → R+ such that w(e) > 0 for all e ∈ E(G). Let λ = max{w(x) : x ∈ V(G) ∪ E(G)},
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w1 =
∑

v∈V(G) w(v) and w2 =
∑

e∈E(G) w(e). Then there is a k-partition V1, . . . ,Vk of V(G)

such that for 1 ≤ i ≤ k,

τ(Vi) ≥ 1

k
w1 +

1

k − 1
w2 − λ · O(m4/5).

Proof. We may assume that G is connected. We use the same notation as in the proof

of Theorem 2.1.2. Let V(G) = {v1, . . . , vn} such that d(v1) ≥ d(v2) ≥ . . . ≥ d(vn). Let

V1 = {v1, . . . , vt} with t = cmα�, where 0 < α < 1/2 and 0 < c <
√

2; and let V2 :=

V(G) \ V1 = {u1, . . . , un−t} such that e(ui,V1 ∪ {u1, . . . , ui−1}) > 0 for i = 1, . . . , n − t. Then

e(V1) ≤ 1

2
c2m2α and d(vt+1) ≤ 2

c
m1−α.

Fix an arbitrary partition V1 = Y1 ∪ Y2 ∪ · · · ∪ Yk and, for each i ∈ {1, . . . , k}, assign

the color i to all vertices in Yi. We extend this coloring to V(G) such that each vertex

ui ∈ V2 is independently assigned the color j with probability pi
j,
∑k

j=1 pi
j = 1. Let Zi be

the indicator random variable of the event of coloring ui, i.e., Zi = j iff ui is colored j.

Let Gi = G[V1 ∪ {u1, · · · , ui}] for i = 1, . . . , n − t, and let G0 = G[V1]. Let X0
j = Yj and

x0
j = τ(X

0
j ), and for i = 1, . . . , n − t and j = 1, . . . , k, define

Xi
j = {vertices of Gi with color j},

xi
j = τGi(X

i
j),

Δxi
j = xi

j − xi−1
j ,

ai
j =

∑
e∈(ui,Xi−1

j )

w(e).

Note that ai
j depends on only (Z1, . . . , Zi−1). Hence, for 1 ≤ i ≤ n − t and 1 ≤ j ≤ k,

E(Δxi
j| Z1, . . . , Zi−1) = pi

j

⎛⎜⎜⎜⎜⎜⎝
k∑

l=1

ai
l + w(ui) − ai

j

⎞⎟⎟⎟⎟⎟⎠ + ai
j.

So

E(Δxi
j) = pi

j

⎛⎜⎜⎜⎜⎜⎝
k∑

l=1

bi
l + w(ui) − bi

j

⎞⎟⎟⎟⎟⎟⎠ + bi
j,
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where for 1 ≤ l ≤ k,

bi
l =

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai
l.

Since ai
l is determined by (Z1, . . . , Zi−1), bi

l is determined by ps
j, 1 ≤ s ≤ i−1 and 1 ≤ j ≤ k.

By Lemma 2.2.3 (with δ = w(ui)), there exist pi
j ∈ [0, 1], 1 ≤ j ≤ k, such that

∑k
j=1 pi

j =

1 and

E(Δxi
j) ≥

w(ui)

k
+

1

k − 1

k∑
j=1

bi
j.

Clearly, each pi
j is dependent only on bi

l, 1 ≤ l ≤ k, and hence is determined (recursively)

by ps
l , 1 ≤ l ≤ k and 1 ≤ s ≤ i− 1. Note that ei :=

k∑
j=1

ai
j =
∑

e∈(ui,Gi−1) w(e) is the total weight

of the edges in (ui,Gi−1), which is independent of Z1, . . . , Zn−t. Thus,

E(Δxi
j) ≥

w(ui)

k
+

1

k − 1

k∑
j=1

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai
j

=
w(ui)

k
+

1

k − 1

∑
(Z1,...,Zi−1)

⎛⎜⎜⎜⎜⎜⎜⎝P(Z1, . . . , Zi−1)

k∑
j=1

ai
j

⎞⎟⎟⎟⎟⎟⎟⎠
=

w(ui)

k
+

1

k − 1

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ei

=
w(ui)

k
+

1

k − 1
ei.

Therefore, noting that w2 =
∑

V(e)⊆V1
w(e) +

∑n−t
i=1 ei, we have

E(xn−t
j ) =

n−t∑
i=1

E(Δxi
j) + E(x0

j)

≥ 1

k

n−t∑
i=1

w(ui) +
1

k − 1

n−t∑
i=1

ei + x0
j

≥ 1

k

⎛⎜⎜⎜⎜⎜⎝w1 −
t∑

i=1

w(vi)

⎞⎟⎟⎟⎟⎟⎠ + 1

k − 1

⎛⎜⎜⎜⎜⎜⎜⎝w2 −
∑

V(e)⊆V1

w(e)

⎞⎟⎟⎟⎟⎟⎟⎠

≥ 1

k
w1 +

1

k − 1
w2 −

⎛⎜⎜⎜⎜⎜⎜⎝1k
t∑

i=1

w(vi) +
1

k − 1

∑
V(e)⊆V1

w(e)

⎞⎟⎟⎟⎟⎟⎟⎠
≥ 1

k
w1 +

1

k − 1
w2 − λ

(
1

k
t +

1

k − 1
e(V1)

)
.

Let x j := xn−t
j = τG(Xn−t

j ), j = 1, . . . , k. Now changing the color of ui only affects x j by at
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most d(ui)λ + w(ui) ≤ (d(ui) + 1)λ. Hence, by Lemma 1.4.1, we have, for j = 1, . . . , k,

P

(
x j < E(x j) − z

)
≤ exp

(
− 2z2

λ2
∑n−t

i=1(d(ui) + 1)2

)

≤ exp

(
− 2z2

λ2
∑n−t

i=1(d(ui) + 1) · (d(vt+1) + 1)

)

< exp

⎛⎜⎜⎜⎜⎝− 2z2

λ2(2m + n − 1) · 4
c m1−α

⎞⎟⎟⎟⎟⎠
≤ exp

(
− cz2

6λ2m2−α

)
.

Let z = λ
(

6 ln k
c

) 1
2 m1− α2 ; then

P

(
x j < E(x j) − z

)
< exp (− ln k) =

1

k
.

So there exists a partition V(G) = X1 ∪ X2 ∪ · · · ∪ Xk such that for j = 1, . . . , k,

x j ≥ E(x j) − z

≥ 1

k
w1 +

1

k − 1
w2 − λ

(
1

k
t +

1

k − 1
e(V1)

)
− z

≥ 1

k
w1 +

1

k − 1
w2 + λ · o(m),

where the o(m) term in the expression is

−
⎛⎜⎜⎜⎜⎜⎜⎝ckmα +

1

2(k − 1)
c2m2α +

(
6 ln k

c

) 1
2

m1− α2

⎞⎟⎟⎟⎟⎟⎟⎠ .

Picking α = 2
5

to minimize max{2α, 1 − α/2}, the o(m) term becomes O(m
4
5 ).

Suppose G is a hypergraph whose edges have size 1 or 2. We may view G as a weighted

graph with weight function w such that w(e) = 1 for all e ∈ E(G) with |V(e)| = 2, w(v) = 1

for all v ∈ V(G) with {v} ∈ E(G), and w(v) = 0 for all v ∈ V(G) with {v} � E(G).

Theorem 2.2.4 then gives the following result, which implies Theorem 1.3.2.

Theorem 2.2.5. Let k ≥ 3 be an integer and let G be a hypergraph with mi edges of size i,

i = 1, 2. Then there is a partition V1, . . . ,Vk of V(G) such that for i = 1, . . . , k,

d(Vi) ≥ m1

k
+

m2

k − 1
− O(m4/5

2
).
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We have the following corollary, which establishes Conjecture 1.3.3 for large graphs.

Corollary 2.2.6. Let G be a graph with m edges and let k ≥ 3 be an integer. Then there

is an integer f (k) such that if m ≥ f (k) then V(G) has a partition V1, . . . ,Vk such that

d(Vi) ≥ 2m/(2k − 1) for i = 1, . . . , k.

Note that our proof gives f (k) = O(k10(log k)5/2).

2.3 k-Partitions – bounding edges inside each set

Bollobás and Scott [8] proved that every graph with m edges can be partitioned into k sets

each of which contains at most m/
(

k+1

2

)
edges, with Kk+1 as the unique extremal graph. For

large graphs, they proved in [10] that this bound can be improved to (1 + o(1))m/k2. They

also [12] conjectured that:

Conjecture 2.3.1. (Bollobás and Scott [12]) Any hypergraph with mi edges of size i,i =

1, 2, admits a k-partition V1, ...,Vk such that for i = 1, . . . , k,

e(Vi) ≤ m1

k
+

m2(
k+1

2

) + O(1).

We now prove Conjecture 2.3.1. The following two lemmas will enable us to choose

the probabilities in a random process.

Lemma 2.3.2. Let δ ≥ 0 and, for integers k ≥ l ≥ 1, let ai = a > 0 for i = 1, . . . , l and

aj = 0 for j = l + 1, . . . , k. Suppose δ + ai > 0 for all 1 ≤ i ≤ k. Then

1∑k
i=1

1
δ+ai

≤ δ
k
+

1

k2

k∑
i=1

ai.

Proof. If l = k then the inequality holds with equality (both sides equal to (δ+ a)/k). So we

may assume k > l. Then δ > 0, since δ + ak > 0 by assumption. Thus
∑k

i=1
1
δ+ai
= l
δ+a +

k−l
δ

and
∑k

i=1 ai = la. Hence

1∑k
i=1

1
δ+ai

−
⎛⎜⎜⎜⎜⎜⎝δk +

1

k2

k∑
i=1

ai

⎞⎟⎟⎟⎟⎟⎠ = −l(k − l)a2

k2(kδ + (k − l)a)
≤ 0.

Thus the assertion of the lemma holds.
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Lemma 2.3.3. Let δ ≥ 0 and let ai ≥ 0 for i = 1, . . . , k. Then there exist pi ∈ [0, 1],

i = 1, . . . , k, such that
k∑

i=1

pi = 1 and, for 1 ≤ i ≤ k,

(δ + ai)pi ≤ δk +
1

k2

k∑
i=1

ai.

Proof. If there exists some 1 ≤ i ≤ k such that δ + ai = 0, then δ = ai = 0. In this case let

pi = 1 and pj = 0 for j � i, 1 ≤ j ≤ k. Then (δ + ai)pi = 0 for i = 1, . . . , k; and clearly the

assertion of the lemma holds.

Therefore, we may assume that δ + ai > 0, 1 ≤ i ≤ k. Setting (δ + ai)pi = (δ + a1)p1

for i = 2, . . . , k, we have pi =
δ+a1

δ+ai
p1. Requiring

k∑
i=1

pi = 1 we have (δ + a1)p1

k∑
i=1

1
δ+ai
= 1.

Hence for i = 1, . . . , k,

(δ + ai)pi =
1

k∑
i=1

1
δ+ai

.

Let

f (a1, a2, . . . , ak) :=
1

k∑
i=1

1
δ+ai

−
⎛⎜⎜⎜⎜⎜⎝δk +

1

k2

k∑
i=1

ai

⎞⎟⎟⎟⎟⎟⎠ .

We need to show f ≤ 0. This is clear if ai = 0 for i = 1, . . . , k, since f (0, . . . , 0) = 0.

Let gl(a1, . . . , al) := f (a1, . . . , al, 0, . . . , 0) for l = 1, . . . , k. We now show that gl ≤ 0 on

Dl := [0, α]l for all 1 ≤ l ≤ k; and hence f = gk ≤ 0. We apply induction on l.

Suppose l = 1. Clearly, g1(0) = f (0, 0, . . . , 0) = 0, and if a1 = a > 0 then by Lemma

2.3.2, g1(a1) = f (a1, 0, . . . , 0) ≤ 0.

Therefore, we may assume l ≥ 2. It suffices to prove gl(a1, . . . , al) ≤ 0 for all points

(a1, . . . , al) that are on the boundary of Dl or critical points of gl in Dl.

Let (a1, . . . , al) be a point on the boundary of Dl. Then there exists j ∈ {1, ..., l} such

that aj = 0 or aj = α. Since gl is a symmetric function, we may assume that al = 0 or

a1 = α. If al = 0, then gl(a1, . . . , al−1, 0) = gl−1(a1, . . . , al−1) ≤ 0, by induction hypothesis.

If a1 = α, then a2 = ... = ak = 0, and so gl(a1, ..., al) = g1(a1) ≤ 0 by induction basis.

Hence it remains to prove gl ≤ 0 at its critical points in Dl, subject to
∑l

j=1 aj − α = 0.
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Note that for all j = 1, . . . , l,

∂ f
∂aj
=

1(
k∑

i=1

1

δ + ai

)2 · 1

(δ + aj)2
− 1

k2
.

Also note that
∂gl
∂a j

is obtained from
∂ f
∂a j

by setting al+1 = . . . = ak = 0. Thus, letting
∂gl

∂aj
= λ

(the Lagrange multiplier) for j = 1, . . . , l, we have for 1 ≤ s � t ≤ l,

1(
k∑

i=1

1

δ + ai

)2 · 1

(δ + as)2
− 1

k2
=

1(
k∑

i=1

1

δ + ai

)2 · 1

(δ + at)2
− 1

k2
.

As a consequence, (δ + as)
2 = (δ + at)

2 which implies as = at for all 1 ≤ s � t ≤ l. Thus, if

(a1, a2, . . . , al) is a critical point of gl in Dl, then there exists a > 0 such that ai = a > 0 for

i = 1, . . . , l. Now it follows from Lemma 2.3.2 that gl ≤ 0.

We now prove the following partition result for weighted graphs.

Theorem 2.3.4. Let G be a graph with m edges, and let w : V(G) ∪ E(G) → R+ such that

w(e) > 0 for all e ∈ E(G). Let λ := max{w(x) : x ∈ V(G) ∪ E(G)}, w1 =
∑

v∈V(G) w(v) and

w2 =
∑

e∈E(G) w(e). Then for any integer k ≥ 1 there is a k-partition V1, . . . ,Vk of V(G) such

that for i = 1, . . . , k,

e(Vi) ≤ 1

k
w1 +

1

k2
w2 + λ · O(m4/5).

Proof. We may assume that G is connected. We use the same notation as in the proof

of Theorem 2.1.2. Let V(G) = {v1, . . . , vn} such that d(v1) ≥ d(v2) ≥ . . . ≥ d(vn). Let

V1 = {v1, . . . , vt} with t = cmα�, where 0 < α < 1/2 and 0 < c <
√

2; and let V2 :=

V(G) \ V1 = {u1, . . . , un−t} such that e(ui,V1 ∪ {u1, . . . , ui−1}) > 0 for i = 1, . . . , n − t. Then

e(V1) ≤ 1
2
c2m2α and d(vt+1) ≤ 2

c m1−α.

Fix an arbitrary k-partition V1 = Y1 ∪ Y2 ∪ · · · ∪ Yk, and assign each member of Yi the

color i, 1 ≤ i ≤ k. Extend this coloring to V(G), where each vertex ui ∈ V2 is independently

assigned the color j with probability pi
j and

∑k
j=1 pi

j = 1. Let Zi denote the indicator random

variable of the event of coloring ui. Hence Zi = j iff ui is assigned the color j.
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Let Gi = G[V1 ∪ {u1, · · · , ui}] for i = 1, . . . , n − t, and let G0 = G[V1]. Let X0
j = Yj and

x0
j = w(X0

j ), and for i = 1, . . . , n − t define

Xi
j = {vertices of Gi with color j},

xi
j = w(Xi

j),

Δxi
j = xi

j − xi−1
j ,

ai
j =

∑
e∈(ui,Xi−1

j )

w(e).

Note that ai
j depends on (Z1, . . . , Zi−1) only. Hence for 1 ≤ i ≤ n − t and 1 ≤ j ≤ k,

E(Δxi
j|Z1, . . . , Zi−1) = (w(ui) + ai

j)pi
j,

and so

E(Δxi
j) = (w(ui) + bi

j)pi
j,

where here

bi
j =

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai
j.

Since ai
j is determined by (Z1, . . . , Zi−1), bi

j is determined by ps
j, 1 ≤ j ≤ k and 1 ≤ s ≤

i − 1. Note that ei :=
k∑

j=1

ai
j =
∑

e∈(ui,Gi−1) w(e) > 0, which is independent of Z1, . . . , Zn−t. By

Lemma 2.3.3, there exists pi
j ∈ [0, 1], 1 ≤ j ≤ k, such that

∑k
j=1 pi

j = 1 and, for 1 ≤ i ≤ n− t

and j = 1, . . . , k,

E(Δxi
j) ≤

w(ui)

k
+

1

k2

k∑
j=1

bi
j

=
w(ui)

k
+

1

k2

k∑
j=1

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai
j

=
w(ui)

k
+

1

k2

∑
(Z1,...,Zi−1)

⎛⎜⎜⎜⎜⎜⎜⎝P(Z1, . . . , Zi−1)

k∑
j=1

ai
j

⎞⎟⎟⎟⎟⎟⎟⎠
=

w(ui)

k
+

1

k2

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ei

=
w(ui)

k
+

1

k2
ei.
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Note that pi
j is determined by bi

l, 1 ≤ l ≤ k; and hence pi
j is recursively defined by ps

l ,

1 ≤ l ≤ k and 1 ≤ s ≤ i − 1. Also note that w2 =
∑

e∈E(G0) w(e) +
∑n−t

i=1 ei. Now

E(xn−t
j ) =

n−t∑
i=1

E(Δxi
j) + E(x0

j)

≤ 1

k

n−t∑
i=1

w(ui) +
1

k2

n−t∑
i=1

ei + x0
j

≤ 1

k
w1 +

1

k2
w2 +

t∑
i=1

w(vi) +
∑

V(e)⊆V1

w(e)

≤ 1

k
w1 +

1

k2
w2 + λ(t + e(V1)).

Clearly, changing the color of ui affects x j := xn−t
j by at most d(ui)λ + w(ui) ≤ (d(ui) + 1)λ.

So by Lemma 1.4.1,

P

(
x j > E(x j) + z

)
≤ exp

(
− 2z2

λ2
∑n−t

i=1(d(ui) + 1)2

)

≤ exp

(
− 2z2

λ2
∑n−t

i=1(d(ui) + 1)(d(vt+1) + 1)

)

< exp

⎛⎜⎜⎜⎜⎝− 2z2

λ2(2m + n − 1)4
c m1−α

⎞⎟⎟⎟⎟⎠
≤ exp

(
− cz2

6λ2m2−α

)
.

Let z = λ
(

6 ln k
c

) 1
2 m1− α2 . Then

P

(
x j > E(x j) + z

)
< exp(− ln k) =

1

k
.

So there exists a partition V(G) = X1 ∪ X2 ∪ · · · ∪ Xk, where Xj := Xn−t
j , such that for

1 ≤ j ≤ k,

x j ≤ E(x j) + z

≤ 1

k
w1 +

1

k2
w2 + λ (t + e(V1)) + z

≤ 1

k
w1 +

1

k2
w2 + λ · o(m).

The o(m) term in the expression is

cmα +
1

2
c2m2α +

(
6 ln k

c

) 1
2

m1− α2 .
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Picking α = 2
5

to minimize max{2α, 1 − α/2}, the o(m) term becomes O(m
4
5 ).

For a hypergraph G whose edges are of size 1 or 2, we may view G as a weighted graph

with weight function w such that w(e) = 1 for all e ∈ E(G) with |V(e)| = 2, w(v) = 1 for all

v ∈ V(G) with {v} ∈ E(G), and w(v) = 0 for v ∈ V(G) with {v} � E(G). Then Theorem 2.3.4

gives the following result, implying Theorem 1.3.4 and establishing Conjecture 2.3.1 raised

by Bollobás and Scott [12].

Theorem 2.3.5. Let G be a hypergraph with mi edges of size i, i = 1, 2. Then for any

integer k ≥ 1, there is a k-partition V1, . . . ,Vk of V(G) such that for i = 1, . . . , k,

e(Vi) ≤ m1

k
+

m2

k2
+ O(m4/5

2
).

Note that the term m1/k + m2/k2 is the expected value of e(Vi) if V1, ...,Vk is a random

k-partition. Bollobás and Scott ask in [12] whether it is possible to replace O(m4/5
2

) in

Theorem 2.3.5 with O(
√

m1 + m2). This is still open.
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CHAPTER III

BOUNDS FOR PAIRS IN PARTITIONS OF GRAPHS

In this chapter we study Problem 1.3.5, Conjecture 1.3.7 and Conjecture 1.3.9. Recall

f (k,m) in Problem 1.3.5.

In Section 3.1, we show that f (k,m) < 1.6m/k+o(m), and that f (k,m) < 1.5m/k+o(m)

for k ≥ 23. In Section 3.2, we prove f (k,m) ≤ 4m/k2 + o(m) for dense graphs, which

confirms Conjecture 1.3.7 for such graphs, and we establish Conjecture 1.3.9 for graphs

with Ω(k12(ln k)3) edges.

In Section 3.3, we show f (4,m) ≤ m/3 + o(m) and f (5,m) ≤ 4m/15 + o(m), which

imply Conjecture 1.3.7 for k = 4 and k = 5. In Section 3.4, we study the problem raised by

Bollobás and Scott [12] that for any graph G with m edges, whether it is possible to find a

k-partition V1, . . . ,Vk of V(G) such that

e(Vi) ≤ m
k2
+

k − 1

2k2
(
√

2m + 1/4 − 1/2)

for 1 ≤ i ≤ k, and

e(Vi ∪ Vj) ≤ 12m
(k + 1)(k + 2)

+ O(n)

for 1 ≤ i < j ≤ k. We show that for k = 3 and k = 4 one can find a partition satisfying these

bounds asymptotically.

3.1 A general bound

In this section, we prove a bound on f (k,m) in Problem 1.3.5. We need a simple lemma

which will also be used in Section 3.3 for finding probabilities when dealing with 4-

partitions.
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Lemma 3.1.1. Let a j ≥ 0 for j ∈ {1, 2, 3, 4} such that α :=
∑4

j=1 aj > 0, and let fi j(xi, x j) =

(ai + aj)(xi + x j) for 1 ≤ i � j ≤ 4. Then there exist pi ∈ [0, 1/2], 1 ≤ i ≤ 4, such that
∑4

i=1 pi = 1 and, for 1 ≤ i � j ≤ 4, fi j(pi, pj) ≤ α/3.

Proof. First, assume ai ≤ α/2 for all 1 ≤ i ≤ 4. Then pi := 1/2 − ai/α ∈ [0, 1
2
], and

fi j(pi, pj) = (ai + aj)
(
1 − ai + aj

α

)
= −1

α

(
ai + aj − α

2

)2
+
α

4
≤ α

4
.

So we may assume without loss of generality that a4 > α/2. Then ai + aj ≤ α/2
for all 1 ≤ i � j ≤ 3. Let p1 = p2 = p3 = 1/3 and p4 = 0. Then for 1 ≤ i ≤ 3,

fi4 = (ai + a4)/3 ≤ α/3; and for 1 ≤ i � j ≤ 3, fi j = (ai + aj)(2/3) ≤ (α/2)(2/3) = α/3.

Remark. From the above proof, we see that among the pi satisfying the assertion of

Lemma 3.1.1, we may choose pi = 0 when ai > α/2, and pi ≤ max{1/2 − ai/α, 1/3} when

ai ≤ α/2.

We need another lemma.

Lemma 3.1.2. Let h4 = 1/3. There exist tk, hk for k ≥ 5 such that

hk =
2 − 2tk

k − 2tk
, and

2 − 2tk

k − 2tk
=

k − 3

k
hk−1 +

(
hk−1

k
+

4

k(k − 1)

)
2tk.

Moreover, hk < 1.6/k, and hk < 1.5/k for k ≥ 23.

Proof. We first show that there exist tk ∈ (0, 1/2) and hk ∈ (1/(k − 1), 2/k), k ≥ 5, such that

hk =
2 − 2tk

k − 2tk
, and

2 − 2tk

k − 2tk
=

k − 3

k
hk−1 +

(
hk−1

k
+

4

k(k − 1)

)
2tk.

Suppose k ≥ 5. Let

fk(t) =
2 − 2t
k − 2t

and

gk(t) =
k − 3

k
hk−1 +

(
hk−1

k
+

4

k(k − 1)

)
2t.
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It is easy to see that fk(t) is decreasing, and gk(t) is increasing. Now assume that 1
k−2
≤

hk−1 <
2

k−1
for some k ≥ 5. Note that

gk(0) =
k − 3

k
hk−1 <

k − 3

k
2

k − 1
<

2

k
= fk(0),

and

gk(1/2) =
k − 2

k
hk−1 +

4

k(k − 1)
≥ 1

k
+

4

k(k − 1)
>

1

k − 1
= fk(1/2).

Therefore, since fk(t) is decreasing and gk(t) is increasing and because both are continuous

over [0, 1/2], there exists tk ∈ (0, 1/2), for each k ≥ 5, such that fk(tk) = gk(tk). Let

hk := fk(tk) =
2−2tk
k−2tk

. Then since tk ∈ (0, 1/2), 1/(k − 1) < hk < 2/k for k ≥ 5.

Next, we show that hk < 1.6/k, and hk < 1.5/k for k ≥ 23. Let hk = ck/k, and it suffices

to show ck < 1.6, and ck < 1.5 = 3/2 for k ≥ 23. Since hk ∈ (1/(k − 1), 2/k), ck ∈ (1, 2).

Note that

ck =
2 − 2tk

k − 2tk
k = (k − 3)hk−1 +

(
hk−1 +

4

k − 1

)
2tk =

k − 3

k − 1
ck−1 +

4 + ck−1

k − 1
2tk.

From ck =
2−2tk
k−2tk

k we deduce tk =
2k−kck
2k−2ck

; and so

ck =
k − 3

k − 1
ck−1 +

(4 + ck−1)(2k − kck)

(k − 1)(k − ck)
.

With h4 = 1/3 (and hence c4 = 4/3) and using MATLAB, we have ck < 1.6 for k =

5, . . . , 22, and c23 ≈ 1.4962 < 3/2. Now assume k ≥ 24 and ck−1 < 3/2. Then

ck <
k − 3

k − 1
× 3

2
+

(4 + 3/2)(2k − kck)

(k − 1)(k − ck)
,

and so

2(k − 1)ck < 3(k − 3) + 11(2 − ck) + 11(2 − ck)ck/(k − ck).

Hence, since ck ∈ (1, 2),

(2k + 9)ck < 3k + 13 +
11(2 − ck)ck

k − ck
= 3k + 13 +

11(1 − (1 − ck)
2)

k − ck
< 3k + 13 + 11/(k − 2).

Therefore,

ck <
3k + 13

2k + 9
+

11

(2k + 9)(k − 2)
≤ 3/2.
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The last inequality holds since we assume k ≥ 24.

We can now prove the main lemma of this section for k-partitions.

Lemma 3.1.3. Let k ≥ 4 be an integer, let a j ≥ 0 for j ∈ {1, . . . , k} such that α :=
∑k

j=1 aj >

0, and let fi j(xi, x j) = (ai + aj)(xi + x j) for 1 ≤ i � j ≤ k. Then there exist pi ∈ [0, 2/k],

1 ≤ i ≤ k, such that
∑k

i=1 pi = 1 and, for 1 ≤ i � j ≤ k, fi j(pi, pj) ≤ hkα, where hk < 1.6/k,

and hk < 1.5/k for k ≥ 23.

Proof. We apply induction on k; the case k = 4 follows from Lemma 3.1.1 (as h4 = 1/3).

Suppose k ≥ 5. By Lemma 3.1.2 and since h4 = 1/3, there exist tk ∈ (0, 1/2), hk ∈
(1/(k − 1), 2/k) for k ≥ 5 such that

hk =
2 − 2tk

k − 2tk
=

k − 3

k
hk−1 +

(
hk−1

k
+

4

k(k − 1)

)
2tk,

hk < 1.6/k, and hk < 1.5/k for k ≥ 23.

First, assume that there exists some l ∈ {1, . . . , k} such that al ≥ tkα, say l = k. Let

pi = x (x will be determined later) for 1 ≤ i < k, with 0 ≤ x ≤ 1
k−1

, and let pk = 1− (k−1)x.

Then
∑k

i=1 pi = 1; for 1 ≤ i ≤ k − 1,

fik(pi, pk) ≤ (1 − (k − 2)x)α;

and for 1 ≤ i � j ≤ k − 1,

fi j(pi, pj) ≤ 2x(ai + aj) ≤ 2x(α − ak) ≤ (1 − tk)2xα.

We wish to minimize max{1 − (k − 2)x, (1 − tk)2x}. Setting 1 − (k − 2)x = (1 − tk)2x, we

have

x =
1

k − 2tk

and, for 1 ≤ i � j ≤ k,

fi j(pi, pj) ≤ 2 − 2tk

k − 2tk
α.

We point out that since tk ∈ (0, 1/2), indeed x ∈ (0, 1/(k−1)] and so x is well-defined. Note

that pi ∈ [0, 2/k] for 1 ≤ i ≤ k.
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Second, let us assume that ai ≤ tkα for all 1 ≤ i ≤ k. By the induction hypothesis, for

any l ∈ {1, . . . , k} there exist pl
i ∈ [0, 2/(k−1)], i ∈ {1, . . . , k}\{l}, such that

∑
i∈{1,...,k}\{l} pl

i = 1

and for any {i, j} ⊆ {1, . . . , k} \ {l},

(ai + aj)(pl
i + pl

j) ≤ hk−1(α − al).

For 1 ≤ i ≤ k, let

pi =
1

k

∑
l∈{1,...,k}\{i}

pl
i.

Since pl
i ≤ 2/(k − 1) for i ∈ {1, . . . , k} \ {l}, we have pi ∈ [0, 2/k] for 1 ≤ i ≤ k. Also,

k∑
i=1

pi =
1

k

k∑
i=1

∑
l∈{1,...,k}\{i}

pl
i =

1

k

k∑
l=1

∑
i∈{1,...,k}\{l}

pl
i =

1

k

k∑
l=1

1 = 1.

Moreover, for 1 ≤ i � j ≤ k,

fi j(pi, pj) = (ai + aj)(pi + pj)

=
1

k
(ai + aj)

⎛⎜⎜⎜⎜⎜⎜⎝
∑

l∈{1,...,k}\{i}
pl

i +
∑

l∈{1,...,k}\{ j}
pl

j

⎞⎟⎟⎟⎟⎟⎟⎠

=
1

k

⎛⎜⎜⎜⎜⎜⎜⎝
∑

l∈{1,...,k}\{i, j}
(ai + aj)(pl

i + pl
j)

⎞⎟⎟⎟⎟⎟⎟⎠ + 1

k
(ai + aj)(pj

i + pi
j)

≤ hk−1

k

∑
l∈{1,...,k}\{i, j}

(α − al) +
1

k
(ai + aj)(pj

i + pi
j)

≤ hk−1

k

(
(k − 3)α + ai + aj

)
+

4

k(k − 1)
(ai + aj)

≤
(
k − 3

k
hk−1 +

(
hk−1

k
+

4

k(k − 1)

)
2tk

)
α.

Note that

hk =
2 − 2tk

k − 2tk
=

k − 3

k
hk−1 +

(
hk−1

k
+

4

k(k − 1)

)
2tk,

hk < 1.6/k, and hk < 1.5/k for k ≥ 23. This completes the proof of the lemma.

Theorem 3.1.4. Let k ≥ 4 be an integer. Then f (k,m) ≤ hkm + O(m4/5), where hk < 1.6/k,

and hk < 1.5/k for k ≥ 23.
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Proof. Let G be a graph with m edges, and we may assume that G is connected (as otherwise

we simply consider individual components). Let V(G) = {v1, . . . , vn} such that d(v1) ≥
d(v2) ≥ . . . ≥ d(vn). Let V1 = {v1, . . . , vt} with t = mα�, where 0 < α < 1/2 and will be

optimized later. Then t < n since m < n2/2. Moreover,

e(V1) < t2/2 ≤ 1

2
m2α and d(vt+1) < 2m1−α,

since (t + 1)d(vt+1) ≤ ∑t+1
i=1 d(vi) ≤ 2m.

Label the vertices in V2 := V(G)\V1 as u1, . . . , un−t such that e(ui,V1∪{u1, . . . , ui−1}) > 0

for i = 1, . . . , n − t. Note that this can be done since G is connected.

Fix an arbitrary k-partition V1 =
⋃k

i=1 Yi, and assign each member of Yi the color i,

1 ≤ i ≤ k. Extend this coloring to V(G) such that each vertex ui ∈ V2 is independently

assigned the color j with probability pi
j, where

∑k
j=1 pi

j = 1 and pi
j will be determined later.

Let Zi denote the indicator random variable of the event of coloring ui. Hence Zi = j iff ui

is assigned the color j.

Let Gi = G[V1 ∪ {u1, · · · , ui}] for i = 1, . . . , n − t, and let G0 = G[V1]. Let X0
j = Yj for

1 ≤ j ≤ k, and x0
jl = e(X0

j ∪ X0
l ) for 1 ≤ j � l ≤ k. For i = 1, . . . , n − t and 1 ≤ j, l ≤ k,

define

Xi
j := {vertices of Gi with color j},

xi
jl := e(Xi

j ∪ Xi
l),

Δxi
jl := xi

jl − xi−1
jl ,

bi
j := e(ui, Xi−1

j ).

Note that bi
j depends on (Z1, . . . , Zi−1) only. Hence for 1 ≤ i ≤ n − t and 1 ≤ j � l ≤ k,

E(Δxi
jl| Z1, . . . , Zi−1) = (bi

j + bi
l)(pi

j + pi
l),

and so

E(Δxi
jl) = (ai

j + ai
l)(pi

j + pi
l),
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where

ai
j =

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)bi
j.

Since bi
j is determined by (Z1, . . . , Zi−1), ai

j is determined by ps
j, 1 ≤ j ≤ k and 1 ≤ s ≤

i − 1. Note that
k∑

j=1

bi
j = e(ui,Gi−1) > 0, and that e(ui,Gi−1) is independent of Z1, . . . , Zn−t.

Moreover,

k∑
j=1

ai
j =

k∑
j=1

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)bi
j

=
∑

(Z1,...,Zi−1)

⎛⎜⎜⎜⎜⎜⎜⎝P(Z1, . . . , Zi−1)

k∑
j=1

bi
j

⎞⎟⎟⎟⎟⎟⎟⎠
=
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)e(ui,Gi−1)

= e(ui,Gi−1)

> 0.

So by Lemma 3.1.3, there exist pi
j ∈ [0, 1], 1 ≤ j ≤ k, such that

∑k
j=1 pi

j = 1 and, for

1 ≤ i ≤ n − t and 1 ≤ j � l ≤ k,

E(Δxi
jl) ≤ hk

k∑
j=1

ai
j = hke(ui,Gi−1),

where hk < 1.6/k, and hk < 1.5/k for k ≥ 23.

Note that pi
j is determined by ai

j, 1 ≤ i ≤ k; and hence pi
j is recursively determined by

ps
j, 1 ≤ j ≤ k and 1 ≤ s ≤ i − 1. Also note that m = e(G0) +

∑n−t
i=1 e(ui,Gi−1). Now

E(xn−t
jl ) =

n−t∑
i=1

E(Δxi
jl) + E(x0

jl)

≤ hk

n−t∑
i=1

e(ui,Gi−1) + x0
jl

≤ hkm + e(V1)

≤ hkm +
1

2
m2α.

Clearly, changing the color of ui (i.e., changing Zi) affects x jl := xn−t
jl by at most d(ui). So
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by Lemma 1.4.1,

P

(
x jl > E(x jl) + z

)
≤ exp

(
− z2

2
∑n−t

i=1 d(ui)2

)

≤ exp

(
− z2

2
∑n−t

i=1 d(ui)d(vt+1)

)

< exp

(
− z2

4m2m1−α

)

≤ exp

(
− z2

8m2−α

)
.

Let z = (8 ln(k(k − 1)/2))
1
2 m1− α2 . Then for 1 ≤ j � l ≤ k,

P

(
x jl > E(x jl) + z

)
< exp(− ln(k(k − 1)/2)) =

2

k(k − 1)
.

So there exists a partition V(G) =
⋃k

i=1 Xi such that for 1 ≤ j � l ≤ k,

e(Xj ∪ Xl) ≤ E(x jl) + z ≤ hkm +
1

2
m2α + z ≤ hkm + o(m),

where the o(m) term in the expression is

1

2
m2α + (8 ln(k(k − 1)/2))

1
2 m1− α2 .

Choosing α = 2
5

to minimize max{2α, 1 − α/2}, the o(m) term becomes O(m
4
5 ).

3.2 Dense graphs

We now prove Conjecture 1.3.7 for graphs with large minimum degree. The approach is

similar to that for proving Theorem 3.1.4, but simpler because the large minimum degree

condition helps to bound e(V1,V2). Note that the term 4m/k2 in the theorem below is best

possible (by simply taking a random k-partition). The following result implies Theorem

1.3.8.

Theorem 3.2.1. Let k ≥ 2 be an integer and let ε > 0. If G is a graph with m edges and

δ(G) ≥ εn, then there is a k-partition V1, . . . ,Vk of V(G) such that for 1 ≤ i � j ≤ k,

e(Vi ∪ Vj) ≤ 4

k2
m +

⎛⎜⎜⎜⎜⎜⎝√2/ε +

√
8 ln

k(k − 1)

2

⎞⎟⎟⎟⎟⎟⎠m5/6.
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Proof. We may assume that G is connected (otherwise it suffices to consider individual

components). Let V(G) = {v1, ..., vn} such that d(v1) ≥ d(v2) ≥ ... ≥ d(vn). Let V1 =

{v1, ..., vt} with t = mα�, where 0 < α < 1/2. Then

t < n − 1, e(V1) < m2α/2, and d(vt+1) ≤ 2m1−α.

Let V2 = V(G)\V1 = {u1, ..., un−t} such that e(ui,V1 ∪ {u1, ..., ui−1}) > 0 for i = 1, ..., n − t.

Now assume δ(G) ≥ εn. Then 2m =
∑

v∈V(G) d(v) ≥ εn2. So n ≤ √2m/ε. Thus,

e(V1,V2) + 2e(V1) =

t∑
i=1

d(vi) < tn ≤ mα
√

2m/ε =
√

2/εm1/2+α.

Fix an arbitrary partition V1 = Y1 ∪ Y2 ∪ ... ∪ Yk and, for each i ∈ {1, ..., k}, assign the

color i to all vertices in Yi. We extend this coloring to V(G) by independently assigning the

color j (for each j ∈ {1, ..., k}) to each vertex ui ∈ V2 with probability 1/k. Let Zi denote the

indicator random variable of the event of coloring ui.

Let Xi be the set of vertices of G with color i. Then Yi ⊆ Xi for 1 ≤ i ≤ k; and for

1 ≤ i � j ≤ k,

E(e(Xi ∪ Xj)) = E(e((Xi ∪ Xj) ∩ V2)) + E(e((Xi ∪ Xj) ∩ V2,Yi ∪ Yj)) + e(Yi ∪ Yj)

≤ (2/k)2e(V2) + e(V1,V2) + e(V1)

≤ 4

k2
m +
√

2/εm1/2+α.

Clearly, changing the color of ui (i.e., changing Zi) affects e(Xi ∪ Xj) by at most d(ui).

Then as in the proof of Theorem 3.1.4, we apply Lemma 1.4.1 to conclude that for any

1 ≤ i � j ≤ k,

P

(
e(Xi ∪ Xj) > E(e(Xi ∪ Xj)) + z

)
≤ exp

(
− z2

2
∑n−t

i=1 d(ui)2

)
< exp

(
− z2

8m2−α

)
.

Let z =
√

8 ln(k(k − 1)/2)m1−α/2. Then for 1 ≤ i � j ≤ k,

P

(
e(Xi ∪ Xj) > E(e(Xi ∪ Xj)) + z

)
< exp

(
− ln

k(k − 1)

2

)
=

2

k(k − 1)
.
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So there exists a partition V(G) = X1 ∪ X2 ∪ ... ∪ Xk such that, for 1 ≤ i � j ≤ k,

e(Xi ∪ Xj) ≤ 4

k2
m +
√

2/εm1/2+α + z

≤ 4

k2
m +
√

2/εm1/2+α +
√

8 ln(k(k − 1)/2)m1−α/2

Picking α = 1/3 to minimize max{1/2 + α, 1 − α/2}, we have the desired bound.

As a corollary, Conjecture 1.3.9 holds for graphs with Ω(k12(ln k)3) edges. Hence Con-

jecture 1.3.7 holds for all graphs G with δ(G) ≥ εn, for any fixed k ≥ 2 and ε > 0.

3.3 Bounds for 4-partitions and 5-partitions

In this section, we prove Conjecture 1.3.7 for 4-partitions and 5-partitions. For 4-partitions,

we use Lemma 3.1.1. For 5-partitions, we need the following lemma.

Lemma 3.3.1. Let a j ≥ 0 for j ∈ {1, . . . , 5} such that α :=
∑5

j=1 aj > 0, and let fi j(xi, x j) =

(ai + aj)(xi + x j) for 1 ≤ i � j ≤ 5. Then there exist pi ∈ [0, 2/5], 1 ≤ i ≤ 5, such that
∑5

i=1 pi = 1 and, for 1 ≤ i � j ≤ 5, fi j(pi, pj) ≤ 4α/15.

Proof. If there exists some l ∈ {1, . . . , 5} such that al ≥ 5α/11, then ai + aj ≤ 6α/11 for

{i, j} ⊆ {1, . . . , 5} \ {l}. Let pl = 1/45 and let pi = 11/45 for i ∈ {1, . . . , 5} \ {l}. Then for

i ∈ {1, . . . , 5} \ {l},

fil(pi, pl) = (ai + al)(pi + pl) ≤ α
(
11

45
+

1

45

)
=

4

15
α;

and for {i, j} ⊆ {1, . . . , 5} \ {l},

fi j = (ai + aj)(pi + pj) ≤ 6α

11

(
11

45
+

11

45

)
=

4

15
α.

Therefore, we may assume that ai < 5α/11 for all 1 ≤ i ≤ 5. By Lemma 3.1.1, for any

1 ≤ l ≤ 5 there exist pl
i ∈ [0, 1/2], i ∈ {1, . . . , 5} \ {l}, such that

∑
i∈{1,...,5}\{l} pl

i = 1 and, for

{i, j} ⊆ {1, . . . , 5} \ {l},
(ai + aj)(pl

i + pl
j) ≤

1

3
(α − al).
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Indeed, by the remark following Lemma 3.1.1, we may choose pl
i, i ∈ {1, . . . , 5} \ {l}, such

that pl
i = 0 when ai > (α−al)/2, and pl

i ≤ max{1/2−ai/(α−al), 1/3} when ai ≤ (α−al)/2.

For 1 ≤ i ≤ 5, let pi =
1
5

∑
l∈{1,...,5}\{i} pl

i. Then pi ∈ [0, 2/5], and

5∑
i=1

pi =
1

5

5∑
i=1

∑
l∈{1,...,5}\{i}

pl
i =

1

5

5∑
l=1

∑
i∈{1,...,5}\{l}

pl
i =

1

5

5∑
l=1

1 = 1.

So for 1 ≤ i � j ≤ 5,

fi j(pi, pj) = (ai + aj)(pi + pj)

=
1

5
(ai + aj)

⎛⎜⎜⎜⎜⎜⎜⎝
∑

l∈{1,...,5}\{i}
pl

i +
∑

l∈{1,...,5}\{ j}
pl

j

⎞⎟⎟⎟⎟⎟⎟⎠

=
1

5

⎛⎜⎜⎜⎜⎜⎜⎝
∑

l∈{1,...,5}\{i, j}
(ai + aj)(pl

i + pl
j)

⎞⎟⎟⎟⎟⎟⎟⎠ + 1

5
(ai + aj)(pj

i + pi
j)

≤ 1

15

⎛⎜⎜⎜⎜⎜⎜⎝
∑

l∈{1,...,5}\{i, j}
(α − al)

⎞⎟⎟⎟⎟⎟⎟⎠ + 1

5
(ai + aj)(pj

i + pi
j)

=
1

15
(2α + ai + aj) +

1

5
(ai + aj)(pj

i + pi
j)

=
2

15
α + (ai + aj)

(
1

15
+

1

5
(pj

i + pi
j)

)
.

We need to show that fi j(pi, pj) ≤ 4
15
α for 1 ≤ i � j ≤ 5.

If ai > (α − aj)/2 and aj > (α − ai)/2, then pj
i = pi

j = 0, and hence

fi j(pi, pj) ≤ 3

15
α <

4

15
α.

Now assume ai > (α − aj)/2 and aj ≤ (α − ai)/2. Then pj
i = 0 and pi

j ≤ max{1/2 −
aj/(α − ai), 1/3}. Suppose 1/2 − aj/(α − ai) > 1/3. Then aj < (α − ai)/6; and hence, since

ai > (α − aj)/2, we have ai > (α − α/6 + ai/6)/2. Solving this inequality for ai, we have

ai > 5α/11 which contradicts our assumption. Therefore, 1/2 − aj/(α − ai) ≤ 1/3, and so

pi
j ≤ 1/3. Hence

fi j(pi, pj) ≤ 2

15
α + (ai + aj)

(
1

15
+

1

5

1

3

)
≤ 4

15
α.

By symmetry, if aj > (α − ai)/2 and ai ≤ (α − aj)/2, then fi j(pi, pj) ≤ 4
15
α.
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So we are left with the case when ai ≤ (α − aj)/2 and aj ≤ (α − ai)/2. Then ai + aj ≤
α − (ai + aj)/2, and so ai + aj ≤ 2α/3. Moreover, pj

i ≤ max{1/2 − ai/(α − aj), 1/3} and

pi
j ≤ max{1/2 − aj/(α − ai), 1/3}.

If 1/2−ai/(α−aj) > 1/3 and 1/2−aj/(α−ai) > 1/3, then 6ai+aj < α and 6aj+ai < α.

Hence ai + aj < 2α/7, and so (since pj
i ≤ 1/2 and pi

j ≤ 1/2),

fi j(pi, pj) ≤ 2

15
α + (ai + aj)

(
1

15
+

1

5

(
1

2
+

1

2

))
<

2

15
α +

2

7

4

15
α <

4

15
α.

If 1/2 − ai/(α − aj) > 1/3 and 1/2 − aj/(α − ai) ≤ 1/3, then 6ai + aj ≤ α and pi
j ≤ 1/3.

Since aj ≤ (α− ai)/2, ai + 2aj ≤ α. So 11(ai + aj) = 6ai + aj + 5(ai + 2aj) ≤ 6α, and hence

ai + aj ≤ 6α/11. Then

fi j(pi, pj) ≤ 2

15
α + (ai + aj)

(
1

15
+

1

5

(
1

2
+

1

3

))
≤ 2

15
α +

6

11

7

30
α <

4

15
α.

The case when 1/2 − ai/(α − aj) ≤ 1/3 and 1/2 − aj/(α − ai) > 1/3 is symmetric.

Therefore, we may assume that 1/2 − ai/(α − aj) ≤ 1/3 and 1/2 − aj/(α − ai) ≤ 1/3.

Then pj
i ≤ 1/3 and pi

j ≤ 1/3. Recall that ai + aj ≤ 2α/3. Hence

fi j(pi, pj) ≤ 2

15
α + (ai + aj)

(
1

15
+

1

5

(
1

3
+

1

3

))
≤ 2

15
α +

2

3

1

5
α =

4

15
α.

Using the same proof of Theorem 3.1.4, with Lemma 3.1.1 and Lemma 3.3.1 in place

of Lemma 3.1.3, we have the following results on 4-partitions and 5-partitions.

Theorem 3.3.2. f (4,m) ≤ m/3 + O(m4/5).

Theorem 3.3.3. f (5,m) ≤ 4m/15 + O(m4/5).

Recall that the graphs K1,n give f (4,m) ≥ m/3 and f (5,m) ≥ m/4. When k = 4,

12/((k + 2)(k + 1)) = 3/5 > 1/3. So as a consequence of Theorem 3.3.2, Conjecture 1.3.7

holds for k = 4 asymptotically. When k = 5, 12m/((k + 2)(k + 1)) = 2/7 > 4/15. Hence,

Theorem 3.3.3 establishes Conjecture 1.3.7 for k = 5 asymptotically.
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3.4 Simultaneous bounds for 3-partitions and 4-partitions

In this section, we study the following problem suggested by Bollobás and Scott [12].

Problem 3.4.1. For any integer k ≥ 2 and for any graph G with m edges and n vertices, is

it possible to find a k-partition V1, . . . ,Vk of V(G) such that for 1 ≤ i ≤ k,

e(Vi) ≤ m
k2
+

k − 1

2k2

⎛⎜⎜⎜⎜⎜⎝
√

2m +
1

4
− 1

2

⎞⎟⎟⎟⎟⎟⎠ ,
and for 1 ≤ i < j ≤ k,

e(Vi ∪ Vj) ≤ 12m
(k + 1)(k + 2)

+ O(n)?

Recall that Bollobás and Scott [10] showed the existence of a k-partition satisfying the

above bound on e(Vi), and Kkn+1 are the only extremal graphs. Also recall that the bound

on e(Vi ∪ Vj) is best possible for Kk+2.

We show that for k = 3 and k = 4, one can find partitions that satisfy these bounds

asymptotically. For large k, a similar approach as in the proofs of Lemma 3.1.3 and Theo-

rem 3.1.4 may be used to give some bounds.

Note that in the proofs to follow, we will use the fact that the maximum of x(a − x),

a > 0, is a2/4.

Lemma 3.4.2. Let a j ≥ 0 for j = 1, 2, 3 such that α := a1 + a2 + a3 > 0, let fi j(xi, x j) =

(ai + aj)(xi + x j) for 1 ≤ i � j ≤ 3, and let gi(xi) = aixi for 1 ≤ i ≤ 3. Then there exist

pi ∈ [0, 2/3], 1 ≤ i ≤ 3, such that
∑3

i=1 pi = 1, fi j(pi, pj) ≤ 5α/9 for 1 ≤ i � j ≤ 3, and

gi(pi) ≤ α/9 for 1 ≤ i ≤ 3.

Proof. First, assume that ai < 2α/3 for all i = 1, 2, 3. Let pi = 2/3 − ai/α. Then pi ∈
[0, 2/3], i = 1, 2, 3, and p1 + p2 + p3 = 1. Moreover, for 1 ≤ i � j ≤ 3,

fi j(pi, pj) =
ai + aj

α

(
4

3
− ai + aj

α

)
α ≤ 4

9
α <

5

9
α

and, for i = 1, 2, 3,

gi(pi) =
ai

α

(
2

3
− ai

α

)
α ≤ 1

9
α.
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Next assume that some ai > 5α/6, say a3 > 5α/6. So a1 + a2 ≤ α/6. We choose

p1 = p2 = 4/9 and p3 = 1/9. Then f12(p1, p2) < α/6 < 5α/9; fi3(pi, p3) ≤ 5α/9 for

i = 1, 2; g3(p3) ≤ α/9; and gi(pi) ≤ (α/6)(4/9) = 2α/27 < α/9 for i = 1, 2.

Therefore, we may assume that there exists some ai, say a3, such that 2α/3 ≤ a3 ≤
5α/6. Then α/6 ≤ a1 + a2 ≤ α/3. Let p3 = 0 and pi = 2/3 − ai/(3(a1 + a2)) for i = 1, 2.

Then pi ∈ [0, 2/3] and p1 + p2 + p3 = 1.

Clearly, g3(p3) = 0 and, for i = 1, 2,

gi(pi) =
ai

3(a1 + a2)

(
2

3
− ai

3(a1 + a2)

)
3(a1 + a2) ≤ 3

9
(a1 + a2) ≤ 1

9
α.

Note that f12(p1, p2) = a1 + a2 ≤ α/3 < 5α/9. So it remains to show that f13(p1, p3) ≤
5α/9 and f23(p2, p3) ≤ 5α/9. By symmetry we only need to prove f13(p1, p3) ≤ 5α/9.

Note that f13(p1, p3) = (a1+a3)(2/3−a1/(3(α−a3))), which may be viewed as a function

of a1, a3 (while fixing α). We look for the maximal value of h(a1, a3) := f13(p1, p3) subject

to 2α/3 ≤ a1 + a3 ≤ α and 2α/3 ≤ a3 ≤ 5α/6. Taking partial derivatives and setting them

to 0, we have

∂h
∂a1

=
2

3
− a1

3(α − a3)
− a1 + a3

3(α − a3)
= 0,

and

∂h
∂a3

=
2

3
− a1

3(α − a3)
− 1

3
a1

a1 + a3

(α − a3)2
= 0.

Then a1/(α−a3) = 1 (from ∂h
∂a1
= ∂h
∂a3

), and hence a3 = 0 (from ∂h
∂a1
= 0), a contradiction. So

the maximal value of h occurs on the boundary of the region defined by 2α/3 ≤ a1+a3 ≤ α
and 2α/3 ≤ a3 ≤ 5α/6.

When a1 + a3 = 2α/3, then a1 = 0 and a3 = 2α/3, and hence h = 4α/9. When

a1 + a3 = α then h = α/3. When a3 = 2α/3 then h = (a1 + 2α/3)(2/3 − a1/α) =

(2/3+ a1/α)(2/3− a1/α)α ≤ 4α/9. When a3 = 5α/6, then h ≤ (a1 + 5α/6)(2/3− 2a1/α) =

(5/6 + a1/α)(2/3 − 2a1/α)α ≤ 5α/9. Hence f13(p1, p3) ≤ 5α/9.

The next lemma is for 4-partitions.
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Lemma 3.4.3. Let a j ≥ 0 for j = 1, 2, 3, 4 such that α := a1 + a2 + a3 + a4 > 0, let

fi j(xi, x j) = (ai+aj)(xi+ x j) for 1 ≤ i � j ≤ 4, and let gi(xi) = aixi for 1 ≤ i ≤ 4. Then there

exist pi ∈ [0, 1/2], 1 ≤ i ≤ 4, such that
∑4

i=1 pi = 1, fi j(pi, pj) ≤ 2α/5 for 1 ≤ i � j ≤ 4,

and gi(pi) ≤ α/16 for 1 ≤ i ≤ 4.

Proof. First, suppose ai < α/2 for all 1 ≤ i ≤ 4. Let pi = 1/2 − ai/α. Then pi ∈ [0, 1/2] for

1 ≤ i ≤ 4, and
∑4

i=1 pi = 1. Moreover, for 1 ≤ i � j ≤ 4,

fi j(pi, pj) =
ai + aj

α

(
1 − ai + aj

α

)
α ≤ 1

4
α <

2

5
α,

and for 1 ≤ i ≤ 4,

gi(pi) =
ai

α

(
1

2
− ai

α

)
α ≤ 1

16
α.

Now assume that some ai > 4α/5, say a4 > 4α/5. Then a1 + a2 + a3 ≤ α/5. Let

p1 = p2 = p3 = 5/16 and p4 = 1/16. Then for i = 1, 2, 3,

fi4(pi, p4) ≤ 6α/16 < 2α/5;

for 1 ≤ i � j ≤ 3,

fi j(pi, pj) ≤ α/5 < 2α/5;

g4(p4) ≤ α/16; and for i = 1, 2, 3, gi(pi) ≤ (α/5)(5/16) = α/16.

So we may assume that there exists some ai, say a4, such that α/2 ≤ a4 ≤ 4α/5. Then

α/5 ≤ a1 + a2 + a3 ≤ α/2. Let p4 = 0 and pi = 1/2 − ai/(2(α − a4)) for i = 1, 2, 3. Then

pi ∈ [0, 1/2] and
∑4

i=1 pi = 1.

Clearly, g4(p4) = 0. Note that α − a4 ≤ α/2. So for i = 1, 2, 3

gi(pi) =
ai

2(α − a4)

(
1

2
− ai

2(α − a4)

)
2(α − a4) ≤ 1

16
α;

and for 1 ≤ i � j ≤ 3,

fi j(pi, pj) =
ai + aj

2(α − a4)

(
1 − ai + aj

2(α − a4)

)
2(α − a4) ≤ 1

4
α <

2

5
α.
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Thus it remains to prove fi4(pi, p4) ≤ 2α/5 for i = 1, 2, 3. By symmetry, we only prove

f14(p1, p4) ≤ 2α/5. Note that h(a1, a4) := f14(p1, p4) = (a1 + a4)(1/2 − a1/(2(α − a4))) may

be viewed as a function of a1, a4 (while fixing α), and we look for its maximal value subject

to α/2 ≤ a1 + a4 ≤ α and α/2 ≤ a4 ≤ 4α/5.

Taking partial derivatives and setting them to 0, we have

∂h
∂a1

=
1

2
− a1

2(α − a4)
− 1

2

a1 + a4

α − a4

= 0,

and

∂h
∂a4

=
1

2
− a1

2(α − a4)
− 1

2
a1

a1 + a4

(α − a4)2
= 0.

Then a1/(α− a4) = 1 (from ∂h
∂a1
= ∂h
∂a4

), and so a4 < 0 (from ∂h
∂a1
= 0), a contradiction. Thus,

the maximal value of h occurs when a1 + a4 ∈ {α/2, α} or a4 ∈ {α/2, 4α/5}.
When a1 + a4 = α/2, we have a1 = 0 and a4 = α/2, and hence h = α/4. When

a1 + a4 = α, then h = 0. When a4 = α/2 then h = α(1/2+ a1/α)(1/2− a1/α) ≤ α/4. When

a4 = 4α/5, then h = α(4/5 + a1/α)(1/2 − 5a1/(2α)) ≤ 2α/5. Hence f14(a1, a4) ≤ 2α/5.

Now we use Lemma 3.4.2 and (essentially) the same proof of Theorem 3.1.4 to prove

Theorem 3.4.4. Let G be a graph with m edges. Then there is a partition V1,V2,V3 of V(G)

such that for 1 ≤ i ≤ 3,

e(Vi) ≤ 1

9
m + O(m4/5),

and for 1 ≤ i � j ≤ 3,

e(Vi ∪ Vj) ≤ 5

9
m + O(m4/5).

Proof. We may assume that G is connected. Let V(G) = {v1, . . . , vn} such that d(v1) ≥
d(v2) ≥ . . . ≥ d(vn). Let V1 = {v1, . . . , vt} with t = mα�, where 0 < α < 1/2. Then

t < n− 1, e(V1) < 1
2
m2α, and d(vt+1) ≤ 2m1−α. Let V2 := V(G) \V1 = {u1, . . . , un−t} such that

e(ui,V1 ∪ {u1, . . . , ui−1}) > 0 for i = 1, . . . , n − t.

Fix an arbitrary 3-partition V1 = Y1 ∪ Y2 ∪ Y3, and assign each member of Yi the color

i, 1 ≤ i ≤ 3. Extend this coloring to V(G) such that each vertex ui ∈ V2 is independently
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assigned the color j with probability pi
j, where

∑3
j=1 pi

j = 1 and pi
j will be determined later.

Let Zi denote the indicator random variable of the event of coloring ui.

Let Gi = G[V1 ∪ {u1, · · · , ui}] for i = 1, . . . , n − t, and let G0 = G[V1]. Let X0
j = Yj and

x0
jl = e(X0

j ∪ X0
l ) for 1 ≤ j, l ≤ 3. For i = 1, . . . , n − t and 1 ≤ j, l ≤ 3, define

Xi
j := {vertices of Gi with color j},

xi
jl := e(Xi

j ∪ Xi
l),

Δxi
jl := xi

jl − xi−1
jl ,

bi
j := e(ui, Xi−1

j ).

When j = l, let xi
j := xi

jl and Δxi
j = Δxi

jl. Note that bi
j depends on (Z1, . . . , Zi−1) only

and
∑3

j=1 bi
j = e(ui,Gi−1) is independent of (Z1, . . . , Zi−1).

Let ai
j =
∑

(Z1,...,Zi−1) P(Z1, . . . , Zi−1)bi
j, which is determined by ps

j, 1 ≤ j ≤ 3 and 1 ≤ s ≤
i − 1. As in the proof of Theorem 3.1.4, for 1 ≤ i ≤ n − t and 1 ≤ j � l ≤ 3 we have

E(Δxi
jl) = (ai

j + ai
l)(pi

j + pi
l),

and for 1 ≤ i ≤ n − t we have

E(Δxi
j) = ai

j p
i
j.

By Lemma 3.4.2, there exist pi
j ∈ [0, 2/3], 1 ≤ j ≤ 3, such that

∑3
j=1 pi

j = 1, for

1 ≤ i ≤ n − t and 1 ≤ j � l ≤ 3,

E(Δxi
jl) ≤

5

9

3∑
j=1

ai
j =

5

9

3∑
j=1

bi
j =

5

9
e(ui,Gi−1),

and for 1 ≤ i ≤ n − t,

E(Δxi
j) ≤

1

9

3∑
j=1

ai
j =

1

9

3∑
j=1

bi
j =

1

9
e(ui,Gi−1).

Note that pi
j is determined by ai

j, 1 ≤ j ≤ 3; and hence pi
j is recursively defined by ps

j,

1 ≤ j ≤ 3 and 1 ≤ s ≤ i − 1. Now

E(xn−t
jl ) =

5

9

n−t∑
i=1

e(ui,Gi−1) + x0
jl ≤

5

9
m + e(V1),
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and

E(xn−t
j ) ≤ 1

9

n−t∑
i=1

e(ui,Gi−1) + x0
j ≤

1

9
m + e(V1).

Clearly, changing the color of ui (i.e., changing Zi) affects x jl := xn−t
jl and x j := xn−t

j by

at most d(ui). So by Lemma 1.4.1,

P

(
x jl > E(x jl) + z

)
< exp

(
− z2

8m2−α

)
,

and

P

(
x j > E(x j) + z

)
< exp

(
− z2

8m2−α

)
.

Let z = (8 ln 6)
1
2 m1− α2 . Then for 1 ≤ j � l ≤ 3,

P

(
x jl > E(x jl) + z

)
<

1

6
,

and for 1 ≤ j ≤ 3,

P

(
x j > E(x j) + z

)
<

1

6
.

So there exists a partition V(G) = X1 ∪ X2 ∪ X3 such that for 1 ≤ j � l ≤ 3,

e(Xj ∪ Xl) ≤ E(x jl) + z ≤ 5

9
m + o(m),

and for 1 ≤ j ≤ 3,

e(Xj) ≤ E(x j) + z ≤ 1

9
m + o(m).

The o(m) term in both expressions is

1

2
m2α + (8 ln 6)

1
2 m1− α2 .

Picking α = 2
5

to minimize max{2α, 1 − α/2}, the o(m) term becomes O(m
4
5 ).

By the same argument as in the proof of Theorem 3.4.4, using Lemma 3.4.3 instead of

Lemma 3.4.2, we have the following result.

Theorem 3.4.5. Let G be a graph with m edges. Then there is a partition V1,V2,V3,V4 of

V(G) such that for 1 ≤ i ≤ 4,

e(Vi) ≤ 1

16
m + O(m4/5),
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and for 1 ≤ i � j ≤ 4,

e(Vi ∪ Vj) ≤ 2

5
m + O(m4/5).
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CHAPTER IV

3-UNIFORM HYPERGRAPHS

4.1 The main result

Recall Conjecture 1.3.10 (Bollobás and Thomason, see [7, 9, 11, 12]) that any r-uniform

hypergraph with m edges has a r-partition V1, ...,Vr such that d(Vi) ≥ r
2r−1

m. For large

graphs, the bound r/(2r−1) may be improved. In this section, we prove the following result,

which implies Theorem 1.3.11; hence Conjecture 1.3.10 holds for r = 3 asymptotically.

Theorem 4.1.1. Every 3-uniform hypergraph with m edges has a partition into sets V1,V2,V3

such that for i = 1, 2, 3,

d(Vi) ≥ 0.65m − O(m6/7).

Bollobás and Scott [11,12] made a more general conjecture. For integers r, k ≥ 2, every

r-uniform hypergraph with m edges has a vertex-partition into k sets, each of which meets

at least (1 + o(1))(1 − (1 − 1/k)r)m edges. In particular, for r = k = 3, the bound in this

conjecture is 19/27m+o(m), where 19/27 ≈ 0.7037. Although our method can be modified

to make further improvement on the current bound of 0.65, it is unlikely to yield a bound

close to 19/27.

We organize this chapter as follows. In Section 4.2, we first state two lemmas, Lem-

mas 4.2.1 and 4.2.2, which assert that certain inequalities hold. We then use these two lem-

mas to prove Lemma 4.2.3 which, in turn, is used to prove Theorem 4.1.1. In Lemma 4.2.3,

we need to bound three quantities simultaneously. In Section 4.3, we prove two lemmas

that can be used to bound two quantities simultaneously. These lemmas will then be used

in Section 4.4 to prove Lemmas 4.2.1 and 4.2.2.

54



4.2 Proof of Theorem 4.1.1

We need two lemmas which provide inequalities needed for our proof of Theorem 4.1.1.

The meaning of the parameters in these lemmas will be clear from the proof of Lemma 4.2.3;

each is related to the number of edges of a certain type. The first lemma tries to bound three

quantities fi(pi), i = 1, 2, 3, which will be proved in Section 4.4. It says that, under certain

conditions, there exist pi such that either all three functions are bounded from above, or

can be made equal. We use R+ to denote the set of nonnegative reals.

Lemma 4.2.1. Let bi j, xi, ai, c ∈ R+, 1 ≤ i � j ≤ 3, such that bi j = bji, bi j ≥ max{2xi, 2x j},
and b12 + b23 + b31 + x1 + x2 + x3 + a1 + a2 + a3 + c = 1. For any permutation i jk of {1, 2, 3},
let

fi := (1 − pi)(bjk + x j + xk) + (1 − pi)
2(aj + ak) + (1 − pi)

3c.

Then there exists p1, p2, p3 ∈ [0, 1] with p1 + p2 + p3 = 1 such that

(i) fi ≤ 0.35 for i = 1, 2, 3, or

(ii) f1 = f2 = f3 and pi ∈ (0, 1) for i = 1, 2, 3.

The second lemma (when combined with Lemma 4.2.1) deals with the case c = 0 of

Lemma 4.2.3, and will be proved in Section 4.4.

Lemma 4.2.2. Let ai, xi, bi j ∈ R+, 1 ≤ i � j ≤ 3, such that bi j = bji, bi j ≥ max{2xi, 2x j}
and b12 + b23 + b31 + x1 + x2 + x3 + a1 + a2 + a3 = 1. For any permutation i jk of {1, 2, 3}, let

fk := (1 − pk)(bi j + xi + x j) + (1 − pk)
2(ai + aj)

Suppose there exist p1, p2, p3 ∈ (0, 1) such that p1 + p2 + p3 = 1 and f1 = f2 = f3. Then for

such p1, p2, p3, we have fk ≤ 0.35 for k = 1, 2, 3.

We can now prove the main lemma by using Lemma 4.2.1 and Lemma 4.2.2.
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Lemma 4.2.3. Let bi j, xi, ai, c ∈ R+, 1 ≤ i � j ≤ 3, such that bi j = bji, bi j ≥ max{2xi, 2x j}
and b12 + b23 + b31 + x1 + x2 + x3 + a1 + a2 + a3 + c = 1. Then there exist p1, p2, p3 ∈ [0, 1]

with p1 + p2 + p3 = 1 such that for any {i, j, k} = {1, 2, 3},

fi := (1 − pi)(bjk + x j + xk) + (1 − pi)
2(aj + ak) + (1 − pi)

3c ≤ 0.35.

Proof. By Lemma 4.2.1, we may assume that there exist p1, p2, p3 ∈ (0, 1) with p1 + p2 +

p3 = 1 such that f1 = f2 = f3. Let D be the set of points

(a1, a2, a3, x1, x2, x3, b12, b23, b31, c, p1, p2, p3) ∈ [0, 1]13

satisfying

bi j ≥ max{2xi, 2x j},
b12 + b23 + b31 + x1 + x2 + x3 + a1 + a2 + a3 + c = 1,

p1 + p2 + p3 = 1,

pi ∈ [0, 1] for i = 1, 2, 3, and

f1 = f2 = f3.

Note that D � ∅ and D is a compact subset of [0, 1]13. So f1(v) has an absolute

maximum over D . Let M denote all v ∈ D for which f1(v) is the maximum of f1 over D .

It suffices to show that there is some v ∈M such that fi(v) ≤ 0.35 for i = 1, 2, 3. Let

v := (a1, a2, a3, x1, x2, x3, b12, b23, b31, c, p1, p2, p3) ∈M .

We claim that v may be chosen so that c = 0. For, suppose c � 0. Define

v′ := (a1 + p1c, a2 + p2c, a3 + p3c, x1, x2, x3, b12, b23, b31, 0, p1, p2, p3).

It is easy to check that v′ ∈ D and fi(v′) = fi(v) for i = 1, 2, 3. Since v ∈ M , we have

v′ ∈M . Now it follows from Lemma 4.2.2 that for any i = 1, 2, 3, fi(v) = fi(v′) ≤ 0.35.

We also need the following lemma, which is easy to prove. Let G be a graph (multiple

edges allowed) and let w : E(G) → R+. Recall that for any S ⊆ V(G), we write w(S ) =
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∑
V(e)⊆S w(e); for any S ,T ⊆ V(G) with S ∩ T = ∅, we use (S ,T ) to denote the set of edges

st with s ∈ S and t ∈ T ; and we write w(S ,T ) =
∑

e∈(S ,T ) w(e).

Lemma 4.2.4. Let G be a graph and let w : E(G) → R+, and let V(G) = V1 ∪ . . . ∪ Vk be

a k-partition minimizing
∑k

i=1 w(Vi). Then for any 1 ≤ i � j ≤ k

w(Vi,Vj) ≥ max{2w(Vi), 2w(Vj)}.

Proof. For any v ∈ Vi and for any j ∈ {1, . . . , k} \ {i}, we have

∑
{uv∈E(G):u∈Vi−v}

w(uv) ≤
∑

{uv∈E(G):u∈V j}
w(uv).

Summing over v ∈ Vi, we get 2w(Vi) ≤ w(Vi,Vj).

Proof of Theorem 4.1.1. We may assume that G is connected; as otherwise, we may simply

consider the individual components. Hence every vertex of G has positive degree.

Let V(G) = {v1, . . . , vn} such that d(v1) ≥ d(v2) ≥ . . . ≥ d(vn). Let U1 := {v1, . . . , vt} and

U2 := V(G) \ U1, with t = mα� and 0 < α < 1/3. Since m ≤
(

n
3

)
and t < m1/3, we have

t ≤ n − 2 for n ≥ 3 (by a simple calculation). Moreover,

mαd(vt+1) ≤ (1 + t)d(vt+1) ≤
t+1∑
i=1

d(v) <
∑

v∈V(G)

d(v) = 3m;

so d(vt+1) < 3m1−α. Hence

n∑
i=t+1

d(vi)
2 < 3m1−α

n∑
i=1

d(vi) = 9m2−α.

For any partition U1 = X1 ∪ X2 ∪ X3 and for 1 ≤ i � j ≤ 3, define

xi = |{e ∈ E(G) : |V(e) ∩ Xi| = 2, |V(e) ∩ U2| = 1}|,
ai = |{e ∈ E(G) : |V(e) ∩ Xi| = 1, |V(e) ∩ U2| = 2}|,
bi j = |{e ∈ E(G) : |V(e) ∩ Xi| = |V(e) ∩ Xj| = |V(e) ∩ U2| = 1}|,
c = |{e ∈ E(G) : |V(e) ∩ U2| = 3}|.
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Then m = e(U1) + b12 + b23 + b13 + x1 + x2 + x3 + a1 + a2 + a3 + c.

By Lemma 4.2.4, we may choose the partition U1 = X1 ∪ X2 ∪ X3 such that for 1 ≤ i �

j ≤ 3,

bi j ≥ max{2xi, 2x j}.

For 1 ≤ i ≤ 3, assign color i to the vertices in Xi. We extend the coloring to U2 as follows:

each vertex in U2 is independently colored i with probability pi for 1 ≤ i ≤ 3, where

p1 + p2 + p3 = 1 and pi will be determined by an application of Lemma 4.2.3.

For i = 1, 2, 3, let Vi be the vertices with color i, and let

yi = |{e ∈ E(G) : V(e) ⊆ U1 and V(e) ∩ Xi � ∅}.

Then, for any permutation i jk of {1, 2, 3},

E(d(Vi)) = bi j +bik + xi +ai + pi(bjk + x j + xk)+ (1− (1− pi)
2)(aj +ak)+ (1− (1− pi)

3)c+ yi.

Thus

fi := m − E(d(Vi)) − e(U1) + yi = (1 − pi)(bjk + x j + xk) + (1 − pi)
2(aj + ak) + (1 − pi)

3c,

and

α := m − e(U1) = b12 + b23 + b31 + a1 + a2 + a3 + x1 + x2 + x3 + c.

By applying Lemma 4.2.3 (with bi j/α, ai/α, xi/α, c/α as bi j, ai, xi, c, respectively), there

exist pi ∈ [0, 1] with p1 + p2 + p3 = 1 such that for 1 ≤ i ≤ 3, fi/α ≤ 0.35. So

fi ≤ 0.35(m − e(U1)).

Hence

E(d(Vi)) = m − fi − e(U1) + yi ≥ 0.65m − 0.65e(U1) + yi.

Changing the color of any v j, t + 1 ≤ j ≤ n, affects d(Vi) by at most d(v j). So by

Lemma 1.4.1, we have for i = 1, 2, 3,

P(d(Vi) < E(d(Vi)) − z) ≤ exp

( −z2

2
∑n

j=t+1 d(v j)2

)
< exp

( −z2

18m2−α

)
.
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Taking z =
√

18 ln 3m1−α/2, we have for i = 1, 2, 3,

P(d(Vi) < E(d(Vi)) − z) < 1/3.

Therefore, there exists a partition V(G) = V1 ∪ V2 ∪ V3 such that for i = 1, 2, 3,

d(Vi) ≥ E(d(Vi)) − z ≥ 0.65m − 0.65e(U1) + yi − z ≥ 0.65m − 0.65e(U1) − z.

Since |U1| = t ≤ mα, e(U1) = O(m3α). So

0.65e(U1) + z = O(m3α) +
√

18 ln 2m1−α/2.

Choosing α = 2
7

to minimize max{3α, 1 − α/2}, we have the desired bound.

4.3 Bounding two quantities

In this section, we prove two lemmas to be used in our proofs of Lemmas 4.2.1 and 4.2.2.

The first is a slight variation of the main lemma in [9]. The difference is that here we relax

the constraint z ≥ max{2x, 2y} in [9] to z ≥ x + y; as a consequence we have a weaker

bound. Our proof mimics that in [9], where a more general result is proved.

Lemma 4.3.1. Let a, b, x, y, z, e ∈ R+ such that z ≥ x+ y and a+ b+ x+ y+ z+ e = 1. Then

there exists p ∈ (0, 1) such that

p2a + px + p3e ≤ 1/7, and (1 − p)2b + (1 − p)y + (1 − p)3e ≤ 1/7.

Proof. For convenience, let

f1 := p2a + px + p3e, and f2 := (1 − p)2b + (1 − p)y + (1 − p)3e.

Note that f1 and f2 are continuous functions of p on [0, 1]. We may assume that

(1) a + x + e > 0 and b + y + e > 0.

Otherwise, by symmetry, we may assume a + x + e = 0. Then a = x = e = 0 and

f1 = 0 < 1/7. Since f2 is a continuous function of p, there exist 0 < ε < 1 such that
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| f2(ε) − f2(1)| < 1/7. Thus, because f2(1) = 0, we have f2(ε) < 1/7. So letting p = ε, the

assertion of the lemma holds. Thus we may assume (1).

By (1), f1(1) = a + x + e > 0 and f2(0) = b + y + e > 0. Therefore, since f1(0) =

0 = f2(1) and because f1(p) (respectively, f2(p)) is increasing (respectively, decreasing)

and continuous on [0, 1], we have

(2) for any a, b, x, y, z, e satisfying (1), there exists a unique p ∈ (0, 1) such that f1 = f2.

We call v := (a, b, x, y, z, e, p) ∈ [0, 1]7 a satisfying point if a, b, x, y, z, e, p ∈ R+, a+ b+ x+

y+ z+ e = 1, z ≥ x+ y, p ∈ [0, 1], and f1 = f2. (In fact, p ∈ (0, 1) by (2).) Let D denote the

set of all satisfying points. Note D is a compact subset of [0, 1]7. A point in D is said to be

a maximal point if the value of f1 at that point is the maximum of f1 over D . Let M be the

set of maximal points, which is nonempty since D � ∅ (by (1) and (2)) and D is compact.

It then suffices to show that f1(v) ≤ 1/7 for any v ∈ M . We do so by looking for a

special maximal point. First, we show that

(3) there exists (a, b, x, y, z, e, p) ∈M such that e = 0, z = x + y, and ab = 0.

Let v := (a, b, x, y, z, e, p) ∈ M . If e > 0, then let v′ := (a + pe, b + (1 − p)e, x, y, z, 0, p).

It is easy to check that v′ ∈ D and fi(v′) = fi(v) for i = 1, 2. Hence v′ ∈M , since v ∈M

and f1(v′) = f1(v). So we may assume e = 0.

We may assume z = x + y. For, otherwise, assume z > x + y. Let v′ := (a + z −
−x − y, b, x, y, x + y, 0, p′) with p′ ∈ [0, 1], which satisfies (1). So by (2), we may choose

p′ ∈ (0, 1) so that f1(v′) = f2(v′); then v′ ∈ D . If p′ < p, then f2(v′) > f2(v), contradicting

the assumption that v ∈M . So p′ ≥ p. Then

f1(v′) − f1(v) ≥ p2(z − x − y) > 0, and

f2(v′) − f2(v) = b((1 − p′)2 − (1 − p)2) + y((1 − p′) − (1 − p))

= −(p′ − p)((2 − p − p′)b + y)

≤ 0.
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Hence f1(v′) > f1(v) = f2(v) ≥ f2(v′), a contradiction.

Now suppose a > 0 and b > 0. Let ε = min{pa, (1 − p)b}, and let

v′ = (a′, b′, x′, y′, z′, e′, p′) := (a − ε
p
, b − ε

1 − p
, x + ε, y + ε, z + 2ε, 0, p).

It is easy to see that e′ = 0, z′ = x′ + y′, a′b′ = 0, and fi(v′) = fi(v) for i = 1, 2 (and hence

f1(v′) = f2(v′)). Since a + b + x + y + z = 1,

a′ + b′ + x′ + y′ + z′ = 1 + 4ε −
(
ε

p
+
ε

1 − p

)
.

Since p(1 − p) ≤ 1/4 (with equality iff p = 1/2),

4ε ≤ ε
p
+
ε

1 − p

So we have a′ + b′ + x′ + y′ + z′ ≤ 1.

If a′ + b′ + x′ + y′ + z′ = 1 then p = 1/2 and v′ ∈ D . Since fi(v′) = fi(v), we have

v′ ∈M ; and hence (3) holds with v′. We may thus assume that a′ + b′ + x′ + y′ + z′ < 1.

Let

α =
ε

p
+
ε

1 − p
− 4ε,

and let

v′′ := (a′′, b′′, x′′, y′′, z′′, e′′, p′′) = (a′ + α, b′, x′, y′, z′, 0, p′′)

with p′′ ∈ [0, 1].

Note that e′′ = 0, z′′ = x′′ + y′′, a′′ + b′′ + x′′ + y′′ + z′′ = 1, and v′′ satisfies (1).

So by (2), we may choose p′′ ∈ (0, 1) such that f1(v′′) = f2(v′′), and hence v′′ ∈ D . If

p′′ ≥ p′ then f1(v′′) > f1(v′) = f1(v) (since a′′ > a′ and f1 increases with p). If p′′ < p′

then f2(v′′) > f2(v′) = f2(v) (since f2 decreases with p). In either case, we obtain a

contradiction to the assumption that v ∈M . Thus, (3) holds.

Let M ′ = {(a, b, x, y, z, e, p) ∈M : a = b = e = 0 and z = x + y}. We may assume that

(4) M ′ = ∅.
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For otherwise, let v = (0, 0, x, y, x + y, 0, p) ∈M ′. Then f1(v) = px, f2(v) = (1 − p)y, and

x + y = 1/2. Since f1(v) = f2(v), we have px = (1 − p)(1/2 − x). Hence, p = 1 − 2x, and

f1(v) = x(1 − 2x) = 1/8 − 2(1/4 − x)2 ≤ 1/8 < 1/7. So the assertion of the lemma holds;

and thus we may assume (4).

By (3) and (4), we may assume without losing generality that there exists v = (0, b, x, y, x+

y, 0, p) ∈M such that b � 0. Then b + 2(x + y) = 1, and hence x = (1 − b)/2 − y. So

f1(v) = xp = (1 − b)p/2 − yp, and f2(v) = y(1 − p) + b(1 − p)2.

Since v ∈M , f1(v) is the maximum value of f1 over D subject to g := f1 − f2 = 0, where

f1, f2, g are considered as functions of b, y, p.

Case 1. y � 0.

Then y ∈ (0, 1) and b ∈ (0, 1); so v is a critical point of f1 (as a function of b, y). Hence

v must satisfy ∂ f1/∂b = λ∂g/∂b and ∂ f1/∂y = λ∂g/∂y, where λ is a Lagrange multiplier.

Thus

p = λ
(
p + 2(1 − p)2

)
, and p = λ (p + (1 − p)) = λ.

Since p ∈ (0, 1), we have λ � 0. So from the above equations we deduce that (1 − p) =

2(1 − p)2. Again since p � 1, we have p = 1/2. Let

v′ := (a′, b′, x′, y′, z′, e′, p′) = (0, 0, x, y + b/2, z + b/2, 0, p).

Then a′ + b′ + x′ + y′ + z′ + e′ = 1, z′ = x′ + y′, and f1(v′) = f1(v). Since p = 1/2,

f2(v′) = (1 − p)(y + b/2) = (1 − p)y + (1 − p)b/2 = (1 − p)y + (1 − p)2b = f2(v).

This implies v′ ∈M ′, contradicting (4).

Case 2. y = 0.

Then f1(v) = (1 − b)p/2 and f2(v) = b(1 − p)2. By (1) and (2) and since f1(v) = f2(v),

we have b ∈ (0, 1) and p ∈ (0, 1). Since f1(v) is the maximum of f1 over D subject to
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g := f1 − f2 = 0 (considered as functions of p and b), v satisfies ∂ f1/∂p = λ∂g/∂p and

∂ f1/∂b = λ∂g/∂b for some λ. Therefore,

(1 − b)/2 = λ ((1 − b)/2 + 2b(1 − p)) , and p/2 = λ
(
p/2 + (1 − p)2

)
.

Since p ∈ (0, 1), we have λ � 0; so we derive from above that b = (1− p)/(1+ p). From

f1(v) = f2(v), we deduce b = p
p+2(1−p)2 . Hence

p
p + 2(1 − p)2

=
1 − p
1 + p

.

Simplifying this we get p3 − 2p2 + 3p − 1 = 0. Since the function p3 − 2p2 + 3p − 1 is

always increasing and takes value 0.036125 when p = 9/20, so p < 9/20.

We now claim that f1 ≤ 1/7. For otherwise, we have f1 > 1/7, i.e.,

(1 − b)p
2

=
p2

1 + p
> 1/7.

But this gives p > 1+
√

29
14
> 9/20, a contradiction. This proves Lemma 4.3.1.

In the next lemma we show that under certain conditions two functions can be made

equal and bounded from above. The proof is similar to that of Lemma 4.3.1.

Lemma 4.3.2. Let D denote the set of all points (a, b, x, y, e, p) such that a, b, x, y, e ∈ R+,

p ∈ [0.18, 1], a + b + 2(x + y + e) = 1, and p2a + px + p3e = (1.18 − p)2b + (1.18 −
p)y + (1.18 − p)3e. Suppose D � ∅. Then for any (a, b, x, y, e, p) ∈ D , p2a + px + p3e ≤
(1.182/8)(1 − 0.82e).

Proof. For convenience, let

g1(a, b, x, y, e, p) := p2a + px + p3e, and

g2(a, b, x, y, e, p) := (1.18 − p)2b + (1.18 − p)y + (1.18 − p)3e.

A point v := (a, b, x, y, e, p) ∈ D is said to be maximal if g1(v) is the maximum of g1 over

D . Let M denote the set of all maximal points. Since D is compact and D � ∅, M � ∅.
Let M := g(v) for v ∈M . We claim that
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(1) for any v = (a, b, x, y, e, p) ∈ D , we have e = 0 and g1(v) ≤ M(1 − 0.82e).

It is clear that (1) holds when e = 0. So assume e � 0. Let

v′ := (a′, b′, x′, y′, e′, p′) =
(

a + pe
1 − 0.82e

,
b + (1.18 − p)e

1 − 0.82e
,

x
1 − 0.82e

,
y

1 − 0.82e
, 0, p
)
.

Then a′+b′+2(x′+y′+e′) = 1, and g1(v′) = g1(v)/(1−0.82e) = g2(v)/(1−0.82e) = g2(v′);

so v′ ∈ D . Now g1(v) = g1(v′)(1 − 0.82e) ≤ M(1 − 0.82e), proving (1).

Therefore, it suffices to prove that M ≤ 1.182/8. Let M ′ = {(a, b, x, y, e, p) ∈M : x =

y = e = 0}. We may assume

(2) M ′ = ∅.

For, suppose there exists some v = (a, b, x, y, e, p) ∈M ′. Then a + b = 1,

g1(v) = p2a, and g2(v) = (1.18 − p)2b.

Since g1(v) = g2(v), we have

b =
p2

p2 + (1.18 − p)2
.

Note that for any s, t ∈ R+, we have 2
√

st ≤ s+t and 2st ≤ s2+t2; so 8s2t2 ≤ (s+t)2(s2+t2),

which implies

s2t2

s2 + t2
≤ 1

2

( s + t
2

)2
.

Thus

M = g2(v) =
p2 (1.18 − p)2

p2 + (1.18 − p)2
≤ 1

2

(
1.18

2

)2
=

1.182

8
,

and the assertion of the lemma holds. So we may assume (2).

By (1) and (2), there exists v = (a, b, x, y, e, p) ∈M such that e = 0, and x � 0 or y � 0.

We now show that v may be chosen so that

(3) y = 0.
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For, suppose y � 0. Since a + b + 2(x + y + e) = 1 and e = 0, x = (1 − a − b − 2y)/2. So

g1(v) = p2a + p
1 − a − b − 2y

2
, and

g2(v) = (1.18 − p)2 b + (1.18 − p) y.

Suppose b � 0. Then since we assume y � 0 and because v ∈ M , v is a critical

point of g1 subject to g := g1 − g2 = 0, where g1, g2, g are considered as functions of b

and y. By applying the method of Lagrange multipliers, we have ∂g1/∂b = λ∂g/∂b and

∂g1/∂y = λ∂g/∂y. Hence

− p
2
= λ
(
− p

2
− (1.18 − p)2

)
, and − p = λ (−p − (1.18 − p)) .

Since p ∈ [0.18, 1], λ � 0. Hence from the above expressions we deduce that (1.18− p)2 =

(1.18 − p)/2. So p = 0.68, since p ∈ [0.18, 1]. Let

v′ := (a′, b′, x′, y′, e′, p′) = (a, b + 2y, x, 0, 0, p).

Then

a′ + b′ + 2(x′ + y′ + e′) = a + b + 2(x + y) = 1,

g1(v′) = p2a + px = g1(v), and

g2(v′) = (1.18 − p)2b′ = (1.18 − p)2b + 2(1.18 − p)2y = (1.18 − p)2b + (1.18 − p)y = g2(v).

The last equality holds because p = 0.68. So g1(v′) = g2(v′) = g1(v). This means that

v′ ∈M , with e′ = 0 and y′ = 0; and (3) holds by replacing v with v′.

Now suppose a = 0 and b = 0. Then g1(v) = p(1 − 2y)/2 and g2(v) = (1.18 − p)y. So

g1(v) = g2(v) implies y = p/2.36. Hence,

M = g1(v) =
p
2
− p2

2.36
=

1.18

8
− 1

2 × 1.18

(
p − 1.18

2

)2
≤ 1.18

8
<

1.182

8
,

and the assertion of the lemma holds.

So we may assume a � 0 and b = 0. Then

g1(v) = p2a + p(1 − a − 2y)/2, and g2(v) = (1.18 − p)y.
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Now v must be a critical point of g1 subject to g := g1 − g2 = 0, where g1, g2, g are

considered as functions of a and y. So there exists λ (Lagrange multiplier) such that

∂g1/∂a = λ∂g/∂a and ∂g1/∂y = λ∂g/∂y. This gives

p2 − p
2
= λ
(
p2 − p

2

)
, and − p = λ (−p − (1.18 − p)) = −1.18λ.

Since p ∈ [0.18, 1], λ � 1 (from the second equation) and p = 1/2 (from the first equation).

Hence, g1(v) = (1 − 2y)/4 and g2(v) = 0.68y. Since g1(v) = g2(v), we have (1 − 2y)/4 =

0.68y, and so y = 1/4.72. Hence M = g2(v) = 0.68/4.72 < 1.182/8. This completes the

proof of (3).

By (2) and (3), x � 0 and v = (a, b, x, 0, 0, p). Hence x = (1 − a − b)/2,

g1(v) = p2a + p
1 − a − b

2
, and g2(v) = (1.18 − p)2b.

Note that when b = 0, we have M = g2(v) = 0 < 1.182/8. Hence, we may assume

(4) b � 0.

We consider two cases: a � 0, and a = 0.

Case 1. a � 0.

Then v is a critical point of g1 subject to g := g1 − g2 = 0, all considered as functions

of a and b. So there exists λ such that ∂g1/∂a = λ∂g/∂a and ∂g1/∂b = λ∂g/∂b, which give

p2 − p
2
= λ
(
p2 − p

2

)
, and − p

2
= λ
(
− p

2
− (1.18 − p)2

)
.

Since p ∈ [0.18, 1], we have λ � 1 from the second equation; so p2 − p/2 = 0 (from the

first equation), which implies p = 1/2. Define

v′ := (a′, b′, x′, y′, e′, p′) = (a + 2x, b, 0, 0, 0, p).

Then a′ + b′ + 2(x′ + y′ + e′) = a + b + 2x = 1 and g2(v) = g2(v′). Also, because p = 1/2,

g1(v′) = p2a′ = p2a + 2p2x = p2a + px = g1(v). Therefore, v′ ∈M ′, contradicting (2).

66



Case 2. a = 0.

Then g1(v) = p(1 − b)/2 and g2(v) = (1.18 − p)2b. Since g1(v) = g2(v), we have

b =
p/2

(1.18 − p)2 + p/2
.

If p = 0.18 then b = 0.18/2.18; so M = g2(v) = b < 1.182/8. If p = 1 then b = 1/1.0648;

so M = g2(v) = 0.182b < 1.182/8. Hence we may assume p ∈ (0.18, 1).

Since b � 0 (by (4)) and p ∈ (0.18, 1), v is a critical point of g1 subject to g := g1−g2 =

0, all considered as functions of b and p. So there exists λ such that ∂g1/∂b = λ∂g/∂b and

∂g1/∂p = λ∂g/∂p, which gives

− p
2
= λ
(
− p

2
− (1.18 − p)2

)
and

1 − b
2
= λ

(
1 − b

2
+ 2b (1.18 − p)

)
.

Since p ∈ (0.18, 1), we have λ � 0 (from the first equation). So

p
2

(
1 − b

2
+ 2b (1.18 − p)

)
=

1 − b
2

( p
2
+ (1.18 − p)2

)
.

By a simple calculation, we derive

b =
1.18 − p
1.18 + p

.

Therefore, we have (1.18 − p)3 = p2.

Note that h(p) := (1.18−p)3−p2 is a decreasing function over (0.18, 1), and a simple cal-

culation shows h(0.53) = −0.006275 < 0. So p < 0.53. Also note that g1(v) = p2/(1.18+p)

is an increasing function over (0.18, 1). So

g1(v) =
p2

1.18 + p
<

(0.53)2

1.18 + 0.53
< 0.165 <

1.182

8
.

This completes the proof of Lemma 4.3.2.

4.4 Proofs of Lemmas 4.2.1 and 4.2.2

Proof of Lemma 4.2.1. For any permutation i jk of {1, 2, 3}, let

αi := bjk + x j + xk, βi := aj + ak, and γi := αi + βi + c.
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Then for i = 1, 2, 3,

fi(pi) = (1 − pi)αi + (1 − pi)
2βi + (1 − pi)

3c.

By symmetry, we may assume that

γ1 ≤ γ2 ≤ γ3.

We may further assume that

(1) γ1 ≥ 0.35.

For, suppose γ1 < 0.35. Let p1 = 0; then f1 = γ1 < 0.35. We wish to apply Lemma 4.3.1

to show that there exist p2, p3 ∈ (0, 1) such that p2 + p3 = 1 and f2 = f3 ≤ 0.35. Let

m = α2 + α3 + β2 + β3 + (α2 + α3) + c.

Let x = α2/m, y = α3/m, a = β2/m, b = β3/m, z = (α2 + α3)/m, and e = c/m. Then

a + b + x + y + z + e = 1 and z ≥ x + y. Thus by Lemma 4.3.1, there exist p2, p3 ∈ (0, 1)

such that p2 + p3 = 1 and f2/m = f3/m ≤ 1/7.

Note that

m = 2(b13 + x1 + x3 + b12 + x1 + x2) + (a1 + a2 + a1 + a3) + c ≤ 2 + 2x1.

Since bi j ≥ max{2xi, 2x j} for 1 ≤ i � j ≤ 3, we have 5x1 ≤ x1 + b12 + b13 ≤ 1. Hence

x1 ≤ 1/5, and so m ≤ 12/5. Therefore, f2 = f3 ≤ (12/5)/7 < 0.35; so (i) holds and we may

assume (1).

We now write fi(pi) for fi, considering it as a function of pi over [0, 1] (while fixing the

other parameters). Differentiating with respect to pi, we have f ′i (pi) = −αi − 2(1 − pi)βi −
3(1 − pi)

2c ≤ 0 and f ′′i (pi) = 2βi + 6(1 − pi)c ≥ 0. Note from (1) that f ′(pi) < 0 with the

possible exception when pi = 1. So

(2) each fi(pi) is both decreasing and convex over [0, 1].
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Because of (2), we approximate fi(pi) (for each i) with the line hi(pi) through the the

points (0, fi(0)) and (1, fi(1)) in the Euclidean plane. Hence hi(pi) = (1 − pi)γi. It is also

convenient to consider the reflection of f3(p3) with respect to the line p3 = 1/2, namely

f4(p3) = f3(1− p3) = p3α3+ p2
3β3+ p3

3
c. Let h4(p3) = γ3 p3, which is the reflection of h3(p3)

with respect to the line p3 = 1/2.

By (2) and by definition, we have

(3) f4(p3) is convex and increasing over [0, 1]; and for i = 1, 2, 3, 4, fi(pi) ≤ hi(pi) when

pi ∈ [0, 1].

For each 0 ≤ α ≤ γ1 and for i = 1, 2, 3, 4, let pi(α) denote the unique root of fi(pi) = α

in [0, 1], and qi(α) the unique root of hi(qi) = α in [0, 1]. Note that from (2) and (3), we

have

(4) for α ∈ [0, γ1] and for i = 1, 2, 3, pi(α) ≤ qi(α), pi(α) and qi(α) decreases with α; and

p4(α) and q4(α) increases with α.

Let (a, b) be the point where f2 and f4 intersect, that is, f2(a) = f4(a) = b; so p2(b) =

p4(b) = a. Let (a′, b′) be the point where h2 and h4 intersect, i.e., h2(a′) = h4(a′) = b′. By

(2) and (3), we have b ≤ b′. By solving h2(a′) = h4(a′) = b′, we have

a′ =
γ2

γ2 + γ3

, and b′ =
γ2γ3

γ2 + γ3

.

Since h3(1 − a′) = h4(a′) = b′ and by definition, we have q3(b′) = 1 − q2(b′); and so

q2(b′) + q3(b′) = 1.

We may assume

(5) b′ = γ2γ3

γ2+γ3
≥ γ1.

For, suppose b′ < γ1. Then b < γ1; so pi(b) is defined for i = 1, 2, 3, 4. Since f3 and f4

are reflections through the line p3 = 1/2, p3(b) + p4(b) = 1. Since p2(b) = p4(b) = a

and p1(b) > 0, we have p1(b) + p2(b) + p3(b) = p1(b) + 1 > 1. Also, p1(γ1) = 0, and
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p2(γ1) + p3(γ1) ≤ q2(γ1) + q3(γ1) < q2(b′) + q3(b′) = 1; so p1(γ1) + p2(γ1) + p3(γ1) < 1.

Since p1(α)+ p2(α)+ p3(α) is a decreasing function of α, there exists α ∈ (b, γ1) (and hence

by (4), pi(α) ∈ (0, 1) for i = 1, 2, 3) such that p1(α) + p2(α) + p3(α) = 1; so (ii) holds with

fi(pi) = α for i = 1, 2, 3.

We claim that

(6) γ1 ≤ 1/2, 0.4 ≤ γ2 ≤ 1, 0.7 ≤ γ3 ≤ 1, γ2 + γ3 ≥ 1.4, and c −∑1≤i< j≤3 bi j ≥ −0.25.

By (5),
γ2γ3

γ2+γ3
≥ γ1. So by Cauchy-Schwarz,

γ2 + γ3 ≥ 4
1
γ2
+ 1
γ3

≥ 4γ1.

Hence by (1), γ2 + γ3 ≥ 1.4. Then γ2 ≥ 0.4 and, since γ3 ≥ γ2, γ3 ≥ (γ2 + γ3)/2 ≥ 0.7.

Since

γ1 + γ2 + γ3 = 2 + c −
∑

1≤i< j≤3

bi j,

we have 5γ1 ≤ γ1 + γ2 + γ3 = 2+ c−∑i< j bi j, and so γ1 ≤ 2/5+ (c−∑i< j bi j)/5. Therefore,

since γ2 + γ3 ≤ 2,

2 + c −
∑
i< j

bi j = γ1 + γ2 + γ3 ≤ 2 +
2

5
+

c −∑i< j bi j

5
.

So c −∑i< j bi j ≤ 1/2, which in turn implies 5γ1 ≤ 2 + c −∑i< j bi j ≤ 5/2. Thus, γ1 ≤ 1
2
. By

(1), 1.75 ≤ 5γ1 ≤ 2 + c −∑i< j bi j, which implies c −∑i< j bi j ≥ −0.25.

We also claim that

(7) xi ≤ 1.25/9, for i = 1, 2, 3.

Since bi j ≥ 2xi and bi j ≥ 2x j, c + 5xi ≤ 1. By (6), c −∑ bi j ≥ −0.25; so c − 4xi ≥ −0.25.

Hence 1 − 5xi ≥ 4xi − 0.25, which gives (7).

We now prove that

(8) f1(0.18) ≤ 0.35.
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This is true if γ1 ≤ 0.35/0.82 as f1(0.18) ≤ 0.82γ1. So we may assume that γ1 > 0.35/0.82.

From the proof of (6) we see that c ≥ ∑i< j bi j + 5γ1 − 2. Then, since b12 ≥ 2x2, b13 ≥ 2x3

and α1 = b23+ x2+ x3, we have c ≥ α1+5γ1−2. Also, γ1 ≥ α1+c. So γ1−α1 ≥ α1+5γ1−2.

Therefore, 2γ1 + α1 ≤ 1. Hence, since γ1 > 0.35/0.82, we have α1 ≤ 1 − 0.7/0.82 and

c ≥ 5γ1−2 ≥ 5×(0.35/0.82)−2 = 0.11/0.82. This implies that 0.82α1+0.823c < 0.7(α1+c).

Hence, since 0.822 < 0.7, f1(0.18) < 0.7γ1 ≤ 0.35 (as γ1 ≤ 1/2 by (6)). So we have (8).

Now let p1 = 0.18; then by (8), f1(p1) ≤ 0.35. We wish to apply Lemma 4.3.2 to

prove the existence of p2 and p3 such that p2 + p3 = 1 − p1 = 0.82, f2(p2) ≤ 0.35 and

f3(p3) ≤ 0.35. Let 1 − p2 = p and 1 − p3 = 1.18 − p. Let

m = β2 + β3 + 2(α2 + α3 + c),

and let a = β2/m, b = β3/m, x = α2/m, y = α3/m, e = c/m, g1(p) = f2(p)/m, and

g2(p) = f3(p)/m. Then a + b + 2(x + y + e) = 1,

g1(p) = p2a + px + p3e, and g2(p) = (1.18 − p)2b + (1.18 − p)y + (1.18 − p)3e.

Note that

m = 2a1 + a2 + a3 + 2(b12 + b13 + 2x1 + x2 + x3 + c) = 2 + 2x1 − (a2 + a3 + 2b23) ≤ 2 + 2x1,

and

m = 2 + 2x1 − (a2 + a3 + 2b23)

= 2 + 2x1 − γ1 + x2 + x3 + c − b23

≤ 2 + 2x1 − γ1 + c (since b23 ≥ max{2x1, 2x3})
≤ 2 + 2(1.25/9) − 0.35 + c (by (1) and (7)).

We claim that

(9) γ2/m > 0.18 and γ3/m > 0.18.
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By (7), m ≤ 2 + 2(1.25/9); so by (6), γ3/m ≥ 0.7/(2 + 2.5/9) > 0.18. If γ2 ≥ 0.5, then

γ2/m ≥ 0.5/(2 + 2.5/9) > 0.18. So we may assume that γ2 < 0.5. Then by (6), γ3 > 0.9.

Hence, 2x1 ≤ b13 ≤ b13 + b23 + x3 + a3 = 1 − γ3 < 0.1. So m ≤ 2 + 2x1 < 2.1 and, by (6),

γ2/m ≥ 0.4/2.1 > 0.18. Thus, we have (9).

In order to apply Lemma 4.3.2, we need to show that there exists p ∈ [0.18, 1] such that

g1(p) = g2(p). To see this, consider g1, g2 as functions of p. By (9), we note that

g1(0.18) ≤ 0.18(a + x + e) ≤ 0.18, and

g2(0.18) = b + y + e = γ3/m > 0.18.

So g1(0.18) < g2(0.18). Similarly, we can show g1(1) > 0.18 ≥ g2(1). By (2), g1(p) is an

increasing function, and g2(p) is a decreasing function. So there exists p ∈ (0.18, 1) such

that g1(p) = g2(p).

We can now apply Lemma 4.3.2. As a consequence, g1(p) = g2(p) ≤ (1.182/8)(1 −
0.82e), so f2(p) = f3(p) ≤ (1.182/8)(m−0.82c). If c ≤ 0.35 then, since m ≤ 2+2(1.25/9)−
0.35 + c,

f2(p) = f3(p) ≤ 1.182

8
(2 + 2.5/9 − 0.35 + 0.18 × 0.35) < 0.347 < 0.35.

So we may assume c > 0.35. Then, since m ≤ 2 + 2x1 ≤ 2 + 2.5/9 by (7),

f2(p) = f3(p) ≤ 1.182

8
(2 + 2.5/9 − 0.82 × 0.35) < 0.35.

Note that p2 = 1− p and p3 = p−0.18. Since p ∈ (0.18, 1), we have p2, p3 ∈ (0, 1). Clearly,

p1 + p2 + p3 = 1. So (i) holds, which completes the proof of Lemma4.2.1.

In order to prove Lemma 4.2.2, we first deal with the special case when bi j = xi + x j for

1 ≤ i < j ≤ 3.

Lemma 4.4.1. Let bi, yi ∈ R+ for i = 1, 2, 3 such that
∑3

i=1(3yi + bi) = 2. Suppose there

exist qi ∈ (0, 1), i = 1, 2, 3, such that q1 + q2 + q3 = 2 and 2y1q1 + b1q2
1 = 2y2q2 + b2q2

2 =

2y3q3 + b3q2
3. Then for i = 1, 2, 3, 2yiqi + biq2

i ≤ 0.35.
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Proof. For convenience, let fi := 2yiqi + biq2
i , i = 1, 2, 3. Let D denote the set of all points

(b1, b2, b3, y1, y2, y3, q1, q2, q3) such that bi, yi ∈ R+ and qi ∈ [0, 1] for i = 1, 2, 3,

3∑
i=1

(3yi + bi) = 2,

q1 + q2 + q3 = 2, and

f1 = f2 = f3.

So D is a compact subset of [0, 2]3 × [0, 2/3]3 × [0, 1]3. Note that D � ∅ by assumption of

the lemma. Let

v := (b1, b2, b3, y1, y2, y3, q1, q2, q3) ∈ D

such that f1(v) is the maximum of f1 over D . It suffices to show that f1(v) ≤ 0.35.

We may assume that qi � 0 for i = 1, 2, 3; as otherwise we have fi(v) = 0 < 0.35

for i = 1, 2, 3. Thus, since f1 = f2 = f3, we see that if fi = 0 for some i ∈ {1, 2, 3} then

bi = yi = 0 for i = 1, 2, 3, contradicting the condition that
∑3

i=1(3yi + bi) = 2. Hence, we

have

(1) for each i ∈ {1, 2, 3}, qi > 0, and bi > 0 or yi > 0.

We may assume that

(2) there exists some i ∈ {1, 2, 3} such that bi > 0.

For, suppose bi = 0 for i = 1, 2, 3. Then fi = 2yiqi and yi > 0 (by (1)) for i = 1, 2, 3, and

y1 + y2 + y3 = 2/3. Hence, by Cauchy-Schwarz,

1

y1

+
1

y2

+
1

y3

≥ 9

y1 + y2 + y3

=
27

2
.

Setting f1 = f2 = f3 = α, we have qi = α/2yi for i = 1, 2, 3. Therefore, since q1+q2+q3 = 2,

α =
4

1
y1
+ 1

y2
+ 1

y3

≤ 8

27
< 0.35.

We may also assume that
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(3) there exists some j ∈ {1, 2, 3} such that y j > 0.

For, otherwise, y1 = y2 = y3 = 0. Then fi = biq2
i and bi > 0 (by (1)) for i = 1, 2, 3, and

b1 + b2 + b3 = 2. Setting f1 = f2 = f2 = α, we have qi =
√
α/bi. Since q1 + q2 + q3 = 2, we

have (by Cauchy-Schwarz),

α =
4(

1√
b1
+ 1√

b2
+ 1√

b3

)2 ≤ 4
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( √
b1 +

√
b2 +

√
b3

)2 ≤ 4

9

b1 + b2 + b3

3
=

8

27
< 0.35.

We may further assume that

(4) there exists some i ∈ {1, 2, 3} such that biyi � 0.

Otherwise, we have two cases (by symmetry): y1 = y2 = b3 = 0, or b1 = b2 = y3 = 0

First, assume y1 = y2 = b3 = 0. Then, b1 > 0, b2 > 0, y3 > 0, b1 + b2 + 3y3 = 2,

f1 = b1q2
1, f2 = b2q2

2, and f3 = 2y3q3.

Setting α = f1 = f2 = f3 and using q1 + q2 + q3 = 2, we have
√
α√
b1

+

√
α√
b2

+
α

2y3

= 2.

So

√
α =

4√
(1/
√

b1 + 1/
√

b2)2 + 4/y3 + (1/
√

b1 + 1/
√

b2)

.

Note that (
1√
b1

+
1√
b2

)2
≥ 4√

b1b2

≥ 8

b1 + b2

=
8

2 − 3y3

,

so

√
α ≤ 4√

8
2−3y3

+ 4
y3
+
√

8
2−3y3

.

Let f (y3) :=
√

8/(2 − 3y3) + 4/y3 +
√

8/(2 − 3y3). Note that y3 ∈ (0, 2/3), and

f (y3) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
4 + 20 +

√
4, if y3 ∈ (0, 1/5];

√
8/(7/5) + 16 +

√
8/(7/5), if y3 ∈ (1/5, 1/4];

√
8/(5/4) + 12 +

√
8/(5/4), if y3 ∈ (1/4, 1/3];

√
8 + 8 +

√
8, if y3 ∈ (1/3, 1/2];

√
16 + 6 +

√
16, if y3 ∈ (1/2, 2/3).
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Therefore, f (y3) ≥ 6.819, and hence α ≤ (4/6.819)2 < 0.35

Now assume b1 = b2 = y3 = 0. Then y1 > 0, y2 > 0, b3 > 0, 3(y1 + y2) + b3 = 2,

f1 = 2y1q1, f2 = 2y2q2, and f3 = b3q2
3.

Again, setting α = f1 = f2 = f3 and using q1 + q2 + q3 = 2, we have

α

2y1

+
α

2y2

+

√
α√
b3

= 2,

So

√
α =

4√
1/b3 + 4(1/y1 + 1/y2) + 1/

√
b3

.

Note that 1/y1 + 1/y2 ≥ 4/(y1 + y2) = 12/(2 − b3). Hence

√
α ≤ 4√

1/b3 + 48/(2 − b3) + 1/
√

b3

.

Let g(b3) :=
√

1/b3 + 48/(2 − b3) + 1/
√

b3. Note that b3 ∈ (0, 2), and

g(b3) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
3 + 48/(2 − 0) +

√
3, if b3 ∈ (0, 1/3];

√
2 + 48/(2 − 1/3) +

√
2, if b3 ∈ (1/3, 1/2];

√
3/2 + 48/(2 − 1/2) +

√
3/2, if b3 ∈ (1/2, 2/3];

√
2/3 + 48/(2 − 2/3) +

√
2/3, if b3 ∈ (2/3, 3/2];

√
1/2 + 48/(2 − 3/2) +

√
1/2, if b3 ∈ (3/2, 2).

Therefore, g(b3) ≥ 6.87, and hence α ≤ (4/6.87)2 < 0.35.

By (4) and by symmetry, we may assume that

(5) b3y3 � 0.

We may further assume that

(6) b1y1 = 0 and b2y2 = 0.

For, otherwise, by symmetry, assume b2y2 > 0. Then v is a solution to the following

optimization problem:
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Maximize f1

subject to

h1 := f1 − f2 = 0,

h2 := f1 − f3 = 0,

h3 := 3(y1 + y2 + y3) + (b1 + b2 + b3) − 2 = 0,

h4 := q1 + q2 + q3 − 2 = 0.

Applying the method of Lagrange multipliers, we have, for each u ∈ {yi, bi : i = 2, 3},

∂ f1/∂u = λ1∂h1/∂u + λ2∂h2/∂u + λ3∂h3/∂u + λ4∂h4/∂u.

Thus,

for u = y2, we have 0 = λ1(−2q2) + 3λ3,

for u = y3, we have 0 = λ2(−2q3) + 3λ3,

for u = b2, we have 0 = λ1(−q2
2) + λ3,

for u = b3, we have 0 = λ2(−q2
3) + λ3.

Clearly, if λi = 0 for some i ∈ {1, 2, 3} then λi = 0 for all i = 1, 2, 3 (since qi > 0 by (1)).

In fact, λi � 0 for all i = 1, 2, 3. To see this we notice that either b1 > 0 or y1 > 0, so v also

satisfies ∂ f1/∂u = λ1∂h1/∂u + λ2∂h2/∂u + λ3∂h3/∂u + λ4∂h4/∂u for u = b1 or u = y1. For

u = b1, we have q2
1 = λ1q2

1 + λ2q2
1 + λ3, and for u = y1 we have 2q1 = λ12q1 + λ22q1 + 3λ3.

In either case, we see that λi � 0 (since q1 > 0).

Now using the partial derivatives with respect to b2 and y2, we get q2 = 2/3; and using

the partial derivatives with respect to b3 and y3 we obtain q3 = 2/3. So q1 = 2/3 since

q1 + q2 + q3 = 2. Then for i = 1, 2, 3,

fi =
4

3
yi +

4

9
bi =

4

9
(3yi + bi).
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Since f1 = f2 = f3 and
∑3

i=1(3yi + bi) = 2, we get 3yi + bi = 2/3 for i = 1, 2, 3, and hence

fi = 8/27 < 0.35. This proves (6)

By (5) and (6), we have three cases to consider: b1 = b2 = 0; y1 = y2 = 0; y1 = b2 = 0

or b1 = y2 = 0. Let h1, h2, h3, h4 be defined as in the proof of (6).

Case 1. b1 = b2 = 0.

Then y1 > 0, y2 > 0, f1 = 2y1q1, f2 = 2y2q2, f3 = 2y3q3 + b3q2
3. Moreover, v is a critical

point of f1 subject to h1 = h2 = h3 = h4 = 0, all considered as functions of y1, y2, y3, b3.

Hence for u ∈ {y1, y2, y3, b3}, v satisfies

∂ f1/∂u = λ1∂h1/∂u + λ2∂h2/∂u + λ3∂h3/∂u + λ4∂h4/∂u.

So

for u = y1, we have 2q1 = λ1(2q1) + λ2(2q1) + 3λ3,

for u = y2, we have 0 = λ1(−2q2) + 3λ3,

for u = y3, we have 0 = λ2(−2q3) + 3λ3,

for u = b3, we have 0 = λ2(−q2
3) + λ3.

Clearly, λi � 0 for i = 1, 2, 3. So from the partial derivatives with respect to b3 and y3, we

have q3 = 2/3, and hence q1 + q2 = 4/3. Set α := 2y1q1 = 2y2q2 = 4(3y3 + b3)/9. In

particular, α = 4(3y3 + b3)/9 = 4(2 − 3(y1 + y2))/9, and so y1 + y2 = 2/3 − 3α/4. Using

q1 + q2 = 4/3 and Cauchy-Schwarz, we get

4

3
=
α

2y1

+
α

2y2

≥ 2α

y1 + y2

=
2α

2/3 − 3α/4
.

This implies α ≤ 8/27 < 0.35.

Case 2. y1 = y2 = 0.

Then b1 > 0, b2 > 0, f1 = b1q2
1, f2 = b2q2

2 and f3 = 2y3q3 + b3q2
3. Now v is a critical

point of f1 subject to h1 = h2 = h3 = h4 = 0, all considered as functions of b1, b2, b3, y3.
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Hence for u ∈ {b1, b2, b3, y3}, v satisfies

∂ f1/∂u = λ1∂h1/∂u + λ2∂h2/∂u + λ3∂h3/∂u + λ4∂h4/∂u.

Thus,

for u = b1, we have q2
1 = λ1(q2

1) + λ2(q2
1) + λ3,

for u = b2, we have 0 = λ1(−q2
2) + λ3,

for u = b3, we have 0 = λ2(−q2
3) + λ3

for u = y3, we have 0 = λ2(−2q3) + 3λ3.

Clearly, λi � 0 for i = 1, 2, 3. So from the partial derivatives with respect to b3 and y3, we

have q3 = 2/3, and hence q1 + q2 = 4/3. Setting α := y1q2
1 = y2q2

2 = 4(3y3 + b3)/9, we have

qi =
√
α/
√

bi for i = 1, 2, 3y3 + b3 = 9α/4, and b1 + b2 = 2 − 9α/4. So

4

3
=

√
α√
b1

+

√
α√
b2

≥ 2
√
α√√

b1

√
b2

≥ 2
√

2α√
b1 + b2

=
2
√

2α√
2 − 9α/4

.

This gives α ≤ 8/27 < 0.35.

Case 3. y1 = b2 = 0, or y2 = b1 = 0.

By symmetry, we may assume that y1 = b2 = 0. Then b1 > 0, y2 > 0, b1 + 3y2 + (3y3 +

b3) = 2, f1 = b1q2
1, f2 = 2y2q2, and f3 = 2y3q3 + b3q2

3.

So v is a critical point of f1 subject to h1 = h2 = h3 = h4 = 0, all considered as functions

of b1, y2, b3, y3. Hence v satisfies ∂ f1/∂u = λ1∂h1/∂u + λ2∂h2/∂u + λ3∂h3/∂u + λ4∂h4/∂u

for u ∈ {b1, y2, b3, y3}. Thus,

for u = b1, we have q2
1 = λ1(q2

1) + λ2(q2
1) + λ3,

for u = y2, we have 0 = λ1(−2q2) + 3λ3,

for u = b3, we have 0 = λ2(−q2
3) + λ3

for u = y3, we have 0 = λ2(−2q3) + 3λ3.
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Clearly, λi � 0 for i = 1, 2, 3. So from the partial derivatives with respect to b3 and y3, we

have q3 = 2/3, and hence q1 + q2 = 4/3.

Set α = f1(v) = f2(v) = f3(v). Then

2 = b1 + 3y2 + (3y3 + b3) =

(
1

q2
1

+
3

2q2

+
9

4

)
α =

(
1

q2
1

+
3

2(4/3 − q1)
+

9

4

)
α.

Let h(q1) := 1/q2
1 + 3/(2(4/3 − q1)). Note that q1 ∈ (0, 4/3) and

h(q1) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 + 3/(2(4/3 − 0)), if q1 ∈ (0, 1/2];

9/4 + 3/(2(4/3 − 1/2)), if q1 ∈ (1/2, 2/3];

25/16 + 3/(2(4/3 − 2/3))), if q1 ∈ (2/3, 4/5];

1 + 3/(2(4/3 − 4/5)), if q1 ∈ (4/5, 1];

9/16 + 3/(2(4/3 − 1)), if q1 ∈ (1, 4/3).

So h(q1) ≥ 3.8125, and hence α = 2/(h(q1) + 9/4) ≤ 2/(3.8125 + 9/4) < 0.35.

Proof of Lemma 4.2.2. For any permutation i jk of {1, 2, 3}, and let yk = xi + x j and

bk = ai + aj. Then

fk = (1 − pk)(bi j + yk) + (1 − pk)
2bk.

Set α = f1(p1) = f2(p2) = f3(p3). Note that we may assume α > 0 (otherwise we are

done); and hence bi j + yk + bk > 0 for k = 1, 2, 3. Since pk ∈ (0, 1), 1 − pk ∈ (0, 1); and

hence by solving fk(pk) = α we get

1 − pk =
2α√

(bi j + yk)2 + 4bkα + (bi j + yk)
.

We wish to show that α ≤ 0.35; so we consider the following optimization problem.

Maximize α

Subject to

g1 :=

3∑
k=1

2α√
(bi j + yk)2 + 4bkα + (bi j + yk)

− 2 = 0,

g2 := b12 + b13 + b23 +
1

2
(y1 + y2 + y3 + b1 + b2 + b3) − 1 = 0,

bi j ≥ yk ≥ 0, for {i, j, k} = {1, 2, 3}.
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Here, g1, g2 are considered as functions of α, bi j, bk, yk. By the assumption of the lemma,

the feasible region of this optimization problem is nonempty.

Claim 1. α is maximized only when bi j = yk or yk = 0, for all {i, j, k} = {1, 2, 3}.
For, suppose bi j > yk > 0 for some permutation i jk of {1, 2, 3}. By applying the method of

Lagrange multipliers, we have ∂α/∂u = λ1∂g1/∂u + λ2∂g2/∂u, where u ∈ {α, bi j, yk}. So

for u = bi j, 0 = λ1

−2α
(
bi j + yk +

√
(bi j + yk)2 + 4bkα

)
√

(bi j + yk)2 + 4bkα
( √

(bi j + yk)2 + 4bkα + (bi j + yk)
)2 + λ2,

for u = yk, 0 = λ1

−2α
(
bi j + yk +

√
(bi j + yk)2 + 4bkα

)
√

(bi j + yk)2 + 4bkα
( √

(bi j + yk)2 + 4bkα + (bi j + yk)
)2 + λ2

2
,

for u = α, 1 = λ1

∂g1

∂α
+ λ2

∂g2

∂α
.

The first two equations give λ1 = λ2 = 0, which contradicts the third equation.

Therefore, the maximum of α is achieved when bi j = yk for some permutation i jk of

{1, 2, 3}, or when yk = 0 for some k ∈ {1, 2, 3}; so Claim 1 follows.

Claim 2. We may assume that α is maximized when bi j > yk for some {i, j, k} = {1, 2, 3}.
For, otherwise, the maximum of α is achieved when bi j = yk for all permutations i jk of

{1, 2, 3}. Set qk = 1 − pk for k = 1, 2, 3; and so fk = 2ykqk + bkq2
k and 3(y1 + y2 + y3) + b1 +

b2 + b3 = 2. We can now apply Lemma 4.4.1 and conclude that fk ≤ 0.35 for k = 1, 2, 3.

So Claim 2 holds.

From Claim 1 and Claim 2, we deduce

Claim 3. α is maximized when there exists a permutation i jk of {1, 2, 3} such that bi j > 0

and yk = 0 (so xi = x j = 0).

We consider three cases.

Case 1. α is maximized when xk = bik = bjk = 0 and bk = 0.

Then bi j + ak = 1, fk = (1 − pk)bi j, fi = (1 − pi)
2ak, and f j = (1 − pj)

2ak.

Since fi = f j, we have pi = pj. In particular, pi ∈ (0, 1/2) as pi + pj + pk = 1. Since

bi j = 1 − ak and fk = fi, we have 2pi(1 − ak) = (1 − pi)
2ak. Therefore, ak = 2pi/(1 + p2

i ),
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and so,

α =
2pi(1 − pi)

2

1 + p2
i

=
4

1 + p2
i

+ 2pi − 4.

Differentiating with respect to pi, we have α′(pi) = 2 − 8pi/(1 + p2
i )2 and α′′(pi) < 0.

Thus α(pi) has maximum when α′(pi) = 0, i.e., when (1 + p2
i )2 = 4pi. We now estimate

α(pi) subject to (1 + p2
i )2 = 4pi. Considering the function g(x) := (1 + x2)2 − 4x for

x ∈ (0, 1/2), we see that g′(x) = 4(1+ x2)x−4 < 0, g(0.3) < 0, and g(0.29) > 0; so g(x) = 0

implies that x ∈ (0.29, 0.3). Hence, (1 + p2
i )2 = 4pi implies pi ∈ (0.29, 0.3). On the other

hand, (1+p2
i )2 = 4pi implies α(pi) = 2/

√
pi+2pi−4. Since the function h(t) := 2/

√
t+2t−4

is decreasing over [0.29, 0.3] (because h′ = 2 − t−3/2 < 0 for t ∈ [0.29, 0.3]), we have

α ≤ α(pi) = h(pi) ≤ h(0.29) = 2/
√

0.29 + 2(0.29) − 4 < 0.35.

Case 2. α is maximized when xk = bik = bjk = 0 and bk > 0.

Then bi j + (bi + bj + bk)/2 = 1, fi = (1 − pi)
2bi, f j = (1 − pj)

2bj, and fk = (1 − pk)bi j +

(1 − pk)
2bk. From ∂α/∂bk = λ1∂g1/∂bk + λ2∂g2/∂bk, we obtain

0 = λ1

−4α2

√
(bi j + yk)2 + 4bkα

( √
(bi j + yk)2 + 4bkα + (bi j + yk)

)2 + λ2

2
.

Using this and the partial derivatives with respect to u ∈ {α, bi j} (as in the proof of Claim

1), we deduce that λ1 � 0 and λ2 � 0, and

4α = bi j +

√
b2

i j + 4bkα.

Therefore, α is maximized when 4α = bi j +
√

b2
i j + 4bkα, that is 4α = bk + 2bi j which

implies pk = 1/2 (since fk(pk) is decreasing and fk(pk) = α has a unique solution).

Write b′k := bk+2bi j; then fk = (1−pk)
2b′k (because pk = 1/2). Note that (b′k+bi+bj)/2 =

bi j + (bk + bi + bj)/2 = 1. Since α = f1 = f2 = f3 and (1 − pi) + (1 − pj) + (1 − pk) = 2, we

have √
α√
b′k
+

√
α√
bi
+

√
α√
bj
= 2.
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Applying Cauchy-Schwarz, we have

α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2

1√
b′k
+ 1√

bi
+ 1√

b j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

≤ 4

⎛⎜⎜⎜⎜⎜⎝
√

b′k +
√

bi +
√

bj

9

⎞⎟⎟⎟⎟⎟⎠
2

≤ 4

9

b′k + bi + bj

3
=

8

27
< 0.35.

Case 3. α is maximized when (i) xk > 0, or (ii) xk = 0 and bik > 0 or bjk > 0.

We claim that there exist a′m, x
′
m, b

′
mn ∈ R+, for any 1 ≤ m � n ≤ 3, such that b′mn = b′nm,

b′mn ≥ max{2x′m, 2x′n},
b′12 + b′23 + b′31 + x′1 + x′2 + x′3 + a′1 + a′2 + a′3 = 1,

b′mn + x′m + x′n ≥ bmn + xm + xn,

a′m + a′n = am + an, and

b′st + x′s + x′t > bst + xs + xt for some 1 ≤ s � t ≤ 3.

There are two cases to consider. First, suppose xk > 0. Then there exists δ > 0 such that

x′k = xk − δ > 0 and b′i j = bi j − 2δ ≥ 2δ. Let b′ik = bik + δ, b′jk = bjk and x′i = x′j = δ. In

particular, xk > δ; and so bik ≥ 2xk ≥ 2δ and bjk ≥ 2xk ≥ 2δ. It is easy to verify that the

claim holds by setting a′i = ai, a′j = aj and a′k = ak. Now assume that xk = 0, and bik > 0

or bjk > 0. We may assume bik > 0; the case bjk > 0 is symmetric. Then there exists δ > 0

such that b′ik = bik − δ/2 ≥ δ and b′i j = bi j − δ/2 ≥ δ. Let b′jk = bjk + δ/2 and x′i = δ/2. It is

easy to verify that the claim holds by setting x′j = x j = 0, x′k = xk = 0, a′i = ai, a′j = aj and

a′k = ak.

For every permutation mnl of {1, 2, 3}, let

f ′l := (1 − pl)(b′mn + x′m + x′n) + (1 − pl)
2(a′m + a′n).

For convenience of comparison, recall that

α := fl = (1 − pl)(bmn + xm + xn) + (1 − pl)
2(am + an).

By Lemma 4.2.1, there exist p′i ∈ [0, 1] with p′1+ p′2+ p′3 = 1 such that f ′l (p′l) ≤ 0.35 for

l = 1, 2, 3, or f ′1(p′1) = f ′2(p′2) = f ′3(p′3) and p′i ∈ (0, 1). Since pi ∈ [0, 1] and p1+p2+p3 = 1,

there exists some l such that 1 − pl ≤ 1 − p′l .
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If f ′i (p′i) ≤ 0.35 for i = 1, 2, 3 then, since b′mn+x′m+x′n ≥ bmn+xm+xn and a′m+a′n = am+an

for all {m, n, l} = {1, 2, 3}, we have fl(pl) ≤ f ′l (p′l) ≤ 0.35. Hence α ≤ 0.35.

We may thus assume f ′1(p′1) = f ′2(p′2) = f ′3(p′3). Suppose 1 − pl < 1 − p′l . Then, since

b′mn+ x′m+ x′n ≥ bmn+ xm+ xn and a′m+a′n = am+an, and because bmn+ xm+ xn+am+an > 0

(see the beginning of the proof), we have fl(pl) < f ′l (p′l), contradicting the maximality of

α. So 1− pl = 1− p′l . Then (1− p′m)+ (1− p′n) = (1− pm)+ (1− pn). So we may assume that

1− pn ≤ 1− p′n. By the same argument above for 1− p′l = 1− pl, we derive the contradiction

fn(pn) < f ′n(p′n) if 1 − pn < 1 − p′n; and so we must have 1 − p′n = 1 − pn. Hence we have

p′i = pi for i = 1, 2, 3. Recall that there exist 1 ≤ s � t ≤ 3 such that b′st+x′s+x′t > bst+xs+xt.

Let r ∈ {1, 2, 3} \ {s, t}. Then fr(pr) < f ′r (p′r), again a contradiction to the maximality of α.

This proves Lemma 4.2.2.
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CHAPTER V

CONCLUDING REMARKS

Theorem 1.3.2 implies Conjecture 1.3.3 when the number of edges in the graph is suffi-

ciently large; however to prove the entire conjecture is quite challenging. The error term

in Theorem 2.3.5 is O(m4/5
2

), but Bollobás and Scott ask in [12] whether it is possible to

replace the error term by O(
√

m1 + m2) or O(
√

m2), which is still open.

For Problem 1.3.5, the general bound in Theorem 1.3.6 does not seem to be optimal.

Also it is interesting to ask a general version of Problem 1.3.5: for any integer r ∈ [3, k−1],

find a k-partition V1, ...,Vk that minimizes max{e(Vi1 ∪ .... ∪ Vir ) : 1 ≤ i1 < i2 < ... < ir ≤
k}. In Chapter 3, we further show that Conjecture 1.3.7 holds for dense graphs as well

as asymptotically for k = 3, 4, 5; to the best of our knowledge, Conjecture 1.3.7 is still

standing in general.

Conjecture 1.3.10 is open for r ≥ 4. In fact, Bollobás and Scott made an asymptotic

version of Conjecture 1.3.10: for integers r, k ≥ 2, every r-uniform hypergraph with m

edges has a vertex-partition into k sets, each of which meets at least (1+o(1))(1−(1−1/k)r)m

edges. Note that, this bound is the expected number of edges meeting each set in a random

k-partition. For r = k = 3, the bound becomes 19m/27 + o(m). One of the reasons why

our proof does not give a closer bound to 19/27 is that in Lemma 4.2.1, we can not get a

smaller bound than 0.35 for (i) of Lemma 4.2.1.
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