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The main goals of this research project were the design, fabrication and modeling of temperature-
compensated, high-Q bulk-mode micro- and nano-electromechanical resonators with integrated 
transducers with resonant frequencies into the UHF frequency range. The main results achieved to date 
are summarized below. 

1. Analytical and numerical models of SiBARs 

Much research activity in recent years has been directed at the development of bulk acoustic resonators 
that are compatible with standard integrated circuit technologies. In this respect, capacitive resonators 
[1–3] offer a particularly attractive option, since they can be made entirely of materials that are used 
routinely in IC fabrication processes, resulting in significant advantages in terms of ease of integration 
and cost savings. 

Disk resonators were among the first examples of devices of this type [1], but more recently width-
extensional-mode resonators based on an alternative, rectangular-bar geometry were demonstrated [2][3]. 
In this report, resonators of this type will be referred to as silicon bulk acoustic resonators, or SiBARs. 
The basic structure of a SiBAR is schematically shown in Fig. 1: the resonating bar element is placed 
between two electrodes, supported by two thin tethers. A DC polarization voltage applied between the 
resonator and the electrodes generates an electrostatic field in the capacitive gaps. When an AC voltage is 
applied to the drive electrode, the electrostatic force applied to the corresponding face of the resonator 
induces an acoustic wave that propagates through the bar. Small changes in the size of the capacitive gap 
on the other side of the device induce a voltage on the sense electrode, whose amplitude peaks near the 
mechanical resonant frequencies of the bar. 

SiBARs offer several potential advantages over their disk-shaped counterparts, the most important of 
which is that the electrostatic transduction area can be increased without changing the main frequency-
setting dimension, resulting in significantly lower motional resistance while maintaining high Q values 
[3]. 

While the behavior of SiBARs is well understood in broad, qualitative terms, a major obstacle to the 
design of high performance devices is a lack of sufficiently accurate analytical or numer ical models. For 
example, prior to this research work there was no quantitative analysis of how exactly the dimensions of a 
SiBAR affect its insertion loss. Even the computation of the resonant frequencies was based on 

approximate formulae that can be quite 
inaccurate, especially in the case of an 
anisotropic material such as single-crystal 
silicon. 

Under this research project we developed two 
new SiBAR models, one analytical and the other 
numerical, that are significantly more accurate 
than previously available models. The analytical 
model is obtained from an approximate solution 
to the linear elastodynamics equations that 
satisfies the boundary conditions imposed by the 
SiBAR geometry. The mathematical details of 
this derivation are omitted from this report, but 
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Figure 1: Structure of a SiBAR. 
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can be found in [4]. In the end, the analytical model yields a relation between v, the propagation velocity 

of elastic waves inside the SiBAR, and the ratio  = th /z, where th is the thickness of the SiBAR (see 

Fig. 1) and z is the elastic wavelength. This relation defines a function v = v() that has multiple 

branches. To each point (,v) that lies on a branch of this function there corresponds an acoustic wave 
that propagates across the resonator. 

Figure 2 shows the graph of v() for single-
crystal silicon, when the x and z reference axes 

are aligned with the and 01̄1 and 011 
crystallographic directions, and the y axis with 

the 100 direction. Only the first four of 

infinitely many branches of v(), or dispersion 
curves, are shown in the figure. It should be 
pointed out that those curves depend only on the 
properties of the material, and not on the 
geometry of the resonator. 

Once v() has been obtained, it is straightforward 
to relate it to the resonant frequencies of a 
resonator of given dimensions through the 
following relationship 

 
where nz is the order of the resonant mode and W is the resonator width (see Fig. 1). Therefore the 

relationship between the resonator dimensions and its resonant frequencies can be obtained from v() 

simply by changing the scales on the v and  axes. 

 To complement to the analytical model described above, we also developed a SiBAR model for the 
ANSYS simulator that accounts for both the finite length of the resonator and the electromechanical 
transduction in the capacitive gaps, which is an integral part of the device behavior. 

The orthotropic SOLID95 model is used for the resonating bar. Electromechanical transduction is 
modeled with two arrays of TRANS126 elements generated by the EMTGEN macro after the bar has 
been meshed. A number of resistors and capacitors model the test setup used for resonator testing and 
characterization [3]. The equivalent schematic diagram of the complete ANSYS model is shown in Fig. 3: 
Cs and Cd model the gap capacitances, Cps and Cpd the parasitic pad capacitances, and RS and RL the 
internal resistances of the test instruments. 

Each simulation of the ANSYS model consists of 
a static analysis, which accounts for the effect of 
the DC polarization voltage, followed by a 
harmonic analysis. The simulation results include 
the values of all the node voltages, which makes 
it possible to generate plots of the voltage gain Av 
= vout / vin over the given range of frequencies. 
Many parameters related to the resonator 

performance can then be evaluated based on the location and magnitude of the peaks in the graph of |Av|, 
including the effects of the resonator dimensions, the polarization voltage and the magnitude of the 
capacitive gaps not only on the resonant frequency, but also on the insertion loss. 
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Figure 2: Propagation velocity of acoustic waves along 

the 011 crystallographic direction in a (100) silicon 

wafer (c22 = 165.7, c33 = 194.4, c23 = 63.9, c44 = 79.6 

GPa). 
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Figure 3: Equivalent circuit of the ANSYS model, 

including test setup. 
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To illustrate the model‟s capabilities, we present the results of the simulations of a set of SiBARs having 

the same length (400 m) and width (40 m), but varying thickness. The thickness values were chosen so 
that the main resonant peak would fall on the first dispersion curve of Fig. 2. Figure 4 compares the 
values of the resonant frequency obtained from the ANSYS simulations with those predicted by the 
analytical model: it can be seen that the two models are in excellent agreement. 

The plot of the simulated values of |Av| for the same set of SiBARs is shown in Fig. 5. As can be seen in 
the figure, at first the magnitude of the voltage gain increases with the thickness of the device, because of 
the corresponding increase in the capacitive transduction area. Beyond a certain point, however, further 
increases in the thickness actually cause the voltage gain to decrease. This phenomenon can be explained, 
at least in part, by a decrease in the efficiency of the electrostatic transduction in the capacitive gaps due 
to deterioration of the mode shape [5]. 

Both models were validated against measurements 
taken on SiBARs of various dimensions fabricated in 
10 m thick SOI. Device definition includes sub-
micron trench formation using DRIE, followed by 3 

m wide peripheral trench etching, and HF release. A 
SEM micrograph of a sample device fabricated with 
this process is shown in Fig. 6. Table I compares the 
values of the resonant frequencies predicted by both 
models with those obtained from device measurements. 
The table shows also the relative error incurred when 
the approximate formula 



E

W

n
f z

2
  (1) 

is used to estimate the resonant frequency of the 
SiBAR [3]. In all models, the value of W was set equal 

to the measured width of the device, so that the comparison would not be affected by process variations. 
In (1), the value of E was set to 169 GPa. It is readily seen that the values of the resonant frequencies 
predicted by the models described in this paper are substantially more accurate than those given by (1), 

and that the error associated with the latter formula grows as the ratio  = th /z = nz th /2W increases. This 
is consistent with the relationship between resonant frequency and SiBAR thickness predicted by both 

  

Figure 4: Resonant frequency vs. SiBAR thickness. 
Figure 5: Plot of voltage gain vs. SiBAR thickness 

obtained from ANSYS simulations. 
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Figure 6: SEM view of a SiBAR fabricated in 10m 

thick SOI with a capacitive gap of 300 nm. 
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models (see Figs. 2 and 4), which show a gradual decrease in the resonant frequency of the device as its 
thickness increases. 

2. Effect of phonon interactions on limiting the fQ product of micromechanical resonators 

Several dissipative mechanisms limit the Q of an electromechanical resonator [3][6] [7][8]. Among those, 
some can be minimized and even eliminated through proper design (e.g. clamping loss [8]). However, 
some energy dissipation mechanisms are intrins ic to the resonating material. The “intrinsic Q” of a 
resonator is defined as 



Q  2
Energy stored

Energy dissipated per cycle of oscillation
 (2) 

For an acoustic wave propagating in solids, the sound abortion coefficient )( , defined as [9] 



() 
1

2

Mean energy dissipated

 Energy flux in the wave
 (3) 

is a measurable quantity and describes the variation in the wave amplitude with propagation distance. 

Therefore, by definition Q and )(  are related through 

aV
Q

)(2
2




  (4) 

 

where Va is the wave velocity and   is the angular resonance frequency. A figure of merit for 
micromechanical resonators is the fQ product. Using (4), we have 

aV
fQ

)(2

2




  (5) 

 
The fundamental intrinsic dissipation mechanisms limiting the fQ product of resonators consist of 
thermoelastic, phonon-electron, and phonon-phonon interactions (see Table II). Among these, the 
phonon-phonon dissipation is the dominant intrinsic loss mechanism in semiconducting and insulating 
resonators at room temperature. In our research we focused on the phonon-phonon dissipations and 
showed that at room temperature, the fQ product of a micromechanical resonator due to this intrinsic 
dissipation mechanism is frequency dependent. 

Dissipation due to phonon-phonon interactions  

Two different approaches have been taken to describe the physics of ultrasonic attenuation due to the 
interaction of an acoustic wave with thermal phonons: 

Table I: Computed and measured resonant frequencies of SiBARs 

Length 

 (m)  

Width 

(drawn) 

(m) 

Width 

(meas.) 

(m) 

Mode 

order 

(nz) 

Res. freq. 

(meas.) 

(MHz) 

Analytical model ANSYS model Equation (1) 

Freq. 

(MHz) 

Error 

(%) 

Freq. 

(MHz) 

Error 

(%) 

Freq. 

(MHz) 

Error 

(%) 

310 40 39.97 
1 106.308 106.34 0.03 106.23 -0.07 106.5 0.18 

3 299.082 297.92 -0.40 297.85 -0.41 319.61 6.86 

400 40 39.86 1 106.5 106.6 0.09 106.59 0.08 106.8 0.28 

216 27 26.94 1 157.064 156.84 -0.14 156.86 -0.13 158.1 0.66 

270 27 26.96 1 157.062 156.73 -0.21 156.74 -0.20 157.9 0.53 

240 24 23.91 1 176.452 176.12 -0.19 176.17 -0.16 178.1 0.93 

200 20 19.90 1 210.628 209.97 -0.31 210.06 -0.27 214 1.6 

 



 5 

a) In the approach that was first introduced by Akheiser [10], the sound wave is regarded as a 
macroscopic strain field in the crystal.  Since the frequency of thermal phonons depends on the 
strain, the thermal equilibrium is disturbed [7], leading to ballistic transport of phonons between 
hot and cold regions (as opposed to the diffusive transport of heat in the thermoelastic 
dissipation).  The process of restoring the thermal equilibrium to the phonon gas is accompanied 
by dissipation of energy from the acoustic wave. The response of the phonon system to the 
acoustic wave is calculated by means of the phonon Boltzmann equation [11]. 

b) An alternative approach was given by Landau and Rumer [12]. Here, the acoustic wave is 
regarded as a parallel beam of low-energy phonons. Because of an-harmonic terms in the 
Hamiltonian of the crystal, interactions between different modes are possible and the rate at 
which the acoustic phonons are scattered is calculated by the perturbation theory [13]. 

Both approaches are valid, subject to some assumptions on the wavelength of the propagating acoustic 
wave and on the life time of thermal phonons (which depends on the temperature of the material). In our 
research we focused on the nature of the acoustic attenuation at room temperature (300 ºK) and 
considered only the frequency dependency of phonon-phonon dissipation. 

Akheiser Regime: If the acoustic wavelength (λ) is considerably larger than the mean free path of 
phonons (ω<<1/τ), we can assume that the acoustic wave is interacting with the whole ensemble of 
thermal phonons. Therefore, locally changing the phonon frequencies and perturbing the phonon 
distribution function away from its equilibrium Planck form. This range (ω<<1/τ) is known as the 
Akheiser regime. In the Akheiser regime, the wave equation can be formulated based on the modified 
Hooke‟s law, proposed by Zener [14], and the second law of Newton as follows: 

Table II: Simplified expressions for α() and f.Q (: acoustic angular frequency, ρ: density, Va: acoustic 
velocity, κ: thermal conductivity, β: thermal expansion coefficient, σ: electrical conductivity, me: electron mass, 

εF: Fermi energy, e: electron charge, Cv: volumetric heat capacity, T: absolute temperature, γ: Grüneisen 

parameter, h: Planck constant, and K: Boltzmann constant). 

 Thermoelastic 

Dissipation 

Phonon-electron 

Dissipation 

Phonon-phonon Dissipation 
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where cR and cU are the relaxed and un-relaxed elastic stiffness constants,   is the effective viscosity 

of the acoustic material, and V is the velocity.  Assuming a plane wave solution 
)( kztjeV  
and 

considering the acoustic absorption, we have: )( jk  . In all practical cases )(  is very 

small compared to   and ω [10]. Therefore: 

,a
R V

c





 (7) 



() 
 2   (cU  cR )

2 Va  cU  cR  
(8) 

For longitudinal acoustic waves in Akheiser regime, the acoustic attenuation is proportional to ω
2
, 

hence the fQPhP product is constant (see eq. (5)). For transverse waves in the Akheiser range, )(  is 

theoretically proportional to ω
1.75

 [16]. Therefore, fQPhP has a slight frequency dependency (fQPhP 
ω

0.25
).  A dependence of this kind has been observed in many crystals [11], and may be due to the 

presence of impurities, which influences heavily the attenuation in transverse acoustic waves but may 
affect longitudinal waves only slightly [17]. 

Landau-Rumer Regime: When λ is less than the phonon mean free path, the acoustic quanta 
interact with individual lattice phonons. In the Landau-Rumer regime (ω>>1/τ), acoustic attenuation 
is mainly due to three-phonon interactions and can be shown to be linearly proportional to ω [12]. 
Therefore, the fQ product will not be constant but will increase linearly with ω (Table II). 

Landau-Rumer Effect at Room Temperature : The transition from Akheiser to Landau-Rumer 
regime occurs at ωτ=1/τ, which can be estimated as 




n

VC Dv

3

2

  











333

213

tlD VVV
 (9) 

where VD, Vl,, and Vt are the mean Debye, longitudinal and transverse velocities, respectively. We 
define n as a correction factor, which is close to 1 for transverse waves. The reason for this is that for 
transverse sound waves τ is usually assumed to be close to the thermal relaxation time τC. For 
longitudinal waves, the direct interaction with thermal phonons is forbidden and therefore, τ becomes 
greater (n is close to 2). 

The condition ω>>1/τ is met more easily at low temperatures, as τ increases rapidly with falling 
temperature [17]. At room temperature, for most semiconductors, ωτ falls in the GHz range (1-20 GHz) 
[18]. Interestingly, for an acoustic wave propagating in <100> direction in silicon, τ is an order of 
magnitude larger than that of the other directions.  This has been experimentally verified in [17], where 
the value of τ was extracted from the kink in the measured frequency-dependent acoustic attenuation 

curve. The significance of this effect is pronounced at frequencies above   /12  f , where fQPhP 

increases with frequency (Fig. 7). For silicon in <100> direction, f is ~700 MHz. 

To understand the reason for the relatively large phonon relaxation time of longitudinal waves 
propagating in <100> direction in silicon, one has to rely on the an-harmonic phonon decay model of 
Landau and Rumer, which accounts only for the types of phonon collisions that are allowed by the 
crystalline anisotropy [9],[19]. In <100> direction in silicon, out of all allowed interactions, only those 
with transverse phonons contribute to absorption (or acoustic attenuation). The absorption of the 
longitudinal acoustic wave in <110> direction, on the other hand, is governed by its interaction with 
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longitudinal thermal phonons only [17]. Hence, the relaxation time of thermal phonons depends on its 
interaction with transverse phonons in <100> direction, and with longitudinal phonons in <110> 
direction. The life time of transverse thermal phonons decreases less rapidly with increasing temperature 
(Fig. 8). Therefore, at room temperature, τ in <100> direction in silicon remains larger, while in other 
directions, τ decreases significantly. 

To demonstrate the significance of phonon-phonon interactions on limiting the fQ product of a 
semiconducting or insulating micromechanical resonator, fQPhP of <100> silicon is compared with that of 
diamond, AlN, and SiC (shown in Fig. 9). At f  > 3 GHz, fQ of <100> Si becomes comparable to that of 
SiC, which makes the realization of ultra-high-frequency high-Q resonators in silicon possible. 

The equation for ωτ (9) also suggests that 
high thermal conductivity materials such as 
diamond experience the Landau-Rumer 
effect at low frequencies. The measured 

data for )(  of diamond [21] as well as 

the analytical calculation of ωτ presented in 
[22] support this statement (see Fig. 9). 

 
f (Hz) 

 
          Temperature (ºK) 

Figure 7. Comparison of fQPhP for acoustic waves 

propagating in different crystallographic directions in 

silicon. The value of  /1  is extracted from the data for

 presented in [20]. 

Figure 8. Temperature dependence of the acoustic 

phonon relaxation time (1) longitudinal in <100> 

and (2) longitudinal in <110> (figure reproduced 

from [12]) 
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Figure 9. Comparison of f.QPhP of <100> Si with SiC, AlN, 

Quartz, and diamond. The highest f.Q product reported for Si 

and diamond resonators is presented in [18] and [19]. 
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3. Post-fabrication electrical trimming of silicon bulk acoustic resonators using Joule -heating 

Silicon micromechanical resonators have been gaining importance in recent years owing to their small 
form factor, ease of integration and high fQ products. However, the resonance frequency of silicon 
micromechanical resonators is dependent on the physical dimensions of the resonating structure, which 
causes it to deviate from its  designed target value because of variations in photolithography, etching and 
film thickness. It can be shown that 2 µm variations in the thickness of an optimized 100 MHz width-
extensional-mode SiBAR can cause 0.5% variation in its center frequency [4], while lithographic 
variations of ±0.1 µm in the width of the resonator can cause additional 0.5% frequency variations. 

Electrostatic voltage tuning of high frequency SiBARs is inefficient due to the large stiffness of the 
device [3] and heat-induced continuous current tuning of the device consumes large power [25]. In 
addition, these tuning techniques are limited in their tuning range and cannot be used to adjust the 
resonance frequency in case of large offsets (~1 %), which are quite typical in microfabrication. It is also 
well known that the frequency of mechanical resonators can be shifted downwards by deposition of a 
mass loading layer such as a metal on the surface of the resonating structure [26]. However, the thickness 
of the mass loading layer cannot be accurately controlled, and is subject to the limitations of the metal 
evaporation systems. Though laser trimming [27] has been shown to shift the resonance frequency of 
silicon resonators downwards or upwards, the trimming is not precise as it is difficult to control the 
amount of material deposited or removed by the laser. This calls for an efficient post-fabrication trimming 
technique which can adjust the resonance frequency precisely to compensate for all possible inaccuracies 
that stem from the microfabrication processes. 

We developed a trimming process whereby a thin-film layer of gold is evaporated and patterned on the 
surface of a SiBAR during its fabrication. After the resonator is packaged, the SiBAR is heated up by 
passing a relatively large current through its resonating body during an electrical calibration step, as 
illustrated in Fig. 10. High current densities due to the small cross-section area of the SiBAR create 
enough Joule heating to enable the diffusion of gold into the bulk of the silicon resonator. The advantage 
of gold over other metals is that gold diffuses into silicon at a much lower eutectic temperature of the 
silicon-gold binary system (360˚C), which is very low compared to the individual melting points of gold 
(1064˚C) and silicon (1414˚C).  

To calculate the temperature of a 100 MHz SiBAR for various durations of Joule heating with a given 
cross section area (41.5 µm × 20 µm) and resistivity (0.01 Ω-cm), the electro-thermal model based on the 
conservation of energy was used [28][29]. As discussed later, a silicon beam of such dimensions can be 
heated to the eutectic temperature in less than five minutes by using currents of 600 mA or more. 
However, the maximum value of the current in the case of a SiBAR is limited by the small cross-section 
area of its two narrow supports (illustrated in Figure 10(a)). These supports are designed to be as narrow 
as possible to reduce acoustic loss and achieve high Q, which causes increased current densities at the 

  

Figure 10: Schematic of electrical trimming of SiBAR using Joule heating; (a) Mass-loaded SiBAR; (b) Joule 

heating by passing a current through the body of the resonator; (c) Diffusion of gold into silicon; (d) Gold 

diffused SiBAR at room temperature shows an upward shift in frequency. 
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support regions leading to higher temperatures that can melt the supports. As a proof of concept, an 
optimum current of 30 mA was found to create the required Joule heating for gold diffusion without 
affecting the performance of the SiBAR under test and within reasonable lengths of time. The glow color 
due to Joule heating can be seen by placing the SiBAR under an optical microscope, as shown in Fig. 11.  
It can be seen that the glow is maximum at the support regions indicating that they heat up the most, as 
expected. The supports can be made wider to pass higher current to reduce the duration of Joule heating, 
but at the cost of reducing the Q factor. 

About one hour of Joule heating heats up the SiBAR to 363˚C, which will favor the formation of the 
silicon-gold eutectic. The thin mass-loading gold layer will diffuse into the bulk of the silicon at this 
temperature to form a eutectic alloy which has 19% silicon by atomic weight [30]. As gold atoms diffuse 
into silicon, they initially form a metastable gold-silicide [31][32], wherein gold gets into the silicon 
interstitials, breaking Si-Si bonds and creating voids owing to its relatively larger atomic size. Upon 
further heating, supersaturation occurs followed by decomposition of the gold-silicide to a more stable 
polysilicon with intermediate voids and Au-Si bonds. The Au-Si bonds are stronger than the Si-Si bonds 
they replace [33]. As a result, the gold diffusion increases the stiffness (E) of the resonating silicon 
structure upon cooling. However, the voids introduced in silicon due to gold diffusion reduce its density 
(ρ). These collectively increase the acoustic velocity of the resonating structure which corresponds to a 
higher resonance frequency. Thus, the SiBAR can be permanently trimmed to a desired value with mass 
loading by gold followed by an electrical calibration step. With further Joule heating, the structure 
stabilizes more until no metastable structure exists. 

The fabrication process of the SiBAR is similar to the one reported in [3]. Trenches are etched into the 
device layer of a 20 µm thick SOI using an oxide mask (Fig. 12(a)). These trenches define the dimensions 
of the SiBAR and its supports. The 100 MHz SiBARs are 41.5 µm wide and 415 µm long. The supports 
are 3 µm wide and 6 µm long. The capacitive gap of the SiBAR is defined by the thickness of the grown 
thermal oxide. In this case, a capacitive gap of 100 nm is obtained.  

The trenches are refilled with doped LPCVD polysilicon and are etched back to the surface. The oxide on 
the surface is patterned (Fig. 12(b)) to define the shape of the polarization voltage (Vp) pads. Input/Output 
pads are patterned through a second doped LPCVD polysilicon layer (Fig. 12(c)), and the remaining 
silicon is etched back to the BOX layer of the SOI to isolate input/output and Vp pads. Gold is evaporated 
and patterned (Fig. 12(d)) on the SiBAR surface using a lift-off process. Gold is deposited on silicon 

 
 

Figure 11: Optical images of Joule heating of the 

SiBAR at 30 mA after (a) 1 hour (b) 2 hours 

(c) 3 hours (d) 4 hours. 

Figure 12: Fabrication process flow of mass-loaded 

SiBAR. 
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without any adhesive layer as that will hinder the gold diffusion into the SiBAR. Finally, the device is 
released in hydrofluoric acid. 

ANSYS predicted a 1 MHz downshift in frequency for a blanket deposition of 150 nm thick gold layer on 
the entire surface of the SiBAR, referred to in this work as 100% mass loading. Every 10% mass loading 
results in a 100 kHz downward shift in frequency. The SEM images of the 40% and 80% mass-loaded 
SiBARs are shown in Figs. 13 and 14. The different pattern densities of gold can be clearly seen. 

Figure 15 shows the measured frequencies of various mass-loaded SiBARs before and after trimming via 
Joule heating. All devices were tested in vacuum and a DC current of 30mA was used for post-fabrication 
trimming of the resonators. 

In Fig. 15, the curve labeled as „Pre-Joule-Heating‟ shows the downward shift in frequency due to the 
mass-loading with various pattern densities of 150 nm thick gold. The 100% mass-loading offers a 
downward shift of 996.2 kHz in resonance frequency which is in very good agreement with ANSYS 
simulations. At a polarization voltage of 15 V, the unloaded SiBAR has a Q of 48,000. The mass loading 
lowers the Q to 23,000 in 40% and to 18,000 in 100% mass-loaded devices. 

One hour of Joule heating at 30 mA shifts up the 40% mass loaded SiBAR with smaller islands of gold by 
240 kHz and 80% mass loaded SiBAR with larger islands of gold by 17 kHz. This suggests that the 
localized heating of the SiBAR diffuses smaller islands of gold more readily than larger islands thereby 
showing larger frequency shifts than the later. 

It can also be seen that, for a given mass-loaded SiBAR, the percentage increase in resonance frequency 
decreases with increasing durations of Joule heating. As explained earlier, the diffusion occurs mainly in 
the first hour of Joule heating, when the eutectic temperature is reached. Subsequent heating leads to a 
more stable resonating structure which will correspond to smaller frequency shifts. Hence, four hours of 
Joule heating shifts up the 40% and 80% mass loaded SiBAR by only 430 kHz and 35 kHz respectively. 
A shift of 430 kHz over four hours corresponds to a trimming rate of approximately 2 kHz per minute, 
which makes very precise and controlled electrical trimming possible. 

The 40% mass loaded SiBAR is designed to give a resonance frequency of 99.6 MHz (i.e., a downshift of 
400 kHz from 100 MHz).  But it can be seen that variations in the SiBAR fabrication and also in the 
thickness of the deposited gold offsets the resonance frequency to 99.46 MHz. The electrical trimming 
time needed to shift up this frequency to the designed 99.6 MHz can be calculated to be 35 minutes from 
Fig. 15. Thus, all variations of the SiBAR fabrication can be compensated successfully.  From Fig. 15 it 
can also be seen that the 40% mass loaded SiBAR exceeds the resonance frequency of unloaded SiBAR 
with longer hours of Joule heating.  This suggests the formation of a structure with stronger Au-Si bonds 
and less dense packing with voids, to provide a higher acoustic velocity than crystalline silicon.  

After electrical trimming, these devices were taken through temperature cycling by heating them in an 
oven to 85˚C for 6 hours and back to room temperature. No frequency hysteresis was observed, 

  

Figure 13: A SEM image of a 40% mass-loaded 

SiBAR. 
Figure 14: A SEM image of a 80% mass-loaded 

SiBAR. 

 



 11 

confirming the temperature stability of the trimmed resonator. Although mass loading reduces the Q of a 
SiBAR from its unloaded pure-silicon value, Fig. 16 shows that the Q increases slightly with longer hours 
of Joule heating. 

4. Temperature compensation via degenerate doping and electromigration 

Silicon micromechanical resonators rely on the propagation of longitudinal or shear elastic waves through 
the resonating silicon bulk. Such an acoustic wave propagating through the silicon bulk acoustic resonator 
distorts the energy valleys in k-space in the conduction band of silicon [34] creating an electron flow from 
higher to lower energy valleys (the same principle applies to holes), thereby varying the total electronic 
energy of the system. This variation is a function of temperature and manifests itself as a corresponding 
change in the total elastic energy of the system which gives rise to a TCF in silicon resonators.  At 
degenerate levels of doping, the dopant energy levels could potentially be filled with free carriers, which 
shield the acoustic wafer from k-space contours of the conduction bands [35] thereby providing TCF 
compensation. We have demonstrated TCF compensation in p-type silicon resonators using degenerate 
boron doping and boron-assisted aluminum doping. 

Silicon bulk acoustic resonators (SiBAR) were fabricated using the HARPSS process [3] on a 10 µm 
thick boron-doped silicon wafer as purchased from the vendor, with a starting resistivity of ~10

-2
 Ω-cm 

and a TCF of 29 ppm/˚C. The resistivity of silicon was measured using Signatone Four Point probe 
station. The resistivity of silicon was reduced down to ~10

-3
 Ω-cm by repeated doping using solid boron 

sources. For further reduction in resistivity to obtain degenerate doping levels, repeated doping using 
liquid spin-on boron dopant sources were needed. 

Table III illustrates the boron doping recipes 
using solid and liquid boron sources. The 
silicon wafer with the starting resistivity of 
~10

-2
 Ω-cm was first doped using solid boron 

disks as the diffusion source in a Tystar 
furnace. Every cycle of doping involved 3 
hours of doping at 1050 ˚C followed by 5 
hours of annealing at 1100 ˚C in nitrogen 
ambient and HF dip to remove the 
borosilicate glass (BSG). After five such 

Table III: Comparison of Boron doping recipe using solid 

and liquid boron sources 

Boron Dopant 

Type 

Dope 

Recipe 

Anneal 

Recipe 

HF 

dip 

Solid Boron 

Disks 

3 hours in furnace at 

1050 ˚C 

5 hours at 

1100 ˚C in 

N2 

-Yes- 

Liquid Boron 

Spin-on-

Dopants 

 

Spin dopant at 800 

rpm for 40s / Bake at  

200 ˚C for 3 min.  

8 hours at 

1100 ˚C in 

N2 

-Yes- 

 
 

Figure 15: Measured post-fabrication electrical 

trimming of the SiBAR using Joule heating. 
Figure 16: Measured increase in the Q of the mass 

loaded SiBAR versus duration of Joule heating. 
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cycles, the silicon resistivity was reduced to ~10
-3

 Ω-cm and a corresponding TCF of 18.9 ppm/˚C was 
measured (Fig. 17). 

As seen from the square of the correlation co-efficient of linearity (R
2
) reported in Fig. 17, the linearity of 

the TCF curve is compromised due to the boron doping. For further reduction of silicon resistivity, Spin-
on-Dopant (SOD) boron sources [Futurrex Inc., BDC1-2000] were used. Every cycle of doping involved 
spinning of liquid boron dopants at 800 rpm for 40 seconds and baking at 200 ˚C to evaporate solvents 
followed by 8 hours of annealing at 1100 ˚C in nitrogen ambient and HF dip to remove the borosilicate 
glass (BSG). After six such cycles, the silicon resistivity was further reduced to 10

-4 
Ω-cm (Fig. 18). A 

reduction in TCF from 16.7 ppm/˚C at 10
-3 

Ω-cm to 10.5 ppm/˚C  at 10
-4 

Ω-cm was measured (Fig. 19). 
The increase in resonance frequency after doping is due to the increase in Young‟s modulus of silicon and 
is indicative of degenerative doping [37]. The maximum thickness of the heavily boron doped layer that 
can be achieved using SOD is limited to 7~8 µm [36] which leads to a non-uniform doping profile in 
SiBARs thicker than 8 µm. However, a 5 µm thick SiBAR with a resistivity of ~10

-4
 Ω-cm measured a 

much lower TCF of 3.56 ppm/˚C (Fig. 20) indicating a uniform doping profile along its thickness. Further 

repetition of the Spin-on-Dope/Anneal cycles reduces the TCF to 1.5 ppm/˚C and not any lower (Fig. 
21). 

It is known [38] that the frequency variation with temperature in silicon micromechanical resonators is 
due both to the temperature coefficient of Young‟s modulus and to the linear thermal expansion 
coefficient of the resonator material. The first effect is dominant, while the second contributes only ~1.5 

 
 

Figure 17: TCF measurements before (10
-2

 Ω-cm) and 

after (10
-3

 Ω-cm) boron doping (using solid boron 

sources) on a 10 µm thick SiBAR. 

Figure 18: Four-point probe measurement of reduction 

in resistivity from 10
-3

 Ω-cm to 10
-4

 Ω-cm for every 

repetition of Spin-On-Dope/Anneal processes 

 
 

Figure 19: TCF Measurements before (10
-3

 Ω-cm) 

and after (10
-4

 Ω-cm) boron doping (using liquid 

boron sources) on a 10 µm thick SiBAR 

Figure 20: TCF measurements o f a 5 µm thick SiBAR 

after doping with liquid boron sources (10
-4

 Ω-cm), 

showing a TCF of -3.56 ppm/°C 
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ppm/˚C to the total TCF value. This is also verified by setting the thermal coefficient of expansion (TCE) 
value of the orthotropic silicon model in ANSYS to 0 while simulating the TCF of the SiBAR. Such an 

ANSYS simulation predicts a TCF value of 1.2 ppm/˚C which is in very close agreement with the lowest 
measured TCF values via degenerate boron doping. Hence, it is inferred that degenerate boron doping 
compensates for all of the frequency variation contributed by the temperature coefficient of Young‟s 

modulus and the measured residual TCF of 1.5 ppm/˚C stems from the linear thermal expansion 

coefficient of the resonating doped-silicon material. Thus, an overall reduction in TCF from 29 ppm/˚C 
to 1.5 ppm/˚C can be achieved in silicon micromechanical resonators using degenerate boron doping. 
However, the long hours of annealing required for achieving degenerate boron doping and the limited 
thickness of such achievable heavily doped boron layers are some of the drawbacks of this technique.  

Boron diffuses as an interstitial dopant [39], which demands for longer hours of annealing to become 
electrically active. On the other hand, aluminum (a p-type dopant) becomes readily electrically active by 
diffusion via self-interstitial mechanism [40]. Aluminum can be thermomigrated against a temperature 
gradient into hundreds of microns thick silicon within few tens of minutes [41]. 

Additionally, the uniformity and speed of aluminum thermomigration is enhanced by the presence of 
boron atoms in silicon [40]. Thus, boron-assisted aluminum thermomigration is a faster alternative to 
degenerate boron doping for TCF reduction.  This was investigated by evaporating a thin layer of 

 

 

Figure 21: Saturation of TCF at ~-1.5 ppm/˚C of the 5 

µm thick SiBAR after 7 repetitions of Spin-on-

Dope/Anneal processes. 

Figure 22: Schematic of aluminum thermomigration 

into SiBAR for TCF reduction. 

  

Figure 23: TCF Measurements of a 20 µm thick [10
-3

 

Ω-cm boron-doped] SiBAR before and after thermo-

migration with 500 Å of aluminum @ 120 mA for 10 

minutes 

Figure 24: TCF Measurements of a 20 µm thick [10
-4

 

Ω-cm boron-doped] SiBAR before and after thermo-

migration with 500 Å of aluminum at 120 mA for 10 

minutes 
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aluminum onto the SiBAR and the narrow support elements are Joule-heated [42] by passing a current 
through the SiBAR resonator element (Fig. 22). Aluminum on top of the relatively cold SiBAR diffuses 
through the silicon towards the hot support elements thereby doping it. 500 Å of aluminum was 
evaporated onto a boron-doped 20 µm thick SiBAR with a starting resistivity of ~10

-3
 Ω-cm. 

Thermomigration was performed by passing  a current of 120 mA through the SiBAR for 10 minutes after 

which the TCF reduces from 22.13 ppm/˚C to -7.93 ppm/˚C (Fig. 23). A similar thermomigration 
performed on the degenerate boron-doped (~ 10

-4
 Ω-cm) 20 µm thick SiBAR yields a TCF as low as 

2.72 ppm/˚C („After‟ curve in Fig. 24). The „Before‟ curve in Fig. 24 shows an anomalous behavior due 
to the non-uniform boron doping profile along the 20 µm thickness of the SiBAR. 

Such low-TCF is obtained via boron-assisted aluminum thermomigration without compromising on the 
quality factor (Q) of the resonator which is measured to be 28000 in vacuum [43]. The SEM images of 
this SiBAR before and after thermomigration are shown in Fig. 25. 

5. Temperature compensation via resonator geometry engineering 

The momentary strain produced by the propagation of an acoustic wave through silicon distorts and splits 
the equivalent energy surfaces of the electronic band structure [34]. As a consequence, free charge 
carriers flow towards more energetically favorable energy levels thereby shifting the Fermi level of the 
semiconductor. The amount of free charge carrier flow and the resulting shift in Fermi level (and thereby 
the total electronic energy) increases with temperature. The principle of conservation of energy requires 
that such a temperature dependant change in the electronic energy of the system manifest itself as a 
corresponding temperature dependant change in the elastic energy of the system, which causes a negative 
TCE in silicon. However, by creating a relatively larger strain in the resonating microstructure, the effect 
of strain from the acoustic waves can be made minimal in comparison thereby achieving temperature 
compensation. The introduction of a dopant like boron or aluminum which has an atomic radius smaller 
than silicon, a large shearing strain can be created in the silicon atomic lattice. We have shown that such a 

large stain was sufficient to reduce the TCF to as low as ~1.5 ppm/˚C at a degenerate boron-doped 
silicon resistivity of ~10

-4 
Ω-cm [43]. 

A similar large strain can also be created by introducing shear acoustic waves in the resonator along with 
the longitudinal waves already existing in the width-extensional mode of the SiBAR. By engineering the 
resonator geometry and placement of electrodes, a mixture of both longitudinal and shear waves can be 
actuated wherein the later could be utilized for TCF reduction. Figure 26(a) introduces the Concave 
Silicon Bulk Acoustic Resonator (CBAR) which is realized by curving the long edges of the conventional  

 

Figure 25: SEM images of the SiBAR reported in Fig. 24 (a) before and (b) after thermomigration with 500 Å 

thick aluminum at 120 mA for 10 minutes. The charging up of the SiBAR under the SEM after aluminum 

thermomigration indicates that the aluminum has diffused completely from the surface of the SiBAR into the 

bulk. Wirebond traces are visible in (b) since the same device was used for SEM images. 
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rectangular Silicon Bulk Acoustic Resonator 
(SiBAR) such that the central width remains λ/2 
but has wider flanks on either side. The 
electrodes are designed with the same curvature 
as that of the CBAR The electrostatic force 
applied normal to the curved CBAR surface by 
the electrodes can be resolved into its 
corresponding tensile (FY) and shear force (FX) 
components as illustrated in Fig. 26(a). The 
ensemble of the tensile forces actuates the WEM 
of the CBAR (Fig. 26(b)) whereas the shear 
force elements actuate shear waves that 
contribute to the additional shearing strain in the 
microresonator. Additionally, the flank width, 
when made exactly equal to 3λ/4, acts as a sink 
for the acoustic energy at the resonance 
frequency determined by the central width of 

λ/2. Such a resonator design concentrates the acoustic energy near the central region (Fig. 26(b)) thereby 
minimizing the acoustic loss at the narrow support elements and hence enhancing the Q of the resonator. 

Figure 27 compares the longitudinal and shear strain in a SiBAR and CBAR. Figure 27(a) shows an 
increased longitudinal strain along Y direction in the width-extensional mode of the CBAR compared to 
that of the SiBAR due to the concentration of acoustic energy near the center in a CBAR. However, the 
longitudinal strain along X axis and the shear strain along the XY plane, which are insignificant in the 

 

Figure 26: (a) Schematic and (b) simulated width-

extensional mode of a Concave Silicon Bulk Acoustic 

Resonator (CBAR) 

 

 

  

Figure 27: Simulated longitudinal strain along (a) Y 

and (b) X axes and shear strain along the (c) XY plane 

of a SiBAR vs CBAR.  

Figure 28: SEM image of (a) a Conventional SiBAR 

and (b) a Concave SiBAR (CBAR) with central width 

40 µm (λ/2); flank width = 60 µm (3λ/4);; thickness = 

20 µm and length = 400 µm, fabricated on a ~10
-3

 Ω-

cm silicon wafer 
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SiBAR, are very strongly pronounced in the CBAR structure (Figs. 27(b) and 27(c)). These strain 
components create a larger strain in the actively transduced central region of the CBAR compared to the 
longitudinal strain along the Y axis. The former are responsible for the reduction in TCF of the CBAR 
whereas the later transduces as the output at the electrodes. ANSYS predicts that such a CBAR structure 
offers a reduction in TCF by 13 ppm/˚C compared to that of the SiBAR. 

To demonstrate TCF reduction and Q enhancement, 100 MHz SiBAR and CBAR were fabricated on the 
same boron-doped silicon with a resistivity of ~10

-3
 Ω-cm using the HARPSS process [3] with a 

capacitive gap of 100 nm. Unlike a SiBAR, the drive/sense electrodes are positioned only around the 
actively transduced central region of the CBAR as shown in Fig. 28. As shown in Fig. 29, the TCF of the 

CBAR is measured to be 6.31 ppm/˚C, which is 15 ppm/˚C smaller than a SiBAR fabricated on the same 
wafer. 

Further, the measured response of the CBAR in vacuum shows a Q of 101,000 at 104.92 MHz, which 

makes it the first silicon micromechanical resonator reported with a TCF as low as 6.31 ppm/˚C while 
maintaining an fQ product of over 1.06 × 10

13
 [44]. 

To assess the influence of the ultra-low resistivity substrate on the achieved TCF values, the SiBAR and 
CBAR were also fabricated on a boron-doped wafer with ultra-high resistivity of >1000 Ω-cm. Such a 

CBAR measured a TCF of 20.77 ppm/˚C which was still 12 ppm/˚C lower than the TCF of a SiBAR 
from the same wafer (Fig. 30). This confirms the engineering of the resonator geometry and electrode 
placement as a viable passive technique for achieving TCF compensation in silicon micromechanical 
resonators with a potential for simultaneous Q enhancement. 

As explained in Section 4, aluminum thermomigration provides a faster, more convenient alternative to 
degenerative doping for the purpose of temperature compensation. Aluminum, like boron, is a p-type 
dopant that has a smaller radius than silicon. Therefore, the resulting shearing strain due to aluminum 
thermomigration provides temperature compensation. However, aluminum can be thermomigrated against 
a temperature gradient into hundreds of microns thick silicon within few tens of minutes [41]. 

This was investigated by evaporating 200  Å of aluminum onto the SiBARs fabricated on ~ 10
-2

 Ω-cm 
silicon. The required temperature gradient is created in a furnace by turning off one of the many coil 
heaters. The wafer is positioned in the furnace at the boundary of the hot and cold regions, with the 
aluminum deposited side facing away from the heat. The temperature gradient across the thickness of the 
wafer drives the aluminum to thermomigrate into the resonating silicon bulk. After one hour of 
thermomigration in nitrogen ambient, the residual aluminum on the surface of the resonators was 

 

 

Figure 29: Measured TCF of SiBAR & CBAR 

fabricated on a ~10
-3

Ω-cm wafer . 

Figure 30: Measured TCF of SiBAR & CBAR 

fabricated on a >1000 Ω-cm wafer  
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removed using hydrofluoric acid. The TCF of the SiBAR reduced from 27.8 ppm/˚C to 3.8 ppm/˚C 
(Fig. 31).  

The rapid thermomigration process and the large temperature gradient across the thickness of the devices 
were found to induce stress and lattice damage to the resonating structure. As a result, the Q of the SiBAR 
reduces by an order of magnitude to ~10,000 in vacuum at 100 MHz. However, the inherent high Q of the 
CBARs withstands the lattice damage better than the SiBARs. Thermomigration was performed on the 
CBARs of Fig. 29 with a starting resistivity of ~10

-2
 Ω-cm. The resulting lattice damage is illustrated in 

Fig. 32. Upon thermomigration for 30 minutes, the TCF of the CBAR further reduces from 6.31 ppm/˚C 

to 3.63 ppm/˚C (Fig. 33) with a Q of 40,000 in vacuum which has an fQ of 4 х 10
12

 (Fig. 34). 
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