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Abstract  

Narrow band materials present fundamental difficulties to the analysis 

of electronic structure using independent particle models and energy band 

theory. Correlations effects which depend on the configuration of electrons 

in a process and which reflect the local environment of the participating 

electrons strongly affect the properties and measurable quantities of these 

materials. Such narrow band materials as the 3d transition metal oxides have 

important electrical, optical and catalytic properties and knowledge of the 

oxide properties also provides insights about the corrosion of the metal. 

For these reasons it would be fruitful to provide a thorough investigation 

of correlation effects in these materials. We present a method based on first 

principles which uses our previously developed dielectric response model to 

place correlation in the interacting electron gas and electron interactions 

with the crystal potential on an equal footing. We will apply this method to 

calculations on Ni0 and FeO. We will investigate the effects of localized 

correlation on the band structure, how the excitation of localized electron-

hole and hole-hole pairs affect the electron emission, the properties of 

collective modes such as plasmons in a strong crystal potential, and the loss 

processes an electron undergoes as it interacts with the material. These 

studies will naturally lead to an investigation of corrosion on an atomic 

scale. We will develop procedures to evaluate the important corrosion 

mechanisms, especially vacancy formation and how certain impurities may 

inhibit or promote corrosion. 
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I. 	Introduction  

This proposal represents a continuation of research being conducted under 

Grant No. AFOSR-80-0023. We anticipate no major change in the direction of 

the research during the second year of the grant period and have outlined in 

this proposal only those additions and improvements in the methods necessary 

to accomplish this work. The reader should refer to the original proposal for 

further information on the quantities we investigate. We have made one 

addition to this work which we will explore further in the future and which is 

of vital interest to the Air Force. That is the nature of the corrosion process 

on the iron and nickel surfaces. This study is a natural addition to our 

investigation of the oxide structure. The microscopic theory of the corrosion 

process is quite incomplete, one reason being a lack of understanding of 

microscopic probes of systems with defect and vacancy structures. We will 

discuss how our work can be extended to these systems. 

The great success of the one-electron theory in describing many of the 

electronic properties of materials make it and the concepts of energy band 

theory the starting point for most studies of materials. In this model the 

concept of correlation usually refers to effects beyond those due to the inter-

action of the electrons with their averaged self-consistent field. The averaged 

self-consistent field is most often described in the Restricted Hartree Fock 

(RHF) approximation. 

Most of the approaches used to correlate the band structure ) remain in 

the framework of the one-electron theory. Many times that theory is inadequate 

to describe some very interesting properties of systems. For example, in narrow 

band materials the final state energy of an optically excited electron depends 

on the initial state from which it was excited; this effect is ignored in the 

band theory limit. What one needs is a distinct determination of properties for 
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each many-electron state rather than an average as in the band theory limit. 

In addition the collective excitations of the system, such as plasmons, which 

are most often calculated in an electron gas model, could be strongly affected 

by the periodic lattice potential and could even form plasmon bands. The 

electron energy loss structure and valence band photoemission are likewise 

strongly affected by the localized nature of the holes created by these 

processes. What one needs for the solid-state system is a method which allows 

inclusion of the terms from each configuration which are most important for 

a given property at a given energy without requiring a separate SCF calculation 

or the mixing of a large number of configurations. The dielectric response 

theory , presented in the original proposal and discussed further in this one, 

is such a method which also has the advantage that it automatically chooses the 

most important electron states for a particular excitation from the set given it. 

The narrow band materials we are studying are the transition metal oxides 

Ni0 and FeO. The transition metal oxide group displays a wide range of magnetic, 

electric, optical, and elastic properties. This range of properties allows 

great flexibility in the design of catalysts, optical and electrical devices, 

and in materials applications. The partially filled d-bands are the 

distinguishing feature of transition metal chemistry. These bands are relatively 

narrow, but they are overlapped by the next higher s-band causing a great deal 

of s-d hybridization. On the other hand in some transition metal compounds, 

such as many of the oxides, the bonds are mostly ionic and the highest metallic 

s-band is unoccupied. In this case the highest s-band moves away from the 

partially filled d-band. Then the s-d hybridization is much less and the d-band 

is quite narrow. In fact, the d states for these materials are sufficiently 

localized that configurations with d-electrons uniformly distributed at the ion 

centers have lower energies than those with excess d electrons at a given site 
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due to the extra intraatomic repulsion U in the latter case. These materials, 

which from the band structure ought to be metals or semi-metals, are in fact 

very good insulators called Mott insulators. This significant result cannot 

be obtained from the usual band theory. 

The corrosion of narrow band materials appears to proceed by cation 

transport associated with the defect structure.
2

'
3 

The oxides are usually 

non-stoichiometric and cation deficient. The nature of the vacancy distribution 

and the location of possible impurities significantly affects the diffusion. 

Vacancy clusters which may migrate without dissociating are now thought to 

provide a great deal of the ion transport,
3 but a microscopic theory has yet 

to be developed. 

In the past most theories of corrosion have been phenomenological in nature. 

Experiments commonly deal with quantities such as diffusion rates, neutron 

diffraction, and the thermodynamic properties of the oxide, but there are few 

experiments dealing with the microscopic environment of the migrating cation. 

Recent "atomistic" theories of corrosion ' 3 are now showing the phenomenological 

approach to be inadequate and have revealed the importance of vacancy clusters. 

Experiments such as optical or ultraviolet absorption, electron loss 

spectroscopy, photoemission, and Auger spectroscopy are needed to give important 

information about the local environment of the vacancies. But to understand 

these results detailed calculations of the excitation structure and correlated 

band structure would be needed. In Sec. VII, we will discuss how our methods 

for periodic systems will be extended to defect systems and how this information 

can be obtained. 

In the following sections we will discuss an approach to simplify greatly 

the excitation structure and correlation calculations by converting our 

localized orbitals to Wannier functions. The procedure for fitting the Wannier 



function with an appropriately chosen set of Gaussians is outlined in 

Sec. II. In Sec. V. We discuss how our fitting procedure can also be used 

to fit the charge density and exchange potential in the X-a model so that 

we can calculate the band structure in terms of Gaussians. We can then apply 

the very efficient techniques of quantum chemistry for calculating multi-center 

two electron integrals. The X-a procedure gives good results for band gaps, 

band widths, and densities of states for many systems. It will be a good 

starting point for our calculations which involve localized states and thus 

go beyond the one-electron picture. 



II. An Alternative to Local Orbitals: Wannier Functions  

Up to this point we have done calculations of the polarization response 

matrix n (q,w) and other quantities describing the dynamical response or 

correlation of a system directly in our local orbitals basis set.
1 

The 

matrices necessary to transform these quantities to the appropriate Bloch 

basis are rather complicated. More importantly, the partitioning of the 

basis into occupied and unoccupied sets of bands is not fulfilled for the 

local orbitals since they contribute more or less to all the bands so that, 

for example, the matrix equation for excitations between bands is much larger 

than if the states were partitioned. It would be quite useful for us to deal 

with orbitals which are labelled for particular bands, as the Bloch functions 

are, but which are localized. An easily derived set of such orbitals would be 

1 
a J-- 	k / 	() n .N 	BZ n  

(2.1) 

where N is the number of unit cells and n is the band index. 

The orbitals of Eq. (1) are in fact Wannier functions
4
, and, if the 

Bloch functions are orthonormal, have the property 

4- 4. 
‹f:an

(r-Rn
)Ian

t(r -Rn
,)› 

nnt 6R 
R n h

' 
(2.2) 

It can be shown that the Wannier functions are localized and in the case of 

simple bands decay exponentially at large r. Even though Wannier functions 

have been used extensively in the energy band theory of solids since their 

introduction in 1937, 5 
few quantitative calculations have been made using 

them. Two computational difficulties that arise are that the Wannier 

functions no longer decay exponentially for a hybridized band complex unless 

functions over the entire complex are mixed and that they are orthogonal on 

different sites so that their tails have complicated oscillations. In this 
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section we will show how these difficulties are overcome within the framework 

of a local orbitals basis set so that we can fit the Wannier functions in a 

straightforward manner using a representation of Gaussians. 

The exponential decay for Wannier function of simple bands is related to 

the analyticity of the Bloch functions ink 
 throughout the Brillouin zone.

6 

Since composite bands are multivalued with branch points or cuts, the 

Wannier functions of these bands no longer decay exponentially. However, 

the non-exponentially decaying part of these functions could be cut off at 

large distance and only Bloch waves and energies in small region of k-space 

near the band crossings would be much affected.
4

'
7 Since the quantities of 

interest to us always involve sums in k-space, these inaccuracies would 

be smoothed over and not contribute much. In our case we can accomplish 

the wave function cutoff by merely choosing a set of predetermined 

expansion coefficients Cna 
for a given band which is single-valued and 

analytic. Then our nk 
 must also be analytic, and its Wannier function 

decays exponentially. 

Des Cloiseaux
7 has shown how to deal with the problem of orthogonality 

of Wannier functions. One may construct them from a set of localized, 

non-orthogonal orbitals fn 
with the same point group symmetry as an 

by 

writing, 

F -4- 	 -÷ 
a
n 	

= 	f
n
,(r-R

a
) d

n
,
n
6a) 

n l ,a 
(2.3) 

where 
--). ± 

d , (
->-
R ) .= —1 1 eik•R a G -(0 

---; ÷ 1 

n n a 	N 	 "n'n ± 
k 

Gn , n (k) E 	<f
n 	

,fn (-r>.--Ra ).5' eikRa 
Ra  



For an exponentially decaying an , the fn  would be a smooth, localized function. 

Of course we already have a set of local orbital (P a  which fulfill the role of 

the f's since 

L 
a
n
(r) = y 	eik•lta ck 	(r_11 

na ( ct 	a)  k,a,Ra  
(2.4) 
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where C

na is a Bloch expansion coefficient. The index a, however, runs over 

the whole set of local orbitals. We really only need an expansion in f n , 

which runs over the band complex of interest (for the example of TiO considered 

in Sec. VI, we need only 10 orbitals instead of the 40 local orbitals which 

span the entire band structure). Since we could not generate all the two-

electron integrals necessary for the full local orbital basis set, we would 

have to truncate that set anyway. We can think of the restricted number of 

f
n 's as an optimally truncated basis set. 

We may construct the fn 's in the following way. We assume 

f
n
(r-Ra) = G Tni (1). (r-R

a
) 
	

(2.5) 

In general the expansion in Eq. (2.5) must be over sites as well, but we 

assume there is sufficient variability in the set ^ , to restrict it to site 

-4- 
R
a 

. The coefficients T
ni are variational parameters which may be found by 

minimizing 

I =J
F 
 (r) - a

n
L 	I 2 

 (r) 	dr 

We can get the most localized functions possible by also requiring 

Jr 2 	2 
f (r)r dr = minimum. 

(2.6a) 

(2.6h) 

which can be introduced into the variational equation by using Lagrange 

multipliers. From Eqs.(2.3) and (2.5) we see that the coefficients T ni 

 appear in f
n 

and dn,n.  The dependence in G
n

,
n 

is complicated, but for our 
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. 	-  
localized functions f

n 
we may use the Lowdin expansion

8  

d 	= 	- -1 S , + -
3- S , 	S „ + 

vv 	v
,
,v 	2 vv 	8 vv" vv 

(2.7) 

V E (n,Ra ) 

with the overlap integrals 

fir) 	f r_  ) ( 
n 	a 

s
v

,
v 
= ‹f 

v 	v 
„) f 	(1-6

vv  ) 

which exclude onsite overlap. Then we have 

Sd , 
v 	v  = 	0 	T 	(1-6 v  , v  ) + ST
ni 	

2 	n i 
(2.8) 

6f 4 -÷ 
ST = (1) i (r-Ra) . 

ni 

where 

0i9  = <,(1)(r-Ra ) , i
(r)---it.

a
)> i  

The minimization procedure yields a set of simultaneous equations for the 

Twhich can be solved analytically. Owing to the dependence in d „ the 
ni 	 v v 

equations are non-linear and must be iterated to convergence. The procedure 

of minimizing Eqs. (2.6) to find the best fit with a set of Gaussians has been 

developed by Sambe and Felton
9 and improved by Dunlap et. al.,

10 
We shall 

discuss the introduction of the Wannier functions and their optimally localized 

f's into our models for the dielectric response and correlation in the following 

sections. 



III. 	The Polarization Response Matrix in  the Wannier Representation. 

Now that we have shown in the last section how we may calculate our 

Wannier functions a
n 

and their orbitals f
n
, we may proceed to reveal how 

the a
n
's simplify the construction of the polarization matrix. We recall 

that under certain approximations the equation for the polarization response 

function reduces to a Dyson-like equation.
11 

116)1,0 -1  WI,L0) = A(q- ,w) t(q,(0 ) 	 ( 3.1) 

with 

1/(4.,0 -1  = 11 ° 0100 -1  - K61,w). 	 (3.2) 

We look for the excitation energies of the system, which are solutions for 

which A(w) = 0. The matrix K contains Coulomb matrix elements describing 

electron-hole interactions, and in a single particle model for the band 

structure the matrix e(w) is just the familiar polarization response function 

of Ehrenreich and Cohen.
12 

In the Wannier representation 

H
o 
ww 

, (,w)
-1 
 = 

1.
2 

r i(k+q). Ra 	 -1 -i(it 

	

N 	k e 
	 6 	 , X° (n,k,n2k+q;

1n
, 8 
1 

n
2' 
 n

2 

(3.3) 

w = {n1n2, Ra } 

where 

,-1 	(1-f .4. .4.)iw-E 	 7)1  
X (n

1
k,n

2
k+q,w) 	= 

f 

n1k 	
n
2
k+q 	n2k+q 

E 
 n 

(3.4) 

-f 	(1-f =)){w-E t.± + E 7)-} , 

	

n2k+q 	nix 	n2x±q 	nix 

and E
n 
 and f

nk 
 are the energy and occupation number for Bloch state nk. 

k  

We may contrast Eqs. (3.3-4) with the result in the local orbitals basis 

* 	 0 	-+ 	-1 
H
o 
s
,(q,w) - 

 = 	y 	T
s 

(n
1
k,n

2
k+q)x (n

1
k,n

2
k+q;w) 	T

s
,(n

1
t,n

2
it+-(1) 	 (3.5) 

s n1n2
k  



T
7>
+ 

4- 	1 r 
kq) = 	

* 	
,(n

I 
e
t
(n

2
k+q) eit) s(n 1 

	2 	" ki' 

4-} 4. 

S0 2,,cj
ei(k+q).Rc 

cd 

s = {ji ibO) 

The construction of II
0  is greatly simplified in the Wannier representation, 

but that is not all. H
O_i  contains a term wM where M is an hermitian matrix. 

In order to cast Eq. (3.1) as an eigenvalue problem, we must multiply Eq. (3.1) 

by M
1 . Inverting such a large matrix (e.g., for TiO valence band excitation 

including next nearest neighbor interactions, M has a dimension over 650.) is 

quite time-consuming. Our studies show that M does not block readily either, 

so that techniques which find a solution in a main block and then consider the 

effects of sub-blocks as perturbations
13 do not converge very fast. However, 

in the Wannier representation M is block diagonal in the band indices n
1
n
2 

and 

the blocks only range over the lattice vector Ra . In this case we must only 

0 i, dkl 
e
ik • R

d 	(3.6) 

invert blocks of dimension 19 if we include just the next nearest neighbor shells. 

The two-electron integrals in K are now in terms of Wannier functions an
. 

Since we will expand the local f's in Gaussians for which multicenter two-electron 

integrals can be computed analytically and quite economically, we will first 

calculate the matrix K in terms of the f's and then transform it to the Wannier 

basis. In either representation, because of the method of Sec. II, the number 

of basis functions needed is the same as the number of bands in the complex. 

Since the as are as localized as possible by construction, we will not need 

many neighbors in the interaction calculation and matrices like K should be 

reducible to sub-blocks. 



IV. 	Collective Modes and Correlation. 

Now that we have a better procedure for calculating II, we will see that 

it also makes the calculation of collective effects simpler. The collective 

excitation energies as well as the electron-hole excitation energies are 

given by the poles of 

 

-  

c 	(q,q;w) = V(q) 11:(q,q;w) (4.1) 

where 

  

 

H(q,q;w) =B id 61,w) Bia (0) ij,kk 

B 1J 	
= <q).1e-cl' r  14).> 

(4.2) 

-4- 
As q approaches zero, the electron-hole excitations disappear, but the 

collective modes remain as well-defined structures called plasmons. Now for 

a periodic solid,plasmon bands may form.
14 

Also, if the plasmon energy lies in 

the region of inter-band transition energies, excitations via umklapp processes 

will damp the plasmons. There might even be quite different plasmon dispersions 

and damping in the same material if, for example, one has both narrow and wide 

valence bands. No detailed calculation has ever been done which includes band 

structure effects, though calculations have been done which treat the lattice 

potential as a perturbation.14 '15 

The q-dependence appears in both K and E
0-1 
 (see Eq. 3.1), but the 

dependence of H
0-1 

 is more complicated, at least in the local orbitals basis; 

as indicated by Eqs. (3.5-7). The quantities II
0-1 
 and K must be constructed 
— 	_ 

and the excitation spectrum found at each q. By contrast the optical absorption 

need only be calculated at q=0. We see from Eq. (3.3), however, that in our 

Wannier representation the construction of TI (q,w)
-1 
 is much simpler, and in 

particular, the matrix inversion we must do at each q to set up the eigenvalue 
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problem is easier. 

For correlation the use of Wannier functions causes a similar reduction 

in effort. A useful example is the second order correction to the Hartree 

Fock (HF) band structure. This correction has also been found to give 

reasonable estimates of correlation for atomic systems,
16

'
17 

and we will 

suggest further uses for it in Sec. VIII. The second order self-energy is 

(neglecting the exchange or "ladder diagram" contribution
16

) 

2 

	

En,n 
(k,w) = 	X 	V 	'± 

n k m k+q,a. +q mk 2 	mm 	1 
t,k',q 

	

x 
	V 

nik'2,10-1-41nik+qn2k 	
(4.3) 

w + E 	— E -4- — E 
kk 1 +q 	mk' 	m k+q 

y cm ,  
i'm 
k,k,q 

1 

w + E 4- - E 	-E ,÷ 
mk' 	ka'+q 	k+q 

where (m 1 ÷ 2,') signifies that the second set of V's is the same as the first 

except that m' is replaced by k e . The matrix elements of the Coulomb inter-

action V(r-r ) are over HF Bloch states, and m always refers to particle states 

(Em > EF) while k always refers to hole states (E
k 

5 E
F
). 

The transformation of Eq. (4.3) to the Wannier representation requires 

removal of the factors like e
ik•R

1 
from the sum and the formation of the sum 

e-i(k l +q). (Ra-RA) iq•(Rb-Rb') 

leg w + E 	- E 	+ E 
tle+q 	mk, 	rek+q 

Then the V's are matrix elements over the Wannier states. We see that 

the sums over band index in Eq. (4.3) are limited to states above or below the 

Fermi level, and this restriction will reduce computational effort. More 

importantly our Wannier functions are restricted to the band complex which 
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contributes most strongly to correlation in a given energy region of the 

band structure. We will see that this group of bands can be much smaller than 

the total number of bands. 



V. 	Band Structure Calculations. 

Our method for investigating excitation structure and correlation effects 

requires a good SCF calculation to obtain a starting band structure and set of 

Bloch states. The Bloch states must be expanded in a well-localized set of basis 

functions (not necessarily local orbitlals), and these basis functions must 

describe the states in the energy range of interest, even if that energy range 

goes beyond the occupied orbitals. It is difficult to find calculation which 

fulfill these last two criteria. The SCF band structure need not be HF; local 

exchange methods which include correlation can also be used since we can modify 

the self-energy expression to correct for the difference from HF.
1 

In fact 

recent calculations show the X-a local exchange method gives good results for 

TiO bulk and surface states, and we can use the methods outlined in Sec. II to 

make the local exchange calculations economical. We are therefore preparing to 

generate our own SCF band structures. 

In the SCF-Xa model, the charge density contributes to two potential terms,
19 

v (;) = Jr  P (P) 	, 

1 	 1 

V
xa

(;)= -3a [3/ 8 ] 	j 
 1 -P 4 
i P(r')  

t 

3 

(5.1) 

(5.2) 

If the coulomb term is constructed in the usual manner with the charge density 

constructed from orbitals expanded in atom-centered Gaussians, the matrix elements 

of V
c 

can be done analytically but contain four-center integrals. The X-a 

potential, however, cannot be expanded analytically at all because of the J. 

Sambe and Felton
9 

suggest the substitution 

p(r) = G ai  hi(r) 	 (5.3) 

1 

] 3  = bj  gj  (0 • -3a [3/
8
II p(r) (5.4) 
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The hi 	. denote separate sets of Gaussians called auxiliary functions 

	

1 	gJ 	 1 
which are chosen to describe the different ranges of p and p7. The wave 

functions are expanded in another set of Gaussians, and the resulting energy 

expressions involve no more than three-center integrals. 

The expansion coefficients a, and b. are found by fitting the charge 
J 	 1 

density using a technique like the one in Sec. II. However, since the p7 

cannot be determined analytically, a mesh of sample points must be used for 

the fitting so the following expression is minimized, 

2 f 	
1 

[cp (r).3.  - 	b. g. (r) 	dr 
J J 

VI  

2 .1 

+ X W(r p ) 	cp(r) 3  - X b. g . ( .7"  ) 

(5.5) 

1 
where c E - 3a(3/811) 7

'  VI 
 is the 

1
spherical core volume around nucleus I, 

1 
p I

3 is the spherically averaged p
3  in V

I
, and W(r) is a weight function. 

1 
Sambe and Felton

9 
obtain a good fit to p and p 3  in their molecular 

calculations using sets of atom-centered is Gaussians. An additional set of 

centers not at lattice points was used in the TiO surface slab calculation.
18 

The choice of sampling points r must be made carefully. Dunlap
10 

et. al., 

have came up with a systematic way to sample which gives stable results as 

atomic spacings are varied. One distinct advantage of the above method over 

scattered-wave X-a methods
21 

is that in the latter methods spherically 

averaged solutions around each atom are joined to plane wave solutions in the 

interstitial region. This muffin tin approximation leads to inaccuracies in 

the band structure which do not occur in the present method. 

With our approach we will be able to generate self-consistent bulk band 

structures and Bloch states with basis sets of our own choosing. These 

results will be interesting in their own right and will be the basis for our 

excitation structure and correlation calculations. In addition we can do 



calculations to be used in our analysis of vacancy and surface defect 

structures. These calculations will provide the background environment in 

which we will embed our cluster describing the vacancy or defect. 



VI . 	Summary of Progress. 

During the first seven months of this research our main concern has been 

twofold. We have wanted to formulate a simplified method to calculate the 

excitation structure and electronic response in an optimized basis, and we 

have wanted to set up our own self-consistent band structure calculations to 

be used as a starting point for our correlation and excitation calculations. 

We have settled on a set of Wannier functions as the best basis because of 

their localized nature and their dependence on the band index. As we showed 

in Sec. II, the Wannier functions may be expanded in a set of local functions 

which are chosen to be optimally smooth and localized. We are now studying the 

properties and localization of the transformed quantities which enter into the 

construction of the Wannier functions n. For example, Eq. (2.4) shows that 

the quantity 

L gna(Ra)  --Le11(.11 
 a 	C

k 
na 

k 

(6.1) 

enters the Wannier function calculation. The rate at which g na  falls off at 

large R
a 
determines the decay rate of a

n and the number of sites that should 

be included in the excitation and correlation calculations. We have developed 

methods to solve Eq. (6.1) using fast Fourier transforms and are studying the 

-4- 
properties of gna(Ra)  for the TiO band structure. 

We are now adding the second-order correlation correction described in 

Sec. IV to the HF energy bands of TiO calculated by Jennison and Kunz. These 

bands turn out to give a density of states quite different from the most recent 

photoemission spectra. With our calculation we hope to settle the question of 

whether or not the difference between the HF result and experiment is due to 

correlation effects. If the difference is a correlation effect, it will be the 

first time such an ab-initio calculation has been made for a solid state system 

-18- 



and the first time correlation has been shown to cause such a large change. 

We may indicate the elements of the calculation in the Wannier basis by 

outlining the TiO calculation. There are 9 bands in the valence-conduction 

band cluster, according to the calculation of Ern and Switendick. Three 

bands are fully occupied, three are partly occupied, and three are unoccupied 

(if we neglect a very small dip below the Fermi energy for one band). Thus 

we have an immediate partitioning and need consider only 6 bands for the 

occupied states and 6 bands for the unoccupied states. We are including up 

to next nearest neighbors in the calculation which means 19 atom sites 

including the origin. This means, for example, that we must invert 36 (19x19) 

matrices in the excitation calculation (see Sec. III) instead of one huge 

(684x684) matrix. The partitioning of bands and the number of lattice sites 

used is the same for both the excitation and correlation calculations. 

To relieve our second concern, we are now investigating the LCAO-Xa band 

structure formulation. We are applying the fitting procedure of Dunlap, for 

which we have computer codes, to the p and 	terms entering the SCF equations. 

We are also receiving from Dunlap computer codes which can be used to treat 

surface electronic structure. Our first calculations will be the unpolarized 

bulk band structures for Ni0 and FeO. To these results we shall add up through 

the second order spin-dependent self-energy corrections. In general the spin-

dependence may break the periodic symmetry of the system and the correlated 

states will exhibit local behavior. In this case our Wannier representation 

will be quite useful in describing the Hubbard bands which may form. 

-19- 



VII. 	Proposed Research  

In the next year we will continue our study of correlation and collective 

modes and their effects on several experimentally measurable properties of 

Ni0 and FeO. We will use our LCAO-Xa procedure developed as outlined in 

Sec. V to obtain bulk ground state properties of Ni0 and FeO. Then with the 

experience gained from our TiO calculations, we will find optimally 

localized sets of functions describing the Wannier states of the valence and 

conduction bands. In these calculations we will use the variational fitting 

method of Sec II. 

We will calculate the excitations from the ground state in the Wannier 

basis. This representation will lead to a simpler structure for the optical 

absorption equations. We will also calculate the second-order self-energy 

corrections for Ni0 and FeO, as we did for TiO. These calculations, however, 

will be spin-dependent so that we can explore the formation of Hubbard bands. 

We also hope to look at the rich satellite structure which appears in the 

photoemission of these materials. 

With the polarization response matrix obtained in the optical absorption 

calculation, we will first look at the formation of plasmons, what their 

dispersion is, and whether they form bands. This will entail calculating H  at 

several values of q but with the simpler expressions for II in the Wannier 

representation, these calculations are feasible. We will use E (1,w) to 

calculate the full screened exchange as well.
1 This calculation will allow us 

to explore the effect of plasmons and multi-pair excitations on the correlated 

band structure. Finally, using IT we will want to develop a rigorous treatment 

of the Electron Energy Loss Spectra (EELS). We will start with an investigation 

of electron-hole interactions, which are quite important for Ni0 and Fe0 and for 

which a full interpretation is necessary to understand the EELS. 



A final area we will begin exploring is the microscopic theory of 

corrosion. Here the defect nature of the solid is important, and we will 

need ideas we have been developing on the embedding of localized clusters 

of atoms in a periodic medium. The cluster will be useful for defects we 

believe to be localized, and the LCAO orbitals used will be compatible 

with our bulk basis sets. 

Quite briefly, our approach divides the defective solid into a cluster 

including the defect and the rest of the solid except for the atoms in the 

cluster. The central assumption is that the effect of the defect is localized 

in the cluster so that the coefficients of the basis function on the sites 

outside the cluster are fixed at their bulk values. Thus we may write the 

density matrix for the system, 

PC  

(7.1) 

P 

where P
F 

is fixed at its bulk value and 

Pc  = Y a :t a 	0(E
f 

- c.) 
TS 	rJ 	sj 

(7.2) 

f . 
the a's are the expansion coefficients in the cluster basis and EF 

 is taken to 

be the bulk Fermi energy. 20 The expression for the ground state energy of 

the system is 

1 
E =DI P..+— L Wi . P 
o 	 2 	ij ij . 	 ..  

(7.3) 

TheWij  contains the Coulomb and exchange matrix elements in the HF approximation 

or the coulomb and local exchange-correlation matrix elements in the X-a approach. 

The variation of E
o 
with respect to the a's, with the orthagonality condition 

imposed, yields 



4- 	-4- 
Fc a = e Sa 

where S is the overlap matrix and 

F
c 
= F

c 
+ F

f 
- A

f 
. 

o — 

(7.4) 

(7.5) 

The dimensionality of F
c 
is now just the cluster dimension. F

o 
is the 

Fock matrix for the cluster but depends on the a's obtained in Eq. (7.4), 

Ff is the Fock matrix of the bulk but in the cluster basis, and A
f 

consists 

of those terms which must be removed from F E  because they are already 
0 

included in F
o . An additional assumption made to obtain Eq. (7.5) is that 

interactions between the defect states in the cluster and the bulk states 

in the rest of the solid can be neglected. 

Pisani
21 

has shown that Eqs. (7.4-5) result also from a partitioning 

of the Green's function into a space over the basis of the cluster and a 

space over the rest of the solid, if the same assumptions about the cluster-

bulk interaction are made that we have made. However, we have shown that 

in addition the solutions of our equations variationally minimize the ground 

state energy. 

In the future we will use our embedding , procedure to study the formation 

and structure of defects and especially vacancies in our systems. The 

variational character of our method will be especially important for locating 

the most stable vacancy structures. We will study the effects of these 

structures on the optical absorption and photoemission spectra. Up to now, 

precise, microscopic probes such as these have not been used much in studies 

of the mechanism of corrosion, but they must be used in the future if we are 

to gain a microscopic view of the process. 
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IX. 	Work Statement  

The one significant addition to the work schedule outlined in the 

original proposal is the development of our own band structure codes using 

methods described in Sec. V. By the end of the present research period, we 

will be able to calculate bulk band structures for the transition metal oxides 

and convert the Bloch functions to a Wannier basis. In the future we will 

extend our method to surface calculations. 

The tasks we have set for the second year are: 

Calculation of second-order correlation corrections to the Ni0 and 

Fe0 band structure. 

- Investigation of the formation of Hubbard bands in the spin polarized 

band structure of these materials. 

- Study of the effect of the strong crystal potential on the plasmon bands. 

- Development of methods for investigating the electron energy loss 

structure. 

- Ongoing study of cluster embedding procedures for applications to 

defects in Ni0 and FeO. 



X. 	Interactions  

During the period of this research we have had several interactions with 

people at other laboratories or universities which will continue to be fruitful 

in the ensuing year. We have continued our consultations with Dr. Frank Tobin 

at Johns Hopkins University on the problem of cluster calculations of transition 

metal oxides. We have incorporated several new features into the computer codes 

originally written by him. He is now also using these new features and in 

addition has helped us understand the powerful package for computing and sorting 

multicenter Gaussian integrals contained in the code which we will convert to our 

correlation calculations. 

We have established and are maintaining contact with Professor Ronald Felton 

and Dr. Hideo Sambe of the School of Chemistry at Georgia Tech and with Dr. Brett 

Dunlap at the National Bureau of Standards regarding the LCAO X-a formalism. 

We are implementing Dunlap's improved fitting procedure on the Georgia Tech 

computer and will make the improved code available to Professor Felton's group. 

Felton, Sambe, and Dunlap are also providing advice on the use of the Gaussian 

fitting procedure for the charge density and exchange correlation terms in our 

bulk calculations; and our results for Ni0 and Fe0 will be of use to Dr. Dunlap, 

who is doing similar calculations on transition metal systems. 

We are continuing our interaction with Dr. Dwight Jennison and have established 

contact with Dr. Peter Feibelman, both at Sandia Laboratories. Dr. Jennison is 

providing advice on the general problem of energy band calculations, and we are 

converting a band code developed by himself and Barry Kunz at the University of 

Illinois. Dr. Feibelman has given us insight into the Gaussian fitting procedure 

he used in calculating TiO bulk and surface band structures. 
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I. Introduction  

The background for most of the work described in this report has been 

given previously and no attempt is made to repeat it here. The reader who 

wants further details should refer to the original or continuation proposals 

entitled "Correlation and Collective Modes in Narrow Band Materials: Ni0 

and FeO," under Grant No. AFOSR-80-0023. The progress in this research 

during the past year is described in Section III. An important new component 

of our studies of electronic excitations and collective modes is work on the 

effect of plasmons and excitons on superconductivity in transition metal 

oxides which is described in Section III-C. 
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[I. Research Objectives  

The overall objective of this research is to study the effects of 

electronic excitations, especially plasmons and interband excitations, on the 

properties of materials for which these effects are significant. The materials 

we have chosen are narrow band systems, such as the transition metal oxides. 

For these materials, it is necessary to emphasize their localized properties 

and, especially, strong electron-lattice interactions in constructing the 

correlation and response functions. In the first year of this work, we have 

set up this description of the electronic structure in terms of a local 

orbitals approach and have begun some calculations. 

Our studies of electronic correlation and its effect on the band 

structure have begun with TiO. We will continue with investigations of systems 

where the effects of electronic excitations are even stronger, such as Fe0 and 

NiO. For these systems interband excitations become quite prominent and 

complicate the optical or electron energy loss spectra. We will also continue 

our studies of collective modes for these systems, such as plasmons, in the 

presence of srrorm lattice interactions. 

We are investigating the contributions of electronic excitations to 

quantities which can be measured experimentally. Presently we are 

analyzing the electronic loss structure of TiO and FeO. In the future we 

will extend this analysis to Ni0 and other narrow band systems. We will 

want to know how the loss structures due to plasmon and interband 

excitations behave in these materials, and we will want to develop methods for 

explaining the significant changes that occur in some cases when the surface 

is contaminated or the material is implanted with impurities. From these 

studies we hope to develop an important tool for explaining the effects of 

surface or bulk contamination on these systems. 
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We are investigating plasmon and exciton coupling in the establishment of 

superconductivity for narrow band systems. We will want to know how electrons 

coupled by these mechanisms shield external fields, and what effect the strong 

coupling has on the superconducting properties. We have begun studies on 

Cu lt) for which some interesting experimental evidence exists. In the future we 

will move to other transition metal oxides. 
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III. Progress  

A. Correlation in Narrow Band Materials. 

The effect of correlation on the band structure of a material is contained 

Ln the self-energy matrix X. To find the correlated energy bands and wave 

functions, one solves the energy dependent matrix equation 

1 ,110  + (w)] 1. (w) = E(w) A(w) 
	

(3.1) 

where H is, for example, a one-electron Hamiltonian such as Hartree Fock (HF) 
=0 

and w is the frequency. Now in general we must diagonalize Eq. (1) to find 

the energy bands E(w). However, if the diagonal terms in H
o 
 + X are dominant, 

the correlated energy bands are just 

E  = EHF pac- ,E  ) 

k k 
(3.2) 

assuming that Ho  is the HF Hamiltonian. The self-energy to second order in the 

coulomb interaction between Bloch states is 

2 

X 	(k,w) = 	X 	V + 	7+ + + 7  + + 7  
4 

n k m k+q,9,k +q mk / n
1
n
2 	

m m 4. -4 
9„,k 7 ,q 

x 

v 4 4 4 .4 4 4 
mk t kk'+q,m'k+q n2k (3.3) 

w + E 	4  * E 	- E 	4  
RI T +q 	mk, 	m i k+q 

 

/ 	(111 ? 4  Q 1 ) 

k'm 
Z,k,q 

1 

w + E +, - E -4- + - E 	+ 
mk' 	kk 7+q 	k i k+q 

where (m' + .12') signifies that the second set of V's is the same as the first 

except that m' is replaced by R I . Here V refers to the coulomb interaction, 
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and m always refers to particle Bloch states (E
m 

> E
F ) while 2. always refers 

to hole states (E R  < EF ). 

There is a great savings in computational effort to be had by converting 

Eq. (3.3) into a sum over Wannier states (for details see proposal for 

continuation of AFOSR-80-0023). This savings makes the solutions of Eqs. (3.1-

3.2) possible. The transformation of Eq. (3.3) to the Wannier representation 

requires use of the relation 

a 	) = - 1 	X tp n 	1 	r-- 	nk iN BZ 
(3.4) 

between the Wannier and Bloch states where N is the number of unit cells and 

n is the band index. Thus we must remove factors like e 	from the coulomb 

matrix elements in Eq. (3.3) so that we have the sum 

Then the V's are matrix elements over the Wannier states. We see that the sums 

over band index in Eq. (3.3) are limited to states above or below the Fermi 

level, and this restriction will reduce computational effort. More importantly 

our Wannier functions are restricted to the band, complex which contributes most 

strongly to correlation in a given energy region of the band structure. We will 

see that this group of bands can be much smaller than the total number of bands. 

The effect of correlation on the valence bands of Ni0 and Fe0 is still not 

fully explained. Especially for NiO, the detailed structure and width of the 

d-band region is uncertain. We are planning on doing calculations of correlation 

corrections for these two materials, but first we have undertaken a calculation 

r 2 
of 2, in Eq. (3.3) for TiO. This material was the subject of some controversy 

a few years ago. An ab-initio Hartree Fock calculation by Jennison and Kunz
1 



showed hybridized oxygen 2p and titanium 3d bands with no energy gap between 

them. These results differed sharply from local exchange calculations
2 
which 

show a band gap of at least 2eV between the oxygen 2p and titanium 3d bands. 

Experimental X-ray photoemission results [by Ichikawa et al.
3
] for what was 

evidently TiO seemed to support the Jennison and Kunz calculation. However, 

later experiments
4 

showed that the Ichikawa samples must have oxidized to 

become TiO
2 
and thus the d band structure in the XPS spectrum was missing. 

The correct TiO spectra 
4
had a band gap and were in agreement with the 

local density calculations. Subsequently, Kunz
5 

argued that the gap was due 

to correlation corrections neglected in the Hartree Fock calculation and 

asserted that relaxation would raise the d bands with respect to the p bands. 

Our calculation should test Kunz' assertion and will also provide an assessment 

of correlation effects. 

We have included 9 bands in the TiO self-energy calculation which arise 

from the titanium 4s and 3d states and the oxygen 2p states. The other 

bands are well out of the valence - conduction band region, and we consider them 

to not contribute much to the self-energy near the Fermi surface. Except for a 

small region around the F point in the uncorrelated band structure where all the 

bands are above the Fermi level, three bands are occupied, three are unoccupied, 

and three are partly occupied. Thus by working in the Wannier representation, 

we have an immediate partioning and need only consider 6 bands for the occupied 

states and 6 bands for the unoccupied states. 

The self-energy calculation still requires a major computational effort 

in spite of the partitioning. We must evaluate the self-energy matrix at k-points 

throughout the Brillouin zone and at frequencies w which cover the valence band 

energies for each k-point. In the TiO calculation we have chosen 10 frequency 

points at each k to evaluate (k,u)) and must interpolate between the solutions 

of Eq. (3.1) to find En=E(En) for a given band n. We have used every possible 
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symmetry to make the calculation manageable. The computation of the Wannier 

coefficients 

	

C(R) ) 	Ck  ei•R1  

	

na 1 	L  na 
k 

(3.5) 

is greatly reduced by the fact that all rotations of the lattice set are 

equivalent and thus we need calculate only one C
na

(Ri) for each shell of 

atoms. Futhermore, since our system has inversion symmetry, we can choose 

-k 	k* 
C
na 

= C
na 

and thus Eq. (3.5) becomes 

C (h) = X Re  Ck na 	 na (3.6) 

The index a normally runs over all the basis functions in the basis set 

(e.g., 40 functions for Ti0). This number of functions can be reduced to 9, 

the number of bands in our complex, by variationally choosing optimized basis 

functions.
1 

However, since in this case we are using local orbitals which 

are in a sense already optimized for each band, we may simply choose the 9 local 

orbitals contributing most to the Bloch functions in our band complex. Once 

4- 
calculated, the C 

na
(R1) is used to construct the coulomb matrix elements 

V
n,R1,n2R2

; n3R3,n4R4 which appear with expression (3.4') in the construction 

v2 -± 
of 2, (k,w). If we suppress the band indices n and basis functions indices a, 

we may write the coulomb matrix element as 

= C(it11) Cat T -1 ) 	) 
R ,R,; R3  0 	 2 2 	3 3 
1 2 3 	R1

R
2
R
3
R
4 

(3.7) 

x 	) 17÷ 	i 	• rt -1 4 4 	R1-R4 ) 2 45 3 4 0' 



showing that we need only consider interactions which include the origin in 

our sum. Since the sum in Eq. (3.3) involves only certain combinations of 

occupied and unoccupied bands, not all matrix elements V' need be evaluated. 

The final term appearing in L is the expression appearing in (3.4'). 

This expression is similar in structure to the free electron polarization 

and thus we call it x(k;RR
2
). We may write (3.4') as 

X(it01l' it2 ) E 	L 	X(U', -(1';it1 ,it2 ) 
	

(3.8) 

again suppressing all band indices. To calculate every element in Eq. (3.8) 

would require a large amount of time and a massive amount of storage. 

Fortunately, not every element need be calculated since many are related by 

symmetry. The basic relation is 

;) = 	(it 	; , 1 , 2 	x , ,q 	R R
1 
R R

2 ) (3.9) 

where R is a rotation belonging to the rotation group of the crystal. In 

particular Eq. (3.9) indicates that we need calculate x for only those k 

values in an irreducible wedge of the Brillouin zone if we include all 

rotations of the other variables. Furthermore all rotation of the type 

R'k = Rk where Rk has already been calculated need not be redone. 

We have written computer codes to handle the above three elements 

which go into the L 2  calculation. These codes employ all the symmetry 

relations we have discussed. The calculation of the matrix elements V in 

Eq. (3.7) requires a major effort. We have used very efficient quantum- 

chemistry computer codes for calculating two-electron integrals over Gaussians.
6 

By fitting each local orbital to contracted sets of Gaussians, we are able 

to write the matrix elements V in terms of the Gaussian integrals. 



The transformation in Eq. (3.7) is then carried out using quantum chemistry 

integral transformation programs for configuration interaction calculations. 

4- 	-4- 
We use only up to next nearest neighbors in the sum over RR 2 

in 

Eq. (3.3) for our TiO calculation since we find adding more shells of atoms 

do not affect the major results of the correlation calculation. We have 

only gotten results for TiO at i)-(=-0 so far, but these indicate that the r 12 (d) 

F
15

(p) points move away from one another as Kunz expected. We will need to 

calculate other points in the zone, however,before we can make out the 

positions of the correlated bands. Our results indicate that the diagonal 

v2 
elements of 2.  (k,w) give a qualitative picture of the correlation effects 

even without diagonalizing Eq. (3.1). 

After we complete the TiO studies, we will use the procedures we have 

developed to study correlation in Ni0 and FeO. For these studies we will 

need self-consistent energy bands and wave functions in a Gaussian basis. 

We have implemented bands structure codes here due to Wang and Calloway
7 

and 

have modified them to accept two atoms per unit cell for these calculations. 

B. Electron Energy Loss Structure of Clean and Oxidized Transition  

Metals. 

The characteristic energy loss structure of a material provides a direct 

measure of the contributions from interband transitions and collective modes 

such as plasmons to the electronic excitation spectrum. The loss structure 

is altered by changes in bulk properties and also by surface modification or 

adsorption, particularly certain features which are quite sensitive to adsorption. 

In additon, since the loss structure provides a direct measure of plasmon energies 

and intensities, one can use it to test the basic understanding of these modes. 

These tests are especially important for systems with strong crystal potentials, 

such as the transition metals, where the plasmon behavior is not expected to 

follow the simple free-electron result. 
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Unfortunately there is qualitative disagreement between the experimental 

results themselves, and in addition the results have been given different 

interpretations so that very different energies for plasmons and interband 

transitions have been reported. To clean up the confusion, we have under-

taken a careful reexamination of the loss structure for certain transition 

metals
8 
by analyzing a new series of measurements made by Keith Legg in our 

department. These measurements are for clean and oxidized polycrystalline 

iron samples and also clean and oxidized polycrystalline titanium samples for 

comparison. This analysis fits into the objectives of this program since it 

has allowed us to clearly identify plasmon structures and has provided data 

for comparison with the more basic theoretical calculations we have undertaken. 

The characteristic loss structure measurements fall into two classes: 

measurements of losses suffered by electrons with energies of many kilovolts 

as they are transmitted through thin films and measurements of losses suffered 

by electrons with energies around 100eV as they are reflected from the material. 

The former experiments are dominated by electrons which do not undergo elastic 

scattering while the latter are more highly resolved but contain electrons 

which have been elastically scattered at least once. The two types of spectra 

for evidently clean Ti surfaces are shown in Fig. 
19,10. 

 There are large 

qualitative differences between the spectra at energy losses below 20eV, 

especially between the lower reflection spectrum and the transmission spectrum. 

The data from our measurement for clean Ti, which is a reflection measurement, 

is shown in Fig. 2a. It is more highly resolved than the reflection data in 

Fig. la, but it is qualitatively in agreement with it. 

Our analysis of the clean Ti data is as follows. The peak around 5eV is 

undoubtedly a surface peak since it is quite sensitive to surface contamination 

and since it is less pronounced for higher primary electron energies as shown 

in Fig. la. The latter behavior is consistent with a surface excitation since 
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the mean free paths of the primary electrons are greater at higher energies 

which means the bulk signal would be enhanced with respect to the surface. 

We have identified this peak tentatively as a surface plasmon in agreement with 

Simmons and Scheibner
9 

(SS) since collective modes should be more prominent 

at this energy relative to interband excitations. However we need to confirm 

this identification with further measurements and analysis of how the intensity 

of this peak changes as the scattered electrons deviate from the specular 

direction. An intensity maximum at an angle away from the specular direction 

would indicate that the peak is a surface plasmon.
11 

The prominent peak at 

about 10eV is the volume plasmon. The structure extending below this peak for 

about 20eV probably contains the second volume and surface-volume contributions 

postulated by SS, though our higher resolution data shows this structure to be 

less prominent than theirs. However, we also find a double peaks at about 35eV 

which also appears in the appropriate place in the iron data, and we identify this 

as the split ( -
1
' 2

) Ti 3p interband excitation. 
2 

The loss spectrum changes greatly upon adsorption of only a monolayer of 

oxygen. Most significantly, the surface peak disappears completely and new 

losses appear around 20eV and 45eV. The sensitivity of the spectrum to oxygen 

points out one of the causes for differences between the measurements of others 

workers. Only carefully cleaned Ti specimens in a vacuum of 10
8 
Torr or less 

exhibited the true clean surface loss spectrum. We identify enhancement in 

loss structure at about 20eV as due to the 0 2s interband excitation. A similar 

structure appears in the same place in oxidized iron. The peak at about 45eV 

is more mysterious. Transmission measurements for Ti (presumably partly 

oxidized)
10 

and TiO
12 

show this structure quite prominently in both the loss 

spectrum and the imaginary part of the dielectric function e 2  derived from a 

Kramers-Kronig analysis. Its appearance in € 2  means it is not a collective mode 



-13- 

and must be an interband transition. A similar peak does not appear in 

the oxidized iron spectrum (see Fig. 3b), and there are no interband losses 

expected in this region. No strong explanation has ever been offered for 

this peak, though it could be a double interband excitation or an excitation 

to a higher conduction band. It seems possible that the structure is connected 

to the metal 3p peak since it appears about 9eV above this peak for both 

titanium and vanadium.
13 

It could be a double excitation involving the 

metal 3p and 0 2p electrons, but it would be surprising that such a process would 

be stronger than the 3p excitation alone. We certainly need further theoretical 

analysis here and have undertaken an investigation of the calculated loss 

spectrum in this region. 

But what about the differences between the transmission spectrum for Ti in 

Fig. lb and our reflection spectra in Fig. 27 Fig. lb most resembles Fig. 2b 

because the transmission sample undoubtedly had an oxide layer. However this 

does not explain the difference in energy between the volume plasmon peaks in 

the two experiments, and this difference is important in an analysis of 

collective modes in transition metals since the transmission spectrum places 

the plasmon near its free electron value while the reflection spectrum does not. 

Fig. la and also reflection experiments on vanadium done at several primary 

electron energies
13 
 indicate that the plasmon peak moves to higher energy as the 

primary energy increases. These results imply that the differences between the 

plasmon peaks in the two spectra may be due to the great difference in primary 

energies used. A primary energy increase would lessen the lateral spread of 

the electron beam due to multiple scattering for a given target thickness. 

However, in the reflection experiment as the primary energy increases, the 

depth of the target probed increases also. We can do a crude calculation based 

on the plural scattering theory which should give us an estimate of the lateral 

spread for electrons transmitted through a 300 X film at 35 keV and for reflected 
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electrons at 100eV which go through about 20 X. The calculation shows that 

the transmitted electrons have a spread in momentum transfer of several times 

kf . Thus even though the spectrum in Fig. lb had an analyzer acceptance angle 

for scattered electrons of only about 5 mrad.
10 

which corresponds to a momentum 

transfer of less than .3 o f  for Ti, there must be a great deal of scattering of 

electrons with larger momentum transfers back into this region. The dispersion 

of the plasmon is 

wi(q) = wp 	a (him ) q 2 	
(3.10) 

in an RPA-like theory. Since a is positive, dispersion increases the plasmon 

energy and would result in the effect noted for the transmission experiment as 

well as significant peak broadening. For AR, the dispersion is as much as 13eV,
14 

so it is possible to have an average peak shift of several eV. We thus conclude 

that the peak shift in the transmission experiment is due to dispersion and that, 

in this case, the reflection experiment peak is closer to the true volume plasmon 

energy. 

Our loss spectra for clean and oxidized polycrystalline iron, shown in 

Fig. 3, have some similarities with the titanium spectra. The volume plasmon 

peak at 15eV is well below the free electron value of about 30eV, and the spin-

orbit split Fe(3p) transition is clearly visible in the appropriate place at 

about 55eV. However, in contrast to titanium, the interband excitations are 

much stronger in the iron spectra. The region below 10eV is dominated by 

interband excitations from the iron d-bands which completely cover the effect 

of the surface plasmon. As the oxide grows a pronounced 0 2s peak appears at 

about 19eV and grows larger than the volume plasmon. The structure below 10eV 

is also changed due to the growth of the 0 2p peak and some charge transfer 

from the surface d bands. The peak at about 45-50eV does not appear in the 
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oxidized loss spectrum as it does for Ti and V which is consistent with the 

idea that it is connected with the metal 3p band. However, it does not appear 

beyond the Fe 3p peak either in Fig. 3b. The inelastic electron transmission 

loss data for iron
10 

differs from the reflection data in a similar manner to 

that from titanium. Here again we believe the multiple scattering caused as 

the electrons traverse the sample mixes in plasmons from a large range of 

momentum transfers and results in a shift of the plasmon peak to higher energy. 

We are presently calculating the band structures for both iron and iron oxide 

with the intent of making a comparative study of how band structure and transition 

probabilities affect the loss processes. 

C. Effects of the Dynamically Screened Coulomb Interaction on Bose  

Condensation and Superconductivity. 

We have recently extended our investigation of the dynamical response 

of electron in transition metals to the conditions of Bose condensation and 

superconductivity. The usual BCS theory of superconductivity 15 approximates 

the term involving the coulomb interaction as a constant, but the inclusion of 

the dynamical interaction allows the study of a rich variety of effects caused 

by plasmons and excitons. Up to recently ideas about the existence of strong 

effects of this type were merely speculative, but some experimental evidence 

now suggests that the effects may exist for some systems.
16

'
17 

Also, 

calculations indicate that these effects should be enhanced in two dimensional 

systems such as surfaces or interfaces.
18

'
19 

All this work improves the 

prospects of finding condensates with unusual properties or high critical 

temperatures. 

We have been exploring ways to add more accurately the band structure 

effects to the calculations of the properties of these Bose Einstein systems. 

Local field effects are assumed to significantly affect the critical temperatures 

of certain excitonic systems, although there is disagreement about whether the 



-18- 

temperature is enhanced
20 

or depressed.
21 

These arguments are based on a 

qualitative analysis and a more quantitative analysis for specific two-dimensional 

and three-dimensional systems, such as we have undertaken, would be quite useful. 

We are exploring the properties of systems with the Hamiltonian, 

H = 	En c o no no 	2 L 	 pa qt k-qT 
c
p+qa 

n,k, 	 p,k UT 

(3.10) 

where p=n ,p;q = n ,q;etc... 

matrix element V
n p,n q... • 
P 	q 

and all matrix elements are 

and we have suppressed the indices of the Coulomb 

The index n refers to band n, E
n 

is a band energy, 

over Bloch states. The anomalous Green's function 

in the Gor'kov ladder approx imation would then be at T=T 18 

Fn (p,iw ) = (i0 

P ) 2 

1 
2 TL 	LVnn

(q ' 1.2 ) 
0 q 
q 

(3.11) 

x Fn (p+q, iRp  iQq )• 

where w = TrT(2p+1) and wq  = 271 q, with p and q integers. The quantity 

V
nn

( q , iQ ) is the effective interactions between electrons in the n'th 
q 

band, and we have assumed that intraband interactions dominate interband 

interactions. The effective interaction may be written 

Vnn 	• 
(q • i0 ) =

o 
E
-1 

(q , i0 ))

nn
= _ 
	 (3.12) 

where the parentheses (...)
nn 

indicates the diagonal matrix element of the 

product of V
o 
 and e -1 . If we were to neglect local field effects, then 

= 

E
-1

(q , i_ ) 	
1  

nn 	 E
nn

(q , i0 q ) 
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and we could use the usual dielectric function in the analysis of Eq. (3.11). 

This analysis has been done for the case of weak - coupling superconductors 

with a very simple plasmon pole approximation for general surface and bulk 

systems
18 

and a more complicated screening function for a Si(111)-Si0
2 

interface system.
19 

We plan to study the influence of local field effects on 

the critical temperature in the weak-coupling case for some transition metal 

oxides. Since the plasmon or exciton mediated coupling may not be small at 

all, we will also look at the strong-coupling case for these systems using the 

theory of Eliashberg.
22 

16 
Measurements by Witteborn and Fairbank have established the existence 

of an anomalously weak electric field outside the surface of copper at low 

temperatures. Analyses have shown that one should expect a combined electric 

field due to gravitationally induced strain fields and patch fields of the 

order 10
-6 

V/m,
23 

but, in fact, the electric field is only about 10
-11 

V/M 

below 4.5°K. Above 4.5°K a phase transition seems to occur,16 and the 

electric field outside the copper surface is in the expected range. Many 

analyses which suggest mechanical or electronic explanations of this 

phenomenon have been put forth, but perhaps the most likely and most intriguing 

explanation is that the surface electrons couple and obey Bose-Einstein 

statistics at low temperatures. 
23

They then form a Bose condensate below 

4.5°K. The coupling mechanism would be something other than phonons, perhaps 

excitons or plasmons. The possibility of superconductivity below the 

transition temperature is also being explored. Since the copper surface in 

0:16 
the experiments is covered with an oxide of some 20 z, 	this shielding effect 

must take place in or near the oxide. Now very recent experiments on Cu 2
017 

indicate that an exciton gas formed in this material by laser excitation obeys 

Bose-Einstein statistics. This may be the mechanism we need to explain the 
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anomalous shielding effect seen by Witteborn and Fairbank since their copper 

oxide was most likely reduced and could have been Cu 20. 

Madey and Hanni have made an estimate of the density of surface bosons 

needed to provide the observed shielding of the ambient electric field above 

4.5°K. There result is about 10
11 

bosons/cm
2 
which is in the low density 

region where exciton or plasmon coupled superconductivity is expected to be 

enhanced.
18

'
19 

However, if,for example, one assumes the excitons in Cu 20 behave like 

an ideal Bose gas, the volume condensation temperature is 17  

where m
o 

is the free-electron mass, m is the particle mass, g is the degeneracy 

factor, and n is in units of cm 3 . For Cu20, m/m
o 
 " 3 and, since the most 

likely exciton state to obey Bose-Einstein statistics is the triplet,
17 

g=3. 

Assuming a volume density of n=(10
11

)
3/2

, the result from Eq. (3.13) is 

T
c = .329°K. However, we are dealing with an essentially two-dimensional 

system for which Ginzburg and Kirshnits
24 
 estimate the transition temperature 

for an ideal Bose gas should be 

T
c 

= (dn
1/3

/1n(Adn)1Tc. 	 (3.14) 

where d is the film thickness and A is the film area. With d=20 X and 

A % 100 cm
2
, T

c 
= 2.32x10

-3 
T
c 

= .76x10-3 °K. This temperature is 

considerably below the observed transition temperature. As Ginzburg and 

Kirshnits observe,
24 

Eq. (3.14) may underestimate the transition temperature 

since superconducting films of thickness d 'u 30 X and T
c 

= T
c 

exist. 
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Unfortunately the ideal gas result, Eq. (3.13),is probably an upper limit to 

T
c . For finite exciton coupling constant A the critical temperature would 

CO 

be lower and still well below the transition temperature observed. This 

discrepancy is a serious defect in explanations of the anomalously weak 

electric field in terms of screening by a Bose condensate. 

A review of the screening calculations of Madey and Hanni
23 

indicates that 

assuming an ideal Bose gas composed of coupled free electrons may overestimate 

the screening. The electric field in the surface region due to the system of 

substrate and surface electrons and ions is
23 

1 ap 	ma 
e Dz (3.14) 

where p is the chemical potential of the electrons and a is the acceleration 

due to gravity. Now since p varies mainly through the change in the surface 

density ns , 

au = Du 	
an

s 
Dz 	an

s 
az 

(3.15) 

1 	au = E. 
an

s 47e
2
d 

The last expression involves an estimate of the variation of n s  due to the 

substrate electric field
z 	

1 

which involves both patch fields and gravitationally- 

	 / TI 
induced lattice compression fields. The quantity 	k

a
D
n 

) is then the 
47e

2
d 	s 

shielding factor. Now, for an uncondensed ideal Bose gas in two-dimensions, 

p is defined by the expression 

4 

 n = 2  jr d2k(e(Eo+112 k2 /2mo-P)  s 	27 ) -1 
(3.16) 

where $ = 1/kET and E
o 

is the ground state energy. The integral in Eq. (3.16) 
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is analytic in the two-dimensional case and the result is 

=
-1 

in L 1  - exp(-2712  n 
s  E/m o ) j + Eo 
	 (3.17) 

the electric field at the surface state is then 

t2 e  
z  1 _ 	= 

e 
2e

2
dm 

     

-1 

  

       

   

ns E 

   

exp 

  

1 
m
o
a 

(3.18) 
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It is Eq. (3.18) that Madey and Hanni use to fit the experimental data of 

Witteborn and Fairbank with an c
z 
% 10-6 V/m and n

s 
'1,  10

11 
 cm 2 . 

We can include the band structure effects on the excitonic gas in Cu20 

as before, with an effective mass replacing the electron mass in Eq. (3.16). 

The degeneracy factor g should also multiply the integral in Eq. (3.16), and 

the result for p would be 

P = -1 In 	1 - exp(-2nn
2 
 ns Eigm)] + Eo 
	 (3.16') 

Since g=3 and m ti  3m
o 

for the excitons in Cu 20, we can now fit the experimental 

data with n % 10
12 
 cm 2 .  This value of n gives T= 3.3 °K. The value 

s 	 s 	
coo 

E z = 10
-6 V/m for the substrate fields may also be low due to a larger patch 

field. 

It is obvious from these estimates that we must make a more careful 

examination of the shielding due to the exciton gas in Cu 2
0 by including in 

our calculations band structure effects, exciton interactions, and the effects 

of electron-hole coupling. The condensation temperature for an interacting gas 

of excitons should also be studied. We will also explore the possibility 

that the condensed phase is superconducting. Finally, the excitonic gas in 

Cu 2
0 was obtained by laser excitation in the experiments; we must study the 

possibility that a surface layer of excess electrons can also form the gas. 
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IV. Publications and Presentations. 

The following papers are being prepared for publication: 

1. "The Effects of Correlation on the Band Structure of Ti0". 

2. "Analysis of Energy Loss Spectra of Clean and Oxidized Titanium and 

Iron," with K. 0. Legg. 

The following paper is scheduled for presentation: 

1. "Characteristic Energy Loss Spectra of Clean and Oxidized Titanium 

Surfaces," with K. O. Legg; March Meeting of the APS, Phoeniz, Az. 

(1981). An abstract for this paper is attached to this section. 
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Abstract Submitted 

for the March Meeting of the 

American Physical Society 

16 March 1981 

physics and Astronomy 
	 Suggested title of 

Classification Scheme 	 session in which paper 
Number 73 
	

should be placed: 
Energy Loss Spectroscopy  

Characteristic Energy Loss Spectra of Clean and  
Oxidized Titanium Surfaces, M.W. Ribarsky and K.O. Legg, 
Georgia Institute of Technology.*--We present recently 
taken energy loss spectra for clean and oxidized 
titanium and analyze the loss structures. The use of 
different primary electron energies and electron exit 
angles and comparisons with optical absorption data help 
identify surface and bulk plasmons and interband tran-
sitions. Our interpretation of the spectra, especially 
for the oxide, differs from earlier interpretations, and 
we discuss the implications of this for our view of 
characteristic losses in titanium oxide and for other 
processes occuring at the surface. We also analyze the 
plasmon structure in the light of various theoretical 
models. 



-25- 

V. 	Personnel  

The following personnel have been partially compensated by funds 

provided in this grant for conducting the research during the period 

October 1, 1979 to September 30, 1980. 

Dr. Martin W. Ribarsky - Research Scientist and Principal Investigator. 

Mr. David Luedtke - Ph.D candidate. 



VI. Interactions 

We had the following interactions relative to this research during the 

period October 1, 1979 to September 30, 1980: 

1. With Professor Joseph Callaway and his group at Louisiana State 

University about our modification and use of LCAO self-consistent 

band structure codes developed by his group. 

2. With Peter Feibelman and Dwight Jennison at Sandia Laboratories 

about calculations on transition metal oxides to be used as a 

basis for calculating electronic excitation structure and plasmon 

structure. 

3. With Dr. Brett Dunlap of N.R.L. about developing and using LCAO-Xa 

cluster codes for the calculation of the electronic structure of 

surface oxides. 
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