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This progress report summarizes the main results of studies conducted 

by the Surface Science group under the sponsorship of the Department of 

Energy. The period covered by the report is September 1979 - October 31, 1980. 

The program of studies of the group is designed as a broad, coordinated 

plan of investigations of certain surface phenomena. Our studies (both ana-

lytical and molecular dynamics simulation) probe structural (crystallography 

and phase transformations), electronic, vibronic, kinetical and dynamical 

aspects of surfaces in an attempt to provide a basic understanding of certain 

properties and interaction processes at surfaces which are of both fundamental 

and applied relevance. 

The work done by members of the group combines the elements of basic 

research endeavors with training and education of young scientists as evidenced 

by the composition of the group which includes besides the principal investigator, 

post-doctoral fellows and three graduate students. 

The report is organized as follows: statements of progress of the projects 

and manuscripts pertaining to the subjects of investigations are given in 

Chapter I. In Chapters II. and III. lists of publications and talks by members 

of the group are given. Members of the group are listed in Chapter IV. 
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A. SURFACE MOLECULAR DYNAMICS STUDIES OF SURFACES AND INTERFACES 

The main achievements of these studies are: 

1. Development testing and implementation of a Surface Molecular Dynamics 

program which enables the investigation of equilibrium and non-equilibrium 

surface phenomena. 

2. Development and implementation of an Interface Molecular Dynamics program 

which allows the study of equilibrium properties and non-equilibrium 

evolution at interfaces. 

3 A detailed study of the epitaxial crystallization of a supercooled liquid 

film. Development of a novel picture of the process. The time evolution 

of a number of characteristic properties (such as particle number profiles 

vs. distance, positional and orientational order parameters, kinetic temper-

ature, potential energies, pair distribution functions) has been monitored 

throughout the crystallization process. Stages of the phase transformation 

which involve cluster nucleation, layering of the fluid which preceeds 

intralayer ordering, and interlayer order-disorder phenomena have been 

identified. 

4. A study of the epitaxial crystallization of a hot liquid film. 

5. A study of the annealing of surface defects via liquid-phase-epitaxy; 

identification of the kinetic steps of surface disordering and recrystalli-

zation. 

6. Studies of the surface phase transformations of a bcc material (Rubidium) 

with pair-wise pseudo-potentials of interaction. 

7. Development of graphic routines, and accumulation of frames for a computer 

movie of epitaxial crystallization and surface melting. 
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EPITAXIAL CRYSTALLIZATION FROM A MELT: 

A SURFACE MOLECM,AR DYNAMICS STUDY*  

Uzi LANDMAN, Charles L. CLEVELAND and Charles S. BROWN 

Schooj of Physics. Georgia Institute of Technology, Atlanta, Georgia 30332 

ABSTRACT 

A newly developed Surface Molecular Dyanmics method is described and 

employed to investigate the epitaxial crystallization of a supercooled melt. 

The procedure allows for thermal dissipation via a dynamic bulk reservoir, 

th122 enabling the study of the approach to equilibrium. The early stages of 

the crystallization involve layering in the fluid, followed by intralayer 

ordering. The kinetics and dynamic coupling between fluid and solid regions 

is exhibited in particle number, temperature, potential energy, orientational 

and translational.order-parameter profiles. 
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Epitaxial solidification of materials from a melt is an important scien-

tific and technological process. The earliest theoretical models of crystalli-

zation at interf a ces due to Wilsonl and Frenkel 2  assume a continuous growth 

mode. Later models employ a two-dimensional nucleation and growth process 3  

and an attempt at a phenomenological unification of the above approaches has 

been advanced by Cahn' + . In addition, kinetic models' based on phenomenological 

mass transport and atomic incorporation into the crystal and studies of kinetic 

Ising models and the roughening transition have been reported. 6  

The objective of this study is to explore the kinetics, dynamics and micro-

scopic elementary processes of epitaxial phase transformation. We employ the 

molecular dynamics (MD) technique, which proved to be a powerful tool for the 

study of liquids 7 , condensed matter and certain phase transformationsa. In 

order to use the method for our study of the liquid-solid interface we must 

first provide an adequate description of the substrate surface. 

Surface Molecular Dynamics (SAID): In MD the classical equations of motions 

of an interacting collection of particles are integrated and the recorded 

phase•space trajectories (1(t), :,(t)) are then analyzed. In most MD studies 

periodic boundary conditions (pbc) are used. 3D pbc's are appropriate for the 

description of bulk properties. A different situation is presented for a 

system which contains a surface. While for a two-dimensional system the 

question of pbc's is simple, a semi-infinite system is a much harder problem. 

A schematic description of the system is shown in Fig. 1. The "bulk block" 

(B) and "surface block" (S), consist each of 500 particles, interacting via 

a 6-12 Lennard-Jones potential. The B-system possesses 3D pbc's and the S-

system possesses only 2D.pbc's and is free in the z direction. Consequently, 

while the dynamics of particles in the S-system is influenced by that of 
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particles in the B-system, the reverse statement does not hold, (in 

the spirit of a hulk being an infinite reservoir whose dynamics and proper-

ties should not be influenced by surface effects). To provide for Newton's 

third-law (or fluctuation-dissipation), the first 3 layers of the S-B interface 

are used as a "coupling region" on which we impose (time-step by time-step) a 

scaling of velocities such that the average kinetic energies (kinetic temperature) 

in these layers is equal to the corresponding bulk ones. The integration of the 

equations of motions is performed using a predictor--corrector method with a 

time step At
* 

= 0.0075 9  and the evolution of the S and B systems is synchronized 

at each time-step. The S-B system has been equilibrated as an fcc crystal (the 

density of the B system is adjusted to yield a vanishing average equilibrium 

pressure) exposing the (001) face, at a temperature T = 0.4 (AT melts at T *= 0.7). 

The above SMD technique has an advantage over slab configurations or calculations 

in which a static or a random matrix representation of the bulk are used. It 

allows the investigation of equilibrium and non-equilibrium surface and inter- 

face phenomena in which the dynamics of the bulk reservoir is included. Using 

our method we currently investigate: surface melting,defects, surface alloy 

dynamics, and transport phenomena. 

Surface - Liquid System: Having equilibrated the surface described above we 

prepare an equilibrated liquid sample. In the following we describe the 

results for a supercooled L-J liquid filml°  (2D pbc's and free in the third 

direction) consisting of 500 particles, at T*  = 0.4 (see block L in Fig. 1. 

other liquids such as: bulk 3D pbc's sample, and a liquid film at T *  = 0.737 

have also been investigated by us). Once equilibrated the L system is position-

ed at a distance chosen such that the smallest distance between a surface and 

a liquid particle is equal to 1.12c, (the location of minimum of the L-J 
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potential) and the evolution of the coupled system is followed. Sample part-

icle-number versus z profiles at various time steps are shown in Fig. 2. 

It is observed that while the layers in he solid are well defined, those in 

the liquid fluctuate, averaging to the density profile of a liquid film. 

However, as time progresses a permanent layering of the liquid occurs. In 

fact stratification of the liquid in the z,(001),direction precedes the achieve-

ment of intralayer good crystalline order. Note also that the topmost layer 

distance of the surface (layer 10) first expands (in fact it is expanded already 

at t = 0) and upon solidification of the liquid it contracts to the bulk spacing. 

In the following, layers in the liquid region are defined as regions in space 

whose thickness in the (001) direction is that of the next to the top-most 

layer of the solid surface (layer 9). Samples of the layer kinetic temperatures 

T* = k
BT/e, defined as the mean kinetic energy of particles in layer k, and 

layer potential energies versus time are shown in Figs. 3-6. Also shown are 

the orientational order parameters 0 4  and 06 defined as 

On  1 (t) = IN 1 	r 	1 L 	N
I,nn 

exp(in 0,J)0(Rnn  - i nt  - rj 1)1 2 	n = 4 , 6 	(1) 
I,Jek 

and the translational structure factors S(k)/N
2 
= IN

k
1 
	

exp(ik • r
I)1 2  . 

N
k 
is the number of particles in layer t at time t, 	is the Heavyside step 

function, Rnn 
is the neighbor distance, NI,nn 

is the number of neighbors to 

particle I within a sphere of radius R nn , 0,3. is the "bond" angle between I 

and J with reference to an arbitrary direction. 0 4  and 06  take the values 1 

and 0, respectively, for a perfect cubic crystal, while in the liquid state 

0
6 
is generally larger than 04' 

k is a bulk reciprocal vector. 
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Observation of the T plot reveals that they undergo a maximum around 

t/At = 1000 for layers 9-13. This is also the time at which the monotonic 

decrease in the layers potential energies achieve a plateau. In addition, the 

-- 
structure factors for k = (2u/a) (0, 0, 2), i.e., a reciprocal vector in the normal 

direction, exhibit a noted increase at this Lime. Notice that while at t ='0 

layers 9 and 10 (solid surface) were less stable, less coordinated, then a 

deeper layer they, along with the crystallized layers of the liquid, achieve 

eventually a bulk value. The time variation of the orientational order para-

meters reveals the dynamically coupled nature of the process. While the max- 

imum in T*  indicates the expulsion of latent heat of ordering and is associated 

mainly with the "layering" of the fluid (and occurs at approximately the same 

time for a wide region of the liquid), the variations in 0
4 

and 0
6 

reflect 

intralayer ordering. Following the peak in 0
4 

designated by an arrow from 

layer to layer it is seen that it shifts to longer times for higher layers and 

in consequtive layers the peaking of 0 4  is associated with a minimum in a 

neighboring layer. From the time delay of ordering in consequtive regions in 

the liquid the velocity of crystallization is estimated to be A,  100 m/sec. 

This systematic variation reflects the thermal coupling of the layers (there 

is no mass transport between layers at these times) and the transient order - 

disorder transformations which they undergo during the evolution of the system. 

Similar behaviour is observed in 0 6 . Added confirmation that crystal-liquid 

layering precedes intralayer fcc crystalline ordering is provided via the 

4 	 4 
S(k)'s for an in-plane reciprocal vector k = (2711a) (2, 0, 0). Additionally, 

we observe that layer 10 (and even 9) initially partially disorder (roughened?) 

and eventually order (smoothed?). We have also observed that in case of a 

surface which contains a planar defect an annealing occurs. 



Finally, it is of interest to comment upon the embryonic stage of the 

crystallization process. The formation of the first epitaxial 

layer involves a cluster of supercooled liquid atoms rather than random single 

particle adsorption described by lattice-gas models. This cautions against 

the direct extrapolation of theories of gas-solid epitaxial crystallization to 

liquid phase epitaxy. 

We gratefully acknowledge most valuable help and advise by Aneesur Rahinan. 

The assistance and services of the GIT computer center, Rand Childs and Jerry 

Segers in particular, proved invaluable to this work. 
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FIGURE CAPTIONS 

Figure 1. Schematic description of the bulk (B) - surface (S) - liquid 

(L) system. The bulk block possesses 3D pbe's, the S and L 

possesses 2D phc's. The coupling region is hatched. Also 

included is the- particle number versus z profile of the system 

at t = 0, consisting of an equilibrated surface and supercooled 

liquid film at T *  = 0.4. Distance in units of 7.94a. 

Figure 2. Particle number versus z at 4 different times during the evolu-

tion of the system. Note the layering in the liquid region. The 

small peak n z = 1.1, at the 250th time step corresponds to the 

embryonic cluster (see text). 

Fi:urcs 3 - 6. Time evolution of the kinetic temperature T
* 
= kT/e, potential 

energy (PE), orientational order parameters,04  and 06 , and structure 

factor S(k), for layers 9-12, respectively. Note peaking of T * , 

plato in PE and increase in S(0, 0, 2) at t/At = 1000, associated 

with layering in the solid. Order-disorder transformations in the 

layers arc indicated by the behaviour of 0 4  and 06 . Compare posi-

tions of the arrowed peaks in 0
4 

and S(2, 0, 0) which indicate intra-

layer ordering and dynamic coupling between layers. Layers 11 and 

12 are regions of crystallizing fluid. 
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B. SURFACE CRYSTALLOGRAPHY  

The main achievements of these studies are: 

1. Development and evaluation of an electrostatic model for surface relaxation 

of metals. The model combines the contribution to the force on ions in 

surface layers due to the delocalized valence electron distribution with 

that due to the interaction with positive ionic charges. 

2. Analysis of surface relaxation yielding adequate agreement with experimental 

observations for the low-index faces of A2, Li Na and Cu. 

3. Comparative study of the effect of the surface electronic density on the 

relaxation. 

4. Demonstration of the importance of multi -layer relaxation mechanisms, and 

their face-dependence. 

5. Analysis of the effects of pseudo-potential descriptions of the ion-cores. 

6. Computation of the density of vibrational states at stepped Pt(111) surfaces 

and demonstration of high-frequency modes for edge and ledge atoms. 

7. Initiation of modifications to the real-space recursion method for the 

calculation of the vibrational spectra of reconstructed Silicon surfaces, 

and adsorption systems. 
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Surface relaxation in metals is investigated via an electrostatic model, using an iterative scheme allowing 
for the participation of many layers in the relaxation process. Comparative studies of surface relaxation are 
performed for the low-index faces of Al, Li, Na, and Cu, using three models for the electronic density: (a) 
step function, (b) exponential, (c) Lang-Kohn. The results demonstrate the importance of multilayer 
relaxation mechanisms, and the sensititivy of the results to the model of the surface electronic density. For 
the exponential density profile, simple pseudopotential corrections are also included and shown to have 
significant effects. The relaxation trends predicted are consistent with available results obtained by analyses 
of low-energy-electron-diffraction data. 

I. INTRODUCTION 

Knowledge of the atomic arrangement in the sur-
face region of metals is basic for the understand-
ing of a large number of surface phenomena and 
interaction processes. This recognition has led to 
major efforts in the development of experimental 
and theoretical methods for the determination of sur-
face structures. 1,2  The termination of a solid by a 
surface modifies both the atomic coordination and 
the conduction-electron distribution. In response, 
normal surface relaxation (deviations of distances 
between atomic planes from their bulk values) and 
surface reconstruction (lateral structural mod-
ifications) may occur. Surface relaxation has been 
observed' for a number of fcc, bcc, and hcp low-in-
dex clean metal surfaces and is the subject of the 
present investigation. 

To elucidate the nature of the underlying forces 
which govern the surface crystallography, it is 
of interest to investigate surface structure theo- 
ries of a predictive nature, which apart from their 
fundamental value could provide a source of model 
structures to employ in the analysis of experimen-
tal data. The first-principles determination of 
ionic positions at surfaces is hindered by dif-
ficulties in carrying out a self-consistent energy 
minimization for the coupled system of ions and 
conduction electrons. Semiempirical methods, on 
the other hand, which were developed originally 
mainly for the study of bulk defect configurations 
(pseudopotential pairwise interactions, empirically 
fitted pair potentials, and lattice statics methods) 
have usually predicted outward relaxations for low-
index faces. 3-7  These results are in contradiction 
with experimental evidence indicating that contrac-
tion of the top interlayer spacing occurs in many 
if not most cases. 

The inadequacies of surface relaxation models 

based on bulk-derived pair-potential interactions 
only have been emphasized by Finnis and Heine 
(FH). 8  Following the conclusion of Smoluchowski 9 

 (made in the context of a study of the work func-
tion) concerning the lateral smoothing of the elec-
tronic charge density at surfaces to lower the kine-
tic energy, FH presented a heuristic model of 
surface relaxation in sP-bonded materials. In this 
model the asymmetrical electron density at the 
cleaved surface is redistributed in surface Wigner-
Seitz cells with a sharp cutoff at the solid-vacuum 
interface. As a result the ions at their first layer, 
truncated bulk positions experience a net electro-
static force to which they react via an inward re-
laxation. The original application of the model to 
the low-index faces of Al yielded results in qual-
itative agreement with experimental observations. 
Subsequent investigations have emphasized the im-
portance of crystalline effects, as well as the 
influence of the inhomogeneous charge density 
distribution at the surface." Most recently, a 
model which combined ad hoc short-range empi-
rical pair interactions with forces on the first 
few layers arising from a step-function sP-elec-
tron density at the surface was employed to study 
the (100) face of or-Fe and Cu." 

To complement the above studies we describe 
here a simple electrostatic model for surface re-
laxation. The method combines the contribution 
to the force on ions in surface layers due to the 
delocalized valence electron distribution with that 
due to the interaction with the positive ionic 
charges in the planar nets. Three models for the 
electronic density in the surface region are studied 
and compared: (a) an abrupt terminated step den-
sity profile, (b) an exponential variational form 
(Smith)," and (c) a self-consistent distribution de-
rived from the jellium model (Lang-Kohn). 13  For 
the exponential density profile, pseudopotential 
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corrections are also incorporated in a simple way. 
Under the influence of the forces acting on them, 
ions in an arbitrary number of surface planes are 
allowed to relax from their bulk positions, and the 
coupled set of equations governing the planar dis-
placements are solved by a fast-converging iter-
ative technique. The method is material depen-
dent, in contrast to the original FH method. It is 
easy to apply and yields correct trends when com-
pared with experimentally determined relaxation 
values for several materials. Following the de-
rivation of the basic relations given in Sec. H, re-
sults obtained by the method are discussed in Sec. 

II. EVALUATION OF THE SURFACE ELECTROSTATIC 
FORCES 

In this section we derive expressions for the 
electrostatic interactions between ions in surface 
planes. For the sake of brevity we discuss first 
the case of a step-terminating electron density 
which is then generalized to the other density pro-
files considered. The arrangement of ions in the 
bulk terminated lattice is shown in Fig. 1(a): For 
simplicity, we consider only surfaces character-
ized by a single interlayer spacing d before re-
laxation. Ionic layers located at -nd are embed-
ded in slabs of thickness d and of uniform nega-
tive charge density -(Ze/Ad), where Z is the 
valency of the material and A is the area of the 
unit cell of the surface net. The system after re-
laxation occurs is shown in Fig. 1(b). 

The force on an ion in layer m due to the charge 
in a different layer n is evaluated by using a layer 
summation method."'" The quantity of interest 
is the electrostatic potential at point r due to the 
charge in slab n: 

0,(f. ) = 	 --ell d3r' 	 (1) 
If - 	• 

z-d12  

Using the identity 

21r I d2K e -IC
K

Ig 1 	
eirc•("' 

(2) 

where R and R denote the projections of the vec-

tors k and r onto the plane parallel to the sur-
face plane, Eq. (1) can be written as 

ona., )=  1 	d2K  eicz 

27 

x f d3r 'p„(r' )e*K4' 	z 	. (3) 

Owing to the translational periodicity in the 2D 
net, the second integral in Eq. (3) can be written 
as 

472  v. 

	

15(tc-d)1 d3r'pn(fle" 	(4) 
A - 

where G is a reciprocal vector of the 2D net, and 
the integral remaining is over a neutral unit cell 

in slab n. 
We now allow the ions in layer n to relax from 

their bulk position to a new location z' =_-[nd 

+6.(n)]. Next we need to specify the layer-shift 
vectors defining the origins for the unit cells in 
the various layers. For the fcc (100) and (110) 
faces and the bcc (100) face, the layer shift vec-
tors are 

(0, 0), n even 

(5) 
(a 1 /2, a 2 /2), n odd , 

where at , a2  are the magnitudes of the sides of the 
2D unit cell; other cases are treated in Appen-
dices A and B. _Expressing the reciprocal lattice 
vector as G=p.b i  + vb2  (A, v integers), and intro-
ducing the function Pd(n) defined as 

0 

d/2 

     

1, n even 

Pd (n) 
(-1)"", n odd , 

 

      

  

-e(0) 	1 	I 

d 	 F 	I 	1 4  

(6) 

   

dl 	1 	t1 

 

- 3/1d 

   

we obtain 

   

472  
1=—

A
(2e)E 6(k- - d)Pd(n) e*Gin4 + 4001 , 	( 7 ) 

• 

tol 	 lb I 

FIG. 1. Schematic picture of the layer arrangement in 
the terminated bulk crystal prior to (a) and after (b) re-
laxation. The bulk spacing is denoted by d and the dis-
placement of ions in layer n from their bulk position by  

where the - and 	signs correspond to the obser- 
vation point located above or below slab n, re-
spectively. TheTrime on the sum in Eq. (7) in-
dicates that the G=0 term is excluded as a result 
of charge neutrality. Combining Eq. (7) with (3) 
yields for the z component of the electrostatic 



(14) 

(15a)  

(15b) 
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field at T- 1E.(i)=-acP„(r)/azi, 

±-
2ff

(2e)E e * c'ef'5' 4  P d(n) e'Gcndt° ("11  (8) 

Taking z 	+ (m)1, and noting that ei 6• 
= 4-7(m) for an ion in layer m, we find that the 
forCe on ions in layer m due to the charge in layer 
n is, in units of 21r(Ze) 2 /A, 

F„,„- sgn (n - m) E li(m)Pd(n)exp[-G I (n - m)d + (n ) - 4(m) I ], m n 
	

( 9 ) 
6 	• 

The interaction of the ions in slab m with the negative charge in the same slab is obtained by using the 
Poisson equation, which yields for the z component of the force in the same units as above, 

17„= 2A(m)/d. 

Let us assume that relaxation from bulk positions occurs up to layer L, i.e., for n > L, 6.(n)= 0, and 
sum the contributions to the force on ions in layer m from these deep layers. The result is 

F. E Fmn=  E 13! ) e C, Intd•A (m)] E pa  (n )e -Cd, 

E, • I 	a" 	 n=L+1 

For two-layer repeat sequences in the 2D layer shift vectors as in Eq. (5), F. is given by 

Yd +1)e-ca FL (L 21e-2Cd * 
F.= 2_, 	 pa,(„) 9 —G (L —rre)d—Mm)1 

— e -Gd 

The simultaneous set of equations for static equilibrium is 
L 

0= E 	F,,,(A,,,) form= 0, 1, 	, L . 

The solution of the above set of equations is achieved by a simple iterative method in which we set A 1 , 1 (n) 
--=A 1 (n)+6,(n), where i is the iteration number. The procesure is started with Li t (n)-= 0 for all n. Expan-
sion of the forces in Eq. (13) to first order in 6 1 (n) yields the following set of equations: 

E a i •6,(l 1 )=--b i ; 1=0,1, 	, L , 
r=o 

a „.= - Ep.,-(oper,G exp[-G 1 (I' -1)d + 4.,(11)- A i(1 )I] ,  1 	, 

an=  E r 13 (1)P6-(n)G exp[-G1(n - 1)d + 4, (n)- A i  (/)1 I 
no 1 6 

v--, 'Pd(L 	+ ne -
Gil  + pd(L  + 2)e-2cd . 

--i- 	 P6( 1)G exp{- GPL -1)d - A ,(1)11 + 2/d 
1- e -2" a 

(10) 

(12) 

(13) 

- -E sgn(n - /) E' /1(/)Pd(n)exp[-G 1(n - 	 + A (n) - (/) I 

Jr)(L  +1)e-G °  + PD-(L +2)e-2 '3d  
1 _ e -zco 	PO) exp[ -  G 1(1,  - 1)d - 41,(1)11- 2A,(1)/d 

G 

The values of 6,(/) in each iteration are obtained 
from Eq. (14) by simple matrix inversion. Typi-
cally the solution converges after 3-5 iterations. 

Exponential density profile 

Having derived the basic relations for the step-
terminating electronic distribution, we turn now 
to a generalization of the theory to include more 
realistic descriptions of the surface electron den-
sity profile. First we employ an exponential form. 

e 84-4 / 2)  
p,,(z) -= n o  (1 	

2 

) 
z< 	 (16a)  

Pe (z ) = ino e -8('-er/ 2) , z > Zd 

where no = - Ze /Ad and 0 is a variational param-
eter: 2  Let us consider first the electronic field 
at a point z in the first layer. Integration of the 
Poisson equation yields 

Ez(z)= 4ir f pe (z')dz' + E.(z co) , 	(17) 

where Ez(z -00)- 4rn od/2. Using Eqs. (16a) and 
(16b), we obtain 

e ric.--a /2) 
Ez (z) 47rno k - 	20 	. 	 (18) 
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Setting z -A(0), we find that the force on the 
first  layer of ions due to the negative charge in 
the outermost region is, in units of 27T(Ze) 2 /A, 

2 	
e 	

-43[6,00)•d/23 

" d 

In the language of our iterative algorithm (A,, 1  
-.=A, + 5 i ), 

Foo  -=-c-i (A,(0) + 	 
2 	e -Brei (o).4 /21) 

2i. 

 2 
 (

1 
	e -8(.64  an.4/21 ) 

...____ 	 (0) 
2 	i 	• 

Thus to b o  i.n Eq. (15c) we need to add the factor 
expl— ii[A, (0) + d/2]1 and to a 00  in Eq. (15b) 

the factor 	expf-i3[A,(0) +d/2]}. 
Next we consider the change in the force acting 

on ions in the second slab. Since we require a di-
vision of the material into neutral regions we need 
to adjust the location of the boundary between the 
outermost and the next region from its original 
position at -d/2 to -d/2 + s. The shift in the 
boundary is determined by the condition E(s - d/2) 
=-- -47rn od/2, or using Eq. (18), 

2Ps =eats-e) 	 (21) 

The electric field in the second layer is given by 

E z (z)= 47T f 	p(z)dz + E,(z 	 (22) 
-4/2.3 

Substituting Eq. (16a) in Eq. (23) and using Eq. 
(22), then setting z = -[d + A(1)] for the second 
layer and employing our iterative scheme, we ob-
tain 

2 	 -occwi)•34e/23(1 
F11  =-(11,1(1) + 6,(1)+ 

e  
2 	

5
i
(1))] 

(23) 

Thus to b 1  in Eq. (15c) we need to add 
- (hd) -1  expl-gA,(1) + 3d/21} and to a ll  in Eq. (15b) 
that term multiplied by /3. 

Lang -Kohn density profile 

The importance of self-consistency in the cal-
culation of a number of surface properties such as 
surface energies, work functions, adsorption, and 
geometrical structure has been investigated and 
demonstrated. Since the exponential density does 
not include some features characteristic of the 
electronic density at surfaces, such as Friedel 
oscillations, we employ next the sell-consistent 
surface electronic density calculated by Lang and 
Kohn' (LK) for a uniform positive background model. 
These charge densities have been tabulated for vari-
ous r3  values in Table I of Ref. 13 and will be denoted 
by nt,K . Using our previous notation, the z component  

of the electric field on ions in the first layer of the 
solid can be w ritten as 

E z [ -0,(0) - o,(0)] 	-A, (0) + 4frn,,j -A, (0)15, (0) 

from which the force F„ follows. Accordingly 
the term -2A g (0)/d in Eq. (15c) for 1) 0  is replaced 
by (2/d) f .a Ai (o) n  LK  ( z.  )dz  + 1 , and in Eq. (15b) for a„ 
the term 2/d is replaced by (2/d)nu[ -A i  (0) 1. To 
include effects on ions in the second layer the 
corresponding replacements in b 1  and a il  are made 
with the terms evaluated at z = -[d+,N ; (1)j. Notice 
also that due to a difference in the choice of ori-
gin for the location of the first layer of ions at the 
surface, the LK coordinates are shifted by +d/2 
to agree with our convention. 

Pseudopotential corrections 

To incorporate pseudopotential corrections with-
in the framework of our model, we use a sim-
plified Heine-Abarenkov pseudopotentia1 15 ." for the 
electron-ion interaction. The difference from the 
Coulomb interaction used in Eq. (1) and subse-
quently is given by the function 

f ( 	 — T.I ) = Cr°  - I r" - )
( 1 

- 	
1  

(25) 

where r, and a, are the pseudopotential radius and 
well-depth parameter, respectively, and 0 is the 
Heaviside step function re(x)= 1 , x> 0 and 8(x) 
= 0, x< 0]. For 	o, the simplified Heine-Abar- 
enkov pseudopotential becomes an Ashcroft pseu-
dopotential." 

If the pseudopotential cores do not overlap, then 
the only change in the potential acting on an ion 
is that due to the difference of its own pseudopo-
tential core from the Coulomb interaction, 

A cp,iti• = -[nd+ (n)]i + 

= -f er'pe 	(i T.' - TI ) 

= - 2ff f dz {z - [nd+ WM 
- '0 

	

X (-1.7-0  (rg - 2 2) - Y 0 + Izi) 	 (26) 

For a constant charge density p c, across the pseudo-
potential core, the integral in Eq. (26) yields a 
constant potential, 

A yting -[nd + (n)li 	2rrp oral- F,(r dad] , (27) 

(20) 

(19) 	
-47rf-A"' „, K (z),12. 

A d  

-  
n
Q-- 
Ze d 

 = 
Ad 2 

- 47r—Ze
nud-6, ; (0)1b,(0) , 	(24) 

Ad 
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and no change occurs in the forces exerted on the 
ion. However, when the planes of ions relax in 
regions of nonuniform electronic charge density, 
the pseudopotential corrections do modify the for- 
ces acting on the ions , as we illustrate for the 

	 1  

exponential density profile. 
We consider first the case, where nd+ ^ (n)+d/2 

>r 0, and the exponential density to use in Eq. (26) 
is that given in Eq . (16a). Carrying through the 
integration in Eq . (26), we obtain 

--[nd+ o(n))z+R'}=2rrn o (ro[1-3(r o/a o)] - â e ' e[ 2] ([1 - (r o/a o)]coth(3r o +-̂  sinhf 0 -1)]. 
l 	 \ 	 o 

(28) 

The change in the force on an ion in plane n is 
which in units 

`

of 2r(Ze) 2/A is 

^ Fnn= 
d 

e - Bbd+atn ) +d /21(1 1  — 

(r0/ao)] COth^rO 

+ 	1  sinh/3r o  - 1) , 	(29) 
Prt 

which for the Ashcroft pseudopotential (a 0 - 00)  re-
duces to 

oF,„' d 
e - Bbd +ar”)+d / 21 (cothf3r o -1). 	(30) 

Note that this is the change relative to the results 
obtained for the exponential density profile with a 
Coulomb electron - ion interaction. The changes 
with respect to the step -function density profile 
results given in Eqs. (15a)-(15c) are 

5att = (35b t  

= — 1 
	o(n)+a / 2] [1 _ (r

0/a 0)] cothRr o  
d 

+ 	 sinh/3r 0) 
0 

_- B[na+p (nkd /a1 Goth Q"y Q 
	

j3ra 

If the pseudopotential core for an ion in the first 
layer intersects the plane at d/2, i.e., o(0) +d/2 
< r o  the pseudopotential corrections are obtained 
by using both (16a) and (16b) for p,, in the approp-
riate ranges in the integral in Eq . (26). For this 
case , we will simply give expressions for the 
changes relative to the step function density re-
sults in Eqs . ( 15a)-(15c): 

ba it =_r(1- (r o/a o)-jj  )e -B'osinh{1310(0)+d/2]} 
LL\\ 	 o 

bl, t  = - 

_ 1 + --- k( 0)+d/2 1] , 

	r /  

(32a) 

I f 1 - (r o/a^ - 1 	) e - ro  
LL` 	 o d  

x c oth {13 [' (0) +d/2]}   

++{r0  -(0)+d/2]} 
u 

x11 2uo  [ro+t (0)+d/2 ]J
J

• 	(32b)  

HI. RESULTS 

We have applied the methods described in the 
previous section to investigate relaxation at the 
low-index faces of several fcc and bce materials. 
A summary of characteristic parameters for the 
(001), (110), and (111 ) faces of fcc and bce crys-
tals is given in Appendix B. 

Several studies of electrostatic contributions to 
surface relaxation have been reported previous-
ly  8.10.11 In all of these, it was concluded that the 
contribution of electrostatic forces arising from 
the smoothed sp-electron charge density is im-
portant, and cannot be neglected with respect to 
short-range forces and broken bonds which gen-
erally , by themselves , predict outward relaxa-
tions . No systematic investigation has yet been 
made, however, of the effects of physically reason-
able variations within an electrostatic model. We 
will show that three such variations produce quan-
titatively significant effects : (1) multilayer re-
laxation, (2) charge density profiles, and (3) 
pseudopotential corrections. 

Table I illustrates the importance of multilayer 
relaxation mechanisms for exponential charge 
density profiles at Al and Na surfaces with no 
pseudopotential corrections . Similar results are 
obtained with the step function and Lang -Kohn den-
sities. The effect of allowing more than one or 
two layers to relax is significant for those sur-
faces which undergo large relaxations , which in 
Table I are the fcc (110) and the bce (100) faces 
(these are the least densely packed faces). In-
spection of the layer-by - layer displacements for 
these surfaces reveals that allowing more layers 
to relax does not merely give nonzero values for 
the displacements of the deeper planes , but also 
modifies the displacements of previously con-
sidered layers . For these faces, 3-6 layers par-
ticipate in the relaxation as compared to 1-3 
layers for the other faces. A tendency of the dis-
placements to alternate in sign is noted, although 
for Na (111), for example , all layers relax out-
ward . In general , after the first one or two lay-
ers, the magnitude of the relaxation decreases 
exponentially as one goes into the solid from the 
surface. In Table I and elsewhere , we use values 

(31) 
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TABLE 1. Relaxation of the spacing between the first and second layers, Al2 1,A(1) 

in (- denotes a contraction and an expansion), and layer by layer displacements for the 
low-index faces of Al and Na using the exponential electron density, with values for the vari-
ational parameters it of 1.24 and 1.27 (a.u.) -I , respectively, from Ref. 12. The integer L de- 
noles the number of planes allowed to relax. The numbers in the fourth column are the values 
obtained for A(n)/a, where n-0,1, - • is the layer index. 

Surface L A l 2(1/4) n 

Al(100) 1 -1.1 -0.0059 
10 -1.2 -0.0054, 0.0008, -0.0001 

Al(110) 1 -8.7 -0.0309 
2 -18.2 -0.0397, 0.0248 
5 -21.2 -0.0435, 0.0316, -0.0148, 0.0080, -0.0035 

10 -21.3 -0.0436, 0.0318, -0.0151, 0.0086, -0.0045 
Al(111) 1 +0.6 +0.0036 

10 +0.6 1- 0.0036, 0.000 01 
Na(100) 1 -6.3 -0.0317 

2 -9.5 -0.0349, 0.0127 
5 -9.9 -0.0353, 0.0139, -0.0044, 0.0015, -0.0004 

10 -9.9 -0.0353, 0.0139, -0.0044, 0.0015, -0.0005 
Na(110)  1 -0.6 -0.0043 

10 -0.7 -0.0043, 0.0003 

Na(111)  1 +3.7 +0.0108 
2 +3.6 1. 0.0108, 0.0003 

10 +3.6 +0.0108, 0.0003, 0.0001 

for (3 taken from Smith." We have repeated all 
exponential density calculations using 0 values 
given in the more recent work of Ma and Sahni," 
and found qualitatively similar results. 

The possibility that a number of layers may 
participate in the relaxation is potentially signi-
ficant for LEED model calculations of scattered 
electron intensity versus incident energy (Iv) 
profiles. In most LEED analyses of clean metal 
surfaces, only the top layer of ions has been al-
lowed to relax in attempting to fit the experimen-
tal data. In a recent study of Cu(110) LEED in-
tensity spectra, it was found that the structural 
model which fit the data best is an -10% contraction 
of the first-second layer spacing, accompanied 
by perhaps a slight contraction or expansion be-
tween the second and third layers. 19  Similarly, 
for the Re(1010) surface, about a 17% contraction 
of the first-second layer distance and a modest 
expansion between the second and third layers ap-
pear to give the best agreement with experiment. 20 

 In light of these recent studies and our results it 
is suggested that multilayer relaxation models be 
considered more routinely in LEED analyses and 
in the interpretation of ion scattering and channel-
ing experiments. 

Table II illustrates the dependence of the relaxa-
tion upon the model used for the electron charge 
density. The step-function density yields contrac-
tions for all of the faces studied. The exponential 
density profile produces smaller contractions 
than the step-function density for the (001) and 

(110) faces, and predicts expansion of the first-
second layer distance for the (111) faces of all 
three materials. With the Lang-Kohn densities, 
the calculated relaxations are generally of the 
same sign as the exponential density results, but 
in some cases are significantly different in size. 
The charge density dependence of the relaxation 
appears to be stronger for the higher v s -value 
materials. This can be rationalized by consider-
ing the Lang-Kohn charge densities for Al, Li, 

TABLE II. Relaxation of the first-second and second-
third layer spacings .6,, 2  and A 23 , A rn„ .1a(m) - AN)1/d, 
for the low-index faces of Al, Li, and Na using three 
models for the charge density: (a) step-terminating, 
(b) exponential, and (c) Lang-Kohn. Values for 012  and 
At3 are given in percent. For the exponential density 
profile results, the parameter 13 was taken to be 1 24, 
1.24, and 1.27 (a.0 ) -1  for Al, Li, and Na, respectively. 
Ten layers were allowed to relax for all results listed. 

Surface 
Step 

A i?. 	A 23  

Exponential 

A le 	A 23 

I.ang-Kohn 
A 2 	A 23 

Al(100) -2.4 0.3 -1.2 0.2 -2.0 0.1 
A1(100) -26.3 15.8 -21.3 13.3 -23.9 11.1 
A1(111) 0.0 0.0 +0.6 0.0 +0.3 0.0 

Li(100) -10.9 4.0 -8.7 3.3 -16.3 7.4 
Li(110)  -0.9 0.1. -0.3 0.0 -2.0 -0.4 
Li(111)  -0.9 0.0 +6.7 0.3 +9.0 -3.1 

Na(100) -1.0.9 4.0 -9.9 3.7 -20.3 9.4 
Na(110) -0.9 0.1. -0.7 0.0 -2.6 -0.6 
Na(111)  -0.9 0.0 +3.6 0.1 +4.0 -4.1. 
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and Na, which are shown in Fig. 2; the Li density 
was obtained via a six-point, two-dimensional in-
terpolation of the charge densities given in Table 
I of Ref. 13. As seen in the figure, the Friedel 
oscillations at the surface of Al (rs = 2.0) are much 
:;m:111,.1.I11;111 1111 Ili(' kWh,' 	 III an Huy 
Irnsialtrim . ce !nod el, such differences in negative 
charge accumulations can have a significant effect 
on the results. As noted by Alldredge and Klein-
man (AK)," this may account for the apparent 
success of the calculation by F11 8  for Al, where a 
step-function density was assumed. 

The effect of pseudopotential corrections is 
shown in Table III. Both Ashcroft (empty core) 17 • 21 

 and simplified Heine-Abarenkov pseudopotentialsI8 
 have been employed in conjunction with the expon-

ential density profiles. The pseudopotential cor-
rections lead to substantial changes in the relaxa-
tions calculated, and generally tend to favor ex-
pansion, or equivalently, to reduce contraction. 
Plausible variations in the pseudopotential param-
eters produce modest but in some cases non-neg-
ligible changes. Unrealistically large expansions 

are predicted for the bcc (111) faces; these are 
the only cases treated for which the Ashcroft pseu-
dopotential cores for atoms in the first layer ex-
tend well beyond the plane at id. 

In Table IV, we compare our results for Al, Li, 

and Na with available previous studies, l, 
 10,22,23 in- 

1 .0 

nt, (n) 

0.5 

-1.0 	-0.5 	0 	0.5 
Z(2T/kr ) 

FIG. 2. Lang-Kohn charge densities derived for a uni-
rm jellium model (after Ref. 15), for rs =2.0, 3.25, 
d 4.0, solid, dashed, and dotted curves, respectively. 
it coordinate z is in units of the Fermi wavelength, 
d the densities n yK  in units of the bulk density 

ze/Ad. To agree with our convention that the first 
layer is located at z - 0, the coordinates in this figure 

e to be shifted by (+ d/2), where d is the layer spacing 

the unrelaxed lattice. 

eluding LEED analyses. For the step-function 
density there are substantial differences between 
the one-layer relaxation results and those obtained 
with the original FH model, 8  which considered only 
the interact ion of a surface ion with the smoothed 

11:: „WI, :4111:1•0 

cell. Further changes are evident when more 
layers are allowed to relax. Using a one-layer 
relaxation model, AK' °  have emphasized the im-
portance of crystalline effects in their study of 
the Li(100) surface. They conclude that the Lang-
Kohn density yields an electrostatic force on the 
first layer of about one fourth of the total crystal-
line result. Table IV shows again that multilayer 
relaxation mechanisms, electron density varia-
tions and pseudopotential corrections all can pro-
duce large changes comparable in magnitude to 
other crystalline effects. Our electrostatic model 

is sufficiently simple that we do not want to belabor 

TABLE III. The effect of pseudopotential correction on 
relaxation of the first-second layer spacing A l 2 for the 
low-index faces of Al, Li, and Na. Values for A1., are 
given as a percentage of the bulk interlayer spacing d. 
The first column in the top half of the table, labeled 
None, gives the results obtained with the exponential 
charge density profile and no pseudopotential correc-
tions. The next four columns, labeled Al. A2, 11AI and 
11A2, list values obtained using the exponential density 
and two Ashcroft and two simplified Ileine-Abarenkov 
pseudopotentials The pseudopotential radii and well-
depth parameters for the four models are given (in 
atomic units) in the lower half of the table. Values 
used for p were 1.24, 1,24, and 1.27 (a.u.) -1  for Al , 
Li and Na, respectively, and ten layers were allowed 
to relax in the calculations. 

Surface None Al a  Al b  IiAl e  HA2 °  

A1(100) -1.2 +0.2 +0.2 +0.1 +0.5 
A1(110) -21.3 -14.5 -14.7 -15.2 -13.1 
Al(111) +0.6 +1.4 +1.4 +1.3 +1.5 

Li(100) -8.7 +0.1 -6.2 -4.6 -3.8 
Li(110)  -0.3 +1..4 +0.2 +0.4 +0.6 
Li(111)  +6.7 +41.0 +18.7 + 23.5 +24.8 

Na(100) -9.9 -5.5 -6.2 -6.0 -3.7 
Na(110)  -0.7 40.1 0.0 -0.1 +0.5 
Na(111)  +3.6 +29.8 +26.7 +21.7 + 26.1 

Al 	 Li 	 Na 
ro  ao  a0  ro  a 0  

Al 1.131 .0 1.678 0. 1.758 .0 

A2 1.12 . 1.06 .0 1.66 oo 
HAL 2.0 1.82 2.8 2.32 3.4 2.87 
11A2 2.0 1.99 2.8 2.38 3.4 :3.11 

2  Reference 21. 
b  Table XV of Ref. 17. 

Table 8-3 of Ref. 16; Z/ci o = (A, +A, A 2)/3. 
d  Table 8-3 of Ref. 16; Z/a0  = (A 0  +At)/2. 
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APPENDIX A 

the electrostatic forces pre-
r the fcc (100) and (110) faces 
ice is extended in this Appendix 

f these cubic structures. Fol-
tding to Eq. (9), we obtain for 
n the mth layer due to those 
dentical expression, but with 
e Appendix B) 

Pe;(n) = expr2ffi(p. + 11) mod(n, 3)/3] , 	(Al) 

where the mod(a,b) function is defined as 

mod(a, b)=a - [a /b]b , 

and [x] is the largest integer which does not ex-
ceed x. For the expression for F„ corresponding 
to Eq. (12), we obtain 

e  -Gd 

F E 	 _ 	+x +xzw-,(L. 1) 

X Ptt,(M )C -GE(L- '41d-64 '413 

	
(A2) 

where 

X = exp[ -Gd+ (2Tri/3)(A + v)]. 	 (A3) 

APPENDIX B 

In this Appendix we compile crystallographical 
relationships for the low-index faces of cubic 
structures. The following notations are used: 

5:2  are the primitive real-mesh translation 
vectors. 

b1 , b2  are the primitive reciprocal-mesh vectors; 
5-. 1 • 	= 

p.b,+ vb2  is the reciprocal-mesh vector. 
A, B are real and reciprocal unit mesh areas. 
d is the interlayer spacing in the unrelaxed real 

lattice. 
n o  is the repeat sequence for planes, i.e., plane 

n + nc, has the same origin as plane n (in 2D). 

Pit,(n) = exp-iG•13,, is the phase function for plane 
n. The indexing of planes is n= 0,1, 	, with 
n = 0 being the top-most surface plane. 

Table VI lists the above for the various fcc and 
bcc faces. 
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We show that vibrational modes with frequencies above the maximum in the bulk can occur 

at the steps of the Pt(332) or 6(11 I) x(11 I) surface, as observed by Ihach and Bruchmann, if 

the largest force constants are increased by —30-40' 1A ,  at the steps. The calculations are done 

by applying the recursion method within clusters of thousands of atoms, with a rotationally in-

variant first- and second-neighbor bond-angle model for the interatomic forces 

lbach and Bruchmann t  have recently reported 
inelastic-electron-loss measurements of localized pho-
nons at the (332) or 6(11I)x(111) surface of plati-
num. The most interesting feature of their results is 
that the observed phonon loss peak occurs at a fre-
quency of 25.4 meV, slightly higher than the max-
imum frequency of 24.3 meV in bulk Pt, and roughly 
15% above the highest frequency peak at —22 meV 
in the bulk density of states. 2  This is somewhat 
unexpected, because the usual picture is that phonon 
frequencies will decrease at surfaces to reflect the 
missing bonds. To explain higher-frequency surface 
vibrational modes, it is necessary to invoke relaxation 
accompanied by increased force constants in the sur-
face region. Arguing by analogy to a linear chain 
with nearest-neighbor interactions, Ibach and Bruch-
mann estimated that the force constants for atoms at 
the steps must be increased by a factor of approxi-
mately 1.7 to explain their data. 

Drawing conclusions for three dimensions from 
one-dimensional models is generally somewhat risky. 
On the other hand, high Miller index surfaces with 
regularly stepped structures like the fcc (332) surface 
are difficult to treat by either exact methods 3 . 4  or ap-
proximate, slab calculations 5  that rely on use of the 
two-dimensional transform with respect to surface 
wave vectors. An approach that does not vary in 
complexity with surface normal, i.e., one that can be 
programmed to deal with (hkl) surfaces in the same 
way as (100), (110), or (111), is the recursion 
method.'' We have applied this method to large clus-
ters of atoms to investigate vibrational modes at 
stepped fcc surfaces. 

We use a rotationally invariant, first- and second-
neighbor (Inn +2nn) bond-angle force model like 
that described by Keating.' Scalar products of vectors 
are invariant under rotations, so the potential energy 

is expanded in powers of scalar product differences S, 

S(n i ,n 2 ;n 3 ,n 4)=IT (n l .n 2 ) • R (n3m4) 

— ko(ni.n2)-Ro(n,.n.) • 

where FT0 (n,n') is the equilibrium spacing between 
atoms at sites n and n', and 

(n,n')=Eio (n,n') 	(n) 

includes the displacements if Wand 11 (n') away from 
equilibrium. The expansion is truncated at second 
order in the displacements to yield a harmonic pho-
non Hamiltonian. For the present calculations, we 
include squares of the following scalar product differ-
ences in the potential energy, giving an example for 
each: Inn bonds—S 2 (110,0;110,0); 2nn bonds—
S 2 (200,0;200,0); I nn-1 nn-I nn angles — 
S 2 (110,0;011,0); I nn- I nn-2nn angles—
S 2 (110,0;1[0,0), S 2 (110,0;200,0). In the bulk, this 
five-parameter bond-angle model is equivalent to a 
general Inn + 2nn Born—von Karmn model. At 
surfaces, however, the bond-angle model is automati-
cally rotationally invariant, unlike a truncated Born-
von Korman model. 

We generate our clusters in a way designed to elim-
inate boundary effects in the recursion procedure. 
Suppose that we want to calculate the density of 
states for displacements of a particular atom along a 
given direction, e.g., for [1111 displacements of an 
atom at a step on an fcc (332) surface. Then level 1 
of the cluster consists solely of this atom. Level 2 in-
cludes the first and second neighbors of the single 
atom in level 1. Level 3 comprises all first and 
second neighbors of the atoms in level 2 not already 
included in levels I and 2, etc. if an N +1 level clus-
ter is generated, then recursion is performed at level 
N, before the Inn + 2nn Hamiltonian reaches cluster 

(1) 
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0 	I 	2 	3 	4 	5 	6 	7 

FREQUENCY (THz1 

FIG. 1. Phonon densities of states for bulk Pt calculated 
by the Gilat-Raubenheimer (GR) and recursion methods: 
top—GR, six-neighbor force model of Ref. 2; bottom —GR 
(full line) and recursion (dashed line) results for the Inn + 
2nn force model fitted to the 90 K data in Ref. 2.' All densi-
ties of states shown here and in Fig. 3 are normalized to in-

tegrate to unity. 

boundary atoms in level N +I that are the only 
atoms in the cluster with missing neighbors. 

The first step in the calculations was to fit the Inn 
+ 2nn force model to the neutron scattering data of 
Dutton et al. 2  Reasonably good agreement with the 

measured dispersion curves was obtained, although 
forces of longer range are needed to fit all details of 
the spectrum. Figure 1 compares the bulk Pt density 

of states calculated by the Gilat-Raubenheimer 
method 8  for our Inn + 2nn force model with the 

results of the six-neighbor model of Ref. 2. The de-
tails of the curves are somewhat different, but the 
major spectral features appear in the same places. 

FIG. 2. Fcc (332) or 6(111)x (111) surface.  

Figure 1 also shows level-9 recursion results, calcu-

lated within a level-10 cluster of 4579 atoms, for the 

Inn + 2nn force model. These compare very well 

with the corresponding Gilat-Raubenheimer results. 

For a surface as complex as the fcc (332) surface 

of a transition metal, it is difficult to argue what re-

laxation will occur and how the force constants will 

0.8 

0.6 

0.4 

0.2 

0 

(c) 

2 	3 	4 	5 	6 
	

7 
FREQUENCY (THz) 

FIG. 3. Normalized densities of states for 11111 vibra-

tions at the Pt(332) surface. (a), (b), and (c) give results 
for edge, terrace, and corner atoms, respectively; full lines 
are for Inn bond-stretching force constant increases of 
15000 dynes/cm at the steps as described in the text, dashed 
lines for no force-constant changes. 
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change. We have therefore adopted a pragmatic 
viewpoint, focused our attention on the step edges, 
and set out to illustrate the magnitude of the changes 
needed to produce high-frequency step modes like 
those observed. Specifically, we allow changes only 
in the Inn bond-stretching force constants for atoms 
at the top and bottom of the step edges, and no at-
tempt is made to include relaxation to new equilibri-
um spacings Ro(nm") near the surface. 

Figure 2 shows the surface we are dealing with. 
The atoms at (0,0,0), (0,-1,-l), and (0,-3,3) will be 
referred to as edge, corner, and terrace atoms, 
respectively. Any atom that does not occupy a site 
on a surface step will be called a bulk atom. 

Figure 3 compares densities of states for edge, ter-
race, and corner atoms for vibrations along the [I l 1] 
direction, the normal to the steps. To obtain these 
results, recursion was performed at level 11 in level-
12 clusters of 4099, 4313, and 4468 atoms, respec-
tively. The dashed curves are those obtained with no 
changes in the forces at the surface except for the ab-
sence of interactions involving missing neighbors. 
The solid curves were calculated by assuming that all 

Inn bond-stretching force constants for edge-corner, 
edge-bulk, and corner-bulk atom pairs were increased 
by about 35%, that is, by 15000 dynes/cm from the 
value of 41 500 in the bulk. 

Figure 3 shows that no high-frequency modes oc-
cur for edge, corner, or terrace atoms in the absence 
of force-constant changes, although the [111] densi-
ties of states for the three atoms are quite different 
from one another and from the bulk results. With 
Inn forces at the steps increased by — 35% as speci-
fied, high-frequency peaks appear for both edge and 
corner atoms, while essentially no change is seen in 
the terrace atom density of states. In fact, the results 
shown for the terrace atom are virtually the same as 
those for Pt(111) vibrations along [111] with no 
force-constant changes.' The pronounced high-
frequency structure for edge and corner atoms ex-
tends from about the top of the bulk spectrum at 
24.4 meV to about 26.1 meV (5.9-6.3 THz; 1 
THz=4.135 meV). The electron-loss peak observed 
by lbach and Bruchmann l  fell at 25.4 meV (6.15 
THz); this was considerably broader than the calcu- 

lated results in Fig. 3, but most of the experimental 

width appears to have been instrumental. 

In the results shown for edge and corner atoms 
with increased forces, the high-frequency modes are 
nearly split off above the bulk spectrum. The one-
band recursion procedure we have used gives only 
semiquantitative accuracy for such cases. Thus, 

while the overall shape of the solid curves in Figs. 
3(a) and (c) is reliable, the fine structure does vary 
with changes in such computational parameters as the 
recursion level. This does not affect our conclusions; 
the variations in the calculated results are small with 
respect to the experimental resolution. 

Other sets of force-constant changes at the steps 
yield high-frequency modes for vibrations along the 
step-normal direction. These can be distinguished 
from one another by the structure they give for [111] 
vibrations and by their effects for other atoms and vi-
brational directions. All that we have tested require 
substantial (30-40°k) increases in the force-model 
parameters at the steps, but not of the magnitude 
(70%) inferred by lbach and Bruchmann from one-
dimensional arguments. We have also performed cal-
culations for another stepped surface similar to the 
(332) or 6(111) x(1f1), namely, the (755) or 
6(111)x(100) and found similar results. 

For these illustrative calculations, we have only 
considered changes in the Inn bond-stretching force 
constants for atoms at the step edges and corners, be-
cause this provides a relatively simple model with few 
parameters that concentrates on the regions where 
the largest perturbations are expected. However, 
other force-constant changes no doubt occur at these 
surfaces, and we intend to explore more general 
phenomenological models to investigate the effects of 
such.other changes. 
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C. SURFACE REACTIONS  

The main achievements of these studies are: 

1. Development of a microscopic model of thermal desorption and dissociation 

from metallic surfaces. 

2. Evaluation of rates for the above process. 

(i) Derivation of the thermal adatom-solid coupling. 

(ii) A stochastic incoherent multiphonon mechanism of bond rupture. 

(iii) Coupling to final state reaction channels. 

3. Comparative study of rates for a truncated harmonic and Morse potential 

descriptions of the chemisortive bonds. 

4. Analysis of rate data of thermal desorption for both a weak (Xe/W) and 

strong (K/W) chemisorption system, in agreement with experiments. 

5. Development of a theoretical model for catalytic dissociation on surfaces. 

The model involves a door way-state mechanism in which thermal excitations 

are fed into bond-rupture modes via low-frequency vibrational modes of the 

adsorbate which couple efficiently to the substrate. 

6. Evaluation of temperature rate-maximizing conditions for Langmuier-Hinshelwood 

diffusion controlled catalytic reactions which involve surface heterogeneities 

and internal states. Interpretation of experimental observations for certain 

catalytic hydrocarbon disproportionation reactions. 
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A microscopic model of thermal desorption and dissociation from metallic surfaces which exhibits explicit 
dependences on characteristic parameters of the adsorption system is developed. The evaluation of the rates 
of these processes involves: (i) a derivation of the thermal adatom-solid coupling, (ii) a stochastic incoherent 
multiphonon mechanism for the evolution of an excitation for bond rupture, and (iii) coupling to final-state 
reaction channels. Transition probabilities and rates obtained by using both truncated-harmonic and Morse-
potential descriptions of the chemisorptive bond are presented and compared with experimental data for 
xenon and potassium desorption from a tungsten substrate. The results show agreement with experiment 
and exhibit a linear relationship of the logarithm of the rate versus inverse temperature. 

I. INTRODUCTION 

The fundamental understanding of the mecha-
nisms of surface - catalyzed reactions is one of the 
major objectives of past and current surface-
science studies. The three main methodologies 
which have been developed towards that goal can 
be classified as: (i) Phenomenological kinetic ap-
proach," 2  which consists of a reaction scheme and 
a corresponding system of kinetic equations which 
incorporate rate constants and species concentra-
tions. In this class of studies the rate constants 
are regarded as parameters to be determined by 
fitting the solutions of the kinetic equations to ex-
periments performed at a number of system con-
ditions (temperature, pressure, etc.). (ii) Therm-
odynamical and statistical-mechanical ap-
proaches, 2-5  in which rate constants (at equilib-
rium) are evaluated using statistical quantities 
such as partition functions in juxtaposition with 
certain models of the reaction. Most notable 
among these methods are the transition-state 
theory 2  and "phase-space theories", Rice-
Ramsperger-Kassel-Marcus (RRKM) and vari-
ants thereof," and theoretical trajectory analy-
sis" (although the latter, RRKM in particular, 
while most popular in gas-phase kinetics, have 
not been thoroughly investigated in surface-reac-
tion studies). (iii) Microscopic models of the re-
action mechanism. 12-22  In these theories the 
underlying physical processes governing the re-
acting system (such as, excitation, energy trans-
fer, mode-mode couplings, transport) are in-
vestigated and an expression for the reaction rate 
is derived. 

While all the above provide valuable information, 

it is obvious that the microscopic models carry 
the largest potential of providing fundamental 
understanding of the reaction processes. Studies 
of this kind would allow the investigation of the 
dependence of reaction paths and rates on char-
acteristics of the reaction system and could pro-
vide criteria for matching catalytic partners and 
ambient conditions such as to allow for optimal 
catalytic selectivity and specificity. It should be 
recognized, however, that studies of type (iii) 
present great theoretical difficulties and thus are 
scarce. Nevertheless, current advents of theo-
retical methods and novel surface experimental 
techniques, in particular electronic and vibra-
tional spectroscopies (ultraviolet photoemission, 
Auger chemical shifts, electron-loss spectroscop-
ies, surface infrared techniques—to name a 
few) 23' 24  and kinetic measurements (molecular 
beams 25  and mass- and state-selective spec-
troscopies), provide the impetus for an increased 

activity in the above direction. 
In discussing the kinetics of a reaction it is con-

venient to formulate it in terms of elementary re-
action steps. 1 ' 25  For a surface reaction, typical 
elementary reaction steps are: adsorption, trans-
port (diffusion), excitation, dissociation, associa-
tion, and desorption, not all of which necessarily 
occur for one given reaction. In the present study 
we focus on bond-rupture elementary reactions, 
i.e., dissociation and desorption. 26  Moreover, we 
investigate the thermal phenomena as distinct from 
the corresponding induced processes 26 (a) : electron-
stimulated desorption (ESD), electron-impact 
desorption (ETD), photodesorption (PD), and field 
desorption (FD). In the present study we formu-
late a theory of thermal desorption processes, 
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which exhibits explicitly the dependence on the 
rates on parameters characteristic to the adsorp-
tion system. 

To facilitate our discussion we specify the fol-
lowing ingredients of the theory (a) coupling of an 
atom or a molecule to the surface, (b) substrate-
induced thermal-energy transfer and excitation, 
and (c) temporal evolution of the system, i.e., 
time evolution and calculation of reactional prob-
abilities and rates. Accordingly, the organization 
of the paper is as follows: The Hamiltonian and 
couplings are derived in Sec. II. Models of the ex- 
citation mechanism and temporal evolution yielding 
expressions for reaction rates are discussed in 
Sec. HI. A systematic analysis and discussion of 
results of the models and further remarks are 
given in Sec. IV. 

II. HAMILTONIAN AND COUPLINGS 

A. Hamiltonian 

The first step in our formulation is a statement 
of the Hamiltonian of the system. The total Hamil-
tonian of the adsorption system may be written as 

	

H=T,+ TN + V(f,k), 	 (2.1) 

where T, and T N  represent kinetic energies of 
electrons and nuclei of the system (molecule and 
substrate) and V( f, ft), various contributions to 

	

the potential energy (r 1=1 	r,l, -14 1%, 	, 
where i% and f s  are the electronic coordinates of 
the adsorbed molecule and solid respectively, and 
nu , R, the corresponding nuclear coordinates). In 
the adiabatic approximation the total wave function 
is taken as 27  

f, 	4(f, rt ) x,,,(14 ) • 
	 (2.2) 

The electronic wave function satisfies the equation 

	

[T4 + IV ,f01 0 (r. , 	= (Th cb a:, 	(2.3) 

solved for fixed ft", where the direct interaction 
between nuclei is included in V(f , R). The equa-
tion for the nuclear motion can be found varia-
tionally 2  

N 

(— E 2 1 	V2  + ( E,(11) Ifi(;)]) 	, 
MA 

(2.4) 

where 

fV' (fR)---= 	dr. 	( 2m, s7 :)4) 	(2.5) 

and the summations are over all the nuclei. The 
effective potential [ expression in square brackets 
in Eq. (2.4)] for the nuclear motion is dominated 
by the electronic energy €,(R) and the term 1 7? (R) 

is small. It is interesting to note here that the 
exact eigenvalue 	is is bounded between E N  [ the 

solution to Eq. (2.4)1 and E ',,, [the solution to Eq. 

(2.4) with V' (I?) neglected] ; i.e., E N  >f,..ao '?( N' . 29  

At this stage the electronic energy € 1 (f1) may be 

modeled in the following manner. First one identi-
fies in ce (r3) those components which correspond to 
intramolecular bonds and to binding between atoms 
of the molecule and a localized region in the solid. 
The electronic interactions for a fixed configura-
tion of nuclear molecular coordinates {kJ and 
solid nuclear coordinates {k} determine the ad-
sorption potential between the solid and the ad-
sorbate. We separate the interaction into two 
parts: one in which the solid is kept stationary 
and the other where the solid is allowed to vibrate. 
It is via the latter contribution that an energy ex-
change between the molecule and solid (which may 
eventually yield desorption or dissociation) be-
comes possible. The first contribution to these 
"bond potential energies" may then be modeled by 
some analytical potential formulas such as a 
harmonic well, a Morse potential, or other sug-
gested potential formulas. The rest of E g (ft), i.e., 

that part which can be identified with the solid co-
ordinates, may then be replaced by a certain 
model of the solid [remember that internuclear 
interactions were included in €,(11)] . 

The corresponding nuclear-motion equations 
(2.4) may then be solved with the above-mentioned 
model replacement for €,,(n), and their solutions 
provide the vibrational spectrum for the modeled 
system. 

B. Coupling 

In this section we derive, under certain ap-
proximations, an expression for the coupling be-
tween a point charge (of charge +4e, where Z: 
is the effective charge of the ion) adsorbed at a 
distance z i  from a metal surface and the fluctu-
ating part of the metal substrate. As discussed 
previously, in the model in which we develop the 
role of the electronic (including direct nuclear in-
teractions) energy is to establish a bounded 
molecule-solid system characterized by, for 
example, a Morse potential with an equilibrium 
distance d1  of the atomic constituents from the 
surface, with an associated manifold of vibra-
tional levels. 

To make the calculation tractable and yet pre-
serving the essential physical features, we model 
the surface in the following manner. We consider 
an electron gas bounded by an infinite potential 
barrier (Fig. 1). The static ions are then placed 
within this potential and the first plane is posi-
tioned at a distance L - z o  with z o  — 0 from the 
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potential barrier, where L is the linear dimension 
of the slab. 

We now relax the static ions and allow them to 
fluctuate by emitting phonons. Denoting such a 
density fluctuation of the ions as bnb (t) and the 
electronic response to such a fluctuation as 
bne (r), the coupling may be written as 

v('r)_- 6:46 (r+ bti8 (;), 

where bu b (;) and bu.(r) are the fluctuating ionic 
and electronic interaction potentials with the 
adsorbed charge (+ .Z .,e) positioned at f; i.e., 

but,(1)=Z:zse 2  f di"no(i")  

- 	I 

dP6776 (f 1 )  
- Z 4:4 Z,e 2  j 

I - 

with Z1 and Z, and atomic charges (possibly 
screened) of the adatom and metal ions, re- 

spectively. The position vector 1' of the point 
charge is set equal to z i  + L in Eqs. (2.6) and 
(2.7), where L is the thickness of the sample 
(Fig. 1). We choose next a wave vector 4 of the 
fluctuating ionic background and express the 
single Fourier component of the density fluctua-
tion as 

6n„(z,f„)=611b (q 1 , 4„ ) 

x exp[ i(qz +4„ • f„ )] + c.c. 	(2.8) 

In the following we omit writing explicitly the 
parallel components ?„, from bn, due to trans-
lational invariance in planes parallel to the sur-
face, and denote on b(z) EOri b(z,7„) and On,(q,) 

6n b (q 1 ,4„). It is convenient to define an extension 
of bn„(z) (see below) by an even function On,;(z) 
such that for z in the range (-L,0), 614,(2)=.  bnb(-z). 

The potential v(r) (for r = z t  +L) can be evalu-
ated yielding 

(2.6) 

(2.7) 

-- 
v(z, L)= Z *A Z s e 2  f 	dz'( 	

6n;(1') 
 

0 

	

=27r VA' 2,e2e -get( 6rifs(q.k2) 	
1  

• 
2 On'(k 

	

9 2, + q„ 	+q„ 	L • 
(2.9) 

[In Eq. (2.9) we have neglected exponential terms 
like e -L  and also recall that, e.g., 6n,;(k„) 

On,;(k 1 ,4„ ). ] Note that the sum over k, in Eq. 
(2.9) reflects the fact that the electronic charge 
density responds with all k i  values to the single 
Fourier component of the background fluctuation 
in Eq. (2.8). 

Our final task is to evaluate the sum over k 1  in 
Eq. (2.9). To do that we treat the electrons semi-
classically, which amounts to solving the linear-
ized static collisionless Boltzmann equation". 31  

8  of ( 15 f ),. 	.fo(E-i)• a 
bu(r), 

a 
rn 	f 	' 	ap 

where p =p2/2m, f0 (€0 ) is the Fermi-Dirac dis- 

Z=0 
	

Z L 

FIG. 1. Model adsorption system. The electron gas 
is bounded in a slab of linear dimension L. The first 
plane of substrate ions is located at z = L - z„ with z c, 
— 0. The adsorbed ion is located at zr---L+ z i .  

tribution function and Ou(f) the self-consistent 
field given by Eqs. (2.6) and (2.7) (with Z: omit-
ted). 

The electron density 6n,(•) is given by 

dap  
On. ( f ) = f (27 3 f( f5 	. 

0 	' 

The boundary conditions dictated by the infinite 
barrier at the surface are those of specular 
reflection. 

Of(P,,z =0, L)= Of(- 	z = 0, L). 	(2.12) 

The solution of Eqs. (2.10)- (2.12) is not difficult' 
and we present in the following only the key rela-
tionships. It is convenient to extend the definition 
of Eq. (2.10) to the range (- L, L) by defining the 
primed quantities bu'(z), of s(pi ,z),... as even 
function extensions of ou(z), Of(P,,z),.... A 
Fourier transformation of Eq. (2.10) yields 

of '(1,,,k,)- 
af(ci,) 

 bu'(k,), 	 (2.13) 
af p  

where L 
dze ibL z  Of' (p,,z) 	(2.14) 

and 
k i  =nir L, n =0, ±1, 2, 	. 

6ze (k i ) can be easily derived from the even ex-
tension of Eqs. (2.6) and (2.7) and is given as 

(2.10) 

(2.11) 
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(2.15) 

bus (k,)= 4514;,(k ,) + t7 (k ,)6n:,(k,) 

_q„0(k,) 	brz

q

;(k; )  

L 4's k i t  +q 2 
h i 

where Nir i  ) 4ge 2/(k 2i  +qD and the sum over 1?", 
is over even integers if k, is even and odd in-
tegers if k, is odd. We note from Eqs. (2.13)- 

(2.15) that the solution of Eq. (2.13) satisfies the 
specular reflection boundary condition automatical-
ly which was the motivation underlying the exten-
sion of the functions from - L to 0. Integrating 
both sides of Eq. (2.13) over and using Eq. (2.15) 
for bui (k,) gives the following self-consistent 
equation for On; (k ±): 

6;1e  
[1 + 7 ,  (k i  )N(0)] 	(k i )= - N(0)674,(k)+ (k 	

L' 
)N(0) 	

k
n. 	

(2.16) 
2

( , ) 

 + 

where the density of states at the Fermi level N(0) is 

f afo (Ep ) d 3p  
N(0)= 

aEp 	(2703 • 

Dividing both sides of Eq. (2.16) by 1 + ij(k i )N(0), multiplying by (Iz_ + 	and summing over k , we can 
finally solve for the restricted sum over lel to give the final form 

6n;(k,)-= 
N(0) 	 q „  N(0)f 	v. (k,) 	, 	1 	Ott,,' 

(k  + 	 (2.17) 
1 4 N(0)17(k,) 	 DL 	4' 1 + N*(0)P(k,')kice)' 

where 

D = 1 	11  r I 	V ) e )  
L 	(k', 2  + 	4 -  N(0)177(kf.  )1 

= 	 TF  	 
+ X,4) 1 72 [qii  M-1- FY 1 1 

x2 	
(2.18) 

where 

-477e 2 N(0), 

(574(k ) = 	
e2 

6n.(q,) 
911 

qii 

	

 
2 	2 	 2 	2 	2 + 17.n) 

	

q, + 
A

q„ 	L(q, +q„ Aq„ 	) 

(2.19) 

and TF represents Thomas- Fermi. Substituting 
Eq. (2.19) in Eq. (2.17), the sum over k , in Eq. 
(2.9) may now be evaluated yielding our final ex-
pression for v(z 1  + L): 

v (z 1 + L) v(z 1 ) 

_ Z A* Z" 2 27r6n,(q,) exp(- q„ z 1 )  
(q! + q,2,)D 

	

x (
1 	2 	I F  2 	. 	(2.20) 

	

ql 	+XTF 

Within the context of the infinite surface barrier 
as a model for the static semi-infinite crystal the 
generalization of Eq. (2.20) to include crystallinity 
of the substrate would involve simply treating 
on.(q, , q  ) in terms of the phonon crystal propa-
gator. In the present calculation we, however, 
would use a continuum Debye model of the solid. 

In a continuum model of the solid the Fourier 
components of the positive background number-
density fluctuations, 6n b (cT) see Eq. (2.8), are 
defined by the relation 

Onb (f)=Z on t,(4)ei`T' 
	

(2.21) 

and onb (f) is given as 31  

6nb ( = - Z„n o -  • D , 	 (2.22) 

where tz, is the ionic number density of the solid 
and D is the displacement of the background from 
its equilibrium position. From Eqs. (2.21) and 
(2.22) it follows that 

ki b (ch,4„).=- Onb(c/ i ) 

= Z s no 	 
( 	) 2Ms n0 	

1/2 
q (1)4 + bLi) , (2.23) 

where M. is the atomic mass of a solid atom, 
is the volume of the solid, and bii(1):i) are the an-
nihilation (creation) operators of a phonon of wave 
vector 4 and frequency coi. We now express the 
instantaneous position of the adsorbed atom z i  as 
z i  = di  +u1 , where d i  is the equilibrium distance 
of the atom from the surface, and expand the 
exponent in Eq. (2.20) as 

(1 - q „ u 1 + q2„ 14 4 • • • ) 	(2.24) 

Substitution of Eqs. (2.23) and (2.24) into Eq. (2.20) 
yields an expression for v(z 1 ), which may be writ-
ten as 

v(z i )=-72 0 (4;d 1 ) +0v 1 (4;u 1 ) + 	;u 1 ) 4 • • • 

(2.25) 

by i (d;u t ) =, ,. _(! )u t (bi• + bt 	, 	 (2.26a) 

2)  6v 2 (ef;u) -g z(t,ui(bi + 	) , 	 (2.26b) 

where 67 , 1 (4;u 1 ) is the potential corresponding to 
bilinear coupling between the vibrations of the 
atom and the phonons of the solid. Assuming for 
simplicity an acoustic continuum model for the 
solid, i.e., we  -= sq, where s is the sound velocity, 
g 1 11  in Eq. (2.26) is given by 
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(1) q1/2q 	 4  g g 	F 	2 	(1 ± 

	

q 	 +(q„ +40 1 / 2 ] - 4,) e-g"41 ' 2(,f/ + 	) 1 / 2 r (2.27a) 

where 

\ 1 / 2  
F 2Th Z,Z:e2( 

2 1/,,c2s 
.nr 	 (2.27b) 

The above derivation of the vibrational coupling 
can be applied to any of the atoms of the molecule 
which interacts with the surface by simply using 
the appropriate effective atomic charge Z*A  and 
equilibrium distance ci t . For the sake of sim-
plicity, we will limit ourselves in the following to 
a single adsorbed atom (the extension to a poly-
atomic molecule is easy and will be presented 
elsewhere). Our results can be summarized by 
writing the Hamiltonian for our model system as 

11 =Fe°  +H +11', 	 (2.28a) 

-E v 	, 	 (2.28b) 

[ the index i in Eq. (2.28b) simply generalizes our 
coupling to several adsorbates] where E: is the 
electronic energy (including direct nuclear-
nuclear interactions) for equilibrium nuclear 
positions and fig is the zeroth-order Hamiltonian 
for the adsorption system 

Hn = E ftwi 	+ + E 	, 	(2.29) 

where the first term on the right corresponds to 
the harmonic solid (and in our model a Debye 
model is employed), and the second term corre-
sponds to the vibrational energies of intramolecu-
lar and chemisorptive bonds (the m summation 
extends over all bonds). The last term [Eq. 
(2.28b)] in Eq. (2.28a) contains couplings between 
the vibrations of intramolecular and chemisorptive 
bonds and fluctuations in the solid, see Eqs. 
(2.25)-(2.27). We note that in a more refined de-
scription local modes due to the adsorbate could 
be included. 

C. Transition rate 

where we sum over phonon final states tr.,: and 
average over phonon initial states n a  using the 
probability distribution P(N). 

In order to evaluate 	we need to specify the 
manner in which we model the vibrational spectrum 
of the adsorbed molecule. 

(i) In the crudest approximation the vibrations 
are modeled by harmonic oscillators, truncated 
at the appropriate predissociation levels (see 
Sec. III). Keeping only terms up to bilinear 
coupling [ ov i , see Eq. (2.25)] allows only for 
single quantum transition (71-7 , ± 1), accompanied 
by the absorption (emission) of a phonon. Denoting 
the harmonic frequency by 0.),, 67) 1  in Eq. (2.26a) 
can be written as 

h 	1 / 2  
6v l(9)  g (.1) ( 2(00MA

) 
	(a + a )(1),1 +bt,T) 

(2.31) 

where MA  is the mass of the adsorbed atom and 
a(at ) are creation (annihilation) operators of the 
harmonic-oscillator states. Substitution of Eq. 
(2.31) in Eq. (2.30) yields for the transition rate 
between levels 

22r /  h  
 h two MA
)

(r, +1) 

X 	 - 'Ro o ) , 	(2.32) 

where the phonon occupation number is given by 
exp(ghcoi) - 11 -1 , 	= (1z,T) -1 . For an iso- 

tropic Debye model of the solid, i.e., co.= sq, and 

a cutoff frequency (4) 0  given by kw, = 4sq, =kOD  
where 0, is the Debye temperature, we replace 
the summation over (1 by an integral. Using the 
energy-conservation Dirac delta function and 
cylindrical coordinates the integration is straight-
forward, yielding 

Wv - v • 1- 

The final quantity which we require before 
turning to the stochastic evolution of the system 
(see Sec. III) is the transition rate between vibra-
tional levels of the adsorbed system. These tran-
sitions occur due to the coupling Hamiltonian H' 

in Eq. (2.28a). To lowest order in perturbation 
theory the transition rates can be calculated by 
the golden-rule formula 32  

w t.-  r/tl y  
	 ' 1 	A(co ) 

+1 

3 .7r 3e 4 (Z  Z ) 2n 2 X 4  

	

9 	(J1+ ,12 + J3) ,  
11/1 ,1 114awD (gO 	kiF )  

x 3 exp(- 2x.,,,c/ ix)dx , 

(2.33a) 

(2.33b) 

27r x•-■ 
.„, polo 1(v', 	I ir I v, N) 1 2  

X (E, - E v  + E n;  - E g ) , 	(2.30) 

J2  = 2f° thc  x 3 exp(- 2XT 1x)/[1 +2x2 +2x(x 2 +1) 1/2] 	,  

(2.33c) 



The expression for the transition rate between 
Morse levels v and v' can now be written as 

W (u) --
27, 	

Ig("12F1 1(v'iu I012 

X NE.. - - ftEL),j . 
Having obtained explicit expressions for the 

(2.39) 	couplings between the adsorbate and the substrate 

III. EVALUATION OF FIRST PASSAGE TIMES FOR 
THE TRUNCATED-HARMONIC-OSCILLATOR AND 

MORSE-POTENTIAL MODELS 
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J3 = f x 3 exp(- 2X.n.d ix)/i 1 - 4[1 +x 2  +x(x 2  +1) 1 / 2 ] + 4(1 +x 2 )[ 1 + 2x 2  + 2x(x 2  + 1) 1 /2 ]}dx , 	 (2.33d) 

where equal sound velocities for transverse and 
longitudinal modes have been used, 8 d 

- 	 , Dil ATP.,  
= 3 q 2,) , and srio -u.),. The integrals J2  and J3  

are easily computed by numerical quadrature. 
The superscript (h) in 3v.(4_) „,, is introduced in 
reference to the harmonic-oscillator model. An 
analysis of the dependence of the transition rate 
147 0""„. [Eq. (2.33a)l on characteristics of the 
adsorption system is presented below. 

(ii) As an improved model of the bond potential 
energy between an adsorbed atom and the surface, 
we consider the Morse potential 33  

E. (z- d i ) = D, {1 exp[ - (3(z - di )]} 2  - D, , (2.34) 

where D. is the dissociation energy referred to the 
minimum, di  the equilibrium distance of the ad-
sorbed atom from the surface, and the parameter 

determines the width of the potential. One often 
defines the anharmonicity parameter x e =hw o/4De  
where w 9  is the vibrational frequency for infinite-

simal amplitudes (x e  is often determined empiri-
cally). The eigenvalues of the one-dimensional 
SchrOdinger equation with the Morse potential are 
given by34'35 

c e =kw o (v- xe v 2 )- D,, 	 (2.35) 

and therefore the vibrational level spacing is 

LIEr • 1.v h-w o  [1-x.(2v +1)] 
	

(2.36) 

Using Eq. (2.30) for W_, with H' given by Eqs. 
(2.28b), (2.25), and (2.26a), i.e., to linear order 
in u i  (the derivation of the bond length from 
equilibrium), we observe that we need to compute 
the matrix elements 1(vf lui 1012, where 1v) is the 
Morse eigenfunction corresponding to E. in Eq. 
(2.35). These matrix elements have been calcu-
lated by several authors. 33 ' 36  While the results 
given in Eqs. (21) - (24) of Ref. 35 are valid for all 

v' we will be interested only in nearest and next-
nearest level transitions, i.e., to v ± 1 and v—v 

± 2. In addition the expressions simplify signifi-
cantly in the approximation (v' + v")x. «1, yield-
ing 36  

1( v + 1 lui 1012=  (d iB e/co o )(v + 1)[ 1 +x.(1 + v)] 

(2.37) 

1(1)+211111012= (d 	x 4co 0 )(v + 1)(v + 2). 	(2.38) 

Using the matrix elements given by Eqs. (2.37) and 
(2.38) and the Debye model for the solid we obtain 
to first order in the anharmonicity x, the following 
expressions for v' =-v +1 and v + 2, 

iv ot) 
"I' . 	I  - A (u..) ° 

 )1. 1 + x [ (v + 1) - (2v + 1)B (co 0 )11 , 
v + 1  

(2.40) 
where 

co o___aAp o )  
B (w o )=-  Apo) 3(00  

and 

Tr!  vs) 
" - v. 2 	x (v + 1)(v + 2)A (2(.0 0 ) , (v + 1) 	4 e  

where A(w.) is given in Eq. (2.33). 
To demonstrate the dependence of the transition 

rates between vibrational levels on the model of 
the potential well, the temperature and charac-
teristics of the adsorption system such as the 

equilibrium distance and fractional charge on the 
atom, we present the numerical evaluation of Eqs. 
(2.33) and (2.34) in Figs. 2-4. In Fig. 2, the vari-
ation of W. for potassium adsorption on tung-
sten," with temperature and model potential is 
displayed. The differences between the results 
using harmonic and Morse potentials are evident. 
Note that for the Morse potential W,_ 2  » 	3 . In 
addition the transition rates between high-lying 
vibrational levels in the Morse potential are much 
larger than between the bottom-lying levels. This 
indicates that transitions between the low-lying 
levels may be the bottle neck in the incoherent 
multiphonon evolution of the system (see Sec. III). 
The marked dependence of the transition rates on 
temperature should also be noted, and is as-
sociated with the temperature-dependent phonon 
occupation number 

Similar dependences are seen for xenon ad-
sorbed on tungsten 36-40 ' 9  (Fig. 3) where in addi-
tion the sensitivity to the equilibrium distance d 1 

 and fractional charge on the atom are demon-
strated. Finally, in Fig. 4, W ew.) 	as a function 
of the level number v for Xe/W system at T 
= 100 K is shown to increase markedly. The in-
fluence of these results on the rates of desorption 
will be investigated in Sec. HI. 

(2.41) 

(2.42) 
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FIG. 2. Transition rate (W v .. 8 .) vs temperature for 

potassium adsorbed on tungsten. The parameter used 
in the calculation: fractional charge on the potassium 
zI= 0.27e and equilibrium distance of the adsorbate 
from the substrate, d 1 =2.38 A, were chosen after Ref. 
37. The transition rate, W u _ v ", for a harmonic -well 
description of the chemisorption bond, is marked by 
solid dots, using a vibrational quanta kc.1 ) = 13.7 meV 
[after L. M. Kahn and S. C. Ying, Solid State Commun. 
16, 799 (1975)]. The rest are results of calculations 
employing a Morse-potential description, for WfA1  , 
Li  (M1 	,A7 1,40 and 

	31) a— - 2 '18 - 220 , where v=220 is the predis- 
sociation level. Note the change of scale in WP.1)3 , The 
Debye temperature of the substrate was taken as OD 
= 220 °K, the electron number density of the substrate 
was , 10 22 crn - 

	

?re = 38 	3  and x2 = 6.5 x10 74 . 

and for the rates of transitions between vibra-
tional levels of the binding potential, induced by 
the couplings, we turn next to the temporal evolu-
tion of the excitations. Since for most systems of 
interest the allowed quanta of excitation, dictated 
by the characteristics of the phonon spectrum of 
the substrate are much smaller than the barrier 
for bond rupture, an incoherent multiphonon 
mechanism is formulated, This, however, is ap-
plicable to systems in which the spacings between 
vibrational levels of the potential associated with 
the reaction coordinate do not exceed the maxi-
mum phonon frequencies. When the above is not 
satisfied coupling may occur through a mode other 
than the bond-rupture reaction coordinate which 
serves as a "doorway" state (see Sec. IV). 

Consider an oscillator system with x n (t) the 
distribution describing the population of vibronic 
levels n at time t. The time evolution of this dis-
tribution is governed under certain approximations 
by a master equation 41  

00 9 	III 	II 	II 	III  
100 	300 	500 	700 	900 	1100 	1300 

( 

FIG. 3. Transition rates, [v v _ v ., using both harmonic 
(dashed) and Morse (solid line) potentials for Xe ad-
sorbed on tungsten, vs temperature. The harmonic vi-
brational quanta hco c, was chosen as 3.0 meV. The sensi-
tivity of the transition rates to variations in the equil-
ibrium distance dl  (in A) and fractional charge on the 
adsorbed xenon are shown. The substrate parameters 
were taken as 0,.220 °K, n e = 38 x1022  cm-3 , and x e  

= 1.25 8 10 -3 . 

dx 
-W „x „ -E w„„t x 	n=0,1,...,N dt 	r. 0 	 ns. 

(3.1) 

where N is the predissociation level, W n , is the 
transition probability per unit time from ni to n. 
In the above equation second-order terms due to 
recombination are neglected. The initial distribu-
tion (t=0) is normalized according to 

1042  
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FIG. 4. Morse transition rate, lif v"Pv  . 1  vs level num-
ber v, for Xe adsorption on tungsten, at T= 100 °K. The 
equilibrium distance was taken at d1 - 2.0 A and fraction-
al 9  charge 4=0.04e. Note the monotonous increase in 

Wv(1)..1 as v increases. The substrate parameters are 
as given in the caption to Fig. 3. 
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Q --  nt e - 13 E
n, 

U --= 	x„(0) D 
R = 

D ,--h +hp , 

(3.8a) 

(3.8b) 

(3.8c) +h p 	P-10 	p•2,p 
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E x„(0) —1 , 
n= 0 

that in our case the exchange of excitation is with 
(3.2) 	a solid characterized by thermal occupation num- 

bers 
and the x,,(0)'s are given by a Boltzmann distribu-
tion at temperature T ; i.e., 

	

E 	 (3.3) 
n=o 

For the calculation of the reaction rate we will 
be interested in the mean time for the system 
specified above, to pass the Nth level for the 
first time—i.e., the mean first passage time, t. 
The distribution of first passage times P(t) is 
given by 41  

PM=  dt E xn(t) 
	

(3.4) 

and t is the first moment of P(t); i.e., 

=1 -  tP(t)dt 	 (3.5) 

An expression for the mean first passage time for 
an initial population distribution x.(0) = 6„., for a 
truncated-harmonic-oscillator system and transi-
tions between neighboring levels only, was first 
given by Montroll and Shuler. 41  This has been 
generalized by Kim" for the Boltzmann initial 
distribution [Eq. (3.3)] for both a truncated har-
monic and Morse oscillators with nearest- and 
next-nearest-neighbor transitions. 

(i) For the truncated harmonic oscillator the 
result is" 

(A) = 	(1.1 + 1)  Id  J-1 (el°  - 1)(1- e - m), 
W v(h) „. 1 (1- e-9) =1 

(3.6) 

with 0=kceo/kT, where co o  is the harmonic-oscilla-
tor frequency. 

(ii) To obtain an expression for the mean first 
passage time out of a Morse-potential well t "" 
with transitions between nearest and next-nearest 
levels, we adopt the methods developed by Kim. 
The generalization of Kim's result [Eqs. (6.15) 
and (6.16) of Ref. 42] amount to taking into account 

	 1 

n wa  = [ exp(hw„/hT)- 1] -i  . 

Consequently contributions corresponding to tran-
sitions between the Morse-potential levels must 

be weighted appropriately. Starting from Eq. (6.6) 
of Ref. 42, 

N 
(41) = E

N   

Qpu►  

P=0 Do 

h •14-1 	h
P •2. 0  —P-=1-) 	(3.7) 

o P(Dp Dp _ i 	D D P. 

with Q„, up , and Dp  given by 

see Eqs. (4.13), (4.4), and (6.1) in Ref. 42, and the 
h p,„ given explicitly by 

hp 	A(co o )(P +1) 

X t 1 +X.[ (P 1) 

- B((.0 0 )(2p + 1)] le -ikp+ , 	(3.9a) 

hp  . 2 , 0 -= A (2co o )(x n/ 4)(p + 1)(p + 2)e— sep• 2 , 	(3.9b) 

hp , 1 .0 	= A(2w 0 ) p/ 4)p (p +i)e-13 €p• 1 , 	(3.9c) 

we obtain 

fun =I 0  + [x./ A (co o)] tt. 
	 (3.10) 

In Eq. (3.10) 
N.1 = 1+ave b 

(1- e -0 ) 2  , 	 (3.11) 
° Ap o ) 0=1 p 

where 0= (Moo/kT), A(co o ) is given by Eq. (2.33a), 
and a = 1/ (e9  - 1). I I  in the above equation is given 
by 

i = A (codio [a0(1 +2a) +Z (coo)/[4(1  +a)] - B (coo )] + e86 " . I  1 z(c0 0 )[ 2 +a/(1 +N) + 3a] 
N•1 

— 	e 86P [1 +a + q Z(wo )(3 +4a)- 2(1 +a)B(coo )] - NO(N +1)(1+ a) 

+ (2N - a)[ 1 +a + z  Z(co o )(1 +2a)- 2(1 + a)B (co o )] + 20a(1 + a)(1 +3a - 2N)- Z (coo )(1 4- a) , 	(3.12) 

where 

zpo)  = 2M21_00) = ij2wo  q2  + 2  )2  
A(w0) 	Fiwo  k4q0 + kr, 

and se? 0 = co o . 

In the stochastic formulation of nonequilibrium 
kinetics which we have employed, the reaction 

(3.13) rate R is given by the inverse of the mean-first-
passage time t (see also discussion in Sec. Iv). 
Results for the rates of desorption of potassium 
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and xenon from a tungsten substrate are shown in 
Figs. 5-7. In Fig. 5 results for the two models of 
the binding potential (harmonic—solid line, and 
Morse—dashed line) using experimentally 37  sug-
gested values for the desorption energy D4  = 2640 
meV, equilibrium distance d 1  = 2.38 A and frac-
tional charge Z: = 0.27e are compared, along with 
the experimentally obtained 31  rate, given by R 
=1012 •" x exp( -De / kT) (open circles). It is evident 
that the results for the Morse-potential and 
truncated-harmonic-oscillator models yield both 
an Arrhenius-like straight line in the semiloga-
rithmic plot of R vs 1/T. The pre-exponential 
factors, however, differ markedly with the Morse 
potential in agreement with experiment. It should 

10 1  

be noted that the differences between the two 
models are less pronounced than those which 
were exhibited in the transition rates (see Figs. 
2 and 3). Similar results, with a somewhat less 
pronounced difference between the two models and 
in agreement with experiment 38  are shown for 
xenon desorption from tungsten (with the param-
eters given in the figure captions) in Figs. 6 and 7. 
In Fig. 7 the rather weak dependence of the results 
for the rate of desorption on the equilibrium 
distance parameter is exhibited. 

[V. DISCUSSION AND PERSPECTIVES 

We have formulated a theoretical model for the 
calculation of desorption rates of an adatom from 
a metal surface. The formulation relied on sev-
eral key stages: (a) the evaluation of the coupling 
between the solid and the adatom induced by the I 	I 	II 
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MG. 5. Semilogarithmic plots of desorption rates vs 
inverse temperature for the system potassium adsorbed 
on tungsten. The desorption energy De  was taken as 
2.64 eV after Ref. 37, and the rest of the characteristic 
parameters are as given in the caption to Fig. 2. The 
experimental points (open circles) were taken after Ref. 
37, R(T)=10 12 . 8 xexp(-D,AT). Both the Morse potential 
(dashed) and truncated harmonic (solid) yield linear re-
lationships in the plot of In R(T) vs inverse temperature, 
parallel to one another (same activation energy for 
desorption) but with different intercepts (frequency fac-
tors). The results based on the Morse-potential de-
scription of the chemisorptive bond are in better agree-
ment with the experimentally deduced results than those 
derived from a truncated-harmonic potential. 
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FIG. 6. Semilogarithmic plots of desorption rates 
R(T) vs inverse temperature for the system xenon ad-
sorbed on tungsten. The characteristic parameters are 
those given in the caption to Fig. 2 and the desorption 
energy De  was taken as 217 meV after Ref. 38. The ex-
perimental points (open circles) were calculated from 
the rate expression given in the above reference R(T) 
=1012  xexp( - Da/kT). Results obtained by using Morse 
(triangles) and truncated-harmonic potentials (dots) are 
shown. 

• HARMONIC 

A MORSE 
0 EXPERIMENT 

10-6  -L 



T r,  1- - T-77 T TTT 
a 	xe/ W 

106  

• .3, ,  2.0 HARMONIC 

1 04:1, ,  2.5 HARMONIC — 

I Ad, 2.0 MORSE 

\); rJai. 2.5 MORSE 

to' • 

1.1 .L1_  I  

1 02 

100  

0 -6  

21 
	

MICROSCOPIC THEORY OF THERMAL DESORPTION AND... 	 3265 
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FIG. 7. Semilogarithmic plots of desorption rates 
R(71 vs inverse temperature for Xe adsorbed on tung-
sten, characteristic parameters are as in Fig. 4 with 
13,- 300 meV. Results are shown for both truncated-
harmonic (solid and open dots) and Morse (triangles 
and squares) potentials. The apparent slight sensitivity 
of the rates to the equilibrium distance of the adsorbed 
atom from the surface is shown. 

nonstationary substrate, (b) the stochastic inco-
herent multiphonon mechanism of excitation, and 
(c) the coupling to the final-state channels. From 
the results presented in Figs. 5-7, it is apparent 
that the model provides a rather adequate descrip-
tion of desorption for both weak (Xe/W) and strong 
(K/W) chemisorption systems. The principal 
merit of this model is that it exhibits explicitly 
the dependencies on various microscopic quanti-
ties characteristic to the substrate and adatom. 
Due to the complexity of the problem, our model 
relies on a number of simplifying assumptions 
certain of which we enumerate below: (a) the 
substrate was modeled as a continuum structure-
less solid, (b) surface phonons have been ignored, 
(c) the electron response to fluctuations of the 
ionic charge was calculated semiclassically (quan- 
tum interference effects neglected) and with specu-
lar boundary conditions imposed, (d) electronic 
band-structure effects were ignored which im-
plies weak electron-ion coupling in the substrate, 

(e) bilinear coupling between the nonstationary 
adatom and substrate was used in the numerical 
examples and transition rates due to these cou-
plings were calculated using the Fermi golden 
rule, and (f) an immobile adsorbate was assumed. 
The inclusion of adsorbate migration on the sur-
face will add an entropy correction to the rate ex-
pression. While further improvements within this 
model are possible, the present study allows for a 
first evaluation of the sensitivity of desorption 
kinetics to the various microscopic parameters. 

The standard approaches to reaction kinetics, 
such as absolute rate theory 2  (ART) and the vari-
ous statistical methods" (e.g., RRKM) rely upon 
certain criteria of applicability. The main re-
quirement of the above is that the initial and final 
(or transition complex) states are uncorrelated. 2 

 As discussed originally by Kramers'2  and further 
investigated recently, 13 . 14 . 43  the applicability of 
ART is related to the strength of the fluctuating 
part of the coupling (friction in the nomenclature 
of the above studies) between the adsorbate and 
the adparticle. The analytical results obtained 12 

 in the limits of small and large coupling support 
the assertion that the applicability of ART is 
limited to an intermediate regime of the coupling 
strength. In this regime the coupling is strong 
enough as to replenish instantaneously the equilib-
rium Maxmellian tail of particle momenta, nec-
essary for surmounting the reaction barrier, and 
thus the rate becomes independent of the coupling. 
Outside this regime the Arrehnius behavior of 
the rate constant gets modified by multiplicative 
factors which vary with temperature. Our calcula-
tion of t [ e.g., in Eq. (3.6)] in principle assumes 
the weak-coupling regime since our transition 
rates 	I  are treated to lowest order in per- 
turbation [e.g., Eq. (2.30)]. This assumption of 
weak coupling has internal consistency in that our 
low-order treatment does yield good agreement 
with experiment (Figs. 6 and 7). While clearly the 
interplay between the temperature dependence of • 

and the usual statistical occupations [the 
sum over j in Eq. (3.6)] is a complicated one and 
cannot rigorously reduce to an Arrehnius-like 
form our numerical results - (displayed in Figs. 6 
and 7) give a measure for the weak deviation from 
such a behavior. This conclusion cannot be in-
ferred directly from the evaluated transition 
rates alone (Figs. 2-4) but requires an analysis 
of the rates. In this context it is important, how-
ever, to notice the dependence of the results on 
the model potential used (truncated-harmonic vs 
Morse potentials), and that the difference in rates 
of desorption corresponding to the two model po-
tentials is smaller than that exhibited in the as-
sociated level transition probabilities. 
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The stochastic treatment of the time evolution 
of the vibrational excitations leading to desorption 
which we have used, is a convenient formulation 
of nonequilibrium kinetic processes. In the 
equilibrium theory the rate constamt depends only 
upon transitions which couple bound vibrational 
levels directly to the dissociated state, 42  N + 1, 
and similar to the basic assumption of ART there 
is no dependence on the details of the excitation 
mechanism. The first passage time t calculated 
via the stochastic nonequilibrium formulation does 
not in general equal the reciprocal of the equilib- 
rium rate constant. 12  One limit in which the above 
equality holds is when the energy required for a 
transition is large compared to the available 
thermal energy. This condition was not obeyed 
in our cases. Thus, it was necessary to investi-
gate the full stochastic behavior. 

The order of coupling in our model should also 
be commented on. While we have used bilinear 
coupling [Eq. (2.26)), a generalization would in 
principle allow treatment of higher-order cou-
pling terms. In this context we could argue that 
by a proper transformation of the coordinates 
{ R s } and {R m} the bilinear coupling term could be 
removed and the frequencies of the substrate-
adatom system renormalized accordingly. The 
coupling enters now through the new frequencies 
in these transformed canonical coordinates. It is 
now, in principle possible to calculate desorption 
rates with the simple assumption of a Boltzmann 
occupation of these new levels, and with proper 
retransformation of our coordinates to define the 
stage of dissociation. Such a calculation is ex- 
pected to yield similar results to ours (particular-
ly in the weak coupling limit) but it is rather com-
plex and has not as yet been carried out for the 
model systems discussed in this study. 

A detailed investigation of reaction mechanisms 
requires an analysis of the reaction products. In-
deed a well-established practice in gas-phase 
kinetic studies 44  is to perform state-selective 
measurements, i.e., identification of products, 
their center-of-mass translational energies, and 
excitation of internal degrees of freedom. This 
mode of investigation is not common practice in 
current studies of surface reactions. In most, if 
not all, studies to date the experimental informa-
tion consists only of mass, and in certain cases 
angular, distribution of the products. In the fol-
lowing we remark briefly on the possibility of 
final-stale branching and suggest methods for its 
evaluation. 

Having achieved the (N+ 1)th level, 	whose 
energy E,„,. 1  lies above the dissociation energy, 
the system may evolve via several channels. For 
example the (p m . 1  state may decay into the trans- 

lational continuum which corresponds to desorp-
tion, it may couple to a manifold of bound vibra-
tional states associated with an excited electronic 
term or to a bound vibrational manifold or trans-
lation continuum corresponding to binding or dif-
fusion along the surface. The problem is formally 
similar to that encountered in the study of auto-
ionization 45  and predissociation 46-48,18  phenomena, 
and applied also to the study of radiationless tran-
sitions in molecules 49-51  and photodissociation 52-56 

 for which a number of methods of solution have 
been suggested. In the following we outline re-
sults obtained through the use of one of these 
methods. 45 ' 49  Consider the case in which the ex-
cited vibrational state O N , is embedded and 
coupled to two manifolds of states: (i) a manifold 
of bound vibrational states, 10.1 associated with 
an excited electronic state of the adsorption sys-
tem, (ii) a translational continuum, { 	These 
two manifolds are assumed uncoupled to one 
another. Coupling of (1),,. 1  to {(/),,} is achieved via 
the nonadiabatic nuclear-kinetic-energy terms in 
the total Hamiltonian, and the corresponding ma-
trix element will be taken as a constant v 1 . The 
matrix element coupling 4 N , 1  to the translational 
continuum tHI is denoted by v 2 . The manifolds 
are normalized with ( 0„1H1z1) j) = 	E,, and 
( SE I H tv) = E6 (E - E'). The configurational 
mixing of O N ., with the above final-state mani-
folds results in a stationary state ■If E , given by 

kli = a (E)Ep 	+ E b (E)zp,, + 	(E)4.,dE' , 
„= 

(4.1) 

where the vibrational energies of the { zp„} mani-
fold are taken" as a +nE, n=0, ± 1, 

2... etc. and a =.E„„, i - Eo  
The probabilities for finding the system in the 

vibrational manifold 14),J, P,(t), for remaining in 

ON. 1, Pd (t) and for being in the translational con-
tinuum, Pf (t), are given by 52  

2 

P,.(t) =E I f dE e - "E / 4  )“ - i)a* (E)b,,(E) , 

(4.2a) 

2 

1),(0 =1 f dE e - uE /4)“ 	la(E) 12 , 	(4.2b) 

2 

f Pf(t)= f dE' 	dE e - "E  /"" -I)  (E)C E , (E. )I , - 
(4.2c) 

where t is the mean first passage time calculated 
in Sec. III, i.e., the mean time for "preparation" 
of the system in state 	In addition P4  + P,. 
+ P = 1. Using the by now standard methods 45 ' 51  

with the appropriate scattering boundary conditions 
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closed form approximate solutions can be ob-
tained in the "statistical limit, s50  i.e., for time 
t, such that -r= t- t « h/E , 

P,.(7-)= 	  
 1v1 1
2 
 +f1v21

2(1 	e-f 	, 	 (4.3a) 

I'd  (7)- exp(- r/P), 	 (4.3b) 

Pt  (7)=1 - ' 3,1 (7)- 1),(7- ) , 	 (4.3c) 

P 	(1€/27)(11) 1 1 2  +E I v 2  2 ) -1 . 	 (4.3d) 

If the decay into the final states is fast the above 
expressions allow us to follow the reaction through 
its evolution. It is seen from Eqs. (4.3c), (4.3a), 
and (4.3b) that the average lifetime of the (4, 1 

 state is given by r where F is given by Eq. 
(4.3d). Thus, if a two-step process is postulated, 
i.e., preparation of the excited 4 N , 1  state fol-
lowed by coupling to final states, the total rate of 
desorption is R= (t + r ) - i. The probabilities 
given by Eqs. (4.3) could be used for the elucida-
tion of the reaction products. The task of evalu-
ating the matrix elements v 1  and v 2  which deter-
mine the magnitudes of the above quantities is the 

subject of further investigation. In particular we 
should note that in our results transverse motions 
of the adsorbates have not been considered. In a 
classical sense such motions would correspond to 
activated diffusion of the adsorbate near saddle 
point of the Born-Oppenheimer potential surface. 
Associated with these motions is an activation 
entropy which would modify the value of the rate 
constant. Indeed recent data for the desorption of 
CO from metals shows pre-exponential factors 
much larger than previously measured. 57  

Finally we comment on the application of our 
model to adsorbed molecular species. These sys-
tems possess additional degrees of freedom cer-
tain of which are of bond-stretching character and 
others which describe bond-bending, wagging, etc. 
While the energies typical to molecular bond-
stretching modes might (and often do) exceed in 
magnitude those of single-phonon excitation by the 
solid, the energies associated with the non-
stretching modes are smaller. Consequently it 
is suggested that the latter modes through their 
coupling to the vibrations of the solid may be ex-
cited up to high levels via an incoherent multi- 

I ' 

p(co) 

E = 0 
p (w) 

FIG. 8. Schematic picture of the door way-state model 
for thermal surface desorption or dissociation reaction 
mechanism. A characteristic Debye phonon density of 
states P(w) is shown on the left and right. Excitation of 
a low-frequency, doorway, mode of vibration (typically 
a nonstretching mode) occurs via an incoherent multi-
phonon mechanism. Upon achieving the level Er, the ex-
citation is transferred to the high-lying levels of a 
stretching mode (or comibnation of such modes) via an-
harmonic coupling. Further excitation in the dense vi-
brational manifold corresponding to the bond-rupture 
coordinate can occur via direct incoherent multiphonon 
excitations induced by thermal coupling to the substrate. 
The predissociation level is denoted by E A41 . Having 
achieved this level the reaction proceeds through coup-
ling to possible final-state channels such as dissociation, 
desorption, or migration. 

phonon mechanism similar to that used in the 
present investigation and subsequently couple via 
anharmonicity to the high-lying, densely spaced 
levels of the bond-stretching modes. Once these 
high-lying levels have been populated, the excita-
tion may propagate further via direct coupling to 
the substrate, eventually leading to fragmentation 
(see Fig. 8). In other words the nonstretching 
modes may serve as doorway states 5°  towards bond 
rupture via intramolecular energy redistribu-
tion. 57 ' 56  Quantitative studies of this model of 
admolecule desorption and dissociation are in 
progress. 
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Conditions for a Rate-Maximizing Temperature in Heterogeneous 

Catalysis' 

Conditions are derived for Langmuir—Hinshelwood and Eley—Rideal heterogeneous catalytic 

reactions to have a reaction rate maximum as a function of temperature. Experimental results 

contradict previously derived conditions which assumed that the surface diffusion was governed by 

a single transition rate. More than one transition rate will enter the analysis of surface diffusion if 

the surface is heterogeneous or. as observed in field ion microscope experiments, the reactant 

passes through several nonequivalent configurations while migrating. An analysis of the rate of 

reaction when more than one transition rate is involved leads to a condition which could facilitate 

the interpretation of rate maximum reaction mechanisms. 

A number of heterogeneous catalytic 
reactions exhibit a reversible maximum rate 
of reaction as a function of temperature 
(1-4). For example, Moffat and Clark (4) 
found a rate—temperature maximum in their 
study of the disproportionation of olefins 
(propylene) on cobalt-molybdate-alumina 

(CO-MO-Al 2 03) catalyst. At temperatures 
below T„,„x  they found the reaction rate, r, 
to obey a Langmuir—Hinshelwood equation 
for bimolecular reactions 

r = k[Kpl(I + 	 (1) 

where k is the transition rate of diffusion 
and reaction of the reactants on the surface, 
K is the ratio of adsorption to desorption 
rates, and p is the pressure of the gaseous 
species. The factor in square brackets in the 
above equation is the equilibrium fractional 
surface coverage. 

Usually, Arrhenius activated forms are 
assumed for both k and K (4 -6), i.e., 

k = A exp(—E/ RT) 

and 

K = exp(AS/R) exp(—AHMT), (2) 

where E is the activation energy for diffu- 
sion, AS is the differential entropy of ad- 
sorption, AH is the heat of adsorption, and 

' Work supported by U.S. DOE Contract EG-77-S-

05-5489. 

A is a preexponential (frequency) factor. 
Substituting Eq. (2) into the equation for r 
and setting the derivative of the resulting 
expression with respect to temperature 
equal to zero yields the condition for a 
rate—temperature maximum. When the ad- 

sorption step of the reaction is exothermic 

AH is always negative, and the rate maxi-
mum condition is (4-6) 

	

IQH
>

E( /3
2
+I1 

, 

	 (3) 

where = p exp(AS/R) which is usually 
much smaller than unity. Note, that from 
Eq. (1), a plot of I /r 112  versus lip would 
yield values for k and K from which the 
activation energy E is obtained as 

a In k 
E = (4) 

a(I /RTI 

The heat of adsorption, D H, is obtained 
from the adsorption equilibrium constant K 
via 

= 
In K 

	

RTf 
	(5) 

Moffat and Clark (4) found the values E 
8.2 kcal/mole and lAH1 = 2.8 kc'al/mole in 
a system which exhibited a rate—
temperature maximum. However, these 
values violate the condition for a rate max-
imum as given in Eq. (3). To reconcile this 
problem Aldag and Clark (5) invoked het- 
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erogeneity of the surface toward adsorption 

and desorption. A critique of their interpre-
tation is presented in Appendix A. 

We proceed to propose mechanisms 

where the Langmuir-Hinshelwood form of 

Eq. (1) is preserved, but the rate-
temperature maximum condition (Eq. (3)) is 
modified, leading to conclusions consistent 

with the experimental data. Common to the 
mechanism which we propose is the prop-
erty that the reactant transport (diffusion) 

on the surface is characterized by more 

than one rate constant. Two possible mech-
anisms are considered: (i) multistate diffu-

sion, and (ii) diffusion on a heterogeneous 

substrate. 
(i) Multistate diffusion. When the propa-

gation of the diffusing species involves 

transitions between more than one state the 
mechanism is termed multistate diffusion. 
Such a mechanism occurs when the reac-
tants perform transitions between several 

spatial configurations in the course of prop-
agation. A number of systems exhibiting 
such a behavior have been observed using 

field ion microscopy (FIM) (7). For exam-

ple, the motion of tungsten dimers on a 
W(211) surface (8, 9) involves transitions 

between alternating staggered and straight 
configurations which are characterized by 
different rate constants. It is plausible that 
the motion on a surface of a species as 

complex as an olefin would involve a num-
ber of transitions between distinct config-
urations of the molecule. Out of these tran-

sitions those with the highest activation 
energies would be the rate-limiting steps of 
the migration. Another multistate mecha-

nism occurs when the adsorbed reactants 
may exist in two (or more) states which are 

distinguished as mobile and immobile states 
(Lennard-Jones mechanism (10)). When in 

the immobile state the particle merely vib-
rates in the potential well which binds it to 
the site and also performs transitions to a 
higher energy state through which it may 

propagate. (At normal temperatures propa-
gation through the mobile state is the domi-
nant mode of activated intersite transitions. 

At low temperatures one may include in ad-

dition spatial transitions through the 

lower-energy states which correspond to 

nonactivated, tunneling transport). 
For systems in which the motion of the 

diffusing particles involves more than a 

single transition rate, the diffusion constant 
and hence the rate k (see Eq. ( I)) is mod-
ified from the customary single-

exponential, Arrhenius activated form (see 
Eq. (2)). For example, for the motion of a 

species which is characterized by two dis-

tinct states (configurational or energetic in 
origin) participating in the migration mech-

anism (with corresponding transition rates 

A and B), a random-walk model allowing 

for the presence of internal states yields 
(8, 9, 11-13) (see also Appendix B) fork the 

expression 

AB  
= 

A + B 

where the rates A and B may both be writ-

ten in activated Arrhenius forms. We 

choose 

A = v, exp(-EA IRT) 

13 = v„ exp(-E,,/RT) 
	

(7) 

where v .,, v,, are frequency factors and EA, 

ER  are the activation energies for the two 
states, respectively. If a straight line results 

from an experimental plot of log k versus 

(RT) - ', this does not necessarily imply that 
k = v exp(-E/RT) and that k cannot be of 
the form given in Eqs. (6) and (7). In prac-
tice, a plot of log k given by Eqs. (6) and (7) 
versus (RT) - ' for typical experimental 
temperature ranges will yield a straight line 
of slope -EA  if 

(i) 	En ; 

, 
or (ii) E., 	E„+ RT In 

V 
— . (8) 

Such cases have been encountered in the 

analysis of multistate cluster motion on sur-

faces observed via FIM (9), where more 
than one rate-limiting step is involved in the 
transport, but still the semilogarithmic plot 

(6) 
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of mean squared diffusion distance versus 

inverse temperature yields an apparent 
straight line. It is only recently (11, 12) that 

an analysis has been given to find all the in-

dividual activation energies and frequency 

factors which comprise the diffusion con-

stant, from field ion microscope data. 

Using the transition rate as given in Eqs. 
(6) and (7) the following condition is found 
for a rate maximum of r to occur, 

I + p exp[AS/R — 1A1-111RT„,1  
2 AHI 

A + B  
(9) 

EH A + EA B ' 

where T„, is the maximizing temperature. 

Let us denote the RHS by 1. A linear analy-
sis shows that if p is decreased by an 
amount 8p then Tm  will be decreased by an 
amount 8T„,, where 

face consisting of N,, and N s  sites, charac-

terized by release rates A and B, respec-
tively, of the diffusing species (with A and B 
given as in Eq. (7)). For a random place-

ment of the two types of sites, in an approx-

imation which neglects correlations be-

tween sites, the diffusion rate for the system 

is given by (14) 

k = k„ { 1 — c 	e'E. - E.""T —11}  , (12) 
vA 

where k„ = v„ exp (—
RT 

 ) and r 

NA + NB 
condition for a rate—temperature maximum 

is 

(1 — c)v,(21AH1 — E B ) 

> ri.„(E„ — 24111) (13) 

N"  . Using the above expression the 

8T,„ = 8p exp[AS/R 

+ 1,11/1/RTm 1RT„, 2 /IAHI 

x 124H111 — 1 + 2AB 

[r(E., - EH )/(A + B)] 2 } -- I. (10) 

for E A  > 	For For the 
Moffat and Clark (4) the 
will be consistent with 

2.6 	"" 

system studied by 
above inequality 

the data if 0 < E„ < 

kcal/mole. [5.6 — 
(1 	—  (.)vA 

This is in accord with the experimental re-
sult that a decrease in pressure lowers the 

maximizing temperature (4). Neglecting p 
exp( AS/R) compared to unity (4) we find 

for the existence of a rate maximum the in-
equality 

ii,(21AH1 — 	> vo (E., — 21641-11), (11) 

where we have assumed, without loss of 

generality, that EA > EH. In contrast to Eq. 
(3) this inequality could be satisfied by the 

measurements of Moffat and Clark (4) who 

found E, = 8.2 kcal/mole. jAHi = 2.8 

kcal/mole, if 0 < E H  < 5.6-2.6 (vB/v A ) 
kcal/mole. In order for the diffusion to ap-

parently be well described by a single trans-

ition rate, the second inequality in Eq. (8) 

must also be obeyed. 
(ii) Diffitsion on a heterogeneous sub-

strate. Another possible mechanism for in-
troducing more than one transition rate in 

the description of reactant diffusion is if the 

surface is heterogeneous. Consider a sur- 

A similar analysis of an Eley—Rideal 

mechanism, with rate r given by 

kKp2  
r 

1 + Kp' 

when the diffusion rate k is governed by two 

transition rates (Eq. (6)), yields the follow-
ing expression for the maximizing tempera-

ture, T„„ 

(1AHI — EH 	(IS)  

VA  - 	) 

In the abovep exp(AS/R) << 1, and AH < 0 

have been used. Assuming EA  > E„ yields 

the following inequality 

1.,(1AHI 	E„) > 1,„(EA  — IAHI) (16) 

for the existence of a rate-maximizing tem-

perature. When k is governed by only one 

rate-limiting step, i.e., k = v exp(—E/RT) 

then the analogous inequality is (4) 

(14) 
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E(13 + 1) < 
	

(17) 

As is the case with a Langmuir-
Hinshelwood reaction mechanism when 
Eq. (17) is not satisfied by the experimental 
data but a rate maximum occurs neverthe-
less, this may suggest that the surface diffu-
sion of the reactants involves more than one 
transition rate, perhaps due to multistates 
(spatial or energetic) of the reactants, or 
surface heterogeneities. If more than two 
transition rates are involved inequalities 
more complicated than Eq. (11) can be de-
rived. 

Our objective in this note has been to in-
corporate possible diffusion mechanisms in 
the analysis of reactions obeying 
Langmuir—Hinshelwood or Eley—Rideal 
mechanisms which exhibit rate—
temperature maxima. We have derived in-
equalities which constitute conditions for 
the existence of such rate maxima for het-
erogeneous systems and for multistate dif-
fusion mechanisms. Subject to certain con-
straints the above derived inequalities 
could be satisfied by the experimental data. 
It is suggested that additional controlled 
experiments such as measurements of the 
rate-maximizing temperature as a function 
of pressure or field ion microscope multi-
state diffusion data would allow the estima-
tion of the additional parameters [1,,, and E,, 
see Eqs. (11) and (16)] introduced by our 
model. 

APPENDIX A 

In a recent study, Aldag and Clark (5) 
reconsidered the analysis of the experi-
ments (4) of olefin disproportionation which 
exhibited a rate—temperature maximum for 
a Langmuir—Hinshelwood reaction. Their 
investigation was motivated by the fact that 
the values for AH and E determined from 
the pressure and temperature dependence 
of the data were inconsistent with the in-
equality given in Eq. (3). They consider that 
the Langmuir—Hinshelwood rate for a 
nonuniform surface can be represented by 

K, 2  
(I + Ki  p) 2  

	

r = kp2 	 ( A 1) 
r- I 

or an appropriate continuum limit. In the 
above the summation incorporates hetero-
geneity of the surface toward adsorption—
desorption while the diffusion represented 
by k is regarded as taking place on a uni-
form surface. However, since the data (4) 
fit Eq. (1), i.e., the N = I case, they at-
tempted to rewrite Eq. (AI) in a form with 
N = 1. They denote the sum in Eq. (Al) by 
F(p), and write what is equivalent to the 
following identities: 

r = kp2 F = kp2 F'/F2  

k p2F3 

(F — H) 2  

kp 2 F:' 
(F — 

x 
Li + F/H — 

FIH — 	
(A2) 

The first bracket in Eq. (A2) is identified 
with k in Eq. (1) and pK in Eq. (1) is iden-
tified with IF(p)1H(p)]— I. H(p) is chosen 

to be equal to K ;`/(l + K i p):`. After 
i=1 

these identifications, the resemblance of 
Eq. (A2) to Eq. (1) is only symbolic. The 
essential point is that Eq. (A I) is not equi-
valent to Eq. (1) and H(p) which enters 
Eq. (A2) is completely arbitrary, thus 
making the choice of K arbitrary, as well 
as the apparent heat of adsorption, AH, 
which is calculated from K. 

APPENDIX B 

In this appendix we outline the derivation 
of the expression for the diffusion constant 
for a system which exhibits a multistate dif-
fusion mechanism. The derivation proceeds 
via the continuous-time-random-walk with 
internal states model which we have devel-
oped recently. Since detailed discussions of 
the technique can be found elsewhere (11-
14) we limit ourselves to a presentation of 
the main underlying ideas. 

(F --  11) 2 

 F2  
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Consider a crystalline system where the 

propagation of the diffusing entity (single 

particle. multiparticle cluster) is charac-

terized by transitions between internal 

states (energetic, e.g., mobile and immobile 
states, configurational). The spatial motion 

of the centroid of the diffusant can be map-

ped onto a lattice with a number of states in 
each unit cell. Such a mapping is shown in 

Fig. 1 where the case of a diffusant with two 
configurational internal states is considered. 
Transitions in the system are governed by a 

waiting-time probability density function 

11' ;,(1,1';71. for transitions (I',j) (I,i), 
where the couple (1,1) represents position I 
in internal state i. For the above function we 

choose the form 

Wii(1,1';7) 	— W i(r). 	(BI) 

The factor NCI' — 	structural in origin, is 

the probability that the transition is from 
(1',j) to (11) and ti, ;(7)(i7 is the probability 
that a transition out of state j occurs in the 

time interval (7.7 + d7). The function i4t(7) 
reflects the underlying potential surface, 
and in the following we would take it to be 
of the form 

1,11 ; ( r) = X j e - 
	

(B2a) 

X, = 	RT 
	

(B2b) 

where X is the total rate of leaving state j 
and v,,E, are the frequency factor and acti-

vation energy in the Arrhenius activated 
form for that rate. 

The diffusion coefficient. D. is related to 

the variance, cr 2 (t) [(T 2 (1) (1 2 (11), for an 

unbiased motion I, in the position of the cen-
troid, in the long-time (diffusion) limit via 

/_) = Um 
o-2(t)  

(B3) 
2 E I 

where E is the dimensionality of the 

random-walk lattice. Thus to calculate 

o-2 (1) we need to derive an expression for 

the second moment of the probability dis-

tribution, P i,(1,7). The probability P of 

being at (1,i) at time t (starting from the 

origin in internal state j at t = 0) is related 

to the probability propagator R of reaching 

(I,i) exactly at time t by 

PAO = f R;; (1,1 — T) 

x [1 — 	07'1 dr, 	(B4) 

where the factor in square brackets takes 
into account events in which the centroid 

arrived at (I,i) at an earlier time t — T and 

no further transition has occurred by time 
t. The variance, o-2 (ti, is related to P as 

follows (12): 

( 12 ( 1) ) 	 — li ra 

rP=E 	 e k,  p i.,(1,0g.,] 	(B5) 

4 	I 

where g;  is the initial occupation proba-

bility of state j. 
For a semi-Markovian (continuous time) 

L 

1 

A/2 1 
	

5/2 	A/2
I 

ilseft■■••611.■■••0•■=wr•O 

5/2 I 	A/2 

b 

Fic. I. One-dimensional two-state migration of a dimer. (a) The two nonequivalent states of the 
dimer which participate in the migration mechanism on the lattice are denoted by 1 (straight) and 2 
(staggered). The lattice spacing is denoted by L and the dimer centroid is marked by x. (b) A mapping 
of the two-state mechanism shown in (a) onto a random-walk lattice with two states in the unit cell. The 
total transition rates out of states I and 2 are denoted by A and B, respectively. The arrows show the 
direction of the transitions between the states. 
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random walk the probability propagator 

R is related to 11 0(1,1':r), the fundamental 

function characterizing the motion, via 
(12. 14) 

&lid) — 	Y p ; •(1 — I') j i  

ths (r)R,Art — T)dT = 81 ,,8 6 8(t). (B6) 

Since the above is in convolution form in 

both the spatial and temporal variables, 
Fourier (I ----> k) and Laplace (1 ---> ii) trans-
formations. respectively, allow us to solve 

Eq. (B6) for R. Expressing all quantities as 
matrices of dimensions N x N, where N is 

the number of internal states we obtain 

(12, 14) 

112(k,u) = [I —. p(k) klf(u)r '. 	(B7) 

Substitution of Eq. (B7) in Eq. (B4) for P 
and subsequent use of Eq. (B5) allow the 

calculation of the diffusion constant by tak-

ing the long-time limit of the resulting ex-
pression. We emphasize that the quantities 

specifying the transition rates between the 
internal states (frequency factors I. ;  and ac-
tivation energies El i ) determine and thus 

the diffusion constant D (denoted by k in the 
main text, see Eqs. (1), (2), and (6)). 

For the special case of propagation via a 
two-internal-state mechanism in one di-

mension specific to the motion of a dimer 

(see Fig. 1) (other cases of higher dimen-

sionality and increased complexity have 

been discussed by us elsewhere (11-14)) 
the matrix 'Jr is given by (for nearest-

neighbor transitions) 

‘11(1.t) 

0 	 + 8( , L ) 

+ 81 ..4.) 	0 

(B8) 

where L is the lattice spacing. Substituting 
Eq. (B8) in (B7) and following the subse-
quent steps yield 

(1 2 11)) 
— A 

AB 	
B 

 (L 2  12). (B9) 
+  

A similar analysis has been performed for 

other two-state diffusion mechanisms, such 

as mobile and immobile states (12-14). In 

all these cases the expressions for (r--(t) are 

in terms of the transition rates between 

states of the diffusant, and the transition 

rate of diffusion, k, in the kinetic equation 

(Eq. I) cannot be expressed as a simple 

single-exponential Arrhenius form. 
Turning to the case of diffusion on a het-

erogeneous surface, i.e., a surface which 
contains two types of sites, with different 
rates of release out of these sites, two alter-
native methods of calculation have been 

developed (14). The first is a defect-
renormalization technique. in which the 

probability propagators are renormalized to 
include the effect of the nonhomogeneity of 

the surface. For lack of space we will not 

describe it further, and refer the reader to a 

recent publication (14). A second method is 

a generalization of the internal-state tech-

nique described above and consists of con-
structing superlattices with equivalent unit 
cells each containing an identical distribu- 

tion of sites A and B. Thus, for example. 
the mapping in Fig. I can be considered as 

representing diffusion on a lattice with al-

ternating sites A and B. For sites B a dis-

tance n lattice spacings apart, a unit cell 

with n — I sites of type A, and one of type B 

is used. The resulting expression for the dif-

fusion constant is that given in Eq. (12). It is 
of interest to note that this expression is 

equivalent to that which is derived for a 

random distribution of the defects (sites B) 

in the average-t-matrix approximation, in 
which correlations between sites are ne-

glected. 
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The rates of surface catalytic reactions are, in principle, reflected in the frequency spectrum 
of adsorbate density fluctuations. These fluctuations change the incremental current (i.e., incre-
ment over the average current corresponding to the average surface coverage) noise due to elec-
tron transfer between the adsorbate and the substrate and to the scattering of the substrate 
electrons from the adsorbates. In an adiabatic limit, the incremental current noise is propor-
tional to the conductivity modulation induced by the adsorbate density fluctuations and to the 
square of the applied voltage. Thus, the noise in the substrate current provides information 
about the surface reaction kinetics. This reaction may proceed either in equilibrium or in non-
equilibrium. The adsorbate density spectrum has been calculated both in and out of equilibrium 
for two specific reactions. No major difference is found between the in and out of equilibrium 
cases. When these involve two-step processes, the adsorbate density correlation function is the 
sum of two decaying exponentials and the spectrum is the sum of two Lorentzians. 

1. Introduction 

Fluctuation spectroscopy provides a unique method for measuring the kinetic 
parameters of a chemical reaction. This method has been used by Feher and 
Weissman [1] to investigate the dissociation reaction of beryllium sulphate in an 
electrolytic solution. In this study we explore prospects for similar measurements in 
heterogeneous surface catalytic reactions using conductivity modulations of the 
substrate. 

The adsorption—desorption process modulates the substrate current in two 
different ways; first, the adsorbates act as additional scattering centers for substrate 
electrons thereby decreasing the conductivity; second, there is some charge shared 
between the adsorbate and the substrate in forming the chemisorptive bond, there- 
by increasing or decreasing the current depending on whether the charge flows to or 

Work supported by NSF DMR-77-24957. 
The writing of this work was supported by US DOE contract No. EG-77-S-05-5989. 
Present address: School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, 

USA. 
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from the substrate. Thus, either in equilibrium or in the steady state of a substrate 
driven externally by an electric field, its conductivity is changed by the surface 
adsorbed layer. References of experimental evidence and theoretical investigations 
of this effect can be found in the review paper by Wissman [2]. In fact, modula-
tions in the conductivity of a thin film about its average value as the density of the 
adsorbed layer fluctuates about the mean coverage has been used by Shanabarger 
[3] to measure reaction rates of hydrogen chemisorption on nickel. 

In equilibrium, the fluctuations in the current constitute the well known 
Johnson noise. However, when an electric field is applied, there is an additional 
field dependent term in the fluctuations which varies quadratically with the electric 
field in the lowest order; the magnitude of this term is shown to be large enough to 
be detectable above the Johnson noise with current technology. We calculate this 
lowest order field dependent term in the adiabatic limit viz, in the limit when the 
characteristic reaction times are long compared to the interval between successive 
electron—impurity collisions in the substrate. In this regime, the incremental cur-
rent (i.e., increment over the average current corresponding to the average surface 
coverage) fluctuations are entirely due to conductivity modulations for times of the 
order of the surface reaction time and the conductivity modulation itself arises 
from the fluctuations in the adsorbate density. We calculate the adsorbate density 
fluctuations both under equilibrium and non-equilibrium conditions for specific 
reactions. 

Care needs to be exercised in evaluating the terms in the current noise varying 
quadratically with the electric field. In order to maximize the fluctuations it may 
be necessary to use fine point contacts around which the electric field is also 
intense. In such strong fields non-linear effects in the current-field response lead to 
a term in the current noise varying quadratically with the field. This needs to be 
compared with noise terms of the same order resulting from the surface reaction. 
In assessing this non-linear effect inherent in the pure sample we found it has spuri-
ous divergences at low frequencies if only elastic electron-impurity collisions are 
taken into account. Inclusion of inelastic scattering effects lead to a realistic and 
finite result for the non-linear effect and its magnitude is further shown, in the 
Appendix, to be small. 

2. Theory 

2.1. The adiabatic approximation 

In considering the effects of adsorbates on the substrate conductivity we have 
essentially two time scales. One is the collision time characterizing the electron—
impurity and electron—phonon scatterings in the bare substrate which is typically 
of the order of 10 -23  s; the other is the time associated with the surface kinetics, 
characteristically 10 -2  to 10 -6  s depending on the temperature. With such disparate 

time scales, i 
adsorbate de 
reaction dyn 
limit, the cur 
bu tion 
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time scales, it is reasonable to assume the electrons equilibrate to the instantaneous 
adsorbate density by rapid collisions so that the noise in the current reflects the 
reaction dynamics only at low frequencies, — this is the adiabatic limit. In this 
limit, the current density correlation function has a field-squared dependent contri-
bution 

 

(ix(t)jx(t0) ) 
 (t —  to) 	collision time (ix(t))(ix(t°)>  = E2  ax(t) ax(t0) 

	
(1) 

where the overhead bar represents an averaging over the adatom density distribu-
tion and the triangular brackets an averaging over the electron distribution. The 
conductivity a(t) is now time dependent and corresponds to its instantaneous value 
dictated by the adsorbate density at that instant. We will first calculate the conduc-
tivity of a thick film with a constant adsorbate density and then allow it to follow 
the adatom density fluctuations exactly and instantaneously. 

2.2. Conductivity of a thick film 

We approximate the thick film (thick compared to the bulk mean free path of 
the electrons) by an infinite system containing free electrons suffering elastic colli-
sions from randomly distributed bulk impurities. In addition, there is a layer of 
scatterers confined to a small thickness d around z = 0 but otherwise quite ran-
domly arranged in the x—y plane — these represent the adatoms. In this model, the 
clean surface reflects the electrons specularly resulting in no change in the conduc-
tivity — the adsorbed layer, however, scatters the electrons elastically but not spec-
ularly. Each adatom shares some charge with the substrate and thus is itself 
charged. Let ae be the charge on each adparticle. The screening of this charged 
layer is treated in the Thomas—Fermi approximation — the screened potential V(z) 
is given by 

V(z) = Vo  exp(—Xlz I) , 

where 

I/0  = —27re 2 col sdiX and A2  = 67rn oe2 /e F  , 

where ns , n o  are the densities of adparticles and electrons respectively and € F, the 
bulk chemical potential. The electronic density n(z) adjusts itself to 

n(z) = no  + laX dns  exp(—Xlz . 	 (2) 

The steady state Boltzmann transport equation for the substrate electrons acceler-
ated by an applied electric field, E, in the x-direction is 

pz  of av of + eE —
af = 

m az az a 	
—[k o  + dk 5(z)J(f — 	; 	 (3) p , 	ap, 
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where the local electronic density is 

n(z)= 2 f
() 
	f(p, z) , 
3  

the bulk electronic density is 

dp 
n o  = 2f 

(27r)3 / "(P) ; 

and ko  and k 1  are the scattering probabilities from bulk and surface impurities 
respectively. 

The scattering probability can be clearly separated into the bulk and surface 
parts for low surface impurity concentrations. Assuming the form 

f = 	z) 

and making a contact transformation from (z, p z ) to energy (e) and epoch (r) we 
have 

1/2 

m 

	

and 	Pz az 	2 
(—

m 
 (e — V(z))) . 

For Vo  > 0, g(e, r) is found to be 

g(e r) 

	

eE af°  [ 	 k id(m12(e — V o)) 1 '  2  0(e — V o) 0(r) exp(— kor)l 

	

, - — 	1 — 	 ( 5) 
ko ae 	 1 + k id(m12(e — V 0)) 0(e — Vo) 	J ' 

where 0(x) = 0 for x < 0 and 0(x) = 1 for x > 0. The factor 0(e — V 0) is absent for 
Vo  < 0. The total current 

(txotai )  = 2  f  (ix(z )) dz  

0 

is given in terms of the average current density 

2e 	z 	3  
<Ix)  = 	Px` 
	dp 
AP, z) on)  
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where 

+L/2 
it = 

—1 f 
L 	

n(z) dz 	and 	n(0) = no + ledulsd 
--L,I2 

The first term in eq. (6) is the conductivity of a bulk sample with electronic density 
n. 

The two limiting cases correspond to the thickness of the surface layer being 
small or large compared to the surface mean free path of the electrons. For vilk i  
d an electron samples both types of scatterers between collisions and we expect a 
result reminiscent of Matthiessen's rule, but not exactly, since the two types of 
scatterers are not uniformly distributed throughout the sample for Matthiessen's 
rule to be valid strictly. This is indeed seen to be true in the first case of eq. (6); 
that result is the first term in the expansion of the total resistance being the sum of 
the bulk and the surface resistances. In the opposite limit an electron suffers many 
collisions in the surface layer before being scattered out of it — the correction to 
the bulk conductivity is seen to be independent of the surface mean free path. 

The effect of charge sharing is evident in the factors n, n(0) and Vo ; in this 
model, in the absence of scattering from impurities the change in conductivity from 
that of the pure sample is entirely due to charge sharing and is given by 

(ox — ab)/ab = (IT —  nano 

for all values of the surface mean free path (although eq. (3) is strictly valid only 
for low adsorbate densities). For a= 0.1, L = 10-6  cm, surface area = 10 -3  cm2 , 
n o  = 1023 /cm 3  and dn, = 1014 cm 2 , no)/no 10-3.  On the other hand, in the 
absence of charge sharing (a = 0, i.e., n = n o , n(0) = n o) the change in conductivity 
is entirely due to scattering and is given by 

	

—k id/k GL , 	for k i d 	, 

	

—3u j/8k oL , 	for k id > of  . 

For k i d < vf  we take dn, = 10 14 /cm 2 , nb  = 1022 /cm 3 , uj/ko  = 10 -7  cm and k 	= 

nsIn b ; then (a, — ab)lab — 10 -2 . For k id > v1  we take nb  = 1023 /cm 3 , VA° = 10-8 
 cm; then (a), — o b)/crb  — 10 -3 . 

Fuchs [4] has shown that the conductivity of a film of thickness L for L> vilk o  

is 

rr 	3 uf/k o  
a = a b  — —8 L  (1 — S) , 

where o b  is the bulk conductivity of the material i.e., o b  = n oe 2  link°  and S is the 
probability of specular reflection. In our equation (6) it is evident that for k 1  oe, 

a —> a0(1 — 3t1d8k 0L), where 0 0  = rTe 2 /mk o ; this corresponds to totally diffuse 
scattering (the amplitude of the forward wave being zero). Also, for k i  -40,a ob; 

(ax — ob)/ob = 



terms. The 

(ix(t)ix(to) 

—
1 

exp 

ne 2 
C 

/71` 

— eE(t 

ne2  • 
+ m 2  M 

X [2 ÷ 

X 	, 

where 

((E° , Y °) 

(d) is the 
current th 
quantities 
(11) are 

(a) (ix(t) 

(b) (lx(t) 

X 

which can 
So far, 

over the el 
the adato 
tion, aver. 
further ay: 
adiabatic • 
for two • 

72 	 G.S. De, H. Suit! / Oremisorption kinetics using current fluctuations 

this corresponds to specular reflection. These two limits agree with Fuchs' results 
for S 0 and S -+ 1 respectively. 

2.3. The current autocorrelation function 

The current autocorrelation function is given by 

e 2  
(ix(t)ix(toP 	

r
PxPoxf(P, z, t1P0,zo, t0) AP°, z0) dP dPo dz dz 0 , 	(7) 

where the conditional probability f(p,z,t1p 0,z o , to) is a solution of the time 
dependent Boltzmann equation 

of Pz of av  of 	of 
+ eE 	= — [ko + kid 8(z) ] (f — f°) , 	 (8) —+--- -  

atm az az ap, 	ap, 

with the initial condition 

i(p, z, to/Po, zo, to) = 5 3 (p — p o) 8(z — z o) . 	 (9) 
Transforming to (e, r) coordinates defined in (4) and noting that aTiat = iT, Hi = 
1, the solution of (6) becomes 

f(p x , r,  c, T 	AT) x  — eE(t — t o) , t o , c, Tc.) exp[—k0(t — to)] 

r— to 
+ ko  f 	dr' exp [—ko(t — to — r')] 1-13(Px  eE(t — — to) , 

0 

)1/7 

k i  c/0(7,) 	— to — Tc) (
2(a — Vo) 	

0(e — Vo) 

m )1/2 

1 + kid (
2(e — Vo) 	

0(c — V o) 0(rc) 

[— exp( —korc)f° (Px — eE(t — t o  — Tc) , E) +APx — eE(t — t o) , to , a, rJ 

rc 

+ ko  f exp(kol)).P(Px — eE(t — to  — r') , a) dri exp [—ko(t — to)] , 	(10) 

where Tc  is defined by the equation 

1/2 	
X (2e) "2  

exp(Xz/2) 	= cosh[± 
e  )1/2] 

(T — re) + cosh -I  
v 0  

and r = t — to . For t — t o • Vo i  (i.e., times much longer than that between conse-
cutive electronic collisions) the right hand side of (10) goes over to the steady state 
solution as it indeed should. We now use the distribution function in (10) with the 
initial condition (9) to calculate the current autocorrelation function (7) up to E•2  
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terms. The result is 

(ix(t) ix(toP 	1 . 12  = — 	[(t — t o ) + 
koJ 

	[—k o(t — to)] (fP(fix+b ) 

where 

k idO(c°  —  V0) E (y ° )  
0(c° ' y°) 

 
k id + (2(0 — V 0 )1 m) 1 2  

(4') is the average total current through a bulk sample; (iv-b) is the average total 
current through a thick film as calculated from (5a) above; y = r — Tc ; and the 
quantities with superscript zero refer to their values at t o . The limiting values of 
(11) are 

as it should; 

ne2 
(b) qx(01),(to)) 

EE  o lI1 2
eXP[—kat t0)] fPIxfp (P0)Z0) 

X [1 — cp(e° ,y °) 	— t o  — y°)] dpox  dpoy  de°  dy°  , 

which can easily be shown to be the Johnson noise term. 
So far, the current and the current autocorrelation function have been averaged 

over the electronic distribution function only. This has to be further averaged over 
the adatom distribution function. Eq. (11) gives the current autocorrelation func-
tion, averaged over the electronic distribution, for all values of t and to . When 
further averaged over the adatom distribution function it reduces to (1) in the 
adiabatic limit (t — to  > 1/k 0). For a thick film, a has already been calculated in (6) 
for two limiting cases, (a) k id < vt  and (b) k i d >at, 
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Defining th 
tion noise 

For case (a), k l d < of  

ii(t) e 2  n(z = 0, t) e 2  d 
a (t) 	 

	

mk 0 	rnkZ 	L 
k i (t) , 

Creaction( 
Miele 

n(t) = n o  + a(dIL) n s (t) , 

n(z = 0, t) = no  + 1Xadns (t) , 

k 1(0— mn
s(t) p f f  

1140)1 2  dS2 ; 
(2702  

k 1 (t) = (n s(t)/ tz,) k 0 . assuming the same scattering potential for both bulk and 
surface impurities. Now, n s(t) is the adsorbate density varying about its mean cover-
age value and nb , the density or the bulk scatterers. The fluctuation 5a(t) of a(t) 
about its average value up to first order in 5 ns (t) is 

	

a(t) _ d ns (t) r 	n o t i  taXdri s )1 	d 8 ns (t) 
b 	L no  L 	n, 	n b 	L rib 

for a = 0.1, n o  = 1023 /cm 3 , nb  = 1022/cm3, A = 10 8  cm-1 , dn, = 1014 /cm 2 . To make 
an order of magnitude estimate of the reaction noise, we take a Ni film 10 -6  cm 
thick, 1 cm long and 10 -3  cm wide. The resistance of such a film is 10 ki-2 and the 
current flowing through it is 1 mA for 10 V applied across the film. The incre-
mental current autocorrelation function is given by 

(5/(t) j(0)> E2  a4dIL) 2  5n,(t) 5n,(0)/q, 

We assume the coverage correlation function to be of the form 

OW S0(0) = MT- e —fir  

and r = 10 -3  s. The reaction noise has to be compared with the inherent Johnson 
noise due to the resistance of the film. Nyquist's theorem for Johnson noise states 
that 

+00 

Vtilrison = f c(w) dw = 4RK B T Aco , 
-00 

where (5 V) 'Johnson is the mean squared voltage fluctuation across the sample; c(w), 
the spectral density of V(t) — this is also the Fourier transform of 45 V(045 V(0) 
according to the Wiener —Khintchine theorem; R, the resistance of the sample; KB, 

Boltzmann's constant; T, the temperature and AL), the bandwidth. Johnson noise is 
white up to a frequency co o , where (.4) -0 1  is the electron—impurity collision time. For 

our sample, 

c(w) = 4R K B T — 10 -16  V2  ' S at 300 K . 

where S is t 

Creaction( 

For case (b), 

o(t) — 
W(t) e 

mko 

so that 

5 a(t)I ab  

where we to 
same as abov 

Creaction(L)  = 

2.4. A dsorba 

2.4.1. Equili 
We have s 

function bec 
assumed to b 
reaction time 
kinetics with 
model a parti 
unit sticking 
called the resi 
surface is vac 
The probabilit 

p(t + dt) = [1 

where v and X 
this equation 

p(t) 	+ 
X + v 

The average o 
c(t) is defined 

e(t) = 5n(t) 5n 
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Defining the mean squared voltage fluctuation and the spectral density for the reac-
tion noise in a similar manner, we obtain 

	

V 2dn 5 	2r 
Creaction(W) — 	s  n bLS 1 + (oir)2  

where S is the surface area of the film. Thus, 

Creact it)11(CO = O)/CJohnson 

For case (b), when k i d > uf , , 

0(0- ,7(t) c 2  3 n(0) e 2 u f 	Vo ) 
— — , 

rnk o 	8 inkIL, 	
1 

 

so that 

5a(t)lab — oteln s (t)1Ln b  , 

where we take nb  = 1023 /cm3, a = 0.1 of/k o  = 10 -8  cm and all other quantities the 
same as above. In this case 

Creaction(W 0)/cjob  „50„ — 10 

2.4. Adsorbate correlation function 

2.4.1. Equilibrium reaction 
We have seen that in the adiabatic approximation the current auto-correlation 

function becomes proportional to the adsorbate density correlation; the latter was 
assumed to bear an exponential character decaying with a life time equal to the 
reaction time. We can calculate this quantity using a simple model for reaction 
kinetics with two constant rates, viz. the rates of adsorption and desorption. In this 
model a particle arriving at a site is always adsorbed (low gas phase pressure and 
unit sticking coefficient); it stays on the surface on the average for a length of time 
called the residence time until thermal fluctuations force it out of the surface. The 
surface is vacant for an average length of time until another particle gets adsorbed. 
The probability p(t) that a site is occupied at time t obeys the equation 

p(t + dt)= [1 — p(t)] v dt + (1 — X dt)p(t) , 

where v and A are the adsorption and desorption rates respectively. The solution of 
this equation is 

p(t) = 
X + 
	+ exp[—(X+ v) t] [p(0) — 

X + v]
.  

The average occupation at a site is v/(X + v). The occupation correlation function 
c(t) is defined as 

	

V 	v \2 
C(1) = On(t)Sn(0)= [p(t)]p(0)= x 	+ 

10 . 
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wells are et 
probability 

n = K 
dt 8 	d  

dNi 
dt 

1 d1V 3  
2 dt — 

where rig  = 
adsorbates I 
sity of adso 
area of the 
gas, and cS 

The rate 
from the eq 

—

d 
6n = m, 6 

dt 
where M' is 
the eigenvalu 
involving 6n 1  

dt 
— 6n=M6n 

and 

o r 

c(t) = 
(v + /02 

exp [—(A + v) t] 	and 	c(w) — 
2vX 	1 

(v + 	(.0 2  + (X + 	' 

where c(w) is the Fourier transform of c(t) and equals the power spectrum by the 
Wiener—Khintchine theorem. We thus obtain the exponential form of the adsorbate 
correlation function. For low gas pressures, A > v and c(t) nequile—xt.  The single 
Lorentzian form for c(w) is a consequence of assuming constant reaction rates p 
and A — this is the case for a single step activated reaction process. However, for 
more complicated processes, viz. those involving two or more adsorption wells, the 
reaction rates vary with time and the correlation function becomes a sum of decay-
ing exponentials, the correlation times being functions of all the rates involved. The 
corresponding spectrum is a sum of Lorentzians. 

As an illustrative example of such a reaction we consider the adsorption of 
hydrogen on nickel in equilibrium: 

Hra H2 , H2 2Ha  

The chemisorption of atomic hydrogen proceeds via a precursor physisorbed state 
for molecular hydrogen [3,5] as shown in fig. 1. We assume that the two adsorption 

V(r) 

2Ni +2H 
------ M = 

Ke  

--> 
Kd 

where K.= cS 

	■ X2  — X[Kd + 

—.2 3ev 

, n 2  

4ifiK i (1 
n2 

 and the corres 
—.9ev 

2 ( Ni — H ) 

Fig. 1. Potential energy curve for two-step adsorption of hydrogen on nickel. 
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wells are either at two different sites or, if they are at the same site, the occupation 
probability of one is independent of that in the other. The rate equations are 

n r---K dN i -- C) - n v i h(1---) 
dt g 	V 	V 8 	N 
d 	 S , S 	NI  

s 

dNi 	 N1 	N1 	 N2 2  
- = -KdNi + CS Pleth (1 ---) + K42 (1 
dt 	

- 	SN - K 1  (1 - — ) N 1  , 
N, 	N, 	 Ns  

2  1 ciN2 
= K '2

(
1 - 

N 1
) SN1 - K 1 (1 --

N2
) N 1  , 

dt 	 N, 

where n g  = density of gas phase hydrogen molecules, N 1  = surface density of 
adsorbates in well 1, N2 = surface density of adsorbates in well 2, N.= surface den-
sity of adsorption sites, with = thermal velocity of hydrogen in gas phase, S = surface 
area of the sample, V = volume of the gas, V/S = mean free path of the hydrogen 
gas, and 0 = sticking coefficient. 

The rate equations can be linearized in the excursions On (where n 1  = NaNs) 
from the equilibrium value n, In matrix form, the linearized equation is 

dt 
5n = N1 on , 

where M' is a 3 X 3 matrix. However, since Vn g  + S(N 1  +IN2 ) is a constant, one of 
the eigenvalues of M' is zero. The three component equation can be reduced to two 
involving bn i  and bn 2  only. Thus 

-
d

bn = M on , 	where 	bn 1,2 = 011
'
2 
 , 

dt 	 . 
and 

-,, 2 r.2 	2FIK1(1 - n2) K a(1 	SI V 
-K + —

Ka 
+ Ka  - (1 - ?TO +1(2— n d -Ka v 

r2 2  
4 
KA°  - ii-2 ) 

2K 2  — 
WI 	 n2 , 

where K a  = c5u th and K2 = K2' SNs. The eigenvalues A 1 , 2  of M are the roots of 

X2  - X[Kd +--a-Fi 	- (1 -)+ n i  
iv, 	 i g

+ K 
a v 	

2_ 	lc 713 	(1 — ii-21 
ii + 

4ffiKi
fT2  

K 	S 

+
41- T 1K1(1 - ii2)[

Kd  + 
N

K a _
ng + K.

V 
 0 ?IA + 

K
n
_
202

1 
Ka(1 - WO

V 
 = 0 , (12) 

Fi2 	 s 

S 	 S 

nd the corresponding eigenvector ilk  is 

where 	A - Al 
 + X2 	- 4712K1(1  n2)/n2  

	

4n i(1 -F:2 )17-12  - K.(1 - 	SI V 

rT2 	 2 
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The deviation of the adsorbate density from equilibrium is then 

2 

5,11 , 2 = E 	exp(-A it)i Ni  
= 

In particular, 

6,1 1 (0 = n i (0)[(1 - D) exp(-X i t)+ D exp(-X201 

on 2 (t) = Srt2(0)[(1 - exP( -A it) C exp( -X2t)] 

where 

D = 	 X + 

	

- n2) 	5/2 2 (0) OrTiKi(1  n2) 
K 

S 	- )1 
Al 	

- 	n - A2 L 	n2 2 
2 bn i (0) 1 	ii2 	a  V 1 	ii 

and 

C= 2D 
Sn 2 (0) [4it i K 1 (1 - if2 )//12  - K a(SIV)(1 - Ili ) • 

When a two step chemical reaction, as in our example, occurs on the surface, 
adsorbates in both wells act as scattering centres for the substrate electrons, so the 
relevant correlation function is (n = n l  + n2 ) 

(5,40 n(0)) = exp( -X t)((8n(0))2) (exp(-X - exp(-X
2 t) 

X i  - X2 

X (1 + 2 	
Al — 4TiLKI(1 n2) n2 [(4/71K1(1 	

X2
) 

4/21 K 1 (1 - P72)- Ka(S/V)(1 - 	 L \ 

X On 1 (0) Sn(0)) + ;(.5n(0) 5n2(0)) 
(4111(2(1 - 	

Ka
y 

(1 _ F 0)1 
2 

However, only the chemisorbed atoms are engaged in forming a chemisorptive bond 
involving charge sharing - for this effect the relevant correlation function is 

On 2 (t)on 2 (0)) = ((45n 2(0)) 2) exp(-A l t) 2 
[exp(-li l t)- exp(-X 2 01 

Al - X2 

x[ 
  Al  - 47111(10 - if2Yri2  (4ii1K 1 (1 -  Ft2)

- A) 
47-2 1 K1(1 - n2 )/n2  - Ka(S/V)(1  - ifoi Lk n2  

X (on 2 (0) Sn 2 (0)) 

+ 1((bn 2 (0))7) (41-11K1(1 	K S fl WO)]. 
Ft2  

The equal time correlation functions can be calculated from thermodynamic 
considerations. For this chemical reaction, given by 	= 0, where A i  denotes 

the chemical 
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expanded ab 
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the chemical symbol of the jth species and P i  are integers; the corresponding chem-
ical potential of  satisfy the equation Eivipi  = 0. The entropy S of the system can be 
expanded about its equilibrium value S o  in the deviations 8N1  as 

a 

	

v. as 	 2  s  s = so  + 	6N;  + LE 32S ( 6 N1) 2  + L-1 	aN, aNd+ 

	

aNi 	2 	 i, /  aNiaNi 

Furthermore, 8Ni = vi fiN, where SN is the increment of the number of times the 
reaction takes place, and p i  = —ThSlaN i , where p i  is the chemical potential of the 
ith species. Then 

	

v 	apt  
S = so 

2T 	aN , (SN)2 

for non-interacting species of reactants. The probability P that the system has 
entropy S is exp(—S/K B) and therefore, 

aui -t 

((SNi) 2)= KB TL (E 	, 

(451■1; 51■11)= KB Tv i vi (E aN, 

In the reaction considered here, A l = H2,A 2 = H a, v l  = 1 and v 2  = —2. If the rate 
limiting step in this two step reaction is between the gas phase and the precursor 
state, i.e., K a , Kd < K 1 , K2 [3] , then from (12) 

	

K2i2-2 	ri1( 1  — 	 K._ 
X I = _ +4K1 	> 1■2= Ka + —ns n g + Ka —  ( 1 	1) • 

	

n i 	F1 2 	 V 

The slower rate X2 dominates the approach to equilibrium. Although the chemi-
sorptive well is deeper than the precursor well, the reaction may still be rate limited 
as indicated above if the prefactor in Kd is so small as to make K2 seem large com-
pared to Kd. One possible reason for this may be due to a stronger coupling of well 
2 to the bath compared to well 1. On the other hand, if we assume that for fairly 
high gas pressures well 1 fills up rapidly and then slowly empties into well 2, and 
K2 is small at room temperatures, then K1, K2 < Ka, Kd and A l  •< X2. The smaller 
root X, now governs the approach to equilibrium. Thus, if a true bottleneck exists 
in the reaction, it is reflected in the rate at which the correlation function decays. 

Since the individual rates Ka, Kd, K1 and K2 are functions of temperature, some 
steps in the reaction are more important than others at different temperature 
ranges. For instance, when a (100) nickel film with adsorbed hydrogen is slowly 
heated from 300 K to 1300 K, electron-impact desorption technique applied by 
Lichtman, Simon and Kirst [5] indicate that the following picture is reasonable: 
(a) Between 300 K and 500 K, adatoms empty from well 1 into well 2, K2 and Kd 
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are negligible and 

Al
, 
	

K a  [_ + NsS , 	
n

Ns 	
— 	, 

	

g V 0 
	 X2 — 

Then, 

On 2 (t) 5n 2 (0)) = exp(—X 2  t)(5n3) , 

— i1-2) 
/712 

so that the effect of charge sharing contains only one decaying exponential. The 
other correlation function (5n(t)Sn(0)) contains both the exponential factors. 
(b) Between 500 K and 730 K the adsorbates in well 2 have enough activation 
energy to desorb thermally, so that K2 and Kd are large whereas K 1  and Ka  are 
small. Then, A l  = 0, A2 = Kd +K2 ?-2 22  fri 1. 

It should be mentioned that a large discrepancy exists among the results of 
various experimentalists for the case of hydrogen adsorbed on nickel. In particular, 
in the electron probe surface spectroscopy experiments by Lichtman, Simon and 
Kirst [6] there is a possibility that the state of the adsorbate might be modified 
during the electron-induced desorption [7]. Furthermore, their experiment shows 
desorption to be essentially complete by about 730 K whereas flash desorption 

experiments by Lapujoulade and Neil [7] exhibit complete desorption by 500 K. 
Again, the correlation functions have only one decaying exponential factor; 

assuming a reasonable value for Kd, K2 can now be determined from A. Thus, work-
ing at suitable temperature ranges furnishes the possibility of obtaining the individ-
ual reaction rates which are otherwise buried in the general rate constants A l  and 
A2 

2.3.2. Steady state reaction 
So far we have considered the surface reaction proceeding in equilibrium. Often 

experiments are easier to be carried out in non-equilibrium (steady state) such as 
maintaining a constant gas pressure while removing the products as they are 
formed. The fluctuations in the adsorbate density in non-equilibrium are therefore 
the relevant quantity for these experiments. We select a particular reaction in the 
steady state under non-equilibrium conditions and calculate the adsorbate density 
noise. We choose the reaction 

WH 	 WD 	 Wr 
Hg 	H a  , 	Dg 	Da  , 	Ha  + 	HDa  . 

The superscript g stands for the gas phase and a for the adsorbed state. The absence 
of all reverse reactions ensures non-equilibrium. This is realistic if He  and Er com-
bine rapidly so that there is only a small probability for desorption and if HIY is 
removed from the system rapidly. The probability p(nfi, n H, n D, nHD) that 
there are the corresponding number of particles in the system obeys the rate equa-
tion 

 
dt 

p(n H , np g , nH, n co, nFiD)= WHP(nh + 1, 4, n H — 1 , n D , nHD)(44  + I) 
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X [1 (ni 	" 1 

[ 
nH 

 (n D
S—  1)] 

+ WDp(nfi , nf)  + 1, n u , ri D  — 1, n HD)(nS + 1) 1 — s  

—(WHyli  + WiDtiL)p(nfi , 4 	 I , n, n D , n HD) 1 — 
nH 
— 

nD 
S S 

+ W rp(nH , 	 n H  + 1,nD  + 1, n HD — 1)(n H  + 1)(n D  + 1) 

—WrP(nfi, 	n 	n HD) nunD 

where S is the total number of surface sites. 
Defining 

71 H  = E n Hp(rifi , 43 , n H , n D, n HD) , 
ails 

the first n H  moment of p obeys the equation 

—titin D  
	 WH [4.1  	Wrn Hn D 
dt 

and the first n D moment of p obeys the equation 

(14)  

ng 	ng 
dt 	

n dnD ;‘,,D [ni) 	D H 	D Di  wrniinD  

We ignore the fluctuations in the partial gas pressures. Then, in the steady state, 
eqs. (14) and (15) imply 

WHnH = WDnp=W. 

This means nH and rip are adsorbed at the same rate. They are also removed at the 
same rate to form HD — so, iTH  and ID  may differ at most by a constant which 
we take to be zero i.e., rTH  = tiD  = n. Furthermore, in calculating if we ignore fluctu-
ations in nH  and n D so that n Hn D  = n 22 . Breaking up the higher moments in a similar 
manner will be justified at the end of this section. 

In this approximation, 

n  = 2 	+ ( —w wwr  ) 1/2 

The second n H  moment of p is given in the steady state by the equation 

211 20  2 	 71r.i) = 0 , w (1 + 2n — — 	- s +— 2  

where we have again assumed 

= — n Hn D  — n ye: . 

(15) 

(13) 

1;1 

I ! 
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So, 

y WO + 21i - 21/S - 2n2/S) + Wrn 
n H  = 	 

2 W/S + 2 Wrii 

from whence 

An 2 = W(1 — 2n/S) 1.4  1 -- 22n/S)  
H 	W/S + W rFi 	(1 — it/S) • 

In a similar manner it can be shown that 

Arqi  = An?)  . 

Identical results for Wand An-ji  are obtained if we start from the master equation 
(13) for p and take the thermodynamic limit. This limit is a "largeness" limit in 
volume — the procedure is thus often referred to as a "system size expansion" as 
shown by Kurtz [8] and Fox [9]. In this method one writes down the master equa-
tion for n— in the limit V c.c. This essentially amounts to ignoring all fluctuations in 
n and calculating /T. To calculate the fluctuations, one chooses the variable 11, = 
../V(n — 7 and then lets V -+ ce in the master equation for p. This limiting proce-
dure again removes all higher moments from the equation. We assumed this limit 
implicitly in decoupling our moment equations above. 

For the particular reaction considered here, the density fluctuation approximately 
equals n in the non-equilibrium state for low coverages, whereas under equilibrium 
conditions, it would equal ifequil . 

3. Conclusions 

We have presented an analysis relating the fluctuations of the conductivity of a 
metal film to the fluctuations in adsorbate density accompanying the adsorption-
desorption process. We find that it should be possible to determine at least the time 
constant of the rate limiting step in the reaction from the spectral characteristics of 
the conductivity. A crude estimate indicates that the resulting noise power can be 
up to one order of magnitude larger than Johnson noise. We propose that this 
method provides a viable alternative to various types of real-time measurements of 
the rates (e.g. observing the decay of film resistance to equilibrium upon change in 
gas pressure). 

III the course of this work it was necessary to estimate the non-equilibrium part 
of Johnson noise in the bare sample up to terms quadratic in the applied voltage. 
The usual relaxation time approximation to the Boltzmann equation turns out to 
be adequate for our purpose. 
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nomials is 

h 2p  
WPP m = — 	(21 + 1) wt(P)  Po • p).5(ep  - ep.). 

1=0 

This expansion for Wpp is valid for elastic scattering from a spherically symmetric 
potential. Eqs. (A.3) and (A.4) show that it is inconsistent to take f up to I = 2 but 
still leave the collision term in the relaxation time approximation, as was done in 
deriving eqs. (A.1) and (A.2). 

The quantities of interest are 
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where c = 1) 2  /2m . Combining (A.3) and (A.4) we get the equation of motion of 
each component g1 ; 
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Eq. (A.8) shows g o  has no steady state solution. To lowest order in E, go  -E2 , 

g 1  - E, g2  - E2 ,g3-E3 ,g4 - E 4 , etc. Up to second order terms in E, the solu-

tions for go  and g2  are 
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where T 1 = 72 1  — Ti t . SO, g2  has a steady state solution whereas g o  does not. From 
(A.5), (A.8), (A.9) and (A.10), 
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(A.11) 

The first term in the squared brackets of (A.11) gives the linear response and equals 

ne 2 r i (e F) 

m 	
E [ 1 — exp(—t/r 1 )] , 

where n is the electronic density. If T i  is independent of e, then both the second 
and the third terms individually give zero contribution to the average current, as 
can be easily seen from (A.11), (A.9) and (A.10). For t r 1 , r2 , these non -linear 
terms turn out to equal 

4e4E3  ( 2 y" 

	

r i (eF) 	e" 2 7- '1  
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+ 	(,s/2F 4 a 
5 a e  c F

_ 
112,6= eF • 	

(A.13) 
97r 2  m 	 ae 	E=E, 

Thus the average current grows linearly with time for times longer than r 1  and r2 . 
To see clearly why this happens, we calculate the average energy of the electrons 

—up to quadratic terms in E this is 

ne 2 r i (e F) 
(e)= (e) equii  + 	Eat 	 (A.14) 

Eq. (A.14) shows that the average kinetic energy of the electrons increases due to 
the electric field exactly by the amount (j)Et that the field feeds into the system. 
Evidently, the absence of a steady state solution for both (i) and (c) results from 
the failure to include the coupling of the electrons to the lattice which provides a 
heat bath for the former. To exhibit this quantitatively, we include a electron—
phonon collision term in the Boltzmann equation for temperatures higher than the 
Debye temperature for the solid and in the limit of weak coupling. Since g 2  is 
already finite at long times even in the absence of lattice effects, we include the 
latter only to obtain a steady state value for g o . 

The electron—phonon collision term in the Boltzmann equation can be written 
as [101 

afk  	 dk' 
f 	Wk'kfie (1 — fic) — Wickfk( 1  -- fie)] 

IT./ t i collision 	kL 3  

(A.12) 

(A.15) 
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where the scattering probability Wkk' is given by 

C2  A k'i2 
Wkk' -  	{( 1  ilc— k' I + I) 6 (e k 	hulk—k' 

	

2M v lk 	I 

	

n — I 8 (E k 	Ek' 	hv Ilc— k' I)} , 

with A, the unit cell volume; M, mass of a lattice point; 	the phonon fre- 
quency; C is a constant, being of the same order as the average energy of an elec-
tron and lies between 1 and 10 eV [1 0] ; n i  k _k' 1 , the phonon occupation func-
tion — it is assumed to have its equilibrium value. Detailed balance requires 

Wk .  kl Wick' = exP[(e k' — e k)IK BT] • 

For temperatures much higher than the Debye temperature, fk  and its derivatives 
being smooth functions of energy, the 5-function occurring in Wkk' may be approx-
imated by 

a 
8(ek  — e k ,  + hv _ 	(e k — e k , ) + hv 	a—ek  5(ek  — e k , ) 

This approximation allows us to break up Wkk' into KW , which is symmetric and 
14/k,  which is antisymmetric in k and k'; i.e., 

Vc — I 
Wkk' =A vik — kl 

 (1 + 2n tk_ lei) (ek  — e k ') , 

a wiLe  = A lk — 1 2  h 
aek 
— (e k  — e , 

with A = C2 A/2M. 
Since both Wkk' and Wkk' depend on the angle between k and k' only, we 

expand these functions in a complete set of Legendre polynomials: 
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It is also seen that both 111  and V1 are symmetric in lk I and I k i  I; also, V1  is non-zero 

for / = 0 and 1 only. 
The collision term can then be rewritten as 
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+ fk a  0.(ke)1 _ , 
ek-ek ' a6k •  

where 

(A.19) 

Tr(k ) = ( Uo — U,) 	and 
	

01(kic t)= (Ek')1/2  Vi(ke). 

When (A.19) is added to the Boltzmann transport equation and the latter integrated 
over the solid angle of k, then up to second order in E, the result is 

	

\i/2 	a  
[eE g 1  

3m ) 	(127)1/2 gl ek = age', , 	 (A.20)  

where a= A (2m)5/2 hre. 
From the Y 1 (k) moment of the transport equation, the value of g 1  up to first 

order terms in E is found to be 

gi — 2eE Teff  (27rek/3m)112  fo , 

and thus, from (A.20) 
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in the limit of small a; l/Teff  =117- 1 + ltd. Eq. (A.21) is the steady state solution 
for go  and the non-linear terms in (/) are now (from (A.11)) 

	

4e
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which is to be compared with eq. (A.13) obtained in the absence of electron—
phonon collisions. From (A.21), (A.6) and (A.10), up to quadratic terms in E, the 
mean squared current fluctuation is now 

(e2Ereff )2  
((Alz) 2) = (I?)equil n m 

+ n
(e2Ereff)2 [ 2 + 	

2
11,2 + 41'2 + 4r4 	 (A.22) 

3Teff ae F  

The first two terms on the r.h.s. of (A.22) equal the r.h.s. of (A.1) which was derived 
by taking the collision term in the relaxation time approximation. To make an 
order of magnitude estimate of the last term in squared brackets, we assume 7'2  = 0, 
72  — Teff, and for C = 10 eV, A = 10 -21  cm3 , (a42 )-1  also turns out to be of the 
order of Teff  for a mean free path / 0  of 10 A given by /0  = reffVf. So, the sum of the 
three terms in the squared brackets is approximately zero. It is, therefore, quite 
adequate to restrict the collision term in the transport equation to the relaxation 
time approximation in calculating the mean squared current fluctuation. 

t. 
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D. TRANSPORT AND DIFFUSION  

The main achievements of these studies are: 

1. Further development of the theory of rates of diffusion controlled catalytic 

reactions on surfaces. The structure dependence of unimolecular and bi-

molecular reactions has been analytically evaluated. 

2. A review article on "Transport and Reaction on Surfaces: A Stochastic 

Approach" to be published in "Surface Reactions", Edited by U. Landman 

(AIP, N.Y., 1980) has been written. 

3. Using our method of continuous-time random walks with internal states the 

effect of temporal and spatial correlations on transport and conductivity 

in superionic conductors has been analyzed. Saturation of the conductivity, 

at large frequencies, below the D.C. level (observed in AgI) due to a 

caterpillar mechanism is obtained. 

4. A study of surface transport which may involve participation of subsurface 

channels of migration has been initiated. A formalism which combines the 

principles of the stochastic treatment of diffusion developed by us with 

the continued fraction method for the calculation of a Green's function 

is being developed. 

5. Using the method mentioned in (4) a calculation of S(it,w) for incoherent 

quasi-elastic neutron scattering from hydrogen diffusing in thin film 

is being performed, and modifications in line-shapes due to differences 

between surface and subsurface diffusion are analyzed. 



TRANSPORT AND REACTION ON SURFACES: 
A STOCHASTIC APPROACH* 

Michael F. Shlesinger and Uzi Landman 
School of Physics, Georgia Institute of Technology 

Atlanta, Georgia 30332 

I. INTRODUCTION 

In recent years surface physics has received a resurgent interest 
because of its importance in fields such as heterogeneous catalysis, 
thin film and crystal growth, interfacing electronic devices, and 
photovoltaic cells. Essential to this renewed interest in surface 
physics has been the advent of new and improved experimental tech-
niques which enable detailed investigation of structure (geometri-
cal, electronic and vibronic) and reaction processes under well 
controlled conditions. 

It is convenient to describe surface reactions in terms of 
"elementary processes" such as adsorption, desorption, migration, 
dissociation and association. The fundamental understanding of each 
of the above steps comprises rather broad fields of study. In this 
paper we will concentrate on the migration or diffusion step and on 
some aspects of certain diffusion controlled reactions on surfaces. 
Basic knowledge of these processes which would enable the optimiza-
tion of the parameters of catalytic materials, requires an under-
standing on a microscopic level. Recent developments and refinements 
of measurement techniques, such as Field Ion Microscopy (FIM) and 
Field Emission Microscopy (FEM) serve as the impetus for the 
development of theoretical microscopic models and refined methods of 
data analysis. In Section II we will review recent developments in 
the analysis of FIM diffusion experiments. These new methods when 
applied to the analysis of experimental data provide a spectroscopy 
of the migration mechanism, i.e. allow the detailed determination of 
kinetic parameters (frequency factors and activation energies) 
corresponding to elementary steps of the diffusion process. The 
recent direct observations using FIM of the diffusion of adatom 
clusters where the migration of the cluster proceeds via alternating 
spatial configurations (internal states of the cluster), provide data 
which when properly analyzed yields the above mentioned spectroscopy. 

Our basic approach employs s . ochastic techniques. While single 
particle diffusion is described commonly in terms of a random walk 
process, a generalization of the formalism is needed in order to 
describe complex diffusion mechanisms, and diffusion in defective 
systems. Propagating systems may be endowed with internal states 
which may represent spatial configurations, mobile and immobile 
states, spin states, different band components in a Wannier site 
localized representation or even a temporal correlation memory. 

*Supported by DOE Grant No. EG-77-S-05-5489 



Mapping the internal states onto a random walk lattice and using 
matrix Green's function techniques enables us to analyze such 
complex systems. These methods and their generalization to 
periodically defective lattices by introducing supercell Green's 
function are described in Section II. 

In Section III we present a different approach to studying 
diffusion on defective lattices which has computational advantages 
(particularly for small defect concentrations) over the method 
described in Section II. The method is based on a defect renormal-
ized Green's function. 

Kinetics of unimolecular and bimolecular diffusion controlled 
reactions on surfaces, catalyzed by active sites is the subject of 
Section IV. The reaction rate which appears in the master equation 
description of the reaction is expressed as the conditional prob-
ability first passage time density which is related to the more well 
known first passage time density. The reaction rate is related to 
the probability distributions governing migration on the surface which 
reflects the geometrical structure and potential surface. It is found 
that the reaction rate is in general time dependent, approaching a 
constant value at long times, and that it depends on the atomic 
arrangement at the surface. The structural dependence of the rates 
can become quite pronounced for a low concentration of active sites. 

Finally in Section V we propose an explanation to a puzzle in 
heterogeneous catalysis. The bimolecular reaction of the dispropor-
tionation of propylene on the surface of a catalyst is seen to have 
a reaction rate maxima as a function of temperature. However, 
thermodynamic inequalities which must be satisfied for a rate maxima 
to occur are violated by the experimental data. We show how the 
thermodynamic inequalities may be satisfied if multistate diffusion 
mechanisms, such as described in Section II and III, are assumed. 

The unifying feature to our treatment of the above studies of 
diffusion and reaction on surfaces is a stochastic description via 
random walk lattice Green's function propagators. 

II. PARTICLE AND CLUSTER MOTION ON IDEAL AND DEFECTIVE SURFACES: 
GREEN'S FUNCTION WITH INTERNAL STATES METHOD 

In order to analyze diffusion controlled reactions, as we do in 
Sections IV and V, we must first discuss the process of diffusion on 
a surface. The diffusive motion of adatoms and clusters of adatoms 
on surfaces has been dramatically revealed by Field Ion Micrc;cope 
(FIM) 1-5  studies. Field Ion Microscopy which was conceived and 
developed by E. W. Muller in the early 1950's was used first for the 
investigation of adatom migration on surfaces by Ehrlich and Hudda 6 

 in 1966. Later studies revealed that adatoms on metal surfaces can 
become correlated to move as a single cluster. 7-16 . One example we 
will analyze in detail is the motion of rhenium dimers on a W(211) 
surface7. 



The FIM is, under certain conditions, able to give images 
from which one can determine the distance traveled by an adatom in 
a time t at a temperature T. For example, the motion of a single  
tungsten adatom on a W(211) surface is seen to occur 6  (away from 
boundaries) as a one dimensional random walk with symmetric nearest 
neighbor hopping. Standard random walk theory gives for the mean 
squared displacement, 0 2 (t), after a time t, 

a2 (t) = 	2 k ) - AL 2 t (2.1) 

where A is the hopping transition rate, L is the lattice spacing, 
and a 2 (t) can be obtained from FIM pictures. The transition 
rate A is seen to be in the Arrhenius form 

A = v exp(-E/kT) 	 (2.2) 

since a semilog semilogrithmic plot of a 2 (t)L2 t vs. 1/kT yields a 
straight line of slope - E and ordinate intercept log v. Thus, an 
analysis of the FIM pictures can yield the activation energy, E, 
for diffusion, as well as, the frequency factor v. We will now 
discuss how the maximum amount of information can be extracted from 
FIM data when the motion of a cluster occurs and several transition 
rates are involved. This will lead us to the study of random walks 
with several internal states. 

The nature of the motion of a cluster on a surface depends on 
the substrate compasition and morphology as well as on the type and 
number of atoms in the cluster. For example rhenium dimers 7  are 
seen to undergo one dimensional motion on W(211) by alternating 
between straight and staggered configurations as shown in Fig. 1. 
If only one staggered position is allowed the center of mass motion 
of the dimer can be mapped onto a perfect lattice with two states per 
unit cell (Fig. lb), and the motion is characterized by the transition 
rates, a,a,b, and S. If there is no bias caused by say, an external 
electric field then a = a and b = B. We express the rates in activated 
form, 

a = v
a 

exp[(-Ea 
+ V)/kT] , 

(2.3) 
a = v

a 
exp[(-E

a 
- V)/kT] , 

As seen, a and a are not independent quantities even in the presence 
of a biasing electric potential V. Thus the dimer motion in 'ig. lb 
is characterized by only two transition rates. If a third more 
extended (non-dissociated) state is allowed then the center of mass 
motion can be mapped onto a lattice with three states per unit cell 
(two of which overlap) as shown in Fig. lc. The motion is then 
characterized by the four transition rates a,b,c, and d. If the dimer 
can move in two dimensions then the center of mass motion can be 
mapped onto a two-dimensional lattice, as shown in Fig. 2., 
characterized by four transition rates, i.e, four activation energies 
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FIG. 1. One-dimensional dimer migra-
tion. (a) Three possible spatial 
configurations of a dimer (filled 
circles connected by heavy line) 
moving along the x direction (the 
allowed equivalent mirror-image 
configurations are not included): 
if only states 1 and 2 are allowed, 
a 2-state dimer; if all states are 
allowed, a 3-state dimer. The 
location of the dimer centroid is 
marked X. (b) Random-walk lattice 
describing the motion of the cen-
troid of a 2-state dimer in (a). 
The unit cell is denoted by numbered 
circles. Lettered arrows indicate 
transitions to and from states. 
Note that transition rates connecting 
states can be different for trans-
itions to the left or right (i.e., 
a = a, b = 	(c) Random-walk 
lattice for the 3-state dimer shown 
in (a). Note that the centroid 
location is the same for states 1 
and 3; however, they are distinguished 
by different transition rates. 
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Mathematical Formalism of Random Walks with Internal States  

We will now develop the mathematical formulation of random walks 
on these lattices with internal states and show how to relate the 
unknown transition rates in terms of the known FIM observables such 
as diffusion distances and equilibrium occupation probabilities of 
the different internal states. Our generating (Green's) function 
analysis will be based on the semi-Markiv continuous time random 
walk of Montroll and Weiss 17  and its generalizations. 18-23 . In 
addition this approach has been shown to be equivalent to a general-
ized master approach. 24  

In the course of our study many probablistic quantities will be 
introduced in order to calculate the values of FIM observables. 
Let us first introduce R..(2,,tit 0 ) which is the probability density 
for reaching,site 2, in internal state i, (2,i), exactly at time t 
given that (2, 0 ,j) was attained at t=o. This quantity satisfies the 
following recursion relation 20 , and identifies R as a Green's function 
propagator 

R
ij

(2.,019„o) =IXiTim (2.-Z I ,T)R
mj

(2,,t-TI2,0 )dt 
1+ 

(2.4) 

+ &* It + 6 	6 (t) 
Z, 

o 
ij 

;+ 
where Tim (2,,t) is the probability density that at time t a single 
jump occurs from (o,m) to (R,i) given that the state (o,m) was 
attained at t=o. If there are s internal states then R and T are 
sxs matrices and in matrix notation Eq. (2.4) becomes 

Ra,u110)- 	TrZ-1.',u)R(2,' 01 1 1 0 ) 	61 

where we have Laplace transformed over time (tom u). To proceed further 
one must examine the waiting time density matrix Y. We write 

Tani 	t) = pi. 	(t) 	 (2.6) 

where ip i (t) is the probability density that a transition occurs at 
tile t from an internal state j which was attained at time t=o. To 
keep a matrix notation we treat q). as the jj element of a diagonal 
matrix. The prob4wility that thia jump goes into an internal state 
i is given dy p i .(2.). Using Eq. (2.5)}  in Eq. (2.6) and Fourier trans-
forming (R* k) ovar all lattices sites .9, we arrive at in matrix 
notation 

11(c,urito ) = [1 - p(t)p(u) ] -1  exp(+11 :R 0 ) 	(2.7) 

m o 

(2.5) 



X 	p4 . (Z) = 1, 	*(T)dT = 1 
t 	j-3  

0 

(2.9) 

where the Fourier transform and its inverse are defined in Appendix 
A. In our notation, functions of u have always been Laplace trans-
formed over time, and functions of have been Fourier transformed 
over the lattice space. 

The probability for being at* (t,i) at time t, P i i(t,tIt o ) when 
the stochastic process began at (t

o
,j) is related to ft..1J (t,t12. 

o
) by 

Pij (R,trI o  ) = 0 
	R.,(k,t-Tr oI.) [ I *.(T')dT']dT 

t 
E 	lliii (k,t-Tri c), 	(T)dT 

0 

(2.8) 

where the factor takes into account that the system may have 
reached (t,i) at on earlier time t-T, and no transition out of 
(2,i) occurs in the remaining time T. 

„All÷ the quantities one wishes to calculat't are derivable from 
Pii(t,tit ) which in turn only depends on Tii(k,t) as can be seem 
from Eqs (?2.7) and (2.8). We choose Y to be normalizable, i.e, 

We now show how to calculate positional moments and equilibrium 
occupation probabilities from a knowledge of Y. 

The positional moments of the probability distribution are 
given by 

«,r  (t)>= X y r ) n  P
ij

(Q,tlo)f 
	

(2.10) 

E(.,t) 	(u 
	

i u [1—(u)] 	
e iciC 10,,u)) 	(2.11) 

where -1  is the inverse transform and r=x,y, or z, we see that 
Eq. (2.10) can be rewritten ac' 

rn- 1  42,1 (0 	lira >=1i(-011 Yall Illi (,u1o)/ 	x 1  1.  
to 	 1,1 

(2.12) 

1 
u [1-* (u)] f. 

where f is the probability that an internal state j is occupied 
initially. Since from Eq. (2.8) 



where It(t,u1o) is given in terms of T in Eq. (2.7). 
Note that the matrix R is the inverse of the matrix 

[1 - p(k)1(u)] (see Eq. 2.7). Performing the matrix inversion 
we write R as 

12(t,u) = M(t,u);, 1  (k,u) 	 (2.13) 

where A is the determinant of the cofactors in M. All the physical 
quantities we will be interested are in the t*00 limit and will only 
involve R and its derivatives in the limit of both t and u going to 
zero. In this limit 26  the elements of M will approach constants, 
while A will diverge as u- 1 . Thus a 2R5k2  in Eq. (2.12) (which 2 

 enters the calculation of the variance 02 (t) will diverge as u 
causing the mean squared displacement of the random walker to grow 
linearly with time as was given in Eq. (2.1). This is the standard 
diffusion limit (t+03) result. It can be shown 26  that in the diffusion 
limit Eq. (2.12) for 0 2 (t) reduces to 

a2 (t) =<2, 2 (t)> 	<2(t)> 2  

(2.14) 
= lim lim u2  a 2A 

	

u+o k-o-o 	—jai 

Thus one only needs to calculate A and one does not have to perform 
the tedious matrix inversion to calculate M. 

Another quantity of interest which can be obtained from FIM 
data on cluster motion by simply counting the number of micrographs 
in which the cluster is found in the various spatial configurations 
is the equilibrium probability of occupying an internal state j, 
P„ eq. This quantity is defined as 

P.
3' 

eq. = lim 	
ji 

	

y P a ' 
 tio)f . 	(2.15) 

The RHS can be written in Laplace space as 

	

P.eq. = lim 	y 	u Pji  ( 	i i,u1o)f 	. 
.3' 	t4.0  

Since 4im P .li a,u10) = 	P
ji 
 6,t110), we can express P., eg. as 

k+o 4  

P , 	 lim X R. (k 1110)[1-yunfi  
u--)-o 15- o 



Except in extreme cases where the mean time to make a transition 
between states is infinite, Rii  will not depend on the initial state 
i so 

P ,eq = lim :5Lim R.(c,u1o)[1-yu)] 
u+o k*o 	• 

(2.16) 

Dimer Diffusion in 1D  

The set of transition rates {a} connecting the different internal 
states of a cluster are assumed to be in an activated form, 
a = va exp(-Ea /kT). 

To find all the individual activation energies and frequency 
factors characterizing the diffusion we need to consider a random walk 
with internal states. 

Consider first the two state dimer in Fig. 1. The effect of a 
bias can be incorporated by choosing a # a, b # S. The total rate of 
leaving state 1 is A=a+a, and the probability that the transition is 
to the right is a/A, and the probability that the transition is to 
the left is a/A. We choose a=a, b=8. The waiting time density matrix 
is then given by 

T t,t = 	1/2A exp(-At) (d z0  + 15 t,-1 ) 	 o 

(2.17) :) 

o 	 1/213 exp(--Bt) 0 t o 
 + d 2,0 ) 

where if the transition is within the unit cell t does not change 
value, and it changes by ±L depending on whether the transition moves 
the dimer centroid to the unit cell on the right or the left. We will 
measure lengths in units of the unit cell size L. The matrix R is 
given by, from Eq. (2.7), 

	

R(k,u) = M/A = [1-1/2A(BA+u ) (B+u) 	
1 

(l+cos kLd 
, 	x 

(1/2'1  

k!._ (14.6  ikL) 

7;7., 
(1 +e-

-ikL) 	
1 

B+u 

In the diffusion limit (t4-00) using Eq. (2.14) we find 

02( t ) = 1/2L2 	t = 	t 
A+B 	a+b 

(2.19) 

(2.18) 



From the knowledge of 'Y, detailed balance relations, Eq. (2.16) 
can be calculated to give 

Pl, eq 	12_ 
(2.20) R12(T) P2, eq 	a 

Eqs. (2.19) and (2.20) allow us to solve for the individual rates, 
i.e., 

v
a 

exp(-E
a
/kT) = a = L

-2 
t
-1 

a
2
(t) [1+1(12(T)] 

-2 -1 2 	-1 
vb  exp(-Eb/kT) = b = L 	t 	a(t) [1+R 1 2(T)] 

Experimentally o 2 (t) and P 1 ,eq.(T) = 1-P 2 	(T) are measurable and 
L2 t is known. Thus, a semilogarithmic pla clOf the RHS of Eq. (2.21a) 
vs. 1/kT would yield a straight line of slope -Ea , and ordinate 
intercept log va . Similarly, the same plot for Eq. (2.21b) would 
yield Eb  and vb. Note, that for this case merely plotting log 0 2 (t) 
vs. 1/kT (where a 2 (t) is the variance of the dimer centroid position), 
does not allow the determination of E a ,va ,Eb and vb. Such a plot 
would in fact yield a "curved" Arrhenius line as can be seen by 
substituting activated forms for a and b in Eq. (2.19) for a2 (t). 
However, in a limited temperature range a plot of log o 2 (t) vs. 1/kT 

may appear to be a straight line, but its slope and intercept will 
not characterize the individual transition rates of the dimer motion. 
We emphasize that full use of all the FIM data such as both 0 2 (t) and 
detailed balance relations R12(T) must be employed to calculate the 
individual dimer transition rates. Reed and Ehrlich" have also 
obtained Eq. (2.19) for the positional variance using Kolmogorov 
birth and death equations for the study of dimer motion. In a later 
paper 7  pertaining to the motion of rhenium dimers on W(211) Graham, 
Stolt, and Ehrlich find a = 17.5±.4kcal/mole, while b = 18.2±.3 kcal/ 
mole, where as by just plotting log 0 2 (t) for the dimer centroid vs. 
1/kT yields a "straight line" with slope 18.0±.3 kcal/mole. This 
demonstrates the spectroscopic kinetic information available from 
such studies. We note that our matrix continuous-time random walk 
approach can be applied to a system with any number of states per 
unit cell, even if different states of the cluster have the same center 
of mass. This point was an obstacle to extending the approach of Reed 
and Ehrlich." 

Three State Dimer in 1D 

We now consider the, last case in Fig. 1 where the dimer is 
allowed to extend into a third (non-dissociative) state which we term 
the extended state. Note that the center of mass of the dimer is the 
same for states 1 and 3 and thus states 1 and 3 coincide spatially 
but are distinguished by the different transition rates connecting 



them to state 2. Two new transition rates, c and d, are introduced 
to give us a total of four independent transition rates. We now 
inquire, "Is there sufficient FIM data to determine all four rates?" 
We can derive one equation for u 2 (t), and two other independent 
detailed balance equations for R 12 (T) and R 23 (T). To obtain a fourth 
equation the diffusion experiment must be done under the influence of 
an electrical bias so the first spatial moment <Z(t)> is non-vanishing. 
Such experiments have been performed by Tsong and Walko. 25  
Thus the amount of information one wishes to extract from the data 
will determine what type of experiment should be undertaken. The 
solution for each of the four individual transition rates in terms of 
the FIM observables (o 2 (t), <Z(t)>, R12(T), R 2 3(T)) has been given in 
reference 21, along with other examples, including diffusion on 
periodically defective lattices. The defects can be partially reflec-
ting or absorbing or may just be described by different transition 
rates. The method used 21  to include periodic defects was to construct 
identical super unit cells so that each of them contained the same 
defect structure. For example, in 1D consider the motion of a single 
adatom on a lattice with every n-th site being defective (e.g. 
described by a different transition rate from a normal site). We 
would construct identical unit cells (see Fig. 3) and a corresponding 
nxn matrix P and use the internal state method of analysis described 
above. However, this can become difficult for large n and thus we 
present in the next section an alternative renormalization method. 

L = 22 
• 	 • 

1
T_ 

a/2 	0/2 a/2 
0minual@m1.•0•1e4 alla.10'11ffiNag@mwO 

b/2 	lb/2 b/2 	lb/2 ___ 1_ 	L _ 

(b) 	 L= nf 
4 	 ►  4-0 

____ _______ — 
a) 12):IT  	(2) 0 	 ® 1 0  

_ 	 _ _ 	 _ 
FIG. 3 (a) A 1D random-walk lattice with two alternating states is 
shown. The distance between sites 1 and 2 is Z, and the unit cell 
(dashed lines) has length 2Z. The total rates of leaving states 1 and 
2 are a and b, respectively. The probabilities of going to the left 
or right from states 1 or 2 are 1/2. The lattice may represent the 
centroid positions of a dimer performing a 1D "channeled" motion on a 

(a) 



crystalline surface [e.g., W. dimer on a W(211) suface, or a 1D 
ordered, alternating two-component system. The random motion is 
solved by two methods. First, the lattice is treated as having two 
states per unit cell and 2 x 2 Green's-function propagator is derived. 
An alternative approach treats state 2 as a periodically occurring 
defect, and a defect-renormalized scalar Green's-function propagator 
is derived. (b) The defects (state 2) are now spaced a distance nk 
apart. In the text, it is shown that the defect-renormalized-
propagator solution is much simpler than the n x n matrix internal-
state approach. 

III. MOTION ON DEFECTIVE SURFACES: RENORMALIZED 
GREEN'S FUNCTION METHOD 

In this section we develop an alternative to the internal state 
supercell approach to random walks an defective lattices. 22 , 26 , 27  The 
fact that we only treat periodically placed defect does not render the 
model inapplicable to physical situations. It pertains to a.c. 
conductivity in ordered overlayer assemblies 28 , transport In alloy or 
multicomponent systems, and ordered overlayer adsorption systems. 29  
The results are shown to be similar to the average T-matrix approximation 
for diffusion in the presence of a low concentration of randomly placed 
defects. 30 . 31  The coherent potential approximation may also be used 
for randomly placed low defect concentrations. 32  

We return to the original Green's function equation (2.4) and 
treat the effects of defects as inhomogeneities rather than as extra 
internal states. Consider the case in 1D periodically placed defects 
spaced n lattice sites apart (see Fig. 3). The normal sites are 
characterized by 

	

T(k,t) = * 0 (t) p(t) = A exp(-At)1/2(d 9i  + 6 t, _ 1 ) 	(3.1) 

and defect sites differ only by changing the transition rate from 
A to D, i.e., 

Td (k,t) = *d (t)p(k) = D exp(-Dt)1/2(6 x,1  + 	 (3.2) 

Only nearest neighbor jumping is allowed. Eq. (2.4) becomes (when 
Laplace transformed over time) for a walker beginning at 

R(2,u) - X 	p(2-9 ) 1,0 (u) R(e,u) - (5 2,0 	
(3.3) 

. 
j = _ co 

p(t-nj)(*d (u)-* 0 (u); R(nj,u) 

where the LHS represents propagation on an ideal lattice and the RHS 
is non-zero only for terms which involve transitions from a defect. 



We wish to solve for R(k,u). The solution to the ideal lattice 
problem in Fourier space (k) and Laplace space (u) is given by 

1 
Ro (k,u) = [1-P(k)00 (u)] 

= [1-cos(k)11)0 (u)] 
-1 	 (3.4) 

Fourier transforming Eq. (3.3) we obtain 

-1 
[Ro (k,u)] 	R(k,u) = 1 + p(k) bpd(u)-11)0(u)] 	

eiknj 

(3.5) 

Using the calculation of partial discrete Fourier transforms from 
Appendix A (Eqs. (A-3) and A-6)) we find the sum on the RHS of Eq. 
(4.5) can be written as 

n-1 n y R(k + 	u) n ' 
m=0 

(3.6) 

where the first argument of R is calculated modulo 27r and o<k<27r. 
next write the defect term D(k,u) as 

	

D(k,u) = p(k) [1pd (u) - 11) 0 (u)1 . 	 (3.7) 

For small u (long times) note that 
-1 	_1 

D(k,u) 	u cos k [A - D ] + 0(u2 ) 	 (3.8) 

Using the notation 
-1 

L(k,u) = [Ro (k,u)] 	R(k,u) - 1 	 (3.9) 

Eq (4.5) becomes 
-1 	n-1 

L(k,u) = n 	D(k,u) 1 	R(k + m 
27r
-- , u) . 

m=1 
(3.10) 

Let us first consider k values in the first "Brillouin zone" denoted 
by K, such that 0<K5 -2W-. Since 

n-1 27r 
L(K + m —n , u) = n- 1  D(K + m 1----rr ,u) 	R(K + 	u) 

j=o 
(3.11) 

the L(k,u) function for all values of k, (o<k<277) and thus R(k,u) can 
be related to L(K,u) evaluated just in the first Brillouin zone by 

CO 



L(K + m 
27

,u)  = D(K + m 27  --,u) D-1 (K,u) L(K,u) 

(3.12) 
for 
	 m = o,1,... , n-1 

and where D(k,u) is easily evaluated for any k. 
We now write R(k =K+m-YLL  , u) from Eq. (3.9) in terms of 

known quantities D(k,n) and R o(c,u) evaluated just in the first 
Brillouin zone using Eq. (3.12) 

27 	 27 	 27 R(K + m 	u) = R
o
(K + m 	u) [L(K + 	+ 1] 

	

27 	 2n 	-1 

	

= Ro (K + m-171 	
u) [D(K + 	u) D (K,u)L(K,u) + 1] 

(3.13) 

Summing both sides of Eq. (3.13) from m = 	n-1 we find 
n-1 
X R(K + m 

27
u) = R(K,u) 

m=0 

Ro (K + m n 	 n u)[D(K + m 
7 
 ' u)D 1 (K,u) 

x ([110 (K,u)] -1  R(K,u)-1} + 1 j 
	

(3.14) 

where the m=o term has been separated from the sum 
Eq. (3.11) with m=o the LHS of Eq. (3.14) can also 
terms of R(K,u). Thus on can solve for R(K,u) in 
zone and relate R(K + m- , u) to R(K,u) using Eq 
result is 

on the RHS. Using 
be expressed in 
the first Brillouin 
. (3.12). The 

R(K,u) = W -1 (K,u) V(K,u) 
	

(3.15a) 

where 

W(K,u) = [(R0 (K,u) ) 1  - n 1  D(K,u)] 

n-1 27 	 7 
' - n-1  (R o" (K-u) ) -1 	Ro(K + m-

- ' u)D(K + in 2n  u) 
m=1 

(3.15b) 

and 
n-1 

V(K,u) = 1 + n-1  X 
m=1 ( 

R
o
(K + m 	 ' 21- , u) [D(K,u) - D(K + m lli  ud 

n 	 n  

(3.15c) 



Note that Ro (k,u) = [1-0(u) cos k ] -1  diverges in the to-o and k*o 
limits only as u-1 , and that D(k,u)-*u for small u (see Eq. (3.8) ). 

	

The propagator R O CK + m 27T , u) for m 	o does not diverge. Thus all 
the terms m Eq. (3.15) donnot contribute in the diffusion limit. As 
u±o, k*o the reduced expression becomes in the diffusion limit. 

	

R(K,u) = {[Ro (K,u)] -1  - 
	

D(K,u)}-1 	 (3.16) 

We see that the effect of the defects is to renormalize the Green's 
function propagator R o (k,u) to R(K,u) as in Eq. (3.15). In the long 
time limit (u+o) the renormalization is a simple "self-energy" term 

n-1  D(K,u) = n-1  cos k [u(D-A)]/[(A + u) (D + u)] 

In a previous publication we omitted the sum in Eq. (A.5) and kept 
only the m=o term, which led us directly to Eq. (3.16) rather than 
Eq. (3.15). We thank Dr. Harvey Scher and Dr. C. H. Wu for pointing 
this out to us. In a preprint they have considered random walks on 
lattices with periodic defects along with a temperature dependent 
defect to defect hops instead of just nearest neighbor hops. This is 
shown to lead to different channels of transport as a function of 
temperature. 

Using the renormalized R(K,u) we can calculate the variance as 

	

a2 (t) = 	X t2  R(t,t-T)(1)(t,T)dT 
ft  t 0 

	

= 	X 2, 2 	R(t,t-T) { 0
A
(T) + Pl.

B
(T) - (I)

A
(T))6

2,,nj 
dT 

t 	o 

= -t2 9?-1  D2R(K,u)RK2
IK=o 

[0
A
(u) + n-1 (0

B 
 (u) - 0

A
(u))1} 

n AB  £2 t  
A + (n-1)B 

(3.17) 

where .4)ti B  (u) = u-1 [1 - *A B (u)] has been used (see Eq. (2.8). For 
n+co or A'= B, (no defects),'we obtain the perfect lattice result, 
Eq. (2.1), 0 (23 (t) = Ak 2t. If the transition rate A is known then one 
car solve for the defective transition rate B to find 

Aa 2 (t)  
An9,2 t - (n-1)02(t) 
	 = vB  exp(-EB/kT) = B (3.18) 

Thus a semilogarithmic plot of the experimentally known quantities on 
the LHS vs. 1/kT will yield the activation energy and frequency factor 
characterizing the rate B. Note again that 0 2 (t) itself is not of the 
Arrhenius forms, and a plot of log 0 2  vs. 1/kT will not allow a 
determination of A and B. 

By treating the defects as inhomogeneities in our Green's function 
Eq. (3.3) we were able to calculate R(K,u) as a scalar quantity. 



In contrast, with the supercell method of Section II, we would need 
to use nxn matrices and their inverses. Unless special symmetries 
exist the calculations with nxn matrices can become prohibitive, 
thus showing the advantage in those cases of renormalized propagator 
method. 

It is interesting to observe that to first order in the 
concentration of defects C=n-1  the expansion of Eq. (4.17) yields 

a 2 (t) = o 2 (t) {1 - C[(vB/vA)e-(EAEB)/kT - 111 

0(C2 ) 	 (3.19) 

Which is similar to the effective diffusion constant in a system 
containing randomly placed defects as given by the average -T-
matrix approximation. 30,31 

The renormalization procedure used for calculating the variance 
for the example in Eq. (3.17) is actually more general and applies 
to cases in higher dimensions where the structure factor p(k) is 
different at defective sites and when the diffusant cartains internal 
states (configuration, energetic, etc.) and a set of defects can be 
periodically repeated. When internal states are present the renormal-
ization equations become matrix equations. The solution in Eq. (3.15) 
is already in the correct order for the proper matrix multiplication. 
Only the definition of the "self-energy" needs to be generalized to 

D(t,u) = X [? 	Vpd  (u) - p ec)1.1)2  (01 
d  

(3.20) 

where the sum is4over the set of periodically repeating defects. 
When pd (k) # p o (k) care must be exorcized arriving at ). asymp_Eotic 
results since now D6=o, u*o) 'N. ,  constant while if p (k)=p o

(k) then 
D6.=o, u*oYNAI. 

Before we proceed to discuss certain aspects of diffusion 
controlled reactions we comment on an interesting result concerning 
the effect of defects (inhomogeneities) on the lattice structure 
dependence of the diffusion constant. In reference (26) we have 
studied particle and cluster motion on defective surfaces. In one 
example, we considered square (sq.) hexagonal (hex), and triangular 
(tri) lattices with equal bond lengths and equal defect concentrations. 

addition we let the effect of the defects to extend to nearest-
neighbor sites. Normal, defect, and defect nearest neighbor sites 
were ascribed transition rates A,D, and B respectively. It was found 
for single particle motion that the variances in position (and thus 

oho the diffusion constants) order as o2ri(t) 	02(0 < g
h

(t) when 
t

Q i s 	 i B 5 A, i.e, when the migration of tne particl
Se s sloweu in the 

vicinity of the defect. It should be noted that this structural 
(lattice connectivity) dependence occurs only for diffusion on 
defective lattices in which the range of influence of the defects 
extendes to at least nearest neighbors. 



Studies of particle diffusion on surfaces containing defects 
are not abundant. Recently an FIM investigation of diffusion on a 
3% R

e 
substituted W(100) surface was performed l °, since defects are 

of importance in catalytic reactions on surfaces, either as promoters 
or inhibiturs of migration, and in eight of the above results it is 
suggested that detailed studies of diffusion on such systems be 
carried out. 

IV. DIFFUSION CONTROLLED REACTIONS ON SURFACES 

In this section we examine closely the meaning of "reaction 
rate" as it appears in probabilistic master equation descriptions of 
chemical kinetics. We show that the reaction rate is a conditional  
probability density, and describe its evaluation for certain model 
systems using the formalisms outlined in the previous sections. An 
explicit example of a diffusion controlled bimolecular reaction is 
discussed in Section V. 

Unimolecular Reactions: What is a Reaction Rate?  

The evolution of many physical systems can be viewed as 
unimolecular, bimolecular, or pseudo-unimolecular (if from two reactive 
species one species is vastly more abundant than the other) reactions. 
Unimolecular decay reactions involve the irreversible loss of indepen-
dent reactants. McQuarrie 34  has reviewed the master equation approach 
to unimolecular and bimolecular reactions. This stochastic approach 
allows the calculation of fluctuations, which deterministic equations 
do not. McQuarrie's solutions are in terms of rate constants, but he 
does not discuss how to calculate these rate constants from first 
principles. In this section, we show that the rate constants are 
conditional first passage (coincidence) probability densities and we 
relate them to the probability that the lifetime of a reactant is 
greater than a time t. 

The master equation governing unimolecular decay is 

dP(N,t)/dt = K(t)[P(N + 1,t) - NP(N,t)] , 	 (4.1) 

where N is a random variable representing the number of reactants 
which have not yet reacted (decayed). The solution of Eq. (4.1) for 
the mean is 

< N(t)5 = No  exp[ - e K(T)dr] 	 (4.2a) 

where N is the initial number of reactants, and N(t) satisfies 
the equation 

d< N(t)> /dt = - K(t) <N(t)> . 	 (4.2b) 

The major task involved with Eq. (4.1) is to calculate the reaction 
rate K(t) which contains all the physics of the reaction under study. 



The quantity K(t) is the conditional probability of a reaction 
occurring, of a particular reactant, in the interval (t,t + dt), 
given that no reaction occurred in the interval (0,t). We assume the 
stochastic process began at t=0. The quantity K(t) dt says that the 
stochastic process began at t=0 and that at time t one has the in- 
formation that the particular reactant of interest has not yet decayed, 
and then asks with what probability will the decay occur at time t+dt. 
Thus, K(t) is a prediction at time t of what will happen at time 
t+dt, given the information that the reactant did not decay in (o,t). 
The conditional first passage density K(t) can be related to the 
unconditional first passage density F(t). The quantity F(t)dt says 
that the stochastic process began at time t=0 and then asks for the 
probability that the decay takes place in the interval (t,t + dt). 
So F(t) is a prediction at time t=0 of what will happen at time t+dt. 

To calculate K(t), we first define P(L>t) to be the probability 
that the lifetime of a particle is greater than t, i.e., that the 
decay takes place in the interval (t,..): 

P(L>t) = 7 F(i) di 	 (4.3) 
t 

Now, P(L>t + dt) can be written terms of a conditional probability 

P(L>t + dt) = P[L>t + dtlno decay in (o,t)]P(L>t), 

(4.4) 

where the last factor on the RHS is the probability that no decay has 
occurred in the interval (o,t). Dividing both sides of Eq. (4.4) by 
P(L>t) and expanding P(L>t + dt) in a Taylor series about t, we find 

P[L>t + dtlno decay in (o,t)] 

= 1 + dt(d/dt) log P(L>t) + 0(dt) 2 	(4.5) 

Now, 

K(t)dt = 	+ dtlno decay in (o,t)] 
= 1 - P[L>t + dtlno decay in (o,t)] 	(/.6a) 

or 

K(t) = -(d/dt) log P(L>t) 

= F(t)/ 7 F(T)dT. 
t 

Using Eq. (4.6b) in (4.2a) yield the intuitive result 
t 

<N(t)> /N = exp[- I Ker)dr] = 7 F(T)dT 
o 

 
0 

(4.6b) 

(4.7) 



and shows the connection between the unconditional and conditional 
first passage distributions. 

We see that if P(L>t)n,exp(-At) as t>-.0, then K()--A, a constant. 
This is the reason why constant reaction rates can often be used in 
Eq. (4.1). Note that 

K(t) = - (d/dt)log( <N(t)> /No ), 	 (4.8) 

which is similar in structure to Eq. (4.6b). In Eq. (4.8), one uses 
experimental results to find K(t), while in Eq. (4.6), one uses 
assigned microscopic parameters to predict K(t). Together, Eqs. (4.6) 
and 4.8) help allow for a determination of the microscopic parameters 
governing K(t). 

Calculation of a Diffusion Controlled Unimolecular Reaction Rate  

Consider now the situation where Eq. (4.1) represents N o  reactants 
per active site at t=o, and where there is one active site per V 
lattice sites. A reaction occurs at the instant when a reactant 
reaches an active site on our periodic lattice. We divide our system 
into identical unit cells each initially with N o  reactants and a 
active site at the origin of a unit cell with Vsites. Periodic 
boundary conditions are used in each unit cell, so the study of one 
cell will yield the kinetics of the concentration of the reactants 
C(t) = N(t)/V. We could endow our reactants with internal states 
(energetic, configurational, spin, etc.) and the lattice with various 
types of defects (promoters or inhibitors of diffusion) using our 
matrix renormalized propagator as discussed in Section III. However 
we will choose for simplicity a single particle on a perfect 2D square 
lattice governed by nearest neighbor jumps and p(t) = A exp(-At). 
This model is then similar to Montroll's 37  and Lindenberg 32 , Heminger, 
and Pearlstein's studies of exciton trapping. The equations which 
are now presented to calculate K(t) (Eq. 4.6) should not be confused 
with the unimolecular reaction Eq. (4.1). 

Given T(t,t) = ip(t)p(t) we now calculate the unconditional first 
passage time F(t) for a reactant initial at a non-active si 4te. The 
probability density f(o,0 0 ) for reaching the active site k=o at time 
t for the reactant starting at Z , enters the following equation 

to 

L 	R(o,t1t o )g(t o ) = X 	7  f(o,t  - TI  2,0)g(to)R(o,TIo)dr 

k 00 	 k°#° 0  
0 

(4.9) 

where we have averaged over the initial probability of occupying k , 
and the RHS takes into account that for the reactant to reach the ° 
origen at time t it could have reached there at an earlier time t 	T 
and returned to the origin (any number of times) in the remaining time 



T. 	Here we are treating the origin as a normal site and calculating 
the first passage into 2,=o. The propagator R was first discussed in 
Eq. (2.4). Eq (4.9) can be solved by Fourier and Laplace transforms 
to yield 

	

1 r 	 1 y7 1 [R(I=o,u o)  1] F(t) = 	L 	f(o,t 	. V-1 	 V-1 	R(i.0,u 
k oo 

(4.10) 

The denominator on the RHS is the random walk Green's function for 
return to the origin and is given by, in 2D, 

,

V 	V 1 
R(t=o,u1o) = 	

1 	
y
2 	

[1 - p(k)Ip(u)] 
-1 

V 

where V=V1V2 and k.=2Trh./V., i=1,2. While the Green's function has a 
simple form in Fourier and Laplace space (see Eq. (2.9) it is not 
known, in general, in closed form in real space other than as in 
Eq. (4.11). Note however, that R(54=o,u1o) diverges for small u. 17  
This is because lim R l ei=o,u1o) represents the probability that a tro-o 
random walker never returns to the origin after any number of steps, 
and this is zero for a finite lattice. Montro11 37  has analyzed the 
behavior of Eq. (4.11) in the small u limit. Using Montroll's results 
we obtain in 2D. 

F(u) ti 1 - S V[1 - tP(u)] + 0[1 - ip(u)] 3/2 	(4.12) 

	

where S=S i  log V + S2 + S3/V + S4/V 2  + 	 and the values of 
S1,...,S4 are of the order of 0.1 to 1.0 and differ for hexagon, square, 
and triangular lattices. In our example 1-p(u)u<t> where 
<t> = 6 tip(t)dt is the mean time between jumps. In the long time 
limit F(t) and i(t) will have the same form, but different parameters 
such that 

ItF(t)dt =SV cIttp(t)dt 
	 (4.13) 

so approximately SV steps are taken before the reaction occurs. Thus we 
arrive at the equation for the concentration of reactants C(t) in the 
long time limit 	

C(t) ( A 
C(o) = 

exp - 

SV 
	 (4.14) 

For shorter times the reaction rate (K(t) = A/SV) will be time 
dependent. The structure of the substrate enters the rate through 
the quantity S. Using Montroll's values for S1,S 2 ,...,it can be shown 
that the rates order as K 	> K > Kh  , which is the same ordering 
as the coordination numbers.

tri 
  ThecI strucnral effect is more pronounced 

(4.11) 
kl=1 k2=1 



for large V (low active site concentrations). For V=10, K
sq 

and K 
 

are 23% and 29% larger, respectively, than K
hex

. 

Diffusion Controlled Bimolecular Reactions  

Bimolecular reactions on a surface can be treated in a similar 
fashion as unimolecular reactions, but they are inherently more 
difficult. 36  First, the bimolecular master equations (Eqs. 4.15) and 
(4.16) are more complicated than the simple unimolecular one. 
Secondly, the calculation of K(t) involves conditional first pair 
coincidences rather than first passage times. Thirdly, a single 
reactant upon reaching a reactive site will leave if the second 
reactant (which is necessary for the reaction) does not arrive in 
sufficient time. It is likely that the transition rate for a single 
particle to leave the reactive site is different than for it to leave 
a non-reactive site. In this case single particles will migrate on a 
defective lattice in the bimolecular reaction due to the nature of the 
reactive site, but not in the unimolecular reaction where they 
immediately react at the reactive (defective) site. 

The bimolecular reaction master equation for identical particles 
A+A+2A is 34  

dP(N,t)- K(t) 	+ 2) p(ti + 2 , 	- ( 2  )P(N,t) 	(4.15) 
dt 	 2 

where N is the number of reactants which have not decayed at time t. 
We assume N is initially even, and changed by two after a reaction. 

For two different species A+B÷C the bimolecular master equation 
is given by 34  

dt 	
= K(t) f (N + 1)P(Zo + N + 1) - N(Zo + N) P(N,t) 

4.16) 

where N is the number of type A reactants, and M = Z + N is the number 
of B reactants. Recombination reactions such as annealing are of this 
type. 

Eqs. (4.15) and (4.16) can be solved by generating function 
techniques 34  to yield respectively, 

11 	 - 
<N(0> = 0 
	 1 

AN  exp [-2 	N(N - 1) It  K(r)dt) 	(4.17) 
N=2 

where 

1 - 2
N 	r (No  + 1)r  No  -  N - 1 

2
N 

r(No - N + 1)r (

2

N°  +2N + 1  

dP(N,t) 

AN = 



and N is even, and 
No 	(2N+Zo )r(N +1)F(N +Z +1) 	 t 

<N(0> = X ° 	
o o  

exp -N(N+Z ) I K(T)dT 
N=o 

r(N
o
-N+1)r(N o o +z +N+1 	 o o 

(4.18) 

Here K(t)dt is the conditional probability distribution that a 
reaction takes place between two particular reactants in the interval 
(t,t+dt) given that the reaction did not occur before in (o,t). As 
before we will be interested in diffusion controlled reactions at 
reactive sites which we take to be the origins of the defect 
superlattice cells of volume V with periodic boundary conditions. 
In analogy to Eq. (4.9) to find tie probability density÷ for a first  
coincidence at the reactive site t=o, at time t, f(o,t1t1,2,2) of two 
reactants which were at Xi and 2,2 at t=o, we first need to calculate 
the probability density of any coincidence C(o,t1 .41,k2), 	two 
particles which initially were situated at sites Li, and .2,2 and 
coincide at the origin of their unit cell at time t. 

C(t) = 	' c (o,tri i ,19) g oz og (R 2 ) 
2,2 	LI 

= E I I f(o,t-TIII,I2)g(Qi)g(4:9,2)C(o,r(o o)dt 

£2 Li 

where we have averaged over all initial positions of the two particular 
reactants, except for both being at the origin initially. The above 
equation can be solved for the first coincidence density f to give 

F(t) E / / w  f(o,t1I1,I2)g(2,1)g(1,2) 
1. 1 £2 

-1 [C(u)/C(o,ulo o)] 

To proceed further we need to specify the allowable states of the 
reactants and the probability distributions governing transitions. 
We will treat the simplest case where all reactants are of the same 
type and have the waiting time density ty(t)=A exp(-At) for hopping, 
an only nearest nieghbor jumps occur. We also consider that the 
release rate from the reactive site is unchanged from that of the 
normal site when only one reactant is there at the origin . A reaction 
will occur at time t if one reactant already resides on the reactive 
site (having a.rived there earlier) and a second reactant arrives 
there exactly at time t, or vice versa. Remembering that R is the 
probability density for just arriving at a site, and j is the 
probability for being at a site, we have 

C(t) =  2 	X 	' P(o,t)II I )R(o,025 	(4.21) 
V(V-l) + + 

Li 	9.2 

(4. 19) 

(4.20) 



Thus for large V we have 

F(t) 	 (I=0,10)R(t=0,ur 0) ) 

p(Q=0,u10)R(k=0,u10) 

(4.22) 

Again using Montroll's 37  asymptotic (u*o) results for the terms 
in the denominator we find for the rate constant in Eq. (4.17) 

lim K(t) = A/2S 	 (4.23) t÷co 

where S is given in Eq. (4.12). Note that this rate is one half of 
the unimolecular reaction rate, but both rates enter cothpletely 
different equations (Eq. (4.17) and Eq. (4.18)) for the mean number 
of reactants). For reaction between two species whose transition 
rates are characterized by rates A and B we find for large t the K to 
be used in Eq. (5.22) is 

K(t) = (A+B)/(S[2 + A/B + B/A]) 	(4.24) 

V. CONDITIONS FOR A RATE MAXIMIZING TEMPERATURE 
IN LANGMUIR-HINSHELWOOD REACTIONS 

In this section we illustrate the manner in which multistate 
diffusion mechenisms might provid an interpretetion of certain 
experiments in which the rate of a catalytic reaction can be 
maximized as a function of temperature. 

A number of heterogeneous catalytic reactions exhibit a maximum 
rate of reaction as a function of temperature. This may be due to 
the reaction mechanism or to changes in the catalytic structure as 
a function of temperature or a combination of both. We will consider 
the experiment of Moffat and Clark 38  who in 1969 found a rate 
temperature maximum for the olefin disproportion ation reaction of 
propylene into ethylene on the cobaltmolybdate-alumina catalyst 
Co-M0-AZ203. They also found that the reaction obeys the bimolecular 
Langmuir-Hinshelwood law. This means that two adsorbed propylenes 
react, perhaps at an active site. Other reaction mechanisms are 
possible. For example, Begley and Wilson 39  found an Eley-Rideal 
mechanism (an adsorbed species reacting with a gas phase species) for 
olefin disproportionation on a tungsten-selica catalyst. 

The Langmuir-Hinshelwood law is derived as follows. Let 0 be 
the fractional surface coverage by the reactants. Then 

dO = Pki(1-0) 	k20 , 	 (5.1) 



where k, is the adsorption rate and k2 is the desorption rate and P 
is the pressure. At equilibrium 

0 = KP /(1 + KP), 	 (5.2) 

where K=ki/k2. The bimolecular rate of reaction is proportional to 
02  and to the diffusion controlled rate of reaction on the surface 
denoted by k. Thus the Langmuir-Hinshelwood rate of reaction r is 

Kp 	2 

r = k L 1+KP J 	 (5.3) 

Note that Eq. (5.3) can be rewritten as 

11  
= 	(1 +  ) 

KP 	 (5.4) V'r VR  

Thus a plot of r 2  vs. P- I should yield a straight line, as is seen 
in the propylene disproportionation reaction studied by Moffat and 
Clark 38 . 

Usually, Arrhenius forms are assumed for both k and K38-40 ,  i .e. 

 k = A exp(-E/RT) 

K = exp(AS/R) exp(-AH/RT) 	 (5.5) 

where E is the activation energy for diffusion, AS is the differential 
entrophy of adsorption, AH is the heat of adsorption, and A isl„the 
frequency factor. Since k and K can be determined from the r 2  vs.P -1 

 plot, one can further calculate the activation energy E by 

a E = - 	k 	 (5.6) 
3(1/RT) 

and the heat of absorption by 

a 
- AH = 	

tn  K 
 

D(1/RT) 

Moffat and Clark38  found the values E= 8.2 K cal/mole and IAHI=2.8 
K c i/mole as well as a rate maximizing temperature Tm  '42O°F. If 
Eq. (5.5) is substituted into the rate equation (5.3) and the 
derivative with respect to temperature of the resulting expression is 
set equal to zero, a condition for the appearance of a rate maximum as 
a function of temperature is obtained. When the adsorption step of 
the reaction is exothermic, AH<O, and the rate maximum condition is 38  

IAHI> E(a + 1) /2 	 (5.8) 

where 8 = P exp(AS/R) and is usually much smaller than unity. This 
condition Eq. (5.8) is not satisfied by the measurements of Moffat and 



Clark and yet a rate maximum still occurs. 
To explain this apparent paradox we 41  propose mechanisms where . 

the Langmuir-Hinshelwood form of Eq. (5.3) is preserved, but the 
rate maximum condition Eq. (5.8) is modified to a form which can be 
consistent with the experimental results. Common to the mechanisms 
which we propose is the property that k, which is related to the 
diffusive motion on the surface, is characterized by more than one 
rate constant. For example the motion of the nine atoms comprising 
the propylene CH3CH=CH2 may involve transitions between different 
configurations of this cluster each with its own transition rate. 
Out of all the possible transitions those with the highest activation 
energies will be the rate limiting steps. Considering the two most 
important rate limiting transitions with rate A and B, the diffusion 
constant in Eq. (5.3) will take the form, as in Eq. (2.19) 

k AB 	 (5.9) 
= 

A+B 

We write both A and B in the Arrhenius form 

A = v
A 

exp(-E
A
/RT) 

B = v
B 

exp(-E
B
/RT) 
	

(5.10) 

so k will not be of the Arrhenius form. If however a straight line 
results from an experimental plot of log k vs. (RT) -1  this does not 
necessarily imply that k=v exp(-E/RT) and that k cannot be written as 
in Eqs. (5.9) and (5.10). In practice, a plot of log k from Eqs. 
(5.9) and (2.10) vs. (RT) -1  will yield a straight line of slope - E A, 
in an appropriate temperature range, if 

or 

(1) E 	E 
A 	B 

(5.11a) 

(2) EA  >>EB  + RT Zn(vA/vB ) 	(5.11b) 

Using the k in Eqs. (5.9) and (5.10) the following condition is 
found for the occurance of a rate maximizing temperature T m  in Eq. 

(5.3) 

1 + P exp[AS/R - IAHI/RTm
] .  A + B 

2IAHI 	 E
B
A + E

A
B 

(5.12) 

Let us denote the RHS by r. A linear analysis shows that a small 
decrease in pressure (SP will decrease Tm  by the amount STm, where 

6Tm  = 6P exp[AS/R + lAHI/RTm]RTm2 /1AHI x 

(2IAHIF - 1 + 2AB[r(EA  - EB)/(A + B)] 2 
 -1 (5.13 ) 



This is in accord with the experimental result that a decrease in 
pressure lowers the maximizing temperature. 38  Neglecting P exp(AS/R) 
compared to unity we arrive at the following inequality for the 
existence of a rate maximum 

v
A
(201 - E

B
) > v

B
(E
A 

- 21AHI) 
	

(5.14) 

where we have assumed, without loss of generality, that EA>EB . In 
contrast to Eq. (5.8) this inequality can be satisfied by the 
measurements of Moffat and Clark 38

, 
E
A 
= 8.2 Kcal/mole and IABI= 2.8 

k cal/mole, if 

0 < EB < 5.6 - 2.6
B  

K cal/mole 	(5.15) 
vA  

For k to be adequately described by an Arrhenius plot, Eq. (5.11b) 
must also be satisfied. A similar inequality can be derived by 
assuming the surface contains two types of sites with two different 
release rates 41 . 

Not all reactions have reversible rate maxima. For example, 
Maatman et. al". studied the cracking of isopropylbenzene 
[C6H5CH(CH3)2] into benzene [C6H6] and propylene [C3H6] on a silica-
alumina catalyst. They derived the condition that the heat of 
desorption from active sites must be greater than the activation 
energy for diffusion for a rate maxima to exist. This condition is 
not met and no rate maxima is seen. 

It would be interesting to find the conditions for the existence 
of a rate maximizing temperature for the production of various 
hydrocarbons in a Fischer-Tropsch reaction where progressively heavier 
hydrocarbons are produced from a catalyzed gaseous CO and H2 mixture. 

nC0 + (2n + 1) H2.-1-CnH2n4.2  + nH20 
	

(5.16) 



APPENDIX A 

PARTIAL DISCRETE FOURIER TRANSFORMS 

We define the discrete Fourier transform (Eq. A.1) and its 
inverse (Eq. A.2) on an infinite lattice of dimension d, as 

f(t) . 	... 	f(i) eit4 	 (A.1) 

2  fa) = (20-d  f.7. I f(t) e 	 at . 	(A.2) 
o 	o 

Consider first a 1D lattice and define the partial Fourier transform 

f
y,n

(k) = 	f(yt + n) eik(Y 'Q 	n)  
R=- co 

(A.3) 

Using Eq. (A.2) we obtain 
co 	 -1 27 

fy,n (t) = y 	(20 	I f(k') 
ei(k-k') (yt + n)dk 

bm.-= 	o 
2,r 

=
y  I f(k') (5(k-k' + 21111) dk' 	 (A.4) 

1 	
f(k +-

21111) 
	

(A.5) 

where the summation is over all integer values of m (positive and 
negative) such that k + 	6(0,20. Eqs. (A.3) and (A.5) can be 
easily generalized to higar dimensions, say d, to yield 

27m 
(Y1 ...Yd) - i X ...Y 	foci 	Y 	

,...,kd  + ZIN) (A.6) 
1 	 id 

ml md 

For a finite lattice of d dimensions (the number of lattice points 
being Nix...x Nd  the discrete Fourier transforms are defined as 

N1 	Nd 
fa.) = X 	... X 	f et) eiti 	 (A.7) 

	

1.1=1 	td=1 

and 
- 1 N1 	Nd 

f(R) = (N1 	Nd) 	y 	y 	f(t) e- 
S1=1 	Sd

=1 
(A.8) 



where ki  = 2ffS i/Ni , 1 = 1,...,d; and s i  = 1, ..., Ni . 

For the partial discrete transform 

N1 	N, 
f (1) = 	... X°  f(Y1 2, 1,...,yd td) ell."1"."Ydld) (A.9)

2,1=1 

 

d=1 

we obtain the same result as in Eq. (A.6), except k can only take on 
the Nix...x Nd  values in Eq. (A.8) 
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The Scher-Lax model for the calculation of a.c. conductivity is modified 
to allow for temporal and spatial correlations. If, due to, say, lattice 
relaxation effects, a charge is most likely to continue to move in the 
same direction (caterpillar mechanism), then the real part of the conduc-
tivity will saturate, at large frequencies, below the d.c. level. The 
reverse will be true if a bounce-back mechanism dominates. These two 
cases of correlation can be related to the behavior of the superionic 
conductors AgI and Na B-alumina, respectively. The degree of disorder in 
the hopping sites determines the distribution of ionic transition rates 
which in turn governs the details of the conductivity curve. The 
frequency dependent conductivity due to the motion of an ionic cluster 
(dimer) is also analyzed. 

Introduction 

In recent years attention has been focused 
on the frequency dependent conductivity o(w) of 
superionic conductors, as probed by optical, 
infrared, and microwave radiation, in order to 
gain information about the fast ion transport 
mechanism. 1  Several studies have suggested that 
ion-ion correlations play an important role in 
ionic transport in superionic conductors. For 
example, van Gool and Bottelberghs, 2  and Wang, 
Gaffari, and Choi 3  have shown for Na B-alumina 
that the thermal activation energy, for transpor-
ting from a Beavers-Ross to an anti-Beevers-Ross 
site, decreases significantly when several Na+ 

 ions are involved as opposed to a single ion. 
This is consistent with the x-ray data of Peters 
et a1., 4  which suggests that the Na+  ions form 
clusters, as well as the measurements of Strom 
et al., 5  showing a broad distribution of 
collective ion modes. It has been suggested by 
Roth6  and by van Gool and Bottelberghs 4  that the 
excess cation concentrations in 0-aluminas form 
domains. The recent EXAFS measurements, on AgI, 
of Boyce et al., 7  imply an ionic hopping model. 
In addition, Flynn 6  has suggested that mobile 
ions can form small polarons, and Emin9  has 
shown how this can lead to correlated motion 
involving a time dependent activation energy. 
Kimball and Adams" have studied the effects 
of correlation on Re o(w) by using a Green-
Kubo formalism and keeping single and double 
hop terms. A kinetic Ising model is used to 
determine the transition rates between the states 
of the system. They find that Re o(w) always 
increases with w, regardless of the type of 
correlation. 

In the present paper, the Scher-Lax model" 
for calculating o(w) is modified to include the 
effects of correlation. Two types of correlation 
are studied, 

*Supported by DOE Grant No. EG-77-S-05-5489 

1) bounce-back and caterpillar mechanism 
(lattice relaxation correlation) 

2) cluster (dimer) motion (ion-ion 
correlation) 

The first type of correlation treats the effect 
of lattice relaxation on altering the relative 
probabilities for an ion hopping in the same 
and opposite directions as the previous hop. 
In section III we will show for the bounce-
back mechanism that Re a(w) will saturate above 
the d.c. level, and that the reverse will be 
true for the caterpillar mechanism. In Section 
IV the spatial correlations involved in the 
motion of a dimer are analyzed to show that 
Re o(w) increases with w. Thus the Scher-Lax 
model 11  provides a unified approach equally 
well describing an increasing Re o(w), as 
observed in Na 13-alumina, 12  or decreasing 
Re a(w), as observed in AgI. 13  

II. The Scher-Lax Model 

Scher and Lax" have used the Nyquist-like 
Green-Kubo formalism, which relates mobility to 
noise, to calculate the conductivity o(w) = 
n(Ze) 2D(w)/kT for impurity conduction in 
semiconductors in 3D where n is the density of 
carriers, Ze is the charge on a carrier, and 
D(w) is the diffusion coefficient. They convert 
the usual expression containing the velocity 
correlation into an expression with a spatial 
displacement correlation, i.e. 

:-... 

JrD(w) = - t m2  C(w,T) 	exp(iwt)<[t(t) - 

0 

- t(o)) 2 > dt, 	 (1) 

where C(w,T) = (iw/2kT) coth(1'iw/2kT) and is 
close to unity for bw<2kT. This is the case 
for the temperatures at which superionic 



p(2.,t) = 

(2) 
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conductors operate and for the frequencies at 
which they are probed. Thus we will neglect 
C(u,T) in the following discussion, but it must 
be accounted for at high frequencies. The 
calculation, in Eq. (1), is essentially made 
classical by assuming that the density matrix 
and the position operator t are diagonal in a 
site representation which leads to, in 3D, 

D(w) = - w2E 1(1_10 ) 1 2 

11
0 

oo 

J exp(iwt)P(I,tIto )f(10 ) dt 

0 

where Pa,t1/0 4is the probability for findiig 
the carrier at 1 at time t, given it was at 1, 
at time t = o, and f(1,) is the probability it 
vat at to  initially. 	The probability P(t,t1/0 ) 
can be calculated from a Hamiltonian, a transport 
equation, or through a random walk. The last 
approach is used by Scher and Lax who use the 
semi-Markovian continuous-time random walk of 
MotroJl and Weiss, 14  and show how to calculate 
P(1,t110 ) from a knowledge of the hopping 
distribution. In the next section we modify 
this calculation for correlated random walks. 

III. Temporally Correlated Random Walks 

We assume the ions hop between periodically 
situated lattice sites. There may be several 
non-equivalent sites/unit cell, but in this 
paper we restrict ourselves to 1D and one site/ 
unit cell, and consider a random walk in 1D 
where the ion remembers if it came to its 
present site from the left or the right. This 
type of correlation is realized mathematically 
by mapping this non-Markovian random walk onto a 
Markovian random walk with two internal states/ 
lattice site, 15  (see Fig. 1). The upper state 1 
is attained if the previous jump was to the right, 

and the lower state 2 is attained if the previous 
jump was to the left. Different transition 
rates can be assigned for jumps which continue 
in the same direction (caterpillar mechanism) or 
which reverse direction (bounce-back mechanism). 
The jumps are governed by a probability distribu-
tion 

ij
(1,t) = V 	pij (x,t) 
	

(3) 

where * (t) is the probability density for 
leavingi an internal state j (which was attained 
at t = o) at time t, and pi4 (1,t) is the 
probability that this jump is to an internal 
state i,t lattice sites away. We choose here 
V
1 	

= *
2
(t) - V(t), and 

/[ 	+ c exp(-at)]6 11  [- c exp(-at)]6 L,  

1 	 1 
1-- c 	 [ 2  + E exp(-at)16 1,...1  

1 and denote 7,-+ c p 1 - q. With this form 
of 2 the correlation is strongest immediately 
afar a jump has occurred. We maximize this 
effect by choosing a - 0. 

The matrix V governing the transitions on 
our periodic lattice with internal states 
completely determines the matrix E needed in 
Eq. (2). The solution of the semi-Markovian 
matrix random walk equations has been given in 
several contexts, 15,16  and when used in Eq. (2) 
leads to in 1D 

D(w) = 	
(im 1.1(iw)(1 + (p-q) (iw)) , (5) 

ik 2 	1 - 	iw) 	1 - (p-q) (1.0.)) 

where 1 2  is the man squared single jump 
displacement and i(im) = 7 exp(iwt)p(t)dt. For 
p - q this reduces to the Scher-Lax result. In 
using the random walk to derive Eq. (5) it was 
assumed that the first hop was governed by the 
same hopping distribution as suceeding hops. 
However, if at t - 0 we only know the site where 
the carrier is located but not when it arrived 

4 

Figure 1. Each lattice site is represented by 
a unit cell with two states. State 1 (2) is 
occupied if the lattice site in question was 
occupied by a transition from its left (right). 
The probability of the next jump being in the 
same direction as the previous one is p, and 
to be in the reverse direction the probability 
is q = 1 - p. The generalization to correlations 
over more than the preceding jump involves 
additional internal states. 
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there, then Feller has shown the first transition 
in an ongoing random process must be treated 
differently than the succeeding transitions, as 
pointed out by Tunaley. 17  This consideration will 
lead to 

D(w) = 

	

(p-q) 11-;(1w)  lir  iw T(w) 	(6) 
2 	1 - (1) -4) T (1') w4°  1- (T(w) • 

Lax and Scher 18  have argued that the procedure, 
for p = q, leading to Eq. (5) is correct for the 
case of impurity conduction. In any event, both 
results are equivalent and yield frequency 
independent conductivities if 440 = A exp(-At) 
and p - q. The transition rate is usually written 
in an activated form A = v exp(-E/kT). However, 
if p 	q, this 4p(t) yields, using Eq. (4) with 
a = 0, 

D(w) a 
A z2 	,44.(11.4 p0,2A2+4p04_2i(p_q),A(,2442) 

2 	 (w24.202)2 	(p...02 w2A2 

where the real part of the term in brackets varies 
from p/q at w-o to 1 at 	Thus for p > q 
(caterpillar mechanism) Re a(w) will decrease 
with w, and for q > p (bounce-back mechanism) 
Re a(w) will increase with frequency. An 
exponential ly(t) will also lead to frequency 
dependent results in muitilayer assemblies. 19  

IV. Spatial Correlation: The Transport of a 
Diner 

As shown in Fig. 2, we assume that for 10 
motion a dimer" can exist in a straight or a 
staggered configuration. The motion must 
alternate between these states. Hopping 
distribution functions 1)1(0 = A exp(-At), and 
11, 2 (t) = B exp(-Bt) are assigned for making 
transitions from the straight and staggered 
onfigurations, respectively. Using the 
ontinuous-time random walk formalism with 
nternal states for the diner motion leads to 

D(w) = 	AB 	(A+B) 2  + 2w2  + iw (A+13)  

	

4 A+B t 	(A+B) 2  + w2 

Studies, 2 ' 3  suggest that the activation energies 
for cluster motion will be lower than for single 
particle motion. It is seen from Eq. (8) that 
Re D(w) will increase with frequency. 

V. 	Conclusions 

It has been shown how correlations can be 
treated as internal states in a matrix approach 
to continuous-time random walks. The effect of 
correlations in a hopping model with a single 
transition rate is to make the conductivity 
complex and frequency dependent. The degree of 
disorder in the environment of the charge carrier 
can be incorporated" in the hopping distribution 

(7) 

function. An algebraic tp(t) v t-1-a, 0 < a < 1, 
implies a large distribution of hopping rates and 
leads to a D(w) % wa  regime, as is seen in 
O-alumina. 12  To describe realistic systems the 
motion of ionic clusters combined with the lattice 
relaxation effects of caterpillar and bounce-back 
mechanisms with the appropriate tp(t) should be 
studied in 2D and 3D. Also, following Huberman 
and Sen, 20  one may wish to describe the transport 
above a temperature dependent cutoff frequency 
(i.e. at short times) by a damped harmonic 
oscillator driven by random forces to insure 
solid like behavior at low temperatures, and 
a(w) ti w-2  for w 	as in the free ion model 
of Rice and Roth. 21  The above considerations 
will be developed in the future. 
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Ar2 

WNWOm* WO m*  

Figure 2. In 1D we allow the dimer to exist in 
a straight (state 1) or staggered configuration 
(state 2). The allowable positions of the dieter's 
center of mass are then mapped onto a periodic 
lattice with two states per unit cell. The total 
rate of leaving states 1 and 2 are A and B. 
respectively. Transitions to the right and left 
occur with equal probability. In the upper 
figure we show a transition from state 1 to 
state 2. 
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Substrate effects on long-range order and scattering from low-dimensional systems 
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Using solvable models it is shown that coupling one- and two-dimensional systems to sul-strates produces 

signifiLant alterations in their long-range order and scattering characteristics, even if the coupling is very weak. 

Expressions for Petls's long-range-order parameter, ((5;), arc obtained, with their asymptotic forms, and static 
structure factors, S(Q), arc evaluated. 

PACS numbers: 68.60. + q, 64.60.Cn, 68.20. -1- t 

Recent theoretical and experimental studies of 
systems of "less than three dimensions" have in-
spired a resurgence of interest in this subject. 
Among the systems reported to exhibit one-di-
mensional (1D) or quasi-1D behavior are some 
organic' and inorganic 2  complexes. Systems ex-
hibiting two-dimensional (2D) or quasi-2D be-
havior include adsorbed layers, 3  electrons trapped 
on a liquid helium surface' and thin "soap - bubble 
films.'" Particularly intriguing are questions of 
ordering (degree and type) and stability in such 
systems•'" Of special interest here is their 
degree of long-range order in light of physical 
arguments, G  and rigorous proofs' that true long-
range order does not exist for strict 1D and 2D 
systems. Since the physical systems mentioned 
above are coupled to a skeletal or substrate en-
vironment, one should expect, in general, quasi-
1D or quasi-2D rather than strict 1D or 2D be-
havior. Such coupling effects have been observed in 
recent neutron-scattering studies of Eg 3 _ 6 AsF6 , 2 • 11 

 and of phases of CD., monolayer films on graphite' 
for which the scattered neutron line shapes could 
not be interpreted, even for the registered (com-
mensurate) phase, on the basis of strict 2D theor-
ies. 

Our purpose is to show that coupling to a sub-
strate significantly affects the degree of long-
•ange order and scattering characteristics in 
ertain 1D and 2D model systems. To elucidate 
ur discussion we limit our considerations to cer-
ain solvable models employing simple coupling 
cheines. 
A measure of the long-range order in an N-

article system is provided by the function (6 2„k.) 
(((5„ — il c,) • iZ)2.) given by 

(q,,z)= 4(Nra) -1 E 	• k I 2 ) sin2 (-1- 	(1) 

here 	is the deviation of particle n of mass m 
om its equilibrium position R,,, is is an arbitrary 
rection in the lattice, and 11',1 is the normal- • 
ode amplitude. The angular brackets denote 

temperature ensemble averaging. At sufficiently 
high temperatures, T (typically larger than the 
Debye temperature) equipartition can be used''' 
to write (1U-c, • RP) =1,? 1,Taig-2 , where cu5  is the nor-
mal-mode frequency. 

Consider first a 1D chain of atoms of lattice 
spacing a and interparticle nearest-neighbor (NN) 
force constants K. Let it be coupled via NN and 
next NN force constants lc and Kr, respectively, 

to a ID parallel substrate chain of heavy masses 
each a distance a, for simplicity, below a lattice 
site of the first chain. In the harmonic approxi-
mation, and for a stationary suostrate, the longi-
tudinal normal-mode frequency (describing mo-
tions along the chain axis) is given by 4= (4K 
/m)[/i 2  sin2 (qa72)], where 2R = KS/h" is a mea-
sure of the interchain relative coupling strength. 
Notice that this mode possesses a q = 0 gap, equal 
to 4KR 2/in. Using the high-T approximation and 
the above w1 , transformation of the sum in Eq. 
(1) over q to an integral and converting to a con-
tour integral in the complex plane yields the fol-
lowing closed-forth result: 

(onwa ,... a (1 -j2f. 3 + 1—  212 (R' +1) 11") 
R(R 2 +1)1/2  

= 	- Ca") 	 (2) 

where a = ka772Ku 2  (typically" of the order 
10-3-10'). In the limit of vanishing coupling, 
R = 0, and for large n the previously known re-
sult" (OD/a' (2a),/ is recovered. With a cri-
terion that long-range order exists when (6,,2 )/ 
12 2 < 1 as n — co, it follows that there is a long-

range order if R v, so that even weak coupling 
to a substrate restores long-range order. The 
modified behavior upon coupling is shown in Fig. 
1(a). 

Using the expression given in Eq. (2), the fre-
quency-integrated dynamical structure factor 
S(Q) (for Q parallel to the chain) can be evaluated, 
yielding 
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S'(I:))=S(5)-b(e: 1, 6) exp(-A Q2/2) 

= exp(-AQ 2/2) E E cos(Q,,kta)cos(Q, va)[exp(Z/3 We'
70 2, u2) 1/4) 

= 0 V' 0 

1/2 
- 2 E cos(Q,Aa)[exp(i-BC,PC" )- - E cos(Qy va)[exp(-1BQ2e-Yu

i/2
)-1] 

=0 	 V= 0 

exp(1/3Q 2) -1), 	 (6) 

where A, B, and y arc the parameters defined 
above and G is a reciprocal-lattice vector of the 
2D net. For a finite sample the summations in the 
above equation should extend up to NI2 and N,12, 
where N,a and Nay  are the extensions of the 2D 

1 
sample in the .v and y directions. Re:Ailts for 
S'(Q) around the (10) Bragg peak, for various val - • 
ues of R, are shown in Fig. 2(b). It is of interest 
to comment that for a strict 2D lattice, i.e., R 0, 
the peaks in S(Q) near reciprocal-lattice vectors 
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here 2f 2  = Q2C 1  arid G is a reciprocal-lattice 
ctor. In the limit of vanishing interchain con-
ing" S'(Q) [and S(Q)] consists of a series of 
rrow peaks centered upon the reciprocal-lattice 
ctors. For nonvanishing coupling strengths a 
oadening of the peaks accompanied by a pro-
unced asymmetry occurs as shown in Fig. 1(b) 
ote changes in scales). Sufficient accuracy is 
tained by truncating the sum over 1 in Eq. (3a) 
pically at 1= 3-5. The above could provide prac-
al functional form for fitting purposes. 

We turn next to the evaluation of (6;,(p)) (where 
r „/ a and Y." is an interparticle distance in an 
bitrary direction) for a 2D square lattice, of 
ttice constant a which is coupled to a stationary 

uare substrate layer via NN and next NN force 
stants K.  and K D. Following arguments similar 

the above, we obtain 
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merical evaluation of Eq. (4) for various values 
R indicated that good fits to (0(p)) are given 
the form A - B cap(-Ip 1/2) where A, ii , and y 
constants dependent upon R. Sample results 

e shown in Fig. 2(a). Using the above form, an 
iression for S'(Q) (for Q parallel to be plane) 

be derived, yielding 

FIG. 1. 1D chain coupled to a stationary substrate . 

 chain. (a) 4T) vs :r, for various va7tics of relative coup-
ling strength R. Solid lines after Eq. (2); dashed lines 
correspond to the R -= 0 case. (b) Subtracted static struc-

ture factors. S'(Q), around the first Bragg peak for 

various coupling strengths, a=, 10 -4 . Note changes in 

scale. 

200 
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C are oven by power-law singularities," )  .S(Q) 
" 7, " . ', where the bounded exponents 

71,--7(T) are related to the elastic moduli of the lat-

tice. We note that for both the ID and 2D cases, 

the 6(e,), G) term has been subtracted in S' (Q) 

[e.g., Eq. (3a)I. This term which is absent in the 
R= 0 limit" increases with R, 	increasing co- 
herent scattering intensity at Q= G. Corres-

pondingly, the residual S'(5) decreases in ampli-
tude and broadens upon increased coupling to the 
substrate [note scales in Figs. 1(b) and 2(b)I, 

It is important to note that for both the 1D and 

2D coupled systems the long-range-order parame-
ters exhibit an altered asymptotic behavior, 
deviating significantly from the uncoupled results 
(R = 0) even for small substrate coupling strengths 

[Figs. 1(a), 2(a)]. In fact, for both cases (6 2 ) 
converges to a limit at microscopic distances 
even for small R values. Consequently, even for 

small couplings to the substrate strict 1D or 2D 

behavior is lost. This is due to the fact that by 

turning on the couplings to the substrate (finite R) 
the numb..r of possible paths for linkage between 
any two atoms increases (the effective increase 

is related to the value of R). Thus the tendency 

to maintain long-ratw,e-order increases upon 
coupling. These characteristics are exhibited in 
the integrated scattering functions [Figs. 1(b), 

2(b)], which provide possible forms for the inter-

pr:station of experimental data. 

While we recognize that the above model calcula-
tions employed simplifying assumptions, such as 

a particular geometry, range of interaction, clas-

sical description, and a stationary substrate, the 
essential results pertaining to the salient effects 

of the dimensionality of the system on the degree 

of long-range-order and scattering characteristics 

should remain valid in more general circum-

stances. Moreover, the first three assumptions 
can be easily relaxed (for commensurate arrange-
ments) and do not modify the main conclusions. 

Noncommensurate configurations and couplings 

to extended nonstationary substrates remain the 
subjects of further investigations. 
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APPENDIX 

In this Appendix we outline the evaluation of the asymptotic expression for (q(p)) given in Eqs. (5). 
First, we rewrite Eq. (4) as 

(6(n))/a 7 r- (2) 	 x 
M 1  

11  0 	 2 +1-
-J 

 cos(x/n) ' 

1 	o (Px)  
(Al) 

here in terms of the lattice constant, a, the distance between two lattice sites r o  (= pa) is equal to pan 

(Pa is the smallest distance between lattice sites in a chosen direction, and n is an integer). Owing to the 
arge value of n with which we are concerned, the denominator of the integral in the above equation varies 
uch more slowly than the numerator. Therefore, we partition the integral into a sum of integrals in 
hich the denominators are almost constant, 

( 6N,i))/a 2  
717221 	

dx 
 tra 2R 2 +1— cos(xbi 1,;-, 

1—J0 (139 	,4(  2n./T dvx  

2R 2 + 1 — cos(x/n) 

(m+ 	 1 —,/,,(8x) 	
)' 

here it is the largest integer such that inT 	717.: Considering the denominators in the integrands in Eq. 

2) as constant over their ranges of integratiOn and performing the remaining integration, we obtain 

Irre( 77 2R 2 + 1 — cos(mv/n) 
a 	 (m -t)7r 2 

(bi(n))/a 2 = 	E 

cos(mw/n) — cos(nz +1)-ir/n 	 mn.1 (OHIO 	2m7 J ,(20nNIT ) 
+ +1 — cos(mn /n) .1t2lel 4 1 — Cos [(in — 1)r r /110- 	0 	(31.2R` +1 — cos(riu A)] • 

_ 	_ 

(A3) 

(A2) 

nsider the first sum in Eq. (A3). With negligible 

ror (large n) the argument of the cosine in the 

nominator can be replaced by 	+ 
nverting to an integral we get to a good approxi- 

lion the expression n 2F(R), where F(R) is given 

by Eq. (So). Next, we approximate the third term 

in Eq. (A3) by replacing the argument of the cosine 
in the denominator by 21i . (note the above defini- • 
tion of 	Now, note that the first term in Eq. 

(A3) contributes a constant term, (a/v)F(R), to 
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e asymptotic form of (.5 2 (n))/a 2  while the third 
rm behaves asymptotically as ,i -3 / 2 . While we 
ye not been able to evaluate the second sum in 

q. (A3) analysis of its terms for various ranges 
n and /? indicates that its contribution to 

(5 2 (n))/a 2  falls off asymptotically at least as fast 

as n -2 . Consequently, retaining only the contribu-
tion from the two leading terms, we arrive at the 
asymptotic expression given by Eq. (5). 

? (a) N. D. Mermin, Phys. 
B. Jancovici, Phys. Rev 
Y. bury and L. Gunther, 

8J. G. Dash and M. Bretz, 
(1972). 

0J. M. Kosterlitz and D. J 

liemistly and Physics of One-Dimensional Metals, 
dited by II. J. Keller (Plenum, New York, 1977), Vol. 
5B. 
U. Ileilmann, J. D. Axe, J. M. Hastings, G. Shiarne, 
. J. Heeger and A. G. MacDiarmid, Phys. Rev. B 20, 
51 (1979). 
G. Dash, Films on Solid Surfaces (Academic, New 
ork, 1975). 
M. Platzman and H. Rikuyarna, Phys. Rev. B 10, 
50 (1974); C. C. Grimes and G. Adams, Phys. Rev. i 

 tt. 42, 795 (1979). 
J. Birgeneau and J. D. Lister, J. Phys. Lett. (Paris) 
, L399 (1978): 
E. Peierls, Ann. Inst. Henri Poincar6 5, 177 (1935). 

Rev. 176, 250 (1968); (b) 
. Lett. 19, 20 (1967); (c) 
Phys. Rev. B2, 3939 (1971). 
J. Low Temp. Phys. 9, 291 

. Thouless, J. Phys. C 6, 1181 
(1973). 

18D. R. Nelson and 13. I. Halperin, Phys. Rev. )3 19, 2457 
(1979), and references cited therein. 

"V. J. Emery and J. D. Axe, Phys. Rev. Lett. 40, 1507 
(1978). 

I2P. Vora, S. K. Sinha and R. K. Crawford, Phys. Rev. 
Lett. 43, 704 (1979), and private communications. 



IF - 1 

F. Cooper-Pairing in the Vicinity of a Localized Phonon Mode  

A many-body scattering theory for the interaction of a single localized 

phonon with the conduction electrons of a metal is developed. Local screening 

is determined self-consistently by the non-linear dependence of single particle 

averages on dynamic two-body correlation functions. Assuming the atom executes 

one-dimensional harmonic oscillations only, the electronic subspace coupled to 

this motion is rigorously shown to be one-dimensional using the Haydock-Heine-

Kelly recursion method. Two-body fluctuations off the mean one-body state are 

treated with one-dimensional Tomonage-Luttinger boson techniques. A complete 

set of many-body eigenstates is obtained. 

The study of local Cooper-Pairing (<c 1
+ 
+ c

+
>) yields a simple criterion for 

anomalous enhancement of pairing fluctuations in the normal-metal phase. For 

a half-filled conduction band, neglecting screening, it is simply 

2) 2  

	

K = -32 Z e 	1  
IT 	a 

a
2
W 

where K is the effective spring-constant of the vibrating impurity of charge 

, a is its distance to the nearest electronic shell and W is the band-width. 

The origin of this effect is the appearance of an electron-hole scattering 

resonance in the long-wavelength portion of the many-body continuum. 

We are concerned particularly with the question of relating the microscopic 

parameters which characterize a localized optic mode and its coupling to the 

electron gas of a metal in which it is embedded, to the effect which this 

interaction has on the local distribution of Cooper-pairs in the vicinity of 

the impurity. 

Our approach is unusual. We begin by considering a microscopic model 

Hamiltonian for the electrostatic coupling of a charged vibrating interstitial 

impurity with the conduction electrons of a metal when these are in the immediate 
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vicinity of the impurity. The model is a charge-transfer model in the sense 

that the conduction electrons are not allowed to hop onto the impurity. This 

type of situation is expected to occur, for example, in the absorption of a 

single hydrogen atom by a transition metal where it is believed that the 

hydrogen's electron settles in low-lying, hybridized, hydrogen-metal bonding 

states. This charge-transfer assumption is dispensable, however, and is 

introduced to minimize the ensuing complexities. With little modification this 

theory may also be applied to the study of a substitutional rather than an 

interstitial defect. 

A complete set of approximate many-body eigenstates will be obtained for 

this Hamiltonian using a self-consistent procedure, termed Self-Consistent Late 

Bosons (S.L.B.) which has recently been applied to the study of a magnetic 

impurity problem, the Wolff model. 

The S.L.B. method is an unambiguous procedure which yields an approximate 

set of self-consistent many-body eigenstates for a class of impurity problems 

in metals and alloys. The class of problems for which it is most naturally 

suited satisfy two basic conditions: 

Condition 1. They are "Weak-Coupling" problems in the sense that a self-

consistent Hartree-Fock (H.F.) analysis of them yields a single 

non-degenerate H.F. - ground state. That is, the mean-field 

ground state is unique. In general, this requirement trans-

lates into a restriction on the magnitude of the parameters 

appearing in the microscopic Hamiltonian. Only in this re-

stricted region may one hope to achieve a straightforward S.L.B. 

diagonalization of the problem. 
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(Figure 1). Bonding of the impurity to the metal and its interaction with 

core electrons is assumed to be accounted for by K(')  > 0 of (3). A single 

band of conduction electrons which hop itinerantly by the action of (2) is 

assumed. For technical reasons it is necessary to assume that the impurity 

(of mass Mo
) executes oscillations along a single spatial direction, the 

x-direction. Coupling of the conduction electrons to the impurity is electro-

static in origin. The impurity of charge Ze (either positive or negative) 

couples to the total (proton + electrons) charge assumed localized on the two 

sites at + ax. The F.C.C. lattice constant is 2a (Figure 1). In (4), 0 < p < 2 

parametrizes the valency of the metal ions with p = 1 for a 1/2-filled conduction 

band. Finally AU in (5) describes correlation effects in the conduction band. 

Concerning the origin of this term, two points of view are possible. The first 

presumes the Hamiltonian (1) to describe the interaction of the impurity with a 

band of real electrons in which case AU > 0 parametrizes local correlation 

effects while distant correlations are neglected. The alternate view interprets 

(1) as describing the coupling of the impurity to a band of non-interacting quasi-

electrons resulting from a partial diagonalization of a (weakly-correlated) 

electronic Hamiltonian over sites not neighbouring the impurity. In this case 

(5) results from the impurity's destruction of translational invariance. AU 

parametrizes a residual correlation between quasi-electrons and could be 

negative though it is generally expected to be positive. This latter inter-

pretation has recently been applied to a self-consistent theory of metallic 

magnetism. 

Implementation of the S.L.B. method may be achieved in 7 steps: 

Step 1. Separation of the one-body (mean-field) terms from the many-body- 

fluctuations contribution to the impurity Hamiltonian and approxi- 
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mation of the latter by their leading-order two-body processes 

to include: terms at most bi-quadratic in fermion creation and 

destruction operators; terms linear in bosons and quadratic in 

fermions; terms quadratic in bosons. 

Step 2. Re-expression of the local two-body-fluctuation terms as a sum 

of bi-linear products of eigenoperators of an element of the 

symmetry group of the kinetic energy operator. 

Step 3. Application of the Haydock-Heine-Kelly (H.H.K.) recursion method 

to obtain the one-dimensional kinetic manifold which couples to 

each of the local fluctuation operators identified in Step 2. 

Symmetry ensures that the one-dimensional subspaces obtained will 

be orthogonal and dynamically independent. 

Step 4. Self-consistent Hartree-Fock diagonalization of all the independent 

one-body Hamiltonians obtained in Step 3. In general, these Hartree-

Fock problems will be parametrized by two-body correlation functions 

over the fluctuation variables which are yet to be determined. Also 

this step will generally necessitate some approximation to the near-

defect one-dimensional kinetic energy matrix elements. 

Step 5. Transformation of the two-body Hamiltonian terms by the unitary 

operations which removed one-body terms in Step 4. This introduces 

an important mean-field renormalization of one-electron wave functions. 

Step 6. Approximation of the renormalized one-electron wave function by their 

fermi-level value and factorization of these from the band-sum 

representations of the symmetry-resolved fluctuation operators. In 

this manner a mean-field renormalization of two-body coupling con-

stant is achieved. 
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Step 7. Application of one-dimensional Tomonage-Luttinger (T.L.) bosoni-

zation methods to the diagonalization of the resulting multichannel 

scattering problem. A complete set of (boson) eigenoperators of the 

defect Hamiltonian are obtained. 

Details of the application of the above procedure to the Hamiltonian given in 

Eqs. (1-6) will be reported in due course. Once the approximate set of many-

body eigenstates is found an approximate representation of the local Fermion 

operators is constructed and the local Cooper-pair enhancement factor 

analyzed. It is shown to diverge subject to the criteria mentioned above. 

Analysis of the influence of adsorbate (or impurity) local modes at surfaces 

on local Cooper-pairing enhancement is currently being pursued. 



. Wit obtain approximate many-body eigelwatcs for the electrm:Latie 

Interaction of a single vibrating impurity of mass M
o 
and effective 

charge Ze with the conduction electrons of an F.C.C. metal. The 

impurity, whose stable position is the octohedral site of the 

central cell, is assumed to execute one-dimensional harmonic oscillations 

along the x-nxis, only. It interacts with conduction electrons when 

they are located at sites labeled j = ± 1. 2a is the F.C.C. lattice 

constant. 
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G. LOCAL ELECTRONIC PROPERTIES: Si  

1. INTRODUCTION 

A. The Nature of Cluster Calculations 

Increased resolution and sensitivity of experimental bulk and surface 

analytical probes in the last two decades have produced results well corre-

lated with the microscopic properties of solids. However, the conventional 

band theories of solids, primarily developed to understand bulk properties of 

crystalline solids, have undergone extensive modifications in efforts to 

accommodate phenomena such as impurities, vacancies, surfaces, interfaces, and 

other defects. These phenomena generally enter the theoretical framework as 

perturbations on the long-range order of a crystalline solid system. Conven-

tional condensed matter theories apparently cannot handle with ease such 

problems as lattice distortions, isolated defect change states, interstitials, 

polycrystalline matter, and amorphous matter. 

Acting on the premise that the details of the local geometry and the 

electronic microstructure, in terms of local bonding directionality and 

inhomogeneous charge distribution, may be more important in certain cases than 

extended condensed matter properties, one is led to consider clusters of atoms 

as a preliminary model. The obvious treatment for the first attempting to 

model local properties of condensed matter systems is to define one cluster 

of atoms in an arbitrary geometrical arrangement and model it's environment, 

which represents the remainder of the solid, in a realistic way. In contrast, 

then, to conventional theories of solids, the local region is perturbed by 

the environment. The advantage of the cluster concept is that it can be used 

to study in detail phenomena at least of short-range nature, incorporating 

flexibility in the specification of geometry, atomic species and electronic 



configuration. Perhaps concepts involving multiple clusters could also 

be developed for polycrystalline or amorphous studies. 

Quantum chemistry methods have presently evolved to the point of hand-

ling "large" clusters of 10-30 atoms based on ab-initio  theories of electronic 

structure. The use of a rigorous theory, based on fundamental principles, for 

the calculation of the local electronic microstructure of a cluster with the 

inclusion of environmental effects in some manner represents an alternative 

approach to the traditional theoretical description of condensed matter. 

The size of the cluster necessary to simulate an imperfect local region 

may be qualitatively determined by considering the range of interaction of the 

imperfection. One prerequisite for a valid cluster calculation, then, is that 

an imperfection must be well screened within the confines of a cluster boundary. 

Another consideration, not often mentioned, is that the cluster size should not 

be chosen very large because of the well known deficiencies of the fundamental 

theories, for example, Hartree-Fock, when they are applied to extended systems. 

The development of a model to include the environmental effects of a 

cluster and, hence, the remainder of the solid, which is coupled to the cluster 

is a largely unexplored area. The best attempts appear to be that of Grimley 

and Pisani in the context of local chemisorption. In many cluster calculations, 

claiming to be representative of solids in terms of localized properties, 

environmental effects are totally ignored. This appears to be generally the 

case for metal substrates. For the case of host systems with covalent bonds, 

the neglect of environmental effects is more serious due to unpaired electrons 

at the cluster boundary, so-called "dangling bonds". For homopolar semi-

conductors, these unpaired electrons are associated with cluster surface states 

and manifest themselves within the forbidden energy gap. First attempts at 
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modeling the environment of such systems have relied on adding atoms to the 

cluster proper in the context of "bond saturators". Since the saturators 

are actually part of the cluster, they are self-consistently connected to 

the local cluster of interest. This model has the disadvantage of not pro-

viding an absolute reference between systems when the cluster of interest is 

changed. The development of a good environmental model must have the 

requirements that in the limit that the local cluster is "perfect", bulk 

results are obtained, and that when the local cluster is imperfect, results 

must be related to bulk results (i.e., band edges, charge densities, local 

densities of states, etc.). The comparison of results of a good cluster/ 

environmental model to cluster models neglecting the environment or modeling 

it by "saturators" may, in addition, define better the range of problems 

accessible by the less sophistocated models. The development of a hybrid 

cluster/environment scheme is currently in progress by the authors. 

B. Hydrogen-Bounded Silicon Clusters  

In an effort to assess the quality of using 12 hydrogen "saturators" 

for environmental modeling of a cluster of 5 silicon atoms arranged geometrically 

in tetrahedral coordination, ab-initio calculations have been performed varia-

tionally and self-consistently to determine the electronic microstructure. 

As our method of calculation we use the unrestricted Hartree-Fock (UHF-SCF) 

procedure. In general, the calculations are done using an ab-initio effective 

core potential for the 10 core electrons on each silicon center. However, test 

calculations have been done which include all electrons on a silicon center. 

The UHF method, coupled with the frozen HF effective core and symmetry 

projection, provides a first-principles testing ground for medium size clusters 

(10 ' 20 atoms) limited primarily by current computational facilities. As with 

all cluster models, based on HF theory or derivatives thereof, the "range of 



application and flexibility" should be qualified relative to the basic 

approximations used. 

Atomic silicon and several different geometries of hydrogen-bounded 

and unbounded silicon clusters have been studied primarily directed at 

establishing the validity of the Si5H12  cluster in terms of the selection of 

an appropriate basis set. The cluster species studied include: Si
ae

, Si, 

ae 	 ae 	 ae 
Si H3 , SiH 3 , Si H4 , SiH4 , Si 2H6 , Si 5 , Si H12 , Si5H12 , and Si b , where the 

superscript "ae" designates a silicon center including all electrons. In the 

cases where "saturating" hydrogen atoms are used, the Si-H bond lengths have 

A 	
o 

been varied over the range 1.332 A to 2.6 A, retaining tetrahedral coordination, 

in order to assess the "saturation" placement with respect to the silicon core. 
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2. CLUSTER GEOMETRIES AND BASIS SETS 

Figure 1 illustrates the geometrical arrangement chosen for the 17 atom 

cluster Si
5
H
12' 

A central silicon atom is at the origin, surrounded by four 

silicon nearest neighbors in tetrahedral coordination with Si-Si bond lengths 

of b
Si 	

1/J'a = 	= 2.3517 A, where a is the lattice constant of bulk silicon. 
4 

Surrounding the shell of nearest neighbors are hydrogen atoms (or saturators) 

in tetrahedral coordination with the central Si
5 

complex. In this study, 

the 12 Si-H bond lengths, b H, have been varied simultaneously, retaining the 

underlying tetrahedral (T
d
) symmetry. The Si-H bond lengths have been varied 

over the range 1.332 A to 2.6 A encompassing the experimental bond lengths of 

1.48 A in silane (SiH
4
) and the Si-Si distance of 2.3517 A in bulk silicon. 

The values of b
H 

chosen are 1.332, 1.48, 1.776, 2.1, 2.3517, and 2.6 A. 

Defining the quantities: 

a 
b Si 

4 

bH 
8 = 

6 = a + 

the coordinates of 
Si5H12 

are tabulated in Table 1. 

The 8 atom clusters Si 2
H
6 

and  Si8' 
used for supporting studies, retain 

the tetrahedral bonding angles and have C
3v 

symmetry (no inversion symmetry). 

All Si-Si bonds are fixed at the b
Si 

value and in the case of 
Si2H6' 

the Si-H 

bond lengths have been varied. 
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3. RESULTS AND DISCUSSION 

A. Groundstate and Excited State Calculations  

The 
Si5H12 

cluster has a singlet groundstate with a closed-shell con- 

figuration of 32 electrons. By virtue of its tetrahedral point group symmetry 

(Td), the electronic eigenfunctions may be classified according to 5 irreducible 

representations: al , a 2 , e, t1 , and t 2  (singly, doubly, and triply degenerate). 

Figure 2 illustrates the change in total energy as a function of all twelve 

hydrogen "saturators" being placed at one of the six bond lengths (1.332, 1.48, 

1.776, 2.1, 2.3517, or 2.6 X), but still in tetrahedral coordination with the 

fixed cluster core of 5 silicon atoms. The minimum of the groundstate curve 

0 
lies at 1.48 A, which is expected, since this is the experimental Si-H bond 

length in silane (SiH
4
) where sp

3-s bonds are also found. The minimization of 

total energy, based on variational self-consistent techniques, for predicting 

geometry is well established for molecular systems. However, there is no 

a-priori reason for using the equilibrium Si-H distance when the hydrogens are 

used as "saturators" for the simulation of silicon. 

In addition, Figure 2 illustrates the total energies for an excited state 

configuration where an electron is forced from an orbital of 3t 2  symmetry to 

occupy an orbital of 3a1 
symmetry. A dynamic symmetry searching procedure has 

been implemented during each iteration to insure the desired occupation numbers 

for the orbitals due to the fact that energetically close-lying orbitals of 

different symmetries often switch positions. Figure 3 illustrates the energy 

switching for the groundstate it
1 

symmetry's orbital energy as a function of 

Si-H bond lengths. 

In Figure 3, the orbitals with symmetries la l , 2a1 , le, lt2 , 2t2 , 3t2 , and 

Clare all fully occupied with 32 electrons and the orbitals 3a 1,4t 2 , and 2e 

re the first 3 unoccupied symmetries. Since Si 5H12  is closed-shell, the 
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spin up and spin down electrons are degenerate. By analysis of the basis 

function coefficients and the charge densities of the lt /  and 2e symmetry 

orbitals, it is found that they contribute minimally to the bonding of the 

central silicon atom and are delocalized in the outlying region of the cluster, 

contributing to the Si-H bonds. In contrast, the orbitals of symmetry a l  and 

t
2 are found to contribute predominately to the bonding region about the central 

silicon with moderate contributions from the outlying hydrogens. Since the 

central core of 5 silicons has been geometrically fixed in the calculations, 

Figure 3 illustrates, in particular, the rapid movement of the it, and le states 

with respect to the others in the valence band based on hydrogen placement. 

One importance consequence of "saturator" placement is that, in effect, the 

levels associated with the "saturators", and hence the environment can be moved 

to anywhere desired with respect to levels localized in the central cluster 

region. The Si-H bond length then could be considered as an adjustable para-

meter and is perhaps analogous to surrounding the cluster with a directional 

self-consistent potential. The SCF-Xu-SW silicon calculations generally include 

the directional hydrogen spheres but also include a Watson sphere surrounding 

the entire cluster with an adjustable charge. Fazzio has suggested that the 

Watson sphere by itself, with a fixed charge equal to that of the unpaired 

electrons, is a successful model of the semiconductor environment. It is 

unclear what effect the loss of bonding directionality by the uniform distri-

bution of charge on the Watson sphere has on Si-Si bonds within the cluster. 

If the assumption is made that the lt1 
symmetry is representative of the 

bulk valence band edge, some credence can be given to the selection of the 

2.3517 A Si-H bond length based on the observation in Figure 3 that the lt i 

 and 3t2  states are nearly degenerate. It is observed that the lt i  and 3t 2  

0 
levels become degenerate at the distance of 	2.30 A. Since the central atom 
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is a silicon and the 3t
2 
state is associated with the central region, the 

(near) degeneracy can be associated with a self-consistent match of the central 

cluster to the "saturators", i.e. environment. Cartling, using SCF-Xa-SW 

with the same geometry, points out that "the high location of the lt, level 

[with respect to the 3t 2  level] is probably due to the model inequivalence 

of equal atoms". In the UHF cluster, the same symmetry ordering is obtained, 

and in addition to the above remark, we conclude that the lt 1 level can be 

adjusted based on the "saturator" placement. Since the 3t 2  orbital is pre-

dominantly representative of the central silicon atom bonding, it is perhaps 

more representative of the valence band edge in the local region, in agreement 

with Cartling. Any localized exitations from the top of the valence band 

should be performed with this symmetry. 
0 

It is observed in Figure 3 that for Si-H bond lengths less than 2.30 A, 

the lt1 and le levels become further depressed in the valence band. If the 

lt
1 
and le symmetry states are associated with unwanted cluster surface states, 

as in the Si
5 

cluster, the addition of hydrogens at distances near the Si-H 

equilibrium distance results in the transferral of these states deep into the 

valence band. 

The selection of either the 1.48 A or 2.3517 A "saturator" distance used 

by different authors, is shown by UHF to have significantly different electronic 

character based on the total energies and orbital symmetry order. Furthermore, 

the results for the two different distances question as to what role the 

"saturators" should actually play - that of modeling the environment or that 

of just eliminating unwanted states from the forbidden energy gap. 



IG - 10 

B. Cluster Band Gap Calculations  

The "cluster band gap" is now defined as the energy difference required 

for a localized excitation of an electron from the highest occupied cluster 

orbital to the lowest unoccupied cluster orbital where the orbitals are 

primarily localized in the central region. This last qualifying statement 

prohibits, for example, the participation of e and t 1  symmetry orbitals. 

As remarked previously, the 3t
2 

symmetry orbital is representative of the 

central silicon bonding region and is shown, in Figure 2, to be at the top or 

just beneath the lt i symmetry level in the energetic order of occupied states. 

In addition, the 3t
2 

orbital is predominately p character and can be associated 

with the F25  (k = 0) point at the top of the valence band in bulk silicon. 

The lowest unoccupied states in the clusters are of 3a
1 

symmetry and are also 

found to be primarily located in the central region of the cluster but possess 

predominantly s character. The 3a 1  state might be associated with the r2 ( -1Z = 0) 

conduction band state which is known to be of s character, but is not the con-

duction band minimum. The association of the 3a
1 
orbital with other non-zero k 

points in the Brillouin zone, such as the conduction band minimum at k = 0.8 X
1, 

is questionable since classification based on an atomic orbital model is known 

to be deficient. Nevertheless, if the cluster model does represent silicon in 

some manner, the transition of an electron from 3t 2  to 3a1  symmetry should 

represent some localized low-energy transition and is favored by selection 

rules. Whether such a cluster model can represent the true energy band gap 

to any degree of accuracy, since this is an intrinsically extended bulk property 

of a semiconductor, is questionable. In fact, Phillips points out that in a 

bond model for semiconductors, the difference between averages of antibonding 

and bonding energies, called the "bond energy gap", is in general much greater 

than the conventional energy band gap defined by the maximum valence and minimum 
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conduction band edges. For silicon, the bond energy gap is 4.77 eV and the 

band energy gap is 1.1 eV at room temperature. For the lowest cluster ex-

citation (3t 2-3a1 ), one should expect the transition energy to be in this 

range if the model is appropriate at all. 

Figure 4 illustrates the calculation of the cluster band gap for the 

various Si-H bond lengths. Curve (a) is the difference between the ground-

state 3t
2 
and 3a

1 
orbitals energies, interpreted by Koopmans' theorem, which 

includes no hole electronic relaxation. In contrast, curve (b) utilizes a 

ASCF approach, by taking the difference between the total energies of the 

excited state and groundstate calculations, and, hence, includes the electronic 

relaxation due to the presence of a "valence band" hole. The difference of the 

two curves in Figure 4 is a measure of the hole electronic relaxation and can 

be considered significant compared to the expected transition energy range of 

1.1 - 4.8 eV. The relaxing of symmetry in the UHF method could even increase 

this electronic relaxation. One might question the results of the SCF-Xa-SW 

calculations for silicon when they are based on a Koopmans' theorem analysis 

and even when a "transition-state" procedure is used where the occupation of 

an electron is split between the levels of interest. The curious rise in the 

Koopmans' theorem curve at 2.3517 	is due to the switching of the 3t 2  and lt 1 

orbital energies. Based on Figure 3, the calculation of intermediate dist- 

0 
ances apparently would show the local minimum of this curve to be around 2.3 A, 

where the degeneracy occurs. Note that the LXSCF curve, however, continues its 

downward trend. Based on the expected transition energy range, bounded by 

the bond and band energy gaps on Figure 4, one notes that "saturator" distances 

0 
at least greater than 2.1 A should probably be used. 
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C. Charge Densities  

In addition to the energetic properties discussed previously, charge 

densities are analyzed in this section to characterize more fully the details 

of the electronic microstructure. Figure 5a illustrates the groundstate 

charge density of the [1,1,1] plane in the cluster and includes the central 

silicon atom, two nearest silicon neighbors, and two hydrogens located at the 

boundary. It is observed that the central silicon forms covalent bonds with 

the nearest neighbors and that partially ionic Si-H bonds are found with charge 

piled up on the hydrogens. Figure 5b focuses in on the central silicon and two 

of its bonds. Figure 5c is a further magnification of one Si-Si bond, with the 

central silicon at the bottom and the next-nearest neighbor near the top. Quali-

tatively and quantitatively, the charge density results for all of the Si-H bond 

lengths studied are remarkably similar in the cluster core region-described in 

this plane by the three silicon atoms. Three important points are noticed con-

cerning the Si-Si bond in Figure 5c. First, the charge density is symmetric 

about both the bond axis and a line perpendicular to the bond axis through the 

bond midpoint. Secondly, the Si-Si bond is elongated along the bond axis. 

Thirdly, there apparently exists two areas of maximum electron concentration 

along the bonding direction giving rise to the hourglass appearance of the 

contours. 

Symmetry, parallel and perpendicular to the bond, is naturally expected 

for the bonds appearing in the bulk system, but not expected a priori  in the 

hydrogen-bounded Si cluster where the central and nearest-neighbor atoms are 

inequivalent in terms of bonding. The fact that symmetry perpendicular to the 

bond does exist and that the hydrogens are not the dominant contributors in 

this region suggests that the cluster model with a "saturated" boundary may 
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represent with accuracy some details of bulk silicon. Figure 6 shows a line 

scan of the charge density along the bond axis. One observes that some 

asymmetry begins to become evident at the smaller Si-H distances. 

The result that the Si-Si bond is elongated in the direction of the bond 

axis is in agreement with experimental x-ray diffraction results and non-

local pseudopotential calculations, as illustrated in Figure 7a and 7b. 

Earlier local pseudopotential results, shown in Figure 7c, show elongation 

perpendicular to the bond. 

In disagreement with the experimental x-ray diffraction and pseudopotential 

results, the UHF cluster does not yield the maximum charge density at the mid-

point of the bond. Instead the charge density has two maxima symmetrically 

located, as shown in Figures 5c and 6, with a small depression in the midpoint 

region. Figure 6 also illustrates the charge densities along a Si-Si bond 

for the x-ray and non-local pseudopotential results for a comparison of absolute 

magnitudes. It is observed that the magnitude and slope of the cluster charge 

densities outside of the midpoint region compare relatively closely. It is 

perhaps remarkable that such a small cluster, computed with ab-initio  methods 

dan yield, at least, comparable results to bulk silicon. It is also worth-

while to observe that the experimental x-ray results, in Figure 7a, shows 

evidence of the bond being more elongated and charge pulled more towards the 

atomic sites - resulting in a "pinched" appearance of contours at the outskirts 

of the bond. These details are not apparent in the pseudopotential results, 

shown in Figure 7b, where the contours are essentially elliptical and not very 

elongated. 

In order to assess the quality of the charge densities for Si5H12' 
supporting 

ae 
tudies have been performed on Si Si

4
H
12' 

Si
2
H
6' 

and Si
8 

clusters. 
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The Siae 
Si4H12 

cluster posesses all of the electrons on the central 

silicon and was used to assess the quality of the effective core potential. 

Energetically the system exhibits valence orbital energies very close to 

the 
Si5H12 

results establishing the adequacy of the core potential. Figure 8 

illustrates the Si-Si region, with only the valence orbitals included in the 

charge density. Qualitatively the hourglass appearance is similar, however, 

some asymmetry is noted. A line scan along the bond shows good quantitative 

agreement with the previous results. 

Figure 9 illustrates the charge density results, in a plane with a Si-Si 

bond and two hydrogens, of an 
Si2H6 

cluster. Gaussian type p-functions were 

optimized on the silicon atoms and p-functions added on the hydrogens in order 

to test for basis set deficiencies. Results showed little change in the ener-

getics and essentially no change in the qualitative appearance of the Si-Si 

bonding region. 

An Si
8 
cluster was studied to see if next-nearest neighbor effects or 

hydrogen bonding effects might produce "detrimental" results for the Si 5H12 

 cluster. Figure 10 illustrates the charge density in a region containing 4 

silicon atoms. Each "central" silicon has four nearest neighbors and three 

next-nearest neighbors. Qualitatively, the central Si-Si bond also exhibits 

the double maxima and hourglass appearance characteristic of the other clusters. 

Due to the lack of any environment, one notices the asymmetry in the outlying 

covalent Si-Si bonds. The Si
8 

result illustrates that the hydrogens possibly 

have very little effect on the charge density of the central bonding region. 

Based on supporting studies including basis set analyses, hydrogen bonding 

effects, next-nearest neighbor effects, and core potential effects, we conclude 

that the inability to represent accurately the precise charge density in the 

central bonding region might be the lack of correlation or relativistic corrections 
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to UHF. In addition, charge densities of the 3t
2 

-4- 3a
1 

excited system have 

been studied giving similar qualitative results. 

The overall analysis of charge density results suggest that the environ-

mental effects have very little effect on the central bonding region of the 

Si
5
H
12 

cluster. 

The variation of Si-H bond lengths and even the use of silicons as 

next-nearest neighbors has been shown to affect the central charge distribution 

minimally. However, the effect on the energetics of the cluster has been shown 

to be dramatic, in terms the "cluster band gap", the total energies, the lt 1 

 and le orbital energies, and the occupation of electronic states. 
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TABLE 1 

Coordinates of an Si5H12 cluster (Td 
symmetry). 

(1) Si (0,0,0) Central 

(2) Si (-a,-a,-a 

(3) Si (a,a,-a) Nearest Neighbors 

(4) Si (a,-a,a) to 	(1) 

(5) Si (-a,a,a) 

Next-Nearest Neighbors 

(6) H (-a,-a,-0 1  to (1) 	through Si(n) 

(7) H (-G,-(5,a) n=2 

(8) H 

(9) H (a,a, - 8) 	I 

(10) H (S,c,-a) n=3 

(11) H ) 

(12) H (a,-(5,0) 

(13) H (a,-o,d) n=4 

(14) H (6,-a,a) 	) 

(15) H (-15,a,a) 

(16) H (-a,a,(5) n=5 

(17) H (-a,(5,a) 	) 



TABLE 2 

Effective core potential for Silicon. 

L = 2 = d k n
kt 

a
kt 

c
kt 

2'- 
r LUd (r) - 10 ,-- 	1  = 1 1  80.0 -10.0 

2 2 0.03010 -0.00071 

3 2 0.36711 -0.10869 

4 2 4.72826 -12.76985 

r2 LU p  -Ud  1 0 0.40235 0.97766 

2 0 1.99278 2.63443 

3 2 0.81559 0.35334 

rUs-Ud (a; = 1 0 12.49710 -0.43633 

2 0 0.58244 2.54384 

3 2 5.80343 25.82973 



TABLE 3 

Contracted Valence Basis Set for Silicon (2s/2p). 

Exponents 
	 Coefficients 

S-1 
	

2.01139 	 -0.157747 

0.19160 
	

0.86492965 

S-2 
	

0.04268 
	

1.0 

P-1 
	

6.17212 
	

0.0120628 

0.40375 	 -0.314719 

0.14448 
	 -0.584655 

0.04925 	 -0.23348 

P-2 
	

0.1 
	

1.0 



■ 	1111 •I1 	 • -.NNW 	 NO 



-24.2 

H 

<4 -24.4 

5 

( 11) ExciTED STATE 

Otz —> 3avi 

-25.
8 

X
38

V
c I

S
N

V
a
l  

CROLINDSTATE 

133 	1.4a 	1.776 	 Z3511 	2.6 

All Si-H BOND LENGTHS (ANGSTROMS) 



t-tz  

S •
54112, 

3tz  

—0.7 

—0.8 

_0.9 	ithmintilltiliffillimilinhinititiltmiwthwituthildwiltittititilmilindimiltillmilitithil1111111.1111milmi  ttiiJii  

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 

All Si-H BOND LENGTHS (ANGSTROMS) 

1111 1 1111 11111 1 1111 j 1111 1U1 1 1 1 111111111 .111111111111111111fillIT1111111111111111111111111111111111111111i11111111111111111j111111111111111111111111: 

TRANSPAREX 



0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

13.0 

1.6-z 

f,16 

5:44 

A8ScF 

t* 1-1 _12. 

fiou; S/Licon/ 90#11)ENERGy GAP : 

0.175-  Clibiewl= 437 Liq 
1••••■■ ■■•■■ ■•■•• ••■••■■•• 

Y
4
>
IV

r i
g

N
IV

X
 

OFTicAL 
13ULK SiLicON INDIRECT 0/4\10 GAP 0 °K.: 0.043 5-farfrtesf-1.17[47 

Ow. 

0,0 	0 .00 	 111111111 	 Huh HI Imil  

1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 

All 'Si-H BOND LENGTHS (ANGSTROMS) 
F/4:14Y-e 



TRANSPAREX 

S15H12 CLUSTER 	1.48C R\DSTR 
GROniSTATE 

   

90 	 U.0 	(A , 
	 9.0 

RE" 



515 12 CLUSTER 23517 
ANDSTROVS GROU\DST Tfr-  

L.0 	 0.0 	 4.5 

IN [ -1.1.1 J PLANE 	F160RF 

TRANSPAREX 



SI5H12 	TiR 	2.3517 
ANGSTR3MS 	G - CIU\7STATE 

  

  

  

  

  

0.0 

 

 

  

   

IN C-1 .1 1] PLANE 16uRE cc. 



0.11 

'24 3,7_ 

4116 

4,"

1  

424-14`1-74.2"----ep=3=---  • -• 

7 0.06 

-N> 
L7.51 	0.05 

10.71 U 	0.04 

1.11<, 	0.03 

674 0 5 ICI) 	0.02 
z 
0 	0.0 

0 0 	 0.00 
0.00 	0.25 

Co-Arr.:AL 
51LiCoN1 

0 . 1 0 

0.09 

c. r l , 
niz  

Si-Si BOND AXIS . (ANGSTROMS) 

Fi&Ukr - 6 

0.50 	0.75 

n :  1.776 A 
/ / 	I 	 -I- • i.1 g 	

_ 

3PER5 i  if  MEAPITA L 
L 	XI  :: sx.Z.  

*: NoN- LoCAL  
P5 UPOPOTG147711i- _ 

BOND AMIDPOINT 	 i.33Z 
Q • 1.4? A 

1.00 1.25 1.50 1.75 2.00 2.25 	2.50 
CovrEIQ 
5a-, CON/ 

A
C

'E
A  

C
'E

V
A

C
D

T
 



Ci 	 fri 

Evierispent4 

sohi 5t Gam., 
13-  65-5-  / 	, 

M U-) 

9scadopokilbi He(ioal 

koo( - 	Vonload 



- 0 .7 	0.0 

- 	_ 

0.7 

3.5 

1.0 

RLL F-  LE\ 1JR I-IL 	I 	IHN12, 
2 \735 3-5 	x'LL VALE-  \ 

IN [-1 ,1 ,1] PLANE 

P6URE 



SI2J -- i6 CLUSTER 1.L8C Ai 

GROUNDSTATE (P-2 EXP-- --0. 1 ) 

1 

4.5 
-4.5 	 0 

X-AXIS 

F16-OPE 



18 C 	ST F-  R 2 .,3 5 
C J N D STATE 

-7 	/  
i 	\ 	 I \ 	)• 

8.5 • ---‘ 	_ 	-.--- -...-- 

-.... 

:4 ::— ----:-' 	:-• "<s", , N 
• — 	' .':: ;\,;:, ,‘ 	\ 

■ ‘ ■ ':‘',\ ‘,\ 

• 

\ ....N.  
-■_-______'------------. 17,17-=,.'-_=_-_-,*-.:,:::---,- - -- 	.--__-_- 	=---,-------...-:-.->.. 

4.0 o.b -4.5 

IN - 1 , 1 ,1 PLANE 

F I 6- ORE 10 

AGFA-GEVAERT 

4.5 



IH - 1 

H. Vacancy Formation and Migration at Metallic Surfaces  

The pseudopotential method has been employed successfully to study 

properties of simple metals and of bulk defects in these metals. In parti-

cular, the method yields adequate results for bulk vacancy formation and 

motion energies. Since the electron distribution at a metal surface differs 

from that of the bulk it is to be expected that the screening of bare-ion 

pseudopotential in the surface region will be significantly modified from the 

corresponding bulk pseudopotentials. Consequently, the values of the above 

energies will be different. Vacancy mechanisms play a dominant role in a 

number of surface and interface phenomena, such as'.surface self-diffusion, 

damage annealing, and surface phase transformationc(sur:Face premelting). 

Thus, it is of importance to develop theoretical models which would allow a 

systematic study of the energetics of point defects at surfaces and provide an 

estimate of the pertinent quantities. 

The investigation of surface vacancy formation and motion energies involves 

a calculation of the total energy of a semi-infinite metal, 

E
TOT 

= E
fe 

+ E
bs + Ees 

where E
fe 

is the free-electron energy, E
bs is the band-structure energy and 

E
es 

is the electrostatic (Madelung) energy. Having obtained an expression for 

TOT for an ideal semi-infinite crystal (ETOT) 
 and that of a defective one 

(ETOT
T )' the required energies are expressed as 

= E
o 	

- E' 
TOT 	TOT 

The first step in our calculation is to express E
bs 

for a semi-infinite 

solid in terms of its 2D Fourier decomposition parallel to the surface plane 

(ii) and a sum over layers. Using second-order perturbation theory, and basis 
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set wave functions appropriate for the semi-infinite free-electron metal 

(infinite barrier or finite barrier models) an expression for E
bs 

is 

developed. In course of deriving the above expressionsfor the matrix 

elements of the screened bare pseudopotentials in the surface region have 

been obtained. In general, the matrix element of the total pseudopotential, 

W, is given by the expression 

<6.C. + 6, k + qIWIltk> = 	Sn(Q) 
' 

f d3 r(1) 1,4_,I (z+xn) x 
o 

4- 4- 
e
-i(K+Q).11 

w(r)
k
(z+z

n
) e

ik.11 

4- 
where the layer structure factor Sn(Q) is given by 

' ÷ .e 1 r 	-1Q Sn (Q) = R-e 

4r1  
N is the number of surface unit cells, R. is the position vector of the i-th 

ion in layer n, zn  is the distance of layer n from the surface and w is the 

screened atomic pseudo-potential. For a local pseudopotential a self-consistent 

treatment (in RPA sense) yields an integral equation for the atomic pseudo-

potential matrix elements. Upon solution of the integral equation the differ-

ences in the band structure energies depend only on the structure factors. 

These together with the free-electron and electrostatic contribution can be 

used in the evaluation of the defect energies, A. Analysis of the results as 

a function of the location of the defect would allow an estimate of the surface 

effect on the energetics of transport processes near surfaces. 
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INTRODUCTION 

Boundary conditions, as utilized in Quantum Mechanics, are 

usually dictated by the requirements of physical admissibility. For 

example, when considering bound states the requirement that the 

normalization integral converge leads to the consideration of only 

those solutions which are regular at the origin and are zero at in-

finity. For scattering states a wave function which tends to in-

finity as r goes to infinity corresponds to a state that has no 

physical meaning and must be discarded. More generally it is known 

that a partial differential equation possesses several arbitrary 

constants and it is the specification of the value of the solution, 

or it's normal derivative, on the boundary that yields the values of 

these constants. 

One of the first uses of a boundary perturbation, that is a 

change in the boundary conditions, .to model a physical situation was 

a calculation of the energy levels of a compressed hydrogen atom. 1 ' 2 

 In this calculation the effect of very high pressure on atomic 

hydrogen is taken into account by requiring that the wavefunction 

vanish - on a sphere at some finite distance from the proton. This 

type of calculation is, of course, only an approximate one for it 

only indicates the effect of repulsive forces at very high densities; 

but of course this is the main attraction of such an approximation 

in that it replaces the complicated set of interactions with only a 

change in the boundary conditions, which in this case is exactly 

solvable.
3 
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By changing the new boundary surface from the sphere of the 

previous example to an infinite plane surface, there results a situa-

tion that has been used to model several physical systems. The re-

quirement of a vanishing wavefunction on a plane has been used 4  to 

represent the exchange repulsion of atomic hydrogen physically ad-

sorbed onto a metal surface. As shall be shown, this model of 

physical adsorption of atomic hydrogen, when consistently interpreted, 

yields no potential well and thus no adsorption. 

Perhaps a more realistic use of this boundary condition in the 

modelling of a physical problem arises in the effective mass theory 

of shallow donor impurities near the surface of a semiconductor. Be-

cause the binding energy of a shallow donor is of the order of a few 

milli-electron volts and the height of the surface barrier is several 

electron volts, the surface is essentially an infinite potential 

barrier and the envelope function of the donor impurity must be re-

quired to vanish on the surface. This condition on shallow im-

purities near semiconductor surfaces was first pointed out by 

Levine.5 

It is the last two examples of modelling a physical problem 

with the use of boundary conditions that will be addressed in this 

report. The boundary perturbation in each case involves a change 

in the shape of the boundary surface while still requiring that 

homogeneous Dirichlet conditions be satisfied. (Recall that the 

isolated hydrogen atom wavefunction is required to be zero on the 

sphere at infinity.) 
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When the surface on which the boundary conditions are to be 

specified is no longer a surface in a coordinate system in which 

the partial differential equation separates, the problem is non-

separable. This is due to the fact that even though it may be pos-

sible to separate the equation, there is no way to satisfy the 

boundary conditions on a surface which depends upon at least two 

independent variables. Because of this nonseparability, some type 

of approximation method must be used. 

One of the first approaches to the boundary perturbation prob-

lem was made by Brillouin.6 	By considering a displacement operator 

acting on the boundary he was able to construct a method that is 

formally similar to the standard perturbation series. However the 

expansion parameter in this case is the magnitude by which the 

boundary surface is displaced and this parameter is assumed to be 

small. This is clearly not satisfied by the problem we wish to 

solve. Other methods of treating boundary perturbations have been 

developed 7 ' 8  but they all have the same restriction. That is, 

they can only be used when the domain of the PDE is finite and the 

change in the boundaries is finite. In addition to these methods, 

a perturbation method using Green's functions has been developed 

by Feshbach 9  and also presented in Morse and Feshbach. 10  However, 

the method is mathematically complicated and for the problem of a 

change in the boundary shape while requiring homogeneous Dirichlet 

conditions to hold, the method cannot be used to find corrections 

to the energy beyond the second order. 
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These considerations lead to the conviction that the variational 

method will yield the best approximate solutions to this type of 

boundary perturbation problem. 

In Chapter I a variational solution to the problem of a hydrogen 

atom in the presence of a planar infinite-potential wall is given. 

The effect of this boundary perturbation on the spectrum of the 

hydrogen atom is discussed. At a large distance from the plane, the 

isolated hydrogen atom levels are regained. When the proton lies on 

the boundary plane the problem is again exactly solvable and these 

solutions are recovered by the variational solution. Between these 

two limits the energy levels vary smothly and exhibit several in-

teresting level crossings. By using these methods, the Bruch and 

Ruijgrok4 	model of the physical adsorption of atomic hydrogen is 

re-examined. When an interaction term that they neglect, but is re-

quired for a consistent treatment, is included, ,the shallow well in 

the interaction energy that these authors found disappears. 

Chapter II addresses the problem of a shallow donor impurity 

near a semiconductor surface or interface. Modifications in the 

variational solution due to the effect of an anisotropic effective 

mass are presented. The resulting energy levels of shallow donors 

near the surface of silicon and germanium are calculated and pre-

sented. An interesting result of this model is that the total in-

teraction energy of a shallow donor with the semiconductor surface 

possesses a minimum and this suggests a possible clustering of 

these impurities near the surface. Finally, the binding energy of 
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a shallow donor impurity associated with an n-type inversion layer 

of a metal-oxide-semiconductor field effect transistor is calculated 

and compared with other recent theoretical treatments. 



CHAPTER I 

THE EFFECT OF CHANGING BOUNDARY CONDITIONS ON 

SIMPLE QUANTUM SYSTEMS 

In this chapter we shall be concerned with solving the problem 

of a hydrogen atom in the presence of a plane on which the potential 

is infinite. As noted in the introduction boundary perturbation 

methods are inadequate when the change of the location of the boundary 

surface is from infinity to some finite distance from the proton. 

Here a variational solution to the problem is given; the matrix equa-

tions and the matrix elements for a particular choice of basis func-

tions are exhibited. The resulting energy levels and properties of 

this system are presented. Finally, with the introduction of image 

charges, the results for Bruch and Ruijgrok's 4  model of the physical 

adsorption of atomic hydrogen, when alZ interactions are taken into 

account, are shown to lead to no potential well in the interaction 

energy. 

1.1 A Variational Solution to a Change in Boundary Conditions  

The problem that is to be solved is that of a hydrogen atom which 

is at some finite distance, say R, from an infinite plane surface 

upon which the potential is taken to be infinite. This infinite 

potential manifests itself by the requirement that tp, the wavefunction 
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of the electron, must vanish on the plane and in the half-space not con-

taining the proton
11
. In our treatment of the model, the Born-

Oppenheimer approximation shall be used, inasmuch as the proton will 

be taken as being located at a fixed distance from the plane, so that 

there is no coupling between the nuclear and electronic motions. 

The Hamiltonian of the problem is given by the usual hydrogen 

atom Hamiltonian 

1  f) 777 2' 	e 3-C 	iFy; V 	r̂  

but now the boundary condition is that tp must be equal to zero on the 

plane z = R (see Fig. 1.1). This choice of orientation of the plane 

and coordinate system, which is centered on the proton, is made to 

simplify the following calculations. 

. 
The variational principle for eigenvalues

12 
 is 

= s 	
r v 

v  _o 
 

rz  
(1.2) 

where H is an arbitrary Hermitian operator, and this leads to the 

eigenvalue equation 

eilf =-- 	q-Ir 
(1 .3) 

only when the function 11, in (1.2) obeys the same boundary conditions 

that are to be imposed upon the solutions of Eq. (1.3). In practical 

applications of the variational method, this means that the trial 
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Fig. 1.1 The co-ordinate system of Eq. (1.1) centered at the 

proton and the boundary surface at z=R=rcose. 



functions must obey the correct boundary values, independent of the 

choice of values of whatever variational parameters the trial function 

may contain. When this condition is satisfied, the trial function is 

said to be admissible.
13 

This requirement usually poses no problems and its importance is 

not often emphasized. However, in the present case when the location 

of the boundary surface is to be varied, and more generally when the 

boundary surface and conditions will be considered to be input vari-

ables, the construction of admissible trial functions can become quite 

cumbersome. To avoid this complication in the construction of a set 

of trial functions for the linear variation problem one can form the 

combination 

( 1." 	G( >7: 	45-' ) .4-  Fyr-) 
	

(1.4) 

Here the A
n 
are of course the linear variation parameters and the set 

(1) n (r) is to satisfy the boundary conditions of the unperturbed problem. 

The n's are taken to stand for all the quantum numbers which charac-

terize the basis set of the system. The function G(r) is such that 

G(rt.  on S)=0 where S denotes the boundary surface. The function FM 

is to satisfy F(t'''. on S)=X l (S) for Dirichlet conditions, or -1-c ( -rt.  on S) 

=X
2
(S) for Neumann conditions. In the present instance we are concerned 

only with homogeneous Dirichlet conditions and therefore need only 

consider, taking into account the coordinate system of Fig. 1.1 and 

the fact that the additional boundary surface is a plane, the com- 

bination 
(1.5) 



where G(R) = 0. 

When the boundary surfaces are changed, there arises one more 

modification of the variational principle of Eq. (1.2). The range of 

the integrations in Eq. (1.2) is over the domain of the Eq. (1.3) 

and that domain is defined as the inside of the closed boundary sur-

face on which the boundary conditions are to be satisfied. The fact 

that the surface is closed follows from the elliptic character of the 

time-independent Schrodinger equation. This means that the limits of 

integration in Eq. (1.2) will become dependent upon the position of 

the boundary surface. 

Taking into account all of these considerations and using the 

trial function of Eq. (1.5) the energy of the system can be written as 

[G(E)P4rial tic [6(2) np4h] Ay 
[E]=  T  

4 [G-(z)T., ta,  (p,,T [G-(2) 	c6„1 civ 
(1.6) 

where the subscript T on the integrals indicates that the integration 

is over a truncated space and H is given by Eq. (1.1). 	The basis set 

used to expand the trial function will not in general be orthogonal, 

because of the factor G(Z) and the integration is over a truncated 

space, so that the variation of the liner parameters A n  will lead 

to a generalized matrix eigenvalue problem 

---- E.Nfl 
	

(1.7) 



where there now appears the overlap matrix N. More specifically the 

matrix elements are given by 

= 1 1G(1) 	3-C [G(2.) 	clv 
	

(1.8) 

and 

(N Lir =fr  [G (2)c6 rii] t [C7( ) I n] 
	

(1.9) 

Since both H and N are hermitian, which will be demonstrated later for 

a particular choice of the f n 's, the usual properties of hermitian 

matrices are present; except that the orthonormality of . the vectors 

An  is expressed as
14 

A
t 

NI 	= 
e•-h 

(1.10) 

1.2 The Basis Set, Matrix Elements, and the Matrix Equations  

Before the choice of the set (pn  is presented, the specific form 

of G(Z) which is zero on the boundary surface will be given. The 

most convenient choice is simply to set 

R— 	= R- rcose 	 (1.11) 

Then the development of the Laplacian of the Hamiltonian (1.1) is 

Vi i(R-1- cosa) IL] = 	IrCoSA) IS72. 9(41 2 IR • V 56 h 
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since, on noting that lc is the unit vector in the z-direction, 

V (R—incase)= 
and 

Vz  (R— cos o) = o 

It is interesting to note that this choice yields an expression that 

is similar to the variational principle for unrestricted trial func-

tions (i.e. they do not obey the boundary conditions) given by Morse 

and Feshbach
12 . Both forms involve the derivative of cp n that is 

normal to the boundary surface; however in the present instance the 

integration is over the entire volume and not only over the new 

boundary surface. 

The basis set cpn (;), which must satisfy only the isolated hydro-

gen atom boundary conditions, i.e. 1p 	0 as r 	is chosen to be 

r1:-='i„hgq3.)==(:)i3 NiTi-  {(n--2- 1)1A(11+ 1)(1P 

* (f3. 1")' 	(131-) 	Y"'(fet 
	

(1.12) 

In Eq. (5.12) the Y
m are the usual spherical harmonics, the L

k 
are 

the associated Laguerre polynomials and r is taken to be in units of 

Bohr radii, a
o 
 (a

o 	
ri
2
/me

2
). This corresponds to a scaling of the 

Hamiltonian (1.1) to 

r v = 

where E is given in units of Rydbergs (e
2
/2a

o
). 
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The difference between the set of functions given by Eq. (1.12) 

and the isolated hydrogen atom eigenfunctions is the appearance of 

the combination 6r, where 6 is an additional variational parameter 

independent of any quantum number, rather than the combination r/n 

which depends upon the particular state under consideration. The 

advantages of this choice are twofold. First the isolated hydrogen 

atom orbitals do not form a complete set without the inclusion of the 

continuum states
15
. Use of the set given by (5.12) has been shown to 

include contributions from these states
16

. Second, the virial theorem 

is automatically satisfied for any quantum mechanical system whose 

potential is a homogeneous function of the coordinates if a scale 

factor is introduced into the approximate wave function and varied so 

as to give the lowest energy 17,14. The parameter 6 is such a scale 

factor and because its optimum value will be found, the properties 

of the states found with the approximate wave functions of Eq. (1.5) 

will be better than those which do not contain such a scaling. 

Since the boundary surface was chosen to be a plane perpendicular 

to the z-axis, there are no changes in the limits of integration over 

the variable (1). Consequently the m-quantum number remains good. This 

means that we can separate the problem according to the m-value of 

the particular level that we are interested in solving. Moreover, 

since the degeneracy of the two states [n,2„-±m] is not lifted we need 

consider only the positive m values. The original matrix problem of 

Eq. (1.7) then reduces to the set of matrix problems for which 

m = 0,1,2,... . That is 



(m) (m) 	 (en) (ho 
1-C A 	=EN Pt 	 (1.13) 

.••••-• 	nv 

In the calculation of the matrix elements for these separate problems, 

the integration over the variable q  can now be replaced by multiplica-

tion with the factor 276m , ,m . 

The calculation of the Hamiltonian matrix elements now proceeds 

as follows. The limits of integration, in taking account of the 

truncation of the region along with the above considerations, become 

R fit- 	 oo it 

gTriff 	s‘.4edeFlce 	f 	,sinecloeche (1 .14) 
no  

0 0 	
R coS 1(51.) 

It is here, in the lower limit of the 6-integration of the second 

term, that the non-separability of the problem becomes apparent with 

the appearance of the term cos
-1

(R/r). For future convenience we 

shall denote this integration as 

The matrix elements of the Hamiltonian are now expressible as 

OA) 

3—CWseoR = 	(R- rcose) 	p)1(to 
T 

'i'kun.,1 ( 71p) — 21\1 
	 VulZtli 	) clv 	(1.15) 

It is easy to show that 



r (Flp) =- 2  4 (13M- 1  (i1 6) (1.16) 

While the expression for -1Z.V4 rum (r,13) is slightly more complicated, 

its calculation is straightforward. First 

q n 	
Vilhw owl ( ce1,13) 	COS° 	 r De 

(1.17) 

which yields, upon collecting constants in C om (a), 

TR* v  11 .2 )" = Cli R y v  (13 ) f—z ( 	1-  3)2  1f:12_2_2 	e.  (Dr) .-Pr  

-131-  1-), 
(CO50) case (Df3t) L h 	ri  (case) (Aso 

2-1 

.Q-1 29+1 
()Fr) 	L

h- -1 
(gpr) e 	(Co5b)/. 	(1.18) 

2 

The expression for the overlap matrix is given simply by 

Nh
/no
'2% h.9 (R) = {( R— rcose)z 

lzum w i (I; f3) ciV 
	

(1.19) 

The integration of the expressions given by Eq. (1.15) and Eq. 

(1.19) is straightforward; however it is quite lengthy. It is easy 

to see from the limits of the integrations given in Eq. (1.14) that 

all of the matrix elements for both H (m) and N (m) will be dependent 

-r 



upon R, the perpendicular distance of the proton from the boundary 

plane. By way of illustration one term of the normalization matrix 

is presented here. 

The squared term in Eq. (1.19) can be expanded to yield three 

integrals. Denoting these as N (m)i  , where i=1,2,3, we can write ni,nZ 

(rn 	 2. 	(M11 	 11102 	 OW) 3 

N 	(R) 	R N 	(R) — 2R N
h.
„ 

 11.1
(R) 	N 'ha (R) 	(1.20) 

0111 	 n' , s,RJ2 	 1,  

The last of these is given by the rather lengthy expresion 

(•13 	 (09#12'13 	
11.2. 

N 	=" 	 Q -1)! (h i+i)! (n-S-1)! (n44 1:7 
k-lrcrj' 

(g) 41) (2)! ( +i) (S-bi)1   	EPOS  (2-1m)!  
(Q 't ill)! (9-010 1. 	 (n-J2-1-s)! (gui+i-fs)1 3 

 

LST! c2  
6,r) L.ST -t (c2 	n 

(n-_Q-1.-t) 1. (2,4+1 4-t)1±! 

()+1-1n) (..c042.-r1)  (Q+24 )77)1 

( +3) 	-FS) (S +2- vn)! 

(4+1-rn) (.() +1 +rn) 	(j+m) (Q - 	('+. ► )! 
-1-1.)(asi +3) 	 (p.9+1) (,P-ryi)! 

(11-Fir) (.9-1-f-m) 	4m)! 	, 
C.J 	0_2 } 

3) (1)-2-}11): 	
.,t 

 1-  
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LST 
L5T 

 (Ls-r-h)!(p) k41  

(Ast-a0t. 

 

(e-21- -rn) 1. 

P-Zi?  
() g  (A - 4)1  

	 g!(_4-r. 
h 

(--) VW. 

00! DL ST- 14-j-1 

(PI) (913)
3+1 

 
>. 0 

O 	 ,4 f 

-P-i 

;I P (-2 
= 	(-10-1)! 

(1.21) 

where we have used the definitions 

,P+`+s t + 

P= -S-ft 	 g• + 2111— k 	 (1.22) 
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Most generally, it is the combination of an operator and the 

boundary conditions of the functions on which it operatei which de-

termines the property of hermiticity. In the present situation where 

only the boundary surface has been changed we expect that the matrices 

H (m) and  N (m) defined by Equations (1.15) and (1.19), to be hermitian. 

It is obvious from Eq. (1.19) that not only is 	hermitian, it is 

real and symmetric. This property is not so obvious for the matrix 

N (m) . The matrix H (m)  will be hermitian if (see Eqns. (1.15) and 

(1.16)). 

T {pm (R-I-cc1/45° 	+ (1R-v- cosa)9L ,  

= 	I ph' 
(R-

p..1'-(c)se12 9be iii) i, + 	COS 0) $56in I 	4C1V (1.23a) 

Rearranging, this yields 

p(r';1) tit  (1?-1-coso) l-  v 9Dp cp„ 
r 

(R-v-cosa) R• (O n ,  17,95„ — 	Ve h-)JV 
T 

To obtain this result, first note that by the divergence theorem and 

the boundary conditions obeyed by (1)
n

,c1)
n
, and the factor (R-rcose) 

we have 

/ V. [ (R-  Y60.50)1. 	h• V5h,„ 	56„ 	„, 11 
T 

(R-r. cose)1  f 	— sciS„Vibh ,)] S 

(1.24) 

(1.23b) 
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On developing the left hand side of Eq. (1.24) 

R cos e) 	 — ck„ v 	v 

=.rcose)z 	 V aMcIV 
	

(1.25) 

Using the identity (1.16) on the right hand side of Eq. (1.25) we 

obtain 

f(R- 1- 0O58)1 . h p,17 -- 	N71J 0,1 ciV 

= :pc t,)/ 	 (R—rtrcase) -1 Opr;  51)11 dv 	(1.26) 

"[- 

Equation (1.26) is exactly the same as Eq. (1.23) thus showing the 

hermitian character of H (m) . In the next section the solution and 

results of the matrix equations (1.13) are presented. 

1.3 Solution of the Matrix Equations: Energy Levels and Properties  

of the Hydrogen/Impenetrable Wall System  

The numerical solution of the matrix equation (1.13) is a two 

step process. Because of the complicated dependence of the matrices 

and the associated eigenvalues on the parameter beta, it is impracti-

cal to develop the variational condition 3[E]/9(3 = 0. Therefore, at 

a specific distance a value of beta must be assumed and then the 

linear problem of Eq. (1.13) can be solved, yielding the eigenvalues 

and eigenvectors. At this point the value of beta can be varied, the 
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matrix elements calculated, and the matrix equation (1.13) is again 

solved. In this way one can search for the value of beta that gives 

the best upper bound on the eigenvalue. 

Before the above procedure can be applied, it must first be 

decided to what extent the basis set of Eq. (1.12) will be extended 

in the expansion of the trial function. This determines the order 

of the matrix equation to be solved. Since only the positive m 

values, one at a time, need be considered the expansion of the trial 

function can be written as 

Is/ 	d-1

(R- V- cose)> 	>  11-
4k 

(pi+ jlry,+kgyvI) 	0.27)

a =1 k=0 	c)   

where m is fixed and (n,Z,m) denotes the function of those parameters 

given by Eq. (1.12). Once N is chosen the size of basis set, and of 

the matrices H (m) and N (m) , is easily seen to be 

N (Ms)  
MATRIX SIZE -= 	L = 2 (1.28) 

Increasing N is analogous to increasing the value of the principal 

quantum number n that is included in the expansion of the trial func-

tion, but care has to be taken in this interpretation since the set 

of functions of Eq. (1.12) are not the isolated hydrogen atom wave-

functions. 

The procedure of the calculation is now given by the following. 

First, the value of the m quantum number, which is still a good quan-

tum number, is decided upon. Second, the eigenvalue's position in 



TABLE 1.1 

Convergence of the ground state energy for the hydrogen/impenetrable 

wall system at several distances. Distance is given in units of Bohr 

radii and energy is in units of Rydbergs. 

R 0.0 0.2 0.8 4.0 

3 x 3 -.2500 -.2448 -.4849 -.9888 

6 x 6 -.2500 -.2735 -.5012 -.9955 

w 10 x 10 -.2500 -.2786 -.5042 -.9969 
N 
77 

15 	x 15 .11e0 -.2800 -.5058 -.9972 

1: 
21 	x 21 -.2801 -.5064 -.9973 

28 x 28 -.2802 -.5065 -.9974 
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the ordered set EC 'I') (R) i=1,2,3,... is chosen. This is done because 

the optimum value of beta is dependent upon exactly which eigenvalue 

is to be minimized. Now the value of N of Eq. (1.27) is set and the 

optimum value of beta and the associated eigenvalue at that matrix 

size are calculated. Next the value of N is increased by 1, which 

increases the matrix size by N + 1, and again the eigenvalue is 

minimized with respect to beta. This process is repeated until the 

values of the minimized energy at two successive matrix sizes agree to a 

certain number of significant figures. In this report most of the 

results presented are calculated to four significant figures, recall 

that the energy is in units of Rydbergs, and this was obtained by 

going to matrix sizes of (28 x 28). An example of convergence of the 

ground state for several distances is given in Table 5.1. 

The results of the calculation for the first five states are 

given in Tables 1.2 to 1.5. There we have tabulated the optimum 

value of beta and the energy for a range of distances of the proton 

from the plane. Also included are several properties of these 

states that shall be discussed later. In these tables we have 

labelled the states by their m-quantum number and their position in 

the spectrum of the reduced problem, that is the spectrum of levels 

with all the same m-value. Tables of results for some of the higher 

excited states are presented in Appendix G. 

The results of the ground state energy can be compared to those 

obtained by Bruch and Ruijgrok 
4

These authors were mainly in-

terested in the imaging system as a model of physical adsorption 

(see next section); however the results for a change of the boundary 



TABLE 1.2 

Ground state properties of the hydrogen/impenetrable wall system 

(m=0, p=1). Energies are in units of Rydbergs, the dipole values 
ea 

are given in units of 20  ( - 1.271 debye), and the distances are 

given in terms of Bohr radii 	(a0  = 0.529 A). 

R 	6 	 E
o 	 Pz 

0.0 1.000 -0.2500 0.2500 -0.5000 

0.2 1.001 -0.2802 -6.383 0.3170 -0.5972 

0.4 1.077 -0.3272 -5.099 0.4458 -0.7730 

0.6 1.321 -0.4027 -3.735 0.6774 -1.0801 

0.8 1.537 -0.5065 -2.617 0.9527 -1.4592 

1.0 1.696 -0.6172 -1.877 1.1480 -1.7652 

1.2 1.795 -0.7144 -1.407 1.2375 -1.9519 

1.4 1.850 -0.7912 -1.092 1.2576 -2.0488 

1.6 1.872 -0.8488 -0.865 1.2429 -2.0917 

1.8 1.876 -0.8911 -0.693 1.2139 -2.1049 

2.0 1.870 -0.9217 -0.559 1.1811 -2.1028 

3.0 1.603 -0.9855 -0.186 1.0599 -2.0452 

4.0 1.183 -0.9974 -0.055 1.0157 -2.0131 



TABLE 1.3 

Properties of the first excited state of the hydrogen/impenetrable 

wall system (m=0,p=2). Units as in Table 1.2 

E(0,2) z 

0.0 0.500 -0.1111 - 0.1111 -0.2222 

0.2 0.506 -0.1198 -17.171 0.1300 -0.2498 

0.4 0.636 -0.1321 -15.231 0.1623 -0.2944 

0.6 0.728 -0.1493 -13.148 0.2074 -0.3568 

0.8 0.793 -0.1687 -11.408 0.2436 -0.4123 

1.0 0.848 -0.1856 -10.172 0.2610 -0.4466 

1.2 0.855 -0.1988 - 9.353 0.2669 -0.4657 

1.4 0.865 -0.2087 - 8.761 0.2594 -0.4781 

1.6 0.866 -0.2164 - 8.320 0.2702 -0.4866 

1.8 0.868 -0.2224 - 7.974 0.2704 -0.4928 

2.0 0.869 -0.2272 - 7.695 0.2700 -0.4972 

3.0 0.849 -0.2408 - 6.840 0.2651 -0.5058 

4.0 0.823 -0.2462 - 6.417 0.2595 -0.5056 

5.0 0.793 -0.2484 - 6.193 0.2554 -0.5038 



TABLE 1.4 

Properties of the second excited state (m=1,p=1) of the hydrogen/ 

impenetrable wall system. 

R 13 E(1,1) 
1-1 z 

0.0 0.412 -0.1111 

0.2 0.449 -0.1150 -12.358 

0.4 0.486 -0.1192 -11.580 

0.6 0.519 -0.1239 -10.792 

0.8 0.559 -0.1291 - 9.999 

1.0 0.590 -0.1347 - 9.206 

1.2 0.625 -0.1409 - 8.425 

1.4 0.656 -0.1476 - 7.668 

1.6 0.687 -0.1545 - 6.948 

1.8 0.713 -0.1619 - 6.278 

2.0 0.738 -0.1693 - 5.663 

3.0 0.822 -0.2027 - 3.426 

4.0 0.851 -0.2248 - 2.147 

5.0 0.849 -0.2372 - 	1.356 

-I- 	V 

	

0.1111 	-0.2222 

	

0.1190 	-0.2340 

	

0.1282 	-0.2474 

	

0.1387 	-0.2626 

	

0.1507 	-0.2798 

	

0.1643 	-0.2991 

	

0.1794 	-0.3203 

	

0.1956 	-0.3431 

	

0.2121 	-0.3667 

	

0.2282 	-0.3900 

	

0.2430 	-0.4123 

	

0.2871 	-0.4898 

	

0.2911 	-0.5159 

	

0.2815 	-0.5187 



TABLE 1.5 

Properties of the third excited state (m=0,p=3) of the hydrogen/ 

impenetrable wall system. Note the discontinuity of the properties 

T and V between the distances of 3.4a0-3.6a0  which indicates a 

level crossing. 

R a E(0,3) 

0.0. 0.268 -0.0625 

0.2 0.311 -0.0661 

0.4 0.352 -0.0709 

0.6 0.398 -0.0772 

0.8 0.441 -0.0838 

1.0 0.472 -0.0895 

1.2 0.491 -0.0938 

1.4 0.502 -0.0970 

1.6 0.509 -0.0994 

1.8 0.513 -0.1013 

2.0 0.515 -0.1028 

3.0 0.5 . 5 -0.1072 

3.2 0.510 -0.1077 

3.4 0.508 -0.1081 

3.6 0.423 -0.1087 

3.8 0.449 -0.1154 

4.0 0.496 -0.1228 

5.0 0.650 -0.1656 

z 	T 	V 

- 0.0625 -0.1250 

-32.516 0.0701 -0.1362 

-30.202 0.0812 -0.1521 

-27.665 0.0949 -0.1720 

-25.323 0.1056 -0.1695 

-23.551 0.1110 -0.2005 

-22.314 0.1133 -0.2071 

-21.444 0.1143 -0.2113 

-20.804 0.1149 -0.2143 

-20.317 0.1152 -0.2164 

-19.932 0.1153 -0.2181 

-18.809 0.1150 -0.2221 

-18.676 0.1148 -0.2225 

-18.558 0.1146 -0.2227 

- 5.856 0.2206 -0.3294 

- 4.709 0.2494 -0.3648 

- 3.590 0.2791 -0.4019 

+ 0.383 0.3736 -0.5391 



surface only are given for the ground state. Their approach to the 

problem is a variational one that is similar in spirit to the present 

one. The difference is that the problem is cast in confocal elliptic 

coordinates with the foci at the proton and the image proton. The 

trial function is then chosen as 

UP(..cC E/Z) 6.1mil(p )1/2 )7  Ckt2 k
s 	

(1.29) 

In Eq. (1.29) 	and n  are the coordinates in the confocal elliptic 

system, a and 3 are non-linear variational parameters, and the set 

C102. 
constitute the linear variational parameters. The important 

feature of the trial function (1.29) is that the boundary value of 

tpt  = 0 on the plane is satisfied by the sinh(3n/2) term. After con-

verting their results to Rydbergs, the two calculations agree to as 

many significant figures as are reported in that paper. For example, 

at a distance of 1.2 Bohr radii from the plane both methods yield a 

ground state energy of -0.7144 Ry. 

However the results of Bruch and Ruijgrok are given only for the 

ground state so that there is no information on the manner in which 

the spectrum of a hydrogen atom changes as an infinite plane potential 

moves in from infinity. This information is easier to interpret when 

it is presented as a graph showing the energy as a function of the 

distance of the proton from the plane. These graphs are presented in 

Figures 1.2 and 1.3. 

It is evident from Figure 1.2 	that when the proton is located 



Fig. 1.2 Ground state energy as a function of distance of the hydrogen/impenetrable wall 

system. In this, and the following figures energy is in units of Rydbergs and 

distance is in units of Bohr radii. 
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Fig. 1.3 The first 13 excited states of the hydrogen/impenetrable wall system. 
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four Bohr radii away from the plane there is very little change in 

the ground state energy. As the distance from the plane decreases the 

energy increases until, at R=0, it is equal to -.25 Ry. This result 

is expected for the following reason. When the proton is located on 

the plane the boundary surface becomes a constant surface of a co-

ordinate in a system in which the Hamiltonian is separable. Specific-

ally, the plane can now be specified by 8 = Tr/2 and this means that 

the problem is again exactly solvable. The solutions are the isolated 

hydrogen atom eigenfunctions restricted by the selection rule 

1 2- Imj= od d 
	

(1.30) 

This can be easily deduced from the value of the associated Legendre 

polynomials at zero argument. This result was first pointed out by 

Levine 5  , who noted its importance for a shallow donor impurity 

located at a surface. 

The correct values of the R=0 limit are displayed by the excited 

states in Fig. 1.3. 	In that figure the states are labelled by their 

m value and their position in the matrix by the notation (m,p). There 

are several interesting features exhibited by the spectrum presented 

in Figure 1.3. At R = 	there exists two states with n = 2 and m = 0, 

i.e. the 2S and 2p0  states. However, at R=0 there exists only one 

state with n = 3 and m = 0 because of the selection rule (1.30) and 

that is the 3p0  state. Therefore one of the states with n = 2, m = 0 

at R = ..... must map onto a state with n = 4 at R = 0. At R = 5 a0 the 

state which does this is labelled by (0,3). As R decreases the energy 



of state (0,3) increases until it crosses the state (0,4). These two 

states possess the same azimuthal quantum number m and are therefore 

eigenvalues of the same matrix problem. This appears to be a true 

crossing for two reasons. First, the eigenvalues become equal,to 

four figure accuracy which is the limit of accuracy in the present 

calculations, at a distance from the plane of approximately 3.58 a o . 

Second, the properties derived from the wave -Functions of these two 

states only have a consistent interpretation if such a crossing takes 

place. That is, the dipole in the z-direction, the average kinetic 

energy and the average potential energy should be continuous functions 

of the distance from the plane and this would not be the case if such 

• a crossing did not occur. The symmetry that this degeneracy might 

imply has not yet been determined. As the distance to the plane is 

decreased even further there takes place another crossing. However 

this crossing is for states of differing azimuthal symmetry so there 

is no reason to suspect another symmetry of the system at this dis-

tance. 

Turning now from the energies of these states to some of their 

properties, the set of Figures 1.4 to 1.8 exhibit the changes in 

the ground state wavefunction as the proton moves closer to the 

plane on which T = 0. What is shown in these perspective plots is 

the value of the wavefunction on a plane that contains the proton 

and is perpendicular to the boundary plane. The location of the 

proton is at the intersection of the grid lines marked by the arrows, 

and the boundary plane intersection is marked by a dark line. These 

figures exhibit the smooth change of the ground state from a is state 
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Fig. 1.4 Ground state wavefunction when proton is 1.4 a o 
away from 

plane. (See text above Eq. (1.31).) 
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R=0.6 

E = -0.402 

Fig. 1.6 Ground state wavefunction when proton is 0.6 a o 
away from 

plane. 
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Fig.1.7 Ground state wavefunction when proton is on the plane. 



-36- 

R= 0.2 

E=-0.28 

Fig. 1.8 Ground state wavefunction when proton is 0.2 a o 
away from 

plane. 



at large R to the 2p0  state at R = 0. 

The ground state of an isolated hydrogen atom does not possess a 

net dipole moment. However when the charge distribution is changed 

by the presence of the boundary plane this is no longer true. Because 

of the azimuthal symmetry, the dipole moment of the ground state will 

be in the z-direction and the dipole moment operator can be written as 4  

itt FE. 	= r COS e 	 (1.31) 

A positive dipole moment is directed away from the boundary plane. 

The convention used here is that the dipole points from the negative 

to the positive charge. 

The manner in which the average value of p is calculates is modi-

fied slightly due to the non-orthogonality previously discussed. 

First the matrix D (m)  is calculated, where 

D(In)) 	= hlZ i nt 
Y1111,1 IA 	c V (1.32) 

and the optimized value of (3. is used. The expectation value of p for 

a state labelled by (m,k) is then given by 

tool 	aol (o0 

011 ) 

</tt>iz  
re' 

R'' 
• 	-,0 k 	k 

(1.33) 



where A (
k
m)  is the optimized k-th eigenvector of Eq. (1.13) and N (m) 

 is the overlap matrix. 

These average values have been calculated and they appear in 

Tables 1.2 through 1.5 and in Appendix A. As expected, and shown 

previously in the perspective plots, the action of the boundary plane 

is to push the electronic charge distribution away so that its 'center 

of gravity' lies behind the proton and yields negative <p>. Note also 

that the dipole moments fall off much less rapidly as a function of R 

for the excited states. This is due to the fact that the excited 

states, because of their greater spatial extent, 'feel' the presence 

of the plane for a further distance than does the ground state. 

The average kinetic and potential energies can be calculated in 

a manner similar to that for the dipole. But now it is not necessary 

to calculate any additional matrices, for T (m) and V (m)  are already 

available from the calculation of H (m) . These expectation values 

have also been computed and appear in the same tables as the energies 

and dipole moments. 

In examining the expectation values of the kinetic and potential 

energies of the electron given in these tables it is apparent that 

the relation 

aT = 
	 (1.34) 

is no longer satisfied. Equation (5.34) is of course the statement 

of the virial theorem for an isolated system with a coulomb interac-

tion. When the system depends upon a parameter which is assumed to 

be fixed, which for example can be the internuclear coordinates of a 



diatomic molecule in the Born-Oppenheimer approximation or the distance 

to the plane in the present problem, the virial theorem must be modi-

fied from the form given in Eq. (1.34). This is due to the fact that 

the quantity known as the 'virial' 

Z. re F 

must include aZZ of the forces acting on the system. This means that 

since the proton is assumed to be in a fixed position some external 

force must be acting on it so that it remains stationary. When this 

external force is taken into account the correct form of the virial 

theorem is given by 

2T 	-V 
	4)E 	

(1.35) 

The force acting on the proton is therefore given by the quantity 

3E/DR. Note that in the present case the Hellman-Feynman theorem is 

no longer valid 4,18.  That is 

because the region of integration of the matrix elements is dependent 

upon R. This points out the importance of the virial theorem, and 

the choice of the basis set, if the force on the proton is to be 

found. 

The results presented in Table 1.2 have been used, with the aid 

of Eq. (1.35), to calculate the force on the proton when*the atom is 
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Fig. 1.9 Force on the proton when the electron is in its ground state, 
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in its ground state as a function of distance. This force is presented 

graphically in Figure 1.9. The interesting features of this force is 

that it has a maximum at approximately 0.9 ao  and that it is nonzero 

at R = 0. At R = =, the force is zero and at R = -co is must also be 

zero for then the electron and proton have been completely separated. 

Therefore a maximum must exist between these two limits. 

1.4 Image Charges and a Model of the Physical Adsorption of  

Atomic Hydrogen 

When a gas adsorbs onto a solid surface, depending upon the 

binding energy, it is usually said to be chemisorbed or physically 

adsorbed. The binding energy that is ascribed to chemical adsorption 

can be several electron volts while the weaker physical adsorption is 

several orders of magnitude less. The difference in binding energy 

is a reflection of the different processes which. are believed to 

occur in the two types of adsorption; in chemical adsorption a bond 

is formed between the adsorbed molecule or atom and the surface while 

in physical adsorption significant charge rearrangement is absent. 

Physical adsorption is usually thougit to be due to a potential 

that is made up of an attractive long-range Van der Waals (or dis-

persion) potential and a short-range repulsive potential due to the 

overlap of the electrons of the ad-atom with those of the metal. 

The problem is a many electron one and has been the subject of much 

recent work
19 . 	However, in the case of atomic hydrogen an idealized 

model can be constructed, as presented by Bruch and Ruijgrok, which 



reduces to a one electron problem. 

The model is given by the following. The metal is replaced by 

a perfectly imaging medium with instantaneous coulomb interactions. 

The effect of the exchange repulsion is modelled by the condition 

that the atomic electron is excluded from the metal and that its 

wavefunction vanish on the surface. The potential that the proton 

then experiences, what is called by Bruch and Ruijgrok the 'holding 

potential', is given by the change in the ground state electronic 

energy plus the interaction of the proton with the various images in 

the metal. 

Solving the problem of the ground state electronic energy of this 

• system is the first step in obtaining the 'holding potential' of the 

atomic hydrogen. Taking into account the possibility of finite di-

electric constant for Region B of Fig. 1.1, the Hamiltonian for the 

electron can be written as 

J `  = -Z-11?1.-71 1\72- 	e2  

cE  —a) 	  
T- 

(e+i) 	tie-Lb-Nose] z 
(E-1) 	

2. 

(R-$1-coso) (1.36) 

Equation (1.36) must, of course, be solved subject to the boundary 

condition that 4) = 0 on the surface z = R. The coordinate system of 

Eq. (1.36) is that indicated in Figure 1.1 and E denotes the static 

dielectric constant of region B. We shall be interested mainly in 

the 'metallic' limit, that is e -+ co. The last two terms in Eq. (1.36) 



are, respectively, the interaction of the electron with the image of 

the proton and the interaction of the electron with its own image, 

and hence the extra factor of 1/2 (energy of assembly). 

The calculation of the energy eigenvalues and properties of these 

states proceeds exactly as previously outlined. Now, however, there 

are the two additional matrix elements to be included in the matrix 

equations. The electron-image electron term is not hard to calculate 

analytically but this is not true of the electron-image proton inter-

action given by the third term of Eq. (1.36). Because of the law of 

cosines denominator and the restricted region of integration given by 

Eq. (1.14),it has not been possible to find a closed form expression 

for that matrix element. 

There are two ways of calculating the electron-image proton 

matrix element. One can either use a numerical approach or, by ex-

panding the denominator of the electron-image proton potential in the 

standard series of Legendre polynomials, integrate term by term. 

The former method was chosen because the expressions and summation 

of the latter method consumed a much greater amount of computer time 

than a straightforward numerical integration of the matrix elements 

by the Gauss-Legendre and Gauss-Laguere methods. 

The results of this calculation are given in Tables 1.6 through 

1.9 for the first 5 states. (Recall that m # 0 states are doubly 

degenerate.) The ground state of this system is shown graphically 

in Figure 1.10 where the ground state of the non-imaging case has been 

repeated for comparison. As is apparent from this figure, and shown 
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TABLE 1.6 

Ground state properties of the hydrogen/perfectly imaging substrate 

system. V 1 , 11 2  and 11 3  denote the average values of the last three 

interaction terms in the Hamiltonian of Eq. (1.36). 

R 	a 	E(0,1) 	1-1 z V2Cfl 

	

0.2 	0.174 	-0.0633 

	

0.4 	0.399 	-0.0726 

	

0.6 	0.753 	-0.1039 

	

0.8 	1.142 	-0.1839 

	

1.0 	1.439 	-0.3049 

	

1.2 	1.621 	-0.4274 

	

1.4 .1.725 	-0.5309 

	

1.6 	1.780 	-0.6123 

	

1.8 	1.806 	-0.6748 

	

2.0 	1.813 	-0.7224 

	

3.0 	1.539 	-0.8405 

	

4.0 	1.228 	-0.8825 

	

5.0 	1.033 	-0.9046 

	

6.0 	0.912 	-0.9193 

-11.408 0.0673 -0.1470 -0.1267 0.1440 

- 9.597 0.1055 -0.2995 -0.1450 0.2664 

- 6.482 0.2578 -0.5789 -0.2002 0.4174 

- 	3.671 0.6107 -1.0821 -0.2841 0.5717 

- 2.237 0.9413 -1.5444 -0.3326 0.6308 

- 	1.532 1.1139 -1.8209 -0.3409 0.6205 

- 	1.125 1.1758 -1.9612 -0.3295 0.5848 

- 0.856 1.1821 -2.0270 -0.3105 0.5430 

- 0.662 1.1641 -2.0518 -0.2893 0.5024 

- 0.514 1.1376 -2.0564 -0.2684 0.4648 

- 0.125 1.0296 -2.0135 -0.1853 0.3287 

- 0.009 0.9959 -1.9927 -0.1353 0.2497 

+ 0.013 0.9922 -1.9915 -0.1053 0.2001 

+ 0.011 0.9943 -1.9942 -0.0862 0.1667 



TABLE 1.7 

Properties of the first excited state (m=1,p=1) of the hydrogen/ 

impenetrable wall system. 

R E(1,1) z  T V 1  V2 3 

0.2 0.149 -0.0602 -11.906 0.0606 -0.0506 -0.1207 0.0505 

0.4 0.150 -0.0604 -11.486 0.0609 -0.0530 -0.1210 0.0527 

0.6 0.152 -0.0605 -11.059 0.0614 -0.0565 -0.1213 0.0558 

0.8 0.156 -0.0608 -10.624 0.0621 -0.0620 -0.1217 0.0608 

1.0 0.162 -0.0611 -10.170 0.0636 -0.0717 -0.1223 0.0694 

1.2 0.177 -0.0617 - 9.676 0.0671 -0.0915 -0.1234 0.0860 

1.4 0.216 -0.0630 - 9.077 0.0759 -0.1287 -0.1253 0.1152 

1.6 0.286 -0.0656 - 8.299 0.0920 -0.1766 -0.1288 0.1478 

1.8 0.363 -0.0697 - 7.407 0.1133 -0.2234 -0.1335 0.1740 

2.0 0.434 -0.0752 - 6.503 0.1372 -0.2675 -0.1386 0.1936 

3.0 0.660 -0.1138 - 3.207 0.2322 -0.4205 -0.1490 0.2235 

4.0 0.745 -0.1476 - 1.587 0.2575 -0.4732 -0.1369 0.2050 

5.0 0.757 -0.1695 - 0.669 0.2544 -0.4847 -0.1191 0.1799 

6.0 0.722 -0.1830 - 	0.116 0.2463 -0.4848 -0.1019 0.1574 



R e E(0,2) uZ  T 

0.2 0.135 -0.0590 -12.162 0.0615 

0.4 0.144 -0.0602 -11.526 0.0622 

0.6 0.154 -0.0608 -11.052 0.0630 

0.8 0.191 -0.0616 -10.669 0.0663 

1.0 0.423 -0.0656 -10.648 0.0983 

1.2 0.537 -0.0733 -10.036 0.1239 

1.4 0.596 -0.0819 - 9.344 0.1430 

1.6 0.635 -0.0906 - 8.736 0.1587 

1.8 0.662 -0.0989 - 8.228 0.1716 

2.0 0.681 -0.1068 - 7.806 0.1822 

3.0 0.727 -0.1378 - 6.508 0.2119 

4.0 0.720 -0.1580 - 5.885 0.2230 

5.0 0.678 -0.1716 - 5.497 0.2291 

6.0 0.609 -0.1818 - 4.762 0.2368 

Vi 	V2 	V3 

-0.0773 -0.1184 0.0756 

-0.0590 -0.1207 0.0573 

-0.0623 -0.1219 0.0604 

-0.0836 -0.1229 0.0786 

-0.2011 -0.1213 0.1586 

-0.2692 -0.1207 0.1927 

-0.3128 -0.1207 0.2086 

-0.3451 -0.1203 0.2161 

-0.3700 -0.1193 0.2187 

-0.3897 -0.1176 0.2183 

-0.4430 -0.1045 0.1977 

-0.4631 -0.0899 0.1720 

-0.4730 -0.0779 0.1501 

-0.4806 -0.0722 0.1343 

TABLE 1.8 

Properties of the second excited state of the hydrogen/perfectly 

imaging substrate system. 
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Fig. 1.10 Ground state energy as a function of proton distance from the plane for the perfectly 

imaging substrate (62  .4- 00) system. 



explicitly in Table 1.6 where all the energy contributions are tabu-

lated, the interaction of the electron with the image of the proton, 

which is repulsive, dominates the electron-image electron interaction 

which is attractive. In this instance also the R = 0 value is an ex-

pected one. When R = 0, and the system is perfectly imaging, the 

proton and image proton charges cancel each other (at least as far as 

the electron is concerned) and the problem is now that of an electron 

bound by its image, that is, a one-dimensional coulomb problem. There-

fore at R = 0 the problem becomes the exactly solvable
20,21 

one dimen-

sional coulomb problem with a ground state energy of -0.0625 Ry. 

Now that the electronic part of the problem is solved, it is 

possible to construct the 'holding potential' of the atomic hydrogen. 

The potential 	field that the proton experiences has three contribu- 

tions. First, still in the Born-Oppenheimer app-oximation, is the 

change in the ground state energy of the system as a function of dis-

tance. The second is the proton-image proton interaction which is 

attractive in nature. Thirdly, the potential at the site of the real 

proton due to the presence of the image electron must be calculated. 

However, and this is a crucial point, the electronic problem alone 

must first be solved before this last interaction can be calculated. 

Since the proton is considered as being fixed while the electron is 

not, the ground state wavefunction at that distance must be calculated 

and the corresponding charge density formed to obtain an image charge 

density. The coulomb interaction between the image charge density 

and the real proton is then integrated over the domain of the image 
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charge density to finally yield the third interaction term of the 

holding potential. This last quantity is exactly given by the average 

value of the third term in Eq. (1.36), the electron-image proton term. 

This is due simply because the charge products and distances involved 

are exactly the same. To repeat for the sake of clarity, this third 

interaction term is not to be added to the Hamiltonian of Eq. (1.36) 

for it has nothing to do with the potential the electron experiences, 

but it is rather associated with the potential the proton experiences 

and it cannot be calculated until the image charge density is known, 

i.e. the ground state wave function of the Hamiltonian of Eq. (1.36). 

This last term in the interaction energy has not been included 

in the calculation of Bruch and Ruijgrok. This is evident in their 

equations (2.8) through (2.12) which are the defining equations of 

their model. To demonstrate this numerically we take the energy 

values presented in our Table 1.6, subtract out the ground state 

energy at R = 0,  (-1.0 Ry) and add the proton-proton image interaction 

energy of -1/2R Ry. There results the same values as given by Table 

1 of Bruch and Ruijgrok. For comparison, converting their value into 

an electroni: ground state energy by the reverse of the above process, 

their result at R = 2.0 ao 
is -.7223 Ry while that of the present 

calculation is -.7224 Ry. 

When the 'holding potential' is calculated in this way, that is 

the proton-image electron interaction is neglected, there results a 

potential well at approximately R = 3.44 a o  and a depth of r1,8.6 x 10
-3

Ry. 

This is shown graphically in Fig. 1.11. 	The various contributions 



Fig. 1.11 The 'holding potential' of Bruch and Ruijgiok in which the image electron-

proton interaction has not been included. 
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Fig. 1.12 The various contributions to the interaction potential. The curve A represents 

the change in the expectation value of the electron-proton interaction from its 

value for the isolated hydrogen atom. The curve B is the average value of the 

electron-image proton interaction (V e-Imp). The curve C is the change in the 

electron's average kinetic energy. The curve D represents the average value 

of the electron-image electron interaction (V e  - IMe). The curve E is the 

proton-image proton interaction (- 1/2R). 
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to this 'holding potential' are shown in Fig. 1.12. The R = 	values 

of the kinetic and potential (real electron-real proton) energies have 

been subtracted from those terms and the electron-image proton average 

interaction is denoted by9e-IMP 
 and that of the electron-image 

electron by V
e-IMe 

• The proton-image proton interaction is denoted 

by -1/2R. The sum of the curves in Fig. 1.12 is then simply the 

potential curve presented in Fig. 1.11. 

This situation changes drastically when the proton-image electron 

interaction is added, As noted before, this is identical to the 

average value of the electron-image proton interaction which is listed 

in Table 1.5 and shown in Fig. 1.12 by the curve labelled V e_ imp . 

When this term is added the shallow potential well shown in Fig. 1.11 

is completely lost and the 'holding potential' simply doesn't hold. 

Therefore it is seen that when all the interactions are taken into 

account, the model of physical adsorption of atomic hydrogen presented 

by Bruch and Ruijgrok yields no binding between a hydrogen atom in 

its ground state and the model surface. 



CHAPTER II 

SHALLOW DONOR IMPURITIES NEAR SEMICONDUCTOR INTERFACES 

The methods presented in the preceding chapter will be used in 

the present chapter to solve the effective mass Hamiltonian for a 

shallow donor impurity when it is near the interface of a semicon-

ductor. The boundary condition of tp = 0 on a plane is used because 

the increase in the potential energy of the electron upon leaving 

the semiconductor is usually on the order of several electron volts, 

which is several orders of magnitude larger than the binding energy 

of the electron to the impurity center. First a brief discussion of 

the effective mass Hamiltonian and its derivation is presented. For 

materials with spherical conduction bands the methods of Section 1.4 

can be used without modification. However, when materials with 

ellipsoidal conduction bands like silicon and germanium are considered, 

the anisotropic effective mass must be taken into account in the ef-

fective mass Hamiltonian and in the trial function. After this is 

done, results for the binding energies of shallow donors near the 

Si (001) surface and the Ge (111) surface are presented. Finally, 

with the inclusion of an additional matrix element, the effect of a 

Si/Si02  interface and the applied field in a MOS (Metal-Oxide-

Semiconductor) Field effect transistor is studied. 
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2.1 The Effective Mass Hamiltonian  

Consider the introduction of a Group V atom into a Group IV 

elemental semiconductor, or of Group VI impurity in a III-V semi-

conductor
22 . In both cases we assume that the impurity location is 

a substitutional one and in the second case it is the Group V atom 

that has been replaced. Because of the impurity, the periodicity of 

the perfect lattice is lost and we wish to investigate the conse-

quences of this. 

Purely as a gedanken exercise assume that such an impurity atom 

has been introduced minus one electron, so that it contains the same 

number of valence electrons as that of the replaced atom. The im-

purity. potential arising from such a substitution is then analogous 

to placing an extra positive charge at one of the lattice positions 

and this leads to a Coulombic potential that is reduced by the static 

dielectric constant, e, of the pure material, that is 

Er 
	 (2.1) 

For semiconductors to which this analysis is applied, typical values 

of e range from about 10 to 16. When the electron is added to this 

system it must enter the condution band (we assume T=0 so that the 

valence band is completely filled) and its motion is governed by the 

band structure and the action of the impurity potential. Because the 

electron enters an empty conduction band we can perform a Taylor 

series expansion about the minimum of the energy band to obtain 



(2.4) 
et 

Er • 

(2. 2) 

where E
c 

denotes the conduction band edge and 

YE(17)  
k. ak• ja 	

L 4-1; 7-•lo 

(2.3) 

 

where the quantity 	is known as the effective mass tensor. In 

coordinate space this yields an effective one-electron Hamiltonian, 

when the effective mass tensor has only equal diagonal components, 

given by 

It is through the use of an effective mass, m*, that the action of 

the periodic potential of the crystal is taken into account in a 

one-electron Hamiltonian. 

The use of the Coulombic potential that is reduced by the static 

dielectric constant, can only be justified if the distances involved 

are much larger than the lattice spacing. To investigate this point 

note that Eq. (2.4) is just that of a hydrogen atom in a dielectric 

medium and that the eigenvalues are given by 22  

(2.5) 



-57- 

The radius of the minimum Bohr orbit of the electron about the im-

purity is 

tz e 
a. — 	 (E-,.±,T) (2. 6) 

For GaAs where (m*/m) = 0.07 and E = 11.6, the ground state energy is 

E = -.006 eV = 6 meV. The orbit size is about 90 A and this indi-
cates that the use of the impurity potential of Eq. (2.1) is not in-

consistent. 

The derivation of an effective mass Hamiltonian has a more for-

mal nature than the foregoing discussion suggests. In the original 

work of Kohn and Luttinger
pa

and in the review article by Kohn
236 

 it 

is shown how to derive, and variationally solve, effective mass 

Hamiltonians for silicon and germanium. In the following we shall 

follow the derivation given by Pantelides in a recent review article 24 . 

One starts with the one-electron Hamiltonian for the imperfect 

crystal 

3-C 	r = E, 	, 	(2.7) 

and then expands ip v  in terms of the Bloch functions of the unper-

turbed crystal 

(F2 )=>,_  F„(W) -t;  (r--) 
h,R 

Here n denotes the band index, -13(' the wave vector and the F o (r) are 

the expansion coefficients. Upon writing H = H o  + U, where U is the 

(2.8) 



(E:( + 
nk 

Fp: (1-Z 	(r) 	(2.9) E 
V" 
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impurity potential; and using the expansion (2.8) in Eq. (2.7) the 

following equation is obtained 

After multiplying on the left by tp ry i„ integrating over all space 

and using the ortho-normality of the Bloch functions, i.e. 

Ot,  I = r hi,„' h I 
(2.10) 

there results after switching primed and unprimed symbols, the equa-

tion 

	

E: (1 ) Th (;)-f i <*h.1ZI U lt#19) F1 	 r 	n  '‘(1) 7 E7 F:(1- 	(2.1"  

One form of Bloch's Theorem states that the perfect crystal 

wave functions, 4t(;), can be written as 

0 	 )7.? 	0 

1/1--,  re) 	e 	 (2.12) 
ink 

where u
nk 
 -+(;) possess the periodicity of the crystal lattice. That is 

	

(r + )= zeta 	) 
	

(2.13) 

where 	is a crystal lattice vector. If the form of Eq.(2.12) is 

used in (2.11), the product 4—* k  (r) 4() can be expanded as 



(2.15) 

0 

141;u-4 ) v-hip ( ? ) 

nn • MCP  

(WI') (2.14) 

In Eq. (2.14) the ico 's are the reciprical lattice vectors and they 

yield the only contribution to the sum because of the periodicity 

condition given by Eq. (2.12). 	The matrix element in Eq. (2.11) can 

now be written as 

where U(4) denotes the Fourier transform of U(;) 

U( ) = fcri" U( r) t 
	

(2.16) 

When the relation given by Eq. (2.15) is substituted into Eq.(2.11) 

there results 

Erie ( TR) ) F1 1 ) 4  )-4. 	C-:46 -(?),VAri -rz i-rrX11 (g) = ET E,(;)(2.17) 
Ve 

Within the framework of one electron theory Eq. (2.17) is still exact. 

At this point we should mention that the potential U(;) shall be 

taken to be the hydrogenic one given by Eq. (2.1). Its Fourier trans-

form is given by 

Li, 	..  
	

(2.18) 

To solve Eq. (2.17) a series of approximations must now be 
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introduced. First only one band is assumed to contribute to the sum 

in Eq. (2.17) so the band index n can be dropped. The solutions F(k) 

are anticipated to be localized around IC = 0 so that 

« rep 	(2.19) 

This leads to droping the K p 	0 terms because of the form of the 

Fourier transform of the potential given by Eq. (2.18). 	Furthermore, 

since 

14"r 

Kr) = id3
r 2, 	h  ( 	 a,r, (r) -1 

 (2.20) 

The term C-+-)-
' 
 (o) is approximated by C-i-)-(o) which is equal to one by 

kk kk 

Eq. (2.20) and the orthonormality relation of Eq. (2.10). 	The sum 

over 14('' is now converted into an integral over all r'space. Finally, 

the unperturbed band energy E ° ( -0 is expanded to order k 2  about its 

extremum, i.e. 

0 
E 	) 	E e 	117-  

	

c 	2mA- 

As noted earlier m* is the effective mass and is given by Eq. 

With these approximations Eq. (2.17) becomes 

/12zini::  RIZ) +/:1 3k u(12)-W) F(') = E, FM 

(2.21) 

(2.22) 

where E b' the binding energy of the electron, is given by 
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Eb = 
	 (2.23) 

That is, it represents a binding energy of the impurity electron to 

the impurity center relative to the bottom of the conduction band. 

It is immediately obvious that Eq. (2.22) is equivalent to the 

Schrodinger equation in momentum space of a particle in the presence 

of a potential U and possessing a mass of m*. This can be transformed 

to coordinate space by defining 

F(17-')=/c)3  RIZ) 
	

(2.24) 

The resulting equation is given by 

-2:+2ri%  V 2-  + I-; F(F) 	Pr? ) 	(2.25) 

It is now apparent that the 'wavefunction' of the effective mass 

Hamiltonian is the Fourier transform of the expansion coefficients of 

Eq. (2.8). The function F(r) is known technically as the envelope 

function. 

When the band minima are not located at t = 0, the function 

F(t) is written as 

F(W)=-- 	cc,. F 
L=1 

where the F (i) (t) is localized about the i-th minima. This form of 

the envelope function leads to what are known as intervalley terms 

that couple wave vectors that lie near different extrema. These 
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terms are usually neglected due to the expectation that the different 

F (i) (1)'s have negligible overlap. The result 23bof this treatment 

yields a hydrogen-like effective mass equation, except that the kinetic 

energy term is anisotropic. These extrema usually lie along a crystal-

lographic direction and when this is the case that direction can be 

defined as the z-direction. Expanding O(k) about this extrema yields 

E°( 	E: + 	(l z:; 	) 
	

in 
	(2.26) 

* 
where m t and mi 

 are the transverse and longitudinal effective masses. 

The resulting one valley effective mass equation is then given by 

I -II:-  L),L .1.. g\ _, t#12-  S2' _ 	FJp(r) 

DY1 t  aX% 	(j 4•1 	21,17 a 12.7. 	6 '- 

,j) 

	

= E r` • (Y 
	

(2.27) 

b 

The effective masses m *  and m*  can be determined by cyclotron resonance 

experiments. For silicon 25  these parameters are given by 

rn 	O. 19 Ck5-  

/rri 0  = O. 9163 

= 111:7 wt„ = 0. 2_079 

while for germanium 26  

ry)tyrno  = 0. c) 8152. 

111e7n1c, = 1.5 88 

= O. 05 )3 11 

(2.28a) 

(2.28b) 
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Because of the anisotropic effective mass, Eq. (2.28) is no 

longer separable and some approximation method must be used. Kohn 

and Luttinger have used a trial function of the form 

F ( ) = 2_ 	* a 	bZ  
(2.29) 

   

where a and b are variational parameters, to obtain approximate bind-

ing energies of shallow donors in silicon and germanium. The results 

of a more complete calculation given by Faulkner 27  show that the 

energies obtained by the variational form of Eq.(2.29) yield remark- 

ably good binding energies. 

2.2 Ellipsoidal Conduction Bands and the Boundary Condition Near  

a Surface  

As was mentioned earlier, it was first pointed out by Levine 25 

 that since the height of the surface barrier can be several electron 

volts and since the binding energy of shallow donor impurities is on 

the order of milli electron volts, the surface can be assumed to be 

an infinite potential barrier. Levine then showed that in the ab-

sence of image charges the allowed states are the hydrogenic ones 

for which 12,-ml = odd. This result assumes that the impurity lies 

exactly at the surface. 

Since that time there have been several investigations of the 

energies and properties of these states. Bell
28 

et.al. used the 

selection rules of Levine and the bulk energies of silicon and 
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germanium to calculate transition energies. Petukhov 29  et.al. in-

cluded image charges in the effective mass Hamiltonian and performed 

a perturbation calculation on that system. Karpushin30  extended that 

perturbative treatment with the inclusion of linear band bending near 

the surface. In a later article Karpushin 31  used a variational 

method to calculate the binding energies of donors on silicon and 

germanium surfaces. It is important to note that all of these authors 

constrained the impurity to lie exactly on the surface. 

The restriction of the impurity to the surface plane shall not 

be assumed in the following. However, there are a number of simpli- 

fying assumptions which shall be made. First, because of the multiple 

minima of the conduction band in k-space, the crystallographic orienta-

tion of the surface becomes important. When considering the (001) 

plane of silicon or the (111) plane of germanium there exists
32 

two 

kinds of constant energy ellipsoids; those with their major axis 

parallel to the surface and those with their major axis perpendicular. 

One of the results of Karpushin 31  is that the ellipsoids with their 

major axes perpendicular give rise to a series of states which lie 

lower in energy than those with their major axis parallel to the 

surface. Consequently only these types of ellipsoids will be con-

sidered, because this allows a simplification in the requirements 

of the boundary condition p = 0 on the surface plane. In addition 

we shall assume that there is no change in the band structure near 

the surface, such as the formation of a space charge layer, so that 

there is no band bending near the surface. Finally, we shall be 



-65- 

working in the one-valley effective mass approximation
33

. 

The preceding considerations lead to an effective mass equation 

given by 

	

ZMitt( 	 Z r 	 €1. 

 7- 

(C2. - E1) 	 e  

	

Ei 	+ ez.) [rz. 4 41 Rz.  - zir-R cos 

- (62..-61) 	E 
yE, CEI+EL)(R-rcbse) (2.30) 

This equation must be solved subject to the boundary condition 

F(r)=o 	r cgs() = R 	 (2.31) 

Note that this last equation follows from the choice of the (001) 

surface for silicon or the (111) surface for germanium. In Eq.(2.30) 

m*  and m*  are the transverse and longitudinal effective masses , 
e 1 

denotes the static dielectric constant of the region containing the 

impurity, and in this case that is the semiconductor. The static 

dielectric constant of region B (see Fig. 1.1) is denoted by E 2 . 

This leaves open the option of solving for a semiconductor/insulator 

interface or a semiconductor/vacuum interface. From Eqs. (2.30) 

and (1.36) it is apparent that the methods of the previous chapter 

are applicable when m Irt  = ez . The last two terms on the right hand 

side of Eq. (2.30) are of course, the electron-image proton and the 
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electron-image electron terms respectively, 

In the following we shall be concerned with solving a scaled 

version of Eq. (2.30). All distances, including R, the distance 

of the impurity from the surface plane, are scaled to units of ef-

fective Bohr radii given by 

Cto  ryi/te. 	0..529 ( 	€1 " ) ni; 

and the energy is in units of effective Rydbergs 

* 	 * 
)3.(o  e  

Ry 	2. V E4. 

(2.32) 

(2.33) 

The scaled version of Eq. (2.30) is then given by 

bA 
2 a  

exz 	
4 	

22- / 	r 	
- ilrRcoseiT72.  

[R _ t_ cos63,-) 	 (2.34) 

where Q is given by 

(E.,- ei  
= (€2  El) 

and y is the effective mass ratio defined in Eq. (2.28). We note 

in passing that the effective mass equation has been scaled to the 

bulk semiconductor parameters rather than the surface units defined 

by Stern and Howard
32

. This scaling has been chosen for easier 

comparison to the bulk limit (R 	large) and because this choice 
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yields the factor (6 2  - e l )/(e l  + 62 ), This factor always lies be-

tween -1 and 1 whereas this is not the case for surface units. This 

feature is a practical one since large constants multiplying matrix 

elements are undesirable in the solution of the matrix equations. 

In the solution of Eq, (2.34), subject to the boundary condi-

tions of Eq. (2.31), a strategy that is a combination of the methods 

of Chapter 1 with a method presented by Faulkner
27 

is used. Since 

the change in the Hamiltonian of Eq. (2.34) from that of the last 

chapter is in the z-dependence only, all the symmetry properties 

previously discussed are valid here. In particular m remains a good 

quantum number while n and 2. do not. The difference from the R 

case in this situation is slightly different from that of the last 

chapter. This is due to the symmetry properties of Eq.(2.34) with-

out the boundary condition (2.31). The effective mass Hamiltonian 

is invariant under operations of parity and rotation about the z-

axis. This means that for the bulk impurity n and 2. are no longer 

good quantum numbers while m is; however states of even and odd 2, 

are not mixed, This means that the effect of the boundary condition 

in this situation is to mix states of differing parity. 

Since m remains a good quantum number the problem can again be 

reduced to the set of independent ones characterized by their m 

values. Using this we can write 

Fr, ( 17? ) = 	r cos e) 7  Rho  X h 2 wi  l r) 
h 

(2.35) 

where the choice of G(z) is as before. Now the XnStmis 
 are chosen as 



), 	 z_1(9) 
I/2 

(2.36) 

where y is the effective mass ratio and a is another non-linear vari-

ational parameter. The (1) 0,111 ( -;,$)'s are given by Eq. (1.12) and $ 

is the variational parameter that is discussed in Section 1.2. The 

parameter a is a measure of the asymmetry induced in the wavefunction 

due to the asymmetric effective mass. The choice of the functions 

given by Eq. (2.36) was inspired by the success of the Kohn-Luttinger 

form of Eq. (2.29); for upon setting a = 1/a and a = a2y/b2,  

X
1,0,0 (x 

 ,y,z) is given exactly by Eq. (2.29). 	This basis set dif- 

fers from that used by Faulkner inasmuch as we use the combination 

Sr rather than $r/n in the radial function where n is the principal 

quantum number. This means that for the calculation presented here 

there are only two nonlinear variational parameters whereas Faulkner 

must use a set of such parameters; the number of which depends upon 

the size of the basis set used in the expansion of the trial func-

tion. Of course, this means that we must calculate an overlap 

matrix, but as it has been shown this is not a great handicap. 

As before, the substitution of Eq. (2.35) into Eq. (2.34) will 

lead to a generalized eigenvalue problem of the form of Eq. (1.7). 

There is a transformation that facilitates the calculation of the 

Hamiltonian matrix elements. These matrix elements are given by 



<ni,Q'15c`') 	= 

xf—(c.—;z- 	+ 

/.4. (R-rcose 

2. 	2 a  
- 	.+ 	41v-Rcose] 1/2. 

Q ( z_roase) 
07 CR- t-cos) .(f.,) 3/22,p) 

( 2.37 ) 

Making the substitution 

= 

yields 

<111Q.1  I e" 1  hs.> = (R 	) 14-  rcos 

( 	+ 1.- 4 
g- r—)z  

2. G._  

IX2  + (62 	t lie- zi( 	rRcesej .1/2  

(1Z-V,„4)'" rcoso ) 1CR- V i/zk-cos e) JV (2.38) 

The overlap matrix elements are given by 



<14;11vo> - 	 wym 	
, (q) ( V (2.39) 

T•  

I (R 	(DSO) 

 

The subscript T and T' on Eqs. (2.37) and (2.38) indicates truncated 

regions of integration. The effect of the transformation is seen to 

be a simplification of the expansion functions at the expense of deal-

ing with more complicated operators. 

The generalized matrix equation whose elements are given by 

Eqs. (2.38) and (2.39) shall be solved numerically. The first step 

in this direction is the calculation of the quantities 

. 	V 2 1 (R4i lli rCaSe) 
and 

1/ 

(1-CC) 	 R—W i'COSe) 

(2.40) 

(2.41) 

The first of these expressions (Eq. (2.40)) has already been calculated 

(see Eqs. (1.11) and (1.16)). The second yields a somewhat compli-

cated sum of terms involving the Legendre and Laguere functions of 

various orders and will not be repeated here. Most of these terms 

can be integrated in closed form. However, for the third and fourth 

terms in Eq. (2.38) this was not found to be the case, Consequently 

these terms were numerically integrated as previously described. 

The general method of the numerical solution of the matrix 

equations is the same as described in the previous chapter. However, 

there is now an additional parameter, namely a, which must be varied 
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to yield an optimized energy. In practice the energy is a relatively 

slowly varying function of a near the optimum values of these quanti-

ties and this feature eases the problems associated with locating a 

minimum in a two parameter space, 

2.3 	Donor Impurities Near the Silicon (001)/Vacuum and the  

Germanium (111)/Vacuum Interfaces  

Before discussing the results of this section, all of which 

are presented in effective units. the various physical constants of 

silicon and germanium that are relevant to this problem are presented, 

The effective masses have already been given in Eqs. (2.28b)  and 

(2.28c) and from Eq. (2.30) the other parameters needed are seen to 

be the static dielectric constants of silicon and germanium. Faulkner27 

 has determined low temperature values of these dielectric constants 

by requiring that the donor spectrum calculated in the effective 

mass approximation have an optimum fit to the experimentally de-

termined donor level spacing. These values are given by 

Es  = 11. 41 
	

(2.42a) 

E Ge  = /S.36 
	

(2.42b) 

Using these values and those of (2.28) the effective units for silicon 

are given by 

2 e • 
„  5'2. = 31.7A m e 

(2.43a) 



* 	q 
* 	nits;  e 

Kv — 
Pi — 2 Itz 	

7-7 	1. cliff x /0 eV 	(2.43h) 

while those for germanium are 

	

Cto  „ = qq. 7 A 
	

(2.43c) 

y:c LL7Ox 10-3  eV. 	(2.43d) 

To convert the following results to measurable units one needs only 

to multiply by the appropriate member of Eqs. (2.43). 

Besides the introduction of an anisotropic effective mass, the 

major difference from the problem of the preceding chapter is that 

the 'hydrogen atom' is now imbedded in a dielectric media and is 

near an interface with a media possessing a lower dielectric con-

stant. This means that the image charges possess the same sign 

(positive or negative) as the charges that induce them. This can be 

seen from the form of the dielectric quotient given by (6 2 -E 1 )/(ci +e2 ). 

This results in a repulsive electron-image electron interaction, 

while the electron-image proton interaction now becomes attractive. 

The results of the 'perfectly imaging' plane show that, at 

least for the ground state, the absolute value of the expectation 

value of the electron-image proton interaction is greater than the 

expectation value of the electron-image electron interaction. Since 

the former of these quantities is negative, at a large enough dis-

tance from the surface the ground state electronic energy is expected 



to be lower than the R = 0. limit when there is no image charge con-

tribution. As the impurity is moved closer to the surface, the change 

in the energy due to the exclusion of the electron from the half-

space rcose a R will begin to dominate and begin to raise (as a func-

tion of the impurity distance from the surface) the ground state 

energy. Therefore, we expect to see the formation of a minimum in 

the ground state electronic energy. 

The results presented in Tables 2.1 	through 2.3 	show that 

this is precisely what takes place. Table 2.1 presents the ground 

state energy of an impurity near a silicon surface for y = 1.0; that 

is, as if silicon possessed a spherical conduction band. The bulk 

limit in this case is given by the hydrogenic -1.0 Ry*. Tables 

2.2 and 2.3 give the ground state properties of a donor impurity 

near the (001) silicon surface and the (111) germanium surface re-

spectively. The bulk values for these two systems, in effective 

Rydbergs, are given by
27 

si 
E. ( R---> co) =-1 . 568 Ry .s, 

E06` (R --> co) =- -2.0 8 7 Ry*,, 

(2.44a) 

(2.44b) 

As a calculational check, the energies of these ground states were 

computed at a distance from the surface of 100 a /cc) , yielding, 

S. 

E o  (R -- / 00 a:,, ) = -1.57i Rylvs,  

E.:: CR --7- loo 	- 2. Dc1 4-1 Ryae  

which is in agreement with the bulk values. 

(2.44c) 

(2.44d) 
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TABLE 2.1 

Ground state properties of a shallow donor near the surface of 

a symmetric (y=1) silicon. All quantities are given in bulk units 

defined by Eqs. (2.32) and (2.33). E 0  denotes the ground state 

energy, T the average kinetic energy and V1 , V 2 , V3  are the average 

values of the three potential terms in Eq. (2.34) respectively. 

R 	E
o 	

T 	V1 	 V2 	
V
3 

0.2 -0.6064 0.6373 -0.8658 0.2380 -0.6159 

0.4 -0.6507 0.7670 -1.0594 0.2586 -0.6169 

0.6 -0.7221 0.9696 -1.3522 0.2841 -0.6237 

0.8 -0.8098 1.1662 -1.6626 0.3001 -0.6135 

1.0 -0.8945 1.2853 -1.8972 0.3000 -0.5825 

1.2 -0.9640 1.3268 -2.0379 0.2882 -0.5410 

1.4 -1.0158 1.3204 -2.1092 0.2708 -0.4978 

1.6 -1.0521 1.2912 -2.1381 0.2519 -0.4571 

1.8 -1.0767 1.2539 -2.1434 0.2332 -0.4204 

2.0 -1.0925 1.2160 -2.1364 0.2157 -0.3878 

3.0 -1.1086 1.0827 -2.0674 0.1498 -0.2736 

4.0 -1.0944 1.0302 -2.0273 0.1111 -0.2084 

5.0 -1.0794 1.0121 -2.0115 0.0875 -0.1674 

6.0 -1.06/6 1.0057 -2.0056 0.0720 -0.1397 
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TABLE 2.2 

Ground state properties of a shallow donor near the (001) sur-

face of silicon. (y = 0.2079, entries and units are as in Table 2.1.) 

R E T 1 V2 V 3  

0.2 -1.3601 1.3555 -2.0850 0.6374 -1.2679 

0.4 -1.5927 1.6827 -2.7632 0.6695 -1.1817 

0.6 -1.7496 1.8436 -3.1709 0.6084 -1.0307 

0.8 -1.8133 1.8267 -3.2815 0.5165 -0.8750 

1.0 -1.8278 1.7695 -3.2845 0.4345 -0.7472 

1.2 -1.8210 1.7255 -3.2681 0.3685 -0.6469 

1.4 -1.8061 1.6701 -3.2350 0.3167 -0.5670 

1.6 -1.7890 1.6466 -3.2085 0.2762 -0.5032 

1.8 -1.7722 1.6243 -3.1891 0.2441 -0.4515 

2.0 -1.7568 1.6094 -3.1755 0.2183 -0.4089 

3.0 -1.7013 1.5796 -3.1469 0.1425 -0.2765 

4.0 -1.6697 1.5723 -3.1396 0.1060 -0.2084 

5.0 -1.6499 1.5698 -3.1372 0.0845 -0.1671 

6.0 -1.6365 1.5688 -3.1361 0.0702 -0.1394 
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TABLE 2.3 

Ground state properties of a shallow donor near the (111) sur-

face of germanium. (y = 0.05134, entries and units are as in Table 

(2.1).) 

V1  V2 V3 

0.2 -2.3013 2.2378 -3.7971 1.2923 -2.0343 

0.4 -2.5389 2.4841 -4.4397 1.0238 -1.6071 

0.6 -2.5485 2.4160 -4.4679 0.7463 -1.2428 

0.8 -2.5035 2.2929 -4.3725 0.5673 -0.9912 

1.0 -2.4538 2.2164 -4.3039 0.4523 -0.8185 

1.2 	. -2.4104 2.1721 -4.2622 0.3747 -0.6951 

1.4 -2.3743 2.1460 -4.2369 0.3195 -0.6030 

1.6 -2.3447 2.1298 -4.2211 0.2785 -0.5320 

1.8 -2.3203 2.1194 -4.2108 G.2469 -0.4757 

2.0 -2.2998 2.1124 -4.2038 0.2216 -0.4300 

3.0 -2.2343 2.0981 -4.1896 0.1470 -0.2898 

4.0 -2.1980 2.0943 -4.1848 0.1100 -0.2183 

5.0 -2.1785 2.0132 -4.1847 0.0879 -0.1749 



The ground state energies of the 'isotropic effective mass' 

silicon and the real silicon systems are presented graphically 

in Fig. 2.1, 	while the germanium system is given in 

Fig. 2.2. There are basically three regions of different behavior 

depicted in these graphs. At large R the impurity levels are approach-

ing their indicated bulk levels. Also there now exist minima which 

occur at approximately 2.6 a ic;, 1.0 .4; and 0.5 d(*)  for the 'isotropic' 

silicon, real silicon and germanium systems respectively. Finally 

when the impurity is close to the surface there is a steep rise in 

the electronic energy. The main difference in the behavior of the 

energy as a function of the impurity distance from the surface be-

tween these three systems lies in the location and the depth of the 

energy minimum. This difference is due to the changing value of y, 

the effective mass ratio and can be explained in the following manner. 

In the bulk situation, the change in the wavefunction due to y < 1.0 

in Eq. (2.34) is to compress is (the wavefunction) slightly in the 

z-direction 23 . Since the surface is perpendicular to the z-axis, 

this means that an impurity wavefunction for a specific value of the 

effective mass ratio will experience a lesser perturbation than the 

wavefunction corresponding to a large value of the effective mass 

ratio. Consequently, the minimum in energy will occur at smaller 

scaled distances from the surface as the value of the effective mass 

ratio is decreased. Note that this argument is true only for the 

scaled Hamiltonian, and that the minimum energy of a donor in 

germanium occurs at a larger distance than it does for a donor in 

silicon. 



Fig. 2.1 	Ground state energy of a shallow donor impurity near the (001) surface 

of silicon. Also included are the results for an isotropic effective 

mass. The bulk values are given by the lines under the B. Units are 

those of effective Rydbergs and effective Bohr radii as defined in text. 
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Fig. 2.2 	Ground state energy of a shallow donor impurity near the (111) surface of 

germanium. 
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The excited state energies for a donor impurity near the (001) 

surface of silicon and the (111) surface of germanium are presented 

in Figures 2.3 and 2.4. The approach to the bulk values of the energy 

levels of the excited states takes place at a slower rate due to the 

larger 'spatial' extent of these states. Note that because the 

states labelled (0,3) and (1,1) (recall that the first label refers 

to the value of the m quantum number while the second give its posi-

tion in the spectrum of levels with the same m quantun number) 

possess different azimuthal quantum numbers, there is not, as it 

might appear, an avoided crossing between them. 

In a manner analogous to that of Sec. 1.4 the total interaction 

energy of a shallow donor with the surface can be constructed. This 

interaction energy consists of the change of the ground state energy 

from its bulk value, the interaction of the positive impurity with 

its positive image and the interaction of the positive impurity with 

the negatively charged image electron. As before this last quantity 

is given by an expectation value and cannot be calculated until the 

electronic problem has been solved. At small distance the 'proton'-

image proton term will dominate to give a repulsive potential, how-

ever both of the remaining quantities give negative contributions 

so that a minimum appears in the interaction energy. The interaction 

energy of a donor impurity with a surface in a 'isotropic' silicon, 

the actual (y = .2079) silicon, and the germanium media have been 

constructed from Tables 1.1 , 1.2 	and 1.3. 	These energies are 

presented in Fig.2.5. 	The minima in these curves appear at slightly 
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Fig. 2.3 	Excited states of a shallow donor impurity near the (001) surface of 

silicon. 



Fig. 2.4 Excited states of a shallow donor impurity near the (ill) surface of 

germanium. 
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Fig. 2 . 5 	Interaction energy of a shallow donor impurity with the surface of a 

semiconductor for three different systems. 
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smaller distances than the corresponding minima in the ground state 

electronic energies. The minimum interaction energy for a donor im-

purity near the (111) surface of germanium occurs at a distance of 

approximately 0.5 a *Ge , while for the silicon system this scaled 

distance increases to about 0.8 a
*Si  , and finally for the y = 1 case 

to '1,2.0 a
*Si

. In angstroms these distances are given by 50 A, 25 4 
and 63 A respectively. While it would be perhaps erroneous to sug-

gest that donor impurities would actually tend to cluster at these 

distances because of the many simplifying assumptions, we might now 

suspect that the concentration of donor impurities would show a 

maximum at a certain distance from the surface; and this distance 

would be larger in germanium than in silicon. 

2.4 A Donor Impurity Near the Si/Si0 2  Interface of a M.O.S. 

Field Effect Transistor  

The acronym MOSFET is derived from the combination Metal-Oxide-

Semiconductor-Field Effect Transistor, and such a device is pictured 

schematically in Fig. 2.6. The metal gate is used to apply an 

electric fiEld perpendicular to the surface of the semiconductor, 

from which it is insulated by an oxide layer. An n-type inversion 

layer can be produced in a p-type semiconductor at the surface if the 

energy bands near the surface are bent down enough so that the 

bottom of the conduction band lies near or below the Fermi level. 

Such a situation is referred to as an inversion layer since the 

majority carrier type in that region is the opposite of the bulk 
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Fig. 2.6 	Schematic of a metal-oxide-semiconductor field effect. 
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majority carrier. The band bending required to produce an inversion 

layer can be produced from the field applied by the metal gate. 

If the electric field is strong enough, electrons in the conduc-

tion band can become quantized in the direction perpendicular to the 

surface, while remaining in a continuum for motion parallel to the 

surface. One of these quantized states is known as an electric sub-

band and to a good first approximation these sub-band energies can 

be modelled as the eigenvalues of a one dimensional potential wel1. 32 

 Referring to Fig. 2.6, when the gate voltage is large enough, an 

essentially two dimension conductance can be observed between the 

electrodes marked source and drain. 

Recently, Hartstein and Fowler
34,35 

have observed an effect in 

the conductance, as a function of gate voltage, in a MOSFET that can 

be attributed to the formation of an impurity bend. Briefly, the 

experiment consisted of drifting Ma +  ions close to Si-Si0 2  interface 

and then measuring the conductance of the channel as a function of 

gate voltage. What is observed is the appearance of a peak in the 

conductance below the threshold for 2-dimensional metallic conduction. 

This is illustrated in Fig. 2.7. By measuring the conductivity of 

the peak as a function of temperature, the binding energy of an 

electron to one of the impurities can be determined from the slope 

of a plot of the log of the conductivity versus the inverse of the 

temperature. We note here that the impurity is generally thought to 

be located several angstroms away from the interface; but it is 

located in the oxide layer while the electron is located in the 



I 
3 

4 E  2 

0 
1— 
z 

cc 

1 

Nok  • 5 x 10" cm-2 

 Vs  • OV 

1 	1 	1 	1 	1 	1  
04 	0.6 	0.8 	1.0 	1.2 	1.4 

V (Volts) 

Fig. 2.7 The experimental results of Hartstein and Fowler for the 

channel conductivity of a MOS field effect transition. 
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metallic conduction indicating the formation of an 

impurity band. 
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semiconductor inversion layer. 

As in the previous section, only the (001) surface of silicon 

shall be considered. Now, however, the dielectric constant of region 

B (see Fig. 1.1) will be taken to be that of Si0 2 , that is E 2  . 3.8. 

For the sake of comparison with other theoretical results, in the 

following the dielectric constant of silicon shall be taken as 

c
1 
= 11.8. Since the discontinuity in energy as an electron passes 

from the silicon to the silicon dioxide is about 3 eV, the boundary 

condition lir = 0 at the interface shall again be applied 32 . 

There are two modifications of the Hamiltonian of the last sec-

tion to make it applicable to the present problem. First, the posi-

tively charged impurity is located in the oxide layer which changes 

the constant factor in its interaction with the electron; and con-

nected with this, the image of the impurity is absent. Second, the 

change in the potential energy of the electron due to the presence 

of the electric field must be taken into account. The electric field 

can be a complicated function of the perpendicular distance to the 

interface, however a reasonable first approximation is to employ a 

32 
constant field . 

These considerations lead us to a Hamiltonian given by 

= 	 )1 	 ez  
3xz 	ate / 	27,,;;„2- 	 (E.I+Ez)r 

(ez- El) cz  
(€1-1-Ez)(R_I.-case) 	4  eE (R—V-coses) (2.45) 



P<E_, 
91 (E ci-E z ) 

(E L- E,) 
(2.47) 

where c
1 
and e 2 are the dielectric constants of silicon and silicon 

dioxide respectively and E is the local electric field. As before 

this equation is scaled to bulk units 

Jz.
= (ixa ;z) 	y 	

(€ 11 	r 

El)  
(c, + €. 2 ) (R-rcose) ÷ 2 e t3 	)2f (R- i- cose) (2.46) 

This must be solved subject to the condition that ip = 0 when R= rcose. 

All distances are in effective Bohr radii and all energies are in 

effective Rydbergs (Eq. 2.43)). 	Once the matrix elements involving 

the field term have been included in the Hamiltonian matrix, the 

energy levels are obtained in the manner previously discussed. 

The binding energy of the electron in the present case is not 

simply given as the absolute value of the ground state of Eq. (2.46). 

This is due to the fact that the electron is making a transition to 

the first electric sub-band and not to a bulk-like conduction band. 

In the absence of the impurity potential the Hamiltonian (2.46) 

becomes 

In Eq. (2.47) E is to be in electrostatic units and therefore K has 

the value 

1.1x161  63 (TA )2 
	

(2.48) 



Of course, the electron in this system also experiences the potential 

jump upon entering the silicon dioxide and the boundary condition 

Ip(o) = 0 must be applied. 

If the repulsive image term of Eq.(2.47) were absent the system 

would be the exactly solvable one of a triangular potential well where 

the eigenfunctions are given by the Airy functions. When the image 

term is present a simple variational calculation yields very accurate 

values for the electric sub-band energy levels. A trial function of 

the form 

N 

rtP(a) = e 	R 2"1  (2.49) 

is chosen. Notice that this trial function satisfies the correct 

coundary conditions. As in the previous situations, the linear 

variational parameters A n  lead to a matrix equation whose eigenvalues 

are optimized by varying the parameter a. The binding energy of the 

electron is therefore given by 

E6 = E(3-00) E(x) 
	

(2.50) 

and is dependent upon the electric field through Eqs.(2.46) and 

(2.47). 

This system has been considered by several different authors 

recently. Martin and Wallis 36  have used a simple variational form 

to calculate binding energies only when the impurity is located on 

the interface. Lipari 37  has utilized a basis set which is certainly 



correct when the impurity is on the interface but may not be so when 

the impurity is at a finite distance from the semiconductor/oxide 

interface. Hipolito and Campos
38 

have used the variational forms of 

Martin and Wallis to calculate the effect of electrons in the electric 

sub-bands screening the impurity potential and thus changing the 

binding energy. This screening shall not be considered further in 

this report. 

The binding energy of an electron to a donor impurity located 

on the interface between the silicon and silicon dioxide as a func-

tion of electric field is presented in Fig. 2.8. 	The results of 

Martin and Wallis and those of Lipari, which are the same as in the 

present calculation are presented. Because of the simple variational 

form the results of Martin and Wallis lie below those of Lipari and 

of the present calculation. The binding energy given by Fig.2.8 is 

larger than that found experimentally by Harstein and Fowler, but 

as shall be seen when the impurity is moved off the interface and 

into the oxide layer the binding energy decreases. 

The binding energy of the electron at zero field is exhibited 

in Figs. 2.9 and 2.10 as a function of impurity distance from the 

interface. In the first of these figures the donor impurity is 

located in the silicon layer while the second locates the impurity 

in the silicon dioxide layer. As can be readily seen there is a 

large discrepancy between the present calculation and the results 

of Lipari. This is most likely caused by Lipari's use of an in-

correct basis set. While noting the importance of the boundary 



Fig. 2.8 Binding energy of an electron to a donor impurity located on the interface 

between the silicon and silicon dioxide as a function of electric field. 

Energy is in units of effective Rydbergs while the electric field is 

given in electrostatic units (esu). 
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condition 11) = 0 on the interface, Lipari chooses as a basis set 

r) ) e.rn (G, 50) 
	

(2.5 1) 

where 

-r,(0  	c,d. e:ccir 
	

(2.52) 

and the C if  and aj  are the linear and non-linear variational param-

eters respectively. Later it is noted that only the 2 = odd terms 

contribute to the ground state in Eq. (2.51) (m=0). But this is 

only correct when the impurity is located on the interface and this 

is illustrated by the coincidence of the results at R=0.0. The 

point to note in this connection is that the binding energy of the 

electron decreases more rapidly as a function of impurity distance 

from the interface (when in the oxide layer) than has been calculated 

by Lipari. 

The electron binding energy to an impurity center located in 

the oxide layer for several electric field strengths has been cal-

culated and these results are presented in Table 2.4 and Fig. 2.11. 

Also shown are the experimental results of Hartstein and Fowler who 

have found that for electric fields of 19.9 and 60.4 esu the binding 

energies are 18 and 25 meV, respectively. These results differ from 

those of Lipari inasmuch as distance from the interface does not 

turn out to be the same for both field strengths. The binding energy 

of 18 meV for the field strength of 19.9 esu occurs at approximately 

10 4, while that for the 25 meV binding energy at the 60.4 esu field 



TABLE 2.4 

Binding energy as a function of impurity distance into the oxide 

layer for several values of the electric field strength. 

R E = 0.0 esu e = 10.0 esu e = 19.9 esu e = 60.4 esu 

0.0 0.9423 1.1949 1.2903 1.5062 

0.2 0.7327 0.9723 1.0566 1.2373 

0.4 0.6143 0.8437 0.9198 1.0762 

0.6 0.5347 0.7553 0.8298 0.9627 

0.8 0.4763 0.6891 0.7530 0.8762 

1.0 0.4311 0.6369 0.6960 0.807 

1.2 0.3949 0.5942 0.6492 0.7499 

1.4 0.3650 0.5584 0.6097 0.7017 

1.6 0.3398 0.5277 0.5757 0.6602 

1.8 0.3183 0.5010 0.5461 0.6239 

2.0 0.2996 0.4775 0.5199 0.5920 

3.0 0.2336 0.3912 0.4234 0.4747 



Fig. 2.11 Binding energy at several field strengths as a function 

of impurity distance into the silicon dioxide layer. 

The experimental results of Hartstein and Fowler are 

also included. The curve A is at 10 esu, B at 

19.9 esu and C at 60,4 esu electric field strength. 
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strength occurs at %4 A into the oxide layer. 



APPENDIX A 

ENERGIES FOR SOME EXCITED STATES OF THE 

HYDROGEN/IMPENETRABLE WALL SYSTEM 

Table A.1 Properties of the fourth excited state of the hydrogen/ 

impenetrable wall system. E(m,p) denotes the energy of the p-th 

eigenvalue with an azimuthal quantum number of m. Note the dis-

continuity in the proprties between R=3.4a 0  and R=3.6a 0  indicating 

a level crossing. 

R E(0,4) z 
0.0 -0.0625 0.0625 -0.1250 

0.2 -0.0637 -22.77 0.0649 -0.1286 

0.4 -0.0650 -21.91 0.0676 -0.1326 

0.6 -0.0663 -21.04 0.0705 -0.1368 

0.8 -0.0677 -20.16 0.0736 -0.1413 

1.0 -0.0692 -19.27 0.0770 -0.1463 

1.2 -0.0709 018.38 0.0808 -0.1517 

1.4 -0.0726 -17.47 0.0851 -0.1576 

1.6 -0.0744 -16.55 0.0898 -0.1642 

1.8 -0.0764 -15.62 0.0952 -0.1716 

2.0 -0.0785 -14.66 0.1013 -0.1799 

3.0 -0.9359 - 9.45 0.1540 -0.2476 

3.2 -0.9793 - 8.29 0.1724 -0.2703 

3.4 -0.1029 - 7.10 0.1947 -0.2976 

3.6 -0.1085 -18.45 0.1145 -0.2229 

3.8 -0.1088 -18.36 0.1143 -0.2231 

4.0 -0.1091 . -18.29 0.1141 -0.2232 

5.0 -0.1100 -18.01 0.1133 -0.2233 
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Table A.2 Properties of the fifth excited state of the hydrogen/ 

impenetrable wall system. 

R E(1,2) uZ  

0.0 -0.0625 0.0625 -0.1250 

0.2 -0.0641 -25.33 0.0658 -0.1299 

0.4 -0.0659 -24.39 0.0695 -0.1354 

0.6 -0.0678 -23.44 0.0737 -0.1415 

0.8 -0.0698 -22.46 0.0784 -0.1482 

1.0 -0.0720 -21.48 0.0835 -0.1555 

1.2 -0.0744 -20.51 0.0888 -0.1632 

1.4 -0.0768 -19.58 0.0942 -0.1710 

1.6 -0.0793 -18.67 0.0993 -0.1786 

1.8 -0.0818 -17.83 0.1040 -0.1858 

2.0 -0.0842 -17.06 0.1080 -0.1923 

3.0 -0.0944 -14.17 0.1189 -0.2132 

4.0 -0.1009 -12.42 0.1209 -0.2218 

5.0 -0.1048 -11.29 0.1202 -0.2250 
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tering characteristics. These effects persist even if 
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Peierls's long-range-order parameter, <6 2>, are obtained 
and their asymptntic hehavJour evaluatce The asymptotic 
forms redace to the knoam reeulta for strict 10 and 2D 

systems when the coupling to the substrate vanishes. 

Using the expressions for <e> Ehe frequency integrated 

dynarrAcal structure factors,S(0, for scattering from 
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relaxation in metals is investigated via a method that 

combinee the contribution to the force on ions in surface 

layers due to the delocalized valence electrons distribution 

with that due to the interaction with the positive ionic 
clerges in the planar ncan. Three models fur the elece 

tionic density in the surface region are studied and cora- 

pered: (a) an abrupt termination (b) an exponential vari-

szional form (c) self-consistent distribution derived 

from the jellium model. Pseudopotential corrections are 

also investigated. Ions ia anarbitrary number of layers 
are allowed to rtlax and the equations for static equil-

ibrium are solved by a fan!, converging iterative scheme. 

The eurfnce structuren of the low-index faces of At, Li, 

Na and Cu aro investilted yielding reeults consistent. 

with available afaeat analyses. line importance of multi-
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condectivitrappltretion tie Suprrionic COnductors. 
NICHAEL 	 G..ottla Tr.ch„--The Schcr - Lax model 
for the calculation of A.C. conductivity is modified to 

allow for temporal, and spatial correlations. If, due to, 
say, lattice relaxation effects, an ion is most likely to 
ea • Itlue to mova in the same direction (caterpillar mech- 
anaam) •  then the real part of the conductivity will satur-

ate, at large frsqueneies, below the D.C. level. The 
reverse will he ti to if a bounee-back mechanism dosdnates. 
Uwe: Leo Lyees of correlations may be related to the be-
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curve. The fLo;.,ncy deponac.nt candectivity due to the 
motion of via Ionic dieter is also anelyzed. 



EPITAXIAL CRYSTALLIZATION FROM A MELT AND SURFACE MELTING: 

A SURFACE MOLECULAR DYNAMICS STUDY*  

Uzi Landman, C. L. Cleveland and C. S. Brown 

School of Physics 

Georgia Institute of Technology 

Atlanta, Ga. 30332 

The processes of epitaxial crystal growth and surface melting are studied 

using a newly developed Surface Molecular Dynamics technique. In order to in-

vestigate surface processes and in particular non-equilibrium surface phenomena 

such as crystallization, we allow for a dissipative dynamic coupling between a 

surface region -- in which periodic boundary conditions parallel to the surface 

plane only are imposed -- and a bulk reservoir which possesses the full 3D 

periodic boundary conditions. The full dynamics of both parts is computed by 

integrating the coupled classical equations of motion. The bulk unit block as 

well as the surface region contain 500 particles each. In the study of epitax-

ial crystallization an equilibrated surface system (exposing the (100) face for 

Argon) equilibrated at T = 47.9 °K was prepared and put in contact with an equi-

librated liquid sample (500 particles) at: (a) T = 88.3 °K and (b) a supercooled 

liquid at T = 47.9 °K. The evolution of these combined non-equilibrium systems 

was followed monitoring the structure characteristics of the system (particle 

density profiles, pair distribution functions, Voronoi polyhydra signatures, 

translational and orientational order parameters) and its dynamical correlations. 

It is observed that in case (a), upon solid/liquid contact the outermost solid 

surface region disorders in layers followed by the development of a layered 

structure in the liquid region. In case (b) an "explosive" crystallization 

occurs. Upon achieving equilibrium a crystalline form is obtained. The ability 

of epitaxial crystallization to anneal certain surface structural defects is 

demonstrated. 

*Supported by U.S. DOE Contract No. EG-77-S-05-5489. 

Presented at: 

"Ordering in 2D", Lake Geneva, Wisconsin, May, 1980. 



SUBSTRATE EFFECTS ON LONG-RANGE ORDER AND SCATTERING 

FROM LOW-DIMENSIONAL SYSTEMS
* 

Charles L. Cleveland,  Charles S. Brown and Uzi Landman 

School of Physics 

Georgia Institute of Technology 

Atlanta, Ga. 30332 

Using solvable models it is shgown that coupling 1D and 2D lattices to 

substrates produces significant alterations in their long-range order and 

scattering characteristics. These effects persist even if the coupling is 

rather weak. Analytical expressions for Peierls's long-range-order parameter, 

<0>, are obtained and their asymptotic behaviour evaluated. The asymptotic 

forms reduce to the known results for strict 1D and 2D systems when the 

coupling to the substrate vanishes. Using the expressions for <(5 .1> the 

frequency integrated dynamical structure factors, S(Q), for scattering from 

these "Quasi-1D and 2D" systems are evaluated. The results demonstrate the 

alterations introduced by the coupling and provide functional forms which 

could be used to fit neutron scattering data from adsorbed layers. 

Supported by U.S. DOE Contract No. EG-S-05-5489. 

Presented at: 

"Ordering in 2D", Lake Geneva, Wisconsin, May, 1980. 



EPITAXIAL CRYSTALIZATION FROM A MELT 

AND SURFACE MELTING: A SURFACE 

MOLECULAR DYNAMICS STUDY 

C. L. Cleveland, C. S. Brown and Uzi Landman 

School of Physics 

Georgia Institute of Technology 

Atlanta, Ga. 30332 

The processes of epitaxial crystal growth and surface melting are 
studied using a newly developed Surface Molecular Dynamics technique. 
In order to investigate surface processes and in particular non-equilibrium 
surface phenomena such as crystallization, we allow for a dissipative dynamic 
coupling between a surface region-in which periodic boundary conditions 
parallel to the surface plane only are imposed-and a bulk reservoir which 
possesses the full 3D periodic boundary conditions. The full dynamics of 
both parts is computed by integrating the coupled classical equations of 
motion, using appropriate interaction pair-potentials (Lennard-Jones for 
rare gas systems and pseudo-potentials for Rubidium). The bulk unit block 
as well as the surface region contain 500 particles each. In the study of 
epitaxial crystallization an equilibrated surface system (exposing the (100) 
face for Argon) equilibrated at T = 47.9 °K was prepared and put in contact 
with an equilibrated liquid sample (500 particles) at:(a) T = 88.3 °K and 
(b) a supercooled liquid at T=47.9°K. The evolution of these combined 
non-equilibrium systems was fol lowed for thousands of time steps (where 
the basic unit t = 1.633 x 10-1  sec), monitoring the structure characteristics 
of the system (particle density profiles, pair distribution functions, 
coordination, Voronoi polyhydra signatures, translational and orientational 
order parameters) and its dynamical correlations (kinetic coefficients). It is 
observed that in case (a),upon solid/liquid contact the outermost solid surface 
region disorders in layers followed by the development of a layered structure 
in the liquid region. The process of ordering is accompanied by the expulsion 
of latent heat which propagates (influencing the media in a nonlinear manner) 
via collective modes and eventually dissipates in the bulk. In case (b) an 
"explosive" crystallization of the supercooled liquid occurs. Upon achieving 
equilibrium a crystalline form is obtained. The ability of epitaxial crystall-
ization to anneal certain structural defects in the suface region of the sub- 
strate is demonstrated. Details of the microscopic mechanisms of crystallization 
and surface melting are discussed. 

Supported by U.S. DOE Contract No. EG-77-S-05-5489. 

Presented at: The 40th Physical Electronics Conference, Cornell University, 

Ithaca, New York, June 1980. 



• American Physical Society 

March 24, 1980 

ics and Astronomy 
sification Scheme 
er 71.70 

Suggested title of session in 
which paper should be placed 
Hydrogen-Bonded Silicon 

Ab-init.i_o Calculations on Hvdrocen-bounded Silicon  
Clusters. A. C. Kenton, M. W. Ribarsky, Georgia Institute 
of Technology.*-- Unrestricted Hartree-Fock (UHF) molecular 
cluster calculations for the groundstate and various ex-
cited electronic states have been carried out for a Si 5H12 
cluster for several different Si-H bond lengths. Each 
clUster is geometrically arranged in a diamond crystalline 
lattice. The adequacy of using a fro zen core potential 
for the five silicon atoms has been established by compa-
rison to a calculation allowing relaxation of the core on 
the one central silicon atom. The determination of the 
"band gap" of the cluster by .using Koopmans' theorem 
versus ASCF calculations has shown electronic relaxation 
to be a significant factor. The cluster band gap is shown 
to appreciably change for the various Si-H bond lengths, 
yet the charge densities in the Si-Si bond regions remain 
similar illustrating the adequacy of the central bonding 
region. The charge densities that have been obtained are 
comparable to experimental x--ray and theoretical local 
and non-local pscudopotential slab calculations describing 
bulk silicon. Methods ocher than hydrogen saturators for 
describing the bulk boundary conditions will be discussed. 
*Supported in part by NSF Contract DMR77-22851 and US DOE 
Contract EC-S-05-5489 
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