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e. Technical Description of Project and Results 

I. 	Complexity of Fixed Point Computation 

Let q : # -4 9 be a nonexpansive mapping, that is 

I q(x) - q(x) I 5_ I x - q(x) I 	 V x,y E 9. 

Let B c 91d  be a closed ball of radius R. For E > 0, we wish to investigate how the informational 
complexity of the problem: 

P(E) 	either find x E 9 such that I x-q(x) I < E, or show that q has no fixed point in 
B 

depends upon E (while holding d fixed). 
We must first describe the class C of algorithms for solving P(E) to which our analysis 

pertains. These algorithms call an oracle which returns, for a given input x E 9, the value q(x). 
During iteration i (i= 0,1,...), the only decision made by an algorithm A E C is the choice of the 
point xi  E 9 that is to be submitted to the oracle. The algorithm is assumed to be deterministic in 
the sense that this choice of xi  must depend only on the information that has already been gathered, 
namely the values xo,...,xi_i, q(x0),...,q(xj_i). This means that if two nonexpansive mappings q 
and q' have the property that q(x0)=q'(x0),...,q(x j_i)=q'(xi_i), then A chooses the same value xi  
for both mappings. Since there is no previous information during iteration 0, this implies that A 
starts always with the same xo. 

A is said to solve P(e) in n steps  if for every nonexpansive mapping q: 9id  -4 #, A 
produces, after n steps, either an xn  E wd such that I xn  - q(xn) I < E or concludes that q has no 
fixed point in B. Define x(E), the complexity  of the problem P(E) to be the minimum n such that 
there exists a deterministic algorithm A which solves P(E) in n steps. We will establish a lower 
bound for xis). 

Our principle tool for accomplishing this is the following 

LEMMA: 	IsA B c 9i 121 A closed  tali ol radius R > 0. La x0,...,.xn  E 9, yo,...,y n E B. 
Define 

13,1 = fz E B : I z-yi 1 	I z-xi I , i = 0,...n), 

min ' 	. 1 an  = mui R  : =0,...,4 

v —
v 010 n)  

n  Wd Rd  
(cod  = content of unit d-ball). 
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Suppose  that 

(Q0)) i. I yi-y;  I S I xi-xj1 (for all 0 5 i .5 n,05j5n) (in other words, 

i(xo,Y0),•••,(x n,yd) is a nonexpansive relation on Td) 

ii. vn  > 0 (that is, the set Bn  of possible fixed points for the relation 
{(x0,y0),•••,(x n,yd) has nonempty interior). 

iii. an  > 0. 

Then Loi any xn+i E Sid, there exists  yn+i E B such that (Q(n+1)) holds with 

(1) 
ani-/ Z min { pn, (J 4 +2 anlin — 2)} , 

(16 n 	vncod  

(d+l)cod_i 

Cl
_ 1 

vn+1 vnV T4--1 

PROOF OF LEMMA: The width of Bn  is the minimum value (taken over all directions in Sid) of the 
distance between opposing pairs of parallel supporting hyperplanes to the set Bn. Let u E 9 be a 
direction for which this minimum is achieved, and let n u  denote orthogonal projection onto a 
hyperplane orthogonal to u. Since Bn cB, 

vn  cod R d 
	

= vold(Bn) 

width(Bn) vold_1(Ku(Bn)) 
width(Bn) cod_ 4R d-1 . 

Define /3n
vncod  

n  — 	and let q = centroid(Bn). By [35,p.53], Bn  contains the sphere centered at 
(d+ 1 )cod4 

q, with radius width(Bd d+1  and hence also the smaller sphere centered at q, with radius pnR. In 

particular, q + AIR I -LLX-Y•  E B n, 
xi-Yil 	

so 

I PnR  q + 	, 

	

xryi 	-Y  I 2 	I q 
PnR  

- 	• + 
xi-yi 	

x 
2 

(0 5 i 5n) 

which simplifies to 

I q-xi1 2  - I q-y11 2  > 2Pni? I  xi-yi I > 2anfinR 2 . 	 (0 .5 i 5n) 

Since yi E B and q e B, we have I q-yil 5.2R and so 



I q-xi I - I q-yil Z (114+2a nign  — 2 )R 

Define p = mint 13 n,(114+2anf:In  — 2)} . Since 

1 z-q1 5 pR 

I z-yi  I 	5 I z-q I + I q-yi  I 
< pR + I q-y i  I 5. I q-xi  I 

3 

(0 5 i 5 n) 

(i =1,...,n) 

the relation ((x0,y0),..., (xn,yn),(q,z)} is nonexpansive for all z such that I z-q I pR. 

Now fix xn+i € 9. Choose any q' e 01  such that I q'-q I = pR and such that q lies on 

the line segment /X n+i , q'] (this choice is unique when xn+i * q). Since I q' -q I pR, the 

relation ((x0,y0),..., (xn,yn),(q,q') .) is nonexpansive. Also, since p ... fin  , q'€ Bn  c B. By 
Kirszbraun's Theorem, it is possible to choose yn+i such that ((xo,y0),•••, 
(xn,Yn) ,(4,4') ,(xn+1 ,Yn+1 ,  )1 is also nonexpansive. Furthermore, an examination of the proof of 
Kirszbraun's theorem reveals that yn+i may be chosen so that yn+i e conviyo,••.,y n,q') c B. 
For such yn+i, we claim that (Q(n+1)) holds. 

That (Q(n+1))i holds is obvious, since 1(x0,),0),...,(xn+1,Yn+1)} is a subset of the 
nonexpansive relation i(xo,y0),..., (xn,yn),(q,q' } ( , ,, Xn+1 ,Y n+1)) • Now ,  

I Xn+rY n+1 I 

	
I xn +/ -q' I - I yn +/ -q' I 

(pR + 1.x n+1-4 1) - Ixn+i-q I 

= pR 

= minlan, lxn+rYn+11 }  
R 

?. min { an ,P} 

= min { a n , fin , (11 4+2anfin  — 2) } 

= min t fn ,  0 4+2anfin  — 2) 1 , 

where the last equality follows from 

nn  
(/4+2anfin — 2)—  	...,n  

1 

2a fl 	< , 

 4+2anfin  +2 

SO 

an+1 
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(since i3n  5 	(41 	1 for all d). This completes the proof of the first part of (1). 
(d+1)(oci_1 

We must now estimate the volume of Bn+1. Now, Bn+i =Bn n H, where H is the closed 
halfspace 

Note that 

I q+q'  2 	-Yn+1 I 5 I q-F2q 	- q' I + I q' - 	 I 

<_ 
— 	 2 	- q I  + I  q - xn+i I 

— 2 I q+q'   -xn+i I  

so 2
- q e H. If q = centroid(Bn) is contained in H then the proposition below implies 

> voldgL) vncodRd  
vol(B n+  ) e 	e 	• 

If q e H, let L be the halfspace containing H whose bounding hyperplane contains q and is 
parallel to the bounding hyperplane of H. The distance between these two hyperplanes is no more 

than distance(q,H) 5 I (1+1 - q I = pR •  Now , 

vold(B n  n (L - H )) 	cod-1 R d-1 
	

(since Bn  c B ) 

=  min { pn,04+201,119n  — 2) } cod„ Rd 2 

1 	 2 an/3n  
2 Minfrn, I 	cod-1Rd  

N 4+2anPn  + 2} 

min{ la  } &cod-Ad  

Hence, 

v old(B n+  ) 	= vold(Bn  n L) - vold(B n  n (L - H )) 

vold(Bn) 
- vold(Bn (L - H )) 

codRd  
> 

v 
n 	- min{i -n-} &cod-A d  T 4 

H= ( z : I z-y n+iI 5 
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codRd 	ti 2111 Rd  vna)d  = v n e  - min{ 2' 4 cod_i 
(d+l)cod4 

(1 	1 	. {1 S I1) 
=vnwdRd (-e- 	min  2' 4  

which is the second half of (1). We have used the following: 

PROPOSMON [37]: Let C c 9 be a convex body, q = centroid(C). Let H be a hyperplane 
passing through q, and let C + be one of the two parts into which C is divided by H. Then 

vol(C +) dvol(C) > vole(C )  

The induction may be initialized as follows: 

Proposition: For every  x0 E 9 (d 2) there exists  Yo E B such that  (Q(0)) holds with vo_>_i and 

a0- d 

Proof: Assume B is centered at 0. Let
4 . 

If x0 =0, set yo= (SR,O...,O). Then B0 = (z = 
d 

oR 	, 
(zi,...,zd)E B :zi 4 -2-  and 

vold(Bo) = vold(B) - vold((z = 	E B :05z151-? )) 

Dd 	d_l 	d 	Said-1  
alft rwd-/R — codR -  d-1

) 

z codR
d 
 

1 Thus vo > 4 and a0 — 
I x o- 

R
y0 I 

 —d- 
4 d 

x o  
If xo *0, let yo = -OR 	1 . The resulting values for vo and ao are larger than in the case 

ixo 
where x0 =0. 

We may use the inductive lemma to define sequences (ak), ((3k), and (vs) inductively. For 
each k, we then can make the following assertion: 
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Theorem: Ng deterministic algorithm A can solve. P(ak) in k steps. Furthermore, k grows with 

ak on the order of k ...... -v log(1/ a k) . 

Proof: To start, suppose A chooses x0. By the Proposition, there exists Yoe B such that (Q) 

holds for n=0 with a=a0=1 and f3=130=.25. There is a nonexpansive mapping qo : # --, # 
such that gym) = yo. Applied to this go, it follows by Q that A does not solve P(a0) in zero 
steps. 

Based on knowledge of xo and yo, suppose that A chooses to query the oracle with xi. 

By the Inductive Lemma, there exists yie B such that (Q) holds for n=1 with a=a1 and 13=(1. 

There is a nonexpansive mapping qi : # —) 9 such that qi(x0) = yo and qi(xi) = y1. Applied 
to this qi, it is not possible by Q that A solve P(a1) in ai steps. The proof continues inductively 
in this manner, producing a sequence go, qi, ... of nonexpansive mappings such that A does not 

solve P(ak) in ak steps. Since for each k, qk(xk) = qk i_1(xk) = 9k+2(xk)...,the fact that A is a 
deterministic algorithm guarantees that A makes the same choices when applied to qk +i during the 
first k steps. To complete the proof, it can then be shown that k increases with ak on the order of 

11log(l/ak). 
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II. 	Network Equilibria and the Method of Successive 
Approximations 

A. Introduction. 

In a separate project, we have described a solution and modeling approach for network 
equilibria. The problems to which it has been applied have traditionally been solved by a common 
family of closely related methods, including conversion to an equivalent variational inequality, 
optimization problem, complementarity, or fixed point problem. Those that we have worked with 
include spatial economic equilibria, location problems, and traffic equilibria. 

Our method exposed here is based on the method  of successive approximations  (with 
averaging) [17], which computes a fixed point of a nonexpansive mapping q : Rd ---> Rd as the 
limit of a sequence 

(0.1) 
xn+q(xn) 

xn+1 — 	2 

An equivalent method (i.e., one which produces the same sequences) is the proximal point 
algorithm  [26] which computes a zero of a maximal monotone multifunction S : Rd 4  Rd as the 
limit of a sequence 

(0.2) 	 xn+1  = proxs (xn), 

where proxs  = (I+S) -1  is the proximal mapping  [23] for S. The procedures we have described are 
instances of the method  f p,=Lst inverses  [29]-[31], which can be viewed as yet another 
expression of (0.1) and (0.2). 

Although fixed point methods have been applied to most of these network problems, the 
basic iteration (0.1) has been overlooked. This is especially evident in the computation of 
economic equilibria, where extensive use has been made in recent years of fixed point methods. 
However, these applications have primarily exploited the properties of continuous, rather than 
nonexpansive mappings. The reason for this oversight is that lacking the equivalent partial inverse 
formulation, it has not been obvious what the nonexpansive mapping should be. 

The major advantages of the methods discussed here are that they are globally convergent, 
require no differentiabity assumptions or use of derivatives, do not rely on an equivalent 
reformulation as an equivalent optimization problem and therefore require no integrability 
assumptions, and they produce decompositions that readily lend these problems to solution by 
parallel processor. The major disadvantages are that they often require a very large number of 
iterations, so that the models must be carefully constructed to avoid use of proximal mappings that 
are hard to compute. 

B. BACKGROUND AND NOTATION. 

A network  G is a triple (N,A,e). The finite sets N and A are the nodes and (directed) arcs of 
G. If we number the nodes and arcs in some arbitrary order, we can form the IN lx1A1 node-arc  
incidence matrix  E=(eia) by setting e ia  =-1 if i is the initial node of arc a, e ia  =+1 if i is the terminal 
node of arc a, and e ia  =0 otherwise. This allows multiple arcs but not loops. We will write a—(i,j) 
to indicate that i is the initial node and j the terminal node of arc a, and write a=(i,j) to indicate that a 
is the only arc from i to j. A flow in G is a function x : A ---> Rd. The flow in arc a will be 
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written as xa=x(a). If m>1, x is a multicommodity flow. The divergence y = div x of the flow 

x is the function y : N Rd defined for each node i by y i  = ^a eiaxa  (or, in matrix notation, y 

= Ex). If div x = 0, x is a circulation in G. A potential in G is a function u : N Rd. A 
potential determines, in a natural way, a function Au : A Rd called the differential of u by 
(Eu)a  = urui  (a—(i,j)) or, in matrix form, Au = Etu. The flow v is called a differential if v = Au 
for some potential u. The spaces of all circulations, differentials, and potentials in G will be 
denoted C, T, and U, respectively. 

A multifunction S : Rd 3 Rd is monotone if (x-x',y-y') 0 whenever y E S(x) and y' E 

S(x'). S is maximal monotone if, in addition, graph(S) = (x,y) : yE S(x)) is not properly 
contained in the graph of another monotone multifunction. Whenever S is maximal monotone, 
there is a function proxs, the proximal mapping for S, which assigns to each xe Rd the unique x' 

such that x-x' E S(x') [22]. 
The methods discussed in this paper specialize to a network setting the method if partial 

inverses [31]. Given a maximal monotone multifunction S : Rd 3 Rd and a subspace X of Rd, the 
method is a procedure for solving the following problem: 

(1.1) 	to find XE X and yE XI  such that yE S(x). 

To solve (1.1), the method starts with arbitrary x 0E X and yoE XI  and constructs sequences 

xne X and ynE XI  in such a way that (writing xn+1=00 +,  Yn+1=(Yri)+): 

(1.2) 	x+ = projx(x') and y+ = proj x.L(y), where x' and y' are chosen so that 

x'+y'=x+y and y'e S(x'). (Or, in other words, x'=prox s(x+y) and 
y'=x+y-x'.) 

It is possible to regard this procedure, depending on one's point of view, as a special case of the 
proximal point algorithm [26], or as a special case of Krasnoselski's averaged iterate method for 
finding a fixed point of a nonexpansive mapping [17]. The relationship between the partial inverse 
method and these others is clarified in [18]. The main result regarding convergence of (1.2) is the 
following 

THEOREM [2]. Let xn  e X and yn  E XI  be sequences of iterates produced by the method of 
partial inverses (1.2). It will always happen either that 
i) xn  x and yn  --) y for some solution x,y to the problem (1.1), and the distance from xn  + yn  to 
the set (x+y: x,y solves (1.1)) is nonincreasing, or that 

ii) Ixn  + ynl 	00  and (1.1) has no solutions. 

The vectors x' and y' found in each iteration form sequences 4 and yn' , and it can be shown that 
these converge to the same limiting values as the sequences x n  and yn, respectively. 

For methods based upon the proximal point algorithm to be successful, it is important that 
the relevant proximal mappings be simple to compute. This is a major limitation of such methods, 
and can sometimes make them impractical. Typically, proximal methods require a large number of 
iterations, so it is essential that a single iteration involve only minimal computational effort. This 
observation has been boume out by recent numerical experiments with partial inverse algorithms 
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[2], [14], [19]. The chief advantages are global convergence assuming only convexity and 
monotonicity, simplicity and flexibility in modelling, and stability. 

In this article, Rd denotes Euclidean space equipped with the standard inner product. If 
KcRd is closed and convex, then proj K(x) denotes the nearest point to x in K. (Although, if K is a 
subspace, we will prefer the notation x ic  to denote this projection.) The normal cone to the convex 

set K at x is the set N K(x) := (y: (y,x-z) 0, Vze K) if xe K, and the empty set if xe K. The 

multifunction NK  :Rd  3 Rd is maximal monotone and its proximal mapping is proj K. For x,yE Rd, 
max( x,y ) shall denote the vector whose ith component is max ( xi,yi ). The nonnegative orthant 

in Rd is denoted as Rill = (xE Rd : x0). Its normal cone mapping is 

d(x) 	
(y: y50 and (x,y)=0) if x_.0 

NR d(x) = 
0 	 otherwise 

whose proximal mapping is prox(x)=max(0,x). For any set K, the characteristic function of K is 

the function TK(x) whose value is 0 if ue K and +00  if ue K. If S : Rd—>Rd is linear, then S is 

monotone if and only if (x,Sx) z 0 for all xe Rd; the proximal mapping for S is (I+S) -1 . If f is a 
closed proper convex function, the subdifferential of f is maximal monotone and its proximal 

mapping is proxf(x) = argminy  ly-x12  + f(y) [23], [25,31.5.2]. It is usually a straightforward 

matter to compute the proximal mapping for a one-dimensional S : R R; the most common 
cases which arise occur when S is piecewise linear or a step function. 

C. 	Spatial Price Equilibrium. 

In the spatial price equilibrium problem we are given, at each of n markets, a relationship 
between supply and price (which in the single-commodity case would be called a "supply curve") 
and between demand and price ("demand curve") prevalent at that market. We also know the costs 
incurred for shipping goods through links that join one market to another. The problem is to 
determine the competitive equilibrium -- the amounts supplied or demanded at each market and the 
amounts shipped through the transportation links. 

It is a problem with a long history, a two-market problem having been formulated as early 
as 1838 by Cournot [4]. In 1951, Enke [6] argued that the model could be simulated by an 
appropriate electrical network. When the current stabilized, prices and trade flows would 
correspond to voltage drops and currents and could therefore be "computed" by reading values 
from meters. Due to the disappearance of analogue computers, that approach nowadays strikes us 
as technologically quaint. But the underlying idea has had an important influence. Samuelson 
[27], observed that Enke's problem could be converted into a maximum problem. He reasoned 
that since equilibrium in a passive electric network can be described in terms of an extremum 
principle (the minimization of total power loss), the same must hold for the economic problem. 
Building on this analogy, he defined a "net social pay-off' function, and showed how it could be 
maximized to solve a linear spatial equilibrium problem by the then new simplex method. 

Samuelson's idea to formulate the problem as an extremal problem whose optimality 
conditions coincide with the equilibrium conditions has served as the basis for a great deal of 
research in mathematical economics. It is the approach expounded in the book by Takayama and 
Judge [32] and by many others. This optimization approach has some clear strengths: it aids 
greatly in formulation and exposition, makes available a wide choice of solution algorithms, and 
provides tools to establish existence and uniqueness results. Despite this, it has long been 
recognized that it has a serious drawback; in order to formulate as an extremal problem, the 
operators that describe supply and demand must be integrable. This imposes severe restrictions on 
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the functions one can use to represent supply and demand, and it rules out some of those which are 
most popular in economics [3]. For this reason, there is strong motivation to search for different 
lines of attack. Naturally, the issue only arises in multicommodity models -- since integrability is 
not a serious restriction for real-valued functions of one variable, and only when systems of 
demand or supply functions are interdependent -- since otherwise individual commodities can be 
handled separately. 

The integrability issue has been confronted by many researchers, and numerous lines of 
attack have been suggested. These include reformulation as a complementarity problem or 
variational inequality for which solution techniques are available. Surveys of such techniques can 
be found in [3], [11], [24]. Jacobi or diagonalization methods have also been studied [1], [5], [8], 
[9], [33]. However, global convergence results are scarce (excepting the linear case), and those 
that are available are complex and the required assumptions are difficult to verify [11], [24]. Also, 
methods based on Newton or secant method approaches require differentiability assumptions that 
seem unnatural in an economic setting. Practical success has been achieved with the Jacobi 
iteration, but here again, meaningful global convergence results are not to be found. 

The approach we will present here does not require formulating an equivalent optimization 
problem, and converges globally under only monotonicity assumptions. It requires no 
differentiability or linearity, and hence provides much modelling freedom. This flexibility will be 
illustrated on several equilibrium models in this and the following section. 

To place the simplest d-commodity spatial price equilibrium problem in a suitable 
framework, we consider a connected network with node set N = {0, ..., n}, arc set A, a 
circulation x: A--4Rd, and potential function p: N-->Rd such that p 0=0. The nodes 1, n 
represent the markets through which all traded units pass; node 0 is a dummy node. The vector 
pie Rd (iA) gives the unit prices of all d commodities at market i. The arcs are divided into two 

classes: A = 	Aa  (ArnAa=0). The set of all supplementary  Dal is denoted by Aa. Node 0 
is connected to each market j by just one supplementary arc a=(0, j), and the flow x a  in that arc 
represents the excess supply (supply minus demand) at market j; in other words, x a  is whatever it 
needs to be in order that x be conservative at node j. Arcs in At  are transport arcs  which join 
markets. The flow x a  in a transport arc a—(i,j) represents units shipped from market i to market j 

through arc a. Shipping costs in transport arc a—(i,j) are given by a constant vector c a 	whose 
kth component is the unit cost of shipping commodity k from market i to market j through arc a. 
The economic behavior of market j is described by a maximal monotone multifunction P a(xa) 
(a=(0,j)) which gives the set of possible prices compatible with the excess supply x a. 

It is possible to provide economic justification for the assumption that P a  is monotone. The 
excess supply x a  = a - 8 is the difference between supply a and demand 8 at market j (a=(0,j)). 
Let us write a € S a(pi) and S e Da(pi) to indicate that a and 8 are compatible with the prices p i . 
Then pi € Pa(xa) means there exist 8 € Da(pi) and a € Sa(pi) such that xa  = a-8, or 
equivalently, pi E (Sa-Da)- 1 (xa). Thus Pa  = (Sa-Da)-1 , and Pa  will be monotone provided S a  is 
monotone and Da  is antitone (-D a  is monotone). 

To conclude that supply S a  is monotone, suppose a firm acts to maximize its profits (p,a)- 
4)(a), where ((a) is the cost of producing a. This maximum is achieved at a o  provided V(a) 
4)(ao) + (a-a0,p) Va, which says that p e a(c1 0)(00), where cl (1) is the closure  of (1) in the 
sense of [25]. Equivalently, ao  a p4:0*(p) [25,31.5.2] (where cli* is the convex conjugate of 4)). 
Thus Sa  = DO*. Assuming 4)* +00 (i.e., dominates some linear function), DO* is maximal 
monotone [25,31.5.2]. Note that it is not necessary to assume that (1) is convex. 
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To justify the antitonicity of D a, we follow Ahn [1] in distinguishing two classes of 
consumers: industrial and household. An industrial consumer seeks to maximize 1P(8) - (p,8), 
where {'(6) is the revenue generated by using the input 8. As in the supply case, this behavior 
implies that Da  is the subdifferential of a closed concave function, hence antitone. For household 
consumers, we consider the so called "compensated demand" problem [34, p. 80] whereby 
expendidure (p,8) is minimized while maintaining a desired utility, that is subjected to a constraint 
of the form U(8) c, for some prescribed c. Since the constraint set is convex [34, p.79], 6 
achieves the minimum of (p,8) if, and only if, p E -N(6) where N is the normal cone mapping for 
the constraint set. Thus D a  = (-N) -1  is maximal antitone. In using the compensated demand 
problem, we are neglecting the "fixed income effect" whereby a consumer maximizes utility subject 
to his limited income. Quoting Ahn [1, p.36]: "If the fixed income effect is not negligible and no 
income compensation is allowed, the demand function might not have the antitonicity property. If 
the income effect is not strong or the industrial demand dominates the household demand, 
however, the corresponding aggregate demand function is likely to be antitone. For example, the 
actual demand data used at FEA in the first application of the PIES model satisfy the strict 
antitonicity condition" 

To phrase the problem in the form (1.1), we introduce the space C of circulations, and 
the space T of differentials. Since the network is assumed to be connected, for every tE T there is 
a unique potential pE U such that t=Ap and p0=0. The standard spatial price equilibrium problem 
is 

(2.1) 	to find x E C and t=Ap E T (p0=0) such that 
i. for all transport arcs aE At  (a—(i,j)), 

(xa, ca-ta) = 0, xa  z 0, and ca-ta  0. 
ii. for all supplementary arcs aE Aa  (a=(0,j)), 

Pj = ta E Pa(xa). 

The first condition says that no trade takes place at a loss and there is no further incentive to trade. 
(The condition p0=0 creates no real restriction since the value of p can be specified arbitrarily at any 
one node. It is only included to force p i= to  for a=(0,j)). The second says that the excess supply at 
market j is compatible with the prices at market j. 

For all aE At  define Pa(xa) = ca  + NRd(xa). Then Pa  is maximal monotone and (2.1i) is 

equivalent to ta  E Pa(xa). Hence, if we let P = --naE A Pa,  

(2.2) 	x E C, t=ApE T (p0=0), and tE P(x). 

Since C = T 1, this fits into the partial inverse framework (1.1) and lends itself to solution by 
algorithm (1.2). Hence the partial-inverse procedure for solving (2.2) is: 

(2.3) 	Given xE C and t=ApE T (p 0=0), compute for every aE A, xa = prox a(xa+ta) 
and t; = xa+ta-)q. The next iterates are x+ = (x') c  and t+ = Ap+ = (01. 

For aE , the proximal mapping for Pa  is the function prox a(u) = max(0,u-c a ). Let E0  denote 

then (2.1) is equivalent to the simpler 
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the node-arc incidence matrix with row 0 (the row corresponding to node 0) deleted. Since any 
flow conservative at nodes 1,...,n is automatically conservative at node 0, we know that C = { x : 
E0x=0}. That node 0 is connected by a supplementary arc to every other node ensures that E oE(t) 

 is invertible. Hence we can compute the required projections as follows: set pi:1)- 7.1 and compute 
(pi 	p+dt = (EcrEot)-  1E0  '• t Then t+ = 4+, and x+ = x'-(x') T  = x'-(x+t-t') T  = x'-t+(t')T  = 
x-f+t+. The sequences tk+1=(tk)+,  xkl-i„.(xk)+ and pk+ 1_,(pk)+ generated in this manner 
converge to a solution to (2.2) (if one exists). The ability to execute this algorithm depends on 
having available an efficient procedure for calculating the functions prox a  (aE Aa). 

There are two approaches one can use to devise a stopping criterion for the partial inverse 
algorithm: an approximate fixed point approach, and one based on duality. The first halts 
execution after finding an approximate fixed point of the underlying nonexpansive mapping [18]. 
It has the advantage that it can always be used, since it relies on information that must be generated 
by the algorithm. Applied to the spatial economic equilibrium problem, it works as follows. For a 
chosen c>0, one halts when lx-x+1< e and It-t+1 < e (as must happen if a solution exists). Noting 
that x-x+ = x-xe = x-(x+t-e) e  = to and t-t+  = t-t:r  = t-(t+x-x') T  = xT , we see that when the 
termination criterion is satisfied, x' and t' provide an approximate solution in the sense that 

	

E xT + C, E 	+ T, and t'E P(x'), with lx4,1< c and ltel < c. 

This says that x' is "almost" a circulation and t' is "almost" a differential. More precisely, we have 
Idly x'I = Idiv x"r1 5 cv, where v is the largest valence of any node in the network. Likewise, if 
we assign the prices Po  = 0 and pi  = (t')a  (VaE Aa, a=(0,j)), we obtain a potential whose 
differential is "almost" t'. To interpret this statement, note that the sum E ae r  ±(t') a  taken around 
any circuit of the network (using + for arcs in the direction of the circuit, and - for those 
opposed) equals the sum E ae r  ±(te)a  around the same circuit. Any arc bE A (b—(i,j)) forms, 
together with two supplementary arcs, a circuit of three arcs, and for such a circuit 	we thus 
have Ipi-pi-(e)bl = 	r ±(t)al = 	r ±(te)al 5 3e, showing that the differential of p is close 
to t' 

A second approach to devising stopping criteria will be discussed later in our discussion of 
location problems. It depends on the existence of an underlying optimization problem. Using 
duality, it may be possible to sandwich the optimal value into an arbitrarily small interval. While 
this approach is more satisfying, it has the disadvantages that it cannot always be used and that 
much additional work inessential to the progress of the algorithm may have to be done to compute 
the needed function values. 

Example 1. 
To fix ideas and notation used in problem (2.1) and algorithm (2.3), let us first consider the 

linear one-commodity case which is the one most commonly treated in the literature. For every 
supplementary arc a=(0,j), a relation x a=dipi-bi  (di>0, bi>0) is assumed to hold between the 
excess supply xa  and price pi  when pi>0, while for p=0, demand can be considered to be 
unlimited. This leads to the monotone function P a(xa) = max {0,(xa+bi)/di  } whose proximal 

djx -bj  
mapping is proxa(xa) = max {} • For transport arcs ae At, the monotone relation is 
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if x a > 0 

Pa(xa)4{:r_ca } if xa  5 0 

whose proximal mapping is prox a(xa) = max(0,xa-ca }. 
We have assumed constant transportation costs only because that is the most common case 

considered in the literature. But any monotone relation will do, so long as its proximal mapping 
can be easily computed. In particular, congestion effects (whereby increasing traffic causes 
increased unit transportation costs) can be incorporated in a straightforward manner. 

Example 2. 
Let us now see what happens if we try to modify example 1 to allow for d>1 commodities. 

Assume that at each market j=1,...,n, the excess supply sj  is related to price pi  by sj  E 

Drm.-b.+NR+  d(p.), where Di  is a dxd positive senidefinite (but not necessarily symmetric) matrix. 
J  

The inclusion here of the normal cone mapping N Rd has the effect of saying that demand is 

unlimited for any commodity whose price is zero, and that no commodity has a negative price. In 
the case d=1, this model is exactly the same as the previous one, and could theoretically be solved 
in exactly the same way. But unfortunately, the multifunction p i  —) Dipi-bi-N,

i‘
d(p;) has a 

proximal mapping that cannot easily be computed. It is therefore advisable to modify the network 
in a way that makes it unnecessary to compute this mapping. 

For this reason, we join node 0 to each market j by 1  arcs aii–(0,j) and ai2—(0,j). To 
these arcs we assign the multifunctions 

(2.4) 	pi  E Paii (Xaj d if and only if xail  = Dipj-bi , 

pi  E Pap(xai2) if and only if xa.i2  E NR5F1(pi)• 

For a circulation x:A—Rd and potential p:N-41:td with po 3 and t=6,p, the excess supply at market 
j is now represented by s i  = xaii+xai2. Since tail  = taj2  = pi, the relations (2.4) are equivalent to 

Paii (xajd and tai2  E Paj2(xai2) 

and these conditions hold if and only if the price p i  is compatible with the excess supply x +x ai2.  
An equilibrium can now be solved for much as in the first example. But now, the proxi mal  
mappings for Pail  and Pail  can be computed in a straightforward manner: proxaii (u) = 

u-(I+Di)-1(u+bi), and proxai2(u) = u-max {0,u} . 

Example 3. 
Next, we discuss a variation of the spatial price equilibrium model in which a global 

competitive market exists for transportation services. This type of model has been studied in [9], 
[12], [15], [20]. As before, we have a node set N= {0,...,0, with nodes 1,...,n representing the 
n markets. The arc set A = A u A a  is partitioned into two subsets: Az  contains an arbitrary 
number of transport arcs a–(i,j), and Aa  contains the supplementary arcs a=(0,j), precisely one for 
each market j. To each a€ A (a–(i,j)), there is associated a scalar w a>0 which measures the effort 
required to traverse the link a. We will refer to w a  as the "distance" between i and j, but it could 
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equally well be time or some other unit. The flow x a  E Rd in arc aE AT  (a—(i,j)) represents units 

shipped from market i to market j through a. The vector it := E aE A, w axa  represents the total 

amount of shipping used. The cost of shipping is given by a vector 15 E Rd  whose kth component 
gives the unit cost per unit of distance to ship commodity k. The supply-price relationship for 

shipping is described by a multifunction t' : Rd —) Rd ; that is, the set of price vectors ii at which 

the shipping vector i is available is P(I). P is assumed to be maximal monotone. The flow x a  in 
a supplementary arc a=(0j) represents the excess supply at market j. The behavior of market j is 
described by a maximal monotone multifunction P a(xa) which gives the set of possible price 
vectors compatible with the excess supply x a. 

We can now state the sp_al price equilibrium problem with a global market for 
transportation as: 

(2.5) 	to find XE C, pE U (p0=0), and fiE Rd, such that 

i. for all transport arcs a E AT  (a—(i1j)), 

(xa,wap-pj-Fp i) = 0, xa  z 0, and wap-pj+pi  0 
ii. for all supplementary arcs a E Aa  (a=(0,j)), 

Pj E Pa(xa) 
_ 

iii. p E P(x), where x:= E aE A., waxa. 

The first two conditions are the same as (2.1) except that in (2.5i) the transportation cost in 
arc a is waii rather than c a. The third condition states that the price of shipping is compatible with 
the supply. To rephrase the problem in the form of (1.1), define the spaces 

(2.6) 	X = ((x,ii): XE C and 31:= E aE A., waxa) 
Y = f(t, 0 : 3 pE U, iiE Rd, such that (i) t a=pipi-wai), VaE AT  (a—(i,j)), 

(ii) to  = pj , V aE Aa  (a=(0,j)), and (iii) i=j) ). 

E 0 	 x 	x 
:Letting wa4) for all aE Ao, define the matrix E = ( ..wt 1 ). Then X i _ 	

x 
) E C) ) = 

x  

and Y ={ Et (P 
P 
_ ) : pE U , 	f)E Rd}, so that X=Y-1-. For every a E AT  , define Pa  = NRd. 

Then Pa  is maximal monotone, its proximal mapping is prox a(u)=max{0,u}, and (2.5i) is 

equivalent to pi-pi-4 E Pa(xa). If we then define P = (HaE A Pa) x P , then (2.5) is 
equivalent to 

(2.7) 	to find (x,31)E X and (t,f)E XI  with (t,f) E P(x,R). 

01, 

To recognize this equivalence, note that if (x,31) and (t,f) solve (2.7), then there is a unique pE U 
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(with p04) and f•E Rd such that ( it  = Et (Pi)  ) and this gives a solution to (2.5). Conversely, if 

x, p, p solve (2.5), then by defining 	E ae  waxa  and ( it  = Et ( i.)1)  ) we obtain a solution to 

(2.7). The algorithm (1.2) thus gives a globally convergent procedure solve (2.5): 

(2.8) 	given XE C, pE U, and fiE Rd, 

i. for every a E A (a--(i,j)), compute xa = max {0, xa+prpi-waii} , 

to = 	 . 
ii. for every a E Aa  (a--(0,j)), compute x a' = proxa  {0, xa+pi  } , 

to = xa+pj-xa' . 

iii. compute 	E aE waxa )1' = proxp(p + x), 	= x + p - . 

Let E0  denote the node-arc incidence matrix for the network with row 0 deleted, and define 
E0  0).  

Then X is the null space of t o  . That node 0 is connected by a supplementary arc ED 	-wt 1 

to every other node ensures that EA is invertible. Hence we can compute the next iterates x+, 

p+, 15+ as follows: set 1) -16=0 and compute (pi,...,p+n ,p+)t= (Potot)-1E0(e,i)t. Then t+ = 

Etp+-p+w and x+ = x-t 1 -1-t+. 

D. 	Economic Equilibrium with Implicit Supply Curve. 

A single-location equilibrium model known as the PIES model has been an impetus for 
much research into solution methods for equilibrium problems [1], [13]. It differs from those of 
section II in one important aspect: the supply-price relationship is only implicitly known. The 
consumers' behavior is described by a (nonintegrable) multifunction D Rd 2  Rd such that -D is 
maximal monotone; for each uE Rd, D(u) is the set of prices at which consumers are willing to 
purchase the commodity bundle u. However, no corresponding relationship is given which 
describes the supplier's behavior. Rather, in response to a perceived demand vector uE Rd, the 
supplier is assumed to choose a production plan XE Rr by solving an optimization problem: 

P(u) 	to minimize f0(x) subject to f i (x)+u 1 5_0,..., fd(x)-i-ud O, and xE K. 

In the original PIES model, P(u) is a linear programming problem, so we are being less restrictive 
here, assuming only that the functions f 1 ,...,fd  be convex real-valued, and KcRr closed convex. 
The function f0  can be interpreted as cost, and -f 1 , -fm  as quantities of goods produced. A 
vector yE Rd  of shadow prices  or a Kuhn-Tucker vector [25, p.274] for the problem P(u) is one 
having the properties: y z 0 and infve  K  {fo(v)+E yi(fi(v)+ui) } = inf P(u). The set of all such y 
is implicitly determined by u (although it may be empty). If a solution to P(u) and a shadow price 
vector y exist such that the price vector y is also acceptable to the consumers, then an equilibrium is 
said to exist. Thus we can summarize the problem as 
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(PIES) 	to find UE Rd, XE Rr, and yE Rd  such that yED(u), x solves P(u), and 
y is a Kuhn-Tucker vector for P(u). 

It will be helpful to introduce the closed proper convex function 

F(x,u) = 
f0(x) if f 1 (x)+u 1 50,..., fd(x)+u d50, and xe K 
+00 otherwise 

We will need the following 

LEMMA . For UE Rd, XE Rr, and yE Rd, we have (0,y) E aF(x,u) if and only if x solves 
P(u) and y is a Kuhn-Tucker vector for P(u). 

Proof: Suppose (0,y) E aF(x,u). Then F(x,u) is finite, implying F(x,u)=f 0(x), or equivalently, 

XE K and 4(x)+ui  5. 0 for all i (x is feasible for P(u)). By the definition of aF [25 ,p.214], 

(+.1) 	if X'E K and 4(x 1 )+ui'S 0 (i=1,...,d), then 

f0(x') f0(x) + E y i(uil-u1) . 

Setting uji=ui  in (+.1), we see that x solves P(u). Setting x'=x in (+.1) and using the fact that 

4(x)+ui  S 0 (Vi), we obtain y 0 and y i(4(x)+ui) = 0 (Vi). Setting ui = -4(x') in (+.1), we see 
that 

f0(x 1)+E yi(4(x')+u i) z f0(x) 	 (Vxs€ K) 

and that equality holds for x'=x. Hence y is a Kuhn-Tucker vector for P(u). 
To prove the converse, suppose x solves P(u) and y is a Kuhn-Tucker vector for P(u). 

Fix x'E K and u' such that 4(x')+u i'S 0 (i=1,...,d). Since XtE K and y is a Kuhn-Tucker vector, 
we know that f(x) S fo(x)-FE yi(4(x')+u i). Using this, y z 0, and fi(x1)+ui 0, we get 

f0(x)+E yi(ui'-u i) S fo(x')+E yi(4(x')+ui') S fo(x') 

so that (+.1) holds, i.e. (0,y) E aF(x,u). 

To place the problem in a framework where it can be solved by algorithm (1.2), we 
introduce the spaces X = [ (x,u,u) : xe Rr, ue Rd} and Y = [(0,y,-y) : ye Rd). It is clear that X 
= Y1  and (PIES) is equivalent to the problem 

(3.1) 	to find (x,u,u)e X and (0,y,-y)e X 1  such that (0,y,-y) E (aF x -D)(x,u,u). 

To interpret the partial inverse algorithm (1.2) with these choices, we need to know how to 
compute projections (x,y,z)x  and how to proximate aF. (It is merely assumed that the operator -D 
has a known proximal mapping prox_ D  whose computation is supplied as a subroutine.) The 

y+z y+z  projection of (x,y,z) onto X is (x, 2  , 2  ). As for the proximal mapping proxF  of aF, we have 
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proxF(i, 	argnlinx,u 	 + F(x,u). 

To compute this, note that for fixed x, the minimum in u can be computed explicitly -- it occurs 
when ui=min{ui,-fi(x)}, i=1,...,d. The correct value of x can thus be found by minimizing the 
strictly convex function 

fo(x) + 	+ 2  Ei max2 {0,4(x)+5i} 

subject to the single constraint xe K. The procedure (1.2) can therefore be stated concisely as 

(3.2) 	Given ue Rd, xe Rr, and ye Rd, compute the unique minimizer x' of the 

function fo(x) + Ix'-xI + Ei  max2 {0,fi(x)-Fui+yi} subject to x'E K. Then 

let ui :=minfui+yi,-fi(x 1)}, u" :=prox_ D(u-y), y':=u+y-u', and y":=u-y-u". 

1/1 	 Begin the next iteration with x+=x', u+ —+" 	 " 

	

2u , and y+—Yt2-Y 	. 

So far, no mention has been made of networks because the network interpretation of the 
PIES model is trivial, involving only two nodes and two arcs forming a circuit. Every circulation 
in such a network has the form (u,u) and every differential has the form (y,-y), so that it is 
possible, though not very useful, to describe the problem (3.1) using network terminology. 
However, it should be clear that there are a large number of potential variations of the spatial price 
equilibrium model that can be modelled using networks and solved by the algorithm (1.2). One 
can mix any of the modifications considered so far in any combination desired. For instance, one 
could consider a spatial model with n locations, specifying at each one a supply and/or demand 
"curve", or an excess supply curve, or implicitly defined supply and/or demand curves. 
Congestion and/or global transportation markets could be easily included and numerous other 
modifications are possible. 

In comparison with other methods that have been proposed to solve the PIES model, the 
above trades an enormous theoretical advantage (global convergence) for many practical ones. 
Linearity of the supplier's optimization problem P(u) in the PIES model is completely destroyed by 
the above algorithm. While the original PIES method solves a linear programming problem at each 
iteration, the above demands that a nonlinear function be minimized (subject, however, only to the 
constraint xe K). Of course, it also may be inconvenient to evaluate the proximal mapping for -D. 
This is the case, for example, with the log-linear demand model used in Hogan's PIES example 
[13], [16]. This being said, global convergence is more than a small advantage, and it is not found 
in the literature for this type of equilibrium model under such weak conditions. The original PIES 
algorithm, and Jacobi based methods like it, do not possess this strong property. Indeed, the 
original PIES algorithm was not guaranteed even to produce a sequence of iterates, let alone 
converge to a solution [1]. 

E. 	Multifacility Location Problem. 

The object of the multifacility location problem  is to locate n facilities at points p i, pn  

in Rd (usually d=2) in a manner that minimizes, subject to constraints, a weighted sum of distances 
between pairs of these facilities or between these and some previously existing facilities. The 
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location problem is included in this article to emphasize its close connection with other network 
equilibrium models. Its resemblance to the basic spatial economic equilibrium model is especially 
striking, in spite of the distinct developments these two problems have had. The problem has an 
extensive history and many methods have been proposed for its solution. We refer to [14], [19] 
for further references. 

Michelot, et. a/. [14], [19], have realized that the problem readily lends itself to solution by 
the partial inverse approach. Their investigations, which include numerous computational 
experiments, have pointed to some advantages of the method: the nondifferentiability of the 
objective function (which is inherent to the problem) presents no impediment because the partial 
inverse algorithm works directly with the optimality conditions, avoiding any direct function 
minimization. Consequently, there is much flexibility in choosing the norms and types of 
constraints. Although we present the problem in a simplified setting, our method here is equivalent 
to Michelot, et. al. 

Consider a connected network with node set N = {0,...,n}, nodes 1,...,n representing 
the facilities, and node 0 a dummy node. As in section II, it is assumed that no arc terminates at 
node 0; but here, we allow multiple arcs to connect node 0 to node j. Because the network is 
connected, each differential tE T corresponds to a unique p=(p0,...pn) such that t=Ap and 
p0=0. In this manner, each tE T determines a unique choice p i ,...pa  of locations for the n 
facilities. A location problem is 

(4.1) 	to fmd pE U (p0=0) such that t=Ap minimizes f(t) = —YaE A fa(ta) 

and where the arcs are partitioned into two classes A = A v  u AK  with arcs in Av  representing 
penalties, and those in A K  representing constraints. Specifically, 

for each aE Av  , fa(u) = calu-bala  for some caE R, baE Rd, and norm 1.1a. 

If a—(0j) (so that ta=pi, then such a term in the expression for f(t) penalizes the distance from p i  to 
ba. Otherwise, if a—(i,j) (so that t a=pi-pi), then it penalizes the distance between p i  and pi . Also, 

for each aE AK  , fa  = 	for some closed convex set K a  c Rd. Ka  

If a—(0j), this choice of fa  imposes the constraint pi  E Ka. Otherwise, if a—(i,j), it forces 
pi-p i  E Ka . 

The dual problem to (4.1) is 

(4.2) 	to minimize f*(x) = E aE A (fa)*(xd) over XE C 

where (fa)*(u) = sup {(u,v)-fa(v)) is the convex conjugate of fa. 

(fa)*(u) = (tliKa)*(u) = sup{(u,v) : VE Ka} 

and for aE Av  , 

Specifically, for aE A K  , 

(fa(u) = IsKa(u)) 



(fa)*(u) = (u,ba) + TB * (tcl a 
(fa(u) = calu-ba la) 
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(where B: = (v : (v,u) 1 for all lul a  11 is the unit ball for the dual norm •:). Let af a  denote 
the subdifferential of fa  (whose proximal mapping will be denoted as prox a). If t and x solve the 
primal-dual problem  

(4.3) 	t= Ap E T (p0=0), x E C, and xa  E afa(ta) for all a E A 

then it is trivial that t solves (4.1) and x solves (4.2). If the Slater condition 

there exists s E T such that sa  E relint(dom(fa)) for all a E A 

holds, then it follows by [25, Theorem 27.4] that: if t solves (4.1) then there exists x such that 
(4.3) holds. Thus the problems (4.1) and (4.3) are equivalent, subject to the Slater condition. If 
(4.3) has a solution t = Ap, 31, then since ica  E afa(fa), t = Ap solves (4.1) if and only if fa(ta) = 
fa(ta)+(1a,ta-ta) for all a. This equality sometimes provides a means to completely describe the 
solution set to (4.1) and underscores the importance of solving for the dual variables, an 
observation that has been made by many authors. 

Comparing (4.3) with (1.1), the partial-inverse algorithm (1.2) gives the following 
procedure to solve (4.3): 

Given xe C and t=ApE T, compute for every aE A, t; = prox a(xa+ta) 
and x = xa+ta-t;. The next iterates are x+ = xC and t+ = Ap+ = 

For an arbitrary choice (t0, x0) of starting values, this generates sequences tk+ 1=(tk)+ and 
xk+i.(xk)+ converging to a solution to (4.3) (if one exists). 

To clarify this procedure, note that the proximal mappings are 

proxa(z) = Proj (z) 
Ka 

proxa(z) = z - ProjcB*(z-ba) 

(aE AK, fa(u) = Wic (u)) a 

 (aE Av, fa(u) = calu-bal a) 

The required projections are computed most easily in the cases where the sets B* and K a  are 
Euclidean balls or polyhedral sets. The network is connected, so an easy argument shows that the 
node-arc incidence E matrix has rank n. Since any flow conservative at nodes 1,...,n is 
automatically conservative at node 0, row 0 of E is a linear combination of the other rows. Let E 0  
denote the matrix E with row 0 deleted. Since T = row space(E) = row space(E 0), E0  also has 
rank n, EoEot  is invertible, and x+=Ap+ and t+ can be computed as: p+ = (E 0E0)t -1E0e, t+ = 
4+, and x+ = x-e+t+. 

In this, as in other integrable network models, duality can sometimes be used to devise a 
stopping criterion. Assume that we know a strictly feasible solution n = (0,7c 1 ,...,1tn) to (4.1) and 

that the sets Ka  (aE AO are bounded. (To say that n is strictly feasible means that 't = An satisfies 

ties E int(Ka) for all aE AK.) By definition of f* , f(t)+f(x) (t,x) = 0 for all t E T and X E C, 
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with equality holding if, and only if (4.3) holds. Thus it seems reasonable to choose a small e>0 

and halt when f(t)+f*(x) < c, since then f(t)-e < -f *(x) 5. -inf(4.2) inf(4.1) S f(t). After each 

iteration, we do in fact have t e T and x e C at hand, but there is unfortunately nothing to prevent 

either f(t) or f* (x) from taking the value + 00, even when t and x are close to .a solution. We must 

therefore provide some rule to replace to T and xe C with vectors Te T and xe C for which f(t) 

and f* () are finite. If for every to T we define X(t) := max (X51: Xt a+(1-X)Ta  e Ka  for all 

ae Awl and then let I:=X(t)t+(1-X(t))T, we have .feT and f(I)^aE Av  fa(1a) < 00 . Similarly, 

for any xe C, define p.(x) := max(X51: Xx ae calea for all a e AO and z := µ(x)x. Then zE C 

and since Ka  is bounded, (-c)  aEAK'K  )* a a) + ae Av  ga,ba) < c>3. If (4.3) has a 
a   

solution then the algorithm produces convergent sequences tk—>i and xk4x. By the choice of ti it 

is clear that X(tk)—>1 andli(xk)—)1. Hence ik—>i and 5Z k—>i, and since f and f*  are continuous on 

their effective domains, it follows that f(Tk)+f*(xk) —> 0. Halting the algorithm when 
f(tk)+f*(ick) < c ensures that f(Tk)-c 5_ -f* (5-ck) -min(4.2) 5 min(4.1) 5 f(tk). This gives a 
stopping criterion similar to that developed in [14], [19]. 

F. 	Traffic Equilibrium. 

In this section, we discuss a model of traffic equilibrium. It, and similar models, have 
served as a focal point in transportation research. The particular model we describe here is 
equivalent to that of [10]. For surveys on transportation models, consult [7], [21]. 

A transport network is given with a node set N and directed arc set A. Several 
commodities or travel types move through this network in the directions of the arcs. The arcs are 
partitioned into two classes: A = A a  u A4)  with A4)=(1,...,r) representing fictitious return links, 
and A =(r+1,...,n) representing real roadway links. There are r traffic types, corresponding to 

the r fictitious return links. A possible circuit is a sequence a = (al ,...,ak) of arcs such that 

a i ,...,ak_ ie Ap, ak  e A4), a1-(i 1 ,i2), a2-(i2,i3), 	ak-(ik,i l ), and the nodes i 1 , ...,ik  are 
distinct. The arc ak  is the fictitious return link, i t  is the origin, and ik  the destination associated 

with the circuit a. Two circuits use the same return link when they correspond to the same traffic 
type. The flow 8a: A-R is defined as 8a(a)=1 if ae a and 8a(a)=0 if ae a. 

A nonempty collection K of possible circuits, called the feasible circuits, is given. A 
feasible circuit flow is a function z : K —> R+, where za  = z(a) is interpreted as the input flow on 

circuit a of the traffic type associated with the return link of a. Each such z generates a flow 

EaE  K  za8a whose value on arc a is the resulting total flow associated with the feasible circuit 

flow z. The cone of all total flows is denoted L:= (E a  za8a z is a feasible circuit flow), and its 

d.ul cone is M:= (y: (x,y) 0 for all ae K) = f y: (8a,y) 0 for all ae K). 
To each arc ae A, let there be assigned a maximal monotone P a  : R 3 R. For ae Ap, 
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Pa(xa) c R is an interval containing the possible values of the travel cost per unit of flow (or the 
time delay) in arc a when the total flow in that arc is x a. Since Pa  is monotone, increased traffic 

flow in an arc drives the unit cost upwards or leaves it unchanged. For ae A o, yae Pa(xa) means 
that the demand xa  for that traffic type is compatible with origin to destination cost per unit flow 
-ya. Since Pa  is monotone, increased cost drives demand downwards or leaves it unchanged. A 

fixed demand d for that traffic type is modelled by setting P a(xa) = R 1  if xa.--d, Pa(xa) = 0 if 
xescl. 

The demand equilibrium problem is 

(5.1) 	to find x, y, and z such that 
i. xe L, with x= —cc  Ie K za8a, with z a feasible circuit flow, 

ii. ye M, 
iii. (x,y)=0, 
iv. ya  E Pa(xa) for all ae A, 

Conditions (ii)-(iii) assert that (Sa,y) 0 for all ae K and (Sa,y) = 0 whenever z a>0. In 

words, this says that for each ae Ao, the total origin to destination cost equals -y a  for all ae K with 
za>0 and return link a, and that the total origin to destination cost is greater than or equal to -y a  for 

all ae K with za=0 and return link a, which is Wardrop's user equilibrium law. Conditions (i)-

(iii) are equivalent to -y E N L(x), where /41, is the normal cone mapping for L. So, writing P 
= IlaE A  Pa, we see that (i)-(iv) are equivalent to the monotone variational inequality 

(5.2) 	0 E P(x) + NL(x), ye P(x), -ye N L(x), 

which, in turn, can be written (y,-y) E (P x N L)(x,x). Letting X= ((x,x): x is a flow), we have 

X1=((y,-y): y is a flow), so (i)-(iv) can be expressed in the pattern of (1.1): 

(5.3) 	to fmd (x,x)e X and (y,-y)e X i  such that (y,-y) E (P x NL)(x,x). 

To describe the algorithm (1.2) with these choices, we need to know the proximal 
mappings proxy  : R-4R for Pa  and for NL. To evaluate proxNL  requires that a quadratic 

programming problem be solved, since proxNL(u) = projL(u) = Eae K  za8a, where z = 

argminzA  lu - Eae K  zaoa12. Equivalently, z solves the monotone linear complementarity 

problem: zO, DtDz-DtuX1, (z, DtDz-Dtu) = 0. By making the appropriate substitutions in 
(1.2), we obtain a procedure for solving (5.3): 

(5.4) 	Given ,  x : A-4R and y : A-4R, for every ae A compute x a' := proxa(xa+ya), 
and ya  := xa+ya-xa  . Then determine a feasible circuit flow z" to minimize 

lx-y-Ea  zan Sal2 (subject to z" al), and set x" := Ea  za" Sa, y" := x"-x+y. 
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xi-Fx"  
The next iterates are x+ — 2 	y+ — 2 • ' 

If (5.2) has a solution, this procedure yields sequences xk—>X, yk—+5,  that converge to one. Also, 

(x")k E L and (y")k E M are sequences that converge to the same limits x and y- . However, it 

is not necessarily true that (z")k—>i for some feasible circuit flow z, since the representation of a 
total flow as ; zaSa may not be unique. 

Each Pa  is the subdifferential of some closed proper convex function f a  : R —> R, and 
these functions can be determined, up to an additive constant, by integration. Thus (5.2) are the 
optimality conditions for the optimization problem 

(5.5) 	to minimize f(x) = ;EA fa(xa) subject to x E L. 

The conditions (5.2) are easily seen to be completely equivalent to 

(5.6) 	0 E 13-1 (y) + Nm(y), xE P-1 (y), -xE Nm(y), 

which are the optimality conditions for the dual optimization problem 

(5.7) 	to minimize f*(y) = IaE A (fa)*(Ya) subject to y E M. 

By definition of r, f(x)+f* (y) z (x,y) 0 whenever xE L and yE M, and it is trivial to show that 
equality holds if and only if x and y solve the equivalent conditions (5.1), (5.2), (5.3), or (5.6). 
Thus inf(5.7) + inf(5.5) 0, with equality and with the minima achieved when and only when 
(5.2) has a solution. This pair of dual minimization problems is a familiar one and it can be 
derived by other means [10]. 

Following the pattern of the location problem, this duality can be exploited to obtain a 
stopping criterion. After each iteration, we have at hand x" = E cce K  zaSa E L and y" E M. 

For some predetermined e>0 we halt if f(x")+r(y") < e, in which case f(x")-e -r(y") 
-inf(5.7) S inf(5.5) S f(x"). Unfortunately, it is possible that f(x") = 00 or that e(y") = 00, even 
when x" and y" are close to a solution. This can be remedied by the same sort of device used in the 
previous section. Suppose the effective domain of each f a  is a closed finite interval [u a,va] 

(which implies, in particular that dom(fa) = R 1) and that a feasible circuit flow is known such 

that 4:= EaE  K ccSa satsifies a  E (ua,va) for all aE A. For a given x" = Ea  zaSa E L with 

z" a feasible circuit flow, let z = 2a"+(1-2 ■,), where XE [0,1] is chosen as large as possible so 
:= Xxa"+(1-204a  E [ua,va] for all aE A. Then z is a feasible circuit flow, x = E a  zaSa E L and 
f()  < 00. For the stopping criterion, we replace x" with 7c.. If a solution exists, continuity will 
force f()+f*(y") to converge towards zero, so we may halt when f()+1 4(y") < c. 

The above model is completely separable  in the sense that the cost ya  in each arc depends 
only on the flow xa  in that arc. If we relax this assumption, we can model more general 
situations. Doing this will give us models that may no longer be integrable, which may thus 
deprive us of our stopping criterion based on duality. But, as we have seen in other examples, it is 
possible to find a (less satisfying) stopping criterion in any case, and we still get global 
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convergence. For the partially separable  model, we assume the arcs to be partitioned into disjoint 
classes: A = Alu...L.)Aa  in such a way that the cost y a  in an arc a depends only on the flow for 
arcs in the same class. For instance, all the return links joining one origin to destination pair might 
form a class, or all links with a common origin, etc. 

The relaxed assumptions for the partially separable model are that for each class A i, there is 

a maximal monotone PAi  : RAi 3 RAi such that yAie PAi(xAi) whenever the flow vector x Aie 

RAi is compatible with the price vector y Aie RAi. Let P = IIPAi. The equilibrium problem is 
exactly as before, except that (5.liv) is replaced with 

(5.liv') 	 YAi e PAi(xAi) 	 (i=1,...,$) 

And the procedure (5.4) is only modified to compute the proximal mappings for the P Ai: 

(5.4') 	Given x : A-*R and y : A-*R, for i=1,...,s, compute x j;ii  := 
proxpi(xpi+yiki), and yjki  i  := xpi+yAi-xPi  . Then determine a feasible circuit 

flow z" to minimize lx-y-E a  za" 8a12  (subject to z" 0), and set x" := 

E a  za'Oa, y" := x"-x+y. The next iterates are x+ — 	x'+2x", y+ — Y 1+31  2 " . 

To make this model usable, it is of course necessary to employ only multifunctions P Ai  whose 
proximal mappings are efficiently computable. As in section II (example 2) it may be necessary to 
further decompose the PAi  in order to make this possible. 
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