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Abstract 

During this fourth year of the grant, research has been initiated and 

completed on Termolecular Recombination in Gases. An exact low gas density 

treatment was presented: an exact Master Equation and an equivalent 

Variational Method. Various approximations to the exact-treatment - strong 

collision method, bottleneck method, diffusional method, coupled nearest-

neighbor limit and uncoupled intermediate levels limit - were deduced, 

implemented and tested. 
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1. Research Completed and Published (July 1, 1987 - Aug. 30, 1988) 

The following four papers have been published in Journal of Chemical 

Physics (J. Chem. Phys.). 

(A) "Termolecular Recombination at low gas density: Strong Collision, 
bottleneck and exact treatments", by M. R. Flannery and E. J. Mansky, 
J. Chem. Phys. 88, 4228 -4241 (1988); April 1, 1988 issue. 

(B) "Variational Principle for Termolecular Recombination in a gas", by 
M. R. Flannery, J. Chem. Phys. 89, 214-222 (1988); July 1, 1988 issue. 

(C) "Termolecular Recombination: Coupled nearest-neighbor limit and 
uncoupled intermediate levels limit", by M. R. Flannery and E. J. Mansky, 
J. Chem. Phys. 89, 4086 -4091 (1988); October 1, 1988 issue. 

(D) "Diffusional Theory of Termolecular Recombination and association of 
atomic species in a gas", by M. R. Flannery, J. Chem. Phys. 87, 6947-
6956 (1987); December 15, 1987 issue. 

In addition the following research appeared as a Chapter in a book. 

(E) "Macroscopic and Microscopic Perspectives of Termolecular Association 
of Atomic Reactants in a Gas", by M. R. Flannery, in Recent Studies in 
Atomic and Molecular Processes (A. E. Kingston, ed.) Plenum Press, 
pp. 167-191 (1987). 

Six reprints each of (D) and (E) above have been submitted previously to 

AFOSR on 3/1/88 under Performing Organization Report Numbers GIT -85 -012 and 
GIT-85-013. 

Six reprints each of (A), (B) and (C) above are submitted together with 

this report (GIT -85 -014) as Report numbers GIT-85-015, GIT -85 -016 and 

GIT-85 -017 respectively. They are also contained in Appendices A, B and C of 

this report. 
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2. Summary of Completed Research 

A. Termolecular Recombination at low gas density. 

On introducing the probabilities for association as a function of 
internal separation R and internal energy E of the associating (A-B) species 
the strong collision model is thoroughly investigated and compared, as a case 
study, with the exact treatment of termolecular ion-ion recombination at low 
gas densities. A bottleneck model is also investigated. Analytical 
expressions for the one way equilibrium energy-change rates at fixed R are 
also provided. 

B. Variational Principle for Termolecular Recombination  

A variational principle for the rates of termolecular processes is 
proposed and then applied to recombination between atomic ions with excellent 
results. The variational expression when minimized with respect to 
stabilization probabilities is capable of providing rates identical to those 
determined from the quasi-steady-state solution of the full Master equation. 
Connection is made with electrical networks and with the principle of least 
dissipation. 

C. Coupled nearest-neighbor limit and uncoupled intermediate levels limit 

Two extreme limits of collisional coupling in termolectilar recombination 
are investigated. The coupled nearest neighbor (CNN) limit includes only 
couplings between neighboring excited energy levels of the associating species 

AB , while the uncoupled intermediate levels (UIL) limit includes only 

couplings between the fully dissociated reactants A+  and B and each of the 

(assumed uncoupled) excited levels of AB , which are then coupled to the fully 
associated products AB. Comparison is made with results of previous exact and 
diffusion treatments. 

D. Diffusional Theory of Termolecular Association  

A diffusional treatment of termolecular association of atomic species A 
and B in a low density gas is presented and applied to positive ion-negative 
ion recombination over the full range of masses of reactants for various 
classes of ion-neutral interactions. In contrast to rates given by the 
diffusional current, excellent results are obtained for general mass species 
provided a more basic expression for the association is introduced. 

Full technical details of the above work appear as Appendices (A), (B), 

(C) and (D) of this report. 
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3. Invited and Contributed Papers Presented at Professional Scientific 

Meetings  

3.1 An invited  paper entitled "Termolecular Recombination", by M. R. 
Flannery was presented at the 40th Annual Gaseous Electronics Conference, 
Atlanta, Georgia, October 13-16, 1987. It is published in Bull. Amer. 
Phys. Soc. 33, #2 (1988) p. 122. 

3.2 A contributed  paper entitled "Orientation and Alignment Parameters for 

e + He (2
1

'
3
S) 4 e + He (3 1

'
3
P, 3

1
'
3
D) Collisions", by E. J. Mansky and 

M. R. Flannery, was presented at the 40th Annual Gaseous Electronics 
Conference, Atlanta, Georgia, October 13-16, 1987. It is published in 
Bull. Amer. Phys. Soc. 33, #2 (1988) p. 141. 

3.3 A contributed  paper entitled "Termolecular Recombination and Electrical 
Networks", by M. R. Flannery and E. J. Mansky was presented at the 1988 
Spring Meeting of the American Physical Society (APS) held in conjunction 
with the Annual Meeting of the APS Division of Atomic and Molecular and 
Optical Physics. It is published in Bull. Amer. Phys. Soc. 33, 4 (1988) 
p. 1006. 

The abstracts are included in the following sections. 
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4. Abstracts of Papers Presented 

A-4 Termolecular Recombination*, M. R. FLANNERY, 
Georgia Tech - Theoretical description of termolecular 
ion-ion recombination and termolecular ion-atom asso-
ciation between atomic species in a gas will be pre-
sented. The underlying physics and dependence with 
gas density will be discussed. Results of various 
models - strong collision, diffusion and bottleneck -
will be compared at low gas densities with the exact 
treatment. 

*Research supported by AFOSR grant No. AFOSR-84-0233. 

HE-3 Orientation and Alignment Parameters for e -  + 
He (2 1 • 1S, 2I• 3P) 	e -  + He(31 , 3p, 3 1 • 3D) Collisionst, 
E. J. MANSKY II and M. R. FLANNERY, Georgia Institute  
of Technology - The multichannel eikonal theory results 
for the coherence and alignment parameters characteriz-
ing the decay of the metastable 3 1 . 3p and 3 1,3D states 
of helium, excited in the 2 1, 35 4. 31 , 3P and 21 , 3p + 
31 , 3D transitions respectively, are examined. A 
detailed examination of the resulting A, x parameters 
(for the 3 1, 3P states) and the A, u, x, # parameters 
(for the 3 1,3D states) provides a clear picture of the 
effect interchannel couplings within the target basis 
set have upon the final state probabilities. The 
pattern of the coherence and alignment parameters for 
these transitions also provides a direct, physical 
explanation of the qualitative behavior of the integral 
cross sections for the 21.35 ►  31 , 3P and 21 , 3p 4. 
3 1,30 transitions. 

'Research supported by U.S. Air Force Office of 
Scientific Research under Grant No. AFOSR-84-0233. 

EX 100 Termolecular Recombination and Electrical  
Networks -  M. R. FLANNERY AND E. J. MANSEY, Georgia  
Tech - Analogy with an equivalent electrical network 
provides a very effective means not only to analyze the 
complicated dynamics intrinsic to termolecular recombin-
ation, A+D+M AS+M, in a different light but also to 
readily construct physically appealing models. Two 
extreme limits are treated - the nearest  neighbor limit 
where collisional couplings between excited levels n 
and n-1 are only included - and the one level limit 
which includes connections between the source of fully 
dissociated states and each individual excited state n 
and between n and the sink of fully associated products. 
Comparison with the exact Master Equation Method, the 
Variational Method and the Diffusional Method will be 
presented. 

*
Research supported by AFOSR grant No. AFOSR-84-0233. 



Appendix A 

"Termolecular Recombination at low gas density: 

Strong Collision, bottleneck and exact treatments" 

by 

M. R. Flannery and E. J. Mansky 

(J. Chem. Phys. 88, 4228-4241 (1988)) 
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Termolecular recombination at low gas density: Strong collision, bottleneck, 
and exact treatments 

M. R. Flannery and E. J. Mansky 
School of Physics, Georgia Institute of Technology. Atlanta. Georgia 30331 

(Received 23 November 1987; accepted 24 December 1987) 

On introducing the probabilities for association as a function of internal separation R and 
internal energy E of the associating (A—B) species the strong collision model is thoroughly 
investigated and compared, as a case study, with the exact treatment of termolcular ion—ion 
recombination at low gas densities. A bottleneck model is also investigated. Analytical 
expressions for the one way equilibrium energy-change rates at fixed R are provided in the 
Appendix. 

I. INTRODUCTION 

The theory of termolecular ion—ion recombination, 

A ±B± M:=AB +M (1.1) 

between positive and negative atomic ions A and B in a low 
density gas thermal M is now well established." The distri-
bution n ;  (E,,t) per unit interval dE, of recombining pairs 
AB with internal energy Ei  a time t is governed by the colli-
sional input—output Master equation I  : 

an 
—
d 

 dt n" 
(E ,t) = at — 

= — 
— 

[ni v if  — nf vfi ]dEf  
D  

at zero energy and level — S the rate (1.3) reduces to °  

R"(0 = 	(ch—L)dE 
— D dt 

dn 
= I F, dE, = —

J - E
( dt, dE 

 

= — J( — E,t) 	 (1.4) 

for a steady-state (an,/at = 0) distribution of pairs in the 
block (6' of fully dissociated states in the energy range 
O<E< co , over which the stabilization probability PS vanish-
es. The rate ( 1.3 ) therefore reduces' under QSS to the down-
ward current — J( — E,t) of pairs past energy level — E in 
bound block e. 

At low gas densities the expansion °  

a 	 ti (E„t) 	 N A  (t)NB (t) 1 
— 	 (1.2) 7, (t) = 

3E, " 	 1-VB 
where v,j- is the frequency per unit interval dEf  for E, — Ef  
transitions by collisions between AB and M, where J, is the 
upward current in energy space past level E, and where — D 
is the energy of the lowest vibrational level of AB relative to 
the dissociation limit taken as zero energy. For dissociated 
pairs with E,>0, F, is the net flux per unit interval dE, of 
(contracting) AB pairs generated with energy E, at infinite 
internal separation R. For bound pairs with E, <0, F is 
zero. The net rate for association is °  

R ,„ (t) 	p7  (dn i ) dE,  

J _ D 	dt 

= aN,(t)N,(t) — kn s (t), 	 (1.3) 

where Ps, is the probability that E, pairs are collisionally 
connected to the product channel, i.e., have been stabilized 
against dissociative collisions with thermal M. The effective 
two-body rate constant for the association of A and B with 
(cm -3 ) concentrations NA  (t) and NB (t) is a (cm3  ) , 
and k (s ) is the frequency for dissociation of those tightly 
bound pairs of concentration n s (t), which are considered to 
be fully associated with energies E, within a block .7 of low 
lying fully stabilized levels in a range — S>E,> — D within 
which the stabilization probability P S is calculated to be uni-
ty. When the quasi-steady-state (QSS) condition dn,/dt = 0 
is satisfied for pairs in a block g' of highly excited levels in 
the energy range 0>E> — S between the dissociation limit 

1-P7(E,) 

 

In 
	1 
ns  j 

- _- P°(E,)y c (t) 	P7(E,)y3 (t) 	(1.5b) 

permits separation of variables E, and tin the collisional part 
of Eq. ( 1.2). Here y„ K., and y, are the various time-depen- 
dent distributions of states in blocks e, ,e, and 	normal- 
ized to their respective equilibrium values 	and nr . 
For 5' states, P s,andP° =1 — P S are the probabilities that 
state i is collisionally connected to the sink .9' and to the 
source (6". For (6' states at low gas densities P °, the collision 
survival probability is unity when equilibrium conditions in 
Ei  and R can be assumed in the collision part of Eq. (1.2). 
When Eq. (1.5) is inserted the collisional part of Eq. (1.2), 
then Eqs. (1.4) and (1.3) yield the expressions' 

a NA  = — j( — E) = kii 

=dE, J (P, — PS)C,f  dEf  
E 	— D 

for the rate coefficients a and k in Eq. (1.1). The collision 
kernel C,f  is the collisional rate n, v , f  (cm 3  s ) per unit ele-
ment dE, dEf  for E, Ef  transitions and varies linearly with 
the gas density N. At low N, a is linear in N so that are 
required only to zero order in N. The net downward time-
dependent collisional current across arbitrary level — E in 
block N separates as 

(1.5a) 

—e 

( 1.6) 

4228 	J. Chem. Phys. 88 (7), 1 April 1988 	0021-9606/88/074228-14$02.10 	® 1988 American Institute of Physics 
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-J( - E,t) = -j( - E)[NA(t)Ns(,)/NAN B  

- n s (t)/it s ] 	 (1.7) 

which under conditions of full thermodynamic equlibrium 
tends therefore to zero. 

The multicollisional stochastic aspect of the theory be-
comes apparent by correctly identifying the (time-indepen-
dent and density-independent) stabilization probability as 

/3 7(E, ) =
- 

(nyf ) P .j-dEr1/[1 	,f  dEf
] D 	 - D 

(1.8a) 

which is the fraction of all collisions which result in associ-
ation. Equation (1.8a) is consistent with the concept of a 
Markov element chain, and when rewritten in the form of an 
integral equation 

P7 f 
D 	 - 

Cif dEf f 
D

CifP,dEf 	 (1.8b) 

is seen, after substituting Eq. ( 1.5b ) in Eq. (1.2 ), to be 
equivalent to the assumption of a quasi-steady-state (QSS) 
E, distribution of pairs with energy within the highly excited 
block 6). 

The rate (1.6) holds for E = 0 and E = S to give, re-
spectively, 

aNA NB  = — j(0) = 	dEr  f CtfP ..7 dEf  = 
f D  

(1.9) 

as the collisional rate from the fully dissociated states i to 
bound states f which are then collisionally stabilized with 
probability P":, and 

- s 
aNA NB  =j( -S) = 	dE, 	C,fP dEf  = kh, 

- D 	- S 

( 1.10 ) 

as the collisional rate from the fully associated states i to 
levelsf which are then collisionally disrupted with probabil-
ity P. Note that Eq. ( 1.9 ) or Eq. (1.6) is the QSS rate for 
association of a full equilibrium concentration NA N, of dis-
sociated pairs into a perfectly absorbing sink Y maintained 
at zero population, i.e., y, = 1 and y, = 0 in Eq. ( 1.5b). 
Similarly Eq. (1.10) is the QSS rate for dissociation which 
would result from an equilibrium population h, of associat-
ed Y pairs being dissociated into states ce maintained at 
zero population, i.e., y, = 0 and ys  = 1 in Eq. (1.5b ). 

In this paper two simplifications to the above exact 
treatment at low gas densities N are investigated in detail. In 
the strong collision and bottleneck models, the probabilities 
P7 are preassigned without recourse to Eq. ( 1.8). The first 
model assumes that P7 for all bound pairs with internal sepa-
ration R is unity for R within the range 0<R <R T, where R T  
is some preassigned radius, outside which P7 is zero. In this 
strong collision (or Thomson-style') model, bound pairs 
with /2 <it 7- are therefore considered to be fully associated 
and those with R)R T  cannot be stabilized. In the bottleneck 
model, P7 for bound pairs at all accessible R is unity for 
Ei  <E 8 , and is zero for E>E * and E* is a (bound) energy 
level within -2kT below the dissociation limit and past 
which the one-way equilibrium rate is a minimum which  

therefore acts as a bottleneck to the current. The level E* is, 
in effect, a transition state. Each model therefore subdivides 
the two dimensional (R,E) space into regions of some phys-
ical signficance. The Thomson model has previously been 
addressed via a Monte Carlo simulation method s  and indir-
ectly by an analytical approach' based on collisional deacti-
vation of dissociated pairs to levels lower than various bound 
levels. A more exhaustive and detailed investigation is un-
dertaken here. The bottleneck model has also received some 
previous consideration. 1 ' 2  

Not only will these models elucidate interesting dynam-
ics underlying the recombination mechanism ( 1.1) at low 
gas densities N, but subsequent modification to cover higher 
gas densities proves quite valuable towards a study ( in prog-
ress) of the variation of the recombination rate a with gas 
density N. 

II. THEORY 

The detailed investigation of the strong-collision model 
requires the generalization of the Master equation (1.2) to 
(R,E) space and use of the frequencies v ;AR) for E,-,Ef  
transitions per unit interval d R dEf  by collisions between M 
and the pair AB at fixed internal separation R. The appropri-
ate input-output Master equation satisfied by the distribu-
tion n, (R) of ( A-13). pairs per unit interval dR dE, has 
been shown I° to be the continuity equation 

d n 
an 	1 d 	n : d, n , r, t) = — , tn ,   

dt 	at R 2  aR 

= — 
TV(R ) 

co 

R ) 

[n,(R)v,f (R) - nf (R)vfi (R)]dEf 

 S,f (R)dEf , 	 (2.1) 
V(R ) 

where j d( R) is the net outward transport current of pairs 
expanding at R, where S,7  is the net two level collisional-
absorption rate, and where V(R) is the energy of interaction 
between A and B. Integration of Eq. ( 2.1) over all accessible 
R yields the customary Master equation (1.2) for dissociat-
ed and bound states. 

A. Rates and stabilization probabilities 

The steady-state rate (1.4), with the aid of Eq. (2.1), is 

R (t) = -
0 
 lim [4n-R 27  -1;1 (R T )]dE, 
 R r— oc 

= J 
x 

 dE, f dR f Sv (R)dEf 	( 2.2 ) 
v(R) 

which either is the net inward flux of dissociated pairs con-
tracting by transport across a sphere of infinite radius R T  or 
is the net collisional downflow across the dissociation limit 
at E, = 0. 

Now assume (a) that there is a finite radius R r  for 
which all E, pairs with R>R T are in energy equilibrium at 
each R, i.e., 

'OR) n, (R) 
	= 	, R>R T , 	 (2.3a) 
n(R) 	n(R) 

where 

8 
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n(R) =n,(R)dE 	 (2.3b) 
V( RI 

is the concentration per unit interval d R of all pairs with 
separation R. Thus Sif  in Eq. (2.2) vanishes for R>R T  to 
yield 

12 4 (t) = f dE, 	dR 	S,i (R)dEf 	(2.4) 
0 	0 	R, 

which is the steady-state rate of association of dissociated 
pairs with R<R T . 

Association of RT complex: At low gas densities N, the 
distribution n, (R) is independent of N so that the collision 
term Sif  remains linear in N. On the right-hand side of Eq. 
(2.1) n, (R) is equilibrium with respect to R, so that 

n,(R,E; ) 

	

n,(Ei ) 	h,(E; ) 

where the distribution per unit interval dE, is 
R, 

n i (E,) = 	n,(R)dR 

and R, is the classical turning point of E, motion. The sepa-
ration (1.5) is then valid so that Eq. (2.4) yields 

R, 
ZS/A  TVB  = dE, 	dR f C, f (R)P, dEf  = 

	

0 	0 	v(R) 
(2.6) 

for the rate of association of dissociated pairs in the complex 
of radius R T . The required one-way equilibrium rate 

C,f (R) ii,(R)v, f (R) =- Cfi (R) (2.7 ) 

at each R is related to the R-averaged rate C,1  previously 
used 1-3  in Eq. (1.6) by 

C,f = h,V,1 = .10 	(R)v (R)d R = 	C,f (R)dR, (2.8) 
0 

where R, J. is the lesser of the two outermost turning points R, 
and Rf  associated with levels E, and Ep of which one at least 
is bound. Detailed expressions for C,f  ) are presented in 
the Appendix. 

Strong collision rate: In addition to Eq. (2.3a), assume 
(b) that all bound states f with R<R T  are fully stabilized, 
i.e., 

13 'y = 1, R<RT , Ef <0 	 (2.9) 

so that the required strong collision rate is 
R, 

a(RT)TV A TVB  = dE, f dR f C, f (R)dEf  (2.10) 
0 	0 	v(R) 

which is the one-way equilibrium rate that dissociated pairs 
with ReR T  are collisionally deexcited across the dissocia-
tion limit. The "complex" assumption (2.3a) is equivalent 
either to assigning in Eq. (2.2) zero probability 13".  = 0 for 
R)R T  and Ef  <0, i.e., to the overall neglect of association or 
to inclusion in Eq. (2.4) of upward equilibrating transitions 
past E, = 0 for R >R T . The strong-collision assumption 
(2.9) is equivalent to the neglect in Eq. (2.4) of the rate 
rvnf (R)v fi (R)dEf  for upward redissociation of pairs with 
R<R T . 

The physical basis to the two assumptions (2.3) and 
(2.9) can be illustrated by Fig. 1. Bound states at large R 

FIG. 1. Schematic basis for strong collisions within an assumed complex of 
radius R T . A—B relative motion in circular and highly elliptical (large R) 
orbits with speeds v and v' before and after ion—neutral collision. 

arise from highly elliptical Coulomb orbits with low angular 
momenta where the possible velocity vectors for relative 
( A—B) motion lie within a narrowly focused region. Upon 
collision with the gas, the velocity vector is mainly deflected 
into directions outside this region so that the post-collision 
velocity vector cannot be consistent with bound states at 

large R. Collisional dissociation of these highly excited levels 
at large R is therefore most likely to occur,' and stabilization 
of bound levels f is not viable so that PY (R>12,-) = 0 in 
keeping with assumption (2.3) underlying complex forma-
tion for association to proceed. 

For intermediate R, however, the post-collision velocity 
can be accomodated by many angular-momentum bound 
orbits, more final angular momentum levels are accessible at 
these R_,--,e2/2 E. the radius of the circular orbit, and the 
number of accessible orbits at a given R increase with in-
creasing binding. Collisional deexcitation of highly excited 
levels at smaller R therefore tends to occur and pairs with 
R<R, in all bound levels can be fully stabilized, in keeping 
with the strong-collision assumption (2.9). 

The averaged kernels (2.8) have been previously de-
rived for symmetrical resonance charge transfer,' hard-
sphere,' and polarization 3  binary collisions between either 
ion A or B and the gas M. The R-dependent one-way equilib-
rium kernels C,f (R) are not only required for this sudy but 
also for ongoing investigations of the nonlinear variation of 
a with gas density N. They are provided in the Appendix as a 
comprehensive package for present and future use and refer-
ence. 

The exact low density rate ( 1.6 ) and the strong-collision 
rate (2.10) reduce to a sum" of rates aA  and aB , each 
arising from A—M and B—M binary collisions, respectively, 
and aA  can be presented I-3." as a universal function [cf. Eq. 
( A55) ] of the mass parameter 

MB 	Mg  a= 	 (2.11) 
MA ( MA + MB + Mg ) 

where MA , MB , and Mg  are the masses of the reacting atom-
ic ions and gas atoms, respectively. 

Calculation of Eq. (1.6), the exact low density rate a£ , 

(2.5a) 

(2.5b) 
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and of the variation of the strong collision rate (2.10) with 
RT can now be performed. For the exact rate (1.6), highly 
accurate converged solutions 13 ' .  of the integral equation 
(1.6), discretized as in Ref. 3 into an equivalent set of 100 
algebraic equations, have been obtained. Previous results 1-3 

 were based on 36 coupled equations at most. Convergence of 
aE  to within 0.5% is found to be much more rapid for inter-
mediate mass parameters a ( 1/3) than for small and large 
a which required 100 coupled equations for convergent 
rates. 5  

In contrast to ion-atom association where the radius 
may, with some justification, be identified with the location 
of the centrifugal barrier, no such assignment for ion-ion 
recombination ( without any centrifugal barrier) exists, al-
though Thomson' suggested RT = 2e2  /3kT where the rela-
tive kinetic energy (ik7 • e 2/R) is reduced to kT upon 
collision. Hence bound pairs with Et- ---- er=  ( 1/R T  — 1 /R ) <0 
can be formed within RR T. 

The variation with RT of the ratio a(R T )/aE  for the 
recombination of equal-mass ions via symmetrical reso-
nance charge-transfer (CX), polarization (POL), and 
hard-sphere (HS) collisions with an equal-mass gas (a = 1/ 
3 ) is displayed in Fig. 2. The ratio is unity for R T  in the range 
(0.48-0.55) (e2/kT), in good agreement with Thomson's 
suggestion. The neglect in Eq. (2.6) of a positive contribu-
tion to association from possible collisional stabilization of 
those bound levels with R >R 7- 0.5 (e2/kT) is effectively 
offset by the neglect in Eq. (2.10) via Eq. (2.9) of a negative 
contribution arising from redissociation of those bound 
states with R <R T. 

The strong collision model is therefore capable of high 
accuracy provided R T  can be preassigned; realistic assign-
ment to R E  for recombination being only feasible' after the 
exact treatment is performed! The radius R T , once assigned, 
may however be adopted in models under development for 
variation of a with gas density N. 

As R T  becomes large the rate (2.10) however tends rap-
idly to 

FIG. 2. R r  variation of a( R r ), the strong-collision rate ( 2.10) normalized 

to a t,. the exact rate (1.6), for equal-mass components and model ion-

neutral interactions ( POL: polarization; HS: hard sphere; CX: symmetrical 

resonance charge transfer). Arrows indicate where a(R ,-) = a E  for POL 

and CX in units of R = e'/kT. 

0 
	

1 
	

2 
	

3 
	

4 

(-E/kT) 

	

FIG. 3. One-way equilibrium rates aBry 	E), Eq. (2.13), normalized to 
aE , the exact rate (1.6), across energy level — E for model ion-neutral 

interactions POL, HS, and CX. 

which is of course infinite owing to the divergence, as E, —0, 
of the equilibrium density n, (E,) —1E,1 -512exp( — E,/kT) 
of Coulomb bound states per unit interval dE,. As R T  GC 9 

the physical basis for adopting the one-way equilibrium rate 
(2.10) becomes untenable since bound states with large RT 
Are more readily redissociated (cf. Fig. 1). Upward colli-
sions past the dissociation limit must therefore be included 
for large R T . The strong collision assumption is therefore no 
longer justified for large R. 

This divergence can be eliminated not only by maintain-
ing R E  finite but also by considering the one-way equilibri-
um rate 

- E 

aBN( — E)A A :V E, = 	dE, 	Cy- dEf 	(2.13) 
- E 	- D 

across any bound level — E in block e. Figure 3 illustrates 
that this rate decreases from the infinite limit (2.12) at 
E = 0 to a pronounced minimum at an energy E* = 2kT 
below the dissociation limit. Since Eq. (2.13) is an upper 

limit to the exact rate by taking P'7(E,> — E) and 
.1);(Ei- < — E) within Eq. (1.6) to be zero and unity, respec-
tively, then its minimum value a" ( — E *) is the least up-
per limit and is the one-way rate past the effective bottleneck 
to the curent at — E* which, in effect, is a transition state. 
Although this bottleneck model ( 2.13) is physically differ-
ent from the previous strong collision model (2.10), it is 
worth noting that E* = 2kT corresponds to a turning point 
R T of A (e2/kT) for which the strong collision model is effec-
tively exact (cf. Fig. 2). Figure 3 shows that the bottleneck 
result is however a factor of 1.9-2.5 times larger than the 
exact rate aE . In contrast to the strong-collision model 
(2.10), Eq. (2.13) is always an upper limit since in order to 
obtain the bottleneck result (2.13) from Eq. ( 1.6), the ne- 

a(R r — co )AT A  ArB = f dE, 
0 fp C,f dEf 	(2.12) 
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glected terms cannot cancel since they always remain nega-
tive. This search for the least upper limit to the one-way 
equilibrium rate across transition state E * is identical in 
principle to the variational phase-space theory of Keck" as 
applied to termolecular ion-ion recombination. The strong 
collision (Fig. 2) and bottleneck pictures (Fig. 3) have been 
previously displayed in a recent review''; the present CX 
results in Fig. 2 correct those in Ref. 12. 

B. Association probabilities 

To obtain these, the low density rate (2.6) for associ-
ation of dissociated pairs in the RT complex may also be 
expressed with the aid of Eq. (2.2) as 

a(R T )IVA TV, = J [47R 2Tj (R T )]P ,̀.(R T )dE„ 

(2.14) 

the net inward transport rate across the R T  sphere where 

P"7(RT) = (R T ) — n,' (R T )Vh, -  (R T ) (2.15) 

now specifies the desired probability that fully dissociated Ei  
pairs which are originally contracting at R T  will associate 
within the spherical complex of radius R T . The distribution 
of dissociated pairs contracting at R T  is n (R T ), the equi-
librium value characteristic of low gas densities N, and is a 
nonequilibrium value n i+  (R T ) for pairs expanding at R T . 
The one-way incident current at temperature T and perti-
nent to low Nis the one-way equilibrium current 

(R)dE, = 	(R)v,(R)dE, 	(R )v, (R)dE, (2.16) 

1  8kT  y/ 2 - 
NA NB [1 — V(R)/E,] 

4  TrMAD 

X (E,/kT)exp( — E,/kT)d(E,/kT), (2.17) 

where M AB is the reduced mass of the pair ( A-B ) and where 
h, is it,' + . By direct comparison of Eqs. (2.14) and 
(2.16) the exact association probability of fully dissociated 
pairs within R<R T  at low gas densities is 

P`Is(E,>0,R T ) = [n-R 2T h,(R T )v,(R T )] - ' 

(2.18) 

which increases linearly with gas density N via C. The sta-
bilization probabilities P .; which are solutions of Eq. (1.8) 
do not vary with N. As RT-. olo , Eq. (2.18) in Eq. (2.14) 
yields 

a,(E,>0,R T ) = IrR 2T h,(R T )v,(R T )P E(E,>0,R T ), 
(2.19) 

the rate per unit interval dE, for association of dissociated E, 
pairs with R<R T . As R T -• 00 , Eq. (2.19) saturates to the 
exact partial rate. 

The association rate per unit dE, for the highly excited 
bound E, pairs in block e of the complex of radius R T  is 

a,(E, <0,R T ) = prR 2T ii,(R T )1),(R T )]P4(E, <0,R T) 

li r 	[ 

	

=J d R 	C,f (R)PydEf  
fv(R) 

— 
 f

Cif(R)dEfi. 
V(R) 

	

As R T 	the outermost turning point of E, motion where 
1E,1=1V(R,)1, this rate (2.20) vanishes owing to the QSS 
requirement (1.8) of zero net gain of all E, pairs with R<R, 
in block it', a condition on which calculation of the stabiliza-
tion probabilities PS is based. 

Strong collision and Thomson probabilities: The corre-
sponding strong-collision association probability PsT  is giv-
en by Eq. (2.18) with P'is:= 1, i.e., by the probability 

P;5T(E, >0,R, ) = [nit 2T ii,(R T )v,(R T )] - ' 
R T  

XJ dR f C,f (R)dEf  (2.21) 
0 	 v(R) 

for direct collisional formation of bound levels from a disso-
ciated state of energy E.. It overestimates the exact associ-
ation probability by 

	

p 	pST(R T ) pAE(R T ) 

= [irR i-ii,(R T )v,(R T )1 -1  

R T  
X f dR f cf(R)P dE f 	 (2.22) 

J 
which in fact is the probability P R D  for subsequent redisso-
ciation of bound pairs formed with R<R T  and which is in-
herently neglected by the strong-collision model. On defin-
ing the free path length' 2,(R) for continuum-bound 
transitions in A-M collisions during the (A-B) trajectory 
by 

A. , -1 (R)-[v,(R)/t),] 

then the strong-collision probability (2.21) is redefined as in 

n-R 2,41 — V(RT)/E1P ST(R T ) 
R T  

[1 — V(R)/E i ]dR/A..,(R). 	 (2.24) 
0 

The corresponding strong collision rate (2.14) is now 

a T (R T ) = J 
m 

 G(E,)dE, 

X 
 f

RT 
1.1,[1 — V(R)/Ei)1 "2  dR/A, ; (R), 

(2.25) 

where the (Boltzmann) distribution of internal energies 
(E, >0) is 

G(E,)dE, = 
2 

(E,/kT) II2  exp( — E,/kT)d(E,/kT). 
v 17  

(2.26) 

When A, is assumed to be A, independent of R and E,, as 
for hard-sphere collisions, and when V(R) is neglected. Eq. 
(2.24) yields 

Pl(R T ) = ;lR T /A 	 (2.27) 

the Thomson probability' for (A-M ) collisions during recti- 

(2.20) 

= If Cif (R)dEf l/rii,(R)v,(R)] (2.23) 
R) 
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linear A-B relative motion within R<R T . Also Eq. (2.25) 
yields 

aT (R T ) = 3rrR T ( //a. ) 	 (2.28) 

the Thomson rate' in terms of F, the mean (A-B) relative 
speed ( 8k T firM AB  ) 112 . All of the rates calculated here and 
previously" are however normalized (cf. Appendix ) to 

(2.29) T a = —
4 	(

-
2 e2 )3 3kT  )1/2 

3 A 3 kr M A B ) 

where the root-mean-square speed rather than u has been 
customarily used, and where i(e2/kT) is assigned for R. 
Unless otherwise noted, all of the following calculations in 
the following sections ( II C-II E) refer to symmetrical reso-
nance charge-transfer ion-neutral collisions involving 
equal-mass species M A  = MB  in an equal mass gas. 

C. Calculated stabilization and disruption probabilities, 
and partial rates 

The stabilization and disruption probabilities Pf and 
Py = 1 - P7 are the stochastic probabilities that ( A-B) 
pairs initially in a bound level Ef  of block 6' , will either 
become fully associated or disrupted by multicollisions with 
the thermal gas. For a quasi-steady-state distribution of 
bound pairs in block P7 are numerical solutions of the 
integral equation ( 1.8) and are illustrated in Fig. 4. The 
probabilities P7 increase from zero at the dissociation limit 
to near unity for binding energy lEf l>5kT. Note that P7 

1/2= P f for Ef -- - 2kT, the bottleneck energy E* (cf. 
Fig. 3) based on the assumption in Eq. (2.13) that P7 is zero 
for E>E* and unity for E,< - E *. The probabilities P 
= (1 - P7) for multistep collisional disruption of these 
pairs decrease fairly rapidly with binding energy El and are 
negligible for binding 1E1>5 kT. Since block ,7 of fully sta-
bilized levels is characterized by unit P7, Fig. 4 suggests that 
the block ,99  is composed of all levels with binding 10k T. 
Since the deexcitation frequency o f  from the continuum di-
rectly to the strongly bound levels with Ef  - 10kT of 
block .5.° is vanishingly small, association given by Eq. (1.9) 
therefore occurs primarily via multistep transitions to the 
block ' of levels Ef  within the range 0>Ef  > - 10k T, which 
are then connected stochastically with probability P .j to the 
fully associated block .9 via a Markov-element chain.' 

1.0 

0.8 

ra 
g 0.8 
0 
a. 

0.4 
O 

0.2 

2 	3 

(-E / kT) 

FIG. 4. Stabilization and disruption probabilities, solutions of Eq. (1.8) for 
equal mass components. 

to 

73" 

(-E, /kT) 

FIG. 5. Partial rates (2.30a) per final bound level — E., normalized to d i-, 
the Thomson rate (2.29). 

Figure 5 for the partial rate 

a(Ef )NA NT, =(.1 -  Cif dEf) Pj. (Ef) 	(2.30a) 

normalized to a l-, which is the contribution per unit normal-
ized interval (dEf /kT) from level Ef  to the full association 
rate of all dissociated pairs, illustrates that levels in general 
within kT of the dissociation limit, are mainly responsible 
for the association process. This is less so however for CX 
since deactivation by symmetrical resonance charge transfer 
involves larger energy reductions" than for the case of po-
larization and hard-sphere collisions. The very rapid in-
crease of a(E,) from zero at Ef  = 0, not shown in Fig. 5, 
and subsequent decrease arises from the combination of the 
monotonic increase from zero of the stabilization probabili-
ties P7 and the rapid decrease from infinity of c f , the colli-
sional rate from the continuum to a bound level f 

Figure 6 for the E, -partial contribution 

a(E, )Tv 	= f c,fp-f5 dEf 	 (2.30b) 
- D 

to the exact rate for association of dissociated E, pairs per 
unit interval (dE,/kT) illustrates a monotonic increase as 
E, > 0 approaches the dissociated limit at zero energy. This 

3 
	

2 

(E/ kT) 

FIG. 6. Partial rate (2.30b) per initial continuum state E,, normalized to 
an the Thomson rate (2.29). 

5 
0.0 
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R T  

a(R T ;E,)N„NB  =J dR f C, f (R)dEf  (2.31) 
V(R) 

to the strong-collision rate (2.10) with R T  are displayed in 
Fig. 7. They intersect the corresponding exact partial rates 
(2.31a), represented as straight lines at RT, in the range 
0.5R, <R T  <0.6R , a result consistent with the E, -integrated 
rates of Fig. 2 where R T  0.55R, . 

1.0 

0.8 

0.2 

00 	0.2 	0.4 	0.6 

(14,/ R.) 

FIG. 7. Partial strong continuum rate a(R T :E,). Eq. (2.31), per initial 
continuum state E„ normalized to an the Thomson rate (2.29). Exact 
normalized partial rates are indicated by straight lines. E./ kT = 0,0.26, 
0.529, 0.734, and 1.646 ordered sequentially from top to bottom. 

is expected since C,f  for a given bound level Ef  increases 
quite rapidly as the energy difference (E, - Er ) is reduced. 
The full rate ( 1.9) is the E, -integrated area of Fig. 6. 

Variations of the partial E, contributions 

FIG. 8. ( a ), ( b ) Probabilities P' , P' , and P " for strong collisions 
(2.21), association (2.18), and redissociation (2.22) of (A-B) pairs with 
energy E= 0. Probabilities are normalized to the Thomson probability PT, 

Eq. (2.27) and are presented as a function of R T  (normalized to R, = e2 ./ 
kT). 

D. R variation of calculated probabilities for multistep 
association 

Figure 8 illustrates variation with R T  of 	the exact 
probability (2.18) for multistep association via bound levels 
of E, = 0 pairs with R<R T , and of P7, the corresponding 
strong-collision probability (2.21). The probabilities are 
normalized to PT , the Thomson probability ( 2.27). Also 
shown [Fig. 8(a) ] is POD/PT , the normalized probability 
(2.22) for redissociation of the bound pairs so formed with 
R<R T. Figure 8 (a) emphasizes that association dominates 
redissociation within smaller R T  (e2/kt).& so that the 
exact and strong probabilities P", E  and PS:, respectively, are 
equal. Figure 8( b ) emphasizes that pairs within larger 
R T ):. R e  are mainly redissociated. The strong-collision 
probability PST  accurately represents either P ,'" E, the associ-
ation probability at small RT, or P OD, the redissociation 
probability at larger R T , thereby providing the actual phys-
ical basis for Fig. 1. 

Within radius RT - 0.45R,, there is as much associ-
ation as redissociation [ Fig. 8(a) ] so that the strong rate is 
twice the exact rate for association of pairs with R <0.45R, . 
The contribution of pairs with R >0.45R, to the exact rate is 
however equal to the contribution from R<0.45R e , so that 
the exact rate form all R and the strong rate from R<0.45R e  
are fortuitously equal. This balance is the essential basis for 
agreement with the strong-collision model as previously il-
lustrated by Figs. 2 and 7. Figure 8(a) also suggests that the 
R T  variation of the strong collision probability ( 2.21) is rep-
resented fairly well by P 1-, the Thomson result (2.27), over 
the region R<R, important to association, although the 
magnitude is overestimated by a factor of 2.5. 

As the energy E, of the dissociated pairs increases from 

0.8 
	

1.0 
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FIG. 10. R dependence of downward Fd  and upward F„ normalized flux. 
Eqs. (2.32) and (2.33), upper and lower curves of each set, across various 
continuum energies tE/kT= 0, 0.529, 1.09, 1.56, and 4.7, (a)-(e), re-
spectively] and across various bound energies [ - E/kT= 0, 0.529, 1.09, 
1.56, and 4.7, (a)-(e), respectively ] in (b). 

zero, Fig. 9 shows that the probabilities for association of 
these pairs and for subsequent redissociation decreases mon-
otonically with E. and that the R T  region over which associ-
ation exceeds redissociation becomes somewhat smaller. As 
before, the strong collision probability P ,sT, the sum (FIAE 

+ Pi,w ) of each pair of curves, tends to P A,' at small R T , to 
P IP at large R T . The sum is fairly constant for the range 
0.2R, <R,- <Re , as in Fig. 8(a). 

FIG. 11. R dependence of the net flux (Fd  -F,a ) downward across various 
continuum [ E/kT = 0, 0.529, 1.09, 1.56; (e)-(h ), respectively ] and bound 
[ - E /kT = 0.26, 0.529, 1.09, 1.56; (d )-( a), respectively] energy levels. 

with both normalized to the Thomson rate (2.29). For small 
R <0.3R, , Fd increases more rapidly from zero and remains 
greater for all R than F,, which eventually tends at large R to 

Fd from below. This limiting behavior at small and large R 
also elucidate the physical basis for the separate R regions in 
Fig. 1. For bound levels [Fig. 10( b) ] , both Fd  and Fu  across 

State (R,E) increase from zero to a maximum and then de-
crease as expected to zero at the turning points associated 
with energy E. 

Variation with R in Fig. 11 of F(R), the net differential 
flux (Fd  — Fu ) across both bound and continuum energy 
levels E exhibits a peak at roughly the same R — (0.2-0.3 )R e  

for all E. As E decreases through the continuum the flux, 
and R-integrated flux, 5,7F(R )dR, increases. For bound E, 
the net flux increases and then decreases to zero at the classi-
cal turning points R, = e2/IE I. The net R-integrated flux 
across the highly excited bound levels remains constant, i.e., 
the area under each of the bound curves remains constant in 
accord with the QSS condition [dn,(t)/dt = O] in block e, 
so that the flux becomes constricted into more restricted R 
space as E decreases through the bound levels. The resulting 
increase exhibited in Fig. 11 of the net differential flux as E 
decreases is therefore expected. The E variation of the nor-
malized R-integrated net flux 

1
0

  [
F d

(R
;  

E
)  

-  
F

.  
(

FL
E

)]
/
 a,

  

E. (R,E) variation of calculated flux and rates 

In Figs. 10(a) and 10( b) are shown the variation with R 
of the downward differential flux (dF = FdR), 

F(E) = f°  R,  

[F,,(R;E) — F„(R;E)VIR, E>0 

[F,,(R;E) — F,,(R;E)]dR, E<0 

Fd(R;E) = 417-R2 J a  (1 
E 

— P .7)dE, j 
V(R) 

C,f (R)dEf  

(2.32) 

per unit interval dR across various continuum [Fig. 10 ( a )] 
and bound [Fig. 10( b) ] energy levels E, and of the corre-
sponding upward flux 

F, 	= 4n-R 2 	
dE, v(R)

(1 — P .I)Cfi (R)dEf  
f f  

(2.33) 

(2.34) 

is illustrated in Fig. 12. That F(E<O) is constant simply 
reflects the QSS condition or constant flux through the high-
ly excited block 6'. 

Figure 13 illustrates the variation with R,- of a, the 
exact partial rates ( 2.19) and (2.20) for the association of 
dissociated pairs (E,>0) and of highly excited bound pairs 
(E, < 0), respectively, within the sphere of radius R. The 
former rate increases with R 7- and saturates fairly rapidly for 
large R,- to the exact rate for association which, in order to 
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FIG. 12. Energy dependence of exact current, Eq. (2.34), normalized to 

a r , for the association of equal mass species under charge-transfer ion-

neutral collisions. Exact rate is the constant current across bound levels. 

maintain a steady-state (' block, is the rate of generation of 
net inward E. with infinite separation. 

The rates that bound E, pairs are lost also increase with 
R T  due to continual downwards output, but reach a maxi-
mum when the upward input from other levels becomes 
competitive, and then decrease as a result to zero at the clas- 
sical point R ;  of classical motion. There is a net loss of bound 

E, pairs with small R and a net gain of pairs with larger 
R<R, so that the R-integrated distribution (2.5b) remains 
constant in time. The zero rate at the apocenter R, in Fig. 13 
reflects the QSS condition ( 1.8) in Eq. ( 2.20) for no net loss 
or gain of R-integrated bound E, pairs in block 6'. 

The rate a(R) of volume recombination within a sphere 
of radius R, the rates of Fig. 13 integrated over E>0 is given 
in Fig. 14 as a function of R. It is worth noting that 60% of 
the exact rate aE  = a(R— cc) is achieved within the sphere 
of the natural (Onsager ) radius R e  = e2/kT as designated 
by the arrows. 

III. MASS EFFECT IN STRONG-COLLISION MODEL 

Figures 2 and 7 illustrate the ratio of the strong collision 
result ( 2.10 ) to the exact result aE  for equal mass species 

FIG. 14. Rate that fully dissociated pairs (with a Maxwellian energy distri-

bution) recombine within a sphere of radius R. The exact rate is aE. 

recombining in an equal mass gas, i.e., a, the mass parameter 
(2.11), is ( 1/3 ). In Fig. 15 is displayed variation of the same 
ratio over the full range of a. Small a :7;10 -3  implies heavy 
particle recombination in a vanishingly light gas, while elec-
tron-ion recombination in a normal gas is characterized by 
large az...103 . It is noted that the radius RI-, where a(R 7-) 
= aE  increases from — 	to —0.5R, as the parameter a 
increases to unity, and then decreases back again as the pa-
rameter a further increases. For greatly mismatched species, 
i.e., in the limits of small and large a the energy-change colli-
sion dynamics is weak, and vanishingly small energy 
changes are involved particularly for deactivating transi-
tions across the dissociation limit at E, = 0. The stabiliza-
tion probability Pl- in Eq. ( 2.6) and Fig. 4 is therefore of 
prime significance. To invoke the strong-collision assump-
tion ( 2.9) for these bound levels close to the dissociation 
limit and important at small and large a is therefore without 
validity. Although some physical significance can be at-
tached to R*--, where a(R T ) and aE  are equal, for intermedi-
ate a —1, as previously discussed in Sec. II, no such signifi-
cance exists in the limits of small and large a. The essential 
reason why RI— 0.1/2 becomes unacceptably small at 

FIG. 13. Normalized rate equations (2.19) and (2.20) that pairs in contin-

uum and bound energy levels E recombine within a sphere of radius R. 

FIG. 15. Mass effect in strong-collision model: R T  variation of the strong-

collision rate (2.31) normalized to the exact rate aE , Eq. ( I .6 ), for recom-

bination of systems with various mass parameters a, Eq. (2.11). 
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these limits is that small R effectively (numerically) off-
sets the large addition to the inner integral of Eq. ( 2.10 ) 
entailed by the strong collision assumption (P7- = 1) in Eq. 
(2.6). The smaller exact values of P7 (cf. Fig. 4) are more 
appropriate to the important levels in the vicinity of the dis-
sociation limit for large and small a. 

IV. RECOMMENDED LOW-DENSITY TERMOLECULAR 
RATES 

Due to the long-range Coulombic attraction and to the 
use of shorter-range ion-neutral interactions [charge-trans-. 
fer (CX) ), polarization (POL), and hard sphere (HS) 1.. 
rates for the termolecular ion-ion recombination, 

A+ + B-  + M-AB + M 	 (4.1) 

between general atomic species in a general atomic gas may 
be characterized' by a universal function of the mass param• 
eter (2.11) and of the gas temperature T [cf. Eqs. ( A40)-- 
( A55) ]. This universality does not extend to ion-atom asso-
ciation which, due to the closer interactions involves, de-
mands individual calculations for specific systems. As pre-
viously mentioned, rates (1.6) or ( 1.9) or ( 1.10) have been 
obtained numerically from Eq. (A55) via the highly accu-
rate numerical solutions P7 to the integral equation ( 1.8) for 
the stabilization probabilities. Converged probabilities for 

small and large mass parameters a in particular were ob-
tained only when the integral equation ( 1.8b ) was discre-
tized into 100 algebraic equations via the efficient procedure 
of Ref. 3. Previous results' adopted 36 equations at most. 

Recommended values of the ratio '-3  

(a) = (MA /M, B )[a(EA '(a,T)/ii T (T)], 	(4.2) 

where a2) is the exact numerical rate ( A55a ) originating 
from (i - M) collisions alone, are presented at closely 
spaced a in Table I. The exact low density rate can be repre-
sented to a high degree of accuracy by 9  

a = a(EA)  + dEB) . 	 (4.3) 

Although the partial rates a(Z )  are tabulated here to four 
significant figures, the recombination rule ( 4.3) as previous-
ly tested was then shown to be accurate to three figures at 
best or two figures at worst. The test however relies on the 
accuracy of the solutions to the integral equations ( 1.8b ) 
with C tf taken as C .1-A) ,C {7 )  and [ C + C .1-6) ] where 
C i!fA).(B)  is the one-way equlibrium rate which results from 
individual A-M and B-M collisions, respectively. Since the 
present converged probabilities PS have been determined by 
a numerical procedure' more accurate and efficient than 
that9  previously used for the test, the accuracy of rule (4.3) 
is being updated. 

TABLE I. Normalized partial rates 10 ( 	/M A . )( aZ/a for termolecular recombination A+ + B - 
+ M- AB + M as a function of mass parameter a = M A  MB  /MA  (MA  + MB + Mg ) for various interactions 
(CX: symmetrical resonance charge transfer; HS: hard sphere; POL: polarization attraction ) in collision 
between A and gas atoms of mass Mg . 

a HS°  POL °  a HS°  POL °  

0.0010 1.291 1.278 1.029 1.5000 9.452 6.751 
0.0020 1.816 1.818 1.472 2.0000 8.593 6.044 
0.0030 2.208 2.221 1.800 2.5000 7.877 5.472 
0.0040 2.530 2.554 2.071 3.0000 7.276 5.003 
0.0050 2.807 2.841 2.304 3.5000 6.766 4.611 
0.0060 3.053 3.098 2.512 4.0000 6.328 4.280 
0.0070 3.274 3.329 2.699 4.5000 5.947 3.994 
0.0080 3.476 3.542 2.870 5.0000 5.613 3.746 
0.0090 3.662 3.739 3.029 5.5000 5.317 3.529 
0.0100 3.835 3.923 3.177 6.0000 5.053 3.336 
0.0200 5.115 5.313 4.288 6.5000 4.815 3.164 
0.0300 5.959 6.264 5.039 7.0000 4.601 3.010 
0.0400 6.581 6.986 5.603 7.5000 4.406 2.871 
0.0500 7.066 7.565 6.049 8.0000 4.228 2.744 
0.0600 7.456 8.042 6.414 8.5000 4.065 2.629 
0.0700 7.778 8.444 6.719 9.0000 3.914 2.523 
0.0800 8.047 8.789 6.976 9.50(X) 3.775 2.426 
0.0900 8.276 9.086 7.197 10.00(X) 3.646 2.336 
0.1000 8.471 9.347 7.387 12.00(X) 3.212 2.036 
0.2000 9.459 1.078, + 1 8.377 14.00(X) 2.875 1.806 
0.3000 9.709 1.127, + 1 8.644 16.0000 2.604 1.624 
0.3333 9.727 1.134, + 1 8.666 18.0000 2.382 1.476 
0.4000 9.709 1.140, + 1 8.652 20.0000 2.196 1.353 
0.5000 9.600 1.136, + 1 8.547 50.0000 1.029 6.064, - 1 
0.6000 9.446 1.124, + 1 8.389 100.0000 5.535, - 1 3.177, - 1 
0.7000 9.269 1.107, + 1 8.206 500.0000 1.195, - 1 6.582, - 2 
0.8000 9.045 1.087, + 1 8.013 1000.0003 6.029, - 2 3.253, - 2 
0.9000 8.860 1.067, + 1 7.818 
1.0000 8.678' 1.046, + 1 7.625 

° In CX small a implies MB 4MA = Mg ; a = 1 implies MB  ), MA = M g  
° In HS and POL small a implies recombination in a vanishingly light gas and large a ( 7:z 10') implies electron-

ion recombination in a normal mass gas. 
' For CX, the maximum value of a is 0.998. 
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The partial rates (4.2) are very insensitive to a realistic 
choice of either the level - S ( 5, - 10k T), below which the 
stabilization probability P s  is calculated as unity, or the low-
est level - D since the one-way coupling Cy  connecting the 
dissociated states i to any bound level f decreases extremely 
rapidly and is quite negligible for states with binding ener-
gies D as low as 30 kT, which is much smaller, in general, 
than dissociation energies of normal molecules. 

The temperature dependence of c6 )  follows that of Ex T , 
the Thomson rate (A40) with Eqs. (A41 )-( A44 ). Results 
of a recent diffusional treatment' are in close agreement with 
those of Table I. 

In conclusion, via an exhaustive investigation of the 
strong-collision and bottleneck methods of the termolecular 
process (4.1), interesting underlying physics and dynamics 
of the basic process have been uncovered and studied. High-
ly accurate rates have been presented (Table I) for future 
use. 
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APPENDIX: ONE-WAY EQUILIBRIUM COLLISION 
KERNELS C„(R) 

The one-way equilibrium rate per unit interval 
d R dE, dEf  for E,-Ef  transitions in the microscopic pro-
cess, 

+ M- (A-B) Ef. , +M 

at specified internal separation R of the pair AB is 

C,f (R) = h,(R)v,f (R) = ki ) (R) + v;j4 ' (R)]. 
(A2) 

The equilibrium distribution it, (R) per unit interval d R of 
(A-B) pairs with internal energy E,, internal kinetic energy 
T12 , and reduced mass M12 is 

Ft, (R)dE, 

NB 

= 2 ( T,2)
1/2 

71 /2 	 exp( - Elk T)d( T, 2/kT) 	(A3) 
 kT 

at temperature T. The frequency I/ if  per unit interval dEf  for 
E,- Ef  transitions is assumed in Eq. (A2) to be the sum 1/ 1!' 
+ v;) )  of the separate contributions vy )  that arise from (A-
M), j = 1, and (B-M), j= 2, binary collisions at fixed R. 
The species A, B, and M denoted by indices 1, 2, and 3, 
respectively, have masses M, , reduced masses M,J  and veloc-
ities v, and v; before and after the (1-3) elastic collision with 
differential cross section alg,0) which changes the (1-3) 
relative velocity from g along the polar axis to g' ( 0,0). 
Hence the (1-3) energy-change collision frequency is 

o- 
) (R )dEf  -= [j.  No (v 3 )dv, f golg,iMd(cos 0)1 v;1! 	 d 0, 

(A4) 

where the integration is over the (v 3 ,0) region of velocity 
space accessible to E,- Ef  transitions. The velocity distribu- 

tion of gas species with concentration N (cm -3 ) over the 
kinetic energy 

T3 = IM, 	 (A5) 

of AB-M relative motion is the Maxwellian 

No ( v3 )dv3  = NG(T3 )dT3 E-
1

4/r 
 d(cos 03 )03 1, (A6) 

where the distribution 

G(T3 )dT3  = —
2 

( T3/kT) " exp( - T3/kr)d(T3/ kr) 
rr 

7) 

represents thermodynamic equilibrium at temperature T 
between 3 and the ( 1-2) center of mass." The reduced mass 
of the AB-M system is 

MS  = (M1 + M2)M3/(Mi + M2 + M3) 

= aM = (1 + a)M,,, 	 (A8) 

where a convenient mass parameter 9  for (1-3) collisions is 

a M2M3/M, ( M, + M2 ± 	 (A9) 

The (1-2) center of mass is at rest before the (1-3) 
collision which changes both the kinetic energy 

Ti 2 = 1M 1 2(V1 - V2) 2  

= Mu; ; M = M1 (1 + Mi/M2 ) 	(A10) 

of (1-2) relative motion to T 'i2 and the internal energy 

E, = IMu; + V(R) 	 (All) 

at a fixed R by 

T; 2.  - Ti 2 = 	[ 	- V2) 2  - (v 1  - V2) 2 1. 

(Al2) 

The (1-3) relative momentum is changed by 

P = M, 3 (g' - g) = M 1  (v 1  - v,) = M3 (v3  - v3 ) 
(A13) 

and the (1-3) relative energy T1 3 remains ;M 13  e . On fol-
lowing from analysis in Ref. 15 it can be shown that the 
Jacobian .1, in the angle-kinetic energy transformation 

d(cos 0 3 )thb = J, dT13  dT ;, 	 (A14) 

is given by 

J2( RA T139 T3;E) 

(1 + a)2  
[(Ti2T3T13) 

2a 
X (T 12  + T3 	T, 3 )(y± - p)(1.4 - 11- )] -1/  

(A15) 

The scattering ib region accessible at fixed T 13 , T3, and E is 
the range µ - <cos k<1..t + , with limits 

= (1 - n 1 / 2 (1 - rj.) 112 + 	(A16) 

where 

[(T 1+, - T13)(T13 	T )]/ 

[47' 13 (713 + T3  - T13)] 
	

(A17a) 

and 

(Al) 
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+ a)2   ( 2 y/2  

a 

X (1Cr ANBN)  I exp( - E /kT)d(E /kT) 
.7(kT) 2 	g, 

T ' 

X 	( -T - T, 3 ) -I I 2dT,, f a(T,,,y) 
r - 	 A —  

CV(R) = ii i (R)1V(R) = 
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1-‘ • = 	— T13)( T13 —  T13 ) 1/ 

[47.13(T12 	— 	 (A17b) 

The accessible T13  region accessible for fixed T3 and E is 
the range 

= max(7. 13,7. 13 )GT, 3 <min( 	) =T +  
(A18) 

which ensures real ,cs t , where 

(T3;T12) = (7-1/2 ainTt2,2)2/( + a) (A19a) 

where T is T12 + T3 as in Eq. (A23). Integration over R 
yields an expression identical to that of Bates and Menda§. 3  

Case II: For hard sphere collisions when 

of T,3,0, _ cro - 	 (A28) 
42r 

then 2  

C;; ) (R) - 	(NATVaN)  f exp( -E/kT) 
(2114- 13) 1/2 ( kT) 2 

X [ 	T—)1/2 	(1. —  T-1- ,  1/2 ) ]d(E /kT). 
is a function of the initial kinetic energies, and where 

i'(T;;T;2  ) = (T3 1/2 Ta li2 T;2/2 ) 2/(1 +a) 
(A19b) 

is the same function of the final (1-2) and 3 kinetic energies 

T12 = T12 ± Et 	 (A20) 

T ; = T3 — E. 	 (A21) 

Since 

n,(R) 	o(T3 )dT3  

Case III. When a(T134) is a function only 
tum change P as for the Born approximation 
Coulombic attraction when 

a(T13,0) = 4e4Mb/P 4  = °(P) 

and by finding the Jacobean J3 in 

d(cos 03 ) chA d(cos b) =J3 dT 12 dP dT,, 

then from previous analysis," it can be shown 
2 1/2 (1  + a)  (Tv A N.B N) 

C,T (R) -= 

(A29)  

of momen-
or for pure 

(A30)  

(A31)  

that 

P' 

f 	a(P)dP, 
P —  

(A32)  

P for specified 

r 1 /2 

4 

where 

E = 

Ty2 

(NA NB ) 
/kT)d(E /kT), 

X 

where the limits 

a'121‘ 
` r•  13 	(kT)2 

r ao 

exp( - E/kT)d(E/kT) 

to the momentum change 

exp - (E 	 (A22) 
(kT) 2  

E, + T3 = (TI2 	T3) ± V(R) = t+ V(R) 
(A23) 

then the contribution to the one-way equilibrium rate (A2) 
from (1-3) collisions is 

XI(Y± --fi)(kl-P)1-11241' 	(A24) 

where T is E - V(R), as defined in Eq. (A23), and where 

= min ( E„Ef  ) 	 (A25) 

ensures real T3  and 7'; in Eq. (A18). 
Case I: When the differential cross section a.  is a func-

tion only of T13  as for spiralling ion-neutral collisions under 
pure polarization attraction when 

cr(T, 3 ,0) 	 , 
am  e2 I /2 

(A26) 
87.13  

where a, is the polarizability of M, then 
( am e2 )1/2 

Ml3 

X 
( 1 -I- a) 2 (7VA N,N) 

exp( - E /kT) 
a(kT) 2  

x[Sin -  I 	/2  Y - sin — I  ( 
T 

T ) 1/2 

X d(E/kT), 	 (A27)  

/4", and e are 

P (v 1 ,v 3 ;e) = max[M 	-vi  1,M5 112; - v3 1] (A33a) 

and 

P (u„v3;e) =minpf(v; 	v,),Ms (v; + v,)]. 
(A33b) 

Case IV Symmetrical resonance charge-transfer (1-3) 
collisions 

X +  + X-X + X+ 	 (A34) 

between an ion and its parent gas simply interchange v, and 
v3 . At thermal energies the integral cross section a z is essen-
tially independent of relative speed g. It can then be shown 
that' 

C!) ) (R) = [(1 + c)/c] 3/2 	(NA NB N)cr x  

(A35) G(E)dE, 

where 

Xexp[

(1 

X exp 

(22rM12 ) I / 2  (kT) 3 / 2  

+ c) 	+ Ed] 

(1 + 2c) 	kT 

[ 	V(R)/kT1 rE  

(2c + 1) _II 

c = 	M., 

and where the fraction of Maxwell particles with energies E 
in the range E <E<E ± with limits 

E ' = [c(1 + c)/ (1 + 2c)][T12  + T;; /2 1 2  (A36) 

is 

(R) - 
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1.E' 

G(E)dE =Ferfc(E /kT) I I 2  

2 
(E/kT) 1/2  exp( - E/kT)1  

	

81-7i 	 E - 

(A37) 

The above rates (A24), (A27), (A29 ), (A32), and (A35) 
satisfy the detailed balance relation C, j- ( R) = Cfi  (R ), and R 
integration of Eqs. (A27), (A29), and (A35) yields pre-
vious expressions. 1-3  

Computational equilibrium rates: C,f  may be conve-
niently expressed for computational purposes in terms of 
dimensionless units, 

A = — E,/kT, µ = Ef/kT, v(r) = — V(R)/kT, 

r= R /Re , R. =e2/kT 	 (A38) 

by 

(R )R 2  dRIdE,IdEf l 

= raTF(A.,y;r)r2  dr d.1 du (cm3 	) 	(A39) 

in terms of specified mass factors f' and the Thomson (low 
density) rates, 

a T  = 11r(R.43) 3 (3kT 211  12) 1  / 2(70N, = 3/2, (A40) 

where ao  is the integral cross section for (1-3) collisions are 
relative energy 3kT. The appropriate mass factors r in Eq. 
(A39) and cross section a-0  in Eq. (A40) are 

rli  ( 3  )1/2 (fl3) (1Q 

	

(Afi2) 

	

) 	a3/2 	) 

	
Gro = 

(A41) 

for hard-sphere (1-3) collisions with integral cross section 

- 

rc 	 r II; 	= 	= irR  2e  

	

ir( 1 + a) 	 9 

3a 	 1 	
(A42) 

for Coulomb (1-3) collisions with integral cross section at 
which corresponds to Coulomb scattering by angles ib>/r/2, 
and to energy transfers e> (3/2) k T for equal mass species. 
For (1-3) polarization attraction/core repulsion for colli-
sions within the orbiting radius, 

rP = ( 3 ) (i3 3 ) ( 1  + a)512 
 (M12 

2 	7r 	a3/2 	\ M 1 ) ;  

= ug = 27r(a,R,/3) 1/2 	 (A43) 

and o-  E; adopted in Thomson's rate (A4.0) is the correspond-
ing integral (elastic or momentum transfer) collisional cross 
section at (3/2 )kT relative energy. For ( 1-3) charge-trans-
fer collisions, 

r x 	( 3 \ I/2 (fl 3 	c.)3/2 

2 ) 	) 	c 	
, u0  = 2a.  x, (A44) 

where a0  in Eq. (A44) is the corresponding momentum-
transfer cross section, taken as twice the cross section o X  for 
charge transfer.' 

The corresponding dimensionless functions F in Eq. 
(A39) are symmetric in 2 and kt and are 

F H(A,g;r) = 	exp( - Y)dY [1",_ - 25 _ ]; 

Yo = max( - 2, At) 	 (A45)  

for hard-sphere (1-3) collisions with (dimensionless) mo-
mentum-change limits 73,>7:1_, given by 

P_ (A,y;r) = max{[v(r) 	2] 1/2 	[v(r) I.1] 1/2; 

a l/2 H  y 4. 2)112 	y ±fi ) 1/21} (A46a) 

and 

15,(2,11 ;r)= min{ [v(r) 	] 1/2 + [v(r) —µ] 1/2; 

a 112[ ( y 	A ) 112 	(y 	11) 112]} .  

(A46b) 

For Coulomb (1-3) collisions, 

Fc(A,12;r) =
J 
 exp( - Y)dY EP : 3  -7' 	. (A47) 

For polarization (1-3) collisions, 

FP(A„u;r) = 	exp( - Y)dY 

x [sin -  ( G2/A ) - 	( G I /A ) 
(A48) 

where 

G I (2„u;r) = max [1 ( y ± A) I/2 

a 112 [v(r) 	] 12 1; 

1(y + 1.) 1 / 2 	a"2 [v(r) 	14,]"2 11, 

7-2(44 ;r) = min 

( Y 

and 

A= 	(1 + a) 112 [v(r) 

For charge-transfer 

F i(A„u;r) = exp 

x 

where 

[ ( 	+ it)" - 	 12 [ v 
+ µ )1i2 	al/2[V(r) 

+ Y ] 112. 

(1 -3) collisions 

(2 + 

(r) - 

1/21 ,  

g. 
, 

g. 

(A49)  
1/2 ; 

(A50)  

(A51)  

(A52)  

xexp[ 

[( 11 ±± 2cc ) 

— 1/(1 +2c)r] 

2 
— erfg - g exp( 

r+ (1 + 2c) 
[v(r) 	/1]  11212 .  

The universal expression (A39) is also valuable in that 
the one-way equilibrium current (rate) across an arbitrary 
bound level v = - E / kT is simply 

aeci 	 F(2,µ)  di , 	 (A53) 

where in = - D /kTis the maximum binding energy in units 
of (kT) and where 

,„, 
F(A„u) = J F(2„u;r)r2  dr, r, = 1/max(2 4.4). 

(A54) 
This equilibrium collisional rate displays a minimum at 

v* = ( 1-3 )kT, the location of a bottleneck (see Fig. 3). The 
QSS rates (1.9), (1.10), and (1.6) reduce simply to 
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a = ra, f 	f F(A,p)P s(y)d,u, f 
	o 

a = ra T  f (IA 	F(2,11)P D (p)du, 

(A55a) 

(A55b) 

are easily determined' on using one of the relevant expres-
sions, (A45), (A47), (A48), or (A51), pertinent to the 
chosen binary A-M and B-M interactions of A and B with 
the gas M. 

= ra T 
 

di f 	[P %a) - P s(2)]F(2„u)d,u, 
'M. R. Flannery, J. Phys. B 13, 3649 (1980). 

(A55c) 'M. R. Flannery, J. Phys. B 14, 915 (1981). 

where c = - S /kT. 
' D. R. Bates and I. Mendai, J. Phys. B 15, 1949 (1982). 
'M. R. Flannery, J. Phys. B 18, L839 (1985). 

Also various energy-change moments. 'Nt. R. Flannery, J. Chem. Phys. 87, 6947 (1987). 
nM. R. Flannery, Ann. Phys. (N.Y.) 67, 376 (1971). 

D"' ) (E; ) I' = (Ef  - E,rnC,f  dEf  (A56) J. J. Thomson, Philos. Mag. 47, 337 (1924). 

m! - D P . J. Feibelman, J. Chem. Phys. 42, 2462 (1965). 

where the dimensionless 
1 

(,""(A) = 

moments 

f" 	- 2rF(2,y)du 
_ cc  

(A57)  

(A58)  

by A. E. Kingston (Plenum, New York, 1987). 
"3 .1. C. Keck, in Advances in Atomic and Molecular Physics, edited by D. R. 
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A variational principle for the rates of termolecular processes is proposed and then applied to 
recombination between atomic ions with excellent results. The variational expression when 
minimized with respect to stabilization probabilities is capable of providing rates identical to 
those determined from the quasi-steady-state solution of the full Master equation. Connection 
is made with electrical networks and with the principle of least dissipation. 

I. INTRODUCTION 
An important objective in chemical physics is the for-

mulation of a variational theory of chemical reactions which 
is exact in the sense that the deduced variational expression 
will yield, upon variation of relevant parameters, the distri-
butions n, and rate constants which are identical with those 
obtained by direct solution of the exact Master equation for 
the particular process. The variational procedure of Wigner ' 
and Keck' is "variational" in the sense that it yields a least 
upper bound to the rate of a chemical reaction as determined 
from a Master equation. The reaction is represented by the 
motion of a point (p,q) in multidimensional phase space 
across a trial surface S which separates a block '6' of initial 
reactant states i from a block .9' of final product states f. The 
one-way rate R that representative phase points flow ( down-
ward ) across S—or flux of trajectories—is an upper limit to 
the actual rate since ( a ) upward reexcitation to states i above 
S is ignored and since (b) a representative point which 
passes through S more than once is repeatedly included at 
each pass. The additional use of an equilbrium density Ft, for 
the reacting states then provides a rigorous upper bound R e  
to the reaction rate. A minimum—the least upper bound—
to R e  is then obtained by variation of the trial surface S. 

In termolecular electron-ion or ion-ion collisional re-
combination 

A + + B -  + M- AB + M 	 (1.1) 

at low gas densities, for example, the "surface", can be taken 
as some bound energy level - E of the pair AB so that an 
upper bound to the two-body rate constant a(cm 3  ) for 
recombination ( 1.1) is 

— E 

R e ( - E) = 	dE, 	Cv  dEf  >a TVA 	, (1.2) 
- E 	— D 

where NA  and Ar, are the equilibrium concentrations of A + 
and B -  and where C,1  is the one-way equilibrium collisional 
rate per unit interval dE, dEf  for transitions between energy 
levels E, and Ef  of AB pairs. The level - E separates the 
"reactant" block (6' of states i with energies E, in the range 
- E<E, oD from the "product" block"._;°  of states f with 

energies Ef  in the range - E>Ef> - D, where - D is the 
lowest energy level of the AB pair relative to a dissociation 
limit at zero energy. A minimum to R e  occurs at 
- E = - E* which therefore acts as a bottleneck or transi-

tion state. States above - E* are more likely to be excited by 

collision and hence are unstable with respect to association, 
while those below - E* tend to be deexcited and are there-
fore considered as stable. For this one-dimensional surface, 
the Wigner-Keck treatment is then identical with the bott-
leneck method proposed by Byron et al.' for three-body elec-
tron-ion recombination. 4  For termolecular recombination 
of arbitrary mass ions in a gas, this variational treatment 
yields rates' which are higher by factors of 2 to 8 than the 
exact rates' obtained from a Master equation. 

What is desirable is a variational method which will 
yield a rate identical to that determined from solution of the 
full Master equation. This search requires the addition, as 
illustrated by Fig. 1, of a block g' of highly excited states i for 
which the reaction can go either way. The block is character-
ized by the overall probability P s, for stabilization via down-
ward ( g' -.9' ) transitions or by the overall probability 
P = (1 - PS) for disruption via upward ( - ) transi-
tions. This block g' lies intermediate between the reactant 
and product blocks (6' and .9' which are separately charac-
terized by P'7 = 0 and P ,s  = 1, respectively. 

In this paper such a method is proposed and is then 
applied as a case study to the well-developed example' of 
termolecular ion-ion recombination ( 1.1) in a low density 
gas M. Connection is then made with the principle of least 
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FIG. I. Schematic diagram of energy blocks 	, 6', and .5° pertinent to 
recombination at low gas densities. 
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d (3F) 3F 
= 0, i = 1,2, . . . ,N, 

dx c3Y, 	ay, 
(2.11) 
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dissipation, well known in heat-conduction problems and in 
electrical networks. By analogy with this principle for a 
network of resistors, Bates' very perceptively postulated 
that a minimum would exist, with respect to variation in the 
normalized time-independent distributions 
y, (E,) = n,/it,, in the time-independent measure: 

= 	dE, 1(y1 — y,) 2 C, dEf 	(1.3) 
— D 	— D 

of the total rate of restoration to thermal equilibrium. Men-
dags  then noted that minimum is obtained for a quasi-
steady-state distribution of excited levels determined by 

riC,f dEf = f y f  C,f dEf 	 (1.4) 
D 	 — D 

The present formulation permits the identification of this 
so minimized with twice the actual (quasi-steady-state) rate 
constant 

— E _ ao
WV, 	= j"  dE, 	( y, - yf )C,f  dEf 	(1.5) 

— E 	— D 

which is the net downward constant energy-space current 
across any level — E, in the block 6' of excited levels in 
quasi-steady-state. A supplementary calculation of Eq. 
( 1.5) with the variational result of Eq. ( 1.3 ) is then not 
required. Note that the upper bound [Eq. (1.2) ] is recov-
ered upon eliminating block ' by assigning 
y,( — E<E,< 00 ) = 1 and yf ( — E)Ef > — D) = 0 in ei-
ther Eq. (1.3) or Eq. (1.5 ). 

ed reactant states, n, at low Ncan then be taken in the colli-
sional part of Eq. (2.4) as its thermodynamic equilibrium 
value n; , so that P s, for block (69 . The effective two-body 
rate constant for the association of A and B with (cm -3 ) 
concentrations NA  (t) and NB (t) at time t is a (cm's - ' ). 
The constant k (s - 1 ) is the frequency for dissociation of the 
tightly bound pairs in the product block S P  of levels with 
energies E, in the range — S>E,> — D, within which the 
stabilization probability P s, is unity. In the intermediate 
block 6' of "reacting" states with 0>E i  > — S in Fig. 1, the 
probabilities PS must be determined. The net rate for termo-
lecular dissociation in the closed system is 

R °(t) = f P (
dn

)dE, = -R 4 (0 , 	(2.5) 

	

— D 	dt 

where P = 1 — Psis the probability that state i is collision-
ally connected to fully dissociated channels (at infinite A-B 
separation). 

The proposed variational principle now asserts that the 
probabilities P .S. D  and densities n, have energy distributions 
which ensure that R 'D(t) of Eqs. (2.2) and (2.5) are ex-
trema at time t. 

A. The quasi-steady-state deduction 

Rewrite Eq. (2.2). as 

3J, 
R 4 (t) = - 	Ps (&I 

— D 	dE 

CO 	 CO 

(2.6) 

II. VARIATIONAL PRINCIPLE 

The net rate for termolecular association 
a 

A + B + M AB + M 

between A and B in a gas M 

" 
 f 	
(dn 

— D 	dt 

= a NA (t)NB (t) k n s  (t) 

in terms of the net downward collisional current 

- J(E,t) -= r dE,[n,(t)v,f  - nf (t)vfi l dEf  
— D 

(2.1) 
	

(2.7) 

past level E. Since J, vanishes as E, tends to both — D and 
co , the rate is then 

(2.2) 	 dPs  
10(t) = f

— D 
 J,(E,t)(

dE
dE, . 	 (2.8) 

, 

Since PS is constant (0 and 1 in blocks (4' and 	respective- 
(2.3) 	ly ), Eq. (2.8) further reduces to 

where PS is the stochastic probability that a pair AB with 
internal relative energy E, is connected via a series of energy 
(state)-changing collisions to a sink .7 of fully associated 
AB pairs. The concentration n, (t) of AB pairs with internal 
energy E, of relative motion in unit interval dE, about E, 
develops in time t according to the standard Master equa-
tion' 

dn, 	 3J 
—
dt 

= - f [n,(t)v,f  - nf (t)vfi ] dEf  = 	 
— D 	 3E

,

, 
(2.4) 

where — D is the energy of the lowest vibrational level of AB 
relative to the dissociation limit taken as zero energy. 

The frequency per unit interval dEf  for E, — Ef  transi-
tions in AB by collision with gas species M is v„f. which is 
linear in gas density N. At low gas densities, R 4  is linear in N 
so that PS is then only required to zero order in N. Over the 
range O<Ei < 00 which defines the '6' block of fully dissociat- 

dPs  
R 4 (t) = f J, (E,t) 	 . 	 (2.9) 

- s 	dE, 

A necessary condition for the integral 

I= f s  F [y(x),Y(x);x1dx, y= dy/dx 	(2.10) 

to exhibit an extremum is given in the calculus of variations 
by the Euler-Lagrange equation' 

the solution of which determines y (x) - [y, (x) ] over the 
fixed range x, <x <x2 . Write xE,, y, - Ps, and 
F(Y(x);x)---.J(E,) (dPs,/dE,). The integral (2.9) is then 
an extremum provided 

—0— 

  —

dn 
—L, 0>E, > — S 	 (2.12) 

3E, 	dt 
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for each level i within block e. This is the quasi-steady-state 
(QSS) condition for pairs in block e with n, (t) distributed 
so that J, the current (2.7), is constant over all energies 
( - E) of block e . The extremum rate, obtained from Eq. 
(2.12) in Eq. (2.9), is then the net downward current across 
bound level - E of block 

R (t) = — J( — E,t) = 	dE, 
E 

which depends on the probabilities P S  only implicitly via n,. 
As E tends from above to the dissociation limit at E = 0, 
- J(E,t) increases monotonically to this rate.' 

B. Analysis 

From Eq. (2.4) the distribution 

y;  ( t) = n, (E„t)/ii, (E,) 	 (2.14) 

normalized to the distribution it for full thermodynamic 
equilibrium satisfies 

dn, 	_ dy, 
— = n, — = 
dt 	dt 

which is now time independent and is always positive. The 
upward current Jpast energy E in Eq. (2.19) separates simi-
larly as9 

J(E,t) = [y„(t) - y,(t)lj(E) 	 (2.22) 

where 

j(E) = 	dE, 	(Pf 	C,f . dEf 
re 

(2.23) 
E 	 D 

Since Eq. (2.20) is an extremum provided the QSS con-
dition (2.12) holds, i.e., Eq. (2.19) vanishes in block 
where Eq. (2.23) is constant, then the probabilities P S  satis-
fy the standard integral equation 9  

f dEf = 	cf . dEf 	 (2.24) 
D 	 — D 

When inserted in Eq. (2.21) the solutions P7 yield after 
some reduction the extremum rate constant, 

R *  = a,1, NA  NB  

= 	dE, 	(P .; (P— P .7) Cif  dEf , 
co 	- E 

(2.25a) 
—E 	—D 

= J dE, 	CI P .; dEf  , (2.25b) 
— D 

—D 
X 
 f

E 

Pl i (t)v,f  — nf (t)vi, dEf  , (2.13) 

j D 
[Y.(t) — rf (t)] 	dEf , , 

—  

(2.15) 

where the one-way equilibrium rate 

Cy-= 	= iif  vfi  = Cfi 	 (2.16) 
= 
 f

f° dE„ 
-s

dEf  f_ D C,f  P 
 

(2.25c) 

satisfies detailed balance and is linear in gas density N. On 
introducing the implicit dependence of n, on the probabili-
ties P SID  via the separation 9  

y, (t) = 	(t) + 	y,(t) , 	 (2.17) 

where 

Yc (t) = nc(t)/FI, = NA  (t)N,(t)/iir, N B 	(2.18a) 

and 

ys  (t) = n, (Wit s 	 (2.18b) 

are the respective concentrations ti c. (t) and n,(t) of fully 
dissociated pairs with energies E, in the range O<E,< cc of 
block and of fully associated pairs of block 9' normalized 
to their respective equilibrium concentrations n, and it„ 
then Eq. (2.15) separates as 9  

dn, 

—dt = [r̀ (t) Ys(t)1  

X 
 f

(Pf — P .7)C,1  dEf = 	
dJ, 	

(2.19) 

	

— D 	 dE, 

Hence the macroscopic rate (2.3) is now 

	

(t) = a31, 	[y,(t) - y,(t)] = - R D(t) , 
(2.20) 

where the association rate in units of the time-dependent 
difference (ye  - y, ) is the rate constant 

aNA 	 = kn s  , 	 (2.21a) 

= J 	P7 dE, f (P7-  — P ..7) C,f , dEf  , 	(2.21b) 
— D 	 — D 

=
2  1 

 1_ D  dE f 
D 	

— 11) 2  dEf 	(2.21c) 
—  

where - E is any level in blocky, including the (K-6)  and 
W--9' boundaries at 0 and - S, respectively. This extre-
mum simply confirms the identification in Eq. (2.13) of rate 
with current. The nature (maximum or minimum) of the 
extremum becomes apparent on performing independent 
variations SP7 to P7 for each level in block if subject to the 
constraints 

P = 13; OGEi  oo , 

= 1; — D<E,< - S , 

associated with blocks cd' and .7, respectively. The resulting 
change in Eq. (2.20) is 

SR A (t) = 2[yc (t) - ys (t)1 

X 
 [f

SP flf (P7 — P .1) Cif  dEf } 
- s 	- D 

+ 
4 J - D 

dE, f (SP — 	2  Cy- dEf 
— D 

(2.27) 

to second order in SP S. For an extremum the change OR to 
first order in (5P'7 vanishes so that Eq. (2.24) is recovered 
from Eq. (2.27). The change to second order in SP7 is deter-
mined by the sign of (yc  - y, ). When K. (t) > y, (t) so that 
the overall direction, according to Eq. (2.20), is association, 
then the extremum to R A  is a minimum; and the dissociation 
rate R D  in Eq. (2.20) is a negative maximum. When 
ys (t) > (t) so that the overall direction is dissociation, 
then RA is a negative maximum; and R D  is a minimum. The 
proposed variational principle governing Eqs. (2.2) and 
(2.5) thus asserts that the rate RA or R D, whichever corre-
sponds to the overall direction, always adjusts itself to a min- 

(2.26) 
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imum, i.e., the probabilities P sare so distributed that they 
tend to counteract the change so as to impede the progress 
towards full equilibrium ( when y c  - 1). The rate R *  in 
Eq. (2.25) is a minimum to Eq. (2.21). 

Rather than inserting the numerical solution of the QSS 
integral equation (2.23) in Eq. (2.25a) for the rate constant, 
an alternative procedure is therefore a direct search of a min-
imum in the rate (2.21) with respect to variation of Ps, a 
procedure similar to that noted by Mendag with respect to 
variation of Eq. (1.3) with respect to y,. The present vari-
ational principle however provides a variational expression 
(2.21) for the actual QSS rate (2.25) obtained otherwise 
from the Master equation. 

Although the present analysis has been developed with 
termolecular ion-ion recombination ( 1.1) in mind, it may 
be easily generalized to include ion-atom association 

A+ + B + M-AB+ + M 	 (2.28) 

between atomic species in a low density gas M. Here quasi-
bound levels (E, L) of AB+ can be formed with E,> 0 
within the centrifugal barrier associated with internal rela-
tive angular momentum (squared) By adopting the an-
satz [Eq. (5.2) of Ref. 5] for the distribution n ;  (E;  L) of 
AB+ pairs in terms of the stabilization probability 
P;'(E, Lf) then expression (2.21), generalized to include 
relevant integrations over L and L I, is varied with respect 

to P s,(E„ 	so as to provide a minimum which is then the 
required QSS rate. 

C. Application to termolecular recombination 

Since dP s,/dE, tends to zero as E, - 0 and as E, - S 
(taken now to be - oo ), the simplest one-parameter (A *) 
trial function is provided by 

dP s(2;2 *) 	AA e - (A /,,t•) 
dA 

where A = - E,/ kr is the binding energy in units of kT, the 
mean energy of the gas M, and where the variational param-
eter A* is the location of the maximum at A = A* of Eq. 
(2.29). Since P( ao )-P(0) is unity, then integration yields 
the normalization parameter A to be (1/A. *) 2  and 

P s(A;A *) = 1-(1 + x) exp( - x);x = A /A* . (2.30) 

Consider, as a case study, the well-developed example of 
termolecular ion-ion recombination' 

X+ + X -  + X-X-, + X 	 ( 2.31 ) 

between equal mass species. Necessary integrations of Eq. 
(2.21) and solution' of the integral equation (2.24) are per-
formed by choosing 72 pivots each in blocks '6 and re ac-
cording to the procedure outlined in Ref. 11. When Eq. 
(2.30) is inserted into Eq. (2.21) and when A * is varied, the 
long-dashed curve in Fig. 2 is obtained for the ratio 

r= R(A=A*)/R *  , 	 (2.32) 

where R *  is the exact QSS rate (2.25) determined from the 
direct solution' of Eq. (2.24). Not only does the single pa-
rameter A* = 1.1624 provide a minimum to R but it also 
yields the exact result to 1% accuracy with r = 1.011. Intro- 
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FIG. 2. Ratio of the variational rate (2.21) to the exact QSS rate (2.25) as a 
function of variational parameter A •. (1): One parameter function (2.30). 
(2) and (3): Two- and three-parameter functions (2.35) with a = 1, b = 0 
and a = 1, b = 0.7, respectively. 

duction of a more sophisticated three parameter (A *,a,b) 
trial function 

dPs(A;A*,a,b)/dA = AA(1 + aA + bA. 2 )e /A.  , 
(2.33) 

where, in terms of the location at A* of the maximum to Eq. 
(2.33), A *  is the function 

A (A,a,b) = A(1 + aA + bA 2 )/ (1 + 2aA + 3bA 2 ) 
(2.34) 

evaluated at A = A*. 
Integration of Eq. (2.33) subject to the constraints Eq. 

(2.26) determines the normalization factor A and yields 

P S (A;A * ,a,b) =1 - [1 + x + x2g(x) 2 ] exp( —x); 
x = A. /A*  , 	 (2.35) 

where 

g(x;A * ,a,b) = A *  (a + 3bA *  + bA * x)/ 

(1 + 2a A *  + 6bA2*  ) 	 (2.36) 

The derivative is 

dP s(A:ii * ,a,b) 

dA 

( 1 + 2aA *  + 	) ] exp( —x) . 
(2.37) 

Figure 2 illustrates that minima r = 1.0008 and 
r = 1.0029 are obtained for two-parameter (A * = 1.3962, 
a = 1.0, b = 0) and three-parameter (A * = 1.5348, a = 1.0, 
b = 0.7) trial functions, respectively, and that these minima 
agree with the calculation of the exact QSS rate (2.25). 
Comparison of the corresponding probabilities for all three 
variational cases with the exact QSS solution' of Eq. (2.24) 
is given in Fig. 3(a). The two-parameter function is graphi-
cally indistinguishable from the numerical QSS solution in 
Fig. 3(a). The agreement is in general very good for such 
simple variational functions, and could be easily improved at 
larger A by insisting that P -1 as E, - S r - (10-20) 
kT rather than as E1 - - cc in Eq. (2.35). Although the 
two-parameter function provides a slightly better represen-
tation we note from Fig. 2 that the rate (2.21) is not overly 
sensitive to the ..nall deviations in the probabilities. 

(2.29) 

= [(..r + a As z 2  + bA2s x 3 )/ 
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dP 
PrS = Ps, + (Ef  — E,)[— 

I 
dE, 

cl 2Ps  
+ 1(Er  — E,) 2 [ 	']+ 

dE 	
(2.38) 

in powers of the energy difference (Ef  — E,) so that Eq. 
(2.19) yields 

— Er. (t) — y,(0] 	
dn, 	D( , ) [dPS1 
dt 	dE, 

d 2ps 
+ D,2)[ 

 dE
`] (2.39) 
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FIG. 3. (a) Variational probabilities (2.35), (1), (2), and (3) as a function 
of normalized bound energy ( — E / kT). Parameters (A *,a,b) given by 
(1.1624,0,0), (1.3962,1,0), and (1.5348,1,0.7), respectively. Exact QSS 
probability (2.24):(E). (b) Corresponding derivatives. 

A more sensitive test s  is provided in Fig. 3(b) which 
displays the corresponding comparison of the derivatives. 
All of these variational curves and the direct QSS solution of 
Eq. (2.24) display maxima almost equal and located in the 
same neighborhood. This location has physical significance 
and is perhaps key to the overall success obtained. This is 
most easily illustrated by expanding  

to second order in the energy-change moments' 

D gym)  (E,) = 1  f -  (Ef  — E, C„f  dEr  

	

m! 	D 

For QSS of block 6', 
( d21);5)/(dP7)= 	 —x,(E,) (2.41) 

dE 	dE, 

so that (dP s,/dE,) exhibits a maximum where E) 11 , the 
average energy increase per second, passes through zero, 
which in general occurs' at E = — (1-2) kT. The above 
trial expressions (2.29) and (2.33) therefore implicitly ac-
knowledge the physical tendency for collisions to excite 
those pairs with E> E 7 and to degrade those with E <E 
Once A has has been variationally determined by the present 
procedure, it will only coincide with the actual location of 
the zero in D;" to the extent that approximation (2.39) is 
valid. If so the expressions then imply that the ratio (kT) 
D ,(2 ' may be represented quite accurately either by the 
simple form ( 1/A — 1/ A*) or by the more complicated form 
(1/A — 1/A * , respectively. Both forms yield zero at 
A = A*. Interestingly enough, the zero ofD;" for symmetri-
cal resonance charge transfer collisions occur at 27 = 1.329 
in close agreement with the two-parameter variational and 
exact calculations [cf. Fig. 3 (b) J. 

The solution of Eq. (2.41) subject to Eq. (2.26) is 

PS(— E) 	- 
=if dEr  exp if x, dE,li 

	

- 	 Ef  

X[f 	
EI 

	

dEr  exp I f 	dE,11 

	

-s 	-  
(2.42) 

in block if. When the approximation' 

Bol) —
dD'2' 

dE, 

between moments D;" and D;2 ' can be invoked, then 

exp[f
, dE,]= D(2) (0)/ D 121 ( — Er ) 	(2.44) 

- Ef  

so that Eq. (2.42) reduces to 

Pe ( — E 1 ) =[1°  dEr/D (2) ( — Er)1 

X[-
dEf/D 12) ( — Ej.)1 I . (2.45) 

s 
This expression (2.45 has been used in Eq. (2.21c) to pro- 
vide accurate rates cip in a previous diffusional treatment.' 
The more basic expression (2.42) is currently being tested. 12  

There are now two accurate treatments which provide 
accurate analytical representations of the collisional stabili-
zation and disruption probabilities—the previous diffu-
sional method' and the present (two-parameter) variational 
method. These results D from Eq. (2.45) and V from Eq. 
(2.35) are compared in Fig. 4 with the exact numerical solu-
tion E of Eq. (2.24). Due to a more accurate evaluation of 
D;' ) , the present diffusional results differ somewhat from 
those previously reported.' The resulting rates 
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FIG. 4. (a) Probabilities and (b) corresponding derivatives in exact QSS 
(E), two-parameter (A • = 1.3962, a = 1) variational ( V2), and diffu-
sional (D) treatments, as a function of normalized bound energy ( - E/ 
kT). 

(aD /aE  = 1.08, a v /a, = 1) are not that sensitive, as be-
fore, to the larger discrepancies in PS resulting from the dif-
fusional and variational treatments. 

III. ANALOGY WITH (R,C) ELECTRICAL CIRCUIT AND 
WITH PRINCIPLE OF LEAST DISSIPATION 

Bates' has already provided the interesting analogy with 
a network of resistors for the case when y, (t) =1.y,(t) so 
that time dependencies can be omitted,' and has introduced 
the variational function Eq. (1.3 ), as a measure of the 
restoration rate to thermodynamic equilibrium. Here capa-
citors are introduced (Sec. III A) so as to explicitly ac-
knowledge time-dependent currents and voltages. The pres-
ent approach allows us to identify (Sec. III B) the 
time-independent function with 2aN, NB . 

The Master equation ( 2.15) involves the internal ener-
gy Ef  of relative (A-B) motion as a continuous variable 
since the spacing between bound levels are much smaller 
than the thermal energy ( k T) of the thermal gas bath M. 
The discrete representation of Eq. (2.15) gives the net elec-
trical current flowing outward from node i of a multimode 
system as 

do 
I,(t) = --= 	I,f (t) , 	 (3.1) 

dt f _ D  

where the current in the i-f segment is 

/,f (t) = [K(t) - yf (t)Icf  . 	 (3.2) 

This reduces under Eq. ( 2.16) to 

/,f (t) = [yc (t) - 	(t)1(13 ;s: - 	Cf 	(3.3) 

[y,(t) - y,(t)] i,f  

The formal structure of Eqs. (3.1) and (3.2) is identi-
cal' to an electrical network where the current 1,1- along the 
line element e,f  from junction i to junctionf in the network is 
equivalent to the time-dependent voltage drop 

V,f (t) 	[y,(t) - yf (1)1 	 (3.4) 

= [y,(t) - ys (t)1(13 :9  - P.;-9 ) 	(3.5) 

times the conductivity C,f  = R 	of the line element of re- 
sistance R, f . 

Since, Eq. (3.2) is Ohm's law ( V,f (t) = /if ( t) R,f )", a 
time-dependent potential 

Vi (t) = y,(t) 	 (3.6) 

can be associated with any level i. All states within the source 
block co' are at equipotential y c (t) and all levels within sink 
block are at equipotential y s  ( t). The potential y, of each 
S' level i is below y, by an amount 

	

= ye  ( t ) - y, ( t ) = 	[y,(t) - y s (t)1 	(3.7) 

or is above y, by an amount 

V. =r;(t) - y5(t) =P° [y,(t) - y,(0] . 	(3.8) 

Hence in units of (y, - y,),13 ;' is the potential drop 
from '6' to i,P:9  is the potential height of i above and 1 rf  is 
the current Eq. (3.3) along segment e,f . Since P:9  within' 
increases with E, continuously and monotonically from zero 
within .7' to unity within `e then 

E, [ dp D 

= [re(t) - ys(t)] 	̀idE, =0 , (3.9) 

	

E, 	dE, 

where the sum is over each segment e,f  within any closed 
loop (E, -E,-E,). Equation (3.9) as already noted.' is 
Kirchoff's voltage law ( KVL) which is based on the unic 
ness of the potential y, (t) at a given time and which eN - 
presses energy conservation for any closed loop within the 
entire ( 	, 	,,/ ) circuit at time t. 

A. QSS simplification: (R,C) circuit 

The QSS condition ( 2.12) for each level i of block e 
(0)E, - 5) is equivalent to 

1,(t) = 	1,f (t) = 	[y,(t) - yf (t)] Cf  
f = - D 	f = - D 

(3.10a) 

[K.(t) - y,(0] f (13 :7 - 13.n C f  dEi  
D 

(3.10b) 

= 0, i = 1, 2, N 	 (3.10c) 

which' is Kirchoff's current law ( KCL). The balance of cur- 
rents I,f  which exits and enters any junction i within block 
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PS f C,f dEf = f C,f . PY dEf 	 (3.11) 
-D 	 - D 

Q,(t) = tic (t) = f n,(t)dE, 	 (3.12) 
0 

1 2,,f R nf  
= - D 

= z (3.22) 
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(1<i<N) to all junctions (f = N + 1, N + 2,.. 00, in block 
ce , f = 1,2,...,N in block 67 and f = 0, — 1,.., — D in block 
Y ) of the network is zero. This expresses charge conserva-
tion at junction i where there is no net buildup of density 
(charge) n,. The ansatz (2.17) which enables the QSS con-
dition (2.12) to be satisfied by a specified distribution PS at 
all times provides the separation in Eqs. (3.3), (3.5), and 
(3.10b). 

Under KCL or QSS, the voltages PS satisfy 

The time-dependent (6)  and .5° blocks of states are anal-
ogous to capacitors connected in parallel with their positive 
plates charged to  

the Master equation (3.10) for association is illustrated by 
Fig. 5. A time-varying current I(t) from capacitor C, with 
initial charge Q, (0 ) = n, (0) is subdivided along mainline 
channels to enter a KCL network with N nodes, com-
posed entirely of resistors R„1  and internal currents I,„,(t), 
and is then reconstituted at C2 via mainline exit channels R. 

B. Principle of least dissipation 

The network of resistances R cs , R cy, R„, and R d. may 
now be replaced by an equivalent resistance R with through-
put current I(t) determined from the power loss 

I(t) 2R = [n(t) — ys (t)]1(t) 	 (3.21) 

and 
- s 

Q2 (t) = ns (t) = J 	n,(t)dE„ 	 (3.13) 
- D 

at time t and held at voltages 

V,(t) = K.(t) 	 (3.14) 

and 

V2 (t) = yx (t) 	 (3.15) 

above their negative plates. Since Q = C /V, their capaci-
tances 

C, = hc  = f h, dE, 	 (3.16) 
0 

and 
- s 

C2 = = I 	n dE, 	 (3.17) 
- D 

are constant. The external capacitor C, -=- ,e is connected to 
internal KCL node f (or energy level) by equivalent resis- 

= 	cif  dE, = Ccf 
i= N *1 Rif 	0 

and directly to the external capacitor C, = 5° by a resistance 
R cs  given by 

1 
	

co 	 0 
	

1 

Rcs = 
=N+I f= -D 

0 	-D 
dE , 	, dE — C 

f- C s 
f 	f  — cs  • 	(3.19) 

Each internal KCL node iof block 62  is coupled to inter-
nal node fby R d- and externally coupled to C2 via R, given 
by 

- = 	 Cif dEf = C,5 
R ,s f  _ D R 	D 

1 	° 	1
s 	

(3.20) 

The above resistances R cf , R,s , and R cs  are equivalent 
to a parallel network of resistances R,f connecting, respec- 
tively, all states C(i = N ) of block to the speci-
fied e-block state f, each e -block state i to all states 
S(f = 0, — 1,...,-D) of block ,..).`" and all states C' to all states 
S, respectively. The electrical network which corresponds to  

to be 

1 1(t)= 
2 

— [K(t) — y s (t)] 

X 	dE, 	(13 '7 — P:7) 2  C‘f dEf . 	(3.23) 
D 	- D 

The summations include external junctions 
C(n = N + 1,N + 	oo ) andS(n = — D, — D + 1,...,0) 
at the source and sink capacitors and the internal junctions 
(n = By comparison with Eq. (2.20), the associ-
ation rate R A (t) may now be identified with the electrical 
current 1(t) of Eq. (3.23), and the rate constant identified 
with 

a1V,
2 
 f dE, I -  (PS — P .Y) 2  Cy. dEj. 	( 3 . 24 ) 

- D 	- D 

the effective conductivity R 	of the network, or with the 
time-dependent electrical current 1(t), Eq. (3.23), per unit 

it) 

FIG. 5. ( R,C) electrical diagram analogous to termolecular recombination. 

R Cf 

1 
(3.18) 

J. Chem. Phys 	89, No. 1, 1 July 1988 28 



M. R. Flannery: Variational principle 	 221 

voltage drop [K(t) — y,(t)]. When the KCL condition 
(3.11) is used directly in Eq. (3.24) then the previous results 
(2.25) are obtained. 

The power loss 

1 2 (t)R = [y e (t) — y, ( 	R"(t)>0 	(3.25) 

is always positive. The present variational principle (VP) 
asserts that 1).7, the voltage drop in units of ( y, — y s  ), are so 
distributed that the rate R A M—the electrical current 
1(t)—is a minimum. When yc  (t) > y s  ( t ), i.e., association 
occurs at positive rate R A  (t), then VP implies that the pow-
er (3.25) dissipated by (A-B) and absorbed by the gas M is 
least. When R A  is negative, the net direction is dissociation 
which occurs at rate R D(t) = — R A (t) when yr  < y„ then 
VP implies that the power provided to AB by the gas M is 
least. 

This principle of least dissipation is basic in many fields, 
e.g., thermodynamics, heat conduction, fluid mechanics. 
The principle for heat conduction was derived explicitly by 
Onsager.' For a current / entering a KVL and a KCL elec-
trical network via 12,„ and exiting via R„s , the currents with-
in the KCL network are so distributed that the summed rate 
of dissipation of energy in the R c„, R,, and R„, resistors is a 
minimum—Joule's law. With this law, Bates' postulated 
that a minimum would exist in the measure ..11, Eq. ( 1.3) of 
the restoration rate of thermodynamic equilibrium by re-
combination in highly nonequilibrium systems [when 

"Y, ), y, and y, = l';')  in Eq. (2.17) so that explicit time de-
pendences can be ignored 5 ]. Mendie then noted that the 
distributions n, associated with this minimum satisfy the 
QSS condition (1.4). From Eq. (3.23) it follows that this 
unnormalized time-independent measure ..1( may now be 
uniquely identified as the rate 2aN, NB so that the mini-
mum of „g yields the minimum rate ( 2.25a) directly, with-
out the further need for substituting the final variational 
function = 1 — P .7 in expression (2.23) for the current 
(2.25a) or in Eq. (1.5). 

The present assertion that the rates (2.2) and (2.5) are 
extremum implies a principle of least dissipation for chemi-
cal reactions. The rates R""(t— co) tend naturally to zero 
when thermodynamic equilibrium is obtained for the com-
plete system. This is analogous to the electrical current I 
decaying to zero when the voltages across the capacitors C, 
and C2 connected in series across R become equal. 

C. Use of diagram 

Various QSS results may be deduced rather readily from 
consideration of the electrical diagram (Fig. 5). 

Result 1: The mainline entrance current along R,„ and 
entering KCL node n is 

	

= 	C,, 	 (3.26) 

in units of (yr  — ys ). The total mainline current which en-
ters all N nodes of KCL block e and node n = 0 of block Y 
from block is 

a iv A  NB = 	in  ==f ,: Ccf PdEf 
n=0 	–D 

which is the association rate R A  (t) in units 
[rc(r)-y,(r)] in agreement with Eq. ( 2.25b). 

Result II: The current which exits KCL node n along all 
the internal resistors R ni- and external resistors R ns  of Fig. 5 
is 

in = 	(Pit — P .Y) C nf. 	 (3.28) 
= o 

The total current exiting from all N-KCL nodes is then 

in+  = 	(1 — P,S,) C„-f Csf P fr)  dEf (3.29) 
n=1 	n -= I 

which when combined with the W-.5" direct current, 
io = Cc, yields 

k it s  = CSf P dEf 	 (3.30) 
- s 

in agreement with Eq. (2.25c). The KCL law, 
In  =i: —in-  = 0, Eq. (3.10) applied to nodes n = 1,2,...,N 
not only confirms the QSS condition (2.25) but also de-
mands equality of Eqs. (3.27) and (3.30), which provides 
macroscopic detailed balance. 

Result III: From Fig. 5, the total mainline entrance cur-
rent to nodes below a designated KCL node N*: 

N• 	E 
i; (<N * ) = 	in f Ccf. 	dE f  , 	(3.31 ) 

	

n 	- D 

where the junction N* is associated with energy level — E. 
The internal and mainline exit currents from nodes above N* 
sum to 

N N 

i, > N *) = I in= I I (1) ;5, — 135;) Cnf * 

	

n = N• 	n = N• f=0 

- -f E, f (P -is: — P7) Cif  dEf 	

(3.32) 

- E 	— D 
which reduces to 

	

= f dE, 	(13 ; — P7) Cy- dEf  . 	(3.34) 
– 

E f_ D 

E 

Since i„+ -= in-  for each KCL node the total current 
+ i ) in units of [ yc  (t) — y, (t)] is – E 

N,TV,„ = f dE, f (PY —  P .7) C„f dEf  (3.35) 
– E 	– D 

in agreement with Eqs. (2.23) and (2.25). 
Result IV: When C, with charge Q,(t) gains a charge 

dQ, and C2 with charge Q 2 (t) gains a charge dQ2  on their 
positive plates within time dt, the sum of the total electro- 
static energy ( V,dQ, V 2dQ 2 ) gained by the capacitors and 
the thermal energy (3.21) radiated must be zero. Since the 
charge 

q, -= n, (t) = n, (0), i = 1,2,...,N 	 (3.36) 

at each junction i of the N junction KCL network remains 
constant then the total charge distributed among the capaci-
tors of initial charges Q 10  and Q20  is 

Q,(t) 	Q2 (t) = '210 + Q20 	 (3.37) 

and the discharging/charging current is 

1 _ 	
dQ,(t) 	d42 2 (t) 

(3.27) 

of 	 dt 	dt 
Hence the power equation is 

(3.38) 
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( V, — 1/2 ) [ d2
dtI 

 + 	-= 0 	 (3.39) 

which also follows from application of KVL, Eq. (3.9), to 
the (C,,R,C2 ) circuit at time t. Hence 

R A M = 
d2(t) 

 =
d22(t)  

dt 	dt 

1 
= — [Q,(t)/C, — Q 2 (t)/C-2 ] 	(3.40) 

which 	is 	the analog 	of Eq. 	(2.20) 	with 
R = aNA  1■1„,, y, = Q,(t)/C,, and ys  =- Q2 (t)/C2 . The 
equation is linear (rather than quadratic) in Q, since Eq. 
(2.7) renders the basic equation (2.2) linear in the (pair) 
distribution (3.12) of dissociated species AB. The solution 
of Eq. (3.40) subject to C, being initially uncharged 
(Q10 = 0) is 

Q,(t) = Q20(C/C2) [1 —exp— t/RC ] 

C,  

( CI + C2) Q20 

and 

Q2(t) =Q20[ 1  — ( C/C2 ) (1 — exp — t /RC)] 

C, 
 (C, + C,) Q.2°  

where C is C,C2/(C, + C2 ). As t— oo , the voltages across 
each pair of plates, y, = Q,/C, and y, = Q2/ C2  are equal 
(and opposite), no current flows and charging is complete 
(corresponding to thermodynamic equilibrium). When C, 
has infinite capacity for absorbing charge, i.e., when C, C2 
then C— C2 so that 

Q 1 (t)--Q20 (1 —exp— t/RC2 ) 	 (3.43) 

and 

Q2 ( t) --' Q20 exP — t /RC2  , 	 (3.44) 

so that the dissociation frequency k can be related to the time 
constant for discharging of C, and charging of C, by 

k = 1/RC2 	 (3.45) 

as expected (since C, = n s  and 1/R = aNA  NB  = kit s ). 
This rate constant governs only the rate of approach to, but 
not the magnitude of, the asymptotic limits. 

In summary, appeal to the network (Fig. 5) provides 
results (3.27), (3.30), and (3.35) which are exact under 
KCL condition (3.11). For voltages which do not satisfy 
this KCL condition, then Eq. (3.24) is used for the electrical 
current in units of ( y, — y, ). 

IV. SUMMARY 

A variational principle based on the search for a mini-
mum to the net rate R A  (t) for association with respect to 
variation of the stabilization probabilities Ps, has been pro-
posed. It is capable (Sec. II B) of providing probabilities Ps, 
and rate coefficients a identical with those determined from 
direct QSS solutions of the Master equation. In this sense the 
developed expression (2.21) provides a variational expres-
sion for the QSS approximation. Good trial representations 
(Sec. H B) for P S  exhibit a maximum in IdPS/dE,1 near the 
location E' of a physical bottleneck. 

By introduction of the additional block if of highly ex-
cited levels i sandwiched between the reactant and product 
zones cd and .7, respectively, and characterized by forward 
and reverse ( variational) probabilities PS and respec-
tively, the present variational method is more detailed and 
complete than the least-upper-bound variational method of 
Wigner' and Keck' which ignores this block. 

The minimum with respect to variation in n, of function 
(1.3) postulated by Bates' via analogy with an electrical 
network is identified here with 2aN A  NE, so that the supple-
mentary explicit calculation of the rate (1.5) is not required. 
Electrical diagrams (as Fig. 5) may be utilized very effec-
tively not only to analyze (Sec. III C) the detailed dynamics 
of termolecular processes but also to facilitate the ready con- 

struction of various simplified approximate schemes." 
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Termolecular recombination: Coupled nearest-neighbor limit and uncoupled 
intermediate levels limit 
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(Received 18 April 1988; accepted 15 June 1988) 

Two extreme limits of collisional coupling in termolecular recombination are investigated. The 
coupled nearest neighbor (CNN) limit includes only couplings between neighboring excited 
energy levels of the associating species AB*, while the uncoupled intermediate levels ( UIL ) 
limit includes only couplings between the fully dissociated reactants A' and B -  and each of 
the (assumed uncoupled) excited levels of AB*, which are then coupled to the fully associated 
products AB. Comparison is made with results of previous exact and diffusion treatments. 

I. INTRODUCTION 

Analogy with a mathematically equivalent electrical 
network provides an effective framework whereby not only 
can the complicated multilevel collisional dynamics intrin-
sic to a master equation treatment of termolecular recombin-
ation 

A +  B —  M—AB M 	 ( 1.1) 

between atomic species A' and B -  in a gas M be analyzed in 
a different light' but also physically appealing models may 
be readily constructed. In previous reports,' the (exact) 
quasi-steady-state (QSS) master equation method,' the cor-
responding variational method,' and an approximate diffu-
sional method' were considered. In this paper, two simple 

models prompted by considering the analogous electrical 
diagram (Fig. flare investigated. So as to emphasize the 
importance of collisional couplings between many excited 
levels in a realistic treatment of process (1.1), two extreme 
limits will be tested. The coupled nearest-neighbor limit in-
cludes only the coupling of a given excited level n with its 
lower neighboring level n — 1. The limit of uncoupled inter-
mediate levels includes only couplings from the (external) 
source block ce of fully dissociated states of the reactants 
A' and B -  to each of the excited levels n assumed to be 
uncoupled within the (internal) block' and then the cou-
pling from each of these uncoupled n to the (external) sink 
block S° of fully associated levels of the products AB (cf. 
Fig. 1). The "intermediate" levels comprise block e which 
is intermediate between blocks (62  and Y. 

(t) 
FIG. I. (R, C) Electrical diagram (Ref. 2) 

 appropriate to analysis of termolecular re-
combination, involving as an example, four 
excited levels (n = 1,2,3,4). 

I (t) 	
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II. CONSTRUCTION 

Termolecular recombination (1.1) may be described' 
via a time-independent treatment wherein equilibrium con-
centrations NA and N B  of the fully dissociated atomic spe-
cies A and B with relative energies E. the range O<E, < co , 
the reactant (6' block, are associated (a) by direct collisions 
into the product block .S° of fully associated molecular levels 
in the range — S>E,> — D maintained at zero population 
and (b) by a series of indirect transitions via the intermedi-
ate energy block if (0>E;  > — S) of highly excited levels. 
The indirect mechanism (6° —47 —.9- is the most impor-
tant' at thermal energies since the rate of the large energy 
transfers involved with direct —.3° transitions is vanish-
ingly small, by comparison. The lowest energy level of AB is 
—D, relative to the dissociated limit at zero energy, and 
—S is a bound level below which the probability P 7of colli-

sional stabilization of pairs in level E, is by definition unity. 
The two key quantities are P7 which is unknown and the 
one-way equilibrium rate Cif  which is given' in terms of the 
equilibrium number density of n, of levels of energy E. per 
unit interval dE, and the frequency vif  for E. —Ef  transi-
tions per unit interval dEf  by iz, v,f . 

A hierarchy of approximate schemes are apparent via 
consideration' of process (1.1) in terms of the analogous 
electrical diagram displayed in Fig. 1. Here N discrete junc-
tions ( if -block levels) n are at time-independent potentials 
Ps„ below the (6' block junctions C, all maintained at unit 
equipotential (due to the assumed equilibrium concentra-
tions of A and B), or equivalently are at potentials 
P nD = 1 P above the zero potential of the .7 block junc- 
tions S (due to assumed zero concentration of AB). In terms 
of these voltages and of the conductances C,f  = R of each 
element of resistance R if , the rate constant deduced' from 
the power equation is then the effective conductance R -' of 
the mathematically equivalent network. It follows from con-
sideration of the power loss in the circuit that' 

aNANB = 
 2- D 	- 

dE, I (P7 — P;) 2C,f-dEf :-=-R . 

( 2.1) 
Since the overall voltage drop is unity in the time-inde-

pendent treatment, Eq. ( 2.1) is also the throughput electri-
cal current. Only when the N nodes i in block W obey the 
Kirchoff current law, ( KCL), or the following quasi-steady-
state (QSS) equivalent condition for excited pairs: 

f cif  dEf  f Cy.13.1 dEf 	 (2.2) 
D 	 D -  

does Eq. (2.1) reduce to — j(0), the energy-space current 

a ( 0 )/VA  TVs  = dE, f 	dEf  = — j(0) 
- D 

(2.3a) 

across the dissociation limit at zero internal energy, or in 
general to 

- E 
a( — E)/STA Ns  = f '*  dE,(P .; — P7)Cif  dEf  

- E 	- D 

= — j( — E) , 	 (2.3b) 

the constant energy-space downward current -j( — E), 

across any arbitrary level of energy — E in block F5'. Two 
extreme limits may now be constructed. 

( A) Uncoupled intermediate levels (UIL) limit: When 
the mainline entrance and exit channels of resistances R an  
and R ns  defined in terms of collisional couplings by 

R cn i  = fm  Cm 	 (2.4) 

and 

I - 
s 

R „-s l  = _ C.f-dEf-C ns , D   

respectively, are only included in the network for indirect 
passage between the reactant and product blocks '6' and .5' 
via junction n, the current I, flowing past any of the uncou-
pled junctions n is given by 

I„ [Re„ 	ns ] = 1 , 	 (2.6) 

since the voltage drop ( (6' -.JP) is unity and since n is not 
coupled to any other junction n' of intermediate block W. 
The direct ( (d.  —.3°) current 

s 
= R Es t dE, 	dEf 	 (2.7) 

0 	- D 

is normally negligible but can be given by expression (2.6) 
since Rfs  vanish for all nodesfin block Y. The voltage drop 
between junctions C and each isolated n is then 

C s  
P = In R a„ = 	 

COI + CitS 

to be used in the basic power expression (2.1) for the rate 
constant. 

Although expression ( 2.8) violates the KCL condition 
(2.2) required for reduction of Eq. (2.1) to Eq. (2.3), the 
QSS rate (2.3a) nonetheless provides the rate 

a , o iv-14 	= f_ D[(Ccf Cfs) 
dE

f 	
(2.9a) 

CcfCfs  

which has several exemplary features. This rate is also the 
effective conductance obtained from the total electrical cur-
rent /„Iv= 0  /„ flowing between nodes C and S maintained at 
unit potential difference. Although invalid when compared 
to Eq. (2.8) in Eq. (2.1), expression (2.9) illustrates quite 
effectively (a) that the partial rate of  of a reaction which 
proceeds via the series sequence (6' and Y of transi-
tions is given by the conductance 

Cf  R = [ R Cf  Rfs ] -1  

due to resistances R ai  and Rfs  connected in series and (b) 
that the overall rate a, of the reaction which proceeds via the 
parallel sequence involving each f is given by the conduc-
tance 

C=R - '=ERFL=ECf  
f=0 	f=0 

of the effective network with resistances Rf  ( f = 1,2,...,N) 
connected in parallel. The resistance, R 0  = R ay , of the `:o- 

(2.5) 

(2.8) 

= I Jo  af 	 (2.9b) 
- D 

(2.11) 
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direct connection is included in Eq. (2.11). Expressions 
(2.9) provide illustrations of the theorem due to Bates.' The 
approximate QSS rate a i ( — E) as a function of 6' block 
energy — E is obtained by inserting Eq. (2.8) in Eq. (2.3b). 
The first rate under test is given by the probability (2.8) 
inserted in the power expression (2.1). 

(B) Coupled nearest -neighbor (CNN) limit: When re-
sistorsR n I are only included in block 6', the throughput 
current I is given by 

1 — I , 

I = [R CN + 	Rflo,-1 	 (2.12) 
n = I 

where junctions in block ' are again denoted by n = 0. As 
the highest excited bound level N — 00, R CN vanishes, and 
the voltage drop between junctions C and f is then 

y
=  n7+ 

which, when inserted in the power equation (2.1) yields the 
second rate under investigation. A simplified rate given by 
the effective conductance (or electrical current) in Eq. 
(2.12) is 

a231 A N, -,_ R -1  =[1, C nTa l_ 	I  , 	 (2.14) 
n = I 

which again illustrates the reaction-in-series principle of 
Bates.' The approximation (2.14) has been previously ob-
tained for (e-A +  ) + e recombination.' In contrast to Eq. 
(2.9), the result (2.14) cannot be obtained from the energy-
space current (2.3a) since connections between C and the 
various n are ignored. 

Note that the key approximations CNN, Eq. (2.13), 
and UIL, Eq. (2.8), satisfy the correct boundary conditions 

PftE, = 0) = 0 , 

P7(E1  = — S) 	1 	 (2.15) 

for the probability P .7. 

III. RESULTS 

As a test of the above approximations the case of termo-
lecular ion-ion recombination (1.1) is adopted since the as-
sociation (exact) rate aE  has been well studied (cf. Ref. 3) 
over full variation of the mass parameter 

MBM,  a— (3.1) 
MA (MA + MB + Mg  ) 

pertinent to A +-M collisions and over the following model 
(A +-M) interactions: symmetrical resonance charge trans-
fer (CX), polarization attraction (POL), and hard-sphere 
repulsion (HS). The masses of A + , B - , and M are M A  ,MB, 
and Mg , respectively. 

The approximate probabilities labeled UIL and CNN' 
are calculated from the limit (2.8) for uncoupled-intermedi-
ate levels and the limit (2.13) for coupled-nearest-neighbor, 
respectively. They are compared in Fig. 2(a) with the exact 
quasi-steady-state (QSS) solution of Eq. (2.2). The results, 
which pertain to termolecular recombination of equal mass  

species (a = i) for A + -M collisions under polarization at-
traction (POL), are quite representative of other cases. 
Closer agreement of CNN with the exact results indicates 
that association tends to proceed via a sequence of small 
energy-changing transitions down the ladder of intermedi-
ate levels n, as expected, rather than via the indirect 
(W -.11 -.9) larger energy-changing transitions of UIL, 
which involves each intermediate level n presumed uncou-
pled from one another. Moreover, both approximations ap-
pear robust with respect both to the number N ( = 36 and 
72) of intermediate levels n adopted in block 6' and to the 
consequent decrease in spacing between the levels. The N 
pivots and spacings are selected by the highly accurate meth-
od prescribed in Ref. 6. 

Since both approximations CNN and UIL are seen to 
satisfy the correct constraints (2.15), the overall agreement 
in Fig. 2(a) may however mask certain deficiencies. A more 
sensitive quantity of greater significance to recombination is 
the gradient (dP,/dE; ), since, in the limit of small energy 
transfers, the energy-space current ( 2.3b) across if block 
level — E reduces°  to the diffusional current 

FIG. 2. (a) Stabilization probabilities (voltage drops) as a function of bind-
ing energy ( — E/kT): EXACT [Eq. (2.2)]; CNN [Eq. (2.13)]; and UIL 
[Eq. (2.8) ] with 72 pivots (upper curve) and 36 pivots (lower curve). (b) 
Corresponding derivatives. 
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id( — E) = Di d111, 
dE;  

where the second -order energy -change moment is 

D; 2) (E,) = -2-1 	 D  f( Ef . — E, ) 2 C,f  dEf 	(3.3) 

The gradients shown in Fig. 2 (b ) are therefore expected to 
provide more reliable indicators of the extent of expected 
agreement between the corresponding rates. 

This sensitivity is indeed confirmed in Figs. 3(a) and 

FIG. 3. Energy-space currents (2.3b), normalized to exact QSS rate a E  
[ Eq. (2.3b) with (2.2)] per unit N A  NB across bound energies ( — E /kT): 
for model A—M interactions POL, HS, and CX. (a) UIL, with Eq. (2.8); 
(b) CNN, with Eq. (2.13); (c) ratio of approximate to exact derivatives, 
Eq. (3.4). 

3 (b ) which illustrate the quite different shapes for the varia-
tions with E of -j( - E), the downward energy-space cur-
rent (2.3b), obtained from both approximations. The cur-
rents (2.3b) are normalized to the exact QSS rate calculated 
from the numerical solution of Eq. (2.2) in Eq. (2.3b). Al-
though aE  is then by definition, constant with respect to E 
variation, the E variation of the rate (2.3b) with the approxi-
mate probabilities (2.8) and ( 2.13) indicates the severe 
breakdown of QSS, due to the differences displayed in Figs. 
2( a) and 2(b). The following points may now be noted. 

First, assigning the rate either at the dissociation limit 
E = 0 (the w-e interface) or at the lower association limit 
- S ( the F-S° interface) represents a highly inaccurate 

procedure for the case of non-QSS probabilities, as previous-
ly noted' for the diffusional results. Choosing the rate at 

2k Tbelow the dissociation limit yields the exact QSS rate 
for both approximations, a coincidence mainly due to the 
agreement in Fig. 2 ( b ) of the derivatives (dP s,/dE,) at 
E, - - 2kT. 

Second, the different shape of Fig. 3(a) from that in Fig. 
3 ( b) can be explained with the aid of Fig. 2 (b ). From Eq. 
(3.2), the ratio of the downward energy-space current to the 
exact rate is 

)(E,  )/aE  [ dp s 	[ dps 

ci/i A 	d2 E 

where A and E label approx mate and exact quantities, re-
spectively. As A = - Ei /kT increases to 2, Fig. 3(c) shows 
that the ratio (3.4) increases to unity for both CNN and 
UIL. With further increase of A, the CNN ratio continues to 
increase while the UIL ratio increases until A approaches 

3.5 and then falls below unity past A. - 7. The different 
shapes in Figs. 3(a) and 3 ( b ) are a direct reflection of the 
variation for each approximation of the ratio (3.4) and con-
firms the physical importance and significance of the gradi-
ents (dPs,/dE,). 

In spite of its attractive illustrative features, the UIL 
energy current (2.9) yields rates which are much smaller 
than aE  by factors ranging from - 10 to - 10 4  as the mass 
parameter a of Eq. (3.1) varies from (1/3) for equal masses 
to 10 3 . The simplified CNN result (2.14) varies from a 
factor of 3 higher for a =10-2 , to a factor of 10 smaller at 
a = 1/3, to a factor of 17 higher at a = 103 , the limit for e-ion 
recombination in a gas. 

As previously noted, the power expression ( 2.1), rather 
than Eq. (2.3), must be used when approximate (non-QSS) 
probabilities as Eq. (2.8) and ( 2.13) are adopted. Since the 
QSS probabilities provided' a minimum aE  to Eq. (2.1), all 
other approximate rates must be higher than a,. This is 
indeed confirmed by Figs. 4( a) and 4( b ), which also show 
that the CNN rates are much closer to aE  than the UIL 
rates, as expected from the closer gradients in Fig. 2 (b ). The 
maximum deviation occurs at a = 1/3 where the CNN rates 
are only - 25% higher than the exact QSS rates aE . All of 
the rates are normalized to the Thomson rate a 7., as defined 
in the previous reports.' 

In addition to the exact QSS treatment, there are now 
three accurate methods available for termolecular rates: (a) 

the previous variational procedure' which provides, in fact, 
an alternative route to the QSS rates; (b) the previous diffu- 

(3.2) 

(3.4) 
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FIG. 4. Normalized partial rates (MA /MAB)  (a/a r  ) for termolecular re-
combination A' + B + M —AB + M resulting from (A+ -M) collisions 
as a function of mass parameter a for various model interactions (CX and 
0: symmetrical resonance charge transfer; HS and la hard-sphere; POL 
and A: polarization attraction). (a) UIL, Eq. (2.1) with (2.8); (b) CNN, 
Eq. (2.1) with Eq. (2.13); (c) diffusion method, Eq. (2.1) with Eq. (3.6). 

sional method' D; and (c) the present CNN method. Meth-
ods CNN and D are in effect similar in spirit in that CNN 
also includes upward and downward transitions, and also 
emphasizes the role of small energy changes between neigh-
boring levels. The diffusion method, however, does not im-
pose, as does CNN, an immediate cutoff to transitions which 

involve larger energy changes. The CNN probability ( 2.13) 
relies only on evaluation of the collision kernel C„,„ via 
the relation 

P S„ = P S, 4. 	C ft--1-1 1,n[ E C  n-4-1 1,rt 
n =.-. 0 

	 (3.5) 

which is simpler to implement than the diffusion method,' 
for which 

Ef  dE  1 { 
P.1-(Ef ),P.7(E, ) 	

[f E, D (2) (E) 	- s D'd2)E(E)] 
(3.6) 

which requires highly accurate' evaluation of the energy-
change moment D 2) (E) given by Eq. (3.3 ). 

Figure 4(c) shows the rates of the diffusion method ob-
tained from calculations of D ; 2)  which are more accurate 
than those previously determined in Ref. 4. Comparison 
between Figs. 4(13) and 4(c ) indicates that comparable rates 
are achieved by the diffusion and CNN methods. The more 
sophisticated diffusion method, however, is, in principle, 
more accurate in the limits of small and large mass param-
eters a where the collision dynamics is weak so that the rates 
are then more sensitive to the stabilization probabilities Ps, 
near the dissociation limit. The diffusion method is also 
more accurate for intermediate a-1/3 since the larger ener-
gy transfers tend to be more influential and are included. In 
spite of these shortcomings, the CNN method yields rates, 
just slightly less good than the diffusion treatment. 

IV. SUMMARY AND CONCLUSION 

With the aid of an electrical diagram (Fig. 1) two ex-
treme limits of collisional coupling are investigated in order 
to elucidate the role of various classes of transitions. A given 
level n is directly coupled only to its neighbor in CNN while, 
in UIL, each n is assumed coupled only to the fully dissociat-
ed and fully associated states of the reactant -e and product 
.}."' channels, respectively. The CNN approximation fur-
nishes closer stabilization probabilities PS and association 
rates a, thereby indicating that recombination tends to pro-
ceed more down an energy ladder of coupled levels than by 
larger energy jumps 6 n .7 involving each intermediate 
level n. As in the case for all approximate PS, the power 
equation (2.1) furnishes' the required rate ( which is always 
higher than the exact QSS rate), rather than j( — E1 ) the 
energy-space current (2.3b) which holds' only for quasi-
steady-state probabilities ( 2.2 ). The E, variation of the ener-
gy-space currents j( — E1 ) deduced from non-QSS probabi-
lities P S is mainly determined by the derivatives (dP s,/dE,), 
as in Eq. (3.4). When assessing via comparison with the 
exact QSS rate the effectiveness of the underlying physical 
mechanism in each approximate model (CNN, UIL, or dif-
fusion) it is important to use the power expression (2.1). 
Otherwise, use of Eq. ( 2.9b ), (2.14), or even of the energy-
space currents (2.3b) as in Figs. 3 (a) and 3 (b) can lead to 
incorrect conclusions regarding the efficacy of the basic 
physical assumption. 

In conclusion, the nearest-neighbor limit CNN appears 
to be a satisfactory approximation for termolecular ion-ion 
recombination over the full range of mass parameter and 
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interactions associated with ( A +--M) collisions. It is similar 
in spirit to the more sophisticated diffusion method, yields 
comparable rates, and yet it is much simpler to implement. 

ACKNOWLEDGMENT 

This research is supported by the U.S. Air Force Office 
of Scientific Research under Grant No. AFOSR-84-0233.  

'D. R. Bates, Proc. R. Soc. London Ser. A 337, 15 (1974). 
2M. R. Flannery, J. Chem. Phys. 89, 214 (1988). 
'M. R. Flannery and E. J. Mansky, J. Chem. Phys. U, 4228 (1988). 
°M. R. Flannery, J. Chem. Phys. 87, 6947 (1987). 
5 13. R. Bates and A. E. Kingston, Proc. Phys. Soc. 83.43 (1964). 
6D. R. Bates and 1. Menda§, J. Phys. B 5, 1949 (1982). 
'M. R. Flannery, J. Phys. B 18, L839 (1985). 

37 

J. Chem. Phys., Vol. 89, No. 7, 1 October 1988 



Appendix  D 

"Diffusional Theory of Termolecular Recombination and association 

of atomic species in a gas" 

by 

M. R. Flannery 

(J. Chem. Phys. 87, 6947-6956 (1987)) 

38 
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A diffusional treatment of termolecular association of atomic species A and B in a low density 
gas is presented and applied to positive ion-negative ion recombination over the full range of 
masses of reactants for various classes of ion-neutral interactions. In contrast to rates given by 
the diffusional current, excellent results are obtained for general mass species provided a more 
basic expression for the association rate is introduced. 

I. INTRODUCTION 

The picture of electron-ion recombination, of termole-
cular positive ion-negative ion recombination, and of termo-
lecular ion-atom association: 

A + B + M -.r2 AB + M, 	 ( 1.1 ) 

involving subsystems (A-B) associating in a thermal bath of 
dilute gas M as proceeding via diffusion in energy space has 
stimulated' a great deal of interest, in principle, valuable to 
elucidation of the dynamics of association processes and to 
many examples of decay of laser-produced plasmas, of reac-
tion processes in flames, of shock wave propagation, etc. In a 
classic paper on electron-ion recombination, Pitaevskii' de-
rived a rather elegant analytical expression for the two-body 
rate coefficient a (cm' s - ') in Eq. ( 1.1). Because of its in-
herent simplicity over more sophisticated and therefore time 
consuming procedures based on a collisional input-output 
Master equation, 8-12  the result has been applied to heavy-
particle recombination' s  which proceeds three orders of 
magnitude faster than collisional electron-ion recombina-
tion• for which the result was originally intended. In spite 
of its attractive features, the diffusion picture as formulat-
ed' achieved remarkably disappointing results for heavy-
particle termolecular ion-ion recombination.' 

Apart from recognition that diffusion methods ( based 
on a Fokker-Planck reduction of the input-output collision 
integral) are likely to be valid only when the collisional 
changes in energy are small, the basic intrinsic defect for 
application of the Pitaevskii expression to general mass sy-
tems remains as yet undetected. Moreover, that a much less 
sophisticated "bottleneck" model" originally designed also 
for electron-ion recombination achieved much closer agree-
ment 10  with the exact results of the Master equation"' for 
ion-ion recombination presents a puzzle. 

In this paper, the foundation of the diffusion approach 
as applied to processes ( 1.1 ) will be examined and the basic 
defect in previous applications will become apparent. The 
proposed theory is valid for termolecular ion-ion recombin-
ation' l  and ion-atom association" at low gas densities and 
as a case study will be applied here to ion-ion recombination. 
Association at rate coefficient a (cm 3  s ) and dissociation 
at frequency k (s -  ') in Eq. ( 1.1) are treated in a unified way 
so that equilibrium can eventually be established. 

II. RATES AND CURRENT 

The distribution n, (E, ,t) per unit interval dE, of pairs 
AB with internal energy E, at time t is governed by the colli-
sional input-output Master equation'''" . ' s  

[n,(t)v,f , — nf (t)vfi ldEf , ( 2.1) 

where — D is the energy of the lowest vibrational level of AB 
relative to the dissociation limit taken as zero energy, and 
where v,j- is the frequency per unit interval dEf  for E, Et. 
transitions by collisions between AB and M. For bound 
states dn, /dt = an, /at, and for dissociated states dn, /dt 
= (3n,/3t + F,) where F, is the net flux of contracting E1  
pairs created with infinite separation. A basic expression for 
the rate R (t) of association has already been derived.' In 
the interests of elucidation and completeness of the present 
discussion ( in Secs. III C and IV) and of direct comparison 
with the diffusional quasi-steady-state approach, the key 
steps therein are provided below. The first step involves writ-
ing the net rate for association as 16  

" 	dn 
R A (t) = 	P;s.  (4E, 

—D 	dt 

=aNA (t)NB (t) — kn s (t), 	 (2.2) 

where 13 ;5' is the probability of stabilization of E, pairs by 
subsequent multicollisions with M. The effective two-body 
rate constant for the association of A and B with ( cm ' ) 
concentrations NA (t) and Ar, ( t) is a (cm 3  s ), and k 
(s -1 ) is the frequency for dissociation of those tightly bound 
pairs of concentration 'i s  (t) which are considered to be fully 
associated with energies E, within a block of Y of low lying 
levels in a range — S >Ei > — D within which the stabiliza-
tion probability Ps is calculated to be unity. 

The separation between the energy levels of AB is suffi-
ciently small compared to the thermal energy (k T) of the 
gas bath so that the levels form a quasicontinuum. Thus, 

dt 

a 
n,(E„t) = — 

3E 
J(E ,t), 	 (2.3 ) 

n, (E„t) = — f 
D
S dE 

dt 	 f  — 

=  f—D 

ao 
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so that the upward current past level E at time t is 

since J vanishes at the end points ( — D, co ) and since S;   
+ Sfi  = 0. 

On introducing the normalized distribution 

y,(t) = n,(E„t)/ii,(E,), 	 (2.5) 

where h i  is the pair distribution under full thermodynamic 
equilibrium with the gas, the Master equation (2.1) is 

—d n,(E,t) = — 	fri (t) — Yf(t)]C‘ f  dEf  
dt JD 

a = — —J,(E,,t), 
dE, 

where the one-way equilibrium collisional rate 

C,f  = = itf vfi  -= 

satisfied detailed balance. The second step is to introduce the 
ansatz t  6  

[1■1,(t)N,  (01 	[ 
y,(t) = P° 	

 + P .ns(t)1 
;' — 

NA A NB 	its 

.P 1,;'ye (t) + PSys (t) — 1, 	 (2.8 ) 

which holds at low gas densities. The equilibrium concentra-
tions of A and B are NA  and NB . The probability that state i 
is a stabilized state, or is a destabilized state with respect to 
association is PS or P = 1 — PS, respectively, and y e  and 
ys  are the normalized distribution of pairs in the fully disso-
ciated (source) block O<E, < co , where P ° is unity, and 
in the fully associated ( sink) block 9', — S >Ec > — D, 
where PS is unity. Hence, the Master equation (2.6 ), current 
(2.4), and rate 

dn, 
— 

(2.2) separate 

— Ys (r) ] 

— D 
 (PS — PPC,f 

 = [y,(t) — ys (t)] 

as 6  

dt = [n(t) 

X 

J( — E,t) 

dEf 	 (2.9) = — 3E , 
, 

— E xi-  dE, f 	(P;S — PS)Cif  dEf , 
E 	-D 

( 2. 1 0 ) 

and 

R A  (t) = [y,(t) — y s (t)] 

x PS dE, I 	(PS — kiS)Cif  dEf . 
D 	 J — D 

(2.11) 

From Eq. (2.9 ), the loss rates of fully dissociated and of 
fully associated species of energy E, are, respectively, 

dn, 
— — dt = [ye  (t) — y s (t)] 

X 
 f

CijcP;S: dEp 
D 

E,>0 (2.12) 

and 

dn, 

XJ m CdPf dEf , — S>E,> —D, ( 2.13 ) 
s 

which illustrate quite effectively the significance of both the 
stabilization and disruption probabilities P., and P I/. 

From Eqs. (2.9) and (2.10), 

dn, 	 Of, 

dt 	 dE 
= — 	(t) — y s (t)] H, 	(2.14) 

where the time-independent background current downward 
across E is 

co 	—E 
— j( — E) = 	dE, 	(kiS PS)C,f  dEf . (2.15) 

	

E 	— D 

From Eq. (2.11) the time-independent macroscopic coeffi-
cients a and k for association and dissociation in Eq. (2.2) 
are, therefore, given by the basic expression, 

a1YA 1VB  = f PS dE, J (PS — Py.)C,f  dEf  = kits  
—D 	 —D 

(2.16) 

and satisfy ( macroscopic) detailed balance. 
The expressions (2.10) and (2.11), or equivalently Eqs. 

(2.15) and (2.16) for the current j and rate coefficient a are 
in general not identical unless the following additional re-
quirement is satisfied. 

A. Quasi-steady-state (QSS) 

As Eqs. (2.12) and (2.13) illustrate, the distribution of 
pairs in blocks ' and 7 are time dependent, until full ther-
modynamic equilibrium is established when y c., — 1 from 
above and below, respectively. Since dn ; /dt = lat for 
the intermediate block ' of highly excited levels with energy 
E, in the range 0)E) — S then quasi-steady-state (QSS) in 
block ' requires 

dn, 

	

= 0, 0>Ec > — S 	 (2.17) 
dt 

so that the stabilization probabilities in Eq. (2.9) then rigor-
ously satisfy the integral equation 

	

dEf  = 	c,fp..7 dEf ; 0>E, > — S. 
—D 	 — D 

(2.18) 

The stochastic probability for stabilization PS of state i 
is therefore the fraction of all collisions which eventually 
result in association. Under this circumstance it readily fol-
lows that the rate (2.11) reduces to 

IO(t) = —J( — E,t), 	 (2.19) 

the downward current (2.10 ), and that the rate coefficient 
(2.16) is given by 

aSTA  ST, = — j( — 	 ,2.20) 

where E is an arbitrary energy level in block e 
(0>E> — S). 

The rate of association (2.16) may be identified with the 

(2.6) 

(2.7) 

J(E,t) = 	dE,T
E 
 Sfi (t)dEf , (2.4) 	— — = [Ys(t) — Ye(t)] 

dt —D 
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current (2.15) only when the QSS-condition (2.17) for the 
probabilities is satisfied.' Use of Eq. (2.17) from the outset 
in Eq. (2.2) also illustrates this relation, 

R A (t) = 	
dn• dE ( 

D dt 

= -J( - S,t) = -J( - E,t), 	(2.21)  

although the basic expression (2.16) for a cannot then be 
deduced. An exact expression which emphasizes the role of 
the current J is obtained from Eqs. (2.2) and (2.3) to give 

R A U) = - 	P;5.  ( aj(t) )dE, 

	

_ D 	13E, 

= 
 f

J, (t) 	;5 ) dE,, 	 (2.22) 
- s 	3E, 

since J, vanishes as E, - D and oc . and since P,s  is con- 

	

stant (0 and 1 within blocks 	and 	respectively). Only 
when Eq. (2.10) for J is constant over block e, i.e., when 
QSS Eq. (2.18) is satisfied, does Eq. (2.22) reduce to Eq. 
(2.19). It may be shown (work in progress) that the QSS-
condition (2.18) corresponds to a minimum' s  in Eq. (2.16) 
fora. Any approximate Ps  which does not rigorously satisfy 
Eq. (2.18) will therefore yield higher rates a. 

The QSS (minimum) rate coefficients are therefore giv-
en by 

icrA iV, r _E 

=f dE, 
J 

(Py - 	dEf  = - j( - E) 
—E 	_D 

(2.23) 

= 
 f

dE, f Cy-Py dEf  = - j(0) 	(2.24) 
0 	- D 

S 

=— 
dE, 	C,fPj? dEf  = -j( - S) = 

D 	S 
(2.25) 

which are, in general, different from Eq. (2.16) unless the 
probabilities Pf exactly satisfy' the QSS-condition (2.18). 
Note that Eq. (2.24) is the QSS rate for association that 
would result from the full equilibrium concentration NA NB  
of dissociated pairs and zero population of fully associated 
.7 pairs i.e., K. = 1 and y, = 0 in Eq. (2.8). Similarly, Eq. 
(2.25) is the QSS rate for dissociation which would result 
from an equilibrium population n s  of associated .7 pairs and 
zero population of dissociated pairs, i.e., n  = 0 and y, = 1 
in Eq. (2.8). 

The aim is now to derive a simple analytic but approxi-
mate expression for j( - E) by converting Eq. (2.15) from 
an integral representation to a differential representation so 
that approximate expressions for the probabilities P7 may be 
derived, in contrast to the exact numerical solutions of Eq. 
(2.18). 

III. FOKKER-PLANCK REDUCTION FOR ION-ION 
RECOMBINATION AT LOW GAS DENSITIES 

The conversion of the integral operator in Eq. (2.13) 
into a differential operator achieved by a Fokker-Planck 
analysis" is useful when the collision kernel C,f  favors small  

changes in energy. Here the current in Eq. (2.6) can be 
determined to fourth order, rather than to the customary 
second order.' 

A. Fokker-Planck current to fourth order in energy-
change moments 

On introduction of an arbitrary but well-behaved func-
tion 4), (E,) whose derivatives vanish at the end points 
[ c, - D], then, with the aid of Eq. (2.6), 

" 	do 

J_Dq). 	
dE; 

--= 
 f

y;  dE;  I 	(.17,f  - (13  )C,f  dEf . 	(3.1) 
—D 	JJJ —D 

On expanding the difference 

	

4::of  - (I;) = 	
„ 	 4) 1 

— 	- E, ) n 
c9 

[  
", I 

(3.2) 
„ = n! c9E 

as a Taylor series in energy change (Ef  - E1 ), assumed 
small, and on integration by parts with the explicit recogni-
tion that (8"4),/3E 7) -.0 for n>1 as E, -[ cc, - D], then 
Eq. (3.1) can be expressed as 

	

d dE, = -
n 	 " 

<I) 	dE; , 
f_D 	dt 	 D 	8E 	' 

(3.3) 

where the current is 

in terms of the normalized distributions y;  and the 
change moments"' 

D ,( "'(E,) = —
1

I 
f (Ef , - E,)'"C,f  dEf , 

m. - D 

with respect to the one-way equilibrium rate for E1 -Ef  
transitions. The number per second of all collisions with an 
equilibrium distribution of E, pairs in unit interval dE, and 
unit volume is D:°) ; and D and 2D ; 2)  are the average 
energy change and average energy change squared per sec-
ond, d (AE )/dt and d 2 )/dt, respectively. The ratios 
D' ) /D!' )  and 2D ,(2 VD ,(0)  specify (DE; ) and (AE per 
collision, respectively. 

Evaluation of these moments can be facilitated by 
adopting the expressions for C,f  which correspond to various 
A-M and B-M binary interactions (symmetrical resonance 
charge-transfer,'" hard-sphere,' polarization' ). They 
can be collected under a universal form (work in progress). 
These moments are normalized' °  to the quantity 
( - 1 )rnrctr(kT)' I NA ST, where a, is the Thomson rate 
[Eq. (4.1) below], where I' is a dimensionless mass factor' ° 

 and where T is the temperature of the gas bath. 
Figures 1(a) and 1 ( b) illustrate the general trend of 

these moments calculated here for the specific case s•' where 
internal-energy changes in an ion pair ( X + --X ) are due to 
symmetrical resonance charge-transfer (X = -X) collisions 
with a parent gas X. In this case, the velocity vectors of the 

Ji (E„t) = 	( - 1 )"  	(3.4) 
="0 	 c9E 7 

energy 

(3.5) 
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FIG. 1. ( a) Normalized moments D 'm' of energy change rate (energy" 
s I ), m = 0-4, as a function of internal energy E, = - A(kT) of the bound 
ion pair. (b) Averaged energy change and energy-change squared 
D'm'/ D' per collision, D'" and derivative of D'21 . Equal-mass species and 
charge-transfer ion-neutral collisions are assumed and moments are nor-
malized to the quantity ( - 1 )"'ra r  ( kT)'" N A NB . 

(fast) ion X+ and the ( thermal) neutral X are inter-
changed.' Large transfers of energy are therefore involved, 
as is confirmed by D 21 , the averaged energy change squared 
(AE per second shown in Fig. 1(a). This case will there-
fore provide a most stringent test of the weak-collision (dif-
fusion ) procedure adopted here. 

As the binding energy - E, decreases from the disso- 
ciation limit (at zero energy), the equilibrium density h(Ei ) 
-1E,1 -5/2  exp( - E,/kT) per unit interval dE, decreases 
from infinity, reaches a minimum at E, = - 2.5kT and 
then increases exponentially.' Since the energy change fre- 
quency vv. for each pair decreases rapidly with increase of 
binding, the overall shapes of the equilibrium moments D;'")  
in Figs. 1(a) and 1 ( b ) reflect the variation of the product 

vy . Note that the equilibrium collisional rate D;())  is rela- 
tively constant in the range ( 1.8-4)k Tof binding. Also D; 1) 

 /dt (1E) is positive for E, > - 1.4kT = E*, so that 
these pairs on average become less tightly bound upon colli- 
sion. Pairs with E, < - 1.4k T become more tightly bound 

FIG. 2. Inverses of moments (a) 	(A) and (b) 	(A) as a function of 
internal energy E, = - AkT of the ion pair for various ion-neutral interac-
tions: POL ( polarization ), HS (hard-sphere), CX (charge-transfer). 
Equal mass species are assumed. 

upon collision ( since D; 1)  <0). This critical energy specifies 
the location of E * of a bottleneck where the averaged energy 
change vanishes and where the region E,>E* where excita-
tion is greater is separated from the region E, <E* where 
deexcitation is greater. Note also that the even moments 
D ,'") display minima which become sharper with increase of 
m, as expected, and that the minimum in D / 
dt (AE) coincides with the zero of D ; 11  -d /dt (&E,) at 
E*,as is clearly shown in Fig. 1 (b). These features are quite 
general for the various ion-neutral interac ions and are uti-
lized below. 

Figures 2(a) and 2 (b ) illustrate the variation of 
[D 21 ] -1  and [D ;4 '] -1  for different interactions of A and 
B with M (charge-transfer CX, hard-sphere HS, and polar-
ization POL). The bottleneck to D occurs where the 
(DE?) rate is least and in roughly in the same location (E, 
- 1.25k T) for all the interactions. The (AE rate is great-
est for the charge-transfer interaction and weakest for the 
polarization attraction, as expected. The moment D ,(4)  ex-

hibits similar but more rapidly varying behavior. 
Since Cy  is symmetrical in i andf—the detailed-balance 
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terms, i.e., D; 5 ' and higher moments, to give 
a  2D (4) 

= 	 [D 2) 	 
3E, 	(3E 

(3.11a) 

and 

D (3)  = 2a D ;4 ', 	 (3.11b) 
8E1  

which also ensure zero equilibrium current. In view of Eq. 
(3.11) note that equilibrium (../, = 0) is obtained only when 
the current (3.4) is expanded to even order. 

With the aid of Eq. (3.10), the nonequilibrium current 
(3.4) to fourth order in moments D ;'"' is 

J Ts) (E,t) 

J(E,t) = f 9  dE, f 	[y.f (t) - y,(t)]C,f  dEf  (3.13) 
— D 

for the exact current (2.4). The differential form (3.12) is 
the Fokker-Planck current to fourth order since the general 
Fokker-Planck expansion can be employed for any variable 
whose changes are small in comparison with averaged char-
acteristic values, e.g., the collisional energy change A here is 
assumed small relative to the thermal energy kT of the gas 
bath. 

Upon use of the approximations ( 3.11 ) , which are inter-
nally consistent to neglect of moments higher than D ; 4) , Eq. 
(3.12) reduces to 

	

8 2D 	r  dy, 1 

	

3E 	[ dE 

- 
2 
 D 3) [ 821 - D YS)  [

3E
a31 

c9E  

(3.14) 

Inserting the ansatz (2.8) in Eq. (3.12 ), then Eq. (2.6 ) 
with Eq. (3.12) yields 

dn,(E,,t) aj,(E,) 
	 = 	[y,(t) 	Y,(t)] 	 

dt 	 8E, 
( 3. 15) 

where in terms of the stochastic probability P I,' that state i 
dissociates, the time-independent background current to 
fourth order is 

P )  ( E, 

= - [D ;2 ' 
2 dB, 3) + 3  a c92DE ;4 ) r 33E7] 

3E, 

 

3  c9D,(4 1 rc9 2P°1 
dE, 	

aE z
[  

( 3. 16) 
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relation (2.7)—then Cif, when expressed as a function of the 
energy-mean E i(Et- + E,) and the energy change 
A = Ef  - Et , is such that C,J. = Cif  (E, A ) as previously 
noted by Keck and Carrier. 2  On expanding C,,. about E, in 
terms of the expansion parameter A, which is assumed small, 
then 

= 	n! ( 1 ) n  ( a 	 ' „ 	2 	3E7 
(3.6) 

where C, is C‘f  = E,,1,11). The general moments ( 3.5) are 
therefore determined from 

m!D;"' ) (E,) 

= E 
 odd 	 an, (.+n)  
(2"n!) 	
[]  

m odd, 	(3.7a) 

even 

= 	(2nn!) -  I 
[ 

ra raF(m + n)] 

n=0,2,4 	 3E7 

which involves only the terms 

f's ) (E,) = fAsC,(E,,IAI)dE f , 
D 

with s even. Terms with s odd vanish since D is effectively 
infinite ( 5 eV). 

For equilibrium, y, in Eq. ( 3.4) is unity and the equilib-
rium current can then be expressed, with the aid of Eq. (3.7) 
as 

on ianDn+1/1 

n4w- 0 	 [ 3E7 
even even 

= E E (n - 2j) [2 -1 + 1 (n + 2 )! ( j + 1 )!]-' 

n=0,2j=0.2 

(91-4-n+IF(j+n+2) 
X 	  • 	 (3.9) 

3E'+ "+ 

This new form clearly shows that the coefficient of its 
first term (F ; 2 '/8E; , which arises from the leading term of 
the expansion (3.7) for both and dD ,(2) /3E,, is identi-
cally zero. The coefficient of the second term 3 3F ,(4) /3E, 
which is the net balance of the second term in the expansion 
( 3.7 ) for both D ; 1)  and 3D ; 2) /8E, and of the leading term in 
the expansion (3.7) for both 8 2D: 3) /3E and 8 3D ,(4) /3E, 
is also zero. The leading nonvanishing contribution to Eq. 
(3.9) is [ - 43 5F,(6) /aE7] which is the net balance of the 
third terms in the expansion ( 3.7) for both D : 1)  and dD ; 2)  / 
3E, and of the second terms in the expansion (3.7) for both 
3 2D 3)  /3E and a 3D ;4) /dE 3. The consistent neglect of 
a 4D ; 51 /3E;` -a 5F ;6) /dE s and higher-order derivatives 
demands both the neglect in Eq. ( 3.4) of terms with n> 4 
and the neglect in Eqs. (3.7a) and ( 3.7b) of terms with n> 5 
and n> 4, respectively. Hence, the equilibrium current 

al) (2) 	a 2D 3) 	3 3D (4)  
0 	(3.10) 

	

3E, ± c9E' 	dE 

is exact to fourth order in the moments and is identically 
zero! Relationships between even and odd moments can be 
obtained from Eq. ( 3.7) by neglecting f';')  and higher 

n = 1,3,5 	 3E7 

m even, 	( 3.7b) 

OD 

aD (3' 	A 2D (4, 	a, 

— —[D2) 2 --. + 3 - 	' I [H 
dE, 	(3E 	8E, 

+ ET' - 3 (1-19  '') —82Yi  -D(4) 33ri (3.12) [ 
3E, 3E 	aE 

which is the differential representation (up to and including 
(3.8) 	the fourth-order moment D;4)  ) of the double integral 
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B. Diffusion equation and current for termolecular 
recombination 

On ignoring moments D 3)  and higher, the 
sional) current (3.16) is 

2 ) (9Pf  - D (2)  
( E, ) = -D 

(diffu- 

( 3.17) 

, 

(3.18) 

3E, - 	dE, 

so that Eq. (3.15) is 

dn,(E„t) 	
3 - [D;2)  cPpl [K.(t) - y,(t)] 

dt 	 3E,  3E j , 

which is a diffusion equation in energy space. The moment 
D 2)  = 4d /dt (DE ?) is the diffusion coefficient (en-
ergy' ) in energy space. This type of streaming equation 
has been previously derived via other techniques by Pitaevs-
kii' for electron-ion recombination under highly nonequi-
librium conditions when 1/, ys  so that y, = P°.y, in Eq. 
(2.6), and by Keck and Carrier' for heavy-particle associ-
ation/dissociation. It has been investigated by Landon and 
Keck, 3  by Mahan 5 , and by Bates and Zundi 6  for highly non-
equilibrium (y, )t. ) termolecular ion-ion recombination. 
By explicitly including here the factor (K. - y s  ) via the an-
satz (2.8), Eqs. (3.15) and (3.18) for all y, help to empha-
size the evolution via termolecular recombination and disso-
ciation (into ion products) of the subsystems (A-B) 
towards thermodynamic equilibrium with the gas M, at-
tained when n  -1. 

Another advantage of the ansatz (2.8) is that the inter-
mediate block of highly excited levels can be taken to be in 
quasi-steady-state (QSS), i.e.,dn,/dt in either Eq. (2.9) 
or (3.18 ), for all times. The QSS-diffusional current (3.17) 
is constant over F, so that the solution of Eq. (3.17) subject 
to conditions, 

P )̀ (-S) =o, 13 (-S)= 1 	 (3.19) 

is 
E, 

Pd(E1) = ja[f dE /1,(2) (E)1= 	1 - 13 (E,), 
s 

(3.20) 

where the subscript d denotes quantities associated with the 
diffusion equation (3.18). Various levels of approximation 
readily follow: 

(a) Since 

Pf(0) = 1, P;5(0) = o, 	 (3.21) 
then Eq. (3.20) yields 

-AP) =[f dE D'''(E)1 = a,1■7 A N, 	(3.22) 
s 

for the downward diffusional current which, when com-
pared with Eq. (2.20) provides the recombination rate a, of 
Pitaevskii,' adopted for ion-ion recombination by Landon 
and Keck 3  and by Mahan.' Note that the current (3.22) is 
the inverse of the area under the curves in Fig. 2(a), and that 
Eq. (3.20) for the stabilization and disruption probabilities 
Ps' at energy E, are the respective ratios of the areas which 
correspond to the energy ranges (0-E, ) and (E, - - S) to 
the total area. 

(b) Rather than requiring Eq. (3.21) for the probabili-
ties, jd  in Eq. (3.20) can be fixed by inserting Eq. (3.20) 
directly into Eq. (2.24) for j(0) to give 

	

-j(0) = J dE, 	dEf  + jd  
- D 	 0 

X  f dE f 	dE /D 2 (E)}. (3.23) 

	

- D 	-S 

On equating the exact current j(0) in Eq. (3.23) with the 
diffusional current jd , then 

	

-Ak)  (0) = [f dE, f Cy. dEdil 	dE , 
f D 

	

X f 
	 Ef 

C‘f dEf 	dE /D (2) (E) 
- D 	-S 

aK 7V-  AIVB ,  

which yields the expression of Kecle s  for a. The term in 
braces, { } -1  is simply the ratio of the downward diffu-
sional current to the one-way equilibrium current across the 
dissociation neck. 

(c) Another possibility in similar vein to (b) is to insert 
Eq. (3.20) directly into Eq. (2.25) for j( - S) to give 

- S 
jd( 5) ={1 

D
dE7 

- s
C dEd 

-  

S 
Xil + 

D 	- 
dEi f 

S
Cif dEf  

	

x 

▪  

dE /D 2 (E)1 = ajt 	 (3.25) 
- s 

where the term in braces, { } 	is simply the ratio of the 
upward diffusional current across - S to the one-way equi-
librium current upward across - S. 

The feature common to all the above procedures (a)-
(c) is that the required current (3.17) depends upon the 
accuracy of the gradient (dPf/dE,) which, due to the ne-
glect of higher derivatives in Eq. (3.16), is described by the 
diffusion equation (3.18) less precisely than are the actual 
diffusion QSS solutions, i.e., Eq. (3.18) may furnish accu-
rate PD  but relatively inaccurate derivatives. More impor-
tantly, however, is that Eq. (2.20), which is valid only under 
exact QSS-condition (2.18) of the exact Master equation 
(2.19) has been invoked for the diffusional currentst d P )  of 
Eq. (3.22) ande of Eq. (3.24) which are QSS solutions of 
the different and approximate diffusional equation (3.18). 

The QSS solution of Eq. (3.18) subject to both con-
straints (3.19) and (3.21) is 

Fl . ,(E; ) =If dE /D (2) (E)1if dE /D'(E) 
E, 	 - S 

(3.27) 

for the probability that any level E, in block e, once ac-
cessed by collision, has "associative" character. The proba-
bility that level E, has "dissociative" character is the com-
plementary function 

- P°,
E  

(E,) = 	dE /D'NE)}{f °  dE /D'2)(E)1 
I  

-s 	 -s 
(3.28) 

1 	I 
(3.24) 

- 
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Thus, both functions are constrained to vary monotoni-
cally between zero and unity as does the exact numerical 
solution to the integral equation (2.18) so that, when com-
pared with the exact numerical values, will involve less error 
than their corresponding derivatives 

ap A.D 
- 	{I;02) (E, )1 -1A,P" 	 (3.29) 

(3E, 

appropriate to currents (3.22) and (3.24) in schemes (a) 
and (b) above. 

C. Calculations for termolecular recombination at low N 

The well developed case 8-12  of termolecular ion-ion re-
combination 

A +  + B -  + M -AB + M 	 (3.30) 

serves as a case study for assessing the accuracy of the diffu-
sion approaches of Secs. III A and III B. The recombination 
coefficient a has previously been represented"' very accu-
rately by the sum 

a = a, + a2 	 (3.31) 

of coefficients a, obtained by considering separate contribu-
tions from ( A ÷-M ) and (13 - -M) binary collisions (i = 1 
and 2, respectively). The exact numerical rates a, are ob-
tained by inserting the exact numerical solution of the inte-
gral equation (2.18), the QSS condition into Eq. (2.32) for 
the current j( - Ei ). The rates a, have been tabulated' as 
a function of the mass-ratio parameter: 

a;  = 31;313/Mi (M, + M2 + M3 ) 	 (3.32) 

where M, are the masses of species A +, B , and M, i = 1, 2, 
and 3, respectively and where the set (i, j) is equal to (1,2) or 
( 2,1) for (1 - 3) or (2 - 3 ) collisions, respectively. 

Expressions for the equilibrium rate C,1  appropriate to 
the three classcs polarization," charge-transfer," °  and 
hard-sphere w-of ion-neutral interactions have been pre-
viously derived.' Calculations have been performed here 
for the exact QSS-rates a, that rise from 1-3 collisions and 
for the corresponding diffusional rates, (3.22) for a,, and  

(3.24) for a, of Pitaevskii' and Keck, 4  respectively. Little 
discernable difference was found between a, and a „ which 
may now be simply called the diffusional rates a,, obtained 
when the diffusional current (3.17) is inserted in Eq. ( 2.20). 
Previous results" were based on the solution of, at most, 36 
coupled algebraic equations, the discretized equivalent rep-
resentation of Eq. (2.18). Present calculations solve 100 
coupled equations required for convergence in a for small 
and large mass parameters (3.32). 

Table I provides present values of the ratio aD /aE  for 
the various interactions over the full range of mass param-
eter a,. Small az; 10 -3  corresponds to collisional recombin-
ation of heavy ions M2 M3) in a much lighter (elec-
tron) gas, intermediate a ( = 1/3 for M, = M2 = M3  ) 
corresponds to normal mass components, and large a = 10 3  
for M, <M2 Z.', M3 corresponds to electron-ion recombina-
tion in an ambient gas. The cases of small and large a involve 
energy transfers which are very much less than the energy 
kT of the gas so that the diffusional (weak collision) ap-
proach is likely then to be valid. 

As Table I shows, the diffusional rates are reliable, as 
expected, only for recombination in a vanishingly light gas 
(a 10' ) or for electron-ion recombination (a=10 3 ) in a 
general gas, the case for which Pitaevskii' designed his diffu-
sional treatment. The diffusional rates are higher by between 
a factor of 3-9 for intermediate a -1. As the ion-neutral 
interaction varies from polarization attraction to hard-
sphere repulsion and then to charge-transfer interaction, the 
energy change in the ion-neutral collision becomes progres-
sively larger [ see Fig. 2( a) and 2 (b ) ] so that the diffusional 
rates (based on weak collisions) become less accurate, as 
shown directly by the variation of entries in Table I for a 
specified mass parameter a. 

Since Eq. (3.17) predicts zero current in both the fully 
dissociated and fully associated blocks, and .7, respec-
tively, the diffusional current (3.17) is therefore discontin-
uous, zero in (6', jd  in F and zero in S°. The diffusion rates 
( 3.22) of Pitaevskii and ( 3.24) of Keck are therefore expect-
ed to be valid only in the limit of vanishingly small currents 
and rates a of recombination. This is confirmed in Table I for 

TABLE I. Variation of the ratio (ao /aE ) and (cz em /a,) with mass-ratio parameter a for 1-3 collisions and 
with the various 1-3 interactions: polarization (POL), hard-sphere ( HS), and symmetrical resonance charge-
transfer (CX). The exact, diffusional, and bottleneck rates are aE , a,,, and a 13N , respectively. 

a 

a o la E  aBN/aE 

POP HS' POL HS CX 

0.001 1.001 1.013 1.030 32.447 25.782 16.996 
0.01 1.163 1.222 1.321 8.369 7.336 5.513 
0.1 2.131 2.739 3.522 3.354 2.939 2.384 
1/3 3.360 4.967 6.84.0 2.541 2.215 1.865 
1.0 4.060 6.604 9.272 2.333 2.015 1.722 
10.0 2.131 3.510 3.354 2.746 •• 
100.0 1.163 1.455 • • 	• 8.369 6.302 •• 
1000.0 1.001 1.093 32.447 20.233 •• 	• 

In POL and HS, small a implies ion-ion recombination in a vanishingly light gas and large a ( 1111 3 ) implies 
electron-ion recombination in a normal-mass gas. 
In CX small a implies M2 4M 1  = M3 and a = 1 implies M, >M, = M,. 
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the limiting cases of small and large a. Then the actual rate 
for electron-ion collisional recombination in a gas is' aE  
- 10 -9  cm 3  s' at STP, which is three orders of magnitude 
less than the rate aE  - 10 -6  cm 3  s -  at STP (cf. Ref. 19 ) for 
ion-ion recombination a similar mass gas. 

Another reason for the inadequacy of the diffusion ap-
proach as previously applied to general-mass cases is also 
apparent. As Figs. 3(a) and 3 (b) show, the diffusion equa-
tion (3.18) in general furnishes fairly accurate probabilities 
F", Eqs. (3.29) and (3.30), but less reliable gradients 
dP".D/dE,. 

In an effort to assess the relative importance between 
using relatively accurate distributions P;5  within the integral 
(2.23) or differential (3.17) forms of the collision integral of 
the Master equation, assume that the intermediate block 6' 
between blocks (G' and Y is absent, i.e., 

-E<E, <cc  pscE) = l• 
1, -D<E,< --E' 

where - E is some bound energy level. The current (2.15) 
then reduces to 

- E 
— iB N  — E) = J dE, dEf 

- E 	- D 

= aBN  (E) ATA ICTB , 
	 (3.34) 

which is the one-way equilibrium downward current across 
level - E. As - E is varied, this current achieves a mini-
mum' at energy - E • - 2kT) which therefore acts as 
a bottleneck" to the recombination which proceeds at rate 
aBN (E * )• The ratio ofa BN  at the bottleneck E • to the exact 
numerical rate a, is displayed in Table I for the various 
interactions. The bottleneck method fails quite markedly for 
small and large mass parameters a, where the diffusion cur-
rent is by contrast successful, and becomes much more reli-
able than the diffusion approach at intermediate a ( -z 1). For 
a given a, less error is involved for stronger collisions in har-
mony with Eq. (3.34) being a strong collision approxima-
tion. Since Eq. (3.33) assumes the least possible knowledge 
of the probabilities P s, (subject to the constraints) but an 
integral form (3.34) to the collision rate, it follows that fairly 
accurate distributions are required at small and large a 
where the collision rate and dynamics are weak, so that the 
discontinuous integral form (2.23) does reduce indeed to 
the continuous streaming form (3.17). For intermediate a 
when the energy changes are certainly not weak, inclusion of 
the integral form (2.22) is apparently more important than 
the use of fairly accurate distributions ( which in any event 
are constrained to vary between unity and zero at the boun-
daries of block F . Note also that the diffusional and bott-
leneck results are always greater than the exact QSS rates, in 
accord with predictions of the variational principle recently 
proposed.' The bottleneck method provides the least of the 
one-way equilibrium rates—the least upper limit—across a 
bound level. The diffusion method incorporates the effect of 
the net downward-upward collisional transitions. 

The closeness exhibited in Fig. 3(a) between the diffu-
sional probabilities, (3.27) and (3.28), and the exact nu-
merical probabilities may be utilized in two ways. First, an 

FIG. 3. (a) Probabilities Ps"' for stabilization and dissociation of an ion-
pair bound with energy E, = — AkT. Equal-mass species and charge—
transfer ion—neutral collisions are assumed. —: Exact QSS solution of Eq. 
(2.18). - - Diffusional approximation, Eqs. (3.27) and (3.28). (b) De-
rivatives (dPs  /dA) of stabilization probability PS . From numerical solu-
tion of Eq. (2.18) and from diffusional approximation, Eq. (3.29). 

iterative procedure' 
CO 

P "+" (E,) fdEf = 	P (^) (Ef)cf dEf 
D 	 - D 

(3.37) 

to the solution of the integral equation (2.18) can be devel-
oped by using the diffusional analytical probabilities (3.27) 
as the starting (n = 0) solution. It is found here that conver-
gence to within 1% of the exact solution can be in general 
achieved after five iterations, so that accurate rates can then 
be determined from Eqs. ( 2.23)-( 2.25) since the QSS-con-
dition (2.18) is satisfied. 

Since the diffusional probabilities (3.27) and (3.28) are 
reasonably accurate, a second possibility is to insert them 
directly into the current (2.23). This procedure, at first sight 
attractive, is however inconsistent, in that the diffusional 
probabilities while satisfying quasi-steady-state (QSS) of 
the diffusional equation (3.18) in block 8?, do not satisfy the 
condition (2.18) for QSS of the Master equation (2.9) on 
which Eq. (2.23) relies. The resulting current (2.15) will 
therefore not be a constant in block F. This is demonstrated 
by Fig. 4 which compares the exact downward current 
- j, (E1 ) past level E. obtained from the solution of Eq. 

(3.33) 
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FIG. 4. Comparison of currents, Eq. (2.15), past energy level 
— E = — AkT, obtained (—) from exact solution of Eq. (2.18) and from 
(- - -) diffusion probabilities Eq. (3.27). Equal-mass species and hard-
sphere ion—neutral collisions are assumed. The current is normalized to 
( 2ariVA NB ) where a r is the Thomson rate, Eq. (4.1). 

(2.18) in Eq. (2.23) with the approximate downward cur- 
rent - j,, (E; ) obtained by inserting Eq. (3.27) in Eq. 
(2.23 ). The diffusional current through the bound levels is 
far from constant over the block if of highly excited levels 
and hence, Eq. (2.20) cannot be used for steady-state rates. 
The figure also shows that assignment of a bound level E, for 
determination of a from Eq. (2.23) is uncertain. Since the 
current j( - E) exhibits a very rapid variation in the neigh-
borhood of the dissociation limit (at zero energy ), use of Eq. 
(2.24) for j( 0 ) is therefore a risky procedure, the exact value 
of j( 0 ) being - 50% higher than the approximate j( 0). 
Some defense can be made by calculating Eq. (2.23) at the 
bottleneck energy E * - 2k Twhere the diffusional and ex-
act currents agree. This adoption is however not firmly 
based. 

The basic reason for the inconsistency of using the diffu-
sional probabilities (3.27) in Eq. (2.23) is not that the diffu-
sional probabilities are not sufficiently accurate for useful 
application, but is that the expression (2.23) based on identi-
fying the association rate with the current is not appropriate 
for the use of approximate probabilities, which do not satisfy 
the basic condition (2.18) for such identification. 

IV. BASIC RATE WITH DIFFUSIONAL PROBABILITIES 

The exact rates aE  obtained in Sec. III C from Eq. 
(2.18) in Eq. (2.23) for the various ion-neutral interactions 
are normalized'•'' to the corresponding Thomson rate 

a T  = tr(Re 43) 3 (3kT /M, 2 ) 112a,,N, 13 = 3/2, (4.1) 

where R e  is the natural unit (e2/kT) for Coulombic attrac-
tion between the ions 1 and 2. The integral cross section a 
for 1-3 elastic collisions at relative energy (ikT) is taken in 
Eq. (4.1) to be 2e, 2/r( pRe/3) I/2, and 4, respectively for 
symmetrical resonance charge-transfer collisions with cross 
section ax, for polarization ( orbiting) collisions in terms of 
the polarizability p of the gas M, and for hard-sphere colli-
sions with cross section of. 

Approximate rates a4  may now be determined by in- 
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FIG. 5. Normalized rates I?,, Eq. (4.2), for ion—ion recombination in a 
dilute gas as a function of mass parameter a, Eq. (3.32) for various ion—
neutral interactions: HS (hard-sphere), CX (charge—transfer) and POL 
(polarization). —: exact rates. ❑ , 0, A: rates obtained with diffusional 
probabilities, Eq. (3.27), in basic Eq. (2.16) for HS, CX, and POL interac-
tions. 

serting 13., the diffusional (approximate) probabilities 
(3.27) into the basic expression (2.16) which does not rely 
on the use of exact (QSS) P. Figure 5 displays a compari-
son of the corresponding ratios, 

RT = ( 111/ 21112)(a/ar), 	 (4.2) 

where a is taken as the exact rate a, or the approximate rate 
a4 , which arises from 1-3 collisions. The exact rates repro-
duce those previously presented. 1 • The present study 
adopts a 100-point quadrature throughout, rather than 36 
and 18 used in Refs. 10 and 11, respectively, in order to 
obtain convergence at small and large a. 

Excellent agreement between aE  and a4  is obtained 
over the full range of the mass parameter a Eq. (3.32) for a, 
all the way, from a 10 -3  for association of heavy ions in a 
light (electron) gas, to intermediate a ;.--; 1/3 for equal mass 
species and up to large a zz, 10 3  which corresponds to elec-
tron-ion recombination in a gas. As expected, greatest de-
partures occur for the case of equal mass which involves the 
largest energy transfer so that the diffusional probabilities 
would also show their greatest departure from the exact 
probabilities as in Fig. 3 (a ). For this case (a = 1/3), the 
diffusional result corresponding to hard-sphere collisions, 
which in turn involve largest energy transfers (cf. Fig. 2), 
exhibit the largest of small departures. The present diffu-
sional treatment is also excellent over all of the various 
classes of 1-3 interaction considered. 

V. ION-ATOM ASSOCIATION AT LOW GAS DENSITIES 

The above theory may now be suitably modified to cover 
ion-atom association 

a 

A+ B M=A13÷ M 	 (5.1) 

of atomic species A+ and B in a low density gas M. In con-
trast to ion-ion recombination (3.30) where an equilibrium 
distribution over internal angular momentum L, is estab-
lished 12  the A. ÷-B attraction can support centrifugal bar-
riers so that nonequilibrium distributions n, (E,,L;t) over 

0.8 

0.8 

0.4 

0.2 
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both E1  and 	must be acknowledged. Thus, the ansatz 
(2.8) is replaced by 

y;(E, 	
n (E,,L;t) 

L;';t) = 	= P°(E,L)ye (t) 
Fi i (E„Lf) 

t 
+ PftE,Oys (t) - 1, 	(5.2 ) 

where P'7 = 1 - FT, the probability at stabilization of 
(E,,L) pairs by subsequent multicollisions, is zero for dis-
sociated pairs and unity for fully associated pairs. 

Bates and McKibbin" found that a delta function ap-
proximation (5(L - L- . ) for (E,L ;2 - E „L ;) transitions 
was quite satisfactory. The above analysis in Secs. III A and 
III B for energy change alone can then be immediately modi-
fied to yield corresponding results for the stabilization prob-
abilities P•7(E,Lf) for quasibound and bound states. Thus, 
the diffusion approximation for the bound and quasibound 
level yields 

u, 
P .:(E„L) =[f dE /1)(2) (E,L;)] 

- I 
X[f dE /1) (2) (E,L)] 	( 5.3  ) 

- s 
where U, (L) is the energy at the top of the centrifugal 
barrier of the effective interaction 

Vi (R) = V(R) L/2rnR 2 . 	 ( 5.4 ) 

In terms of C,f  the one way equilibrium rate per unit 
dE, dL dEf  dL, for (E,,L Ef ,L collisional transi-
tions, the diffusion coefficient is 

1) 12) (E„Lf) = 1 (E1  - E,) 2  dEf  
2 _ 

Lof 

X C ,f(E,,L;Ef,L 	 (5.5) 
0 

where LOT is the maximum angular momentum for fixed Ef . 
For dissociated levels P .!' is zero. The association rate corre-
sponding to the basic rate (2.16) is then given by 

alTI,SrB  = f m  dE,
0 
 P;' dL 	dEf  

- D 	 - D 

X f (PS- 	)C,f  dL f , 	 (5.6) 

where the stabilization probabilities P .7 are given by Eq. 
(5.3). 

VI. SUMMARY 

On introduction of stochastic probabilities Ps, .D (E, ) 
that ion pairs A-B with internal energy E, will be stabilized 
or disrupted by collisions with a thermal bath of gas M, and 
upon the use of the ansatz (2.8) for their normalized distri-
butions y, (t) at time t, the basic Master equation (2.1), rate 
(2.2) and current (2.4) has been transformed into corre-
sponding equations (2.9)-(2.11 ) which are separable in E, 
and t. The diffusional equation (3.18), yields, for systems of 
general mass, accurate probabilities P SID  but very inaccurate 
currents (3.22)-(3.25) (cf. Fig. 3 and Table I). Identifica-
tion as in Eq. (2.20) of association rates a with current, is 
valid only under QSS quasi-steady-state condition (2.18),  

appropriate to the original Master equation (2.9). Since the 
diffusional probabilities do not satisfy this condition, the dif-
fusional current in general, may not be identified with the 
rate a. As Table I shows, the resulting diffusional rates 
(3.22)-(3.25 ), are therefore not reliable 2' except for those 
cases in which the current is relatively small, i.e., for colli-
sion electron-ion recombination' in a gas and for ion-ion 
recombination in a vanishingly light gas. 

A new expression (2.11) or (2.16) derived' for the 
rates, is more appropriate for use under general conditions, 
as when QSS is not satisfied. When QSS is satisfied. Eq. 
(2.16) reduces to the current (2.23 ). The QSS rates are min-
imum ( Ref. 18 and work in progress ). The rate (2.16) is 
required when approximate probabilities are used, as here. 

The diffusional probabilities can also be used in an itera-
tive solution' of the QSS-condition (2.18) to provide highly 
accurate probabilities ( to within 1%) after a few iterations 
and hence accurate QSS-rates (2.23)-(2.25). 

Application of the diffusional equation (3.18) to gen-
eral systems represents an accurate procedure provided the 
solutions P 5,'D  are inserted in the appropriate and more basic 
expression (2.16) for the rate, rather than into the derived 
expressions (3.17) or (2.13) for the diffusional or exact cur-
rents. Excellent agreement with the exact numerical QSS 
results for various classes of ion-neutral interactions over 
the full range of mass parameters for general systems has 
been obtained. 

Finally, generalization (Sec. V) of the above analysis 
Secs. II and HI to cover the distributions n(E,L,t) of A-B 
pairs over their internal energy E, and angular momentum 
L, is straightforward. The resulting equations are appropri-
ate to consideration of ion-atom association of atomic spe-
cies in a gas. 
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Abstract  

During this first year of the new grant, research has been initiated and 

conducted on the development and implementation of a new basic microscopic 

theory of association/dissociation processes in dense gases. Expressions for 

the time-dependent rates R A ' D (t) for the association/dissociation of atomic or 

molecular species A and B in a gas M are formulated in terms of the net 

probability P.
A,D 

for association/dissociation of bound energy level i of the 

pair (A-B). 

A new Variational Principle for these rates is proposed and is applied to 

ion-ion recombination, as a benchmark, with very successful results. 

The diffusional theory is examined and it is shown that highly accurate 

results can be obtained for general mass systems provided the new basic 

expression introduced here for RA,D (t) is adopted. 

The microscopic basis of the macroscopic Debye-Smoluchowski Equation 

(DSE) is examined and analytical expressions for rates are derived for general 

interactons between A and B. 

A valuable relationship between the rates of recombination appropriate to 

the cases of ions generated with uniform frequency within a reaction volume 

and ions which approach each other from infinite separation is derived. 

1 



1. 	Research Initiated and Completed  

1.1 List of Topics  

During the first year (7/1/84 - 6/30/85) of the Grant, theoretical 

research on the following topics was completed and written up for publication 

in scientific journals: 

(A) General Microscopic Theory of Association/Dissociation Non-Equilibrium 

Processes in Dense Gases. 

(B) Diffusional Theory of Association/Dissociation Non-Equilibrium Processes 

for General Systems. 

(C) Microscopic Basis and Analytical and Numerical Solutions of the 

Debye-Smoluchowski Equation. 

(0) Ion-Ion Recombination at High Ion Density. 

1.2 Summary of Topics  

A summary of each of the above topics (A) - (0) now follows. Full 

details of each topic are presented in Appendices (A) - (D) of this report. 

Topic (A): Sets of transport-collisional Master Equations for the 

two-particle non-equilibrium distribution function of subsystems (A-B) in a 

thermal bath of dense gas M are derived in various physical representations, 

corresponding to the full range of gas density. Expressions for 

time-dependent rates RA ' D (t) for association/dissociation are formulated in 

terms of net probabilities P.
A,D 

for association/dissociation of bound energy 

level i of pair (A-B), so that association and dissociation are treated in a 

unified manner and that evolution in time t towards equilibrium is naturally 

achieved. The expressions for R A ' D  are also independent of whether or not a 

quasi-steady-state (QSS) distribution of highly excited levels is assumed and 

a reparticularlyvaluablewhenapproximateprobabilitiesP.A'D are used. A 

2 



new Variational Principle for the rates R A ' D (t) is proposed and is applied to 

ion-ion recombination, as a benchmark, with very successful results. Contact 

of this Variational Principle (in general for chemical reactions in a gas) is 

established with Tellegen's Theorem for electrical networks and with Onsager's 

Principle of Least Dissipation for heat conduction. 

Topic (B):  Upon re-examination of the foundations of the diffusional 

treatment of association/dissociation processes involving a non-equilibrium 

distribution of (A-B) pairs in a gas M, it is shown that highly accurate 

results may be obtained for general mass systems  provided a new and more basic 

expression for the time-dependent association/dissociation rates RA'D (t) is 

introduced. These rates RA ' D (t) are derived here in terms of the probability 

p.A,D(E.) that (A-B) pairs with internal energy E. has associative or 

dissociative character and are obtained without  appeal to the 

quasi-steady-state (QSS) condition for highly excited levels E i . Then 

association and dissociation can be treated in a unified way and evolution 

towards equilibrium with the gas is naturally achieved. Comparison is made 

between the exact probabilities P.
A,D 

obtained from the QSS-condition to the 

Exact input-output Master Equation and those obtained from the derived 

diffusional equational. RA ' D (t) reduces to the constant-in-energy current 

3(t) through the excited levels only for exact QSS of the Master Equation. 

When approximate probabilities are adopted, identification of R A ' D (t) with 

3(t) is not justified. The basic expression here for R A ' D (t) is appropriate 

for both exact and approximate (diffusional) probabilities and yields 

excellent results for ion-ion recombination in a dilute gas over the full 

range of masses of the species involved and over various classes of 

ion-neutral interaction (polarization, hard-sphere and charge-transfer). 
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Topic (C):  By explicitly including collisions and by operating at a level 

more basic than the macroscopic Debye-Smoluchowski Equation (DSE), various 

assumptions within the DSE-treatment of transport-influenced reactions  between 

A and B in a dense medium M become naturally exposed. The appropriate 

modification of DSE to description of the kinetics within the region of the 

sink is provided. 

Analytical expressions for probability densities and rates are derived 

which are exact solutions of DSE (a) at all times t and large internal 

separations R of the pair (A-B), (b) at long times t and all R and (c) at 

short times t and all R. Not only are the transient rates a s (t) and aL (t) 

exact at short and long times, respectively, but they are naturally bounded 

for all times with a 5 (t4.) and a L (t+0) tending to the correct limit, albeit 

with an incorrect transience. Comparison with exact numerical solutions of 

DSE illustrates the effectiveness of a proposed solution over the full range 

of time. 

Topic (D):  By appeal to a Thomson-type treatment of recombination, it is 

shown that the rate for recombination of ions generated with uniform 

frrequency within a reaction volume is a factor of (9/4) times greater than 

the rate for recombination of ions which approach each other from infinite 

separation. A valuable relationship connecting the two problems is uncovered. 

The analysis is pertinent to recombination involving dilute and high degrees 

of ionization. 
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1.3 Papers Presented at Scientific Meetings  

1. "Association/Dissociation in Dense . Gases and Adsorption/Desorption on 

Surfaces" by M. R. Flannery. 

2. "Analytical and Numerical Solutions of the Time Dependent Debye-

Smoluchowski Equation" by M. R. Flannery and E. J. Mansky. 

3. "Electron-Excited Hydrogen and Helium Collisions" by E. J. Mansky and 

M. R. Flannery. 

4. "Symmetric Charge-Transfer Cross Sections in Rare Gas (Rg + -Rg) 

Systems" by E. J. Mansky and M. R. Flannery. 

All of the above papers were presented at the 37th Annual Gaseous 

Electronics Conference, October 9-12, 1984, held at the University of Colorado 

in Boulder. 

The abstracts of the above papers now follow-. 

1.4 Abstracts of Papers Presented  

LD-13 Association/Dissociation in Dense Gases and  
Adsorption/Desorption on Surfaces, *  M. R. FLANNERY, 
Georgia Institute of Technology--A new comprehensive 
theoryl is described for the time evolution towards 
equilibrium of association and dissociation in a dense 
gas. Expressions are formulated and are illustrated 
for the net probabilities of association to stable 
vibrational levels and dissociation to the continuum 
from an arbitrary bound vibrational level via collision 
with the thermal gas bath. A general variational prin-
ciple emerges: The rate which corresponds to the over-
all direction of the process always adjusts itself to a 
minimum and the time evolution towards equilibrium is 
hindered. Analogy is established with Kirchhoff's 
Laws and Tellegen's Theorem for electrical networks, and 
with the Principle of Least Dissipation basic to thermo-
dynamics, heat conduction, and fluid mechanics. The 
theory can also be modified to provide the first basic 
microscopic account of Associative Desorption of atoms 
from and Dissociative Chemisorption of molecules to 
surfaces. 
*Research supported by AFOSR under Grant AFOSR-84-0023. 
IM. R. Flannery, Phys. Rev. A, (1985). 
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LD-2 Analytical and Numerical Solutions of the Time  
Dependent Debye-Smoluchowski Equation, *  M. R. FLANNERY 
and E. J. MANSKY, Georgia Institute of Technology--The 
macroscopic Debye-Smoluchowski Equation (DSE) with a 
radiation boundary condition has been derivedl from a 
basic microscopic theory of association/dissociation 
processes, A+8 + AB, between A and B in a thermal gas 
bath. There are at present no exact analytical solu-
tions of DSE for general interactions V(R) between A 
and B for all separations R and time t. We formulate 
here exact analytical solutions for the conditional 
probability density and reaction rates (a) at long and 
short times for all R and (b) at all times for large R 
and compare the results with direct numerical solutions. 
We also propose highly accurate working expressions for 
the rates of transport influenced reactions at all 
times. 
*
Research supported by AFOSR under Grant AFOSR-84-0233. 

1M. R. Flannery, Phys. Rev. A (1985). 

LC-1 	Electron-Excited Hydrogen and Helium Collisions,
* 

E. J. MANSKY and M. R. FLANNERY, Georgia Institute of 
Technology--The Multichannel Eikonal Treatment (MET) is 
modified so as to facilitate highly accurate description 
of various asymptotic long range dipole couplings im-
portant in electron excited atom collisions. MET is 
applied to excitation in e-H(2s), e-H(2p), e-He(2 1 1 3S) 
and e-He(2 1 9 3P) collisions at intermediate energies. 
Integral and differential cross sections together with 
various coherence and alignment parameters for the radia-
tive decay of the n=2 and 3 collisionally-excited P and 
D states of H and He are determined from MET with 10 
channels associated with n = 1, 2, and 3 sublevels. 
Comparison is made with various recent measurements. 

Research supported by AFOSR under Grant AFOSR-84-0233. 
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LD-12 Symmetric Charge-Transfer Cross Sections in Rare  
Gas (Re-Rg) Systems, E. J. MANSKY and M. R. FLANNERY, 
Georgia Institute of Technology--Symmetric resonance 
charge-transfer, elastic, diffusion and viscosity cross 
sections for the ion-atom collisions: 	+ Rg, Rg 3 He, 
Ne, Ar, Kr, Re are determined via a full quantal phase-
shift analysis using the pseudopotential of Sinha, et al. 
[1] for He2+; and the spin-orbit ab-initio potentials of 
Cohen and Schneider [2] for Ne2+, Wadt [3] for Ar2+, Kri; 
and Xe2+; and Michels, et al. [4] for Neff', Ar2+, Kr2+, 
and Xe2+ at lab energies ranging from 0.001 eV to 1 keV. 
The long-range ion-atom polarization attraction is ex-
plicitly acknowledged in the full interaction and in a 
JWKB correction to the numerical asymptotic phase shift. 
Differential cross sections are also obtained. Comparison 
is made with existing experimental and theoretical data. *
Research supported by AFOSR under Grant AFOSR-84-0233. 
[1] S. Sinha, S.L. Lin, and J.N. Bardsley, J. Phys. B 

12 (1979) 1613. 
[2] J.S. Cohen and B. Schneider, J. Chem. Phys. 61 

(1974) 3230. 
[3] W.R. Wadt, J. Chem. Phys. 68 (1978) 402. 
[4] H.H. Michels, R.H. Hobbs, and L.A. Wright, J. Chem. 

Phys. 69 (1978) 5151. 

7 



1.5 List of Publications  (in press and in preparation) 

1. "General Microscopic Theory of Association/Dissociation Non-Equilibrium 

Processes in Dense Gases," M. R. Flannery (Phys. Rev. A). 

2. "Diffusional Theory of Association/Dissociation Non-Equilibrium Processes 

for General Systems," M. R. Flannery (Phys. Rev. A). 

3. "Microscopic Basis and Analytical and Numerical Solutions of the 

Debye-Smoluchowski Equation," M. R. Flannery and E. J. Mansky (Phys. Rev. 

A). 

4. "Ion-Ion Recombination at High Ion Density," M. R. Flannery, J. Phys. B: 

Atom. Molec. Phys. 

5. "Modified Multichannel Eikonal Treatment of Electron Excited Atom (H,He) 

Collisions," M. R. Flannery and E. J. Mansky (in preparation). 

6. "Symmetrical Resonance Charge-Transfer in the Rare-Gas Sequence (Ne, Ar, 

Kr, Xe)," M. R. Flannery and E. J. Mansky (in preparation). 

7. "Kinetic Theory Foundation of Ion-Ion Recombination in a Dense Plasma," 

M. R. Flannery and E. J. Mansky (in preparation). 

8. "A Variational Principle in Dynamics of Relaxation," M. R. Flannery (in 

preparation). 

9. "Classical Theory of Recombination," M. R. Flannery (in preparation). 

10. "Selected Bibliography on Atomic Collisions: Data Collections, 

Bibliographies, Review Articles, Books, and Papers of Particular Tutorial 

Value," M. R. Flannery, E. W. Thomas and S. T. Manson, Atomic Data and 

Nuclear Data Tables 33 (1985) 1-148. 

Papers #1-4 above are included as Appendices A-D of this report. 

Reprints of paper #10 will be sent to AFOSR under separate package. Papers 

#5-10 will be also sent to AFOSR when completed. 
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1.6 Ph.D. Thesis Supervised  

Mr. E. J. Mansky has been a Ph.D. graduate student supervised by the 

Principal Investigator (M. R. Flannery) and supported by the present and 

previous AFOSR grants (AFOSR-84-0233 and AFOSR-80-0055). He has now completed 

his thesis and is expected to graduate with a Ph.D. on September 1985. Copies 

of his thesis are being prepared and will be submitted in due course to the 

AFOSR as a separate bound report. 
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Appendices  

In the following Appendices A-D are contained preprints of the following 

articles submitted for publication to scientific journals. 

(A) General Microscopic Theory of Association/Dissociation Non -Equilibrium 

Processes in Dense Gases. 

(B) Diffusional Theory of Association/Dissociation Non-Equilibrium Processes 

for General Systems. 

(C) Microscopic Basis and Analytical and Numerical Solutions of the 

Debye-Smoluchowski Equation. 

(D) Ion-Ion Recombination at High Ion Density. 
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Appendix A 

General Microscopic Theory of Association/Dissociation 

Non-Equilibrium Processes in Dense Gases 



General Microscopic Theory of Association/Dissociation 
Non-Equilibrium Processes in Dense Gases 

M. R. Flannery 
School of Physics, 

Georgia Institute of Technology, 
Atlanta, Georgia 30332 

Abstract. Sets of transport-collisional Master Equations for the two-particle 

non-equilibrium distribution function of subsystems (A-B) in a thermal bath of 

dense gas M are derived in various physical representations, corresponding to 

the full range of gas density. Expressions for time-dependent rates R A ' D  (t) 

for association/dissociation are formulated in terms of net probabilities 

P/!' D  for association/dissociation of bound energy level i of pair (A-B), so 

that association and dissociation are treated in a unified manner and that 

evolution in time t towards equilibrium is naturally achieved. The 

expressions for RA ' D  are also independent of whether or not a quasi-steady-

state (QSS) distribution of highly excited levels is assumed and are 

particularly valuable when approximate probabilities 4' D  are used. A new 

Variational Principle for the rates RA ,D (t) is proposed and is applied to ion-

ion recombination, as a benchmark, with very successful results. Contact of 

this Variational Principle (in general for chemical reactions in a gas) is 

established with Tellegen's Theorem for electrical networks and with Onsager's 

Principle of Least Dissipation for heat conduction. 

PACS: 34.10X, 34.50.1F., 82.20.Mj 
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I. Introduction  

When a distribution of ion-ion (A
+ 

+ B - ) pairs, or of ion-atom (A
+ 

+ B) 

pairs or of any (ion or neutral) subsystem of dissociated species denoted in 

general by (A + B) is introduced in a dense gas of thermal species M, a highly 

non-equilibrium situation exists. In this paper, a set of Master Equations is 

formulated for the relaxation from some initial non-equilibrium distribution 

of dissociated subsystems A + B (or of molecules AB) towards equilibrium with 

a dense thermal gas M via the pertinent energy-change processes, 

A + B +M 	AB +M (1.1a) 

A+  + B +M 	AB+  + M (1.1b) 

A+  + B -  + M 1: AB +M (1.1c) 

i.e., by the collisional association (recombination) of the dissociated 

species, the forward direction of (1.1), or by the reverse of (1.1), the 

collisional dissociation of molecules AB with an initial distribution 

characterized by temperature TAB  which is higher than the temperature T M  of 

the dense gas M. A key component of this theory is inclusion of the essential 

coupling l  between the macroscopic effects of transport and reaction between A 

and B in M via a comprehensive microscopic treatment of the process. 

Evolution of the two particle correlation function for subsystem (A-B) is 

provided in terms of the internal energy E, internal angular momentum L and 

internal separation R of the subsystem by explicitly including streaming (dif-

fusion and drift) and discontinuous collisions with the heat bath M. 

The present theory is a natural development of that previously proposedl 
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for the rate of ion-ion recombination (1.1c) as a function of density N of the 

gas M. That theory
1 then emphasized the steady-state rate of recombination 

which can be expressed in terms of reaction and transport rates. Also the 

treatment intrinsically assumed that the relative speed v was purely radial 

and that the ratio of product concentrations of fully dissociated species, of 
ti ti  

concentration NA  and 	to to their corresponding product N ANB  under thermo- 

dynamic equilibrium 

N
A
N
B
/N

A
N
B 

>> N
AB

/N
AB 
	 (1.2) 

ti 
is much larger than the corresponding ratio NAB  /NAB  for fully associated 

species. The overall direction of (1.1) is then forward i.e., the overall 

rate of association is much greater than the rate of dissociation which is 

then neglected, by comparison. The aim of the present paper is to remove 

those restrictions and thereby provide a comprehensive account of the time 

evolution towards equilibrium of a highly non-equilibrium situation via the 

dynamic balance as in (1.1) between association and dissociation processes, 

which may then be treated in a unified way. 

Because it remains a very basic problem in atomic and molecular physics 

both in its detailed theoretical elucidation and in its central significance 

to many physical situations of great current interest, solution of the general 

problem represented by (1.1) as a function of gas density is considered as a 

prototype textbook study
1 
of a process in which collision theory and 

statistical mechanics can be coupled via some unified microscopic treatment. 

Association and recombination, the forward direction of (1.1), are 

important in many instances, as for example, in gaseous discharges, 2  in 

electron-beam pumped exciplex lasers 2 ' 3  (KrF, XeC1 etc.), and in the recent 

Optoacoustic Effect
4 
where the acoustic wave is generated by the conversion 
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into translational heating of a dense gas via termolecular association of the 

photofragments A and B produced originally by photodissociation of a dense 

molecular gas AB. For overall dissociation the reverse direction of (1.1), 

externally-induced non-equilibrium distributions of AB in excited vibrational 

levels can be produced by absorption by AB but not by M of short-duration 

high-intensity thermal radiation with temperature T >> T. or by the passage 

of a shock wave through the gas. Here the translational and rotational 

degrees of freedom of all species will relax to thermal equilibrium at 

temperature Ts  immediately behind the shock wave more rapidly than the much 

slower relaxation of the vibrational distribution of AB associated with the 

original and final temperatures T M  and Ts , respectively. Charge-transfer 

between molecular species (AB
+ 

- AB) also produces 5 a non-equilibrium 

distribution of AB in various high vibrational levels. Absorption by AB of 

laser radiation will of course produce a vibrational distribution strongly 

peaked about a specific vibrational energy. The vibrational distribution will 

then relax by collisional association/dissociation processes. 

In this paper, (1.1) is considered to be a closed system i.e., 

irreversible losses by curve crossings AB 	A + B, quantum tunnelling, or by 

mutual neutralization (A +  - B - ) 	A + B are specifically excluded. The 

concentrations N
A 

and N
B of subsystems are much less than the concentration N 

of the gas system M so that the main relaxation mechanisms are energy-changing 

collisions between the subsystem and gas. Relaxation via radiative 

transitions and subsystem-subsystem collisions may therefore be neglected. 

The gas is therefore regarded as a heat bath whose main function is to 

collisionally exchange energy and angular momentum with the subsystem, while 

maintaining its original thermodynamic state at temperature T M  at all times, 

thereby permitting the original dissociated or associated subsystems to relax 
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to eventual equilibrium at temperature TM . The above three assumptions help 

to keep the theory tractable but may, in principle, be all or individually 

removed via straightforward generalization of what remains, however, a fairly 

comprehensive theory presented here. 

In the limit of low gas densities N, mutual transport of A towards B in 

the gas M is very rapid so that the process (1.1) is determined by the rate 

limiting step of reaction. The previous collisional input-output Master 

Equations of Bates and Moffett
6
, of Bates and Flannery

7
, of Bates and Mendas

8
, 

of Flannery,
2

'
9-11 

for ion-ion recombination (1.1c), of Bates and McKibbin 12 

 for ion-atom association (1.1b) and the weak (diffusional) collision treatment 

of Keck and Carrier13  and of Anderson and Shuler14  for association/ 

dissociation (1.1a) have all been designed specifically for reaction only in  

the limit of low gas densities N.  As N is raised the transport rate decreases 

and the reaction rate increases until the rate limiting step of the overall 

process in the limit of high gas densities becomes transport. The present 

paper is therefore concerned with transport-influenced reactions and with the 

design of appropriate Master Equations which govern transport-reaction 

processes at all gas densities N. The Master Equation for the limit of low N 

is well documented and discussed
6-14 

and the present theory yields this limit. 

The organization of this paper is as follows. In § 2, various 

representations of the basic equation governing the mutual streaming 

(transport) of A towards B in the dense gas are presented. The corresponding 

transport-collisional (reaction) Master Equations for the non-equilibrium 

distributions are then developed in § 3. Simplifications introduced by 

assuming equilibrium associated with one or more of various physical variables 

as interseparation R, internal energy E, and internal angular momentum L of 

the pair A-B, are then discussed in §4. Expressions for the rates of 
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association and dissociation are formulated in § 5 in terms of the solutions 

to the Master Equation. In § 6, the time evolution towards equilibrium is 

expressed in terms of the net probabilities of collisional association and 

dissociation of AB in high vibrational levels. A Variational Principle basic 

to evolution towards equilibrium then emerges and is discussed in §7. It is 

new and asserts that the conditional densities (or pair correlation functions) 

of pairs AB in various energy levels are so distributed that the rates R A (t) 

and RD(t) of association and dissociation, respectively, are extrema at time 

t. If conditions are such that the overall direction is association, then 

R
A
(t) is minimum and R D (t) is maximum; for overall direction of dissociation, 

RA (t) is maximum and RD (t) is minimum. Evolution towards eventual equilibrium 

is therefore hindered and the Principle of Least Dissipation (first derived by 

Onsager 15  for heat conduction) is satisfied. When equilibrium distributions 

are assumed for fully associated and dissociated pairs, the Variational 

Principle yields the quasi-steady state condition (i.e., a steady-state 

distribution of highly excited levels at all times) which rendered feasible 

the many pioneering studies 16  by Bates and colleagues of heavy-particle 

recombination
6-11 and of electron-ion collisional radiative recombination in a 

plasma l7 ' 18  and in a gas.
19,20 Application of the Variational Principle to 

ion-ion recombination is made in §7.2. 

Finally, in an effort to make this paper complete and comprehensive, 

Appendix A contains classical distributions corresponding to equilibrium in 

internal separation R, internal energy E and internal angular momentum L of 

the pair (A-B) together with various classical-quantal correspondences. In 

Appendix B are gathered various collision kernels and one-way equilibrium 

rates for energy-change collisions appropriate to various interactions 

(charge-transfer6 ' 1° , hard-sphere, 11  polarization 8  and Coulombic) between the 

subsystem AB and the gas species M. The kernels are expressed in appropriate 

form for direct application of the present theory. 
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2. Various Representations of the Transport Equation  

The present theory is a natural development and generalization of the 

microscopic theory recently proposed 1  for the rate of ion-ion recombination 

(or of any chemical reaction in general) as a function of gas density N. The 

proposed theory i  bridged the density gap between the previous quasi-

steady-state theories 6-13  based on energy-relaxation alone and therefore valid 

in the low-density limit, and the macroscopic mobility/diffusion theory 2 , 

valid in the limit of high gas densities N. It was also shown 1  that the 

steady-state rate of recombination is determined by the well known relation a 

= a TR a RN/(aTR a
RN" between the macroscopic rates a TR  and a RN  of mutual 

transport and of reaction between the species, respectively. At low N when 

a
TR 

>> a
RN 

then a + a
RN' 

the rate limiting step, while at high N when a
RN >> 

aTR' then a + a TR' 
the limiting rate. This relationship is also a natural 

consequence of the macroscopic Debye-Smoluchowski Equation' where aRN  is 

regarded as an externally assigned parameter, in contrast to the microscopic 

theory 1 
where RN is internally determined. 

At low N, equilibrium with respect to the internal separation R of the 

(A-B) pair (ion-atom or atom-atom) is very quickly established in comparison 

to the much slower relaxation in time t of both the angular momentum L and the 

internal energy E of the pair. The appropriate time dependent master equation 

would involve only the set (E,L
2
,t) of variables for ion-atom and atom-atom 

association. For ion-ion recombination, the Coulombic attraction does not 

support an angular momentum barrier and equilibrium  in L2  is then very quickly 

established in comparison to energy relaxation so that the master equation 

involves only (E,t), as in the previous quasi-steady-state treatments. 6-13  

As the gas density N is increased, relaxation in internal separation R 

occurs in a time comparable to relaxation in internal energy E so that both 

transport and reaction are coupled. It has already been established 1 ' 21  that 

a "Boltzmann - like" equation governs the development of the pair correlation 

function, or conditional probability density n(1, , ,R,t), which is such that n ctslk 
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is the probability that the internal momentum, p = my, and internal 

separation R of the (A-B) pair of reduced mass m and relative velocity k,is ti 

within the interval dR dk about (R,k) at time t. Thus
1 '

2  

dt 
nQ,p,t) E 	v .v n 	( 	) 

a R 	111, •v p n
ti  

(2.1a) 

= 
 i=1,2 m 	O 

 dZm  f 
i
doi  En(ft,,p,';t)N 0 (5') - n(,R., ,;t)No T,m agim  aim ( gimA 

- n(R,k;t) v(R,k) 	 (2.1b) 

where V(R) is the interaction between A and B, where the momentum ),),m  of the 

gas species M is distributed according to a (time-independent) Maxwell 

distribution N
0  (PA  ) at temperature p, and where a. dO i  is the (center-of-mass) IM 

cross section for A-M (i = 1) or B-M (i = 2) elastic scattering at relative 

speed g im  into solid angle dO i . If M is molecular, then a im  is augmented by 

the collisional inelastic cross section for rotational and vibrational 

transitions. The 0 i -integration in (2.1b) is over that scattering region W i 

 accessible for the production of all final scalar momenta pl(R, ,pm ,N) and 

Pil l (,p,Q.;) of the (A-B) pair and the gas, consistent with energy 

conservation and with fixed R,  and PM . Included also in (2.1b) is a term, nv 

which specifies loss of bound or free pairs via irreversible chemical reaction, 

as mutual neutralization at frequency v. 

The emphasis of the earlier paper
1 
was the steady state recombination 

rate for the case when there were many more dissociated A-B species than the 

associated neutrals such that the dominant process was association alone. In 

this paper, we focus on the time evolution towards equilibrium which is 
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established by the balance between collisional association of the free pairs 

and the collisional dissociation of the recombined pairs in a thermal gas 

bath. In order to facilitate appropriate theoretical development, the 

transport (streaming changes) portion (2.1a) and the collisional 

(discontinuous changes) portion (2.1b) of the above Master Equation will be 

formulated in various representations of physical interest. 

2.1 (R,k) Transport Equation. 

With , held fixed at angle e to variable R, then after some analysis, 

,e •ve(',e )  2 -DT 
= 

1 	a 
(R

2
npcose)p 	

a 	
Eno sin

2 e]
p ,e 	R a(cose) 	 ,R 

(2.2) 

sine 	an 	sin 	cp 	an 
[coscp 	 - simp cote„, 111- ] 

R 

	

ae 	sine 	D4) 	 K 4 
R 	R 

for general n4R(R,0 R 4 R ), ,(p,e,(1)],where ,e(e,(1)) is directed along (e,(p) of a 

spherical system with Z-axis along 	which, in turn, is directed along 

(e
R'R

) of a space-fixed spherical reference frame. Since the interaction 

V(R) is radial, then the probability density n is a function only of R, p and 

0 , the angle between 	and p. Under azimuthal ((1),(1) R ) symmetry, and with the aid 

of 	(2.2) together with the corresponding expression for 	(2.1a) 

can be expressed as 

Dn 1 	a  
dt - 	 --+- n(R,D-t) = 	• 	(R-2  n v cos 0) 	+ 1 	 

p,e 	R a(cose)(n v sin
2
e) 	- 

	

at 
R
2 aR 	 P,R 

- 
	ay) r  1 	D 	, 

2 n cose)R, 	
1 	a  

	

(n sin 2 e) p 	, 	(2.3a) T[5- ( p2 	 _ + p a(cose) e 	 ,R 

8 



which may be cited as the conservative  form of the transport equation in one 

dimensional spherical geometry, since the angular redistribution terms vanish 

when integrated over the full range 0 < e < Tr of the momentum direction for 

fixed R. An alternative form of (2.3a) is 
ti 

dt n( 	,t) = 	cos 	
_ m aV an 

aR p,e p aR apk,e (2.3b) 

 

+ 
1 	. 

n 
 2 [ 2 	1 	aV 	an  

2-  V si 6 	R 	(E-V) aR 	a(cose) R,p  

where the internal energy E of the AB pair is 

E = p
2
/2m + V(R) = 1/2 mv L-

9  
 + V(R) = T + V(R) 	 (2.4) 

in terms of relative kinetic energy T and relative speed v. 

2.2 (1Z,P,Icos61)-Transport Equations  

Introduce the superscripts (+) to distinguish those pairs n+ with k  

directed into the upper region, 0 < 6 < z where case > 0 defines the 

positive (+) region, with outward directed radial speed, from those pairs n 

	

with k  directed into the lower region, 	< e < 7  where cos 6 < 0 defines the 

negative (-) region with inward directed radial speed. At 0  = 
7 

, the radial 

speed v cose is zero (at the classical turning point of the relative motion). 

The set of equations satisfied by, 

ns,d) R,, I • k k 	icos61;t) = n+ (lt,P,Icoseht) + n - (0),Icosel;t), (2.5a) 

the sum (s) and difference (d) of the 4)-integrated quantities, 

9 



2ff 
n+ (R,p,lcosel;t) = f nt-(Rq, ;t)d(1) 	, 

0 
(2.5b) 

is obtained from (2.3a) to yield, 

—d n s (R,p,lcosekt) - 
Dn

s 	
1 D (R 2 nd vIcosel) 	1 	 (n

s 
v sin e)

dt 	 at 	R
2 aR 	 R D(cose) 

1   [Jlz 	(p2  nd lcosel) + p a(coser n s  sin g e)] (2.6a)
ap  

and 

d 	in 	1 	PI
O 	

1 
— n

d  kR ,P I cos° ;t ) 	
+ 1 9  

(R 2 ns v cose ) + 1 	 (n
d 

v sin ge) 
dt 	% 	 a R 	 R D(cose)  

-(2 
DR L 1 r 12 DP 

D (p2 n s lcosel) 	1 a(cose) 13 	(n d  sin g  e)] (2.6b) a   

2.3 (R,p)-Transport Equations  

Let 

27 	1,0  
n±(R,p;t) = f d(1) f d(cose) 	 E f n(1,1?, ;t)di 

0 	0,-1 	 (+,-) 
(2.7) 

be the conditional densities (per unit dR p
2
do) of pairs that are radially 

expanding (+) or radially contracting (-) across a fixed element of surface S 

at radius R. The corresponding intramolecular currents 

.+ 
J -01 ,13; t ) = v I n(1,1,;t)lcoseldk, 

(+,—) 
(2.8) 

1 0 



are the rates (per unit dR p
2
dp) that pairs expand (+) or contract (-) across 

a fixed surface S with normal es  oriented along the fixed direction R. In 

terms of (2.7) and (2.8), integration of the conservative form (2.3a) over 

each (+) region yields, 

an +  
ft-q,p;t) = 	

+ 

	

at — 
	[(D 	m 	r 

R2 T ff p 	9R  R  .P1 I. R2  jt d(R,v,t)] 

v n(kt,p, e = 
 

2' l  R 7 - VT 9R 
(2 .9) 

where, owing to (p-symmetry n (e = I) is 27 nt(R,p,;t) evaluated at e = 7;-, which 
F‘, 

corresponds to turning point(s), the pericenter and apocenter (where 

appropriate) of the orbital motion. 

This density n( 2) corresponds to orbits (with angular momentum Lt  = 1ft x 

,e1 = Rp),which are tangential (e = 2) to, but do not intersect the R-sphere 

i.e., n( 1) is n(i) at the pericenter, and is n + (i) at the apocenter of the 

appropriate orbits. As R increases from zero, the angular momentum L t 

 required to provide this tangential orbit must also increase, so that the 

orbit can only touch the R-sphere externally at its pericenter. For unbound 

	

7 	 / e orbits (E > 0), L t  can increase indefinitely so that n( 2 — ) remains n k - ) for 

all R. For bound orbits of specified E, however, then L t  = Rp required for a 

tangential orbit reaches a maximum at a radius A which is the root of 

1  [ a 	2 1] 	[2 	1 	al 2 	1 aV 	n  
R 2 p2 3R " 

(02 
P 	E 	R 	(E-V) aR 	R 	T aR 	 (2.10) 

where T is the kinetic energy (E-V). 

As R increases beyond this radius A, Lt  decreases, and the required 

1 1 



Lt -orbits become internally tangential to the R-sphere at their apocenters; 

until R reaches the largest apocenter at R = B, the turning point of the L = 0 

(straight line) motion determined by 1E1 = IV(B)1 for attractive interaction. 

Hence the density n in (2.9) is delineated as, 

n(R,p, e = i;t) 	; T > T *  = 1/2 R (9V/DR) 

n(R,p, e= 	= 	 (2.11) 

n + (R,p, e= i;t) 	; T < T *  = 1/2 R (DV/DR) 

* 
Region I, characterized by T < T corresponds to (E > 0, all R) and to (E < U, 

* 
U < R < A) while Region II, characterized by T < T corresponds to (E < U, A <  

R < B). 

Note that the coefficient of n in (2.9) vanishes at R = A and B. The 

radius of the bound circular orbit is given by the root of 

av 

DR 	- 3R L 	J 
eff  _ 	ry 	L2/2mR21 

L = (2.12) 

which is identical with A, the root of (2.10) i.e., the circular orbit is 

associated with the largest value L max  of the allowed angular momentum, as 

expected. Hence, for R < A, the pericenters of all orbits with L < L t  = Rp for 

given E lie within the R-sphere and that orbit with L = L t  touches externally 

the R-sphere, and the apocenters for all L are all external to the R-sphere. 

For R = A, Lt  = Lmax  and the orbits are circular with the pericenters and 

apocenters lying on the R-sphere. For R > A, the pericenters of all L orbits 

12 



and the apocenters of those orbits with L t  < L < L max  are within the R-sphere 

and the apocenters of orbits with L < L t  lie without the R-sphere. The L t-orbit 

is internally tangential to the R-sphere at the apocenter. 

The radius A of the circular orbit for pure Coulomb attraction is e 2 /21E1 

and the maximum turning point B is 2A. The turning points appropriate to 

fixed -  (E,L 2 ) are 

	

R 1,2 (E,L
2 ) = AL1 + {1 - L 2 /2m1EIA 2 } 1/2 	A=e

2
/21E1, 	(2.13) 

1 	 1 such that, at R
1,2 

= A then L
2
[= 2m1E1A 2  = 1/2 me 4/1E1which is the maximum 

permissible value Lmax of L
2 
for a given lEl] decreases with stronger binding lEl. 

For L = 0, R
1  = 0 and R 2 

= B = 2A. Also T > T* = e 2
/2R for E > E

* 
= (-e

2
/2R). 

Hence (2.11) shows that n( 71) is n for E > 0 at all R, is n for E < 0 and R 

< A, and is n
+ 

for E < 0 and R > A. 

With the sum (s) and differences (d) 

	

n
s ,d

(,,p;t) = n
+
(,,p;t) + n(,,p;t) 
	

(2.14) 

and with the total (s) current from, and with the net (d) outward current across, 

 

.s,d 
J(R,P;t) = j + (R,P ;t) 	;t), (2.15) 

a fixed e -surface,then (2.9) is equivalent to the set, 

	

5 	1 	- 	m  (011 9 	pi [ R 2j d (f‘z,,p;t) ] 	(2.16a) 

R 

d n  ( Rn;t  s ,) 	Dr" 
2 	913)R dt 	 2 	a n  

r 	P 

13 



and 

d nd( R  „ t)  = an d 	1 [I @) 	m (DVII @) 	r D 2.s tn 	.0 1 
dt 	 at 	2 	aR 	- 2 DR 	P 

R 	P 	p 	P R 

2 	1 	aV 	
p; e = , 	 * - [17 	(E-V) DR 	

n(R,p; 
	2 t)v 

' 
(2.16b) 

 

in the (R,p)-representation. The above forms are useful when n±-(,,p) are each 

independent of 8 i.e., when the internal angular momentum states are in 

thermodynamic equilibrium (see Appendix A). Under this condition the set 

(2.16) with (2.7) and (2.8) reduces to 

 
dt 	" 

ns(R,n.t) 	
at 

= Dns 
	2 " 
	@n

d 

FT) 
m DV) an d 
	

2 _ 	1 	@V) n d 

	

- 	aR 	@ID R  R 	(E-V DR 

(2.17a) 

for the total density n s  and to 

an d 	1 	Ms ) 	m (DV 1( M s ) ] n d(R p•t) = 
dt 	 at 	2 " 	 p 	ap 

1p 	Tr] [ 2 	1 	DV] + -2- v  n 	 ) - 2n(0 = — 	— - 2 	R 	(E-V) DR 
(2.17b) 

Since (2.17a) is appropriate to the L
2-equilibrium averaged value of v, it represents 

a generalization of Eqs. (2.12),(2.20) and (5.1a) of Ref. 1 which are associated only 

with the speed v i  along the radial direction R. 
2.4 (R,T)-transport equations. 

When the kinetic energy T (= p 2/2m) rather than E is used as a variable, 
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then the corresponding densities and currents (per unit 	dT d,e) are 

= m p n(R,,?, ;t) 	 (2.18) 

and 

j(R,T,k;t) = m p j(R,Vt) = v n(R,T, , ;t) 	 (2.19) 

respectively, such that the i-integrated quantities which correspond to (2.14) 

and (2.15) satisfy, 

d 	s, 
dt n  0,I,T;t) = 

3;4 + 1 p 
a) 

R 2  PR  T tg*) R
][ 2 R 

nd = 	1, 	_ av 
L 	Rc 	dK T 	aR aT ][R2  j s (R,T;t)] 

3vR ] 
n(R,T, e = 121  ;t)v 

(2.20a) 

(2.20b) 

In thermodynamic equilibrium (Appendix A) at temperature 0, the 

conditional density factors as 

''ri s (R,R) = ( 2 Tr 111 k 0) -3/2  exp( - p 2 /2m) exp( - V(R)/ke), 	(2.21) 

and is independent of direction (such thatii s  = 	= 0). It therefore 

satisfies the set ,  (2.17), where each term vanishes separately, and the set 

(2.20) as expected. 
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2.5 R-Transport Equations. 

Integration of (2.16) over the full range (0,..) of T therefore yields the 

set, 

and 

d s 	ans 
n  ( 	

+ 1 a I R 2 j d (R )] 
dt 	 1,1, ;t) 	at 	R2 aR L (2.22a) 

d n d(R.t)  _ an
d 	 2 	2 ‹v-i> 	 f + 1 	2 s 

dt 	- at 	
[ 	J (R)1 - R 	 [, 	 Tr 4.  \ 

<v> K 	M <V> 	9R)] 	= 	; t)  

(2.22b) 

where the macroscopic (configuration) densities are 

ns , d( ; t) = 	,T;t)dT 
0 

and the macroscopic (configuration) currents are 

s d j 	; _t 	= 	J S 
(R,T;t)OT 

0 

The averaged speeds <v n > in (2.22b) are determined by, 

T *  
Tr 

n(12, e = —
2 

;t) <v n
> = f n

+
(R,T e = 

2
—;t) v

n 
dT + 5 n - (R,T e = 2 2-;t) v

n 
dT 

T* 

(2.23) 

(2.24) 

(2.25) 

where T
*
(R) = 

1
R(9VOR) is either the kinetic energy of a bound circular 

orbit of radius R, as in (2.11), or else is zero for unbound orbits, and where 

16 



T* 	 m 
e = 

	

n(R, 	ir- 

	

,‘, 	2 	= f n
+ (R,T, e= 2it)dT + f n - (

'''
B,T, 0 =-- TT ;t)dT 

T*  
(2.26) 

is the total macroscopic density at the turning points (apocenter for T < T 

* 
and pericenter for T > T ). 

The variable sets (R,p), (R,p), (R,T) and R are quite natural at higher 

gas densities N, since in the limit of high N, collisions are sufficiently 

rapid to establish equilibriun in p or T such that (2.3), (2.6), (2.16), 

(2.20) and (2.22) furnish quite naturally the appropriate non-equilibrium 

equations in the various variables. When there is T-equilibrium for example, 

ft-  are separately independent of p and satisfy the Maxwellian distribution 

n i- (Z,T;t)  _ 	 _ 2 	1 T 1/2 

n - (11;t) 	tr(R) 	1/17r-  ( ( 0) 3/ 2  ' 
	exp(-T/ko) (2.27) 

where the tildas (A, ) denote equilibrium values and where the configurational 

density is 

n-(R;t) = f n-(tR,T;t)dT 
0 

(2.28) 

The appropriate non-equilibrium equations for n s ' d (R,t) are then (2.22) 

where the currents are 

= -c) 	1/2 ns,d (R;t) V = 1/2 [n 1- (12,t) + n(1t,t)] (2.29) 

and where the averaged speed 

<v> = v = (8 k 0/7rM)
1/2 	

(2.30) 
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is simply the mean thermal speed. For T-equilibrium (2.27) holds such that 

n(R,e=i;t)<v> = ■.ftn + (,t) - 	{1 + (T */k e ) exp(-T */1(0)1j 	(2.31) 

and 

m 
Tr 

' 
n(R,a =--- 2 t)<v 1 > 	(v/ke)Ln + (R,t)  - n

D 	
exP(-T

*
/ke)] (2.32) 

The macroscopic eq. (2.22b) therefore reduces to, 

	

d 	— a 

	

d _ an 	v 
dt " 	 at 	2 a 

2R u 

ns (R ;t)1 

_ 1 -j 	
k0 DR 

[2 	1 	]fris(R.t) + nd (1„3 .,t)] 	nd (IR;t)exp(-T* (R)/ke) 

(2.33) 

which is, of course, coupled to its companion (2.22a), with J d  given by (2.29). 

In R-equilibrium, ns. (,t) is the Boltzmann distribution 

nC) = expL -V(R)/kej 	 (2.34) 

and 'Iri s  = 2 r(R), n d  = O. Hence both (2.22a) with (2.29) and (2.33) are 

satisfied in equilibrium, as expected. 

At the higher gas densities N where relaxation in R becomes the rate 

limiting step and where collisions are sufficiently fast to promote 

equilibrium in p or T, then the sets of equations (2.6), (2.16), (2.20) and 
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(2.22) derived above are appropriate for application from high N to 

intermediate N. 

2.6 (R,E,Tk)-Transport Equations  

In the low N-limit, equilibrium in R (i.e., the Boltzmann distribution) 

is achieved instantaneously relative to the rate limiting step of collisional 

relaxation in the internal energy E. The set (,E,k) of variables is 

therefore more natural to this situation. When the relaxation in E and in the 

internal angular momentum squared, 

L 2 	R 2 p 2 sin 28 = 2m[E-V(R)] R 2 sin 2e 	 (2.35) 

are both slow in comparison with R-relaxation,then the set (,,E,L 2
) of 

variables is more appropriate. 

The probability densities germane to the various sets are related by 

(2.18) and by 

n(R,k)d13 qk 	 dE qe E n 2 (R,E,L 2 )dR dE dL2  d(1) 	(2.36) 

for the probabilities n dk, n 1  dE d:k and n 2  dE dL 2  dcp that the pair with 

internal separation in the interval d about 	has the physical quantities k, 

(E,R), or (E,L
2
,flin the associated intervals. Hence the various probability 

densities are related by 

n(R,R)=R 2
nA,E,Ov/R2 P 2  = 2R 2 

 n 2 (1, , ,E,L
2
)v cose 
	

(2.37) 
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In what follows the (0-integrations are implied unless otherwise 

indicated. In (2.36) the bound levels (E,L2 ) of the AB-pair are assumed 

to lie sufficiently close (relative to the thermal energy k0 of the gas bath) 

that they form a quasi-continuum in energy E and angular momentum L. This 

restriction is not essential and can be removed by appropriate discretization 

of the continuous variables E and L
2

. 

With the recognition that 

 

( 

 DR 
al 	(ai 

- DR 	p DR
l 

3p 
E 	p 

 

(2.38) 

 

where the subscript denotes that quantity held constant throughout the 

 

appropriate differentiation, then the basic (R,p)-equation,(2.3) with (2.4) 

and (2.36),in the (R,E,,e)-representation is equivalent to, 

an 

dt n i (R,E,;t) - 	1 
	1 	a (R2 

	

n 1  v cose) 	+ 
at 	

R
2 aR  

1 	, 2 	1 	DV  
 (n 1  singe) 	 (2.39) 

" 1 R 	(E-V) DR 	a(cOse) 	 R,E 

which is the conservative form similar to (2.3a),since the angular 

redistribution term, when integrated over the full range of 0, vanishes as 

with (2.3a). 

2.7 2 (R 	L
2
}-Transport Equations. , 

The transformation p 	(E,L 2  ,(1)) in 
ti 

n(,R) = n(R,E(p,R), L2 (p,R,e), (1)) 	 (2.40) 
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may be accomplished via use of the derived identities, 

al 	= (an 	

▪  

an 	 (Dn 	aL 2  
DR 

	

PieE,L
2 	DE1 R,L 2 ( aR)p 	

DL
2 t 	 aR 
R,E 	,e 

19E1 + an 	aL2  
ap 	 2 	

i 
(ad 	ap R 	DL

2 	
913  iR,e 

an 	an 

R,E 

[  an 	I 
a(cose) 	

(

- 

an

aL 

	

2 	
aL2  

a(cose) 
13   R,E 	 ,13 

Also the derived identity 

(

a a + sin 2 e  2 1 aV 1 [  D 
  DR)E,L 2 = aRI E,0  2 cose  L  R 77-71 aR a(cose)1 R,E  

(2.41a) 

(2.41b) 

(2.41c) 

(2.41d) 

is valuable for transformation between derivatives taken with respect to fixed 

L
2 and fixed 0, respectively. 

Hence (2.3a) reduces after some analysis simply to 

dt n(R,k;t) 	+ v cose [--11  at 	 (j1, 'k' t)]E,L 2  

for n(R,R;t), or with the aid of (2.37) for n i (R,E,) to 

dt ni(R,E, ;t) = 
aan 	

aR 
tl + (R2p2cose) 	rR2  n i (,R, ,E,;t)v/R2p9 E,L 2 k 

R2 

(2.42a) 

(2.42b) 

which,with the aid of (2.41d) can be shown to be identical with the conservative form 

(2.39) for n l (R,E,k;t). In the (R,E,L
2 )-representation, (2.42a) is equivalent to 

an 

dt n2(R,E,L 2
;t) 	

ate 
	

R

1
2 R 

[.„2 K n
2 
 (R,E,L

2
;t)v cosel E,L

2 	(2.43a) 
D  
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do 	an 1. 1 	9 (R 20  
dt 	at 	R2 aR 	R ) (2.45) 

for n 2 (R,E,L
2
;t) of (2.36) in terms of quantities (E,L 2

) which are naturally 

conserved in the absence of collisions with the gas. An equivalent and useful 

form of (2.42a) is obtained from (2.37) and (2.42b) as, 

1 

an 
o,  r 2 

dt "2\
t

!;, , c ,1-  ;t) - n 2  + 2R1 9 r 
9t 	27z :1 1( , E , ;t)v/p 21

E,L
2  

In contrast to (2.3) for n(11,10,and to (2.39) for n i (,E,R), the 

microscopic vector current 

4,2 (R,E,L
2
;t) = n 2 (I1,E,L

2
;t),‘.!,  

(2.43b) 

(2.44) 

associated with the density n 2  of particles with fixed internal energy E and 

angular momentum L, across a fixed surface therefore satisfies the simple 

transport equation 

where n = n 2 (R,E,L
2
), the microscopic density, and O R  is the outward radial 

component of the microscopic current (2.44). 

In spite of the neat simplicity of (2.45) this is the first time to the 

author's knowledge that the transport terms in the left-hand-side (2.3) of the 

Boltzmann-like equation (2.1), have been written as(2.43a) in terms of the 

conserved quantities (E,L
2
) of a collisionless plasma being held fixed upon 

the R-differentiation. The form (2.45) is normally reserved only for the 

macroscopic net current OR) of all particles integrated over all vector 

momenta 	(in magnitude and in direction). In equilibrium, (R
2 

n 2  v cose) is 
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a function only of E (cf. Appendix A) such that the streaming (gradient) term 

in (2.43) vanishes, as expected. 

Introduce n12 (12,E,L 2 ;t) to distinguish those pairs with the same values of 

(J,E,L
2
) and therefore of 

ICOSO = [
1 - L 2/R2p2]1/2 	

(2.46) 

but with 	directed at e with is  into the positive (+) region, 0 < e < 2, or 

7 
into the negative (-) region -2- < e < i. Under this distinction, the transport 

equation (2.43) is therefore equivalent to the set 

+ 

 dt 	
1 

aR n±(R,E,L 2
;t) = at — 

R
2 	

[R2  n ± (R,E,L 2 ;t)vIcosel]
E,L

2 

for r, or to the set, 

dt 
ns(R,E,L2;t) 	

at 
. an 
	

1 	@ 	rp2 j d (,E,L2 ;trj,
E,L2 

 

R2 aR  

d 
2 	Dn 	1 	a 	, 2 ,s, 	, 2 —

d 
n
d
(R,E,L ;t) - 	+ 	LR J 	 • t/J 	9 dt 	 at 	R2 DR 
	 ' 	E,L- 

(2.47a) 

(2.47b) 

(2.47c) 

for the sum (s) and difference (d), 

n
s

'
d
(R,E,L

2
;t) = n

2  +
(R,E,L2 ;t) 	n

2
- (R,E,L

2
;t) 	 (2.48) 

of those (E,L
2
) pairs which are expanding (+) or contracting (-) across R with 

associated total (s) and net (d) currents 
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i s,d(,E,L2 ;t)  = 	E,L2 ;t)vIcosel 
	

(2.49) 

with direction k  at angle e with the normal es  to the fixed surface. The 

set (2.47) represents quite a formal simplification over the corresponding set 

(2.6) in the equivalent (R,p,Icosel)-representation. 

On integrating (2.43b) over the configuration volume between two spheres 

of radii R 1 (E,L
2
) and R 2 (E,L

2
), the turning points (pericenter and apocenter) 

for bound (E < 0) orbits and on recalling that n at R 1  and R 2  is n and n
+ 

respectively, then, 

d + 	2 	Dn 
dt 	 ;t) = — at + 27[(v2 2 

	,%., 
/p2)n  (R

2 " 
E e= n ' /2-t) - (v1 

1   
/p

2
)n(R

A" ' 
 E e= /2.t)] 

—  

(2.50) 
where p. and v. are the momenta and speeds at R.(i=1,). Hence 

	

1 	1 	 IR2 (E,L ) s,d 	, 

	

n 	(E,L 2  ;t) 	n+ (E,L 2 ;t) +n - (E,L
2
;t) = 	fn

s
' d (R,E,L

2
;t)dR 

R (E,L 2 ) 
1 	 (2.51) 

satisfy the set 

s, 	2 	S/ 	2 	, 
-t  n 	;t) =5 t n kE,L ;t) (2.52a) 

and 

d 

dt d 
	2 

n (E,L ;t) = 	+ 474(v
2 

 /p
2)

n
+
(R

2 " 
E e=n/2;t)at   

 

 

- (v
1
/p

1
2 
 )n (R ,E0-7/2;0] (2.52b) 
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The significance of the source/sink term in (2.52b) becomes transparent 

upon assuming R-equilibrium when (Appendix A), 

n(R,E,L 2 ;t) 	rti(R,E,L 2 ) 
[2ffR 2  vicoselT R (E,L 2 )] -1  - 	

% 

n(E,L 2 ;t) 	?(E,L2) 
(2.53) 

where T R  is the time to complete one radial orbit (R 1  4- R 2 	R 1 ) for fixed E 

and L 2 . With the aid of (2.37), (2.52h) therefore reduces to 

d 

dt 
n -
H 
 (E'L

2 
 ;t) = 

9n 
at 	

d
(E,L

2
;t)/T

R
(E,L

2
) (2.54) 

which with (2.51a) yields, 

d 41( E ,L 2.,, . 9n 
(2.55a) dt 	'" 	at 

±.2(n+-n-) /TR(E,L2 ); E < 0 

i.e., at every half periods, expanding (+) pairs in bound orbits are converted 

by transport at the apocenter into contracting-pairs, and contracting (-) pairs 

are converted at the pericenter into expanding (+) pairs. For unbounded (E > 

1 0) orbits only the pericenter R 1  is relevant. Since n—

+ 

 ± f- n as R 	. then (2.55a) 

is replaced by 

dt nt(E,L
2
;t) = 9r1 at T2n/T

R
(E,L 2 ); E > 0 	 (2.55b) 

such that transport converts contracting (-) pairs to expanding (+) pairs at the 

pericenter. Hence each set (2.50) or (2.52) of transport equations yields 

quite naturally the radial period under R-equilibrium and therefore contains 

rather instructive information, particularly useful when orbital and 

collisional times are to be compared. 
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2.8 (R,E)-Transport Equations  

Since L 2 in (2.35) varies between 0 and L t 2 = R 2 p 2 for fixed R and E as 

varies within each separate  (+) or (-) region, the use of Leibnitz's rule 22 

for R-differentiation of an integral with variable R-limits yields, 

„

f

2 2 	
R22 

K  P 	
aR • 

1 	/ R 9  n2 v cose) E  dL 
2 

= 1 a
R 
 [R2 f p 

— 2 
0 

n 2  v cose L
2 E  

o 	R 	
R  a 

 

- [n
2 
 v cosel

e=7/2 
D

R (R

2 I.,,2 )1 E  
(2.56) 

With the aid of (2.37) 

A,E,L
2
;t) = n 2 (R,E,L 2 ;t)v cose = n

1 
 (R E e•t)v/(2R

2
P

2
) 

and with the aid of (2.10), the L 2 -integration of (2.43) over the range 

(0 + Lt2 ) therefore yields 

d 	 _ an + 	 2 	 1. 	2 	1 	eV 
dt 	 + 	[ R-  j±Q'EHE 	

v 
2 R (E - V) aR 

n (R 1 	E 
ru" 	2; t)  

for the integrated densities 

L2  L
t 

rrtqt,E;t) = J n 	, E , L 2  ;t dL 2  
0 

(2.57) 

(2.58) 

(2.59) 
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and currents 

L
2 

jt(R,E;t) = v f n 2±{11,E,L 2 ;t)lcoseldL;n±{R,E;t) v<lcosel> 

The equivalent set of equations for 

, 
nsd 
	

= n
+ 
	+ n (ft,E;t) 

(2.60) 

(2.61) 

and the corresponding currents 

js ' d (R,E;t) = j + (R,E;t) + j(ft,E,t) 
	

(2.62) 

which are the total (s) and net(d) rates (per unit (M, dE) at which particles 

with speed v leave or cross a surface with normal Rs  oriented along the fixed 
direction R, is 

d 
 dt 
ns(R E.t) 	

3t 
= ans 

+ 
R
2 9R I. 1-9 r R2 j d(R,E;t)] E  (2.63a) 

and 

Dnd 

	
rR2 isp,E;t1E n d (R,E;t) 	a t 	' 	aR L dt 

(2.63b) 
2 	1  	DV ] n,(R,E,;t) - v 	(E4) aR 

On integration of (2.39) for n l (R,E,R.,t) over the positive (+) region 0 < e < 2, 

and the negative (-), 	< e < n, region of k, the above set (2.58) for 
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nl(R,E;t) = f n i (R,E,;t)d 	 (2.64) 

(+,-) 

jt(R,E;t) = v f n
1 
 (R E 1;t)lcosel 

(+,-) 
(2.65) 

and the set (2.63) for n s ' d  also follow directly, since the -differential 

operator in (2.39) and the k-integral operator in (2.64) simply commute. On 

integrating (2.63) over the full range -V(R) < E < 0. of energies E, and with 

the use of Leibnitz's rule, the macroscopic set (2.22) of equations, for 

s d n  , (R.,)  = 	f 	ns,d 
(,E;t) dE 

-V(R) 

d j s , (R)  = f j  s,d (R,E;t) dE 
-V(R) 

is also reproduced with the averaged speeds determined by 

* 
E 	 m 

n dE n (R 0= 
7

- -t)<v
n
> = f n + (R,E,E)=T;t)v dE + f n - (B,E,E1 = -2-- ;t v 1 , 	I, 	 1 	 * 1 - —V 	 E 

where 

E
* 
= 1/2 R- V(R) aR  

(2.66) 

(2.67) 

(2.68) 

(2.69) 

and 

* 
corresponds to T of (2.11), and is the energy of a bound circular orbit of 

radius R. 
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For pure Coulombic attraction, E * = -e2/2R < 0; for V r\, R -2 , E * is zero; 

and for V = -ae 2 /2R4  then E*  is ae 2 /2R4  > O. 

2.9 E-Transport Equations  

On integrating (2.63) over all accessible R, then the equations satisfied 

by, 

R. 
1 

n
s

'
d
(E;t) = f n

s,d
(R,E;t) dR 

0 
(2.70) 

where R.
1  is either the outermost turning point B determined by 1E1 = 1V(R.1

)1 

for E < 0 or is infinity for E > 0, are 

 
dt n

s
(E;t) = 

?v,s(E;t) 	
(2.71a) 

for n
s
, since the net flux 47 	j

d
R2 	(R,E;t) vanishes at both R.

1 
 and zero and 

an
d  

d d 
dt n (E 	0;t) = 	+ lim [47R

2s
(i,Z, ,E;t)] - 47 f n 1 (R,E,e =i;t)at  R 0  

x[ 

 v a (R2,2 )  l cIR 
 2 ;IR P  E (2.71b) 

d d 	 and 	A 	 Ri 

dt n (E 	0;t) = 	441 	(R,E, e= 	+ f
n 1 

 (R,E, e= 2; t) J at 	
o 	 A 

x  [ V 9 
2 aR (R 2 p 2 ) E  1:1R  

(2.71c) 

for n d  since  the total current j s  vanishes at both 0 and R.  Al so A in 
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 dt 	 9t 
nd(E ,0 . '.0  = 011 

n(E;t) [E-V(A)1A
2
/f pR

2
dR 

0 
(2.73a) 

R(2.71c) is the root of (2.10) for constant E i.e., where - -F (R
2
d
2

) E  vanishes. 

The physical significance of the above terms becomes apparent upon 

examination under thermodynamic equilibrium in R and 0 when (Appendix A) 

rn(,E) 

n(E) 	n(E) 

 

(2.72) 

 

such that (2.71b,c) reduce in this limit to 

exactly, since the total transport can be shown to vanish for ,--equilibrium, 

and to 

dt (r.<0;t) = 911  + n d(E;t)LE-V(A)1A
2/ f p R2 dR 

t at 0 (2.73b) 

  

For Coulombic attraction, A = e
2
/21E1 is the semi-major axis and 

[E-V(A)} 
9 	B 	9 	 e 2 3/2 1/2 	1  

( 	= 	T( El ) (2.73c) = 	271121E  A 2  [ f pR`dR1 - ' 1 ] 

is simply half the time period T for a bound orbit of energy E. For Coulomb 

attraction therefore 

d 
n d (E>0;t) = 	4n -  

dt 	

9, 	
(E;t)/T(E) (2.74a) 

(2.74b) at 
dt 	

d 
nd  (E<0 ;t) - at 

 + 4n (E ;t)/ T(E) 
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which, with (2.71a) yields 

cfit  n—(E>O;t) = et n± + 2C/T(E) 

d + m—(E<O;t) = 	Mt + 2(n+-n - )/T(E)
et 

(2.75) 

i.e., after every half-period (i) expanding (+) pairs in bound orbits (E < 0) 

are naturally converted at the apocenter into contracting (-) pairs which in 

turn (for bound and unbounded orbits) are converted at the pericenter into 

expanding (+) pairs. This result is quite general in that it can also be 

deduced from the corresponding eq. (2.54) for (E,L 2 )-nonequilibrium in terms 

of the averaged radial frequency 

vR(E) = 1/T R (E) = f [n(E,L 2 )/ T(E,L 2 )idL2/n(E) 	 (2.76) 

In this section the basic transport eq. (2.1a) has therefore been 

represented in various forms (2.6), (2.17), (2.20), 2.22), (2.39), (2.47), 

(2.52), and (2.63) appropriate, respectively, to the sets - 	(R,p), 

(R,T), R, (R,E,p), R,E,L 2 ), (E,L 2 ) and (R,E) - of variables all pertinent to 

various ranges of gas densities N. At low i intermediate N, the set (R,E,L 2
) 

is more natural than the set (,T) which in turn becomes more appropriate for 

intermediate 	high N. The transport equation assumes for the set (,,E,L 2
) a 

particularly simple form (2.43a) normally reserved only for configuration 

densities (i.e., phase densities n(,,e) integrated over R). This form is also 

preserved by n s t,E;t) in (2.63a) but not by n d (R,E;t) in (2.63b) due to the 

conversions at the turning points. 

The coupled equations (2.22a) and (2.22b) must in principle be solved to 

yield the net current j d (R) in configuration space. It has already been 

shown ' via the continuity and momentum equations [which are vs  velocity 
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averaged moments (s = 0 and 1, respectively) of Boltzmann's eq. (2.1b)] that 

Jd may be expressed, to a very good approximation, in terms of the total 

density n s  , by 

e(11,t) = 

- D  vn s  (k,,t) - (K/e)(XV)n s (Z;t) 	 (2.76) 

where D = DA + DB 
is the diffusion coefficient and K = K A 

+ KB is the mobility 

for the relative diffusional-drift of A and B in the gas M, in terms of the 

individual coefficients DA,B and mobilities KA,B 
for each individual species A 

or B in the gas. This recognition permitted 1 the overall rate a of the 

process to be analyzed
1 
 in terms of rates, a RN  and a TR , for reaction and trans-

port rates, respectively, which provided great insight to the overall variation 

of a with gas density. It also helps to establish ( §5.3) the microscopic 

foundation of the Debye-Smoluchowski Equation. 
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3. Full Transport-Collisional Equations  

The collisional rate (2.1b) in the basic equation (2.1) for the 

development of the two-particle correlation function n(R,,e;t) for (A-B) pairs 

has been transformed to the (R,E,L 2
)-representation in Appendix B. With the 

aid of (2.47a) the full Transport-Collisional Master Equation is then 

dt "i (R,Ei4;t) 
an i 	1 	a 	2 + 

CR n:(R,E.,L;t)vIcose14 . 2 
at — 

R
2 9R 

L
2 
tf 
$ 	2 = f dE

f 
 ) dL

f  En -+ 
 
(1,;t)v.if  (R) - n ( 1,!;t)v fi  (R )] 

-Vi (R) 2 
=0 Lf  

(3.1) 

where the i-index specifies the combined internal energy E i  and internal 

angularfnillentinsquareCIL.2  Of the AB pair and where the direction cosine is 

Ico sel = 	= (1 - L 2 /L i ) 1 / 2  

in terms of the maximum internal angular momentum squared 

L
2

. 	L2 (E. R) = 2m[E i  - V(R)]R
2 

 ti  

consistent with a fixed internal energy E i  and separation R. Also 

V i (R) = V(R) + L i 2/2mR2  

(3.2) 

(3.3) 

(3.4) 

is the effective radial interaction so that -V i (R) in (3.1) is the energy of the 

lowest vibrational level of AB consistent with separation R. The collision 

kernel v if (,E i ,L i ;E f ,L f )dE fdL f
2 

is the frequency (s -1 
 ) for the transitions 
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(R,E.,L.
2

) 	(R,Ef, 
 
+dEf' 

 Lf  2
+dLf 

2
) in the AB pair by collision with the gas 

species M, under the assumption that ),R,  remains fixed during the encounter 

between (A-B) and M, an excellent approximation 9  for ion-ion recombination. 

The superscripts (+) indicate, as before, pairs which are radially-expanding 

(+), cose > 0, or radially-contracting (-), cose < 0, under the provision 

(2.11) that n i (R,E i 41  ;t) 	is n i - (2) when E > E *  (region I) where 

E
* 

= V + 1/2 R(aV/eR) 
	

(3.5) 

and is n i
+ 
 (T) when E < E (region II). Since a closed system is assumed, the 

irreversible loss term n i ) in (2.1b) can therefore be neglected in (3.1). 

3.1 	(R,E,L 2 )-Equations.  

Introduce the distribution 

d  ti 
y.
s, 
 (R;t) = n.

s,d
1  1 

(R,E.,L.
2 
 ;t)/n (R,E.,L.

2
) ,A,  (3.6a) 

ti 
normalized to 'the conditional probability density n i  for thermodynamic 

equilibrium (see Appendix A) so that 

' n11.- (R,E i ,L 2 ;t) = 	(Ysi 	Y1) nA,E i ,L 2 ) 	 (3.6b) 

The distribution y i  is then independent of whatever variable R,E i  or L i  is 

associated with equilibrium. With the aid of the appropriate set (2.47b,c) of 

transport equations, the Master Equation (3.1) therefore yields the set 
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an. 	1 	,1 
[R2 	A  

11 	 = 	 T-.1 (R;t)] 	2 
dt 	 at 	R2 aR 	 E.,L. 

L2  L
tf 

 = f dE f  j dL f lysf (R;t) - yl(R;t)] C if(R,E i ,L1;E f 4) (3.7a) 

and 
-vi (R) 	o 

and d 	d 	2 	at ' 	1 	a [,,2 A 
n (R,E i i  ,L ;t) 	 IQ'tl2 dt i 

R aR 	i 	EL  

L
2 
tf 

= f dE f  f dL f  [4(11;t) - 4(R;t)] C if(R,E i ,L1;E f 4) (3.7b) 
vi  

where i E (E.,,L i 2 ). 	Also, 

ns,d( R,E1.0_ 2 ;t) = En
+
(R,E.,L 2 ;t) + n7(R,E.,L 2

;t)] = 1s,d n.
1
(R,E.

1
,L.2  ) 	(3.8) —  

and 

  

 

2 	s,d 	2 	 s d 	 2 
J 	(R,E.,L;t) = n(R,E.,L;t) vIcosel = y.' 

i 	1 	 1 	I, 	1 	 1 	 1 	1 
(3.9) 

are the densities and corresponding currents for fixed (R,E.,L
2 ). The 

equilibrium rate for i(E i ,L i
2 ) 	f(E f ,Lf 2 ) collisional transitions at fixed 

internal separation R is 

c 	1 2. c 	1 2 ) 	) 	 1 2 c  
v if (R) = el f (R) vfi (R) = 	

c 
 

(3.10) 

and satisfies detailed balance. Dependence on the density N of the thermal 

gas M occurs both via the (transport) coupling between n. and n
i 

in (3.7) and the lin 

dependence on N of the collision frequency (per unit dR dE. dL.
2

) ' 
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v if  = N k if (1 , ,E i ,L i 2 ;E f ,Lf 2 ) 	 (3.11) 

where k if  is the (cm
3 

s
-1

) rate for i 	f transitions by collision between one 

pair (A-B) with separation R and one gas atom M (see Appendix B). 
ti 

3.2 (k,E)-Equations.  

With the aid of the appropriate set of transport Eqns. (2.63a,b), integration of 

(3.7) over all accessible L i t  yields the set, 

+ 1 D [ R2 4d (R . + 1 n 1--=1 	R,. 	— dt 	(E ;t) = 	
) 	I dE [vs (R - t)-ys (R.t)] C (R)(3.12a) Dt 	

R
2 DR 	J '0 ,1, °' E. , 	f 	.f 	 if 

-v(R) 

a nq 
d 	d 	 1 a [ in r  .\ 

= 	
R 
 j
2 .s f p • , \ n 	 •kRLii 	 R,. 	11-t)V[

2 	1 	aV 
dt i 	 at 	R2 aR 	 E 

- n. 	1 (E 	
2' 	R 	(E-V) DR 

Dn. 

= f dE f  [4(13;t) - 10;t)] C if(R) 
-v(R) 

invariablesRaricl. E l  for the integrated densities, 

2 
L
d 

' 
n'

d
(R,E1.-t) = f n s ' d (R E. L. 2. t)dL

i  2 
 

0 

and the integrated currents, 

2 
L
ti 

j
s,d

(t,E i; t) = V f 2
;t)lcoseldL. 2 

 0 	-'- 

(3.12b) 

(3.13) 

(3.14) 

= v f nsi' d (R,E i ,Li ; t) Icose kik E v ns ' d (,E i ;t)<cose> 

Note in (3.12b) that n 1  is the angular density per unit dRdE i  d(cose), as in 

(2.36), evaluated at e = 2 i.e., at the turning points where 	= L 2ti • 
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The collisional frequency v
if

(R) for (E.,R) i  (E R) transitions ,1J 

integrated over all angular-momentum changes (L i
2
,L f

2
) consistent with fixed 

E. and E
f 

is given by 

	

L
2 	

L
2
c 

nA,Ei ;t) v if (R) = f
ti 

 dL i
2 

n i (R,E i ,L i 2 ;t) 	dLf2  v if (,E i ,L i 2 ,E f ,Lf 2 ) 	(3.15) 

	

0 	 0 

with corresponding equilibrium collisional rates 

2 
L
ti
2 	

L
tf 

C. (R) = f dL.
2 f dL 
	
Cif 
	. L.

2
E. L 

2
) 

if 	
f2 C 

	

if 	
E 	

' t' f 
0 	0 

(3.16) 

in (3.12). Expressions for the averaged rates (3.16) for various interactions between 

AB and M can be formulated directly from collision theory (refs. 6-12 and Appendix B). 

The normalized distribution in (3.12) is 

Y
s

'
d 	

= 	E. - t)/6.(R E.) ' 	 ' 

L
2

. 

= 	j ys '
d 
 (R,E. L. 2 ;t) Ti.(R

' 
 E. L. 2 )dL. 2 jin.(R E.) 
	

(3.17) 
0 

	

and becomes independent of E i  or 	when when equilibrium is attained in E i  or R, 

respectively. 

3.3 R-Equations.  

On integrating (3.12) over the full range -V(R) < E i  < co of E i , then, on 

applying Leibnitz's rule, and on recognition of the null effect of collisions, 
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the following set 

d s 
dt n (R;t) - 

9r1 	1 	a 	 1 
at + 
	

[ 

R
2 aR 	R

2 d 
(RI = 0 (3.18a) 

d d 	a 2 <I/ 1 >  aV 
dt n 	at (R•t) = an + 

R2 aR 
1 a 	[R2 os (R) ] = n(R,Lr;t) <v>  

R 	m <V> 	ad] (3.18b) 1' 2  

is obtained for the macroscopic densities (2.66) and currents 

(2.67). The quantities n 1  <v n > are determined by (2.68). When 

thermodynamic equilibrium exists in all variables except R, then J
d 

is E— l 

independent and is given by (2.29) so that (3.7a) upon E i -integration yields 

(3.18a) directly. 

3.4 (E,L 2
)-Equation  

The appropriate set of transport-collisional equations is, with the use 

of (2.52), 

	

s 	L2 

	

an 	03 	mf d s 	2 	 9 

	

1 	f 	f 	(If 	yl) C. 	., 2  

	

a n(E i ,L;t) = at 	 - 	if(EL i 	;E f L) ' f 
-DdE f 	( 
 o 

(3.19a) 

where i specifies (E i ,L.1), and 

an. 

dt i 

	

n d (E. L 2, t)  = 
a t' 
	47 

 (v 2 2 
42) 

 1  + 
	

' E i' 	2 
0. . , t)  11

'  

- (v 1/p 21 ) n(R i ,Ev e= 2;t)1 

L2 , 

	

c° 	m1 	D 	D 	2 	2 = f dEf  f dL f  (I f  - y i ) C if (E i ,L i ;E f ,L f ) 

	

-D 	o 
(3.19b) 
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where the equilibrium rate for i 	f transitions, 

R; 

	

C if 	f C. (R E. L. 	L
2 )dR 

	

if 	if 	i' 	' f' f 

1 

(3.20) 

is determined by ,R,-integration of (3.10) between the limits RI = 

min[yE i ,14), R i (E f ,q)] and R2 = min [R 2 (E i ,14), R 2 (E f ,q)]. The lowest 

bound vibrational energy of the AB pair is -D and Lm f  is the square of the 

maximum angular momentum (2m1E f lA
2
)for Ef  < 0 or infinity for E f  > 0 for a 

given energy E f . 

3.5 E-Equations.  

On integrating (3.12) over all accessible 	consistent with (E i ,E f ), and 

on adopting the appropriate transport equation (2.71), the densities 

R. 

n
s,d

(E ;t) = f n s ' d (R E..t)dR i 
0 

per unit dE i  then satisfy 

an 
 

dt n i (E i 	= at = 	dE f 1-(f(t)  - y(t)] C if (E i ,E f ) 
-D 

(2.70) 

(3.21a) 

where -D is the energy of the lowest bound level of AB, and either 

an. 
n di  (E i >0;t) = 	+ lim[47R 2 	;t)] -4Tr f 	e = 

P2 
	2 

(R p
2  ) E.) dR 

P a  

CO 

(3.21b) 
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p 

V 	9 (10 2 
2 DR '" P 

2\ 
 1E dR (3.21c) 

for E > 0, or 

	

d 	A 
d d 	 9n. 	 B 

	

dt 
n

i 
(E i <0;t) = 

at 	
4n[ f n(R,E, =i;t) + f n -r (R,E, e=i;t) 

0 	 A 

for E < 0, set equal to the collisional rate 

 
dt 	

pm 	d 
n i
d 	

j (E i ;t) = 	dEf[yf (t) - d(t)7  C if (E i ,E f ) 	. 
-D 

(3.21d) 

The index i specifies only the energy E i . The equilibrium rate C if  in 

(3.19) for E. E f collisional transitions at all accessible R and angular 

momenta L
2 

satisfies detailed balance and, in terms of (3.16), is 

Rif 
C. f = f C

if  (R )dR = C l 	 fi 
0 

(3.22) 

where Rif  is the minimum of the outermost turning points R i  and R f  associated 

with E i  and Ef , respectively. The normalized distributions in (3.21a,b) are 

R. 	 R. 
ti 1 

y i  (t) = n i  (E i  ;t)/n i  (E i  ) = f n i  (R,E i  ;t)dFt/ f n i  (R,E i  )d,12,  
0 	 0 

R. 	 R. 
1 ,A

(RE)dR 
, 

= 	f
1 	

E.)d y,(R,E.;t) n.(R,R/ 	f n.,. J 	1 '1, 	1 	i ,I, 	1 	,I, 	i 	i 	A, 
0 	 0 

(3.23) 

in terms of (3.17),and become independent of E i  for E i -equilibrium in n i . The 

collision rate (3.15) integrated over R is 
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R
if 

n i (E i ;t) vif  = f n i (R,E i ;t) v if (R)dR 	 (3.24) 

which reduces to (3.22) for C if  under full equilibrium. 

In contrast to the above derived transport-collision equations, (3.7) in 

(R,E„L2 ), (3.12) in (R,E.) and (3.18) in R, eq. (3.21a) for n s  appears 
 1 	 % 

uncoupled from (3.190. It however remains complex in principle since the 

collisional rates (3.24) and (3.15) are determined by the solutions n.s ' d (R,E i ,L 2 ;t) 

to the original set (3.7). The above sets are equations satisfied by the 

integrated quantities n i (R;E i ;t), n(R;t) and n i (E0t) have all been derived 
ti 

from the basic set of Master Equations (3.7) for non-equilibrium in R, E and 

L2 . Assumption of equilibrium in at least one of the variables L 2 , E. and i 

provides the following simplification via reduction in the dimensionality of 

the solutions. 
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4. Various Equilibrium Limits  

4.1 L 2-equilibrium; (R,E)-nonequilibrium  

When thermodynamic equilibrium among the angular momentum levels is 

established in n
i
+ 

and n 	independently much more rapidly than equilibrium 

associated with the remaining variables, E i  and R, then (Appendix A) 

nI(R,E i ,1!;t) 
1 	1 	1 	[ 	2 2 	-1 - 2R p loosed 

	

1 	- 

	

n(R,E i ;t) 	n'f(R,E i ) 

2 
and hence the normalized distributions y i ,d 

 (,E i ,L i
2
;t) are independent of L i . 

The current (3.9), reduces to 

.s,d 
j i 	()v,E.,L.

2 ;t) = 1/2 v.n s.' d  (R,E.;t)/R 2p 2  (4.2) 

and is independent of L.
2 
 so that the L ?-integrated current (3.14) is 

1 	 1 

ti , .sd 
j i 	(R,E i ;t) = 1/2 v i n i

s,d 	
= 1/2 Y

s
i'

d  j i 	 (4.3) 

s,d 
where Yi 	are the normalized distributions (3.17). 

The equilibrium total current (Appendix A) and its gradient are 

and 

exp(-E i /k0) 	r  
j i (R) = 	

' = 
	3/2 	prm[E i -V(R)]1 

 [27rmkel 
(4.4a) 

1 a n ) 	[2   1 	DV (o 	 ] 
R
2 DR '" J i 1  = R 	(E-V) DR J i (4.4b) 

(4.1) 
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a relation which is intimately connected with (2.10), since R j i 
for constant E varies 

as Lax 
2 	= R

2
p
2 . The derivative vanishes at R = A, the radius of the sphere which 

intersects the maximum number of bound (E,L
2 ) orbits possible at a given 

energy E < 0. 

For L 2-equilibrium (4.1), the directional density (2.37), 

n i (,E i ,e;t) = 2R
2
p
2 

cose, n i (R,E i ,L i
2
;t) 	= n(R,E i ;t) 
	

(4.5) 

per unit dft dE d(cose) is therefore independent of O. The (,I_,E i )-set of Master 

Equations (3.12) reduce,with the aid of (4.3) - (4.5) for L 2-equilibrium,to 

d 	s 	 'nis I- 
	 ti 

1 	[1 R2 d n i  (1, , ,E0t) = 

f dE f  [yf (R;t) - yi
s
(R;t) C if (R) 

s 

-V(R) 
(4.6a) 

and to 

d 	d 	
an. 	

1 a 	1 2 (  s; di 	1 	; ( 1 R2 ti cff 	;t) = — + — — — R y.(R-t)j.(R) 
Bt 	R2 DR 2 	 E. 	Y i Y i ) 

 R
2 BR cf 	Ji ) E. 

= 	f dEf 	f  [yd (R.t) - y i (R.,t)] C
if

(R) 
-V(R) 

(4.6b) 

where i now specifies E. alone. 

The upper (-) and lower (+) signs in the third term of (4.6b) 

respectively apply to region I (E 	0, all R; E i  < 0, 0 < R s A) or to region 

II (E< 0, A s B s B). It is important to note that the four equations obtained by 
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Bates and Mendas
23 
 from conservation considerations in the interval dEdR and 

from detailed balance arguments can be rewritten compactly in the form (4.6) 

with the explicit time dependences an,i ' d/at ignored for all E i  and R. 

Since (Eq. (2.3)), 
.d a 1 [ a ( R2 4 5 ) ] 	. 1 a (R241 	- v  aV 	J i 

R2 aR 	E i 	R2 aR 	'i ) p. 	aR 	R api   

it is now apparent that consideration 23  of the variation with R of the flux 

appropriate to constant E i  is equivalent to consideration of both streaming terms 

which separately give rise to diffusion and drift, respectively, in contrast to 

that earlier thought (ref. 1, p 449). 

For Coulombic attraction, V(R) = -e
2
/R, for example, the set (4.6) yields 

the coupled set, 

(2 E i -V) d „s ip , 4\ 	an l 	1 r aY i 
ci.tirik,,,L.0( a .t +y[ aR + R ( E.4 ) yi 

CO 

= f dEf  NI(R;t) - y(R;t)] 

	

-v(R) 	 11 

where i denotes E
i' 

and 

d 	d 	
and 	1  [ay i 	12E i - V1 	di n, 

 dt n.(R,E.;t) - — 
at 	aR 	R(E.-V) Yi J i 

00 

= f dE f  fyl(R;t) --y cii (R;td C
if

(R) 

	

-v(R) 	L 

(4.7a) 

(4.7h) 

which can be solved by numerical techniques. 

Since -equilibrium is established at low gas densities N where 

relaxation in internal energy E is the rate limiting step, the set (4.6) for 

non-equilibrium R and E is naturally more appropriate for low to intermediate 

N. In the limit of high N, (Maxwell) equilibrium in scalar momentum p, [or 

kinetic energy T E E i  - V(R)]is established, and relaxation in the separation 

R is the rate limiting step. Hence, a more natural set of variables for 

intermediate-high N is (R,T) and the associated transport equation is provided by 

(2.20). For L
2
-equilibrium, the appropriate set satisfied by 
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ys,d(R,T.;.t) 	,Ti;t0i(R,Ti) 

is therefore 

	

9n1 4. 1  [( 3 ) 	( 31 9  a 	 . 	i l R2yq(R,T;t) 3 d 	 (R T.) 
R 	

) s 
dt n

t 
'
T 

i kI i 	
= 91- 	2 	DR 	- 	DT. 	ti 

	

R 	T. 

= f dTf  Nsf(R;t) - yl(R;t)] C if (T i ,T f ) 
0 

(4.8) 

(4.9a) 

where the equilibrium rate C if  is simply a function only of T i  and T f  but not of R 

(see Appendix B), and 

dd 	 and 1 + 1 [(
a 

 D ) 	(91 9 	1 2 S 	ti af  n i ( R,T i ; t) = at 	2 	. 	a 91-.) 1 
9  R y i (R,T i ;t)j i (R,T i ) 

	

R 	
T i  

	

i R 	' i  

1 ( S 7 	 ; d )  1 	0 2^ 
- 	( R 'Ti ) 2 "i ' Y i l 	2 9R"" J i';1'.,''i)T. 

R 	l 	 i 

= f dT f  pf (it;t) - i (A:!;t)] c if (T i ,T f ) 
0 

(4.9b) 

ti 
where j i (tR,T i ) is given by (4.4a) with T i  = E i  - V(R). Thus, the complexity' 

is shifted from solution of Volterra-type
22 integro-differential equations 

(4.6) with the first order differential taken with respect to one variable, R 

and with the R-dependent function V(R) as an integration limit, to solution of 

integro-partial differential equations (4.9) with first-order differentials 

now taken with respect to two variables (R,T i ) but with fixed (0,00) integration limits 

In the limit of high gas density N, the distribution in kinetic energy T 
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is Maxwellian (2.27), ys.' d (R;t) are independent of T i  and the collision sides 

of (4.9) vanish. On integration over T i , (4.9) then reduces to the coupled 

set (2.22a) and (2.33) with j(R) is given by (2.29). 

4.2 (L 2 ,ft)-equilibrium; E-nonequilibrium  

If, in addition to L 2
-equilibrium, equilibrium in R is established for 

thetotaldensity0(but not for the net density n.
d
) so that relaxation in 

E is the rate limiting step, as at low gas densities N, then 

nA,E i ;t) 	n i (R,E i ) 
	  _ 	 (4.10) 
n
i

(E
i
;t) 

andy.(butnot Yid) is therefore independent of R. The set (4.6) reduces in this 

limit to, 

d  ns.(R,E.;t) = 	 [ 	
02 

Y 
d (R - t)j 	= I dEf Eyf S( t ) _ yis (t)]Cif(R) dt 	 at 	R2 DR 
	2 " 	i 	i 

-v(R) 

(4.11a) 

and to, 

	

d 	d 
d 	d 	 Dn. 	yi(R;t) 	1 21? ni(R,Ei;t) -and + 	

R 
2 	:k 	R  Ji3 =

-V(R) 
f dEf  [y f 	 f  d (;t) - y i d (;t)]C i (R) 

(4.11b) 

where (+) and (-) apply to regions I and II, respectively. Since y i d (R -3- co,t) 

ti 
for E i  > 0, and j i  at the turning point R i  = B for bound levels (E i  < 0) both 

an. 00 

00 
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vanish, then integration of (4.11) over all accessible R yields, in terms of 

the integrated equilibrium collisional rate (3.20), 

an. 
d s 
dt 	 -D 

n i (E i ;t) = 	- f dE f  [y'f(t) - ys 	if
.(t)] C. (E.,E f  ) (4.12a) 

for the total probability density which is decoupled both formally and in 

practice from its companion, 

	

d 	R. 
n d( 	;t) - 	f 

 j (R) 
dt i 

 

and 

	

at 	2 	i 
1 	, 	ri  dR 

0 

R. 
1 

= f dE f  f dR [ydf (R-,t) - yl(R;t)] C if (E i ,E f ,R) 
-D 	o 

(4.12b) 

for the net balance of expanding contracting pairs. 

This set (4.12) corresponds to the case of equilibrium for n i s  in 

(,L i 2 ), via (4.1) and (4.10),for n i d  in L i 2  alone via (4.1), and of 

non-equilibrium for both n s ' d  in E. alone. This case is, in general, 

appropriate to ion-ion recombination at low gas densities N. It is not, 

however, appropriate to ion-atom or atom-neutral association since here, in 

contrast to Coulombic attraction in ion-ion recombination, the A-B interaction 

via the angular momentum barrier can support bound states with positive 

energies and angular momentum transitions are important.
12 

When -equilibrium 

i sassumedfor 4,th erl y D  . in (4.12b) is zero. 

Rates for association/dissociation can be determined directly 0 5) from 

(4.12a) without recourse to (4.12b) which furnishes via (4.11b) the net 

densities 	
' 

n.
D
(R,E..t) and associated net currents (4.3). The above collisional input 

 

output Master Equation, (4.12a), has been the governing basis of many studies 

of ion-ion recombination
6-11 and atom-atom association

13,14 
at low gas 
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densities, and was there deduced from simple arguments based on the net rate 

of growth of pairs in energy level E i . The complementary Eq. (4.12b) or its 

basis (4.10b) is new and serves to complete the picture of recombination at low 

gas densities. 

4.3 	,-equilibrium; (E,L
2
)-nonequilibrium 

Even in the limit of low gas densities N, L
2
-equilibrium is in general 

not obtained except for the specific cases of interactions (as Coulombic) 

which cannot support an angular momentum barrier at positive energies. For 

ion-neutral 12  and atom-neutral association, it is essential 12  to acknowledge 

departure from L
2
-equilibrium. Low N implies ,-equilibrium in n is, i.e., 

,x,  
n
s
(R'i' 

E 	L
2
.t) 	.(R,E.,L.) 

   n   
- [211- vR2 lcoselT

R 
_ 

n
s.
(E.,L.;t) 	n.1 	1(E.,L 2 ) 1    

1 - 1 (4.13) 

where TR  (E i ,L i
2
) is the time (see Appendix B) to complete one radial round 

trip between the turning points R 1  and R2 . Both the flux, which then reduces to 

R 2  j,
1
s(R,E.

1
,[...

1
2;.0 = [ri.

1
s (E,L.

1
2 ;t)/27r T R ( (4.14) 

1 
and 

Y 	 '1-,  .
s  are then all independent of R. The (R,E

1 	1
. 	L.

2  
)-set (3.7) reduces to, 

d 
n i
s  
(R,E i ,L1;t) - dt 

5 
1 a 	 Rei 	2  

at 	R2 	
[R2 A t . 

E.,L. 

L2  
2 	\ 

= 	fwdE f 	[y f(t) - y i (t)] Cif (R,E i ,L i ;E f ,L f ) 
-V.(R) o 1 

where index i denotes (EL i
2

) ' and to 

(4.15a) 
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d 
dt ni ( T\', , Ei'L 20t )  = 

2 
an. 

at 	

L
tf 

f dEf fdL f [Yk,t) - yN,t)] 
-v.(R) 0 

i 

2 
Cif (R,E. L.;E

f'  L f 
 ) 

which is fully decoupled from (4.14a). 

The I\t-integration densities, 

R
2 

'' n s'd(E. ' L. 2.' t) = f n
s
.'

d
(R '  E. L. 2. t)dR 

i  
R1  

(4.15b) 

(4.16) 

therefore satisfy the set 

S R 	 L
2 

	

an. 	2 	0. 	tf 

dt ' 
a 

	

n s  (E. ,L i.;t) = 
@t1 
	f d1,3 f dE

f 
 f dLf 

i 
 ry f (t) - y

1if 
(t)] 	C 	(R) 

i  
R

1 
 -V.(R) o 

(4.17a) 

since the current d  j i  vanishes at the end points, and 

d R 
d.(E.,.0 - 	

- 
an 	

r
2 	

r
t f 

n 	 2 	d 	, 	, 
dt 	

L2
'" 	9t 	

j 	j dEf  j dLf [ yA*,t)-Y
d
.AZ;t) C if (R) (4.17b) 

R
1 
 -11.(R) 0 
 1 

which are now fully decoupled from one another. 

The integrations in (4.17a) may then be re- arranged to yield 

L
2 

co 
R 

mf 9  	 2 
d s 	2 

 d
n.(E. ,L. ;t)= 

-D 
 f dE

f 
 5 dL

f 
	(t) - y 	

if 
si (t)] 5 C (R)dR 

f 
0 

1 

(4.18) 

= where R 2  ' 	min ER 2 
 (E.,L.

2' 	 1 
) 	R2 (Ef'  L

2
)] > R' = min[R (E.,L.

2 
 ) 	R2 (E

fr 
 ,L,

2  
)], where -   

2 
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N L
mf is the square of the maximum angular momentum, (2m IEf I A2 )for bound states 

or infinity for dissociated states],for fixed E f  and where -D is the energy of 

the lowest bound vibrational level of the AB pair. 

Rates for association/dissociation can be obtained (§ 5) directly from 

(4.17a) without recourse in principle or in practice to its decoupled 

companion (4.17b), which yield the net  densities n i d (R,E i ,L i 2 ;t) and 

associated currents j i  

In summary, coupled sets of Master Equations, (4.6), (4.9), (4.12), and 

(4.17) appropriate to non-equilibrium only in (R,E i ), (,T i ), E i , and (E i 4) 

sets of variables have been systematically deduced from the basic set of 

Master Equations (3.7) for general 	L?)-non equilibrium. Even for the 

most reduced case (4.12) of non-equilibrium in E i  alone, the subject of many 

previous treatments
6-14

, the present procedure has uncovered an additional equation 

(4.12b) valuable for providing the full description of the recombination 

process at low gas densities. 
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5. Rates and the Macroscopic Transport-Collisional R-Equation  

5.1 Various Energy Blocks  

The full transport-collisional equation (3.12a) for the density 

n.
s
(R,E.;t) of (3.13) in terms of the net current j. d  of (3.14) is 

an. 

at 	R
2 aR [R2 j i d (R)] .  = 	f S ;f (R,t)dE f  

d "i 
d 	s(R,Eot) = 
	
+ 1 a rD 2 

"1 	-V(R) 

CO 

(5.1) 

where 

S if (R,t) = n i s (R,E0t) v i  (R) - n
f  s

(R,E
f 
 .t) v

fi 	i
(R) = -S,,(R,t) 	(5.2) 

,  

is the net two level collisional rate of depletion of energy level E i  or net 

rate of production of E f . The minimum energy level consistent with fixed R is 

-V(R) which always lies 	above -D, the lowest energy level. 

Subdivide the full region of internal energy E i  into three blocks: the 

continuum block C with 0 < E i 	an excited block E with -S < E i  < 0 and the 

block S of lowest excited levels in the range -D < E i  < -S. The block S in 

principle comprises all those levels between the lowest vibrational level -D 

0,5 eV 2 200 k (300/8) at both temperature 8 and an intermediate level -S 

defined as that level below which the net probability of direct dissociation by 

collision with the thermal bath is negligible. In practice, level -S arises 

naturally from the collisional mechanics via the cut-off effect of the Maxwellian 

distribution of the gas at temperature 0 and generally lies % 10 ke below the 

dissociation limit (taken as zero energy). The central block E of highly excited 

bound levels is sandwiched (Fig. 1) between the continuum C - the fully 

dissociated block - and the fully associated block S and has no internal 

sources or sinks but is coupled by collision to both C and S. Each of C and S 

may be considered as a source/sink combination interconnected by E when 
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association is the dominant process, or as a sink/source combination when 

dissociation is dominant. Dissociation can therefore occur via stepwise 

collisional excitation through intermediate block E, as well as directly. 

The macroscopic pair distributions 

co 
n

C '10 
 (R
9 
t) = f n. s (R E..t)dE. 

a 	ti 
(5.3a) 

in block C, 

CO 

n e (1,t) = f n i s (R,E0t)dE i 	 (5.3b) 
0 

in block E, and 

-S 
n
s 
 (R,t) = 	n. - (R,E.;t)dE.  q, 

-V R) 	ti 
(5.3c) 

over those levels in the energy range -V(R) < E i  < -S of block S accessible by 

collision at R, therefore satisfy 

	

at n c (F,t,t) + Nc  = - f dE i  f S if (R,t)dE f 	, all R 	(5.4a) 
-V 

0 a H e  , n(1,t) + z.q,e  = - f dE. f S. (R t)dE 	R < R 	(5.4b) 

	

-S 	1 -V 	if 	f 	 s 

	

-s 	
.3 

+ Z- )ls  = - 
-V 	
f

1 
dE. 

-V 	
f

l 

	

S.
f 
 (R,t)dE f 	, R < R s 	(5.4c) 

where R
s is the classical turning point associated with level -S. The 

corresponding contributions from blocks C, E and S to the net radial current 

53 



a n(,t) + Ne  = - f dE. f S. f (R)dE f 	R > R at e 
i_ v 	 ' 	— s 

0 	co 

(5.7) 

Sd (ROY) = .1V 1 
	

= J
c 
 (R,t) + J

e
(R,t) + J

s
(R,t) 
	

(5.5) 

are J c , J e  and J s , respectively. Since S if  = -S fi  the upper limit to the 

integration over E f  in (5.4a) is, in effect 0 while the lower Ef-limit 

-V is, in effect, -S for (5.4c). 

Since the net effect of collisions is null for this closed system, 

summation of 5.35(a)-(c) yields the continuity equation, 

 at [n c 
 (R,t) + n

e 
 (R,t) + n

s 
 (R,t)] + 7-J

d = 0 
	

(5.6) 

which agrees with (3.18a). For R s' 
block S does not exist and 

holds instead of (5.4b,c). The lower E f-limit-V in (5.7) is 0, in effect. 

Since j. d  vanishes at infinity (for E. > 0) and at the classical turning point 

R. (for E. < 0), integration of (5.1) over all accessible R-space yields 

R. 	
Rif 

) = - f dR 
-V  f 
 S

if 
 (R,t)dE f  = -- D f dE f  f Sif(R,t)dR  E - 

-0 
 f Sif(t)dEf (5.8) 

0 ("   

for the rate of change of density per unit energy interval. Within (5.8), the 

formal order of (R,E f )-integrations has been interchanged, R if  = min(R i ,R f ) and 

Rif  

S if (t) = f S if (R,t)dR = -S fi (t) 
0 

(5.9) 

is the net frequency (per unit dE i dE f ) of collisional transitions (i 	f) 

between E. and E f. Hence, the rate of change in the configuration density 
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n
c (t) = f n (R,t)dR = f dR f n. s (R,E.;t)dE. = f n.(E,t)dE. 	(5.10) 

0 	 0 	0 	 0 

of free pairs is exactly, 

w 	0 	 co 	0 a 
at n c (t) = - f dE i  f cl„ft f S if (R,t)dE f  = - f dE • f S if (t)dE f 

	

0 	0 	-V 	 o 	-D 

	

o 	0. 
= f dE i  f S if (t)dE f  
-D 	0 

(5.11) 

which can also be obtained by R-integration of (5.4a). The corresponding rate 

of change in the density 

R
s 	

-S 
-S 

	

n s (t) = f n s (R,t)dR = f
s 	

f n,'(R,E,;t)dEi 	= f ni (E i ,t)d E i 	( 5.12)ti 	
" o 	' -D 

of pairs bound in block S is exactly 

R. 

	

-$ 
	1 	 -S a n s  (t) = - f dE, 5 dR f

w 
 S. (R,t)dE = - f dE i  f f 	f  si (t)dE = f dE i f -$ 

f 	f 
S

i
(t)dE at 	

-D 	1  o 	—V 	
if 
	 f 	-D 	-S 	 -S 	-D 

(5.13) 

which also follows from R-integration of (5.4c). 

Integration of (5.1) over R from 0 to R s  yields, 

R
s 	 R

s 

at 
 

I ni 	
2 	d s

(R,t)dlt + 47TR 	j. (R ,t) = - f dR I  S. (R t)dE 

	

s 	s 	If 	f 
0 	 0 	—V 

(5. 14) 

which expresses continuity for each level E i  within the reaction sphere of radius 

R s . Hence with the aid of (5.13), 

s 	 ' c° 	S 

f dE, f n,s(ft.,,t)d + 4ffRs` 
-S
f • - Rs' 	_s  t)dE.=-f dE. f dR 4f S.,(k,,t)dE f  (5.15a) at-  	 J 

id 
 ( 	 0  
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-s 
= - I dE i J S if (t)dE f -S 	-D 

= - an s (t)/3t 

Eq. (5.15b) simply states that the flux entering the sphere equals the sum of 

the collisional rate of production of S-pairs and the rate of increase of the 

contribution from the reaction volume to the density of C and E pairs. Eq. 

(5.15c) also follows from (5.6) without the intermediate collisional step. 

Integration of (5.1) over R from R s  to R i , the classical turning point (for E i  

< 0) or infinity (for E.1 
 > 0) yields 

R. R. 
a 	r 1 

n i s (R,t)dR 	s  i 	 s  - 4uR
2 

j
d
(,t) = - 5 dR f S.4,t)dE e Ri>R s  (5.16) 

	

R
s 

	-v 
 11 R

s 

the continuity equation for each level E i  external to the reaction zone. 

Hence, 

R. 
1  

1 f dE. f n.
,
'(R,t)dR - L1TR 2  f j. d (R ,t)dE• = 0 	(5.17) 

L-S a 	i
R 	

% 	 s _ s 	rbs 

s 

due to the null effect of collisions. Addition of (5.15c) and (5.17) simply 

yields the conservation equation 

a 
In

c
(t) + n

e
(t) + n

s
(t)] = 0 

for the sum of the densities (5.10) and (5.12) in blocks C and S and of 

R. 
1 

ne (t) = f n(E ; ,t)dE i  = f dE i  J n i (R,E i ;t)dR 
-S 	 -S 	o 

the density of pairs in block E, as expected for this closed system. 

(5.18) 

(5.19) 
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5.2 Association and Dissociation Rates  

From (5.11), the net rate of depletion of C-pairs (into all bound levels 

in E and S) is therefore 

0, 	0 

	

Rc (t) = - f 	dE i  = f dE i  f S if (t)dE f  = f dE i  f S if (t)dE f  

	

0 	 o 	-D 	 o 	D 
(5.20) 

which is the net downward current across the dissociation neck at zero energy 

and which, with the aid of (5.9), equals the net rate of production 

0( 

at 

3n. 	 0 	0. 
f 	d E i  . = - f 	dE i f S ifdE f - 	 -D 	-D 

(5.21) 

of E and S-pairs, as expected for this closed system. The net rate (5.13) of 

production of S-pairs alone is 

-s 

i3t1 

 an. 	-s 	 -s 

	

R s (t) = f 	--11dE. 	- f dE i  f S if (t)dE f  =- f dE i - f Sif (t)dEf  

	

-D 	 -D 	-D 	 -S 	-D 
(5.22) 

so that, with the aid of (5.18), 

o 3n 4  
R c (t) = R s (t) + f ( 74d dE i  

-S 

	

0 	 co 

= Rs (t) - f dE i  f Sif (t)dE f  

	

-S 	-D 

(5.23a) 

(5.23b) 

Thus Rs and Rc are equal when an./at 	0 in block E i.e., constant (in 

energy) current flows through E which is in quasi-steady-state (QSS). For any 

fixed energies E 1  and E2 , then (5.9) yields 
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E
2 	

E
2 

f dE i f S if (t)dEf = 0 
E1 	E

1 

(5.24) 

which represents the null effect of collisions in the closed interval E 1  < E i 

 < E2. The net downward current (5.20) across the dissociation neck can then 

be rearranged in terms of the net downward collisional current across 

arbitrary level -E as 

co 	—E 
Rc (t) = f dE i  f Sif(t)dEf 

 + f (an./at)dE. 
—E 	—D 	 —E 

and the net downward current (5.22) across level -S can be similarly 

rearranged as 

co 	—E 	 —E 
Rs (t) = f dE. f Sif(t)dEf  - f (an i /at)dE. 

—E 	
1
—D 

 
-S 

(5.25) 

(5.26) 

Note that (5.26) reduces to (5.22) directly when -E = -D, and that (5.25) 

reduces to (5.23a) and to (5.20) when -E = -S and when -E 	co respectively. 

The expressions (5.25) and (5.26) provide alternative procedures which are 

valuable for accurate calculation of R c (t) and R s (t) particularly when block E 

is in QSS. In the absence of QSS, R c  and R s  are determined by the exact set 

(5.20) and (5.22) respectively. 

On introduction of the (time-independent) probability P i A  that pairs AB 

with internal energy E i  are considered as associated then the overall rate for 

association is, 

co A 
	rni 	

0 	an 
RA (t) = f P. (E.) —7—)dE. = 	R s  (t) + 	

P. A  

	

at, 	 3t 	
dE

i 
—D 	 —S 

(5.27) 

since,  P. AL  is unity in block S and is zero in block C. The overall rate for 
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dissociation is similarly, 

an. 	 3n. 

1 	at R0 (t) = f P.
D
(E.) H i  dE = - R c (t) + f0

i 
 P"
n 

at 
 1 ) dE

i  
-D 	 -S 

(5.28) 

where the probability P.
D 
that E.-pairs are considered dissociated is unity in 

the continuum block C, and zero in the fully associated block S. Pairs in 

block E are in the process of associating and dissociating with probabilities 

D. A,D < Expressions (5.27) and (5.28) are exact for R
A,D

(0 under all conditions 
r l 

(et §7.1, §7.2). 

Since 

P.
A (E.) + P D

(E) = 1 
	

( 5.29) 

addition of (5.27) and (5.28) yields, with the aid of (5.23a), 

R
A
(t) + R 0 (t) = 0 
	

(5.30) 

as expected for this closed system. 

Provided block E is in QSS (i.e., an i /at ti  0), the association rate R A (t) 

is therefore identical to R.(t), the net rate collisional rate (5.22) or 

(5.26) for formation of S-pairs and the dissociation rate R 0 (t) is identical 

to -R c (t), the net collisional rate for formation of C-pairs. As shown by 

(5.23a), R s  and Rc  are then equal. Otherwise (5.27) and (5.28) must be used 

for RA ' D (t). 

In § 7, extrema R. ' 13 (t) to the rates RA ' D (t) at time t implies the QSS 

condition. Hence these extrema in addition to (5.30) satisfy 

R*A (t) = R s (t) = an s (t)/at 
	

(5.31a) 
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and 

= a NA (t)NB (t) - k n s (t) 

= a NA (t)NB (t) [1 - r(t)] 

R*
D
(t) = -R c (t) = an c (t)At 

= k n s (t) [1 - r -1 (t)] 

(5.31b) 

(5.31c) 

(5.32a) 

(5.32b) 

where a is the effective two-body rate (cm
3 

s
-1

) for association of 

dissociated species A and B with densities N A,B (t) cm
-3 

and where k is the 

frequency (s -1 ) for dissociation of S-pairs AB with density n s (t). The 

quantity 

 ti 
r(t) 	61 A?4B/N A (t)NB (t)][n s (t)/ s ] 	 (5.33) 

is a measure of the departure of the densities from their corresponding 

 ti 
time-independent values NA ,B  and n s  achieved under full thermodynamic 

equilibrium (r = 1) with the gas bath M. 

The QSS rate a is therefore determined by the equivalent expressions 

A -s 
R* (t) = a N

A
(t)N

B (t)[1 - r(t)] = f dE i  f Si f (t)dEf 

	

-S 	-D 

D. 	. 	0 
= -R* (t)= f dE

i  f Sif(t)dEf 

	

o 	-D 

-E 

= f dE i f S if (t)dE f 

	

-E 	-D 

(5.34a) 

(5.34b) 

(5.34c) 
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which are respectively the rate R s  for formation of S-pairs, the rate R c  for 

depletion of C-pairs and the rate for formation of all pairs with energy E i 

 -E. The QSS-frequency k for dissociation is provided by the detailed balance 

relatiori 

ti 	
ceNA .' k 

s 
= 	NANB 

(5.35) 

Evaluation of the exact expressions (5.20) for R c (t) and (5.22) for Rs (t) 

require solution in general of the time-dependent coupled set (3.7) for the 

microscopic densities n i (,E i ,L i 2 ;t) or of the set (4.6) for n i (,,E0t) when 

equilibrium in L.
2 can be assumed. It is only when block E is in QSS that 

(5.27) and (5.28) for the association and dissociation rates R A ' D (t) are equal 

to R s and-R c respectively such that the coefficients a and k are determined 

directly from (5.34) and (5.35). 

When block E is not in QSS, then the exact rates (5.27)and(5.28) with (5.8) 

yields, 

R
A,D

(t) = f P i
A,D 

 dE i  f Sfi (t)dEf 	 (5.36) 

	

-D 	-D 

which is exact and which reduces to (5.31a) and (5.32a) only when the QSS-condition 

f S
if

(t)dE
f = 0 
	

(5.37) 

D. 

	

is satisfied in block E (0 	E
i 
	-S). When approximate or variational distri- 

butions (§7) are adopted, then (5.36), rather than (5.34), is the required expression. 



5.3 Macroscopic Transport-Collisional R-Equation  

With the aid of (5.4)-(5.7), the distribution 

CO 

n(R,t) = 1 n. s (R,E i ;t)dE i 	nc (fll, , t) + n e (R, ,t) 
-S 1  

in combined blocks C and E, and the associated net current 

CO 

J(t,t) = f J. d (t,E0t)dE i  E J c (t,t) + Je l,t) 
-S 1  

then satisfy, for R > R s . 

at n(,t) + 	= 0 	, R > R — s 

(5.38) 

(5.39) 

(5.40a) 

which agrees with (3.18a) since n s  (R > R s' 
 t) vanishes. For R 	Rs' 

-S 

at n(,t) + Z.J = - f dE. f Sc(R,t)dE f 	, R <Rs -S 	1 -V 	11  

	

- v(R) n(k,t) 	 (5.40b) 

wherein v(R) is introduced as an effective frequency for collisional absorption 

into block S of C and E pairs with fixed R < R s . Integration of (5.40a) yields, 

' 
f n(R,t)dR,  = 41TR s

2  J (R t) 
° R

s 

(5.41a) 

with no flux at infinity . With the aid of (5.8) and (5.13), integration of (5.40b) 

yields 
R
s 

R s 
	-S 

f n(R,t)dR,  + 4rR s 2  J(R s ,t) = - f dR f dE. f S.f(R,t)dEf 
0 at 	 0 	1 -v " 

(5.41b) 
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-S 
E - 

 -S 
f dEi -D f if  (t)dE f 	

(5.41c) 

an s (t)ht 	
(5.41d) 

which agrees with (5.15) previously obtained from (E i ,R)-integration. The continuity 

equations (5.41a) and (5.41d) also follow from (5.6) since J s (R s ,t) and 

n
s
(R>R

s' t) both vanish. Addition of (5.41a) and (5.41d) yields 

CO 

a 
—

a f n(R,t)dR + 
at  n s  (t) = 0 at 	 ft,   

0 
(5.42) 

the conservation equation (5.18) appropriate for this closed system. 

Define the averaged local rate a 3  (cm
3 

s
-1

) for absorption within R s  by 

R
s 	 - S 

a 3n(R s ,t) = f v(R) n(R,t)dR = f dE i  f S if (t)dE f 
 0 	 -S 	-D 

(5.43) 

so that the net rate (5.31) with (5.13)for production of pairs in block S is 

therefore 

at n s (t) = a 3  n(R s ,t) = a NA (t) N B (t) [1 - r(t)] 
	

(5.44) 

under quasi-steady-state (QSS) conditions in block E. 

Evaluation of a still involves solution of the phase densities, 

t) in general, or n. s (R,E.;t) for L 2-equilibrium, from the 

appropriate set (3.7) or (4.6) of coupled equations. 

5.3 Approximation and the Debye-Smoluchowski Equation  

Assume in addition to QSS in block E where 9n i /9t 0, that those pairs with 

R < R s in the combined blocks C and E are also in steady-state, i.e., 

R
s a n(R s ,t)dtt = 0 

at J 0 
(5.45) 
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so that (5.41c)  with definition (5.43) reduces to 

4nR
s
2 

J(R
s'
t) = - a 3  n(R s, t) = - an

s
(t)/Dt 
	

(5.46) 

For R
s 
the macroscopic current J can be approximated by (2.76) i.e., by 

J, (R>R s ,t) =
d (R>R s ,t) = 	- [(K/e),yy]n 
	

(5.47) 

since J
s 
 (R>R S  t) and n S  (R>R S 9 

t) both vanish. Provided the local rate a 3 for  

absorption is regarded as a pre-assigned external parameter, then (5.46) is, 

in effect, a radiation boundary condition to the solution n(,t) of the 

macroscopic continuity equation (5.40a) with J given by (5.47).. Since 

t 
n s (t) - n s (0) = a 3  f n(R s ,t)dt 

0 
(5.48) 

r(t) is therefore known from (5.33)so that the required rate of production of 

S-pairs is determined only by n(R s ,t) via 

aNA (t) N B (t) = a 3  n(R s ,t) [1 - r(t)] -1 	 (5.49) 

Hence under QSS in block E, the steady-state assumption (5.45) and a known local reaction 

rate a 3' the problem is reduced to one of transport alone. The combination 

(5.40a) with (5.47) for the current and the boundary condition (5.46) is 

referred to as the Debye-Smoluchowski Equation (DSE) familiar in the theory of 

reactions in condensed matter and of coagulation of colloids in solution. Apart from a 

previous account, DSE has not to the author's knowledge ever been derived from 

a microscopic basic. If, however, a 3  is not known (as is usual) then the 
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present full microscopic treatment based on the coupled transport-collision 

equations of § 3 and § 4 for n i s ' d  is required. 

Refs. (24-27) provide preliminary reports 24-26  and a full detailed account 
 

of the search for analytical solutions to DSE for general interaction V(R) between 

A and B. 
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6. Time Evolution Towards Equilibrium  

Relaxation of a plasma,or of any subsystem (A,B,AB) in a bath of systems 

M,from any initial non-equilibrium distribution is, in principle, a time 

dependent process which proceeds towards equilibrium under various distinct 

time scales. A very fast initial transient characterizes Phase I, during 

which a new distribution in (R,E,L
2
) is rapidly established. This is followed 

by a much slower Phase II, during which recombination, association or 

dissociation and chemical reactions based on the newly developed distribution 

of Phase I proceeds towards eventual equilibrium via a dynamic balance of 

collisional association and dissociation established in Phase III. 

During Phase I, the (,(1,E,L 2 )-distribution collisionally relaxes within 

(collisional) time T
1 
to a quasi steady state of excited levels which persist 

throughout Phase II and is the distribution characteristic of the eventual 

equilibrium established as t/T i 	c°. Phase II is characterized by (reaction) 

times T
2 
% T

R' 
 TA,  or TDfor  recombination, association from 

non-equilibrium free states or dissociation from non-equilibrium bound levels 

(whichever pertains to the initial conditions). Since T is generally of the 

order of the inverse of the collisional frequency v if , and since 

association/dissociation proceeds on a much slower time scale, T
1 
« T

2 
such 

that the quasi steady-state distribution attained in Phase I persists 

throughout Phase II. 

The beginning of the third Phase (III) association or dissociation 

depending on the overall direction as determined by initial densities, has 

produced a significant population of bound pairs AB or free pairs A + B such 

that the reverse process (dissociation or association) becomes important with 

the result that the subsystem relaxes toward eventual equilibrium. 

Recognition of Phases I and II facilitated many pioneering and tractable 
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studies of recombination processes
6-12,17,18 

in general, based on the solution 

of integral equations, and the study 13'14  via a diffusion (weak collision) approxi-

matdom to association/dissociation processes at low gas densities. 

The work of Bates et al.
6-8 

and of Flannery
9-11 

was concerned with the 

case of the concentrations N A,B  of dissociated (charged) species >> N AB , the 

concentration of bound systems, such that only Phase II and association were 

relevant. Also previous work on ion-ion recombination
6-11 

dealt with low gas 

densities N. We are here concerned with theoretical development of both 

association and dissociation in Phases II and III at all gas densities N, for 

which the time dependent transport-collisional equations formulated in the 

previous sections (§ 2-4) are directly relevant. 

6.1 Net Transition Probabilities for Association and Dissociation  

As an aid to clarity of presentation, consider first the following 

analysis of eq. (3.21a)in which explicit dependence on the (R,L 2 ) variables 

has been systematically integrated out from the original basic eq. (3.7a). 

Eq. (3.21a) contains however implicit variation with (R,L
2
) as characterized 

by (3.13) and (2.70) for n i , and by (3.22)for y i . 	The (i,E,L i 2 ) 

and (1R,E) sets (3.7) and (3.12) respectively may then be similarly analyzed 

without any undue formal difficulty. 

The governing equation for the conditional probability density n i  of AB 

systems per unit dE i  is 

CO 

ni(Ei,t) -
- p Ln f (t) v fi  - n i (t)v if ]dE f  E - 3d i (E i ,t)/aE i 	 (6.1a) 

where v if is the frequency of i i f collisional transitions (E i 	
E
f
) and -D 

is the energy of the lowest bound vibrational level of the AB pair. 
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Alternatively, 

CO 

aniht = - f Lif (t) - ii (t)]c if  dE f  E -aJ i /aE i  (6.1b) 

in terms of C if , the equilibrium collisional rate (3.22), and of y i , the 

normalized distribution (3.23). Since the energy levels of AB be sufficiently 

close (relative to the thermal energy ke of the gas bath M), they form a 

quasi-continuum and J i (E i ,t) can then be interpreted as the net upward current (in 

energy space) across level E i . 

Introduce, 

Afi  = vfi  - 6(E i -E f ) f vif  dEf  , 
-D 

(6.2) 

the net probability/sec for f 	i irreversible collisional transitions. Then 

(6.1a) can be compactly written as, 

ani/at =
-p 

 f n f  Afi  dEf  = - - f f S if  dEf 
	

(6.3) 

where S
if is defined by eqs. (5.2) and (5.9). 

Since the AB-subsystem is closed, curve crossing and quantum tunnelling 

AB 	A+B being precluded at present, 

-Df (an i /at)dE i  = (a/at) 
-D 

 f n i  dE i  = U 	 (6.4) 

When relaxation in L i t and R is much faster that E i - relaxation, assume 

by the end of Phase I that collisions have been sufficiently rapid to 

establish a Maxwell-Boltzmann distribution f(E i ) in the energy E i  > 0 of the 

dissociated (A,B) species. The continuum distribution is then 
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Yc (t) = [NA (t)NB (t) f(Ei)]/6AN 13  f(E i )] 	1, 	E i  > 0 	(6.5) 

where NA,B (t) are the time-dependent concentrations of the dissociated species 

(A and B) or free ions (X and Y ), which approach their constant equilibrium 

ti 
values NA,B  as t÷ coin this closed system. The normalized distribution (6.5) 

is time-dependent but energy-independent. As association develops during phase II 

the pair concentration of the lowest bound levels, within the range -S > E i  > 

-D defining energy-block S, grows. Within S, energy-equilibrium is maintained 

via collisions so that the S-block distribution, assumed to be 

-S 
Y s(t) = n.(E.' 
	11 	11 	1 
t0.(E.) = 	n. dE./ j n. dE. 

1 	1 	 1 
-D 	-D 

n
s
(t)/nj

s 	
1, 	-S > E.1  > -D 	, 
	 (6.6) 

is only time-dependent. In this closed system, let the E-block be coupled to 

the time-variations of C and S according tc the ansatz, 

y.(E.,t) = P.
D
(E.) y

c  (t) + P.
A
(E.) y (t) 	1 
	

(6.7) 

wherethecouplingcoefficientsP i p andp. A which depend only on the energy 

will be later identified as being the net probabilities that bound AB pairs of 

energy E i  will be collisional dissociated into C or will be fully associated 

by collision into S. From the asymptotic conditions (6.5) - (6.7), the net 

probabilities satisfy the conservation of probability 

P. D  1 + P
i
A  = 1 (6.8) 
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as expected, since the complete subsystem is closed to mechanisms other than 

collisional association/dissociation. 

Distributions (6.5) and (6.6) can be also incorporated within (6.7) since C 

and S are naturally characterized by unit net probability P i
D 

(E
i 
 > 0) for 

dissociation, and unit net probability P i
A 
 (E i  < -S) for association, 

respectively. Thus, (6.1b) yields, 

an i /at = -[y c (t) - 15(t)]  i" (P fA - P i
A
)C if  dEf  

-D 

" 	
D 	D 

[yc (t) - ys (t)J i(P f  - P i )C if  dE f  
-D 

(6.9a) 

(6.9b) 

which is separable in both time t and energy E i , a natural result of the assumed 

form (6.7) subject to the asymptotic constraints (6.5) and (6.6). 

The rate of change in the probability densities of pairs in each of the 

blocks C, E and S is respectively, 

o A  
an i /at = -Cy c (t) - 1 5 (t)][ f Pf Cfi dE f ] ; E i  > 0; 

-D 
(6.10a) 

for block C in a form natural when association (y c  > ys ) prevails, 

an i /at = Ly c (t) - ys(t)H -Sf P f
D 

C fi  dEf  - P i
D 

-
f c if  dEf ] ; 0 > E i  > -S 

(6.10b) 

for block E and 

an i ht = -Lys (t) - yc(t)-J[ -Sfm P f
D 

C fi  dEf ] 	- S > E i 	-D 
	

(6.10c) 
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E 
J(E

1.,t) = f (an i /at)dE. 1 = - f (an i /at)dE.1  
1 E. 	 -D  

CO 

(6.11) 

for block S, in a form natural for dissociation controlled processes 
(YS 

 >y c ). Thus, the 

energy distribution P.
D once established at the end of Phase I is then 

preserved at all future times in Phases II and III. Relaxation then proceeds 

D 
intimeataratedeterrninedbytheestablishedP.

,A 
 and Yl(t) towards 

eventual equilibrium when Yc  4'Y s 	I. 

The upward current across any arbitrary level E is 

since conservation (6.4) applies to the system, closed between -D and 0., so 

that the currents J(-D) and J(.) across the end points both vanish. 

Thus, the net current across a level E in block C is 

. 

J(E > 0,t) = -Lyc (t) - y s (t)] f dE i f  PfA  Cfi  dEf  
E 	-D 

and the net current across a level E in block S is 

CO 

J(-S > E > -D,t) = [Y 5 (t) - y c (t)] f dE i  f P f
D 

C fi  dEf  
-D 	-S 

E 

(6.12a) 

(6.12b) 

which are directed down or up the energy ladder according as y c  > ys  or 'c < y s , 

respectively. Thus, the overall direction of the relaxation is determined by 

the inequality 

NA (t)NB (t) > n s (t) 

RAB n
s 

(6.13) 
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-S 
a
s  CAB 	k s n s 

= 	= f ni  dE i  f PfD  vif  dE f  
-D 	-S 

(6.15) 

which is originally established by the initial condition. 

The net rate of growth of S-pairs or the downward current -d(S,t) into the 

S-block is 

-S 
an s (Wat = .1 (Dn i /at)dE i  E -J(-S,t) 

-D 

= [,c (t) - y s (t)]. s WAWB  

which, with (6.5) and (6.6) for y c,s , yields 

an s (t)/@t E as  NA (t)N B (t) - k s  ns (t) 

(6.14a) 

(6.14b) 

The (time independent) rate a s 	(cm
3 

s
-1

) of association and the 

frequency k s 	(s
-1 
 ) of dissociation in (6.14b) are hence given by, 

and therefore satisfy (macroscopic) detailed balance. Characterization of P f
D 

in (6.7) as the net probability of dissociation of level f once accessed by 

collision from level i is therefore appropriate, in keeping with ( 6 .15). 

When conditions are such that y c  = NA (t)NB (t)/4A4B  » n([S],t)/n([S]) = y s  

ti U, association is dominant, and y c  decreases in time from a quantity » 1 to 

unity at equilibrium,while y s  increases essentially from zero to unity. In 

the reverse limit, y s  » yc 	0, for the case of a shock wave moving through a 

molecular gas, then dissociation prevails until equilibrium when Ys,c 	1 and 
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the currents (6.14) vanish. The evolution toward equilibrium is described by 

(6.14b). 

The net rate of growth of the C-pairs in (6.10a) or the upward current 

J(0,t), (6.12a), entering block C is 

CO 

'Dn c (t)/9t = j (an i /at)dE i  E J(0,t) 
0 

= Lys (t) - Y c (t)] kc  ns 	 (6.16a) 

which, with (6.5) and (6.6) for Yc,s' 
yields 

9n
c
(t)/@t E -a

c 
 NA (t)N B (t)  + k

c 
 n 

s
(t) 
	

(6.16b) 

where (time-independent) rate a c  (cm3 s
-1 
 ) of association from the continuum 

and the frequency k c 	(s
-1

) of dissociation are given by 

titi o 
p 	 A 

a 	=k n =j n. dE. 	v. dE ac 
	cs 	11 

	PfA 
 f 

(6.17) 

which satisfies detailed balance. Thus, P
f
A 

in (6.7) is uniquely identified 

in (6.17) as being the net probability of association of pairs in bound level 

f once collisionally accessed from the continuum C. 

The above expressions (6.15) and (6.17) for the rate of change of free 

(fully dissociated) C-pairs, and of fully associated S-pairs, respectively, 

are exact, irrespective of any approximation used to determine the 

probabilitiesPl 
	 1 

in the 6-block (0 > E. > -S). 

In the quasi-steady-state (QSS) approximation, pioneered and used 

extensively by Bates and associates in many studies
6-8

'
16-20 of various types 

of recombination, 
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an. 

at 
0 ; block E (0 	E i 	-S) ( 6.18 ) 

since the frequencies of collisional production and destruction of a system i 

of energy E i  in block E are very large relative to the low frequency of 

explicit time decay of these excited levels i. The time-independent probabilities 

in (6.9) are therefore solutions to the integral equation 

	

P. I C dE = fP
D 

if 
 dE

f 	
(6.19) 

-D if f 	f  -S 

subject to the constraints P.(E. 	0) = 1 and P.(E. < -S) = 0. Since the 

system is closed, (6.4) applies i.e., 

	

Dri c (t)/at + Dns (t)/Dt = -an e (t)/at = J(o,t) - J(-S,t) 	 (6.20) 

In the QSS-approximation, (6.15) and (6.17) are therefore equivalent, the 

upward current J(-S,t) leaving block S being equal to the upward current J(0,t) 

entering the block C. 

On invoking the null effect of collisions (cf. eq. (5.24)) 

OD 	 CO 	 CO 	 CO 

U 
= f 
-E 
 dEi 

 -E 
 f of 

"fi 
 dEf  - 

-E
f n i  dEi 

-E
f vif  dEf  E 

-E 
 f dEi 

-E 
 I Lyf(t) - yi(t)iC i f dEf  

(6.21) 

for an arbitrary bound level of energy -E within block E, the net upward 

current (6.11) across -E is 

J(-E,t) = -a e 	NA(t)N B (t) + k e  n s (t) 
	

(6.22) 
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where both 

-E  
ae  = (4A) - ' f 

E 
 dEi 

 -D 
 f (P i lJ

n  
- PfD )C if  dEf  

-  
(6.23) 

and ke 
	satisfy the detailed balance relation 

NA
N
B 

a
e 

n
s 

k
e 

From (6.11), 

0 
J(0,t) = J(-E,t) + f (an i /;t)dE i  

-E 

-E 
J(-S,t) = J(-E,t) - f (an i /;t)dE i  

-S 

(6.24) 

( 6.25) 

(6.26) 

which correspond to (5.25) and (5.26) the set (a e , k e ) is identical to the exact 

set (as , k s ) appropriate to the current J(-S,t) of (6.14) out of S and to 

(a c , k c ) for the current J(0,t) of (6.16) into C, only under quasi-steady-state 

conditions (m i /at)= 0 in block E. 

When initial conditions are such that 

ic ( t) = NA ( t )N B ( t ) AAB  » 1 ›.› ns (t )/ns  = ys ( t) ti 0, 	(6.27) 

then, the dissociation rate k n s (t) in (6.14b) and (6.16b), can only be neglected 

for times t (in Phase II) much shorter than the time required for the establish-

ment of equilibrium when y c  = ys  = 1. 
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When Phase II is dominated by association (y c  » Ys ) the solution of 

(6.16b) is then, 

1 _ 	1 	t  
N A,B (t) 	NA,B (0) 	ac 

(6.28) 

the familiar macroscopic law of recombination 16  where time t is measured from 

the beginning of Phase II when it is assumed that the densities N A (0) and 

N
B
(0) of dissociated species are equal. Also the densities n s

(t) of S-pairs 

are given by the solution of (6.14b) which yields, 

ns (t) 	N 	( ) 
A,Bst' = n

s (0) 	NA , B(0) (6.29) 

when a
c 	

a
s 
= a i.e., the total number of pairs in blocks C and S are conserved 

under QSS-conditions in block E. 

As t increases, yc (t) decreases rapidly from a very large quantity, as 

y
C  

while Ys 	increases slowly, 

Ys (t) 	= 

= 	[NA,B
(0)AA,B 

essentially 

- aNA,8(0)t 

] 	[1 + aNA,B 

from zero 

NA,B (0) 

(0)tl - 

as, 

n
s
(0) 

1 	 (6.30) 

(6.31) 
1+aNA,B (0)t_ 

% 
n s 

n s 
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The excited state distribution under (6.27) is 

ii (t) ti P.
0 
 y c 
	

y (t) + 	(t) ti P.
D 

y 
c
(t) 
	

(6.32) 

and is such that yi q, P i
D 

yc  only for those highly excited levels i at time t 

when .ys(t) << P i
D 

yc , as in Phase II. 

All of the previous studies of recombination were concerned only with 

Phase II and dissociation was neglected. When dealing, however, with 

evolution towards eventual equilibrium (in Phase III) or with the enhancement 

of mutual neutralization (or curve crossings) by three body collisions the 

full distribution (6.7), rather than (6.32) is appropriate. 

The solutions (6.30) and (6.31) which correspond to condition (6.27) are 

valid until a substantial fraction of associated pairs relative to their 

equilibrium concentration have been created, and dissociation becomes important. 

When initial conditions and times are such that 

Ys(t) 
>> 

1>>1c(t) ti 0 
	

(6.33 ) 

then the net process is dominated by dissociation. The solution of (6.14b) 

yields for Phase II, 

n s (t) = n s (0) exp(-k s t) 	 (6.34) 

the familiar macroscopic law of dissociation, and the solution of (6.16b) 

yields the conservation requirement (6.27) when k s  and k c  are equal. As 

Phase III progresses, y c  increases, association becomes important and equilibrium 

is achieved. 
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6.2 Multivariable Separation  

The above strategy (6.7) for separation of the variables E i  and t can be 

easily generalized to cover multivariable separation. Define, for example 

iI(R,E i ;t) = P.1i(R,E i )y(t) + [1 - PI(R,E i )] Y s (t) 	 (6.35) 

where 13.-  1 is the net probability for eventual dissociation of an expanding (+) 

or contracting (-) pair with internal energy E i  and internal separation R. The 

set (4.6) therefore separates as 

a 
) 1 a 	I 2 	d (R) i 	j i (R)] 	= 	 dEf  [P f

s
(R)- 

at "i
S 	

' ic Ys' R
2 3R [ 
	R P 	

' -v 

and 

(R)]C if 

 (6.36a) 

a ni d 	s 	R (ycy) 	92) [ 	R2 Ri s (R)  3i(R) , 	(p . S 	R d )  1 	R2 
J 
  ), 9t  

1 	1 ' R2 aR ‘2 	i ll  

= (ycys ) J dEf 
[pfd (R) 	pi d (R)] cif 	

(6.36b) 

to be solved for the functions 

P i s (R) = 	 + P i (R,E i )] 	 (6.37a) 

and 

	

P. d (R) = 2 [P i + (R,E i ) - P i - (R,E0] 	 (6.37b) 

In blocks C and S, respectively, P. + 
is unity and zero, P i s is unity and 

 v- 

zero  and P.
d 

is zero. If the quasi-steady condition (6.18a) is assumed in block 

E, (6.36a,b) can be solved independently of the functions y c,s (t). The set 

(3.7) in R, E i , L i 2  and t may be similarly separated. 
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7. 	Variational Principles  

7.1 Association/Dissociation Rates for non-QSS (Quasi-Steady-State) and for QSS. 

, Upon identification of P.A D  in (6.7) as the net probabilities for 

association/dissociation of one AB-pair of energy E i , the overall net probabilities/ 

sec for association/dissociation are therefore 

R 
A,D

(t) = 	j 
D 	 A,D v i 	(E i ) n•(t)dE i  = f J i (E i ,t)(;p 	/aEi ) dE i  
-D 	 -D 

(7.1a) 

with the aid of (6.1b) and of integration by parts, since the current J i 

 vanishes at the end points to E., = (-D, -). Equivalent rates, obtained from 

(6.9) for Dn i /Dt, are 

„11  

	

R
A
(t) = at I v i

n i
(t)dE i 

= f ce P
i
dE

i 	
f Sfi (t)dE f 

 -D 	 -D 	-D 

(7.1b) 

	

= Cyc (t) - y
S
(t)] _11.)

cc.P(E)dE i 	f -D 

for association where S if (t) is given by (5.9) in terms of (5.2) and 

R D (t) = 	;P.Di n i (t)dE. = fc4AE. f S,,(t)dEf
at 	 _D 	_D  

(7 .lc) 

= -Nc (t) - 15(t)] "PI.Di(Ei)dE4 -D f (P-P
DOC ifdE f  

f6r dissociation. In accord with probability conservation (6.8) then for the 

closed system (6.4), 

	

RA (t) + R D (t) = 0 
	

(7.2) 

at all times, as expected. Subject to the constraints 
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P. D = 1 	; P.
A 
= 0 ; C-block (E. > 0) 	 (7.3a) 

P. D = 0 	
' 
• 	P.

A 
= 1 	; S-block (-S > E. > -D) • 	(7.3b) 

implicit in (6.5) and (6.6), assume that the probabilities PAC E)  are so 

distributed in energy space that the net rates R
A,D

(t) are extrema at all  

times. 

From the calculus of variations
22 a necessary condition for the integral 

I = J f(y,;;x)dx , y = dy/dx 	 (7.4) 

to be an extremum is the Euler-Lagrange equation 22  

d (of ) 	of _ 0  
dx 	•- 9y - 3y 

(7.5) 

the solution of which determines y(x). 

SinceP
A
.'
D 
 remainconstantinblocksCandS,thenwithx=E.y= 

P.' D ' 	 ' 
.A D i 
	

A D 
and f(;;x) = J(E.) P.n - (7.5), R.' of (7.1a) is an extremum provided 

an. 
3E.J.i(Evt)=.0=- 9t 	' 	1.E-block s) 

	
(7.6) 

in block E i.e., the quasi-steady-state condition (6.18) of constant-in-energy 

current J i  = Je (t) in block E. The equation (6.9) with (7.3) and (7.6) 

therefore reduces to 

P. A  j C,, dEf = f P,A C if  dEf  ; block E 
-D " 	-D 

(7.7a) 
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for PA  and to 

" P. f C dE = fPC dE 	• block i 	if f 	f if f ; -D 	 -S 
(7.7b) 

	

for P. P.
1 	Since (aP i

/aE) vanishes in blocks C and S and since the current is 

constant Je  in block E - self consistent conditions (6.3) and (6.6) for an 

extremum - the extrema of (6.1a) are therefore, 

-E 

	

,D 	 A,D A,D R*  (t) = 	Je (t) = ±Cyc (t)-y (t) f dE. f (PA 	)C fdE f 	(7.8a) _ E 	_D  

the constant-in-energy current J e  past any level E i  in block E; -J e  directed 

down the energy ladder for association and +J e  upward for dissociation. The 

extremum to (7.1b) for association is therefore, 

A 	a -S 	 -S 
 R* (t) = 	

-D
f 	

- 
n i dE i  = Eyc (t) - is (t)] f 

dEi -D ' 
f PfCifdE fat 

   

aNA (t)N B (t) - k n s (t) 	 (7.8b) 

where 

-S 
a N = f dE. f PC. dE = 

	

A B 	 f if f 	s -D 	-D 

The extremum to (7.1c) for dissociation is 

R * (t) = 
at 

of ni 
	

-D
dE. = -Nc (t) - s (t)] f dE. fP

A
C dE f if f o  

aNA (t)N B (t)  + kn s (t) 
where 

cLAAB 	 f 
= f dE. f PA

Ci f f dE = kK 
s o 	-D 

(7.8c) 

(7.8d) 

(7.8e) 

and where 	in block E are solutions of (7.7). The nature of the extrema P i  

is determined by performing independent variations 61 3). to PA for each bound 

level in block E under the constraint (6.3) of constant P A,D  in blocks C and S. 

The resulting change to (7.1) is 
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0 	 ce 

S RA._60.2 .1, 5 (-0][f clE.810 i '
A 

  f (P i A  - P fA ) C if  dEf  

	

-S 	-D 

 + 1/4- 	
i  f dE f (6P i

A 
 - 6P f

A
)
2 

C if  dE f ] 
-D 

(7.9) 

toseconduderin6P. A . Since 6P.
A are independent of one another, the 

change in R A  to first order in (SP A  vanishes for an extremum and condition (7.7a) is 

recovered from (7.9), as expected. The change in RA  to second order is wholly 

determined by the sign of (ye  - y s ). When y c  > y s  and the overall direction 

according to (6.8) is association, then R k
A  (t) is minimum- and Rk (t) is 

maximum . When the overall direction is dissociation, then y s  > y c  and R* (t) 

is maximum and RA (t) is minimum. 

The proposed Variational Principle is such that the rate corresponding to 

the overall direction always adjusts itself therefore to a minimum i.e., there is 

a tendency to counteract the change and the evolution towards equilibrium is impeded. 

Rather than solving the integral equations (7.7), an alternative 

procedure is therefore to explore the variation of e' D with. PiA,D and to seek 

a minimum to that rate via (7.1b) for RA  and (7.1c) for R D , whichever 

corresponds to the net direction of the process. 

Expressions (7.1) pertain to association/dissociation under all conditions, 

including non-QSS (Quasi-Steady-State), while expressions (7.8) are valid only 

for QSS-conditions (7.7). 
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7.2 General Rate Expression and Application of Variational Principle  

Since DP i /DE i tends to zero as E- tends both to zero and to -D (. - .), 

a possible trial function is, 

rp mlf, 	% 
Or ‘A;A* )/ax = aXe 	; d = 1/4 (7.10) 

where a is a normalization parameter, where X is the internal energy 

(-E i /ko) in units of ko of the gas M, and where d is the one variational 

parameter which can be expressed as (1/4), in terms of the location at 

X = X*  of the minimum to (7.10). 

Under the constraints that PD(x=0) is unity and that P D (x 	.) tends to 

zero then the normalization parameter a is ( - 1/x* ), and integration of (7.10) 

then yields, 

pD( ao„*) = e-x(1 41( ) 	, x = x/x* 	 (7.11) 

and 

PA (x;x* ) E 1 - P
D 

= 1 - e
-x 

 (1+x) 
	

(7.12) 

which are simple one-parameter variational functions for the dissociation/ 

association probabilities P D . A (x). The variational association rate (7.14) in 

terms of the time-independent rate a (cm 2s -1 ) of association in (7.8b) and 

ofr(t) of (5.33) is 

A 	A 
RA (t) = aNA NB [1-r(t)] = [yc (t)-ys (t)]_1; P7dE i-tr)  (P7 - P; ) C ifdEf 	(7.13) 
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. 	. 
1 = 7 Cyc (t)-y s (t)] f dE i - f (P

A 
  - PfA )

2 
 C ifaEy  (7.13b) 

Consider, as an example, ion-ion recombination (X +  + X-  + X + X 2  + X) 

between equal-mass species. The relevant one-way equilibrium collision 

kernelsCif  to be used in (7.13) are given by expression (B39), (B40), (B44), 

(B51), (B52) and (B54) of Appendix B. 

When (7.12) is inserted into (7.13) and when x* is varied, the long- 

dashed curve in Fig. 2 is obtained for the ratio R(x*,t)/R*
A  
(t). The exact 

rate 4(t) is determined by inserting the solution of the integral eqn. 

(7.7a), the QSS condition, in (7.13), so that it is simply the downward (E-

constant) current, -Je, given by 

-E 
R*
A 
 (t) . -Je (t) = Cyc (t) - 1 (t)] f dE. f (P.A  - P.cA  )C ifaE f  s 	_E 	1 _D 	1 	r (7.14) 

which is of course identical to (5-34a-c) and to (7.8a). Not only does the 

variational parameter x*  = 1.25 provide a minimum but it yields its exact 

result! 

Introduction of a three-parameter (x * ,b,c) trial function 

aP
D
(x;x* ,b,c)/ax = ax(1 + bx + cx

2
)e

-dx 	
(7.15) 

where d can be expressed in terms of the location at x*  of the minimum to 

(7.15) by 

A*  = 1/d = X* (1 + bx*  + cx)/(1+2bx*  + 3cx.!) 
	

(7.16) 

Upon integration, the association probability is therefore, 
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PA (x;x* ,b,c) = 1 - e -x [1 + x + x2A* ( b + 3cA*  + cA*x)/(1+2bA*+6cA l2,)] 	(7.17) 

where 

x = X/A* 	 (7.18) 

and its derivative is, 

dPA (X;x* ,b,c)/Dx = e -x (x+bA*x 2 +cA!x 3 )/(1+2bA*+6c4) 	 (7.19) 

Fig. 2 illustrates that a minimum at x *  . 1.25 is again obtained for the 

combinations (b = 0.20, c = 0) and (b = 0.20, c = -0.006) and that this 

minimum is the exact QSS-result. Comparison of the corresponding 

probabilities for all three variational cases with the exact numerical 

solution of (7.7) is shown in Fig. 3. The agreement is excellent for such 

simple variational functions. A more sensitive test is provided in Fig. 4 by 

the corresponding comparison of the derivatives. All these curves including 

the exact solution display a maximum at the same location x = 1.25 = x *  which 

is perhaps key to the overall success obtained. 

In conclusion, the present Variational Principle appears to be very 

powerful. Also, when approximate probabilities are derived then (7.13) is the 

basic expression to be used for the association rates, rather than (7.14) 

which is approriate only for exact QSS-solutions in block E. Under exact QSS, 

(7.13) of course reduces to (7.14). If, for example, probabilities based on 

the diffusion equation are adopted, then (7.13) provides highly accurate 

rates. 28 
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7.3 Tellegen's Theorem and the Principle of Least Dissipation  

The set of equations (6.1b) for Dn i /9t for the blocks C, E and S involves 

the energy E i  as a continuous variable since the spacing between the bound 

levels are much smaller than the thermal energy ke of the gas. The discrete 

representation of (6.1b) can be written as 

where 

3n
if  7 

I i  - 	1  - 	: I I 
Dt 	L  3t 	if 

 9t n = Cyf (t) - y i (t)]C if  _ (V f  - V i )/R if 	I if  

(7.20) 

(7.21) 

As Bates
29 

has pointed out, the formal structure of (7.20) is identical 

to an electrical network where the current I if  in the line segment e if  (edges, 

element) between nodes (vertices), i and f, of the network is equivalent to 

the voltage drop Vfi  (= V f  - V i  E Yf  - y i ) times the conductivity C if  of the 

element e if (with resistance 
R
if 	• " 	* ) i e 	(7 21) is simply Ohm's Law for each 

element. 

The quasi-equilibrium condition (Dn i /3t = 0 in block E) is equivalent to 

Kirchhoff's Current Law (KCL), 

I.(t) = 	I
if

(t) = 0 
	

(7.22) 

f 

i.e., the net instantaneous current entering and leaving each node i in block 

E is zero, which expresses the conservation of current. 

Since y i (t) varies continuously and monotonically with E i  between Y c 

 (constant over all energies in block C) and Y s  (constant over all energies in 
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block S), 

Vfi = 	EYf(t) - y i (t)] = 0 	 (7.23) 

e if 

where the sum is over each segment e if  within a closed loop (C t  E f  S). Eq. 

7.23) is analogous to Kirchhoff's Voltage Law (KVL) i.e., the sum of voltage 

changes Vfi  around a closed loop is zero, and expresses the uniqueness of 

potential or of y i . 

Just as KCL and KVL deal with an equilibrium distribution of current and 

voltage, an equally powerful relationship for equilibrium of power in a 

network which satisfies Kirchhoff's Laws was first enunciated in 1952 by 

Tellegen. 30  Tellegen's Theorem (TT) for KCL and KVL network states that the 

sum of instantaneous powers p i  delivered to all elements e
if is zero

30-32 
i.e., 

E (C,E,S) 
Pi(t) = 	l if (t) V if (t) 	- 	y 	[yf(t) - y i (t)] 2C if  = U 

i e i f 	 i eif 
(7.24) 

for all elements e
if with all nodes i only in the block E which only obeys 

KCL (since an i /at = U) and KVL, and with nodes f in any of the blocks C, E and 

S. Since the equilibrium rate C if  is symmetric, the rate (7.1a) with (7.2) 

may be expressed as, 

R
A,D

(t) = + 1/21-yc (t) - is(t)]" dEi-D P i r' 	L 
- pfA)2_if dE

f 
	(7.25) 

where (+) and (-) are associated with R
A 

and R D
, respectively. 

The contribution to (7.1) which originates from the block E is 

0 a r 09u n.(t)dEi =at 
-A,D K 	(E;t) = 

-S 
(7.26) 
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under the quasi-equilibrium condition (an i /t = 0 in block E). Hence 

R
A,D

(E,t) = + 1/2 Ey c (t) - y (t)] f
o

1  
dE. f (P.

A 
- P f

A
)
2
C if  dE f  = 0 

s 	-s 	
-D 

(7.27) 

which is the continuum analogy of Tellegen's Network Theorem (7.24) 

Since p i  is the time rate of change in total energy (n i E i ) of all pairs 

n i  of energy E i , 

Pi(t) = t (n i E i ) 
	

(7.28) 

then Tellegen's Theorem implies 

p 1 (t) 	at =A- 	(n i E i ) 
) E  _3_ [ r n.

11
E.dE.1 = 0 
	

(7.29) 

such that the total energy of all pairs in block E therefore remains constant  

in time and total energy of all pairs in block E is then conserved. This is a 

remarkable result! But the principle of energy conservation is already 

inherent to Kirchhoff's Laws and therefore need not be separately stipulated 

as implied in (7.29) via TT. The three laws are equally powerful in that any 

two of KCL, KVL and TT imply the third. The greater significance of 

Tellegen's Theorem, however, lies not in the confirmation of this fundamental 

law to one network, which in itself is no surprise, but in its general 

application to two topologically equivalent networks which obey Kirchhoff's 

Laws via the basic result 

1 	lift) v if (t) = I 1 i
if

(t) V
if

(t) = 0 
i e if 	 i ei f  

(7.30) 
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where (I if' V if ) and (i if' v if ) are associated with each of two equivalent 

networks respectively and satisfy Kirchhoff's Laws for each network. 

The Voltage Minimax Theorem31  i.e., the maximum and minimum potentials in 

nonlinear resistor networks are at external nodes (i.e., within the C and S 

blocks external to block E), is applicable here and can be deduced31  from Tellegen's 

Theorem. 

In the full electrical network composed of blocks C, E and S, KCL is of 

course not satisfied in the C and S blocks (since Dn./at is non-zero except in 

the t 	.... limit of thermodynamic equilibrium), and neither is TT. With the aid 

of (7.24) and (7.25) the total power absorbed by the complete network (C, E and S), 

p i (t) = -3-t-EfE i n i (t)dE i i = - CY c (t) - s (t)1 2 fdE i  f (p.A_pfA)2-if dEf  
C,E,S 	 -D 	 -D 	-D 	1  

-2(y c ( t) - y s (t)]RA (t) 4 0 

= { 
+2(y c (t) - Y s (t)PD (t) 4 0 
	

(7.31) 

is always negative i.e., energy is always dissipated. The equality only holds 

at thermodynamic equilibrium when y c 	Ys 	1. When the net direction is associa- 

tion, y 
c 

> Ys  and R
A 

is positive and minimum. The Variational Principle (§ 7.1) 

of minimum R
A 

then implies via (7.31) that the energy dissipated to the gas bath 

is least. When the net direction is dissociation, Y s > y c' R
D 

is positive and 

minimum and the Variational Principle (§ 7.1) also implies via (7.31) least 

energy of dissipation. An alternative form of the present Variational Principle 

is that the probabilities are so distributed among the energy levels not only to 

yield extremum rates R A ' D (t), as in § 7.1, but also to provide least rate (7.31.) 

of energy dissipation. This Principle of Least Dissipation is of great significance 
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in many fields e.g., thermodynamics, 33  heat conduction, fluid mechanics, etc. 

Onsager, 15 for example, derived the Principle explicitly for heat conduction. 

Joule's Law for a net current entering into a KVL and a KCL electrical network 

(block E) via all connecting elements in the block C and to all existing modes in 

the block S, states that the currents are so distributed within the network that the 

summed rate of dissipation of energy in the combined C, E and S blocks is a 

minimum. We have here derived the Principle explicitly from (7.22) via extrema  

(§7.1) to the rates of association/dissociation processes.  Bates, 29  by analogy with 

Joule's Law, postulated that a measure S of the restoration rate of thermodynamic 

equilibrium by recombination for highly non-equilibrium systems (i.e., 1 c  >> Y s  such 

that explicit time-dependence can be ignored) be a minimum, a Principle which 

resulted 34 for recombination alone in the quasi-steady-state condition (7.6) of 

block E. From eq. (7.1) and (7.31) it follows that this unnormalized time-

independent measure S can now be identified with the rate 2aRARB . We have also 

generalized the situation by asserting that association/dissociation in general 

proceeds such that the rates RA,D (t) of (7.1) are extrema at all times  such that 

RA,D (t+ ., ) tends naturally to zero when thermodynamic equilibrium is established (in 

contrast to S). The Principle of Least Dissipation is then satisfied, irrespective 

of the QSS-condition (7.6). Under the added constraints (7.3), the condition for 

extrema in RA,D  yields the QSS-condition (7.5) quite naturally. We have also shown 

that the QSS-condition is equivalent to Tellengen's Theorem (7.29) such that the 

total power (7.31) in the Principle of Least Dissipation reduces to the sum of 

powers dissipated only in blocks C and S. 

In conclusion, an alternative procedure to solution of coupled integro-

differential equations derived in §4 is the direct search for extrema to the rates 

(7.1). These extrema are the actual rates of the process and the system satisfies 

the Principle of Least Dissipation. The procedure is, in general, irrespective of 

the quasi-steady-state condition (7.5) which necessarily follows only when the 

further constraints (7.3) are imposed. Direct application of the Variational 

Principle yields excellent results (et Fig. 2-4). 
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8. Summary  

Sets of transport-collisional Master Equations required for a 

comprehensive description of the two-particle non-equilibrium microscopic 

distribution n of subsystems (A-B) in a thermal gas bath M have been derived 

in §2 and §3 for various physical representations. Each set is appropriate to 

the variation of gas density N between its low and high density limits. 

Assumption of equilibrium in one or more of the dynamical physical quantities 

(R,E,L.2  ,T.) in §4 helps reduce the complexity and dimensionality of the 

solution n for the corresponding Master Equation for the distribution of 

subsystems. Even in the limit of low gas density N, the procedure, not only 

of course yields the appropriate input-out Master Equation (4.12a), the 

subject of many previous studies6 - 
14, but also uncovers an additional 

eqn,(4.12b) or (4.17b) which helps complete the full description of 

association/dissociation processes at low N. The various Master Equations 

furnish complete details of n as N is varied. 

In §5, expressions for association/dissociation rates R A,D (t) are 

formulated in terms of two-particle distribution function under conditions 

both of quasi-steady-state (QSS) of block E and of non-QSS, when the 

appropriate rates are given by (3.34) and by (5.36), respectively. By 

operating at a more basic microscopic level, the present approach has also 

exposed in §5.3 the key assumptions inherent to the Debye-Smoluchowski 

Equation used frequently for chemical reactions in condensed matter. The 

present treatment therefore provides a unified account of reactions in both 

gas and condensed matter phase. 

In §6, the evolution from a non-equilibrium situation to full 

thermodynamic equilibrium with the gas M is provided by introduction of the 

probabilities 	for association or dissociation of level i of the A-B 
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pair. Here, the ansatz (6.7) permits separation of time t from the remaining 

physical variables as (Ei,L i 2 ,R), and automatically permits the QSS-condition 

to be maintained at all times towards eventual equilibrium. The non-QSS rates 

RA,D (t) are now given by (7.1) and (7.13) and the QSS-rates by (7.8) or 

(7.14). The former expressions are valuable 28 when approximate probabilities 

A,D 
P 	, such as those given by the diffusion approach, 28 are used, whereas the 

latter QSS-rates are inappropriate 28  when approximate 13/;1/4 ' D  are used. 

A new Variational Principle for general association/dissociation rates 

RA , D(t) of eq. (7.1) is proposed in §7.1. The Principle asserts that the 

actual rates RA,D (t) are extrema at all times i.e. the rate R A (t) or RD(t), 

whichever corresponds to the overall direction of the process, always adjusts 

itself to a minimum. If conditions are such that the overall direction is 

association then, at all times t, R A(t) is minimum and R D (t) is maximum; and 

vice-versa when dissociation is the overall direction. There is therefore a 

tendency to counteract the change and evolution towards equilibrium is 

impeded.ProvidedP.A  is zero and unity in blocks C and S, respectively, a 1 

consequence is the QSS-condition (7.6), or the integral eq. (7.7b), so that 

QSS-rates R./,‘,' D (t), which can now be derived directly from the current, are 

extrema, and are exact. 

Direct application of the Principle in §7.2 shows that use of simple 

A,D 
analyticalvariationalfunctionsforP.

1 	in the new general expressions (7.1) 

or (7.13) for RA,D (t) under non-QSS yields a minimum (for ion-ion 

recombination) which reproduces the exact QSS-rates. lp  The general expression 

(7.1)isvaluablewhenapproximateprobabilitiesP.
A,D 

 are used, in contrast to PA ' D 

 QSS-expression (7.8). 

In §7.3, contact is established between the present Principle and (a) 

with Tellegen's Theorem 30-32 for theory of electrical networks i.e. the 
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total energy in QSS-block E remains constant in time, and (b) with the 

Principle of Least Dissipation (of Onsager 15,33  for heat conduction) wherein 

the total energy dissipated by the (A-B) pairs in combined blocks C, E and S 

is always least and (c) with Bates' Postulate 29  for highly non-equilibrium 

systems (yc  >> y s ) that, by analogy with Joule's Law 29 , an unnormalized 

measure S of the total rate of restoration of thermodynamic equilibrium is a 

minimum, which results 34  in the QSS-condition. The general principle here is 

that the net time-dependent rates RA,D (t) are extrema at all times t, and it 

naturally follows that R A,D (t 	tends to zero, as it should, when 

thermodynamic equilibrium is established ,. 

Various components of the present theory e.g. reduction of the 

collisional terms via a Fokker - Planck analysis to obtain a diffusional 

treatment which is highly accurate for all systems and interactions, and the 

search for (exact) time-dependent analytical solutions of the Debye- 

Smoluchowski Equation (§5.4) for general interactions are considered in future 

papers. 27,28 
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Appendix A: Equilibrium Distributions and Related Properties  

Here we summarize and derive various classical equilibrium distributions 

and properties relevant 	to the present theory. Bates and McKibbin 35  have 

already discussed several important aspects of classical distribution 

functions. The probability distribution of AB pairs with internal separation 

and internal momentum k  in the phase interval dRdk under thermodynamic 

equilibrium at temperature T with dissociated species A and B is
36 

nAB(10 
dRdo 

WAB 	h3 	
dodR 

n(11,0dRdk 	
N N 	

3/  (-241exp(-E/kT) 	 (Al) 
A B 	 weB (27mkT) ' 2 	h -  

where the combined electronic and nuclear degeneracy factors are WAB  for the 

AB pair with phase density D AB , with reduced mass m and internal energy E ‘ 0, 

and are wA  and wB  for each of the dissociated species of equilibrium concentration 

(cm
-3

) N
A 

and N
B' 

respectively. The ratio of the corresponding translational 

partition functions (number of quantum states available to "move" at 

temperature T) is h
3
/(27mkT)

3/2,and dRdR/h
3 

is the number of internal AB 

states (relative energy E and angular momentum L) in the element dRdR of phase 

space. The exponential term is the canonical distribution for the species of 

energy E< 0 interacting with a heat reservoir (gas) at temperature T. The 
a 

equilibrium constant KeqAu 
 (R,o)dRdo = (a/k)dRdo for A + B 	AB, with forward Au 

k 
association rate u(cm 3  s -1 ) and dissociation frequency k(s -1 ),is also given by (Al) 

since aN
A
N B = knAB. 

Implicit to (Al), the internal energy, 

E = T i  -F V (R) = p
2
/2m + V(R) 
	

(A2) 

where V(R) is the potential energy between A and B at separation R and where 

T i  is the relative kinetic energy p
2
/2m, and the internal angular momentum 
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squared of the AB pair, 

L 2 = R 2 p 2  sin g e 
	

(A3) 

where e is the angle between R and 	are both conserved in time. For structureless 

particles `CAB = WA wB. 

The equilibrium distribution n(R,k) is independent of the directions 

(e,o) and (e R , (i5 R ) of k and 	respectively, and depends only on p and R via 
(A2) for E. Since p 2  dp d(cose) = (m p dE)dL 2/(2R 2p 2  cose), then 

P(,E,e) - 	
T) 	

k2 
exP( - E/k  

	

(270kT)3/2 	
7171 P) 	 (A4) 

the probability density (per unit qdEd(cose)) of (k,E,e) pairs is independent 

of e. Since L 2 
varies from 0 	L

max  (=R
2
p
2

) 	0 as e varies from 

D ; 

IT 
, then 

n(,E,L2) 	exp(-E/kT)  [ 	2nm  

(27MkT)3/2 	R2(p2_1_2/R2)1/2] 
(A5) 

	

is the probability density (per unit 	dE dL2 ) of pairs with (g,E,L 2
). Also 

the probability density is 

R2

p n(R,E,L 2 )dL2  nR )dL2 _ exp(-E/kT)  r47mpl 
C,E) = 

o 	 (2nmkT) 3/2 	-I 

per unit dkWE and is the Maxwell-Boltzmann distribution 

T 1/2exp(-T./kT) 
n(J 	2 1,T) = 	 , 1 	 exp(-V/kT) 

147 	(kT)3 /2  

per unit dkdT. The distribution per unit dE dL
2 

is 

(A6) 

(A7) 
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n(E,L
2 
 ) = f n(R,E,L2 )dR - 

exp(-E/kT)  F4171.2T 
R

k ,E '
L- 
2 

3/ 	
)] 

(27mkT) 2  Ri  

where TR  is the radial period i.e., time 	dR/vR  for completion of a round 

trip between the turning points R 1 (E,L
2 ) -4- R 2 (E,L

2
) 	R 1 (E,L

2 ) given by 

the zeros of the radial speed vR  i.e., of 

1 	2 = 2 
-fmvR  - p /2m - L 2 /2mR2 = E-[V(R) + L 2/2mR 2 ] 

The probability that (E,L
2
)-pairs have separation 	in the interval 

about R is then 

n(,E,L 2 ) R - 2dR _ dT 

n(E,L 2 ) 	RvR 

(A8) 

(A9) 

(A10)  

where T is half the radial period. This is expected since L
2
-conservation implies 

constant areal speed. 

The radial period for a Coulomb field (V = -e 2/R) is 

(C) 	2 
T R 	(E,L 	) = (m/21E1)

1/2  

27(e
2
/21E!) 

R2 

f 	[(R2 -R)(R-R
1
)] -1/2 	dR

2 

1 

3/2 (m/e
2

)
1/2 
	E 27a 3/2 (m/e 2 ) 1/2  

(All) 

is independent of L 2,and is proportional to the cube-root of the semimajor 

axis a (E e
2/21E1) for elliptical motion (Kepler's Law). Since the radial 

and angular periods are the same for Coulomb attraction T R,is also the time Tc  

for completion of the closed elliptical orbit, 

R = 2R 1R 2 [(R 1 +R 2 ) + (R 2 -R 1 ) coser l 	 (Al2) 

which is the distance from the focus (force-center) and e is measured from the 

eccentricity vector joining the focus to the periapsis. 
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For the three dimensional harmonic oscillator (V = 1  k R
2
), the radial period 

2 

is 

R2   (0) 
T R  (E,L2 

 ) = (m/k)
1/2  f [(R

9
;-R

9
)(R

9
-y91/2  dR2  = Tr(M/k) 1/2 =-7/w = 	Tc 	(A13) 

R, 

is independent of both E and L
2
, and is one half the angular period or the time 

27/w for completion of the associated closed elliptical orbit 

R
2 

= 2R
1
2
R
2
2
[(R

1
2
+R

2
2
) + (R

2
2 -R

1
2 )cos2e] -1 
	

(A14) 

with the force center at the center of the ellipse. While circular orbits are 

possible for certain combinations of E and L 2 
for other interactions V, closed 

orbits for all E < 0 and L
2 

are only possible for the above Coulombic (C) and 

oscillator (0) interactions which, in addition to conservation of E and L 

appropriate to all radial V(R), yield a futher (time) conserved quantity 

associated with a further dynamical symmetry; for C, the direction of the 

Runge-Lenz vector 37  which joins the foci and periapsis is constant in time; 

for 0, each component energy E
x 

and Ey  for individual motion in the X and Y directions 

of the orbit plane are conserved, as is E = E
x + Ey' the total energy. 

The energy distribution for all states with L 2 
in a specified range 0 < L

2 
< L 

— — x2 

of L
2 

is therefore with the aid of (All) and (A13) in (A8) given by 

L 2 	exp(-E/kT)  r,„ 2 	21 n(E,L 2  
< 	

TR Lx J x
) = 

(27mkT) 3 / 2  
(A15) 

for both Coulomb and Oscillator interactions. The probability density (per 

unit energy interval) of orbits with a given energy E which therefore 

intersect a sphere of radius R
x is given therefore by (A15) with L x

2 
= p

X
2 

R 
2 

X 
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= 2m Rx
2 

[E-V(R x )] where p x is the momentum at R x associated with the orbit 

which just touches the R x-sphere. 

The distribution per unit dE is 

RE 	 L2 

n(E) = f n(R,E)dR = f
0 
 n (E,L2 )dL2 	 (A16) 

0 	 0 

where R E  is the classical turning point given by IV(R E ) = iEl and where L o  is 

the maximum angular momentum associated with a given energy E. 

For Coulombic attraction, L o
2 = 2m E a 2 

so that 

n c (E) = 47T
2  exp(-E/kT)  

(E)L 2  - exp(-E/kT) 2 1 /2m 3/2 1. 3 e6  

(27rmkT)3/2 	T R 	o (27mkT)3/2 	
1E15/2 

 

(A17) 

 

the Saha-Boltzmann formula for ionization equilibrium. For the three-dimensional 

oscillator, Lo  = (m/k) 1/  E = E/w, the equilibrium energy distribution is, 

n o (E) - exP(-E/)  r. k 
3,

M/k) 
3/

2 E2] 
 (2rmkT)3 / 2 

 
(A18)  

The fraction of the total number of bound orbits of energy E which cross  a 

sphere of radius R
x' 

i.e., those with L
2 	

L
x
2 

= 2m R
x
2
(E-V(R

x
)], is therefore, 

x/a) 2 [E-V(Rx )]/IE! , Coulomb 

fx (E ) = Lx 2/L 0 2 

  

(A19)  

2m(wRx/E)
2
[E-V(Rx )], Oscillator 

    

Thus f
x (E) n(E)dE is the number of classical orbits with energy between E 

and E + dE that cross a sphere of radius R x  centered at the origin. As Rx 

 increases from zero, the number of crossing Coulombic orbits increases as R x , 

reaches a maximum at R
x 

= a = e
2
/21E1, and then decreases to zero as R

x 
tends to 
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a 
= a/k per unit dr i  dr 2  ... for A + B 	AB can in general be written as, 

k 

The conditional equilibrium probability or the equilibrium constants K
eq 

e 2/1E1 = 2a, the classical turning point for the L = 0 orbit; because high 

L-orbits fully encompass the Rx-sphere for small R x  < a and are fully 

encompassed by the Rx-sphere when a < R x  < 2a. 

The fractional contribution to the overall Coulombic density distribution 

(A17) that arises within the R
x-sphere is 

g 
x
(E) 	

n(E,RfRx ) 
- 2 [_

x 
 • 1 	

1 	 1  e - 
4 
 sin2ex 
	4  - 
	sin4e

x  + -- sin6e x n(E) 	r 	 12 
(A20) 

where e x  = sin -1  (Rx/RE ) in terms of the turning point R E  = e
2
/1E1 where g x 	1. 

Thus gx (E)n(E)dE is the equilibrium number of pairs with internal separation 

R < R
x  and with internal energy between E and E + dE. 

The density of bound AB-pairs with internal separation R is 

T 

n(R) = r n(R,E)dE = f n(R,T i )dT i 	 (A21) 
-v(R) 

where To is the maximum kinetic energy (-V) of relative motion at R. With 

respect to the distribution exp(-V/kT) over R of all levels (bound and continuous) 

the normalized fraction 

f(R) = n(R)/exp(-V/kT) = Lerf(-V/kT) 1/2 _ 	1V/kT1 1/2  exp(V/kT)] 
	

(A22) 

of bound levels varies from 0 to 1 as R decreases from infinity to zero. For 

Coulombic attraction, f is 0.20, 0.43, 0.73 and 0.996 at R = 2R e , Re , 0.5 R
e 

and 0.15 R
e
, respectively, where R

e 
is the natural (Onsager) radius e

2
/kT where 

V = kT. 
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n(r,r'..,r ) = h
3 

exp(-E/kT)  
3/2 	

p
c
(r

1
,r

2'
..,r

s
) 	K

eq
(rr

2'
..,r

s
)  

l 2 	s (2.ffmkT) 

(A23 ) 

where p
c 

is the classical density or statistical weights of internal states. 

The corresponding statistical volumes, h
3
p
c 
are given directly by the square-

bracket terms in (A4) - (A8) for each of the five sets (I,R, ,E,e), (R,E,L 2 ), 

(,,T) and (E,L 2 ) of variables and in (A17) and (A18) for the particular 

energy distributions appropriate to Coulombic and oscillator attractions. 

Finally, it is worth noting that equilibrium with respect to a given 

variable r j  alone implies that the fractional distribution n(r 1 ,r 2 , 	rs )/f 

n dry  is given simply by the corresponding equilibrium fraction. 

Classical-Quantal Correspondences. Since the three-dimensional Coulomb (C) 

and oscillator (0) interactions are unique in having closed bounded orbits 

for all values of E < 0 and L2 , new and interesting classical-quantal correspondences 

may be derived. Under appropriate quantization, n (o h and (n R,e+1/2)h when n R,e,c1)  

= 0, 1, 	, of the actions associated with (0) and libration (R,e) generalized 

coordinates, and generalized momenta (p R ,p e ,p 0 ) respectively, the full classical 

action for Coulombic attraction 

' 	= = 95PRdR + 	p odgy k + 	p ads = (2m)
1/2 

 7 e
2  I t 

,1'  -1/2 - (n r  + n e  + n o  + 1)h 	(A24) 

being quantized to integral (n 	1)h, yields, as is well known, the exact 

quantal energies. For the isotropic oscillator, the quantized classical action 

J = ipxdx + S pydy + 	pzdz = 27r(m/k)
1/2 E = (n+3/2)h , n = 0, 1, ... 	(A25) 
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yields the correct quantal energies 38  

E
n = (n + 3/2 )'i w 	; w = (k/m)

1/2 
	

(A26) 

1 
with degeneracy y (n+1)(n+2). The number of internal states p (E) per unit 

energy interval dE is therefore given by 

p Q (E)dE = 	(n+1)(n+2)dn = 	 (n+1)(n+2)dE n /5W 	 (A27) 

which in the limit of high n >> 1 agrees with the classical density p c (E) = 4Tr 3  

E 2 /(h 3w3 ) obtained from (A18) and (A23). Since even 2 are associated with 

even n, and odd t are associated with odd n, then in the classical limit of 

continuous £, 

,e 
P
Q
Fe l.

2
)dEn dL2 
	1 	 1 

(2t+1)dn di = 	dEn  dL
2  in 3  w 

with L 2  = t(t+1)'q. This quantal density p Q  agrees exactly with the 

classical density p c (E,L
2
) = 4.ff

2 T R/h 3 obtained from (A8) and (A13). 

Corresponding identities 

N(E,L2 ) = n 3/(me4 ) = 47r
2 

T c/h
3 

= p c (E,L
2

) 

(A28)  

(A29)  

and 

PQ (E) = n 5/(e2/a0 ) = 41T 2  T 1. 0 2/0 = Pc (E) 	 (A30) 

for Coulombic attraction have already been shown.
35 

These identities support the 

use of classical distributions for these interactions in heavy-particle systems. 
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The classical average of Rs  for bound orbits with E < 0 and all accessible 

L
2
, is 

RE  , 	 RE  

<R S (E)> = f R' n(R,E)dR/ f n(R,E)dR 
0 	 0 

which, for the Coulomb case, yields 

<R s (E)> 	= R
E
s 3 5 

'
-
2 

	

+ s)/B(-3 	—5 ) 

	

2 	'2 

(A31)  

(A32)  

where R E 
is the turning point e

2
/1E1 and where the Beta function B(x,y) is 

r(x) r(y)/r(x+y) in terms of the Gamma function r. Hence, 

4R(En )> 	ht) a 	 a = e 2/21E n 1 = n 2a0 	 (A33) 

whch agrees at high n >> 1 with the quantal expectation value
39 

n-1 
<R n > = 2 	I (22+1)<Rnt 	4 > = 	(1 + 1/5n 2 )n 2 a

o n 	2.=o 
(A34) 

Moreover, the classical average of R over a given bound (E,L
2 )-orbit is 

R
2 	

R
2 

<R(E,L2 )> = f R n(R,E,L 2 )(IFy f n(ft,E,L 2 )ci 
R1 	

R1 

2 
a - L 2 /2me 2 

(A35) 

and agrees exactly with the quantal value 
1 
 a c [3n

2 
- 2(2+1)].

39 
If the 

2-summation in (A34) is replaced by L
2 -integration between 0 and L

2
max 

= 2m1Ela
2 ,then the quantal result (A34.)  yields the classical result (A33) exactly. 
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The averaged value of R for these orbits of energy E that cross a sphere of 

radius Rx is therefore 

L
2 

R 	 L
2 

R 
r' 

	

<R(E,L 2)>. Ix dL2 52 R n(lt,E,1:2R j x 	1 n( / 	dL2 	R0E,L2 )(IR x o Ri 	 o 	R1  
3 = -f a - L x2/4me2 (A36) 

3 	1 	2- = 	7  a 	2  R x  LE - V(R x ) 	 (A37) 
2e 

which for Coulomb attraction tends to 
3 	

i a i n the limit of small radii R
x 
« a 

when only the L = 0 orbit crosses. When RX equals a, all L
2
-orbits cross and 

(A37) tends to 41 a, in agreement with (A33). 

Apart from the intrinsic interest and considerable insight gained from 

noting that the classical equilibrium probability distribution and the quantal 

probability liplum 1 2  have much in common, all of the distributions (A4)-(A8), 

(A15)-(A22) over physical variables (R,E,L 2 ) and their associated properties 

(A32)-(A37), are directly relevant towards implementation of the theory and 

solution of the Master Equations developed in the main text for association/ 

dissociation processes in dense gases. 
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Appendix B: Equilibrium Energy-Change Collisional Rates for Various Subsystem  

AB-Bath M Interactions.  

Theoretical Equilibrium Rates: In this section the collisional term (2.1b) of 

the "Boltzmann" equation (2.1) is transformed so as to yield equilibrium rates 

C if (R) for i 	f transitions in the internal energy E i  of the AB pair with 

internal separation R via collision with the Maxwellian bath of gas particles 

M. Explicit expressions for C if  appropriate to various interactions (Coulomb, 

Polarization, Hard-Sphere, Charge-Transfer) of A and B with M are 

summarized for use as a comprehensive package in the theory provided in the 

main text. 

Denote A, B and M by i = 1, 2 and 3, respectively, their masses and 

reducedmassesbyM.and Mij, respectively, and their pre- and post-collision 

velocities and momenta by Ki , Rji  and )(1, R,i 1  taken all relative to the (1-2) 

center of mass before the (1-3) collision. The (1-3) relative velocities 

before and after the collision are p ,  and 	with orientation (11),(1)) with 

respect to polar axis along 	The changes e(= E f-E i ) and 2 in the internal 

energy and internal momentum of the pair AB are 1 
	 2 	 2 

m1 2 [ ( v 1 1 )  - (ti11,2 ) ] 

and M 12  (q'-0, respectively. 

The rate C if 
is the sum C )  + C5 )  of the individual contributions C i(f )  Cif ) 

 arising from (j-3) scattering alone. Expressions for the averaged rates 

k
if
(EE

f
) = f F(u) k

if
(u)du 
	 (B1) 

arising from elastic (j-3) scattering by general,
7 hard-sphere

11 
and 

polarizatioh 8  interactions and from charge-transfer collisions i°  for general 

masses have been determined previously7 ,11 by integrating the partial rates 

k if (u) for a fixed (1-2) relative speed u over the normalized speed 
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distribution F(u). Since the emphasis here is on the non-equilibrium R 

distributions of Boltzmann's equation at higher gas densities, the more 

relevant quantity is the energy change kernel C if(R) which is related to the 

previous quantity (B1) via 

Rif 	 Rif  

k if (E i ,E f ) = 	 f k if (R)q 	Oii (E 1 )] -1  f c if (R)0 	(B2) 
0 	 0 

where R if  is the minimum of the outermost turning points R i  and R f  associated 

with E i  and E f  respectively. The isolated kernels C if(R) for the various 

interactions are extracted from the previous work 7
' 8 ' 10,11 as follows. 

The Jacobians J in the following transformations 

44) q3(83(P3) E J 2  d E d(cos;b)dg d4) 3  = J 3  dEdP dg d4) 3 	(B3) 

valuable to the collisional term in Boltzmann's Equation (2.1b) have already 

been determined 7 ' 9 ' 40-42 as has 42 also J 5 in 

d,e 3  = 3 5  d E dP de l 	 (B4) 

valuable to transformation between quantal and semiquantal treatments 42 . The 

orientation (0 3 ,4) 3 ) of k 3  is taken with respect to the polar axis along 6. 

Evaluation of J
2 in (B3) yields (from ref. 7 for elastic A-M collisions and refs. 

41 and 42 for inelastic A-M collisions), 

d(cose 3 )4 d(cosip) 	g dq 	de 	d(cos10 	
(B5) v 1 v 3  gS(v1,v3,g) [(coslp+ -coslp)(coslp-c oslp - ) 1 112  

where 
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S(v i ,v 3 ,g) - (1+a)  [(1+a)(v 1
2
+av 3

2
) - ag2 ]1/2 = - -,

v 	,v 3  , g l  ) ' 	 (B6) 

is symmetric with respect to pre- and post-speeds. The limits
7,41,42 

11) ± (v 1 ,v 3 ,g; ) in (B5) to the scattering angle 11) for fixed v l , v 3 , g and e need not be 

reproduced here. The limits g ±(v 1 ,v 3 ;e) to the relative speed g in (B5) are 
7'41,42 

g (v l' v 3;' )  = max El v 1 -v 3I 	Iv1 1- v3'1 1  

g
+
(v i ,v 3 ;e) = min[v 1+v 3 , v 1 l +v 3 I ] 

and g+  > g- . 

Determination ofd
3 
	

(B3) yields 9  ' 4°-42  the alternative expression, 

2- d(cose 3 )do d(cosip) 	g 	dg 	2 
2g 

2
6 	P dP 1 

v v 	 ,, 2 2,0/ 2 	2 2 3
+
_ g  Ag -g )i 	M 13- 

	 ( B8) 

where the limits g + (v 1 ,v 3 ;P,e) to the relative speed g for fixed v 1 , v 3 , P and E 

also need not be reproduced here. The limits P I (v 1 ,v 3 ;E) to the momentum 

change P are 

}

P(v i ,v 3 ;e) = max[Mlvi l- vil ,  ms1v3 I- v31 ]  

P(v,,v 3 ; ) = min[M(v1 1 +v1) , M s (v 3 1 +v 3 )] 

(BY) 

where 

M = M 1 (1 + M
1 /M 2 ) 
	

( B10 ) 

(B7) 
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3/ 	
4T M 12

(M
1

v
1
) 

4AB 	(27M 12
kT) 2 

e x p ( - E i /kT) 
(B13) 

the effective mass of the AB pair in the (1-3) collision, and where 

Ms = (M 1 +M 2 )M3/ (M 1 -1-M 1 *M 3 )  = aM  = (1+a)M 13 
	 (B11) 

the reduced mass of the full pair-gas system, can be expressed in terms of a 

mass-ratio parameter
] 

a = M M /M (M 	+11.) 2 3 1 1 2 3 (B12) 

for (1-3) collisions. 

Under thermodynamic equilibrium at temperature T, 

then the equilibrium rate for energy-change collisions at frequency v if  is 

C if (R)dE f  = nA,E i )v if (R) dEf 
	

(B14a) 

)dE f f N o ( 3 )de 3 ga(g,qi) d(costp)(4/de) 
	

(B14b) 

which is, in general, a four-dimensional integral. The transformation (B5) 

is appropriate to the cases of general differential cross sections a(g,tp) or of 

isotropic cross sections a(g), and (B8) is appropriate for a(P,g) or a(P). 

For isotropic gas distributions No  (P 3 ), ), C (R) is therefore a triple integral 

for general scattering of the AB pairs by M. Considerable reduction to a double 

or single integral or to an algebraic expression occurs. for the following specific 

interactions. 
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CASE (1), a(P):  For Coulombic attraction (-e 2/R) between 1 and 3, the 

differential cross section per unit solid angle is 

a (P) = 4 e4  M 13 2/P 4 
	

(B15) 

a function only of momentum-change P. With (B8) in (B14b), the g-integration involves 
x+ 

the integral f (x
+
-x)(x-x- ) -1/2  dx = 7 so that the equilibrium rate is (B14a) 

x- 
with the frequency (per unit dE f) given by 

v
if

)(R) 	/ 
= (_.-2 

m 3
v 
1 )N 	

3
G(v 3 )dv 3  f a(P)dP 

v
o 

 P - 

(B16) 

for general a(P). The limit v
o 

arises from reality of 11+  - in (B8) and satisfies 

2 
M
s 

v
o
2 
 = max(0,E f-E i ), which asserts that the kinetic energy of AB-M 

relative motion be sufficient for excitation (E f  > E 1 ) or be at least zero for 

de-excitation (E f  < E i ). The R-dependence of v if  at fixed E i  occurs via v l  in 

E i  = 1 M vi  + V(R). The distribution G in speeds v 3  of the bath particles 3 of 

density N (cm -3 ) is orientation independent and may for example be taken as 

the Maxwellian 

f N°(d 3 )db3 = N G(v3
)dv 3 = 	'2 

211 	ms 
v 
3 	' 
2
/kT) 1/2  

47 

1 	 1 
exp(-T M s  v 3

2
/kT)d(-T M s  v 3

2
/kT) 	 (B17) 

appropriate td thermodynamic equilibrium between 3 and the (1-2) center-of-

mass. Hence, 

exp(-E i /kT)v 31  G(v3 )dv 3  = 	Ms/kT)
1/2 

exp(-E/kT)d(E/kT) 
	

(B18) 

where the total (conserved) energy of the system is 
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(B19) 

From (B13) and (B15), 

ki (R,E i ) G(v 3 )dv 3 	2 	a 1 /2 m  

RAB 	
v 1v3 	(kT) 2  

exp(-E/kT) d(E/kT) 	 (B20) 

so that the equilibrium collisional (E i -} E f ) rate (B14) for general a(P) is 

P
+ 

Wf ) (R) = 2a1/2MN
2  fc° 

exp(-E/kT) d(E/kT) f a(P)dp  
M
13

(kT) 	E
o 	

P -  
(B21 ) 

where E 0  is max(E i ,E f ). Since 13 , of (B9) is symmetric with respect to pre and 

post collision speeds, C if  is also symmetric thereby satisfying required 

detailed balance. For hard-sphere scattering, a(P) = a 0 /47, and the inner 

integral in (B21) is simply (P +-P)a 0/47; and (B21) then agrees with Eq. (32) 

of ref. (11), for Coulomb scattering (B15), the inner integrand of (B21) is 

4 4 	2 	-3 
e m 13  (P -P

-3 
 ). 

The frequencies 
if  and rates C if  are pure functions only of the initial 

1 	 1 	, 2 
and final kinetic energies T i  = -2- Mv i

2 	
2 and Tf  = - Mv, ; and the R-dependence 

in (B21) arises via the (1-2) interaction V(R) in T i  = E i  - V(R) and Tf  = E f  - 

V(R) for fixed E i  and E f . 

CASE (2); a(g):  When the (1-3) differential cross section is taken as the 

orbiting cross section, 

a(g) = (ae2/4M13g2) 1/2 : Big 	
(B22) 

appropriate to polarization attraction (-ae 2/2R 4 ) followed by core repulsion then, on 

integrating (B5) over 4', 
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(2), R N v . 	k ) = ( 7/V 1  )N f 
co 

 V -1  G(V3)dV3 1_ ga(g)dg/S(v i ,v 3 ,g) (B23) 

vo 

for isotropic (1-3) cross sections a (g), in general. 

On adopting the Maxwellian distribution (B17) for G, the equilibrium collisional 

rate (B14) for this second case is therefore 

C (2) 
 
(R) (R) = [2a

1/2 
 MN/(kT)

2
] 5 exp(-E/kT)d(E/kT) $ ga(g)dg/S(v 1 ,v 3 ,g) 	(B24) 

E 	 g- 
0 

For polarization attraction (B22), the inner integral yields 

g 	 B(l+a) 	-1 + 	 1 
B f dg/S = 	[sin (g /A) - sin -  (g -/A)] 

g M13a
1/2 

 

where 

A
2
(v 1 ,v 3 ) = (1+a)(v 1

2
+av 3

2 )/a 

Since 

2 sin
-1 

x
1/2 

= 1 7 — sin
-1 
 (1-2x), 2 

(B25) 

(B26) 

(B27) 

v 
the result of Bates and Mendas

8 
 for k if, the averaged energy-change rate (B2) 

per AB-pair, is recovered. 

CASE (3); Charge-Transfer:  On assuming that the cross section ax  for 

symmetrical resonance charge transfer 

X
+ 

+ X 	X + X
+ 	

(B28) 
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is independent of the speed g of relative motion as at low energies, then the 

angular integrations of (B14) yield simply, 

d(cose 3 ) 
012+%/2_2v 

1

/ 	x  
v cose ) 2  Q d(cose 3 ) f 	x 	

1 

47 	 [ga (g,i0d(costp)do]d. 	[ 
3 = 2 	1 3 	3 	3 

(4)4,4)3) 

1+1/2 , 	2 	1/ 
= 	 iv

2
-01 1

+2E/M
1
)] ' 2  Q-Y 

 
dE/(2M

1
v
1
v
3

) 

where QX  is the integral cross section for charge transfer, where 

c = M
1
/M

2 

(B29) 

(B30) 

for (1 -3) collisions and where C = E f  - E i  is the energy change. The 

frequency of i 4- f collisional transitions at (1-2) separation R is therefore, 

v ) (R)  . (1+1 3/2 	NQx 
f 

v 1 Giv  ) rv _ 1v 2+2 ,.. /m  
if c 	2M v 	3 	̀ 3' 	3 	1 1 1 v - 

where the limits to v 3  for a specified energy change E at given speed v l  are
10 

v--(v 1 ;6) = (1+c) [v 1  + 2 iM 1 (1+c)] 1/2 + c v 1 	 (B32) 

and originate from the assumption that the (1-3) collision (B28) simply 

interchanges 	and ,‘,/,3 . On adopting the Maxwellian distribution, (B31) can be 

rewritten as 

vp 	11+c)3/2 NQ x if)(R) 
	 2Miv i 	 if 

exp(E i ikT) I 	(v
l'  . E. E f  ) 

(B33) 

where 

(B31) 
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E
+ 

I. (vl' E. E
f 	 1+2c 	kT 
) =exp -L

14-1C--)(

E 
 	expEV(R)/(2c+1)kT] 	G(E)dE 	(B34) 

E 

is symmetrical in E i  and E f . The fraction of Maxwell particles with energies 

E in the range E < E < E is 

G(E)dE = [erf(E/kT)
1/2 

- -
2
- (E/kT)

1/2 
exp(-E/kT)] E

E+  

AT. 

where for this case, 

El-  = [c(1+c)/(1+2c)H{Ei-V(R )}
1/2 	{Ef 	v(R)} 1/2 ] 2 

Hence the equilibrium rate for i 	f charge-transfer collisional 

transitions is 

Cif (R) 	
[(1+c)/V/ 3/2 	

N Q /  2  I if (v i ;E i  ,E f ) 
(2rM 12 ) 2 	(kT) 

(B35) 

(B36) 

(B37) 

an algebraic expression which satisfies detailed balance and which yields the 

rate (in ref. 9) for k if , the averaged rate (B2) per AB-pair. 

Computational Equilibrium Rates:  All of these equilibrium rates for the 

above three cases may be conveniently expressed for computational purposes 

in terms of dimensionless units, 

X = - E i /kT, 	u = - E f/kT, 	v(r) = - V(R)/kT 

(B38) 

r = R/R e , 	Re 
= e

2
/kT 

as 
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as 

41 C if(R)R2 dRIdE i lldEf l= raT  F(X,p;Or2  dr dAdu, (cm3  s -1 ) 	(B39) 

in terms of specified mass factors r and the Thomson (low density) rates(see, for 

example, ref. 10). 

= 4 aT  - 	w(Re/B)
3 (3kT/M 12 ) 1/2  ao , = 3/2 	 (B40) 

where a
o 

is the integral cross section for (1-3) collisions at relative energy 

3 
y kT• 	The appropriate mass factors r in (B39) and cross sections a

o 
in (B40) are 

H (3)1/2(9 	
o 	0 

	

( 1, a) 	(m1 

	

a 	• 	a - a 

r  = -2- 	1' 	a 3/2 	I 
for hard-sphere (1-3) collisions with integral cross section a

o 
, 

C 	3a 	 c 	1 	2 
r =  7777.7 r 	; ao = ao = 	Re 

(B41) 

(B42) 

for Coulomb (1-3) collisions with integral cross section a o c  which corresponds 

to Coulomb scattering by angles * > w/2, and to energy transfers e (3/2)kT 

for equal mass species. For (1-3) polarization attraction/core repulsion; 

= 111(g11 (1+a)5/2 (M112 
2 	Tr 	a

a/ 	Ff-- ) 	a o  = 	= 2w(aRe/3) 1/2  

2 
(B43) 

and a
o
P  adopted in Thomson's rate (B40) is the corresponding integral (elastic 

or momentum transfer) collisional cross section at (3/2)kT relative energy. 

For (1-3) charge-transfer collisions, 

rx =3  11/2 (1 ( 
1+c 
 13/2 

; a = 2Qx 
 0 

(B44)  

where a o in (B46) is the corresponding momentum-transfer cross section, taken 

as twice the cross section Q
x 

for charge transfer 4
3 
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The corresponding dimensionless functions F in (B39) are symmetric in A 

and u and are 

F
H
(A,p;r) = f exp(-Y)dY 	- P_]; Yo  = max( -x, -u) 

	
(B45) 

Y 
 

for hard-sphere (1-3) collisions with (dimensionless) momentum-change limits 

75 4.  > F .. , given by 

)1(X,u;r) = max il  

and 

= min 

[  D(r) 

[Lv(r) 

xi1/2 
	- 
	[v(0 _ 11] 1/2 

xi 1/2 	[v(6 _ 11] 1/2 

a 1/2 E(y+x) 1/2_ (y4.0 1/2 1 ] 

a 1/2 uy+x) 1/2 	(y+0 1/2]] 

(B46) 

Also 

	

Fc (X,u;r) = 	exp(-Y)dY 	- P':3 ] 	 (B47) 
Y 
0 

for Coulomb (1-3) collisions. 

For polarization (1-3) collisions, 

F P (x,p;r) = 5 exp(-Y)dY [sin
-1 

 (G 2/A) - sin
-1 

 (G 1  /A)] 
	

(B48) 

0 

where 

G1(x,u;r) 
	max[1(y+x)1/2 - a 1/2 [v(r)-x] 1/2 1;1  " 4.0 1/2 	a1/2 [v(0 _11] 1/2 1 1 

ij 

(B49) 

G 
2  (x " 

	

11.6 = min l(y4.0 1/2 	a1/2 [v(r) _x] 1/2 ; (y4.) 1/2 4. a 1/2 [v(r) _11] 1/21 
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and 

A = (1+a)
1/2 

[v(r) + Y]
1/2 

For charge-transfer (1-3) collisions 

Fx (X,u;r) = exp(1: c ) (x+u) 	erf g - g exp(-g 2 )Y9+  
g_ 

(B50)  

(B51) 

where 

2 	 c(1+c)  

g ± (A ' P ' r)  - (1+2c) [[v(r)-x]
1/2  + [v(6-0 1/2 2  ] 	 (B52) 

The universal expression (B39) is also valuable in that the one-way 

equilibrium rate across an arbitrary bound level v = - E/kT is simply 

v 	w 
aeq = r a

T 
f dA f F(X,Ocip 

v 

where w = - D/kT is the maximum binding energy in units of (kT) and where 

r 

F(A,p) = f F(A,p;r)r
2 

dr , r
m 

= 1/max(A,4) 
0 

(B53) 

(B54) 

This equilibrium collisional rate displays ' 11  a minimum at v *  = (1-3)kT, 

the location of a bottleneck.
28 

Moreover, the non-equilibrium association/dissociation rate (6.3) 

reduces simply to 

v w D  
aA  = raT 	dAf LP (A) - P D (u)] F(A,u)du 	 (B55) 

-03 
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where P
D
(A) is the net probability of collisional dissociation of pairs with 

energy (-AkT). Eq. (B55) with v = 0 provides the loss rate (6.17) from the 

continuum (block C); and provides, with v = -S/kT = e, the growth rate (6.15) 

of block S, and with arbitrary v in the block E, (0 4 v < E), provides the 

association rate (6.23) under quasi-steady-state conditions in block E. 

Also various energy-change monents, 

D(m)(Ei) = 1 	f (Ef  - E i ) mC ifdE f 	 (B56) 
-D 

useful in a Fokker-Planck analysis 43 of the collision term (2.1b) of the main 

text and expressed simply as 

D i m (E i ) = ra(kT) m-1 (-1) mDi (m) (A) 

where the dimensionless moments 

w DC m) (A) mi f ( 1.1-A) m F(A,p)dp 
-03 

(B57) 

(B58) 

are easily determined 28  on using the relevant expression, (B45), (B47), (B48) 

or (B51), appropriate to the chosen interaction between AB and the gas 

species. 

00 
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Figure Captions  

Fig. 1. Assignment of the fully dissociated block C of free A + B pairs, of 

the fully-associated block S of bound (A-B) pairs and the block E of 

pairs in highly excited bound levels. 

Fig. 2. Ratio of the association rate RA (a*,b,c), eq. (7.13) to the exact 

QSS-rate, eq. (7.14) over variational parameters x*, b and c. 

Fig. 3. Association and Dissociation Probabilities PA,D (x) as a function of 

depth into the energy well. For Ei — 10 ko, where 0 is gas 

temperature, PA is almost unity and PD is negligible. 	 EXACT

—  QSS; , 	 Variational Functions with x *  = 1.25 

and with the set (b,c) equal to (0,0), (0.20,0) and (0.20,-0.006) 

respectively. 

Fig. 4. First Derivative (dP
A
/dx) of association probabilities, corresponding 

to curves of Fig. 3. The minima of the exact QSS and Variational 

functions result in identical locations. 
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Appendix B 

Diffusional Theory of Association/Dissociation 

Non-Equilibrium Processes for General Systems 



Diffusional Theory of Association/Dissociation Non-Equilibrium 
Processes for General Systems 

M. R. Flannery, 
School of Physics, 

Georgia Institute of Technology 
Atlanta, Georgia, 30332, U.S.A. 

Abstract:  Upon re-examination of the foundations of the diffusional treatment 

of association/dissociation processes involving a non-equilibrium distribution 

of (A-B) pairs in a gas M, it is shown that highly accurate results may be 

obtained for general mass systems  provided a new and more basic expression for 

the time-dependent association/dissociation rates RA,D (t) is introduced. 

These rates RA,D (t) are derived here in terms of the probability P i.‘' D (E.) that 

(A-B) pairs with internal energy E i  has associative/dissociative character and 

are obtained without  appeal to the quasi-steady-state (QSS) condition for 

highly excited levels E i . Then association and dissociation can be treated in 

a unified way and evolution towards equilibrium with the gas is naturally 

achieved. Comparison is made between the exact probabilities P.A,D  obtained 

from the QSS-condition to the Exact input-output Master Equation and those 

obtained from the derived diffusional equation. R A,D (t) reduces to the 

constant-in-energy current J(t) through the excited levels only for exact QSS  

of the Master Equation.  When approximate probabilities are adopted, 

identificiation of RA,D (t) with J(t) is not justified. The basic expression 

introduced here for R A,D (t) is appropriate for both exact and approximate 

(diffusional) probabilities and yields excellent results for ion-ion 

recombination in a dilute gas over the full range of masses of the species 

involved and over various classes of ion-neutral interaction (polarization, 

hard-sphere and charge-transfer). 

PACS: 34.10X, 34.50.Lf., 82.20.Mj• 
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1. Introduction  

The picture of recombination and of association/dissociation processes 

involving subsystems (A-B) in a thermal bath of dilute gas M as occurring via 

diffusion in energy-space has stimulated 1-7  a great deal of interest, in 

principle valuable to elucidation of many examples of laser-induced plasmas, 

decay, of reaction processes in flames, of shock wave propagation etc. In a 

classic paper, Pitaevskii l  derived a rather elegant analytical result, which 

because of its inherent simplicity over more sophisticated and therefore time-

consuming procedures based on a collisional input-output Master Equation8- 10 

has been applied to situations 3-5 , other than to electron-ion recombination 1 ' 7 

 for which it was originally intended. Bates 11  has pointed out that of the 

several different classical diffusion models of electron-ion recombination, 

the correct model is that of Pitaevskii. 1  Moreover, the formula of Pitaevskii 

can be reproduced 12  exactly by Thomson-style arguments. In spite of its 

attractive features, the diffusion picture as formulated 1-6  achieved 

remarkably disappointing results for heavy-particle ion-ion recombination 3-6 , 

or for any atom-atom association process, in a gas. 

Apart from recognition that diffusion methods (based on a Fokker-Planck 

reduction of the input-output collisional integral) are likely to be valid 

only when the collisional energy changes are small, the basic intrinsic defect 

for application of the Pitaevskii expression to general mass systems remains 

undetected. Moreover, that a much less sophisticated "bottleneck" model" 

achieved much closer agreement 10 with the exact results of the Master 

Equation 8-1°  for ion-ion recombination presents a puzzle. 

On examination in this paper of the foundation of the diffusion approach 

in a new light, the basic defect in the treatment becomes apparent. In §2, 

A,D 
probabilities. P 1 	for association/dissociation of pairs (A-B) with internal 

1 



energy Ei are introduced and an expression for the time-dependent current 

Ji(Ei,t) is developed. In §3.1, a Fokker-Planck (FP) analysis of the 

collision integral and current Ji is performed consistently to fourth-order 

and useful relationships between the various energy-change moments are 

established. In §3.2, the diffusion approach, based on a second-order FP- 

analysis, is shown to provide accurate probabilities P.
A,0 

 for general systems 

but inaccurate heavy-particle currents from which previous rates were 

obtained. 2-6  A new expression for the time-dependent rates R A,D (t) under all 

conditions is developed in §4 in terms of P.
A,D 

 . These rates obtained with 

diffusional e' D  will then be compared with exact rates 10,15  for the benchmark 

case of ion-ion recombination in a gas for various masses and ion-gas 

interactions. 

As initiated in ref (14), the analysis here so describes the time 

evolution from a non-equilibrium distribution of (A-B) pairs with a thermal 

bath of gas M towards full thermodynamic equilibrium that association and 

dissociation are treated in a unified way and that general expressions for the 

rates of association/dissociation are obtained without  appeal to the quasi-

steady-state condition 1-10 for highly excited levels of the (A-B) pair. 

2. Master Equation and Quasi-Steady-State Rates  

The collisional input-output Master Equation 2  ' 4,8-1 ° that governs the 

distribution ni(Ei,t)dE i  for the density (cm -3 ) of subsystems AB with internal 

energy Ei in the interval dEi about Ei can be written as, 14  

03 

3 
at 	 E. 

n i (E i ,t) = - -D 
	 1 	

1 , 
 f Sif (t)dE f 	J i (E i ,t) t) 

a 	1‘ 
 

(2.1) 

where the net two level input-output collisional rate of depletion of energy 

level E. is 

2 



S
if

(t) = n i
(Et)v

if
(EE

f
) - n

f
(E

f'
t)v

fi
(E

f'
E i ) = -S fi (t) 
	

(2.2) 

in terms of v
if

,  dEf' the frequency (s -1 ) for i + f transitions which change the 

energy Ei to between Ef and Ef + dEf by collision of the (A-B) pair with the 

gas M. The energy of the lowest bound level of the AB pair is -D with respect 

to the dissociation limit, taken as zero energy. The separation between the 

energy levels of AB is sufficiently small in comparison to the thermal energy 

(kT) of the bath species M that the levels form a quasi-continuum. Thus J i  in 

(2.1) is the net upward current (in energy space) past energy level Ei. Since 

Ji vanishes as Ei + ... and -D, it is therefore determined either by the 

integral expression, 

. . 	. 	 . 	E i 

	

J i (E i ,t) = 
E. 1 
f dE. 

-D 
f S fi (t)dE f  = f 	

1 
dE. - 
	' f Sfi(t)d
Ef 

Ei 
 

(2.3) 

with the aid of the null effect, S if  + Sfi  = 0, of collisions, or by the 

equivalent expression, 

	

E. 	 E. 

	

1 	 1 
J i (E i ,t) = f dE. f S if (t)dE f  = f dE i  f S if (t)dE f  

-D 	1  -D 	 -D 	E. 
1 

(2.4) 

since the currents past the end points (-D, Go) vanish. 

Subdivide the range (-D + c) of internal energy into three blocks 14 ; the 

continuum block C in which the pairs (A+B) are fully dissociated, the 

intermediate block E of highly excited bound levels of (A-B) between the 

dissociation limit at zero energy and a lower bound level -S, and the lowest 

(sink) block S composed of tightly bound levels between -S and -D where the 

pairs AB are fully associated. The level -S is sufficiently deep that the net 

3 



.. 	o 
= - J(0,t) = f dE i  f S 4f (t)dE f  

o 	-D 
(2.6) R

c (t) = - at 

an
c (t) 

probability of direct dissociation by collision with the thermal bath is 

negligible. In practice, level -S arises quite naturally from the collisional 

mechanics via the cut-off effect of the Maxwellian distribution of the gas 

bath at temperature T and generally lies — 10 kT below the dissociation limit 

(cf. Fig 3 of §3). 

The net rate of depletion of dissociated species (A+B) with density 

(cm -3 ), 

n
c
(t) = f n

i
(E

i
,t)dE

1i 
 o 

(2.5) 

in block C (0 4 E i  4 09) is simply 

the downward current past the dissociation neck. The net rate of increase in 

the density (cm-3 ) 

-S 
n
s
(t) = f n(E.,t)dE

i  -D 	' 	1  (2.7) 

of pairs considered to be fully associated in block S with energy Ei in the 

range, -S < E i  < -D is 

an (t) 	 . 	. 
R s (t) - 	

at 
	= -J(-S,t) = f dE

i 
 f S (t)dEf  

	

_ s 	f 	if _D   

the net downward current past level -S. 

Since the system is considered to be closed 

(2.8) 
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an ;  

	

R c (t) = R s (t) + f 	 (2.9) 

	

-S 	 A 
Introduce, as in ref. 14, the time-independent probability P(E) that 

(A-B) pairs with energy E i  are considered as associated, then the overall rate 

for association is 

an 
i 	

o 	an. 
RA (t) 	

-
p P.A  (E.)( di.77--)dE i  = R s (t) + 

-S 
 f P

A
, (2.10) 

sinceOis unity in block S and is zero in block C. The overall rate for 

dissociation is similarly, 

an. 	 o 	an. 
R D (t) = 

-D
f R i (E i )( aEL)dE i  = - Rc (t) + 

-S 
 f P 4

0
(,-7T--)dE i  (2.11) 

whereP.(E.),theprobabilitythat(A-B)pairswithenergy. El  are considered 

as dissociated, is unity in block C and zero in block S. 

In terms of the one-way equilibrium rate 

C. 	= 71.v. 	= C if 	lf 	fi (2.12) 

where n. dE i 
is the (time independent) equilibrium number density of AB pairs 

in the energy interval dE i  about E i , and of the normalized distribution, 

	

y i (E i ,t) = 	 (2.13) 

then (2.2) yields 

	

S i ft) = Ey i (t) 	Yf(t)]C if  = -S fi (t) 
	

2.14 
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with the aid of detailed balance (2.12). The Master Equation (2.1) is then 

an.. 	 aJ. i 
at 

 i 
- 

-D
f CY (t) - y i (t)]C ifdE f 	Tr; 

 f  
(2.15) 

Assume that the energy distribution of pairs in the Continuum block C and 

the Sink block S is Maxwellian i.e. 

y 
c 	

i 
(t),E>0 

y i (E i ,t) = { y(t) 	, -S > E. > -D 
1 

(2.16) 

are pure functions of time t which tend to unity as t + .... 

The non-equilibrium energy distribution of pairs in the intermediate 

block E of excited levels is therefore separable in energy and time according 

to the ansatz 14 , 

D  
y

1
(E

1
,t) = P.(E.)y (t) + P.

A 
 (E.)y (t) 

t + 00 
1 	1 	c 	1 	s 

> 	1 	(2.17) 

where P E.)  is the probability that state i is coupled to the continuum i.e. p9 i 	 i 

istheprobabilityofdissociation,andwhereP.A  is the probability that state P
A 

i is coupled to the sink i.e. 1 3/: is the probability of association. Thus 

(PI.‘ + P) is unity at all times since y 
c,s(t 

 + .3) and 1.(t + 00) all tend to 
i   

unity when full thermodynamic equlibrium with the gas M is established. Hence 

(2.15) can be conveniently separated in E i  and t according to 

an i (E i ,t) 	 . 
at 	= - cyc (t) - ys (t)] _JD  (P fA  - P i

A  
)C ifdE f 	(2.18a) 

ce   
= Ey

c
(0 - y (t)] f (P

D 
 - P.

D  

	

if
)C dE

f 	
(2.18b) 

s 	_D 	i  
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and the time-dependent current (2.3) or (2.4) separates as 

J i (E i ,t) = [yc (t) - y s (t)]j i (E i ) 	 (2.19) 

where the time-independent fraction of the current down the energy ladder is 

E. 	 E . 	co 

	

-j i (E i ) = E 
	-D 
f dE 	f (PfA 	

-D 	E
- P')C ifdE f  = f dE i  f (P fD  -P i D  )C ifdEf  i  

Hence 	' 

(2.20) 

aj 
- Cyc (t) - Y s (t)E-711) 	 (2.21) 

2.1 Quasi-steady-state (QSS) Rates  

As has previously been shown 14 , the association/dissociation rates 

RA,D (t) achieve extrema R.11D (t) when the number densities n i  in block E are in 

quasi-steady-state (QSS) i.e. an./at - 0 in E. The rate R* is a minimum 14 

 when the net direction is association (as in relaxation of a fully dissociated 

plasma). The minimum association rate in terms of the effective two-body 

(constant) rate a (cm 3 s -1 ) for association between A and B with densities 

NA,B (t) at time t and of the frequency k(s -1 ) of dissociation of S-pairs with 

density n s (t) is 

A 
R,(t) = aNA (t)NB (t) - kn s (t) = R s (t) = Rc (t) (2.22) 

which, by (2.10), is therefore equal to the rate R s (t) for production of 

S-pairs or the rate R c (t) for loss of C-pairs. Hence the required 

coefficient a is determined from either 

-S 
aNA (t)NB ( -0[1-r(t)] = f dE. f Sif (t)dE f = -J(-S,t) 

-S 	1  -D 
(2.23a) 

an. 

at 

7 



with the aid of (2.3), or from 

0 
aNA (t)NB (t)[1-r(t)] = f dE

i 
f S if (t)dE f = -J(0,t) 

o 	-D 
(2.23b) 

where a measure of the departure of the densities NAB  and n s  from their 

corresponding values NA ,B  and Ws  for full thermodynamic equilibrium with the 

gas M is provided by the factor, 

r(t) = CRA.NB /NA (t)NB (t)][n s (t)/; s ] 	 (2.24) 

The dissociation frequency constant k in (2.22) automatically satisfies 

the detailed balance relation 

k171
s 

= aR
A
N
B 
	 (2.25) 

which satisfies (2.22) when equilibrium (r = 1) is established so that the net 

rate R*
A  
(t) vanishes. 

Under the ansatz (2.17), (2.23) and (2.25) with the aid of (2.20) yield 

the constants 

aRA  RB  =[ f dE i  f P
A
f if  C dE f  ] = - j(0) 

	

o 	-D 

which uniquely identifies P f
A  
 as the association probability, and 

	

-S 	D  
kW = 	

-D 
f dE i - f P fC ifdE f ] 	- j(-S) 

(2.26) 

(2.27) 

which similarly identifies P pf  as the dissociation probability. Under QSS for 
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level Ei in block E, (2.21) shows that 

aN
A
NB = - j(0) = - j i (E i ) = -j(-S) = kii. 

 s 
	 (2.28) 

so that the constants a and k are simply determined by the current (2.20) past 

arbitary level Ei in block E. Under QSS of block E, the probabilities P ili ' D  

in the currents (2.20), (2.26) and (2.27) must satisfy the integral equation 

m 	 w 
A, 	 A D PD . 	f C. dE = f P ' C. dE 

PA 'D  f 	f 	if f 
-D 	 -S 

(2.29) 

the QSS-condition, obtained from (2.18) and solved subject to the constraints 

1 
that P

A  . is zero in block C (0 4 E. < co), and is unity in block S 
1  

( -S ) E
i 	 i 

) -D). Also P.
D  

is unity and zero in C and S, respectively. 

It is now the aim to find simple analytical approximate expressions for 

both P i
A,D 

 and ji by converting in §3 from an integral representation as (2.1) 

or (2.18) to a differential representation, and then to raise and resolve the 

question (in §4) whether or not (2.28) is the correct expression which has 

alwaysbeenasswed 1-6 whenapproximaterobabilitiesO' D are involved, PA ' D 

 than the exact solutions of the integral equation (2.29) - the exact 

QSS condition which yields (2.28) exactly. 

3. Fokker-Planck Reduction  

The conversion of the integral operator in (2.18) into a differential 

operator is achieved by a Fokker-Planck analysis l  useful when the collision 

kernel Cif favors small energy changes. Here the current J i  in (2.18) is 

determined to fourth-order, rather than to the customary second order2. 

9 



3.1 Fokker-Planck Current to Fourth-Order in Enery-Change Moments  

On introduction of an arbitary but well-behaved function t i (E i ) whose 

derivatives vanish at the end-points [00, -D], then, with the aid of (2.18), 

	

3n. 	. 	. 

-D 

	

f 4i 
°i 

	

-D 
dE i  = f yi 	

-D
f dE i 	(4)

f - 0 i
)C

if
dE

f 

On expanding the difference 

  ant i   
t - t. = 1 L (E -E.) n r 	1  
f 	i 	n! 	f i 	'

aE
n J 

n=1 
i 

(3.1) 

(3.2) 

as a function of energy change (Ef-Ei), assumed small, and upon integration by 

parts under the explicit recognition that (a n t i /tE rl ) + 0 for n) 1 as Ei + 

[., -D], then (3.1) can be expressed as 

03 	an 	 00 	aJ. 

	

1 	 1 f 4, 4  -,-t- dE i  = [J 4 t 4 ] 	f 4, 4  ,---, 
dEi 

(3.3) 

to give the following expression for the current, 

CO 

J i (E i ,t) = 	(-1) n  
n=0 

a n ( ,. D. (n+1) )  

aE. 
1 

(3.4) 

where the energy change moments 2-4 of the collision kernel C if for one-way 

(i + f) equilibrium collision rates (2.2) are 

, . )(E. m
1 

. 
Dcm 	 7 (E, - EomcifdE f  i 	i 	_ D 	1 (3.5) 

10 



Evaluation of these moments can be facilitated by adopting the 

expressions for C if  which corresponds to various A-M and B-M binary 

interactions (symmetrical resonance charge-transfer 8- 1° , hard-spherel°, 

polarization 15 , coulombic 14) which are presented in universal form in Appendix B 

of ref. 14. These moments are normalized 14 to the quantity (-1)
m
raT (kT)

m-1 

where a
T 

is the Thomson rate 14 , where ris a mass factor 14  which depends on the 

interaction involved (see Appendix B, ref. 14), and where T is the temperature 

of the gas bath. 

The frequency of all collisions for an equilibrium distribution of E. 1 .- 

pairsis and 2D.
(2) 

 /D.
(0) 
 are respectively the averaged energy- 

change <AE.> and the average energy change squared <AE.
2  
> per collision with 

the gas. Figs. 1(a,b) illustrate the general trend of these moments 

calculated here for the specific case 5  ' 1°  where internal-energy changes in an 

ion pair (X -1--X - ) are due to symmetrical resonance charge-transfer (e-X) 

collisions. In this case, the velocity vectors of the (fast) ion X +  and the 

(thermal) neutral X are interchanged. Large transfers of energy are therefore 

involved, as is confirmed by D.
(2) 

 , the averaged energy-change squared 

2 
<AE.> per second shown in Fig. 1(a). This case will therefore provide a most 

stringent test for the weak-collision (diffusion) procedures studied here. 

As the binding x = -E i /kT, in units of the thermal energy kT of the gas, 

increases from the dissociation limit (at zero), the equilibrium number l ° 

(— A
-5/2

exp xdx) of levels in the range dx about X decreases from a large 

value, reaches a minimum at x* = 2.5 and then increases exponentially. Since 

the energy change frequency v if  for each pair decreases rapidly with increase 

of binding, the overall shapes of the equilibrium moments Di m)  in Figs. la,b 

can therefore be explained. Note that the equilibrium collisional frequency 

DP )  is relatively constant in the range (1.8-4) kT of binding. Also the 

11 



frequency D.
(0) 
 of energy-change is negative for binding energies 

= (-E i /kT) 4 1.4 = A* , i.e. these pairs become less tightly bound upon 

collision and pairs with binding A 	1.4 kT become more tightly bound upon 

collision (when Dr 1)  > 0). This critical binding energy specifies the 

location at A* of a bottleneck, which separates the region A 4 A* where 

excitation dominates from the region A 	A* where de-excitation is prevalent. 

Note also that the even moments D(in) display minima which become sharper with 

increase of m, as expected, and that the minimum in D i
(2) 

 coincides with the 

( 
zero of D.

1) 
 at A*, as clearly shown in Fig. lb. As we go deeper into the 

well, D i /D o , the averaged energy-change per collision and D2/Do , the averaged 

energy-change squared per collision tend to increase linearly with energy 

depth (Fig. lb). These features are quite general for the various ion-neutral 

interactions and can be exploited here. 

Figs. (2a,b) illustrate the variation of inverses of the even moments 

DC 2) andDY°  for different interactions 14  of A and B with M (charge-transfer 

CX,hard-spahereliS,andpolarization1W.Thebottleneckto[Poccurs 

roughly in the same location (— 1.25 kT) for all the interactions, and the 

energy-change squared per sec is greatest for the charge-transfer interaction 

and weakest for the polarization attraction, as expected. The 

( 
moment D.

4) 
 exhibits similar but more amplified behavior. 

Since C if  is symmetrical in i and f - the detailed-balance relation 

(2.12) - then Cif , when expressed as a function of the energy-mean 

(E f  + E i ) and the energy-change A = E f -E i , is such that 2  C if  = 

C if  (E,1,61). On expanding Cif about Ei in terms of the expansion parameter 

A, which is assumed small, then 

co 
1 	 x.. 	

n 
1 	/ 

2 
A ne

anc
i, 

	

C
if

(E = E . + 7 A, 1A1) = L 	F k --) l----171 ) . 
n=0 	 aE. 1 

(3.6) 
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where C i  is Cif(E  =Ei , Al).I 	The moments (3.5) are therefore determined 

from, 

odd 	
anF(m+n) 

	

m!D m) (E 1.) = 	
1 	(2

n 
 n!)

-1 
 [ 	

1n 	] ; m odd, 1  
n=1,3,5, 	 aE. 1 

even 	 a n F  (m+n) 

	

. 	1 	(2nn!) -1  [ 	
.; 
' 	 ] ; m even, 

n=0,2,4, 	 3E
i
n 

 

(3.7a) 

(3.7b) 

which involves only the terms 

co ( 
F

s)
i 	

(E
i
) = 	f As C i (E i' 1A0dE f 

-D 
(3 .8) 

with s-even, since -D is effectively infinite (— 5 eV) for the excited states 

i in the range 0 ) E i  ) (10-20)kT of interest (cf. Fig. 3a, below). 

In equilibrium, y i  in (3.4) is unity and the current can then be 

expressed, with the aid of (3.7), as 

co 	n  an

Din 

(n+1) 
even 	even 

1 U. = 1 (-1)"r 	' 	] - 1 	1 	(n-2j)[2j+1 (n+2)10+1)!] -1  
 n=0 	aE.1 	n=0,2, j=0,2 

a j+n+1 F  (j+n+2) 1 
(3.9) 

a.Ej+n+1  1 

This new form clearly shows that the coefficient of its first term 

aF. 
(2)

E  i , /a 	which arises from the leading term of the expansion (3.7) for both 1  

13 



1)1) andaDc 2) /aE i ,is identically zero. The coefficient of the second term 1  

a 3 F 4) /aq, which is the net balance of the second term in the expansion (3.7) 
1 

forbothiPanclaD
I
P ) /aE i arid of the leading term in the expansion (3.7) for i  

both a2Di3)/a 1 
	1 	1
andaVI) /a0

'  is also zero. The leading non-vanishing 

contribution to (3.9) is a 5 Fi 6) /aE5 ] which is the net balance of the 
( 

thircItermintheexpansion(3.7)forbothp.
1) 
 and aD.

(2) 
 /aE. and of the 

second terms in the expansion (3.7) for both a 2 
 D.
(3) 

 /aE. and a
3 
 D.
(4) 

 /aE.
4 

 . 
1 	1 	1 	1 

Thecchsistehtheglectofa4 ID.(5) /aE.4  —a5 F.(6) /aE.
5  
 and higher-order derivatives 

demands both the neglect in (3.4) of terms with n > 4 and the neglect in 

(3.7a) and (3.7b) of terms with n > 5 and n > 4, respectively. Hence, the 

equilibrium current 

I. Di(1) 	ap(2),, E. 	a2D (3),, E2 	, D (4) 1aE3 a 0
-  " 	I° 	° 	' 
	

(3.10) 

is exact to fourth-order in the moments and is identically zero! 

Relationships between even and odd moments can be obtained from (3.7) by 

neglecting F.
(6) 
 and higher terms, i.e. D (5) and higher moments, to give 

a 2 D (4) 
D(1) 	a 	rn (2) u. 	= --- Li, 	1  

] 1 	aE. 	1 	2 1 	 aE. 
1 

(3) 	a 	( 4 ) D i  = 2—aE. D
i 

which also ensure zero equilibrium current. In view of (3.11) note that 

equilibrium (Ji  = 0) is obtained only when the current (3.4) is expanded to 

even order. 

With the aid of (3.10), the non-equilibrium current (3.4) to fourth order 

in moments IP°  is 

14 



(4) 
aDC3) 	a

2 
 D.
(4) 	

ayi 	 aD. 	a 2  Y. 
JC 4) (E. t) = - [DC 2 I

\ 
 - 2 	1 	+ 3 	1  ](---) + [DC 3)  - 3 	1—](---t) 

1 	l' 	1 	aE. 	 1 E . 

	

1 	aE
2 	aEi 	 1 	DE. 1 	 1 

„ 
(4) ° Yi 

- D 	

3

i 
aE i  

(3.12) 

which is the differential representation (up to and including the fourth-order 

moment D.
(4) 

 ) of the double integral 

E. 1 
J

i
(E

i
,t) = 1 dE.

1 
 f [yf (t) - Y i WiCifdEf  

E. 	-D 
1 

(3.13) 

for the exact current (2.3). The differential form (3.12) can be called the 

Fokker -Planck current to fourth -order since the general Fokker- Planck 

expansion can be employed for any variable whose changes are small in 

comparison with averaged characteristic values e.g. the collisional energy 

change A here is assumed small relative to the thermal energy kT of the gas 

bath. Changes in vector momentum 2 are in general very large here so that the 

usual Fokker-Planck analysis l  in vector 2-space would not be valid. 

Upon use of the approximations (3.11), which are internally consistent to 

neglect of moments higher than D.
(4) 

 , (3.12) reduces to 

4) 	 , 	 , 
(4) 	

a2 D.( 	a 
2 

(2) 	- 	Yi 	1 	(3) ° Yi 	
3 

J 	(Ei ,t) = - [D. 	- 2 ]( ,E )..Di (____5_.)..Dc lqg-) (3.14) . 

aE. 	" 	 1
aEi  

Inserting the ansatz (2.17) in (3.12), then (2.15) with (3.12) yields 

an.(E.t) 	 aj. 	. (E) , 
at i 	1 	= - CYc (t) - ys (t)] aE.  (3.15) 

where in terms of the probability P. for dissociation, the time independent 
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current to fourth-order is, 

aD (3)  2,(4) 	D 
.(4) 
J i 	(E i ) . - [D

i 
 (2) 	i 	 i 

 - 2 
 aE 	

+ , a u 	api 

. 	' 1 	aE 	](7—) 1 
1 

0(4) 	2 P. D 	 3,D 
+ EDP) _ 3 - i 	a 	(4) 3 r i 

	

aE . 	1 ( 	21 ) 	Di 	( 	 , 	) + ... 

	

1 	aE. 1 	aUf 1 

(3.16) 

For quasi-steady-state (QSS) in block , j i  is constant. When third-

order and higher derivatives of 	are are ignored, a straightforward exercise in 

the solution of the resulting second-order differential equation can be 

performed to provide analytical expressions for P.Ei) , if required. 

3.2 Diffusion Equation and Current  

On ignoring in (3.16) moments D.P )  and higher, the (diffusional) current 

is, 

	

aPP 	
„A 

jd (E i )  = 	D(2)1 	D 1
(2) aE 

ari 
aE. . 

so that (3.15) reduces to 

an.(E.,t) 	 a 	(2) 
aP

i 
at 	= [Yc (t) 	Ys (t)3 aE i  D i 

(3.17) 

(3.18) 

whichisadiffusionequationinenergyspace.ThefrequencyD( 2) at which 

the averaged energy-transferred squared changes under thermodynamic 

equilibrium conditions is the diffusion coefficient (energy 2 s -1 ) in energy 

space. This kind of streaming equation has been previously derived via other 

techniques by Pitaevskii l  for electron-ion recombination under highly non-

equilibrium conditions when y
c 

>> Y
s 

so that y. = P i y C in (2.20), and by Keck 

and Carrier2 for heavy-particle association/dissociation. It has been studied 
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by Landon and Keck 3 , by Mahan 5  and by Bates and Zundi 6  for highly non-

equilibrium (y c  >> yo ) ion-ion recombination. By explicitly including here 

the factor (yc  - y s ) via the ansatz (2.17), eqs. (3.15) and (3.18) for 

all 1c,s  help to emphasize the complete evolution towards thermodynamic 

equilibrium attained when 1 c 	Ys 	1. 

Another advantage of the ansatz (2.17) is that the intermediate block 

of highly excited levels can be taken to be in quasi-steady-state (QSS) i.e. 

3n./at 	0 in either (2.18) or (3.18) for all times.  The QSS-diffusional 

curent (3.17) is constant over E, so that the solution of (3.17) subject to 

condition 

is 

P i (-S) = 0, PA (-S) = 1 

E. 

P
D
(E ) = - j

d 
[ f dE/D

(2)
(E)] = 1 - Pd (E 1 ) 

i 	
-S 

(3.19) 

(3.20) 

where the subscript d denotes quantities associated with the diffusion 

equation (3.18). Various levels of approximate schemes readily follow. 

(A) Since 

P i (0) = 1, 	Pi ( 0) = 1 	 (3.21) 

then (3.20) yields 

0 	f,) 
-J ( P) 	f dE/D'`)(E)] = a PRARB 	 (3.22) 

-S 

for the downward diffusional current which, when compared with (2.28) provides 

the recombination rate a of Pitaevskii 1 used for ion-ion recombination by 
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Landon and Keck 3  and by Mahan. 5  Note that the current (3.22) is proportional 

to the area under the curves in Fig. 2a, and that the association and 

dissociationprobabilitiesP.
A,D 

 atenergy. E l  are proportional to the areas 

which correspond to the energy-ranges (0 	E i ) and (E i 	-S) respectively. 

(B) Rather than requiring (3.21), j d  in (3.20) can be fixed by inserting 

(3.20) into (2.26) for j(0) to give 

E
f 

1 	1 -j( 0 ) = f C fdE f  + j, f dE,C f C f dE./D.(2)  ] 
-D 	 U _D 	_s   (3.23) 

where 

CO 

C f (E f ) = f C if (E i ,EddE i 	 (3.24) 
0 

is the total one-way equilibrium rate for collisional population of a bound 

level E f  from the continuum C. On equating the exact current j(0) in (3.23) 

with the diffusional current jd, then 

E
f  

-' 	

/91 i(k) - 	Cf  dE f  j{1 + 	dE f
C
f
C f dE/D'''(E)11 -1  = a KNA 

-D 	 -D 	-S 
(3.25) 

which yields the expression of Keck 4  for ak . The term in braces, {—}
-1 

is simply the ratio of the downward diffusional current to the one-way 

equilibrium current across the dissociation neck. 

(C) Another possibility in similar vein to (B) is to insert (3.20) into 

(2.27) for j(-S) to give 

0 
j d (-S) 	[ f D fdE f]{1 + f dE fD f [ f dEn

(2)
(E)]1 -1  = a RAMB  

o 	 -S 	-S 
(3.27) 
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where 

-S 
D f (E f ) = f C if

(E,E
f
)dE

i -D 
(3.28) 

is the total one way equilibrium rate for collisional excitation out of 

block S to any level f in blocks E and C. The term in braces, {—} -1  is simply 

the ratio of the upward diffusional current across -S to the one-way 

equilibrium current across -S. 

The feature common to all the above procedures (A)-(C) is that the 

required current (3.17) depends on the accuracy of the gradient (dP
i
/dE

i
) 

which, due to the neglect of higher derivatives in (3.16), is described by the 

diffusion equation (3.18) less precisely than are the actual diffusion QSS-

solutions i.e. (3.18) may furnish accurate P. but relatively inaccurate 

derivatives. More importantly however is that (2.28), which is valid only 

under exact QSS-condition (2.29) of the exact Master Equation, (2.1) or 

(2.18), has been invoked for the diffusional currents 4 1 13)  of (3.22) and 

j
(k) 

of (3.23) which result from the QSS-condition of the different Master 

(diffusional) Equation (3.18). 

The QSS-solution of (3.18) subject to constraints (3.19) and (3.21) is 

1 , 1  
P A (E.) = 	f dE/D (2) (E)1I f dE/D‘'i(E)1 -1  
d 	E. 	 -S 

(3.29) 

for the probability that any level E i  in block E, once accessed by collision, 

has "associative" character. The probability that level Ei has "dissociative" 

character is the complementary function 

E. 
D 

P
d
(E

i
) = { f

1 
 dE/D(2 ') 

(E)11 f dE/D(‘2 ') (E)1
-1 

 -S 	 -S 
(3.30) 
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Thus both functions are constrained to vary monotonically between zero 

and unity as does the exact numerical solution to the integral equation (2.29) 

so that, when compared with the exact numerical values, will involve less 

error than their corresponding derivatives 

t pA,O 
' 1  
3E i 

  
 

1 	1 J 	°id (3.31) 

appropriate to currents (3.22) and (3.25) in schemes (A) and (B) above. 

3.3 Calculations  

The ion-ion (termolecular) recombination process 

X+  + Y-  + M + XY + M 	 (3.32) 

is taken as a benchmark case. The recombination coefficient a has previously 

been represented 9  ' 16  very accurately by the sum 

a = al + a2 
	

(3.33) 

ofcoefficientsa.
1 
 obtained by considering separate contributions from (X+  -Z) 

and (Y- -Z) binary collisions (i = 1 and 2, respectively). The exact numerical 

ratesa.
1 
 are obtained from (2.28) by inserting the exact numerical solution of 

the integral equation (2.29), the QSS-condition into (2.20) for the current 

j i (E i ). The rates a i  have been tabulated 9,10,15  as a function of the mass-

ratio parameter, 

a i  = Mj M3/M i (M 1  + M2  + M3 ) 
	

(3.34) 
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where, Mi  • are the masses of species e, Y -  and M, i = 1,2 and 3 respectively 

and where the set (i,j) is equal to (1,2) or (2,1) depending (1-3) or (2-3) 

collisions, respectively. 

Based on previous analysis 8-10 , universal expressions have been presented 

in Appendix B of ref 14 for the equilibrium rate C if  appropriate to the three 

classes - polarization 15 , charge-transfer 8 ,1°  and hard-sphere l°  - of ion-

neutral interactions, calculations have been performed here for the exact QSS-

rates a
E 
that rise from (1-3) collisions and for the corresponding diffusional 

rates, (3.22) for 	and (3.25) for aK  of Pitaevskii 1  and Keck 4 respectively. 

The exact rates a
E 

reproduce the previous calculations 10,15 , and there is 

little discernable difference between a p  and aK  which now be simply called the 

diffusional rates a
D 
obtained when the diffusional current (3.17) is inserted 

in (2.28). 

Table I provides present values of the ratio a D/aE  for the various 

interactions over the full range of mass parameter a, eq. (3.34) with i=1 and 

2. Small a . 10
-3 

corresponds to collisional recombination of heavy ions 

(M1  . M2  >> M3 ) in a much lighter (electron) gas, intermediate a( = 1/3 for 

M 1  = M2  = M3) corresponds to species of equal mass, and large a - 10 3  for 

M1  « M2  - M3 corresponds to electron-ion recombination in an ambient gas. 

The cases of small and large a involve energy transfers which are very much 

less than the energy kT of the gas so that the diffusional (weak collision) 

approach is likely to be valid. 

As Table I shows, the diffusional rates are reliable, as expected, only 

for recombination in a vanishingly light gas (a . 10 -3 ) or for electron-ion 

recombination (a . 10 3 ) in a general gas, the case for which Pitaevskiil 

designed his diffusional treatment. The diffusional rates are higher by 
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between a factor of 3-6 for intermediate a — 1. As the ion-neutral 

interaction varies from polarization attraction, to hard-sphere repulsion and 

to charge-transfer interaction, the energy-change in the ion-neutral collision 

becomes progressively larger (see Fig. 2a,b) so that the diffusional rates 

(based on weak collisions) become less accurate, as shown directly by the 

variation of entries in Table 1 for a specified mass parameter a. 

Since (3.17) predicts zero current in both the fully dissociated and 

fully associated blocks, C and S respectively, the diffusional current (3.17) 

is therefore discontinuous, zero in C, j d  in E and zero in S. The diffusion 

rates (3.22) of Pitaevskii and (3.25) of Keck are therefore expected to be 

valid only in the limit of vanishingly small rates a of association. This is 

true only for the limiting cases in Table 1 of small and large a. Then the 

actual rates a
E 

for electron-ion collisional recombination in a gas and for 

electron-ion recombination in a gas are ?  — 10-9  cm3  s -1  at STP, which are 

three orders of magnitude less that the rate 17  a
E 

— 10-6cm 3s -1  at STP for ion-

ion recombination in an equal mass gas. 

Another reason for failure of the diffusion approach as previously 

applied to general-mass cases is also apparent. As Figs. 3(a,b) show, the 

diffusion equation (3.18) in general furnishes fairly accurate probabilities 

e' D , (3. 29) and (3.30), but less reliable gradients dP i, 	
1

' D/dE.. 
1  

In an effort to distinguish between the requirements of accurate 

distributions P' D  and the integral/differential forms of the collision PA 
 
' D 

 of the Master Equation, assume that the intermediate block E between 

blocks C and S is absent i.e., 

1, -E 4 E i  4 ce 

P
i 

(E
i
) = 	{ 

0, -D 4 E i  4 -E 
(3.35) 
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where -E is some bound energy level. The current (2.25) then reduces to 

-E 

-jBN (-E)  = -E 
f dEi 

-D 
 f C ifdE f  = aBN (E)ffAgB 	 (3.36) 

which is the one-way equilibrium downward current across level -E. As -E is 

varied, this current achieves a minimum l°  at energy -E* (. -2kT) which 

therefore acts as a "bottleneck" 13  to the recombination which proceeds at rate 

a
BN

(E*). The ratio of a
BN 

at the bottleneck E* to the exact numerical rate 

a
E 
is displayed in Table I for the "intermediate" hard-sphere case 10 . The 

bottleneck method fails quite markedly for small and large mass parameters a, 

where by contrast the diffusion current is successful, and becomes much more 

reliable than the diffusion approach at intemediate a (' 1). Since (3.36) 

assumes the least possible knowledge of the probabilities P.
A,D 

 (subject to the 

constraints) but an integral form to the input-output collision dynamics, it 

follows that accurate distributions are essential at small and large a where 

the collision dynamics is weak, so that the discontinuous integral form (2.25) 

does reduce indeed to the continuous streaming form (3.17). For intermediate 

a when the energy-changes are certainly not weak, inclusion of the integral 

form (2.25) is apparently more important than the use of accurate 

distributions (which are constrained to vary between unity and zero at the 

boundaries of block E). 

The closeness exhibited in Fig. 3(a) between the diffusional 

probabilities, (3.29) and (3.30), and the exact numerical probabilities may be 

exploited in two ways. First, an interative procedure 

P
(n+1)

(E.) f 	
r 

= f P n)  (E f )C ifdE f  
_ D  lr  

-S 
(3.37) 
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to the solution of the integral equation (2.29) can be developed by using the 

diffusional analytical probabilities as the starting (n=0) solution. It is 

found here that convergence to within 1% of the exact solution can be in 

general achieved after five iterations, so that accurate rates can then be 

determined from (2.28) and (2.20) since the QSS-condition (2.29) is satisfied. 

Since the diffusional probabilities (3.29) and (3.30) are reasonably 

accurate, a second possibility is to insert them directly into (2.20) to yield 

the rate a from (2.28). This procedure, at first sight attractive, is however 

inconsistent, in that the diffusional probabilities while satisfying quasi-

steady-state (QSS) of the diffusional equation (3.18) in block E, do not 

satisfy the condition (2.29) for QSS of the Master Equation (2.18). The 

resulting current (2.20) will therefore not be a constant in block E. This is 

demonstrated by Fig. 4 which compares the exact downward current -jE(Ei) past 

level E-1  obtained from the solution of (2.29) in (2.20) with the approximate 

downward current -j A (E i ) obtained by inserting (3.29) in (2.20). Not only is 

the approximate current past the bound levels far from being constant, but 

assignment of a bound level Ei for determination of a from (2.28) is 

uncertain. Moreover the current ji exhibits a very rapid variation in the 

neighborhood of the dissociation limit (at zero energy) that use of j(0) in 

(2.28) cannot be recommended. The exact value of j(0) is — 50% higher than 

the approximate j(0). Some defense can be made by adopting the value of j A  at 

the bottleneck energy of — 2 kT to (3.36). Then j A  . j E , but the foundation 

is not firm. 

The basic reason for the inconsistency of this second approach for jA is 

not that the diffusional probabilities are not sufficiently accurate for 

useful application but that the current expression (2.28) for the association 
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rate is not valid when approximate probabilities, which do not satisfy the 

QSS-condition (2.29) to the exact Master Equation, are used. This dilemma is 

resolved in the following section. 

4. Basic Expression for Rates and Results 

The expression (2.9) for the time-dependent association (recombination) 

rate RA(t) is exact, while expressions for a in §2.1 hold only for QSS 

(an./at = 0) of the Master Equation (2.18) for block E. With the aid of (2.1) 

in (2.9), the rate 

R
A
(t) = 

-D
f P.

A 
 dE. 

-D 
 f S

f
(t)dE

f 
	 (4.1) 

where S fi  is given by (2.2) is also exact. Under the basic ansatz (2.17), 

then 

CO 	 CO 

RA (t) = [yc (t) - y (t)] 	PAdE. 	(PA - P)C dE s 	_Df 1 1 _Df 	1 	f if f 

1 	

-D
f 	

-D
f A 	A = 	Eic (t) - y s (t)] 	dE. 	(Pi 

- P
t
) C

if
dE

f 

F. a NA (t)N B (t) - kn s (t) 

(4.2a) 

(4.2b) 

(4.3) 

with the result that the time-independent rate constant a (cm3 s -1 ) of 

association is determined by 

aNA  NB 	-D 11 	i 
= f P.A 	

-D
f dE. 	(PA  . - P fi  )C dE f f (4.4) 

When the exact QSS condition (2.29) is satisfied by the probabilities 

A,D 
P,then(4.4)reducesto(2.28)viin(2.Mforthecurrentj-

1*  When 
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e' D  are determined via an approximate procedure, as by the diffusional 

treatment of §3.2, then (4.4) remains the appropriate expression for the 

rate a. The QSS-condition (2.29) corresponds to a minimum 14  in a and hence 

anyapproximate. 
P i

will yield higher rates a (cf. Table 1). 
A,D 

An alternative exact expression which emphasizes the role of the current 

J. is obtained by using (2.1) and by integrating (2.10) and (2.11) by parts to 

give 

aJ. ,_, RA , D(t) = - 	fee 13 ' 1) (E.)( 	1 )dE. = 	f J i (E i ,t)(apA ,D
/at

i 
 )dE i  

-D 	
aE. -S 

(4.5) 

i  since J vanishes at the end points and since PA ' D  are both constants in 

blocks C and S. It is only  when J i , given exactly by (2.3) or (2.4) is 

constant-in-energy (QSS) over block E that it can be taken outside the 

integral sign to give the minimum 

A 
R* (t) = R* (t) = [ic (t)]-yWiJ i (E i ) (4.6) 

in terms of (2.20) for j i  and of Pi  determined from the QSS-condition 

(2.29). Otherwise, the exact expression (4.5) is used. 

The exact rates a
E 
obtained in §3.3 for the various ion-neutral 

interactions are normalized (cf ref. 10 and Appendix B, ref 14) to the 

corresponding Thomson rate l°  

aT 
	4 

7 (Re/0)
3
(3kT/M

12 
)
1/2 

o 
	, N 	0 = 3/2 
	

(4.7) 

where Re is the natural unit (e
2/kT) for Coulombic attraction between the ions 

1 and 2. The integral cross section o for (1-3) elastic collisions at 
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relative energy (-f  kT) is taken in (4.5) to be 2Q X , 2w(pRe/3)
1/2 

and a
o 

respectively for symmetrical resonance charge-transfer collisions 11  with cross 

section Q X , for polarization (orbiting) collisions in terms of the 

polarizability p of the gas M, and for hard-sphere collisions with cross 

section ao  . Universal expressions for the normalized ratios (aE/aT ) have 

already been presented 14  in a form suitable for direct computation. 

Approximate rates aA  can now be determined by inserting the diffusional 

(approximate) probabilities (3.29) in (4.4). Fig. 5 displays a comparison of 

the corresponding ratios 

RT = (M l /M12 )(a/aT ) 

	
(4.8) 

where a is taken as the exact rate a
E or the approximate rate aA, which arises 

from (1-3) collisions. 

Excellent agreement is obtained over the full range of the mass parameter 

a, eq (3.34) with i = 1 and j =2 i.e. from a . 10 -3  for association of heavy 

ions in a light (electron) gas, to intermediate a . 1/3 for equal mass species 

and up to large a . 10 3  which corresponds to electron-recombination in a gas. 

As expected, greatest departures occur for the case of equal masses which 

involves the largest energy transfer so that the diffusional probabilities 

would also show their greatest departure from the exact probabilities as in 

Fig. 3a. For this case (a = 1/3), the diffusional result corresponding to 

hard-sphere collisions which in turn involve largest energy-transfers (cf. 

Fig. 2) exhibit the largest of small departures. The present diffusional 

treatment is also excellent for all of the various classes of (1-3) 

interaction considered. 
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5. Summary  

On introduction of probabilities P
i
A,D 

 (E
i ) that pairs (A-B) with internal 

energy E i  will tend to associate and dissociate in a thermal bath of gas M, 

and upon use of the ansatz (2.17) for their normalized energy distribution 

y.
1
(t) at time t, the basic Master Equation (2.1) and current (2.3) has been 

transformed into corresponding equations (2.18) and (2.19) which are separable 

in Ei and t. The diffusional equation (3.18), which is a derived 

approximation to the Master Equation (2.18), yields, for general systems, 

accurate probabilities PA' s  (cf Fig 3) but very inaccurate currents (3.22) or i 

(3.25), cf Table 1. Since previous expressions for association 

(recombination) rates a rely on a Quasi-Steady-State Condition (QSS) of (2.29) 

to the original Master Equation (2.18), they were therefore based on the 

currents (2.20), (2.26) and (2.27) via eq (2.28). Since the diffusional 

probabilities do not satisfy this original QSS-condition, the corresponding 

diffusional current is, in general, not appropriate for determination of the 

rates a. The resulting diffusional rates (3.22), or (3.25), are therefore not 

reliable 2-6 (Table 1), except for those cases in which the current is 

relatively small i.e. for collision electron-ion recombination )  in a gas and 

for ion-ion recombination in a vanishingly light gas. 

A new expression (4.2), derived for the rates, is the correct and more 

basic expression for use under general conditions, as when QSS is not 

satisfied. When QSS is satisfied, (4.2) reduces to (2.28) based on the 

current (2.20) and the QSS-rates are minimum. 14 The rate (4.2) is required 

for use of approximate probabilities, such as those (3.29) provided either by 

the diffusional treatment, as here, or by simple analytical variational 

functions for 13 .,\ ' 0 , which do not satisfy the basic QSS-condition (2.29). 
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The diffusional probabilities can be used in an iterative solution of 

(2.29) to give highly accurate probabilities (to within 1%) after a few 

iterations and hence accurate rates (2.28). They can also be used in the 

basic formula (4.2) to yield excellent agreement with the exact numerical QSS-

results for various classes of ion-neutral interactions over the full range of 

mass parameters for general systems. 

In conclusion, application of the diffusional equation (3.18) to general 

systems is an accurate procedure provided the solutions PA' s  are inserted in 

the appropriate and more basic expression (4.2) for the rate, rather than into 

the derived expressions (3.17) or (2.20) for the diffusional or exact 

currents, which only follow from the QSS-condition (2.29) to the exact input- 

output Master Equation (2.18). 
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Table 1:  Variation of the ratio (aD/aE ) and (aBN/aE)  with mass-ratio 

parameter a for (1-3) collisions and with the various (1-3) interactions: 

polarization (POL), hard-sphere (HS) and symmetrical resonance charge-transfer 

(CX). The exact, diffusional and bottleneck rates are aE' aD and aBN' 
respectively. 

	

aD/aE 	 aBN/aE 
a 	 POL 	HS 	CX* 	 HS 

0.001 0.955 0.969 0.997 50.51 
0.01 1.159 1.205 1.295 7.692 
0.1 2.000 2.410 2.985 2.950 
1/3 2.924 3.891 5.051 2.227 
1.0 3.413 4.854 6.329 2.020 
10.0 2.000 2.941 - 2.674 
100.0 1.156 1.403 - 6.452 
1000.0 0.955 1.053 - 32.26 

*Here small a implies M 2  << Mi  = M3  and a = 1 implies M 2  >> M 1  = M3 . 
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Figure Captions  

Fig. 1 (a) Normalized energy-change frequency moments D ( m )  (energym s -1 ), m = 

0-4, as a function of internal energy E i  = -x(kT) of the bound ion-

pair. (b) Ratios D (m) /D (°)  (energym  per collision), m = 1 and 2, and 

conparisonofD.
(1) 

 with aD.
(2) 

 /ax which shows that the minimum 

of DC 2)  has same location as the zero in DC I) . Equal -mass species and 

charge-transfer ion-neutral collisions are assumed and moments are 

normalized to the quantity (-1) mraT (kT)m-1  given in ref. 14. 

Fig. 2 Inverses of moments (a) D
(2)

(x) and (b)D
(4)

(x) as a function of 

internal energy Ei  = -AT of the ion-pair for various ion-neutral 

interactions: POL (polarization), HS (hard-sphere), CX (charge-

transfer). Equal-mass species are assumed. 

Fig. 3(a). Probabilities PA,D  for association and dissociation of an ion-pair 

bound with energy E i  = -xkT. Equal-mass species and charge-transfer 

ion-neutral collisions are assumed. -----: Exact QSS-solution of eq. 

(2.29). ----: Diffusional Approximation, eq. (3.29) and (3.30). 

Fig. 3(b) Derivatives (dPA/dX) of probability PA  of Fig. (3a) for 

association. QSS: from solution of eq (2.29). D: diffusional 

approximation, eq (3.31). 

Fig. 4. Comparison of currents, eq (2.20), past energy level E i  = -AkT, 

obtained 	from exact solution of eq (2.29) and from (---) 

diffusion probabilities eq (3.29). Equal-mass species and charge-

transfer ion-neutral collisions are assumed. The current is 

normalized to (2aTNA) where aT  is the Thomson rate, eq (4.5). 
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Fig. 5. Normalized rates RI-, eq (4.6), for ion-ion recombination in a dilute 

gas as a function of mass parameter a, eq (3.34) for various ion-

neutral interactions: HS (hard-sphere), CX (charge-transfer) and POL 

(polarization). -----. exact rates. 0, o, b,: rates obtained with 

diffusional probabilities, eq (3.29), in basic eq (4.4) for HS, CX and 

POL interactions. 
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Appendix C 

Microscopic Basis and Analytical and Numerical Solutions of 

the Debye-Smoluchowski Equation 



Microscopic Basis and Analytical and Numerical Solutions  

of the Debye-Smoluchowski Equation  

M. R. Flannery and E. J. Mansky 

School of Physics 

Georgia Institute of Technology 

Atlanta, Georgia 30332 

By explicitly including collisions and by operating at a level more basic 

than the macroscopic Debye-Smoluchowski Equation (DSE), various assumptions 

within the DSE-treatment of transport influenced reactions of A and B in a 

dense medium M become naturally exposed. The appropriate modification of DSE 

to description of the kinetics within the region of the sink is provided. 

Analytical expressions for probability densities and rates are derived 

which are exact solutions of DSE (a) at all times t and large internal 

separations R of the pair (A-B), (b) at long times t and all R and (c) at 

short times t and all R. Not only are the transient rates a 5 (t) and a L (t) 

exact at short and long times, respectively, but they are naturally bounded 

for all times with a 5 (t4) and a L (t-s-0) tending to the correct limit, albeit 

with an incorrect transience. Comparison with exact numerical solutions of 

DSE illustrates the effectiveness of a proposed solution over the full range 

of time. 

PACS: 34.10.+x, 51.10.+y, 66.10.+x. 
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1. Introduction  

In chemical kinetics of reactions in the condensed phase or in solution 

and of coagulation of colloids, the Debye-Smoluchowski Equation (DSE) 1-3 
has 

received widespread application. It involves solution of the continuity 

equation 

3n(R,t)/at +
d
(R,t) = 0 	, 	R 	Rs  

subject to the radiation boundary condition 

	

4irR s 2 J d(R s ,t) = -a 3  n(R s ,t) 	, 	 (1.2) 

which equates (as in heat-conduction problems) the frequency of transport with 

the frequency of absorption, assumed to proceed at a local rate a 3 (cm 3 s -1 ) at 

the boundary of a spherical sink of radius R s . The number density of pairs AB 

with internal separation R between R and R + q is nWq and J d
(R)dR is the 

intramolecular net current within pairs which are in the state of internal 

expansion across interval dR about R  within some medium M. In the absence of 

any sources, the rate of disappearance of pairs with R 	Rs  is, 

(a/at) f n(t)d,F,2 = 47rR s 2  J d(R s ,t) 	- a(t)NAN B  
R
s 

(1.3) 

where a is the overall rate of association of species A and B with averaged 

number densities N
A,B at time t. Hence the rate, 

a(t) = a 3  n(R s ,t)/NANB 	 (1.4) 

1 



relies only on the macroscopic density n(R s ,t) at the sink boundary provided  

the local rate a 3 is regarded as a pre-assigned parameter. The net current J
d 

in (1.1) can be related to the total density n via
l-4 

d
(R,t) = -D z 	+ (K/e)(yy) n(R,t) 
	

(1.5) 

where V(R) is the energy of interaction between A and B. In terms of the 

diffusion and mobility coefficients D AUB  and KA,B , respectively, for the 

isolated species A and B in the medium M, the coefficients in (1.5) for 

relative diffusion and relative mobility are D = D A  + DB  and K = KA  + KB . 

Hence the rate a(t) can be determined from the solution of (1.1) at the sink 

via (1.4) and the overall problem is reduced to one of transport alone. 

Although the DSE-method has been applied to reactions in solution, its 

de-facto generalization to lower densities of the medium (as a gas) is not 

immediately obvious, nor are the assumptions intrinsic to validity of DSE 

transparent. The effective decoupling of reaction from transport as in (1.2) 

and in (1.4) is likely to be valid in the limit of high gas densities when 

reaction proceeds much faster than transport which is then the rate-limiting 

step. As the density is reduced, reaction and transport are coupled, and 

address is required at a microscopic level
4 more basic than (1.1)-(1.5). In 

§2, this microscopic basis 5 	of DSE is summarized so that the validity 

requirements of DSE are naturally exposed. It is shown that the DSE-method 

when applied to transport-influenced reactions in a gas retains its usefulness 

for evaluation of time dependent rates a(t) via determination of that 

particular time-dependent combination of the individual transport and reaction 

rates a TR and a RN' respectively, which are time-independent and which are 

regarded as being independent parameters, externally assigned. 

2 



Although DSE can be solved exactly for the field-free case (V = 0), no 

simple exact analytical solution yet exists for general interaction V(R) 

between A and B. For the pure Coulomb case, DSE has been solved 6  in terms of 

Mathieu functions, which can be expressed as infinite series of products of 

modified Bessel functions but which are as complicated to evaluate as the 

exact numerical solution. For approximate solution of (1.1) with general V(R) 

a large body of literature (see ref. 7) exists on various schemes based on Green's 

function, 8  "prescribed" diffusion 9  and "matched perturbation HU) techniques. 

Here (in§ 3 and §4), highly accurate analytical solutions for general 

V(R) are proposed, and are then tested (in § 5) explicitly for pure Coulombic 

attraction. Exact analytical expressions for the densities n(R,t) and the 

rates a(t) are derived (a) for short times and all R, (b) for long times and 

all R, and (c) for all times t and large R. The only simple analytical 

expression available up to now has been that derivedil from the method of 

"matched perturbation solutions"
10 
 for the exact asymptotic transient 

(t 	. The present long-time solution,(b) above,not only yields this exact 

asymptotic transient but provides an analytical solution which is exact down 

to much shorter times. Some preliminary reports of these analytical 

expressions have already been presented.
12-14 Finally, an approximate and  

highly accurate combination of short-time and long-time solutions is proposed 

in § 6 for the rates a(t) at all times t. 

The aim of the present paper is therefore to examine the foundation and 

validity requirements of DSE within a modern perspective and, then to present 

analytical solutions of DSE under a general interaction V(R) between the 

species A and B reacting in a thermal gas bath M. The microscopic theory used 

in this paper has been developed earlier
5

. 
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-V (R) 
n
s
(R,t) = f n.

s
(R,E 9  t)dE. 1 	1 

(2.3) 

2. Microscopic Basis of the Debye-Smoluchowski Equation  

For the closed system, 

A +B+M t AB +M• 	 (2.1) 

with no external sources or sinks as discussed previously,
5 
the continuity 

equation 

s 
at n 	+ Z• kld (R,t) = 0 (2.2) 

holds for the integrated macroscopic distribution 

in number density (cm
-3

) of AB pairs. The microscopic distribution n.
1
s 

is 

such that n.1
s dRdE.1  is the number density of pairs with internal separation 

rk,  

and internal energy E i  within the interval dpE i  about 	and n sq is then 

the number density within interval dR of pairs with all possible internal 

energies between the lowest bound level -V(R) consistent with a fixed R and 

the far continuum. The interaction between A and B is V(R). The net 

R-macroscopic current vector 

	

f 	d  (B,E i ,t)dE i 	 (2.4) 
-v ul  

is the energy-integration of the (1 ) ,E i )-microscopic net current 
d 
 in 

= fn
i (R'E i' ti i' t)v 1 	+ f rv, 1 m t)tii m 	(2.5) 

(+) 	 (-) 

J.
m

+
(R,E.,t) + J.(R,E.,t) 

	

fk, 	1 	m 	- 

4 



where the conditional pair distribution nA,E i ,i0t) is such that the number 

	

density of pairs AB with internal separation tt, internal energy 	and with 

the direction ti i  of the internal relative velocity x i  in interval dk dE i  di i 

 about (R,Ei ,,i i ) is n i (R,E i ,:iot)dRdE i t at time t. Corresponding to (2.5) 

define the sum (s) and difference (d) of microscopic densities by 

n!'d (R,t) = 	(R,E.,t) = (+ f 
 ) 	

,1  n.(R,E.,v.;t)dv ;  + f n.(R,E.,v. 1,1;t)dv. 	(2.6) 

— 

n.
+ 

+ n. 
— 

The integrations in (2.5) and (2.6) are over the positive (+) region 

where N i  10, and the negative (-) region where R.ti i <  0, such that the net 

J i d 	the net density n.
d of pairs which are in the states of 

internalexpansionHorcontractior)Hare(J. + MW(n. 4. - n. ) 

respectively. Also n i s  and J i s  are the respective sums (n i +  + n i - ) and (J i +  + 

J.) of densities and currents of internally expanding (+) and contracting (-) 

pairs. 

The continuity equation corresponding to (2.2) but for the microscopic 

distribution n
i  s

(R t) has already been derived
5 

from a Boltzmann-type equation 

for the two-particle correlation function n(R v t) and is
5 

n. S  (R E. t) + V-J.d (R,E.,t) = j 	S S  fi (R,t)dE f  at 	 1, 
-V(R) 

(2.7) 

where the net frequency of collisional transitions (i 	f) is Sfi  given in 

4(R,t) = n i s ' d (R,t) v if (R) - n fs ' d (R,t) v fi  (R) = -SW(R,t) 	(2.8) 

in terms of the frequency vif  dE f  of AB-M collisions, which change the 

internal energy of a pair AB from E i  to between E f  and E + dE f  at a fixed 

5 



nuclear separation R of A and B. Thus, the net rate at time t of collisional 

production of (R,E0-pairs from all levels f within the accessible energy 

range [-V -9. co] is the RHS of (2.7). On integration of (2.7) over the full 

energy range of E i , the macroscopic continuity equation (2.2) for the closed 

system is recovered since the overall effect of collisions 
-f 
 dE. f dE Ss  1

- 	
f fi 

is null. Although the macroscopic net current J
d
(R,t) can be related

4 
to the 

summed densities n s (R,t) via the excellent approximation,
4 

d 
J (R,t = -0 z n s (R,t ) 	 (V) n s (R,t ) 

(2.9) 

in term of the macroscopic coefficients D and K for relative diffusion and 

relative mobility of A and B in medium M, no similar relation has yet been 

derived for the corresponding microscopic current J id  (ift, ,E i ,t). As has 

previously 5 been shown, (2.7) must then be coupled to the following equation 

a 	d nA ,E i ,t) + 	 - 	- (E.-V)
-1 
	r1 -+- (R E 	= 1L.tiv 

r‘, aR 	1 	' 	2' ' i 
(2.10) 

= f Sd .(R,t)dE f 
-V 	fl  

in terms of the quantities J.s ' 1 n.d and S fi defined in (2.5), (2.6) and (2.8) respective 1  

When equilibrium is established in the internal angular momentum L of the pair 

s 
(A-B), n. is then independent

5 
of v. so that J.

,d 
 in (2.7) and (2.10) are simply 1 	 1 

1 	,d 	1 
n is 	vi . Also n-f.  in (2.10) is then given by

5 	
7  ni  = 	(n i

S 
 - n i

d
) for all R 

	

and E i  ?, 0, and for bound levels E i  < 0 by ni+ 
	1 = 	(ni S  + n i D  ) for R .< A or by 

 n i  = 1 (n i
s 
 - n i

d
) for A < R < B. Here A is the radius of the bound circular 

orbit (associated with maximum angular momentum L), and B is the radius of the 

outermost turning point of the orbit with L = 0 where 1E 1 1= V(B). Under 

6 



conditionsofthermodynamicequilibrim J i ' d (2.7) and 

. 	i (2.10) which are therefore coupled in n.
s and n. d , in contrast to the direct 

use of (2.9) in (2.2) for the macroscopic densities n
s
(,t). Operation at a 

level more basic than (2.2) therefore necessitates solution of coupled 

time-dependent equations, rather than the single equation (2.2). It is 

therefore advantageous to explore the conditions for which a macroscopic 

treatment based on (2.2) can be invoked. 

2.1 Macroscopic Transport-Collisional Equations  

For a given R, subdivide the energy range into three blocks: a block 

of strongly bound levels between levels -V(R) and -S within which the pairs 

are considered to be fully associated, a block S of excited levels between -S 

and the dissociation limit taken at zero energy within which the pairs are in 

the process of associating or dissociating, and a continuum block C which 

describes fully dissociated pairs. The sum of the distributions n c  and n e  of 

pairs in blocks C and E respectively, 

CO 

n(R,t) = f n s (R,Eot)dE i  E 	 ne (R,t) 	 (2.11) 
-S 1  

and the corresponding net current 

co A  

J(R,t) 	 E 	 d e (R,t) 	 (2.12) 

then satisfy, with the aid of (2.7), the equation 

- S 
n(R,t) +z-q,  = - 

-S
f dEi 

-V 
 f S if (R,t)dE f  ; R = Rs 	 (2.13) 
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for R < R
s' 
 the outermost turning point associated with level -S. In (2.13) 

and in what followsis written simply as 	For R 	R
s' 

block S does Sif 	 Sif . 

not exist so that 

at n(R,t) + 	= 0 ; R 	R
s 

Integration of (2.13) yields, 

R
s 	 s 	-S 
f n(R t)dR + 41TR 2 J(Rs ,t)  = - f dR f dE i  f S if(R,t)dE f  

at 
0 	

s 	
o 	-S 	-V 

On introducing 

R
if 

S
if

(t) = f S if(R,t)q = - Sfi (t) 

(2.14) 

(2.15) 

(2.16) 

the net frequency per unit dE i dEf  of collisional transitions between levels E i 

 and E
f' where Rif is the lesser of R. and R f' 

the turning points associated 

with levels IE. and E f' integration of (2.7) over all accessible R-space yields 

n i (E i ,t) = - f dR,  f S.(R,t)dE f  = - f S. f (t)dE f 
 o 	-V i f 	 -D 

(2.17) 

Eq. (2.15) is then 

-S 

at f n(R,t)dR + 4wR s
2 
 J(R ,t) = 	f dE f S (t)dE f  = - an s

(t)/at 	(2.18) 
o 	

- 	i 	if _ s 	_ D   

where the density of pairs in block S is 

R 
s -S 

n
s 	

= f
s 
 n s (R,t)q,  = 	5 dR f 	 =

-S 
 f n.(E. t)dE. ‘1, 

o 	-V 1 	 -D 
(2.19) 

R 
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Eq. (2.18) states that the flux, -4nR s 2  J, entering the (reaction) 

sphere of radius Rs  equals the net collisional rate of production of S-pairs 

plus the rate of increase of the contribution from the reaction volume to 

the density (2.11) of C and S pairs. On assuming no net flux at infinite 

separation R, integration of (2.14) yields 

03 

f n(R,t)dR = 471.R
s
2 

J(R
s'

t) 
°' R

s 

which, when added to (2.18), provides 

CO 

 f n(R,t)dR + —a n 	= 0 at s 
0 

(2.20) 

(2.21) 

the conservation equation as expected for this closed system. On defining the 

averaged local rate a
3 

(cm
3 

s
-1

) for production of block S via collisional 

absorption from blocks C and S by 

-S 
a 3  n(Rs ,t) = f dE i  f S if(t)dEf  = ans (t)/at 

-S 	-D 
(2.22) 

The effective two body rate a (cm 3 s -1 ) for association of dissociated 

species A and B with densities NA,B (t)(cm-3) and the frequency k (s -1 ) for 

dissociation of S-pairs AB with density n s (t) are related by (5)  

an s (t)/at = aNAWNB (t) - k ns (t) 	 (2.23) 

when quasi-steady-state (QSS) conditions (an i /at) are assumed for block E. 

On further assuming that those pairs within the reaction volume of blocks 

C and E are also in QSS i.e., 

9 



R 
, 	s A f n(Rs ,t)d,r,z, = 0 

o 
(2.24) 

then (2.18) and (2.22) yield 

ans (t)/at = - 4nRs 2  J(Rs ,t) = - a 3  n(Rs ,t) 	 (2.25) 

so that the effective two-body rate of association is 

a(t) = a 3 [1 - r(t)] -1  n(Rs ,t)/NA (t)NB (t) 	 (2.26) 

where the quantity 

r(t) = [NAN B/NA(t)NB(t)] [ns (t)/ns ] 	 (2.27) 

is a measure of the departure of the densities of the dissociated A,B and 
, 

associated AB species from their corresponding time-dependent values NA ,B  

1, 
and n

s 
appropriate to full thermodynamic equilibrium (r = 1) with the gas 

bath M. Since 

t 
n
s
(0 - n

s
(0) = a

3 
f n(R

s'
t)dt, 

0 
(2.28) 

r(t) can therefore be determined given N A,B (t). 

Provided the local rate a
3 

in (2.22) is specified as some external 

parameter or else is obtained by other means, a is therefore determined via 

(2.26) solely by the transport equation (2.14), 

a n(R,t) + z.q,  = 0 , a t R 	R
s 

(2.29a) 
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solved subject to the radiation boundary condition 

4nR
s
2 J(R

s'
t) = a

3 
n(R

s'
t) 
	

(2.29b) 

at the sink. When (2.9) is used for J, this combination (2.29) represents 

the Debye-Smoluchowski Equation (DSE), familiar in kinetics of reactions in 

the condensed phase
1-3 

and in solution
7-10 
 and to coagulation of colloids. 

It was obtained originally by applying the macroscopic continuity Eqn. (2.2) 

outside (R 	Rs ) the sink region, and by equating the transport and absorption 

rates at R = Rs , as in (1.1) - (1.5). Since the reaction rate a3  is considered 

as a pre-assigned parameter, DSE concentrated solely on solution of the 

transport portion J D
(R 	R

s
,t) of the problem, external to the sink. 

2.2 Assumptions Intrinsic to DSE  

By operating at a level more basic than DSE, the present treatment has 

exposed the two underlying criteria for validity of DSE 

-L  
at n i 

 (E t) ti  0 0 ?. E i 	-S 

 

  

(2.30) 
R
s 

at 	q, 
$ n(R,t)dR % 0 
0 

 

  

i.e., quasi-steady-state conditions are assumed for pairs in the intermediate 

block E of excited levels and for those pairs with internal separation R R s 

 and with internal energies in the E and the continuum block C. 

The present treatment has also provided the logical transport equation 

(2.13) for description of the sink. It is also usual to consider a situation 

of high non-equilibrium (r « 1) so that the association rate is simply 

11 



a(t) = a3  n(Rs ,t)/NANB ' 	 (2.31) 

where NA,B is the averaged concentration of dissociated species A and B. 

If however a
3 
is not predetermined (as is the general case) then the 

complete microscopic treatment based on the solution of the coupled transport-

collision equations (2.7) and (2.10) for the microscopic densities nI' d  is 

required. 

Since a 3  in (2.22) is also determined by the collisional frequency v if  in S if 

 assignment and use within DSE as an external parameter can, however, provide 

very valuable insight to chemical kinetics in a dense medium. For example the 

steady state solution (3n/8t = 0) of (2.29) yields the steady-state rate 3-4 

 which can be written as
,4,12 

aRN aTR  
a - . 
	(aRN 	aTR )  

	

RN 	TR 

in terms of the reaction rate, defined by 

aRN 
= a 3  exp(-KV(R )/De) 

and of the transport rate 

ti 
= 47D R s  

a TR 

where 

R = 	f exp(KV/De)R
-2 dR] -1 

R 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

The steady state rate a is therefore controlled by the rate limiting 

step. However, there are at present no exact analytical solutions of DSE 

(2.29) - for general V(R), although a large body of literature
?-10 

 exists for 

12 



various types of approximations. For the pure Coulombic case, DSE can be 

solved formally
6
in terms of Mathieu functions, which in turn can be expressed 

as an infinite series of products of modified Bessel functions, the full 

evaluation of which is however as time consuming and as illuminating as the 

direct numerical solution of (2.29). 

In the following section § 3, useful time-dependent analytical solutions 

for the rates a(t) and densities n(R,t) of (2.24) for general V(R) are 

proposed. The assumed initial (t = 0) condition and asymptotic (R + 

boundary condition 

n(R,t=0) = N o  exp(-KV/De) = n(R—,t) 	 (2.36) 

are appropriate to association of (A-B) pairs with an initial Boltzmann 

distribution in internal separation R,and to a continuous source at infinity 

which maintains the Boltzmann distribution only at asymptotic R. 

2.3 Field-Free Expressions  

For reference purposes, the analytical solution 15  for the field-free case 

(V=0) of (2.29)  subject to (2.36)  can be written as 4  

n(R,t) = N
o {1 + (a /ad 

 )(S/R) Cexp(x o
2
)exp(2xoo  ) erfc(xoo ) - erfc %]}(2.37) 

in terms of the time-dependent pair (x 0 ,%0 ) of functions, 4  

X0 (t) = (013/a.)(Dt/S2 ) 1/2  ; sl o (R,t) = (R-S)/2(Dt) 1/2  , 
	

(2.38) 

and of the steady-state (field-free) rate 

13 



a (0)  = (a3ad )/(a 3  + ad ) 	 (2.39) 

where a3 is the pre-assigned rate of reaction at R s 
= S, the sink-radius, and 

where 

ad  = 4irDS 	 (2.40) 

is the rate of pure diffusion at S. The exact transient rate of association 

from (2.31) is therefore, 

a(t) = a 3{1 + (a10)  /ad ) [exp x 02  erfc x o  - 1 ]} 	 (2.41a) 

a.  [1 + (a 3/ad ) exp x 0
2 

erfc x 0 ] 	 (2.41b) 

which initially decreases from the finite reaction rate a 3  as 

a(t-0) = a3 (0) E1 - (
2 / 71/2 )(c3/ad)(Dt/S 2 ) 1/2] , 	(2.42) 

( 
and approaches the steady-state rate a.

0) 
 via the asymptotic transient 

a(t+.0) = a(0) [1 + ( aT)/ad .f s 2, 	1/2 )k prDt) 	] (2.43) 

In the diffusion limited region a
(0) 	a

d 
<< a 3, then (2.41b) reduces 

exactly to (2.43). It is worth noting that the only exact analytical 

expression li  yet available (to the author's knowledge) for the rate a(t) under 

general V(R) is the asymptotic transient which may be rewritten 12  compactly as, 

a("°) = a.E 1 + 'a.../aTR) (S2/w0t)1/2] 
	

(2.44) 
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which corresponds to the same level of approximation as (2.43) but with a 3 , 
ti 

ad, a(0) and S all replaced by NN' aTR' a.  and S of (2.32) - (2.35), 

respectively. The basic expression had been earlier obtained ll  from a 

straightforward application of the method
10 

of "matched perturbation 

solutions". An expression which covers a time range considerably broader than 

the asymptotic transient (2.44) is derived in the following section, together 

with a corresponding short-time solution which tends to the initial transient 

ti 	
' t-*0 ) = a RN 	 s ri (2/ 1/2

) (aRN'/ a TR )(dR/dR ) s  (Dt/S2 ) 1/2  ] , (2.45) 

This transient is the appropriate generalization of (2.42) to arbitrary 

interaction V(R), but with inclusion of the additional factor 

(dR/dR) = (hi/R) 2  exp(KV/De) 	 (2.46) 

which is absent in the corresponding generalization (2.44) of the asymptotic 

transient (2.43). 
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3. Exact Analytical Solutions (a) for All Times and Large R, (b) for Long  

Times and All R, and (c) for Short Times and All R.  

Under the nonlinear transformation
4

'
12

'
16 

R = [ f exp(KV/De) R -2  dR] -1 	 (3.1) 
R 

the Debye-Smoluchowski Equation (1.1) for general interaction V(R) has been 

shown to reduce to
12 

ti 
2 

	

ap(R,t)/at = D(dR/dR)2 
'R 

 p(R,t) 	 (3.2) 

where the fractional departure from Boltzmann equilibrium is 

	

p(R,t) = n(R,t)/[N o  exp(-KV/De)] 	 (3.3) 

At temperature T of the gas, the Einstein relation De = K(kT) holds for 

weak fields so that the argument of the exponent in (3.1) and (3.3) is (V/kT). 

In this 'tilde space 12
, the total flux 

OR2 J(R,t) = 4711 2  J(R,t) 
	

(3.4) 

ti 
remains invariant, with the current vector in this R-space being defined as 

ti 

=-ON CiN 
ti 	o rx,11 

ti 

(3.5) 

which is formally equivalent to the current due to field-free diffusion in 
ti 
R-space but with n(R,t) replaced by No  p(R,t). 

16 



In terms of this solution p of (3.2) and of the rates aRN  and aTR  in 

(2.33) and (2.34) for reaction and transport under interaction V(R), the 

association rate a(t) of (1.4) and the "radiation" boundary condition RBC of 

(1.2) yields 

a(t)  = aRN p(S,t) = aTR S[aP/aq 
	

(3.6) 

ek, 
which shows that p(S,t) 	0 when aTR  « aRN , as in the limit of high gas 

ti 

densities N, and that (ap/aR) 	0 (which implies the Boltzmann distribution, 

P = 1) when aTR  >> aRN , as in the limit of vanishing N. At each of these 

respective limits, ate , the steady-state rate (2.32) tends to the rate limiting 

step of transport or of reaction, respectively. 

Introduce the dimensionless variables, 

r = R/S - 1, 	T = Dt/S2 , 	(1) = (R/S)p = C'  
nJ 	

(r+1)p 

so that (3.2) reduces to 

a0(11",T)/aT = (d34/dr)2 
(a2(0T,2)  

(3.7) 

(3.8) 

subject to the initial and asymptotic boundary conditions (2.36), rewritten as 

0( qrj ,T = 0) = (r+1) = 	 (3.9a) 

and to RBC in (3.6), rewritten as 

a(T) = aRN gO,T) = acja,(740,T)/ai 	 (3.9b) 
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since the sink is located at r = 0. 

Under Laplace transformation, 

0(r,$)= f 0(r,T) exp(-sT)dT 	 (3.10) 
0 

then, with the initial condition (3.9a) incorporated, (3.8) yields 

(4a 2 ) = (dr/d?= ) 2  s[ 	(r+1)/s], 	 (3.11) 

with formal solution, 

20j ( r‘r%s) = A(s) exp[-y(r,s 
)s1/2] 	(r+1)/s, 	 (3.12) 

in terms of unknown functions A(s) and y(r,$). 	The asymptotic boundary 

condition (3.9a) specifies that y(r4.co,S) + co. On setting 

ti 

k = (dr/dq6 E (/S)(dR/d li) 	 (3.13) 

then (3.12) in (3.11) yields the differential equation 

s-1/2(dy/d16 = y2(r,$) - 
k 2

(r) (3.14a) 

to be solved for y and hence y in 

y(r,$) = dy(r,$)/dr 	 (3.14b) 

With knowledge of y and y, and with RBC in (3.9b) used to 
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a(t), (3.6), is therefore 

which are mainly governed by the form of y(r,$) and its derivative y = (dy/dr). 

where the incomplete Gamma function is 

function,so that 

the availability or determination of closed expressions for the inverse 

Re is the natural unit of length characterized by V(R e ) = kT, integration of 

Laplace transforms of the overall s-functional dependence in (3.15) and (3.16), 

(3.1) then yields, 

a(s) = aRN rf" (° ' s)  = aRN 1 / s  - (aRN/a TR ) L s{Y
(0,$)s1/2 	

aRN/a. 1]-1  ' 

The corresponding Laplace transform ;I' of the transient association rate 

For attractive interactions of the general form (V/kT) = -(R
e
/R) n , where 

In the limit of small x, R << R
e' and Y -}r(1/n), the complete Gamma (3.18)  

Progress in the search for simple analytical formulae is now limited by 

y(l/n,x -n ) = 11- [1 + 

= (/Re ) = ny[(1/n), xn ] 	; x = R/Re  

aTR 01- 1)s[y(0,$)s 

19 

m=0 

(-1) m 	xmn  
m. 	

(3.17) 

(3.16) 

determine A(s) in (3.12), the Laplace transform of the departure function p, 

(3.3), is therefore 

lipj ( Irj ,$) = 0,$)/0+1) 	
aRN exp:iy0,$)-y(o,s )1s  1/2 

1124-a RNia  I 	

(3.15) 



x 	n r
-1

(1/n) = x o , 	x= R/Re  << 1 	 (3.19) 

a constant;1 (n = 1), 1.1284 (n = 2), 1.1200 (n = 3), 1.1032 (n = 4) and 

1.0779 (n = 6) for the Coulombic (n = 1), Dipole (n = 2), Quadrupole (n = 3), 

Polarization (n = 4) and Van der Waals (n = 6) attractions, respectively. 

For large R >> Re  then 

x 	 x 	+ 1 	-n 	1 	1 	-2n 	1 	1  
kn+1) 	(n+1)

2 	
2(2n+1) 	 (n+1) 3 	(n+1)(2n+1) 

6( 3n+1) 
	

x
-3n 

+ ...] 	(3.20) 

to give 

1, 	 , 
x = x + 1/2 + (1/12x) + 0 (x

-3 
 ) 	 , (n = 1) 

= x + (1/3x) + (1/90x 3 ) - (11/1890x 5 ) + .. 	, (n = 2) 

= x + (1/5x 3 ) - (7/450x 7  ) + ... 	 , (n = 4) 

= x + (1/7x 5 ) - (23/1274x 11 ) + ... 	 , (n = 6) 

for the various attractions, respectively. The derivative which appears in 

the basic expression (3.2) is 

( dW/dR ) = (x/x) 2  exp(-x -n ) x<<1-)-(x ol/)0 2 exp(-x-n ) 	
(3.21) 

so that 
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iln 

	 (2n-1)  )(-2n + ... , 	I1 ,-n + [ 1 		1  (dWidR) = 	1 - ITIFTI A 	2 	(2n+1) 	(01)2 (3.22) 

As illustrated in Fig. la for the various attractions, (dR/a) increases rapidly 

from zero at x = x
o to its unit asymptote at large x ti1. Note that the 

coefficient of x-1  in (dW/dR) and of x -2  in Z = (R/Re ) vanishes for Coulombic 

attraction, so that (dR/dR) tends to its unit asymptote as[-(1/12)x -2  + 0(x -4 ) 

which is somewhat faster than that [-(1/3) x -2  + 0(x -4 )]for the pure dipole 

case. 

Particular values of the nonlinear function 

(W/Re ) = X = [1 - exp(-1/x)] -1 	 (3.23) 

for Coulomb attraction and of its derivative 

(dW/dR) 	(a/dx) = "v-1 	2 	qi-1 ,  - x ) kn (1 - x ) (3,24) 

are displayed in Table 1 which shows that the derivative attains its unit 

asymptotic value 

ti 
-2 	 11-4 (dx/dx) + 	

12 
1 - 	[x 	x + 	+ (13/15) x 	+ ...] 

very rapidly. This variation is also amplified in Fig. (lb) over the 
ti 

important range 0 < 	< 1.5 of W. 

(a) On this basis, the solution at large R ( r>,  1.5 n.u.) is therefore obtained 
ti 

by replacing (dR/dR) in (3.13) by unity so that the solutions of y and y of (3.14) are, 



y(r,$) = 

y( fr'',$) = 	7"/S = (R-S)/S 

(3.25) 

  

which are all independent of s. 

(b) At long times (when s -÷ o), y in (3.14a) is therefore constant for 

ti 
all r, so that 

Y(7",s -)- o) = 'j/S E yi 	, 

(3.26a) 

Y(,s 	o) = Sr/S E y st  

which are all identical with (3.25). The criterion for validity of (3.26) is 

that 

1/2 
s 	E(S/S)

2 
 - (dr/er) 2 ] ÷ 0 (3.26b) 

which holds, not only for long times and all R as in (b), but also for large R 

and all times as in (a), so that the solutions at long times for all R and at 

all times for large R are identical. The closer that (dr/dr) is to (S/S). 

the greater will be the range of t over which (3.26) is valid. The variation 

of (ca''/dr) with r for various values of S is illustrated in Fig. 1(c) which 

shows quite clearly that the key function (c17-'/dr) in (3.8) may be considered 
,I, 	 ,■, 

constant (S/S) over a large range of r and S. 

(c) At short times when s ÷ ., the solutions of (3.14) are, 

y( ''',s >> smin ) = k(r) E  y4(r) 	, 

y(r,$) = r E y4 (r) 

(3.27) 
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In this approximation, (3.14a) yields 

(y/k) = 1 - s -1/21 clr)/(1 dr1 2  

dr 2 	dr 

so that the above approximation (3.27) is valid provided 

s 1/2 >> (d2r/d?,)2/( dr/d6 2  = sg r2, 

(3.28a) 

(3.28b) 

a condition which is more rigorous and less restrictive than the requirement 

of infinite s. 

For r > 0.25 in Fig. (lc), k = (dr/dr) tends to the constant (S/S) so 

that the key validity criterion s >> s min  can be satisfied for longer times. 

Also.(3.27) for y4  at "short" times and all r tends at large 7 4  to (3.25) for y 

at all times and large 34 , so that the range of validity of the above short-time 

solution (3.27) can extend into longer times by increase of r. 
All of the above three solutions, (3.25) - (3.27), are s-independent so 

that the inverse Laplace transform of (3.18) can be readily performed to 

yield the same formal expression 

p(R,t) = n(R,t)/N o  exp(-KV/De) = 0,t)/(T..+1) 

= {1 	(aco/aTR)(S/R) [exp(20x) exp x
2 
erfc (x+0) - erfc 0 ]} 
	

(3.29) 

for each of the above cases (a) - (c) which are distinguished by the pair 

(x, 12 ) of functions, 
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Xt(t ) = (a RNiacat ) ✓T E  (aRN/aco )(S/S))/-17 

(3.30) 

O(R,t) = Yt(r)/2VT E (R-S)/(2SiT) E r(S/S)/2VT 

for cases (a) and (b) i.e., for long times and all R, or for all times and 

asymptotic R 	1 n.u., (since (3.25) and (3.26) are identical); and by 

= 

	

)(dW/dR) s VT 	( 	/ a.)(d74/dr) 0 V7 X4 (t)  = [aRN /ao. Y4 (°)147  = (aRN/aco 	
(S/S) 	

'aRN' 

(3.31) 

0(Rt) = (R-S)/2SVT = 1-/2,T 

for case (c) for short times and all R. For large S note that x 4 	xz  and 

that S2
4 

-0. 0 2, for large R and S. 

The corresponding transient recombination rates obtained from (3.16) or from 

(3.6) directly, are written in terms of the steady-state rates (2.26) - (2.28) 

and of the appropriate (x,O) above as 

a(t)  = aRN p(S,t) 
= (1 	 / 	1 	2 

-RN --  + ( aco,c1TR, { exp x  erfc x - 1}] 	(3.32a) 

= am E1 	(aRN/aTR) exp x2  erfc xi 	 (3.32b) 

Note that (3.29) and (3.32) are all formally identical (in the tilda 

representation) to the "field-free" expressions (2.31) and (2.35). By 

comparison, the overall effect of the general field V(R) is therefore to 

change the transport rate from ad,(2.40),to aTR ,(2.34), the reaction rate from 

a3  to aRN ,(2.33),and the pair of functions (x0 ,00 ) of (2.38) to either of the 

pairs (3.30) or (3.31) for long or short times, respectively. 
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Short-time and long-time expansions of (3.29) are facilitated with the 

aid of the corresponding expansions, 

exp x
2 erfc x+1 - (2/7 1/2 )x 4. x 2 _ (4/37 1/2 )x 3 	...; x 	0 	

(3.33) 

for small x (at short times) and 

exp x2  erfc x -0. (1 ixff1/2) ( 1 - 
	

x
-2 + 	

X
-4 

- ...); x 4-  c° 
	

(3.34) 

for large x (at long times). 

Since the higher-order expansion terms above are alternatively positive 

and negative, the short time limits a
s
(n)

, where n denotes the order of x 

included in (3.33), tend to (3.32a) from above or below according as n is even 

or odd, respectively. At short-times, therefore the rate a(t) initially 

decreases from a RN as t
1/2 

 via 

aS
(1)(t 
	°) =

aRN
{1  - (a../aTR )(2/71/21_ ' As 

=a 
RN Cl - (am/a

TR )(dR/dR) s 
(4Dt/ 7a2)1/21 	

(3.35) 

which tends to a s  from below. At longer times it decreases as 
t-1/2 

via 

a L (1)(t 	cc')  = ace [1 	NOIRpx2,
71/2]  

= a. 
Cl 
	(ctdaTR )(s2/7rDt)1/21 
	

(3.36) 

which tends to a L from above and then to the asymptotic steady-state limit a . 

This asymptotic transient (3.36) is identical to that previously 

derived ll  by the method l°  of "matched perturbation solutions". Thus (3.30) in 

(3.32b) provide the appropriate extension of (3.36) down to shorter times; and 
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(3.31) in (3.32a) extends the new short-time transient (3.35) up to longer 

times. Both the t-1/2 long-time transient and the t 1/2 short-time transient 

became suppressed in the "reaction limited region" where and are aRN << aTR' 

fully amplified in the "transport limited region" where a. = aTR << aRN° The 

resulting formulae for as , as
(1)

, al.  and aL (1) appear to be the only simple 

analytical expressions apart from (3.36) for a
L
(1)

' 
yet derived for general 

interactions V(R). 

Procedures for numerical solution (see § 5) of the basic eq. (3.2) for 

all times require initialization of p and ap/ai': either at short times when 

integrating forward in t, or at long times when integrating backwards in t. 

Direct differentiation of the basic solution, 

p(r,T) = 1 + (a./a TR  ) EexP x
2 
exP(2x0 erfc(m) - erfc sl]/(141) 
	

(3.37) 

where the sets (x4 ,s14 ) and (xt ,n) distinguish short and long times, 

respectively, yields 

(ap/alr'' )  = (aROTR ) C()erfcQ/(114-1) 	(aRN/a. )EC(') -(a./a RN )/(141)](p-1) (3.38) 

where 

CA (T.) = (J. /dr) 0/(dTVdr) 

(3.39) 
ti 

C (r) = 1 

for short (A) and long (t) times, respectively. The radiation boundary 

condition, 
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aTR 	= a  RN P ( O,t
) = a  RN 	1  + (accia  TR ) [exp X

2 erfc X- 1 ] } 	(3.40) 

is of course satisfied by (3.38) at the sink (T. = 0) at all times. As T 	0, 

N 
P 	1 - 0(T 1/2 ),and (3p/311.) varies continuously with r as, 

(ap/374) = (aRN/aTR ) 

(r+1) 	4 	
s 

(r+1) 
 

; r » 21.7 

which indicates the dramatic decrease, with increase of r, 

of (3p/374 ) at short times from a constant value (a /a ) at the RN' TR' 

sink. Accurate numerical integration around initial times T ft,  10
-3 

therefore 

demands intervals or in r as small as 10 -3 
 so as to ensure dense coverage of 

the complementary error function 

	

erfc sz = —2 	f exp(-a 2 )d a 

	

iT-r 	sa 
(3.42) 

between unity (at r = 0) and zero (at r >> 2/T). 

(1, 
{ (aRN/aTR) 	 ; r 4- 0 

C 	erfc a 	 (3.41) 

(aRN/aTR )  2C4°) 	
exp(-r2/4.0 

11/2 
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4. Extension for Intermediate Times and all R  

In an effort to seek extensions of (3.29), with (3.30) for long times, 

down to intermediate times for all R, insert the expansion 

= 	+ 0)S 1/2  + F 2 ()s + 	] 	 (4.1) 

in powers of s 1/2  in (3.14a), and equate equal powers of s. Since the exact 

	

solution at large ? is y t , (3.26), then F i 	.0) 	O. The expansion 

coefficients are therefore determined by 

.... 	2 
S-1 f IldR) , F1 (r ) 

 a 	
1 	

)
dR 

ti 
which for Coulomb attraction tends at large R to 

F
1 	

.. = 	( Re/S) R(Re/R) + 	( Re/R) 2  + 	.] (4.2) 

and by 

F 2 (r) = - 2S -I f F 1  (r)dR. 
ti 
R 

(4.3) 

On retaining only the F 1 -term in (4.1), the rate, obtained directly from 

the inverse Laplace Transform of (3.16), is 

aLS (t)  = aoS 1 	(aROTR )  fa+ exp x2 	x_ - a_ exp 4
2 

erfc 	/ (a+-a_)] 

(4.4) 
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for long + short times and is restricted to cases for which 

4/IT = 	= 	[1 - 4(aRN/aw )S F 1 (0)/ 11/2  1 /2F 1 (0) 
	

(4.5) 

ti 
remain real i.e., when F1(0) 	1(awiaRN)(S/S)• The range of application of 

(4.4) is therefore rather limited. 

The corresponding extension from shorter (s 	to lonyer times may be 

accomplished by expanding y in terms of 
s-1/2 

so that, on equating equal 

powers of s
-1/2 

Y 	
(?)is-1/2 

61'3) = k(r) + [1( 1 0'. )/2k 	 ; k = (dr/d 1rj ) , (4.6) 

ti 
where k' is (dk/dr). The condition for validity of the short-time solution y 

1,2 	q,  
= k(r) is therefore s

1/2 >> (d 2  r/dr )/(dr/dr) 2 
 , as before. The required rate, 

for short+ long times and for all assigned parameters is 

aSL (t)  = aRN [1  + (aco /aTR ) {1 + (1(10/21(0 )(aw/aRN )1 -1  fex p xa 2 erfc xa  - 1}] 

(4.7a) 

= «03 11 + (k'0/21(0)(aw/a RN)/-1  [1 + (1(10/2k0 )+(aRN/aTR)  expXa2  erfcx$L] 

(4.7b) 

where k'
o 

is k l (r.0) and where 

XSL = EaRN/am ) 
 

+ (k' 0 /21( 0 )7VT/k o 	 (4.8) 

Although (4.7a) has been designed as an extension of the short time 

result a S  to longer times, it does not, however, tend to the correct 
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asymptotic (t 4- co) limit, a. , as does as , (3.31) in (3.32b). Because it is 

automatically constrained to vary monotonically between aRN  (as t 4- 0) and 

( as t 4- .), a s  may indeed yield a better approximation than a si.  except 

perhaps in some intermediate-time range. Although a s  tends to the correct 

asymptotic limit am , its asymptotic transience (i.e., the rate at which a s  

approaches a.) will not be correct since it is characterized by x4  rather than 

by the correct x i  to give 

a s (t ÷ .) = acjl + (a./aTR )(dR/a) s  (S2/7Dt) 1/2 ] 
	

(4.9) 

which agrees with the exact transient (3.36) only for large sink radii S when 

(dR/dW) s  4- 1 (cf. Fig. lb). 

Analogous considerations also apply to the comparison of 
aLS 

 of (4.4) 

with aL  of (3.29) and (3.27). The rate a L  decreases monotonically from aRN 

 to a. as T increases, in contrast to a LS  which does not tend to a RN  as T + 0. 

The long-time solution a L  yields, however, the incorrect short-time transience 

a L (t  ÷ 0)  = aRN E1 
 - (aRN/aTR)(4Dt/ 712)1/2] 
	

(4.10) 

which agrees with the exact short-time transience (3.35) only for large S when 

,l, 

(dR/dR) s  4- 1. 
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5. Numerical Solutions  

The basic equation (3.2) in tilda-space for the fractional departure 

(3.3) from Boltzmann equilibrium, is 

	

= (d1 2  [alp 	2 	ap] 
at 	dr 	1,2 	1, . 

	

ar 	(r+1) ar 
(5. 1) 

in dimensionless units (3.7). In numerical algorithms, the assigned initial 

condition 

p(rj-. 2 0) = 1 	 (5.2) 

must be supplemented by an additional initial condition for (ap/a1 =.). Eqs. 

(3.37) and (3.38) with (3.31) for (xa) are used to facilitate forward 

 
integration in T from 10

-3 
 when small intervals or in r are required. The 

boundary conditions at the sink ( e'rj• = 0) and at asymptotic r are 

(ap(r,T)/a1r1) 0 = (aRN/aTR ) p(0,T), 

(5.3) 

p (r4.0110,T) = 
1 

at all times T. Eq. (5.1) is a linear partial differential equation with 

nonlinear coefficients and is of the general form 

af(x,t)/at = F(x,t,f(x,t), of/ax, a
2
f/ax

2
) (5.4) 

which can be solved by standard numerical procedures
17 

subject to the initial 

conditions, 
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f(x,t=0) = f o (x) 	af(x,0)/ax = ;f0/3x 	 (5.5) 

and the boundary (x40,03) conditions 

af(x,t) + 0 af(x,t)/3x = Y(t) ; (x->0,c0) 	 (5.6) 

where a and 0 are constants independent of (x,t). In the numerical method 

adopted,
17 

the boundary conditions are imposed indirectly via the differential 

equation 

a af(x,t)/at + 0 a 2f(x,t)/atax = ay/at 	 (5.7) 

such that y(t) in (5.6) must be either constant or a continuous function of t. 

The selected algorithm 18  DPDES designed primarily for parabolic problems (as 

is the case here) solves a system of equations of type (5.4) by a method of 

lines, wherein the solution is expanded in a series of cubic Hermite basis 

functions of x. The t-dependent undetermined coefficients are evaluated from 

a collocation procedure
17 

at each t i.e., from the differential equations 

obtained by imposing the boundary conditions (5.7) at the endpoints (x 0 , xN ) 

and by requiring that the differential equation (5.4) is satisfied at two 

Gaussian quadrature points between adjacent points xp , x p+1 in the 

x-discretization: x 0  $ xp  $ xN ; xp  = x0  + ph (p = 0, 1, 2, ..., N). 

Eq. (5.1) was therefore solved numerically in equal intervals Or = 10 -3 , 

10
-2 

and 5 10
-2 

over the respective ranges (0 - 10
-2

), (10
-2 

- 5 10
-2

) and 

(5 10 -2  - 30) in r; at equal intervals AT = 10-3 , 10-2  and 5 10 -2  over the 

respective T-ranges, (10 -3  - 10-2 ), (10 -2  - 1) and (1 - 100). At short times 
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T1,10 -3 - 10
-2

, small intervals pr ti 10
-3 
 in r are required (see § 3) for 

accurate initialization via (3.37) and (3.38). All calculations were 

performed on a CDC 7600 computer with a typical execution time of 14 minutes 

(with a relative error of 10 -6  in the t-discretization) for a given sink 

radius S and ratio (a./aTR ), 

As a test, the numerical results reproduced the exact analytical 

solutions (2.37) and rates (2.41) for the field-free (V = 0) case. 

Figure 2 illustrates for a representative case (S = 1
n.u., a. 

/c'TR = 1/2) 

 of Coulombic attraction,the collapse with scaled time T(E Dt/S2 ) of the exact 

fractional departure p( r4 ,T) = n(R,t)/exp(-KV/De) of the probability density n 

from its initial Boltzmann distribution, p( r4 ,0) = 1, onto the steady-state 

(ap/a T 	0 as T 	02) distribution 

p. ( 1r-c-r+) = 1 - (a./aTR)(S/R) 	 (5.8) 

as a function of r = (R/S) - 1. With increase of the parameter 
(aw/aTR ) to 

 its limiting value of unity (characteristic of full transport controlled 

processes), the steady-state p . is approached much more rapidly than those for 

smaller (a/aTR ), and deeper holes in the distribution appear in the 

neighborhood of the sink at P.' = 0 where a highly non-equilibrium distribution 

has developed. As the sink radius S decreases, the curves in Fig. 2 for given 

(a./aTR ) collapse onto p c.  over all r much more slowly i.e., it takes longer to 

attain steady-state, as expected. 

The above asymptote p.  in Fig. 2 is rendered universal for all 
(a'iaTR) 

by simply relabelling the p-axis from the vertex at (1 -
TR

) in general, 

rather than at 0.5, in equal intervals to unity. 

The variation with T of the intercept p(0,T) provides directly the T - 

33 



variation of the recombination rate, 

a(T)  "RN p(0,T)  = aTR LaP(nrt*° ' T)/93 o 
	 (5.9) 

Since the accuracy of the various schemes (g 3,4) of analytical 

approximation improves at all T for larger r, detailed comparison between the 

exact numerical intercept p E (0,T) and the derived analytical intercepts 

p(0,T) = 1 + 
(a. /a TR )  [e" x 2 

erfc x  - 1] = a(T) 
' /a RN' 
	 (5.10) 

or between the corresponding association rates a(T), provide the most 

stringent test of the accuracy of the various approximations for pa.,1') and 

its derivative (ap/a). 

5.1 Comparison with Analytical Expressions  

As indicated by (3.35) and (3.36), the transience, a(T) versus TC 

(Dt/S2 ), in units of (S 2/D) a characteristic time scale for diffusion across a 

distance S], becomes amplified for larger x i.e., for transport controlled 

regions, when a RN  >> a. (i.e., when 	TR+ 1), and/or for large sink radii 

S which result in larger (diVdr) (3, for x4  (cf. Fig. lc) and in smaller ( 'S/S) 

for x 2,  (cf. Table 1). 

Figs. 3(a-h) - 5(a-h) illustrate comparison with-the exact numerical 

solution a of the various short-time solutions a
s 

and aSL' 
 as in (a-d), and 

of the various long-time solutions aL  and aLs , as in (e-h), over externally assigned 

values of both the sink radius (S = 1, 0.75, 0.5, 0.25 n.u.) and of the ratio 

ao./aTR (= 0.1, 0.5, 0.9). Since the transition from steady-state reaction 
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controlled processes to transport controlled processes is characterized by 

increase from small a./a TR  (where aRN << aTR) to unit a./aTR  (where aRN  >> 

aTR ) as in (2.32), the selected range (0.1 - 0.9) of a. /aTR  therefore 

corresponds to increase in gas density. Since a(t) tends to aRN  as t 	0 and 

to am  as 	all of the short-time curves (a) - (d) for a(T)/a RN , and all of 

the long-time curves (e) - (h) for a(T)/am  are normalized so as to tend to 

unity at their respective short-time and long-time limits. As t4-.°3, a(T)/aRN 

in (a) - (d) tends to [1 -
(a=1 

 aTR )], which gives 0.9, 0.5 and 0.1 for each 

respective value of (a./aTR ); and a(T)/a. in (e)-(h) tends as t-+0 to [1 - 

i.e., to 1.11, 2, and 10 for each respective case. 

Figs. 3(a) - 3(d) for the small ratio (a./aTR) = 0.1 i.e., for (a. /a RN )  = 

0.9 which imply a reduction in a(T) of 10% from a RN  over the full time range, 

show that a s , (3.22a) with (3.31), and a SL , (4.7a) with (4.5), both reproduce 

the exact numerical results a E at short times over the given range (1 - 0.25 

n.u.) of S. As S increases both a and a SL agree with a E over longer periods 

of time, as expected from validity criteria (3.28b). They also represent 

substantial improvements over the short-time transients, a 
(1) 

 and a (3)  which 

are the expansions of a s , (3.32) up to and including terms in t 1/2 and t 3/2 , 

respectively. As t 	0 both a 
S (1) 

 and a  (3)  eventually converge (from below) 

to a s , as expected, and then to a E . For the larger S, the suggested more 

rapid variation in all of the rates from a RN  is apparent. 

As expected, a st.  shows some improvement over a s  for longer times up to 

T 	1, particularly at larger (a./a TR ) and smaller S, as is apparent in Figs. 

3-5. For longer times T >> 1, aSL  eventually diverges since it is not 

automatically constrained, as is a s , to tend to the limiting asymptote a. . 

This is the essential reason that the short-time expression fora y  exhibits in 

general a better overall agreement with the exact a E  over the full range of T . 

Even for the most extreme case, S = 0.25 n.u. in Figs. (3-5)d, for which 
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ti 
(dR/dR) is small (cf. Fig. lb) so that the basic analytical approximation for 

all times tends to lose validity, as  departs from aE  at intermediate T q, 1 but 

then eventually approaches am  albeit with an incorrect  transience, as t400 , in 

direct contrast to aSL . Note that an overall effect of increase in (a. iaTR )  

in Figs. 3-5 is to effectively shift the amplification from short times (Fig. 

3), to intermediate times (Fig. 4) and longer times (Fig. 5). 

The exact long time rates aL , (3.30) in (3.32b), the long-short 

approximation aLS  of (4.4), and at.
(1) 

the asymptotic transient (3.36) to a L , 

are all compared in Figures 3(e-h) - 5(e-h) with the exact numerical results 

Both aL and aLS 
yield considerable improvement over a l.

(1) 
which up to now 

has been the "best" simple analytical long-time expression yet proposed ll  (via 

the method of matched perturbation solutions
10 
 ). This result a

L
(1) 

eventually 

tends to the present analytical result a l.  which then 	tends to aE  (see in 

particular Fig. 4(h) and Fig. 5(g), 5(h)). 

Although aLs , (which, in order to ensure real a +  in (4.5), is restricted 

only to cases (e) of Figs. 3 and 4 and to case (f) of Fig. 3), is designed to 

extend a L into the shorter-time regime, it only partially succeeds, but it 

does not, in general, represent an overall improvement to a L . The rate aL  is, 

of course, automatically constrained to vary from the exact asymptotic (t 40°) 

limit with the correct long-time transience to the exact (t 	0) limit aRN , 

with, however, the incorrect short-time transience. In contrast aLs  does 

increase with the correct long-time transience from a., but reaches a maximum 

and then tends as t 	0 to the incorrect limit C. 

Corresponding sets of curves are displayed in Fig. 4 for the ratio ao,PTR 

0.5 which is appropriate to atmospheric gas pressures and which represents 

equal rates of transport and reaction. A 50% decrease in a(t) from a RN  to 

will therefore occur as t develops. Both a s  and aSL  again represent a 
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considerable improvement over their short-time limits as
(1) 

and a (3)
; 
and a L 

is significantly more accurate than the previous standard result a L (1) . Note, 

for this larger ratio of a , /a TR , that the extensive range [10-2 - 102 ] in 

time does not include the short-time limits when a/a RN + 1, as in Fig. 3, but 

emphasizes rather the intermediate-time and long-time regimes. Fig. 3 

illustrates very clearly, even for the worst case (h) with S = 0.25 n.u., the 

dividend that accrues from the built-in variation of aL between aRN at short 

( times and a at long times. At intermediate times, aS  > aE , aL  < aE  and a L  
1) 

co 

> aE . Since a L (1) tends to a L  more rapidly than al.  tends to aE , aL (1) must 

therefore cross aE  so that somewhat closer but accidental agreement is 

exhibited,as in Figs. (4h) and (5h). 

The general picture which is therefore emerging is that both a S  and aL  

are highly accurate analytical solutions which are, in general, better than 

their corresponding extensions a SL  and aLs , respectively, into the 

intermediate-time regime, mainly because the basic expression (3.32) 

automatically varies between the correct limits aRN  and a; as  is the exact 

short-time transience and a l.  is the exact long-time transience. No short-time 

approximation as as , as (1) 	(3) 

present long-time result aL  is quite superior to aL
(1) 

which has been the only 

analytical expression previously reported.
11 

This underlying order has become further clarified in Figure 5 which is 

appropriate to transport-controlled processes at high gas pressures (ti tens 

of atmospheres). This case with
(a./aTR )  = 0.9, involves a 90% reduction in 

a(T) from aRN  to a.  as T develops. The T-range [10 -2  - 102 ] emphasizes 

intermediate+long times. Figs. 5c,d exhibit quite clearly, for the first 

time, the marked departure of as  from aE  at intermediate times T = 1 - 10 

followed by the eventual return of aS  to aE  in the limit of long-times. Also 

, as 	, asl.  has been previously proposed and the 
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the convergence of a L (1)  to a L  is quite apparent in Fig. 5h. Even for this 

most extreme case S = 0.25 n.u. where the validity criteria (3.26b) and 

(3.28b) is being stretched for all times, the present expressions for a s  and 

a L  are quite superior to a s
(1)

, a s (3) and to a L
(1)

, respectively. 

Since the various terms in the expansion (3.33) for a s  of (3.32a), are 

alternatively negative and positive, a s
(n) 

tends to a s  from above or below 

depending on whether the number n of time-dependent terms included in (3.33) 

is even or odd, respectively. Since a L  is less than a E  and since a s  is 

greater than a E  at intermediate times, some time-dependent combination of a s 

 and a is suggested (see § 6). 

The long-time curves (e) - (h) in Figs. 3-5 show directly that aE,L,S 

achieve their steady-state value am  more rapidly for transport-controlled 

recombination, i.e., for (amiaTR) 	1, than for reaction-controlled 

recombination, ' (aco' /aTR' 1 << 1, which is characterized by a much slower rate of 

decrease to a higher relative value am,. 

Even with its incorrect short-time transience, a l.  is somewhat better than 

a s over all time T for the reaction dominated recombination, (Fig. 3), and 

a s , in spite of its incorrect long-time transience, is somewhat better than a L  

over all T for transport dominated recombination (Fig. 5). 
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6. Validity Criteria and Improved Transient Result  

Although the long-time and short-time expressions obtained by inserting 

(3.30) and (3.31) respectively in (3.29) for n(R,t) and in (3.32) for a(t), 

have now been shown to be highly accurate, they have been derived from the 

Laplace-transform technique such that neither do the actual equations satisfied 

by the derived analytical formulae or do rigorous validity criteria apart from 

(3.26b) and (3.28b) naturally materialize. The basic equation 

(221L ) 	(d12  (2_21 
aT ft, 	dr 	,v2 

ar )T 
(6.1) 

for 0,t) = (r+1) p(74 ,t), as in (3.7) and (3.8), where p is the fractional 

departure n(R,t)/N o  exp(-KV/De) of the probability density n(R,t) from Boltzmann 

equilibrium, may be expressed in alternative forms as 

(1  _ 
+ ciiri121dv2r)1} ar tir 3r CI  IdrL  I j 

4t, 	d2flitl 
Dr4 	dr`11 

used to discuss the short-time solution, or as 

140,,  . 41 2  /41 	il dd ir11 2_ 1§_1 2 1 d1-2  (21 
Ir 	IS) 1 ar IT 	1 	11 J I dr 	aTiq, 

(6.2a) 

(6.2b) 

(6.2c) 

used to discuss the solutions at large r. 

The recombination rate is simply 

a(T)  = aRN p(0,T) = aTR  Cap(r40,T)/37.1 
	

(6.3a) 

or, equivalently, 
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a(T)  = aRN (I)(° ' T)  = a0  Ea0(?40,T)/a71 	 (6.3b) 

in which RBC, the radiation boundary condition (3.6) or (3.9b) between the 

function and its derivative, is explicitly used. 

Provided 

lao/aT I » (d2?4/dr 2 )[(ao/a7;') - 11 	 (6.4) 

as for all r and small t (but not for large r and all T), (6.2b) 

reduces to 

	

344 
	a20,6 d274  

	

aT 	ar2 	dr2 

rt,  
which, apart from the term d

2 
 r/dr

2 
 i , is formally identical to field-free 

diffusion in (rj)-space. Provided, 

	

2 	2 

	

[ (T-1. 1 	(S1 ] 	-2 . [ 1. 	(d12 ] 	1  

dR 

as at large r and all T, then(6.2c) reduces to 

(6.5) 

(6.6) 

1, t - a2 
 

 T = (S/S)
2 
 T (6.7) 

aT 	ar 

which is formally identical with field-free diffusion in ( '' ')-space. 

The exact solutions of (6.5) and (6.7) appropriate to the above 

initial and boundary conditions (3.9) in (r,;') space are then 

(1)(,T) = (?'4-1) 	(a./aTR  ) [exp(2k) exp x2  erfc(x+0) - erfc Q] 
	

(6.8) 
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where the pair (x,a) of functions are defined as 

X 	(T) = a 	IT 	; a = (a /a )(d/dr) 0 ; a z 	( = 	a)(S/S) 
4,t 	4,9, b 	RN . 	 'a /RN 1  

Q4 (ro.) = r/2i; Q z(r,T) = ?'../21T 

 

(6.9) 

  

with subscript -6 appropriate to the exact solution • s  at short times and all r, 

and with subscript t appropriate to the exact solution o z  for all times and 

large r. 

These approximate solutions 04z  of the basic eq. (6.1) are exactly those 

(3.29) - (3.31) previously derived via the Laplace Transform technique which 

procedure is however required to show that the solution cot  for large r and all T is 

identical with that for all r and long T. Direct differentiation of (6.8) yields 

(d7"/dr)n 

(acksi a'r'e)  = 1 	(1  RN/".) 	u EO, - 641 ) 	(a./aTR) erfc Q s ] 	(6.10a) 
(dOdr) 

and 

(a0 2 /a) = 1 + (aRN/a.) E0 9,  - (r+1) + (a./aTR ) erfc Q] 	 (6.10b) 

which assume their largest values [a6 9, (7)/a.] at the sink (cf. Fig. 2) where 

RBC, Eq. (6.3b) is of course satisfied. Also, differentiation of (6.8) yields 

(a ir,T)/ar) = a
4
2  

,2.
[04,t- (r1- 1)+(a./aTR ){erfc0 	-exp(-Q

2 
MI/7x 	)1] 

	

4,54 	s,z 	s,z 
(6.11) 

which can be used to provide 	3200r2 or 3 2 412,/a T,2 via (6.5) or (6.7), 

respectively. 
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Fig. lc, which illustrates the variation for Coulomb attraction of 

(d?s/dr) with r-  for various sink radii shows that the terms of (6.2b) and 

(6.2c) which are omitted in (6.5) and (6.7), respectively, are largest at the 

sink. At the sink, 

4) 	(0,T) = 1 + (a./a TR ) [expx2 erfc x - 1] 
	

(6.12a) 

= (a./aRN)[44,
2,(0,-0/91?") = aS,L

( T)laRN 
and 

44,9,(0,T)/DT = 
(a24,2( aRN ) 61 S,L (T) 	a S,L (T4ce)]  

where a S,L
(T->00) are the long-time asymptotic transients, 

as,L (T4°°) = a. [1 	(aRN/aTR)/X4,2/7171 

of the basic rates, 

aS,L (T)  = 	( a./aTR ) [exp )& 2,  erfc x4,2,  - 1]} 

= a. E l 	( aRN/aTR) exp )(s
2 	

erfc x4  ) o?. 

(6.12b) 

(6.13) 

At long times, 

= (r+1) - (a./aTR); (44z /3T) ÷ 0 
	

(6.15) 

and at short times, 
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(1)6.,T.+0)  = (r+1); 	(4.6,t/ 31) 	-(aRN/aTR )(c114/dr) 0  exp(-r .42/4T)/ ✓ T 	(6.16) 

With the aid of (6.10a) and (6.11),the key criteria (6.4) for validity of 

the short-time solution 04  for all r is, 

(aRN/a.)104 - (r4-1 ) 	(aco/aTR)[erfc QA  - exp(-R6 2 )/x.6 4-r ]1 

2'1, 	2 (d r/dr )  
10 - (14+1) 	(a. /a TR ) erfc Q4 1  

(dill/dr) 0 (dr/dr) 	4  

which specifically excludes long times (T4.0) since then Q
4 
 + 0 and both 

(6.17a) 

sides vanish, with the aid of (6.15). This condition becomes more transparent 

at the sink where (6.4) reduces, with the aid of (6.12a,b) to, 

(aRN/a.)( c02./dr) 02  Cas(T) - as(r +co) ] >> (d2742
/dr 2 ) 0  [as (T) - 	] (6.17b) 

which also specifically excludes long times since a s  tends to as (T4.0), the long-time 

transient, faster than a s  tends to a, the steady-state asymptote. Moreover the 

validity of this "short time" solution extends into longer times both for the 

transport controlled regime when (a11003) >> 1, and for larger sinks when 

'1, 2 (dr/dr) 0  becomes larger so that (d 2 r /dr 2 
 ) 0  becomes smaller (cf. Fig. lc). 

This systematic trend is indeed confirmed by Figs. 3-5. 

The key criteria (6.6) for validity of the solution 0 2,  of (6.7) is 

satisfied for large R (cf. Fig. 1 and Table 1) at all times. As shown by the 

Laplace Transform method (I) is also the exact solution for all R at long times. 
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6.1 Effective Transient  

Although a s,L (T) yield the exact transients at the respective short (S) 

and long (L) times, as (p+=) does not tend to the correct long-time transient 

ail)  (1) of (3.36),and a L (T+0) does not tend to the correct short-time transient 

41)  of (3.35) since, az  and at in (6.9) are not equal, except at large sink 
radii (cf. Figs. 3(a) - 5(a)) when (d/dr) 	(S/%). The appropriate 

asymptotic limits a RN  at zero t:and a. at infinite t are however reproduced by 

both S and aL via the functional dependence (6.14), an asset worth 

exploitation. 

Expand the solution, 

	

0A  (rq..) ,T) = 0,6 ( 1) ,T) exp - a(T) + 0 2, (?) ,T) [1 - exp -a(T)] , 
	(6.18) 

of the basic Eq. (6.1) in terms of the known functions 0 4,z . The exact 

short-time and long-time transients are ensured by insisting that the unknown 

function a(T) is such that a(T -> 0) ÷ 0 and a(T 	co) 	co. Also 0A (r-+=,T) 

(741),irrespective of a(T). The radiation boundary condition in (6.3b) is 

satisfied provided a is a function only  of T. This restriction precludes 

ti 
(6.18) from tending to the exact solution yr,T) at large r. The 

combination (6.18) is therefore expected to provide an improved transient in 

the vicinity of the sink where the transient rates a(T) = aRN 4)(0,T) 
are 

determined. 

According to Figs. 3-5, as  departs most from the exact rate at 

intermediate times T ti 10,  and aL  departs most at short times T < 1. 

Plausible combinations consistent with (6.18) are therefore 

a (-) (T) = a L (T) exp(-
T-1/2) 
	as(T)  [1 - exp(-T -1/2 )] 
	

(6.19) 
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and 

/s a (+) (T) = a L (T) [1 - exp(-T 
1/2 ] 	askT ) exp(- 4 /2 ) 	 (6.20) 

In Table 2 are displayed the maximum  percentage errors 

A = 100 (a - a E )/a E 	 (6.21) 

between the exact numerical rates a
E and the analytical rates a =aV 

a
L 

and 

a (±)  over all T. The above combinations for a (I)  provide considerable improvement over 

the individual a s,L  particularly in the transport limited regime a. + 
aIR for 

the extreme case of smaller S it,  0.25. The combination (6.20) provides rates 

within 7% lower than the exact rates over the full T-range. Other trial 

combinations involving T
±1 

instead of T
±1/2 

in (6.20) and (6.19) were adopted 

with similar but somewhat less accurate results. As Cols. 2 and 3 of Table 2 

show, the greatest error occurs for those cases with the largest differences 

between at  and az  in (6.9). Also aL  involves less error in general than as  over the 

full T-range. 

Another possibility is retention of the basic functional forms,(6.8) for 

0 and (6.14) for a, but to allow xT
-1/2 

to vary continuously from a4 , the 

exact short-time value (6.9) to a t., the exact long-time value (6.9). The 

forms (6.8) and (6.14) ensure automatic satisfaction of both boundary 

conditions (radiation and asymptotic) for well behaved (x,o) and provide the 

correct limits a
RN and a

,  at zero and infinite times, respectively. Since 

maximum error in the previous analytical expression for a's occurred for 

those cases with the largest constants (x 2, - Xs) T
-1/2, 

 direct approximation 

to x, under the constraints that x 	x4  as T + 0 and x 	xt  as T 	w , is 

therefore indicated. 

) -1/2 Figs. 6(a) - 6(c) illustrate the variation of x 1,2  T 	, where 



x (-) (T) = exP( -T - " 12 )x 	[1 - exp(-T-n/2)] x 
4 
 . n = 1, 2  

9,  
(6.22) 

between the exact short-time and long-time constant limits, as compared with 

the numerical solution x E  of (3.32) with a taken as the exact numerical rates 

a E . Since x4  < X E  < XI  , then az .5 a E V as illustrated already by Figs. 

3-5. The more gradual variation of x (-) is much closer to X E  than is the more 

abrupt variation of x (i ) , even for those transport limited cases which 

involved the largest difference (x z  - x4 ). 

Figs. 7(a) - 7(c) demonstrate the close agreement of the resulting rates 

a[x (-) ] with the exact numerical rate over the full range of T for the worst 

cases (transport-limited and small sinks). Although the percentage errors 

(Table 2) associated with a L  and a s  are here as large as -33% and 68%, 

respectively, use of x (1. -)  in (6.14) involves errors less than 4%, as 

indicated in Column 9 of Table 2. Inspection of Figs. 6 and 7 shows that a is 

not too sensitive to variation in x e.g., a 10% variation in x in Fig. 6 results in 

little variation of a. Also the fact that xi intersects X E  twice (xi < X E  at 

short times, xi > X E  at intermediate times, X 1  < X E  at long times) results in 

a corresponding but less of a variation in a. 
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7. Summary and Conclusions  

By operating at a level more basic than the macroscopic Debye-

Smoluchowski Equation (DSE), the present treatment (5 2), has exposed the 

following assumptions intrinsic to DSE: (1) the densities n and associated 

net current J in eq. (1) refer to pairs in the combined blocks C (of fully 

dissociated states) and E (at highly excited states) as in eq. (2.11); 

(2) steady-state conditions for all pairs in each energy level of block E and 

(3) steady-state for all pairs with R < R s  and all energies in blocks C and E 

as in eq. (2.30). Also (4) DSE is mainly limited to cases of high non-

equilibrium. 

In addition, the microscopic treatment has also provided the appropriate 

modification (2.14) of DSE, which was applicable only to regions R > R s 

 external to the sink, to description of the kinetics within (R < Rs ) the sink. 

The microscopic treatment has also indicated that the actual rate (2.20) 

is determined by the self-consistent solution 5  of the two simultaneous 

equations (2.7) and (2.10) each of which couple transport and collisions. 

The local rate a3 of reaction in (2.23) thus remains an integral and 

internal part of the treatment by being determined from the self consistent 

solutions. 

This local rate a3 (or aRN ) is externally assigned in DSE which therefore 

describes via (2.9) in (2.24a), the transport portion of the problem 

consistent with this external choice for a3' Under the provisor that the 

transport and reaction rates aTR  and aRN  are fully uncoupled, the 

DSE-prescription is valuable for investigation of that particular 

time-dependent combination of aRN  and aTR  involved in the process as time 

evolves. 

In § 3, a nonlinear transformation 12  into tilda-space R(R), has 
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facilitated the search for simple analytical time-dependent solutions of DSE 

for general interactions V(R). Expressions have been obtained for the time 

dependent probability density n(R,t), that the pair AB has separation R, and 

for reaction rates a(t) which are exact (a) at all times and large R, (b) at 

long times and all R and (c) at short times and all R. In particular, the 

solutions for cases (a) and (b) are identical. The transformation technique 

is, in itself, quite general and can be applied to a variety of problems. For 

example, Cukier 19  by following previous reports 12  of this strategy, recently 

used this tilda space representation to successfully study concentration 

dependent fluorescent quenching. 

By comparison in § 5.1 with exact numerical transient rates a E  of § 5, 

the rates as (t) and a L (t), (3.32) with (3.31) and (3.30), are the exact DSE 

transients at short and long times, and are, respectively, higher and lower 

than a E  at intermediate times. Over the full time-range, a L (t) is, in 

general, closer to a E  than is a 5 . Retention of only the first t -1/2-term 

in the t-1/2-  expansion of aL (t) provides 4 1) (t) in (3.36), which is identical 

with the asymptotic transient derived ll  previously from a perturbation-type 

method.
10 
 The present expression (3.32) with (3.30), for a (t) provides 

( 
considerable improvement over a i l)  which, up to now, has been (to the author's 

knowledge) the only simple analytical rate available. Similar expansions 

(3.35) for short times are also provided. 

Not only is a s  the exact transient at short times but a s  tends to the 

correct steady state asymptote a. at long times, albeit with an incorrect 

transience; and a L , not only is the exact long time transient but tends (with 

an incorrect transience) at short times to the correct rate a RN at t = O. The 

varations of both aL,S(t)  with t are therefore bounded, unlike the previous 

rate a (1) . This asset is the essential reason that extensions of a
L,S 
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proposed in § 4 to cover intermediate times are not as effective over the full 

time-range. 

By exploitation of this asset,which is based on the unique functional 

dependence of a(t) in (3.32) on x(t), a time-dependent combination of x(t) 

and x(t) for x(t) provides, in § 6.1, rates highly accurate (to within 4% for 

the worst case) over several decades of time! 
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Table 1. Values of R and W, in natural units (R e  = e2 /kT), 
ti 

and of (dR/dR) for Coulombic Attraction. 

R 

0 

R 

1 

(dR/dR) 

0 

0.25 1.0187 0.3041 

0.5 1.1565 0.7241 

0.75 1.3580 0.8642 

1.0 1.5820 0.9207 

1.5 2.0552 0.9638 

2.0 2.5415 0.9794 

3.0 3.5277 0.9908 

6.0 6.5139 0.9977 

1 0 10.5083 0.9992 

• 
	

• 
• 

• 

R 	 R+0.5 	 1.0 
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a 
4t at a S 

A 

-aL a (-)  -a (jr)  a[X (1-) ] 

0.647 0.702 0.15 0.13 0.03 0.04 0.03 

0.530 0.614 0.29 0.22 0.05 0.08 0.05 

0.348 0.480 0.69 0.45 0.07 0.21 0.07 

0.083 0.273 2.98 1.24 -0.24 0.93 -0.43 

1.164 1.264 0.93 0.96 0.26 0.21 0.26 

0.955 1.105 1.75 1.62 0.42 0.41 0.39 

0.626 0.865 4.33 3.24 0.68 1.09 0.61 

0.149 0.491 20.63 8.92 1.33 5.67 -2.64 

5.820 6.322 2.25 3.63 1.23 0.17 1.20 

4.773 5.523 4.32 6.14 2.17 0.33 2.05 

3.130 4.323 11.24 12.32 4.62 0.87 3.88 

0.746 2.454 68.29 32.70 15.06 6.43 3.65 

0.06 

0.09 

0.16 

0.85 

0.45 

0.72 

1.25 

-5.43 

1.77 

3.16 

6.69 

11.24 

(a./aTR )  S 

0.1 1 

0.1 0.75 

0.1 0.50 

0.1 0.25 

0.5 1 

0.5 0.75 

0.5 0.50 

0. 0.25 

0.9 1 

0.9 0.75 

0.9 0.50 

0.9 0.25 

Table 2: Largest Percentage Errors A = 100(a- a E )/aE  associated with various 

levels of approximation. 

as,L (T): Eq. (3.32) with (3.31) or (3.30);a[4 	Eq. (3.32) with (6.22) 

for X1,2. 

a(-) (T) = exp(-T-1/2 )at  + [1 - exp(-T-1/2 )]as ; 

a (+) (T) = exP(-T1/2 )as 	1 - exp(-T1/2 )]at ; 

t a 	T- 1 / 2 
AZ 06 
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Figure Captions  

Fig. 1. Variation of (dR/dR) with R(n.u.) for (a) the attractive interactions 

V(R) = - (Re/R) n , n = 1, 2, 4 and 6. R is in units of R e , the natural 

unit (n.u.). 	The variation for pure Coulomb attraction (n = 1, 

R
e 

= e2/kT) is amplified in (b) where (X) denote the values selected 

as sink radii S.(c) Variation of scaled derivative (dr/dr) with 

scaled distance ? for the selected sink radii (S = 1, 0.75, 0.5 and 

0.25 n.u.). 

Fig. 2. Exact numerical solutions for the fractional departure p = n/No  exp(-V/kT) 

of the probability density n from Boltzmann equilibrium as 

a function of reduced distance ? = (R/S)-1 at scaled sequential 

times T = (Dt/S 2 ) = 0.05, 0.5, 1, 2, 5, 10, 20, 30, 100, 200, 500 

up to infinity (CD). Assigned parameters: a./a 	 (n.u.). TR = 0.5, S  = 0.5  

Comparison with exact numerical rates of various short-time (a)-(d) 

and of various long-time (e)-(h) analytical rates over several decades 

of scaled time T = Dt/S
2
, for various sink radii S(n.u.). Assigned 

parameter: a./aTR = 0.1.  

As in Fig. 3,but with a./ aTR = 0.5. 

As in Fig. 3,but with a/ aTR = 0.9. 

Fig. 6. Variation of X(T) T -1/2 with scaled time T = (Dt/S
2

) for extreme case 

of small sink radius S = 0.25 n.u. and for 
a./aTR taken as (a) 0.1, (b) 0.5 

and (c) 0.9. Curve E is obtained from exact solution of eq. (3.22) 

for exact numerical rate,and curves 1 and 2 are obtained from eq. (6.22) 

of text with n = 1 and 2, respectively. Long-time and short-time exact 

limits Xt,4(T) T
-1/2 

are illustrated. 

Fig. 3. 

Fig. 4. 

Fig. 5. 
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Fig. 7. Comparison over scaled time T = (Dt/S
2
) between exact numerical rate 

a E 
and various analytical rates: a[x 1

(-) I obtained from eq. (6.22) 

for x i -  in eq. (3.22) for a. The exact long-time and short-time 

transients are aL and a
S' 

respectively. Assigned Parameters: (a /aTR
) 

= (a) 0.1, (b) 0.5, (c) 0.9; and S = 0.25 n.u. an extreme case for 

validity of basic assumptions. 
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Abstract. By appeal to a Thomson-type treatment of recombination, it is shown 

that the rate for recombination of ions generated with uniform frequency 

within a reaction volume is a factor of (9/4) times greater than the rate for 

recombination of ions which approach each other from infinite separation. A 

valuable relationship connecting the two problems is uncovered. The analysis 

is pertinent to recombination involving dilute and high degrees of ionization. 
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For (X+-Y - ) ion-ion recombination in an ambient gas Z (neutral or ion), 

the following important distinctions between the cases of low and high ion 

densities Nt are evident: 

(A) For dilute ionization with ion densities Nt s 108  cm-3 , 

recombination can be based on consideration of the flow of positive 

ions e (say) towards a central stationary negative ion Y. Steady-

state conditions are then maintained by a source of ionization at 

infinity. For high ionization with Nt 2 2 x 10 14  (T/300) 3 / 2  cm-3 , 

when the Debye-Huckel shielding distance R s  s Re , the natural unit 

(e2/kT) of length characteristic of ion-ion recombination in a low 

density gas at temperature T, the positive ions e already exist in 

a pre-assigned configuration with respect to Y - , and the steady-

state source is then distributed uniformly throughout the volume 

(Bates 1981). 

(B) Recombination results not only from ion-neutral gas collisions but 

also from ion-ion (X+-X+ ), (Y - -Y - ), (X+-Y - ) collisions which tend to 

increase the rate (Bates 1982). 

(C) The interaction between the ions may no longer be considered as pure 

Coulomb at low gas densities N but will involve some appropriate 

measure of screening as determined by the self-consistent Poisson-

Boltzmann treatment (Flannery 1981, 1982a,b). 

(D) There are no longer isolated sinks, as for low Nt, but cooperative 

and competitive effects can arise between the closely spaced sinks 

distributed throughout the region. 

Bates (1981) has reasoned that screening (C) does not affect the 

recombination at high gas densities N, on the basis that ions which are 

initial nearest neighbours remain nearest neighbours, and drift towards one 
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another until recombination occurs, with the result that the usual Langevin-

Harper rate at high N is not affected by increase of ion-densities Nt. 

Flannery (1981, 1982a) has shown that the recombination rate a is, in general, 

determined as a function of N and Nt by the self-consistent solution of the 

Boltzmann equation for the two particle distribution function and of Poisson's 

equation for the interaction between the ions. Calculation (Flannery 1981) 

indicates that increase in ion density up to 10 14  cm-3  causes some reduction 

to a only at low and intermediate N. A molecular dynamics simulation (Morgan 

et al 1982) which incorporates this self-consistent idea (Flannery 1981) 

illustrates that the reduction can become quite significant when higher 

densities Nt 2 1015  at gas pressures < 1 atm are reached. Bates (1982) 

demonstrated that the effect of ion - ion collisions in (B) then tends to oppose 

the decrease resulting from (C) particularly at lower temperatures T and 

Nt  2 10 15  cm-3 . The isolated effects of (A) and (0) have not yet been 

addressed. 

The present goal is to investigate the effect of distinction (A) above, 

in isolation from (C) and (0). Since a detailed treatment based on 

microscopic principles (Flannery 1982a) would couple (A)-(D), and would 

therefore tend to obscure the key issue, it is worthwhile to illustrate the 

general trend by appeal to a Thomson-style treatment (constant speed, full 

absorption upon suitable collision). In so doing, a valuable connection 

between two distinct problems becomes apparent. 

In the following analysis, diffusional drift which influences the 

approach of the ions at intermediate gas densities N is ignored so that the 

present treatment is appropriate to low N S 10 17  - 10 18  cm-3. At higher 

N 2 1020  - 1021  cm-3 , the distinction A loses its significance since the 

radius RT  of the reaction sphere, within which recombination occurs, becomes 
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very small in comparison with both the Debye-HUckel radius Rs  and the natural 

unit Re , so that ions are generated well outside the reaction volume. 

Let the positive ions e be born isotropically with frequency Fr  at a 

point r from the central negative ion Y. The flux (number of ions per sec) 

which escapes in all directions slE  through a convex surface of area S 

enclosing a volume V (Figure la) is 

F E (r) = (F r/4w) f R
-2

exp(-R/x)(s2E •OdS = (F r/4w) f exp(-R/x)dgE 	(1) 
S 	 aE 

where R is the length from the internal point source r to the exit point on S 

in the direction aE' where A is the mean free path of the ion e in the gas, 

and where daE  is the solid angle (s1E •OdS/R 2 
subtended at r by elemental area 

dS with outward normal n . The probability for escape through S of ions born 

at r is therefore 

PE (r) = F E (c)/F r  = (1/4w) f exp(-R/x)da E 	 (2) 

gE 

and provided the production frequency F r  is the same constant at all points r 

within V, the averaged probability for escape is 

<FL> = 1 f 
` 
P,(E)qc 	(1/4nV) f dV f exp(-R/X)dsl E  V V 	 V

E 

(3) 

SubdivideVintotubeswithaxesdirectedalonga
t
„as in Figure 1(b), 

such that the elemental volume at r is, 

dV = (n i •aE )dSdR 	 (4) 
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where R is the distance along sI.E  of r from elemental area dS with normal n i 

 pointing inward. On integration over R between zero and the maximum chord 

length Rm (s2 E ,n i ) consistent with the specified directions s2 E  and n i , the 

averaged escape-probability is 

<PE > = 
1 (A/V) f dS f dar

`
(s2cn i )[1-exp(-Rm/A)] 

S 	aE  

where the region of integration is such that 9 E •n i  ) 0. 

The averaged probability for absorption within V is therefore 

<P
A
> =1= <P> 

so that, the rate a
V 
 (cm

3
s
-1

) of volume recombination (absorption) within V 

is, 

av = <Pesv 	 (7) 

where v is speed of the ions across surface S. This rate holds for ions 

generated with constant frequency F r  at all points within any volume V 

enclosed by any convex surface of area S. Under steady-state conditions, the 

source frequency is 

Fr  = av<p> 	 (8 ) 

where <p> is the averaged density (1/V)f p(r)dr within volume V in terms of 
V 

the density distribution p(r) of ions within V. 

For a sphere of radius R T , in particular, Rm  is 2(qE •n i )R T , so that the 

absorption probability obtained via (6) is 

(5) 

(6) 
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where 

< PA> = 1 - (3x/4R T )W(R T/x) 

W(X) = 1 - (1/2X 2 )[1 - (1 + 2X)exp(-2X)] 

4 	3 	5X2 	.3. + 	- -4TX + 	2  - -6- x 	j, 

+ 1 - (1/2X
2

) 

X + 0 

X + 

is the well-known Thomson probability (Thomson 1924, Loeb 1955), the relevance 

of which to the present problem will become apparent below. The recombination 

rate (8) for ions distributed with uniform frequency within the reaction 

sphere is therefore, 

aV  = 4NRT2vE1 - (3x/4RT )W(R T/x)] 

which tends at low gas densities (where x >> R
T
) to 

	

av  = (4)(3 wRI.) (v/x) 
	

(12) 

which is a factor of (9/4) higher than the corresponding Thomson rate for 

recombination of ions approaching from infinite separation (Thomson 1924, 

Loeb,1955), rather than from the pre-assigned configuration. 

For dilute ionization, the number of ions per sec which travel (still in 

the absence of diffusional drift) from infinity and enter the volume V through 

S from all directions a is 

dN
EN 
	(p.v/4w) fdSf(0 .n)da

0 4 
 =-
1 

p covS 
dt 
	

S 
	 (13) 

0 
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where n 	the outward-pointing normal to surface area dS. The density within 

V is 

p(r) = f p(C,Q)dn 	 (14) 

where the angular density at the internal point r in direction q is 

p(r,9.) = -(p.v/4w)fdSf K(c,q;r0 420 )(q0 .0dS10 	 (15) 

in terms of K(r,s2;r0 ,s20 ) which is the angular density of ions at r travelling 

in direction a which originate from a source radiating with a unit (flux) rate 

at r in direction Q
o 
 at surface S. This propagator satisfies the principle 

-- 

of microreversibility, 

K(Z,q;C0 J,20 ) = K(CO 3-110 ;C, -0 	 (16) 

which is such that the angular density at r in direction 2 which originates 

from a unit source radiating at ro  in direction no , is equivalent to the 

angular density generated at r o  in direction -no  by a unit source radiating at 

r in direction -s2. In terms of this propagator, the probability of escape of 

ions born at r is, by definition, 

Ps (r) = (v/4w)fdSf K(r0 020 ;r41)(9.0 •0dslo 	(17) 

the ratio (2) of the frequency at which ions emerge (with syn > 0) through 

surface S in directions no  to the frequency of their internal production at 
r. Upon use of (16) in (15), and upon reversal of signs of ft ()  and s2 in 
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the resulting expression for (14), the internal density (14) is simply 

P(C) = Pi(C)Pm 	 (18) 

The average escape probability is then 

< Pe = v Cf p(c)(10/p. = < p>/poo  1 

V 
	 (19) 

for any surface geometry. 

This expression (19) therefore provides the unique link common to the two 

distinct problems addressed here i.e., between the escape probability for ions 

generated isotropically at constant frequency within a confined volume V and 

the averaged density of ions injected into V from an external bath extending 

to infinity. 

Since the rate of ion entry into V from the bath is given by (13), and 

since the number of ions which exit per second from V back into the bath is 

dN EX - (p.v/410fdSf exp(-Rm/A)(t•r)dno 	 (20) 

the number of ions which are absorbed per second within V is 

dN
A 	

d (N EN dt 	
EN - NEX) = (p,v/4w)fdSf (s1 0 •0[1-exp(-RmA)]da0= am p. 	(21) 

where a.p.  is the frequency of generation of ions at infinity. 

The treatment assumes that absorption (recombination) occurs following 

collision at constant speed v so that the absorption frequency is also 
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dN
A 

dt - (Nov) f p(r)dV = ({)<p>V 
V 

(22) 

where a is the cross section for collisions with the third bodies Z of density 

N. With the equivalence of (21) and (22) in (19), the escape probability (19) 

is then 

<PE> = <p>/p.  = 4- (A/V) f dS f dil_(S20 •0[1-exp(-Rm/A)] 	(23) 
S 	no 

which is precisely the relation (6) previously derived ab-initio  without the 

connection (19). The fraction of ions that are absorbed within V is 

f = (dNA/dN EN ) = (4V/Sx)<PE> 	 (24) 

which, for a sphere of radius R T, reduces to 

f = (4R T/3A)<PE> 	W(R T/A) 	 (25) 

which is, as expected, simply the Thomson probability (10) for collision, 

within the trapping sphere, of ions which enter the sphere from an external 

bath. 

The connection of <1> to the rates of both problems is demonstrated by 

comparison of the rate 

<p> ,v _ p „,v, _ 1_ 
fSv 	 (26) a = — Vv-) - < 	- pm  A 	t A 	4 

obtained from (21) and (22) for recombination of ions entering S from infinity 

with the rate (7), 
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ay  = [1-<PE>]Sv = [1-(Sa)f]Sv 	 (27) 

for recombination of ions generated isotropically within V at a uniform 

frequency. The appearance of f (E the Thomson probability W for a sphere) in 

both problems is now evident. 

Moreover, the averaged density <p> within the reaction volume follows 

from (19) directly or from (26) where the frequency a.pm  of ion production at 

infinity is set equal to the frequency (v/x)<a>V of absorption within V to 

give 

<p> = a.a.(X/vV) 	 (28) 

irrespective of the mode of transport from inifinity to S. When a.  is 

1 
controlled by reaction alone (i.e. a. is 71  fSv), then, for a spherical volume 

<P> = C(3/4x)W(x)]co. 	 (29) 

which tends at low gas densities N (where X = RT/x << 1) to p.[1-3RTA +...]. 

The linear dependance on N(-1/A) of a.  in (28) therefore arises from the 

constant term pm  in this expansion of <p> so that the recombination rate at 

low N follows directly by taking either <p> = p. in (28) or <PE> = 1 in (26) 

to give 

A >> R
T  

aco 	 > V(v/A) = (4/3)7FR
3
(v/A) (30) 

thereby providing a one-line derivation (from (28)) of the Thomson N-linear 
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rate at low N. Nonlinear variation of a with N arises from the departure 

of <P
E
> from unity. 

In the presence of diffusional drift, the above Thomson rates (26) and 

(27) can be regarded as reaction rates (Flannery 1982a,b). As the gas density 

N increases then, for a sphere, the ratio (a via.) increases from 2.25 to 4 

when X < RT . 	The factor 4 is simply the relative measure of flux for both 

problems. This enhancement will favor an earlier onset with N of diffusional-

drift which will eventually become the rate limiting step. 

In summary, the partial recombination rate arising from (e-Z) collisions 

for the (dilute-ionization) case of (X +-Y- ) approach from infinite separation 

at speed v 12  is the Thomson rate, 

X>>R
T . 	4 

aT  = ITRT2 v i2W(RT/X) 	 (-a  wRe
3 
 )13

-3 
 (, 12/x) ; 	a=3/2 , 	(31) 

(which incidentally identifies Re  as the natural unit (e 2/kT) for volume 

recombination). This is to be compared with the corresponding rate 

- (3x/4R )W(R /X)] ay  = 41.RT2v 
12[1 T 	T 

(32) 

x»R
T 	

4 9  CI e3)0-3(v 12/X)  = 9 
aT  

3  

for the present (dense ionization) case where a steady-state distribution of 

ions e is maintained by constant-frequency isotopic sources (8) distributed 

uniformly within the reactive sphere centered at Y. The full rate is the sum 

of the partial rates based on e-Z and Y --Z collisions. So as to account for 

the inefficiency of energy transfer between dissimilar masses, the Thomson-

rate (31) can be multiplied by a mass-dependent efficiency factor designed to 
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reproduce the highly accurate rates (et Flannery 1982b) obtained from solution 

of the conventional collisional input-output Master Equation at low gas 

densities. This overall normalization should not affect the basic connection 

between (31) and (32), or the basic prediction that the effect of the 

distinction (A) between the cases of dilute and high degrees of ionization is 

to increase the recombination rate (by a factor - 9/4). 

The effect of ion-ion collisions (B) can now be incorporated directly 

within (32) by regarding (Bates 1982) third bodies Z as ions e(or Y - ). 

Thomson- recombination between ions of separation R 4 RT = (2/3)e 2/kT occurs 

upon any collision which is assumed to transfer energy AE > (3/2)kT. For ion-

ion Coulomb scattering between equal masses at relative energy (3/2)kT, this 

energy is transferred provided the (CM) scattering angle is greater than 

(w/2). The cross section for such collisions, after a straightforward 

exercise, is 

a = (1/9)wR e2 	 (33) 

In a gas of electrons of mass m and density N - , (33) in (31) yields 

(e) 	f, 
aT 	= 	2 /270

3 
 )(8kTiwm) 1/2 R

e
5 N-  (34) 

3.5 10
-9

T
-4.5

N
- 

(cm
3
s
-1

) 

for the rate of electron-ion collisional recombination which, remarkably, is 

92% of the identical collisional rates (Mansbach and Keck 1967, Stevefelt et 

al. 1975) based on the detailed Master Equation. Generalization of (34) to 

cover ion-ion recombination in an ion gas may be deduced as in Bates (1982). 

Incorporation of ion-ion collisions within (32) will also increase the 
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recombination rate, particularly for ion-densities Ift > 10 15  cm-3  and lower 

temperatures (Bates 1982). 

In conclusion, the rate for recombination of ions distributed uniformly 

within a reaction volume V has been shown to be a factor of (9/4) greater than 

the rate for ions which approach the reaction sphere from infinity. These two 

situations are respectively appropriate to the present examination of the 

effect of distinctions A and B (in isolation from C and D) on the cases of 

high and dilute ionization, respectively. In so doing, a valuable 

relationship (19) which connects the two distinct problems of approach from 

infinity and of escape from a confined volume of generation has been 

uncovered. 
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Figure 1:  (a) Ions borns at point r within volume V enclosed 

by surface S escape within solid angle d0 E  through elemental area 

with outward normal n. (b) Elemental volume dV = (0
E 
 -n.)dSdR of 

1 
tubes with axis along Q E  at angle to inward normal n i  of surface 

element dS. R
m is maximum chord length for specified directions 

n. and 0E. 
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Abstract  

During this second year or the grant, research has been initiated and 

conducted (a) on Termolecular Association in Gases and (b) on electron-

excited atom collisions. 

A microscopic theory of ion-atom association in a gas w 	formulates. 

Connection with previous macroscopic treatments was established, and various 

dilemmas with precious macroscopic formula were noted and resolved. The 

present theory yields a much more accurate representation of the variation of 

the termolecular rate with gas density. 

A ten-channel eikonal treatment of electron-helium collisions was 

performed for a basis set of (1 1 S, 2 1 S, 2 1 P, 3 1 S, 3 1 P, 3 1 D) target states to 

yield the first theoretical results for the very basic orientation and align- 

ment parameters for the 3 1 D level of helium. Good agreement with recent 

measurements of tne coincidence rate between the electron scattered inelasti-

cally in a given direction and the (2
1
P 	1

1
S) photon emitted in the cascade 

transition 3
1
D -0 2

1
P 	1

1
S was obtained. 



1. Research Initiated and Completed  

1.1 List of Topics  

During the second year (7/1/85 - 6/30/86) of the Grant, theoretical 

research on the following topics was initiated, completed and written up for 

publication in scientific journals. 

(A) The Rate for Transport-Influenced Reactions 

(B) Basic Expression for the Rates of Termolecular Recombination and 

Dissociation 

(C) Connection between Microscopic and Thomson theories of Recombination 

(D) Orientation and Alignment Parameters for e-He(1 1 S-'3 1 D) Collisions 

(E) Macroscopic and Micros - ppic Perspectives of Termolecular Reactions in 

Physics of Atoms and Molecules 

1.2 Summary of Topics 

A summary of each of toe above topics (A)-(E) now follows. Full details 

of each topic are presented in Appendices (A)-(E) of this report. 

Topic (A): The Rate for Transport-Influenced Reactions  

The termolecular 1-ate ,1 for transport-influenced reactions between 

species A and B in a gas M is expressed in terms of the averaged probability 

(P,,) of escape of pairs from the reaction zone. This procedure permits 

rigorous identification of toe local (reaction) rate a 3  at tne edge of the 

reaction zone, wh:ch is left unassigned by tne Debye-Smoluchowski treatment. 

Topic (B): Basic Expression for the Rates of Termolecular Recombination and  

Dissociation  

It is noted that toe usual identification of the rate R A
(t) for 

termolecular recombir :ion at time t with the downward current past a bound 

energy level is appropriate to cases whL.:h involve energ, distributi,Ls that 



satisfy the quasi-steady-state (QSS) condition to the exact master equation. 

A general expression for R A
(t) is derived which is valid for both QSS and 

non-QSS distributions, such as those non-QSS distributions obtained from both 

the diffusional and variational methods or from numerical approximation to the 

exact QSS condition. 

Topic (C): Connection Between Microscopic and Thomson Theories of  

Termolecular Recombination  

By making certain key asJumptions in the microscopic theory of 

termolecular ion-ion recombination in a gas, a firm connection with the 

Thomson treatment is estabiLshed. 

Topic (D): Orientation and 1-.1ignment Parameters for e-He(1 1
S -* 3

1
D) 

Collisions 

A ten channe_ eikonal treatment of electron-helium collisions is 

performed for a basis set of (11S, 2 1 	_1 S, 	P, 3 1 3, 3 1
P and 3 1 D) target states 

to yield the firs: theoretical results for the orientation anc alignment 

parameters for the 3 1
D level of helium. Good agreement with recent measure-

ments is obtained. 

Topic (E): Macroscopic and Microscopic Perspectives of Termolecular Reactions  

A microscopic theory of termolecular association 

t- 
A + B + M 	AB + M 

of ion A +  and atom B in a gas M was developed. Connection with previous 

macroscopic treatments was established and a hierarchy of relevant approxi-

mations was established. 



1.3 Paper Presented at Scientific Meetings  

The following paper 

1. "Variational Principie for Association/Dissociation in Dense Gases", by M. 

R. Flannery was presented at the 38th Annual Gaseous Electronics Conference, 

October 15-18, 1985, at the Naval Postgraduate School, Monterey, California. 

The abstract is: 

A new Variational Principle is presented for the rate R A
(t) of evolution 

towards equilibrium of a non-equilibrium distribution of (A-B) pairs, either 

associated or dissociated, in a gas M. An expression for R A
(t) is developed 

in terms of the probabilities P A
i for association of pairs with internal 

energy E.  With simple variational analytical functions for P A i , application 

of the Variationa,. Principle yields minima which are in exact agreement with 

detailed numerical results of the more time-consuming Quasi-Steady-State 

Method which, in principle involves the solution of an integral equation for 

PA i  and provides the minimum to R A
(t). The new expression for R A 

 is also very 

valuable when approximate PA
i , as those given by the diffusion treatment, are 

adopted. Results will be illustrated. 
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LETTER TO THE EDITOR 

The rate for transport-influenced reactions 

M R Flannery 

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA 

Received 22 August 1985 

Abstract. The termolecular rate am  for transport-influenced reactions between species A 
and B in a gas M is expressed in terms of the averaged probability (9 E) of escape of pain 
from the reaction zone. This procedure permits rigorous identification of the local (reaction) 
rate a )  at the edge of the reaction zone, which is left unassigned by the Debye-Smoluchowski 
treatment. 

Consider the association (recombination) reaction between species A and B in a gas 

M by collisions between the pair (A-B) and M. The intramolecular current of A and 
B with relative diffusion coefficient D and relative mobility K in the gas M is (see, 
for example, recent reviews by Bates (1985) and by Flannery (1982)) 

J(R)= — DV p(R)-i-(K / e)(V V(R))p(R) 

= —D exp(— V/ kT)V[p(R) exp( V/ kT)] 	 (1) 

where p(R) dR is the density of (A— B) pairs with internal separation R in the interval 
dR about R, and where V( R) is the internal interaction between A and B. An alternative 
picture (used here) is that I is the net outward current at R of particles A with density 
p from a fixed central species B. Reaction occurs within a (spherical) volume V with 
radius S centred at B. In the steady state the solution of the continuity equation 

V • J = 0 	 (2) 

subject to the asymptotic boundary condition that p p. as R --• co, yields the constant 
flux 

—4irR 2J( R) = 	 (3) 

where am  is the required termolecular association (recombination) rate. The solution 
of equation (3) with (1) then yields the density 

p, = p. exp(— V(S)/ kT)(1 — a./ ant) 	 (4) 

at the -edge S of the assumed reaction zone R S where the steady-state rate a nt  for 
transpett from infinity is 

ant  =41rD(f R -l exp( V/ kT) dR) 2. 4 VD§ 	 (5) 

The key point here is that in the steady state 

a.P. = (P)Y(--4 
A 

+ -Ia) 'm (P)r( vi A ) 	 (6) 
ka  

0022-3700/85/210747 +03S02.25 © 1985 The Institute of Physics 	 L747 
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where (v/ A ) is the frequency of (A-B) collisions with the gas at relative speed v, and 
(p) is the average density of A within the reaction volume V centred at B. The mean 
free path of A with speed v A  or B with speed vs  in M is A ka. It has already been 
shown (Flannery 1985) that (p) and p, are related in a Thomson-style treatment 
(constant speed v, full absorption upon collision within V) by the averaged probability 

0°0= (Oh; 
	

(7) 

of escape of pairs to outside the volume V. Hence equation (6) yields 

a.= (9°E)rvi A)(P,/ Pc.). 
	 (8) 

An expression for ( E) has been derived (Flannery 1985) but is not required here. 
With the aid of the ditfusional-drift result (4), equation (8) can now be solved for a cc, 
to give the conventional result (see e.g. Flannery 1982) 

am = aRNai-Rf(aRp, + crne) 	 (9) 

but with the rate of reaction within V defined by 

a RN  = ( a)cr( v/ A ) exp(- V(S)/ kT). 	 (10) 

If V is a spherical volume of radius S = RT, then for straight-line A-B motion the 
averaged probability reduces to (Flannery 1985) 

(E)= (3A/4RT)W(R-r/A) 	 (11) 

where 

W(X) = 1 -(1/2X 2 )[1 -(1+2X) exp(-2X)] 	 (12) 

is the (Thomson) probability for an A-M collision with straight-line relative motion 
within the reaction volume Y. Hence the reaction rate (10) in this instance is 

a RN = irR1 W( R T/ A ) exp( - V( RT)/ kT). 	 (13) 

Although this analysis has reproduced the customary relation (9) for transport-
influenced reactions, it has done so by addressing the important point of what happens 
within the sink region. In the conventional Debye-Smoluchowski model (Debye 1942, 
Smoluchowski 1917, Flannery 1982) reaction (absorption) is assumed to occur at the 
edge S of the sink at a local frequency a 3p, such that solution of the continuity equation 
(2), subject to both the asymptotic condition (p --■ p,, as R co) and to the 'radiation' 
boundary condition 

- 41-52./(S)= a3p, 	 (14) 

at the sink, yields (9) with 

aRN = a3  exp(- V(S)/ kT). 	 (15) 

In the conventional treatment this local rate a 3  remains unassigned (since the 
physics of the sink's interior is left unspecified) whereas the present treatment has now 
explicitly identified a 3  as 

a3 = ( E)°'V(v/ A) 	 (16) 

where an expression for (gb a) has already been provided (Flannery 1985) for any 
surface geometry enclosing the volume V. This advance has been made possible by 
the valuable relationship (7) previously reported (Flannery 1985). It is worth noting 
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that the single-speed treatment here can be easily generalised to cover a distribution 
over speeds v; only the averaging procedure is affected. 

Therefore, by equating the frequency (3) for diffusional drift to the frequency (6) 
of absorption within the sink, the expression (9) for the rate of transport-influenced 
reactions has been reproduced in terms of a reaction rate (10) expressed in terms of 
the averaged probability (J",) of escape from the reaction volume Y. In so doing the 
local rate a, in (14), which appears in models based on the premise that reaction 
occurs with frequency a 3 p, at the edge of the sink, has been clearly and rigorously 
identified by equation (16). 

This research is supported by the US Air Force Office of Scientific Research under 
Grant No AFOSR-84-0233. 
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LETTER TO THE EDITOR 

Basic expression for the rates of termolecular recombination 
and dissociation 

M R Flannery 

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA 

Received 17 September 1985 

Abstract. It is noted that the usual identification of the rate R A (t) for termolecular 

recombination at time t with the downward current past a bound energy level is appropriate 

to cases which involve energy distributions that satisfy the quasi-steady-state (Qss) condi-

tion to the exact master equation. A general expression for R A ( r) is derived which is valid 
for both Qss and non-Qss distributions, such as those non-gas distributions obtained from 

both the diffusional and variational methods or from numerical approximation to the exact 

QSS condition. 

The net rate R A (r) for recombination at time t via the termolecular process 

a 
(1) 

which proceeds in the forward direction with effective two-body rate a(cm 3  s -I ) and 

in the reverse direction with frequency k (s -I ) and which involves energy changing 
collisions between the pair I A*43 - ) of ions and the constituents M of a thermal gas 
bath is given under quasi-steady-state conditions by 

R A (t) —J,(E„ t) 	 (2) 

the net downward current (—J,) in energy space of pairs past a bound energy level E, 
of AB. The separation between the energy levels AB is sufficiently small in comparison 
with the thermal energy (kT) of the bath species M. The levels therefore form a 
quasi-continuum so that n,( E„ t) dE, is the number density (cm -3 ) of AB pairs with 
internal energy E, in the interval dE, about Er  There exists a block .9' of low-lying 
levels in the energy range —D of tightly bound AB pairs which are stable 

against direct dissociative collisions with the thermal M. The energy of the lowest 
bound level of AB is —D with respect to the dissociation limit, taken as zero energy, 
and the energy level —S arises quite naturally from the collisional dynamics via the 
cut-off effect of the Maxwellian distribution of the gas bath. 

The reasons for the present letter are: (i) to note that equation (2) follows only 
when the energy distribution n, of pairs in the highly-excited block if of levels lying 
between the dissociation limit and —S is in exact quasi-steady-state (Qss) i.e., 

an,(E„ War =0 	0 	—S 	 (3) 

as in the time-independent treatment of Bates and Moffett (1966) and of Bates and 
Flannery (1968), and (ii) to derive a general expression for the rate R A(t) pertinent 

0022-3700/85/240839+061;02.25 q.D. 1985 The Institute of Physics 	 L839 
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to non-Qss situations and to cases which involve the use of approximate distributions 
n, as provided, for example, by the diffusional equation (Pitaevskii 1962, Keck and 
Carrier 1965, Flannery 1986b), by variational techniques (Flannery 1986a) or by 
approximate (iterative) numerical procedures. 

In the limit of low gas densities, the conventional input-output master equation 
that governs the distribution n,(E„ t) dE, for the density (cm -3 ) of subsystems AB with 
internal energy E, in the interval dE, about E, can be written as (cf Flannery 1986a) 

r
a 

n i (E„ t) = -1 S,f(t) dEf - aE, — J,(E„ t) 	 (4) -D  
where the net two-level input-output collisional rate of depletion of energy level E, 
at time t is 

S,f(t)= n,(E,.  t)P,f(E,, Ef ) - nf(Efi  t)pf,(4 E,)= -5f,(t) 	 (5) 

in terms of p,f dEf, the frequency (s -1 ) for i-g.f transitions which change the energy 
-E;  to between Ef and Ef  +dEr  by collision of the (A + -B- ) pair with the gas M. The 

net upward current J, in energy space past level E, is therefore determined either by 
the integral expression, r  

J,(E, t)= f
co 

dE, 	Sfi (r)dEf =f dE, 	Sp(t)dEf  	(6) 
E, 	- D 	 E, 	- D 

with the aid of the null effect, S,f + 	= 0, of collisions, or by the equivalent expression, 

E, E, 

.1,(E„ t) = f dE, f S, f(t) dEr  = fdE, f S,f(t) dEf 	(7) 
-D 	-D 	 - D 	E, 

since the current past the end points (-D, co) vanishes. The quasi-steady-state (oss) 
treatment is therefore based on the solution of equations (3)-(5) so that the rate (2) 
is given by the current (6) or (7) which is constant over all energy levels E, in block if. 

Although the system (1) is considered by equation (4) as closed, owing to the 
explicit neglect of mechanisms other than (A - -13 - )-M collisions such as one-way 
mutual neutralisation A + + AB* -• A* + B, quantum tunnelling AB-0A+ B and 
radiative transitions AB* -> AB+ hp, the above master equation (4) is easily modified 
to cover more general cases such as collisional-radiative recombination (Bates et al 
1962) in a plasma. Integration over the quasi-continuum can also be replaced by a 
corresponding summation over discrete levels so that processes such as electron-ion 
recombination in a gas can be accurately described. These generalisations do not affect 
the following basic argument. 

In general, the overall rate of association is (Flannery 1986a), 

R A W = f PNE,)(an,1 at) dE, = f J,(E,, WWI a E,) dE, 	(8) 
-o 	 -o 

where Pt(Ed is the probability that pairs with energy E, are collisionally coupled to 
the fully associated block .9'. Introduce the distribution, 

I 

y,(E, t) = n,(E„ 1)1 ri,(E,)---• I 
	

(9) 

normalised to the density ii, appropriate to full thermodynamic equilibrium with the 
gas bath. Assume that the energy distributions of (fully dissociated) pairs (A` +131 in 



Letter to the Editor 	 L841 

the continuum block if, 	E, x, and of (fully associated) pairs AB in the lowest 

block So, – D 	– S, are in thermal equilibrium with M so that the corresponding 
normalised distributions, 

-1 . 
Nett) =

\ 
	 t) dE,)(1 ri,(E,) dE,) =(N,,(t)N e(t))1 NA N8 . 1 	(10a) 

0 	 0 

in block ce and 

-s 
y,(1)= n,(1)/ 	n,(E„ t)dE,(f ri,(E,)dE,) ]--. 1 	(10b) 

-D 	 -D 

in block 9', are pure functions only of time t. The non-equilibrium distributions at time 
r are NA.B (r) and n,(t) for the fully dissociated and associated species, respectively, 
and the corresponding thermodynamic equilibrium values are NA- B and ris, respectively. 
Since no internal one-way sources and sinks exist within the intermediate excited block 
if, the normalised energy distribution of pairs in block if can then be expressed by 
the linear combination of time-dependent strengths of external sources and sinks as, 

Y,(E. I) = P!)(E.)Yc(I)+PNE,)7.(1)—. 1 	 (11) 

which identifies PP and e as the probabilities that pairs with internal energy Ei  are 

collisionally coupled to the continuum (source) block 48 and to the (bound) sink block 
.9', respectively, i.e., P A, ' D  are the probabilities of association (A) and dissociation (D) 

respectively, as implied in (8). Alternatively, P'• D  are the probabilities for external 

stabilisation (A) or disruption (D) of pairs in bound level E, by subsequent multi-

collisions with M. Since the system is closed, the sum (12", + P,D ) is unity so that the 

net rate of dissociation, 

R D(t)= 	PD(E,)(an,/aE,)dE, 	 (12) 

when added to (8), the net rate of association, yields 

R A (r)+R D(t)= f (andat)dE, =0 	 (13) 
- 

zero, as expected. 
In block 9', f';'' is unity and P D  is zero, and in block , e is unity and P ., is zero, 

by definition, so that the ansatz ( I 1) incorporates both (10a) and ( lob). The master 
equation (4) then separates in E, and t, under (11), as 

(an,/ at)= -(r(t) --  vi(t))(y (p7_ p)cif dEf) (14) 

and the current (7) separates as 

0 - 

A(En 1 ) =  (Vc(t) —  Ys(t))(1 dE, 
E 

E , 

(Pr - 13;4 )C,f  dEf) 
-0 

(15a)  

(Yc(t) —  Ys(1))ii(EI) (15b)  

in terms of the background current j,. The one-way equilibrium collisional rate 

C,f ( Eh  Ed= ri,(E,)v,f (E„ Ef ) = rif (Edvf,(Efi  E,)= Cf,(Ef, E,) 	(16) 

between levels i and f satisfies detailed balance. 
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The net rate (8) similarly factors 

R A (0 42 (1.(t) -  Y.(1))(11:1; AE, f (P; - P7)C, i  dEl ) 	 (17a) 
-0 	-o 

=IWO -  7,01)(1 dE, 	 (17b) 
-0 	-0 

Since the effective two-body constant a (cm' s - ') for association and the frequency 
constant k (s - ') for dissociation in (1) are related to the overall rates R A(t) by 

RA(t) = aNA (t)N,(t)- kn s(t)= - R D(t) 	 (18) 

= al■IAI■1B( vc(i) ys(1))= - kii,(Y.( 1 ) -  Ye ( f)) 

they are therefore determined by the time-independent part of (17) i.e., by 

a1Z1,1■19 = 	dE, JT  (1:';4  - P;')Cy. dEf) 
• 

which is the present basic expression to be used whether or not the probabilities 11;4  
are known exactly. 

When one-way mutual neutralisation is assumed to depopulate the .50  block instan-
taneously in comparison with collisional vibrational relaxation then NM in the 
foregoing analysis vanishes. 

A new rigorous variational principle (Flannery 1986a, c) for association/dissoci-
ation processes (1) or, in general, for chemical reactions in gases, asserts that the 
probabilities are so distributed that the rate (8) at any time t is a minimum and 
that as a consequence of conditions (10a, b) the distribution n,(E„ t) in the excited 
block "e is in quasi-steady-state (see also Bates 1974, Menda; 1979) i.e., 

ran,(E„ IV ad= 0 = - [aJ,(E„ IV a EJ 	E, - S 	 (21) 

so that, with the aid of (14), the probabilities P A, • 13  then satisfy the integral equation, 

d Ef 	P7.D C,f  dEf 	 (22) 
-0 	 -D 

which is analogous to the time-independent quasi-equilibrium method pioneered by 
Bates and associates (cf Bates 1985) for the highly non-equilibrium case 7c>> 
Alternatively, the current J, (E„ r) at a given time t is constant over all energies - E of 
block is. Since P A, is constant (zero in block =6 and unity in block .9'), (8) directly 
yields the minimum rate to be the downward current, 

-s 
/e(t)= 	(an,/at)dE, = -J(-E, t) 	 (23) 

-D 

in accord with (2). Wi h the aid of (19) and (15b) the minimum rate constants a, and 
k. are therefore determined from 

-E 

a jr/A  /Vs  = -j( - E ) fdE, 	 P;4 )Cy. d Ef  = 	 (24) 
E 	-o 

Upon recognition of the constant-current QSS condition (21) from the outset, (24) has 
been the fundamental expression (Bates and Moffett 1966, Bates and Flannery 1968, 
Bates 1985) based on the equivalence of the rates of disappearance of fully dissociated 

(19) 

(20) 
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pairs and the rate of appearance of fully associated pairs via a constant net current, 
-j(E), of pairs past bound level -E in the intermediate block €. Equation (24) also 
follows from the direct use of the QSS condition (22) in the basic equation (20). 

When, however, the probabilities P A, .° can only be derived from some procedure 
other than from the exact numerical solution of the exact QSS condition (22) to the 
master equation (4), the exact current (15) is not constant through block if and the 
more basic expressions (17) for the time-dependent rate 12 ^ (1) and (20) for the rate 
constants a and k must therefore be used instead of the derived expressions (23) and 
(24) which only follow from (17) and (20) on invoking the exact QSS condition (21) 
or (22) to the exact master equation (4). Nor are the expressions (23) and (24) 
appropriate for approximate numerical solutions to (22), or when the following impor-
tant diffusional and variational methods are used to evaluate PA., D . 

(i) The diffusional treatment. A Fokker-Planck analysis can be adopted to reduce 
the integral collisional (discontinuous) term on the right-hand side of the master 
equation (14) to a differential (streaming) form so that the diffusion-in-energy equation 
(Flannery 1986b) 

anilat = - (yc( 1 ) - 71(0) -± (1); 2) 8 1117aE1) 	 (25) 
aE, 

= - (yc(1) - y,(1))(djdIdE,) 

is obtained (cf Pitaevskii 1962, Keck and Carrier 1965, Lifshitz and Pitaevskii 1981) 
where half the equilibrium energy change squared per second 

D;' ) (E,) = f
. 

Ef E,) 2 C,f  d Ef 	 (26) 

or second-order moment of the energy change, is analogous to the conventional 
diffusion coefficient in configuration space. The QSS solution of this approximate master 
equation ( 25) subject to the appropriate boundary conditions ( 0) = 0, P A, (-5) = 1) 
is 

0 	 0 
13''(E,)=(fdE/IY 2 '1E))(1 dElD' '(E)) I  

-5 

so that the corresponding QSS downward (diffusional) time-independent part of the 
current is obtained from (25) to give 

" -jd  = .1 dE,/13 12) (E)= apSI A SI9 	 (28) 
-s 

which, when identified with the association rate aR A  A as prescribed by the customary 
relation (24), yields ap, the rate constant obtained by Pitaevskii (1962) and by Keck 
and Carrier (1965). Although this rate ap has been shown (Flannery 1986b) to agree 
with that calculated from (22) and (24) only for collisionsl electroti-ion recombination 
in a gas, the case for which it was originally designed (Pitaevskii 1962), it involves 
great error when applied to general systems, such as ion-ion recombination in a gas 
(Bates and Zundi 1968, Flannery 1986b). The basic reason for this inadequacy is not 
that (27) is, in general, grossly inaccurate; (27), in fact, provides a good working 
approximation (Flannery 1986b). Rather, identification of the overall rate of associ-
ation with the downward current as in (24) and (28) is not in general appropriate since 
the exact current (15) with the approximate probabilities (27) is not constant over 
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block W. When the diffusional probabilities (27) are used directly in (17) or alterna-

tively in (20) then, when compared with exact QSS rates determined from solution of 

(22) in (24), highly accurate results ( Flannery 1986b) for termolecular ion- ion recombi-
nation rates associated with general mass systems are obtained. Only for thevarticular 
case for electron-ion recombination in a heavy gas are the currents (24) and (28) 
equal, being about three orders of magnitude less than for the general case, and any 
numerical difference between the use of (27) in ( 20) and (24) disappears ( Flannery 
1986b). 

(ii) The variational treatment. When trial analytical functions for P A, A)  are adopted 
in a search for the minimum of (8), the appropriate procedure is variation of the 
integral (17) or alternatively of (20), and not of (2) or (24). The minimum so obtained 
is then the required rate (Flannery 1986c). 

In summary, identification of the association (recombination) rate R A( t) or a for 
termolecular processes with the downward current (23) or (24) is restricted only to 
those cases for which the density distribution n ; (E,, t) is obtained exactly from the 
exact quasi-steady-state (Qss) condition (22) of the exact master equation (4). 
Expressions (17) and (20) derived here for R A(t) and a, respectively, are appropriate 
when QSS and non-Qss distributions are used, including those derived from approximate 
numerical procedures and from the important diffusional and variational methods. 

This research is supported by the US Air Force Office of Scientific Research under 
Grant No AFOSR-84-0233. 
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Abstract. By making certain key assumptions in the microscopic theory of termolecular 
ion-ion recombination in a gas, a firm connection with the Thomson treatment is established. 

The Thomson rate (Thomson 1924) 

aT = 7R -2118kT/ Irm)" W(R ri A) 	 (1) 

serves as a useful baseline at low gas densities N for comparison between various 
linear N dependencies (cf Bates 1985, Flannery 1982a) of effective two-body rates 
a (cm3 s -I ) for termolecular recombination, 

A -  + B -  + M -• AB+ M 	 (2) 

between various systems of positive and negative ions, A+ and 13 - , of reduced mass 
rn, in a gas M at temperature T. As N is raised beyond the linear region, equation 
(1) predicts a non-linear increase with N in accordance with physical intuition. The 
connection between (1) and the basic microscopic theory (Flannery 1982b) for the 
variation of a with N has not, however, as yet been established, nor has the actual 
N variation which is contained in equation (1) within the probability W for collisions 
between M and those pairs (A-(3) with internal separations R < R r , where RT is some 
pre-assigned trapping radius within which reaction occurs. This (macroscopic) proba-
bility is 

W(R T/ A )= w(R T/A A )+ w(RT/AB)— RT/A A )w( RT/ AB) 	 (3) 

where AA and AB are the mean free paths of A -  and B -  in the gas and the probability 
of an individual ion-atom collision within the RT sphere centred at the other ion is 
(Loeb 1955) 

w(X)= 1 —(1/2X 2 )[1 —exp(-2X)(1+2X)]-+ 
{IX(1 	+...) N-+ 0 

N co 
(4) 

assuming rectilinear ion-ion relative motion. Since & kJ,— W I , ar  varies correctly as 
N, at tow N, but at high N displays its well known inadequacy by tending to a 
saturation limit rather than to the correct limiting rate (Langevin 1903, cf Bates 1985, 
Flannery 1982a) of diffusional drift, which is neglected in Thomson's result (1) and 
which varies as N -1 . Detailed microscopic theory has, as yet, been applied (Bates 
and Moffett 1966, Bates and Flannery 1968, Flannery 1980, 1981, Bates and Mendai 

0022-3700/86/070227+07802.50 © 1986 The Institute of Physics 	 L227 
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1982) only to the limit N -.0, where a increases linearly with N and where energy 
relaxation is the rate-limiting step. When relaxation in internal separation R is also 
acknowledged at higher N some connection (Bates and Mendai 1978, Flannery 
1982a, b) with the N variation predicted by (1) has been obtained. 

In order to acknowledge coupling with transport and to retain the attractive 
features intrinsic to (1), the rate 

= 0 fiNer-1-$042 R ,J 1- cf-rR) 	 i 51 

was suggested (Bates and Flannery 1969, Flannery 1982a, b) for all N. The reaction 
rate a RN  in (5) is taken as the Thomson rate (1), suitably normalised to reproduce the 
correct microscopic gradient as N -. 0, so that trapping radii RT can be accurately 
specified for each ion-atom collision. The transport (diffusional drift) rate in (5) is 
am . Such a procedure yields good agreement (Flannery 1982a, b) with Monte-Carlo 
simulations (cf Bates 1985) and experiment (cf Bates and Flannery 1969). 

Although a detailed microscopic theory for the recombination in (2) has recently 
been formulated (Flannery 1982a) for all gas densities N, it has not yet been imple-
mented, owing to the complexity of the coupled sets of master equations (Flannery 
1986a) that are derived from the microscopic theory (Flannery 1982b). The implicit 
assumption that equation (1) for a RN , albeit normalised to the microscopic results at 
low N, provides a correct variation with N has yet to be proven. 

The purpose of this letter is to establish a firm connection between the microscopic 
treatment and (1), and thereby to expose the underlying key assumptions within (1). 

The basic set of master equations satisfied by the distributions n,'(R, 
E,, L?, t) per unit interval dR dE, dLZ of pairs (A-B) with internal energy E, 

and internal angular momentum (squared) L,2 , expanding (+) or contracting (-) with 
radial speed Iv R 1 at internal separation R is (Flannery 1986a) 

do * 	 an,* 	1 a 	, 
(R, E„ 	

at 	aR
—(R rt(R, E„ 

dr 	
t)IVRI) E„1_2 

d Ef f 	1:11,;(n,5 (R, 	vr, ( 	n,r(R, t)v, f(R)) 
R 	0 

where v, f(R) is the frequency per unit interval dE f  dt; for ( E,, 	Ef , L;3 ) transitions 
induced by collisions between v1 and the pair i A-B) with fixed internal separation R. 
The interaction between A and B with reduced mass m is V( R), the relative momentum 
squared 12, is 2m( E, - VI R)) and 

V,( R)= VI R)-t- L; .72m12 2 	 (7) 

is the effective radial interaction, so that - V,( R) in (6) denotes the energy of the lowest 
vibrational level of AB consistent with fixed L, and R, relative to the dissociation limit 
taken at zero energy. Equation (6) is the continuity equation for R streaming in the 
presence of input -output discontinuous collisions of (A-B) pairs in mutual trajectories 
of prescribed E, and and can be derived (Flannery 1986a) from the Boltzmann 
equation (Flannery 1982b) for the two-particle distribution functions. 

The fundamental rate of recombination is (Flannery 1986a) , 

f 	R 	R 2 1, 

R A (i) 	dE, 	dR 	PNR, E„ L;)(dn,/dt)dL,' 	(8) 
- D 	0 	0 

where pr. is the probability that expanding and contracting (R, E,, L,2 ) pairs with 

(6) 
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distribution 	= 	+ n , ) are stabilised (or associated) by subsequent multiple col- 
lisions, it, is the outermost turning point at which f V( RM..= E 1 1, and — D is the lowest 
vibrational level of the AB pair. 

On introduction of the averaged probability 

R, Er ) = 

the rate (8) may 

R 

R, Er , Li 1n r( R, 	L?, 	) d 	f 
0 

be rearranged to give, with (6), 

nr(R, Er, a, t)da) - I  
0 

(9) 

R, 

R"(t)= dE, 
—D 

dEr  
—D 

PNR, Er )S,r(R, E„ Er) dR (10) 

where Rif is the lesser of the turning points R, and R r  and where 
R ip? Rips 

S,r(R, E,, Ed= f 	dL; f 	d 	n, 	R)— tt r y n(R))= 	Er, E,) (11) 
0 0 

is the net collisional rate per unit interval dE, dE r  for (E1 -►  Er) transitions at fixed 
internal separation R of the associating pair. 

The following three assumptions are now made. 
(A) Assume that the probability for stabilisation of level Er is 

PNR, Er) =1 	R RT, Er 0 	 ( 12) 

and is zero otherwise (Ef > 0, all R; Er 0, R > R T ) in keeping with the concept that 
only bound pairs with internal separations R less than some trapping radius RT can 
be collisionally stabilised. Hence (10) reduces to 

R A  f 	dE, 	dEr  j.  
—D 

Ft; 

0 
S,r(R, E„ E r ) dR = j "  dE, .1"RT  dR 

0 	0 
" _° ,,R) S,r(R, E„ E r) dEr  

( 1 3) 

where 12; is the lesser of R I,- and Rf . 
B) Include in (6) only absorption by continuum-bound collisional transitions so 

that, for a steady-state distribution n," of pairs in the continuum, 

dn ' 	 a 
' IR E 	r1= 	 E 	flt:FIDE„L;- 

dt 	" 	R` aR 	' 

= 	R, E„ L,', t11",(R, E„ L, 2 ) 	 ( 14) 

where the frequency for collisional formation of bound pairs is 
o 	 R2p? 

v i(R, E a , 	= 	
v,(R) 	

(15) d Ef f 	VW( R, E„ 	Ef , 	 d a. 
_  

(C) Assume that transport by diffusional drift can be neglected outside the trapping 
sphere, so that the incoming distribution n;"(R, E„ L;) at RT is given by n; (R, E, , Lf), 
appropriate to thermodynamic equilibrium with the bath of thermal gas. The solution 
of (14) for contracting pairs with R < RT is therefore 

RT 

ni- ( R RT. Ee, 1-f)= 	E„ L;)exp( — 	 12,(R)dR) 	(16) 

where the number of (associative) collisions that occur during a time dt within the 
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element ds 12  of the ( E„ 	trajectory for ( A-B) relative motion at speed v 12  is 

a,(R, E„ 	dR = v, d R/ivR  I = vi 4 2/ v iz  ds12/ A, IR Vi dr 	(17) 

in terms of the free path length A,I = v i z/vi) peculiar to the prescribed (E,, a). In the 
solution of (14), use was made of the fact that the equilibrium radial flux 

R. E,, 	=477.R 2 ri;- ( 	E,, L,"):v R , 477- 7- ■ 27mk T1 -3  exp( 	kT) 	(181 

of contracting pairs is independent of R. Since rt i-  at the pericentre R,(E,, a) of the 
open orbit equals 'OR, , E,, L;), the solution of (14) for expanding pairs with R R, 
is 

nNR> R 1 , E,, L;)= 	E,, 	exp( 	
RT 

- 	a;  dR)exp(f RT  dR) 
R, 

where denotes the integral over that part (R T - ►  R, -0 RT) of the (A- B) relative trajectory 
enclosed by the RT sphere. 

On changing the order of integration and setting Sj = n,v i = (ri,` + n;) v ;  in accord-
ance with (14), the rate (13) reduces to 

	 Rr 

R À  = j.  dE, 	 I RT dR(riNR, E,, L, 2 )v,.(R, E,, L;))[exp(-f ai d R 
R, 

+ exp( -If a, dR) exp( RT  a, dR)] 
RT 

R, 

where the maximum value of L,' for the E, orbit accessible to the RT sphere is 

a,,,„= 2m( E, - V( R T ))14 = (2mE,)14,„ 	 (21) 

in terms of the maximum impact parameter p m ., of the E, orbit that just touches the 
RT sphere. Since 

E,, L,2 11,,( R, E,, L.;) = 477-' .V A Ns a,(27,-mkT) - ' 	expl - E,,' kT) 	( 22) 

in terms of a, defined by 417) and of the densities N„, N B  of species A -  and B -  and 
since 

( R" 	exp( -= a. dR 	dR' = 1:--exp(=f 	a, dR 23 ) 
R, 

the R integration in (20) can be performed to yield the recombination rate 

= 477.'N,,NB(27rmkT) -3  dE, exp(-E,/kT) 
0 

d/..,? [1 - exp( -2 I RT  ds„-JA,)] (24) 
O R,( E„0 

which is an exact result under the above assumptions (A) - (C), i.e. (12), (14) and the 
neglect of diffuSional drift in (16) for R RT. The term in square brackets in (24) is 
simply the probability of collision of (E„ L,2 ) pairs with separations R in the range 

RT. It tends to unity as the gas density N x, since A i  = (v 12/ v,)- N - '. The 
rate (24), therefore, initially increases linearly, and thereafter non-linearly, with N 

towards the eventual saturation limit 

V(RT )/EdG(E,) dE, 	 (25) 

(19)  

(20)  
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where 
G( E,) dE, =1 21 ,,Tr)E,'" 2 (kT) - ' 	exp( - E, kT)dEi 	(26) 

is the Maxwell distribution of unbound pairs with energy E,=inv ?... 
On introduction of the L i'-averaged probability 

R1)= 	f 	dL;'[1- exp(  -2 f ds,„/ A)] 	 (27) 
R, 

for collisions within the RT sphere at a given energy, equation 241 can be rewritten as 

R A  = 7rRi f
. 

v.(1- V(RT)1 EJW,(E„ RT)G(Ei)dEi. 	 (28) 

When the binary separation of the energy-change frequency v, for (A-B)-M col-
lisions is effected in terms of the frequencies v' m  and vrm  for individual A-M and 
B-M collisions via 

AM BM 
= Vi + Pi (29) 

then (27) separates according to 

w AM w BM w AM w BM 	 (30) 

where w' m  is the probability for individual A-M collisions within a sphere of radius 
RT centred at B, i.e. W,AM  and wr m  are given by (27) with A, replaced by A "" = v u/v4  m 
and by Ar m  = vrm  respectively. This result (30) is very gratifying in that the binary 
assumption (29) naturally leads to the inclusion in (30) of the probability wAM wrM of 

simultaneous collision with M; otherwise W, would, at high gas densities, tend (incor-
rectly) to two, rather than to unity. 

On ignoring both the flux-focusing factor (1 - 	E,) and the dependence of the 
specific path A, on E, and L.;, and on assuming a straight line (A-B) trajectory, the 
standard Thomson prescription (1) and (3) is recovered from 128) and (27). 

With the aid of the analytical expression derived for the length L = ds, 2  of the 
hyperbolic Coulombic 1.;) orbit enclosed within the sphere of the radius RT 
I Flannery 1986b). and under the assumption that the specific path A, is independent 
of E, and 1: and equal to the mean free path A, equation 1271 can be evaluated 

explicitly. Figure 1 compares 1271, the hyperbolic result H, with 14), the straight-line 
probability S, as a function of p,,,,,/ A. The maximum impact parameter of the 
hyperbolic trajectory H, of energy E, = :kT, that just touches the sphere of radius 

R T  = i e 1  kT' is from ( 21). For straight-line motion S. p,,, = R T . Figure 1 
therefore illustrates that equation (41, with X = p„,,,„/ A provides a fairly accurate 

analytical representation of (27). This closeness is perhaps the key to the success 

( Flannery 1982a) enjoyed by expression 1,5) for the overall rate a as a function of gas 

density N. 
When the analytical expression for L is again adopted in (27), it can be shown 

(Flannery 1986b4 that the rate (28) for the collisional recombination 

e+A*4-M-.A+M 	 (31) 

between electrons of -mass m and density ri e  and ions of density N in a monatomic 
gas of mass M reduces, at low gas densities, to 

R.= ane N• = 841
)( e2)2(8kT)1/2(RT) 

M kT irm 	A niN  
(32) 
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Figure 1. Comparison of the collisionsl probabilities obtained from equation (4) for (A-B) 
straight-line relative motion (S, pmu  = RT) and from (27) for a hyperbolic trajectory 
( H,pm^a vIRT),  as a function of (p,,,.,/ A) at internal energy E,= ikT of the pair (A-B). 

in exact agreement with the expression derived by Pitaevskii (1962) from a diffusional 
treatment. An averaging procedure (Bates 1980) differing from that of (27) yields a 
result that is two thirds that of Pitaevskii. 

By recourse to the basic microscopic theory (Flannery 1982b, Flannery 1986a) of 
termolecular ion-ion recombination, the above assumptions (A)-)C) underlying the 
Thomson rate (1) and (3) as a function of N have been exposed. The analytical 
probability 13) derived (Loeb 1955) for rectilinear ion-ion trajectories has also been 
shown to be an accurate representation of the correct expression (27) with hyperbolic 
trajectories, provided that the specific path A, is identified with the mean free path A 

and that X in (3) is given by p m ,„,/ A rather than RT/ A. The analytical expression of 
Pitaevskii (1962) for collisional electron-ion recombination at low N can also be 
reproduced. 

This research is supported by the L'S Air Force Office of Scientific Research under 
Grant No AFOSR-84-0233. 
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Abstract:  A ten channel. eikonal treatment of electron-helium collisions is 

performed for a basis set of (1 1 S, 2 1 S, 2 1 P, 3
1
S, 3 1 P and 3 1 D) target states 

to yield the first theoretical results for the orientation and alignment 

parameters for the 3 1 D level of helium. Good agreement with recent measure- 

ments is obtained. 
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In excitation by electrons of an atom from initial state i to some 

metastable state f, the photon emitted in the subsequent radiative transition 

f 	n to an intermediate state n is correlated with the (i 	f) inelastically 

scattered electron. As is well known, the rates for these measured electron-

photon coincidences provide basic insight to the intrinsic dynamics of the 

scattering event, and alaracterization of the electron-photon correlation in 

terms of the coincidence rate turnishes a view of the collision process that 

is more exhaustive than that evident via measurement of integral and 

differential cross sections. 

Measurements of electron-photon coincidences in e-He collisions have 

concentrated mainly on the excitation from the ground state and decay of the 

2 1 P and 3 1
P levels of He (Eminyan et al. 1973, 1974; Standage and Kleinpoppen, 

1976). Also, the delayed coincidence between tne inelastically scattered 

electron, following thE. 1 1
S-3

1
D collisional excitation in He, and the 

subsequent emission of :he 2 1
P-1

1
S photon resulting from the cascade transi-

tion 3 1
D -* 2

1
P y  1

1
S has been measured (van Linden van den Heuvell et al. 

1981, 1983). No corresponding theoretical results as yet exist. 

The purpose of this letter is to present the first theoretical treatment 

for the coincidence rate N(0 ,O ) between the scattered electron and the 
) 	 ) 

photon emitted in the direction (0
1 	) from a final state f with angular 

momentum L=2. When the quantization axis of the target atom is chosen 

perpendicular to the scattering plane, the radiation pattern of the emitted 

photon is easier to detect and the position of the peak of the measured rate N 

occurs for an emission direction (0 	) which is independent of the angle 0
e 

of the scattered electron. The composite differential cross section a for the 

1
1
S-3

1
D excitation is then if

o I
2
+if2 I

2
4-If -2 I

2 
where fm is the scattering 

amplitude for the 1
1
S-3

1
D
m transition. The basic parameters 

1 



o = Ifo f2 + f-2 fo Iia 

* 	* 
( = argkfo f2 + f

-2
fo )/fo ] 

and 

= [ If2 12  - 

can then be deduced from the measured rates 

3 	1 	1 0 	 1 	1 	1 
N( 8 ,4 = 	- 	[ 17 - T  f - 	cosc 	( IT  - 2 f + 	cosc)cos20 1 ] (2a) 

or 

71- 	 1 	1 	o 
N(0 =

2' 	 + 3 	+ 	cos(201 -01 	 (2b) 

for the respective cases when the photon detector is in the scattering plane 

(0 =OM or in a plane (0 =u/2) perpendicular to the incident beam. 

Since the present theoretical treatment adopts the quantization axis to 

be along the incident beam, the following parameters 

A = If I
2
/t) 	 (3a) 

p = 21f
1

I 2 /0 	 (3b) 

(1a) 

(lb) 

( lc ) 

(1d) 

2 



x = arg(f 1 /f0 ) 	 (3c) 

= arg(f2 /f0 ) . 	 (3d) 

are more appropriate to the characterization of the coincidence rate (cf. 

Nienhuis 1980, Andersen and Nielsen 1982). The differential cross section 0 

, in (3) is then of courseIf 0 I
2
+2If 1 I

2
+21f2 I

2 
 . The appropriate transformation 

between the measured parameters (E,p,c,w) of (1) and the calculated parameters 

(X,p,x,,p) of (3) has been worked out in detail elsewhere (Mansky 1985). The 

coincidence rate can no,1 be expressed for the above two directions of the 

photon detector as, 

1 	 1 	 1 
N(0 ,0_ , =y) --- a [2 - 	(do-d 2 ) - 	(300+0 2 ) 00s20 ,  + 	d l sin(20 1 )J 	(4a) 

and 

1 	1 
NO = 2, 0) - 	2+ 2 do  + -2-  d 2  COS(20 )] 

	
(4b) 

respectively, where, in terms of the present theoretical parameters (3), 

d0  = - 1 + 2A + (30/2) 

d 1 = - 	dos\ - 341(1-A-1) cosy 

d2 = 26A(1.-A-11) cos(04) - (31//2) 

(5a) 

(5b)  

(5c)  

3 



Note that a typographical error exists in equation (2.17) of van Linden 

van den Heuvell et al. (1981) and in equation (2.3) and (2.5) of van Linden 

van den Heuvell et al. (1983). The correct expressions are (4a) and (5c) and 

agree with those given in tne review of Andersen and Nielsen (1982). 

The present multichannel eikonal treatment was originally designed for 

electron-excited (metastable) atom collisions in mind (Flannery and McCann 

1975a), since then electron-exchange can be explicitly neglected in the basis 

set expansion for spin allowed transitions and the assumption of a straight 

line trajectory becomes highly justified, the dominant contribution to the 

integral cross section :•esulting from scattering mainly in the forward 

direction 0
e 
 < 400 . Comparison with other theoretical treatments and 

measurements reveals that it is also accurate for excitation in e -H(1s) and 

e-He(1
1
S) collisions (Flannery and McCann 1974, 1975b, Mansky and Flannery 

1987) at intermediate and high impact energies E > 25 eV. 

The present multichannel eikonal treatment DMET (Mansky and Flannery 

1987) adopts the same wavefunctions for the ten (1 1
S, 2 1 S, 2 1

P, 3 1 S, 3 1
P, 3

1
D) 

target states as previously used (Flannery and McCann 1975a), solves the 

appropriate coupled equations more accurately over a much finer mesh, and 

contains a modification to acknowledge the effect of dipoles at large impact 

parameters p > pmax . The upper limit of the impact parameter range 
(O-Pmax ) 

 within which the full set of ten closely-coupled equations (Flannery and 

McCann 1975a) were solved is 'max.  Comparison between present results and 

measured values (van Linden van den Heuvell et al. 1983) for the parameters 

, v and ( as a functio:1 of impact energy E for an electron scattering angle U 

of 350  is displayed in Figs. 1( .,c). Good agreement is in general obtained 

bearing in mind the present experimental error bars which reflects the 

difficult nature of the experiment. 

Since DMET becomes increasingly accurate for smaller scattering angles at 

4 



higher impact energies, measurements and other theoretical results for 

thisregion would be very desirable for comparison purposes. 

Although the parameter w in (1d) was not measured by van Linden van den 

Heuvell et al. 1983), tne ratio of o(3
1
D)/c(3

1
P) of the composite differential 

cross sections for the 1 1
S 	3 1

P and 1
1
S 4 3

1
D excitations was measured at 0 

35°  for impact energies E = 28.5, 31.5, 34.6 and 45.6 eV. The present DMET 

results are compared in Fig. 2 with these measurements and with the only other 

available results; MET (Flannery and McCann, 1975b; FOMBT (first-order-many-

body-theory of Chutjian and Thomas 1975); DW (the 9-state distorted wave 

theory of Winters et al. 1977). The present agreement with measurements is 

good. The large discrepancy with FOMBT is presumably due to the neglect in 

FOMBT of interchannel couplings. Neglect of the contribution of the 3 1 D state 

has, as pointed out by an Linden van den Heuvell et al. (1983), a measurable 

effect on the experimental determination of the coincidence rate associated 

with the 3 1
P level. The DW-variation with E is quite different to that 

exhibited by the present results. 

In summary, the first theoretical results for the orientation and 

alignment parameters for the 3 1
D level of helium have provided good agreement 

with measurements of the parameters 	and c. Comparison with the measured 

. 	. values of the ratio (7(3
1
D)/o(3

1 
 P) Indicates that accurate theoretical 

prediction of the differential cross sections o requires that all interchannel 

couplings, within a multichannel basis, be directly included in the 

calculation. 

Acknowledgement.  This research is supported by the US Air Force Office of 

Scientific Research und.:r Grant No. AFOSR-84-0233. 
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Figure Captions  

Figure 1 (a-c). 	Comparison of measurements of van Linden van den Newell 

et al. 1983 with present ten-channel eikonal theoretical results 

for the parameters 	and C as a function of electron impact 

energy E(eV) at a fixed electron scattering angle 0
e=35

o 

Figure 2. Present ten-channel eikonal results (solid line) for the ratio 

a(3 1 D)/a(3 1
P) of differential cross sections at electron scattering 

angle de =35 °  as a function of impact energy E(eV). Measurements:1 

Van Linden van den Heuvell et al. (1983). Previous theoretical 

results: --- (Flannery and McCann 1975b); ❑ (Chutjian and Thomas 

1975); 	x (Winters et al. 1977). 

7 
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Appendix E 

Macroscopic and Microscopic Perspectives of Termolecular Reactions 



MACROSCOPIC AND MICROSCOPIC PERSPECTIVES OF TERMOLECULAR REACTIONS 

M. Raymond Flannery 

School of Physics 

Georgia Institute of Technology 
Atlanta, Georgia 30332 

I. MACROSCOPIC TREATMENT 

The sequence normally invoked to explain the termolecular association 

process 

A + B + M -+ AB + M 	 (1.1) 

where the associating pair (A-B) may be a positive ion-negative ion or a 

positive ion-neutral pair, is the energy-transfer sequence characterized in 
macroscopic terms as 

k
1  

A + B 	AB*  (R<RT ) 

k 
-1 

( 1.2a) 

k 
AB*(R<RT ) + M 4  AB + M 	 (1.2b) 

* 
wherein intermediate complexes AB formed with internal separations RR

T 
at 

rate k
I 

(cm
3 

s
-1

) can decompose naturally at frequency k
-1 

(s
1
) or can be 

stabilized at rate k
s 

(cm3 
I 
 s ) via energy-changing collisions with the 

atomic or molecular species M of a thermal gas. The inverse of this 

sequence is known as the Lindemann mechanism (cf. Forst 1973) for 

collisional dissociation. 

Process (1.1) may also proceed in parallel by the chaperone mechanism 

k 

A + M + 	 AM*  + (M) 	 (1.3a) 

k
d 

k 

AM*  + B r  AB + M 	 (1.3b) 

wherein intermediate complexes AM which may include bound levels are 



formed at rate k
c 

(cm
3 

s
-1

) by two- or three-body collisions and then 

undergo rearrangement with B at rate k r 
(cm

3 
s

1
). The function of the 

chaperone M is not to keep the reactants A and B apart but to promote their 
stable union. Since the dependence on gas density of the resulting rate 
laws for formation of AB are similar, distinction between the two parallel 
processes are not evident from measurements. The energy transfer sequence 
(1.2) is dominant for termolecular ion-ion recombination owing to the 
long-range Coulombic attraction and is normally invoked for ion-molecule 
association. The chaperone mechanism (1.3) can however become important 
for association, particularly at lower gas temperatures and higher gas 
densities, and in some instances can be dominant (Blades and Kebarle, 1983 

for COH
+
-CO and N

2  H
+
-N

2 
 association in H2 ). 

The effective two-body rate a(cm
3 

s
-1

) or the associated termolecular 

rate k1. (cm
6 

s
-1

) for (1.1) via the sequence (1.2) is 

	

anAnB  ksn:B  N = kT  N 
	

(1.4) 

where the gas density is N, and where the density n
*
AB 
 of complex AB

* 
pairs 

satisfies 

	

dnAB/dt = k
l 
n
A
n
B 

- (k
-1 

+ k
s
N)nAB 	 (1.5) 

where nA  and nB  are the densities of the reactants A and B. In 

steady-state 

	

nABInAnB = k
l /(k_ l +k sN) = k l [K/(k i +ksKN)] 	 (1.6) 

where the reaction uottune under full equilibrium conditions is 

K = nAB/nAnB  k./k (1.7) 

which is not an equilibrium constant in the usual sense since the complex 

AB does not include bound states. The overall rate 

kl(K ksN) 	
K k

s
N 	a

o 
	N 	0 

a(N) 	
k

1
+(Kk

s
N) 	

k
1 
	 N 	to 

	 (1.S) 

	

initially increases linearly with gas density N as a
o 	

(Kk
s
N), character- 

istic of three-body kinetics, and eventually tends to a saturation value k i  

characteristic of two-body kinetics alone. Introduce the N-dependent 
probabilities, 

	

PS(N) = (k sKN)/(k i +ksKN) 
	

(1.9) 

for collisional stabilization of the complex and 

	

P
D
(N) = k i /(k i +k sKN) 
	

(1.10) 



o 	Jo 
dE 	p(F,J) exp(-E/kT)di 2 	(1.14b) 

for natural decomposition of the complex so that alternative expressions 
for the effective two-body rate are 

a = P8 (N)k
1 

= PD(N) k sKN m PD(N)ao 	 (1.12) 

1.1. The Reaction Volume 

By virtue of (1.8), K represents the reaction volume at low N and is 
in general given by (Forst 1973) 

h
3 	

q(AB9
) AB 

K(1) = 	  
3/2 

q(A)q(B) wAws  
(2runkT)  

( 	. 	) 

where q and w denote the internal partition functions and electronic 
statistical weights associated with each reactant A and B and with the 

activated complex AB
*
. While q(A) and q(B) are known. q(AB ) is such that 

it must include only those rotational-vibrational states of AB*  accessible 
at energies E above the dissociation threshold ET  in A-B collisions. It 

may also include conservation of total angular momentum which can be 
redistributed between the orbital angular momentum L for relative (A-B) 

motion and the combined internal momentum
R 

of the individual reactants. 

For structureless reactants A and B with relative separation R. 

relative energy E > 0 as measured above the threshold energy ET  for 

dissociation from the ground vibrational state of AB, relative momentum P 

and angular momentum L = [Id, then 

K(T) = h (2vmkT)
-3/2 

 f exp(-EAT)d# d2/h ;  

J max 

h 3 ( 2mnkT)
3/9  

(1.14a) 

The density of ro-vibrational states per unit interval dE dJ 2 produced from 
the relative (A-B) motion is 

p(E,J) = T(E,J)/h = 1/ho 	 (1.110 

in terms of the lifetime 

RT 	 1 
dR 	m 1/2 rr 

p2 T(E,p) = f 	-- = 0 	[E(1 - 	 ) -V(R)]
-1/2 

dR 	(1.10) 
R

1 
v R 	- 	JR I 	R

2 

of the complex towards natural decomposition with radial speed v
R 

via an 

orbit with angular momentum L and impact parameter p which are related by 



L =tj = (2mE) I/2  p 
	

(1.17) 

The maximum angular momentum L 	of those (A
+
-B) orbits which can 

max 
overcome the centrifugal barriers for L < L 	at fixed energy E is given 

- max 

by (SmaBeE)
1/4 

for pure polarization attraction V(R) = -a Be
2
/2R

4 
where aB 

 is the polarizability of B. The associated reaction radius RT  is taken as 

the barrier location (a
B
e
2
/2E) 1/4 

the Langevin orbiting radius. 

So as to obviate the necessity for numerical evaluation of the time 
(1.16) during which R is in the range R

1- 
 <R<R,.. for realistic interactions 

V(R), a simplifying assumption is now invoked. Reactions which occur via 
intermediate complexes generally involve randomization of the internal 
energy in the complex. If this energy is statistically distributed within 
the various internal modes the reaction can be treated by statistical 
methods such that the (formidable) problems associated with application of 
molecular dynamics and classical trajectories to microscopic lifetimes of 
intermediate complexes are thereby avoided. The complex is therefore 
assumed to be in its most stable configuration which results from rapid 
energy transfer out of the external collision coordinates R and 2 into 

other internal coordinates so that, following large perturbations in (A 1--B) 
close encounters, a quasi-equilibrium among excited states is obtained. 
Upon this key randomization assumption (which is viable provided the 
lifetime against stabilization collisions is long in comparison to the 
(A-B) collision time) the density (1.15) may therefore be replaced by the 
density 

p
H
(E

'
j) = l/hv(E.i) 
	

(1.18) 

of levels (one per energy-level spacing hvB ) of a harmonic oscillator of 

frequency v H . The number of levels within rotational spacing dJ of the 

free rotor complex remains as di g = 2,1 dj. The difficult molecular- 
dynamics aspects of the complex have therefore been avoided and are 
replaced by the known structural properties of the complex. Eq. (1.14b) 
with (1.18) can be formally generalized to cover polyatomic reactants. 

1.2 Temperature Dependence: Polyatomic Reactants 

Temperature dependence of association reactions elucidate reaction 
pathways. Since the unimolecular dissociation rate k

1 
increases with T, a 

T n-variation is expected. Current theories have mainly focused on the 
temperature dependence of the low density three body rate kT  = Kk s . Accord 

with measurements is becoming somewhat acceptable (Bates 1985, Viggiano 
1985, van Koppen et al. 1984). The rate k

s for stabilization of ion- 

molecule collision complexes may be taken as some fraction of the constant 
Langevin rate for spiraling collisions, 

k L = e(/µ)
1/2 
	

(1.19) 

where aM  is the polarizability of M and where i  is the reduced mass of the 

(AB-M) system. Since the partition functions q(A) and q(B) of the 
reactants are known, (e.g.. q(A)q(B) for ground vibrational levels 



T
-(r/2) 

where r is the sum (r
A
+r

B
) of the number of degrees of rotational 

freedom of the isolated reactants). the temperature dependence of k T  is 

therefore mainly controlled by the less well determined partition function 

q(AB
*
) in (1.13) of the activated complex. The different temperature 

dependences exhibited by similar systems, e.g., kT  for (02
+
-02 )-02  

9 -9 . 	- 

association decreases as - T 	- T 
.3.2 

 which is more rapid than kT ti 

T
-1.6 

- 
T-1.85 

for (N
2
+
-N

2
) - N

2 
association, is simply a manifestation 

(Bates 1985) of the temperature characteristics of q(AB m). 

Bates (1978) has outlined a scheme for the internal partition function 

q(AB
*
) which is the generalization of (1.14a) and of (1.15) to atomic-

diatomic and to diatomic-diatomic ion-neutral reactants which are free to 
rotate and vibrate in the potential well. The states accessible in 
Langevin collisions are determined by conservation of energy and angular 
momentum. As with (1.14b), this barrier model of Bates in general involves 
time-consuming numerical calculation of the lifetime T for A-B collisions. 
Upon invoking the randomization assumption, however, this lifetime may be 
replaced, as in (1.1S), by known vibrational periods of the complex. 

Apart from the long-range polarization (A
+
-B) attraction and the 

resulting looseness of the activated complex (Aft+ ) m , termolecular ion-
molecule association as described by (1.2) is in principle the inverse of 
neutral unimolecular decomposition which is primarily concerned with 
calculation of the decomposition rate k

-1
. The Rice-Ramsperger-Kassel- 

Marcus (RRKM) theory (cf. Forst 1973) for calculation of the internal 
partition function of the complex has been adapted for ion-neutral 
fragmentation. In his thermal RRKM method for ion-molecule association 
Herbst (1979) includes all ro-vibrational states above the dissociation 
limit at ET . Following the barrier model of Bates (1979a,b) it was 

subsequently modified (Herbst 1980) to include only those levels above the 
centrifugal barrier. The wasi-eyttilibritm theory QET (Klots 1971) and 
phase space theory PST (Bass et al. 1979), in contrast to RRKM, rigorously 
conserve angular momentum of all states of the system including relative 
orbital and internal rotational angular momentum of the fragments and 
accounts for the centrifugal barrier. Marcus (1975) has modified "tight" 
transition state theory to cover the cases when the total angular momentum 
of the complex is transferred totally to orbital or totally to internal 
angular momenta of the products. The effect of internal angular momenta of 
ion-neutral reactants is however minor and can be ignored (Bates 198.5) in 
association. 

The generalization or (1.146) to polyatomic reactants together with 
the appropriate generalization of the randomization assumption (1.18) 
yields the result of phase space theory (PST). By using PST and the 
practical expressions of Troe (1977), Bates (1986) provided a result which 
is identical with (1.14b) but with p therein replaced by 

p(E,J) = pv (E+ET ) F(E 1..J)/0 	 (1.20) 

where a is the (symmetry) number of indistinguishable ways of orienting the 

AB
* 
-complex. The density of vibrational states at energy E above the 

dissociation threshold ET  = [F.
o
+(1/2P hu t ] 	Eo+Ez  as measured from the 

i.1 
minimum of the potential energy surface V(R) is, 



pv (E+ET ) = [(s-1)/(s-1.5)]m  (E+ET )
s-1

/[(s-1)! 11 he t ] 	(1.21) 

i=1 

where v. are the frequencies of s harmonic oscillators in (AB
+
)• and where 

m is the number of oscillators that disappear during dissociation. The 

first factor [ ] in (1.21) is an anharmonic correction, and for complexes 

with more than three atoms, E
T 
 = E

0 
 + aEz  where a is the correction of 

Whitten and Rabinovitch (1963) designed to improve the semiclassical 

approximation involved with the zero point energy. The factor F in (1.20) 

is 

F( ET,J) = 7[1 - BJ
2
/E ] s-1  (1.22) 

(7 = 1, and 2J for linear and symmetrical-top complexes, respectively) and 

acknowledges the effect that the averaged rotational energy BJ
2 

of the 
complex has reduced the energy available to vibrational modes. For 

structureless reactants s is unity so that (1.21) reproduces the original 

result (1.14b) with (1.15). 

1.3. Density Dependence 

In contrast to the temperature dependence, the density dependence 

(1.8) or its microscopic equivalent (§ 2) has been tacitly accepted without . 

any critical analysis. In order to isolate the key issue, express (1.14) 
in the equivalent form 

-.max 
K(T) = J v. C(E)dE 	T(E.p)(2rpdp) 

o 	 - 0 
(1.23) 

where the dynamical lifetime T is given by (1.16), where E = mv0
2 
 /2 and 

where pax  = RT [I -V(RT )/E i ]
1/2 

is the maximum impact parameter p of that 

orbit which just gains entry to the RT-sphere. For polarization attraction 

2 	. 
rp 	is 271-e(a

B
/m)

1/2 
v 
oa 
-1 

such that the thermal approach rate k
1 
 = vp

2 
max 	max 

v is independent of 4'. 

2 
When the (A-B) interaction V(R) is neglected, r is 2(RT  - p

2 
)
1/2 

/v , 

and (1.23) for K reduces naturally to the volume 47RT/3 of the complex. 

For termolecular ion-ion recombination the stabilization frequency e = kN 
s 	s 

+ 
can be separated as <0(N

A

1 
 + 

B1 
 ) where

AB 
are the path lengths for 

individual A-M and B-M binary collisions at average speed <v>. The 
stabilization probability (1.9) for NA  = NB  = X is then 

(8X/3) 

pK
S(N)  = 	 = (8X/3) 	- (SX/3) + (SX/3) 2 

- (8X/3) ... 	, (1.24) 
1+(8X/3) 

by the partition-function method, where X is RT/N. 

The stabilization probability in (1.11) may also be identified as 
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Fig. 1. PS (N) as determined by free-path (N) and partition (K) methods. 

P
T
s
(N) = W(X

A
) + W(XB) - W(X

A
)W(X

B
) (1.25) 

the combined probability for A-M and B-M collisions. The Thomson probabil-
ity W for individual A-M collision for rectilinear (A-B) relative motion 
within the RT-sphere is explicitly determined (Loeb 1965) as 

12n-"Xn  (n+1) 
W(X) = 1 - 	, [1-exp(-2X)(1+2X)] = 	(-1)

n4.1  

(n+1) 	n+2 2X` 
n=1 

so that the total probability (1.25) for AB*  (R<RT )-M stabilization 

encounters is 

s(N) . (8X/3) [1 - (17X/12) + (7X2/5) - (129X3/120) + 	] 

(1.26) 

(1.27) 

Although (1.24) and (1.27) agree in the low and high density limits. 
there is significant departure at intermediate densities (Figure 1). For 
ion-atom association the appropriate comparison is between the single 

collision probability W(X = RT/X B) for AB*-M collisions with free path XAB 

 and (4X/3)/(1+4X/3), the corresponding P. and is similar to that depicted 

in Fig. 1. For association note that M does not necessarily have to be 
within the RT-sphere for collisions to occur. 
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2 
L
mf 

S (R) dL
2 

if 	f 

Dilemma 1:  Which of the above methods is more accurate? The outcome is 
certainly important in principle and may be important in practice since 
(1.8) is generally used to deduce third order rates a o 

from measurements at 

various N (cf. Mahan and Person 1964 for recombination and Bates 1986 for 
association). For ion-ion recombination the Thomson radius (see §4) RT  is 

(2/3)e
2
/kT ti  3708 at 300 K. and for ion-atom association the Langevin 

radius RL  of the AB
+ 

complex is (a8e
2
/3kT)

1/4 - (5-15)R. Hence the range 

of X in Fig. 1 which corresponds to gas pressures up to (1/2) atm. (where A 

ti 18O at STP) is 0 -+ 1 for recombination and 0 -+ -0.05 for association. 
For most pressures of practical interest, therefore, variation of the 
association rate is given by either method (cf. Fig. 1). For recombina-
tion, there is a large difference. For higher pressures, however, 
diffusional drift (§4) ignored by both methods becomes important only for 
recombination. 

Dilemma 2:  Although the form of (1.8). 

a = (k i a0 )/(k 1 +00 ) , 	a
o
=KkTN 
	

(1.28) 

is aesthetically pleasing in that it illustrates quite naturally that the 
overall rate is given by the rate limiting step, k l  being the thermal rate 

as such does not acknowledge diffusional drift (§4) which arises from a 
non-equilibrium distribution in R outside the reaction sphere. As the gas 
density N is raised can we simply replace the thermal rate k l  of approach 

by the rate aTR  of transport by diffusional drift to K r? 

In order to address these queries a microscopic treatment of the 
energy-transfer sequence (1.2) for structureless reactants in a chemically 
inert gas must first be developed (§ 2). Appropriate generalization to 
structured reactants, if required, appears straightforward. 

2. MICROSCOPIC DEVELOPMENT 

The set of Master Equations derived from the Boltzmann equation for 
3 

the two-particle distribution function (Flannery 1982) for the (cm ) 

concentrations n. - (11.0 a n. - (R,E.,L.
2
;t) per unit interval dR dE. dL.

2 
of 

1 -  
A-B pairs with internal energy E i , and internal angular momentum (squared) 

L. 2  that are internally expanding (+) and contracting (-) with radial speed 

IvR I at internal separation R is (Flannery 1986, 1987) 

1 

a [R2  dni(R,t)/dt = an(R,t)/a 	
R
2 

t + 	[R n. ±(R.Olv I] 	2 

	

1 	R E, 
1 
L 

 i 

where the net collisional rate per unit intervals dE.dL.
2 
and dE f

dL
f
2 

(2.1) 



i dR  (2.4) 

about the initial and final states i and f respectively is 

SI
if 	- 

(R) 	. n ± (R) v. f  (R) - o
f 
 +
(R) 1 (R) 	(R) = 	fi(R) (2.2) 

in terms of the frequency
if
(R) per unit interval dE

f
dL

f
2 

for transitions 

i (E..L.
2
) if (E

f
,L

f
2 

 
) induced by collisions between M and the pair (A-B). 

The relative interaction energy between A and B of reduced mass m is V(R) 
and the effective radial interaction is 

V.(R) = V(R) 	L.2/2mR
2 

For fixed E. and R. the maximum value of L. 2 is 

1_2
.(E.,R)=2r11[E.-V(R)]R

2 
mi 

(2.3a) 

(2.3b) 

and,forfixedE.alone, the maximum value of L 
2 

with respect to R is 
mi 

2 
Loi (E i ). 

The basic expression for the rate (cm3 s -1 ) of termolecular 
association processes (1.1) at time t is (Flannery 1985) 

L
oi

2 	 R
i 	dni(R,t) 

RA (t) 
	

l(E. 	
l 

 .L.
2

.
2 

 )dL 	[ --- 
I 	i 	 dt 

-D 	 R. 

wherethesummeddistributionn.=n. + + n. of the expanding and 

contracting R-pairs in (2.1) satisfies (Flannery 1986) 

t a 
dn i (R,t)/dt = dn i (R,t)/dt + 	5k  [R

2
(n i

+
-n i )1v0] E L  2 

L2  
w 	

L
mf 

= - 	dE f 	
S its

(R,t)dL
f
2 	

(2.5) 

V. 
1 

,+ 	.- inwhichS.
f 	 i
isthesum(S.

f
. +S.

f
)of collision rates defined in (2.2). 

In (2.4), FA  is the probability that (E..L 
2
) -pairs are in the 

i 

product(association)'channel,R.and R
i 
are the perigee and apogee of the 

relative (E.,L.
2
) motion, and -D is the lowest vibrational energy level of 

AB with respect to the dissociation limit taken as zero energy. 

(A) Assume that pairs in the block E of highly excited bound AB 
levels, sandwiched between the continuum block T of fully dissociated 

A 
states(whereP.is zero) and the sink block f of fully associated 



stabilized levels between -D and some level -S (throughout which P A  is 

unity), are in quasi-steady-state (Q$S). Hence 

R. 

n i (t) = J ni(R,t)dR 

R. 

in block i satisfies 

2 
1 	 Lmf 

dn./dt = 	 / an.at 	- J 4:114 	dEf 	S if (R)dL f  1 	1 	 2 - 0  

0 

sincen.
1
+ =.n.

1  at both turning points R. (E.,L.
2)

. Under the 

conservation requirement 

L2  
oi  

for a complete steady-state 
block E. 	to 	the 

RA (t) 	= 

the E 	:1 current, 

RA (t) 	= sr5 dE. 

the 'C -4 E current, 

= 

[) 

following 

-S 

f 	dE. 
1 

-D 

or 

L 

1  

or 

dL. 2 

o 

(QD 

-D 

9 
L
-Oi 

f 	dL. 2  1 

2 
01  . 
	R 

dL
i  2 

 

R 

dE.fdR 
1 

U .  R. 

system, 
equivalent 

R. 

0 

i 

f 

7 i 

+ 
 1 

12-4- 

R. 
_ 

i 	dn. 

 dt 

1 

dn. 

(2.4) 

f [-ddR 

0(11, 1  

forms 

1 

- 	' 

therefore 

= 0 	 (2.8) 

reduces under QSS of 

(2.9a) 

(2.9b) 

2 
m f 

S if (R)dL f
2 	

(2.9c) 
o 

[di 

I 

V. 

j cIY- 

L 

dE f is  

1 	1 	1 

which is simply the net collisional current flowing downwards across the 

top U. of the centrifugal barrier for (E..L. 2
)-motion. 

The density (per unit interval dr = dE.dL. 2
) 

(2.6) 

(2.7) 

R . 
	

V
i 

a 

RT  

n7(t) = 	ni (R,t)dR 
	

(2.10) 

R. 1 



of (E..L.
2
)-pairs which form the activated complex with internal separation 

R in the range lc < R < RT  (E i ,L i 2 ) satisfies 

RT  

dn7(t)/8t = 4irR-2  vR  
(RT)[1-P. d (Rl)] 	

- f dR S 	(R)di
f if 

(2.11a) 

R7 

RT 

= 4vRT2vB (RT )n i  (RT )P(RT ) - J dR J 	S if (R)df f. (2.11b) 

R7 

2 where the implied two-dimensional grid for I f -integration is 0 < L
f
2 	

Lof 
and V.< E

f 
 < U

i  . The microscopic probabilities 

Pd(RT ) = n i 4- (RT )/n i  (RT ) 	 (2.12) 

for decomposition of the activated 2
,RT )-complex, and 

P 1 (RT) = [n i (RT)-n i l- (RT)Vn i  (RT ) = 1 - Pd(RT ) 	(2.13) 

for collisional stabilization of the complex, are introduced in (2.11). 

The basic QSS-rate (2.9) in terms of the stabilization probability 
(2.13) is now 

2 RA (t) = anAnB  = JP°  dL.
2 
 J 	[4712TvB (R-)n. (R...,)]P i (RT ) 

U. 

(2.14) 

in a form suitable for general RT (E.,L.
2). When RT  is constant, or is only 

a function of E., 

is also appropriate, 

9 
Lax  = 

anAnB =fdL i fdL. 9 [4vR.,

then 

2m L i p 

L2  

where 

the equivalent form 

max 
2
v 

t 	R 

- V(RT)/EAR, 2 = 

(R )11)NR,) 1111 

(2mE i )p
2 

 max 

(2.15) 

(2.16) 

is associated, as in II. with that limiting orbit with impact parameter p = 
Pmax  which just touches the R.-sphere. 



2.1 Treatment with Thermal Rate of Approach 

When there is a thermal distribution of AB-pairs with internal 
separation R > RT  

(R)/nAnB  = n i  (R)/nAnB 	 (2.17) 

where the tildas (-) signify thermodynamic equilibrium, then (2.14) yields, 

a = JP°  dL i
2 
 J 	k i (RT)137(RT) 
	

(2.18) 

U. 
1 

in which the one-way thermal equilibrium rate k. for formation of RT-pairs 
1 

(per unit interval dE.dL.
2
) may be written in the following variety of 

suggestive forms, 

k i = 4vRT
2
vORT )n i  (RT)/n AnB  

= 47r2  exp(E.
1
/kT)/(21rmkT)

3/2 

	

= irRTZ [1  - V(RT)/Eivoo 
	1 G(E.)/L

2 
 max 

2 - - 	d [n. * (E..L. )/n n ]/T. 
11 	AB1 

= v. 0(E i ) 27T.  p(dp/dL i 2 ) 

(2.19a) 

(2.19b) 

(2.19c) 

(2.19d) 

(2.19e) 

each being appropriate to application of (2.18) or (2.15) with (2.17). The 

MaxwelliandistributimofrelativeenergiesE.
1 
 =m v 

co
2
/2  is 

G(E.)dE.=2(E.
1
firkT) 1/2 e/q2(-E.

1
/kT)d(E.

1
/kT) 
	

(2.20) 

For the polarization (A
+
-B) potential. use of (2.15) involves R,

f 
 (E.) = 

(aBe
2
/2E i )

1/4 
and L = (8maBeE i )

1/4
, as in §1. and use of (2.18) involves 

RT(L i ) = (aBm)
3/2

e/I i  and U i (RT ) = aBe
2
/2RT

4
, the barrier height. 

The equilibrium microscopic concentration per unit interval a.1 
 of al 1 

pairs in the R < RT  complex in (2.19d) is 

ni* 
	

i (E, 	2) 

 R7 

RT 

i 	
=d1i:1- 

ni'
(R,F,,Li2)(112=hAnB[vcoG(E.)][2vpdp]r1 

	
.(2.21) 

- 	1   

1 
where the natural lifetime of the complex is 



RT  

	

T.(E.,L.
2
) = f dR/v

R  = 
- 	

1 
[p.(E..L.

2
)]

-1 	
(2.22) 

R. 

Note that the reaction volume K.
1 
 = n.

*  

1 /nA 
 n_ per unit dE.dL.

2
, the 

1 	1 

microscopic equivalent of (1.14), may be written in various forms as 

KJE_L.WAL. 2 .113 (2innkT) 3/2 1].(E.,,J.)exp(-E./kT)dE.dJ.
2 

(2.23a) 
iii 	ii 	 i 	1 	1 	 1 	1 	i 

= (17-/2mE i )[v.C(FddE i ]dL i 2 	 (2.23b) 

= [v.O(EddE i ][27pdp]Tc.i
1 
 (E.,P) = k.T(.I

1  

	

dE.dO 	(2.23c) 
1 	i   

wherethedensityofstatesp.is(hp
d

)
-1

, which is the microscopic 
1 

generalization of (1.15). 

Provided that the stabilization probability P7 can be determined, the 

rate a follows directly from (2.18). Common to the following two 

approximations for PT is the strong-collision assumption that collisional 

absorption within the complex only occurs. Thus, for a steady state 

distribution of pairs in the complex, (2.1) is simplified to yield. 

1 a 

; 	

[R2n

i
±(R)Iv

R
I]
E..L.

2 	- n
i
71()

p i
(R) (2.24) 

where the frequency for collisional formation of bound pairs with R < R T 

 below the centrifugal barrier is 

U.
1_11 f 

p i (R) = f dE f  f 	v .f (R)dL f 
2 	

(2.25) 

V.1 

2.2 Partition-Function Method 

This first method is based on (2.11) which is the microscopic 

generalization of (1.5). On defining the one-way equilibrium microscopic 

rate of formation or thermal approach rate as in §2.1 by 

k i  nAnB  = 4rRT
2
vR (RT )n i  (RT ) 

and the non-equilibrium rates for natural decomposition, 

*  
k. n.

* 
 = 'brit 

2

vR 	 i 
(RT)n. 1- (R) 

and for collisional stabilization 

(2.26) 

(2.27) 



v.s 
	

1 
 n.
* 
 E 

1 1 1 
N)n.

* 
= 

RT 

R. 

n.(R)v.(R)dR 
1 	1 

1 

of the complexes, then (2.11) can be expressed as 

on/8t = k.
1nA id 

n- - (k. + k.
s  

1 
N)n.

* 

1 	 1 	1  

(2.28) 

(2.29) 

For a steady state distribution of complexes, the rate (2.18), with 

the aid of (2.25) - (2.29), is 

.41) 
7 

R
A
(t) = 	dL 
	

dE i  [n * k! N] 
i 

"o 
U. 

k.(0
ii 

 KN) 

= dL.
2 
 IP)  dE. [ 	

1 s 	1 

1 	1 
o 	

U. 	 1 
(k.+kiK.N)-1 

1 

(2.30) 

(2.31) 

which is the microscopic generalization of (1.8). The reaction volume 

-
A 11 

 
K.1 
	1 

n.
*

1 
 (E..L.

2 
 )/n n- = k./k.

* 
.1  

(2.32) 

per unit dE.dL.
2 
  is given by any of the forms in (2.23), whichever proves 

most convenient. The integration order in (2.31) may be interchanged as in 

(2.15). The form of (2.31) is well known (Bass et al. 1979. Bates 1986). 

With the aid of (2.23) the ratio 

K./k. = T. = l/k.
* 

	

1 	1 	1 	1 

is simply the lifetime of the (E..L.
2  
)-complex towards natural 

decomposition. Hence. 

a  = 	
dLi 
- .2 I 	 s 	 21° 	s  

dE l  [k i  P i (N)] = 	dL i 	dE i  [k i  K i N P i (N)] 

	

U. 	 U. 
1 

( 2. 33 ) 

(2.34) 

where k. is given by (2.19), and where the probabilities for collisional 
1 

stabilization and natural decomposition can be identified with the aid of 

(2.28), as 

PS(N) 	ksi  K i N/(k i +kK i N) 

N 0 

1 - 1/UST. , N 	w 
1 1 

s d,,, 	s d, = 	 + D.T.) 
1 1 	 1 1 

(2.35) 



and as 

P(N) = k./(k.+k5K.N) 

s d 
= 1/(1 + v.T.) 

, 	0 

, N 	03 

(2.36) 

respectively.Whenitr isconstantordependsonlyonE.,the order of 
1 

integrations in (2.34) can be interchanged and performed over the range 0 < 

E. < w and 0 < L.
2 

< L
2 

. The above expressions are the appropriate 
- 	 - 	- max 

microscopic generalizations of (1.8)-(1.10). At low densities N therefore 

s d 	 9 	 s 
a = 	dL.

2 
fdE. 	 2 ) [v T.] = 	dL.- 	

2 
)v. dE. 	(2.37) 

U. 	 U. 

 
which is (vT.

d  
) averaged over 	the one-way equilibrium rate (2.19) for 

complex formation, or equivalently is v 7 , the stabilization frequency in 

(2.28) averaged over the reaction volume K i . Note that a may be expressed 

as k
1
<T >(k

s
N) only when the so-called average lifetime <T

d
> is defined as 

above (see also Bates 1979a). The low-density rate (2.37) may also be 

expressed as, 

a nAnB  = J 	J 	
t 

dE
l  . 
	(E..L. ) v. 
il 

2 s 

U. 

(2.38) 

which is the equilibrium version of (2.30). When the stabilization 

frequency v
s 
does not depend on (E..L 

2
), and is taken as a constant p 

i 

times the Langevin rate (1.19) then the low density rate is simply 

a nAnB  = P(kLN)iim  (2.39) 

where n is the concentration of pairs above all the centrifugal barriers, 

in accord with (1.4). 

2.3. Free-path Method 

This method is based on the direct solution of (2.24) subject to the 

boundary conditions 

n i (RT ) = rc(RT ) 

(2.40) 



where R.(E.,L.
2
) is, as before, the perigee of the (E..L.

2
)-orbit. Hence 

(Flannery 1985) 

RT  

n i (R;<R<RT ,E i ,L i 2 ) = Wi (R) exp[-f ai (R)dR] 

R 
(2.41) 

RT 	 RT  

n1(R;<R<RT ,E i ,L i 2 ) = 	exp[-f a i (R)dR]exp[ 	ai (R)dR] 
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are the (R,E.,L.
2
)-distributions of individual AB pairs within the complex. 

The number of stabilizations that occur in a time dt = dR/v
R 
or within 

element ds of the (E.,L.
2
) trajectory for (A-B) relative motion at relative 

speed v i  are 

a.(R,E.,L.
2
)dR = v.dt = v.dR/v

R  = 
	ds/v

i 
 = ds/?. 

I  
(2.42) 

where X. is the free path length (v./v.) between collisions at frequency v. 

given by (2.25). The stabilization probability is therefore 

RT  

P7(RT ,E i ,L i 2 ) = 1 - exp(-2 J ds/X i ) 	 (2.43) 

R. 

the microscopic probability of collision of (E.,L.
2
)-pairs with separation 

R in the range R.<R<R„,(E.,E.
2
). The association rate under the strong- 

- 

collision assumption is then (2.34) with (2.43). 

On defining, with the aid of the stabilization frequency in (2.28), 

RT  
s  _d 

V. T. = f vi(R)dR/v
R = 

f ds/X. 

R. 

(2.44) 

which equals v.
s 
 T i

d  
 only if the collision frequency (2.25) in (2.28) is 

independent of R, then (2.43) is simply 

P.=1 - exp(-v.
s 
 T.

d 
 ) 
	

(2.45) 

which has been obtained from the distribution (2.41) of individual pairs 

within the complex. This is to be compared with the customary form (2.35) 
obtained from the averaged distribution in (2.29). 

For straight line trajectories at constant speed and with v
i 

=
s 

= 

<v) (X
A 

+ AB 
 1
), 

1
) then T

d 
of (2.33) and Td  of (2.44) are each equal to 



2 	2 
2(RT  - p )

1/2 
 /<v> so that the above free-path method for A-M and B-M 

collisions yields 

R.71  = 1 - exp - [XA(p) + XB(p)] 	
' XA.B = 

9(,2 - p2)1/2/A A,B 	(2.46) 

which is to be compared with the corresponding result 

	

PZ i  = (XA  + XB )/[1+(XA+XB )] 
	

(2.47) 

given by the partition-function method. The comparison for various impact 
parameters p illustrates discrepancies similar to that displayed in Fig. 1. 
It is worth noting that (2.15) with (2.43) for constant RT  and X

AB 
and a 

straight line trajectory reduces to the rate (Flannery 1986) 

a = nRT [ f [1 - V(RT)/E.] v. C(EddE i FT(N) 
	

(2.48) 

where the macroscopic probability P
T 

is given by (1.25). This rate is 

identical with (1.11) The first dilemma posed in §1 is therefore resolved. 

The free path method based on knowledge of individual RT  pairs within the 

complex represents a more basic procedure than does the partition method 

which is based only on knowledge of the averaged density n *  of all pairs 
with R < RT . The stabilization probability (1.9) is not as accurate as 

(1.25) and (1.27). 

3. TREATMENT WITH DIFFUSIONAL-DRIFT RATE OF ENTRY 

Assume upon approach to the reaction RT-sphere that the energy gained 

by the (A-B) pairs from their mutual field V(R) is lost upon collision with 

M so that their relative kinetic energy T. is restored to their asymptotic 

equilibrium value E i . Hence 

T i (R) = E i  + V(R+X) - V(R) = E i  + AV, 	R > RT 	 (3.1) 

	

where X is the macroscopic mean free path and L
2 	

is (2mT.)R,..,
2
. The 

microscopic velocity distribution at R is assumed Maxwellian i.e., 

ni (R)dT i  = [(T i hrkT) 1/2  exp(-T i /kT) d(T i /kT)]n(R) 	 (3.2) 

outside the reaction sphere. The non-equilibrium density n(R) of all 
AB-pairs with R > RT  satisfies the continuity equation v•j, = 0, which 

follows from integration of (2.5) over all (E ,L.
2
). The net outward 

i 
radial current is 

do 	[dV 

J = - [D dR + 	
dR

]n(R)1 

= - D exp(-V/kT) (d[n(R)exp(V/kT)]/dR) 	 (3.3) 

where D and K, the coefficients for relative diffusion and mobility in the 

gas, are related by De = KkT under equilibrium with the field. 



The appropriate distribution for R > RT  is 

1982a,b) 

n(R/ ) = nAnB  exp(-V/kT) 	[1 - 

a 

therefore (cf. 	Flannery 

(3.4) 
RT aTR 

where 

aTR = 474°4T (3.5) 

is the rate of formation by transport of pairs with separation R < RT. and 

where 

.[ fexp(KV/De)R-2dR] 	 (3.6) 

is a scaled length in presence of interaction V(R). 

With this analysis, the rate (2.17) yields the standard result (cf. 

Flannery 1982a,b) 

aRN aTR 
a = 

aRN
+O

TR 

for termolecular processes in the presence of diffusional drift. The 

reaction rate therein is identified as 

L2 
max 

aRN = 
J  dEi Jo  dL i 2  vji+AV(RT)/E i ] exp[-V(RT+A)/kT][C(E i )/L2  ] x 

P7(RT ,E i ,L i 2 ) 	 (3.8) 

for general RT(E i .L i
2
). As X -+ 03 i.e., when diffusional-drift can be 

neglected outside the RT-sphere (:3.8) reduces to (2.18) with (2.19c) as 

expected. 

Resolution of the dilemma posed in §1 is based on the recognition that 

(1.28), although similar in form to (3.7) is an approximation only to the 

reaction rate (3.8) and Expression (1.28) therefore does not contain the 
physics intrinsic to (3.7). The attractive form of (1.28) tends to mask 

its approximate character. 

4. TERMOLECULAR RECOMBINATION AT LOW GAS DENSITIES 

Simplifications to the full microscopic treatment as characterized by 

the appropriate solutions of (2.5) in (2.9c) can be therefore achieved by 
assuming (i) a reaction radius RT  - the location of the centrifugal barrier 

1 
U.(L.) for (A

+
-B) association or a constant RT  ti 	 (e

2
/kT) for (A

+
-B) 

recombination - and (ii) a one-way downward collisional absorption or 

stabilization rate (2.25) and (2.28) which represents the strong collision 
limit. This rate is given either by the flux across the neck U. of the 

effective potential V
i
(R.E.,L.

2
) for A

+
-B association, or by the flux 

acrossthedissociationlimitatE..0 for ion-ion recombination since the 

(3.7) 



Coulombic attraction here cannot support an angular momentum barrier. 

In order to assess the effectiveness of these two basic assumptions 

and of other alternative procedures (such as a weak-collision limit and a 

Variational procedure) which may be adopted, consider the well developed 

case of termolecular ion-ion recombination at low gas densities. At low N, 

equilibriumincoordinatesRandL.
1
2 is quickly established and relaxation 

in internal energy F. is the rate limiting step. Integration of (2.5) over 

(R,L.
2 
 ) yields the standard input-output Master equation 

1 

dn i (Ec t)/dt = an i (F i .t)/at = -[ni(t) fv if  dEf  - 	nf (t) v fi  dE f ] (4.1) 

-D 	 -D 

for the time-dependent pair distribution n.(E.,t) per unit energy interval 

dE 1  for bound (E(0) levels in block 11 in terms of the frequency v if  per 

unitintervaldE f forE.-0E transitions via (AB-M) collisions. This 

distribution is now expanded as (Flannery 1985) 

n.(E.,t) 	 nA(t)nB (t) 
1 	1 

A 	
n(V,t)] 

ni(Ei) 	 = P 	
n
A
n
B 

	

i (E i ) 	  + P i (E i ) 	17-01  

A,D 
where 'P. (E.) are the probabilities that E 1 -pairs are in the reactive 

channels which result in association or dissociation respectively. Thus, 

PA (E.>0) is zero in the continuum block T and P.
A  
(-S>E.>-D) is unity in the 

block V of stabilized levels with overall distribution n(I,t). On insert-
ing (4.2) into (4.1) and with the aid of (2.4), the basic expression 

- 

B 
a 

1.-1An 
 -f PA  dE. J (PA - PA )C dE 

ifif 

	

-D 	-D 

can be derived (Flannery 1985). The one-way equilibrium collision rate for 
E. -, E

f 
transitions is 

2 
R if 	Lmi 	 L

2 

	

R
if 	 mf 

Cif(Ei,Ef) 	
I  f 
	C.

F 
 (R)dR 	

1 

 dR I 	n i (R)dL.
2 f 	v. (R)dL f

2 

	

o 	 0 	if  

(4.4) 

whereR if isthelesseroftheoutemostclassicalturningpointsR.and R
f 

associated with levels E. and F r  respectively. For a quasi-steady state 

(06S) distribution of pairs in excited block g (0 > E. > -S), (4.3) reduces 

exactly to the net downward steady-state current (Flannery 1985) 

-E 

ciE nAn13 .-j(-1)=1%E.f(PA  - PA )C.
f 
 dE

f
, 

f   

-E 	-D 

(4.2) 

(4.3) 

(4.5) 



across an arbitrary bound level -E in block g. 	The probabilities in (4.5) 
satisfy the QSS-condition 

	

P. 	
J9° Cif 

	

i 	if 
= 

f 
PA 

C if i 	if 	f 
(4.6) 

-D -D 

which must rigorously hold in order that a be identified as in (4.5) with a 

current j(-E) that is constant to variation of E within block g. The 

equations (4.5) and (4.6) are essentially those as given by the standard 

QSS-method (Bates and Moffett, 1966; Bates and Flannery, 1968) for 

recombination under the condition n A(t)nB(t)/nAnB  n- >> n(9),t)/n(9). The rate 

(4.5) in practice reduces to a sum of rates each arising from A
+
-M and B -M 

collisions, respectively (Bates and Flannery, 1968; Flannery and Yang, 

1980). 

4.1. One-Way Equilibrium Rate: Strong Collision Limit 

On ignoring upward transitions across E = 0 for R < RT  and upon 

assuming full thermodynamic equilibrium (which entails equal upward and 

downward collisional rates at each R) for R > RT  then (4.5) provides the 

one-way downward equilibrium flux across E = 0 as 

RT  

aT  nAnB  j°°  dEi J 001 j°  Cif (R)dE f 	 (4.7) 

-D 

which is the modern collisional equivalent of the low density treatment of 

Thomson (1924). Figure 2 displays the variation obtained by Flannery and 

Mansky (1987) of the ratio (aT/aE) with RT  for equal mass species A
+
, B 

and M. Energy-changing collisions via various (A -1- -M) interactions CX for 

symmetrical resonance charge transfer (Flannery 1980), HS for hard sphere 

encounters (Flannery 1981) and for polarization collisions (Bates and 

Mendas 1982) are considered. Equivalence between aE  and aT  occurs for RT  

0.5 (e
2
/kT), a value that can be assigned only after detailed calcula-

tions for a
E. 

Table 1 displays the assigned RT  for various values of the 

mass ratio parameters 

a = MBM/MA (MA+MB+M) 
	

(4.8) 

where MA B and M are the masses of the ions and gas atoms respectively. 

The very small values of RT  for small a - 10 are simply a manifestation 

that (4.7) becomes invalid for electron-ion recombination since then only a 

small fraction (5 = (2m
e
/M) of the electron's energy can be transferred in 

e-M collisions so that the upper limit of the E i -integration in (4.7) is 

Se
9 
 /RT  rather than infinity (Bates, 1980). 

The divergence of (4.7) illustrated in Fig. 2 as RT  -> co results from 

the divergence in the equilibrium density n(E.) of Coulombic levels as F 

0, and from the neglect in (4.7) of upward collisional transitions within 



Table 1: Radius RT  (in units of e
2
/kT) so assigned that the one-way 

equilibrium rate (4.7) reproduces the exact rate (4.5) for 

various mass parameters 

a 	 CX 

(4.8) and (A
+

-M) 

HS 

interactions. 

DOE 

0.001 0.1200 0.1655 0.0922 
0.010 0.2277 0.2902 0.1801 

0.100 0.3657 0.4510 0.3074 
0.333 0.3992 0.5076 0.4861 
1.000 0.5449 0.5187 0.3749 

10.000 - 0.4211 0.4280 
100.000 - 0.2444 0.2735 

1000.000 - 0.1188 0.0922 

the RT-sphere, an assumption which is inappropriate as R T 	(1). 

This divergence can be eliminated, not only by maintaining R T  finite, 

but also by considering the one-way equilibrium rate 

aB(E) 

across any bound level 

;1i113  = .1°  dE i  

-E 	-D 

-E in block t 

-E 

	

f 	dE f  

	

. 	The 

Rif 

f 	Cif (R)dR 
0 

variation (Fig. 3) 

(4.9) 

with -E of 
this rate displays a minimum (Flannery 1980, 1981) at the bottleneck energy 

E
* 
- -2kT. Thus aB(E*) is the least upper limit. This variational 

procedure is akin to the Wigner-Keck Variational phase-space treatment 
(Wigner, 1937; Keck, 1967). Table 2 provides (aB/a

E
) for various mass 

parameters a. The procedure is more reliable for a in the range 0.1 < a < 
10 where the collisional dynamics for larger energy-transfers are 
important. 

4.2. Diffusion Method: Weak-CoLlision Limit 

For small energy-transfers, the collision integral in (2.5) when 

integrated over R and L. 2  can be represented in differential form, so that 

the diffusional net current in energy space is (cf. Flannery 1987) 

3 D (E 1 ) 	- 	 (aPD/dE l ) 

where the energy diffusion coefficient is 

1 
D i
2 
 (E i ) = 2 J (E f-E i )

2 
 Cif  dE f  

(4.10) 

(4.11) 
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Fig. 2. Strong Collision Limit: Variation with RT  of the one-way 

equilibrium rate, (4.7) of text, across energy level E = 0. 
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Fig. 3. Bottleneck Method: One-way equilibrium rates, (4.9) of text 
across excited levels with energy -E relative to the dissociation 
threshold. 



Table 2: Ratio of ap/aE  and aB/aE  from (4.13), (4.9) and (4.5) for 

various mass ratios (4.8) and (A
+
-M) interactions. 

a CX 

aP/aE 

HS POL CX 

aB/aE 

HS POL 

0.001 1.0275 1.0127 1.0008 16.9958 25.7816 32.4466 

0.010 1.3040 1.2216 1.1634 5.5130 7.3362 8.3690 

0.100 3.5223 2.7388 2.1306 2.3835 2.9386 3.3538 

0.333 6.8404 4.9678 3.3611 1.8645 2.2155 2.5414 

1.000 9.2715 6.6036 4.0598 1.7222 2.0152 2.3328 

10.000 3.5103 2.1306 ---- 2.7464 :3.3537 
100.000 1.4550 1.1634 6.3015 8.3690 

1000.000 1.0934 1.0008 20.2334 32.4466 

Solution of (4.10) subject to steady state current j D  within block g 

and to the conditions to 134!‘ at the boundaries to block & yield 

(2) 
PLI
A 
 (Ed=UdE/D.

(2)
(E) ][ j° /D. dE 	(E)] 

E. 	 -S 

(4.12) 

so that the steady- state downward diffusional current across E = 0 is then 

(2) 	1 
.4)(0)..ap neB =[rdE/D.(E) J  I  

-S 

(4.13) 

This is the original result of Pitaevskii (1962) who designed it only for 

electron-ion recombination in a gas. Table 2 shows that it is indeed 

correct in this collisional limit of large a. Its departure from a E  for 

general mass ratios arises from identification in (4.13) of a with a 

current based on (4.10) or (4.12). which does not satisfy the exact OSS-
condition (4.6). When (4.12) is inserted in the basic rate (4.3) to give 

ap , excellent agreement is apparent (Fig.4) for all mass ratios a and A
+
-M 

interactions. The rates in Fig. 4 are normalized (Flannery 1980, 1981, 
1987) to Thomson rates. In the limit of small energy transfers (small and 

large a) the current (4.13) is so small and agrees essentially (as in Table 

2) with the result of (4.3). 

4.3. 	Variational. Principle 

It has recently been proposed (Flannery 1987) that termolecular 

association proceeds in such a manner that the overall association rate 

(2.4) is a minimum at any given time. Under the separation (4.2) which is 
necessary for emergence of the OSS condition (1.6), a Variational Treatment 

ofthecISSapproxirtlationcanthereforebeconstructedbyvaryingin 

(4.5) so as to yield minimum rates a. With X = -E i /kT, the simplest 

one-parameter variational form 

11;:(X;Xm ) = 1 - (1+0 exp(-0 	X = X/X3* 	 (4.14) 

whichtendstozeroasE.-00andtounityasE.-0-03 (rather than to unity 

as E i  -0 -S), yields the exact QSS rate aE  of (4.5) for X*  - 1.2. Fig. 5 
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illustrates the comparison between PA' D
'  P

A 
 D
' D  and PA ' D  which are 

respectively the variational diffusional, and exact QSS probabilities for 

termolecular recombination of equal mass species under a polarization A -1--M 

attraction. More elaborate expressions with two and three variational 

,D -A 
parameters-yield probabilities closer to the exact F E 	(Flannery 1987). 

The overall rate a is however not sensitive to these changes as suggested 

by the close agreement between the diffusion and exact results of Figs. 4 

and 5. All of the adopted variational expressions produces aE  exactly. 

Acknowledgement: I would like to thank Dr. E. J. Mansky for help in 
preparation of the Tables and Figures. I also thank Audrey Ralston for her 

pioneering efforts in adapting the latest computer and laser technology to 

the overall production of the paper. This research is supported by the US 

Air Force Office of Scientific Research under Grant No. AFOSR-84-0233. 

References 

Bass, L., Chesnavich, W. J., and Bowers. M. T., 1979, J. Amer. Chem  
Soc., 103:5493 

Bates. D. R., 1978, Proc. Roy. Soc. Lond. A., 360:1 
Bates, D. R., 1979a, J. Phys. B. Atom. Molec. Phys..  12:4135 
Bates. D. R., 1979b. J. Chem. Phys.,  71:2318 
Bates, D. R., 1980. J. Phys. B. Atom. Molec. Phys.,  13:2587 
Bates. D. R., 1986, J. Chem. Phys.,  84:6233 
Bates, D. R., 1985, J. Chem. Phys.,  83:4448 
Bates, D. R., and Flannery, M. R., 1968. Proc. Roy. Soc. Lond. A., 302:367 

Bates, D. R., and Mendas, 1982, J. Phys. B. Atom. Molec. Phys.,  15:1949 
Bates, D. R., and Moffett, R. J.. 1966, Proc. Roy. Soc. Lond. A., 291:1 

Blades, A. T., and Kebarle. P., 1983, J. Chem. Phys.,  78:783 
Flannery, M.R., 1980. J. Phys. B. Atom. Molec.  Phys..  13:3649 
Flannery, M.R.. 1981, J. Phys. B. Atom. Molec.  Phys..  14:915 
Flannery, M. R., 1982a, Ion-Ion Recombination in High Pressure Plasmas, 

in: "Applied Atomic Collision Physics, Vol. 3", E. W. McDaniel and 
W. L. Nighan. eds., Academic Press, New York. 

Flannery. M. R., 198213. Phil. Trans. Roy. Soc. Lond.  A.. 304:447 
Flannery, M. R., 1985, J. Phys. B. Atom. Molec. Phys.,  18:L839 
Flannery. M. R., 1986, J. Phys. B. Atom. Molec. Phys.,  19:L227 
Flannery. M. R., 1987 (in preparation). 

Flannery, M. R., and !bosky, E. J.. 1987 (in preparation). 

Flannery. M. R., and Yang, T. P., 1980, J. Chem. Phys.  73:3239. 
Forst, W., 1973. Theory of Unimolecular Reactions, Academic Press, 

New York. 
Herbst, E., 1979, J. Chem. Phys.,  70:2201 

Herbst, E., 1980, J. Chem. Phys.,  72:5284 
Keck, J. C.. 1967, Adv. Chem. Phys., 13:85 
Klots, C. E., 1971, J. Phys. Chem.,  75:1526 
Loeb, L. B., 1955, "Basic Processes of Gaseous Electronics", Ch. 6, 

Univ. of California, Berkeley. 

Mahan, B. H., and Person, J. C., 1964. J. Chem. Phys..  40:392 

Marcus, R. A., 1975. J. Chem. Phys.,  62:1372 
Pitaevskii, L. P., 1962, Soviet Physics-JETP 15:919 

Thomson, J. J., 1924, Phil. Mag.,  47:337 
Troe, J.. 1977, J. Chem. Phys.,  66:4758 
van Koppen. P. A. M., Jarrold, M. F.. Bowers, M. T., Bass, L. M., and 

Jennings, K. R., 1984, J. Chem. Phys.,  81:288 
Viggiano. A. A., 1986, J. Chem. Phys..  84:244 
Whitten, G. Z., and Rabinovitch, B. S., 1963, J. Chem. Phys.,  38:2466 
Wigner, E.. 1937, J. Chem. Phys.,  5:720 

4 



3NCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE 

REPORT DOCUMENTATION PAGE 
la. REPORT SECURITY CLASSIFICATION 

UNCLASSIFIED 

1b. RESTRICTIVE MARKINGS 

--- 
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT 

Approved for public release;  
distribution unlimited. 

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE 

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 

GIT-85-009 

5. MONITORING ORGANIZATION REPORT NUMBER(S) 

N/A 

6a. NAME OF PERFORMING ORGANIZATION 

Georgia Institute of Technology 

6b. OFFICE SYMBOL 

(If applicable)  

7a. NAME OF MONITORING ORGANIZATION 

Air Force Office of Scientific Research (AFOSR: 
Directorate of Physical and Geophysical Science;  

6c. ADDRESS (City, state, and ZIP Code) 

School of Physics 
Georgia Institute of Technology 
Atlanta, Georgia 	30332 

7b 	ADDRESS (City, State, and ZIP Code) 

AFOSR/NP 
Bolling Air Force Base, Bldg. 410 
Washington, D. C. 	20332-6448 

8a. NAME OF FUNDING/SPONSORING 
ORGANIZATION 

AFOSR 	• 

8b. OFFICE SYMBOL 
(If applicable) 

NP 

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 

AFOSR-84-0233 
8;. ADDRESS (City, State, and ZIP Code) 

Building 410 
Bolling AFB, D. C. 	20332-6448 

10 SOURCE OF FUNDING NUMBERS 

ELEMENTM NO. 

61102F 

PROGRA S PROJECT 
NO. 

2301 

TAK 
NO. 

A4 

AC
WORK

CESSION
UNIT 

 NO. 

N/A 
11. TITLE (Include Security Classification) 

REPRESENTATIONS OF THE TRANSPORT EQUATION FOR REACTIVE PROCESSES 

12. PERSONAL AUTHOR(S) 
M. R. Flannery 

13a. TYPE OF REPORT 
nual Technical Report' 

13b. TIME COVERED 
FROM  7/1/86 	To  6/30/87  

14. DATE OF REPORT (Year, Month, Day) 
8/28/87 

15. PAGE COUNT 
24 

6. SUPPLEMENTARY NOTATION 

7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 

Termolecular, Association, Boltzmann, Transport, 
Reaction. 

FIELD GROUP SUB-GROUP 
N/A N/A N/A 

9. ABSTRACT (Continue on reverse if necessary and identify by block number) 

Research has been initiated and conducted on Termolecular Association. 	Various 
representations of the Transport Equation for Reactive Processes were developed. 	The 
standard transport equation in the phase space (k,k) representation with streaming in 
k-space at fixed momentum je and streaming in p-space at fixed position k is converted to a 
more compact and useful (field free) form which, in an energy E-angular momentum L 
representation yields quite naturally a basic microscopic equation of continuity valuable 
in general to the solution of the Boltzmann equation. 	The analysis is directly relevant 
to the theory of various energy-transfer processes in a gas. 	The appropriate set of 
transport-collisional equations governing termolecular ion-atom association and ion-ion 
recombination of atomic species in a gas then follow quite naturally. 

0. DISTRIBUTION /AVAILABILITY OF ABSTRACT 
kZI UNCLASSIFIED/UNLIMITED 	III SAME AS RPT. 	■ DTIC USERS 

21. ABSTRACT SECURITY CLASSIFICATION 

UNCLASSIFIED 
2a. NAME OF RESPONSIBLE INDIVIDUAL  

Dr. Ralph E .  Kelley 
22b. TELEPHONE (Include Area Code) 

(202) 	767-4980 
22c. OFFICE SYMBOL 

NP 
ID FORM 1473, 84 MAR 83 APR edition may be used until exhausted. 

All other editions are obsolete. 
SECURITY CLASSIFICATION OF THIS PAGE 

  

UNCLASSIFIED 



Contents 

Abstract 	  

Page 

1 

1. Research Completed 	  2 

2. Research Initiated this Year and Completed 	  2 

3. Papers Presented at Scientific Meetings 	  2 

4. Abstracts of Papers Presented 	  3 

5. Appendix: 	Representations of the Transport Equation for 

Reactive Processes 	  4 



Abstact 

During this third year of the grant research has been conducted on 

Termolecular Association in Gaseous. Various representations on the Transport 

Equation for Reactive Processes were derived. The standard transport equation 

in the phase space (R,p) representation with streaming in R-space at fixed 

momentum p and streaming in n-space at fixed position R is converted to a more 

compact and useful (field-free) form which, in an energy E-angular momentum L 

representation yields quite naturally a basic microscopic equation of 

continuity valuable in general to the solution of the Boltzmann equation. The 

analysis is directly relevant to the theory of various energy-transfer 

processes in a gas. The appropriate set of transport collisional equations 

governing termolecular ion-atom association and ion-ion recombination of 

atomic species in a gas then follow quite naturally. 

1 



1. Research Completed  

The following paper included as Appendix D of the previous Annual 

Technical Report, GIT-85-008, for the period 7/1/85 - 6/30/85 has been 

published. 

(A) "Orientation and Alignment Parameters for e-He(1 1 S-3 1 D) Collisions", by 

E. J. Mansky and M. R. Flannery, J. Phys. B: Atom. Molec. Phys. 20 

(1987) 253. Six copies are attached as a separate report GIT-85-010. 

The following research, included as Appendix E of the previous Annual 

Technical Report. 

(B) "Macroscopic and Microscopic Perspectives of Termolecular Association of 

Atomic Reactants in A Gas", 

is to be published as a Chapter in the Book: "Modern Atomic and Molecular 

Processes", Plenum Press, New York. 

2. Research Initiated This Year and Completed  

(C) "Representations of the Transport Equation for Reactive Processes", has 

been initiated this year, completed and submitted for publication. It is 

attached as an Appendix to this report. 

3. Papers Presented at Scientific Meetings  

3.1 A contributed paper entitled, "Microscopic Perspective to Termolecular 

Ion-Molecule Reactions", by M. R. Flannery was presented at the 39th 

Gaseous Electronics Conference, Madison, Wisconsin, October 7-10, 1986. 

3.2 A contributed paper entitled, "Detailed Investigation of the Thomson 

Model of Termolecular Recombination", by E. J. Mansky and M. R. Flannery 

was presented at the 39th Gaseous Electronics Conference, Madison, 

Wisconsin, October 7-10, 1987. 

3.3 An invited talk entitled, "Termolecular Association in Gases", by M. R. 

Flannery was presented at a Conference in Honor of Sir David Bate's 

70th birthday at the Queen's University of Belfast, November 1986. 
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4. Abstracts of Papers Presented  

BA-2 	Microscopic Perspective to Termolecular Ion- 
Molecule Reactions,' M. R. FLANNERY, School of Physics, 
Georgia Tech--Current chemical kinetics of various ion-
molecule reactions and of termolecular recombination, 
A+B+M AB+M, in a gas M invokes simplified macroscopic 
schemes so as to predict the general variation with gas 
density of such processes. In this paper a non-equili-
brium microscopic treatment of the various energy-
transfer and stabilization sequences is provided, and 
connection is established with thd previous macroscopic 
treatments. Expressions fOr the three-body rate for 
stabilization of complexes AB *  by collision with M are 
derived. This rate is, in general, dependent on the gas 
density. For moderate-high gas densities, the effect of 
transport, while important for ion-ion recombination, is 
not important for termolecular ion-atom and atom-atom 
association at most gas densities of practical interest. 

Research supported by U. S. Air Force Office of 
Scientific Research under Grant No. AFOSR-84-0233. 

LC-1 	Detailed Investigation of the Thomson Model of  
Tel-molecular Recombination, *  E. J. MANSKY and M. R. 
FLANNERY, School of Physics, Georgia Tech-- The quasi-
steady-state rate of ion-ion recombination in a gas M is 
given by the net downward current in energy space across 
a band of highly excited bound energy levels of the ion 
pair (A+-B-), including the dissociation neck at zero 
energy. The contribution to the one-way equilibrium 
current across this neck that arises from the range [0-Rj 
in internal separation R of the ion pair (A-1--B- ) exhibits 
a rapid monotonic increase with R, and diverges for large 
R. Calculations which illustrate this divergence are 
provided for various ion-gas interactions. Comparison 
with exact calculations of the net current illustrates 
the effectiveness of a modern Thomson-style model for 
equal-mass species. 

Research supported by U. S. Air Force Office of 
Scientific Research under Grant No. AFOSR-84-0233. 



Appendix 

Representations of the Transport Equation 

for Reactive Processes 

M. R. Flannery 

School of Physics 

Georgia Institute of Technology 

Atlanta, Georgia 30332, USA 

Abstract: The standard transport equation in the phase space (R,2) represen-

tation with streaming in R-space at fixed momentum 2 and streaming in 2-space 

at fixed position R is converted to a more compact and useful (field-free) 

form which, in an energy E-angular momentum L representation yields quite 

naturally a basic microscopic equation of continuity valuable in general to 

the solution of the Boltzmann equation. The analysis is directly relevant to 

the theory of various energy-transfer processes in a gas. The appropriate set 

of transport-collisional equations governing termolecular ion-atom association 

and ion-ion recombination of atomic species in a gas then follow quite 

naturally. 

Subject Index: 3410, 5110, 8220R 
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1. Introduction  

In termolecular ion-ion recombination and ion-atom association 

A + B + M 	AB + M 	 (1) 

which occurs via collisional transfer of internal energy and angular momenta 

of the (A-B) pair with as species M, the two particle (phase-space) distri-

bution n(R,2,t) of (A-B) pairs over internal separation R and internal rela-

tive momentum 2 . my is governed (Flannery 1982a,b) by the microscopic 

transport equation 

d 	 On 	rOVI  

	

n(R,p,t) = 	+ y•yRn - L--I 
[pRJ 

 R•v n dt 

(in 	 1dV 

	

= 	[yR*(nv)j 	- I 
	[ 

LoRi 

(2a) 

n9J R 	 (2b) 

where V(R) is the (symmetrical) interaction energy between A and B with 

reduced mass m. When the transport rate (2) is set equal to the net input-

output rate for collisional population at fixed R of state p from all states 

2' of the pair (A-B), a Boltzmann equation is obtained (Flannery 1982a,b) for 

n(R,2,t) appropriate to the case of dilute concentration of reactants A and B 

in a gas bath M of general density N. 

Integration of (2b) over all p results in the familiar macroscopic 

continuity equation 

dn(R,t) 	an 

dt 	 + y•4(R,t) 
	

(3) 
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linking the macroscopic distribution 

n(R,t) = 	n(R,2,0d2 
	 (4) 

and its first moment 

J(R,t) = 	n(R,p,t)v d2 	 (5) 

which is the current across a sphere of radius R. 

Analytical or numerical solution of the transport equation (2) set equal 

to an input-output collisional rate is common to many problems in atomic, 

molecular and plasma physics based on the Boltzmann equation. Solution for 

the phase-space distribution n(R,p) in general involves complex mathematical 

analysis (cf. Chapman and Cowling 1970, McDaniel and Mason, 1973, Duderstadt 

and Martin 1979). 

In this paper, (2) is expressed in a more compact form natural to 

consideration of (1) and amenable to direct solution. A microscopic  

continuity equation, similar in form to the macroscopic equation (3), is then 

obtained when n is expressed as a function of R, internal energy 

E = p
2
/2m - V(R) 
	

(6) 

and internal relative angular momentum 

L= R x p = (R p sinO)f 
	

(7) 

where 0 and q  are the spherical polar and azimuthal coordinates of 2 with 

6 



respect to polar axis taken along R. On rotating 	< -11" through -11" at fixed 0, 

the direction of L becomes reversed as viewed from the X-axis from a clockwise 

orbital motion about the force center to a counterclockwise motion. Pairs 

which contract in R as they proceed towards the pericenter (or away from the 

apocenter) and pairs which expand in R as they leave the pericenter (or 

approach the apocenter) are specified by the respective ranges 0 < 0 < ff/2 and 

ir/2 < 0 < ff. 

In the absence of collisions with the gas M note that the quantities E 

and L above are conserved. 

2. Analysis 

With 2 held fixed at angle 0 to variable R, then after some analysis, 

1 d 1 d 
p•y, n(R,p) = 	(R

2
ncosO) p,0  + R d(cos0) [np sin 

2
0]13,R 	(8)R2 dR 

sin0 	4n 1  sing rn 
	 [cos 0 	1 + 	 . 	1 - sin cotO d0R j 	sin0R d0R j 1_,T] 

for general n[R(R,O R ,OR ), Op, ► ,0)1, where (0,0) are the spherical coordinates 

of 2 with polar axis along R which, in turn, has spherical coordinates (O R ,O R ) 

with respect to a space-fixed reference frame. Since the interaction V(R) is 

radial, then the probability density n is a function only of R, p and 0, the 

angle between R and 2. Under azimuthal (0,0 R ) symmetry, and with the aid of 

(8) together with the corresponding expression for R•v 
2
n, the transport 

equation (2a) reduces to 

7 



d 	 do 	1 0 1 0 
n(R1 	- p . t) - 

	

5/Ti  (R
2 

n v cos0) 	+ 	 [nv sin
2 

dt 	— 0] p,0 	R 0(cos0) 	 P,R 

r0V 1  1 0 2 	 1 a 
- 100[

P 	P 
(P n cos0)_ _ + 

	

y,u 	p d(cos0) [n sin20]
p R 

which is its conservative form in the (R,p)-representation, since the angular 

redistribution terms vanish when integrated over the full range 0 < U < w of 

the momentum direction 2 for fixed R. In what follows, the 0-integration 

(which is over all directions L of the angular momentum vector) of the various 

distributions is implied, and R in n(R,p), n(R,E,O) and n(R,E,L 2
) signifies 

that n is the spherically symmetric distribution per unit element 4wR 2
dR, in 

addition to unit elements dp, dE d(cosU), dE dL 2 
respectively. 

2.1 (R,E,U)-Representation  

Regrouping terms of (9) yields the alternative form, 

dt 	

On 	 i 

p,0 v 1(

OV ) cdn-1  
n(R,p;t) 	

ran

dRi + v cos 0 	- — 	 ' R0RJ [pJR,0] 

1 1 

	

2 [2 	
dV 1 	On 
	1 + 2 v sin 0 	- 

Under the recognition that the one-dimensional p 	E transformation implicit 

in 

(9)  

(10)  

(E-V) dR J 1.0(cos0) R,p J 

n(R,E) = n(R,p(R,E)) 	 (11) 
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involves the identity 

-a 	1 favi fa ll  
Lan) 	tanj (12) 

where the subscript specifies the particular quantity to be held fixed during 

the appropriate differentiation, then (10) is simply 

d 	dn 	On(R,p), 	1

r 	E 1 — + vcos0 	 02 
12 	1 dV 	dn 

n(R,p;t) = at 	[OR 	.1E03+ 	vsin 	
._ 

dt 
	- 

	

LK 	(E-V) 	][d(cos0)R, 

(13) 

Since the distributions per unit elements in the (R,2) and (R,E,0)- 

representations are related via 

n(R,p) p2  dp = n 1 (R,E,O)dE 	 (14) 

the transport equation for n 1 (a mpn) is then 

d 	 dn 	r1 d 	2  

dt n i (R,E,O;t) = 	+ 
LR2 
	(R n i vcos0) 

E,0 

0(n sin
2
0 1 	2 	1 	dV 	r  

v 	(E-V) dR I L d(cos0 )1 R,E 1 
(15) 

which is the conservative form of the transport equation (2) in the (R,E,O)- 

representation. 

9 



The 0-integrated distributions 

n f (R,E,t) = j 	n i (R,E,O;t) d(cos6) 	 (16a) 

and 

n (R,E,t) = (R 7 	1 E 0q.) d(cos0) (16b) 

for pairs with internal energy E which are expanding (+) outward or contract-

ing ( - ) inward across a sphere of radius R therefore satisfy 

d 	 Oni- 	1 

dt 	 .+(R,E,t)lE J -  n ± (R,E,t) - 
at 	R2 OR [1i2  

— 1 	1 	0  (p2 2 1  + 1.2  ni(R,E,0-4/r/2-Te 7 t)v
j22 	OR 	p IlE 

	

E R p 
	 (17) 

for all R and E where the corresponding currents of expanding (+) 

pairs are 

1 

and 

contracting (-) 

j
+
(R,E,t) 	= 	j 	n 1 (R,E,0;t) 	v cos° d(cos0) (18a) 

and 

j(R,E,t) 	= 	J  n i (R,E,O;t) 	vIcos0 Id(cos0) (18b) 

-1 

respectively. In (17), the small positive quantity f tends to zero. 

10 



Note that the maximum range of L
2 
accessible for fixed E and R is 0 < L

2 

2 < R2 p2 = L
max

. As R increases, Lmax 
for dissociated states continuously 

increases, but for bound states it reaches a maximum and then decreases. 

Contracting pairs with L = L max  fail to enter the R-sphere since their orbit 

just touches the R-sphere externally at the pericenter. Expanding pairs with 

L = L
max fail to exit from the R-sphere since their orbit touches the R-sphere 

internally at the apocenter. Eq. (17) for n +  naturally contains the resulting 

compensation to the expanding flux at R by including either a source for n +  at 

the pericenter (specified by 0 = v/2 and [)(R
2
p
2
)/OR] E > 0), where contracting 

(-) pairs are converted at R by external reflection into expanding (+) pairs, 

or as a sink of n
+ 
at the apocenter (specified by 0 = 7112 and [0(R

2
p
2
/dR]

E 
< 

0), where (+) pairs are reflected at R internally into (-) pairs. Eq. (17) 

for n contains the corresponding combination of a pericenter sink and an 

apocenter source for contracting pairs. 

Fig. 1 illustrates variation with 0, or alternatively with angular 

momentum L = Rp sin0, of the hyperbolic orbits for motion at fixed energy 

E = 2 kT under pure Coulombic attraction -e2
/R. The spherically-symmetric 

distributions n(R,E,O) and n(R,0,ff-0) which correspond to expanding and 

contracting pairs in the same (E,L)-orbit are in general not equal since n +  at 

a given R is the remnant of the contracting pairs after they pass through the 

R-sphere (within which collisional absorptions, do occur). When R corresponds 

to the pericenter or apocenter of a given (E,L
2
)-orbit then the precursors to 

n+  at the pericenter and to n at the apocenter are n and n
+ 

respectively, so 

that, in (17), 

3 
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n (R,E,0 = it/2) , d(R
2
p
2
)/dR > 0 

ni (R,E,0 = n/2 e) a n* (R,E,0 = it/2) = 
	

(1 9 ) 

n+ (R,E,0 = ff/2) , d(R 2 p2 )/OR < 0 

On integrating (15) over all 0, the distributions for the sum (s) and 

difference (d), 

ns ' d (R,E,t) = n+ (R,E,t) + n(R,E,t) 	 (20a) 

and associated currents 

j s ' d (R,E,t) = j + (R,E,t) ± j - (R,E,t) 	 (20b) 

then satisfy 

(21a) R  

d 	s 	
em s3 

1  d 	2 a ,71- n (R,E,t) = 	 [R -j (R,E;0] E,  
A + 2 OR 

which is a microscopic equation of continuity in (R,E)-space, a property which 

originates from the conservative form of (15) in the (R,E,0)-representation, 

and 

On 	1 d 

R2 (3
R [R j (R,E,t) = 	 2 s

(R,E;t)] E  - 	

7 

dt n  

n

R

E

Eg)/2)1 1  at ] R2 OR " 	)E (21b) 

which contains the additional source-sink combination. 

Since the phase space distribution n(R,e) of pairs in full thermodynamic 

equilibrium at temperature T is 

n(R,2) = (2ffmkT) -3/2  exp(-E/kT) = 	 p2(dp/dE) 	(22) 

then the equilibrium current r in (21b) is 

12 



j (R,E) = 2 	R,E) v = (2ffp2 )(2ffmkT) -3/2 exp(-E/kT) 
	

( 23 ) 

on using (18) and (20) and n --1-  = 2 n. The above set (21) may also be recovered 

from (17) with the aid of (19). 

When the different spherical distributions n ± (R,E,O) of contracting (-) 

and expanding (+) pairs which enter and exit the R-sphere are each independent 

of 0 (which implies equilibrium in L 2 ) then (18)-(20) in this limit reduce to 

1 
j ± (R,E,t) = 2 n ±(R,E,t)v 	 (24a) 

1 sd ., j 	(R,E,t) = 2 nd ' s (R,E,t)v 	 (24b) 

n (R,E,7112,t) = n (R,E,t) (24c) 

for use in (21) or (17). The set (17) under L 2-equilibrium reduce for all R 

and E to the set 

d 	 dn± 	1 0 	1 2+  
n - (R,E,t) = 	_ 	 (R,E,t)f 

 dR dt 	
+ —2- 	R /- 	(RE)]

E 

1 	d 	1 - * 	 2-s + 	(R,E,t) 	-6T 	R j (R,EN E  (25) 

for the distribution 

1 ± (R,E,t) = n ±(R,E,t)/n±(R,E) 	 (26) 

13 



normalized to their thermodynamic equilibrium distribution 

1 
n - (R,E) = 2 n(R,E) = (2ymp)(2ffmkT) -312  exp(-E/kT) (27) 

The distributions /- are coupled in (25) by 

/(R,E,t) 	, 	[d(R j )/OR] E 	0 

/ (R,E,t) = 	 (28) 

1 4- (R,E,t) 	, 	[ 0(0,1s )/OR], < 0 

The set (25) for L
2 -equilibrium is, as expected, identical to that 

obtained by Bates and Mendas (1978) from considerations of conservation in the 

interval dE dR. 

2.2 The (R E L
2 )-Representation  

The two-dimensional transformation (p,O) 	(E,L
2
) implicit in 

n(R,p,O) = n(R,E(p,R), L 2 (p,R,O)) 	 (29) 

may be accomplished via use of the derived identities 

ran i 	ron, 
[7ij 	E,L2 + p,0 

 

4)E -On 	-0L2  

p
2 R,E 

i3R j pad  

 

  

2 

 

OR (30a) 

    

    

-dn

2 	

aL
2
1  

R clpj 	dE 	2 tap] + 	[Op j 0 R,0 	R,L 	R 	-OE. j R,E 	,  
(30b ) 

and °T1  	1 	
19n 	r  0L

2 

[3(cos0)] R,pL2j R,E [Noose)] 
( 30c) 
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On inserting (30) into (9), the transport equation for the phase-space 

distribution is found to reduce to 

do 

	

dt n(R,2,t) = 	v cosh 	n(,2,t)] 	2  
E,L 

do 

	

= 	+ y4Pk ii  n(R,2,01 	2  
E,L 

(31a)  

(31b)  

in which the gradient operation is performed with the quantities (E,L
2 ), which 

remain conserved in the absence of collisions, held fixed. Eq. (31) 

represents a great formal simplification to the basic transport equation (2) 

or (9) and is based on the derived identity 

13111  ^ 	n(R (R 2)] - p0 	 J 	
(32) 

R 
n(R 2)] 	 n 

E, 	 P 

which, to the author's knowledge, has not been previously presented in spite 

of its apparent simple form. Eq. (32) is essentially the two-dimensional 

analogue of the one dimensional transformation (12). It, in effect, reduces 

the standard transport equation (2) to an equivalent field-free form. 

Although (32) is key to the further development of a comprehensive and 

tractable theoretical treatment (Flannery 1987) of termolecular atomic and 

molecular processes as a function of gas density N, it would appear to be 

quite valuable in general towards obtaining solutions of the Boltzmann 

equation for a variety of problems in transport theory (such as those in 

Duderstadt and Martin 1979). 

15 



It is also apparent from (32) that consideration alone of R-streaming for 

fixed (E,L 2 ) includes quite succintly both the usual streaming in R-space at 

fixed 2 and streaming in 2-space at fixed R which separately gives rise to the 

effects of diffusion and drift, respectively. 

The distributions in the phase-space (R,2), (R,E,O) and (R,E,L 2 ) 

representations are related by 

n(R,p)dR d2 = n 1 (R,E,0,0)dR dE d(cos0) d0 = n 2 (R,E,L2 ,0)dR dE dL 2  dO, (33) 

where owing to azimuthal symmetry n is independent of the azimuthal angle 0 of 

2 with respect to Z-axis along R. Hence 

n(R 2) = 2R
2 

n
2 
 (R,E,L

2
,O)v cos0 = v n

1  (R,E,0,0)/p
2 

The transport equation (30) therefore yields 

d 	 an 	1 a 
n(R,E,L

2
;t) = 	+ 	[R

2
n(R,E,L

2 
dt 	

;t)v cos0] 
2 E,L  

an 	
y•,1(R,E,L

2
;0] E,L

2  

which is a microscopic equation of continuity  for the distribution n 2  in the 

(E,L2 )- representation for which the outward radial current is 

( 314 ) 

( 35) 

( 36 ) 

j(R,E,L2 ;t) = n(R,E,L 2 ;t)v copse 	 (37) 

16 



across a sphere of radius R. Such an equation is normally reserved as in (3) 

only for p-integrated distributions (4). The microscopic equation (36) is in 

accord with physical intuition since E and L
2 are naturally conserved in the 

absence of collisions with the gas. 

The distributions n --1-- (R,E,L2 ;0 of (E,L2 )-pairs which are expanding (+) 

into the angular range 0 < 0 < -f or contracting (-) into the range 2 < 0 < H 

across R, are therefore characterized by the transport equations 

d 	 ani-  1 d 
— i- (R

2
* 	- 	

2 + 	2 
dt n 
	"ELt) ' 	- at 	2  -e-3171  [R n - (R,E,L ;OvIcos01] 2 E,L  

which also represent microscopic continuity. 

The distributions 

n s 
	

2
;t) = n 4- (R,E,L2 ;t) + n(R,E,L2 ;t) 

and associated summed and net currents 

j
s

'
d
(R,E,L

2 ;t) = n s,d (R,E,L
2
;OvIcos01 

(38)  

(39) 

(40)  

( 141a) 

(14 1b) 

therefore satisfy the transport equations 

d 	 2 	an
s 1 0 

r, 
dt 	

;t) [R 2.cit 	2 
R2 aR 	J kR,E,L ;t, )] 

E,L2 

and 

an
d 

1 d 

dt nd(
R ,E,L2;t) - TJ 	

[R2js(R,E,L2;t)]
E,L2 

17 



of microscopic continuity. 

On integrating (41) over the angular momentum range 0 < L
2 < R2 p

2
, and 

with the use of Leibnitz's rule 

R2 p2 
1 0 	2. 	 1 

2 0R 

a 
[R2 j(R,E)] E 

[R j(R,E,L2 )] 	dL2 .7 
R
2 0R 	 E,L2 	R  

0 

a 
- j(R,E,R

2
p2 ) 	[R

2
p2

]6dR ( 142) 

for differentiation with respect to R of an integral with variable R-limits, 

then, as a check, the set (21) for the general (R,E)-distributions 

R
2
p2 

ns,d(R E t) = j 	n
s,d (R 1  E L

2 *t)dL2 
	

( 143) 

0 

and currents 

R2 p2 

j
s

'
d
(R,E,t) 

= I 	
j
sd (R,E,L 2 ;t)dL2 
	

( 14 14) 

is recovered, on remembering that j d (R,E,R 2p 2 ) at the turning points vanishes, 

and, with the aid of (34), that 

1 
j(R,E,L2 ) = n2  (R,E,L

2
) vR 
	2 
= — [n

1  (R,E,O)v]/R
2
p
2 

where the radial speed v R  is v cos0. 

(145 ) 
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3. Transport-Collisional Equations 

Collisional rates may now be directly incorporated within the (R,E,L 2 ) 

and (R,E) representations (38) and (25). In termolecular ion-atom association 

(1), for example, the set of transport equations (38), is set equal to the net 

collisional-loss rate 

2 

d 	
= - 	dEf J 	SIif (R)dL

f
2 

L
mf 

(46) 

V i (R) 

for pairs in level (E 1 ,L. 2
), where, in terms of the frequency D

if 
 (R) per unit 

element dI f  = dEfdLf
2 

for i(E i ,L i
2

) 	f(Ef ,L f
2
) transitions induced by 

collisions between M and the pair (A-B), the net input-output two level 

collisional rates St f(R) per unit interval clU i clU f  are 

SIf(R) = 	 pif(R) - ri t (R,E f ,L f2 )D fi (R) = -SL(R) 	(47) 

The effective radial interaction between A and B is 

	

V i (R) = V(R) + L i 2 /2mR2 
	

(48) 

so that the energy of the lowest level of AB accessible by collision at a 

fixed L2 and R can be denoted in (46) by V.(R). The maximum angular momentum 

in (46) accessible at fixed E f and R is 

L f (Ef' R) = pf 2R2 = 2m[Ef-V(R)]R
2 (49) m  

The equations in n I  obtained from (38) and (46) are coupled via the condition 

+ n.(R7) = n.(R) (50)  

19 



atthepericenterR.and apocenter R.1  of the (E
1 ,L 12 )-orbit. 

1  
. 

In termolecular ion-ion recombination where equilibrium in L
2  is 

established even at low N (Bates and Mendas 1975), the appropriate transport 

equation is then (25) set equal to the net collisional destruction rate, 

(1) 

d 

dt 
n- (R,E i ,t) = - f Sif(R)dE f 

-D 

of pairs in level E i , where 

Sif (R) = n(R E.) v if 	f (R) 	ni(R f  ) fi 	f (R) = -S ii  (R) i  

refers now to the net collisional rate per unit interval dE.1dE f  for trans- 

itions E 1  .-, E r .TheL. 2-averaged equations in n -  are directly coupled in (25) 

via /
* 
which originates from condition (50) at the turning points of (E.1 ,L.

2
)- 

orbits which in effect is incorporated within the E set equation (25). 

The equivalent transport equations (2) and either (38) or (41) are each 

valuable in separate ranges of gas density N. At high N, the distribution n 

realizes equilibrium in 2 but is highly non-equilibrium in R. It has already 

been illustrated (Flannery 1982a) that (2) for the phase-space distribution 

together with the first moment of Boltzmann equation, which provides an 

expression for the current (5) in terms of (4) and the coefficients D and K 

for relative diffusion and drift respectively, yield the familiar macroscopic 

equation of diffusional-drift which governs (cf. Bates 1985, Flannery 1982b) 

termolecular ion-ion recombination in the limit of high N. From low N, where 

collisional relaxation in (E,L 2  i ) is the rate limiting step for termolecular 

ion-atom association and ion-ion recombination, to intermediate N, where the 

distribution is non-equilibrium in R, E and L 2 , the (E,L 2 ) representation (38) 

( 5 1 ) 

(52) 
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is more natural. In contrast to ion-ion recombination, diffusional-drift is 

negligible for ion-atom association at most densities N of practical interest. 

The (E,L
2 )-representation (38) or (41) is then to be preferred for association 

at all gas densities. The general set (41) has been used to illustrate 

(Flannery 1987) how the rate a for termolecular association of atomic 

reactants increases with N towards a saturation value at high N, and also to 

illustrate the connection (Flannery 1986) of the microscopic theory with 

Thomson's treatment of termolecular recombination. The set (21) for 

L2 -equilibrium can also be used to illustrate this connection. 

3. Conclusion  

In summary therefore, the transport equation (2) with separate streaming 

in R and 2 has been converted into the more compact field-free form (31) based 

on R-streaming alone at constant E and L
2 . The new form results quite 

naturally in valuable microscopic continuity equations (35), (38) and (41) 

when the distribution n for expanding and contracting pairs is expressed in 

the (R,E,L 2 )-representation. The derived equations (17) in the (R,E)- 

representation contain source/sink contributions due to geometrical 

reflections at the pericenter and apocenter. The governing transport-

collisional Master equations (48) with (46) and (25) with (51) for 

termolecular ion-atom association and ion-ion recombination between atomic 

reactants in gases then follow quite naturally. 

This research is supported by the US Air Force Office of Scientific Research 

under Grant No. AFOSR-84-0233. 
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Figure Caption 

Figure 1. Hyperbolic trajectories for motion in Cartesian XY-space with 

3 
specified energy E = 2 kT intersecting a sphere of radius R T  = 

(2e
2
/3kT) at angle 0 under pure coulombic attraction V(R) = -e

2
/R 

for various angular momenta L = Rp sinO = (2mE) 1/2
p or 0. Lengths 

are in units of RT and the impact parameter p ranges from 0 to Amax 

= J2 RT . The distributions n + (RT ,E,O) and n(RT ,E,ff-0) of 

expanding and contracting pairs are in general unequal except at 

the pericenter 0 = ff/2. 
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Abstract 

A list of publications of the research performed during the period 7/1/84 

- 7/30/89 of the'Grant AFOSR-84-0233 is provided. Theoretical research has 

been conducted on (a) Termolecular Association and Recombination (b) electron-

(excited) atom collisions and on (c) analytical solutions of the Time Depend-

ent Debye-Smoluchowski equation for transport influenced reactions. Papers on 

all of the above topics have been written up and published as papers, with 

reprints sent to AFOSR at various times during the period. The Exact Master 

Equation Method, a Variational Principle discovered during the course of this 

research, and various approximate treatments are presented as Special 

Highlights of this research. In addition, the Appendices include a major 

review of Recombination Processes in General. 
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1. Accomplishments due to AFOSR Support 

PRINCIPAL INVESTIGATOR: M. R. Flannery 

School of Physics, Georgia Institute of Technology 

Grant AFOSR-84-0233, Period 7/1/84 - 7/30/89 

Program Element No. 61102F, Project No. 2301, Task No. A4 

1.1 Research Objectives 

There are two main objectives to this research program: 

(1) Basic formulation and development of the theory of termolecular 

association processes 

A4-  + B + M 4 AB + M 

and 

A+ + B + M 4 AB
+ 
+ M 

(2) Development of scattering theories for the electron-(excited) atom 

collision process 

** 
e +A 4e+ A 	 (3) 

It is important to conduct an exhaustive theoretical investigation of (1) 

since not only is (1) of great significance in its own right to many important 
* 	* 

applications (e.g., exciplex lasers, KrF , XeC1 etc.) but also it represents 

the simplest three-body chemical reaction. It can therefore be considered as 

serving as a prototype of three body processes in general. 

During this grant period, this objective has been achieved for gases M at 

low densities. In addition to the Exact Master Equation Treatment of (1), a 

new Variational Principle has been discovered. This Variational Principle is 

applicable not only to ion-ion recombination (1) but to three-body processes 

2 



in general. It represents the first rigorous Variational Principle in 

Chemical Physics Collision Processes and is fully documented in §3.2. 

Also various simpler but approximate treatments of (1) have been 

investigated - the Diffusion, Bottleneck, Strong Collision and Coupled 

Nearest-Neighbor Methods. These are discussed fully in §3. 

The second main objective is the development of scattering theories for 

process (3). Now that some experimental, activity is beginning to emerge it is 

important to develop theories for electron-(excited) atom collisions. This 

objective has been achieved and progress is detailed in Appendix B. 
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1.2 Full List of Refereed Publications in Scientific Journals (1984-1989) 

1. "Ion-Ion Recombination at High Ion-Density", M. R. Flannery, J. Phys. B: 
Atom. Molec. Phys. 18, 5 (1985). 

2. "Selected Bibliography on Atomic Collisions", M. R. Flannery, E. W. 
McDaniel and S. T. Manson, Atomic Data and Nuclear Data Tables 33, 
1 - 148 (1985). 

3. "The Rate for Transport-Influenced Reactions", M. R. Flannery, J. Phys. B: 
Atom. Molec. Phys. 18, L747-L749 (1985). 

4. "Basic Expression for Termolecular Recombination and Dissociation", M. R. 
Flannery, J. Phys. B: Atom. Molec. Phys. 18, L839-L844 (1985). 

5. "Connection Between Microscopic and Thomson Theories of Recombination", 
M. R. Flannery, J. Phys. B: Atom. Molec. Phys. 19, L227-L233 (1986). 

6. "Orientation and Alignment Parameters for e-He(1
1 
 S 4 3 1  D) Collisions", 

M. R. Flannery and E. J. Mansky, J. Phys. B: Atom. Molec. Phys. 20, 
L235-L239 (1987). 

7. "Macroscopic and Microscopic Perspectives of Termolecular Association of 
Atomic Reactants in a Gas", M. R. Flannery, in Recent Studies in Atomic  
and Molecular Processes, ed. A. E. Kingston (Plenum Press, London, 1 987), 
pages 167-191. 

8. "Representations of the Transport Equation for Reactive Processes", M. R. 
Flannery, J. Phys. B: Atom. Molec. Phys. 20, 4929-4938 (1987). 

9. "Diffusional Theory of Termolecular Recombination and Association of 
Atomic Species in A Gas", M. R. Flannery, J. Chem. Phys. 87, 6947-6956 
(1987). 

10. "Termolecular Recombination at Low Gas Density: Strong-Collision Bottle-
neck and Exact Treatments", M. R. Flannery and E. J. Mansky, J. Chem. 
Phys. 88, 4228-4241 (1988). 

11. "Variational Principle for Termolecular Recombination in a Gas", M. R. 
Flannery, J. Chem. Phys. 89, 214-222 (1988). 

12. "Termolecular Recombination: Nearest-Neighbor Limit and Uncoupled-
Intermediate-Levels Limit", M. R. Flannery and E. J. Mansky, J. Chem. 
Phys. 89, 4086-4091 (1988). 

13. "Analytical and Numerical Solutions of the Time-Dependent Debye-
Smoluchowski Equation for Transport-Influented Reactions", M. R. 
Flannery and E. J. Mansky, Chem. Phys. 132, 115-136 (1989). 

14. "Recombination Processes", M. R. Flannery in Molecular Processes in 
Space: 'Physics of Atoms and Molecules' Series, edited by T. Watanabe, 
I. Shimamura, M. Shimizu and Y. Itikawa (Plenum Press, London, 1990). 

Six reprints of each of the above publications were submitted to AFOSR as 
reprint reports with numbers GIT-85-002, 003, 006, 007, 004, 010, 012, 011, 
015, 016 017 and 018, respectively. 
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1.3 Chapters in Books 

1. "Macroscopic and Microscopic Perspectives of Termolecular Association of 
Atomic Reactants in a Gas", in Recent Studies in Atomic and Molecular 
Processes, et. A. E. Kingston (Plenum Press, London, 1987) pages 167-191. 

2. "Recombination Processes", in Molecular Processes in Space: 'Physics of 
Atoms and Molecules' Series, edited by T. Watanabe, I. Shimamura, M. 
Shimizu and Y. Itikawa (Plenum Press, London, 1990). 

3. "The Numerical Solution of Partial Differential Equations in Atomic 
Scattering Theory", by E. J. Mansky in Proceedings of the Summer School  
of Computational Atomic and Nuclear Physics, edited by C. Bottcher, M. R. 
Strayer and J. B. McGrory (World Scientific, 1990). 

4. "Iterative Solution of Large Linear Systems and Heavy Particle Collisions: 
Ion-Ion Recombination", by E. J. Mansky in Proceedings of the Summer  
School of Computational Atomic and Nuclear Physics, edited by C. Bottcher, 
M. R. Strayer and J. B. McGrory (World Scientific, 1990). 

5. "Electron Collision Cross Sections Involving Excited States", by E. J. 
Mansky, in Proceedings of the NATO-Advanced Study Institute on "Non-
Equilibrium Processes in Partially Ionized Gases", edited by M. Capitelli 
and J. N. Bardsley (Plenum Press, 1990). 

Chapter #1 has been published. Six reprints have already been sent to 

AFOSR under Reprint Report GIT-85-012. 

Chapters #2, 3, 4, 5 are in press. Reprints will be sent when available. 

These chapters are included as Appendices A, B, C and D of this report. 

5 



1.4 Annual Reports (7/1/84 - 7/30/88) 

Full Annualjteports of the research performed during the previous twelve 

month period were prepared and submitted to AFOSR. The Performing 

Organization Report Numbers for the periods 7/1/84-6/30/85; 7/1/85-6/30/86; 

7/1/86-6/30/87 and 7/1/87-7/30/88 were GIT-85-001, GIT-85-008, GIT-85-009 and 

GIT-85-014, respectively. 

1.5 Funding History 

Project AFOSR-84-0233: 

	

7/1/84 - 6/30/85: 	73,403 

	

7/1/85 - 6/30/86: 	70,188 

	

7/1/86 - 6/30/87: 	86,730 

	

7/1/87 - 7/30/88: 	92,845 

	

8/1/88 - 7/30/89: 	99,311 

	

TOTAL: 	$422,311  

1.6 Personnel 

1. Professor M. R. Flannery - Principal Investigator 

2. Dr. E. J. Mansky - Research Scientist II 

3. Mr. M. S. Keehan - Graduate Student 

4. Mr. P. Smith - Graduate Student 

5. Mr. A. Haffad - Graduate Student 

6. Mr. A. Mekki - Graduate Student 

6 



2. Invited and Contributed Papers Presented at Professional Scientific 

Conferences (1984-1988) 

1984: The following papers were presented at the 37th Annual Gaseous 

Electronics Conference, October 9-12, 1984 held at the University of 

Colorado. Abstracts were published in Bull. Amer. Phys. Soc. (1985) 

and in Annual Report GIT-85-001. 

1. "Association/Dissociation in Dense Gases and Adsorption/Desorption on 

Surfaces", by M. R. Flannery. 

2. "Analytical and Numerical Solutions of the Time Dependent Debye-

Smoluchowski Equation", by M. R. Flannery and E. J. Mansky. 

3. "Electron-Excited Hydrogen and Helium Collisions", by E. J. Mansky and 

M. R. Flannery. 

4. "Symmetric Charge-Transfer Cross Sections in Rare Gas (Re-Rg) Systems", 

by E. J. Mansky and M. R. Flannery. 

1985: The following paper was presented at the 38th Annual Gaseous Electron-

ics Conference, October 15-18, 1985, held at the Naval Postgraduate 

School, Monterey, California. The abstract was published in Bull. 

Amer. Phys. Soc. (1986) and in Annual Report GIT-85-008. 

1. "Variational Principle for Association/Dissociation in Dense Gases", by 

M. R. Flannery, was presented at the 38th Annual Gaseous Electronics 

Conference, October 15-18, 1985, at the Naval Postgraduate School, 

Monterey, California. 

1986: The following papers were presented at the 39th Annual Gaseous 

Electronics Conference, October 7-10, 1986, held at University of 

Wisconsin, Madison, Wisconsin. The abstracts were published in Bull. 

Amer. Phys. Soc. (1987) and in Annual Report GIT-85-009. 
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1. "Microscopic Perspective to Termolecular Ion-Molecule Reactions", by 

M. R. Flannery. 

2. "Detailed Investigation of the Thomson Model of Termolecular Recombina-

tion", by E. J. Mansky and M. R. Flannery. 

An invited lecture entitled: 

3. "Termolecular Association in Gases", by M. R. Flannery was presented at 

a Conference held in Honor of Sir David Bates' 70th Birthday at Queen's 

University, Belfast, November 17 and 18, 1986. 

The lecture was published as a Chapter in the book "Recent Studies in 

Atomic and Molecular Processes", edited by A. E. Kingston (Plenum Press, 

New York, 1987). 

1987: Invited and Contributed Papers 

1. An invited paper entitled "Termolecular Recombination", by M. R. Flannery, 

was presented at the 40th Annual Gaseous Electronics Conference, Atlanta, 

held at Georgia Institute of Technology, Georgia, Oct. 13-16, 1987. It 

is published in Bull. Amer. Phys. Soc. 33, $2 (1988) p. 122. 

2. A contributed  paper entitled "Orientation and Alignment Parameters for 

e + He (2 1 ' 3S) 4  e + He (3 1 ' 3P, 3 1 ' 3 D) Collisions", by E. J. Mansky and 

M. R. Flannery, was presented at the 40th Annual. Gaseous Electronics 

Conference, Atlanta, held at Georgia Institute of Technology, Georgia, 

Oct. 13-16, 1987. It is published in Bull. Amer. Phys. Soc. 33, $2 (1988) 

p. 141. 

3. A contributed  paper entitled "Termolecular Recombination and Electrical 

Networks", by M. R. Flannery and E. J. Mansky was presented at the 1988 

Spring Meeting of the American Physical Society (APS) in conjunction with 

the Annual Meeting of the APS Division of Atomic and Molecular and 

Optical Physics held at Baltimore, Maryland, April 18-21 (1988). 
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The abstracts were included in the Annual Report GIT-85-014. 

1988: 

(a) A long paper  entitled "Multichannel Eikonal Theory of Electron-(Excited) 

Atom Collisions", by M. R. Flannery and a contributed paper  entitled 

"Integral and Differential Cross Sections for e-He (2 1 ' 3S) Collisions", 

by E. J. Mansky and M. R. Flannery were presented at the 41st Annual 

Gaseous Electronics Conference held at University of Minnesota, 

Minneapolis, Minnesota, Oct. 18-21, 1988. The abstracts are published in 

Bull. Amer. Phys. Soc. 34, #2 (1989) p. 302 and p. 315. 

(b) Two contributed papers  entitled "The Poincare Sphere for the 2 1 P, 3 1 P and 

1 3 D States of Helium", by E. J. Mansky and M. R. Flannery and "Orienta- 

tion and Alignment Parameters for e-H(1s43p,3d) Collisions", by E. J. 

Mansky were presented at the 20th Annual Meeting of the (APS) Division 

of Atomic, Molecular and Optical Physics held at the University of 

Windsor, Windsor, Ontario, May 17-19, 1989. The abstracts are published 

in Bull. Amer. Phys. Soc. 34, #5 (1989) p. 1371 and p. 1407. 

(c) An invited paper  entitled "Electron Cross Sections Involving Excited 

States", by E. J. Mansky was presented to the NATO-Advanced Study 

Institute, "Non-Equilibrium Processes in Partially Ionized Gases" held 

at Maratea, Italy, June 4-17, 1987. It is published as a Chapter in the 

Book, listed in §1.2. 

(d) Two invited papers  entitled "The Numerical Solution of Partial Differen-

tial Equations in Atomic Scattering Theory", and "Iterative Solutions in 

Large Linear Systems and Heavy Particle Collisions", by E. J. Mansky 

were presented to the Summer School of Computational Atomic and Nuclear 

Physics held at University of the South, Sewanee, Tennessee, June 16-

July 7, 1989. They are published as Chapters in the Book, listed in 
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§1.3. 

(e) A contributed paper entitled "Stokes Parameter Analysis of the 3 1 D State 

of Helium", by-E. J. Mansky and M. R. Flannery was delivered to 16th 

International Conference on the Physics of Electronic and Atomic 

Collisions held at New York, July 26 - Aug. 1, 1989. 

1 0 



3. Special Highlights 

In a series of papers, #9 - #12 of the list in § 1.1, the Termolecular 

Recombination Process 

+ B + M 4 AB + M 	 (1) 

was explored in depth. Exact treatments based on a Master Equation and on a 

New Variational Principle discovered by M. R. Flannery were developed and 

applied. Various approximate treatments as (a) The Diffusional Theory (b) 

Strong Collision and Bottleneck Models and (c) a Coupled Nearest-Neighbor 

Limit and Uncoupled Intermediate Levels Limits were also provided and compared 

with experiment. In order to explain the research fully, the resulting 

publications in J. Chem. Phys. are reproduced in the following Sections 3.1 -

3.4. 

In §3.1, the Exact Treatment is discussed together with the Strong 

Collision and Bottleneck Methods. 

In §3.2, the New Variational Principle is developed and applied. 

In §3.3, the Diffusional Treatment is presented. 

In §3.4, methods of Coupled Nearest-Neighbor and Uncoupled Intermediate 

Levels are presented and applied. 

Since the Termolecular Process (1) is the simplest type of three-body 

Chemical Process, it is essential to understand it in required depth, not only 

because of its great significance in general applications but also because it 

serves as a prototype for three-body reactions. In the following sections, 

attempt is made to provide an exhaustive understanding. 

Also a major review of Recombination Processes in General is included in 

Appendix A. 
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3.1 Exact Treatment, Strong Collision and Bottleneck Treatments. 



Termolecular recombination at low gas density: Strong collision, bottleneck, 
and exact treatments 

M. R. Flannery and E. J. Mansky 
School of Physics. Georgia Institute of Technology, Atlanta, Georgia 30332 

(Received 23 November 1987; accepted 24 December 1987) 

On introducing the probabilities for association as a function of internal separation R and 
internal energy E of the associating ( A-B) species the strong collision model is thoroughly 
investigated and compared, as a case study, with the exact treatment of termolcular ion-ion 
recombination at low gas densities. A bottleneck model is also investigated. Analytical 
expressions for the one way equilibrium energy-change rates at fixed R are provided in the 
Appendix. 

I. INTRODUCTION 	 at zero energy and level - S the rate (1.3) reduces to 4  

The theory of termolecular ion-ion recombination, 
a 

A + B M=AB M 	 (1.1) 
k 

between positive and negative atomic ions A and B in a low 
density gas thermal M is now well established.'" The distri-
bution n, (E,,t) per unit interval dE, of recombining pairs 
AB with internal energy E a time t is governed by the colli-
sional input-output Master equation'': 

d , E. 	dn 
— n,k.c.„t) = — 

at,-  

= 
 - i

. 
[n,v,f  - nfvfi ]dEf  

— D 

3 

	

= - 	J, (E„t), 
aE, 

where v11  is the frequency per unit interval dEf  for E,-.Er 
transitions by collisions between AB and M, where I, is the 
upward current in energy space past level E, and where - D 
is the energy of the lowest vibrational level of AB relative to 
the dissociation limit taken as zero energy. For dissociated 
pairs with E,>0, F, is the net flux per unit interval dE, of 
(contracting) AB pairs generated with energy E, at infinite 
internal separation R. For bound pairs with E, <0, F, is 
zero. The net rate for association is' 

R (t)  = r p N  
J- D 	dt 

= aN, (t)NE, (t) - kn .,(t), 	 (1.3) 

where P7 is the probability that E, pairs are collisionally 
connected to the product channel, i.e., have been stabilized 
against dissociative collisions with thermal M. The effective 
two-body rate constant for the association of A and B with 
(cm -3 ) concentrations NA (t ) and NE, ( t) is a (cm 3  ), 
and k (s ) is the frequency for dissociation of those tightly 
bound pairs of concentration n, ( t), which are considered to 
be fully associated with energies E, within a block .9' of low 
lying fully stabilized levels in a range - S>E,> - D within 
which the stabilization probability P .7 is calculated to be uni-
ty. When the quasi-steady-state (QSS) condition dn 1dt = 0 
is satisfied for pairs in a block g' of highly excited levels in 
the energy range 0>E> - S between the dissociation limit 

s dn 
R"(t) = f ( 
	

dE, 
- 	dt 

= f*.  F, dE, = - f " 	dE, J _ E dt 

= - J( - E,t) 	 (1.4) 
for a steady-state (an,/dt = 0) distribution of pairs in the 
block '' of fully dissociated states in the energy range 
O<E‹ over which the stabilization probability P vanish-
es. The rate ( 1.3 ) therefore reduces °  under QSS to the down-
ward current - J( - E,t) of pairs past energy level - E in 
bound block if. 

At low gas densities the expansion' s  

P f(E,)[— 	 (1.5a) 

-.7.13 f,(Earc (t) + Pf(E,)y,(t) 	(1.5b) 
permits separation of variables E, and tin the collisional part 
of Eq.( 1.2). Here yl , yy , and n are the various time-depen-
dent distributions of states in blocks ', (6', and .7 normal-
ized to their respective equilibrium values it,,NAB , and n,. 
For if states, P 7 andPf = 1 - P7 are the probabilities that 
state i is collisionally connected to the sink and to the 
source ce'. For states at low gas densities Pf, the collision 
survival probability is unity when equilibrium conditions in 
E, and R can be assumed in the collision part of Eq. (1.2). 
When Eq. (1.5) is inserted the collisional part of Eq. (1.2), 
then Eqs. (1.4) and (1.3) yield the expressions 4  

a/VA  = -j( - E) = 

dE, f (P; - P7)C,f dEf 	(1.6) 
— E 	_ D 

for the rate coefficients a and k in Eq. (1.1). The collision 
kernel C,f- is the collisional rate ( cm 3  s -  ) per unit ele-
ment dE, dEf  for E,-Ef  transitions and varies linearly with 
the gas density N. At low N, a is linear in N so that P s°  are 
required only to zero order in N. The net downward time-
dependent collisional current across arbitrary level - E in 
block if separates as 

 n, (E,,t) 	
f(E,)[ 	  

(t)N8  (0] 
NA N, 

n,(t)1 

—E 

4228 	J. Chem. Phys. 88 (7), 1 April 1988 
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- J( E,t) 	- j( - E)[N,(t)1 ■18(0 /17%1A Srg 

	

- ns (t)/ii r ] 	 (1.7) 

which under conditions of full thermodynamic equlibrium 
tends therefore to zero. 

° The multicorfisional stochastic aspect of the theory be-
comes apparent by correctly identifying the (time-indepen-
dent and density-independent) stabilization probability as 

PS(E,) = [f (n,v,;) P:f5  dEf 1/[f
—  n

i v if  dEf ] 
— D 	 D 

(1.8a) 

which is the fraction of all collisions which result in associ-

ation. Equation (1.8a) is consistent with the concept of a 
Markov element chain, and when rewritten in the form of an 
integral equation 

f
C,f  dEf  = f dEf  (1.8b) 

D — D 

is seen, after substituting Eq. ( 1.5b) in Eq. ( 1.2), to be 
equivalent to the assumption of a quasi-steady-state (QSS) 
E, distribution of pairs with energy within the highly excited 
block '. 

The rate (1.6) holds for E = 0 and E = S to give, re-
spectively, 

aNA NB  = - j(0) = dE, f cfP ., dEf  = kit, 

	

0 	- D 

(1.9) 

as the collisional rate from the fully dissociated states i to 
bound states f which are then collisionally stabilized with 
probability P7, and 

- s 	Jo. 

	

aNA NB  =j( - S) = 	dE, 	C,JP? dEf  = 
— D 	— S 

(1.10) 

as the collisional rate from the fully associated states i to 
levelsf which are then collisionally disrupted with probabil-
ity P I. Note that Eq. (1.9) or Eq. (1.6) is the QSS rate for 
association of a full equilibrium concentration NA N];  of dis-
sociated pairs into a perfectly absorbing sink ' maintained 
at zero population, i.e., yc  = 1 and y, = 0 in Eq. (1.5b). 
Similarly Eq. ( 1.10) is the QSS rate for dissociation which 
would result from an equilibrium population n, of associat-
ed .7 pairs being dissociated into states ce maintained at 
zero population, i.e., n = 0 and y. = 1 in Eq. ( 1.5b). 

In this paper two simplifications to the above exact 
treatment at low gas densities Nare investigated in detail. In 
the strong collision and bottleneck models, the probabilities 
P S  are preassigned without recourse to Eq. (1.8). The first 
model assumes that P7 for all bound pairs with internal sepa-
ration R is unity for R within the range O<R <R T, where R T  
is some preassigned radius, outside which P S  is zero. In this 
strong collision (or Thomson-style') model, bound pairs 
with R <R T  are therefore considered to be fully associated 
and those with R> R T  cannot be stabilized. In the bottleneck 
model, P .7 for bound pairs at all accessible R is unity for 
E, <E *, and is zero for E>E* and E is a (bound) energy 
level within - 2kT below the dissociation limit and past 
which the one-way equilibrium rate is a minimum which  

therefore acts as a bottleneck to the current. The level E * is 
in effect, a transition state. Each model therefore subdivid 
the two dimensional (R,E) space into regions of some phys 
ical signficance. The Thomson model has previously bee 
addressed via a Monte Carlo simulation method s  and incl 
ectly by an analytical approach' based on collisional deact 
vation of dissociated pairs to levels lower than various boun 
levels. A more exhaustive and detailed investigation is u 
dertaken here. The bottleneck model has also received so 
previous consideration. '  

Not only will these models elucidate interesting dyna 
ics underlying the recombination mechanism ( 1.1 ) at lo 
gas densities N, but subsequent modification to cover high 

gas densities proves quite valuable towards a study ( in pro 
ress) of the variation of the recombination rate a with g 
density N. 

II. THEORY 

The detailed investigation of the strong-collision m 
requires the generalization of the Master equation ( 1.2) 
(R,E) space and use of the frequencies v,f (R ) for E, - 
transitions per unit interval d R dEf  by collisions between 
and the pair AB atfixed internal separation R. The approp 
ate input-output Master equation satisfied by the distri 
tion n i  (R) of ( A-B) pairs per unit interval d R dE, 
been shown I°  to be the continuity equation 

, n,, 	dn 	a 
[R — n vi tt) — + — 	TAR)] Es  

dt 	dt

, 

 R 2  dR 

= 	[ne (R)v,f(R) - nf (R)vfi (R)ld 
V( R) 

- 
 f

S,r(R)dEf, 
V( R) 

where j ;1 (R) is the net outward transport current of p 
expanding at R, where Si/  is the net two level collisio 
absorption rate, and where V(R) is the energy of interac 
between A and B. Integration of Eq. (2.1) over all acce 
R yields the customary Master equation (1.2) for disso 
ed and bound states. 

A. Rates and stabilization probabilities 

The steady-state rate ( 1.4), with the aid of Eq. (2.1 

R"(0 = lin, [4irR 27- PAR T fldE, 
0 

=dE, f dR r 5, f(R)dEf 
 0 0 • KR) 

which either is the net inward flux of dissociated pairs 
tracting by transport across a sphere of infinite radius 
is the net collisional downflow across the dissociation 
at = 0. 

Now assume (a) that there is a finite radius R 
which all E, pairs with R>R T are in energy equilibri 
each R, i.e., 

n, (R) 
	- 

 n(R) 	n(R) 
, 

where 

CO 	 CO 

R>RT, 
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n(R) =n,(R)dE 	 (2.3b) 
v(R) 

is the concentration per unit interval d R of all pairs with 
separation R. Thus 5,f  is Eq. (2.2) vanishes for R>R T  to 
yield 

fa r  
R"(t) = f dE, 	dR f S, f (R)dEf 	(2.4) 

0 	 V(R) 

which is the steady-state rate of association of dissociated 
pairs with R<R r . 

Association of RT complex: At low gas densities N, the 
distribution n, (R) is independent of N so that the collision 
term Sy- remains linear in N. On the right-hand side of Eq. 
(2.1) tt, (R) is equilibrium with respect to R, so that 

n,(R,E,) 	ii,(R,E,) 
(2.5a) 

n,(E,) 

where the distribution per unit interval dE, is 

n,(E,) f n,(R)dR 
0 

and R, is the classical turning point of E, motion. The sepa-
ration ( 1.5) is then valid so that Eq. (2.4) yields 

J-RT 
aSr„Ar B  = f dE„ 	d R f C,f  (R )P -fs  dEf  = 

0 	 V(R) 
(2.6) 

for the rate of association of dissociated pairs in the complex 

of radius R T . The required one-way equilibrium rate 

C,f (R) = ii,.(R)v,f (R) = Cfi (R) (2.7) 

at each R is related to the R-averaged rate C, f  previously 
used" in Eq. (1.6) by 

d  = Fz i vu- = f C 	ii,(R)v,f (R)dR = f C,f (R)dR, ( 2.8) 
0 

where R if  is the lesser of the two outermost turning points R, 
and Rf associated with levels E, and Ef, of which one at least 
is bound. Detailed expressions for C,f  (R ) are presented in 
the Appendix. 

Strong collision rate: In addition to Eq. (2.3a), assume 
(b) that all bound states f with R <R 7- are fully stabilized, 
i.e., 

1): 7.= 1, R<R T, Ef<0 	 (2.9) 

so that the required strong collision rate is 

Rr 
a(R T )NA NB  = 	dE, f dR f C, f(R)clEf  (2.10) 

0 	0 	R )  
which is the one-way equilibrium rate that dissociated pairs 
with W I- are collisionally deexcited across the dissocia-
tion limit. The "complex" assumption (2.3a) is equivalent 
either to assigning in Eq. (2.2) zero probability P .; = 0 for 
R>R T  and Ef  <0, i.e., to the overall neglect of association or 
to inclusion in Eq. (2.4) of upward equilibrating transitions 
past E, = 0 for R>R T . The strong-collision assumption 
(2.9) is equivalent to the neglect in Eq. (2.4) of the rate 
rv r f(R )vfi  (R )dEf  for upward redissociation of pairs with 
R<R T . 

The physical basis to the two assumptions (2.3) and 
(2.9) can be illustrated by Fig. 1. Bound states at large R 

FIG. 1. Schematic basis for strong collisions within an assumed complex of 
radius R T . A-B relative motion in circular and highly elliptical (large R) 
orbits with speeds v and if before and after ion-neutral collision. 

arise from highly elliptical Coulomb orbits with low angular 
momenta where the possible velocity vectors for relative 
(A—B) motion lie within a narrowly focused region. Upon 
collision with the gas, the velocity vector is mainly deflected 
into directions outside this region so that the post-collision 
velocity vector cannot be consistent with bound states at 
large R. Collisional dissociation of these highly excited levels 
at large R is therefore most likely to occur, 8  and stabilization 

of bound levels f is not viable so that 13; (R>R r ) = 0 in 
keeping with assumption (2.3) underlying complex forma-
tion for association to proceed. 

For intermediate R, however, the post-collision velocity 
can be accomodated by many angular-momentum bound 
orbits, more final angular momentum levels are accessible at 
these R .--...e2/21E,l, the radius of the circular orbit, and the 
number of accessible orbits at a given R increase with in-
creasing binding. Collisional deexcitation of highly excited 
levels at smaller R therefore tends to occur and pairs with 
R <R T in all bound levels can be fully stabilized, in keeping 
with the strong-collision assumption (2.9). 

The averaged kernels (2.8) have been previously de-
rived for symmetrical resonance charge transfer,' hard-
sphere,' and polarization' binary collisions between either 
ion A or B and the gas M. The R-dependent one-way equilib-
rium kernels C,f (R) are not only required for this sudy but 
also for ongoing investigations of the nonlinear variation of 
a with gas density N. They are provided in the Appendix as a 
comprehensive package for present and future use and refer-
ence. 

The exact low density rate (1.6) and the strong-collision 
rate (2.10) reduce to a sum" of rates aA  and a n , each 
arising from A—M and B—M binary collisions, respectively, 
and aA  can be presented' -3.5 .9  as a universal function [cf. Eq. 
(A55) ] of the mass parameter 

MBMg  
a= 	 (2.11) 

MA (MA + MB + Mg ) 

where MA , MB , and Mg  are the masses of the reacting atom-

ic ions and gas atoms, respectively. 
Calculation of Eq. ( 1.6), the exact low density rate aE, 

(2.5b) 
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3.0 and of the variation of the strong collision rate ( 2.10) with 
R T  can now be performed. For the exact rate ( 1.6), highly 
accurate converged solutions Ps of the integral equation 
(1.6), discretized as in Ref. 3 into an equivalent set of 100 
algebraic equation, have.been obtained. Previous results" 
were based on 36 coupled equations at most. Convergence of 
aE  to within 0.5% is found to be much more rapid for inter-
mediate mass parameters a ( 1/3) than for small and large 
a which required 100 coupled equations for convergent 
rates.' 

In contrast to ion—atom association where the radius R T  
may, with some justification, be identified with the location 
of the centrifugal barrier, no such assignment for ion—ion 
recombination (without any centrifugal barrier) exists, al-
though Thomson' suggested R T. = 2e2/3kT where the rela-
tive kinetic energy (iIcT e2/R) is reduced to 3 kT upon 
collision. Hence bound pairs with Ef  = e2  (1/ R T — 1/ R)<0 
can be formed within RGR T . 

The variation with R T  of the ratio a(R T )/aE  for the 
recombination of equal-mass ions via symmetrical reso-
nance charge—transfer (CX), polarization (POL), and 
hard-sphere (HS) collisions with an equal-mass gas (a = 1/ 
3 ) is displayed in Fig. 2. The ratio is unity for R T  in the range 
(0.48-0.55) (e2/kT), in good agreement with Thomson's 
suggestion. The neglect in Eq. (2.6) of a positive contribu-
tion to association from possible collisional stabilization of 
those bound levels with R>R T ,TZ 0.5 (e/kT) is effectively 
offset by the neglect in Eq. (2.10) via Eq. (2.9) of a negative 
contribution arising from redissociation of those bound 
states with R <R T . 

The strong collision model is therefore capable of high 
accuracy provided RT can be preassigned; realistic assign-
ment to R T  for recombination being only feasible' after the 
exact treatment is performed! The radius R T , once assigned, 
may however be adopted in models under development for 
variation of a with gas density N. 

As R T  becomes large the rate (2.10) however tends rap-
idly to 

FIG. 2. R T variation of a(R T ), the strong-collision rate (2.10) normalized 
to a, the exact rate (1.6), for equal-mass components and model ion-
neutral interactions (POL: polarization; HS: hard sphere; CX: symmetrical 
resonance charge transfer). Arrows indicate where a (R 1 ) = a E for pot., 
and CX in units of R = / kT. 

8" 

a 
2.0- 

1.5 	" 

0 	1 	2 
	

3 
	

4 

(-E/kT) 

FIG. 3. One-way equilibrium rates a 5N  ( - E), Eq. (2.13), normalized 
aE , the exact rate (1.6), across energy level - E for model ion-neut 
interactions POL, HS, and CX. 

a(12,— 00)TV,31, = f dE, f D  
0 

	 dEf 	(2.1 

which is of course infinite owing to the divergence, as E, 
of the equilibrium density ni (E,)— 1 E1  1 — "exp( — Elk 
of Coulomb bound states per unit interval dE,. As R T  — 
the physical basis for adopting the one-way equilibrium r 
(2.10) becomes untenable since bound states with large 
are more readily redissociated (cf. Fig. 1). Upward co 
sions past the dissociation limit must therefore be inclu 
for large R T . The strong collision assumption is therefore 
longer justified for large R T . 

This divergence can be eliminated not only by mainta 
ing R T  finite but also by considering the one-way equili 
um rate 

aBN E ) TVA IVB = f 	
E 

	

dE, 
f - 

Cif  dEf 	(2. 
- E 	- D 

across any bound level — E in block if. Figure 3 illustr 
that this rate decreases from the infinite limit (2.12) 
E = 0 to a pronounced minimum at an energy E* = 
below the dissociation limit. Since Eq. (2.13) is an up 
limit to the exact rate by taking PftE,> — E) 
1); (Ef  < — E) within Eq. (1.6) to be zero and unity, res 
tively, then its minimum value a BN  ( — E C)  is the least 
per limit and is the one-way rate past the effective bottlen 
to the curent at — E* which, in effect, is a transition st 
Although this bottleneck model (2.13) is physically di 
ent from the previous strong collision model (2.10), 
worth noting that E* = 2kT corresponds to a turning p 
R, of 1(e 2/kT) for which the strong collision model is e 
tively exact (cf. Fig. 2). Figure 3 shows that the bottle 
result is however a factor of 1.9-2.5 times larger than 
exact rate aE . In contrast to the strong-collision m 
( 2.10), Eq. (2.13) is always an upper limit since in ord 
obtain the bottleneck result (2.13) from Eq. (1.6), th 

2.5- 
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glected terms cannot cancel since they always remain nega-
tive. This search for the least upper limit to the one-way 
equilibrium rate across transition state E * is identical in 
principle to the variational phase-space theory of Keck" as 
applied to termolecular ion-ion recombination. The strong 
collision (Fig. 2) and bottleneck pictures ( Fig. 3) have been 
previously displayed in a recent review ' 2 ; the present CX 
results in Fig. 2 correct those in Ref. 12. 

B. Association probabilities 

To obtain these, the low density rate ( 2.6) for associ-
ation of dissociated pairs in the R T complex may also be 
expressed with the aid of Eq. (2.2) as 

a(R T )ICIA TVB  = 	[47R r (R T )]P"(R T )dE„ 

(2.14) 

the net inward transport rate across the R T sphere where 

P;4 (R T ) = 	(R T.) — n,+  (RT) ]/F1 ,-  (RT) (2.15) 

now specifies the desired probability that fully dissociated E, 
pairs which are originally contracting at RT will associate 
within the spherical complex of radius R T  . The distribution 
of dissociated pairs contracting at R T  is (R T  ), the equi-
librium value characteristic of low gas densities N, and is a 
nonequilibrium value n,+ (R T  ) for pairs expanding at R T . 
The one-way incident current at temperature T and perti- 

nent to low Nis the one-way equilibrium current 

7,- (R)dE, = nr (R)v,(R)dE, = Iii,(R)v,(R)dE, (2.16) 

= 1 8kT ) 112 7; 
IVA AB [ 1  — li(R)/Ed 

4 irmA. 

X (Ei /knexp( — E,/kT)d(E,/kT), (2.17) 

where M AB is the reduced mass of the pair ( A-B) and where 
ii, is is,+ + hr. By direct comparison of Eqs. (2.14) and 
(2.16) the exact association probability of fully dissociated 
pairs within R<R T at low gas densities is 

PnE,>0,R T ) = [ITRI-72,(R 7 )V i (R 7 )] -1  

X  f
RT 

dR f C,f (R)11-(R)dE f  
0 	V(R) 

(2.18) 

which increases linearly with gas density N via Cif . The sta-
bilization probabilities P7 which are solutions of Eq. (1.8) 
do not vary with N. As R T  CO Eq. (2.18) in Eq. (2.14) 
yields 

a,(E,>0,R T ) = IrR 2Tili(RT)V,(RT)P '4E(E,›OpRT), 
(2.19) 

the rate per unit interval dE, for association of dissociated E, 
pairs with R<R T. As R T —. OP, Eq. (2.19) saturates to the 
exact partial rate. 

The association rate per unit dE, for the highly excited 
bound E, pairs in block 6' of the complex of radius R T is 

a,(E, <O,R T ) = [irR 2Th,(RT)c,(RT)]l,'(E, <O,R T )  

= 
RT 

dR 0 V( R) 
[f 	C if(R)P;dEf  

—PSI 	CV(R)dEfl . 	(2.20) 
V( R ) 

As R T 	, the outermost turning point of E, motion where 
1E, I = I V(R,) I,  this rate (2.20) vanishes owing to the QSS 
requirement (1.8) of zero net gain of all E, pairs with R<R, 
in block a condition on which calculation of the stabiliza-
tion probabilities P ;5.  is based. 

Strong collision and Thomson probabilities: The corre-
sponding strong-collision association probability PF.  is giv-
en by Eq. (2.18) with 13; = 1, i.e., by the probability 

P7T(E,>0,12 7.) = [irRh i (R T )v,(R T )] -1  

x f dR f C,f(R)dEf  (2.21) 
RT 

0 	V(R) 

for direct collisional formation of bound levels from a disso-
ciated state of energy E,. It overestimates the exact associ-
ation probability by 

PR D =PSr(R r) — P'i4E(RT) 

= 	i(E 7) 1)  I(RT)1 — I  

Xfr dR f CT(R)P dEf 	(2.22) 
0 	V( R) 

which in fact is the probability P f")  for subsequent redisso- 
ciation of bound pairs formed with R<R, and which is in- 
herently neglected by the strong-collision model. On defin- 
ing the free path length's  A, (R) for continuum-bound 
transitions in A-M collisions during the (A-B) trajectory 
by 

2 , 	(R)/v,] 

= [fV(R)  

C (R)dE
f
1/[ii (R)v (R)] (2.23) 

then the strong-collision probability (2.21) is redefined as in 

IrR 2T [l V(RT)/ E 	71.  (RT) 

Rr 
(2.24) =  

The corresponding strong collision rate (2.14) is now 

aT (R T ) =J G(E,)dE, 

X 
 f

V,[1 	V(R)/E,)]' 12  dR/.1,(R), 
0 -  

(2.25) 

where the (Boltzmann) distribution of internal energies 
(E,>0) is 

G(E,)dE, 	(E,/kT) I12  exp( — E,/kT)d(E,/kT). 

(2.26) 

When 2, is assumed to be 2, independent of R and E, , as 
for hard-sphere collisions, and when V(R) is neglected, Eq. 
(2.24) yields 

13 1-(R,-) =112,-/A. 	 (2.27) 

the Thomson probability' for (A-M) collisions during recti- 
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linear A-B relative motion within R <R r. Also Eq. ( 2.25 ) 
yields 

ar(R T ) =i1TR ,T (ubt) 	 (2.28) 

the Thomson rate in terms of Tr, the mean ( A-B) relative 
speed ( 8k T /irM:s  ) 1 / 2. All of the rates calculated here and 
previously" are however normalized (cf. Appendix) to 

a  _ 	e2  y 3kT y 2  

3 A k 3 kTl MA B ) 

where the root-mean-square speed rather than u has been 
customarily used, and where i(e2/kT) is assigned for R T . 
Unless otherwise noted, all of the following calculations in 
the following sections ( II C-II E) refer to symmetrical reso-
nance charge-transfer ion-neutral collisions involving 
equal-mass species MA = M, in an equal mass gas. 

C. Calculated stabilization and disruption probabilities, 
and partial rates 

The stabilization and disruption probabilities PI and 
Pf = 1 — 11 are the stochastic probabilities that ( A-B) 
pairs initially in a bound level Ef  of block £ , will either 
become fully associated or disrupted by multicollisions with 
the thermal gas. For a quasi-steady-state distribution of 
bound pairs in block , Pf are numerical solutions of the 
integral equation ( 1.8) and are illustrated in Fig. 4. The 
probabilities P. increase from zero at the dissociation limit 
to near unity for binding energy IE11)5kT. Note that 1), 

Pi? for Ef  — 2kT, the bottleneck energy Es (cf. 
Fig. 3) based on the assumption in Eq. (2.13) that Pf is zero 
for E>E • and unity for E,< — E*. The probabilities Pf. 
= (1 — Pp for multistep collisional disruption of these 
pairs decrease fairly rapidly with binding energy IE I and are 
negligible for binding IE I >5 kT. Since block ,7 of fully sta-
bilized levels is characterized by unitll, Fig. 4 suggests that 
the block 9' is composed of all levels with binding 10k T. 
Since the deexcitation frequency v u  from the continuum di-
rectly to the strongly bound levels with Ef...5 — 10kT of 
block ,/ is vanishingly small, association given by Eq. ( 1.9) 
therefore occurs primarily via multistep transitions to the 
block Ef of levels Ef  within the range 0> Ef  > — 10k T, which 
are then connected stochastically with probabilitylI to the 
fully associated block .99  via a Markov-element chain.' 
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FIG. 4. Stabilization and disruption probabilities, solutions of Eq. (1.8) for 
equal mass components. 

FIG. 5. Partial rates (2.30a) per final bound level — Ef  normalized to tz 
the Thomson rate (2.29). 

Figure 5 for the partial rate 

a (Ef  ) .-.ATA TVB  = 	
. 

Cu. dE,) P'fi(Ef  ) 	(2.3 
0 

normalized to ZI T , which is the contribution per unit norm 
ized interval (dEf /kT) from level Ef  to the full associati 
rate of all dissociated pairs, illustrates that levels in gene 
within kT of the dissociation limit, are mainly responsi 
for the association process. This is less so however for 
since deactivation by symmetrical resonance charge trans 
involves larger energy reductions` -' than for the case of 
larization and hard-sphere collisions. The very rapid 
crease of a(Ef ) from zero at Ef  = 0, not shown in Fig. 
and subsequent decrease arises from the combination of 
monotonic increase from zero of the stabilization probab 
ties 13.7 and the rapid decrease from infinity of Cf , the co 
sional rate from the continuum to a bound level f 

Figure 6 for the E, -partial contribution 

ci(E,)TV A TV, = 	CifP .; dEf  
D 	

(2.3 

to the exact rate for association of dissociated E, pairs 
unit interval (dE,/kT) illustrates a monotonic increas 
E, > 0 approaches the dissociated limit at zero energy. 

FIG. 6. Partial rate (2.30b) per initial continuum state E, normal' 
a r the Thomson rate ( 2.29). 

(2.29) 
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FIG. 7. Partial strong continuum rate a(R r;E,), Eq. (2.31), per initial 
continuum state E„ normalized to Ei r . the Thomson rate (2.29). Exact 
normalized partial rates are indicated by straight lines. E,/kT= 0,0.26, 

0.529, 0.734, and 1.646 ordered sequentially from top to bottom. 

is expected since Cif  for a given bound level Et- increases 
quite rapidly as the energy difference ( E, - Ef ) is reduced. 
The full rate (1.9) is the E, -integrated area of Fig. 6. 

Variations of the partial E, contributions 

FIG. 8. (a),(b) Probabilities P si. , 13 " E , and P" for strong collisions 
(2.21), association (2.18), and redissociation (2.22) of ( A-B) pairs with 
energy E= 0. Probabilities are normalized to the Thomson probability PT, 
Eq. (2.27) and are presented as a function of R T  (normalized to R.= e2/ 
kT). 

R T  
a(R T ;E,).iir A /T[8  =dR 	C,f(R)dEf  (2.31) 

	

0 	v(R) 
to the strong-collision rate (2.10) with R T  are displayed in 
Fig. 7. They intersect the corresponding exact partial rates 
(2.31a), represented as straight lines at RT, in the range 
0.5R. <R T  <0. 6R , a result consistent with the E, -integrated 
rates of Fig. 2 where R T  . 

D. R variation of calculated probabilities for multistep 
association 

Figure 8 illustrates variation with R T  of P;', the exact 
probibility (2.18) for multistep association via bound levels 
of E, = 0 pairs with R<R T, and of Pr", the corresponding 
strong-collision probability (2.21). The probabilities are 
normalized to PT, the Thomson probability (2.27). Also 
shown [Fig. 8(a) ] is P i,'D/PT , the normalized probability 
(2.22) for redissociation of the bound pairs so formed with 
R <R T. Figure 8(a) emphasizes that association dominates 
redissociation within smaller RT 4(cA/kt)-mR, so that the 
exact and strong probabilities P"E  and PP., respectively, are 
equal. Figure 8( b ) emphasizes that pairs within larger 
RT) R e  are mainly redissociated. The strong-collision 
probability P fr  accurately represents either P",1E, the associ-
ation probability at small RT, or Pp, the redissociation 
probability at larger R T , thereby providing the actual phys-
ical basis for Fig. 1. 

Within radius RT -0.45R1 , there is as much associ-
ation as redissociation [Fig. 8(a) ] so that the strong rate is 
twice the exact rate for association of pairs with R<0. 45R.• 
The contribution of pairs with R>0.45R, to the exact rate is 
however equal to the contribution from R<0.45R„ so that 
the exact rate form all R and the strong rate from R <0.45R, 
are fortuitously equal. This balance is the essential basis for 
agreement with the strong-collision model as previously il-
lustrated by Figs. 2 and 7. Figure 8(a) also suggests that the 
R T  variation of the strong collision probability (2.21) is rep-
resented fairly well by PI, the Thomson result (2.27), over 
the region R<R, important to association, although the 
magnitude is overestimated by a factor of :5 2.5. 

As the energy E, of the dissociated pairs increases from 
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FIG. 9. As in Fig. 8 but for various continuum energies (E /kT = 0, 0.529, 
1.09, 1.56, and 4.7 ordered sequentially from top to bottom). 
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FIG. 11. R dependence of the net flux (Fa  - F.) downward across vari 
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FIG. 10. R dependence of downward Fa  and upward F.:, normalized flux, 
Eqs. (2.32) and (2.33), upper and lower curves of each set, across various 
continuum energies [E/kT= 0, 0.529, 1.09, 1.56, and 4.7, (a)-(e), re-
spectively] and across various bound energies [ - E / kT = 0, 0.529, 1.09, 
1.56, and 4.7, ( a )-( e ), respectively] in (b). 

zero, Fig. 9 shows that the probabilities for association of 
these pairs and for subsequent redissociation decreases mon-
otonically with E, and that the R, region over which associ-
ation exceeds redissociation becomes somewhat smaller. As 
before, the strong collision probability ./3.7, the sum (P 4E  
+ P ','°) of each pair of curves, tends to P',4E  at small R T., to 

P i' at large R T . The sum is fairly constant for the range 
0.2R, <R T <R e , as in Fig. 8(a). 

E. (R,E) variation of calculated flux and rates 

In Figs. 10( a) and 10( b) are shown the variation with R 
of the downward differential flux (dF = FdR), 

Fd (R;E) = 4irR f (1 — P;')dE, f C, f (R)dEf  
V(R) 

(2.32) 

per unit interval dR across various continuum [Fig. 10(a) ] 
and bound [Fig. 10 ( b) ] energy levels E, and of the corre-
sponding upward flux 

F,,(R;E) = 417-R 2  f dE, 	(1 — P;)Cfl (R)dEf  
E 	V(R) 

(2.33) 

with both normalized to the Thomson rate ( 2.29). For sm 
R<0.3R e , Fd  increases more rapidly from zero and rema 
greater for all R than F. which eventually tends at large R 
Fd from below. This limiting behavior at small and large 
also elucidate the physical basis for the separate R regions 
Fig. 1. For bound levels [Fig. 10( b) ], both Fd and F. acr 
state (R,E) increase from zero to a maximum and then 
crease as expected to zero at the turning points associa 
with energy E. 

Variation with R in Fig. 11 of F(R ), the net differen 
flux (Fd  — F.) across both bound and continuum ene 
levels E exhibits a peak at roughly the same R — (0.2-0.3) 
for all E. As E decreases through the continuum the fl 
and R-integrated flux, j',7F(R )dR, increases. For bound 
the net flux increases and then decreases to zero at the cla 
cal turning points R, = e2/IE I. The net R-integrated 
across the highly excited bound levels remains constant, i 
the area under each of the bound curves remains constan 
accord with the QSS condition [dn,(t)/dt = 0] in block 
so that the flux becomes constricted into more restricte 
space as E decreases through the bound levels. The result 
increase exhibited in Fig. 11 of the net differential flux a 

decreases is therefore expected. The E variation of the 
malized R-integrated net flux 

If - [Fd (R;E) — F,,(R;E)]dR, E>0 
F(E) = °, 

To 
(2 

is illustrated in Fig. 12. That F(Ec0) is constant si 

reflects the QSS condition or constant flux through the h 
ly excited block e. 

Figure 13 illustrates the variation with R7- of a, 
exact partial rates (2.19) and (2.20) for the associatio 
dissociated pairs (E;  >0) and of highly excited bound 
(E1  < 0), respectively, within the sphere of radius R T . 
former rate increases with R T  and saturates fairly rapidl 
large RT to the exact rate for association which, in ord 

[Fd (R;E) — F.(R;E)]dR, E<C) 
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FIG. 12. Energy dependence of exact current. Eq. (2.34), normalized to 
aT , for the association of equal mass species under charge—transfer ion—
neutral collisions. Exact rate is the constant current across bound levels. 

maintain a steady-state (6" block, is the rate of generation of 
net inward E, pairs with infinite separation. 

The rates that bound E, pairs are lost also increase with 
RT due to continual downwards output, but reach a maxi-
mum when the upward input from other levels becomes 
competitive, and then decrease as a result to zero at the clas-
sical point R, of classical motion. There is a net loss of bound 
E, pairs with small R and a net gain of pairs with larger 
R<R, so that the R-integrated distribution (2.5b) remains 
constant in time. The zero rate at the apocenter R i  in Fig. 13 
reflects the QSS condition ( 1.8) in Eq. ( 2.20) for no net loss 
or gain of R-integrated bound E, pairs in block W. 

The rate a(R) of volume recombination within a sphere 
of radius R, the rates of Fig. 13 integrated over EA is given 
in Fig. 14 as a function of R. It is worth noting that 60% of 
the exact rate a E  = a(R— 00) is achieved within the sphere 
of the natural (Onsager) radius R e  = e2/kT as designated 
by the arrows. 

III. MASS EFFECT IN STRONG-COLLISION MODEL 

Figures 2 and 7 illustrate the ratio of the strong collision 
result (2.10) to the exact result aE  for equal mass species 

(R / Rj 

FIG. 14. Rate that fully dissociated pairs (with a Maxwellian energy distri-
bution) recombine within a sphere of radius R. The exact rate is a E . 

recombining in an equal mass gas, i.e., a, the mass parameter 
(2.11), is (1/3 ). In Fig. 15 is displayed variation of the same 
ratio over the full range of a. Small a 10' implies heavy 
particle recombination in a vanishingly light gas, while elec-
tron—ion recombination in a normal gas is characterized by 
large a 103. It is noted that the radius R It, where a(R T ) 
= aE  increases from —0.1R, to —0.5R, as the parameter a 

increases to unity, and then decreases back again as the pa-
rameter a further increases. For greatly mismatched species, 

i.e., in the limits of small and large a the energy-change colli-
sion dynamics is weak, and vanishingly small energy 
changes are involved particularly for deactivating transi-
tions across the dissociation limit at E, = 0. The stabiliza-
tion probability 11- in Eq. (2.6) and Fig. 4 is therefore of 
prime significance. To invoke the strong-collision assump-
tion (2.9) for these bound levels close to the dissociation 
limit and important at small and large a is therefore without 
validity. Although some physical significance can be at-
tached to R , where a(R T ) and a, are equal, for intermedi-
ate a 1, as previously discussed in Sec. II, no such signifi-
cance exists in the limits of small and large a. The•essential 
reason why R —0.1R, becomes unacceptably small at 

FIG. 13. Normalized rate equations (2.19) and (2.20) that pairs in contin-
uum and bound energy levels E recombine within a sphere of radius R. 

FIG. 15. Mass effect in strong-collision model: R r variation of the strong-
collision rate (2.31) normalized to the exact rate ac , Eq. ( 1.6), for recom-
bination of systems with various mass parameters a, Eq. (2.11). 
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these limits is that small R I- effectively (numerically) off-
sets the large addition to the inner integral of Eq. (2.10) 
entailed by the strong collision assumption (P; = 1) in Eq. 
(2.6). The smaller exact values of P .; (cf. Fig. 4) are more 
appropriate to the impdftant levels in the vicinity of the dis-
sociation limit for large and small a. 

IV. RECOMMENDED LOW-DENSITY TERMOLECULAR 
RATES 

Due to the long-range Coulombic attraction and to the 
use of shorter-range ion-neutral interactions [ charge-trans-
fer (CX), polarization ( POL ), and hard sphere (HS) ] , 

rates for the termolecular ion-ion recombination, 
A+ + 13+ + M-AB + M 	 (4.1) 

between general atomic species in a general atomic gas may 
be characterized' by a universal function of the mass param-
eter (2.11) and of the gas temperature T [cf. Eqs. ( A40)- 
( A55) I. This universality does not extend to ion-atom asso-
ciation which, due to the closer interactions involves, de-
mands individual calculations for specific systems. As pre-
viously mentioned, rates (1.6) or (1.9) or (1.10) have been 
obtained numerically from Eq. ( A55 ) via the highly accu-
rate numerical solutions P; to the integral equation ( 1.8) for 
the stabilization probabilities. Converged probabilities for 

small and large mass parameters a in particular were 
tained only when the integral equation ( 1.8b ) was disc 
tized into 100 algebraic equations via the efficient proced 
of Ref. 3. Previous results' adopted 36 equations at m 

Recommended values of the ratio" 

	

g(a) = (MA/MAB)[a (EA) (a , n/ar(Til, 	(4 

where ak) is the exact numerical rate ( A55a) originat 
from (i - M) collisions alone, are presented at c 
spaced a in Table I. The exact low density rate can be re 
sented to a high degree of accuracy by 9  

a = ct) + a(EB). 

Although the partial rates al!)  are tabulated here to 
significant figures, the recombination rule (4.3) as previ 
ly tested was then shown to be accurate to three figur 
best or two figures at worst. The test however relies o 
accuracy of the solutions to the integral equations (1 
with Cif  taken as C,CP ) ,C,T )  and [C;p )  + C w 
C ,(i-A) . (13)  is the one-way equlibrium rate which results 
individual A-M and B-M collisions; respectively. Sinc 
present converged probabilities PS have been determin 
a numerical procedure' more accurate and efficient 
that' previously used for the test, the accuracy of rule 
is being updated. 

TABLE I. Normalized partial rates 10 (M A  /MA. ) ( 	) for termolecular recombination A+ B - 

+ M- AB + M as a function of mass parameter a = M A  MB  /MA  (MA + MB + Mg ) for various interactions 
(CX: symmetrical resonance charge transfer; HS: hard sphere; POL: polarization attraction) in collision 
between A and gas atoms of mass 

a CX' HS°  POO a HS°  POO 

0.0010 1.291 1.278 1.029 1.5000 9.452 6.751 
0.0020 1.816 1.818 1.472 2.0000 8.593 6.044 
0.0030 2.208 2.221 1.800 2.5000 7.877 5.472 
0.0040 2.530 2.554 2.071 3.0000 7.276 5.003 
0.0050 2.807 2.841 2.304 3.5000 6.766 4.611 
0.0060 3.053 3.098 2.512 4.0000 6.328 4.280 
0.0070 3.274 3.329 2.699 4.5000 5.947 3.994 
0.0080 3.476 3.542 2.870 5.0000 5.613 3.746 
0.0090 3.662 3.739 3.029 5.5000 5.317 3.529 
0.0100 3.835 3.923 3.177 6.0000 5.053 3.336 
0.0200 5.115 5.313 4.288 6.5000 4.815 3.164 
0.0300 5.959 6.264 5.039 7.0000 4.601 3.010 
0.0400 6.581 6.986 5.603 7.5000 4.406 2.871 
0.0500 7.066 7.565 6.049 8.0000 4.228 2.744 
0.0600 7.456 8.042 6.414 8.5000 4.065 2.629 
0.0700 7.778 8.444 6.719 9.0000 3.914 2.523 
0.0800 8.047 8.789 6.976 9.5000 3.775 2.426 
0.0900 8.276 9.086 7.197 10.0000 3.646 2:336 
0.1000 8.471 9.347 7.387 12.0000 3.212 2.036 
0.2000 9.459 1.078, + 8.377 14.0000 2.875 1.806 
0.3000 9.709 1.127, + 1 8.644 16.0000 2.604 1.624 
0.3333 9.727 1.134, + 1 8.666 18.0000 2.382 1.476 
0.4000 9.709 1.140, + 8.652 20.0000 2.196 1.353 
0.5000 9.600 1.136, + 1 8.547 50.0000 1.029 6.064, - 1 
0.6000 9.446 1.124, + 1 8.389 100.0000 5.535, - 1 3.177, - 1 
0.7000 9.269 1.107, + 1 8.206 500.0000 1.195, - 1 6.582, - 2 
0.8000 9.045 1.087, + 1 8.013 1000.0000 6.029, - 2 3.253, - 2 
0.9000 8.860 1.067, + 1 7.818 
1.0000 8.678' 1.046, + 1 7.625 

' In CX small a implies MB <0‘A = Mg; a = I implies MB >MA = Mg .  

b  In HS and POL small a implies recombination in a vanishingly light gas and large a ( =10 3 ) implies electron-
ion recombination in a normal mass gas. 
For CX, the maximum value of a is 0.998. 
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The partial rates (4.2) are very insensitive to a realisti 
choice of either the level - S ( - l0kT), below which the 
stabilization probability P -7 is calculated as unity, or the low-
est level - D since the one-way coupling Ci  connecting the 
dissociated states i to any bound level f decreases extremely 
rapidly and is quite negligible for states with binding ener-
gies D as low as 30 kT, which is much smaller, in general, 
than dissociation energies of normal molecules. 

The temperature dependence of a (E! )  follows that of U T , 
the Thomson rate (A40) with Eqs. ( A41 )-( A44). Results 
of a recent diffusional treatment' are in close agreement with 
those of Table I. 

In conclusion, via an exhaustive investigation of the 
strong-collision and bottleneck methods of the termolecular 
process (4.1), interesting underlying physics and dynamics 
of the basic process have been uncovered and studied. High-
ly accurate rates have been presented (Table I) for future 
use. 
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APPENDIX: ONE-WAY EQUILIBRIUM COLLISION 
KERNELS Cff(R) 

The one-way equilibrium rate per unit interval 
d R dE, dEf  for E1 -Ef  transitions in the microscopic pro-
cess, 

(A-B)Eot + M •-• ( A-B )Ef  +M 	 (Al) 

at specified internal separation R of the pair AB is 

C„f (R) = it i (R)v,f (R) = it,[v;1(R) + vV ) (R)]. 
(A2) 

The equilibrium distribution I t,(R) per unit interval d R of 
(A-B) pairs with internal energy E„ internal kinetic energy 
Tu, and reduced mass M12 is 

NAND 

2( 

kT 
T12) 1/2 

ir1/2 	

exp( 
E,/ kr)d(T,,/ kr) 	(A3) 

at temperature 7'. The frequency Iv per unit interval dEi. for 
E, -Er  transitions is assumed in Eq. (A2) to be the sum i> 
+q) of the separate contributions vfi )  that arise from (A-
M), j = 1, and (B-M), j = 2, binary collisions at fixed R. 
The species A, B, and M denoted by indices 1, 2, and 3, 
respectively, have masses M„ reduced masses Mei  and veloc-
ities v, and NI before and after the (1-3) elastic collision with 
differential cross section al,g,0) which changes the (1-3) 
relative velocity from g along the polar axis to g' ( 0,0). 
Hence the (1-3) energy-change collision frequency is 

vV ) ( R)dEf  =[f No(v 3 )dv 3  f gu(g,O)d(cos 0)10, 
4-  

(A4) 

where the integration is over the (v 3,0) region of velocity 
space accessible to E,-Ef  transitions. The velocity distribu- 
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tion of gas species with concentration N (cm -3 ) over the 
kinetic energy 

T3 = 	VI 	 (A5) 

of AB-M relative motion is the Maxwellian 

No ( v3 )dv3  = NG(T3 )dT3 F-417.  d( cos 03 )03 1, 1 

where the distribution 

G(T3 )dT3  =— (T3/ kr)" 2  exp( - T3/ kT)d(T,/kT) 

(A7) 

represents thermodynamic equilibrium at temperature T 
between 3 and the (1-2) center of mass." The reduced mass 
of the AB-M system is 

M, = (M, + M2)M3/ (Mt + M2 + M3) 

= aM = (1 + a)M", 	 (A8) 

where a convenient mass parameter' for (1-3) collisions is 

a = M2M3/MI(M1 + + M3). 	 (A9) 

The (1-2) center of mass is at rest before the (1-3) 
collision which changes both the kinetic energy 

T12 = /M12(TI l'2 72  

= IML4 ; M = ( 1 + M,/M2 ) 	(A10) 

of (1-2) relative motion to T ; 2  and the internal energy 

E, = IMO V(R) 	 (All) 

at a fixed R by 

= T 12 — T/2 = •f12[( Ti v2) 2  — (v, — V2 ) 2 ] •  

(Al2) 

The (1-3) relative momentum is changed by 

P = MI3  (g' - g) = Mi (vc - v i ) = M3 (v3  - v; ) 
(A13) 

and the (1-3) relative energy Tu remains Wu g2 . On fol-
lowing from analysis in Ref. 15 it can be shown that the 
Jacobian J2 in the angle-kinetic energy transformation 

d( cos 03 )0 = /2 dT, 3  dT ;2 	 (A14) 

is given by 

J2( 04 Trit 7.3;E) 

(1 +a) 2  
[( T, 2 T3 T,3 ) 

2a 
X ( T12  + T3 Ti3)(A +  AMA 	)1 -112 . 

(A15) 

The scattering ib region accessible at fixed T13, T3, and e is 
the range /2-  <cos gr<p + , with limits 

= (1 	r 2)1I2 (1 	r.2f)II2 	r ,r p 	 (A16) 

where 

- r,3)(T, 3 - T 13)1/ 

[4T13 (T, 2  + T3 TI3)] 	 (A17a) 

and 

No. 7, 1 April 1988 

(A6) 



M. R. Flannery and E. J. Mansky: Termolecular recombination 
	

423 

11= [(T — T")(T, 3  —T C3- )]/ 

	

[ 47'13( Ti2 ± T3 — T13) ]• 
	 (A17b) 

The accessible 7; 3 region accessible for fixed 7'3  and c is 
the range 

T = max( T I-; ;17  ) <T13 6min(T 	,-1;) = T 
(A18) 

which ensures real /4 1  , where 

T (T3;T12) = (T O_ T  all2T{2)2 / ( + a) (A19a) 

is a function of the initial kinetic energies, and where 

t(T;;Ti2) = (T3/2 	 2)2/( I ± a)  

(A19b) 

and 3 kinetic energies is the same function of the final (1-2) 

(A20)  T 12 = T12 

(A21)  T; = T3 — e. 

Since 

(R) No(T3 )dT3  
T 1 22 	Tj/2  

	

4 (NANO exp — (E /kT)d(E /kT), 	(A22) 
22- ( kT) 2  

where 

E = Es  + T3  =(T12+T3 ) V(R) =T + V(R) 
(A23) 

then the contribution to the one-way equilibrium rate (A2) 
from (1-3) collisions is 

CT(R) = ri,(R)4 ) (R) = 
 (1  ± 0) 2 ( 2  )1/2 

	

a 	M, 3 / 

(RANBN) 
 J m 

exp( — E /knd(E /kn 
r(kT) 2  

X  f
T• 

(7.  — T13) -1/2dT13 f ET(T1344) 
T - 	 P 

X[(P 4.  AMY 	)1 -1/ 2  Citit 	(A24) 

where T is E — V(R), as defined in Eq. (A23), and where 

Eo  = min(E„Ef ) 	 (A25) 

ensures real T3 and T; in Eq. (A18). 
Case I: When the differential cross section a is a func-

tion only of Tu as for spiralling ion—neutral collisions under 
pure polarization attraction when 

cr(T, 34) = 	 
( am e2 )1/2 

87•13 
	 (A26) 

where a m  is the polarizability of M, then 
orner )1/2 

C (R) — 
M13 

X 

	

(1 + a)2(TVAISroN) 	
exp 

X [sin — I  ( 	

( — E/k7) 
a(kT) 2 	E„ 

T + y 	sin — ' 
2  _ 	

( 7' 

1/21 

X d(E /kT), 	 (A27)  

where T is Tu + T3 as in Eq. (A23). Integration over 
yields an expression identical to that of Bates and Mendai 

Case II: For hard sphere collisions when 

a(T13,0) —41rao 	 (A28 

then2  

C 1dP(R ) 
a°  (1Cr  A ITIDN)  f°' 

exp( — E/kr) 
(23113 )" 2 (kT) 2  

X[(T — T — )" 2  — (T— T + ) 112 ]d(E /kT) 

(A2 

Case III. When a(T13,0) is a function only of mome 
turn change P as for the Born approximation or for pu 
Coulombic attraction when 

a(T ,3,0) = 4e4M;3 / P4  = a(P) 

and by finding the Jacobean J3 in 

d(cos 83 ) c/(0 d(cos 	= J3 dT 12 dP dT13 
then from previous analysis," it can be shown that 

(R) = 2 1 / 2 (1 + a)  (NA 1CraN)  
a 1/2 .41 	

( kr) 2 

X
l 
e xp( — E /kT)d(E /kT) 	a(P)d 

(A 

where the limits to the momentum change P for spec' 
re, vi' 1 , and c are 

P (v,,v 3;e) = max[M Iv; — 	—u3 1] (A3 

and 

P +  (v i ,v 3;e) = min[M(vc + a i ),M,(v; + v3 ) ]. 
(A3 

Case IV. Symmetrical resonance charge—transfer (1 
collisions 

X' + X—X + X+ 	 (A 

between an ion and its parent gas simply interchange v, 
v3. At thermal energies the integral cross section a x is es 
tially independent of relative speed g. It can then be sh 
that' 

CpR) — [(1 + c) /c]312  (NA TV o N)a. "  
( 2TrM 12 ) 1  /2 	( kn3/ 2 

X exp
[ 	( 1 + c) (E, + Ed .! 

(1 + 2c) 	kT 

X exp 
[ V(R)/ 	kT if 

(2c + 1) e- 
G(E)dE, 

where 

c = /M, 

and where the fraction of Maxwell particles with ener 
in the range E <E<E + with limits 

E t  = [c(1 + c)/ (1 + 2c)1[TT ± T ;1/2 ] 2  ( 
is 

(A3 

(A3 
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rE" 
G(E)dE = [erfc(E/kT)" 

2
E' 

(E lkn in  exp( — E /kr) I • 
E 

. 
(A37) 

The above rates (A24), (A27), (A29), (A32), and (A35) 
satisfy the detailed balance relation Cif  (R ) = Cfi (R), and R 
integration of Eqs. (A27), (A29), and (A35) yields pre-
vious expressions.' 

Computational equilibrium rotes: C, f  may be conve-
niently expressed for computational purposes in terms of 
dimensionless units, 

= — Ei/kT, = — Ef/kT, u(r) = — V(R)/kT,  

for hard-sphere (1-3) collisions with (dimensionless) mo-
mentum-change limits P,>P_, given by 

P_ (A,p;r) = max{[v(r) — 2 ]1/2— [u(r) — ;4] "2 ; 

a l/2 [( y+ 2)I/2 	( y +  • 	1/2 

	

p.) 	} (A46a) 

and 

P+ (1,µ;r) = minf[v(r) —A ]1/2
+ [u(r) — II] I/2 ; 

a 1/2[ y+ A)I/2 ( y +,01/2]} .  

(A46b) 

For Coulomb (1-3) collisions, 

Fc(A,p;r) = 	exp( — Y)dY EP — P 	( A47) 

For polarization (1-3) collisions, 
r= R/R e , 	R e  = e2/kT 

by 

(A38)  
FP(A„u;r) = exp( — Y)dY 

yr, 
4irC(r (R)R 2  dR IdE,IdEf l X [sin -1 ( G2/A ) — sin —  ( G I /A 

ra TF(2,it;r)r 2  dr dA, du (cm 3  s —  ) (A39)  (A48) 

in terms of specified mass factors r and the Thomson (low 
density) rates, 

aT  =lir( / 2,46) 3  (3kT / * 2 ) 112o-0, 13 = 3/2, (A40) 

where cro  is the integral cross section for (1-3) collisions are 
relative energy ikT. The appropriate mass factors r in Eq. 
(A39) and cross section ob in Eq. (A40) are 

• a)" 	
Cr 

 (f13 )  (1  +a ) 2  (M, 2 ) 
Gr  O = 	41  

2 I 	r 	a312 	MI 
(A41) 

for hard-sphere (1-3) collisions with integral cross section 
H a0, 

rc —  3°  CH; ao  = = 1  irR! 	(A42) 
37(1 + a) 	 9 

for Coulomb (1-3) collisions with integral cross section ato  
which corresponds to Coulomb scattering by angles ifr>ir/2, 
and to energy transfers E> (3/2)kT for equal mass species. 
For (1-3) polarization attraction/core repulsion for colli-
sions within the orbiting radius, 

rP = ( 3 ) UP) ( 1 + a) 5 / 2  (m12 ) 
k 2 /1 I 	a312 	M, 

ao = oa =27r(a M R e /3) 112 	 (A43) 

and u o adopted in Thomson's rate (A40) is the correspond-
ing integral (elastic or momentum transfer) collisional cross 
section at ( 3/2 )kT relative energy. For (1-3) charge.-trans-
fer collisions, 

(11/2  (PI) () 3/2 ;12 	 C 
where cro  in Eq. (A44) is the corresponding momentum-
transfer cross section, taken as twice the cross section 	for 
charge transfer.' 

The corresponding dimensionless functions F in Eq. 
(A39) are symmetric in A and /2 and are 

FH(24.1;r) = 	exp( — Y)dY [P, — P_]; 
r, 

Yo  = max( —A, — 	 (A45 )  

where 

G, (1,µ;r) =max[I(Y+2)" 2  
_ a in [v(r)  _ A  1121 ;  

I( y +  01/2 a 1/2[ v ( r) 

(A49) 

G2(2,1-1;r) =- min[(Y+A)" — 12 [u(r) —A ] 112; 
(y  + 14) 112 _ a ''2 [v(r)  

and 
• 

A  = 	(1  ± a)'/2[u(r) 	y [ 1/2 .  

For charge—transfer (1-3) collisions 

1 + c F x(A,14;r) = exp [ l( 	
1  + 
 ) (A + 1.1)1 
1 ± 2c 

xexp[ — 1/(1 + 2c)r] 

X 

 [

-E7  erfg — g exp( — g2)] , (A51) 
2 s_ 

where 

g2± (.444;r)  _ c(1 + c) 
 {[u(r) —2 ]112 

(1 + 2c) 

± [u(r) — 	1212 . 
The universal expression (A39) is also valuable in that 

the one-way equilibrium current (rate) across an arbitrary 
bound level v = — E/kT is simply 

a, = 	f dA f 	F(A,,p)dis, 	 (A53) 

where ce.• = — D / kTisthe maximum binding energy in units 
of (kT) and where 

,„, 
F(2,12) = J F(A,p;r)r 2  dr, r„, = 1/max(2„a). 

(A54) 
This equilibrium collisional rate displays a minimum at 

v*= (1-3) kT, the location of a bottleneck (see Fig. 3). The 
QSS rates (1.9), (1.10), and (1.6) reduce simply to 

r x = 

(A50) 

(A52) 
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a=raT f dA 	FA.,11)P s(g)citi., f 
	o 

a = ref, f dA 	F(2,1.4)P D(p)dy, 	(A55b) 

= rix-T 
v 

dl 	[P S (a) - P s(2)1F(A,p)clit, 

(A55c) 

where E = - S/kT. 
Also various energy-change moments, 

1)'" ) (E,) = t 	 ( Er  - Ei rc.dEf 	(A56) 
m! _ D 

are useful5  in a Fokker-Planck reduction of the collision 
term (1.2). These can be expressed simply as 

DNA) = rZi TiVA N„(kT) --1 ( - 1)mgT" ) (2), 
(A57) 

where the dimensionless moments 

1 glm) (2).—f (µ- ArF(A,p)clit 	(A58) 
m! _  

are easily determined3  on using one of the relevant expr 
sions, (A45), (A47), (A48), or (A51), pertinent to t 
chosen binary A-M and B-M interactions of A and B w' 
the gas M. 

'M. R. Flannery, J. Phys. B 13, 3649 (1980). 
2 M. R. Flannery, J. Phys. B 14, 915 (1981). 
'D. R. Bates and I. Mendai, J. Phys. B 15, 1949 (1982). 
4M. R. Flannery, J. Phys. B 18, L839 (1985). 
5 M. R. Flannery, J. Chem. Phys. 87, 6947 (1987). 
'M. R. Flannery, Ann. Phys. (N.Y.) 67, 376 (1971). 

J. Thomson, Philos. Mag. 47, 337 (1924). 

8P. J. Feibelman, J. Chem. Phys. 42, 2462 (1965). 
°D. R. Bates and M. R. Flannery, Proc. R. Soc. London Ser. A 302, 
(1968). 

"M. R. Flannery, J. Phys. B. 20, 4929 (1987). 
"M. R. Flannery and T. P. Yang, J. Chem. Phys. 73, 3239 (1980). 
"M. R. Flannery. Recent Studies of Atomic and Molecular Processes, ed 

by A. E. Kingston (Plenum, New York, 1987). 
' 3J. C. Keck, in Advances in Atomic and Molecular Physics, edited by 

Bates and I. Estermann (Academic, New York, 1972), Vol. 8; 
Chem. Phys. 13, 83 (1967). 

' 4D. R. Bates, P. B. Hays, and D. Sprevak, J. Phys. B 4, 962 (1971). 
"M. R. Flannery, Phys. Rev. A 22, 2408 (1980). 
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Variational principle for termolecular recombination in a gas 
M. R. Flannery 
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 
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A variational principle for the rates of termolecular processes is proposed and then applied to 
recombination between atomic ions with excellent results. The variational expression when 
minimized with respect to stabilization probabilities is capable of providing rates identical to 
those determined from the quasi-steady-state solution of the full Master equation. Connection 
is made with electrical networks and with the principle of least dissipation. 

I. INTRODUCTION 

An important objective in chemical physics is the for-
mulation of a variational theory of chemical reactions which 
is exact in the sense that the deduced variational expression 
will yield, upon variation of relevant parameters, the distri-
butions n, and rate constants which are identical with those 
obtained by direct solution of the exact Master equation for 
the particular process. The variational procedure of Wigner' 
and Keck' is "variational" in the sense that it yields a least 
upper bound to the rate of a chemical reaction as determined 
from a Master equation. The reaction is represented by the 
motion of a point (poi) in multidimensional phase space 
across a trial surface S which separates a block "6' of initial 
reactant states i from a block.? of final product states f. The 
one-way rate R that representative phase points flow ( down-
ward) across S--or flux of trajectories—is an upper limit to 
the actual rate since ( a) upward reexcitation to states i above 
S is ignored and since (b) a representative point which 
passes through S more than once is repeatedly included at 
each pass. The additional use of an equilbrium density n, for 
the reacting states then provides a rigorous upper bound R e  
to the reaction rate. A minimum—the least upper bound—
to R e  is then obtained by variation of the trial surface S. 

In termolecular electron-ion or ion-ion collisional re-
combination 

A+ B-  + M- AB + M 	 (1.1) 

at low gas densities, for example, the "surface", can be taken 
as some bound energy level - E of the pair AB so that an 
upper bound to the two-body rate constant a (cm 3  s - ') for 
recombination ( 1.1) is 

where NA  and 1V,, are the equilibrium concentrations of A' 
and 13 -  and where C,1  is the one-way equilibrium collisional 
rate per unit interval dE, dEf  for transitions between energy 
levels E, and Ef  of AB pairs. The level - E separates the 
"reactant" block (6' of states i with energies E.;  in the range 
- E<E,< no from the "product" block 9 of states f with 

energies Ef  in the range - E>Ef> - D, where - D is the 
lowest energy level of the AB pair relative to a dissociation 
limit at zero energy. A minimum to R. occurs at 
- E = - E • which therefore acts as a bottleneck or transi-

tion state. States above - E • are more likely to be excited by  

collision and hence are unstable with respect to association, 
while those below - E • tend to be deexcited and are there-
fore considered as stable. For this one-dimensional surface, 
the Wigner-Keck treatment is then identical with the bott-
leneck method proposed by Byron et al. 3  for three-body elec-
tron-ion recombination.' For termolecular recombination 
of arbitrary mass ions in a gas, this variational treatment 
yields rates' which are higher by factors of 2 to 8 than the 
exact rates' obtained from a Master equation. 

What is desirable is a variational method which will 
yield a rate identical to that determined from solution of the 
full Master equation. This search requires the addition, as 
illustrated by Fig. 1, of a block fe of highly excited states i for 
which the reaction can go either way. The block is character-
ized by the overall probability P f for stabilization via down-
ward (' - .9°) transitions or by the overall probability 
P = (1 - P;') for disruption via upward ( (6' ) transi-
tions. This block e lies intermediate between the reactant 
and product blocks f and 9' which are separately charac-
terized by P ;s  = 0 and P;s  = 1, respectively. 

In this paper such a method is proposed and is then 
applied as a case study to the well-developed example' of 
termolecular ion-ion recombination (1.1) in a low density 
gas M. Connection is then made with the principle of least 

0 

FIG. 1. Schematic diagram of energy blocks '6', 	and 9' pertinent to 
recombination at low gas densities. 

E 

R e ( - E) = f 	
: 

dE, 	Cif  dEf  > a ICI, 	, ( 1.2) 
.)  

-E 	-D 
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dissipation, well known in heat-conduction problems and in 
electrical networks. By analogy with this principle for a 
network of resistors, Bates' very perceptively postulated 
that a minimum would exist, with respect to variation in the 
normalized time-independent distributions 
y, (Es ) = n,/ii„.in the time-independent measure: 

= 	dE, f ( yf  - ) 	dEf 	( 1.3) 
— D 	— D 

of the total rate of restoration to thermal equilibrium. Men-
dae then noted that minimum is obtained for a quasi-
steady-state distribution of excited levels determined by 

y, 	C dE — 	yf . C,f  dEf  . 	 ( 1.4) 
- D 	f 	- D 

The present formulation permits the identification of this .4' 
so minimized with twice the actual (quasi-steady-state) late 
constant 

— E 

art. rA N..1 dE, f (y, - rf )C,1  dEf 	( 1.5) 
— E 	— D 

which is the net downward constant energy-space current 
across any level - E, in the block if of excited levels in 
quasi-steady-state. A supplementary calculation of Eq. 
( 1.5 ) with the variational result of Eq. ( 1.3 ) is then not 
required. Note that the upper bound [Eq. ( 1.2 ) ] is recov-
ered upon eliminating block if by assigning 
y,( - E<E,< co ) = 1 and yi( - E>Ef > - D) = 0 in ei-
ther Eq. ( 1.3) or Eq. (1.5 ). 

II. VARIATIONAL PRINCIPLE  

ed reactant states, n, at low N can then be taken in the col 
sional part of Eq. ( 2.4) as its thermodynamic equilibriu 
value so that P7=0 for block W . The effective two-
rate constant for the association of A and B with ( cm - 
concentrations NA  (t) and NB (t) at time t is a (cm' s - ' 

The constant k(s - 1 ) is the frequency for dissociation of t 
tightly bound pairs in the product block of levels wi 
energies E 1  in the range - S>E,> - D, within which t 
stabilization probability P'7 is unity. In the intermedi 
block 1' of "reacting" states with 0>E, > - S in Fig. 1, t 
probabilities P;'must be determined. The net rate for term 
lecular dissociation in the closed system is 

R °(t) = 	P°P) dE, = -R "(0 , 
D 	dt 	

(2. 
dn 

where 	= 1 - P;'is the probability that state i is collisi 
ally connected to fully dissociated channels (at infinite A 
separation). 

The proposed variational principle now asserts that t 
probabilities P7•' and densities n, have energy distributi 
which ensure that R A •D(1) of Eqs. (2.2) and (2.5) are 
trema at time t. 

A. The quasi-steady-state deduction 

Rewrite Eq. (2.2) as 

R (t) = - 	Pf ( arl  )dE, 
— 	dE, 

in terms of the net downward collisional current 

OD 

( 2 

The net rate 

between A and 

R "(0 = 

= a 

A+B-FM=AB-1-M 

for termolecular association 

k 

B in a gas M 
dn 

P7P) dE, 

( 2.1) 

(2.2) 

( 2.3) 

- J(E,t) 

past level E. Since 
co , the rate is then 

R A (t) = 

Since P s is constant 
ly), Eq. (2.8) 

=dE, 	[ne (t)vef  - nf (t)vfi ] dEf  
E 	— D 

(2 
.,/„ vanishes as E, tends to both - D 

oo dP'F 
J,(E,t)(—j-)dE, . 	 (2 f 	

dt 

NA (t)N8 (t) - k n s (t) , 

f 
— D 	 dE, 

(0 and 1 in blocks ( and .So, respect' 
further reduces to 

where P'7 is the stochastic probability that a pair AB with 
internal relative energy E, is connected via a series of energy 
( state )-changing collisions to a sink .7 of fully associated 
AB pairs. The concentration n, (t) of AB pairs with internal 
energy E, of relative motion in unit interval dE, about E, 
develops in time t according to the standard Master equa-
tion' 

dn,r 

dt 
— J

_ 
Ln,(t)v,f  - nf (t)vfi l dEf  = - 

dt 	J D 	 8E, 
(2.4) 

where - D is the energy of the lowest vibrational level of AB 
relative to the dissociation limit taken as zero energy. 

The frequency per unit interval dEf  for E, -.Ef  transi-
tions in AB by collision with gas species M is y 1f- which is 
linear in gas density N. At low gas densities, R" is linear in N 
so that PS is then only required to zero order in N. Over the 
range 0<E,<00 which defines the W block of fully dissociat- 

dPs  
R "(t) = f J, (E,t) (L)dE, 

s 	
. 

- dE, 

A necessary condition for the integral 

/ = Jam=  F[y(x),Y(x);x]dx, y = dy/dx 	(2. 

to exhibit an extremum is given in the calculus of variati 
by the Euler-Lagrange equation' 

d dF) 31' = 0, 	= 1,2, . . . ,N , 	( 2 
dx kaY, 	dy, 

the solution of which determines y(x ) [y, (x )] over 

fixed range x,<x<x2 . Write xF.-_-  E„ y, Ps; 
 F(y(x);x)EJ(E,) (dP;F/dE,). The integral ( 2.9 ) is 

an extremum provided 

3E 	

dn 
= 0 = - 	0>E,> - S 	 (2 

, 	dt 
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for each level i within block 8'. This is the quasi-steady-state 
(QSS) condition for pairs in block if with n, (t) distributed 
so that J, the current (2.7), is constant over all energies 
( - E) of block EC The extremum rate, obtained from Eq. 
(2.12) in Eq. (2.9), is theisthe net downward current across 
bound level - E of block W: 

R :(t) = - J( E,t) = J
m 

 dE, 
E 

Xf-

-E  
[n,(t)v y 	nf (t)vfi  I dEf , , 	(2.13) 

D 

which depends on the probabilities P only only implicitly via n 1 . 
As E tends from above to the dissociation limit at E = 0, 
- J(E,t) increases monotonically to this rate.' 

B. Analysis 
From Eq. (2.4) the distribution 

y, (t) = n, (E„t)/ii,(E,) 	 (2.14) 

normalized to the distribution air, for full thermodynamic 
equilibrium satisfies 

dn, _ dy, 

—dt = —dt = 	
[f"'

D  r,(t) — yf (t)] dEf - 
(2.15) 

where the one-way equilibrium rate 

= v,f  = 	= Cfi 	 (2.16) 
satisfies detailed balance and is linear in gas density N. On 
introducing the implicit dependence of rz, on the probabili-
ties P'," via the separation' 

n(t) = P Mr) + Pf rs(t) , 	 (2.17) 

where 

y, (t) = n, (t)/ii c  = NA (t)N,(t)/TV, N B 	(2.18a) 

and 

y5 ( t) = 	 (2.18b) 
are the respective concentrations n, (t) and n, (t) of fully 
dissociated pairs with energies E, in the range O<E,, < co of 
block (6" and of fully associated pairs of block J.' normalized 
to their respective equilibrium concentrations fi, and ii„ 
then Eq. (2.15) separates as9  

dn, 
—  dt = [n(t) y,(t) ] 

D 
(P - P7)Cif  dEf  = - 

3E 
 . (2.19) 
, 

Hence the macroscopic rate (2.3) is now 

R "(t) = 	TV, [y,(t) - y5 (t)1 = - R D(t) , 
(2.20) 

where the association rate in units of the time-dependent 
difference (K. - n) is the rate constant 

aNA NB =kn S , 	 (2.21a) 

=  J m  P dE, f(P;F 13 :7) C,I dEf , 
-D 	 D 

=1 	
D 	D 

dE, 	(P f P;) 2  Cy  dEf  
2 - 	-  

which is now time independent and is always positive. The 
upward current Jpast energy E in Eq. (2.19) separates simi-
larly as 

J(E,t) = [n(t) 
where 

4. 

- y, ( 1)1/(E) , 

s 

(2.22) 

j(E) = f dE, E 	J (PS-P;) Cif . dEf  
-D 

(2.23) 

Since Eq. (2.20) is an extremum provided the QSS con-
dition (2.12) holds, i.e., Eq. (2.19) vanishes in block if 
where Eq. (2.23) is constant, then the probabilities P7 satis-
fy the standard integral equation' 

P  f dEf  = f cv  dEf  
-D 	 -D 	

(2.24) 

When inserted in Eq. (2.21) the solutions P;F yield after 
some reduction the extremum rate constant, 

R *  = a*  A r,,,Ar B  

f
f- 	_ 	_ 

	

dE, 	1 - 	C,1  dEf , , 
_E 	-D 

 (1 
 

= Jm  dE, f C y  P; dEf  , 
- D 

= f
- s 

dEf f
- D  CifPf dE, , 

where - E is any level in block 87 , including the `e-A' and 
F-i° boundaries at 0 and - S, respectively. This extre-
mum simply confirms the identification in Eq. (2.13) of rate 
with current. The nature (maximum or minimum) of the 
extremum becomes apparent on performing independent 
variations SP .,' to Pf for each level in block 8" subject to the 
constraints 

P -7=0; O<E, < co , 	 (2.26) 

=1; - D<E,< - S , 
associated with blocks' and .7, respectively. The resulting 
change in Eq. (2.20) is 

SR "(t)= 2 [yy(t) - y, (t) ] 

x[f dE, oPfif 	- 	Cy  dEfi 

	

s 	- D 

+ 4 J
mDdE,f (5P7 (5P;-) 2  Cy  dEf i 

-D 
(2.27) 

to second order in 8P;'. For an extremum the change OR A  to 
first order in SP7 vanishes so that Eq. (2.24) is recovered 
from Eq. (2.27). The change to second order in SP 7 is deter-
mined by the sign of (rc  — y,) . When 1,, (r) > ys  (t) so that 
the overall direction, according to Eq. ( 2.20), is association, 
then the extremum to R A  is a minimum; and the dissociation 
rate R" in Eq. (2.20) is a negative maximum. When 
ys  (t) > y, (t) so that the overall direction is dissociation, 
then RA is a negative maximum; and R is a minimum. The 
proposed variational principle governing Eqs. (2.2) and 
(2.5) thus asserts that the rate R A  or R D, whichever corre-
sponds to the overall direction, always adjusts itself to a min- 

(2.21b) 

(2.21c) 

(2.25a) 

(2.25b) 

(2.25c) 
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imum, i.e., the probabilities P .7 are so distributed that they 
tend to counteract the change so as to impede the progress 
towards full equilibrium ( when y, ys  - 1 ) . The rate R *  in 
Eq. (2.25) is a minimum to Eq. (2.21). 

Rather than inserting the numerical solution of the QSS 
integral equation (2.23) in Eq. (2.25a) for the rate constant, 
an alternative procedure is therefore a direct search of a min-
imum in the rate (2.21) with respect to variation of P7, a 
procedure similar to that noted by Mendai with respect to 
variation of Eq. ( 1.3) with respect to y,. The present vari-
ational principle however provides a variational expression 
(2.21) for the actual QSS rate ( 2.25) obtained otherwise 
from the Master equation. 

Although the present analysis has been developed with 
termolecular ion-ion recombination (1.1) in mind, it may 
be easily generalized to include ion-atom association 

A +  + B + M-AB +  + M (2.28) 

between atomic species in a low density gas M. Here quasi-
bound levels (E„ L) of AB+ can be formed with Ei  >0 
within the centrifugal barrier associated with internal rela-
tive angular momentum (squared) By adopting the an-
satz [Eq. ( 5.2) of Ref. 5] for the distribution n ;  (E;  L) of 
AB+ pairs in terms of the stabilization probability 
PftE„ L) then expression (2.21), generalized to include 
relevant integrations over and L f, is varied with respect 
to P'7( E„ L) so as to provide a minimum which is then the 
required QSS rate. 

C. Application to termolecular recombination 

Since dP .7/dE, tends to zero as E, -0 and as Et - - S 
( taken now to be - oo ), the simplest one-parameter (2 •) 
trial function is provided by 

dP s(A;A•)  = AA e - (A bl') 	 (2.29)  
d2 

where 2 = - E,/kT is the binding energy in units of kT, the 
mean energy of the gas M, and where the variational param-
eter A," is the location of the maximum at A. = A • of Eq. 
(2.29). Since P( 00 )-P(0) is unity, then integration yields 
the normalization parameter A to be ( 1/2 • ) 2  and 

P s(A;A*) = 1-(1 + x) exp( - x);.x = A /A* . (2.30) 

Consider, as a case study, the well-developed example of 
termolecular ion-ion recombination' 

X+ + X -  + X-X, + X 	 (2.31) 

between equal mass species. Necessary integrations of Eq. 
(2.21) and solution' of the integral equation (2.24) are per-
formed by choosing 72 pivots each in blocks, c.( and ' ac-
cording to the procedure outlined in Ref. 11. When Eq. 
(2.30) is inserted into Eq. (2.21) and when A.* is varied, the 
long-dashed curve in Fig. 2 is obtained for the ratio 

r = R(A =2 *)/ R * , (2.32) 

where R *  is the exact QSS rate (2.25) determined from the 
direct solution' of Eq. (2.24). Not only does the single pa-
rameter A* = 1.1624 provide a minimum to R but it also 
yields the exact result to 1% accuracy with r = 1.011. Intro- 

FIG. 2. Ratio of the variational rate (2.21) to the exact QSS rate (2.25) 
function of variational parameter A a. (1): One parameter function (2.3 • 
(2) and (3): Two- and three-parameter functions (2.35) with a = 1, b 
and a = 1, b = 0.7, respectively. 

duction of a more sophisticated three parameter (A *,a, 
trial function 

dP s(A;A*,a,b)/dA = A2 (1 + aA + bA 2 )e - IA • , 
(2.3 

where, in terms of the location at A* of the maximum to 
(2.33), A *  is the function 

A(2,a,b) =2(1 + aA + bA 2 )/ (1 +2a2 +3b2 2 ) 
(2.3 

evaluated at A = A* . 
Integration of Eq. (2.33) subject to the constraints 

(2.26) determines the normalization factor A and yields 

P s  (2;2 • ,a,b) = 1 - [1 + x + x 2g(x) 2 1 exp( - x); 

x=2/A s , 	 (2.3 

where 

g(x;A * ,a,b) = A*  (a + 3bA*  + bA * x)/ 

(1 + 2aA *  + 6b.A 24, ) . 	 (2. 

The derivative is 

	 - [(x + a A* x2  + bA,2,x3 )/ 
dP s(A;A * ,a,b) 

d2 

(1 + 2aA s  + 6bA2*  ) exp( - x) . 
(2. 

Figure 2 illustrates that minima r = 1.0008 
r = 1.0029 are obtained for two-parameter (A * = 1.39 
a = 1.0, b = 0) and three-parameter (A* = 1.5348, a = 
b = 0.7) trial functions, respectively, and that these mini 
agree with the calculation of the exact QSS rate (2.2 
Comparison of the corresponding probabilities for all th 
variational cases with the exact QSS solution' of Eq. (2. 
is given in Fig. 3(a). The two-parameter function is gra 
cally indistinguishable from the numerical QSS solutio 
Fig. 3(a). The agreement is in general very good for s 
simple variational functions, and could be easily improve 
larger A by insisting that P .7-.1 as - S s - ( 10- 
kT rather than as Ei  - co in Eq. (2.35). Although 
two-parameter function provides a slightly better repre 
tation we note from Fig. 2 that the rate (2.21) is not ov 
sensitive to the ..Hall deviations in the probabilities. 
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4 
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FIG. 3. ( a) Variational probabilities ( 2.35), ( 1), ( 2), and (3) as a function 
of normalized bound energy ( — E/kT). Parameters (A *,a,b) given by 
(1.1624,0,0), (1.3962,1,0), and (1.5348,1,0.7), respectively. Exact QSS 
probability ( 2,24 ):( E). (b) Corresponding derivatives. 

A more sensitive tests  is provided in Fig. 3(b) which 
displays the corresponding comparison of the derivatives. 
All of these variational curves and the direct QSS solution of 
Eq. (2.24) display maxima almost equal and located in the 
same neighborhood. This location has physical significance 
and is perhaps key to the overall success obtained. This is 
most easily illustrated by expanding 

II= + (Ef — EA—
dP 1 
dE, 

d 

	

+ “Ef  — E,) 2 [ 
dE

21'.7 1+ 	• • 	(2.38) 

in powers of the energy difference (E1  — E,) so that Eq. 
(2.19) yields 

to second order in the energy-change moments' 

(E,) . 1  f (Ef  — Ea r Cy-dEf . . 	(2.40) 
m! - D 

For QSS of block ', 

(d 2P'7)/(dP .7) 	_ D fl)/D 	—1,(E1 ) (2.41) 
dE 	dE, 

so that (dP'7/dE,) exhibits a maximum where D 	the 
average energy increase per second, passes through zero, 
which in general occurs' at = — (1-2) kT. The above 
trial expressions (2.29) and (2.33) therefore implicitly ac-
knowledge the physical tendency for collisions to excite 
those pairs with E> El` and to degrade those with E <E!'. 
Once A:* has been variationally determined by the present 
procedure, it will only coincide with the actual location of 
the zero in DP )  to the extent that approximation (2.39) is 
valid. If so the expressions then imply that the ratio (k T) 
D' ) /D 2)  may be represented quite accurately either by the 
simple form ( 1/2 — 1/2 * ) or by the more complicated form 
(1/A — 1/A* , respectively. Both forms yield zero at 
. 1 *. Interestingly enough, the zero ofD I)  for symmetri-

cal resonance charge transfer collisions occur at .1.* = 1.329 
in close agreement with the two-parameter variational and 
exact calculations [cf. Fig. 3( b ) ]. 

The solution of Eq. (2.41) subject to Eq. (2.26) is 

P s( — E) = [fo E  dEf exp If 
E

x, dEl l
] 

 
— 	 —  

x [f 
	- 
dEf  expl f 

E 
 dE,I1 

-  
(2.42) 

in block W. When the approximation' 

D(t) = dD 2) 	
(2.43) 

dE, 

between moments D;' )  and D 2)  can be invoked, then 

exp[f x, dE, = D(2) (wpm( — Ef) 	(2.44) 
— E 

so that Eq. (2.42) reduces to 

( — E1 ) =[f dEf/D 42) ( — Ed] 
— E 

X[f dEf/D 42) ( Ef)] (2.45) 
s 

This expression (2.45) has been used in Eq. (2.21c) to pro- 
vide accurate rates al, in a previous diffusional treatment.' 
The more basic expression (2.42) is currently being tested. 12  

There are now two accurate treatments which provide 
accurate analytical representations of the collisional stabili-
zation and disruption probabilities—the previous diffu-
sional method' and the present (two-parameter) variational 
method. These results D from Eq. (2.45) and V from Eq. 
(2.35) are compared in Fig. 4 with the exact numerical solu-
tion E of Eq. (2.24). Due to a more accurate evaluation of 
D;' ) , the present diffusional results differ somewhat from 
those previously reported.' The resulting rates 
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FIG. 4. (a) Probabilities and (b) corresponding derivatives in exact QSS 

(E), two-parameter (A = 1.3962, a = 1) variational ( V2), and diffu-
sional (D) treatments, as a function of normalized bound energy ( — E/ 
kT). 

(aD/aE  = 1.08, a v /a, = 1) are not that sensitive, as be-
fore, to the larger discrepancies in P s resulting from the dif-
fusional and variational treatments. 

III. ANALOGY WITH (R,C) ELECTRICAL CIRCUIT AND 
WITH PRINCIPLE OF LEAST DISSIPATION 

Bates' has already provided the interesting analogy with 
a network of resistors for the case when K. (t) = 1 y s  (t) so 
that time dependencies can be omitted,' and has introduced 
the variational function .A, Eq. (1.3), as a measure of the 
restoration rate to thermodynamic equilibrium. Here capa-
citors are introduced (Sec. III A) so as to explicitly ac-
knowledge time-dependent currents and voltages. The pres-
ent approach allows us to identify (Sec. III B) the 
time-independent function ...41  with 2aNA  NB . 

The Master equation (2.15) involves the internal ener-
gy Ef  of relative (A—B) motion as a continuous variable 
since the spacing between bound levels are much smaller 
than the thermal energy (kT) of the thermal gas bath M. 
The discrete representation of Eq. (2.15) gives the net elec-
trical current flowing outward from node i of a multimode 
system as 

CC 

11 (t) = 	= 	/v (t) , 	 (3.1 
dt f= -D 

where the current in the i—f segment is 

I1(t) = [y,(t) — yv(1)] Cv . 

This reduces under Eq. (2.16) to 

/v (t) = 	(t) — ys (t)] (P .1. — P7) cv  

[y (t)— Mt)] iv . 

The formal structure of Eqs. (3.1) and (3.2) is iden 
cal' to an electrical network where the current / v. along t 
line element et,. from junction i to junction fin the network 

equivalent to the time-dependent voltage drop 

Vv (t) = [y,(t) — yv (t)] 	 (3. 

= [Mt) — n(t)] (PP — 	 (3. 

times the conductivity Cv. = R 	of the line element of 
sistance R 11. 

Since, Eq. (3.2) is Ohm's law ( Vv.( t) = iv( t) 
time-dependent potential 

V, (t) =r(t) 	 (3. 
can be associated with any level i. All states within the sou 
block c' are at equipotential (t) and all levels within si 
block are at equipotential y, (t). The potential y, of ea 
if level i is below y, by an amount 

= Ye ( I) — (t) =P7 [re (I) — r, (01 	(3 

or is above y„ by an amount 

= (t) — ( I) = PP [rc(t) — ys(t)] 	(3 

Hence in units of (K. — 1 ,0,13 'T is the potential d 
from (6'' to i,P ° is the potential height of i above ., and /, 
the current Eq. (3.3) along segment ey . Since P ° within 
increases with E, continuously and monotonically from z 
within .7 to unity within then 

VV.  = 	(r) Y, ( 	 = 0 , (3 
E, [dpo 

e, 	 E, 	dE, 

where the sum is over each segment ev  within any clo 
loop (E, E2 E 1  ). Equation (3.9) as already noted, 
Kirchoff's voltage law ( KVL) which is based on the uniq 
ness of the potential y, (t) at a given time and which 
presses energy conservation for any closed loop within 
entire ( (6.  , if ,..5° ) circuit at time t. 

A. QSS simplification: (R,C) circuit 

The QSS condition (2.12) for each level i of bloc 
(0>E1 > — S) is equivalent to 

/,(t) = 	/v (t) = 	[ y, (t) — y f (t)] 
f= — D 	 f — D 

(3.1 

[nu) — y,(t)] f(Pf — PS) 	dEf 
-D 

(3.1 

	

=0, i = 1, 2, N 	 (3.1 

which' is Kirchoff's current law (KCL). The balance of 
rents J,- which exits and enters any junction i within b 

I 	I, 
	 I. 	I 

2 
	

3 

-E/kT) 

do 

(3.2 

(3.3 
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aNANB = 
2 
—1 	dE, 	(k7 - P7) 2  cif dEf 

_ 	D 
(3.24) —S 

C2 = = 
	

n , dE, 
—D 

(3.17) 

0 	1 

Rcs 	N4- I f" —D Rif 

1 
= 	I 
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(1<i<N) to all junctions (f= N + 1, N + 2,.. oo , in block 
, f= 1,2,...,N in block ' and f = 0, - 1,.., - D in block 

) of the network is zero. This expresses charge conserva-

tion at junction i where there is no net buildup of density 
(charge) n,. The ausatz (2n 7) which enables the QSS con-
dition (2.12) to be satisfied by a specified distribution P7 at 
all times provides the separation in Eqs. (3.3), (3.5), and 
(3.10b). 

Under KCL or QSS, the voltages P ;5  satisfy 

	

f- 	dEf ••= f 	P riEf . . 	 (3.11) 

	

D 	 — D 

The time-dependent cd and SP blocks of states are anal- 
ogous to capacitors connected in parallel with their positive 
plates charged to 

the Master equation (3.10) for association is illustrated by 
Fig. 5. A time-varying current I(t) from capacitor C, with 
initial charge Q, (0) = n,, (0) is subdivided along mainline 
channels 12 0, to enter a KCL network with N nodes, com-
posed entirely of resistors R,, internal currents I,,j (t), 
and is then reconstituted at C2  via mainline exit channels R15 . 

B. Principle of least dissipation 

The network of resistances R cs , R cf, 12,, and 	may 
now be replaced by an equivalent resistance R with through-
put current 1(t) determined from the power loss 

I(t) 2R = [Y c (t) - 75 (t)1I(t) 	 (3.21) 

Q,(t) = n c (t) = f n,(t)dE, 	 (3.12) = I /2„„ 12,,f  (3.22) 

and 
- S 

Q2(t) = n s (t) = f n,(t)dE, , 
— D 

at time t and held at voltages 

V1(t) = rc (t) 

and 

V2 (t) = y,(t) 

above their negative plates. Since Q = C /V, their capaci-
tances 

C, = = 	dE, 	 (3.16) 

and 

to be 

The summations include external junctions 
C(n = N + 1,N + andS(n = - D, - D + 1,...,0) 
at the source and sink capacitors and the internal junctions 
(n = 1,2,...,N). By comparison with Eq. (2.20), the associ-
ation rate R A (t) may now be identified with the electrical 
current I(t) of Eq. ( 3.23), and the rate constant identified 
with 

(3.15) 

1 
(3.13) 	/(t)=-- 

2 
 [n(t) - ys (t)1 

(3.14) 
xi-  dE, f (P7 - P7) 2  Cu. dEf . 	(3.23) 

- D 	— D 

are constant. The external capacitor C, = ce is connected to 
internal KCL node f (or energy level) by equivalent resis- 

t 	co 
I. 	

r 
--Er: 	Cy. dE, = Ccf 	(3.18) 

R cr 	,- N-1-1 R if 	o 

and directly to the external capacitor C2 - - by a resistance 
R cs  given by 

f
f  s 

	

dE, 	C dEf = CCS • 	 (3.19) 
0 	- D 

Each internal KCL node i of block 6' is coupled to inter- 
nal node fby R y. and externally coupled to C2 via R, given 
by 

1 	0 	1  
— 
	-

S dE = C. €t 	a • 	(3.20) 
R 	—D Ry- — D 

The above resistances R ci-, 12,, and R cs  are equivalent 
to a parallel network of resistances R y  connecting, respec-
tively, all states C(i = N + 1,...,00) of block (6' to the speci-
fied 6'-block state f, each e-block state i to all states 
S(f = 0, - 1,...,-D) of block ./ and all states C to all states 
S, respectively. The electrical network which corresponds to  

the effective conductivity R -' of the network, or with the 
time-dependent electrical current 1(0, Eq. (3.23), per unit 

p.. 

 

I(t) 

   

   

I It)  

FIG. 5. ( R,C) electrical diagram analogous to termolecular recombination. 
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2 

voltage drop ]y, (t) — ys  (t)]. When the KCL condition 
(3.11) is used directly in Eq. ( 3.24) then the previous results 
(2.25) are obtained. 

The power loss 

	

/ 2 (t)R = [y,(t) —73 (t)] R A MA 	(3.25) 

is .always positive. The present variational principle (VP) 
asserts that P7, the voltage drop in units of ( — ys ), are so 
distributed that the rate R "(0—the electrical current 
1(t)—is a minimum. When y, (t) > y, (t), i.e., association 
occurs at positive rate R"(t), then VP implies that the pow-
er (3.25) dissipated by (A-B) and absorbed by the gas M is 
least. When R" is negative, the net direction is dissociation 
which occurs at rate R °(t) = — R (1) when y, < y„ then 
VP implies that the power provided to AB by the gas M is 
least. 

This principle of least dissipation is basic in many fields, 
e.g., thermodynamics, heat conduction, fluid mechanics. 
The principle for heat conduction was derived explicitly by 
Onsager." For a current 1 entering a KVL and a KCL elec-
trical network viaR c.„ and exiting via R,, s , the currents with-
in the KCL network are so distributed that the summed rate 
of dissipation of energy in the R c„, R„, and R„, resistors is a 
minimum—Joule's law. With this law, Bates' postulated 
that a minimum would exist in the measure Eq. (1.3) of 
the restoration rate of thermodynamic equilibrium by re-
combination in highly nonequilibrium systems [when 

> ys  and y, = /3 ° in Eq. (2.17) so that explicit time de-
pendences can be ignored 5 ]. Mendag then noted that the 
distributions n, associated with this minimum satisfy the 
QSS condition (1.4). From Eq. (3.23) it follows that this 
unnonnalized time-independent measure may now be 
uniquely identified as the rate 2aNA  NB so that the mini-
mum of .4' yields the minimum rate (2.25a) directly, with-
out the further need for substituting the final variational 
function P =1 — 13 7 in expression (2.23) for the current 
(2.25a) or in Eq. (1.5). 

The present assertion that the rates (2.2) and (2.5) are 
extremum implies a principle of least dissipation for chemi-
cal reactions. The rates R ". D (t — 00) tend naturally to zero 
when thermodynamic equilibrium is obtained for the com-
plete system. This is analogous to the electrical current I 
decaying to zero when the voltages across the capacitors C 1 

 and C2 connected in series across R become equal. 

C. Use of diagram 

Various QSS results may be deduced rather readily from 
consideration of the electrical diagram (Fig. 5). 

Result I: The mainline entrance current along R 0, and 
entering KCL node n is 

i; = 	 (3.26) 

in units of (re  — ys  ). The total mainline current which en-
ters all N nodes of KCL block if and node n = 0 of block.? 
from block (69  is 

N 

ar41 A NB = 	i 	Ccf 13; dEf 	(3.27) 

	

n=0 	— D 

which is the association rate R"(t) in units of 
[ y, ( t)-YS  (t)] in agreement with Eq. (2.25b). 

Result II: The current which exits KCL node n along 
the internal resistors R nf. and external resistors R ns  of Fi 
is 

= y (p: —P7) 	 (3. 
Jiro 

The total current exiting from all N-KCL nodes is then 

in+ = 	(1 — P,s, ) C„ f Csf P dE f  (3. 
n=1 	n=1 	 S 

which when combined with the W.-Y .  direct curr 
= Cas  yields 

k 
 =f

Cif PfdEf 	 (3. 
- s 

in agreement with Eq. (2.25c). The KCL I 
1„ = i„+ — = 0, Eq. (3.10) applied to nodes n = 1,2,.. 
not only confirms the QSS condition (2.25) but also 
mands equality of Eqs. (3.27) and (3.30), which provi 
macroscopic detailed balance. 

Result III: From Fig. 5, the total mainline entrance c 
rent to nodes below a designated KCL node N*: 

N• — E 

i,(<N•)= 	E.- I Cci lldEf , 	(3. 
n=0 	— D 

where the junction N* is associated with energy level 
The internal and mainline exit currents from nodes above 
sum to 

N N 

(> N•) = 	i, = 	(P: —P;) C„f 
n= N• 	 N• 1"-  

(3. 

f dE, f (P; — P7) C if  dEf 	(3. 
— E 	— D 

which reduces to 
- r 

= f dE, f (P; — P7) Cu. dEf . . 	(3. 
— E 	— D 

Since in+ = 1 for each KCL node the total cu 
+ i, ) in units of 	(t) — y, 	] is 

a 5, r, Art, = f dE, f 
E  

(P .; — P7) Cif  dEf  (3. 
— E 	D 

in agreement with Eqs. (2.23) and (2.25). 
Result IV: When C1  with charge Q 1  (t) gains a ch 

dQ, and C2 with charge Q2( t) gains a charge dQ 2  on t 
positive plates within time dt, the sum of the total elec 
static energy ( V,dQ, + V 2dQ 2 ) gained by the capacitors 
the thermal energy (3.21) radiated must be zero. Since 
charge 

q, = n,(t) = n,(0), i= 1,2,...,N 	 (3 
at each junction i of the N junction KCL network rem 
constant then the total charge distributed among the ca 
tors of initial charges Q 10  and Q20 is 

Q,(t) + 

and the discharging/charging current is 

1= 	dQ,(t) dQ 2 (t)  
dt 	dt 
	 (3 

Hence the power equation is 

= Q10+ Q20 
	

(3 
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C ,  ~ 
 (CI  + C2) V20 

(3.41) 
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( V, — V2 ) 	+ / 2R = 0 	 (3.39) 
dt 

which also follows from application of KVL, Eq. (3.9), to 
the (C„R,C 2 ) circuit at time t. Hence 

R"(0 = — dQ,(t) dQ 2 (0  
dt 	dt 

1 

	

= —R 
EQI(oic, - Q2 ( t)/C2 	 (3.40) 

which is _the analog of Eq. ( 2.20) with 
R = aiVA  Ns yc = Ql(t)ic,, and y5  = Q2 ( t) /C2. The 
equation is linear (rather than quadratic) in Q, since Eq. 
(2.7) renders the basic equation (2.2) linear in the (pair) 
distribution (3.12) of dissociated species AB. The solution 
of Eq. (3.40) subject to C, being initially uncharged 
(Q10 = 0) is 

Q,(0 = Q 20 (C /C2 )[1 — exp — t /RC ] 

and 

Q2(t) = GoIl — (C/C2 )(1 — exp — t/RC )1 

f— oo C2 
	 Q20 	 (3.42) 
(C, + C2 ) 

where C is C,C2/(C, C2 ). As t— ao, the voltages across 
each pair of plates, = Q,/C, and n = Q2/C2  are equal 
(and opposite), no current flows and charging is complete 
(corresponding to thermodynamic equilibrium). When C, 
has infinite capacity for absorbing charge, i.e., when C, v C2 

then C-. C2 so that 
Q, (t) --.42 20 (1 — exp — t / RC2 ) 	 (3.43) 

and 

Q2( t) --' Q20 exP — t /R C2 , 	 (3.44) 

so that the dissociation frequency k can be related to the time 
constant for discharging of C2 and charging of C, by 

k = 1/RC2 	 (3.45) 

as expected (since C2 = ii, and 1/R = a31, Na  = bi z ). 
This rate constant governs only the rate of approach to, but 
not the magnitude of, the asymptotic limits. 

In summary, appeal to the network (Fig. 5) provides 
results (3.27), (3.30), and (3.35) which are exact under 
KCL condition (3.11). For voltages which do not satisfy 
this KCL condition, then Eq. (3.24) is used for the electrical 
current in units of (yc  — y, ). 

IV. SUMMARY 

A variational principle based on the search for a mini-
mum to the net rate R "(t) for association with respect to 
variation of the stabilization probabilities F? has been pro-
posed. It is capable (Sec. II B) of providing probabilities]) f 
and rate coefficients a identical with those determined from 
direct QSS solutions of the Master equation. In this sense the 
developed expression (2.21) provides a variational expres-
sion for the QSS approximation. Good trial representations 
(Sec. H B) for P s exhibit a maximum in I dP 7/dE i l near the 
location E' of a physical bottleneck. 

By introduction of the additional block 6' of highly ex-
cited levels i sandwiched between the reactant and product 
zones ? and respectively, and characterized by forward 
and reverse (variational) probabilities P f and P f, respec-
tively, the present variational method is more detailed and 
complete than the least-upper-bound variational method of 
Wigner' and Keck' which ignores this block. 

The minimum with respect to variation in n, of function 
(1.3) postulated by Bates' via analogy with an electrical 
network is identified here with 2aN, Na  so that the supple-
mentary explicit calculation of the rate (1.5) is not required. 
Electrical diagrams (as Fig. 5) may be utilized very effec-
tively not only to analyze (Sec. III C) the detailed dynamics 
of termolecular processes but also to facilitate the ready con-
struction of various simplified approximate schemes." 
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A diffusional treatment of termolecular association of atomic species A and B in a low density 
gas is presented and applied to positive ion-negative ion recombination over the full range of 
masses of reactants for various classes of ion-neutral interactions. In contrast to rates given by 
the diffusional current, excellent results are obtained foi general mass species provided a more 
basic expression for the association rate is introduced. 

I. INTRODUCTION 

The picture of electron-ion recombination, of termole-
cular positive ion-negative ion recombination, and of termo-
lecular ion-atom association: 

a 
A + B + M AB + M, 	 (1.1) 

involving subsystems (A-B) associating in a thermal bath of 
dilute gas M as proceeding via diffusion in energy space has 
stimulated'-7 a great deal of interest, in principle, valuable to 
elucidation of the dynamics of association processes and to 
many examples of decay of laser-produced plasmas, of reac-
tion processes in flames, of shock wave propagation, etc. In a 
classic paper on electron-ion recombination, Pitaevskii' de-
rived a rather elegant analytical expression for the two-body 
rate coefficient a (cm 3  s -  ') in Eq. (1.1). Because of its in-
herent simplicity over more sophisticated and therefore time 
consuming procedures based on a collisional input-output 
Master equation," 2  the result has been applied to heavy-
particle recombination' which proceeds three orders of 
magnitude faster than collisional electron-ion recombina-
tion 1 •7  for which the result was originally intended. In spite 
of its attractive features, the diffusion picture as formulat-
ed' s  achieved remarkably disappointing results for heavy-
particle termolecular ion-ion recombination.' 

Apart from recognition that diffusion methods (based 
on a Fokker-Planck reduction of the input-output collision 
integral) are likely to be valid only when the collisional 
changes in energy are small, the basic intrinsic defect for 
application of the Pitaevskii expression to general mass sy-
tems remains as yet undetected. Moreover, that a much less 
sophisticated "bottleneck" model' originally designed also 
for electron-ion recombination achieved much closer agree-
ment' with the exact results of the Master equation"' for 
ion-ion recombination presents a puzzle. 

In this paper, the foundation of the diffusion approach 
as applied to processes (1.1) will be examined and the basic 
defect in previous applications will become apparent. The 
proposed theory is valid for termolecular ion-ion recombin-
ations' and ion-atom association" at low gas densities and 
as a case study will be applied here to ion-ion recombination. 
Association at rate coefficient a (cm 3  s - ') and dissociation 
at frequency k (s ) in Eq. (1.1) are treated in a unified way 
so that equilibrium can eventually be established. 

II. RATES AND CURRENT 

The distribution n, (E„t) per unit interval dE, of pairs 
AB with internal energy E, at time t is governed by the colli, 
sional input-output Master equation2• -11•15 

dt 
n,(E,,t) = —1 S dEf  

-D 

= 
 — f

[n, (Oyu. — ni.(t)vfi  WEI., (2.1) 
-D 

where — D is the energy of the lowest vibrational level of AB 
relative to the dissociation limit taken as zero energy, and 

where vit. is the frequency per unit interval dEf  for E, 
transitions by collisions between AB and M. For bound 
states dn,/dt = an,/at, and for dissociated states dn, /dt 
= (an, /at + F, . ) where F, is the net flux of contracting E, 

pairs created with infinite separation. A basic expression for 
the rate R "(t) of association has already been derived." In 
the interests of elucidation and completeness of the present 
discussion (in Secs. III C and IV) and of direct comparison 
with the diffusional quasi-steady-state approach, the key 
steps therein are provided below. The first step involves writ-
ing the net rate for association as 16  

R A(t)  =f P7 (Lid  dE, 
-D 	dt 

= aN A  (t)NB (t) — kn, (t), (2.2) 

where P7 is the probability of stabilization of E, pairs by 
subsequent multicollisions with M. The effective two-body 
rate constant for the association of A and B with ( cm -3 ) 
concentrations NA ( t) and NB  (t) is a (cm3  s-  ), and k 
( s ) is the frequency for dissociation of those tightly bound 
pairs of concentration n, (t) which are considered to be fully 
associated with energies E, within a block of S.' of low lying 
levels in a range — S ,>Ei > — D within which the stabiliza-
tion probability Ps is calculated to be unity. 

The separation between the energy levels of AB is suffi-
ciently small compared to the thermal energy (kT) of the 
gas bath so that the levels form a quasicontinuum. Thus, 

d n,(E„t) = — J(E,,t), 	 (2.3) 
dt 	 aE, 
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so that the upward current past level E at time t is 

J(E,t) dE, 	Sfi (t)dEf , I
/ E 

(2.4) 
E 	J -D 

since J vanishes at the end points ( — D, co ) and since So 
 Sfi =0. 

On introducing the normalized distribution 

Y1(t) = 	 (2.5) 

where is the pair distribution under full thermodynamic 
equilibrium with the gas, the Master equation (2.1) is 

r- 
—d 	

JD 
n,(E„t) = — 	[y,(t) — y f (t)1C,f  dEf  

dr  

r3 	, 
= — —1, kZ ot), 	 (2.6) 

8E, 

where the one-way equilibrium collisional rate 

Cy. = vsf  = /if  vfi  = Cfi 	 (2.7) 

satisfied detailed balance. The second step is to introduce the 
ansatz' 

m  ri 	 (t) 	p ,7  ns  (t) 1 
[ 

	

--7Pfye (t) + P;51,.,(t) — 1, 	 (2.8) 

which holds at low gas densities. The equilibrium concentra-
tions of A and B are NA and NB. The probability that state i 
is a stabilized state, or is a destabilized state with respect to 
association is 13 '? or P = 1 — P;s, respectively, and rc  and 
y, are the normalized distribution of pairs in the fully disso-
ciated (source) block , O<E, <00, where P,°  is unity, and 
in the fully associated (sink) block — S >E,> — D, 
where P 7 is unity. Hence, the Master equation (2.6), current 
(2.4), and rate (2.2) separate as 16  

dn, 
 dt = [y,(t) — y,(t)] 

Xf D 
(Pf — P ;5: ) dEf  — 	, 	(2.9) 

- 	 8E1 

 J( — E,t) = [ye  (t) — y,(t)] 
E 

X dE, f (P7 — P7)C, f dEp  
-E 	-D 

(2.10) 

and 

R (t) = [yc (t) — y s (t)1 

X 
 I

P;5  dE, 	(P;' — 137)Cgf  a>. 
D 	 -D 

(2.11) 

From Eq. (2.9), the loss rates of fully dissociated and of 
fully associated species of energy E, are, respectively, 

dn, 
—dt 	

[Ye(t) — y,(t)] 

X  f CS), dEf, E1 >0 	(2.12) 
-D  

and 

dn, 
— —= [y,(t) — y c (t)] 

X f cfP f dEp 
- s 
	 — .S>E,> — D, (2. 

which illustrate quite effectively the significance of both 
stabilization and disruption probabilities P7 and P f. 

From Eqs. ( 2.9) and (2.10), 

dn, 	 al, (t)] 
dE, 

where the time-independent background current downw 
across E is 

-E 

-i( - E) =dE, f (P7 — P)C,f  dEf . (2. 
-E 	-D 

From Eq. (2.11) the time-independent macroscopic co 
cients a and k for association and dissociation in Eq. 
are, therefore, given by the basic expression, 

alTIA NB  = 	13  dE, f (Pf — P7)C if  dEf = 
(2 

and satisfy (macroscopic) detailed balance. 
The expressions (2.10) and (2.11), or equivalently 

(2.15) and (2.16) for the current j and rate coefficient 
in general not identical unless the following addition 
quirement is satisfied. 

A. Ouasl-steady-state (QSS) 

As Eqs. (2.12) and (2.13) illustrate, the distributi 
pairs in blocks (6' and are time dependent, until full 
modynamic equilibrium is established when ye,, —1 
above and below, respectively. Since dn,/dt = dn,./d 
the intermediate block Ef' of highly excited levels with e 
A in the range 0>E> — S then quasi-steady-state (QS 
block 3' requires 

dn, 
=0, 0>E1 > — S 

dt 
so that the stabilization probabilities in Eq. (2.9) then 
ously satisfy the integral equation 

PS  f Cif  dEf  = f 	dEr ; 0>E,> — S. 
D 	 -D 

-D 	 -D 

The stochastic probability for stabilization P;' of s 
is therefore the fraction of all collisions which event 
result in association. Under this circumstance it readil 
lows that the rate (2.11) reduces to 

- IO(t) = — J( — E,t), 

the downward current (2.10), and that the rate coe 
(2.16) is given by 

arVA  = —j( — E), 

where E is an arbitrary energy level in bloc 
(0>E> — S). 

The rate of association (2.16) may be identified wi 

NAND 

dt 

(2. 
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current (2.15) only when the QSS-condition (2.17) for the 
probabilities is satisfied." Use of Eq. (2.17) from the outset 
in Eq. (2.2) also illustrates this relation, 

-5  d 
R (t) 	 eiE 

—D

.

( dt

n, 	
, 

 

= -J( - S,t) = -J( - E,t), 	(2.21) 

although the basic expression (2.16) for a cannot then be 
deduced. An exact expression which emphasizes the role of 
the current J is obtained from Eqs. (2.2) and (2.3) to give 

s (air (t)  1?"(t) = - 	P 	dE, 

	

_D 	dE, 

= 
 f

J`  (t) (
c9P;1) dE„ (2.22) 

_ s dE, 

since J, vanishes as E, D and cc , and since P7 is con-
stant (0 and 1 within blocks (6' and .7, respectively). Only 
when Eq. (2.10) for J is constant over block 6', i.e., when 
QSS Eq. (2.18) is satisfied, does Eq. (2.22) reduce to Eq. 
(2.19). It may be shown (work in progress) that the QSS-
condition (2.18) corresponds to a minimum' in Eq. (2.16) 
fora. Any approximate P; which does not rigorously satisfy 
Eq. (2.18) will therefore yield higher rates a. 

The QSS (minimum) rate coefficients are therefore giv-
en by 
ce,,,SrA N. 

rm 	

E = 	dE, 	- P7)C,f  dEf  = - j( - E) 
—E 	—D 

(2.23) 

changes in energy. Here the current J, in Eq. (2.6) can be 
determined to fourth order, rather than to the customary 
second order. 2  

A. Fokker-Planck current to fourth order In energy-
change moments 

On introduction of an arbitrary but well-behaved func-
tion <I), (E,) whose derivatives vanish at the end points 
[ 00, - D], then, with the aid of Eq. (2.6), 

1_0 	dt 
d, dE 

= 	y, dE, 	(4)i- - 4), ) Cif  dEf . 	(3.1) 
—D 

On expanding the difference 

- e)"i [— 
.0 "41, I 

—(E ( 
L.. L

.. dE 7 
as a Taylor series in energy change (Ef  - E,), assumed 
small, and on integration by parts with the explicit recogni-
tion that (8 "4), /dE 7)- 0 for n >1 as E, [ 00 , - D], then 
Eq. (3.1) can be expressed as 

• 
dn dE, = 	

dJ , dE„ 

f - 	 dE, 
41, at' 	 - 	4), 

(3.3) 
where the current is 

	

a  ,, [ripl.,,) ] 	

(3.4) 

	

"moo 	 dE 7 

(3.2) 

= dE, f C,f13:7 dEf  = - j(0) 
f D 

—S 	rr  
= dE, 	C,fP f dEf  = — j( — S) = k o ri„ 

- D 	—S 

(2.25) 

which are, in general, different from Eq. (2.16) unless the 
probabilities Pr exactly satisfy' the QSS-condition (2.18). 
Note that Eq. (2.24) is the QSS rate for association that 
would result from the full equilibrium concentration NA NB  
of dissociated pairs and zero population of fully associated 
.7 pairs i.e., K. = 1 and ys  = 0 in Eq. (2.8). Similarly, Eq. 
(2.25) is the QSS rate for dissociation which would result 
from an equilibrium population n s  of associated i7 pairs and 
zero population of dissociated pairs, i.e., y c  = 0 and y, = 1 
in Eq. (2.8). 

The aim is now to derive a simple analytic but approxi-
mate expression for j( - E) by converting Eq. (2.15) from 
an integral representation to a differential representation so 
that approximate expressions for the probabilities P 7 may be 
derived, in contrast to the exact numerical solutions of Eq. 
(2.18). 

III. FOKKER-PLANCK REDUCTION FOR ION-ION 
RECOMBINATION AT LOW GAS DENSITIES 

The conversion of the integral operator in Eq. (2.13) 
into a differential operator achieved by a Fokker-Planck 
analysis l .2  is useful when the collision kernel C, f  favors small  

with respect to the one-way equilibrium rate for E,-Ef  
transitions. The number per second of all collisions with an 
equilibrium distribution of E, pairs in unit interval dE, and 
unit volume is D;') ; and and 2D P )  are the average 
energy change and average energy change squared per sec-
ond, d 41.E)/dt and d (A.E 2)/dt, respectively. The ratios 
D' )/D °)  and 2D 2) /D specify (4E, ) and (6.E per 
collision, respectively. 

Evaluation of these moments can be facilitated by 
adopting the expressions for C if  which correspond to various 
A-M and B-M binary interactions (symmetrical resonance 
charge-transfer,'" hard-sphere,' polarization"). They 
can be collected under a universal form (work in progress). 
These moments are normalized 10  to the quantity 
( - .1 )^'rar  (kT)'" TV A  3113  where at  is the Thomson rate 
[Eq. (4.1) below ], where r is a dimensionless mass factor' 
and where T is the temperature of the gas bath. 

Figures 1(a) and 1 (b) illustrate the general trend of 
these moments calculated here for the specific case' where 
internal-energy changes in an ion pair ( X + --X ) are due to 
symmetrical resonance charge-transfer (X -X ) collisions 
with a parent gas X. In this case, the velocity vectors of the 

(2.24) 	in terms of the normalized distributions y, and the energy 
change moments2' 

D"') (E,) = 
ml - 
 (Ef  - E,)'"C,f dEf , 
..1°' (3.5) 

D 
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M. R. Flannery: Termolecular association 

FIG. 1. ( a) Normalized moments D ( "')  of energy change rate ( energy"' 
s' ), m = 0-4, as a function of internal energy E, — A (kr) of the bound 
ion pair. ( b) Averaged energy change and energy-change squared 
D ( "' ) /D 101  per collision, D 111  and derivative of D u'. Equal-mass species and 
charge-transfer ion-neutral collisions are assumed and moments are nor-
malized to the quantity ( — 1 )"'T ar(kT)"' N A ND . 

(fast) ion X+ and the ( thermal) neutral X are inter- 
changed.' Large transfers of energy are therefore involved, 
as is confirmed by D ; 2) , the averaged energy change squared 

per second shown in Fig. I (a). This case will there-
fore provide a most stringent test of the weak-collision (dif-
fusion) procedure adopted here. 

As the binding energy - E, decreases from the disso- 
ciation limit (at zero energy), the equilibrium density ti (E) 

exp( - E,/kT) per unit interval dE, decreases 
from infinity, reaches a minimum at E, = - 2.5kT and 
then increases exponentially.' Since the energy change fre- 
quency vt1  for each pair decreases rapidly with increase of 
binding, the overall shapes of the equilibrium moments D;'" )  
in Figs. I (a) and I (b) reflect the variation of the product 

v4-. Note that the equilibrium collisional rate D ; 0)  is rela- 
tively constant in the range (1.8-4)kTofbinding. Also D 1) 

 /dt (DE) is positive for E, > - 1.4k T = E '1% so that 
these pairs on average become less tightly bound upon colli- 
sion. Pairs with E, < - 1.4kT become more tightly bound 

3.0 

(a) 

2.5 — 

2.0 7 
POL 

1.5 — 

1.0 — 

CX 
0.5 

1 	 2 	 3 
	

4 

(-ENT) 

0.8 

IN 

0.4 

POL 

0.2 

0.0 
0.0 	0.5 	1.0 	1.5 	2.0 	2.5 

(-ENT) 

FIG. 2. Inverses of moments (a) D' (A) and (b) D 141  (A) as a functi 
internal energy E, = — AkT of the ion pair for various ion-neutral int 
tions: POL ( polarization ), HS ( hard-sphere), CX (charge-trans 
Equal mass species are assumed. 

upon collision (since D <0). This critical energy spec 
the location of E • of a bottleneck where the averaged en 
change vanishes and where the region E, > E where ex 
tion is greater is separated from the region E <E w 
deexcitation is greater. Note also that the even mom 
D"' )  display minima which become sharper with increa 
m, as expected, and that the minimum in D ; 2) ;-_- 
dt OLE coincides with the zero of D' ) -d /dt (AE 
E", as is clearly shown in Fig. 1( b ). These features are q 
general for the various ion-neutral interacions and are 
lized below. 

Figures 2(a) and 2 ( b ) illustrate the variatio 
[D ; 2) ] -1  and [D 4) ] -1  for different interactions of A 
B with M (charge-transfer CX, hard-sphere HS, and p 
ization POL). The bottleneck to D 2)  occurs where 

rate is least and in roughly in the same location 
- 1.25k T) for all the interactions. The (AE rate is g 
est for the charge-transfer interaction and weakest fo 
polarization attraction, as expected. The moment D 
hibits similar but more rapidly varying behavior. 

Since Cy- is symmetrical in i andf—the detailed-ba 

0 

O 

0.0r 	 
0 

1 	1 	 r 
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relation ( 2.7 )—then cf, when expressed as a function of the 
energy-mean E =1(Ef  + E,) and the energy change 
A = Ef  — Ei , is such that Q. = Cif  (E, I A I) as previously 
noted by Keck and Carrier.' On expanding Cti- about E, in 
terms of the expansion parameter A, which is assumed small, 
then 

terms, i.e., D;" and higher moments, to give 

D` 
') = —

a 
 D ;2) 

321)4) 

3E, 	3E; 
and 

(3.11a) 

C,f (t = E, +4A,41) 	A"  ( 1 	a  nC' 

	

0 n! 2- 	3E7 
(3.6) 

where C, is Cif  = E„IA1) O . The general moments ( 3.5) are 
therefore determined from 

m!D;' ) (E,) 

= 	(2" 
—tanF("+")] 

 n!) 
n = 1.3.5 	

{ odd 

3E , 

E (2"n!) —1 	 ; 
n = 0,2,4 	

[8"F;'"+") 
3E7 

which involves only the terms 

n=o 	 3E" I 
even even 

= n 0,2)=0.2 

aj+n-1-1Fp+n+2) 
X 	 (3.9) 

aEi,+"+' 
This new form clearly shows that the coefficient of its 

first term aF;2)/dE„ which arises from the leading term of 
the expansion (3.7) for both D;" and 8D ;2)/3E,, is identi-
cally zero. The coefficient of the second term a 3F ; 4)  /aE 7, 
which is the net balance of the second term in the expansion 
(3.7) for both D ; 1)  and 3D 1 2) /3E, and of the leading term in 
the expansion (3.7) for both a21)3)/3Et and a 3D 141/3E 7, 
is also zero. The leading nonvanishing contribution to Eq. 
(3.9) is [ — 4a 5F ;') /aE ] which is the net balance of the 
third terms in the expansion ( 3.7) for both D ; 1)  and ar)2), 
3E, and of the second terms in the expansion (3.7) for both 
a2D,(3)/aE? and 3 3D 4)/3E?. The consistent neglect of 
a 4.1) ; 5)  /3E —a 3F ;')/ dE 7 and higher-order derivatives 
demands both the neglect in Eq. (3.4) of terms with n> 4 
and the neglect in Eqs. (3.7a) and (3.7b) of terms with n> 5 
and n > 4, respectively. Hence, the equilibrium current 

3D ; 2) 	a 2D 13) 
— 	+ 	 

a3D
1(4) 	=0 (3.10) .1, 	; 1)   

8E, 	dE 	3E7 

is exact to fourth order in the moments and is identically 
zero! Relationships between even and odd moments can be 
obtained from Eq. (3.7) by neglecting F ; 6)  and higher 

DP )  = 2 
aE 
— D 	 (3.11b) 

, 
which also ensure zero equilibrium current. In view of Eq. 
(3.11) note that equilibrium (.1, = 0) is obtained only when 
the current (3.4) is expanded to even order. 

With the aid of Eq. (3.10), the nonequilibrium current 
(3.4) to fourth order in moments D 1m )  is 

_ 	2) 2  °D;')  + 3  a2D 	r  ay, 

3E, 	aEf J[ 8E, j 

+ [D ; 3)  3 " 4) ] [L-21 — D ; 4)  [ —831 (3 12) 
8E, 	dE 	8E7 

which is the differential representation (up to and including 
the fourth-order moment D ;4)  ) of the double integral 

J(E,t) = f dE, f [y i (t) — r,(01c,f  dEf  (3.13) 
—D 

for the exact current (2.4). The differential form (3.12) is 
the Fokker—Planck current to fourth order since the general 
Fokker—Planck expansion can be employed for any variable 
whose changes are small in comparison with averaged char-
acteristic values, e.g., the collisions' energy change A here is 
assumed small relative to the thermal energy kT of the gas 
bath. 

Upon use of the approximations ( 3.11), which are inter-
nally consistent to neglect of moments higher than D ; 4)  , Eq. 
(3.12) reduces to 

J1 4) (E„t) = 	[D 2)  

a3 1 D  0) [
a
Prii_ D (4) 

7. 	v 	laEd• 

(3.14) 
Inserting the ansatz (2.8) in Eq. (3.12), then Eq. (2.6) 

with Eq. (3.12) yields 

dn,(E„t) 	 at, (E,) 
[n(t) 	r,(t)] 	 

dt 	 3E, 

where in terms of the stochastic probability P that state i 
dissociates, the time-independent background current to 
fourth order is 

me.) (Ei  

[D 	2  aD131 +
3 

3 2E 0 ;4)   1 
1 
83131 

3E, 	dE 	aE, J 

+[DP) — 3 ----31) 4) } {- 32P] D ;4 )  [ 1- 3P/ 
3E, 	dE 	3E7 

(3.16) 

m odd, 	(3.7a) 

m even, 	(3.7b) 

F;-1) (E; ) 	AlC, (E „I Ai )dEf, 	 (3.8) 
D 

with s even. Terms with s odd vanish since D is effectively 
infinite ( 5 eV). 

For equilibrium, 7,1  in Eq. (3.4) is unity and the equilib-
rium current can then be expressed, with the aid of Eq. (3.7) 
as 

even 

(n — 2j)[2. 1 + (n + 2)!( + 

3 21; ; 4)   1r ay, 
3E? j [ dE, j 

(3.15) 
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B. Diffusion equation and current for termolecular 
recombination 

On ignoring moments D 	and higher, the ( diffu- 
sional ) current (3.16) is 

813 !) 	dPi5  
id(E,) = - 

„ 	= D 2) 
8E, 	aE, 

dt 
(3.18) 

which is a diffusion equation in energy space. The moment 
D 2)  = jd /dt (.1E 	is the diffusion coefficient (en- 
ergy' 	) in energy space. This type of streaming equation 
has been previously derived via other techniques by Pitaevs-
kii' for electron-ion recombination under highly nonequi-
librium conditions when y, > y s  so that y, = P f)y, in Eq. 
(2.6), and by Keck and Carrier-  for heavy-particle associ-
ation/dissociation. It has been investigated by Landon and 
Keck,' by Mahan', and by Bates and Zundi 6  for highly non-
equilibrium (n>n) termolecular ion-ion recombination. 
By explicitly including here the factor (y, - y, ) via the an-
satz (2.8), Eqs. (3.15) and (3.18) for all help to empha-
size the evolution via termolecular recombination and disso-
ciation (into ion products) of the subsystems (A-B) 
towards thermodynamic equilibrium with the gas M, at-
tained when y, rs  -.1. 

Another advantage of the ansatz (2.8) is that the inter-
mediate block of highly excited levels can be taken to be in 
quasi-steady-state (QSS), i.e., 3n,/at ,.--.:: 0 in either Eq. (2.9) 
or ( 3.18), for all times. The QSS-diffusional current (3.17) 
is constant over 6', so that the solution of Eq. (3.17) subject 
to conditions, 

- S) = 0, P7( - S) = 1 	 (3.19) .  

is 
E, 

Pf(Ei ) = -id[f 	/D 12 ) (Ed= 1 - P.1(E,), 
-s 

(3.20) 

where the subscript d denotes quantities associated with the 
diffusion equation (3.18). Various levels of approximation 
readily follow: 

(a) Since 

Pf)(0) = 1, PS(0) = 0, 	 (3.21) 
then Eq. (3.20) yields 

-AP )  = [f dE/D (2) (E)] = ct,,NA N, (3.22) 
- s 

for the downward diffusional current which, when com-
pared with Eq. (2.20) provides the recombination rate a,. of 
Pitaevskii,' adopted for ion-ion recombination by Landon 
and Keck 3  and by Mahan.' Note that the current (3.22) is 
the inverse of the area under the curves in Fig. 2( a), and that 
Eq. (3.20) for the stabilization and disruption probabilities 
P;'-' at energy E, are the respective ratios of the areas which 
correspond to the energy ranges (0-.E, ) and (E, - S) to 
the total area. 

(b) Rather than requiring Eq. (3.21) for the probabi 
ties, jd  in Eq. (3.20) can be fixed by inserting Eq. (3.2 
directly into Eq. (2.24) for j(0) to give 

- ../( 0 ) = f
m 
 dE, f C,f  dEf  + jd f

°' 
 dE, 

0 	-D 	 0 
Ef 

Xf C if dEf if dE /D 2  (E)I . (3.2 
-D 	-S 

On equating the exact current j(0) in Eq. (3.23) with t 
diffusional current jd , then 

- Ak)  (0) =[.1
m 
 dE, f C‘f  dEf ill ± I

m 
 dE, 

o 
	f 
	0 

Ef 
X f Cy. dEff dE /D (2) (E)1 

-D 	-S 

= ak icr„,1NrB , 	 (3.2 

which yields the expression of Kecle for a. The term 
braces, { is simply the ratio of the downward diff 
sional current to the one-way equilibrium current across t 
dissociation neck. 

(c) Another possibility in similar vein to (b) is to in 
Eq. (3.20) directly into Eq. (2.25) for j( - S) to give 

-s 
fa ( - S) =[f dE, 

- 
Cif  dEf ] 

-D 	S 
- s 

Xil  + f 
D 	- 

dE, f 
S

Cv  dEf  

E 
Xf 

l 	 1 
/D 2 (E)I

- 
 =aK NA NB , 

_s 
where the term in braces, { } -1 , is simply the ratio of 
upward diffusional current across - S to the one-way e 
librium current upward across - S. 

The feature common to all the above procedures 
(c) is that the required current (3.17) depends upon 
accuracy of the gradient (dPf/dEi ) which, due to the 
glect of higher derivatives in Eq. (3.16), is described by 
diffusion equation (3.18) less precisely than are the act 
diffusion QSS solutions, i.e., Eq. (3.18) may furnish ac 
rate but relatively inaccurate derivatives. More im 
tantly, however, is that Eq. (2.20), which is valid only un 
exact QSS-condition (2.18) of the exact Master equa 
(2.19) has been invoked for the diffusional currents AP 
Eq. (3.22) andAk)  of Eq. (3.24) which are QSS solution 
the different and approximate diffusional equation (3.1 

The QSS solution of Eq. (3.18) subject to both 
straints (3.19) and (3.21) is 

P ;1(E,) =if dE /D(2) (E)1If 	/D (2) (E)1. -  
E, 	 -S 

(3 
for the probability that any level E, in block F, once 
cessed by collision, has "associative" character. The pr 
bility that level E, has "dissociative" character is the c 
plementary function 

E, 
P°(E,) =if dE /D(2) (E)11 .1.0 	/D 12) (E)1 

- s 	 -s 
(3 

(3.17) 

so that Eq. (3.15) is 

• 	3 [ (2) al dn,(E„t) 
- [y,(t) - 7/, (t) I -,T3 	D, 

(3. 
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Thus, both functions are constrained to vary monotoni-
cally between zero and unity as does the exact numerical 
solution to the integral equation (2.18) so that, when com-
pared with the exact numerical values, will involve less error 
than their corresponding derivatives 

(3E, = 
	(D12) (E 1) 1- ifd p).k 	 (3.29) 

appropriate to currents (3.22) and (3.24) in schemes ( a) 
and (b) above. 

C. Calculations for termolecular recombination at low N 

The well developed case" of termolecular ion-ion re-
combination 

+ B-  + M- AB + M 	 (3.30) 

serves as a case study for assessing the accuracy of the diffu-
sion approaches of Secs. III A and III B. The recombination 
coefficient a has previously been represented'." very accu-
rately by the sum 

a = a, + a 2 	 (3.31) 
of coefficients a, obtained by considering separate contribu-
tions from ( A -1-  -M ) and (B--M) binary collisions (1 = 1 
and 2, respectively). The exact numerical rates a, are ob-
tained by inserting the exact numerical solution of the inte- 
gral equation ( 2.18 ), the QSS condition into Eq. ( 2.32) for 
the current j( - E„). The rates a, have been tabulated"" as 
a function of the mass-ratio parameter: 

a, = Mi/i/3/M, (M, + M2 + M3 ) 	 (3.32) 

where M, are the masses of species A +, B , and M, 	1, 2, 
and 3, respectively and where the set (i, j) is equal to (1,2) or 
(2,1) for (1 - 3) or (2 - 3) collisions, respectively. 

Expressions for the equilibrium rate Cef appropriate to 
the three classes-polarization," charge-transfer, 8"°  and 
hard-sphere m-of ion-neutral interactions have been pre-
viously derived.'" Calculations have been performed here 
for the exact QSS-rates a, that rise from 1-3 collisions and 
for the corresponding diffusional fates, (3.22) for a, and 

(3.24) for ak  of Pitaevskii' and Keck, 4  respectively. Little 
discernable difference was found between a, and a x  which 
may now be simply called the diffusional rates an  obtained 
when the diffusional current (3.17) is inserted in Eq. (2.20). 
Previous results9- " were based on the solution of, at most, 36 
coupled algebraic equations, the discretized equivalent rep-
resentation of Eq. (2.18). Present calculations solve 100 
coupled equations required for convergence in a for small 
and large mass parameters (3.32). 

Table I provides present values of the ratio an/a, for 
the various interactions over the full range of mass param-
eter a,. Small a 10 -3  corresponds to collisional recombin-
ation of heavy ions (31 I =M2 > M3 ) in a much lighter (elec-
tron) gas, intermediate a ( = 1/3 for M, = M2  = M3  ) 
corresponds to normal mass components, and large a = 10 3 

 for M, M2  :7Z M3 corresponds to electron-ion recombina-
tion in an ambient gas. The cases of small and large a involve 
energy transfers which are very much less than the energy 
kT of the gas so that the diffusional ( weak collision) ap-
proach is likely then to be valid. 

As Table I shows, the diffusional rates are reliable, as 
expected, only for recombination in a vanishingly light gas 
(a =10-3 ) or for electron-ion recombination (a 103 ) in a 
general gas, the case for which Pitaevskii' designed his diffu-
sional treatment. The diffusional rates are higher by between 
a factor of 3-9 for intermediate a-1. As the ion-neutral 
interaction varies from polarization attraction to hard-
sphere repulsion and then to charge-transfer interaction, the 
energy change in the ion-neutral collision becomes progres-
sively larger [see Fig. 2(a) and 2 ( b) I so that the diffusional 
rates (based on weak collisions) become less accurate, as 
shown directly by the variation of entries in Table I for a 
specified mass parameter a. 

Since Eq. (3.17) predicts zero current in both the fully 
dissociated and fully associated blocks, W .  and .5°, respec-
tively, the diffusional current (3.17) is therefore discontin-
uous, zero in W, j,, in if and zero in The diffusion rates 
(3.22) of Pitaevskii and (3.24) of Keck are therefore expect-
ed to be valid only in the limit of vanishingly small currents 
and rates a of recombination. This is confirmed in Table I for 

TABLE I. Variation of the ratio (ap/a,r ) and (a EN  /aE ) with mass-ratio parameter a for 1-3 collisions and 
with the various 1-3 interactions: polarization (POL), hard-sphere (HS), and symmetrical resonance charge-
transfer (CX). The exact, diffusional, and bottleneck rates are a,,, a0 , and am.„ respectively. 

a 

a E/aE  

POL' HS' CX°  POL HS- CX 

0.001 1.001 1.013 1.030 32.447 25.782 16.996 
0.01 ' 1.163 1.222 1.321 8.369 7.336 5.513 
0.1 2.131 2.739 3.522 3.354 2.939 2.384 
1/3 3.360 4.967 6.840 2.541 2.215 1.865 
1.0 4.060 6.604 9.272 2.333 2.015 1.722 
10.0 2.131 3.510 • • 3.354 2.746 • • • 
100.0 1.163 1.455 8.369 6.302 
1000.0 1.001 1.093 32.447 20.233 

'In POL and HS, small a implies ion-ion recombination in a vanishingly light gas and large a ( -10 3 ) implies 
electron-ion recombination in a normal-mass gas. 

° In CX small a implies 312 4CM, = M3 and a = 1 implies M2 > M, = 313. 
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the limiting cases of small and large a. Then the actual rate 
for electron-ion collisional recombination in a gas is' aE 

 -10-9  cm' s at STP, which is three orders of magnitude 
less than the rate a, - 10 -6  cm' s at STP (cf. Ref. 19) for 
ion-ion recombination ajimilar mass gas. 

Another reason for the inadequacy of the diffusion ap-
proach as previously applied to general-mass cases is also 
apparent. As Figs. 3(a) and 3 ( b ) show, the diffusion equa-
tion (3.18) in general furnishes fairly accurate probabilities 
P".°, Eqs. (3.29) and (3.30), but less reliable gradients 
dP"-D/dE,. 

In an effort to assess the relative importance between 
using relatively accurate distributions P swithin the integral 
(2.23) or differential ( 3.17) forms of the collision integral of 
the Master equation, assume that the intermediate block 4' 
between blocks ce and .7 is absent, i.e., 

P5(Er) =

10, - E<E, <co 
1, - D<E, < -E' 

where - E is some bound energy level. The current (2.15) 
then reduces to 

- E 

	

jBN ( E) = f dE, f 	 dEf 

= a„ (E) -ICTA XIB , 

which is the one-way equilibrium downward current across 
level - E. As - E is varied, this current achieves a mini- 
mum' at energy - E* - 2kT) which therefore acts as 
a bottleneck" to the recombination which proceeds at rate 
aBN (E •) The ratio ofa,N  at the bottleneck E • to the exact 
numerical rate a, is displayed in Table I for the various 
interactions. The bottleneck method fails quite markedly for 
small and large mass parameters a, where the diffusion cur-
rent is by contrast successful, and becomes much more reli-
able than the diffusion approach at intermediate a ( 1). For 
a given a, less error is involved for stronger collisions in har-
mony with Eq. (3.34) being a strong collision approxima-
tion. Since Eq. (3.33) assumes the least possible knowledge 
of the probabilities P subject to the constraints) but an 
integral form (3.34) to the collision rate, it follows that fairly 
accurate distributions are required at small and large a 
where the collision rate and dynamics are weak, so that the 
discontinuous integral form (2.23) does reduce indeed to 
the continuous streaming form (3.17). For intermediate a 
when the energy changes are certainly not weak, inclusion of 
the integral form (2.22) is apparently more important than 
the use of fairly accurate distributions (which in any event 
are constrained to vary between unity and zero at the boun-
daries of block (i ). Note also that the diffusional and bott-
leneck results are always greater than the exact QSS rates, in 
accord with predictions of the variational principle recently 
proposed.' s  The bottleneck method provides the least of the 
one-way equilibrium rates—the least upper limit—across a 
bound level. The diffusion method incorporates the effect of 
the net downward-upward collisional transitions. 

The closeness exhibited in Fig. 3( a) between the diffu-
sional probabilities, (3.27) and (3.28), and the exact nu-
merical probabilities may be utilized in two ways. First, an 

FIG. 3. (a) Probabilities Ps°  for stabilization and dissociation of an 
pair bound with energy E, = — ikT. Equal-mass species and ch 
transfer ion—neutral collisions are assumect —: Exact QSS solution o 
(2.18). - - Diffusional approximation, Eqs. (3.27) and (3.28). (b) 
rivatives (dPs /di) of stabilization probability P5. From numerical 
tion of Eq. (2.18) and from diffusional approximation, Eq. (3.29). 

iterative procedure' 

P ( ' "(Ei ) f Cif  dEf  =f 	P ( n ) (Ef)Cif  dEf  
D 	 - D 

(3. 

to the solution of the integral equation (2.18) can be de 
oped by using the diffusional analytical probabilities (3. 
as the starting = 0) solution. It is found here that con 
gence to within 1% of the exact solution can be in ge 
achieved after five iterations, so that accurate rates can 
be determined from Eqs. (2.23)-(2.25) since the QSS-
dition (2.18) is satisfied. 

Since the diffusional probabilities ( 3.27) and (3.28 
reasonably accurate, a second possibility is to insert t 
directly into the current (2.23). This procedure, at first 
attractive, is however inconsistent, in that the diffus 
probabilities while satisfying quasi-steady-state (QS 
the diffusional equation (3.18) in block if , do not satisf 
condition (2.18) for QSS of the Master equation (2. 
which Eq. (2.23) relies. The resulting current (2.15) 
therefore not be a constant in block Q. This is demonst 
by Fig. 4 which compares the exact downward cu 
-j, (E,) past level E, obtained from the solution o 

(3.33) 

(3.34) 

• 
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FIG. 4. Comparison of currents, Eq. (2.15), past energy level 
— E — AkT, obtained (—) from exact solution of Eq. (2.18) and from 
(- - -) diffusion probabilities Eq. (3.27). Equal-mass species and hard-
sphere ion—neutral collisions are assumed. The current is normalized to 
(2aT iVA  N5  ) where a,- is the Thomson rate, Eq. (4.1). 

(2.18) in Eq. (2.23) with the approximate downward cur-
rent — JA  (E,) obtained by inserting Eq. (3.27) in Eq. 
(2.23). The diffusions' current through the bound levels is 
far from constant over the block 6)  of highly excited levels 
and hence, Eq. (2.20) cannot be used for steady-state rates. 
The figure also shows that assignment of a bound level E, for 
determination of a from Eq. (2.23) is uncertain. Since the 
current j( — E) exhibits a very rapid variation in the neigh-
borhood of the dissociation limit (at zero energy), use of Eq. 
(2.24) forj(0) is therefore a risky procedure, the exact value 
of j(0) being —50% higher than the approximate j(0). 
Some defense can be made by calculating Eq. (2.23) at the 
bottleneck energy E • — 2k Twhere the diffusions' and ex-
act currents agree. This adoption is however not firmly 
Nsed. 

The basic reason for the inconsistency of using the diffu-
sions' probabilities (3.27) in Eq. (2.23) is not that the diffu-
sional probabilities are not sufficiently accurate for useful 
application, but is that the expression (2.23) based on identi-
fying the association rate with the current is not appropriate 
for the use of approximate probabilities, which do not :satisfy 
the basic condition (2.18) for such identification. 

IV. BASIC RATE WITH DIFFUSIONAL PROBABILITIES 

The exact rates a, obtained in Sec. III C from Eq. 
(2.18) in Eq. (2.23) for the various ion—neutral interactions 
are normalized ) • to the corresponding Thomson rate 

a, = pr(12,, /13) 3  (3kT /M, 2 ) 112croN, Q= 3/2, (4.1) 

where R , is the natural unit (e2/kT) for Coulombic attrac-
tion between the ions 1 and 2. The integral cross section cr o 

 for 1-3 elastic collisions at relative energy (ikT) is taken in 
Eq. (4.1) to be 2e, 2ir ( pR e/3) 112 , and aff, respectively for 
symmetrical resonance charge—transfer collisions with cross 
section a', for polarization ( orbiting) collisions in terms of 
the polarizability p of the gas M, and for hard-sphere colli-
sions with cross section aff. 

Approximate rates a 4  may now be determined by in- 
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FIG. 5. Normalized rates Er, Eq. (4.2), for ion—ion recombination in a 
dilute gas as a function of mass parameter a, Eq. (3.32) for various ion—
neutral interactions: HS (hard-sphere), CX (charge—transfer) and POL 
(polarization). —: exact rates. ❑, 0, A: rates obtained with diffusional 
probabilities, Eq. (3.27), in basic Eq. (2.16) for HS, CX, and POL interac-
tions. 

serting P .7, the diffusional (approximate) probabilities 
(3.27) into the basic expression (2.16) which does not rely 
on the use of exact (QSS) P 7. Figure 5 displays a compari-
son of the corresponding ratios, 

	

RT = ( M1/ 3112) (a/ar), 	 (4.2) 

where a is taken as the exact rate az  or the approximate rate 
which arises from 1-3 collisions. The exact rates repro-

duce those previously presented.")." The present study 
adopts a 100-point quadrature throughout, rather than 36 
and 18 used in Refs. 10 and 11, respectively, in order to 
obtain convergence at small and large a. 

Excellent agreement between a, and a4  is obtained 
over the full range of the mass parameter a, Eq. (3.32) for a, 
all the way, from a=10 -3  for association of heavy ions in a 
light (electron) gas, to intermediate a =1/3 for equal mass 
species and up to large a;.-.-, 103  which corresponds to elec-
tron—ion recombination in a gas. As expected, greatest de-
partures occur for the case of equal mass which involves the 
largest energy transfer so that the diffusions' probabilities 
would also show their greatest departure from the exact 
probabilities as in Fig. 3( a). For this case (a = 1/3), the 
diffusional result corresponding to hard-sphere collisions, 
which in turn involve largest energy transfers (cf. Fig. 2), 
exhibit the largest of small departures. The present diffu-
sional treatment is also excellent over all of the various 
classes of 1-3 interaction considered. 

V. ION—ATOM ASSOCIATION AT LOW GAS DENSITIES 

The above theory may now be suitably modified to cover 
ion—atom association 

	

A' B + M.7-2AB+ + M 	 (5.1) 

of atomic species A' and B in a low density gas M. In con-
trast to ion—ion recombination (3.30) where an equilibrium 
distribution over internal angular momentum L, is estab-
lished" the A 4—B attraction can support centrifugal bar-
riers so that nonequilibritun distributions n, (E„1,.,t) over 
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both E. and 	must be acknowledged. Thus, the ansatz 
(2.8) is replaced by 

n (E„L ;r) 
y, 	 - P IAE'01, ))/c (t) 

12,(E,,L) 

+ Ps,(E,,L)n(t) - 1, 	(5.2 ) 

where 13.7=1-PT', the probability of stabilization of 
(E,,L) pairs by subsequent multicollisions, is zero for dis-
sociated pairs and unity for fully associated pairs. 

Bates and McKibbin 14  found that a delta function ap-
proximation .5(L - L3) for (E,,L; -E,,L',,;) transitions 
was quite satisfactory. The above analysis in Secs. III A and 
III B for energy change alone can then be immediately modi-
fied to yield corresponding results for the stabilization prob-
abilities P'7(E„L) for quasibound and bound states. Thus, 
the diffusion approximation for the bound and quasibound 
level yields 

u, 
P.:(E„L) =[f 	dE /D (2) (E,L)] 

E,  
U, X[1.  dE /1, (2) (E,L)1 
-s 

where tl,(L) is the energy at the top of the centrifugal 
barrier of the effective interaction 

V,(R) = V(R) L/2mR 2 . 	 ( 5.4) 

In terms of Cu. the one way equilibrium rate per unit 
dE, dL dEf  dLf for (E,,L-Ef ,L collisional transi-
tions, the diffusion coefficient is 

D (2) (E,,L) = —1  f (Ef  - E,) 2  dEf  
2 _ D 

X f C,f (E„Lt;Ef,L)dLi., 	(5.5) 

where LOf is the maximum angular momentum for fixed El. 

For dissociated levels is zero. The association rate corre-
sponding to the basic rate (2.16) is then given by 

L 
alTl A l% = 	dE, 	dL f dEf  

D 	 0 — D 

X 
 I

Lk. 

(P - P:7-)C,f 	 (5.6) 

where the stabilization probabilities P;F are given by Eq. 
(5.3). 

VI. SUMMARY 

On introduction of stochastic probabilities /2 '7•D(E, ) 
that ion pairs A-B with internal energy E, will be stabilized 
or disrupted by collisions with a thermal bath of gas M, and 
upon the use of the ansatz (2.8) for their normalized distri-
butions yi  ( t) at time t, the basic Master equation (2.1), rate 
(2.2) and current (2.4) has been transformed into corre-
sponding equations ( 2.9)-(2.11) which are separable in E, 
and t. The diffusional equation (3.18), yields, for systems of 
general mass, accurate probabilities P S,'D  but very inaccurate 
currents (3.22)-(3.25) (cf. Fig. 3 and Table I). Identifica-
tion as in Eq. (2.20) of association rates a with current, is 
valid only under QSS quasi-steady-state condition (2.18),  

appropriate to the original Master equation (2.9). Since t 
diffusional probabilities do not satisfy this condition, the di 
fusional current in general, may not be identified with t 
rate a. As Table I shows, the resulting diffusional rat 
(3.22)-(3.25 ), are therefore not reliable 2-6  except for tho 
cases in which the current is relatively small, i.e., for col 
sion electron-ion recombination' in a gas and for ion-i 
recombination in a vanishingly light gas. 

A new expression (2.11) or (2.16) derived' for t 
rates, is more appropriate for use under general condition 
as when QSS is not satisfied. When QSS is satisfied, E 
(2.16) reduces to the current (2.23 ). The QSS rates are mi 
imum ( Ref. 18 and work in progress). The rate (2.16) 
required when approximate probabilities are used, as here 

The diffusional probabilities can also be used in an iter 
tive solution' of the QSS-condition (2.18) to provide high 
accurate probabilities (to within 1%) after a few iteratio 
and hence accurate QSS-rates ( 2.23 )-( 2.25 ). 

Application of the diffusional equation (3.18) to ge 
eral systems represents an accurate procedure provided t 
solutions P are inserted in the appropriate and more bas 
expression ( 2.16) for the rate, rather than into the deriv 
expressions ( 3.17) or (2.13) for the diffusional or exact c 
rents. Excellent agreement with the exact numerical Q 
results for various classes of ion-neutral interactions o 
the full range of mass parameters for general systems 
been obtained. 

Finally, generalization ( Sec. V) of the above analy 
Secs. II and III to cover the distributions n(E,,L,t) of A 
pairs over their internal energy E, and angular moment 
L, is straightforward. The resulting equations are approp 
ate to consideration of ion-atom association of atomic s 
cies in a gas. 
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Termolecular recombination: Coupled nearest-neighbor limit and uncoupled 
intermediate levels limit 
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Two extreme limits of collisional coupling in termolecular recombination are investigated. The 
coupled nearest neighbor (CNN) limit includes only couplings between neighboring excited 
energy levels of the associating species AB*, while the uncoupled intermediate levels (UIL ) 
limit includes only couplings between the fully dissociated reactants A +  and B —  and each of 
the (assumed uncoupled) excited levels of AB•, which are then coupled to the fully associated 
products AB. Comparison is made with results of previous exact and diffusion treatments. 

I. INTRODUCTION 

Analogy with a mathematically equivalent electrical 
network provides an effective framework whereby not only 
can the complicated multilevel collisional dynamics intrin-
sic to a master equation treatment of termolecular recombin-
ation 

A+ B—  M 	M 	 (1.1) 

between atomic species A' and B —  in a gas M be analyzed in 
a different light 1 •2  but also physically appealing models may 
be readily constructed. In previous reports,' the (exact) 
quasi-steady-state (QSS) master equation method,' the cor-
responding variational method, 2  and an approximate diffu-
sional method* were considered. In this paper, two simple 

models prompted by considering the analogous electrical 
diagram (Fig. 1)are investigated. So as to emphasize the 
importance of collisional couplings between many excited 
levels in a realistic treatment of process (1.1), two extreme 
limits will be tested. The coupled nearest -neighbor limit in-
cludes only the coupling of a given excited level n with its 
lower neighboring level n — 1. The limit of uncoupled inter-
mediate levels includes only couplings from the (external) 
source block of fully dissociated states of the reactants 
A+ and B —  to each of the excited levels n assumed to be 
uncoupled within the (internal) block '6' and then the cou-
pling from each of these uncoupled n to the (external) sink 
block .7 of fully associated levels of the products AB (cf. 
Fig. 1). The "intermediate" levels comprise block 51  which 
is intermediate between blocks and .7. 

I (t) 

I (t) FIG. I. (R, C) Electrical diagram (Ref. 2) 
appropriate to analysis of termolecular re-
combination, involving as an example, four 
excited levels (n = 1,2,3,4). 

I (t 
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II. CONSTRUCTION 
Termolecular recombination ( 1.1) may be described' 

via a time-independent treatment wherein equilibrium con-
centrations NA and NB of the fully dissociated atomic spe-
cies A and B with relative energies E, in the range OGE,<00, 
the reactant it block, are associated (a) by direct collisions 
into the product block .5° of fully associated molecular levels 
in the range - S>E,> - D maintained at zero population 
and (b) by a series of indirect transitions via the intermedi-
ate energy block 8' (0>E, > - S) of highly excited levels. 
The indirect mechanism '6' - -.7 is the most impor-
tant' at thermal energies since the rate of the large energy 
transfers involved with direct cd' ,7 transitions is vanish-
ingly small, by comparison. The lowest energy level of AB is 
- D, relative to the dissociated limit at zero energy, and 
- S is a bound level below which the probability /3 7 of colli-

sional stabilization of pairs in level E, is by definition unity. 
The two key quantities are P 7 which is unknown and the 
one-way equilibrium rate C,f  which is given' in terms of the 
equilibrium number density of A, of levels of energy E, per 
unit interval dE, and the frequency v„,, for E,-Ef  transi-
tions per unit interval dEf  by A, v,f . 

A hierarchy of approximate schemes are apparent via 
consideration2  of process (1.1) in terms of the analogous 
electrical diagram displayed in Fig. 1. Here N discrete junc-
tions (8?-block levels) n are at time-independent potentials 
P: below the (G" block junctions C, all maintained at unit 
equipotential (due to the assumed equilibrium concentra-
tions of A and B), or equivalently are at potentials 

= 1 - P s„ above the zero potential of the 9' block junc-
tions S (due to assumed zero concentration of AB). In terms 
of these voltages and of the conductances C R ' of each 
element of resistance R,f, the rate constant deduced 2  from 
the power equation is then the effective conductance R -' of 
the mathematically equivalent network. It follows from con-
sideration of the power loss in the circuit that 2  

1 
D 

= 
2 
— f dE, .1 

D 
 (P7 - P") 2Cv dErmR . 

-  
(2.1) 

Since the overall voltage drop is unity in the time-inde-
pendent treatment, Eq. ( 2.1 ) is also the throughput electri-
cal current. Only when the N nodes i in block 8' obey the 
Kirchoff current law, (KCL ), or the following quasi-steady-
state (QSS) equivalent condition for excited pairs: 

P7 	Cif dEf = 5°  CfP; dEf 	 (2.2) 
D 	 - D 

does Eq. (2.1) reduce to - j( 0), the energy-space current 

a(0)1T/4 1'VB  = f dE, f C„/P;dEf  - j(0) 
o 	- D 

(2.3a) 

across the dissociation limit at zero internal energy, or in 
general to 

- e 
a( - E));  or  AN = 5 .)  dE, 	(II- PnC„f dEf  

- E 	- D 

= j( E) 	 (2.3b) 

the constant energy-space downward current -j( - E), 

across any arbitrary level of energy - E in block 89 . T 
extreme limits may now be constructed. 

( A) Uncoupled intermediate levels (UIL) limit: 
the mainline entrance and exit channels of resistances 
and R,,s  defined in terms of collisional couplings by 

R = 	C„, dE,a C„ 	 (2 

and 
s 

R 	= dEf  --z-.C,, , 
- D 

respectively, are only included in the network for incl .  
passage between the reactant and product blocks Cf an 
via junction n, the current 4 flowing past any of the unc 
pled junctions n is given by 

/„ [R c„ R„s ] =1 , 

since the voltage drop ( (4' -.7) is unity and since n is 
coupled to any other junction n' of intermediate block 
The direct ( ) current 

co 	j• S 

= R = dE, 	Cif  dEf  
- D 

is normally negligible but can be given by expression 
since Ris vanish for all nodes fin block So. The voltage 
between junctions C and each isolated n is then 

C„s  
P: = 1„R o, - 	 

C,„ 

to be used in the basic power expression (2.1) for the 
constant. 

Although expression ( 2.8) violates the KCL cond 
(2.2) required for reduction of Eq. ( 2.1) to Eq. ( 2.3 ) 
QSS rate (2.3a) nonetheless provides the rate 

f—D[(Ccf-I-Cfs) 
dEf a 1(0).171 A TV = 	

CcfCis 

- 
af  dEf  IV.  

D 

which has several exemplary features. This rate is al 
effective conductance obtained from the total electrical 
rent I„N_ I„ flowing between nodes C and S maintain 
unit potential difference. Although invalid when corn 
to Eq. ( 2.8) in Eq. ( 2.1), expression (2.9) illustrates 
effectively (a) that the partial rate of  of a reaction 
proceeds via the series sequence cd .  -f and f- of t 
tions is given by the conductance 

Ci = R = [R,cf  Rfs ]-'=  CcfCrs 

Cci ± Cis 
due to resistances R cf  and Ris connected in series an 
that the overall rate a, of the reaction which proceeds v 
parallel sequence involving each f is given by the co 
Lance 

C = R = y R = y C1 
1=0 	j=0 

of the effective network with resistances Rf ( f = 1,2, 
connected in parallel. The resistance, R o  = Rcs• of t 

• 

• 
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.5" direct connection is included in Eq. (2.11). Expressions 
(2.9) provide illustrations of the theorem due to Bates.' The 
approximate QSS rate a,( — E) as a function of W block 
energy — E is obtained by inserting Eq. (2.8) in Eq. (2.3b ). 
The first rate under test is given by the probability (2.8) 
inserted in the power expression ( 2.1). 

(B) Coupled nearest-neighbor (CNN) limit: When re-
sistors R e.„ _ I  are only included in block if , the throughput 
current I is given by 

I 

I [R c•N ± 	R„,„ _ 1 ] 	, 	 (2.12) 
n 

where junctions in block .7 are again denoted by n = 0. As 
the highest excited bound level N-. 00, R e N vanishes, and 
the voltage drop between junctions C and f is then 

P .; = I 
+ 

— 

n  7 c i , [ 	c „7„1_ 	, 	(2.13) 
+ 1 	 n il  

which, when inserted in the power equation ( 2.1) yields the 
second rate under investigation. A simplified rate given by 
the effective conductance (or electrical current) in Eq. 
(2.12) is 

-1 
aziVATV 2  = R =[ 	c 	, 	, 	 (2.14) 

- 
which again illustrates the reaction; n-series principle of 
Bates.' The approximation (2.14) has been previously ob-
tained for (e-A + ) + e recombination.' In contrast to Eq. 
(2.9), the result (2.14) cannot be obtained from the energy-
space current (2.3a) since connections between C and the 
various n are ignored. 

Note that the key approximations CNN, Eq. (2.13), 
and UIL, Eq. (2.8), satisfy the correct boundary conditions 

Pf(E, =0) = 0 , 

P f(E, = — S) = 1 
	

(2.15) 

for the probability P S. 

M. RESULTS 

As a test of the above approximations the case of termo-
lecular ion-ion recombination (1.1) is adopted since the as-
sociation (exact) rate as  has been well studied (cf. Ref. 3) 
over full variation of the mass parameter 

a  	 (3.1) 
MA (MA + Ms + M, ) 

MB Ms  

pertinent to A +-M collisions and over the following model 
(A+-M) interactions: symmetrical resonance charge trans-
fer (CX), polarization attraction (POL), and hard-sphere 
repulsion (HS). The masses of A + , B- , and M are M A , M B , 
and Ma , respectively. 

The approximate probabilities labeled UIL and CNN 
are calculated from the limit (2.8) for uncoupled-intermedi-
ate levels and the limit (2.13) for coupled-nearest-neighbor, 
respectively. They are compared in Fig. 2( a) with the exact 
quasi-steady-state (QSS) solution of Eq. (2.2). The results, 
which pertain to termolecular recombination of equal mass  

species (a = i) for A +-M collisions under polarization at-
traction (POL), are quite representative of other cases. 
Closer agreement of CNN with the exact results indicates 
that association tends to proceed via a sequence of small 
energy-changing transitions down the ladder of intermedi-
ate levels n, as expected, rather than via the indirect 
( n--..7) larger energy-changing transitions of UIL, 
which involves each intermediate level n presumed uncou-
pled from one another. Moreover, both approximations ap-
pear robust with respect both to the number N ( = 36 and 
72) of intermediate levels n adopted in block I and to the 
consequent decrease in spacing between the levels. The N 
pivots and spacings are selected by the highly accurate meth-
od prescribed in Ref. 6. 

Since both approximations CNN and UIL are seen to 
satisfy the correct constraints (2.15), the overall agreement 
in Fig. 2 (a) may however mask certain deficiencies. A more 
sensitive quantity of greater significance to recombination is 
the gradient (dP,/dE,), since, in the limit of small energy 
transfers, the energy-space current (2.3b) across W block 
level — E reduces' to the diffusional current 

FIG. 2. (a) Stabilization probabilities (voltage drops) as a function of bind-
ing energy ( — E/kT): EXACT [Eq. (2.2)1; CNN [Eq. (2.13)1; and UIL 
[Eq. (2.8)] with 72 pivots (upper curve) and 36 pivots (lower curve). (b) 
Corresponding derivatives. 
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4 

, dP s  
id( — E) = dE, 

where the second-order energy-change moment is 

D 2) (E,) = — 	(Ef  — 	dEf  
2 	D 
1 f'' (3.3) 

The gradients shown in Fig. 2 (b) are therefore expected to 
provide more reliable indicators of the extent of expected 
agreement between the corresponding rates. 

This sensitivity is indeed confirmed in Figs. 3(a) and 

FIG. 3. Energy-space currents (2.3b), normalized to exact QSS rate aE  
[Eq. (2.3b) with (2.2)] per unit TV A  N 9 across bound energies ( — E/k7): 
for model A-M interactions POL, HS, and CX. (a) UIL, with Eq. (2.8); 
(b) CNN, with Eq. (2.13); (c) ratio of approximate to exact derivatives, 
Eq. (3.4). 

3 (b) which illustrate the quite different shapes for the v 
tions with E of —j( — E), the downward energy-space c 
rent (2.3b), obtained from both approximations. The c 
rents (2.3b) are normalized to the exact QSS rate calcula 
from the numerical solution of Eq. (2.2) in Eq. ( 2.3b ). 
though aE  is then by definition, constant with respect t 
variation, the E variation of the rate ( 2.3b ) with the appr 
mate probabilities (2.8) and (2.13) indicates the se 
breakdown of QSS, due to the differences displayed in F 
2(a) and 2( b). The following points may now be noted 

First, assigning the rate either at the dissociation 1 
E = 0 (the ce—gf interface) or at the lower association 1 
— S (the —.5° interface) represents a highly inaccu 

procedure for the case of non-QSS probabilities, as previ 
ly noted4  for the diffusional results. Choosing the rat 
—2k Tbelow the dissociation limit yields the exact QSS 
for both approximations, a coincidence mainly due to 
agreement in Fig. 2( b) of the derivatives (dP;s/dE, 
E,— —2kT. 

Second, the different shape of Fig. 3(a) from that in 
3 ( b ) can be explained with the aid of Fig. 2 ( b ). From 
(3.2 ), the ratio of the downward energy-space current to 
exact rate is 

— //,') 	[ d,Ps i [—d,P,s  
CIA A 	CIA lE P  

where A and E label approximate and exact quantities 
spectively. As A = — E,/ kT increases to 2, Fig. 3(c) sh 
that the ratio (3.4) increases to unity for both CNN 
UIL. With further increase of A, the CNN ratio continu 
increase while the UIL ratio increases until A approa 
—3.5 and then falls below unity past A-7. The diffe 
shapes in Figs. 3(a) and 3( b) are a direct reflection o 
variation for each approximation of the ratio (3.4) and 
firms the physical importance and significance of the 
ents (dPidE,). 

In spite of its attractive illustrative features, the 
energy current (2.9) yields rates which are much sm 
than aE  by factors ranging from —10 to —10 4  as the, 
parameter a of Eq. (3.1) varies from (1/3) for equal m 
to 10 -= 3 . The simplified CNN result (2.14) varies fr 
factor of 3 higher for a = 10 -2, to a factor of 10 small 
a = 1/3, to a factor of 17 higher at a = 10 3, the limit for 
recombination in a gas. 

As previously noted, the power expression ( 2.1), r 
than Eq. ( 2.3), must be used when approximate ( non-
probabilities as Eq. ( 2.8) and ( 2.13) are adopted. Sinc 
QSS probabilities provided' a minimum aE  to Eq. (2.1 
other approximate rates must be higher than aE . T 
indeed confirmed by Figs. 4( a) and 4( b), which also 
that the CNN rates are much closer to aE  than the 
rates, as expected from the closer gradients in Fig. 2 ( b) 
maximum deviation occurs at a = 1/3 where the CNN 
are only —25% higher than the exact QSS rates a E .  
the rates are normalized to the Thomson rate a r , as de 
in the previous reports." 

In addition to the exact QSS treatment, there are 
three accurate methods available for termolecular rate 
the previous variational procedure' which provides, in 
an alternative route to the QSS rates; (b) the previous 

(3.2) 

• 

• 

I 
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FIG. 4. Normalized partial rates (M A  /M A  B )(ii/ar ) for termolecular re-
combination A÷ +8 —  +M—AB + M resulting from (A ÷—M) collisions 
as a function of mass parameter a for various model interactions (CX and 
0: symmetrical resonance charge transfer; HS and El: hard-sphere; POL 
and A: polarization attraction). (a) UIL, Eq. (2.1) with (2.8); (b) CNN, 
Eq. (2.1) with Eq. (2.13); (c) diffusion method, Eq. (2.1) with Eq. (3.6). 

sional method's  and ( c) the present CNN method. Meth-
ods CNN and D are in effect similar in spirit in that CNN 
also includes upward and downward transitions, and also 
emphasizes the role of small energy changes between neigh-
boring levels. The diffusion method, however, does not im-
pose, as does CNN, an immediate cutoff to transitions which 

involve larger energy changes. The CNN probability ( 2.13 ) 
relies only on evaluation of the collision kernel C„,„ _ I  via 
the relation 

P! =P1+1 + Cn—+ 1  i.n[ j C I  I,n 	 (3.5 ) 
.C:1 

which is simpler to implement than the diffusion method, 4 
 for which 

P;(Ef  ) = P7(Ed + if sE  yr  D 72)E(E)][f_s D (d2)E(E)J -  
(3.6) 

which requires highly accurate 2  evaluation of the energy-
change moment D (2) (E) given by Eq. ( 3.3 ). 

Figure 4( c) shows the rates of the diffusion method ob-
tained from calculations of D1 2)  which are more accurate 
than those previously determined in Ref. 4. Comparison 
between Figs. 4(b) and 4(c) indicates that comparable rates 
are achieved by the diffusion and CNN methods. The more 
sophisticated diffusion method, however, is, in principle, 
more accurate in the limits of small and large mass param-
eters a where the collision dynamics is weak so that the rates 
are then more sensitive to the stabilization probabilities P f 
near the dissociation limit. The diffusion method is also 
more accurate for intermediate a — 1/3 since the larger ener-
gy transfers tend to be more influential and are included. In 
spite of these shortcomings, the CNN method yields rates, 
just slightly less good than the diffusion treatment. 

IV. SUMMARY AND CONCLUSION 

With the aid of an electrical diagram (Fig. 1) two ex-
treme limits of collisional coupling are investigated in order 
to elucidate the role of various classes of transitions. A given 
level n is directly coupled only to its neighbor in CNN while, 
in UIL, each n is assumed coupled only to the fully dissociat-
ed and fully associated states of the reactant (6' and product 
.5° channels, respectively. The CNN approximation fur-
nishes closer stabilization probabilities P7 and association 
rates a, thereby indicating that recombination tends to pro-
ceed more down an energy ladder of coupled levels than by 
larger energy jumps (6' n -..5° involving each intermediate 
level n. As in the case for all approximate P 7, the power 
equation (2.1) furnishes' the required rate ( which is always 
higher than the exact QSS rate), rather than j( — E,) the 
energy-space current ( 2.3b ) which holds' only for quasi-
steady-state probabilities ( 2.2). The variation of the ener-
gy-space currents j( — E,) deduced from non-QSS probabi-
lities Psis mainly determined by the derivatives (dPS/dE,), 
as in Eq. ( 3.4). When assessing via comparison with the 
exact QSS rate the effectiveness of the underlying physical 
mechanism in each approximate model (CNN, UIL, or dif-
fusion) it is important to use the power expression (2.1). 
Otherwise, use of Eq. (2.9b), ( 2.14), or even of the energy-
space currents ( 2.3b ) as in Figs. 3 ( a) and 3( b ) can lead to 
incorrect conclusions regarding the efficacy of the basic 
physical assumption. 

In conclusion, the nearest-neighbor limit CNN appears 
to be a satisfactory approximation for termolecular ion-ion 
recombination over the full range of mass parameter and 
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interactions associated with ( At-M ) collisions. It is similar 
in spirit to the more sophisticated diffusion method, yields 
comparable rates, and yet it is much simpler to implement. 
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1 . SCOPE 

The aim here is to survey the mechanisms basic to various types of 

recombination processes and provide some recent results. Most assume 

significance in astrophysics (interstellar medium, stellar and planetary 

atmospheres) and some in laboratory (Tokamak) fusion plasmas and in various 

types of lasers. They span a wide range in physical conditions e.g., the 

ranges 10 < T < 10
6 in temperature T ( °K) and 1 < N < 1020 in particle density 

N (cm 3 ). Recombination includes here not only electron-ion and ion-ion 

processes but also ion-atom (molecule) association. Most of the processes 

below may be characterized by the mechanism responsible for stabilization of 

an intermediate resonant collision complex. Typical two-body rates k(cm
3 s-1 ) 

for simple atomic and diatomic systems are indicated in parenthesis beside 

each process. 

For Termolecular Association  (TA) 

-0 
A
+ + B + M 4- (AB

+ 
 ) + M 4 AB

+ 
+ M, 	(10-28-10-32 ) N cm3s-1 	(1) 

in a gas M of density N, stabilization of AB occurs via AB - M collisions at 

a quenching frequency vq  < 10
-9 

N s
-1

, while Radiative Association  (RA), 

A+  + B F (AB+ ) *  ►  AB + hu , (10 -9-10-17 ) em3s 
	

(2) 

occurs via photon emission (vibrational and electronic) at a radiative rate v r  

(10
3
-10

6 ) s-1 depending on the type (vibrational or electronic) of 

stabilizing transition. 

For Dissociative Recombination  (DR), 

e + AB+  FAB 4 A + B , (10-6-10-7 ) cm3s-1 	 (3) 
* 

stabilization of AB occurs by quantal predissociation onto repulsive covalent 

excited molecular states at a dissociative frequency vd  - 10
15 

s
-1

. 

1 



Emission of radiation provides the required stabilization in Dietectronic  

Recombination  (DIR) 

e + Az+(i) t [Az+(k) - e]We' 
 -) A (z-1) (J;ne) + hp , (10

-11 
cm

3 s -1 ) 	(4) 

which occurs at (resonant) electron energies much higher than the lower thres- 

hold energies for which the direct (non-resonant) Radiative Recombination  (RR) 

e + A
Z+

(i) 	A(z-1)+  (i;ne) + hv , (10
-12 

am
3 

s
-1

) 
	

(5) 

is more important. In contrast to the above formation of intermediate long 

lived scattering resonances in (1)-(4), Termotecutar Ion-Ion Recombination  

(TR) 

A
+ 
+ B + M AB + M , 	(10-24-10-2 5 ) N cm3s-1  ' 
	

(6) 

of simple systems proceeds by non-resonant scattering since the Coulomb 

attraction cannot accomodate quasi-bound levels. The rates are fast since the 

third body M effectively utilizes the many (11+-B) Coulombic superthermal 

encounters, which occur at large ion-ion separations R < 3 70 R at room 
temperature. Elastic 11+-M and B-M collisions are very efficient in removing 

most of the energy gained by 11 +  and B from the Coulomb field so that the 

highly excited bound levels of AB so formed are then destroyed by multistep 

collisional cascades to stable levels. In parallel to the resonant scattering 

in (1), TA can also proceed via non-resonant (11+-M) collisions which change 

the energy and angular-momentum of (11 +-B) relative motion. 

2 



Termolecular Electron-Ion Recombination 

e + A4  + M ►  A(n) + M, (10-26-10-29 ) N em3s -1 
	

(7) 

also proceeds via collisions with the gas M, but at a much smaller rate, since 

elastic electron-atom M collisions cause only a small fraction (-2m/M) of 

energy to be transferred to M. Rates become larger for molecular M which 

absorb a much larger fraction of energy via rotational and vibrational exci-

tation, and for molecular ions when dissociative recombination involving bound 

electrons can provide substantial enhancement. 

As is well known, Mutual Neutralization  (MN) 

A
+ 

+ B
- 
-) A + B , 	(10-7-10- ) am3  s-1 
	

(8) 

proceeds by direct coupling of the diabatic ionic potential energy curve with 

the covalent curves, which however involve much smaller ion-ion separations 

R 	(10-50) R to yield rates an order of magnitude smaller than for (6). The 

fact that the Coulombic interaction between the ions is strong at large 

separations where the (Landau-Zener) probability for curve crossing is weak 

ensures the dominance of termolecular process (6) over bimolecular process 

(8), even at modest pressures. Since collisions with M can form bound (11 +-B) 

states which in turn promote more efficient curve crossing-, MN can be 

considerably enhanced by an ambient gas. It does not occur parallel to TR (6) 

so that the effective rate for neutralization is then not simply the sum (k TR  

+ k
MN ) of the individual rates. 

In an electron-ion plasma of intermediate density n
e - 10

11 
 cm 3 , 

recombination 

e + A+  + e 4 A(n) + e + hu 	 (9) 

3 



proceeds by collisions into high n-levels, which become de-excited by e-A(n) 

collisions and radiative emission. State-to-states rates for DIR (4), 

RR (5), DR (3), and NSR (7) would all be relevant. Cotlisional-radiative  

recombination  (CRR) then yields the familiar set of quasi-equilibrium (input 

= output) Master Equations to be solved for the individual excited state 

populations Nn 
in terms of the concentration of free electrons, ions and 

recombined atoms in the lowest stabilized states. 

1.1 CURRENT STATUS OF RECOMBINATION  

The present state of recombination is that theory (with reliable results) 

for most of the above processes involving simple atomic or diatomic systems is 

reaching maturity and is approaching a well defined Hi-Tech State. In par-

ticular the recent theoretical developments
[1-3] 

of DIR indicate that DIR 

cross sections may be calculated to within the same degree of accuracy (-10%) 

as electron-ion inelastic collisions. Termolecular ion-ion recombination [4-6] 

of simple ion systems in a gas has been solved as a universal function of mass 

species, and gas density and temperature. Results for simple systems of 

general mass are available at low density. Dissociative recombination [8] of 

simple diatomic systems is in principle well known but lack of relevant 

molecular potential energy curves and branching ratios to final products 

prohibit rigorous quantal calculation. Ion-neutral reactions and termolecular 

electron-ion recombination for complex systems remain by comparision in a more 

exploratory condition, although substantial progress -F9 - ' 10]  has recently 

occurred. 

Reliable experiments [8 ' 11-13] exist for DR, TA and MN which proceed with 

measurable rates (10 -7-10
-g 
 cm3s -1  ). Technical breakthroughs have recently 

permitted measurements on DIR [14 ' 15] and RA[16] which proceed at much slower 

rates (10-10-10-15 ) cm
3
s
-1

, respectively. The influence of electric fields in 

the experiments is important, particularly for DIR and to a lesser extent for 

4 



DR. Theories of recombination in external fields are currently under 

development. 

Although TR (6) is now well understood theoretically and proceeds at the 

largest rate of any recombination processes involving simple systems, reliable 

experimental measurement, apart from some historical data, E171  is as yet not 

forthcoming although some activity has recently emerged. 1181 There are at 

present no measurements from a given laboratory which span the full range of 

gas pressures studied theoretically and which monitor the identity of ions as 

the pressure changes. The task is difficult in that the ions may well be 

clustered to high orders. 

1.2 GENERIC KINETIC AND RESONANT-SCATTERING TREATMENT 

Identify the interacting species in (1)-(9) as A, B and M with concentra-

tions nA' nB and N, respectively. The two stage sequence common to TA(1), 

RA(2), DIR(3) and DR(5) is the formation of a long-lived unstable collision 
* 

complex AB , or scattering resonance, followed by an irreversible stabiliza-

tion mechanism, whether radiative as in RA and DIR, collisional as in TA or 

dissociative as in DR. The complex with energy degenerate to and lying within 

the continuum of dissociated A(i) + B(j) states is formed when the excess 

energy and angular momenta of internal and relative motion of A and B become 

redistributed among the internal degrees of freedom of AB . Following large 

perturbations in (A-B) close encounters, a quasi-equilibrium of these excited 
* 

states of AB is established. Thus processes RA(1), TA(2), DR(3) and DIR(4) 

above may be conveniently analyzed in terms of the macroscopic two stage 

sequence 

k
* 

s 
A + B 4- AB

* 
-0 products 

vd 

which involves the stabilization at frequency vs  of quasi-bound resonant 
* 	 * 

scattering states of AB formed at rate k * (cm3s-1 ) before AB can 

(10) 

5 



redissociate (or autoionize) back to the initial or any other dissociated 

channel at frequency yd . For a quasi-steady-state density n AB  of the AB , 

the overall process then proceeds at a rate (cm
3s-1) 

k =Thv-kaPk 
I v * 	

= 	
1  * 

AB s d+21)
s 

where Ps is the probability of routing to a particular pair of stabilized 

products s. A negative temperature T dependence is anticipated for k since vd 

 increases with T. As the density N of the gas M is raised, (11) for 

collisional association TA predicts an initial linear variation of k with N 

(when v
d 

>> vs k
s 
N) increasing towards a saturation value k (when v

s 
>> 

vd
) times the branching ratio [v s /2v 

s
] for that particular pair of products. 

The reaction volume (cm 3 ) 

* 	* 
K = n AB/n AnB = k /v

d 
	 (12) 

is pivotal in determining the T-dependence 

K(T) 

of the overall rate 

vs vd 
k - k*  (13) * 	I 

k +21) K(T) "s+vd 

* 
Note that K is not an equilibrium constant in the usual sense since AB 

is distributed only among those states satisfying energy and angular momentum 

conservation above the dissociation limit. It is given in usual notation by 

h3 	q(AB * ) 	wAB 
K(T) - 

     

( 114 ) (2wm a)3/2 q(A)q(B) "A"B 
AB 
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where q is the internal partition function, or the number of quantum states 

availableattemperatureT-2exp(-E./e), and where (.) is the electronic 
i 

statistical weight, associated with each reactant A and B and with the 

activated complex AB of reduced mass M AB . While q(A) and q(B) are generally 

known, q(AB ) must include only those rotational-vibrational-electronic states 

of AB accessible at energies above the dissociation threshold of AB. It also 

includes states which satisfy conservation of total angular momentum produced 

from the orbital angular momentum for (A-B) relative motion and the combined 

internal angular momentum of the individual reactants. 

The key quantities which characterize the T-dependence and rate limiting 

step of each of RA, TA, DIR and DR are therefore K(T) and the stabilization 

frequency v s . For polyatomic species, not only is calculation of K difficult 

but vs is uncertain to the extent that the type of transition (vibration or 

electronic) may not be established. This lack can involve at least two orders 

of magnitude difference in the rates.
[10] 

For cases RA, DIR, DR and TA, a microscopic state-to-state generaliza-

tion, (phase-space or multichannel) of the basic premise underlying (11) can 

be written down in terms of all the relevant electronic, vibrational and 

rotational quantum numbers for the internal degrees of freedom i and j of A(i) 

and B(j), for the translational energy and angular momentum of A-B relative 

motion and for the total conserved angular momentum and energy. The simpli-

fied expression (11) however not only serves as a guide to experimentalists in 

elucidating the role, and extracting the rate peculiar to various stabiliza-

tion mechanisms but is also capable of providing order-of-magnitude rates and 

the associated dependence on temperature T fairly reliably. 

The intimate connection of (11), standard in chemical kinetics, with 

scattering theory is instructive. When the redissociation or autoionization 

channels in (1)-(5) are considered as a series of non-overlapping resonances 
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and when the non resonant background scattering is neglected, then Breit-

Wigner resonance scattering theory with explicit inclusion of all multi-

channels, consistent with energy and angular momentum conservation, can be 

applied. In order to preserve a simple notation to isolate the key connec-

tion, and to illustrate the essential technique, let AB exhibit only relative 

motion scattering resonances (quasi bound states) at (A-B) relative energies E 

* 
= Er . The cross section for the resonant reaction of A and B with internal 

energies EA,B is  

r h2 w(AB 	
Fa Fs

*
) 	v  

a(E;E E ) - A' B 	E [2MAB] 
w(A)w(B) 2 	* 2 1 2 [(ET-Er ) + 	F ] 

( 1 5 ) 

where the total energy of the system is ET  = EA  + EB  + E, where the energy 

widths for stabilization and re-dissociation (autoionization) are related to 

the corresponding frequencies by 

Us  = h us  , 	I'd  = h vd 	 (16) 

where t is the total width (2 Fd+2 I's ) for all dissociative (d) and stabiliza-
d 	s 

tion channels (s). The electronic statistical weight of species X is w(X). 

The rate of recombination for a Maxwellian distribution of relative energies E 

at temperature T is 

r8kT ) 1/2 c°  
k(T) = 	 1 e (1(0 exp(-e)de ; e = E/kT 	(17) 

0 

where MAB is the reduced mass of (A-B). Since the Dirac delta function b(x) 
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complex with reaction volume K = 3 — n R
3
T . At low gas density N, (13) predicts 

in a sense can be regarded to form an extremely large loose non-resonating 

4 

is w
-1 lim h(x

2
+h

2 ) -1 , the rate (17) for sharp resonances F << (E T-E r ) then 
h-040 

reduces to 

	

h3 . 	(JAB r 	ves 
k(T,E A ,EB ) - 	  	, exp-(Er /kT)] exp(EA+EB)/kT (18) 

3/2 w 

	

(2wMABkT) 	
A
w 
B 	

(21, s+ve 
 r s 

On assuming that the frequencies are independent of the resonance 

positions E r , then 2 exp(-Er/kT) 
is then simply the partition function q(AB ) 

r 

arising from all the resonance states of AB . On averaging over all internal 

states i and J of A and B and with the use of detailed balance, (12), (11) and 

(14) are then recovered since 2 exp(-EA/kT) exp(-EB/kT) is the product 
i,J 

q(A)q(B) of the reactant partition functions. This connection provides a 

basis for (11) or (14) more quantitative than the earlier steady-state kinetic 

rate argument. The extension to include all multichannels directly is 

straight- forward, but the case of overlapping resonances existing in various 

polyatomic systems requires attention, and may well under approximation 

provide the rate (13) in current use. 

Because of the long range Coulombic attraction in the entrance channels 

the remaining related processes (TR, TER), as indicated earlier, do not 

proceed via the resonating tight complex but rather by energy-changing 

collisions between M and (11 4. -B) pairs. The collisions are effective for 

those pairs with separation R < RT  = e2/kT 370 R at room temperature, which 

4 	3 	LIT 3  

kTR-3 n RTvs=3 RT<vAB>N a (19) 

9 



where a is the cross section for free-bound energy-changing (e-B - )-M 

collisions, and emphasizes the characteristic linear N and the T -5/2-T-3 

dependencies. At 	N, however, the rate does not converge to the 

saturation value k predicted by (13). The rate of approach of A+  and B to 

RT  is limited by the transport rate, which decreases as N
-1 

and which becomes 

comparable to the reaction rate (19) within RT  at about -1 atm. For TA(1) 

however the transport rate always remains much higher than the rate limiting 

step of reaction so that saturation to the thermal rate k is eventually 

obtained. 
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2. RADIATIVE AND TERMOLECULAR ASSOCIATION  

2.1 SIMPLE SYSTEMS:  The underlying physics of Radiative Recombination 

of simple system as 

	

C+(2P1/2) + H( 2S) 	CH+ (A 1 17) 	CH+(( 1 2) + hu 
	

(20) 

becomes transparent in a semiclassical treatment, (19] where the cross section 

is 

w 

a(E) = 2w f P r (E,p)p dp 	 (21) 

at relative energy E. The probability of radiative emission during a 

collision at impact parameter p is 

	

co 	 co 

Pr (E,p) = 	G(t)A(t)dt = 	G(R)A(R)dR/v R 	 (22) 

	

-CO 
	

R 

where the radial speed at relative separation R is v R  with turning point RT , 

and where G(R) is the probability that CH+  during the collision is in state i 

(A
1
if), which radiates at a local rate 

4 
A(R) = 3 1114 c

3 
IM(R)1 2 AE

3 (R) (23) 

to the stabilized state f(X
1 
 2). The molecular states, with wavefunctions 41 i f 

 and energy separation AE(R) = Vf (R) - V i (R), are connected via the dipole 
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matrix element M(R) 	oyr,R)lerl*i (r,R)>. Rates k RA  = 1.3 10-17  cm3  s-1  

obtained E193  for (20) over the temperature range 20 < T ( °K) < 1000 do not, 

however, satisfactorily explain the discrepancy between the observed and 

theoretically deduced abundances of the radical CH+  in diffuse interstellar 

clouds. A quantal treatment can in addition acknowledge the discrete 

vibrational levels of the intermediate electronic state i(A
1 
 17) and can include 

quasi-bound resonances formed within the centrifugal barrier. These effects 

enhance
[20] 

the semiclassical rates for (20) by - 25%, mainly at lower T. 

Also state i may support predissociating levels between the fine structure 

state e ( 213 1/2 ) and e ( 2P3/2 ) of the reactants. No full treatment has as 

yet been performed. 

Termolecular Association 

A+  + B + M 4  AB+  + M 	 (24) 

for formation of simple diatomics as Ne 2+ , Ne2+ , etc. can be considered [21] as 

proceeding via a multistep series of collisions between (e-B) pairs and M 

which change both the energy E and angular momentum L of relative (He +-He) 

motion to such an extent that bound stabilized levels are formed. At lower 

energies E there is an additional contribution from quasi-bound resonances [22] 

formed at positive E within the centrifugal barrier. 

A multichannel generalization of (13) to simple (structureless) atomic 

systems yields the termolecular association rate [23] 

2 L s 

	

co 	max 	k. K.N 

A 	dE 
	dL2 	 

[ 	i. 	i. * 

	

ICT = I 	
1 	 k. 

	

s 	] 1 k*+k. K.N 

	

0 	o 	I. 	i. 	i. 

(25) 

where subscripted-i rates refer to specific energy E and angular momentum L of 

A-B relative motion, where L max  is the maximum L of the complex at fixed E, 
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and where 

k i  N n i  = j°  ni (R) v i (R)dR s 

R7 

	 (26) 

is the overall frequency for stabilization of all the (A-B) i-pairs with 

internal separation R between the innermost turning point R i  of radial motion 

and the radial boundary R0 (E,L) of the complex. The pair-distribution per 

unit interval dR dE dL i
2 

is n i (R), and ii i (R) = kqN is the frequency of (A-B) R 

 - M quenching collisions with rate kq  at fixed (R, E i , L i2 ). At low gas 

densities N this distribution can be taken as its equilibrium value n i' since 

v in (26) is already linear in N. When the quenching coefficient k q  is 

constant, and equal to some fraction R  of the constant Langevin limiting rate 

for spiralling (AB -M) collisions 

kL  = 2-ffe(am/Ms ) 1/2 
	

(27) 

where am  is the polarizability of M and Ms  is the reduced mass of the (AB -M) 

system, it then follows that 

Ro (E) 	R2p2 

n*  = 

o 

dE J 
o 

dR  J iii(R)dL2 

2 
= — (kT) -3/2 	exp(-E/kT)dE j' [E-V( R)1 1/2 dR 	(28) 

- For polarization attraction V(R) ti (a0 2/20) between A+  and B of 

polarizability aB  and orbiting radius R0(E) = (aRe2/2E )1/4 , (28) yields 

R
o
(E) 
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4
3 
 8 

n = 	RL  (29)  

where RL is (aBe
2
/2kT)

1/4 and (8/v1;) arises from both the focusing effect and 

the enhancement of R o 
at small E. The association rate at low N is then 

kTA  = n [p(T,N)yN - (10
-28 

- 10
-31

)N cm
3 

s
-1 

(30) 

which exhibits the temperature dependence P(T) T
-3/4

. The efficiency R  '- 1, 

but for He - He charge transfer collisions the quenching rate k g  - <vAleAm> 

involves an additional (kT)
1/2 

factor from v and a factor (kT)
-1 

from AM 

focusing effects so that kA 
T-5/4 

at low temperature. 

2.2 COMPLEX SYSTEMS:  Here, rates are much higher due to increase in the 

physical size and in the number of internal modes of the intermediate complex. 

For triatomic ionic systems as 
* 

r 
C
+ 

+ H 	(CH2 
+* 

4 CH2
+ 

+ hv 2 I' 4-  d  

which initiates carbon phase chemistry in diffuse and dense interstellar 

clouds, [24] and for polyatomic complexes as in either 

CH
3
+  + H2 F(CH5

+ ) *  -) CH5+  + hu 

(31a) 

(31b)  

which is a precursor [9] to the formation of methane (CH4 )
' 
or in 

* 
k * D r 

CH
3 

+ H2O 	(CH
3
4. 41

2
0) 4  CH3+ •H20 + hp v

d  
(31c) 
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which can be photodissociated
[24] to produce methanol (CH

3
OH) in the 

interstellar medium, the "kinetic chemical" approach is as yet the only viable 

method. The collision duration is much longer than that for simple systems as 

(20) and there are simply too many degrees of freedom in the intermediate 

complex to consider in a full quantal state-to-state fashion. Moreover the 

complex offers a near continuum of closely spaced vibrational (and electronic) 

energies, overlapping resonances and many intramolecular processes so that a 

state-to-state method could not be considered as providing the most efficient 

or realistic description. 

In order to isolate radiative association (RA) from termolecular 

association (TA) extremely low neutral densities < 10 10  cm-3  and temperatures 

T (10°K-30°K) are required. The mechanisms often proceed in parallel so that, 

in the coupled sequence, 

* 
r 

A + B + (M) 	AB+  4 AB + hv 	 (32) 
vd 

* 

-0 	q 
(- AB

* 
 4 AB + M 

Lid 

radiative association occurs at the rate 

r r 
k
RA 

= nAB v r - H----] k vd+vs  

and termolecular association at the rate 

k M 
q  1* 1  k kTA n AB pq 	lvd+us j 

(33) 

( 34 ) 

( 35 ) 
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The frequency of stabilization of the complex, against both natural and 

collisional disruption at frequency vd , is 

vs 
=Dr +k N , 
	 (36) 

the sum of the radiative decay frequency v r , and the frequency kqN for 

collisional quenching. At low densities N(H2 ,He) - (103  -10
10 

 ) cm-3  in 

interstellar clouds, v s  = Dr  << va , so that the overall association is 

radiative controlled proceeding at rate 

kA = k RA = K r 
	 (37) 

where the reaction volume is given by (14). At intermediate densities 

(10
10

-10
16

) am-3 's still remains << va , and association proceeds at rate 

kA = kRA + kTA = K (vr + kq N) 
	

(38) 

which increases with gas density N, until it saturates to the limiting rate 

kTA = k of collisional formation of the original complex. The rate (38) is 

determined by the character of the interaction between the transition channels 

within the complex and differences in temperature dependence are mainly con-

trolled by the T-variation of the reaction volume K(T). Radiative stabiliza-

tion rates vr for complex systems are also uncertain, but are expected to be 

vr - 10
3 

s
-1 

for vibrational transitions and v
r - 10

5-106 s-1 for electronic 

transitions. The larger electronic rates v r  permits association in inter-

stellar clouds to proceed faster than originally supposed. [9] 

Typical values for the relevant rates are the Langevin limit k - 10 -9 

cm
3 

s-1 , va - 10
7 

s
-1

, v r - 10
3
-10

5 
s
-1 

and the Langevin limit v q  - 10
-9
N s

-1
. 
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Radiative rates k RA - (10
-13

-10
-11

) cm3 s
-1 

and termolecular rates kTA - 

10
-25 N cm3 s-1 are then expected for complex systems at low gas densities N. 

Termolecular association therefore begin to compete with RA for N '- 10
12 

cm 
3 

while at higher N > 10
15 cm-3 , TA becomes dominant. 

Few experiments exist on RA, mainly due to the smallness of the rate 

10
-13 

cm
3 

s
-1 and difficulty in achieving low temperatures (T ti  10°K) and 

densities (N < 109  cm 3 ) needed for isolation of RA. The TRAP technique of 

Dunn and associates
[16] 

represents a spirited effort while at higher N - 10 11 

- 10 13 cm-3 , the ICR (ion-cyclotron resonance)-experiment [25] measures the RA 

and TA combination (21). By contrast, many TA experimental studies at yet 

higher N > 10 15  cm-3  exist for atmospheric species - the SIFT (selected ion 

flow tube) technique [123  being the major contributor. For TA, reasonable 

(order-of-magnitude) agreement exist with theory, particularly in the tempera-

ture variation. For RA, the few measurements of (24) and (25) do not agree 

with available theory and do not furnish information on the type (vibrational 

or electronic) of radiative stabilization. Interesting discrepancies between 

experiment and theory based on (42) and (43) for polyatomic species are 

discussed by Bates and Herbst. [10] 

3. DISSOCIATIVE RECOMBINATION  

3.1 DIRECT PROCESS 

In the direct two stage mechanism (Fig. la) 

k
* 

* 	s * 
e + Ae(v i ) 	(AB ) r 	A +B, kDR  ti  (300/T) 1/2  10-7  cm3  s -1 	(39) 

a 

the electron of energy E excites an electron of the ion-core AB and is then 

resonantly captured via a Franck-Condon (FC) vertical transition onto the 

repulsive state r of the double excited molecule (AB ). Competition between 

reverse autoionization at nonlocal frequency va  and predissociation at 
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nonlocal frequency us  continue until the electronically excited neutral 

fragments accelerate past the stabilization point Rs
. Beyond Rs 

the 

increasing energy of relative separation has reduced the total electronic 

energy to such an extent that autoionization is essentially precluded and the 

neutralization is then rendered permanent. The kinetic energy of the electron 

(in the field of AB+ ) is effectively transferred here to motion of the nuclei 

not by direct collision but via a rearrangement in (39) of the whole 

electronic cloud. DR is a "reactive" process in the sense that the reactants 

and products involve different collision partners. 

The autoionization character of AB for R < Rs makes resonant capture 

originally possible, and the covalent repulsive character for R > R s  makes 

neutralization finally permanent. For reasonable capture over a range of e, 

the autoionization width ra - h "a must not be too small, while large 

stabilization probabilities Ps  demand small widths. The requirement of 

resonant capture without any energy transfer between electronic and nuclear 

motion is that the vertical difference in the potential-energy curves (PE +  and 

* 
PE ) for XY

+ 
and XY equals e (Fig. la). For thermal-energy electrons'this 

requirement is best fulfilled when PE crosses PE
+ 
on the right side of its 

minimum (cf. Fig. la), as for most cases of doubly excited electronic states 

with more than four electrons. This energy-matching can consequently occur 

over the full range of E. 

Large capture rates depend therefore on good electron-electron communica-

tion (correlation) and on good vibrational overlap between the AB+  bound and 
* 

AB -continuum nuclear wavefunctions, an overlap which is sensitive to the 

initialvibrationallevelv.of the ion and to the crossing of PE and Pe. 

When the only crossings in Fig. la are provided by the upper repulsive PE * 

curves, then the capture probability remains small for v i =0 ions and thermal 

electrons, and becomes large only when these curves are accessed by more 
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energetic electrons E > 0.5 eV, which imply however smaller Coulomb focused 

scattering cross sections a - E
-1

. This is the situation with H 2
+ 

(v i =0) and 

He24%Conversely,theoverlapofile(v.=2) in Fig. 1(a) with the lower PE * 

 is poor, relative to the much larger overlap with the upper curves. Note 6 is 

measured from R on Pe. 

In keeping with (11), the recombination cross section for simple systems 

may be factored as 

apii ( E ) = ac(e )  Ps (E)  

where the cross section for capture at R c is
[26] 

C 
a
c
(e) = 

E 
— IV(R 

C 
)1 2 14,V (RC  )1

2
[dR/d(PE

R 

Here V(R) is the electronically-averaged interaction coupling the initial and 

intermediate molecular systems, 44 41; is the vibrational wavefunction for AB + (v) 

and C is (27r3/m h)[w(AB)/w(AB+ )]. The stabilization probability is given as 

in (11) by v s/(va+2 vs ). By analogy with dissociative attachment, it may also 

be approximated by, [26] 

ts 

P (e) = exp[ - j [ra (R)/h]dt] 
	

(42) 

t c 

where ra (R) is a local autoionization width (so that Fa = h v
a is the prob-

ability of electron ejection per unit time) and where the integration is over 
* 

the interval from the time t at formation of AB at R
c to the time is when 

stabilization at R
s is rendered permanent. This interval depends on the total 

energy and slope of PE . Although the local ra(R) in (42) is not strictly 

(40)  

(41)  
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appropriate to recombination at thermal e, (43) remains useful as an estimate 

of the influence of autoionization. Thus Ps is reduced by an increase in 

- 
number of open bound vibrational channels over which autoionization proceeds 

when electrons are emitted not only at energy Ea  = E. but also at ea  0 E when 

the energy imbalance is absorbed by vibrational motion. It is enhanced not 

only by a reduction in the time interval, but also by an increase in the 

density of intermediate complexes and product channels, as with ion-clusters. 

The E
-1

-dependence of ac results in recombination rates (11) which decreases 

as Te-0.5  . For typical diatomic molecular ions as Ne2
+ 

or NO
+
, dissociation 

occurs at frequencies u
a 
- 10

15 
s
-1

, large compared with a 
- 10

14 
s
-1 

for 

autoionization, so that Ps  is close to unity. At thermal energies Coulomb 

focusing dominates the capture so that oc e
-1 

> 10
-14 

am
2
. Rates kDR  (Ne2

+
) 

— 2 10-7 (300/T) 0.5 cm3 s-1 are then quite typical, As one proceeds through 

an ion sequence (Ne2+  Xe2+ ), the natural increase in de  is due both to the 

stronger interactions and larger vibrational amplitudes and Ps  remains sub-

stantial. Owing to the increasing steepness of PE R , it generally increases. 

Continued increase in ac however implies a corresponding increase in auto-

ionization width so that P
s will eventually decrease, until it becomes limited 

to (u
s
/ua) as for the case of polyatomic systems. 

3.2 INDIRECT PROCESS  

In the following indirect  additional mechanism for DR, [26] 

-10  
e + AB (v) 4- [AB (n,v)] a 4- (AB

* 
 ) r -) A + B (43) 

the electron is captured into attractive (a) vibrationally excited (v') 

Rydberg states (n) of AB which converge to the initial electronic state of 

AB+  (Fig. lb) and which are then coupled by configuration interaction to the 

dissociative channels. The first stage involves energy transfer from the 
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electron directly to vibrational excitation of the nuclei. In contrast to the 

broad E-range enjoyed by the direct process (31), only selected energies a' 

close to the Rydberg level (Fig. lb) contribute to the indirect process which 

is therefore characterized by a series of narrow resonances (enhancements or 

dips) in the overall recombination cross section at the low electron energies 

< 1 eV favored by this process. 

The formal multichannel quantum theory of DR via the direct and indirect 

mechanisms can be constructed.
[8] For full quantal calculations the following 

information is required as input: (a) identification and calculation of the 

relevant PE+ and PE curves for the capture cross section including those for 

the vibrationally excited Rydberg state, (b) the quantum coupling between the 

autoionization and dissociation channels for the widths F a and Ts and (c) the 

branching ratios to all possible products of dissociation. Since the coupling 

(b) appears as a resonance in the asymptotic phase of the electronic 

wavefunction the widths may be obtained either from direct electron-ion 

scattering calculations or from extrapolation of the properties of the Rydberg 

and valence bound states across the ionization threshold. The main 

theoretical problems are associated with the uncertainty of the role of the 

vibrationally excited Rydberg states and with the branching ratios which in 

turn involves solution of a set of coupled equations incorporating the 

interactions between the various products of dissociation. The "reactive" DR 

process combines therefore both electron-ion, ion-ion and neutral-neutral 

scattering technologies. Because of the sensitivity (as indicated above) of 

kDR on the slopes, shapes and relative positions of PE
+ 
and PE and the lack 

of accurate PE curves for most systems, rigorous calculation has been confined 

mainly [27 ' 28]  to H2+  and to some diatomic ions (N2+ , 02+  and NO+ ) of 

atmospheric significance. [8] 
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DR for even the simplest diatomic system e+H2+ , although not quite 

typical, is instructive. The sole candidate in the direct process for e-H 2+ 

 2 + 
(X 2g ,v) recombination at low energies E. < 1 eV is the lowest doubly excited 

1 2g  (2pgu )
2 

state of H2 
which crosses the 

1 
 2  + ion state in the vicinity of 

the v = 2 level, and which dissociates into ionic fragments H+  + H. Because 

of the propensity rule Av' = 1 for vibrational autoionization in (43), the 

recombination can be actively hindered by the higher vibrational levels v' of 

Rydberg states (1so nem) with intermediate n < 8, and the contribution from 

these levels is weak. However, the sequence, coupling the direct and indirect 

processes, 

** 	 ** 
e + H2

+ 
(v=0) 4 H2 4 H2  (n , v >2) 	H2 	H2

+ 
+ e , 

does interfere destructively [27,28] 
with the direct process. The resulting 

resonant dips in the cross section have just been observed. [29] Rates for e + 

H2+ (v) can be given as k o (300/T) 1  10-9  cm3  s-1  where (k0, /) have just been 

calculated [281 as (0.8,0.3), (6,0.5), (0.45,0.66), (0.66,0.32) and (1.1,0.77) 

for v = 0, 1, 2, 3 and 4, respectively. 

The DR-rate for CH
+ 

(v=o) at 120°K was also calculated [28] 
to be — 1.12 

10-7 cm3 s -1 in good agreement with a merged beam experiment. [8] 

Even though measured DR rates for many ions of planetary and astro-

chemical interest can be used with reasonable confidence, severe disagreement 

exists for the simplest triatomic H3+  important to the Jovian atmosphere and 

to interstellar chemistry. The rate is expected to be small since the 2A I 

 repulsive part of the PE curve of H
3 

intersects the 1 A 1 state of H,+ at 1 eV 

above the v=o level. Recent measurements [30] 
which vary from 2 10 -8 cm3 s -1 

at 100°K to 1 10
-8 
 cm3 s

-1 
 at 1000 K for v=o and 1 ions are orders of 

magnitude higher than the revised upper-limit rate [31] 
of 2 10

-11 
 cm3 s-1 at 
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300 K. The merged beam experiment
[301 detects the neutral products while the 

Flowing Afterglow Langmuir Probe (FALP) experiment
(31] measures the loss of 

H
3
+ ions, and this may well be the source of the discrepancy. 

Polyatomic ions and clusters offer many more additional degrees of 

freedom for capture of the electron, in both mechanisms. With increasing ion 

complexity, the multiplicity of readily excited internal modes of small energy 

separation makes the near resonant energy con4ition of the indirect process 

easier to attain by presenting a near continuum of closely spaced vibrational 

energies and trapping becomes more efficient over a broad range of E t . This 

is confirmed by the large rates kDR - 2 )114 -6  (300/T)
0.4 
 for dimer complexes 

N2 •14,12' 02 •02 and C0+ •CO 3  important in atmospheric chemistry. That polar 

clusters H
3
0•(H20)n and NH4+•1H 3 with rates kDR - 3 10-6  am3  s-1  appear 

fairly insensitive to T, has as yet not been satisfactorily explained. 

As systems become more complex (tJe2t 
Xe2

+
) ' the resulting increase in 

the capture cross sections a c  tends to be offset by a corresponding decrease 

in the stabilization probability Ps  from near unity until stabilization 

becomes the rate limiting step. The rate from (11) is then 

kRA = K(T) vs 
	 (44) 

where the reaction volume has now the interesting form [9] 

h3 	w(AB ) r  r 	 dR 
K(T) -  	 J 14,v (R)I 2 	 exp(-E/kT)dd 

L 	
(45 ) 

(2-0-mkT) 3/2  2w(AB+ )  

which contains an effective Franck-Condon factor which essentially selects 
* 

only that portion of the full internal partition function of AB that 

contributes to the capture by the vertical transition at R = R
c . Polyatomic 

systems relevant to interstellar cloud chemistry have recently been discussed 

by Bates. [9] 
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4. DIELECTRONIC AND RADIATIVE RECOMBINATION 

Dielectronic recombination (DIR) at high temperatures (-10
6K) 

* 

e(eP) + A (i) 4- [A 	(k)-e] nP  4 Ane 	
(j) + hv z+ 	--o 	(z-1)+ 	 (z-1)+ 

k 	 y r•  

V
a 

	 (46) 

is a resonant capture process into doubly excited Rydberg levels subsequently 

stabilized by radiative emission at frequency v adjacent to, and usually on 

the lower frequency side of, the resonance transition 

A
Z+

(k) 4  A
Z+

(j) + huR 	 (47) 

of the recombining ion of charge Ze. These satellite lines are observed in 

solar and in high temperature fusion plasmas and provide valuable diagnosis of 

electron temperature, electron density and the various stages of ionization. 

The frequency shift which originates from core perturbation by the nP-electron 

is small for high Rydberg nP-levels but would be quite large for low-lying n 

levels. Since the product ion may be subsequently re-ionized by interaction 

with its environment the stabilization mechanism is not quite as secure as 

that for dissociative recombination. 

Although stabilization of the high Rydberg ion mainly occurs at high 

electron temperatures Te , by the inner-core transition (47) with the captured 

electron as a spectator, stabilization can also occur by a radiative transi-

tion nP 4 n'P' of the outer electron. This mechanism tends to be effective 

mainly at much lower temperatures (< 104oK) characteristic of planetary 

nebulae. It is also effective for ions with low lying metastable levels, as 

in 
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e + 04.  ( 4 S) 4  0*  [2p3 ( 2D)n'e'] 	0* ( 2D,ne) + hu 	 (48) 

The rate for dielectronic recombination (DIR) for an initial state i of 

the ion is, in the isolated resonance approximation (IRA), given by (16) as 

h3 	
1 	v 	

va(d4i)vr(d-)f) 
k
DIR

(T;i) - I 	 
l(2rmkT)3/2] 2gi 	2 gd 	v 	r 

 (d)+v 
 a
(d) 	exp(-Ed/kT) 

d f 

(49) 

where g i  and gd  (=2(2e+1)) are the electronic statistical weights for state i 

of the recombining ion and for intermediate resonant state d (=ne) at energy 

Ed 
above state i. Each resonant state d may autoionize back (via an Auger 

transition) to state i with frequency ua  (d->i) or radiate with frequency u r 

 (d-f) to bound levels f. The total radiative and Auger rates from d to all 

states are u r(d) and ua(d) ' respectively. The total DIR rate is obtained by 

summing over all possible initial states i, intermediate states d and final 

bound states f. Note that the factor h 3 /(27rmkT)
3/2 

in (49) is (41'd A/kT)
3/2 

ao
3 = 4.1212 10-16 T-3/2 cm3 . 

DIR within the past three years has been subjected to intense theoreti-

cal [3] and experimental [ 15] study. The existing calculations are based on 

either the Coulombic model, the distorted wave method and the relativistic 

configuration interaction method. For example, Chen [31] in a series of 

excellent papers has used the multiconfiguration Dirac-Fock model to evaluate 

the detailed transition energies and Auger and radiative rates. The calcula- 

i tions not only include the Coulomb r 12  interaction but also the Breit inter-

action and other quantum-electrodynamic corrections. A considerable amount of 

theoretical data has now been accumulated [3] for many different isoelectronic 

sequences - for cases when the number N of electrons in the initial ion is 

N = 1-5, 8-12, 18 and 19). 
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The autoionization frequency decreases with (n,P) as u
a 

- n -3 exp(-a8
2

) 

owing to a decrease in communication between the core and Rydberg electrons, 

and is independent of Z. The radiative frequency is u r 
a3Zp for core decay 

(p = 4 or 1 with or without a change in core principal quantum number) and u
r 

a3 Z/n3 for outer electron decay. For small n << 50 and low P, 1.)r << u
a 

so 

that (49) is radiatively limited. At nebular temperatures T - 10
4 

K the 

exponential in (49) restricts the summation to levels within - 0.15 eV of the 

ionization limit and ur is determined by outer electron decay. Since ua << ur 

for large n, convergence can be obtained. Rates k m  - (12-7) 10
12 

am
3 

s
-1 

for C
2+

, N
3+

, 0
4+ 

recombination at T " 10
4
K which exceed the direct radiative 

contribution are typical. [31  

At high T ("- 107 °K) 	1 keV characteristic of the solar corona, the full 

Rydberg series of autoionization levels must be included and core relaxation 

is the main radiative decay. For n >> 50, D a  << u r  so that (49) is limited by 

autoionization. While the number of resonances increases as 2n
2
, only the low 

P fraction are effective. Electric fields can however mix high 8-states with 

low P-states so that DIR could be significantly enhanced. Typical rates
[32] 

are - 3 10-11 am
3 s-1 at 1 keV for F-like Se25+ - an X-ray laser candidate. 

The separation AE (a.u.) between resonances of Rydberg series is - Z
2
/n

3 

which can become less than the radiative width Fr = h ur . The detailed 

resonance structure is then smeared out by interaction with the radiation 

field and IRA breaks down. Bell and Seaton2 have solved this problem by 

quantum defect theory which because of its close connection with Rydberg 

series is ideally suited to DIR. Thus DIR-cross sections can in principle be 

calculated to the same accuracy as electron-ion scattering cross sections (to 

within 10%). 

For ions with low Z, Coster-Kronig (CK) channels, such as 1s2pne 4  

1s2s + e for He-like ions, become energetically accessible for large n. 
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This effect of autoionization to excited states of the recombining ion has 

generally been neglected in the fluorescence yield y r  (d-+f) [u r (d) + a(d)] 

- 
in all calculations of (49) until only recently. For example, the onset of 

the above CK transition for Be 3+  ion is at n = 3, and n increases with Z 

(e.g., n
* = 9 for F). Inclusion of CK transitions reduce

[32] the peak 

values of the total DIR-rates for B3+ , N5+ and F7+ by 60%, 13% and 4%, 

respectively. This trend is correct since the relative contributions to DIR 

from high n-state (important at low Z) decrease with n, while the onset of 

CK-transitions occurs at higher n as Z increases. The CK-effects are not, 

of course, included in the largely historical semi-empirical formulae of 

Burgess [33] (for core decay An = 0) and of Merts et al.
[34] (for An = 1). 

These formulae, although used quite generally by astrophysicists, over-

estimate [32] small Z-rates by a factor of 3 and underestimate large Z-rates 

by as much as a factor of 2. 

In addition to CK-transitions for low Z, some remaining problems appear 

to be (a) effects of external fields on DIR, (b) three-body density effects on 

kDIR and (c) fine structure effects. For (c), fine structure states of the 

excited ion-core provide two Rydberg series of autoionization channels which 

can mutually interfere (as in the decay 3p 3/2  (ne) 4 313 1/2 (6 1 e) 	3s 1/2 (62 e) 

 in Me). A problem which appears to be solved is the coupling between 

resonant DIR and the following non-resonant radiative recombination (RR) 

which, while negligible for ions with low Z, becomes appreciable at high Z. 

The subsequent chain of atomic processes in astrophysics was initiated by 

the basic (e-e) Radiative Recombination (RR) process 

e + A
z+ 
 (1) 4 A (Z-1) (ne) 	hp 
	

(50) 

into level (ne). Since RR is a direct inverse of photoionization with cross 

section a
nP 
 (hu), the RR rate by detailed balance is 
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co 

kne (T) = 	 2 1.2 	- 
1--dexp(I ne 

 /kT) 	rii] nc (hu)exp( -hv/kT)d(hv/kT) 
kT11/2[nkTi 	rOne 

c gi 	
kT 

2 

I
ne

/kT 

(51)  

where g i  and gne  are the electronic statistical weights of the initial ion and 

the recombined ion in level ne with ionization potential I ne . Various 

analytical forms for 	can be adopted e.g., when (nu) 3  a1 (hv) equals its 

value In
3  co

ne  (I n
) at threshold then the rate is 

3oo l li2 f1 n1 r 	l _ne
(T)  2 
	ne 

kne (T) = 1.5 10
_ 13 

 ' 	
3 

s
-1

T 

where, in terms of the exponential integral E 1 , the averaged cross section is 

—ne 	ne 
aI (T) = ao [xn exp 

xn]E1(xn)' 	xn = I n/kT (53) 

which reduces at low temperatures kT << I n  to 

e 	n e 
a (T) = 	[1-(kT/I n ) + 2(kT/In )

2 
- 6(kT/In ) 3 + 	] 	(54) 

The quantal cross section for photoionization of hydrogenic ions of 

charge Z by radiation of scaled energy w(=hu/I n ) is 

-3 w , by -0 I n 

 

a0 (nu) = n 
K (w) Gne  (w) 

 

( 55 ) 

w-P-7/2 , hp >> I n 

The departure from the (Kramer) semiclassical (high n and P averaged) 

photoionization cross section [35]  

(52)  
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anK(w) 

n a 
 6 
IH 

I 
1---13 
[hid 	Im

o2  = 7.9 n
2z4w-3(mb)  (56) 

122 

where a is the fine structure constant (e
2
/hc) is given by the bound-free 

Gaunt factor G
nP

. The rate (14) is then 

2S 	 gnP 
(57) T ) 

ri3kT11/2 r i ni 	r 	1 (a3wa02 )  % 	
u2gi 	ne  kR

P 
 (Z,T) = twin j 	n  

Departures of (57) from the above standard (Z 2  n-3  T-1/2 ) low temperature 

rule is provided by the function 

1 	
G
nP

(w) 

Fnt (T ) = 	exp(1/T ) 
J 	exp(-w/T )dw (58) 

which decreases monotonically from G
nR

(1) as the scaled temperature T 
 

(=kT/I
n
) increases. For interstellar clouds kT<<I

n 
and FnP(T  <<1) tends to 

G
nP(1) the threshold Gaunt factor. Note that (57) also provides the universal 

scaling law 

kne (Z'R  T) = Zk
nP (1 ' 

 T/Z 2 ) 
	

(59) 

Recombination rates are greatest into low n levels and the w-P-1/2 

variation of G
nt in (58) preferentially populates states with low P - 2-5. 

Highly accurate analytical fits for G
ne (w) have been obtained

[36] 
for n < 20 

so that (57) is expressed in terms of known functions of fit parameters. This 

procedure (which does not violate the S
2 sum rule) has been extended

[36] to 

non-hydrogen systems of neon-like Fe XVII, where a,
ne 
 (w) is a monotonically 
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decreasing function of w. 

-2 n-1 
Variation of the e-averaged values, n 2 (2e+OF

ne
(T ), is close

[36] 

e=o 

in both shape and magnitude with the corresponding semi-classical function 

S(T ) i.e., (58) with Gne
(w) = 1. Hence the e-averaged recombination rate is 

3011/2 [Z2 

kn (Z,T) = 1.1932 10 -12  717 - 12 	 FT*) em3 s -1 
n 	n v  

where Fn can be calculated directly from (58) or be approximated as Gn (1) 

S(T ). A computer program based on a three term expansion of G n  is also 

available. [37] 

Tables exist [38] for the effective rate 

n - 1 
ne k
E 
( T) = 	 kn'e'  C 

. 	R 	n'e',ne 
n'=n v=0 

of populating levels ne of hydrogen by radiative recombination rate all levels 

n' > n followed with probability C if, for subsequent radiative cascade (i4f) 

via all possible intermediate paths. Tables [38] also exist for the total rate 

co 	n-1 
kN = C n-2 	kne 

R 
n=N 	e=o 

(62) 

of recombination of levels N and above of hydrogen. They are useful in 

deducing time scales radiative of recombination and rates from (59) for 

complex ions. 

When effective at higher temperatures, dielectronic recombination 

proceeds in general faster than RR. Since kR  Z2
, RR can however become 

(60)  

(61)  
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competitive for highly charged ions. A unified treatment of DIR and RR has 

recently been presented. [39] The mutual interference of the corresponding 

amplitudes and continuum-continuum coupling is expected to be most important 

for individual transitions involving low-lying auto-ionization levels and is 

probably negligible for DIR arising from highly excited levels. If the 

photoionization cross section ane (hu) already includes the effects of 

autoionizing resonances, no further correction for DIR to RR may be necessary. 

5. MUTUAL NEUTRALIZATION (MN)  

Until fairly recently (1984), lack of agreement of various curve-crossing 

and Landau-Zener type theories with experiment for such a simple system as 

H+  + H ►  H* (n) + H 	 (63) 

remained embarassing, and agreement between the two main experiments remained 

very good. Then a 1983-theory [40] 
which included couplings (neglected in 

previous theories) to the n = 3 level still did not agree with measurement, 

until new experiments [41
'
42] 

were performed in 1984 and 1985. The process 

(63) is now apparently well understood, but careful quantum mechanics and 

experiment is required. 

In dense interstellar clouds, MN of complex systems can be important and 

can produce qualitative changes [24] 
 in the chemistry sequence. For example, 

when polycyclic aromatic hydrocarbons (PAH) exist in high abundance, the 

negative charge is carried not by electrons but by PAW so that MN, as in 

C+  + PAH 4 C + PAH, replaces dissociative recombination (DR) so that the 

C-abundance is enhanced. [214] 
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6. TERMOLECULAR RECOMBINATION 

6.1 ION-ION:  

The theory of termolecular ion-ion recombination and 

a 

A+  + B-  + M r- AB + M 
	

(64) 
k 

of positive and negative atomic ions of concentrations NAB(t) at time t in a ,  

gas M is also well established,
[43] and is also suitable as a case study. The 

effective two-body association rate a(N,T) cm3 
s
-1 

and the dissociation 

frequency k(N,T) s-1 are functions of gas density and are given by
[43] 

co 

a 	 PS dE.t (PS-PS)C 	dE =lci; AB 	1.1 	ififfs 
	 (65) 

-D 	-D 

where PS  which measures the departure from equilibrium, is the stochastic 

probability that a pair (11+-B) with energy-distribution n i  over internal 

relative energy E i  of the pair is connected via a multistep series of energy 

(state)-changing collisions to a stabilized sink 9' of low lying fully 

associated pairs of concentration n s  (cf. Fig. 2). The sink 9' extends over 

the energy range -S > E i  > -D where -D is the lowest energy level and where -S 

is that bound level below which P i  is unity. The one-way equilibrium rate C if 

 for Ei4Ef  collisional transitions per unit interval dE idEf  is ni Dif , and the 

distribution n i satisfies the input-output collisional Master Equation
[43] 

dn 	 co 

dt - [/c(t) - / s(t)] t (PiS  -PfS 
 
) C. dEf 	 (66) 

-D 

where the departures from their steady equilibrium (tilda) values of the total 
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time-dependent concentrations of fully dissociated pairs (in block &e, 0 < E i  < 

S 	 S 
where PS0) and of fully associated pairs (in block Y where Pi 	1) are 

c (t) = NA
(t)NB (t)/R if • 1 	= n s(OAs A B ; 	s 

respectively. For quasi-steady-state (QSS) of the intermediate block S (0 > 

E i 
 > -S) of highly excited levels at time t, (66) vanishes so that (64) 

reduces to 

-E 

a N ANA - j r - 	dE j (ps s )  dE C if 	f ' 
-E 	-D 

(68) 

for arbitrary energy -E in block S. 

6.1.1 VARIATIONAL PRINCIPLE: It has been recently proposed
[44] 

that P
s 

are 

so distributed that the rate (65) is a minimum. This distribution leads 

exactly to the QSS-distribution given by (66) set to zero. Thus (65) provides 

a variational expression for the QSS condition, so that P s may be determined 

(Fig. 3) variationally or from the direct solution of the integral equation 

(66). The Variational E44 ' and QSS [43] rates obtained are of course identical. 

6.1.2 DIFFUSION METHOD. By performing a Fokker-Planck conversion of the 

integral equation (66), the resulting (but approximate) differential equation 

is identical with a diffusion equation in energy space which can be solved 

analytically for P iS  (Fig. 3). Insertion in (65) yields a proposed diffusional 

method [45] which is highly accurate (Fig. 4). 

6.1.3 BOTTLENECK LIMIT. On assuming that pairs above and below a bound level 

-E are in equilibrium with the fully dissociated and associated (blocks C and 

S, respectively (i.e., PT = 0 for E i  > -E and PT = 1 for E i  < -E) then either 

(64) or (68) yield, 

(67) 
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co 	-E 

a(-E) N ANB  = J dEi 	Cif dE f f 
-E 	-D 

(69) 

the one-way equilibrium collisional rate across -E, which is then an upper 

limit to the exact rate. Variation of a with -E yields the least-upper-limit 

at the bottleneck energy E (see refs. [23] and [43]). 

Other approximations such as Coupled Nearest-Neighbor (CNN) limit and 

Uncoupled Intermediate s-block Levels (UIL), based on analogy of (65) and (66) 

with electrical networks recently proposed,
[46] have also elucidated the modes 

of energy reduction. 

6.1.4 GAS DENSITY  

As the gas density N is raised non-equilibrium effects in internal 

separation R of A+  and B must be considered. The appropriate input-output 

collisional-transport Master Equation satisfied by the distribution n i (R) of 

(A -Bpairs per unit interval dR dE. has been shown to satisfy the 

continuity equation [47]  

d 	
ani 	1 0 

dt 	
i n i (R,t) - 

at 	R2 OR L 
rp-2J

i
dtmlJ

E 

CO 

= - 	(ni(R)vif(R) - nf(R)vfi (R)]dEf 	 (70) 

V(R) 

where j i (R) (= jI - JD is the net outward transport current of pairs 

expanding at R, where v if(R) is the frequency per unit interval dR dE i  dEf 

 for Ei E f collisional transitions for ions at fixed separation R and where 

V(R) is the energy of interaction between A and B. Integration of (70) over 

all accessible R yields the standard Master Equation (66). 

The question of reproducing the cumulative effects of multistep 
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energy-changing collisions by an accumulative strong collision within a loose 

collision complex of radial extent RT  can now be examined.
[43] The rate of 

recombination within a sphere of radius RT  and the overall probability Pi (RT ) 

of association within RT  are related by low gas density by 

- - a(R ) N N = 	[417-R2  j (R )]PA(R_)dE T 	ABJ 	Ti 	T 	iT 	3. 9  

0 

which is expressed via (70) in terms of the stabilization probabilities P; 

by [43] 

RT 	4)1- 
R 	dE. I 	j Cif 	dEf  TABji 

o 	o 	V(R) 

A strong-collision (or classical) treatment refers to the assignment P f  = 1 in 

(72). 

Fig. 5 illustrates the ratio of the effective strong-collision rate, to 

aE , the exact rate a (RT-wp). Agreement can be obtained by assigning 

(de-facto) RT  0.5 Re . The underlying reason becomes apparent from Fig. 6. 

The exact probability PAE that (E
i =0) dissociated pairs ultimately associate 

dominates the probability PRD for ultimate redissociation (after bound levels 

are formed) for smaller RT  << Re  = e2/kT, so that P iAE  and the strong-collision 

probability PST  (from (72) with Pf  = 1) are essentially equal. Pairs with 

larger RT  >> Re  are however mainly redissociated (Fig. 6). The strong 

collision rate at RT  - 0.45 is then twice the rate a(RT) of (72). The 

remaining contribution from R > RT  to the exact rate provides agreement with 

the strong collision rates. [43] 

The concept of the above loose reaction complex is useful in showing [23] 

with the aid of (70) that the variation of recombination with gas density 

yields the familiar result 

a(N) - 
aRN aTR 

(73) 
aRN4aTR 

(71)  

(72)  
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where aTR(N), the known rate for transport of pairs by diffusional-drift to 

within separation RT , decreases as N
-1 . The reaction rate aRN  by collision 

with M within R < R
T 
 increases initially linearly with N and saturates at 

- - 

higher N (- 1 atm). The magnitude and density variation of (73), with 

accompanying theoretical procedures, agree with Monte-Carlo Computer 

Simulations for the recombination of rare gas-halide systems.
[4,6] No 

benchmark measurements are available, but the two historical measurements at 

low and high N respectively in general agree [17]  with (73). 

6.2 Electron-Ion: The trapping radius concept is also useful to obtain 

classical rates (i.e., (72) with P f  = 1) not only for termolecular 

recombination (64) but also for electron and neutral stabilized electron-ion 

0 

collisional recombination (9) and (7) respectively. The frequency v i (R) = f 
V(R) 

vif(R)dEf  for formation of bound pairs is v 12(R)a N, where v 12  is the speed of 

A
+
+B relative motion and a is the cross section for AB -M deactivating 

collisions. On assuming constant cross section a0  for such collisions, (72) 

reduces (with- S 	1) exactly to Pf  - 

co 

a 	 B = [fdE. 	v12 (R)dREa N) A  

(8kT 1 1/2 	4 	R 	[
1 31 	

3 Re 

twMABJ 	

f v 

	
] a

0 N 

where Re is e
2/kT. A classical version of the semiquantal bottleneck treat-

ment (§ 6.1.3 above) yields, a priori, the trapping radius to be R 0  = 0.41 Re . 

The rates a of termolecular recombination (64), and of e-e collisional 

recombination (e + A +  + e) at electron temperature Te  and electron density ne 

(74) 

(75) 
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are therefore, 

kT ] 1/2 1-4 
a
TR

(T) = 0.32 ra7-- 	 (aoN) - 2.3 10
-25 

(300/T) 2.5 N(cm3 s-1 ) (76) 
AB  F 

and 

faer] 1/2 r4  
31 (T) = 0.32' 	 R 	— 

aee 	 brim 	1.3 	ej ( 9  iffle2  )ne  - 2.7 10
-20  (300/T) 4 ' 5 n

e
(om3 s-1 )(77) 

respectively. In (77), ao  for electron-electron collisions is taken as the 

13 

9 Coulomb cross section (- 71-R e 
2
) for energy changes > -a kT. These expressions 

provide the correct order of magnitude and temperature dependence, and, in 

general, agree with experiment. In particular (76) agrees with the expression 

of Mansbach and Keck [48] derived from more elaborate analysis. At higher T e 

and lower ne , the highly excited levels collisionally formed within kT of the 

ionization limit become increasingly stabilized by radiative transitions. 

The resulting rate for collisional-radiative recombinatIon can then be 

approximated as (49] 

aCR = [3.8 10-9 
 T e  -4 ' 5  n e  + 1.55 10-10 T-0.63  + 6 10-9  Te-2.98 n 0.37cm3s- 

1 

(78) 

where the first term is (77), the second term is the radiative correction and 

the third term arises from collisional-radiative coupling. This expression 

agrees with the experimental data [491 to within 10% for a Lyman optically 

thick plasma with ne and Te in the range 10
9 < ne  (cm 3 )< 10

13 and 

2.50 < Te ( oK ) < 4000K. 

For termolecular (e + A+  + B) collisional recombination only a small 

fraction 15 = 2m/MB can be transferred in e-B elastic collisions so that the 
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E i
-integration in (74) must be so restricted to give 

6/r 
f80)1/2 	 1 

aeB (Te )  = [i►m j 	
41/4e (a

o 
 N) f r2dr f (1+ r— ) ee-Ede 

0 	0 
o  

(79) 

with Li = r Re  and e = IE./kT. Hence 

r8kTel1/2 

yn J 	
R2Ro  (ao  N) 
	[10-26/14 (AMU)] (300/T)

2.5 
N (80) 

e a
eB

(T
e
) = 4.77-6 I 

L 
--; 

which agrees exactly with the diffusion result of Pitaevskii
(501 and which is 

linear
(51] in the trapping radius R o . This result (-10

-28 cm3 s
-1 ) is in 

general agreement with experimental data for (e + He + Cs) but is much 

smaller than that (- 10
-26 ) for (e + He

+ + He), which proceeds far more 

effectively [52] via formation of an intermediate complex He2 which then 

dissociates into neutral fragments. 

The rate for (e + A
+ + B) is greatly increased [51] for a molecular gas B 

where energy reductions are effected mainly by rotational and vibrational 

transitions. Allowance for the discreteness of (e-e) Rydberg levels reduces 

a
eM 

and produces a sharper decrease with temperature. [53] When A+ is a 

molecular ion XY+  a dissociative recombination channel opens. Here the 

* 
(e-XY

+ ) pairs formed in highly excited Rydberg molecular levels XY by 

collision with M, in addition to being collisionally and radiatively quenched 

to stable bound states of AB, may predissociate along repulsive curves X +Y 

i.e., by dissociative recombination involving bound electrons - the second 

half of the indirect mechanism.
[43] The contribution from this collisionat 

dissociative recombination [53] can dominate the contribution from direct 

collisional relaxation. That quantal curve-crossing is involved makes it 
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similar to the enhancement [6] of mutual neutralization (A++B) by third 

bodies. In the limit of high gas density N, the recombination rate aeM 

 becomes transport limited, as in (73) for ion-ion recombination and decreases 

as N
-1 . Because of the higher electron mobilities, its onset however occurs 

at much higher N. Between the linear low density region and the transport 

limited N
-1 region only Monte Carlo simulations have been performed. [54] For 

(e + A+  + M) recombination in a molecular gas the rotational and vibrational 

cross sections of Takayanagi [55]  and of Takayanagi and Itikawa [56] 
and the 

recommended molecular constants [56] are invaluable. 
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Figure 3. Stabilization probabilities: (E): quasi-steady-state
[43] 

(V2): two-parameter Variational. [44] (D): Diffusion. [45]  

M
A 

Figure 4. (A
+ 
+ B + M) partial recombination rates (---] a(a) normalized to 

MAB 

Figure Captions 

Figure 1. Schematic representation of potential energy curves for dissocia- 

tive recombination, e + AB
+ 
4 4 + B, (a) via the direct (vertical 

transition) mechanism and (b) via the indirect (Rydberg) mechanism. 

Figure 2. Schematic Diagram of energy blocks *, 6 and V pertinent to 

recombination at low gas densities. 

Thomson's rate aT(a) as a function of mass parameter a = MBMg 

 /MA (MA+MB+Mg ) for various (e-M) or (B -M)interactions (CX: 

symmetrical resonance charge transfer; HS: hard-sphere; POL: 

polarization attraction). The full rates are a(a)a T(a) + 

a(b)aT(b) where b = (MA/MB )
2 
a and where Thomson's rate is 

4  
aT(a) = 3 mile 

 
 (3 kT/MAB )

1/2 
oAmN. (Ref, 43.) 

Figure 5. Variation of a(RT ), eq. (72) with 14 = 1, to exact rate, eq. (72) 

with RT  °a, for ion-ion recombination of equal-mass species 

under various (e-M) interactions (cf. Fig. 4). 

Figure 6. Probability for eventual association and re-dissociation of (e-B) 

pairs with zero internal energy. PAE  and FED : exact association 

and redissociation. P ST : strong collision. The probabilities are 

normalized to Thomson's low density probability P T  = RT  (clAm  N). 

(Ref. 43). 
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ELECTRON COLLISION CROSS SECTIONS INVOLVING EXCITED STATES 

E. J. Mansky 

School of Physics 
Georgia Institute of Technology 
Atlanta, Georgia 30332-0430 U.S.A. 

Knowledge of the integral cross sections for the electron-impact 
excitation of atoms initially in a metastable state is of fundamental 
importance not only in determining the number densities of atoms in various 
excited states, but also in understanding the overall collision dynamics of 
energy transfer and excited-state diagnostics in partially ionized gases. 
Recently, the study of transitions between metastable states of He has been 

revitalized by experimental measurements at Kaiserslautern (Muller-Fiedler 
et al. 1984) of the differential cross sections, and at Madison (Rall et 

al. 1989) of the integral cross sections for the 2 3S 4  3 3L electronic 
excitations in helium. This signals a new era in experiments involving 
metastable states in that such more detailed information can now be 
obtained by modern measurements than was possible in the pioneering work of 
Phelps (1955). This has also marked a resurgence in theoretical activity 
in this area as well with recent distorted wave calculations (Mathur et 
al., 1987) and optical potential calculations (VuSiC et al. 1987). In this 
note we will briefly summarize the original multichannel eikonal theory of 
Flannery and McCann (1974a,b,c, 1975a,b), together with the correction 
needed to account for the influence that distant trajectories have on the 
scattering amplitude for states dipole-coupled via an optically-allowed 
transition to the initial state (Mansky and Flannery 1989a). In 

particular, attention will be focused on the results for the 2 3s 4  33L 
transitions in He due to the recent experimental data which has become 
available. 

The basic expression in the multichannel eikonal theory (MET) for the 
complex scattering amplitude for the transition i ►  n is (Flannery and 
McCann 1975a,c) 

fni (0) = -(i)
A+1 f 

J (q'p) [I 1 (p ' 7(e)) - 	( 	(0)) d 	(1) 

	

2 	P P 

0 

where the integrals I 1  and I2 are defined, 

1 



I 1 (p ' 7(9)) 	= 

I2(P, , (0» 

dCn (p,z) 

exp[i/(0)z] 

V 	]c 	(p,z) 	exp[ii. (0)z) nn 	n 

(2a) 

(2b) 

dz Kn(P,z) 	dz 

7 
j 	dz 	(xn (K n-kn )  

The other terms in equations (1) and (2) are: q' = kn  sine; ,(6) = kn 

 (1-cos0); A a mi -mn , where m i (mn ) is the magnetic quantum number of state 

2p 
i(n); JA 

is an ordinary Bessel function of order A; Kn 
2 

= kn  - — V nn . The fi 
complex amplitude functions Cn (p,z) in equation (2) are solutions of the 

following set of coupled first-order partial differential equations, 

.2 	dCn(p,z) 	.112 

1.  p Kn 	az 	 
+ [ µ 

Kn (K n -K r1 )+V nn [C n (P,Z) = 	Vni Ci  exp(i(kj-Xn )z] (3) 

j=1 

which are solved subject to the asymptotic boundary condition condition, 
Cn (p,z4-w) = ni for the N states in the basis set (n = 1,2,...,N). For 

definitions of the remaining terms in equations (1-3) and a complete 
derivation of these equations see the original MET papers of Flannery and 
McCann (1974a,b,c, 1975a,b). 

The main assumptions made in the derivation of (3) is that the 
trajectory for the relative motion of the electron in channel n is 
accurately characterized by a straight-line, and that the contribution of 
exchange to the inelastic integral cross section for channel n is 
negligible. The assumption of a straight-line trajectory for the relative 

motion of the projectile electron in e + A * collisions should be reliable 
due to the dominant nature of the long range part of the projectile-target 
electrostatic interaction in these collisions. However, in heavy particle 
collisions account must be taken of the curvature of the trajectory in 
order for accurate inelastic integral cross sections to be obtained. This 
has been done within the MET for applications in heavy particle collisions 
by McCann and Flannery (1975,1978). 

Similarly, in electron-metastable atom collisions the neglect of 
electron exchange effects should not introduce a great deal of error (VuSiC 
et al. 1987). This is due to the increased size of the target atom when 
the incident state is an excited state. Recall that for hydrogen (Bethe 
and Salpeter 1977), the mean value of r, the electron-nucleus distance, 

scales with n as, <r> = [3n 2  - e(P+1)]/2Z. This increase results in a 
concomitant decrease in the electronic charge density p(r) of the target 
atom, which results in a lowering of the probability of overlap of the 
projectile electron's wavefunction with that of the bound electron, thereby 
decreasing the importance of electron exchange when compared to the case of 
scattering from ground state targets (i.e., target atoms initially in the 
ground state). 

In actual calculations the coupled PDE's (3) are solved over a finite 
2-dimensional grid: 0 < p < p

max 
 , -zmax < z < zmax  . The subsequent - -  

p-integration in (1) is then from p = 0 to p = Pmax* Typical values of 

2 

r 



zmax 
for ground state targets is 100-120 a0 , while for metastable targets 

(i.e., target atoms initially in a metastable state) zmax  ranges from 

250-300 a0 . The typical values of pmax  range from 11 to 35 a 0  for ground 

state targets, while for metastable targets the corresponding range is from 
48 to 207 ao . These ranges on zmax  and pmax  refer to 10-channel eikonal 

theory results for hydrogen and helium (Mansky and Flannery 1989a,b). 
While the above values of zmax  and pmax 

 for ground state targets is 

sufficient to insure convergence of the inelastic integral cross section to 
the corresponding Born value at high energy, in the case of metastable 
targets this is not the case. The contribution that trajectories, with 
impact parameters p in the range pmax  < p < co, make to the scattering 

amplitude for metastable transitions (e.g., 23S 4  33L, L = S,P,D) is not 
negligible at high energies. This is particularly true of metastable 
states dipole-coupled to the initial state via an optically-allowed 
transition. The correction to the scattering amplitude needed to account 
for these distant trajectories is given by (Mansky and Flannery 1989a), 

/3fmax 
f(DMET ) (9) 	r 	

JA (q'pgyp,1) - i I 2 (p,/)]p dp + f
(dipole) (0) ni 	 ni 

0 

(dipole) f
n
7ET ) (0) 	f

ni 	(0), dipole-coupled transitions 	(4a) 

(HET)
(0) f

ni 	 , all other transitions 	(4b) 

where, 

2pdh a , 

f
(dipole)

(0) = r(i)
A+1  

c1 ,2 4(1 ,2 [x 1 jA41 (x 1 )KA (x 1 )-x2jA(x2 )KA+1 (x2 )1(5)  ni 

	

and r m -(i) A+1 , a' = 7(0)-a, a = 2u(en-e )/f1
2
(k +kn' n ) d' i  = 	dni' 

with dni denoting the dipole moment for the transition i 4 n, and x 1  m 

WPmax' x2  m a'pmax . The eigenenergies of the target atom are denoted en , 

while Km(x) is a modified Bessel function of order m. 

In this note the dipole correction (5) has been applied only to the 

and 23S 4 33P
o,+1 (A = 0,1) transitions within a 9-channel 23S 4 23P0 +1 

basis (2 3S, 23
Po,t1, 

 33S, 33Po,+1 and 33D0,+1,+2 ). The present multi-

channel eikonal theory results for these transitions are hereafter denoted 
DMET. However, to avoid confusion with Flannery and McCann's (1975) 
original MET results, the present results for the remaining triplet transi-
tions will also be denoted DMET (with equations (4a) and (4b) in mind this 
should cause little confusion). 

In figure 1 the present DMET results for the differential cross sec-
tions for the 23S 4 23 P and 23S 4 33L (L = S,P,D) transitions at E = 20 eV 

3 
f' 
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are compared with the experimental data of Muller-Fiedler et al. (1984), 
the original MET results of Flannery and McCann (1975b) and (where avail- .. 
able) the distorted-wave (DW) results of Mathur et al. (1987). The present 

DMET results for the 2
3S - 3

3S and 23S 3
3D optically-forbidden transi-

tions are clearly in excellent agreement with the experimental data. In 
particular, the agreement of the DMET results with experiment for the 
former transition is a direct result of the improved numerical solution of 
(3) used in the present results compared to that used in the original MET 

results. For the optically allowed 23S 4 23P and 2
3S 33P transitions 

the present DMET results are seen to be underestimating the experimental 

data of Muller-Fiedler et al. This is also the case with the original MET 
results and the DW results. Interestingly however, all three theoretical 

results predict the existence of a deep diffractive minimum at about 12°  in 

the 23s 4 3 3 P DCS. No such behavior is seen however in the experimental 
data, leading one to question the theoretical results. While the DW 
results of Mathur et al. (1987) includes electron exchange within the 

primary, 2 3S  -■ 3
3P, transition (with no couplings to other states), both 

the original MET results and the present DMET results neglect exchange but 

include couplings up to the 33D state. These points, taken together with 
the DCS experimental data for the n=4 triplet states (of. Table 1), seem to 
indicate that the major physical mechanism missing from the theoretical 
results shown in figure 1 is coupling to the n=4 triplet states of helium. 

At least both dipole (2 3S 43P) and quadrupole (233 4  4 3S, 43D) couplings 
should be included in a theoretical calculation in light of the relative 
magnitudes observed in the Kaiserslautern experiment between the DCS for 

the 33P state and the n=4 triplet states. 

, TABLE 1. Experimental Differential Cross Sections for e +He(2 3S 4 n3 LI 

(Irao
2  
/str.) (Muller-Fiedler et al. 1984). 

0 23P 335 3
3P 33D  43S+43P+4 3D+43 • 

10 300 4.9 5 25 10 
15 85 1.4 1.9 10 6 
20 26 .99 2.1 4 1.8 
25 T.5 .60 .78 1.7 .78 
30 2.8 .38 .58 .37 .50 
35 1.6 
40 .82 

The DMET integral cross sections for the 23P and 33L (L=S,P,D) states 
are compared in figure 2 with the Born results of Flannery et al. (1975), 
the original MET results of Flannery and McCann (1975b) and (where 
available) the distorted-wave results of Mathur et al. (1987). Also, for 

the 23P and 33S states, the 5-state R-matrix results of Fon et al. (1981) 
and the Glauber theory results of Khayrallah et al. (1978) are shown, 
respectively. The above theoretical results are compared in figure 2 with 

the recent experimental data of Rail et al. (1989) for the 3 3S, 33P and 33D 

states. In the case of the 333 and the 33D states the experimental results 
are absolute apparent cross sections, so a direct comparison with theory 
will require the subtraction of the cascade contribution from the apparent 

measurements. Only the 33P results of Ball et al. (1989) are direct 
measurements. These were determined from the optical cross sections for 
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original MET results (Flannery and McCann 1975b); x, DH results 
(Mathur et al. 1987); ', Glauber results (Khayrallah et al. 
1978); 	 R-matrix results (Fon et al. 1981); o, experi- 
mental data (Ball et al. 1989). 



the 23 P and 33P and Einstein A coefficients (see Rall et al. (1989) for 
details). Clearly, further theoretical work will be required in order to 
convert the remaining apparent cross section measurements of Hall et al. to 

• direct cross sections. However, the measurements of Rall et al. do confirm 
the basic trend, seen in both the MET and DMET, of the optically-forbidden 

23 S -4 33D cross section being larger than the optically-allowed 2
3S 4  33P 

cross section in the intermediate energy region. 
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THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 

IN ATOMIC SCATTERING THEORY 

E. J. Mansky 
School of Physics 

Georgia Institute of Technology 
Atlanta, Georgia 30332 

ABSTRACT 

The numerical solution of coupled partial and ordinary differ-
ential equations in electron-atom scattering theory are compared. 
In particular, a case study is made of the transition H(ls 
23,2p) excited by electrons in the intermediate energy region. 
The results of the multichannel eikonal theory (MET) and the 
close coupling theory (CC) for this transition are compared and 
contrasted with experiment and each other. The principle conclu-
sion is that the configuration space and angular momentum repre-
sentations employed by the two theories provides information 
about the excitation process which is complementary. Speci-
fically, the contrasting differences between the MET and CC 
results at small and large scattering angles for the modulus and 
phase angle of the complex scattering amplitudes fni (0) sheds new 

light on the computational problems that need to be solved in 
order for the X, R and I problem to be resolved. 

I. 	INTRODUCTION 

In this lecture the numerical solution of partial differential 

equations in electron-atom scattering theory will be discussed and 

contrasted with the problem of solving ordinary differential equations in 

scattering theory. In particular, the results obtained by the multi-

channel eikonal and close coupling theories for the electron impact exci-

tation of hydrogen will be examined in detail. In Section II the partial 

differential equations of the multichannel eikonal theory are presented 

together with the ordinary differential equations of the close coupling 

theory. The advantages and limitations inherent in the representations 

employed by both theories is also discussed. In addition, the paralleli- 

1 



zability of the algorithms used in the numerical solution of the PDE's 

and the ODE's ifi the two theories is discussed in Section II. Section 

III contains a discussion of the results of the two theories for the 

integral and differential cross sections and the complex scattering 

amplitudes for the electron impact excitation of hydrogen. The con-

clusions are presented in Section IV together with a list of general 

references. 

II. 	THEORY 

Here we are concerned with the scattering of a structureless 

projectile B at a distance 	from a target atom A with electronic coor- 

dinate I% In this case, the time-independent SchrOdinger equation is, 

1.*. = E.*. 1 1 	1 1 

where the Hamiltonian operator l i  is given by, 

X22 2 	2 412 2„ 

	

A = 	v - 	v2 - 	
2 

+V 	+ V i 2mA  A 2mt, B 2me e 	AB 	Ae 	Be 

	

h2 	t2 	112 

v 	v 
2 

- 	
2 

- — v
2 
+V +V + V 

	

2mT  CM 2p AB 2m r 	AB 	Ae 	Be 

a A + 1' 

	

CM 	i 

In equation (2a) the first three terms on the right-hand side of the 

equation are the kinetic energy operators for the indicated particles, 

while in equations (2b,c) the separation into center-of-mass (CM) and 

relative motion terms are shown. As is well known, the separability of 

the CM and relative motion terms in this case allows one to write the 

system wavefunction *, as a product of a plane wave with a wavefunction 

for the relative motion of projectile B in the field of force of 

target A. The target atom A in the present case is assumed to be 

hydrogenic, generalization to other cases is straightforward. The masses 

(1) 

(2a) 

(2b) 

(2c) 

2 



in (2b) are defined as m = m e (memB )/mT , p  = mAmB/(mA+mB ) and mT  = mA+ mB  

+ m
e

. 

Therefore, Schrodinger's equation (1) now becomes, 

1t i '. = 	 (3) 

To solve (3) one generally expands the wavefunction 4, i  in a sum over 

eigenstates X n  of the target A, 

	

Fn (r AB ) )(n (;AB' ;) 
	

(4) 
n 

where F n is the (unknown) wavefunction for the relative motion of projec- 

4 
tile B a distance rAB from target A (in channel n). In this lecture we 
are primarily concerned with contrasting the numerical solution of PDE's 

and ODE's in atomic scattering theory and hence the expansion given by 

(4) will be sufficient. However, if one is interested in resolving the 

spin structure of the target atom A, or the resonances in the cross 

section near threshold, additional terms (antisymmetrization, correla-

tion, etc.) need to be added to (4). These additional terms will 

ultimately result in a larger set of coupled equations to be solved, but 

will not change in a material way our basic discussion of the numerical 

solution of coupled partial and ordinary differential equations in 

electron-atom scattering. References to calculations which do include 

the above effects are given in Section III. 

Substitution of (4) into (3) results in the following set of 

coupled ordinary differential equations, 

- — v2 F + 	F - V F = 	(-; )F 

t.12 

2p AB n 	2p n 	nn n 	nm AB m 

2k2 

m 

112 

- 	2p EFm(Xn ,  AB 'gym) 	2 4ABFm (X n' 4AB )(m )) 
	

(5) 
m 
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where the prime on the summation sign indicates omission of the term n=m, 

and the inner product (f,g) is defined. 

(f,g) = 	f(i") 

To convert (5) into a set of PDE's, write Fn(;AB ) = An(;AB) exp[iS n (1AB
)] 

and note that r AB  = p
2 

+ z
2 

with p,z,, the usual cylindrical coordinates 

centered at A. This yields the following set of equations, 

2p 
4. 4 	A + 1 2  A` - 

	

A
n 
 v2A

B  An 
 + 2 ;

AB  An 	AB n 	C7AB n 	
(k 	V
n t2 nn)A n} An 

C' 2p 	 2p 
VAA - 	 ; (AA) 

	

- 	t2 nm m m 	112 nm 	AB m m 
m 	 m 

with An E exp[i Sn(;AB)]  and 0nm E n' ;AB )(m ). After writing the 

gradient and Laplacian operators in (6) in terms of cylindrical coordi-

nates, the coupled Hamilton-Jacobi partial differential equations are 

solved for the amplitude functions An(AB)'  In these equations the 

eikonal phase Sn  (;AB ) is assumed to be known exactly. To obtain an 

equation for Sn  set the term inside the curly brackets in (6) equal to 
zero, 

2p 

vAB 
2 A n (;AB ) + (kn t2 

2 - — Vnn )  An  -) = 0 (7) 

where the Vnm  in (6) are the instantaneous electrostatic interaction 

between the projectile and target i.e., V nm  = Vnm(;AB )  = ()( n' 
2 n  Defining the local wavenumber K( 	E kn  - (21.at2 ) Vnn  V(ABM)(m). 	

rsAB) 
and writing the Laplacian in (7) in spherical coordinates yields, 

2 
1 	d

f 	a 	iS n (rAB ), 	f  AB 2 	iSn (rAB )  C2 
AB Or AB e 
	+ G-2- + K j  e 	= 0 

r2 dr AB  AB 	 AB 

(6) 
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2 
-0 i S" + i r — S' - (S')

2 + w
2 

= 0 n 
(8) 

i where the primes denote differentiation with respect to r AB  and LAB  is 

-0 
the eigenvalue of the relative angular momentum operator CAB  = (h/i) 

rAB 

" -0AB' The 'frequency' wn  is defined, wn
2  a (LAB/rAB)  B/r A

2 
 B ) 	Kn

2  K. Here we are 

interested in electron-atom collisions where the relative motion of the 

electron to a good approximation is a straight line. That is, we assume 

that the eikonal phase factor Sn(;AB)  is a slowly varying function of 

;AB" • or, equivalently, that the density of the classical ensemble of 

particles varies sufficiently slowly along the classical trajectory such 

that Sn - 0, and the LA B  term in (8) can be ignored. In this case, the 

real part of (8) is integrated to give, 

z 	
2 	211 	 1/2 

	

Sn (rAB ) a  Sn(P'z) = k
nz + j [[kn 	g Vnn(P'z')] 	- kn idz' 	(9) 

In the case of heavy particle collisions the curvature of the trajectory 

of the projectile must be included in the eikonal phase. An example of 

this type of calculation, for ion-molecule collisions, is the work of 

McCann and Flannery [26,27]. With the choice of (9) for the eikonal 

phase the coupled equations (6) are independent of An  on the left-hand-

side. In order to further simplify these 2nd-order partial differential 

equations for A n' we in addition assume that the term v A
2  
B An is small and 

that the eigenstates x n  are independent of 	The The latter condition 

insures that the second summation on the RHS of (6) vanishes and is con-

sistent with our omission of electron correlation effects in the wave-

function expansion. These terms become important when there is signifi-

cant configuration mixing in the target atom. 

With the above approximations, the coupled equations (6) reduce 

to a set of first-order partial differential equations, 
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112 	dCn (p,z) 

i n 	dz 	p + [ 	x (K 
n
-k 

n
) + Vnn

]Cn = 	Vnj Cj 
exp[i(k j -kn )z] (10) 

j 
n  

where An
(p,z) = Cn (p,z) 

z 
iA in 0  

e 	exp(-i i 	(K
n
-k

n
)dz i }, and A

in 
E m.-m . 

n 

These equations are solved subject to the boundary condition C n (p, ..03) 

=ôni .The coupled equations (10) are the basis of the multichannel 

eikonal theory (MET) of Flannery and McCann [11-16]. The three principal 

advantages of the semiclassical equations (10) are: 

(i) The equations are first-order in z, hence the numerical tech-

niques used for ordinary differential equations can be used 

to solve (10). This also means that no matrix diagonaliza-

tion needs to be done in the numerical solution of (10), as 

is the case with 2nd-order ODE's. 

(ii) The second variable p (the projectile's impact parameter) 

appears in (10) only as a parameter. This indicates that the 

coupled PDE's (10) will be readily parallelizable. While no 

calculations have yet been performed with (10) solved on a 

parallelizable machine, when this is done, a great deal of 

time should be saved. This is important since the numerical 

solution of (10) is the principle bottleneck in the MET 

calculations. 

(iii) The memory and time required to solve (10) is a linear func-

tion of the number of eigenstates )(n  used in the basis set 

(4). This is in contrast to the case of 2nd-order ODE's 

where the time required for the matrix diagonalization is a 

cubic function of the number of elements in the matrix to be 

diagonalized. This in turn is a result of the direct methods 

used for the matrix diagonalization, and hence represents a 

major hurdle to the use of large basis sets in the solution 

of 2nd-order ODE's. The ultimate reason behind the diffi-

culty in using large basis sets in solving 2nd-order ODE's by 

matrix techniques lies in the use of an angular momentum 

representation for the wavefunctions Fn  rather than a 
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coordinate (i.e., configuration space) representation. 

The main disadvantage of solving the 1st-order partial differential 

equations (10) is the - fact that they must be solved over a 2-dimensional 

grid rather than a one-dimensional grid as is necessary in the solution 

of 2nd-order ODE's. A consequence of this is that the memory require-

ments are an order of magnitude larger for the former calculation as 

compared to the latter. 

The close coupling 2nd-order ODE's which arise from using an 

angular momentum representation for Fn(IIAB)  in (4), are, 

f d2 	e i(P i +1) 	2Z 

 r2  
	 + 

rAB + k] F1(rAB) AB 	AB 
co 

= 2 	Vij (rAB ) Fj (rAB ) 	Wii (rAB' ri) Fj (rt)dri  
j 

X (i)  P lr lA 
-ne 'nes - ABeft 

ne 

where e i  is the orbital angular momentum quantum number of the projectile 

electron in state i, and the N ) are Lagrange multipliers chosen such nt 
that the target orbitals P ne  are orthogonal to the F i . The matrix 

elementsV ij  are the same as those defined previously, while the W
ij are 

the electrostatic matrix elements arising from inclusion of electron 

exchange (i.e., antisymmetrization) terms and correlation terms in the 

wavefunction expansion (4). The close coupling equations (11) are well 

known in the literature, hence their derivation need not be repeated 

here. However, attention is drawn to the following papers and reviews 

for those interested in further details [2,5-7,29]. 

Technically, the close coupling equations (11) are Fredholm 

ordinary integro-differential equations which, using the technique of 

Marriott [25], can be cast in the form of a larger set of purely ordinary 

differential equations. Then, after discretization of the Laplacian in 

(11), the problem is converted into one of matrix diagonalization. 
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The advantage of using the close coupling equations (11) is that 

very accurate inelastic cross sections can be obtained close to threshold 

- especially the resonance structure between the inelastic threshold and 

the threshold for ionization. However, as the energy crosses the ioni-

zat_on threshold (where the number of open channels becomes infinite), or 

in the case of transitions between excited states, the close coupling 

equations (11) become increasingly difficult to solve via matrix 

techniques due to the large number of basis states and partial waves P i 

 required for convergence. This problem can partly be alleviated through 

the use of pseudo-states. Another way around the bott' - neck of basis set 

size in the solution of (11) is through the use of multi-tasking on the 

CRAY-MP. Important recent work in this regard is that of Sawey et al. 

[3O]. Clearly further work on the numerical solution of (11), both by 

matrix diagonalization techniques and by solving the equivalent partial 

differential equations, is needed. 

In this lecture we are interested in contrasting the numerical 

solutions of the coupled PDE's (10) with the ODE's (11). Hence we will 

only discuss the techniques used to solve numerically the PDE's (10), the 

techniques used to solve the close coupling equations (11) having been 

thoroughly described in [2,5,7]. In particular we will end Section II 

with a brief review of extrapolation methods used to solve 1st-order 

ordinary differential equations. A more complete discussion of the 

numerical solution of (10) including Runge-Kutta and predictor-corrector 

methods will be given in a forthcoming paper [22]. 

Extrapolation methods for ODE's  

Consider the 1st-order ODE, dy(t)/dt = F(t,y(t)). When this is 

integrated for sufficiently small step sizes h, the solution of y(t+h) 

can be written as a power series in h, 

m 

y(t+h) = y(t) + 	T(t)h i 
 + a(h

m+1
) 
	

(13) 

i=1 

The goal of extrapolation methods is to eliminate the power series in h 

in (13) above by integrating the differential equation for a sequence of 
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R(i+1)(i) - R(i) 
 m-1 	-1  

R i+1 - R i+1 	- 1 

m-1 	m-2 

R(i) 	R (i) 	(i+1) 
m 	m-1 

R(i+1) - R (i) m-1 	m-1 

(h./h. 	)" [1 i+m 

step sizes ho ,h 1 ,...,hm , and then extrapolating the results to h 	O. 

That is, the power series 2 T.(t)h is approximated by functions Rm (t,h i ) 

which have m+1 unknowns. These unknowns are determined by the condition 

Rm(t,hi ) = y(t+hi ), j = 0,1,...,m. Hence the solution of the ODE y(t) is 

approximated by Rm (t,0). 

The two principle extrapolation methods are by polynomials and by 

rational functions. In polynomial extrapolation the function RM1  (t,h.) 

R (i) (h) is an mth degree polynomial in h and is computed recursively by, 

R(i+1) - Rm 
(i) 

R (i) = R (i+1) 	
m-1 	-1  

m 	m 	(h./h. 	)-1 i+m 

In rational function extrapolation the R (1)  = Pm(h)/Q (h) where P m(h) and 

Qm(h) are polynomials in h of degree p and u, respectively. The R
(i) (h) 

are computed in this case recursively via 

R (i) = 0, 	R (i)  = y(t+hi) 

The MET results discussed in Section III were obtained by solving the 

coupled 1st-order PDE's (10) using Bulirsch and Stoer's [4] method of 

rational extrapolation for ODE's. A full discussion of extrapolation 

techniques can be gound in Gear [17] and Dahlquist and Bjorck [10]. 

III. 	RESULTS 

Before comparing the MET results obtained by solving the PDE's 

(10) with the close coupling equations (11) a short discussion on the 

practical numerical methods used to solve (10) are in order. To do this 

we quote the final expression used in the multichannel eikonal theory for 
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0 

where the integrals I I  and 1 2  are defined, 

X n (p,z) 
, 	r d z 	I 	N 	  = j UZ Kn kp,Z1 dz 	exp[i1(0)z] 

the complex scattering amplitude for the transition i 4  n, 

CI) 

A. +1 r 
fni (0) = 	

in 	J A.  (clop) rypo(0)) - 	1 2 (p0(0))1pdp 	(14) 
J 	In 

(15a) 

- 03 

w 

I 2 (P,v) = j dz [lc 
n 
 (lc 

 n 
 -k 

 n 
) + 

2 — V nn ]Cn  (p,z) exP[l1(0)z] 
	

(15b) 

-( 

and refer the reader to the original literature [12,13,16] for the 

details. In equations (1 14,15) q' = kn  sine and /(0) = kn (1-cosh) and A in 

 = m. - mn . The 1st-order PDE's (10) are solved using Burlisch and 

Stoer's rational extrapolation technique for ODE's over a finite 

2-dimensional grid: o < p < omax' 	zmax < z < zmax  for the amplitude . 	 - 	- 
functions Cn(p,z). The values of pax  and zmax are varied until the 

cross section, 

pima 
x  IC n  (p,z  max )1 2pdp 	 (16) 

0 

is computed to within a tolerence E (i.e., until subsequent evaluations 

change by less than an amount E (%)). An additional criterion for the 

selection of optimal values of max and  zmax  is that the MET integral 

cross section, computed from the scattering amplitude (14) should 

converge to the 1st Born approximation at high incident energies. For 

this to be achieved it was found necessary to solve (20) using a non-

linear grid in z in order that the rapid variation of Cn  and dC n/dz near 

z = 0 be accurately represented. This was needed so that the subsequent 

evaluations of I 1, 1 2 were accurate. The nonlinear grid in z used was: 
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z i  . 3 tan(io), i = -N z ,...,Nz  with 6 = tan
-1

(zmax/3)/Nz . However, since 

I 1 and I 2 
must be evaluated numerically from the tabulated solution of 

the coupled equations (10), the most efficient way of solving (10) is to 

make the grid points z i  used to solve (10) and the pivots used in the 

evaluation of I 1, 1 2 
identical. This avoids the need to interpolate 

w.r.t. z in the quadrature of I I  and 12  (interpolation w.r.t. p must 

still be done however). In the MET calculations discussed below, inte-

grals 1' 1 2 
were evaluated using Simpson':, - ule with the nonlinear 

pivotsz.chosenaboveandwithwe herer.are 

the usual Simpson's rule weights and N z  is the number of points used to 

discretize the z-range [o,z max ]. Hence while the number of points 

required for al, accurate evaluation of I 1 , 12  is much larger using 

Simpson's rule as compared with using a higher-order quadrature method, 

the amount of time saved by eliminating the need to interpolate w.r.t. z 

more than makes up for the increased number of grid/ pivot points z i 

 required. 

In figure 1 the real and imaginary parts of the amplitude 

function Cn (p,z) for the 1s state of hydrogen are shown as an example of 

the type of behavior exhibited by the solutions of equation (10). For a 

more extensive exhibition of the solutions of the semiclassical equations 

(10) see [22]. 

In the remainder of Section III an overview of the MET results 

for e+H collisions will be given. This will include differential and 

integral cross sections as well as the complex scattering amplitudes. 

For a complete update and discussion of the present MET see Mansky and 

Flannery [23,24]. It should be clear that by comparing the results 

obtained for a wide range of physical observables, from the solution of 

equations (10) and (11), one not only gets an idea of the success or 

failure of a particular theory over a wider range of physical conditions, 

but also insight into the accuracy of the numerical solution of the 

coupled equations underlying a given theory. That is, by varying z max 

 and Amax  in the semiclassical equations (10) until the integral cross 

sections computed from (14), for all states in the basis set, have 
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Figure 1: Real and imaginary parts of the MET amplitude function 

C 1s (p ' z) versus z(a o
) for e +H collisions at E = 54.40 eV. 

converged to their corresponding 1st Born approximation values in the 

limit of high energy, one obtains an idea of the minimum size 2-

dimensional grid required to solve the coupled PDE's (10). These values 

can then be used to solve (10) for all other energies of of pmax , zmax 
interest. Note that a similar argument can be made about the numerical 

solution of the coupled ODE's (11) where the appropriate parameters are 

r x  and emax - the maximum value of the independent variable r AB and the ma 
largest partial wave P i  retained in t expansion. 

The MET differential and integral cross sections are defined as, 

kn 

an(0) =-cc Ifni(0)12 (17a) 

2w 

I j sin° dO on (0) = 2a J an (0) sin(0)d0 	(17b) 

where the complex scattering amplitude for the transition i n is given 

by (14). In figures 2,3 the integral and differential cross sections for 
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Figure 2a: Integral cross section a lp  in units of imp
2 

versus E (eV.). 

1st Born (- - -), MET [23] ( 	), 3-state close coupling [18] 
 ), DWSBA [20] (X), AVCC-18 state [9] ('), unitarized 
Born [31] (+), experimental data of Long et al. [21] as re-
normalized by Bransden and McDowell [3] (0), experimental 
data of Long et al. [21] as renormalized by van Wyngaarden 
and Walters [34] (0), experimental data of Williams [32] (A). 

Figure 2b: Same as Fig. 2a except with AVCC-11 state ( 	) [8]. 

e +H(1s -s 2p) collisions are shown (results for other transitions in 

hydrogen are given in [23]). The MET results are in good overall agree-

ment with experiment in figure 2, and clearly converge to the Born cross 

section at high energy. In particular, the agreement (cf. figure 2b) 

with the absolute measurement of Williams [32] at 54.40 eV is noteworthy. 

The differences between the original algebraic variational close coupling 

results of Callaway [8], and the sane results as renormalized by van 

Wyngaarden and Walters [34], is a choice of normalization (i.e., normali-

zation to experiment at 11 eV versus the pseudostate close coupling 

calculations of van Wyngaarden and Walters [35] at 350 eV). On the other 

hand, the differences between the 3-state close coupling results of 

Kingston, Fon and Burke [18] (cf. figure 2a) and the MET results is an 

indication of the lack of convergence w.r.t. basis set size in the former 

calculation. The importance of basis set size is evident in comparing 

the 3-state close coupling results of Kingston, Fon and Burke and the 

18-state AVCC results of Callaway et al. [9] (cf. figure 2b). While the 

MET results are in good agreement with the results of Callaway et al. for 

energies E > 70 eV, the differences observed in figure 2 at lower 

energies is due to the neglect of electron exchange terms in the MET. 

. This is also eviden' in figure 3 by the rapid decrease of the MET 
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differential cross sections 2s
(0) ' a2p

(0) at scattering angles 8 > 40 ° 

 when compared to the close coupling results of Kingston, Fon and Burke 

[18] and van Wyngaarden and Walters [34]. The agreement between the MET 

and the experimental data of Williams [32] for 0 < 20 °  in figure 3 also 

indicates that the choices for z
max 

and 
Amax in the solution of (10) were 

correct. 

From figure 3 one would conclude that electron exchange effects 

are only important at large scattering angles. This is incorrect. While 

a definitive calculation has not yet been done, the ongoing problem of 

theory to reproduce the experimental data for the X, R and I parameters 

indicates that theory is still not handling adequately the numerical 

solution of the coupled equations (10) or (11). In figure 4 we show the 

X, R and I parameters for e+H(1s -' 2p) collisions at E = 54.40 eV and 

scattering angles 8 < 50° . Clearly the MET results accurately reproduce 

the experimental data of Williams [32] only for 0 < 20 ° , while at the 

level of a
2p(0) the corresponding angular range was 8 < 40

o
. In con-

trast, the two close coupling results shown in figure 4 are in good 

agreement with experiment out to approximately 40 ° . However, at larger 

scattering angles (0 > 60° ) the close coupling results fail to reproduce 

the second experimental minimum in the X parameter observed around 100 °  

and the magnitude of the R parameter in the range 70°  < 0 < 120° . These 
facts taken together indicate that while the values of z max  , pmax  used to 

solve (10) in the MET are adequate at the level of differential and 

integral cross sections, the small z behavior of the amplitude functions 

still needs refinement for physical observables directly dependent on the 

complex scattering amplitude fni (0). 	For completeness, the X, R and I 

parameters are defined, 

X 	= 	If0 1 2/[1f0 1 2 	2 1f,11 2 ] (18a) 

R = v1X(1-10/21 cos(13 1 	- po ) (18b) 

I = J[X(1-1)/2]sin(p
1 	- po ) (18c) 
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Figure 3: Differential cross sections a2s (0) 

for E = 54.40 eV. MET [23] (___), 
(---), pseudostate close coupling 
data of Williams [23] 0 (via sum), 

, a2p (0) in ao
2
/str. vs. B 

3-state close coupling [18] 
[35] (----), experimental 

❑ via ratio). 

where f (0) = If MI exp[iP (0)] and f (0) denotes the complex scatter-

ing amplitude for 2pm  magnetic substate. For a complete discussion of 

the angular correlation and polarization correlation parameters in 

electron-atom scattering see Andersen et al. [1]. For more on the prob- 

lem of the X, R and I parameters in e+H collisions see Morgan [28]. 

To better understand what part of the solution of the PDE's (10) 

needs improvement, in regards to the X, R and I problem discussed above, 

and where the electron exchange terms in (11) become important, we show 

the MET results for the scattering amplitudes f2r, (0) and f2, (0) at E = 
vo 	v 1 

54.40 eV in figures 5 and 6, respectively. These are compared in figures 

5,6 with the close coupling results of Kingston, Liew and Burke [19]. 

Two things are evident in these figures. First, that the electron 

exchange terms in the close coupling equations (11) manifest themselves 

quite differently in the modulus and phase angle of the scattering. 

amplitude. For example, the phase angles for the singlet and triplet 

spin channels for the f 2, (0) scattering amplitude differ from each other 
vo 

appreciably for 0 >30° , while for the f2p (0) they don't begin to differ 1   

greatly until 0 > 40° . On the other hand, the modulii for the singlet 
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and triplet spin channels of the f, (0), f 	(0) scattering amplitudes 
4)0 	2P 1 

only differ appreciably for 0 < 20° , 0 < 30° , respectively. That is, 

electron exchange terms are important at small scattering angles for the 

moduli of scattering amplitudes, while for the corresponding phase 

angles, they are important only at large scattering angles. This 

indicates that unraveling the relative contributions that direct and 

exchange terms make to a given scattering amplitude at a specific angle 

will be difficult. 

The second point to note from figure 5 is that the MET results 

for the f2p (0) amplitude agrees quite closely at all angles with the 
0 

triplet spin channel results of Kingston, Liew and Burke. On the other 

hand in figure 6 the MET results only agree with the singlet spin channel 

results over a limited angular range. In particular the MET results 

exceedboththesingletandtripletspinchannelresultsforin.,(0) 1 
413 1 1.0 	r -r-7 	 7 7 r I I 

0.8 

0.6 

0.4 

02 

0.0 
0 	10 	20 	S0 	40 

8 

Figure 4: A, R and I parameters for the 2p state at E = 54.40 eV. MET 
[23] ( 	), 3 state close coupling [18] (---), pseudostate 
close coupling [35] ( 	), experimental data of Williams 
[32,33] 0 (A, R from [32], I from [33]). 
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for 8 < 20° . Note that we should not expect to see the MET results in . — 
figures 5,6 lying between the singlet and triplet spin channel results of 

Kingston, Liew and Burke. Rather, the observed behavior of the modulii 

and phase angles of the MET scattering amplitudes in figures 5,6 is a 

direct result )f a complicated interplay between the z-behavior of the 

amplitude functions C n (p,z) and eikonal phases Sn (p,z). A detailed 

discussion of these topics is beyond the scope of this lecture, but will 

be the subject of a forthcoming paper. 

IV. 	CONCLUSIONS AND GENERAL REFERENCES 

In this lecture we have contrasted solving coupled PDE's with 

ODE's in electron-atom collision theory. The principle conclusion of 

this lecture is that the solutions of (10) and (11) are complementary. 

That is, the configuration space representation employed by the MET, and 

the angular momentum representation employed by close coupling theories, 

complement one another, both in terms of information they provide about 

the scattering event, and in the energy ranges over which they are valid. 

This is important since it means that by solving (10) and (11) one gains 

additional insight into a particular excitation process that would not be 

obtained otherwise. This p-oved useful for example in the discussion of 

Figure 5: Modulus Ifo l (in ao ) and phase angle po  (in radians) for 

f(0) vs. 8 for E = 54.40 eV. MET [23] ( 	), 3 state close 

coupling [19] 0 (singlet) ❑ (triplet). 
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the X, R and I problem in Section III. We end this lecture with a short 

list of general references which we have found useful on the subject of 

coupled ordinary and partial differential equations. 

- Collatz, L., 1960, The Numerical Treatment of Differential Equations  

3rd ed., Springer-Verlag. 

- Dahlquist, G., 1956, Math. Scandinavica 4 33-50, 1959, Trans. Roy. 

Inst. Tech., Stockholm, No. 130. 

- Dahlquist, G., and Hjorck, A., 1974, Numerical Methods, Prentice Hall. 

- Gear, C. W., 1971, Numerical Initial Value Problems in Ordering 

Differential Equations, Prentice-Hall. 

- Henrici, P., 1962, Discrete Variable Methods for Ordinary Differential  

Equations, Wiley. 

- Ince, E. L., 1956, Ordinary Differential Equations, Dover. 

- Olver, P. J., 1986, Applications of Lie Groups to Differential  

Equations, Springer-Verlag. 
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ITERATIVE SOLUTION OF LARGE LINEAR SYSTEMS AND HEAVY PARTICLE COLLISIONS: 

ION-ION RECOMBINATION 

E. J. Mansky 
School of Physics 

Georgia Institute of Technology 
Atlanta, Georgia 30332 

ABSTRACT 

The solution of large sparse linear systems of algebraic equa-
tions arising from the discretization of coupled Boltzmann par-
tial integro-differential equations, which model ion-ion 
recombination processes in dense gases, is discussed. The 
advantages and limitations of various representations of these 
equations is provided. A detailed analysis is given of the 
derivation and structure of the coefficient matrix A of the 
resultant algebraic equations. The need for preconditioning the 
algebraic equations through the calculation of the condition 
number of the matrix A is highlighted. Approximate methods of 
computing termolecular recombination rate coefficients via the 
Debye-Smoluchowski equation and diffusion models in energy space 
are also briefly discussed. 

I. 	INTRODUCTION 

In this lecture the numerical solution of large sets of linear 

algebraic equations by iterative methods will be discussed with parti-

cular application to problems in heavy particle collisions. The physical 

problem specifically addressed is that of ion-ion recombination at 

arbitrary gas densities. The determination of the rate of recombination 

is governed by the solution of a pair of coupled Boltzmann-like integro-

differential equations (IDE's). The derivation of these coupled 

Boltzmann equations from a more basic perspective involving the BBGKY 

hierarchy of equations is reviewed in Section II. The solution of these 

coupled IDE's provides a general framework for discussing the problem of 

computing chemical reaction rates in dense plasmas. This is provided in 
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Section II along with a detailed discussion of the advantages and limita-

tions'of transTorming the IDE's into a set composed solely of differen-

tial equations (DE's) or integral equations (IE's). In all three repre-

sentations the problem of numerically solving the coupled Boltzmann 

equations reduces to one of solving a set of simultaneous linear alge-

braic equations composed of a large, sparse, real, positive definite, 

non-symmetric, ill-conditioned matrix. The solution of these algebraic 

equations by iterative techniques is highlighted in Section II. 

Historically, until the advent of supercomputers, the direct 

solution of the coupled Boltzmann equations was generally avoided through 

- ne use of simplifying approximations because of the difficulty in solv-

ing large sets of algebraic equations. In Section III the link between 

the coupled Boltzmann equations and it's approximations is given. In 

particular the formulation of the problem in terms of diffusion equations 

(in energy space) and Debye-Smoluchowski equations is accentuated in 

Section III. The conclusions of this lecture and a list of general 

references is given in Section IV. 

II. 	BOLTZMANN EQUATION TREATMENT OF IONIC RECOMBINATION 

The overall goal of the type of calculations described in this 

lecture is the prediction from a microscopic viewpoint, of the rate of 

chemical reactions in dense gases. The proto-type chemical reaction we 

are primarily interested in is that of ion-ion recombination at arbitrary 

gas densities, 

X+  + Y + Z 	[XY]
* 
 + Z 	 (1) 

whereby free ions (e,Y) are converted into diatomic molecules XY 

(usually in some metastable state denoted by *). We will assume that the 

number density of third bodies Z is arbitrary, but that the free ion 

number densities is sufficiently low so that the interaction potential 

between ions is strictly Coulombic. This will necessarily exclude from 

discussion dynamic screening effects in dense plasmas. We will also not 

discuss the related problem of ion-atom association, 
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X+  + Y + Z 	[XY+ ] *  +Z 

which is an important mechanism by which molecular ions are formed in 

interstellar media and in laboratory plasmas. To solve both problems 

from a microscopic standpoint will require a great deal of information on 

the full three-body sector of phase space which is beyond the scope of 

this lecture to provide. Anyway, before the latter two problems can be 

solved, a complete understanding of the solution of the termolecular 

recombination rate in the limit of low ionic density and arbitrary gas 

density will be needed. 

We are interested in computing in this lecture microscopic reac-

tion rates which the reader should take to mean that the reaction rates 

will be expressed in terms of the phase space distribution functions fN 

 for the N particles comprising the three component plasma (positively and 

negatively charged particles as well as neutral species) undergoing 

termolecular recombination. Our starting point is the BBGKY hierarchy of 

equations, 

ofs 

	

at 
= - 1 

s 
f
s 
 + n/s fs+1 
	s = 1,2,3,...,N -1 	(2) 

which is a set of coupled equations for the s-particle reduced 

distribution functions f
s = fs (x i ,x2 ,...,xs ;t) = V-(N-s) J dx

s+1 1 dx  

f... 	dx
N  fN 

(x
1'

...
' xN' 

't) with V denoting the total volume of phase space 

and x i :(r 1 ,13 1  ) denotes the 6-dimensional phase space point for particle 

i. In equation (2), the Hamiltonian operator for s particles of equal 

mass m is defined, 

s 	11 . 	:9.. i 	i -• 	-0 
1s 	m r 

= 	— v-• 
1 m 	P 
+ — • v-0

i 
 - 	0

ij .  
i=1 	 14i<js 

(3) 

where 1 is the external force on particle i, and the interaction 

operator between particles i and j, is 
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1.1 	, 	a.ii 	, 

	

o. 	_ 	• 174 + 	. V-4.  
1 i 	

• 

	

a-i,,. 	 -■ 	P i  P i 	a 	J 

	

1 	
rj 

with the interaction potential between particles i and j denoted (pii . 

The phase-mixing operator l z  in the BBGKY equations (2) is defined, 

	

= \.1 	dx 	0 

	

s 	j 	s+1 	i,s+1 
i=1 

and the number density n in (2) is n = N/V. For a detailed derivation of 

the BBGKY hierarchy (2) the reader is referred to the statistical 

mechanical literature (Akhiezer et al. [1], Balescu [3,4], Chapman and 

Cowling [13], Ferziger and Kaper [18] and Tolman [41]). 

Since in ionic recombination we are interested in the formation 

of diatomic molecules, it is natural to assume that the most important 

reduced distribution functions in the three component plasma are those 

for one and two particles. Hence we will truncate the BBGKY hierarchy of 

equations at f3  and concentrate on the equations for f 1 , f2 . Also, since 

we are interested only in the recombination of positively and negatively 

charged particles to form neutral diatomic molecules, it follows that the 

main determining factor in computing a, the rate of reaction (1) will be 

the pair correlation function g(2+-) between X+  and Y- . From this we 

conclude that a separate BBGKY hierarchy (2) will be required for each 

component of the plasma. These hierarchies for the three component 

plasma are, 

(+) 	(+) (+) 	(++) (++) 	(+- ) (+- ) 	(+n) (+n) f 1 	= -2 1 f l 	+ / 1 	f2 	+ / 1 	f2 	+ / 1 	f2 
?(1 -) 	41(1 -) f (1 -) 	I(1 -+) f -+) 	1(1 --)4--) 	1(1 -n) 4-n) 

•(n) 	(n) (n) 	(n+) (n+) 	(n-) (n-) 	(nn) (nn) f
1 	

= -1
1 

f
1 	

+ L 1 
	

f
2 	

+ /
1 	

f
2 	

+ /
1 	

f
2 

(4) 

(5)  

(6a) 

(6b)  

(6c) 
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f
2  

.0.-) 
f
2 
•(+n) 
f
2 

•(--)f
2 
$(-n) 
1 2 
(nn) 
2 

= 

= 

= 

= 

= 
_ 
- 

(++ ) 	(++) 
-1

2 	
f 

( I...) 	(,) 
-1

2 	
f
2 

(+n) 	(+n) 
-1

2 	
f
2 

- 	(--) f 
	
(--) 

1
2 

.(-n)  ,„(-n) 
- "2 	1 2 
.4(nnynn) 

2 	2 

(++n) (+++) 	(+++) 	/(++-) ' (++-) 
	(++n) 	(++n) 

+ 12 	f3 	+ 	
2 	3 	+ /2  

( 4... 4.) 	0....„) 	( 4.-..) 	(4.--) 	
+ 1(+-n) f

(+-n) 
+ 1 	f 

3 	
+ 1

2 	
f 

3 
	

2 	3 2 

(+n+) 	(+n+) 	(+n-) 	(+n-) 	(+nn) 	(+nn) 
+ 1

2 	
f

3 	
+ '1

2 	
f

3 	
+ 1

2 	
f3 

(--+)
f 
(--+) 	+ 1 ( 	

3 	+ It
2 

---) f (---) 	(--n) f 
(--n) 

+ 1
2 2 

p(-n+),(-n+) 	„,(-n-),(-n-) 	
.Y2 	f3 

+ .'2 	1 3 	+ 	J-2 	1 3 	+ `4-2 	'3 
4. 

't2 	
f3 	1(nn-),(nn-) 	

42 	
f3 

2 	3 	
4. 	

2 	13 	
4. 

4 2 	3 

(7a) 

(7b) 

(7c) 

(7d) 

,, 	, 
" e  ' 
(70 

where the superscripts +, 	n indicates a positively or negatively 

charged particle or a neutral species, respectively, and the dots 

indicate differentiation w.r.t. time. 

The set of coupled equations (6,7) are closed by use of the 

cluster expansion (Ferziger and Kaper [18]) wherein the 3 particle 

distributions f
3 
are written as functionals of the 1 and 2-particle 

distribution functions. The latter functions are written in turn as 

functionals of f 1 thereby closing the set of equations (6,7). For a 

detailed derivation of these equations see Mansky [35] and Flannery and 

Mansky [28]. Since we are primarily interested in the numerical aspects 

of the problem of computing ionic recombination rates a in this lecture, 

we will omit the details of the subsequent reduction of the coupled 

equations (6,7) to the working equations (8), but refer the reader to the 

above two references as well as two earlier important papers of 

Flannery's [24,25]. 

Therefore, after reduction, the final steady state working 

equations are 

r 1 	I  Op+ (r,X) 	1 r 1 

- 	
Or 	

4. 

 r 	- 2N] 	

1/r 

[134- (r,X)-p (r,X)] = U' f p+ (r,g)F(X,u;r)du 
— t o 

- r' P+ (r,X)5(r,N) 	(8a) 

ap (r,X) 
	 1/r 

X j 	Or 
	 r' 	p(r,u)F(X,u;r)dp

J  

- r' p - (r,N)5(r,N) 	(8b) 

5 



1-1 

Lr 

 

ap+ (r,N) 
1/r 

r. j p+ ( r,P)F(X,p;r)dp 

- F' p+(r,N)5(r,N) 	(8c) 

 

 

ar 

  

1 	] ap(r,N) 	1_ 	
1/r 

- E-  - X  ar 	r ir 	l [ P (r,N)-P (r,X)] = 	f p-(r,p)F(N,A;r)dp 

-CO 

- P- (r,X)5(r,X) 	(8d) 

1 
where equations (8a,b) are valid for region I: -co < X < T,  and (8c,d) 

1 	1 
are valid for region II: 2r X  I (see figure 1). The functions 

p (I) (r,N) represented the number density of ion-pairs expanding (+) and 

contracting (-) at a given relative separation r and internal energy \ in 

phase space. The p's are just the ratio of the number density of 

ion-pairs undergoing recombination to the equilibrium number density 

(i.e., p(I) (r,N) = n (I) (r,N)/neq ). The working equations (8) are written 

in terms of dimensionless natural variables which are defined, 

r 12/Re , 	= -E i /kT, 	µ = -Ef/kT 

where Re = e
2
/kT and F' F. V e-X  , F = 	ro' Amfp = Re /Nmfp'mfp 

= 
21 

(N(Z)QD ) -1 . Hence the dependence on gas density in (8) is contained in 

the constant F, which also depends on the masses via, 

and, 

[(1+c)/c] 3/2 	, charge transfer 

(1+a)
2
/a

3/2 
, hard sphere 

4772 (1+a) 5/2/a3/2  , polarization 

1/r 

i(r,X) = 	 F(X,p;r)dp 

-co 

Amfp 
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<0 

),2 0 

).)0 

Figure 1: Illustration of X, r phase space domain of equation (8). 

The detailed formulae for the energy-change rate coefficients F(X,p;r) 

for the energy transfer mechanisms of charge-transfer, hard sphere and 

polarization collisions need not concern us here, but can be found in the 

original literature Flannery [21-23] and Flannery and Mansky [27]). In 

the definition of 	the mass ratio parameters are defined, 

a = m2m3/m 1
(m

1
+m2+m3 ) 

c = m 1 /m2 

where m2, m2 and m3 
are the masses of X

+
, Y and Z, respectively. 

The functions pI(r,X) are not completely determined by the working 

equations (8) until their associated boundary conditions are specified, 
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A rdk-k-o0 ) = 1 	 (9a) 

P I (r-wo,\) = 1 for X < 0 	 (9b) 

P+ (r=o,A) = p(r=o,X) 	 (9c) 

11 
0+(r,--r7) = p -(r, 17) 	 (9d) 

Before we convert the working equations (8) into a set of practical, 

numerical equations we will discuss the relative computational merits of 

transforming the integro-differential equations (8) into equivalent 

differential equations or integral equations. 

Technically, the working equations (8) are coupled Volterra partial 

integro-differential equations (PIDE's). They are 1 st-order in r and 

1-dimensional in X meaning that the highest derivative in r appearing in 

(8) is the first, while only single integrals w.r.t. X appear. To 

convert (8) into a set of PDE's define the functions PI (r,A) by 

1 	6-1(r,X) 
(10) - F(11,X;r) 

i r i 

17.417 	2A) 

as 

6;+ (r,x) 
F(A,X;r) dX ax j 

p± (r,X) 

yielding, 

1 	a r 	1 	6+(r,x) 1  
ar [F(p,X;r) 	ax 	J  

l(r,X) ifi +(r,A) 	 1 

+ r' F(I,N;r) 	ax 	 - r'W(r, 	- P+ (r, -w)] (11a) 

1 	a r 	1 	(9P-(r,X)1 	
r' 

l(r,A) OP- (r,A) 	 1 
I 	  r 	arLF(R,X;r) 	ax 	J 	Fol,x;r) 	ax 	r[P (r,- . 73 (r ' -w)]  - -(  

(11b) 

1 	a f 	1 	6*(r,A)1 	5(r,X) 6+(r,X) 	 1 
- 	 _ r'6;+ (r,T)-p(r,- co)] 	 + r' 	 

(T-X)  drLF(p,X;r) 	a 	J 	F(A,X;r) 	ax 
(11c) 

8 



1 1 

Op (r,A)] +I 4(r,N) Op (r,N)rr 	'pap 
" 	 

LIN 	F(11 ,X;r) 	ax 	F(I,N;r) 	OX 	aN j 
1 	a 
	1-  

-(-x) dr[F(11,x;r) 

1 
1'' [P ( 	-p (r,-w)] 

	
(11d) 

Performing the indicated differentiation w.r.t. r and rearranging terms 

results in the following set of coupled hyperbolic 2
nd-order partial 

differential equations, 

lc
r 

	

	
a p 

1 	 1 1 	1 
1 — - A] 	2-+ (rdo 	

- 2X] 	E- - AlP(A,A;r) 	r ,,5(r,x) 	0p+(r,x)  r  r r 	 r 

(F(A,N,;0)
2 

	  + 
F(I,X;r) 	dr 	+ [ FOI,A;r) 	 FOI,X;rd a 	 ax 

1[r ,X;r) 	ax 

1 
-- - 2N) dp r 	

-- (r,X) 	 1 
_     = r'[/14- (r, -r-7) - 13.0.1.  

F(p 	
(r,-w)] 	(12a) 

r1  1 

-t r 	x ] 	a 2P(r,A) 	C5(r,N) 
- dF'(1,X;r) 6 (r,x ) lr 

F(p,X;r) 	OraX 	F(P,X;r) 	(F(11,X1;r) )
2 	 1 	dX 

1 
= r[p(r,7,7) - p(r,-c0)] 	 (12b) 

- AlE"(4,N;r) 	x)  - N] 	2-+ 	. 	r,5( r  x) 	r 	 r d P (r,X) 

F(4,X;r) 	draX 	F(I,A;r) 	(F(11,N,;0)
2 j 	ax 

1 
= P[p+ (r,i-,) - p+ (r,-03 )] 	 (12c) 

1 	 1 1 	 1 
- J 	2-- 	 - 2N1 	- dr 	r  5(r,  (A,N;r) 	,.. 

r 	p (r,X) 	r r r 	 A) 
I
aP(r,N) 

F(A,X;r) 	arax 	F(11,N;r) 	(F(11,X,;0)
2 	F(A,N;r) 	ax 
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17t7, - al dp+(rdo 	 1 
	 - P[i - (r,T) - P-  

F(4,N;r) 	ax 	 (r,-(1.)1 	(12d) 

with the boundary conditions at the turning point (N = 1/r) and in the 

continuum (X -0 -a)) incorporated into the RHS of (12). Equations (12a,b) 

are valid only in region I, while (12c,d) are valid only in region II. 

Note that primes on F(1,X;r) in (12) denote differentiation w.r.t. r, lnd 

that F(11,N;r) = F(N,u;r). 

To convert (8) into an analogous set of coupled integral equa-

tions, define the functions p ±(r,N) by, 

	

pI (r,N) = 	7(r',X)dr' 
	

(13) 

0 

yielding, 

11 	1 
( 	- X)I7(r,X) - P* (0,X)] + Ts  ( 	 — 2A) 	67(r',X) - 77(r',A)]dr' 

0 

1/r 	 r 	 r 
r , f 	f 	 I4- . r' j  dp F(X,p;r, j P*  ■ r l ,p)dr' - 1" 5(r,X) j p (r',A)dr' 	(13a) 

-co 	 0 	 0 

1/r 

- ( -X)D (r,N)- 13(o,N)] = F' rdpF(X,p;r) iTs(r 1 01)dr' 
_co 

r''+(r,N)j r  p (r',X)dr' 	(13b) 

1/r 

(--r- - 1)[71* (r,X) - 71* (0,X)] = r' 	dp F(N,i;r) 17(r I ,p)dr' 

	

-CO 	 0 

r 

F' l(r,X) j  p+(r',X)dri (13c) 

10 



	

1 -. 	-. 	1 	1 
_(-(r r 	r _ x)[p (r,X) - P (0,X)] - — 1 — - 2A1 i-  63 	

-- 4- (r',A) - p (r I ,A)1dr' 

o 

	

1/r 	 r 	 r 

= r ,  f dp F(A,p;r) j P (r I ,P)dr i  - r' :74;(r,A) LP(r',X)dr' 	(13d) 

	

-L 	 0 	 0 

Rearranging terms in (13) to show the couplings present between the 

integral equations gives, 

	

1 1 	1 

	

- A) 7,* (r,N) + [ -r-.  ( 	- 2A) + r' 5(r,X)] l'i7(rs,A)dr' 
0  

1/r 

	

f 	
i 

j dm F(A,m;r) j p (r',11)dr' - 	( r-7.  -2A) j f  p (r',X)dr' 

1 
= ( -r: -20;* (0 ,A ) (14a ) 

1 
- 	- A) 71- (r,A) + F' l(r,A) 11 -p-1 - (r',A)dr' 

	

1/r 	 r 	
1 

	

- 	
r 

	

[du F(A,m;r) 1 p (rs,m)dr' = - 	- A) 71(o,A) 	(14b) 

-03  

1 

	

- A) .17)* (r,A) + F' '5(r,A 	;*(r',N)dr' 

0 

1/r 
— - F' j di F(N,p;r) j f  p+(r',4)dr' = (- - A) P*(0d0 (140 

	

-OM 	 0 

	

1 1 	1 

	

- ( 17 - A) -1)- (r,N) + [ T 	- 	+ F' 5(r,N)] f  -1;(r',A)drs 
0 

1/r 

	

f 	
1 	1 

	

- F' 	dp F(Nal;r) j p (r'1)dr' - r 	- 2A1 lj . 7]*(r',N)dr' 

	

0 	 0 

1 
= - 	- )k) P (0,N) 
	

(14d) 
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where the boundary condition at r = o has been incorporated into the RHS 

of (14). The three representations of the coupled Boltzmann equations 

(equations (8), (12) and (14)) all require the same number of quadratures 

to obtain a solutiOn - namely two each for p+(r,N) and p(r,N). However, 

our reason for giving the details of the transformation between represen-

tations (cf. equations (10), (13)) is to highlight the different types of 

boundary conditions required in each case. In the case of the PDE's 

(12), it is clear from (10) ;net the required boundary conditions on 

p-(r,N) should be global in energy and local in r, while in the case of 

(14) the boundary conditions on P-1-(r,N) should be local in energy and 

global in r. We use the word global to indicate that the integrand of an 

integral w.r.t. the specified degree of freedom is required as a boundary 

condition. Otherwise it is called a local boundary condition (e.g., 

equation (9) is local in both r and X). Therefore, from (10) and (13) it 

is clear that the boundary conditions for the PDE and IE representations 

are of a mixed nature, and will be difficult to implement numerically. 

It should be clear however that in all three cases (eqs. (8), (12) and 

(14)), after discretization, the basic problem numerically is the same -

namely one of solving a set of simulataneous algebraic equations for the 

PIDE representation (8) (these are the practical equations mentioned 

earlier), and leave it to the reader to write down the corresponding sets 

of equations for the other representations (12), (14). 

Numerical Solution of PIDE's  

To convert the coupled PIDE's (8) into algebraic equations, four 

steps need to be taken: 

(i) Replace all derivatives with finite differences. If the PIDE is 

part of an initial value problem, the choice of either forward 

or backward differences will depend on the boundary conditions. 

(ii)Replace all integrals with quadrature sums. The choice of quad-

rature rule is crucial in determining the overall stability and 

convergence rate of the resulting algorithm. The type of quad-

rature rule chosen in turn depends on the global behavior of the 
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integrand over all of phase space. Hence, for a multidimensional 

kernal., this step can easily be the most time consuming one in 

preparing for the full solution. 

(iii)Impose all boundary conditions on the algebraic equations 

resulting from steps (i) and (ii,. Make sure that the boundary 

conditions used lead to a well-posed problem with a non-singular 

coefficient matrix. 

(iv)Finally, choose a technique for solving the resultant set of 

algebraic equations which takes advantage as much as possible of 

the structure of the coefficient matrix. Compute the condition 

number of the coefficient matrix and determine whether the alge-

braic equations need preconditioning. 

Therefore, discretizing r 4 r i  = {o,r 1 ,r2 ,...,rmax  a rN  } with Nr  

+ 1 equally spaced points (step size h), and replacing integrals with 

quadrature sums (with weight functions • ic ) yields the following for (8), 

+ 	- 	 + T. 	  + '6. (p. - p. ) + V' 5. p. - I" L 4k 	P
+ 

- 0  ij 	2h 	 ij ij 	ij 	j ij ij 	j L k jki ik - 
k 

EPi+1,j -pi-1,j 1  
- T. 	  + F' 5 p 

- 

- F' 	F 	p. 

- 

= 0 ij 	2h 	 j ij ij 	j L k jki ik 
k 

[P. 	-P. 	] 1+1,j 	1-1,j 
T. 	  + F' J. p. - F' 

	
4k 

	- 
0 ij 	2h 	j ij ij 	j L k jki

p 
 ik 

k 

(15c) 

{Pi 	 ] +1,J 	1-1,j 
- Tip 	 10): - p i 	r' 1 . P7 - ri 	F 2h 	 ij 

	j 	ij 	ij ij 	j L k jki'ik - 
k 

(15d) 

-X 	 1 	1 
where F j Ere F . 	F(X u. .r.) g. =g(r.X) 	— (— - 21.) ' jki 	j' - k' 	' 	ij 	j ' 'Sid 	r i  ri 

1 3 



1 	1 	 1 
1,g. 	= 	F-- _ a I, T 	z — - N and pig 	Ar.,N ). 

r i  r i' 	j 	Ti p 	r i 	j 	ij 	 j 

It will prove convenient to rearrange equations (15) into the 

order (15a,c), followed by (15b,d), so that the resultant coefficient 

matrix is positive definite (Golub and van Loan [301). Then applying the 

boundary conditions on r yields, 

-(1-6.10ij )T 	p.
+  

- 2h 	if " 	F 	- 6 	+ F' g. d 
Pik 
+ 

	

-1 ' j 	
i 

	

1 	 Ji 1( 1  i l ly_ 	kij 
COi i 	j i 	j 1  III  1 1l k

l  

k
2 

F 	p 	- 2h 'A. 	p. 	+ (1-5 )13+  k
21

k2 	ik2 	1J 1 	 Nr  i+1,j i  

= b.
1  p

+ (r=0,X ) 	6iN P+(rmax' X  ) 0 	J1 	 ' 
(16a) 

-(1-6. 0 )T. 	p. 	- 2h F' 	($) F 	Pi k 1 	ij2  1-1,J 2 	J2 	k i  j2k i 	l k 1 k l  

- 2h 

k2 

0 	F 	. J 2  k2  j2k21 - 6 	F' 1. 	ip 
k2 j 2 	j2 1J 2 

+ 	+ 	(1-6. 	)13+  ik2 	INr 	i+1,j 2  

N, 	) + 	+(rmax ,Aj2 ) 	(16b) iop+(r=o 	(5 -12 	iN P  r  

(1-6 	)T 	p io 	ij i  - 2h 

k l  

[r. 	0 	F- 6 	U' 	5. 	1 p-  k l 	j i k i i 	k l i l 	,j1141 	ik i  

- 2h F' F 	
Pik- 	(1-5 	)p: 1 k2 J 1 k2 i 	2 	Nr 	1+1,j 1 k2  

6. p(r=o,X ) + 	p(r 	,N ) 	(16c) .1  (5  1 iNr max J I  
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(1-6. )T. 	p 	- 2h 1'0. 	1p. 	- 2h r; 	$k F Pik 
 

10 	I.J 2  ij2 	1 -1 2 	1 -1 2 	J2 	1 J 2 11 l 
k

1  

- 2h O F. 	- 6, . 	1 + 	1. 	 - (1-(5. 	)p-  

	

L L j 2 k2 j 2 k2 	r'2J2 	 j2  1J 2 	ik2 	iNr  1+1J 2  

6 i 0p (r=o,A ) + 6iN p(rmax,X  ) 	(16d) 
J2 	r 	2 

and where the indices are defined: 1 < i < N -1, -N < j < N b  , Nb  < - 	- r 	c 	1 	b 1 	b1 
1 

J 2  < Nb  and -N0  < k i  < Nb  , Nb  < k2  < Nb  . The energy range [-co, T..] 
2 	 1 	1 	2 

1 	1 	1 
has been discretized into three grids: [-X max ,0], [o,  7L7-], - 2r' r i ]  ai 	r i  

composed of N + 1, N b + 1 and N b - Nb points, respectively. The 1 	 2 	1 
 

total number of points in the energy grid is N + Nb . Hence the 
2 

 

subscripts j 1 , k 1  indicate that the energy is restricted to region I: 

1 
[-A x , 	while J 2 , k2  indicate that the energy is restricted to 

1 	1 
region II: r 	The parameter Amax  represents the largest free -2r i  ' r 3.  

ion energy considered. More details on the energy grid are given below. 

Now, before applying the boundary conditions on N (equations 

9a,d)), a word is needed on continuity conditions. In equation (8) the 

A,r phase space is divided into 2 regions. Since we assume that the 

unknowns p- (r,A) are smooth functions of X and r, we must insure that the 

computed solutions of (16) are continuous across the boundary between 

regions I and II. We do this by recognizing that (16a,b) are 2 equations 

for the same unknown when J 1  = J 2  = Nb  . Therefore, we can add the two 
1 

equations together and divide by 2. This insures that we will not have 

an overdetermined system of equations. In the case where J 1  and J2  don't 

equal Nb  , the appropriate terms from the k 1  and k2  summations (i.e., the 
1 

k 2 
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last in k 1 
 and the first in k 2

) must be added together in (16a,b). These 

two steps will insure that p + (r,X) is continuous at X = 1/2r. Analogous 

additions in equations (16c,d) will likewise insure that p-(r,A) will be 

continuous at A = 1/2r. Therefore, applying the steps above to insure 

continuity in the solution, and the boundary conditions on A yields the 

following set of practical algebraic equations, 

„40.)+ + 	T(i)+ 	+ 	 P.)+ 

Pik 
-(1-6. )T. 	p.  10 ij i  1-1,11  - 	i l k i  P ik i 	, b 1  jN 	PiNb 	L -10(2 	2  

	

1 	k2 k
1  

- 2h g
i 	

p
i 	+ (1-a. 
	)p. 

	

j i 	j i 	INr 1+1 	
. (0+ 

,11 	j i  

)T 	 - 	 A

(i)+ + 

	

p. 	- T (/)+ 
10 ij 2  1-1,j 2 	j 2k i  11{ 1 	j2Nb P

+ 	- 	4(1)+ 
P
+ 

	

iN
bl 	

iL 	J2-
k 
 2 - 

ik 
-2 k 1 	 1 	c 

2 

A + (1-6 	)p
+ 

iNr i+l'i2 
= 

j2)+  

(1-6. )T. p 
	 0- 	 0- p

- 10 
4(0- - p. 	- T ( 	

P.
- 	
-A

( 
 i-1► j1 	

k1 

j i k i  11( 1 	j iNb 	iNb 	j 1 k2  ik2  

	

1 	1 	k
2 

- (1-b. 	)p 
i+1,ji 

= A
()-  

	

(1-51.0 )Tij21);_ i,j2  - 2hI 	- 	A 	p i k1 	.e(1)-  co-  

	

ij 2 	Ii2 	j2k i  ik 1 	j
2
N 	'iN 

k
1 	 1 

1 
(i)- 

	

4j
2
k
2 

Pik
2
- (1-a iN

r
)19T+ 1 , j 2 	A(j 12 )-  

k2 

(17a) 

(17b)  

(17c) 

(17d)  

where the coefficient matrix A and column vector A are defined as, 
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A(0+ 	2h[rt 
j i k i  

(0+ A 	= 2h 
J1k2 

i ) + = 2h 
2

i( 
1 

0 	F 	. 	- 
j i 	1( 1 	j i k i l 

0 	F. 
J 1 	k2 	J 1 k2 i 

P. 	0„ 	F. 
J2 	

k1 	-32'1' 

k i j i  
+ r 	5. 	)1 j i 	ij i  (18a)  

(18b)  

(18c)  

(( 11 88: 

	

(0+ 	r 

	

A i  „ = 2h 1r' 0 	F 	 F' 1. 

	

J2m2 	L i 	k 	j - i - bki 	J 2 	2 

	

2 2 2'`2 	2-2 w 	—

0- A(
[

= 2h r'. 

	

0 	F. 
jiki 

. 	
k i ll 

 - 

	

.)1k11k1 	j i 	[( I 	l 	 5ii i ] 

= 2h r , 	 . 
J 1 

0 
k
2 

F
1 k

2
1 	

(18f) 

(i)- 

	

= 2h F' 0 	F. 

	

12k1 	J 2  k l  J2k11 	 (18g) 

AM„-  = 24" 0„ 	F „ 
1 2'2 J2 	k2 	1 2 -2 -  

and, 

	

- 15 1, 	(1'g. 	1 + re 	g. 	)1 	(18h) 

	

-2 1 2 	-1 2 	1 2 11 2 

Vii.)+ = 6. p+ (r=oX 4 ) 	6. p(r 	) + N k 2hr' 0 	F 
1 	 J1 	INr 	

max' j 1 
	b 2 2 	

J
1 
Nb 1 J I

M
b2

iPiNb 2 

+
k -N 

p. 	2h[r' 0
-N  F 	N i - -N 	+ F' 1. 	)1 (19a) 

c p i -N 	J i 	b  J i - bb J 1 	j i  

(i)+ 

2 	10P 	j 

p . 	[2h r' 0 	F - 6 	r' 1. 
+k

2
N

b2 
IN

b2 	
J 2  Nb  J 	• 2Nb 	X2 J 2  J2  11 2  

2 	2 

( 19b) 

) + b. p(r 	X ) + 	2h1" 0 	F 
2 	iNr 	max' J 2 	k -N 12 -Nc 1 2 -Nc iP1-Nc 
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1= 6. 0P  ("° ' 2‘ ) 	6 iN P  (rmax' X i ) 	6N k 2 	-
2hF",

1 
 (ON

b 
 F 

J1 
N
b  i

p iN  
b J 1 	1 	 J1 	b2 	

1 2 	2 	2 

+ s 	
P 
	2h 1r'. 0 	F 	 F' 1. 	I 	 (19c) 

k 1 -N e i, - Ni c 	L j 	
- 

1 	-N e  ,j1-Nb i 	k i j i 	J 1  

J (i)- P (r=o,A )+ b
iN  p(r 	' 	

) + bk  _N  2hri  (A_ N  Fj  _N  
J 10 

J2 	
max 	2 	lc 	2 	c2c 

2144. 	1( 14: 	- 	) 
2 

6i
2
N
b 	

1J 2 	1,Nb 	
P 1,N

b2 2 

+ b
k N 2b 

2h[ F 1 	F F' 5. 	p-  
J 	N 	JN i -  ki 	J 	1Jj iN 

2 	
2  b 

2 
2  b 

2 	
2 2 2 	2 	b2 

(19d) 

The elements of the coefficient matrix A which govern the continuity of 

the solutions pi-  at the boundary between regions I and II are denoted by 

* in (17) and are defined, 

c (i)+ 
N 1 b = 4h 1"11

.N
bFJ1Nbi - (5J1Nb

1

2h 

	

1 	 1 	1 

TN
2"b 
+ = 4h F' 	F 

J 2 .N b 1 J2Nb 

	

-' 1 	 1 

Ti 	= 4h r, om  F i m  4  - 6, m  2h F' 5. J 1 1J 1 

	

J1 "b 1 J l"b 1 	J l"b 1 J1"b 1  

(i)- * i 	= 4h F 	F 
Nb J 2N b i  

	

-'2"
m 
 b 	J2

1 	 1 	1  

(20a)  

(20b)  

(20c)  

(20d)  

The index i in (17) is defined as before, while in (17a,c) j 1  is defined: 

-Ne+1 < J 1  < Nbl , and in (17b,d) J 2  is defined: Nb1 +1 < J2 < Nb2-1. The 

primes on the k l  and k2  summations in (17) denote that the X boundary 

terms are omitted (i.e., k 1  = -Ne  and k2  = Nb  ). The primes also 
2 
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indicate that the terms with k 1 
= N

b1 
and k2 = N

b2 
have been factored-out 

of the summation (and are represented by the t terms). 

The algebraic equations (17) can be written in the familiar 

matrix notation, 

4 p = 	 (21) 

where A and I are given by (18,19), respectively, and p is the unknown 

column vector composed of the discretized elements of p+  first, then p. 

The known column vector R, composed of boundary conditions on p I , has 

been written in full detail in (19) in order to show exactly how each 

boundary condition contributes to the problem. In practice, after 

application of (9), (19) will simplify considerably. From (18) it is 

clear that the coefficient matrix A is non-symmetric due to the presence 

ofthe'4ij  and [ij B i terms. The overall structure of the coefficient 

matrix is shown in figure 2. 

The energy grid chosen was nonlinear due to the skew discontinuity 

present in the kernals F(X,p;r) (Flannery [22,23]). In particular, we 

use the 3tan(u) prescription of Bates and MendaI [8] for the pivot points 

used in the Simpson's rule quadratures in (17). That is, the weights and 

pivots used in the energy quadratures are defined for the three grids as, 

k = 3tan(kE), 	4k = r k f sec2 (kf) 

with, 

(0 continuum part of region I: - `max < \ < 0 	-Nc  < k < 0  — — 

f = tan-1 (Xmax  /3)/N c 

, k = -Nc , 0 

, k = even integer in (-N c ,0) 

, k = odd integer in (-N 0 ,0) 
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di 

a. 

b 
Figure 2: Structure of coefficient matrix A in equation (21). a) block 

tri-diagonal in r, b) non-symmetric, positive-definite in X. 

1 
(ii) bound state part of region I: 0 < X < 

f = tan
-1 
 (1/6r )/N 

i 	b
1  

2r i 	
0 < k < N — — b 1 

1 	, k = 0, Nb  
1 

rk = 	4 , k = even integer in (0,Nbi ) 

2 , k = odd integer in (0,Nb  ) 
1 

and, 
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1 	1 

• (iii) 	reir,ion II: 2r. 	r < N < — 	Nb1 < 
k < Nb 

2  - 	. 

r  
N k 	3tanHmi n  + (k-N)f] 	ok  = r k  f sec

2 
 Ltmin 	(k-Nb 

1
)] 

f
min = tan -1  (1/6r i ) 	= [tan

-1  (1/3r.) - tan
-1  (1/6r )]/(Nb 2 -Nb 1 ) 

k = N 	N b1' b2 

, k = even integer in (N b  ,Nb  ) 

	

1 	2 
, k = odd integer in (N, ,N b  ) 

	

"1 	2 

Denoting the total number of points in the energy quadrature by NA  E Ne  + 

N
b 

-2, and the total number of simultaneous equations in (21) by N 
2 

(N
r
-1) 2 NN = 2(N r

-1)(N
c
+N

b
-2). A typical value for N is 20,988 for Nr 2 

100, Nc  = 36 and Nb  = 72. Hence, due to the very large sparse nature 
2 

of the coefficient matrix A, the use of direct techniques like Gaussian 

elimination to solve (21) will be totally out of the question because of 

the time and memory requirements involved. Therefore iterative 

techniques like Lanczos algorithms (Cullum and Willoughby [15], Golub and 

van Loan [30], accelerated successive overrelaxation methods (Young [42], 

Hageman and Young [32]) and Tchebychev iteration (Manteuffel [36,37]) 
should be used to solve (21). 

Consequently, before continuing our discussion of the solution of 

(21), we will review some of the iterative techniques used to deal with 

large linear systems. For readers interested in a complete treatment 

consult the books listed in section IV - especially those by Young and 

Hageman and Young. 

Iterative Methods for Large Linear Systems 

Solve the matrix equation Ax = B where A is an N x N real, symme-

tric positive definite matrix, and x, B are column vectors of length N. 

Decompose A into three parts: a) it's diagonal elements (D), (b) all 

elements below the diagonal (CO and (c) all elements above the diagonal 
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(C
u
). That is, we can write A = D - C L 

- C
u
. Now, scale the problem so 

the diagonal elements of the new coefficient matrix are 1. This can be 

done by multiplying by D
1/2 , 

(D-1/2 A D -1/2 )(D 1/2 x) = D
-1/2 

b 
	

(22) 

D-1/2(D - CL - Cu)D-1/2 . D-1/2 D D-1/2 - D-1/2C
L
D-1/2 - D-1/2 Cu D-1/2 

=I-L-Lt 	
(23) 

a I - B 

where I is the identity matrix and L = D
-1/2 CL 

 D-1/2 , B a L + Lt . Then, 

from (22), defining the column vectors u a D 1/2 x, c 	D-1/2 b allows the 

original problem to be case into the suggestive form, 

u =Bu+ c 	 (24) 

which is then solved iteratively. 

Two of the most widely used iterative methods are the Jacobi 

method, 

u (n+1) = B u(n)  + c 
	

(25a) 

and the Gauss-Seidel method, 

u(n+1) = L u(n+1)  + Lt u (n) + c 

= / u
(n) 	

(25b) 

where k = (I - L)
-1 
 c, 	= (I-L) -1 

L
t 
and in (25) u

(n) 
denotes the nth 

iteration of u. More recently variants on the Gauss-Seidel method have 

been developed to speed the convergence of the iteration procedure. One 

of the variants is the successive overrelaxation method (SOR), 

22 



u (n+1) = w (L 
u(n+1) 

 + L
t 

u
(n) 

+ c) + (1 - w) u(n) 

(n) 
= 	u 	+ k (25 c) 

"Lth 1 = (I - wL)
-1 
 (w L

t 
+ (1 -(0)I), k = w(I-wL) -1  c. The parameter w 

is known as the acceleration parameter. When w = 1 (25c) reduces to the 

Gauss-Siedel method (25b). A generalization of the SOR method involves 2 

SOR sweeps for each iteration of u, and is called the symmetric succes-

sive overrelaxation method (SSOR), 

u
(n+1/2)= 

1 u (n) 	(for.) + k 	 (25d) 
w 

 

u (n+1) 	u(n+1/2) y k(back.) (25e) 

where the operator 2 is defined above, and t = (I - wL t
)
-1
(wL + (1-00 

-1 

	

and k
(for.) = w(I - (JO 	c, k(back.) = w(I - wLt

) -1 c. Equations 

(25d,e) can be combined into one iteration step by defining the operator 

W 
= t 2 6.) ,  

(n+1) = / u (n) 
+ kw 	 (25f) 

where k = w (2-0(I-wL t ) -1 (I-wL)
-1 

c. 

In the SOR and SSOR methods one must choose an acceleration para-

meter w which will be optimal for a given coefficient matrix A. Two 

widely used methods of acceleration are Chebyshev acceleration and 

conjugate gradient acceleration. Writing the basic iteration procedure 

(24) as u (n+1) = 1 u (n)  + k, Chebyskev acceleration is defined, 

	

u
(n+1) = 

Pn+1 E(1 	u(n) 	k) + (1-/)u(n)1 + (1-pn+1)u(n-1) 	(26a)  

where - = 2/[2-M(1)-m(1)] and, 

2 3 



4IG 

P 	1 n+ 

1 	 , n = s 

(1 -
2
/2)

-1 
, n = s+1 

[1 - (0/2)2 
	

-1, n > s+2 

with a = [m(.5) -m(.01/[2 - WO-m(4)1, M(eg) = maximum eigenvalue of matrix 

.4, m(1) = minimum eigenvalue of 41. The integer s is initially zero, then 

increased as the adaptive procedure proceeds (Grimes et al. [31]). That 

is, one can reassign the overrelaxation parameter p several times during 

the iteration process. A disadvantage of Chebyshev acceleration is that 

it requires estimates of the smallest and largest eigenvalues of to be 

made. 

Conjugate gradient acceleration is defined, 

u
(n+1) = 

Pn+1 (1n+1 6
(n) 

+ u
(n)

) + (1 - Pn+1)11 (n-1) 

	
(26b) 

6
(n+1) 

= Pn+1 (1/14.1 	O
(n) 

+ (1-7n+1)
(n)

) + (1 - p 	)15(n-1) 
 

11+1 	
(26c) 

where 6
(n) 

is a pseudo-residual vector given by: 6
(n) 

= S u
(n) 

+ k - 

u
(n) 	

The acceleration parameters p and I are defined, 

1 	 , n = 0 

1 
, n > 1 

/
n+1 6 (n)t  Wt  W b(n)  

1 [/
n
p
n
j 

6(n-1)t W tW6 (n-1) 

- 	  
[1 
	

W 

(n)t 
W
t 

W 	6 (n) 1 -1 

6 (n)t 	t W 6(n) j 
/n+1 =  

where W is a nonsingular symmetrization matrix. For the Jacobi method W 

D 1/2 , while for the SSOR method W = (1/0 D -1/2 (D - w C t
). While the 
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conjugate gradient acceleration method doesn't require estimation of the 

eigerivalues of'.0, the number of arithmetic operations required for its 

implementation is greater. 

We have necessarily been selective and brief in our discussion 

of iterative methods due to the vastness of this area of linear algebra. 

The discussion of this subsection is based upon appendix A in the 

technical report of Grimes et al. [31]. Two excellent books which 

provide good introductions to this area are Young [42] and Hageman and 

Young [32] (others can be found in the list of general references in 

section IV). As for software which implements the iterative techniques 

discussed above (as well as others not discussed here), excellent 

packages are the ITPACK library (Grimes et al. [31]) and the package of 

Lanczos algorithms of Cullum and Willoughby [15]. 

So far we have only discussed iterative techniques for symmetric 

coefficient matrices A. However, the central numerical problem of this 

lecture is to solve equation (21) for a large, sparse non-symmetric 

matrix A. Unfortunately there is much less known in linear algebra about 

iterative techniques for non-symmetric matrices. One way to handle 

non-symmetric matrices A is to consider (instead of (21) for example) the 

associated equation A
t
Ap = A A, where A

t
A is a symmetric coefficient 

matrix. However, in many practical applications the condition number of 

A
t
A is much greater than that of A - thereby indicating that this 

technique will not necessarily yield a problem which will converge 

rapidly using one of the iterative techniques discussed above. Another 

way to deal with non-symmetric problems is to develop the appropriate 

generalizations of (25,26) directly (Young and Jea [43], Manteuffel 

[36,37]). However, these generalizations require knowledge of the eigen-

value spectrum of .B which is difficult to obtain in practice. In summary 

then, while some progress has been made in linear algebra towards 

handling the non-symmetric case, much more work needs to be done in 

devising criteria by which one can select acceleration parameters which 

will be optimal for a given general coefficient matrix 

Returning now to our discussion of the numerical solution of (21) 

for non-symmetric A, we will need to know the condition number K(4) for 
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the coefficient matrix A before using one of the iterative techniques 

above. The condition number of a matrix A is defined: K(A) = 11 4 11 • 
-1,, 'IA 	Computing the condition number of the coefficient matrix in a 

given problem (e.g., equation (21)) is necessary because the iterative 

techniques discussed above (like SSOR) work best for well-conditioned 

matrices (i.e., those with small K). Otherwise, the number of iterations 

required for convergence will increase greatly, and since K provides a 

measure of the sensitivity of a given problem to round-off errors and 

perturbations, if K is too large for a given A, then iterative techniques 

will not work due to accumulation of round-off errors. Physically, the 

condition number of a matrix A provides a measure of the distance between 

A and the set of angular matrices. Hence, when K(4) is very large the 

matrix 4 is considered ill-conditioned, which means that the numerical 

solution u, of (24) say, will be very sensitive to round-off error which 

are unavoidably accumulated during the iteration process. More details 

about condition numbers in linear algebra can be found in Golub and van 

Loan [30]. 

Using the routine LFCRG in the IMSL library [33] to estimate the 

condition number K 1 (A), via the algorithm of Cline et al. [14], of the 

coefficient matrix of equation (17) we find that K i (A) = 4.20 10
19

. 

In contrast K 1 (A) = 1751.1 for the coefficient matrix A resulting from 

the discretization of the quasi-equilibrium integral equation (29). This 

indicates that the condition number for the coefficient matrix of (17) 

needs to be reduced approximately 16 orders of magnitude before the 

iterative techniques (25,26) will become effective. This can be 

accomplished either by row scaling (Golob and van Loan [30]) or pre-

conditioning (Faber and Manteuffel [17]) the coefficient matrix. 

Unfortunately, these calculations have not been completed at the time 

of writing but will be reported in a forthcoming paper (Flannery and 

Mansky [28]). Hence, it is still an open question whether the iterative 

techniques discussed above are effective in solving (17). However our 

discussion of the condition number K
1
(A) of A given by (18) has revealed 

the underlying reason why the earlier work of [8], failed to converge 

quickly as a function of gas density N(Z). Also, by illustrating the 

structure of the coefficient matrix in figure 2 and equation (18), a 
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deeper insight into the role the gas density plays in the nonlinear 

pressure regime- is obtained. In fact once the problem of the 

ill-condition of A is solved, a number of other problems in chemical 

physics should become ameniable to the iterative techniques discussed in 

this lecture including the prediction of microscopic three-body 

ion-neutral association rates (Bates and McKibben [7]), and the inclusion 

of non-thermal effects into ion-ion recombination (Bates et al. [6]). 

Before ending section II we wish to discuss the numerical solu-

tion of integral equations briefly. This is necessary because much of 

the numerical analysis of PIDE's relies heavily upon the expertise gained 

in solving related one-dimensional integral equations. The IE we will 

use as an example will be the quasi-equilibrium integral equation arising 

in ion-ion recombination. We will necessarily be brief since the numeri-

cal analysis of integral equations (even one-dimensional ones) is a vast 

field and we only wish to highlight points about the numerical treatment 

of IE's which are related to our earlier discussion of PIDE's. For a 

complete discussion of the numerical treatment of IE's see Baker [2]. 

In discussing the quasi-equilibrium theory of ion-ion recombina- 

tion it will prove useful to define the functions p S (r,X) and p
D
(r,X), 

1 
P (r,X) = 2 [p+ (r,A) - p- (r,X)] 

1 
pS(r,X) = 2 [p+ (r,X) - p- (r,X)] 

(27a)  

(27b) 

which describe physically the net and total numbers of ion pairs 

undergoing recombination at a given relative separation r and internal 

energy X. Substituting (27) into (8) yields two coupled PIDE's valid for 

1 
-' 	< 	X 1-r7 

1 
- X) 

Op
D
(r,X) 1 	1 	 1/r 

 
+ r  - ( r  - - 2X)p

D(r,X) 	= r' f 	ps(r,p)F(X01,;r)dp ar 
-w 

- r' 5(rdOp
s(r,X) 
	

(28a) 
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1 	dP (r,N) 	1 	1 	
1/r 

N) ar 	r — r - a 	- U' 1p D(r,X) 	D, A - 	j  P sr,P,F,A,,;r)dm 
-co 

- 	J(r,N)p
D
(r,N) (28b) 

In the quasi-equilibrium theory the motion of the center of mass of the 

ion pairs is taken to be in thermodynamic equilibrium with the third 

bodies, while a quasi-equilibrium distribution in highly excited internal 

energy states of the ion pairs is established effectively instantaneously 

due to collisions with the much more numerous third bodies. In the 

establishment of this distribution it is assumed that the distribution of 

separations of ion pairs does not effect the quasi-equilibrium distribu-

tion in internal energy. That is, the r dependence of the distributions 

p+ (r,N), p(r,N) is not influenced by the recombination proceeding in the 

plasma. Hence we can assume that the r-distributions of contracting and 

expanding ion pairs is in thermodynamic equilibrium, thereby implying 

that pD(r,A) = O. This results in (28b) indicating that p (r,N) is a 

constant w.r.t. r. Multiplying (28a) by r 2 and integrating w.r.t. r 

yields the quasi-equilibrium integral equation for the distribution over 

internal energy states pu(N), 

J 
F(A,p)potE (11)01 = p itE (A) 	F(A41)41. 	(29)

J  

where w is the maximum binding energy of an ion pair, and E is the 

stabilization energy of an ion pair. We refer the reader to the original 

literature (Bates and Moffett [12], Bates and Flannery [5], Bates and 

MendaS [11], and Flannery [22,23]) for the details. 

Equation (29) is valid only in the low gas density limit where 

the flow of contracting and expanding ion pairs balance, at higher gas 

densities however a net contraction of ion pairs occurs so that the full 

PIDE (8) must be solved. We quote the expression for the recombination 

rate coefficient a for the low density limit from the original literature 

cited above, 
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U 	W 

2
/
a
T = F0 I dX j  dp F(X,p)[p QE ()) - p

QE
(p)] 
	

(30) 

-LO 

where p = -E/kT is an arbitrary energy level, and a T  is the Thomson rate 

coefficient (Thomson [40]). From (30) it is clear that once IE (29) is 

solved for the pu(A), a bi-cubic spline quadrature will yield a. 

To solve the quasi-equilibrium integral equation (29) we impose 

the boundary conditions: pu (X < o) = 1, pcx (X > E) = 0 yielding, 

e 	 Li 	 0 

f PQES (11 ) F(X,P)41  - 4g (X) J F(X,A)dp = j F(X,p)dp. 	(31) 

0 

When (31) is discretized the result is a system of algebraic equations 

similar to (21) which can be solved either by iterative methods (SSOR) or 

direct techniques (Gaussian elimination), due to the much smaller size 

coefficient matrix A in the quasi-equilibrium case. As an example of 

the type of results obtained, we show in figures 3 and 4 the quasi- 

equilibrium distribution pu(X) and recombination rate alai , respectively 

for the energy-transfer mechanisms of charge-transfer, hard-sphere and 

polarization collisions. We should also mention that, in addition to the 

smaller size, the quasi-equilibrium coefficient matrix is also symmetric 

- a fact which greatly helps in the numerical solution of (29). We have 

not discussed the numerical solution of the PIDE (28) in the same detail 

as that of (8), even though they are equivalent, because it results in a 

system of algebraic equations with a non-symmetric, nonpositive-definite 

coefficient matrix A - a problem much more difficult than (17). Finally, 

the quadrature rule used to determine the weights and pivots used in 

solving the quasi-equilibrium integral equation (31) were the same 

nonlinear Simpson's rule weights and pivots of Bates and Mendag [8] 

discussed earlier. We conclude section II with a summary of the types of 

IE's found in the literature. 
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Figure 3: Quasi-equilibrium distribution function p cx (X) for the case 

of a = 1/3 (m 1 =m2 =m3 ), and energy-change mechanisms of charge-

transfer (CX), hard-sphere (HS) and polarization (PL) collisions. 

a 

Figure 4: Quasi-Equilibrium recombination rate coefficient (a/aT) versus 

mass ratio parameter (a) for energy-change mechanisms of charge-
transfer (CX), hard-sphere (HS) and polarization (PL) collisions. 
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Numerical Solution of IE's  

The three basic types of integral equations are Fredholm 

equations, 

K(x,y)f(y)dy = g(x)f(x) 

a 

and Volterra equations of the first kind, 

K(t,$)f(s)ds = g(t) 

and second kind, 

f(t) - 	K(t,$)f(s)ds = g(t) 

where g is a known function, f is the unknown function and K is the 

kernal of the integral equation. We have already encountered Fredholm 

equations and Volterra equations of the 2nd-kind in (29) and (8), 

respectively. We will not encounter Volterra integral equations of the 

1st-kind in this lecture. However, upon discretization, all three types 

of IE's above reduce to a problem of solving a system of linear algebraic 

equations. The particular technique used to solve the algebraic equa-

tions depends upon the structure of the coefficient matrix 4, which in 

turn depends on the behavior of the kernal K. Recalling our steps in the 

numerical solution of PIDE's, we find that steps (ii) - (iv) also provide 

a good prescription for the numerical solution of one-dimensional IE's. 

We have been brief in our summary of the numerical treatment of integral 

equations due again to the breadth of the area. For a complete introduc-

tion to the numerical solution of IE's see Baker [2] and Delves and 

Mohamed [16]. For an excellent account of Volterra equations see Linz 

• - [34]. 

31 



III. 	Approximate Treatments of Ionic Recombination  

As stated in the introduction, until the advent of super-

computers, the direct solution of the PIDE's arising from the Boltzmann 

equation treatment of ionic recombination, was generally avoided due to 

the difficulty in solving systems of algebraic equations composed of 1000 

or more equations and unknowns. The paper (Bates and MendaI (91) which 

originally derived the coupled PIDE's (8) solved them by a power series 

expansion in Amfp,  which converged slowly with gas density and whose 

coefficients were difficult to compute in general. As discussed in 

section II, the slow convergence rate of the power series solution of (8) 

is directly related to the ill-conditioned nature of the coefficient 

matrix A in (21). Hence other methods of solving for the recombination 

rate a are needed. One such method which has proven quite successful is 

the Monte Carlo simulation of ion-ion recombination processes (Bates and 

Mendag [1O], and Morgan et al. [38]). We will not cover this type of 

calculation in this lecture since our main interest is in discussing 

techniques which lead to PDE's or PIDE's. 

In this section we will discuss the Debye-Smoluchowski and 

diffusion equation approaches to ionic recombination. The starting point 

for the Debye-Smoluchowski equation is the macroscopic continuity 

equation for the number density of ion pairs, undergoing recombination of 

time t and separation R, 

dn(A,t) 	On(A,t) 
+ ; • 3(A,t) = 0 

for R > S a sink radius, and is solved subject to the asymptotic boundary 

condition n(R 4 (10 ,0 = R(X+ ) R(r) where N is the equilibrium number 

density. The net current 1(A,t) of ion pairs expanding at time t is, 

J(A,t) = -D ; n(A,t) + (K/e)(; V) n(A,t) 	 (33) 

dt 	at ( 32) 

where V(R) is the interaction potential between )( 4.  and Y- , and D, K are 
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the relative diffusion and mobility coefficients of e and Y in a back-
. 

ground gas Z. The introduction of a sink, with an assigned local three- 

body reaction rate a 3  at the surface, allows one to avoid dealing with 

the complicated collision kernels F(X,u;r) and full PIDE nature of (8) by 

replacing the problem with a phenomenological model. After substituting 

the current (33) into (32), and discretizing, the problem reduces to a 

boundary value problem involving a time-dependent diffusion equation in 

R. An example of the resultant solution is given in figure 5 which shows 

the time-dependent number density of ion pairs n(R,t) versus R for a 

specified sink radius. For further details on the Debye-Smoluchowski 

equation and ion-ion recombination see Flannery and Mansky [29]. 
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--8- 0.8 
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r 

Figure 5: Solution of Debye-Smoluchowski equation for p = n(r,T)/N o  

exp(-V/kT) r = R/S-1, T = Dt/S2 . T ranges (from the top curve 
down) from 0.05, 0.5, 1, 2, 5, 10, 20, 30 to 100. The lowest 
curve is the steady state (equilibrium) distribution. Assigned 
parameters are S = 0.5, aW/aTR  = 0.5 (see [29] for details). 
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Diffusion equations in energy have also been used to model ionic 

recombination since the work of Pitaevskii [39]. In fact, the quasi-

equilibrium theory of ion-ion recombination discussed in section II can 

be considered a Markov process (Flannery [19]). Writing the quasi-

equilibrium integral equation (29) in terms of energies E, E i  (with the 

time-dependence reinserted - see Flannery (30], p. 17), 

U) 	 Co 

dn(E,t) 

dt 
	 1.-N(Z) JIn(E.,t) K(E.,E)dE. - n(E,t) 	K(E,E i

)dE
i 	(34) 

-E s 	
-D 

Combining the integrals in (34) and Taylor series expanding the resultant 

integrand results in the Fokker-Planck equation, 

an(E,t) 	0 	 1 8
2 

	 - - 	[A n(E,t)] + — 	[A n(E,t)] 	(35) dt 	dE 	1 	2 (3E2 	2 

where, 

A
n 

= N(Z)
j 
 (E

f 
 - E.) n  K(E,E

f )dEf 
-D 

and one assumes that the energy-transfer between the ion-pairs and third 

bodies is small so that the Taylor series expansion f (34) converges. 

This necessarily limits the diffusion model to electron-ion recombination 

processes. As an example of the type of results obtained by the energy 

space diffusion equation, we show in figure 6 the steady-state distribu-

tion p(X) obtained by Pitaevskii compared with the corresponding results 

of the quasi-equilibrium theory. While Pitaevskii's treatment only 

becomes accurate in the limit of electron-ion recombination, it's 

similarity with the quasi-equilibrium results in figure 6, for the case 

of equal mass constitutents, is striking. For a more complete discussion 

of energy space diffusional theories of termolecular recombination see 

Flannery [26]. 
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Figure 6: Comparison of quasi-equilibrium 	distribution ( 	) and 
Pitaevskii's distribution (---_ for the case of a = 1/3 and 
charge-transfer collisions. 

IV. 	Conclusions and General References  

In this lecture we have provided a detailed prescription for 

handling numerically the coupled partial integro-differential equations 

which arise from the Boltzmann equation treatment of ionic recombination. 

We have also given a brief summary of some of the approximate methods of 

treating ionic recombination. The reason for our detailed treatment of 

PIDE's is that there is little in either the physics or mathematics 

literature on how to tackle the problem of solving numerically a system 

of multi-dimensional PIDEs (i.e., systems with more than 1 independent 

variable). In this lecture we have tried to fill this gap. 

Our main conclusion is that iterative techniques are numerically 

the most efficient way of solving the large systems of algebraic equa-

tions which result from PIDE's like (8). While this is not entirely 

unexpected, it is the first time techniques like the SSOR have been 

applied to problems in ionic recombination. With resolution of the 

problem of the ill-conditioning of A in (21), a number of long-standing 
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problems in chemical physics will be able to be solved. We end this 

lectuie with adlist of general references which we have found useful on 

the subject of solving numerically IE's and PIDE's. 

- Baker, C. T. H., 1977, The Numerical Treatment of Integral Equations, 

Oxford University Press. 

- Cullum, J. K., and Willoughby, R. A., 1985, Lanczos Algorithms for  

Large Symmetric Eigenvalue Computations, Vol. I, Theory, Vol. II 

Programs, Birkhauser (Boston). 

- Delves, L. M. and Mohammed, J. L., 1985, Computational Methods for  

Integral Equations, Cambridge University Press. 

- Feldstein, A., and Sopka, J. R., 1974, SIAM J. Numer. Analy. 11, 

826 -46. 

- Golub, G. H., and van Loan, C. F., 1983, Matrix Computations, Johns 

Hopkins University Press. 

- Hageman, L. A., and Young, D. M., 1981, Applied Iterative Methods, 

Academic Press. 

- Linz, P., 1985, Analytical and Numerical Methods for Volterra Equations 

SIAM Press, (Philadelphia). 

- Young, D. M., 1971, Iterative Solution of Large Linear Systems, 

Academic Press. 

- Young, D. M., and Jea, K. C., 1980, Lin. Algebra Appl. 34, 159-94. 

- Wilkinson, J., 1965, The Algebraic Eigenvalue Problem, Oxford Univ. 

Press. 
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