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PROGRESS REPORT 

Working with Professor Jim Lawrence (George Mason 

University), we have been studying the question of finite 

termination of the proximal point algorithm. Briefly, the 

question we are addressing is this: if q is a nonexpansive 

mapping and 

xn+1 = (xn+q(xn ))/2 

then what conditions will guarantee that x k  = xk+1 = . 

for some k. 

We have found that the class of nonexpansive piecewise 

isometries behaves especially nicely under the above iteration. 

For such q, we have demonstrated that there exists K such 

that for all k > K, the set {xk ,xk+1 ,...} positively spans 

a subspace on which q is linear. This demonstrates linear 

convergence to a fixed point if one exists. If, furthermore, 

some additional condition is satisfied, such as if the sub-

space on which q is linear is {0} , or if ( (I+q) /2) -1  - I 

is a subdifferential mapping on the subspace, then finite 

termination can be shown to be a consequence. 

We have applied these results to show finite termination 

occurs when solving systems of linear inequalities, and for the 

problem of finding a point in the intersection of a polyhedron 

• • 
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with a subspace. These results are currently being written up 

in a paper [1] that should be ready for submission shortly. 

The current research was motivated by previous work in 

which we studied iterative methods for solving systems of 

linear inequalities via the proximal point algorithm. We 

have recently extensively revised and resubmitted one paper 

on that subject [2]. A copy is enclosed. 

CURRENT PAPERS 

1. J. Lawrence and J. E. Spingarn, paper in progress on finite 

termination in the proximal point algorithm. 

2. J. E. Spingarn, A projection method for least-square solutions 

to overdetermined systems of linear inequalities, resubmitted 

in August, 1984, for publication. 



Revised September 1985 

A PROJECTION METHOD FOR LEAST-SQUARE SOLUTIONS TO 

OVERDETERMINED SYSTEMS OF LINEAR INEQUALITIES 

by 

Jonathan E. Spingarn 
School of Mathematics 

Georgia Institute of Technology 
Atlanta, Georgia 30332 

Abstract  

An algorithm previously introduced by the author for 

finding a feasible point of a system of linear inequalities 

is further investigated. For inconsistent systems, it is 

shown to generate a sequence converging at a linear rate 

to the set of least-square solutions. The algorithm is a 

projection type method, and is a manifestation of the 

proximal point algorithm. 

Key Words:  linear inequalities, feasibility, relaxation 
method, projection method, proximal point 
algorithm, monotone operator. 

This research was supported, in part, by the Air Force Office 
of Scientific Research, under grant 80-0195C, and by the 
National Science Foundation, under grant DMS-8506712. 
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Introduction 

Let a system 

<x,u.> 	b., 	i = 1,...,n 	 (0.1) 

of linear inequalities be given (0 	ui  e 	b. E R). Let 

C. = {x: <x,u.> 	b.} and C = C 1  n 	n Cn
. In [37], the author 

introduced the following primal-dual algorithm for finding 

a point x E C: 

Start: Choose arbitrary x O' YO1" . " 17 0n 6 R 

 d 

with y01 	YOn = 0.  

Step k (k = 0,1,...): Compute 

xL.  = proj c. (xk  + yki ), 	i = 1,...,n 

y;ci 	xk  + yki 	x;ci , 	i = 1,...,n 

and update 

xk+1 = n Exii=1 x;ci 

Yk+1,i = Yki 	n q=1 Ykj' 	i = 1,...,n. 

(0.2) 

It was shown in [37] that regardless of the choice of 

starting values, either x k  x and yki  yi  with x E C, 

yi  an outward normal to C i  at x, and y 1  + 	+ yn  = 0; 

or l(x4 v x+-kl"'"xk+Ykn)1 4- co and the system is inconsistent. 

The algorithm was investigated further in [38], where it 

was shown that termination occurs after a finite number of 

iterations if the interior of C is nonempty. More precisely, 

int(C) # 0 implies for some k that x k  = xk.4.1  = 	with 
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xk E C. 

In this paper, we investigate the behavior of the 

algorithm in the cases where int(C) = 0 or'where C = 0. 

If int(C) = 0 but C 	0, we show that the sequence (xk ) 

converges to a solution and that the distance to the solution 

set approaches zero at a linear rate. In the case where 

C = 0, we demonstrate convergence at a linear rate to the 

set of least-square solutions and convergence of (xk ) to one 

particular least-square solution. 

The algorithm is actually a manifestation of the known 

proximal point algorithm and the results of Rockafellar [36], 

Bruck and Reich [5], [34], and Luque [24] on the behavior of 

the proximal point algorithm will play a key role here. 

Our method is closely related to similar projection 

methods for solving systems of linear equations or inequa-

lities. The Kaczmarz method [22] of cyclic projection 

solves a system of linear equations by the procedure 

xk+1 = Pn (Pn-1 (...(P 1 (xk )))), 

where the P. are projections onto the defining hyperplanes. 

If the system is consistent then xn  converges to a minimum 

norm solution if x0  belongs to the linear span of the normal 

vectors to the hyperplanes [21]. Tanabe [39] showed that 

for each j the subsequence xj ,xn+i ,x2n+j ,... converges even 

if the system is inconsistent. Censor, Eggermont, and Gordon 

[8] showed that when strong underrelaxation is applied in 
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Kaczmarz's method to an inconsistent system of linear equa-

tions, the limits of the cyclic subsequences approach a 

least squares solution of the system. Strong underrelaxation 

is undesirable since it slows down convergence. Plotnikov 

[31] has obtained a similar result for more general systems 

of convex sets with empty intersection. Other methods related 

to that of Kaczmarz for systems of equations are discussed 

in [6], [7], [11],. [12]. The method of successive projec-

tions was also noticed by von. Neumann [30] (cf. also [10], 

[20]). The cyclic projection method was extended to inequa-

lities in the "relaxation method" of Agmon [1] and Motzkin 

and Schoenberg [29]. This method and its relationship to 

subgradient optimization was studied extensively by Goffin 

[13]-[19]. A survey of methods,including some projection 

methods, for computing least--square solutions to systems of 

linear equations can be found in [41]. 

Some projection methods rely, as does ours, on an aver-

aging process. Cimmino's method [9] for systems of linear 

equations is 

xk.4.1  = (1-A)xk  + n  E i . 1  Proj c  (xk ) 
J 

with A = 2. This is the gradient method xk.4.1  = xk  - AVf(xk ) 

for the function f(x) = 2 1n  r 
	Ix - Proj

C  (x)1
2  and when 'i=1  

0 < A < 2, convergence to a least square solution can be 

deduced from the results in [32], [33]. Cimmino's method 

was generalized by Auslender [3], [4] to the inequality case. 
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The reliance on dual variables in algorithm (0.2) is 

less of a handicap than it might seem since it is not 

actually necessary to keep track of the vectors yk  and yi'c 

 (see remarks in [38]). An unusual feature of the algorithm 

is that, unlike other projection methods, it can be observed 

to accelerate when caught in small solid angles. 

After reviewing preliminaries and establishing needed 

properties of the proximal point algorithm in §1, we will 

prove convergence to a least-square solution in §II, and 

establish that the convergence is linear in §III. 

I. Background  

Let H be a Euclidean space equipped with the standard 

inner project <x,y> = Ex iyi . A multifunction M: H i H is 

monotone if <x-x-',y-y'> ?. 0 whenever y EM(X) and y' E M(x'). 

The graph of M is the set Gr(M) = {(x,y) E H x H: y E M(x)}. 

If Gr(M) c Gr(S) implies M = S whenever S is monotone then 

M is maximal monotone. 

If M: H H is maximal monotone, then for each x E H 

there exists a unique P(x) E H such that x - P(x) E M(P(x)) 

[27]. This function P = (I+M) -1  is the proximal mapping  

associated with M. Its fixed points are the zeros of M. The 

simplest example, due to Moreau [28], is the case where 

M = of is the subdifferential of a lower semicontinuous convex 

function f. In this case, 

1 	', P(x) = arg min{f(y) + 1 
 117- x1

2 
 I. 

yEH 
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The property of P: H H being the proximal mapping 

(I+M) for some maximal monotone M is equivalent to P 

having the property (letting Q = I-P) 

lz - z i l
2 	

IP(z)-P(z')1
2 	

1Q(z)-Q(z 1 )1 2  V z,z' E H 	(1.1) 

and also to the existence of a nonexpansive mapping N: H H 

1 such that P = 7  (I+N). The convergence to a fixed point of 

P (if one exists) of the sequence 

xk+1 = P(xk ) 
	

(1.2) 

(x0  being arbitrary) for functions P satisfying (1.1) was 

observed by Martinet, who also observed that the proximal 

mapping of Moreau has this property. For functions of the 

form P = 1
(I+N), convergence to a fixed point (if one exists) 

follows from a result of Krasnoselski [23]. In [36], 

Rockafellar proposed the iteration (1.2) with P = (I+M) -1  

as an algorithm for finding a zero of a maximal monotone 

multifunction M, observing that its convergence was a con-

sequence of earlier results. Taking his cue from the 

apptication ptox of Moreau, he named it the "proximal point 

algorithm" and established several of its properties useful 

for applications to convex programming. 

As an immediate consequence of (1.1), P is nonexpansive: 

lz - z'l 	IP(z) -P(z 1 )1 	V z,z' E H. 	 (1.3) 

Taking z = xk  and z' = xk+1' we see that 
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1Q (zk) 1 > 1 Q( xki.. 1) 1' 
	k = 0,1,2,... 	 (1.4) 

The following lemma of Bruck and Reich [5], [34] gives 

useful information in the event that P is fixed-point free. 

In the more general result they prove, v is taken to be the 

element of least norm in the cZozulce of range(M). 

Lemma 1 ([5], [34]). Let M be maximal monotone and assume 

the range of M has an element v of minimum norm. For any 

sequence xk+1  = P(xk ) generated by the proximal point algorithm, 

Q(xk ) converges to v. 

Proof. By [26], range (M) D relint(conv(range(M))). By 

[35, Theorem 6.3], this implies cl(range(M)) is convex, so v 

is unique. Noting that v E range(M) = range (Q), pick 

z 0  E Q
-1 (v). Defining z k+1 = P(zk ), we get 

Ivl = 1 4 ( z 0 )1 > 1Q(z 1 ) 1 

by (1.4). The uniqueness of v thus implies v = Q(z 0 ) = 

Q ( z ) = 
• 

By (1.1), 

l zk xkl
2 	

lzk+1xk+112 	Iv-Q(xk)12. 

But lzk-xk 1 is nonincreasing (1.3) so Q(xk ) + v. 

The convergence of (xk ) for arbitrary x0  E H to a fixed 

point of P (or a zero of M), if one exists, is an immediate 

consequence of Lemma 1. For if P has a fixed point, (xk ) 

is clearly bounded. By Lemma 1, Q(xk) + 0 so if xe, is a 
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cluster point, Q(x..) = 0 by the continuity of Q (1.1). 

Hence 0 E M(xm). But lxk-xw l is nonincreasing (1.3), so 

xk  x , as desired. Note, furthermore, that 

xk  = x0  - 4:6 Q(xi ), 	k = 1,2,3,... 

so by Lemma 1, 

-v, 	 (1.5) 

another result of Reich [34]. In particular, lxkl 	m if 
-1 M (0) = 0. 

In [36], Rockafellar established linear convergence of 

the proximal point algorithm under the assumption that M -1 

satisfy a Lipschitz condition at 0. The Lipschitz condition 

- requires in particular that M 1  (0) be single-valued. Luque 

[24] showed that linear convergence to the set M -1 (0) 

(though not necessarily to a particular point in M -1 (0)) 

still holds under a weaker condition not requiring that 

M-1 (0) be single-valued. In the following lemma, we 

generalize Luque's result, showing that useful convergence 

information can be obtained even in the case where M has no 

zeros. 

Lemma 2. Let M be maximal monotone. Assume range(M) has 

an element v of least norm and that there is K > 0 and a 

neighborhood V of v such that for all y E V, YE M(X) implies 

, dist(x,M-1 
 (v)) 	KIY-171. (1.6) 



(1.8) 
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If xk+1 = P(xk ) (P = (I+M) 
-1  ), then dist(xk ,M-1  (v)) 	0 at 

a linear rate with modulus K/N/1+ K 2 . 

Remark. In the case where v = 0 this follows from [24, 

Theorem 2.1]. 

Proof. M-1  is closed- and convex-valued [2, Proposition 

6.7.3] so M-1 (v) is closed and convex. For each k, let uk 

denote the unique nearest point to x k  in M-1 (v). For all 

x E M-1 (v), 1 17 1 = 1(X+V)-xl 	lx-P(X)I = I Q(X)1 since P is 

nonexpansive. By choice of v, this implies Q(x) = v, or 

equivalently x-v E M
-1 (v). Thus 

M-1 (v) - v c M-1 (v). 	 (1.7) 

By Lemma 1, Q(xk ) 	v so Q(xk ) E V for all k sufficiently 

large. Thus (1.6) implies 

dist(xk+1 ,M-1 (v)) 	KINxk )-171 

for all k sufficiently large. Then 

lx1(+1 -uk+11 2 
	

- (uk -v)1 2  

1 2 	 1 2-  lxk 	I Q(xk )-v i 

1 
lxk-uk l 2  - 

K
2 

I
xk+luk+1 2 (by 1.8) 

and so 

1X1C+1 -12k+1 1 
	

N1-71.  2.  . K  

K 	
0 
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Next, we relate Algorithm (0.2) to the proximal point 

algorithm. The notation introduced below will be observed 

throughout the paper. Henceforth, let H = Rd  x x Rd ( n 

 times, where n is the number of inequalities in the system 

(0.1)). Define subspaces A and B of H by 

A = {(x1 ,...,xn ) E H: x 1  = ... = xn } 

B = ((y 1 ,...,yn ) E H: y 1  + 	+ yn  = 0}. 

With H endowed with the standard inner product, A and B are 

orthogonal complements; i.e., A = B 1  and B = A l . For any 

x E H, xA  and xB  shall denote the orthogonal projections of 

x onto A and B, respectively. Hence for x = (x 1 ,...,xn ), 

1 n 	 1 n xA = (— E. 	x.,...,— E. 	x.) n 1=1 xi 	n 1=1 1 

1 n 	 1 n xB 	(x1  - — E. 	x.,...,x - — E. 	x.).  n 1=1 1 	n n 1=1 1 

For i = 1,...,n, define Ti : R( 	Rd  by 

(1.9) 

 

{0} 	 if <x,u.
1 > < bi 

{tu.
11  :t}if<x,u.>= b i 

0 	 if <x,ui» bi . 

xT. ( ) = 

 

Ti  is just the nonmaZ cone mapping for the set C i  135]. 

Define T = T l x 	x Tn , i.e., (17 1 ,...,yn ) e T(xl ,...,xn ) 

iff yi  E Ti (xi ), i = 1,...,n. T is the normal cone mapping 

for C = C 1 x... xCn . The T i  and hence also T are all maximal 

monotone. A new multifunction TA : H H is defined by 
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declaring its graph to be 

graph(TA) = {(xA + yB,xB +yA): y E T(x) }. 	(1.10) 

TA is the partial inverse of T with respect to A, a concept 

introduced in [37]. TA  is again maximal monotone. The 

significance of TA  lies in the following easy consequence of 

its definition: If x = (x,...,x) E A and y = 	 E B, 

then the following are equivalent and each implies x E C: 

i. 0 E
A
(1 + 17) 

ii. y E T(X). 

Thus, the A-component of any zero of TA  solves (0.1); con-

versely, if x solves (0.1), then 0 E TA (X), where 

x = (x,...,x). The problem of solving (0.1) thus reduces 

to the problem of finding a zero of TA . This can be done by 

applying the proximal point algorithm to TA . The resulting 

procedure is Algorithm (0.2). To make this precise, following 

the notation used in (0.2), let us define 

xk = (xk ,.. ,xk ) 

Yk = (Ykl"'" Ykn ) 
 ^1 _ xk 	(xkl ,...,xkn ) 

= (41 1— "Ykn ).  

Note that 

	

i. 	xkl.1  = (xk) A 	and 	yk+1 	(yk) B  , 	 (1.12) 

xk  + yk  = xk + yk , 	and 

iii. yk E T(1 1 ). 



11 

From the definition of TA, (1.12iii), and then (1.12i), 

„,  
(x;( ) B 	(y;c ) A  E TA ((91c ) A 	(1711c ) B ) = TA(Xki.1 	Yk+1) 

But then by (1.12ii) and the definition of TA , 

xk + yk = xlic  + yk 

= «1 11‹ ) A 	67k ) B ) 	((;q‹ ) B 	(Ck ) A )  

E (I+TA)(29C+1 	Yk+1 )  

or 

Cck+1
+ 1

'k+1 = PA (Sck+i;k ) ' 
	where PA = (I+TA ) -1 . 	( 1. 13) 

„ 	A 	A  
Thus, the passage from xk + yk  to xic+1  + yk+1  is the outcome 

of one iteration of the proximal point algorithm, applied 

to the maximal monotone multifunction TA . 

II. Asymptotic Behavior  

We begin in this section to study the behavior of the 

algorithm when the system of inequalities is inconsistent. 

We will stick with the notation (T,A,B,T 	P 	etc.) A 	k' A' 

introduced at.the end of 51. 

If the system (0.1) is inconsistent, T A  has no zeros. 

The proximal point algorithm applied to TA  will thus yield 

a divergent sequence, but the lemmas of the previous section 

can be applied to gain information about the asymptotic 

behavior of the algorithm. The principal result of this 

section is that for any sequence (x k ) generated by the 
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algorithm (0.2), xk  converges to a least-square solution. 

As a first step, we determine the element of least norm 

in the range of TA . From the definition of T A , 

	

^ 	̂ 	̂ 
range (TA ) = {yA  + wB : y c T (w) } 

(in this and in the following section, "^" indicates an ele-

ment or subset of H = R
d x... ><R

d
) . If we define 

C = Ci  x... < Cn,  then C = domain(T) and 0 E T(w) for all 

W E C. Thus the element of least norm in range(T A) must also 

be the element of least norm in the subset {W B : w E e}. 

But this subset is the projection onto B of the polyhedral 

convex set C; it is hence polyhedral (closed) convex and has 
^ 

a unique element v of minimum norm which equals w B  for at 
^ 	 ^ 	 ^ 	̂ 

least one w E C. Any w E e for which wB  = v will be called 

a minimally dispersed system of representatives for the 

system (0.1). This terminology is motivated by the fact that 

such a w = (wi ,...,wn ) minimizes 

2 	1 	2 	 1 
lwB 1 	= 1w1n EW• 	••• n n Ew. 1 2  

subject to wi  e Ci , i = 1,...,n. 

Lemma 3. The following are equivalent and are satisfied for 

at least one w = (w 1" w n) E H: 

i.
^ 
w is minimally dispersed 

ii. 0 E WB  + T(w) (equivalently, 

1 n 0 e wj  - F  Ei.1  wi  + Ti (wi ), j = 1,...,n). 

iii. w = proje(WA) (equivalently, 

n wj  = proj,( 1  = E i.1  wi ), j = 1,...,n). 

(2.1) 
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„ 	 -, 	 1 
l
- Proof. w is minimally dispersed iff w minimizes w 13 12 sub-

ject to w E C. This i4-r ii follows by [35, Theorem 27.4]. 

The equivalence ii 	iii is obvious. 	 0 

The set x of least-square solutions  to (0.1) consists 

of all x E Rd  which, together with some w = (w1 ,...,wn ) E H, 

solve the problem 

1 to minimize 7  E i=1  lx-wi l 2  subject 

to <w ,u > s b,, 	j = 1,...,n. 

By [35, Corollary 28.3.1], x and w solve this problem if, 

and only if, there exist Lagrange multipliers A l ,...,Xn 

 satisfying, together with x and W, the Karush-Kuhn-Tucker 

conditions. For the problem ( :2.2), these conditions assert 

that 

i. 

ii. 

iii. 

1 	•n x = ii E i=1  wi  

X. 	?. 	0 	and 

<w.
J
,u.

J
><b.

J 
 

and 	x-w.
J 	

= X.u., 
 J 	J 

<Td.
3
,u.> 	b., 	j 	= 

	

 3 	J 

	

implies 	X.
3 
 = 0, 	j 	= 

j 	= 	1,...,n. 

1,...,n. 	(2.3) 

1,...,n. 

Observethat(2.3)impliesw.= proj C  (x), and hence that w 
J 

is minimally dispersed. 

The next lemma describes the least-square solutions to 

(0.1). 

Lemma 4.  x E x if, and only if, there exists 

w = (w1 ” wn ) E H such that 

(2.2) 
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i. w is minimally dispersed 

1 n ii. x = — n E. 	w.1  . 1=1  

If x and W satisfy (2.4) then 

(2.4) 

w. = proj c j (x) , 	j = 1, 	,n. 

Furthermore, x is nonempty. 

Proof.  x E X then there exists W E H and A E Rn  satisfying 

the Kuhn-Tucker conditions (2.3). This implies that (2.4) 

holds. 

Conversely, suppose (2.4) holds. By (2.liii), 

w
j 

= proj c
(x), j = 1,...,n. Thus, it is possible to pick 

J 
A. ?. 0 such that X u = x-w., and the Kuhn-Tucker conditions 
J 	 3 3 	J 
(2.3) hold with this choice of A. In particular, x and W 

solve the problem (2.2) and x E X. 

For any minimally dispersed w, (2.4ii) defines ,a least- 

	

square solution x. Hence x 	0. 	 0 

If x E x, then for w as in Lemma 4, wB  = v. In other 

1 n
-x, n 1=1 wi 	3 

j = 1,...,n. 	By (2.liii), 

x = proj c (x) - vj , 	j = 1,...,n, 	(x E x) 	(2.5) 
J 

Thus 

i. If x E X and v. = 0, then x E C.. 
3 	 3 

ii. If x E x and v. # 0, then 

x i C:
3
, Proj c 00 E bd(C.), and v. is a 

3 	 3 J 
positive multiple of u.. 

(2.6) 



15 

The next lemma describes the structure of x more com-

pletely. It asserts that x is the intersection of an affine 

flat consisting of the least-square solutions to a certain 

subsystem of (0.1) with a polyhedral convex set consisting 

of the feasible solutions of the complementary subsystem 

of (0.1). These two complementary subsystems correspond to 

a partition of the constraint indices into the two sets: 

I = 	v. # 0} 	anc1,3 ={3: 17.=0 } - 

Defining 

XI = {x: x is a least-square solution to the 

subsystem <x,ui > 	bi , i E 

and 	 Xj = n C A  
jEJ j  

(with XI  = Rd  if I = 	and and xj  = Rd  if J = 0), we have 

Lemma  5. x = X I  n xj . Moreover, )( I  is a translate of the 

subspace 

N :={cER(21 :<c,Nr.> = 0, i = 1,...,n}. 

proof.Let(p j 00=clist 2 (x,C.), (1) = E n 
=1 (1) j  . Suppose that j  

x E X I  n xj . Using first the fact that x E XI  and then that 

x E XJ , we have for any x' E Rd 

(1)(30) 	E . ( X I ) 	 (I).(X) = OX) 
i€I 	 lei 

SO x E X. Thus X I  n Xj  c X- 
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Suppose next that x E X and define w j  = proj c  (x). By 
J 

(2.6i), x E Xj . To show x E )( I , we may clearly assume 

1 n 
I # $. Since x = — n 1 E. =1 1 w. (Lemma 4) and w, = x for j E J, 

1 
it follows that x = II1  I . E wi . Then wi  = Proj r  (777 E w.) 

1E1 ' jEI 
foriEIamithew.1  (i E I) are minimally dispersed for the 

subsystem indexed by I (2.1iii). By Lemma 4, x E XI . Thus 

X c X I  n Xj- 

Next, we show that )( I  is :a translate of N. It is obvious 

that )( I  + N c )(I , so it is enough to show that x
1-x2 

E N 

whenever x 1 ,x2 E X I . Recall that v is an n-dimensional 

vector depending on the system (0.1). To the I-subsystem 

of (0.1) there corresponds likewise an III-dimensional 

vector vI . But since x c X I, (2.5) shows that v I is the 

restriction to I of 17,i.e., 1 	1 = v. for all i E I. By 

(2.6ii), for all i E I, x
1
,x

2 
E X 

xl—x2  = (Proj c.  (x1 )-vi ) 	(Proj c.  (x 2 ) -vi ) E  bd(Ci ) 	bd(C. 1 1 	 1 

Thus <xl -x2 ,v.> = 0 for all i E I, and x1-x2 
E N. 

1 
0 

For an inconsistent system (0.1), the proximal mapping 

PA for TA 
has no fixed points. However, if x is a least-

square solution, x = (x,...,x), and t 	0, then according 

to the following lemma, the algorithm (0.2) initiated with 

x
0 
 = x, y

0 
 = 0 will generate xn = x, yn 

= -nv. Since PA is 

nonexpansive, this shows for any  sequences xn ,yn  generated 

by the algorithm, that 
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1(c  + is7  n n ) - (X-nV)1 is nonincreasing. (2.7) 

Lemma 6.  If x E x, x = (x,...,x), and t 	0, then 

PA (X-tV) = X - (t+1)V. 

Proof. From (1.12) and (1.13), P A (x-tv) = xA + YA, where 

x' = Proj&x-tv) and y' = x-tv-x'. Let wi  = Proj c  (x), 

w = (wi ,...,wn ). Then V = WB  = W-WA  = W-X, so x-tfi = 

w-(t+l)v E w 	T(w) (2.li,ii). Thus, x' = w and y' = x-tv-w = 

-(t+1)V. Finally, PA (x-tv) = xA + yB = wA  - (t+l)v = 

X - (t+1)V. (The last equality uses (2.4ii)). 	 0 

Lemma 7.  Any sequence 	generated by the algorithm is 

bounded and its cluster points are minimally dispersed. 

Proof. Recall the notation (1.11) for sequences generated by 

the algorithm. As in (1.13), let PA  denote the proximal 

mapping associated with TA and QA 
= A' Then 

Q
A

(Xkk) = (Xk+Yk ) - k.+1 +Yk+1 ) 
	

(by (1.13) 
	

(2.8) 

= (Cci ) B 
	 (by 1.12i, ii) 

By Lemma 1, we know that QA(xk+yk)  converges to the element 

v of minimum norm in the range of TA. Since V E B,this is 

equivalent to 

and 0. (2.9) 

Fix x E X and let x = (x,...,x). 	By (2.7), 1(X, 	v 	-(X-kVs )1 x+1+-k+1 )  
is nonincreasing. But 
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1(1k+1+Crk+1)-(3^c-k) I = INVA 	
(17) B ) - (X-k) 1 	(by 1.12i) 

I (xk ) A 	3c1  

since the norm of a vector dominates the norm of its 

A-component. Thus (Xi'c ) A  is bounded and by (2.9) 

(x') is also bounded. The sequence (x') thus has cluster 

points and by (2.9), all its cluster points have B-component 

equal to v. From the algorithm (0.2), we know that 

X i  E e for all k, so the cluster points also lie in e and 
are therefore minimally dispersed (2.1i). 	 ❑ 

In light of Lemma 7, the cluster points of (X lic ) are of 

the form a+v (a E A). Suppose a l+v and a 2+v to be two dis- 

tinct such cluster points (a l  = (al ,...,a 1 ), a 2  = (a2 ,...,a2 )). 

It is impossible that K exist such that 

<X-X
<+1

,a1-a 2 > < 0 	and 	<y' ,al -a 2 > > ?. 0. 	(2.10) Kj  

This is impossible because (2.8) implies x ic. - x +1 	(*A  
or 

x 	x 	
= 1 n 
— E. , Y'- K 	KA-1 	n 3=1 K] 

In the proof of the following lemma, it will be shown that 

if two distinct cluster points did exist then it would be 

possible to produce a contradiction by demonstrating the 

existence of K satisfying (2.10). 

Lemma 8.  Any sequence xk generated by the algorithm has at 

most one cluster point, and hence converges. 
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Proof. Suppose the sequence (x 31c ) has two distinct cluster 

points, al  +v and a 2  +v (al  = (a/ ,...,al ) and a 2  = (a 2 ,...,a2 )). 

Since the set of cluster points is compact (Lemma 7), we may 

assume al  and a2 to be picked so as to maximize lal- a21- 

By Lemma 4, al  and a2  belong to x. Of course, 
Cck+1 = (Sqc ) A 

by (1.12i), so the A-components of the cluster points of 

(x l ) are cluster points of (xk ). In particular, al  and a2 

are cluster points of the sequence (x k ). 

By Lemma 5, a1 ,a2  E Xj  c C j  for all j E J. Let us 

partition J into subsets J = J_ u J 0 , where 

= {j E J: <a13 ,u.> < b.} 

0 = {j E J: <auj > = b.}. 

Define t = lal-a2 1, w = (al-a2 )/t, and for each c > 0, 

U = B(a2' -t+c) n tx: <a 1-x , w> < cl 

(where B(•;•) denote the open ball with given center and 

radius). The sets U are open neighborhoods of a1 whose 

diameters shrink to zero as E 0. 

By (2.6), v. is a positive multiple of uj  for all j 6 I. 

Now, x;cj  = Proj c  (xk  + ykj ) (0.2) so yk j  = xk  + ykj  - xlicj 

 isanonnegativemultipleofu..Since v. 	0, this implies 

that yicj  is also a multiple of v j . In particular, 

yk j  e NI 	(j E I, k = 0,1,2,...) 
	

(2.11) 

Choose E small enough so 
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U 	13(0;E) (= int(C,) for all j E J_ and 0 < E < t. (2.12) 

Choose K large enough so that 

(1qc ) B- s̀7 1 < E 	for k 	K 	 (2.13) 

ii. 	 xk E B(a2' -t+E) 	for k 	K 

xK  UE  

It is possible to satisfy (i) by (2.9). If it were not 

possible to satisfy (ii) there would be cluster points of x k 

 outside of B(a2 ;t+E), contradicting the maximality of 

lai-a21- For (iii), simply note that a 2  is a cluster point 

of (xk) and a 2 	U. 

Since xK  U and a l  is a cluster point of (xk ), there 

is a smallest < K such that 

i. <a1-x <-1-1 
,w> < E 
	 (2.14) 

ii. <a
1
-x

< ,W> ?. E. 

Subtracting, we get 

<X
K
-X

K+1
,W> < 0. 

By (2.13ii) and (2.14i), 

X 	E U . 
10.1  

(2.15) 

(2.16) 

Now, (X i( ) B  = 	- 
(X K ) A =XK- 	(i.12i) so from (2.13i), 

we have 
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E > lxK-xK+1 ,-V1> IX
KJ  *-XK+1 -V 7d 	

(j = 1,...,n). 

In particular, 

1 X ' X 	11 < E KJ 	K-f- J. 
for all j E 

whence, by (2.12) and (2.16), 

	

x'. E int(C.) 	for all j E J. 	 (2.17) 

But y i lci  E Tj(X ic i) (j = 1,...,n) by (0.2), so (2.17) implies 

	

= 0, 
	for all j E 	 (2.18) 

For j E J o , we have 

	

<al ,u j > = b j 	(by definition of J 0 ) 

	

<a
2 
 ,u.> s  b. 
	

(a2 E XJ by Lemma 5). 

Subtracting, 

<w,u.> 	0 	for all j E J0 . 

Now,171 .KJ  isarionnegativemill.tipleof11.(0 . 2 ) so 

<w , 17 ,› 
	

for all j E J0 . 	 (2.19) 

By Lemma 5, w = (a l-a2 )/t E N so (2.11) gives 

	

<W,17 1 1ci > = 0 	for all j E I. 	 (2.20) 

Combining (2.18) , (2.19), and (2.20), we have 

K3 	
0 	for all j. 



Combining this with (2.15), we see that (2.10) holds, 

	

giving the desired contradiction. 	 ❑ 

We now summarize our observations so far about conver-

gence of the algorithm in 

Theorem 1. Let sequences (x k ), (yki ), (xL), (ylci ) be 

produced by the algorithm (0.2). The sequences (x k ) and 

(xL) (i = 1,...,n) converge to limits 

i. xk 	
03 

	 (2.21) 

ii. i = 1,0mOin, 

where 

A 

i. x' = (x'" x' ) is minimally dispersed 	(2.22) wl 	wn 

1 n x = — E. 	x.. w n 1=1 wi 

Thus also, x is a least square solution, x'. = proj (x ca), C i w 

and (x' -x x' -x ) = v = the element of smallest norm wl w 	' wn w 

in range(TA). For the sequences (yki ), (171(1 ) one has 

klim (ykl" ykn )/k = lim (ykl  ,...,y'kn 
 )/k = 	(2.23) 

-4-00  

1 n Proof. By Lemma 8, (2.12ii) holds. But x kl.1  = 	Ei.1 xki 

and xlici  E Ci  by (0.2) so (2.21ii) implies (2.21i) and 

(2.22ii). By Lemma 7, X:.  is minimally dispersed. From 

Lemmas 3 and 4, 	E x i  xli  = Proj c  (x. ), and (x:0 ) B  = v. 

Regarding the sequences (yk ) and (yk ), we have 

22 
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= lim k 
- (1],c)B 	(by 1.12i) kip 17k Yk+1 k-o-co 

= lim (9;c ) A  = 0 	(by 2.9). 
k .+°3  

Thus, if either of the two sequences (1k)/k and (y k/k) has a 

limit so does the other and the two limits must coincide. 

By (1.5), 

lim (xk  + yk )/k = -v. 

Since xk converges, 

lim y,/k = -v 
k+oo 

and (2.23) holds. 	 0 

III. Convergence Rate  

According to Theorem 1, any sequence (x k) generated by 

the algorithm converges to a least-square solution. In this 

section, it will be shown that dist(x k ,x) k for some 

c> 0 and 0 s u < 1. 

If we let 7
A 

denote orthogonal projection onto A, then 

since 7
A 

is nonexpansive, 

dist(Xk+Yk ,Til ()) 	dist(Xk ,TrA (Til ())) 

= dist(Xk ,{WA : w E e, WB  = Cr}) 	(by 1.10) 

= dist(Xk ,f(w,...,w).: w E xl) 	(by Lemma 4) 

= fn dist(xk ,X), (X = (x k 



so it is enough to show that 

dist(xk+Yk ,T;1 ( s7)) 	0, linearly 

with modulus p (0 < p < 1). 

The sequence (xk+yk ) is generated by applying the proximal 

point algorithm to TA. So to establish (3.1) it suffices, by 

Lemma 2, to show that a constant K exists such that for all W 

in a neighborhood of '1'7, w E TA (2) implies dist(2,Ti l (C7)) 

<1w-v1. By definition of T A, this is equivalent to: 

there is 6 > 0 such that if 	 (3.2) 

E T(X) 	and 	IxB+yA-171 	6 

then 

dist(XA+irB' TA
1  (v)) 

Our strategy to establish (3.2) is to show K 	0 exists 

such that for any X and ir with y E T(X) and Ix B  +yA  -171 suf- 

ficiently small, there exist X* and Y* such that 

i. y* E T(x*) 	 (3.3) 

ii. 1 )-c13 4- A- N-71 

= 0 

	

iv. 	X* is minimally dispersed and 

1 3ĉ *- iscl1 )ĉ 	- 1- 2 B A 

Once this is done, v = xB + 	€ TIA (X1,ei  +4) so 

24 

(3.1) 
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diSt(XA+i7'B IT;1 ('Cr)) 5  1(Zei7B) - (iq+crA) 

< 	 12-2* 1 

as desired. 

The following fact, derived easily from [40, Theorem 1], 

will play an essential role: 

Lemma 9 [40]. Let 0 Rd Re be a polyhedral convex multi-

function (i.e., one whose graph is a polyhedral convex set). 

There is a constant c 0 such that for all y,y' E Re , if 

0
-1

(Y') 	0, 

0 -1 (y) (y) = 0 -1 (17') + c117-Y'ri, 

where B is the closed unit ball in Rd . 

If 0: Rd 4  R u {03} is a polyhedral convex function (i.e., 

one whose epigraph is a polyhedral convex set), let 

0 a  = {x E Rd : 0(x) 5 a}. Lemma 9 may be applied to the multi-

function x 	{y E R: y 	0(x)} to obtain 

Lemma 10 (from [40, Theorem 1]). Let 	be a polyhedral convex 

function on Rd . There exists a constant c 0 such that for 

all a, a' E R, if 0 a , # 0, 

O a 	0a , + cla-a'5. 

For X = (x l ,...,xn ) E H, consider the function 

0(X) := max{lx i  - 	- vjl} 	q(x) 
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(where 0e(X) = 0 if X E C, ,p a (is) 	. otherwise). 	0 achieves 

its minimum value of zero on the set 0 -1 (0) = fx E C: xB  = '1.r1 

of all X E H that are minimally dispersed. 	0 is also poly- 

hedral convex, so Lemma 10 (applied with a' = 0, a = 0(X)) 

implies the existence of < 1  > 0 such that 

X E 0 -1 (0) 	K 0(iC)11 1 
for all x E H, 

where B is the closed unit ball in H. Note that the constant 

K 1 
depends only on the function 0, which is determined by the 

sets C., i = 1,...,n. For later reference, we summarize our 

observations as: 

Lemma 11. There is a constant K
1 

> 0 (depending only on 

C1 ,...,Cn ) such that if x E C then there exists 

X *  = (Xif...,X11„1) E H which is minimally dispersed and which 

satisfies 	 K1B 

Proof. By the above choice of < 1 , there exists X* E 0 -1 (0) 

such that lx*-xl < K
1
0(X). The conclusion follows since 

0(X) =max{ ix i  - 	Exi-vi l} 

A convex set K c Rd  is a cone if tK c K for all t 	0. 

K is pointed if for some Q,<k,2,» 0 for all 0 	k E K. 

(Under this definition, note that K = {0} is pointed.) 

Lemma 12. Let K c Rd be a closed pointed convex cone. There 

is a constant c such that for any k l ,...,ks  E K, 

lki l < clki 	kslf 	i = 1,...,s. 
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Proof. If K = {0}, we can take c = 0. Otherwise choose 

E Rd , IZI = 1, such that <k,2,> > 0 for all 0 # k E K. Let 

m = min{<k,Z>: 110 = 1, k E K}. Then 1k 1  + 	+ ks 1 

mik.1, i = 1,...,s, so we can 

take c = l/m. 

By Lemma 5, x c (2 j  for all j e J. Let us partition J 

into three subsets: J = J1  u J2 u J3' where 

jl =2 {j: )( c  bci(Ci)1 

	

J2=f3:X 1-110c1 (C.)# 0 and x n int(C.) 	0} 

J3  = {j: X  c int(C.)}. 

Lemma 13. There are constants K 2 ?. 0 and 6 > 0 (depending only 

on Ci ,...,Cn) such that if yE T(X) and *IX B+r7A-V1 s 6 then 

K21;+YA-{il 	for all j E J2 . 

Proof. If J2  = 0 there is nothing to show, so assume J 2  # 0. 

Choose z E X and p > 0 sufficiently small so 1f3(z;P) c C j  for 

all j E J2  and so x + E(0;p) c C j  for all j E J3  (the latter 

is possible because x is polyhedral by Lemma 5). 

Let 6 - 2- and suppose that 	E T(X) and IXB+frA 	s 6. 
4K

1  
By Lemma 11, there is a minimally dispersed X* = 

such that 	 K1BA41- 

For w E Rd , denote by w the orthogonal projection of w 

onto the linear subspace spanned by x-x = {x-x': x,x' E 

Apply Lemma 12 to each pointed convex cone that is generated 
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by some subset of {(u.3) X : j E 	and and let c 1  be the maximum of 

the constants so obtained. Since (u.)
X 
 # 0 for j e J2 we 

may define 

c 2 = max{ 	-
X 
 : j E 

I ( 11 ' ) 	
J 2 }. 

3  
,n 
i=1 Let x* = 	x*. For j = 1,...,n, xt = x* + V. 

'  

because X* is minimally dispersed. Thus xt = x* for j E J. 

For j E J we then have 

lxi -x * 1 = ixj -1 s  lx-x * 1 

s 1 1 1-s B +'Is'A-'7 1 - 2 < 	(j E J) 

Since y E T(x),Y 3  . # 0 implies x j  E bd(C j ). Thus 

<x.-z,y j > = ry i ldist(z,bd(C j )) 	(for j = 1,...,n) 

IY j Ip 
	 (for j E J 2 ). 

For all j E J 2' we then have 

<x*-z,(y.
3

) 
X 	

Y3  > = <x*-z, .> 	 (since x*, z E X) 

= 	 + <x*-x.
3
,y.> 

IYjIp - 2  IY j Ip = 

> 0 ifY3  . # 0. 

For j E J2 , yj  = 0 iff (ly x  = 0. Thus <x*-z,(y j ) x > > 0 for 

all j E J2  for which (y j ) x  # 0, showing that {(17 j ) x : E J
2 

} 

generates a pointed cone. By choice of c l , 
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1 :Y)
x
1 5 c l l E 	(yi ) x l 	(for j E J2 ) 

IEJ2 

Next, we show that 

(Y.)
X 
 = 0 	forjEIuJl uj3 . 

3  

The case j E J1  is evident. For j E I, V
j 	

0 so yj is a 

multiple of v.. By Lemma 5, this implies (y.) = 0. For the 
X 

remainingcaseofjEJv wellavedist(xj0 )51x.-x* 1 	f . 

By choice of p, this implies 

x.Eint(C.), 	and hence y j  = 0 	(for j E J 3 ) 	(3.4) 

Finally, for all j E J2 , 

c21 ( yj ) X I 

c i c 2 1 E 	(17 i) x ! 
iEj

2 

= cic 2 1E11=1  (yi ) x l = c ic 2 1(E11=1  Yi) x l 

5 c 1c 2 1Ei=1  yi l. 

Since 1Ei=1 Yil s 1YA1 	C7A ".; _1, the conclusion of Lemma 

13 holds with K 2  = cic 2 . ❑ 

Lemma 14.  Let ul ,...,ur E Rd be nonzero. There is a constant 

c > 0 such that for any t 1 ,...,tr  0, there exist 

sl ,...,s r  ?- 0 such that s l ut  + 	+ srur  = 0 and 

It. -s.1 5 clt1u1 + 	+ t r  ur  1, i = 1,...,r. 

Proof. Consider the polyhedral convex multifunction 



Rr  Rd  defined by 

{t 1u1 +.'.+trur } 	ifta 0 (1)(t) = 
0 	 otherwise. 

Apply Lemma 9 to cl) to obtain a Lipschitz constant c such that 

for all t 	0, 

t E (I)
-1

(t
1

11
1 	

t r  u r  ) c 11
-1 (0) + clt1u + 	+ t u r r B. 

Then, for any t 	0, there exists s E (1) (0) with 

It-s1 < clt 1u1 
+ 	+ t r  u r 1. 

Lemma 15.  There are K a 0 and 6 > 0 (depending only on 

C1" ..,C
n 

such that if y E T(X) and IXB+YA-in < 6 then there 

exist X* and Y* such that 

E T(X*) 

	

1Y-Y * 1 	K 3 IxB+17.A-v1 

iii. yi + 	+ yn = 0 

iv. x* is minimally dispersed and 

	

lx *- xl 	K 1 1;1B +i"A-'\'7 1- 

(3.5) 

Proof.  Let 6 be as in Lemma 13 and suppose that y E T(i.c) 

and IXB -1-irA-i). 1 5. 6. Choose X* by Lemma 11 to satisfy (iv). 

If I u J1  = 0, then set 	= 0. Then (i) and (iii) 

hold trivially. By Lemma 13 and (3.4), 	 E 	lYil 
j Ej 2 

nK 2 IXE+YA- Cil so (ii) holds with K 3  = nK 2 , and we are done. 

Suppose I u JI  # 0. Let c be chosen as in Lemma 14 

for the vectors u i/lui l (i E I u J l ). Let ti  = lyi l and 

30 
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let s.1  be chosen as in Lemma 14, and define y* = s.u.1/Iu. I 1 	1  

(i E I U Jl ). Then 

E 	y* = 0 and lyi -17/11 = Iti-sil 5. cl E 	y.I (forieIuJ1 ). 
3 IuJ

1 	 IuJ
1 
 3 

For i E J2 u J3' define y* = 0. Clearly (iii) holds. 7 
For i E I u LTl' 

c 	E 	Y•I 	cIE1.=1 Yi  I 	CI E y.[ 	1 cl E Y.I 

	

IuJ
1  3 
	 J2 	J3 

 

5 cnI2A I + cmc 2 IXBA-C71 + 0 	(by Lemma 13 and 3.4) 

(cn+cnK2) IXE0-17A-VI• 

	

, 	̂ 	.-, 

Also, for i E J2 , 

=IYi I 	K 2 1Y2A-i.'71 

by Lemma 13. For i E J 3  we have by (3.4), 

= ly i l = 0. 

Combining the above, we have ly i-yt1 s  K 3 1X13+YA-'41 for i = 

1,...,n with K 3  = max(K 2 , cn+cnK 2 ) and (ii) holds. 

It remains to show (i). For i E J2 u J3, y* = 0 so it 

is trivial that ytETi (xt). To show the same foriEIuJ i , 

it suffices to show xi E bd(C i ) since yr is by definition a 

nonnegative multiple of ui . For i E I, 0 	-vi  E Ti (xt) 

since X* is minimally dispersed, so xi E bd(Ci ). For all 

i E Jl , xi = x* + vi  = x* 	X C bd(C i ) since X* is minimally 

dispersed and by definition of J 1 . Thus (i) holds. 	0 
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Choosing K = mini2K 1 ,2K 3 1, (3.5) implies (3.3), which is 

all that was needed to prove linear convergence. In summary: 

Theorem 2. Any sequence (xk ) generated by the algorithm (0.2) 

converges to the set of least square solutions at a linear 

rate, in the sense that dist(x k ,x) 	cpk (for some c > 0, 

0 Is p < 1) for all k sufficiently large. 

Proof. By Lemma 2, (3.1) holds with p = K/),/1 + K2 



33 

BIBLIOGRAPHY 

1. S. Agmon, The relaxation method for linear inequalities, 
Canadian J. Math. 6:382-392 (1954). 

2. J.-P. Aubin, I. Ekeland, Applied Nonlinear Analysis, 
John Wiley and Sons, N.Y. (1984). 

3. A. Auslender, Methodes numeriques pour la resolution 
des problemes d'optimisation avec contraintes, These, 
Faculte des Sciences de Grenoble, June 1969, Ch. VI. 

4. A. Auslender, Optimisation, M6thodes Num6riques, Masson, 
Paris, 1976. 

5. R. E. Bruck and S. Reich, Nonexpansive projections and 
resolvents of accretive operators in Banach spaces, 
Houston J. Math. 3:459-470 (1977). 

6. Y. Censor, Row-action methods for huge and sparse 
systems and their applications, SIAM Review 23 (1981) 
444-466. 

7. Y. Censor, Finite series•expansion reconstruction methods, 
Proc. of the IEEE 71, no. 3 (1983) 409-419. 

8. Y. Censor, P. P. B. Eggermont, D. Gordon, Numerische 
Mathematik 41 (1983) 83-92. 

9. G. Cimmino, Calcolo approssimato per le soluzioni dei 
sistemi di equazioni lineari, La Ricerca Scientifica 
XVI, Serie II, Anno IX, Vol. 1 (1938) 326-333. 

10. F. Deutsch, Rate of convergence of the method of alter-
nating projections, Proceedings of the Conference on 
"Parametric Optimization and Approximation," Oberwolfach, 
Germany, Oct. 1983, Birkhauser, Boston, to appear. 

11. P. Eggermont, G. Herman, A. Lent, Iterative algorithms 
for large partitioned systems, with applications to image 
reconstruction, Linear . Algebra and its Applications 
40 (1981) 37-67. 

12. T. Elfving, Block-iterative methods for consistent and 
inconsistent linear equations, Numer. Math. 35, 1-12 
(1980). 



34 

13. J. L. Goffin, "On the finite convergence of the relaxa-
tion method for solving systems of inequalities," 
Operations Research Center Report ORC 71-36, University 
of California at Berkeley, 1971. 

14. J. L. Goffin, "On convergence rates of subgradient 
optimization methods," Mathematical Programming, 13, 
1977, 329-347. 

15. J. L. Goffin, "Nondifferentiable optimization and the 
relaxation method," in Nonsmooth Optimization, Editors 
C. Lemarechal and R. Mifflin, IIASA Proceedings Series, 
Pergamon Press, 1978, 31-49. 

16. J. L. Goffin, "Acceleration in the relaxation method 
for linear inequalities and subgradient optimization," 
Progress in nondifferentiable optimization, 29-59, 
IIASA Collaborative Proc. Ser. CP-82, 8, Internat. 
Inst. Appl. Systems Anal., Laxenburg, 1982 

17. J. L. Goffin, "Chaos and order in relaxation methods 
with maximizing controls," Proceedings of the 6th 
Conference on Probability Theory, held at Brasov, 
Romania, September 1979, 67-76, Ed. Acad. R. S. 
Romania, Bucharest, 1981. 

18. J. L. Goffin,-"On the nonpolynomiality of the relaxation 
method for systems of linear inequalities," Mathematical 
Programming, 22 (1982), 93-103. 

19. J. L. Goffin, "The relaxation method for solving systems 
of linear inequalities," Mathematics of Operations 
Research, 5, 1980, 388-414. 

20. I. Halperin, The product of projection operators, Acta 
Sci. Math. (Szeged) 23 (1962) 96-99. 

21. G. T. Herman, A. Lent, P. H. Lutz, Relaxation methods 
for image reconstruction, Comm. ACM 21 (1978) 152-158. 

22. S. Kaczmarz, Angenaherte Auflosung von Systemen linearer 
Gleichungen, Bull. Acad. Polon. Sciences et Lettres, A, 
355-357 (1937). 

23. M. A. Krasnoselski, Two observations about the method 
of successive approximations, Uspehi Math. Nauk., 10 
(1955) 123-127. 



35 

24. F. J. Luque, Asymptotic convergence analysis of the 
proximal point algorithm, to appear in SIAM J. Control 
Optim. 

25. B. Martinet, Determination approchee d'un point fixe 
d'une application pseudo-contractante. Cas de 
l'application prox, C.R. Acad. Sci. Paris (Ser. A), 
274:163-165 (1972). 

26. G. J. Minty, On the maximal domain of a "monotone" 
function, Mich. Math. J. 8:135-137 (1961). 

27. G. J. Minty, Monotone (nonlinear) operators in Hilbert 
space, Duke Math. J. 29:341-346 (1962). 

28. J.-J. Moreau, Proximite et dualite'dans un espace 
Hilbertien. Bull. Soc. Math. France 93:273-299 (1965) 

29. T. S. Motzkin and I. J. Schoenberg, The relaxation 
method for linear inequalities, Canadian J. Math. 
6:393-404 (1954). 

30. J. von Neumann, Functional Operators -- Vol. II. The 
Geometry of Orthogonal Spaces, Annals of Math. Studies 
#22, Princeton University Press, 1950. 

31. S. V. Plotnikov, Cyclic projection on a system of 
convex sets with empty intersection (in Russian; English 
abstract in MR 85g:90094) Improper optimization problems, 
60-66, Akad. Nauk SSSR, Ural. Nauchn. Tsentr. Inst. 
Mat. i Mekh., Sverdlovsk, 1982. 

32. B. T. Polyak, Gradient methods for the minimization of 
functionals, U.S.S.R. Computational Mathematics and 
Mathematical Physics 3, no. 4 (1963) 864-878. 

33. B. T. Polyak, Constrained minimization methods, 
U.S.S.R. Computational Mathematics and Mathematical 
Physics, 6, no. 5, 1-50 (1966). 

34. S. Reich, On infinite products of resolvents, Rendiconti 
della Classe di Scienze fisiche, matematiche e naturali, 
Serie VIII, Vol. LXIII, fasc. 5, Accademia Nazionale 
dei Lincei, 1977. 

35. R. T. Rockafellar, Convex Analysis, Princeton U.P., 
Princeton, N. J., 1970. 

36. R. T. Rockafellar, Monotone operators and the proximal 
point algorithm, SIAM J. Control Optim. 14:877-898 
(1976). 



36 

37. J. E. Spingarn, Partial inverse of a monotone operator, 
Appl. Math. Optim. 10:247-265 (1983). 

38. J. E. Spingarn, A primal-dual projection method for 
solving systems of linear inequalities, Linear Algebra 
and its Applications 65:45-62 (1985). 

39. K. Tanabe, Projection method for solving a singular 
system of linear equations and its applications, Numer. 
Math. 17 (1971) 203-214. 

40. D. W. Walkup and R. J.-B. Wets, A Lipschitzian characteri-
zation of convex polyhedra, Proc. Amer. Math. Soc. 23 
(1969) 167-173. 

41. A. BjOrck, Methods for sparse linear least squares 
problems, Sparse Matrix Computations, J. Bunch and 
D. Rose (eds.), Academic Press, New York (1976). 



;̂ 

r 

^-: 



FINAL REPORT 

Proximal Point Algorithm in Mathematical Programming 

Submitted by 

Jon Spingarn 
School of Mathematics 

Georgia Institute of Technology 
Atlanta, Georgia 30332 

Submitted to 

National Science Foundation 
1800 G Street, NW 

Washington, DC . 20550 

Contracted through 

Georgia Tech Research Corporation 
Georgia Institute of Technology 

Atlanta, Georgia 30332 

February 1987 



ii 
EXHIBIT VI-1 

NATIONAL SCIENCE FOUNDATION 	 FINAL PROJECT REPORT Washington, D.C. 20550 	 NSF FORM 98A 

PLEASE READ INSTRUCTIONS ON REVERSE BEFORE COMPLETING 

PART 1—PROJECT IDENTIFICATION INFORMATION 

1. Institution and Address 

Georgia Institute of Tech. 
School of Mathematics 
Atlanta, GA 	30332 

2. NSF Program Math. 	Sci . 
Applied Math. 

3. NSF Award Number 

DMS-8506712 
4. Award Period 

From6/15/85T011/30/87 
5. Cumulative Award Amount 

$33,089 
6. Project Title 

Proximal Point Algorithm in Mathematical Programming 
PART II—SUMMARY OF COMPLETED PROJECT (FOR PUBLIC USE) 

For a nonexpansive piecewise isometric mapping q on Rd having a 
fixed point, we have studied the iterates of (I+q)/2. 	Such iterates 
were shown to behave, eventually, as if q were actually an isometry. 
Under certain circumstances, a finite number of iterations are 
guaranteed to produce a fixed point. 	Examples dealing with systems 
of linear inequalities and with network flows have been examined. 
A new constructive proof has been presented that for any real anti-
symmetric matrix A, there exists x 	0 such that Ax 	0 and x+Ax > 0. 

Some properties of iterates of nonexpansive mappings on R d and 
especially of nonexpansive piecewise isometries (foldings) have been 
explored. 	For a nonexpansive q, the set S if all cluster points of 

q-sequences x,q(x),q 2 (x),... is nonempty only if q has a fixed point. 
S is closed, convex, qIS is an isometry, and all q-sequences converge 
to S. A characterization was presented for the class of all foldings 
having the property that the set S absorbs every q-sequence after only 
finitely many iterations. . 	. 	. 

A solution approach has been proposed for a certain class of net-
work equilibrium problems. 	The method of solution is a specialization 
to a network setting of the method of partial inverses. 	Application 
is discussed to the computation of economic equilibria. 

• 

PART III—TECHNICAL INFORMATION (FOR PROGRAM MANAGEMENT USES) 
I .  

ITEM (Check appropriate blocks) NONE ATTACHED 
PREVIOUSLY 

TO BE FURNISHED 
SEPARATELY TO PROGRAM 

Check ( ✓ ) Approx. Date 

a. Abstracts of Theses 

b. Publication Citations 

c. Data on Scientific Collaborators 

d. Information on Inventions 

e. Technical Description of Project and Results 

\ 
\ 
,\ 
% 

1. Other (specify)  

2. Principal Investigator/Project Director Name (Typed) 

Jon Spingarn 

3. Priincipal Investigator/Project Director Signature 4. Date 

2/13/87 
_____ 

NSF Form 98A 13-83) Supersedes All Previous Editions 
	 orm Approved 	_ . 	- 

VI-13 



TABLE OF CONTENTS 

Final Project Report 	  

Page 

ii 

I. 	Iterates of Nonexpansive Mappings 	  1 

A. 	Summary   	 1 

B. 	The Proximal Iterates of a Folding 	 4 

C. 	Applications 	  11 

1. 	Polyhedral Convex Functions 	 11 

2. 	Systems of Inequalities 	  12 

3. 	Network Flows 	  14 

4. 	Linear Programming Duality 	 16 

D. 	The Simple Iterates of a Folding 	 16 

II. 	Solution of Network Equilibrium Problems . 	 • • 19 

References 	  28 



1 

I. Iterates of Nonexpansive Mappings  

A. Summary  

Working with Dr. Jim Lawrence (George Mason University), 

we have studied nonexpansive piecewise isometric mappings 

(foldings) and the behavior of sequences of iterates of 

such mappings. The results of our research to date are 

contained in [1] and [2]. 

If q: Rd + Rd  is a nonexpansive mapping having a 

fixed point, it is known that any sequence 

(1) x
k+1 = (q(xk ) +xk )/2 

converges to a fixed point of q [8]. In [1], the principal 

goal was to exhibit a class of mappings, the nonexpansive 

piecewise isometric mappings, or "foldings", for which the 

behavior of the iteration (1) is especially favorable. 

The iteration (1) is equivalent to the "proximal 

point algorithm" for finding a zero of a maximal monotone 

multifunction [9], [10], [11]. If T is maximal monotone 

on Rd , the proximal point algorithm generates a sequence 

(2) xk+1 = p(xk ), 	P = (1 +T) -1 . 

Furthermore, the mapping q = 2p - I is nonexpansive so 

(1) and (2) are equivalent. 

In [1], the iteration (1) was studied in detail for 

the case where q is a folding. It was shown that the 



sequence (1) behaves, eventually, as if q were actually an 

isometry. 

It was also shown in [1] that this fact has many 

surprising consequences, especially the finite termination 

of several algorithms. As examples, we described algorithms 

for solving systems of linear inequalities and network 

flow problems. We also obtained a constructive and simple 

new proof of the fact that for any antisymmetric real 

n x n matrix A, there exists x 0 such that Ax 0 and 

x + Ax > 0. 

The paper [2] was motivated by a desire to determine 

whether or not the iterates 

(3) 
	 xk+1 = (xk ) 

of a folding q coincide, as do the iterates (1), after 

finitely many steps, with the iterates of some isometry. 

The answer turned out to be negative. This outcome is con-

sistent with the fact that for a general nonexpansive 

mapping q (not necessarily a folding), the iterates of 

(I+q)/2 have long been known to behave more nicely than the 

iterates of q; for instance, any sequence (1) converges to 

a fixed point of q (if one exists) [8], but the same is 

not in general true for (3). 

It was shown in [2] that much can still be said about 

the iterates of (3) when q is nonexpansive, and still more 

can be said if q is a folding. In [2], we first analyzed 
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the structure of foldings. We showed that a folding 

induces a decomposition of the underlying space into 

finitely many polyhedral convex sets (the "folds" of q). 

If q has a fixed point, we showed that there is a unique 

fold whose interior contains a fixed point, and that the 

fixed point set is the intersection of this fold with an 

affine set. 

In [2], we defined the "cluster set" consisting of 

all cluster points of q-sequences, and showed this set to 

be nonempty only if q possesses a fixed point. If q has a 

fixed point, we demonstrated that all q-sequences converge 

to S (though not necessarily to a particular point in S). 

Further, S is closed and convex, q(S) = S, and the restric-

tion of q to S is an isometry. 

We then turned to the question of characterizing all 

foldings having the property: for every x there exists k 

such that q
k
(x) E S. As a particularly illuminating example 

of a folding that fails to have this property, consider the 

folding q: R2 + R2 defined by q(x,y) = s(r(x,y)), where r 

is a rotation about the origin by an angle that is an 

irrational multiple of pi and 

(x,y) 	if x < 1 
s(x,y) = 

(2--x,y) 	if x 	1. 

It is easy to see that for any (x,y) E R2 , the iterates 

qk (x,y) move arbitrarily close to the cluster set 

S = {(x,y): x 2  + y2  s 1} and that the restriction of q to S 

3 



coincides with the isometry r. But it followed from our 

results in [2] that there do exist points (x,y) for which 

qk (x,y) 	S for all k. Further, we presented in [2] a 

characterization of the class of foldings q whose cluster 

set absorbs all q-sequences. 

B. The Proximal Iterates of a Folding -- Summary of the  
Main Results from [1]  

A multifunction r: Rd t R
d assigns a subset r(x) of Rd 

to each x E Rd . The set of x such that r(x) is nonempty is 

dom(r), the domain of r. 	We may identify r with its graph, 

namely the set ((x,y): y E r(x)1. For the sake of simpli-

city, we will use the same symbol to represent a multifunc-

tion and its graph. For example, the notations y E r(x) 

and (x,y) E r will be used interchangeably. If for all 

(x,y) and (x',y') in r 

117- 17 '1 5  lx-x'1, then r is nonexpansive 

ii. IY-YI
2 	

lx-x'1
2 

- 1(x-y) - (x' -y')I
2 , then r is 

proximal  

iii. <x-x',y-y'> 	0, then r is monotone. 

If r is nonexpansive, then r is maximal nonexpansive if 

(the graph of) r is not properly contained in (the graph of) 

another nonexpansive r'. In an identical manner, we can 

define maximal proximal and maximal monotone. 

The mapping (x,y) 	(x,2y-x) induces a one-to-one 

correspondence of the class of proximal multifunctions onto 

4 
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the class of nonexpansive multifunctions. By this we mean 

that the image under a of (the graph of) a proximal multi-

function is (the graph of) a nonexpansive multifunction and 

the image under a-1 of a nonexpansive multifunction is 

proximal. Likewise, (x,y) 	(x+y,x-y) carries monotone 

onto nonexpansive multifunctions. Of course, the composi- 

a 
-1

13 tion (x,y) H (x+y,x) carries monotone onto proximal 

multifunctions. 

In the following, we take q, p, and T to be corresponding 

nonexpansive, proximal, and monotone multifunctions i.e., 

q = a(p) = 13(T). From the definitions, it is apparent that 

p = (I+q)/2 = (I+T) -1 . 

The correspondences a and (3 clearly preserve maximality. 

Thus q is maximal nonexpansive iff p is maximal proximal iff 

T is maximal monotone. Since (3(x,0) = a(x,x) = (x,x), the 

fixed point set for p, the fixed point set for q, and the 

set of zeros of T coincide. 

A nonexpansive multifunction q is obviously single-valued 

on its domain. A theorem of Kirszbraun [12] states that q 

is maximal if, and only if, dom(q) = Rd . Thus "maximal 

nonexpansive" and "nonexpansive function on Rd" have the 

same meaning. Since dom(p) = dom(q), the following are 

equivalent: 

i. q is a nonexpansive function: Rd Rd 
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ii. p is a proximal function: Rd + Rd 

iii. T is a maximal monotone multifunction: Rd Rd . 

If these equivalent conditions hold, it follows by a result 

of Krasnoselski [8] that for any x, the sequence 

(4) 	((I+q)/2) n (x) = pn (x) = ((i+T) -1 ) n , 	n = 0,1,2,... 

converges to a fixed point of p and q (a zero of T) if one 

exists. Specifically, Krasnoselski's result asserts that 

the iterates of (I+q)/2 converge to a fixed point of q for 

any nonexpansive function q having a fixed point. 

Before continuing, some historical remarks are in order. 

In the literature, "proximal" mappings have often been 

called "firmly nonexpansive" or the "resolvent of the mono-

tone operator T". The correspondence between nonexpansive 

and monotone multifunctions was observed by Minty [13] who 

exploited it to show that for T maximal monotone on a 

Hilbert space, (I+T) -1  is a function defined on the whole 

space. The term "proximal mapping" was first introduced 

by Moreau [10] to describe the function 

x w argzmin{f(z) 	11z-x12}, 

where f is lower semicontinuous convex. Moreau's "proximal 

mapping" is actually (i+f) -1 , of being the subdifferential 

of f (af is maximal monotone [14]). It was observed by 

Martinet [9] that Moreau's "proximal mapping" is in fact a 

"proximal function" as we have defined the term here, and 



that this implies convergence of its iterates. The cor-

respondence between the class of proximal multifunctions 

and the class of nonexpansive multifunctions has also been 

observed before. 

The iteration (4) has also been called the proximal  

point algorithm, especially when the emphasis has been 

placed on convergence to a zero of T. This name was intro-

duced by Rockafellar [11], [15], in his study of algorithms 

for the solution of convex programming problems. 

In [1], we investigated the behavior of the proximal 

point algorithm on nonexpansive mappings that are piece-

wise isometries. We call these mappings "foldings". To 

define this notion precisely, suppose that q is a non-

expansive function on Rd and-let I denote the collection 

of all convex sets K c Rd such that the restriction q1K 

is an isometry. Let I be partially ordered by set inclusion. 

Every singleton trivially belongs to I,and I is closed under 

chain unions, so every point of Rd  is contained in a maximal 

element of I. If K E I and L E I and int(K) n int(L) 

then conv(K u L) E I. Thus, if K and L are distinct maximal 

elements of I, then int(K) n int(L) = 0. If q has only a 

finite number of folds, then q is a folding and the maximal 

elements of I are the folds of q. If q is a folding, it is 

not hard to see that each fold is closed, polyhedral, and 

has nonempty interior. 

The class of foldings is closed under composition. 

7 
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For suppose q and q' are foldings with (locally finite) 

folds Ki  (i E I) and 1‹ (j E J), respectively. Then q' o q 

is an isometry on each of the convex sets 

L.. := i‹1  n -1 (q(K.) n K!) 

and these sets L1  .. are locally finite. Thus q' 0 q is a 

folding (although the sets L..ij 
 are not necessarily its folds). 

Via the correspondences a and a, composition of non-

expansive functions induces corresponding operators on the 

classes of proximal functions and maximal monotone multi-

functions. Thus, if p l  and p2  are proximal functions and 

T1 and T2 
are maximal monotone multifunctions, it is natural 

to define two new operations: 

P1 * p2 = a-1 (a( P1 ) 	a(P2 ))  

and 

T1  ® T2 = 8
-1 (a(r1 ) o a(i. 2 )). 

Since the class of foldings is closed under composition, 

it follows that the class of proximal mappings that corre-

spond to foldings is closed under *, and the class of 

maximal monotone multifunctions that correspond to foldings 

is closed under ®. Since composition is associative, the 

operations * and ® are also associative. 

In [1], we have investigated the behavior of sequences 

xn+1 = p(xn
), where p is the proximal function corresponding 



to a folding q = a(p) = 2p-I. 

An observation will simplify the discussion. Suppose 
. 

x is a fixed point for q (for p). Since folds are closed, 

there is r > 0 such that the open ball B(x;r) is contained 

in the finite union of all the folds containing X. For 

all x in B(0;r), the line segment [x,x+x] is entirely con- 

tained in each fold that contains both x and x+x since folds 

are convex. It follows that for all x in B(0;r) the restric-

tion of q to [x,x+x] is an isometry. Defining q(x) = 

q(x+x) - X and P(x) = p(x+x) - x, we then have i(0) = 

^ 	
A 

p(0) = 0, q and p are positively homogeneous on B(0;r), 

and q = a(p). Now, q and p are merely the translation of 

q and p for which the fixed point at x is displaced to the 

origin. Any statement about the behavior of q or p near x 

translates into a statement about q or p near 0. For this 

reason, we lose no generality if in discussing the behavior 

of q (or p) near a fixed point, we assume that fixed point 

to be 0 and q (or p) to be positively homogeneous on a 

neighborhood. And when we consider a sequence of iterates 

xk+1 = p(xk) converging to that fixed point, we may as 

well assume q (or p) to be positively homogeneous on the 

entire space since only local behavior is relevant. 

The following three theorems were proved in [1] to 

describe the behavior of the proximal iterates of a folding. 

Theorem 1 below can be interpreted as saying that the 

proximal iteration x k+1 = p(xk ),  when applied to a folding 
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having a fixed point, spirals towards a fixed point X. It 

states that for arbitrary x 0 , there is a subspace V(x 0 ) 

such that for all k sufficiently large, the set 

{x -X, xk+1-X,...} positively spans V(x
0 ). 	(If V(x 0  ) = {0}, 

this says that xk  = x and the iteration terminates.) 

The second theorem states that the restriction of q to 

the subspace described in the first theorem is an isometry 

with a unique fixed point. 

The subspace described in the first two theorems 

depends on the starting point x. The third theorem estab-

lishes the existence of a subspace not depending on x, 

but having some of the same properties: 

Theorem 1. Let q = a(p) be a positively homogeneous folding, 

pk (x) 	0. Let xk  = p (x), Ck  = cone{xk ,xk+1 ,..•}, and 

Lk  = span{ck ,xk+1 ,...}. There is a subspace V(x) of R d 

 and K > 0 such that Lk  = Ck  = V(x) for all k 	K. 

Theorem 2. Let q = a(p) be a positively homogeneous folding 

on Rd. Suppose xk = p
k (x) 	0, and let V = V(x). Then q111 

is an isometry, 0 is the only fixed point of q in V, and 

plV is a linear isomorphism. 

Theorem 3. Let q = a(p) be a positively homogeneous folding 

on Rd . There is a subspace V c lin N F  such that q is an 

isometry on V, 0 is the only fixed point of q in V, and if 

x E Rd  is such that pk (x) 	0 then there is K > 0 (possibly 

depending on x) such that p k (x) E V for all k 	K. 

1 0 



C. Applications of the Results  of [1]  

1. Polyhedral Convex Functions. In [1], we estab-

lished the following, which asserts that every polyhedral 

convex function gives rise, in a natural way, to a folding: 

Theorem 4. If g: Rd + R u {co} is a proper polyhedral con-

vex function, then 13(g) is a folding on Rd . 

Using our results on foldings, we were then able in 

[1] to prove that the proximal point algorithm can be used 

to minimize a convex polyhedral function in only finitely 

many steps: 

Theorem 5. Let g: Rd + R u {m} be a proper polyhedral 

convex function that achieves a minimum value, and let p be 

the proximal mapping (I+3g) -1  . Then for aribtrary x, there 

is k such that pk (x) is a minimizer for g. In other words, 

the proximal point algorithm terminates after a finite num-

ber of iterations with a minimizer. 

The following presents an important class of problems 

for which the proximal point algorithm always finds a solu-

tion in only finitely many iterations: 

Theorem 6. Let A be a subspace of R d , B = Al , g: Rd ->R u {c.c. } 

a proper polyhedral convex function, p = Tr A  * p . If the 

fixed point set F for p is nonempty, then it has the form 

F= C+D with C c A and D c B. If C has nonempty interior 

relative to A, or if D has nonempty interior relative to B, 

11 



then for each z E Rd , there is some m such that p
m (z) E F. 

If A = Rd , then pg  = TrA  * pg  and D = B = {0}. Since 

D (trivially) has nonempty interior relative to B, Theorem 

6 implies that the iteration xk+1  = pg (xk ) must yield a 

fixed point (provided one exists) after a finite number of 

iterations. 

If K c Rd  is a polyhedral convex set, then q)K , the 

characteristic function of K, is a polyhedral convex func-

tion. Applying Theorem 6 to the case g = Ip K , we obtain the 

following 

Theorem 7. Let K c R
d be a nonempty polyhedral convex 

set, A c Rd a linear subspace, B = A l , p = TrA  * 7K , 

z
k+1 

= p(zk ). The set of fixed points of p is nonempty 

if, and only if, A n K 0. If A n K has nonempty interior 

with respect to A, or if A n K 0 and B n Ko has nonempty 

interior with respect to B, then for some m, zm  is a fixed 

point for p, TrA (zm ) E A n K, and 7 13 (zm ) E B n K. 

2. Systems of Inequalities. We will now describe two 

iterative schemes for finding a feasible point for a system 

of linear inequalities. 

Consider a system 

<x,u.> < b. , 	i = 1,...,n 

12 

oflinearinequalities(u.EK
d , b E R). For each i, 



let Ci  = {x: <x,ui > < bi }, pi  = projection onto Ci , and q i  = 

a(p i ). The qi  are clearly foldings. Also, define 

C = Ci  n 	n Cn , p = pi  * 	* pn , and q = qi  0•• 0 qn 

(= a (P) ) • 

The first scheme we wish to suggest for solving the 

system is to iterate the proximal mapping p: 

Theorem 8. If C has nonempty interior, then for each 

x E Rd there is K > 0 such that p K (x) = pK+1 (x) = 	E C. 

This scheme for solving a system of linear inequalities 

is very closely related to the methods of Agmon [16] and 

Motzkin and Schoenberg [17]. In the method of "successive 

projection with relaxation parameter = 2" (also a finitely 

terminating algorithm [17, Theorem 1]), one takes x kl_ i  = 

q(x
k ) instead of xk+1 = p(xk ). 

We now describe a second method for solving the system. 

This latter method has been studied in some detail in [5], 

[6]. 

Define K = c
1 

x 	

• 

x c
n . K is a polyhedral convex 

set in Rdn . Define the subspaces 

A = f(x1 ,...,xn ) E Rdn : x
1  = 

▪  

= xn 

B = {(y 1 ,...,yn ) E Rdn : yi  + 	+ yn  = 0} 

of Rdn and note that B = Al . Clearly 

A n K= {(x,...,x): x E C} 

13 



so solving the system is equivalent to finding a point in 

the intersection of A amd K. Let 7
A 

and 7
K 

denote the 

orthogonal projection mappings onto A and K, respectively. 

The algorithm is described in the following 

Theorem 9 [5]. Suppose C has nonempty interior. If a 

sequence (zk ) is generated by the rule z k.4.1  = 	* 71-K )(zk ), 

then 7
A

(zm
) E A n K for some m. 

3. Network Flows. Let G be a network (directed graph). 

Abstractly, G consists of a finite set N of "nodes", a 

finite set A of "arcs", and an incidence matrix E = (e..), 13 

where 

	

1 	if i is the initial node of arc j 

	

eij 
=-1 	if i is the terminal node of arc j 

0 otherwise 

Let us suppose for each arc j E A, there is a polyhedral 

convex, set K. c Rd . A flow in G is a function x: A 	R
d . 

J 

We will call x a circulation, and write x E C, if it is 

conservative at each node, that is, 

E eij x(j) = 0 	for all i E N. 

The set C is a subspace of the vector space of all flows in 

G. Define K = II K.; in other words, K is the set of all 
jEA 

flowsxsuchthatx(j)EK.for all j E A. The feasible  

circulation problem is 

14 
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(P) 	 to find x E K n C. 

This is a problem of finding a point in the intersection of 

a polyhedral convex set and a subspace. Applying Theorem 7, 

we obtain 

Theorem 10. If int(K) n C 	0, any sequence 

xn+1 = (7 * 7
K
)(xn ) terminates in a finite number of 

iterations with a flow xm such that 7
C
(X
m

) E K n C. 

The regularity condition int(K) n C 0 means there 

exists a circulation x such that x(j) E int K, for all j. 

For each a: A -* Rd (a may be regarded as a point in R 	), 

define the perturbed problem 

(Pa ) 
	

to find x E (K+a) n C. 

Thus (PO ) = (P). The regularity condition can be expected 

to hold for most problems in the following sense: 

Theorem 11. Suppose int K j 	0 for all j. The set of all 

parameter values a which fail to satisfy one of the fol-

lowing conditions 

i. int(K+a) n C 	0 (so (Pa ) satisfies the hypothesis 

for Theorem 10; 

ii. (K+a) n C = 0 (so (Pa ) is infeasible); 

forms the boundary of a convex subset RdIAI and is thus a 

set of measure zero. 



Theorem 11 means that, except for a belonging to a 

small set, either the perturbed problem (Pa ) is solvable 

in a finite number of steps by the algorithm, or (P a ) has 

no solution and the iterates will diverge. 

4. Linear Programming Duality. As a final application, 

we proved in [1] that if A is a real d x d antisymmetric 

matrix, there exists a vector x 0 such that Ax 0 and 

x+Ax > 0. While this is not a new result, our proof is 

novel, and provides an elegant application of our results 

on foldings. 

D. The Simple Iterates of a Folding -- Summary of the Main  
Results from [2]  

In [2], we proved several properties of foldings, the 

first being 

Theorem 12. The folds of a folding q are closed, convex and 

have nonempty interior. 

Folds are not necessarily disjoint, but their interiors 

cannot overlap, as the following shows: 

Theorem 13. If P and Q are distinct folds then P n int(Q) = 0. 

The fact that folds are convex, have nonoverlapping 

interiors, and their union is the whole space implies that 

they are convex polyhedral sets: 

16 

Theorem 14. Folds are polyhedral convex sets. 



In the next theorem, it was shown that the fixed 

point set of a folding has a very special structure; it is 

the intersection of an affine flat and a fold. 

Theorem 15. Let q: Rd  Rd  be a folding with nonempty 

fixed point set F. Then there is an affine flat A and a 

fold Q such that F = A n Q. 

The following is a characterization of linear isome-

tries: 

Theorem 16. Let q: Rd Rd be positively homogeneous 

(q(tx) = tq(x) for t 	0) and a folding. Then q is a 

(linear) isometry if, and only if, its fixed point set F 

is a subspace. If q is a linearly isometry, then q maps 

F onto F l . 

We have seen already that the fixed point set of a 

folding is the intersection of a fold and a flat. The next 

result shows that the flat must meet the interior of the 

fold. 

Theorem 17. Let q: Rd Rd be a folding. If q has a 

fixed point, there is a unique fold P whose interior con-

tains a fixed point. 

If q: Rd Rd , we define the cluster set of q to be 

the set S of all cluster points of q-sequences x,q(x),... 

If q is nonexpansive and has a fixed point, then every 

17 



q-sequence has a cluster point. On the other hand, if the 

cluster set of q is nonempty, Theorem 18 shows that q 

must have a fixed point. If q is nonexpansive and has a 

fixed point, Theorem 19 demonstrates that S is closed, 

convex, q(S) = S, and q is distance preserving on S. Also, 

all q-sequences converge to S in the sense that 

dist(qk (x),S) 	0 for all x E Rd . Thoerem 20 gives a 

sufficient condition guaranteeing that a folding q have the 

property: for every x there is some finite k such that 

qk (x) E S. Theorem 21 asserts the necessity of this same 

condition. 

Theorem 18. A nonexpansive mapping q: Rd 4- Rd possesses a 

fixed point if and only if its cluster set is nonempty. 

Theorem 19. Let q: Rd 4- Rd be a nonexpansive mapping with 

a nonempty fixed point set F. Then 

i. for any z E S, z is a cluster point of the sequence 

z,q(z),q 2 (z),... 

ii. q(S) = S 

iii. q is an isometry on S 

iv. S is closed and convex 

v. for any x E Rd , and s > 0, there exists K such that 

dist(qk (x),S) < c for all k 	K. 

If q is a folding, and P is the unique fold whose interior 

meets F, then also 

vi. F n int(S) is nonempty 

vii. S C P. 

18 



Theorem 20. Let q: Rd Rd be a folding having a nonempty 

fixed point set F, P the fold whose interior meets F, i the 

isometry that agrees with q on P, S the set of all cluster 

points of q-sequences, and W the linear subspace parallel 

to the flat consisting of all points having periodic orbit 

under i. If P = P + W I , then for every x E Rd , there is 

some k such that qk (x) E S. 

Theorem 21. Let q be a folding on Rd having a nonempty 

fixed point set F. Let P be the fold whose interior meets 

F, S the set of all cluster points of q-sequences. Let i 

denote the isometry that agrees with q on P, and W the 

subspace parallel to the flat consisting of all points 

having periodic orbit under i. If P P + W I , then there 

exists y 	S such that qk (y) i S for all k. 

II. Solution of Network Equilibrium Problems  

In a forthcoming paper [3], a new solution approach 

will be proposed for a certain class of network equilibrium 

problems. Applications to the computation of spatial 

economic equilibria will also be discussed. 

The simplest problem to be considered will be the 

single-location supply-demand equilibrium problem. Here, 

the goal is to balance the supply and demand of a vector 

of consumable goods in a competitive market environment. 

Given a demand vector d, the suppliers are assumed to choose 

a production plan x so as to solve a certain convex 
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programming problem 

S(d) to minimize f 0  (x) 

subjecttofi() 	
1 
	0, 	i = 1,...,m, x E C. 

Solution of this problem also yields a vector P(d) of 

shadow prices (Kuhn-Tucker vectors). The consumers are 

represented by a demand function Q(p) which specifies the 

quantities of goods consumers are willing to purchase at 

unit prices p. The problem is then 

to determine p and d such that p E P(d) and q E Q(p). 

This type of formulation is found in the PIES model [18] 

and others. The solution approach we will propose has some 

strong theoretical advantages over existing methods, the 

main one being global convergence under the assumption that 

the multifunction -Q be maximal monotone. Explicit know-

ledge of the function P(d) is not required; each iteration 

requires the solution of a convex programming problem for 

which the only constraint is x E C. Not only are sequences 

produced converging to equilibrium values of p and d, but 

a sequence xk  is produced as well converging to an optimal 

value for x. Each iteration requires also one evaluation 

of the function (I-Q) -1 which is known to be single-valued 

because of the fact that -Q is maximal monotone. 

More generally, our model will incorporate the spatial 

or multi-location equilibrium problem. Under this model, 
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there are a finite number of countries or locations, each 

one having its own demand function Q 1 (p.
7
) and its own 

convex programming problem S.(d.). Goods may be shipped 
3 	3 

between locations, and when this is done a certain trans- 

portation cost is incurred. It is required that the. P 3  

are shadow prices for the associated convex programming 

problemsS.(d.),. 
(43 	7

EQ. (p.), and the markets are balanced 
3 	3   

in the sense that no goods are shipped in a manner that does 

not make sense for either producers or consumers. 

The method of solution proposed here is a speciali-

zation to a network setting of the "method of partial 

inverses" introduced in [1]. Given a maximal monotone multi-

function T: H -9; H on a Hilbert space H (which for our 

purposes will always be a finite dimensional Euclidean 

space equipped with the standard inner product) and a closed 

subspace A c H, the method of partial inverses is a pro-

cedure for solving the following problem (taking B = A l ) 

(5) 	to find x E A and y E B such that y E T(x). 

The projection of x onto the subspace A or B will be denoted 

as xA  or xB , respectively. To solve (5), the method of 

partial inverses constructs sequences xn  E A and yn  E B in 

such a way that 
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(6) xn+1 = (x')  .A 	and n  Irn+1 = yn B' 

where x' and v' are chosen so that n . n 

x' + y' = xn + yn and 	y' E T(x'). 



The existence and uniqueness of xA and y z'a  having the above 

property is established in [1]. The main result from [1] 

regarding the convergence of the algorithm is the following: 

Theorem 22. Let xk and yk be sequences of iterates pro-

duced by the method of partial inverses. It will always 

happen either that 

i. xk + x and yk + y for some solution x,y, or that 

ii. xk +yk + 00 and (5) has no solutions. 

The distance from xk +yk to the set {x+y: x,y solves (5)} 

is nonincreasing. 

A network G is a triple (N,A,e). The finite sets N 

and A consist of the nodes and arcs of G, and the incidence  

function e maps N x A into {+1,-1,0}, where 

e(i,j) = 

if i is the "initial" node of arc j 

if is the "terminal" node of arc j 

otherwise 

Each arc is required to have exactly one initial and one 

terminal node, and these must be distinct. Let E be the 

k x n matrix whose (i,j)-entry is e(i,j) (k = IN1 and 

n = 1A1). 

A flow in G is a function x: A -- Rm. If m > 1, x is 

a "multicommodity" flow. The divergence y = div x of the 

flow x is the function y: N + H defined for each node i by 

22 



23 

y(i) = 	E 	e(i,j)x(j). 
jEA 

In matrix notation, we can write y = Ex = div x. If 

div x = 0, we say that x is a circulation in G. The set 

C of all circulations in G is a subspace of the vector space 

flows in G. A potential in G is a function u: N + H. A 

potential determines, in a natural way, a function 

v = Au: A + H called the tension function on A which is 

the differential of u. If i is the initial and i' the 

terminal node of arc j, then 

Au(j) = v(j) = u(i') - u(i), 

or, in matrix form, v = Au = -E'u. The tension v is called 

a differential if v = Au for some potential u. The set 

D of all differentials in G is also a subspace of the space 

of flows in G. 

Since D is the range of E' and C is the kernel of E, 

we have the important relationship 

C = DI , 	CI  = D. 

An arbitrary flow x can thus be written in a unique way 

as the sum of a circulation and a differential: 

Both of the economic equilibrium problems mentioned 

above can be phrased in a network setting. Because the 

supply and demand functions arise in different manners, it 



turns out to be convenient to consider networks that contain 

two classes of arcs. Suppose that the set J of arcs of G 

is divided into two distinct classes 	and J2 . With each 

arc j E J1  let there be an associated maximal monotone 

operator T.: Rm  * R
m
. With each arc j E J2 , let there be 

an associated family (Pu.)  of optimization problems, where, 

for each u j  = (u13 .. " um3 .) E R
m
, the problem (Pu ) is 

d. 
to minimize f oj (x j ) over x j  E R 

subject.tothecoristraintsx.Ec. 	and 

fij (xj ) + ulj 	0,...,fmj (x j ) + umj 	0 

d. 	 d. 
where the functions f,.: R J -> R are convex and Cj  c R J ij 

is a nonempty closed convex set. Given such a network, it 

makes sense to consider the following problem (taking d. = 

for j 1E J1 , and d = Ed.): 

(cntofindu=Tru,EC,y= Try j 	 7ED, and x = X, E Rd 

such that 

(a) for each j E J1 , y j  E Tj (uj ) 	and 

(b) for each j E J2 , xj  solves the problem (P
u ) 

and y. is a Kuhn-Tucker vector. 

To say that y, is a Kuhn-Tucker  vector for (P) means that u  

 mj 	0 and the infimum of the function 

foj (xp + E y. .(f. .(x!) + uij ) over all 	E C. 
1] 1] 

is finite and equal to the optimal value in (P u  ). 
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For each j E J 2 , define 

f03 (x.) 	if f13 	3 
x.)+ulj 

 5_ 0,...,fn11 
	3 

 (x.)+u
mi 	

0 
3  

' 
F.
3
(x.

3 
 u.) = 	 and x.

3 
 E C. 

3   
+00 	otherwise 

and let T. = aF.. 

i Let H = {(x,u): x E R
d  and u is a flow in G}. Let 

A= {(x,u) E H: u E C} and B = f(v,y) E H: v= 0 and y E D}. 

It is clear that A and B are complementary subspaces of H. 

Define a maximal monotone multifunction T: H H by declaring 

(v,y) E T(x,u) if, and only if y1 
	33 
E T.(u.) for all 

j E and (vi ,n) E Ti (x j ,u i ) for all j E J 2 . 

The network equilibrium problem (Q) is then equivalent to 

the problem 

to find (x,u) E A 	and 	(v,y) E B 

such that (v,y) E T(x,u). 

This problem can be solved by the method of partial inverses 

(6). In order that it be possible to implement this pro-

cedure, we know that it would be required that routines be 

available to perform each of the following tasks: 

(1) given (x,u) E H, to compute the projection of (x,u) 

onto A and B, and 

(2) given (x,u) E A and (0,y) E B, to determine (x',u') 
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and 

	

u.. + y.. 	 . 	0 13 	13 	17 3 	13 	13 u! 
1 J -f..(x!) 

17 3 
if 	 (xl) 	u 	y . . 	0 13 3 	13 	13 

and (v',y') such that 

(x'+v',u'+y') = (x,u+y) 

and 

(v',y') E T(x',u'). 

Procedures for performing each of these tasks will be 

investigated in [3]. The resulting algorithm for solving 

(Q) is the following: 

Initialization: Start with an arbitrary flow x, u E C, 

y E D. 

Step 1: (a) For each arc j E JI , find u!
7 
 and y! such that 

u! + y! = 
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U. + 
J 

and y! E T.(u!) 
7 

(b) For each arc j E J2 , find x! to minimize the function 

1 
f Oj 	7 

(x!) + 	E 
l 

‹!
j 1 -x.j 1 2 + 	 i 2 	 j 	uij  + Yij  Emin

2 {0,f (x!) + 	 1 

subject to the constraint x. E C., and let 

y. = u.. + y.. - u. 13 	13 	13 	13 

Step 2: Update x, u, and y as follows: 

+ 
x = x', 	u = (u') C , 	= (y') D  



and repeat Step 1. 

According to Theorem 22, we also have 

Theorem 23. Let xk' uk' and yk 
be iterates produced by the 

above algorithm. It will always happen either that 

i. xk 	
x, uk 	u, and yk 

-4- y for some solution (x,u,y) 

to (Q), 

or that 

ii. 1(x
k'

u
k
+y

k
)1 -4- co and (Q) has no solution. 
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