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4.19 MICROSCOPIC MECHANISMS OF TRIBOLOCICAL AND WEAR PROCESSES: 
MOLECULAR DYNAMICS SIMULATIONS 

Martin W. Ribarsky and Uzi Landman 

Although tribological phenomena are an everyday experience and have been 

observed and studied for a very long time [1], a detailed microscopic theory of 

tribological phenomena is lacking. Nevertheless a large body of empirical data has 

been colleCted and some phenomenological models have been developed [2]. The major 

reasons, from a theorist's perspective, for this state of affairs may be attributed 

to: (i) the complexity of the phenomena, which involve processes occurring in 

materials under stress, the generation and propagation of defects, large structural 

deformations and properties of systems beyond the elastic regime, (ii) the nature 

of available experimental data, which until fairly recently was not obtained under 

controlled conditions on compositionally and structurally well characterized 

samples. Recent advances in computer simulation methods [3] and the advent and 

application of surface science experimental probes provide the impetus for the 

development of fundamental models, on the atomic scale, of tribological and wear 

phenomena. In this note we outline our recent investigations in this area using 

molecular-dynamics (MD) simulations, and demonstrate the potential of such investi-

gations towards the development of a microscopic understanding of the physical 

processes which underly these phenomena. 

METHOD 

Computer simulations, where the evolution of a physical system is simulated 

with refined temporal and spatial resolution, via direct numerical solution of the 

equations of motion of a system of interacting particles, are in a sense computer 

experiments which open new avenues in investigations of the microscopic origins of 

material phenomena [3]. In its simplest form [4], the interaction between particles 

i and j is described by a pair potential 0(rij) where rij — rh-i ljj, and the classi-

cal equations of motion for a system of N particles, of masses Ni, are given by 

d2;, 	N 80(r..) 

Mi 	" - Z 
	

(1) 

dt
2 	j—i 

Practical considerations restrict the number of dynamical particles contained in 

the calculational cell to be of the order of 10 3 -104 , and the simulation of the 

extended system is achieved via the employment of periodic boundary conditions. 

For exploration of the elastic behavior of solids and phenomena which may involve 

external stresses, volume changes, shape and structural deformations, it is impor-

tant that the variables which determine the volume and shape of the calculational 

cell will be allowed to respond dynamically. In our calculations we have used a 
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newly developed method [5] which allows for the above dynamical considerations. 

MODEL CALCULATIONS 

To illustrate the method we have constructed a model system consisting of 1200 

(or 1260) particles in the calculational cell (which is periodically repeated), 

interacting via 6-12 Lennard-Jones potentials, 

00 (r) 4 ,0 [(a0/0 12 (a0/0 6 1 	
(2) 

with c/o - (cfaa+c,00)/2 and co - ( c aa  f00 ) 1/2 . The bottom half of the system (a) 

was characterized by an interaction strength parameter c„ - 2E00, where coo 

determines the interaction strength in the other part of the system (0). In this 

arrangement the soft material (0) may be viewed as a solid lubricant, whose melting 
point is half that of the surrounding material. In order to isolate the effect of 

interaction strength from other material parameters we have taken cr a, - cfoo. In 

the following we use reduced units [6] where energy (and temperature) are expressed 

in units of c aa , length in units of cf aa  and the time unit (t.u.) is (ma/caa) 1/2 aaa, 

 (the integration time-step At was 0.0075t.u.). Two series of studies were 

conducted: (1) The interface between the hard (a) and soft (0) components of the 
system was in the (001) plane, Nlayer  - 20, N - 1200; layers 1-10 of material a and 

11-20 of material 0. (2) The interface was in the (111) plane, Nlayer  - 18, N -

1260; interface between layers 9 and 10. At the start of the calculations the 

systems were equilibrated at a reduced temperature T - 0.11 (about TE(11
Vlting/6). 

Subsequently, a load [6] of 0.5 was imposed along the direction normal to the 

interface. Following equilibration under load, the system was subjected to shear 

stress (in the <110> direction for the (001) interface, and in the <1,1,0> direction 

for the (111) interface) which was increased gradually until the system failed. 

Special care was taken to determine the yield stress, o c . In addition, simulations 

at constant external shear-stress were conducted. In this report we restrict our-

selves to thermally isolated (adiabatic) systems. 

From the temporal evolution of the particle trajectories, generated via the 

integration of the equations of motion, the internal stress tensor in the system 

can be calculated [7]. The time evolution of the internal stress in layers, oxz 

 (i.e., along the <110> direction), for a fixed external stress of 1.9375 (a c  - 

1.925 + 0.012), just before and during yield for the (001) system, is shown in Fig. 

la. We observe that variations in the internal stresses start in the soft 

material, in a region removed from the interface (originally located between layers 

10 and 11), i.e., layers 13-15, while layers 11 and 12 which are adjacent to the 

interface are pinned, at the onset of yield, by their interaction with the hard 

substrate. 

This sequence of events is further demonstrated by the particle trajectories 
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shown in Fig. 2. Here, the initial position of an atom is at the center of the 

circle, from where the indicated trajectory develops. These trajectories correspond 

to the time interval 232-235 t.u. (see Fig. la). As seen, while layers 11 and 12 

move uniformly with layer 10 of the substrate, deeper layers in the soft material 

do not. Note that the movement in either direction tends to involve entire rows 

rather than having motion in several directions for some rows. In fact, layers 16, 

17, 18, 19, and 20 viewed together show that, in successive planes, one new row at 

a time joins in the leftward movement until all rows are moving to the left by layer 

20. A geometrical analysis of the slip in layers 16 through 20 reveals that two 

intersecting slip planes are involved: (111) and (111). Thus, even though the 

system was sheared along the (001) plane in the (110) direction, the slip occurred 

in (111)-type planes. This is just the expected experimental result since all 

methods consistently indicate that (111)-type planes in (110) directions are the 

major operative slip systems in FCC structures. The deformation of the system is 

accompanied by an increase in temperature (see Fig. lb), which flautocatalyzes" 

plastic deformation and eventual total yield. The coefficient of friction which is 

obtained from these calculations a c/load - 4, which is of the order of typical 

values for the static coefficient for clean metal surface in contact in vacuum. 

To demonstrate the dependence of the mechanisms of deformation and 

transformation on the crystallography of the interface, we have performed similar 

simulations for a system in which the interface was in the (111) plane. We find 

that under adiabatic conditions this system yields at a c  - 0.859. When the system 

is sheared in the <110> direction, under adiabatic conditions, below the yield 

stress, it slips at a s  - 0.797 + 0.016 generating stacking faults in the soft 

(lubricant) material. Allowing the system to relax under a s  and then increasing 

the imposed stress, the system yields at a c  - 0.859 + 0.016. Similar calculations 

for  a system under isothermal conditions exhibit a slip stage occurring at a s  - 

0.85 + 0.025 and eventual yield at a c  - 0.97 + 0.03. The system in contact with a 

heat reservoir (isothermal) withstands higher shear stresses as compared to the 

adiabatic case, since in the latter case the heat which is generated in the course 

of the deformation of the system is utilized to overcome potential barriers for 

sliding, while in the former case this heat is dissipated to the reservoir and 

higher shear stresses are necessary to bring about a similar effect. In addition, 

we note the difference between the critical stresses a c , for the (111) and (001) 

interface orientations. The degree of detail afforded by the MD simulations is 

further demonstrated by the selected particle configurations shown in Fig. 4, for 

the adiabatic (111) interface, exhibiting the formation of a stacking fault in the 

soft material. For this system the original interface is between layers 9 and 10 

and the stacking fault is generated at layers 12 and 13 (see Fig. 3, in which a 

slice of the system viewed along the <101> direction, before and after the genera-

tion of the stacking fault, is shown). The sequence of configurations shown in 
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Fig. 4 (separated by 170 At) show layers 12 and 13 starting at registry (4a) and 

moving out of registry and into new equilibrium positions Fig. 4c), generating a 

stacking fault. 

While in the above we focused on systems characterized by interfaces with 

differing interaction strengths, the effect of other material parameters such as 

lattice parameter mismatch, covalent (directional) bonding and long-range inter-

actions (as found in ionic materials) as well as effects due to ambient conditions 

such as shear rates, and normal load values, are under investigation. Finally, 

while we found evidence for the generation of dislocations in our simulations, the 

full development of these extended defects would require simulation for larger 

systems. 
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