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Aquatic locomotion in birds – biomechanics, morphometrics, and evolution 
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  The entire diversity of life on earth exists in air or water. Whether an organism lives in 
air or water provides the most fundamental description of its physical world and 
establishes an organism’s ecological niche on the most essential level. Because these two 
fluids are vastly different from one another, they also dictate, via the process of natural 
selection, the morphology and physiology of the organisms which call them home. By 
studying how organisms interact with these fluids – to locomote or obtain food, for 
example – we have the ability to not only link organism form and function, but also to 
study the process of evolution itself. These two goals have been the focus of my 
dissertation, using diving birds as a model system. 
  Of the 40 extant orders of birds, 16 orders contain aquatic or semi-aquatic members – 
species which regularly locomote on or in water as part of their life-history. Birds 
constitute just over 30% of all terrestrial vertebrates; thus, the bird species which move in 
water are both substantial and diverse. Only 1 of 16 orders have lost the ability to fly. 
Species in the remaining 15 orders face simultaneous selection for effective and efficient 
locomotion in both air and water, despite the vast differences between these two fluids. 
  In Chapter 1 of this dissertation, I review the biomechanics of aquatic locomotion in 
birds and test existing hypotheses surrounding their morphologies. In Chapter 2, I use 
geometric morphometrics to determine how the multifunctionality of semi-aquatic birds – 
specifically, the wings of wing-propelled diving birds – has constrained or facilitated 
their morphological diversity. In Chapters 3 and 4, I use kinematic analysis to test 
whether the pressures of retaining aerial flight mean that species which use their wings 
for locomotion in both air and water are less effective and less efficient in water than 
lineages which have lost aerial flight. Finally, in Chapter 5, I document submerged 
aquatic locomotion in non-aquatic birds, despite a lack of selection or experience for this 
behavior, altering current understanding of the evolution of aquatic lifestyles in 
vertebrates.



1 
 

Chapter 1 1 

Diving in birds – biomechanics, morphometrics, and evolution 2 

Anthony Lapsansky* 3 

Field Research Station at Fort Missoula, Division of Biological Sciences, University of 4 
Montana, MT USA 5 
 6 
*author for correspondence (tony.lapsansky@gmail.com) 7 

Abstract: 8 

This review is, first, a synthesis of existing knowledge about diving in birds and, 9 

second, an attempt to highlight the potential of this system to answer broad questions in 10 

evolutionary biology. I review the locomotor strategies of diving birds and examine the 11 

many hypotheses surrounding their morphology, physiology, and evolution. Based on 12 

new and previously published data, I find that specialization for diving by either foot-13 

propulsion or wing-propulsion has not driven the enlargement of hindlimb or forelimb 14 

musculature. Furthermore, I find little evidence that wing-propelled diving has selected 15 

for small wings to reduce hydrodynamic drag. Excluding flightless birds, both wing-16 

propelled and foot-propelled divers have equally small wings for their body sizes, likely 17 

driven by selection against buoyancy.  18 

Introduction: 19 

Charles Darwin, writing from the decks of the HMS Beagle, described the striking 20 

similarity between the diving petrels found in the icy waters around Tierra del Fuego and 21 

the auks from his homeland in the northern hemisphere (Darwin and Gould, 1838). Both 22 

diving petrels and auks have small wings attached to rotund bodies, fly with rapid 23 

wingbeats, and obtain their food from the sea by using their forelimbs for submerged 24 

swimming. But through correspondence with the prominent English ornithologist John 25 
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Gould, Darwin understood that these two birds are only distantly related. So struck by the 26 

convergence between diving petrels and auks was Darwin that, in writing On the Origin 27 

of Species, he would use these species as a prime example of the capacity for natural 28 

selection to shape the morphology of organisms to their ecology (Darwin and Gould, 29 

1838). Thus, diving animals have long played a prominent role in evolutionary biology 30 

(also see Bock and von Wahlert, 1965; Simpson, 1946; Spring, 1971).  31 

Diving poses significant challenges. Water is 800 times denser and 60 times more 32 

viscous than air (Denny, 1993; Vogel, 1994). Thus, for terrestrial lineages to develop 33 

diving habits requires modifications to the morphological and physiological systems 34 

responsible for locomotion. But despite these challenges, members of all major lineages 35 

of terrestrial animals have re-invaded water to some extent (Houssaye and Fish, 2016). 36 

Starting from the inception of evolutionary theory, studies of those lineages which have 37 

re-invaded water has deepened our understanding of the underlying principles of 38 

evolution. Still, there is much to be learned. 39 

Gaps in our knowledge exist in part because much of the research on the anatomy, 40 

physiology, and evolution of diving animals has focused on mammals. Diving birds and 41 

diving mammals are different beasts. Extant diving birds almost certainly evolved from 42 

volant ancestors (Livezey, 1989b; Mayr et al., 2020; Simpson, 1946; Storer, 1971). Thus, 43 

in birds, adaptations for aquatic locomotion have been superimposed on a body plan 44 

already adept at fluid locomotion (Storer, 1960) – with streamlined bodies to reduce drag 45 

and forelimbs capable of producing thrust far from a substrate. This is not true, however, 46 

of the ancestors of diving mammals (Fish, 2016; Gingerich, 2015). In mammals, 47 

adaptations for aquatic locomotion have been superimposed on a body plan adapted for 48 
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terrestrial locomotion. Terrestrial animals rarely reach speeds where drag is appreciable, 49 

meaning that streamlining in non-diving mammals is rare (Vogel, 1994). Furthermore, 50 

mammalian limbs have been shaped by selection for terrestrial locomotion and require 51 

significant modifications to function efficiently for fluid locomotion (Fish, 1996; Fish, 52 

2016). Therefore, insights gained from diving mammals may not translate directly to 53 

birds, as the tradeoffs between life in air and life in water – which have dramatic 54 

consequences for the morphologies of mammals – may be of lesser import. 55 

Recent advancements in the miniaturization of technology – including time-depth 56 

recorders, GPS trackers, and digital cameras – have aided a surge of research on diving 57 

birds. The diving petrels and auks discussed by Darwin are prominent examples of avian 58 

divers, but they are not alone. Of the 40 orders of birds, 16 contain semi-aquatic members 59 

– species which regularly locomote on or in water. Birds constitute just over 30% of all 60 

terrestrial vertebrates; thus, the number of semi-aquatic bird species is substantial. The 61 

exact number depends on one’s definition of “semi-aquatic”, as reliance on the aquatic 62 

environment for food and predator avoidance varies greatly both between and within 63 

orders. This variation in diving behavior, along with the multitude of comprehensive 64 

resources describing the ecologies of birds (Billerman et al., 2020; Hoyo et al., 1992; 65 

Marchant and Higgins, 1991), and their well-resolved phylogenetic relationships (Ericson 66 

et al., 2006; Hackett et al., 2008; Jetz et al., 2012; Jetz et al., 2014) makes diving birds a 67 

powerful study system in which to explore the evolution of form, function, and behavior. 68 

Here, I review what is known about the morphology and biomechanics of aquatic 69 

locomotion in birds and provide new insights through phylogenetically-informed 70 

analyses. The aquatic behavior of birds has never been reviewed in full. Thus, scientists 71 
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attempting a comparative study of the morphology of avian divers, for example, must 72 

comb through multiple databases, books, and papers – often with unique terminologies 73 

and classification schemes – to correctly categorize the species in their dataset. This has 74 

occasionally led to the misclassification of species in comparative studies or required 75 

‘hopeful’ classifications based on anatomical features or taxonomic placement. But with 76 

the rise of video hosting and sharing platforms – including YouTube, Vimeo, and the 77 

Macaulay Library – along with the near-omnipresence of digital cameras, it is now 78 

possible to carefully classify the diving behavior of birds from across the globe through 79 

“direct” observation.  80 

My goal for this chapter of my dissertation is to highlight the awesome potential 81 

of this study system, both to facilitate the study of diving birds and the use of diving birds 82 

as model systems for the study of evolution, more broadly. I do so by first reviewing the 83 

diversity of aquatic locomotor strategies utilized by birds; a topic which has never been 84 

reviewed in full. I then highlight the many hypotheses surrounding the morphology and 85 

behavior of diving birds which – with recent advancements in technology and 86 

phylogenomics – are now readily testable. I provide examples of such hypothesis tests 87 

with new data describing the wing shapes and sizes of nearly 1,000 species and 88 

previously published data describing avian muscular morphology.  89 

Diversity of aquatic locomotor strategies in birds –  90 

Any meaningful treatment of aquatic locomotion in birds must first review which 91 

birds dive and their mechanisms of propulsion. However, these questions are not as 92 

simple as they may first seem. Indeed, they have been, and continue to be, a topic of 93 

active discussion and research (e.g., Albores‐Barajas et al., 2011; Blokhin, 2004; Bourget 94 
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and Chapdelaine, 1975; Bried, 2005; Brooks, 1945; Forbush, 1922; Fournier and 95 

Krementz, 2018; Hayes and Bennett, 1985; Ingram and Salmon, 1941; Ingram and 96 

Salmon, 1942; Kelso, 1922; Kelso, 1926; Miller, 1983; Oldham, 1919; Sordahl, 1982; 97 

Sutton, 1925; Townsend, 1909; Townsend, 1924; Townsend, 1930).  98 

In general, the literature and my personal observations indicate that any avian 99 

species can swim on and in water if compelled. It stands to reason that no animal is 100 

content to drown. Thus, if forced into water, birds will use their appendages to try to 101 

escape; albeit, with varying levels of success. In some species, including European 102 

starlings (Sturnus vulgaris), the effectiveness of their aquatic locomotion is only 103 

observable through forced submersion, as individuals are otherwise unwilling to take to 104 

water (Chapter 5). Other species will swim or dive on their own volition to avoid 105 

predators (Blokhin, 2004; Fournier and Krementz, 2018; Hayes and Bennett, 1985; 106 

Ingram and Salmon, 1942; Morgan, 1994; Riehl, 2020; Sordahl, 1982; Sutton, 1925; 107 

Willis, 1994), especially when injured (Forbush, 1922; Kelso, 1926; Townsend, 1909; 108 

Townsend, 1924). This includes those species which otherwise do not strongly associate 109 

with water, such as house sparrows (Passer domesticus) (Chapter 5). Whether selection 110 

for improved performance and/or efficiency of escape diving has had an appreciable 111 

impact on the morphology and/or physiology of bird populations is unknown. All else 112 

being equal, the individual with greater escape dive performance – the one which dives 113 

more quickly and/or for longer – and the individual with the greater escape dive 114 

efficiency – the one which uses less metabolic energy to escape – should have an 115 

advantage over others. But for most species, escape dives are rare, and may be reserved 116 

to specific age classes [chicks or juveniles] (Hayes and Bennett, 1985; Ingram and 117 
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Salmon, 1942; Morgan, 1994; Sordahl, 1982; Sutton, 1925; Willis, 1994). Possessing 118 

traits which allow an individual to use less energy to escape dive will confer little 119 

selective advantage if some individuals never dive in their lifetime. Thus, these traits will 120 

be susceptible to drift. In addition, the act of submerging, even momentarily, can be an 121 

effective method of avoiding predators. This is true for dabbling ducks, which will avoid 122 

assaults by aerial predators by quickly dipping underwater just before the predator can 123 

make contact (AB Lapsansky, personal observation). 124 

More restrictive is the category of birds which dive for food. For these species, 125 

dive efficiency – defined as the metabolic energy required to dive per unit time or 126 

distance – and dive performance – defined as the speed and/or acceleration attainable 127 

underwater – are likely important factors in determining fitness. More efficient 128 

underwater locomotion allows for longer dive times (via more efficient consumption of 129 

stored oxygen) and, therefore, a greater ratio of resources acquired to energy invested. As 130 

well, more efficient underwater locomotion allows deeper dives, afforded by the ability to 131 

dive for longer periods of time, which can provide access to food sources only available 132 

in deep water. Thus, all species which regularly dive for food are expected to possess 133 

adaptations for improved dive efficiency. The ability to achieve high underwater swim 134 

speeds and accelerations – i.e., high dive performance – should be especially important 135 

for birds which feed on motile prey (e.g., fish, squid, etc.) but not necessarily for those 136 

which feed on sedentary food sources (e.g., plants, mollusks, etc.), unless these animals 137 

must also avoid motile aquatic predators or feed in flowing water. Studies of species 138 

which differ in the mobility of their food sources might reveal traits which are adaptive 139 

for high dive speeds and accelerations.  140 
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Of those birds which dive for food, significant variation exists both among and 141 

within orders, families, and even genera. Some species are reliant on diving to acquire a 142 

significant portion of their food – hereafter, obligate divers – whereas others dive for 143 

food only on rare occasions – hereafter, facultative divers. In both cases, selection 144 

should favor morphological traits and locomotor patterns which increase aquatic 145 

efficiency, but the strength of selection on facultative divers is especially difficult to 146 

estimate. On one extreme, facultative diving may provide individuals with the resources 147 

necessary to survive harsh conditions (Bourget and Chapdelaine, 1975; Brodsky, 1985; 148 

Cottam, 1945), while on the other, diving may be one of many ways in which to acquire 149 

the same resource (Miller, 1983). As well, facultative diving may be specific to 150 

populations or even individuals. Intraspecific variation within facultative diving species 151 

complicates comparative studies attempting to identify adaptations for increased dive 152 

efficiency and performance. 153 

The mechanisms of propulsion by diving birds have also been the matter of 154 

significant debate. Birds produce force underwater using their hindlimbs (i.e., feet), their 155 

forelimbs (i.e., wings), or a combination of both pairs of appendages, but how each 156 

species fits within these three categories was an active topic of discussion for the first 157 

half of the 20th century (Bent, 1919; Dewar, 1938; Forbush, 1922; Ingram and Salmon, 158 

1941; Kelso, 1922; Kelso, 1926; Townsend, 1909; Townsend, 1924; Townsend, 1930). 159 

Much of the confusion appears to have stemmed from the fact that many records of 160 

aquatic locomotor behavior were based on observations of injured or frightened animals 161 

(discussed by Townsend, 1924). As with non-aquatic birds forced into water, it seems 162 

that injured or frightened animals will make use of all four appendages (hindlimbs and 163 



8 
 

forelimbs) to avoid capture (Townsend, 1924). As well, species which typically rely on 164 

only one pair of appendages for steady-state locomotion will make use of the other pair to 165 

maneuver (Clifton and Biewener, 2018; Hui, 1985; Spring, 1971), including to escape 166 

curious ornithologists (Forbush, 1922; Morgan, 1994; Townsend, 1924). 167 

Diving birds occupy all continents and inhabit a vast range of environments 168 

(Billerman et al., 2020). It would be unreasonable to expect any single group of authors 169 

to possess complete knowledge of the habits of all birds. Combined with the diversity and 170 

ambiguity of diving behaviors discussed above, it is no surprise that species are 171 

sometimes misclassified.  172 

To facilitate efforts to study diving birds and efforts to use diving birds as a study 173 

system, I have conducted an exhaustive summary of the aquatic habits of all birds (Table 174 

1). Ashmole (1971) was likely the first to publish such a summary – describing the 175 

feeding strategies of some 71 groups of primarily pelagic birds – in what is now a 176 

landmark of seabird ecology research. In the 50 years since its publication, this effort has 177 

been repeated for specific seabird communities and expanded by numerous authors 178 

(Ainley et al., 1984; Croxall and Prince, 1980; Harper, 1987; Harper et al., 1985; 179 

Harrison et al., 1991; Prince and Morgan, 1987). Additionally, Lovvorn (1991) 180 

summarized locomotor habits for foot-propelled diving birds, and Wilson et al. (1992b)  181 

for 38 species of penguins, loons, grebes, petrels, and alcids (Lovvorn, 1991; Wilson et 182 

al., 1992b). However, no single effort has covered all avian orders or even all orders with 183 

diving members. 184 

To accomplish this task, I relied on two multi-volume handbooks recently 185 

converted into digital forms (Handbook of Australian, New Zealand and Antarctic Birds 186 
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and Birds of the World). These references were use as “starting points”, but I traced 187 

references to the original source of information wherever possible so as not to perpetuate 188 

incorrect or “hopeful” classifications. In addition to references of dive behavior, I provide 189 

video or photographic references for diving behavior for nearly all diving groups. Both 190 

forms of reference are available as a supplementary file [Appendix 1]. These references 191 

are not exhaustive. Instead, they are meant to serve as verification of diving behavior and 192 

as launchpads for further inquiry. 193 

Because my primary goal for this effort is to facilitate research on and using 194 

diving birds, and because evidence in the literature and my own observations indicate that 195 

all birds will exhibit aquatic locomotion if forced, I focus only on those species which 196 

dive as part of their foraging strategy. Thus, diving is defined here as the complete 197 

submergence in water with the goal of acquiring food. All orders are included, 198 

allowing researchers to confidently categorize species as “non-diving” (for food, at least). 199 

Families, genera, and species are treated separately if clear variation in diving behavior 200 

exists within those groupings. Diving groups are categorized based on their method of 201 

thrust production in water (foot-propelled [FP] and/or wing-propelled [WP]) during 202 

steady-state swimming (i.e., not during maneuvers, escapes, or when injured). 203 

Importantly, FP and WP are categorized as separate binary states, and species which use 204 

both the wings and feet for aquatic locomotion may not do so for all dives. For example, 205 

eiders (Order: Anseriformes, Family: Anatidae, Genera: Polysticta & Somateria) and 206 

scoters (Order: Anseriformes, Family: Anatidae, Genus: Melanitta) regularly dive both by 207 

wing + foot-propulsion and by exclusively foot-propulsion (Heath et al., 2006; Richman 208 

and Lovvorn, 2008). However, these species and others with similarly flexible locomotor 209 
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habits receive “1s” for both FP and WP, as both pairs of appendages may show signs of 210 

selection for aquatic locomotion. 211 

Groups are also categorized based on their entry method into the water (EM) as 212 

surface diving (S) – meaning they enter the water after floating on the water’s surface – 213 

and/or plunge diving (P) – meaning they enter the water directly from the air and without 214 

first resting on the surface (Ashmole, 1971; Chang et al., 2016; Ropert-Coudert et al., 215 

2003). I have also noted the location of food taken as Benthic and/or Pelagic. These terms 216 

are often indicative of whether species feed on sedentary or motile prey, respectively, 217 

though not always. For example, Little auks (Order: Charadriiformes, Family: Alcidae, 218 

Genera: Alle) feed on suspended zooplankton, which are essentially sedentary from the 219 

perspective of the bird (Enstipp et al., 2018). I have included the surface habits of each 220 

group to give the reader a sense of those groups which regularly transit on water for 221 

reasons other than rare instances of predator evasion, but which may or may not dive for 222 

food. For both surface and submerged swimming (i.e., diving) categories, I note the 223 

reliance (Rel.) of said group on each form of aquatic locomotion as either obligate (O) or 224 

facultative (F). Groups are categorized as obligate divers if diving is considered to 225 

constitute a major foraging mode and can therefore be readily documented or observed. 226 

Thus, this category should be viewed as exclusive to those species for which diving is of 227 

major importance and likely exerts strong selective pressure. Groups are classed as 228 

facultative divers if documentation of diving for food is broadly considered rare (e.g., 229 

Briggs, 1978; Brodsky, 1985; Oldham, 1919; Taylor, 2008). Finally, I have included 230 

columns for both terrestrial and aerial habits, though it should be noted that considerable 231 

variation may exist within groups (Bruderer et al., 2010) which is outside the scope of the 232 
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present analysis. Taxonomic organization follows that of Birds of the World (Billerman et 233 

al., 2020). 234 

As illustrated in Table 1, the following orders contain diving members: 235 

Anseriformes, Podecipidiformes, Gruiformes, Charadriiformes, Phaethontiformes, 236 

Gaviiformes, Sphenisciformes, Procellariformes, Suliformes, Pelecaniformes 237 

Accipitriformes, Coraciiformes, and Passeriformes.  238 

In the order Anseriformes (ducks, geese, and swans), divers rely on either their 239 

hindlimbs or both their hindlimbs and forelimbs for aquatic propulsion. This order 240 

contains non-diving species, as well as obligate and facultative divers. All members of 241 

the order Podecipidiformes (grebes) are diving and are exclusively foot-propelled during 242 

steady-state aquatic locomotion. Though many members of the Gruiformes will dive to 243 

avoid predators (Fournier and Krementz, 2018; Wintle and Taylor, 1993), only those in 244 

the genus Fulica (coots), are obligate divers. However, given their strong association 245 

with water and the difficulty of studying rails and finfoots, it is conceivable that most 246 

species in the order Gruiformes are facultative divers (Alvarez del Toro, 1971; Taylor, 247 

1998). All members of the family Alcidae (auks) dive with their wings, and species in the 248 

genus Cepphus (guillemots) will also use their feet to hover while feeding on benthic 249 

prey. They do not, however, use their feet during steady-state locomotion in open water. 250 

The few species in the order Phaethontiformes (tropicbirds) apparently dive to 251 

considerable depths after entering the water from a plunge (Corre, 1997; Sommerfeld and 252 

Hennicke, 2010), but their mechanism of propulsion underwater is unknown. The five 253 

species in the order Gaviiformes (loons, sometimes referred to as “divers”) are foot-254 

propelled, obligate divers. All members of Sphenisciformes (penguins) are non-volant 255 
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and forage exclusively through wing-propelled diving. As with Anseriformes, a great deal 256 

of variation exists within the Procellariformes (albatrosses, shearwaters, and allies), with 257 

all families containing either facultative or obligate divers. Most seem to use both the feet 258 

and wings for aquatic propulsion, but species in the genus Pelecanoides (diving petrels) 259 

apparently use only their wings, though I am unable to find any visual evidence to 260 

support this widespread view. In the order Suliformes, species in the order Sulidae 261 

(gannets and boobies) use both the feet and wings for aquatic propulsion, whereas those 262 

in Anhingidae and Phalacrocoraxidae (anhingas and cormorants, respectively) are 263 

exclusively foot propelled. Finally, the order Passeriformes contains three wing-264 

propelled divers in the family Cinclidae, genus Cinclus (White-throated, Brown, and 265 

American dippers). Again, these categories apply only to healthy birds during steady-266 

state aquatic locomotion. 267 

Plunge divers in the orders Accipitriformes, Pelecaniformes, and Coraciiformes, 268 

and in the family Laridae (Order: Charadriiformes) illustrate the limitations of our 269 

definition of “diving”. At least some species in all four groups plunge into water as a 270 

critical component of their foraging strategy, but none descend in water using their 271 

appendages. Instead, they rely on momentum gained in the air to overcome the drag and 272 

buoyancy of water (Ashmole, 1971; Chang et al., 2016; Ropert-Coudert et al., 2003). 273 

However, diving species within these groups may use their appendages to ascend in water 274 

following a plunge, thereby exhibiting aquatic locomotion and, potentially, associated 275 

morphological modifications. Ospreys (Order: Accipitriformes, Family: Pandionidae, 276 

Genus: Pandion) forage almost exclusively by plunging into water, but rarely submerge. 277 

Still, they use their wings (and, perhaps, their feet when not holding prey) to launch 278 
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themselves out of the water following a plunge. Gulls and terns (Family: Laridae) also 279 

plunge dive, submerging on occasion, but do not contact the water with their wings to 280 

ascend. The same is true of pelicans (Order: Pelecaniformes, Family: Pelecanidae), 281 

though submergence by these species is apparently exceedingly rare (Hall, 1925; Skinner, 282 

1925). Finally, kingfishers (Order: Coraciiformes, Family: Alcedinidae) exhibit dramatic 283 

interspecific variation in foraging behavior (Woodall, 1991). Some species reach multiple 284 

body-lengths below the surface through plunge diving and use their wings to ascend; 285 

others feed entirely on terrestrial fauna. Others, still, are presumed to eat fish and other 286 

aquatic prey (Barker and Vestjens, 1989), but their foraging behavior is poorly 287 

documented. Species in this final group might take aquatic prey by skimming the surface 288 

of the water or, perhaps, through plunges which may or may not result in complete 289 

submergence. 290 

Researchers should consider their specific questions when classifying species in 291 

these latter four groups. For example, if the goal is to explore the effects of aquatic 292 

locomotion on the osteology of the bones in the wing, then it might be most appropriate 293 

to classify terns as non-diving, as the wings occupy a passive role in plunging and 294 

submergence is rare. However, if the investigation instead focuses on the osteology of the 295 

cervical vertebrae, then terns might be better classed as divers, as they experience similar 296 

force regimes as other plunge divers even though submergence is rare. 297 

In addition, researchers should carefully consider classifications of species in the 298 

Procellariformes, as our knowledge of diving in this group is incomplete (Dunphy et al., 299 

2015; Shoji et al., 2016). This is especially true of the species in the genus Pterodroma, 300 

the gadfly petrels. Traditionally, gadfly petrels have been considered either non-diving or 301 
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rarely-diving (Ashmole, 1971; Harper et al., 1985; Prince and Morgan, 1987), but recent 302 

studies utilizing capillary tube depth gauges have documented dive depths of greater than 303 

20 meters in some species (Rayner et al., 2008; Taylor, 2008). Still, the frequency of 304 

these dives relative to other foraging methods is largely unknown. Dive behavior may 305 

vary considerably between Pterodroma species, or depend on food availability or locality 306 

(Warham, 1996). Hopefully, new technologies and methods of analysis (e.g., Cianchetti-307 

Benedetti et al., 2017) will reveal the diving habits of these species.  308 

For the sake of brevity, I will not go through each group in Table 1 further, but I 309 

will comment on three interesting cases of interspecific variation which warrant more 310 

focused study. 311 

First, the family Cinclidae contains five species, only three of which dive. These 312 

three species use their wings to dive in fast-flowing streams to feed on 313 

macroinvertebrates, fish, and other animal prey; Cinclus cinclus in Eurasia, Cinclus 314 

pallasii in Asia, and Cinclus mexicanus in North and Central America (Winkler et al., 315 

2020a). The other two species, Cinclus leucocephalus and Cinclus schulzii, reside in 316 

South America but forage in similar environments and for similar prey as their relatives 317 

(Winkler et al., 2020a). For unknown reasons, the South American dippers do not dive, 318 

instead remaining firmly attached to the substrate while foraging (Tyler and Ormerod, 319 

1994). Whether this variation in behavior is reflected in the morphology of these species 320 

is largely unknown, though there does appear to be variation in feather microstructure 321 

which may be adaptive for submerged swimming (Rijke and Jesser, 2010). 322 

Second, the genus Melanitta (scoters) contains two species which are exclusively 323 

foot-propelled divers – Melanitta nigra and Melanitta americana– and three species – 324 
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Melanitta perspecillata, Melanitta fusca, & Melanitta deglandi – which will also use 325 

their wings for a proportion of their dives (Mullarney, 1983). The diving strategy in the 326 

sixth species in the genus, Melanitta stejnegeri, is apparently unknown. All six species 327 

occupy similar habitats, are of similar sizes, and dive to forage on benthic invertebrates 328 

(Winkler et al., 2020b). Again, whether this variation in behavior is reflected in the 329 

morphology of these species is unknown. 330 

Finally, as noted above, the family Alcedinidae exhibits dramatic interspecific 331 

variation in foraging behavior (Woodall, 1991). This variation has already proved fruitful 332 

for research (e.g., Crandell et al., 2019; Eliason et al., 2020), but many questions remain 333 

unanswered. Research on the foraging behavior and morphology of species in the genera 334 

Ceyx, Halcyon, Todiramphus, and Caridonax would be especially valuable. 335 

Foot-propelled vs. Wing-propelled aquatic propulsion –  336 

The data presented in Table 1 illustrate that aquatic locomotor strategy – i.e., 337 

whether a species uses their hindlimbs, forelimbs, or both for propulsion underwater – 338 

varies both between and among diving groups. Why variation exists across birds has long 339 

been a topic of debate, with numerous authors offering explanations for this variation 340 

based on the hypothesized advantages and disadvantages of foot- and wing-propulsion 341 

(e.g., Kuroda, 1967; Lovvorn and Jones, 1994; Mayr et al., 2021; Richman and Lovvorn, 342 

2008; Storer, 1960). Table 2 summarizes the relative advantages and disadvantages of 343 

bird’s aquatic locomotor strategies, as discussed by the literature, and will serve to 344 

organize much of the remaining discussion. 345 
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Four factors in Table 2 [FP A1, FP D1, WP A1, and WP A2] are based on the 346 

physical principles of drag- vs. lift-based aquatic propulsion. These principles may not be 347 

clear to the reader; thus, I review them here.  348 

Birds are thought to produce hydrodynamic force by drag-based or lift-based 349 

mechanisms, or a combination of the two. Drag is defined as a force which acts parallel 350 

to the direction of fluid flow about a propulsor (e.g. the feet or wings), whereas lift is 351 

defined as a force which acts perpendicular to the direction of fluid flow about a 352 

propulsor (Denny, 1993; Vogel, 1994). No bird has yet stumbled upon jet propulsion, 353 

although the opposite mechanism, suction, is used for feeding in at least one species 354 

(Enstipp et al., 2018).  355 

Lift-based aquatic propulsion is more efficient than drag-based aquatic propulsion 356 

from both theoretical (Daniel and Webb, 1987; Vogel, 1994; Webb and Weihs, 1983) and 357 

empirical perspectives (Baudinette and Gill, 1985; Davenport et al., 1984; Fish, 1996; 358 

Jackson et al., 1992; Richman and Lovvorn, 2008; Schmid et al., 1995; Williams, 1999). 359 

If we assume that drag-based propulsion is synonymous with “rowing” and lift-based 360 

propulsion with “flapping”, which is a coarse but reasonable approximation at the 361 

Reynolds numbers characteristic of swimming birds (Walker, 2002), then this 362 

relationship holds across all speeds (Walker and Westneat, 2000). At high speeds, drag-363 

based mechanisms are especially ineffective and inefficient, because they require the 364 

appendage to move faster than the speed of translation (Daniel and Webb, 1987; 365 

Johansson and Norberg, 2001; Vogel, 1994).  366 

But then why don’t all animals use lift to swim? Lift requires circulation around a 367 

foil and is, therefore, only effective for force production at relatively high Reynolds 368 
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numbers (i.e. high speeds) (Daniel and Webb, 1987; Norberg, 1990; Rayner, 1995; 369 

Vogel, 1994; Webb, 1988). Thus, at low Reynolds numbers (i.e. low speeds) drag can 370 

generate greater thrust than can lift (Vogel, 1994; Walker and Westneat, 2000), and can 371 

therefore aid animals to accelerate from rest, perform powerful maneuvers, and hold 372 

station under external forces (Chin and Lentink, 2019; Godoy-Diana and Thiria, 2018).  373 

In air, birds rely on the lift force created by their wings to power forward flight, 374 

and the same appears to be true when the wings are used for diving (Bannasch, 1995; 375 

Clark and Bemis, 1979; Hamilton, 2006; Hui, 1988; Johansson, 2003; Johansson and 376 

Aldrin, 2002; Lovvorn, 2001; Richman and Lovvorn, 2008). Foot-propelled aquatic 377 

locomotion in birds, on the other hand, has largely been considered drag-based 378 

(Johansson and Norberg, 2000; Vogel, 1994). Thus, the distribution of foot-propelled and 379 

wing-propelled diving in birds has been explained based on the relative advantages of 380 

lift- vs. drag-based mechanisms of thrust production. For example, it would behoove 381 

birds which “hover” while foraging on benthic prey to use drag-based mechanisms of 382 

thrust production, as they must create considerable forces to counteract buoyancy while 383 

moving at nominal speeds. Thus, species like alcids in the genus Cepphus use their feet 384 

while hovering underwater (Table 1).  385 

However, several recent studies have challenged the long-held view that foot-386 

propelled aquatic locomotion in birds is purely drag-based. Grebes (Johansson and 387 

Norberg, 2000; Johansson and Norberg, 2001), loons (Clifton and Biewener, 2018), and 388 

cormorants (Ribak, 2004), can likely produce substantial lift forces with their hindlimbs. 389 

Moreover, Johansson and Norberg (2003) demonstrated that the webbed feet of surface 390 
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swimming birds are capable of producing lift forces thanks to unsteady fluid interactions 391 

(Johansson and Norberg, 2003). 392 

Thus, the view that wing-propelled diving is purely lift-based, and that foot-393 

propelled diving is purely drag-based, is oversimplified. In fact, animals routinely utilize 394 

both mechanisms of force production, even using the same appendage, depending on the 395 

speed of their translational movement (Chin and Lentink, 2019; Feldkamp, 1987; Vogel, 396 

1994; Westneat, 1996). However, as noted by Lovvorn and Liggins (2002), the relative 397 

contributions of lift- vs. drag-based mechanisms in producing thrust in swimming birds 398 

has not yet been thoroughly explored (but see Clifton, 2017). This could be accomplished 399 

via traditional analytical analysis (sensu Ribak et al., 2010; Walker and Westneat, 2000), 400 

through computational fluid dynamics [CFD], or, and perhaps most promising, by 401 

measuring forces on robotically driven appendages (Clifton, 2017; Izraelevitz et al., 402 

2018; Lock et al., 2012). Using these methods, one could tease out the details of thrust 403 

production in diving birds and uncover potential trade-offs governing propulsor design in 404 

diving birds, including the contribution of the acceleration reaction to diving (Daniel, 405 

1984); a phenomenon which is largely unappreciated (but see Ribak et al. 2010).  406 

As highlighted by Vogel (1994), lift-based systems must be precisely shaped to 407 

generate force, whereas almost any structure can be used to generate drag. Thus, Vogel 408 

states that “multifunctional appendages ought to be more likely to use the drag-based 409 

system” (Vogel, 1994). This might explain in part why grebes and loons – which have 410 

feet shaped for lift-production – are nearly incapable of locomoting on land (Shufeldt, 411 

1898; Wilcox, 1952), and likely explains why obligate diving mammals struggle to walk 412 

(Fish, 1996; Fish, 2016). 413 
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Two more factors in the above table [FP D2, WP A2] indicate a cost of foot-414 

propulsion and, therefore, suggest a relative advantage of wing-propulsion. In foot-415 

propelled diving birds, thrust is generated primarily as the leg is extended [power phase], 416 

with negligible to negative thrust produced as the leg is retracted [recovery phase] 417 

(Aigeldinger and Fish, 1995; Clifton and Biewener, 2018; Davenport et al., 1984; 418 

Lovvorn and Liggins, 2002; Ribak, 2004; Ribak et al., 2010). Wing-propelled diving 419 

birds, on the other hand, can produce thrust during both the upstroke and downstroke of 420 

their wings, thereby eliminating the need for a recovery stroke (Bannasch, 1995; Clark 421 

and Bemis, 1979; Hui, 1988; Johansson and Aldrin, 2002; Lapsansky and Tobalske, 422 

2019; Lovvorn, 2004; Watanuki, 2006; Watanuki et al., 2003). Consequently, a bird 423 

swimming with their hindlimbs must generate higher instantaneous velocities during the 424 

power phase to achieve the same average speed as a bird swimming with its forelimbs, as 425 

no force is produced during a considerable portion of the foot-propelled kinematic cycle. 426 

In other words, foot-propulsion, at least as it is accomplished by extant species, is 427 

inherently unsteady. Because drag on the body (parasite drag) increases non-linearly with 428 

speed, and because energy must be used to accelerate the body and surrounding fluid 429 

during the power phase [i.e., acceleration reaction], this unsteadiness should significantly 430 

increase the cost of locomotion (Daniel, 1984; Lovvorn, 1991; Lovvorn, 2001). 431 

Though the hydrodynamic principles discussed above are well-supported by both 432 

theoretical (Daniel and Webb, 1987; Vogel, 1994; Webb and Weihs, 1983) and empirical 433 

research (Baudinette and Gill, 1985; Fish, 1996; Jackson et al., 1992; Richman and 434 

Lovvorn, 2008; Schmid et al., 1995; Williams, 1999), the relative efficiency of diving by 435 

foot- versus wing-propulsion has only been directly tested once (Richman and Lovvorn, 436 
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2008). Richman and Lovvorn (2008) compared the costs of foot-propelled vs. foot- + 437 

wing-propelled dives by white-winged scoters (Melanitta fusca) in at 2 m tank via 438 

respirometry. While the use of the wings reduced the energetic costs of diving by an 439 

estimated average of 34%, variation in metabolic costs between and within individuals 440 

meant that there was no significant difference between dive types (Richman and 441 

Lovvorn, 2008).  442 

In summation, the hydrodynamic principles surrounding wing- and foot-propelled 443 

diving, as they are presently understood, do little to explain why a diving bird of today 444 

might use its wings underwater, its feet, or a combination of the two. Thus, functional 445 

tradeoffs, ecological factors, and historical context, are likely important in explaining the 446 

distribution of wing-propelled and foot-propelled diving in birds (Mayr et al., 2021).  447 

For example, Storer (1960), noted that birds which forage in open water (pelagic 448 

environments) tend to be wing-propelled whereas those which forage in freshwater and 449 

littoral environments tend to be foot-propelled. He suggested that “upright aquatic 450 

vegetation, such as is commonly found in fresh-water habitats, must impede wing-451 

propelled divers to a much greater extent than foot-propelled ones,” thereby determining 452 

the distribution of foot-propelled and wing-propelled diving [WP D2]. Richman and 453 

Lovvorn (2008) expanded this hypothesis with specific reference to diving in white-454 

winged scoters and their relatives. These species occupy shallow environments with 455 

dense vegetation during the breeding period, but winter in more open water. Thus, 456 

vegetation may enforce foot-propelled diving in some environments but permit the use of 457 

wings in others (Richman and Lovvorn, 2008). 458 
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The ancestral foraging habits of each diving lineage may also play an important 459 

role in determining the distribution of hindlimb and forelimb propulsion across the avian 460 

phylogeny. Extant diving birds almost certainly evolved from volant ancestors (Livezey, 461 

1989b; Mayr et al., 2020; Simpson, 1946); thus, the relatives of modern diving birds had 462 

forelimbs capable of generating hydrodynamic lift. Their feet would likely be relatively 463 

ineffective at creating lift (but see Johansson and Norberg, 2003), but would be capable 464 

of powering diving through drag (Vogel, 1994). Under this scenario, early diving birds 465 

would have faced the choice of using their forelimbs and lift-based mechanisms or their 466 

hindlimbs and drag-based mechanisms to power their aquatic locomotion, despite the fact 467 

that this dichotomy has now been circumvented. Where sustained speeds were required, 468 

wing-propulsion would have a clear advantage, being both more efficient and effective at 469 

producing thrust. This would seemingly drive species which forage in pelagic 470 

environments and those which dive at high speeds – including plunge divers and those 471 

entering moving water (i.e., dippers) – to become wing-propelled divers. Those feeding 472 

on sessile, benthic prey could effectively forage underwater using their hindlimbs. Early 473 

foot-propelled divers might, thereafter, face selection for hindlimb morphologies capable 474 

of producing lift, as this would facilitate access to novel food sources, resulting in the 475 

specialized feet of birds like loons and grebes (Clifton and Biewener, 2018; Johansson 476 

and Norberg, 2000; Johansson and Norberg, 2001). This hypothesized scenario could be 477 

supported or invalidated by examining the foraging ecology of ancestral diving birds 478 

based on analyses of beak shape (sensu Olsen, 2017), for example. 479 

Importantly, though, neither Storer’s conjecture or the hydrodynamic principles 480 

surrounding wing- and foot-propelled diving explain why many modern divers rely 481 
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exclusively on their hindlimbs for thrust even while foraging in open water and at high 482 

speeds. For example, cormorants and shags (Phalacrocoraxidae) reach depths of upwards 483 

of 100 m and sustain speeds from 1.5-1.7 m s-1 in open water (Ribak, 2005; Watanabe et 484 

al., 2011) – conditions in which the wings would clearly be effective. These species, and 485 

others capable of producing lift forces via their hindlimbs (Clifton and Biewener, 2018; 486 

Johansson and Norberg, 2003), still experience inefficiencies due to the unsteadiness of 487 

foot-propulsion (Daniel, 1984; Lovvorn, 2001; Richman and Lovvorn, 2008), and yet do 488 

not use their wings even during deep, open-water dives. This suggests that there may be 489 

an advantage to specialization – that using either the hindlimbs or the forelimbs has 490 

advantages over a mixed-strategy – perhaps due to morphological tradeoffs associated 491 

with foot-propelled and wing-propelled diving. 492 

This topic, and the remaining hypotheses in Table 2, will serve as the scaffold for 493 

the remaining discussion. 494 

Hypothesis testing:  495 

In addition to reviewing their behavior and biomechanics, I used new and 496 

previously published data, analyzed via phylogenetic comparative methods, to test two 497 

widespread hypotheses surrounding diving birds and illustrate the potential of this system 498 

for scientific inquiry. 499 

1) Aquatic locomotion requires an enlargement of the pelvic [FP D3] or pectoral 500 

musculature [WP D3], together favoring specialization toward either foot-propelled 501 

or wing-propelled diving (Gadow, 1902; Kovacs and Meyers, 2000; Storer, 1960; 502 

Watanabe et al., 2011; Wilson et al., 2008). 503 
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2) Selection for wing-propelled diving favors reduced wing sizes [WP D4] (Bock and 504 

von Wahlert, 1965; Cody, 1973; Elliott et al., 2013; Kuroda, 1954; Pennycuick, 1987; 505 

Pennycuick, 2008; Rayner, 1988; Storer, 1960; Thaxter et al., 2010; Thompson et al., 506 

1998), which might prevent foot-propelled species from using their wings underwater. 507 

To test these hypotheses, I digitized or collected data describing the muscle 508 

masses in the pelvic girdle of 404 species, the muscle masses in the pectoral girdle of 509 

1,116 species, and the wing shape and size of 951 species of birds.  510 

First, by comparing the muscle masses of diving and non-diving species, I tested 511 

whether aquatic locomotion has resulted in an enlargement of either the hindlimb 512 

musculature [FP D3] for foot-propelled diving (Gadow, 1902; Storer, 1960; Watanabe et 513 

al., 2011), or forelimb musculature [WP D3] for wing-propelled diving (Kovacs and 514 

Meyers, 2000; Storer, 1960). Together, this would favor specialization toward a single 515 

locomotor strategy, as the added mass used for aquatic locomotion would increase flight 516 

costs (Ellington, 1984a; Gadow, 1902; Rayner, 1988; Watanabe et al., 2011). As well, the 517 

muscles in the pectoral girdle – necessary for wing-propelled diving and flight – might 518 

increase the cross-sectional area of a diving bird, thereby increasing drag (Wilson et al., 519 

2008).   520 

Second, by comparing the wing size and shape of diving and non-diving species, I 521 

tested whether selection for wing-propelled diving has favored small wings in species 522 

which use their wings for aquatic propulsion [WP D4] (Bock and von Wahlert, 1965; 523 

Cody, 1973; Elliott et al., 2013; Kuroda, 1954; Pennycuick, 1987; Pennycuick, 2008; 524 

Rayner, 1988; Storer, 1960; Thaxter et al., 2010; Thompson et al., 1998), which might 525 
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thereby limit the usefulness of wing-propulsion in otherwise foot-propelled species even 526 

under seemingly favorable conditions.  527 

The idea that wing-propelled diving favors small wings is widespread in both the 528 

scientific (above citations) and public communities (Reilly, 2013; Seabird, 2021), yet the 529 

rationale for this view is rarely been stated explicitly. Most explanations allude to a small 530 

wing being more efficient for aquatic locomotion due to profile drag (Ashmole, 1971; 531 

Rayner, 1988; Storer, 1960), thereby predicting that species which use their wings for 532 

aquatic propulsion will have smaller wings than exclusively foot-propelled species. 533 

Alternatively, however, high wing-loading may be the result of relaxed selection against 534 

high flight speeds (Kovacs and Meyers, 2000; Lovvorn and Jones, 1994) or selection to 535 

reduce buoyancy (Wilson et al., 1992a), both of which would favor small wings across 536 

aquatic locomotor strategies. Of course, “small” is a relative term. In this case, wing size 537 

is expressed relative to body mass –using a term called wing-loading – which is 538 

calculated as the ratio of body mass to wing area. Thus, to say that wing-propelled diving 539 

selects for “small wings” is to say that wing-propelled diving selects for “small wings for 540 

a given body mass” or for “high wing-loading” (Pennycuick, 1987; Rayner, 1988). 541 

Methods:  542 

To test Hypothesis 1, I digitized the mass of the muscles in the extremities for 404 543 

species of volant birds included in Hartman (1961). Unfortunately, although this dataset 544 

includes the mass of the muscles in the upper extremities for 375 species, no obligate 545 

wing-propelled divers are included (Hartman, 1961). While it is tempting to include 546 

masses for diving species from other studies, what constitutes muscles of the lower and 547 

upper extremities is likely subjective. Thus, to test Hypothesis 1 with regards to wing-548 
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propelled diving, I assembled masses of the pectoralis and supracoracoideus for 1,116 549 

species of volant birds from various sources (Bethke and Thomas, 1988; Greenewalt, 550 

1962; Hartman, 1961; Kovacs and Meyers, 2000; Kuroda, 1960; Kuroda, 1967; Livezey 551 

and Humphrey, 1986; Wright et al., 2016), including for 44 obligate foot-propelled divers 552 

and 26 obligate wing-propelled divers. Hartman (1961) expressed muscle masses as 553 

percentages relative to total body mass. For consistency with other references, those 554 

percentages were back calculated to units of grams. If data for a given species was 555 

present across multiple sources, preference was given to the more recent study.  556 

To test whether selection for decreased hydrodynamic drag, high flight speeds, or 557 

reduced buoyancy has resulted in high wing-loading for wing-propelled diving, I 558 

collected data describing the wing shape and size of 2,324 wings and 951 species from 559 

specimens in four museum collections: the Burke Museum of Natural History and 560 

Culture, the Slater Museum of Natural History, the Museum of Vertebrate Zoology at the 561 

University of California, Berkley, and the Beaty Biodiversity Museum. Only wings of 562 

females were used in this study, both to reduce intraspecific variation and because sexual 563 

dimorphism may co-vary with diving behavior.  564 

The bulk of the wing data (>90%) are from the spread wing collection at the 565 

Burke Museum. At the Burke Museum, spread wings were photographed using a Canon 566 

EOS Rebel T2i digital camera attached to a Beleser CS-20 Copystand and leveled via a 567 

bubble-type level. To facilitate digitization, wings were placed on a green “chromakey” 568 

background and illuminated via two Britek photo lights. I obtained data for additional 569 

volant species from the Slater Museum of Natural History digital collections.  570 
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Because of their unique anatomy, spread wings of penguins are rare. However, 571 

the stiffness of penguin wings (Raikow et al., 1988) means that wing shape is preserved 572 

when specimens are prepared as study skins. Thus, in addition to data from three species 573 

of penguins prepared as spread wings, data for seven penguin species are from study 574 

skins at the Beaty Biodiversity Museum and the Museum of Vertebrate Morphology. In 575 

both cases, the animals were positioned horizontally and photographed via tripod-576 

mounted and leveled cameras, with a ruler placed at the height of the wing for scale. 577 

Because penguins are the only flightless group for which I have wing size and shape data, 578 

analyses comparing diving groups (Wing-propelled vs. Exclusively Foot-propelled and 579 

non-diving vs. diving) were conducted with flightless species excluded. 580 

The wing area and second moment of area were calculated for images of each 581 

wing using a custom MATLAB script. Species averages were used in all analyses. 582 

Because specimens donated to museum collections are often emaciated, body masses for 583 

the wing dataset are from Dunning (2008). 584 

Species were categorized based on their diving behavior according to Table 1. 585 

Only obligate divers were categorized as “diving”, with facultative divers and species 586 

with unknown diving frequency considered “non-diving”. This is because facultative 587 

diving may be specific to populations and/or individuals, and the dive behavior of 588 

individual specimens in my dataset is unknown. Species which plunge dive, but which do 589 

not use their appendages to descend further in the water column, were also considered 590 

“non-diving” for these analyses, as they likely do not face the selective pressures shared 591 

by other divers (e.g., buoyancy minimization, hydrodynamic drag minimization, etc). 592 

Phylogenetic Comparative Methods 593 
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The hypotheses tested here concern group deviations from allometric predictions. 594 

Thus, I used the R package evomap to test for differences in the intercept describing those 595 

allometric relationships between groups while first holding the slope of the allometric 596 

relationship constant (Smaers and Rohlf, 2016). Finding a significant difference in 597 

intercept, I then tested whether both intercept and slope of the allometric relationship 598 

differed significantly between groups to detect unique allometries. All data were log-599 

transformed prior to hypothesis testing. 600 

To account for phylogenetic uncertainty, all tests were conducted across 200 601 

phylogenetic trees downloaded from birdtree.org (Jetz et al., 2012; Jetz et al., 2014), with 602 

100 trees based on the Hackett backbone (Hackett et al., 2008) and 100 trees based on the 603 

Ericson backbone (Ericson et al., 2006). Rabosky (2015) highlighted issues with 604 

birdtree.org’s method of obtaining “complete species trees”, wherein species without 605 

genetic data are stochastically added to each tree (Rabosky, 2015). Thus, I followed 606 

Rubin’s rule (Nakagawa and De Villemereuil, 2019) by also testing hypotheses using the 607 

subset of species with genetic data (again, across 200 trees) (Upham et al., 2019). 608 

Presently, the methods in evomap assume a Brownian motion model of evolution 609 

(Smaers and Rohlf, 2016). Thus, I used the function “phylosig” available in phytools to 610 

calculate Blomberg’s K (Blomberg et al., 2003) and Pagel’s λ (Pagel, 1999) for all data 611 

types to estimate the phylogenetic signal (Revell, 2012). In all cases, values of 612 

phylogenetic signal were consistent with a Brownian motion model of trait 613 

diversification. 614 

Results: 615 

Muscle mass  616 
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To test whether foot-propelled aquatic locomotion selects for enlarged hindlimb 617 

muscle masses, I compared the mass of the muscles in the hindlimb of 8 species of 618 

obligate foot-propelled divers to 396 non-diving species using data from Hartman (1960). 619 

I found no difference between obligate foot-propelled diving birds and non-diving birds 620 

in the mass of the hindlimb (Table 4; Figure 1), though this may be due to low sample 621 

size. To test whether wing-propelled diving selects for enlarged forelimb muscle masses, 622 

I compared birds which use their wings for aquatic propulsion to the combined group of 623 

non-diving and exclusively foot-propelled divers. I found no difference in the mass of the 624 

pectoralis (Table 5; Figure 2) or consistent difference in the mass of the supracoracoideus 625 

(Table 6; Figure 3). However, a significant difference for the supracoracoideus was found 626 

for 55 of 400 total phylogenetic trees. 627 

To test whether foot-propelled diving selects for decreased pectoral mass to limit 628 

overall body mass and facilitate aerial flight (Gadow, 1902; Storer, 1960; Watanabe et 629 

al., 2011) or to reduce parasite drag (Wilson et al., 2008), I compared the combined mass 630 

of the pectoralis and supracoracoideus versus body mass of exclusively foot-propelled 631 

species to all other species and (separately) wing-propelled divers. There was no support 632 

for unique intercepts between species which dive exclusively via foot-propulsion and all 633 

other birds [Table 7]. There was also no difference in the combined mass of the pectoralis 634 

and supracoracoideus between species which utilize aquatic wing propulsion and 635 

exclusively foot-propelled species (Table 8).  636 

Wing area versus body mass 637 

Assuming neutral (or near-neutral) buoyancy, the power required for horizontal 638 

swimming is determined by drag and therefore proportional to the cross-sectional area of 639 
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an animal [L2]  (Lovvorn et al., 2001). Alternatively, the power required for aerial flight 640 

is determined by lift and is proportional to body mass [L3] (Ellington, 1984a). To test 641 

whether these unique constraints have resulted in different scaling relationships between 642 

flightless divers and other birds (Ashmole, 1971; Storer, 1960; Thompson et al., 1998), I 643 

compared the relationship of wing area versus body mass between penguins and volant 644 

species. I found strong and consistent support for unique intercepts in the relationship of 645 

wing area versus body mass between volant and flightless species (Table 9). In other 646 

words, penguins, the only flightless species included in the wing dataset, have 647 

significantly higher wing-loadings than volant species (Figure 4). However – allowing 648 

unique intercepts – there was little consistent support for unique allometries (slopes) 649 

between volant and flightless species (Table 9), though the result was significant for 14 650 

of 400 total phylogenetic trees. 651 

To test whether wing-propelled diving selects for small wings due to 652 

hydrodynamic drag incurred during wing flapping, I compared the wing areas of species 653 

which utilize wing-propelled diving to diving species which are exclusively foot-654 

propelled. I found no support for unique intercepts between wing-propelled divers and 655 

exclusively foot-propelled divers (Table 10). However, there was consistent support for 656 

unique intercepts between non-diving and pooled divers (Table 11). In other words, 657 

diving species have higher wing-loading than do non-divers (Figure 4), perhaps due to 658 

selective pressure shared by wing-propelled and foot-propelled divers. Allowing unique 659 

intercepts, I found no consistent support for unique allometries (slopes) between diving 660 

and non-diving species (Table 11), though the result was significant for 31.5% of the total 661 
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trees (126 of 400 phylogenetic trees). Thus, while diving birds have smaller wings than 662 

non-diving birds for their mass, wing area scales similarly in both groups. 663 

To determine whether divers have wings selected for high speed flight, I tested for 664 

the presence of unique intercepts between divers and non-divers in the relationship of 665 

second moment of area of the wing (as measured from the proximal edge) versus wing 666 

area (Ellington, 1984b; Lovvorn and Jones, 1994). This constitutes a test of whether 667 

groups differ in the distribution of the area of their wing. There was no consistent support 668 

for unique intercepts between divers and non-divers (Table 12). Furthermore, plotting the 669 

dimensionless version of second moment of area (Ellington, 1984b) versus body mass 670 

further indicates that the wings of diving species are no more pointed that non-diving 671 

species (Figure 5). 672 

Discussion: 673 

Foot-propelled and wing-propelled diving in birds have not co-evolved with the 674 

enlargement of muscle masses for aquatic locomotion. Previous authors have argued that 675 

foot-propelled diving has co-evolved with enlarged hindlimb muscles to power 676 

swimming (Gadow, 1902; Storer, 1960; Watanabe et al., 2011), and that wing-propelled 677 

diving has co-evolved with enlarged forelimb muscles (Kovacs and Meyers, 2000; Storer, 678 

1960), particularly the supracoracoideus, to power the upstroke of the wing in a denser 679 

fluid. Together, this would seem to favor specialization toward either exclusively foot-680 

propelled or wing-propelled aquatic locomotion in volant species, as an enlargement of 681 

both locomotor modules would increase body mass and thereby limit flight performance 682 

(Ellington, 1984a; Watanabe et al., 2011). As well, increased pectoral muscle mass might 683 

increase the width of the body (but see Stettenheim, 1959), thereby increasing 684 
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hydrodynamic drag (Wilson et al., 2008). However, the comparative data analyzed here 685 

indicate that aquatic locomotion has not favored the enlargement of muscle masses in 686 

either the hindlimbs of foot-propelled divers (Figure 1) or the forelimbs of wing-687 

propelled divers (Figures 2 & 3). While the supracoracoideus is enlarged relative to the 688 

pectoralis in four groups of wing-propelled divers [penguins, alcids, diving petrels, and 689 

dippers] according to the literature (Baldwin, 1988; Goodge, 1957; Hartman, 1961; 690 

Kuroda, 1967), this trend is not diagnostic of birds which use their wings underwater. 691 

Furthermore, despite the widespread view that exclusively foot-propelled divers 692 

have smaller flight muscle masses (pectoralis + supracoracoideus) than do other species 693 

(Storer, 1960; Watanabe et al., 2011; Wilson et al., 2008), they are not significantly 694 

different from the flight muscle masses of other birds (Table 7), including species which 695 

utilize wing-propelled diving (Table 8). 696 

I found no evidence that wing-propelled diving has selected for small wings to 697 

reduce hydrodynamic drag during wing-flapping. While species which utilize wing-698 

propelled diving do have higher wing-loadings than non-diving species (Figure 4), this 699 

pattern is shared with exclusively foot-propelled divers (Table 10). This suggests that 700 

diving has selected for small wings irrespective of whether they are used for thrust 701 

production, indicating that this pattern is driven either by relaxed selection against high 702 

flight speeds (Bridge, 2004; Kovacs and Meyers, 2000; Lovvorn and Jones, 1994)  or 703 

selection for reduced buoyancy (Wilson et al., 1992a). This result is in contrast with those 704 

of Elliot et al. (2013), either because these authors did not account for phylogenetic 705 

effects in their analyses, or because they did not consider shearwaters to be wing-706 

propelled divers (Elliott et al., 2013).  707 
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Lovvorn and Jones (1994) first argued that high wing-loading in foot-propelled 708 

divers might be the result of a relaxed selection against fast flight, as diving birds may 709 

not benefit significantly from the rapid takeoffs, maneuverability, and slow flight 710 

performance afforded by low wing-loading (Norberg, 1990; Rayner, 1988). Diving 711 

species can submerge to avoid predators, eliminating the requirement to escape through 712 

aerial flight. As well, life on water provides a “runway” for landings and take-offs, 713 

reducing the need for maneuverability in slow flight (Kovacs and Meyers, 2000; Lovvorn 714 

and Jones, 1994). Kovacs and Meyers (2000) [citing Lovvorn and Jones (1994)] later 715 

extended this hypothesis to wing-propelled divers.  Comparative data analyzed here do 716 

not support this hypothesis, however. Importantly, Lovvorn and Jones (1994) state that 717 

relaxed selection against high-speed flight would favor “…low-area, pointed wings for 718 

fast flight…”. However, I found that the wings of diving birds are no more pointed, in 719 

terms of second moment of area (Ellington, 1984b), than other birds (Table 12), including 720 

birds of similar masses (Figure 5).  721 

The data are most consistent with the hypothesis that high wing-loading in diving 722 

birds, including wing-propelled divers, is the result of selection for reduced buoyancy 723 

(Wilson et al., 1992a). Wilson et al., (1992) predicted that high wing-loading in foot-724 

propelled species is the result of selection for reduced buoyancy, given that wings trap air 725 

both between and within the feathers (i.e., within the rachis). Indeed, the considerable 726 

amount of air entrapped between feathers is readily visible in videos of birds diving 727 

(https://www.youtube.com/watch?v=nbnJsc-GPaA). While some of the air trapped 728 

between feathers can be shed in the early stages of the dive, air volumes in the rachis 729 

cannot. Because counteracting buoyancy constitutes a major component of the total 730 
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energy required to dive (Lovvorn and Jones, 1991; Stephenson, 1994), selection for 731 

diving seems to have favored high wing-loading as a means to reduce buoyancy. 732 

Although diving birds do not have wings selected for high-speed flight, the fact that 733 

diving birds can avoid predators and slow flight using water has likely been important in 734 

facilitating this pattern. 735 

Alternatively, Wilson et al., (2008) also suggested that high wing-loading in foot-736 

propelled species could be the result of selection to reduce drag. Foot-propelled divers 737 

hold their wings close to the body while diving. Still, large wings may increase 738 

hydrodynamic drag by expanding a bird’s wake or via feather vibration (Lovvorn et al., 739 

2001; Wilson et al., 2008). In wing-propelled divers, the wings are held out from the 740 

body and do not contribute to parasite drag. However, smaller wings may still experience 741 

lower profile drag due to reduce vibration. Thus, my results could also indicate that 742 

hydrodynamic drag has selected for small wings in diving birds, including wing-743 

propelled divers, driven by the effects of hydro-elastic flutter. However, wing-propelled 744 

divers flex their wings during diving, which appears to increase the stiffness of the 745 

feathers beyond the point at which substantial vibrations can manifest during wing-746 

flapping. In addition, cormorants and anhingas, which have wettable feathers, have 747 

exceptionally large wings relative to other divers, suggesting that the buoyancy is the 748 

driving force behind high wing-loading in diving birds.  749 

It is not obvious how one might test between these two possible explanations 750 

given comparative data. Comparing the length of the primary feathers to the length of the 751 

wing of diving and non-diving birds – or, alternatively, the length of the wing to the 752 

length of the wing bones (Lapsansky, in prep) – might be illustrative. As primary feathers 753 
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add to buoyancy, this may also explain why diving birds appear to have elongated covert 754 

feathers relative to non-diving species (Wang and Clarke, 2015). In other words, it might 755 

not be that diving birds have longer coverts, but shorter primaries, to reduce buoyancy. 756 

However, possessing shorter primaries might also act to reduce hydro-elastic flutter of 757 

the feathers, which would likely decrease drag to some degree. Thus, the benefits of high 758 

wing-loading for diving may be two-fold. Empirical testing, using 3D printed models of 759 

birds with varied primary lengths and flexibilities, would be one mechanism through 760 

which to explore these questions. 761 

Low mass-specific wing area – i.e., high wing-loading – is a pattern shared by 762 

both wing-propelled and foot-propelled divers. Thus, it is surprising that the view that 763 

“wing-propelled diving favors small wings” is especially pervasive throughout scientific 764 

literature (Bock and von Wahlert, 1965; Cody, 1973; Elliott et al., 2013; Kuroda, 1954; 765 

Pennycuick, 1987; Pennycuick, 2008; Rayner, 1988; Storer, 1960; Thaxter et al., 2010; 766 

Thompson et al., 1998). Though diving seems to select for smaller wings, traditional 767 

explanations fail to explain this pattern in wing-propelled divers. Assuming neutral 768 

buoyancy, the power required for horizontal swimming is determined by drag and 769 

proportional to the area of an animal [L2]  (Lovvorn et al., 2001), while the power 770 

required for aerial flight is determined by lift and is proportional to body mass [L3] 771 

(Ellington, 1984a). Many explanations for high wing-loading in wing-propelled divers 772 

rest on the disparity between these allometric relationships. However, these arguments do 773 

not explain why the wing area of a given wing-propelled diver cannot be larger than the 774 

scaling relationship between drag and body area, and pertain only to the scaling 775 

exponent, but not the intercept of said scaling relationship. Assuming continuity of 776 
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Reynolds number, forces are ~3.5 times greater in water than in air. Thus, propulsors can 777 

be smaller in water and still produce their requisite force (Denny, 1993), but they do not 778 

need to be smaller.  779 

While flightless wing-propelled divers [penguins] do have high wing-loading, 780 

there is little evidence of that wing area scales differently in flightless wing-propelled 781 

divers than in other birds (Table 9, Figure 4). However, this might be due to low sample 782 

size or because all flightless wing-propelled divers are from a single clade. Finally, all 783 

groups which use their wings underwater except penguins (Order: Sphenisciformes) fold 784 

their wing during aquatic use; therefore, if a small wing is detrimental to aerial flight 785 

capabilities (Ellington, 1984a), it is unclear why wing-propelled divers would not simply 786 

fold their wing to a greater extent underwater and retain a large wing. Further, if wing-787 

propelled divers are constrained by available muscle power, they can (and do) flap their 788 

wings more slowly in water (Lapsansky et al., 2020). 789 

It is important to remember that the wings of wing-propelled divers generate 790 

thrust as well as suffering drag. While a smaller wing experiences lower drag, it also 791 

produces less useful force and is less efficient. This conclusion stems from the equations 792 

for lift and drag (Denny, 1993; Vogel, 1994) as well as from experiments with 793 

engineered, dual-medium wings (Izraelevitz et al., 2018; Lock et al., 2010; Lock et al., 794 

2012; Lock et al., 2013; Lock et al., 2014). In fact, all else being equal, a larger wing will 795 

provide greater Froude propulsion efficiency – defined as the ratio of energy required to 796 

drive a propulsor to the power imparted to the fluid – than a smaller wing. This is because 797 

a larger wing can generate the same thrust while imparting a smaller acceleration to the 798 

fluid by interacting with a larger fluid volume (Vogel, 1994). 799 
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Still, there is good reason to expect that wing-propelled diving would favor a 800 

shorter wing. If birds are constrained by the stress experienced at the shoulder (which 801 

must be countered by the force of muscle contractions), then a shorter wing could 802 

produce similar forces while experiencing lower torques, as the center of that force is 803 

experienced closer to the shoulder (i.e., with a shorter moment arm) (Fish, 2016). 804 

However, I found little evidence that this pressure has shaped the wing sizes of wing-805 

propelled diving birds to be different from those of foot-propelled divers (Figure 4). 806 

Additionally, it is unclear why wing-propelled diving would favor short wings in the face 807 

of decreasing aerial flight performance when the wing could simply be folded more to 808 

reduce the torque on the shoulder. 809 

Classifying diving species based on their apparent morphological specialization 810 

for diving is common. Implicit in this practice is the idea that diving performance and 811 

efficiency are negatively correlated with performance and efficiency in air. This tradeoff 812 

is evident in mammals (Fish, 1996; Fish, 2016) [streamlined bodies and lift-producing 813 

appendages constrain the performance and efficiency of walking] but is less extreme in 814 

birds, especially with regards to flight (Lapsansky and Tobalske, 2019; Lapsansky et al., 815 

2020; but see Elliott et al., 2013, Lovvorn and Jones, 1994, Prange and Schmidt-Nielsen, 816 

1970, Thaxter et al., 2010, and Watanabe et al. 2011). New technologies have revealed 817 

that even seemingly unspecialized diving birds can dive for far longer and far deeper than 818 

their outward appearances would suggest (Chastel and Bried, 1996; Rayner et al., 2008; 819 

Taylor, 2008).  820 

It is important to recognize that diving has evolved independently multiple times. 821 

Each lineage occupies a morpho-space surrounding a “local optimum” of trait values, 822 
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given their reliance on aquatic locomotion and phylogenetic history. For example, 823 

cormorants and shags have retained wings large enough to glide and soar despite their 824 

reliance on diving – reducing the costs of buoyancy through partially wettable plumage 825 

(Grémillet et al., 2005; Wilson et al., 1992a). Obligate plunge divers like gannets and 826 

boobies have relatively large wings and similarly reduce buoyancy costs by using 827 

momentum to carry themselves through the early stages of their dives, wherein buoyancy 828 

is greatest. Thus, it is not appropriate to classify species based on their morphological 829 

specialization for diving and then assume that the traits of those species improve diving 830 

performance. Indeed, comparing the dive depth and durations of species indicates that 831 

less-specialized groups often have greater dive performance for their size (Halsey et al., 832 

2006; Watanuki and Burger, 1999).  833 

To better illustrate this point, I curated data describing the mean dive durations of 834 

127 species from 9 orders from the literature and by timing dives from videos available 835 

from the Macaulay Library’s digital collection. As demonstrated by previous studies 836 

(Halsey et al., 2006; Watanuki and Burger, 1999), alcids have greater dive performance 837 

for their body sizes than do penguins, despite retaining aerial flight. Furthermore, dippers, 838 

which look not unlike their non-aquatic relatives, fall well-within the trend for 839 

morphologically specialized diving birds (Figure 6). If future authors deem the binary 840 

categories used here insufficient, they should use the residuals of this or other allometric 841 

relationships of dive performance, rather than perceived morphological specialization. 842 

Diving does not require enlarged muscle masses and wing-propelled diving does 843 

not require higher wing-loading than possessed by foot-propelled divers. Thus, it is 844 
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unclear why exclusively foot-propelled species do not use their wings even during deep 845 

dives in open-water, but the efficiency of muscle contractions may be important.  846 

The stroke velocities of wing-propelled divers are substantially lower in water 847 

than in air (Kikuchi et al., 2015; Lapsansky et al., 2020). This parameter is likely 848 

important in determining the cost of locomotion given that it should be proportional to 849 

the contractile velocity of the pectoralis and the supracoracoideus. Muscle fibers of a 850 

given fiber type and myosin isoform are most efficient at converting metabolic energy 851 

into mechanical power over a narrow range of contractile velocities (Goldspink, 1977; He 852 

et al., 2000; Reggiani et al., 1997; Rome et al., 1988). Thus, volant wing-propelled diving 853 

birds might maintain two populations of muscle fibers (Kovacs and Meyers, 2000; 854 

Meyers et al., 1992) or contract their muscles at inefficient speeds in air or water 855 

(Lapsansky et al., 2020), but this is likely not the case for exclusively foot-propelled 856 

species, as the maintenance of muscle represents a substantial energetic cost (Wilson et 857 

al., 2008). Therefore, the metabolic costs of contracting the pectoralis and 858 

supracoracoideus at inefficient velocities might negate any hydrodynamic benefits, thus 859 

inhibiting exclusively foot-propelled species from using their wings underwater even 860 

during deep dives in open water. 861 

In conclusion, owing to the clear and distinct differences between life in air and 862 

life in water, as well as the considerable variation in locomotor habits within and between 863 

species, diving birds remain a powerful system in which to study the evolution of form, 864 

function, and behavior. Here, I review what is known about the biomechanics of foot-865 

propelled and wing-propelled aquatic locomotion in birds to facilitate future research and 866 
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test hypotheses using new and published data. Much remains to be learned about the 867 

evolution and functional morphology of these charismatic animals. 868 
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Table 1: Aquatic locomotor habits of birds. All orders of birds are considered with 1790 
increased resolution to family, genera, and species levels where variation exists. The 1791 
terrestrial (Terr.) habits of each group are categorized as either WR (walking/running) or 1792 
IL (infrequent/labored). The aerial (Aerial) habits of each group are categorized as NV 1793 
(non-volant), IF (infrequent flight), GS (gliding/soaring + flapping), CF (continuous 1794 
flapping), or FB (flap-bounding). For both surface and submerged aquatic habits, the use 1795 
of an appendage pair (FP – foot-propelled, WP – wing-propelled) for steady-state aquatic 1796 
propulsion is indicated by a filled rectangle corresponding to that group, and all diving 1797 
and swimming groups are categorized as either obligate (O) or facultative (F) divers. 1798 
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 1836 

FP WP Rel. FP WP EM Bent Pela Rel.

1 Struthioniformes Struthionidae - - WR NV

2 Rheiformes Rheidae - - WR NV

3 Tinamiformes Tinamidae - - WR IF

4 Casuariiformes Casuariidae - - WR NV

5 Apterygiformes Apterygidae - - WR NV

6 Anhimidae - - WR GS 1 F

7 Anseranatidae Anseranas semipalmata WR CF 1 O

8 Dendrocygna - WR CF 1 O 1 S 1 O

9 Thalassornis leuconotus IL CF 1 O 1 S 1 O

10 Anser - WR CF 1 O

11 Branta - WR CF 1 O

12 Cereopsis novaehollandiae WR CF 1 F

13 Stictonetta  naevosa WR CF 1 O

14 Cyanochen cyanoptera WR CF 1 F

15 Cygnus - WR CF 1 O

16 Coscoroba  coscoroba WR CF 1 O

17 Sarkidiornis - WR CF 1 O

18 Pteronetta hartlaubii WR CF 1 O

19 Oressochen - WR CF 1 F

20 Chloephaga - WR CF 1 F

21 Radjah radjah WR CF 1 O

22 Alopochen aegyptiaca WR CF 1 O

23 Tadorna - WR CF 1 O

24 Plectropterus gambensis WR CF 1 O

25 patachonicus WR IF 1 1 O 1 1 S 1 O

26 pteneres WR NV 1 1 O 1 1 S 1 O

27 brachypterus WR NV 1 1 O 1 1 S 1 O

28 leucocephalus WR NV 1 1 O 1 1 S 1 O

29 Lophonetta specularioides WR CF 1 O

30 Speculanas specularis WR CF 1 O

31 Cairina moschata WR CF 1 O

32 pulchellus IL CF 1 O ? ? S 1 F

33 coromandelianus IL CF 1 O ? ? S 1 F

34 auritus IL CF 1 O ? ? S 1 F

35 Callonetta leucophrys WR CF 1 O

36 Aix - WR CF 1 O 1 1 S 1 F

37 Chenonetta - WR CF 1 O

38 Amazonetta brasilensis WR CF 1 O

39 Hymenolaimus malacorhynchos WR CF 1 O 1 1 S 1 O

40 Merganetta armata WR CF 1 O 1 S 1 O

41 Salvadorina waigiuensis WR CF 1 O 1 S 1 O

42 Sibirionetta formosa WR CF 1 O

43 Spatula - WR CF 1 O 1 1 S 1 F

44 Mareca - WR CF 1 O 1 1 S 1 F

45 Anas - WR CF 1 O 1 1 S 1 F

46 capensis WR CF 1 O ? ? S 1 ?

47 aucklandica WR NV 1 O 1 1 S 1 O

48 nesiotis WR NV 1 O ? ? S 1 ?

49 chlorotis WR CF 1 O 1 1 S 1 O

50 Malacorhynchus membranaceus WR CF 1 O

51 Marmaronetta angustirostris WR CF 1 O ? ? S 1 ?

52 Rhodonessa  caryophyllacea WR CF 1 O ? ? S 1 ?

53 Asarcornis scutulata WR CF 1 O ? ? S 1 F

54 Netta - WR CF 1 O 1 S 1 O

55 Aythya - IL CF 1 O 1 S 1 O

56 Polysticta stelleri WR CF 1 O 1 1 S 1 O

57 Somateria - WR CF 1 1 O 1 1 S 1 O

58 Histrionicus histrionicus WR CF 1 O 1 1 S 1 O

59 perspicillata IL CF 1 O 1 1 S 1 O

60 fusca IL CF 1 O 1 1 S 1 O

61 deglandi IL CF 1 O 1 1 S 1 O

62 stejnegeri IL CF 1 O 1 1 S 1 O

63 nigra IL CF 1 O 1 S 1 O

64 americana IL CF 1 O 1 S 1 O

65 Clangula hyemalis IL CF 1 O 1 1 S 1 1 O
66 Bucephala - IL CF 1 O 1 S 1 O
67 Mergellus albellus IL CF 1 O 1 S 1 1 O

68 Lophodytes cucullatus IL CF 1 O 1 S 1 1 O

69 Mergus - IL CF 1 O 1 S 1 1 O

70 Heteronetta atricapilla WR CF 1 O 1 S 1 O

71 Nomonyx dominicus IL CF 1 O 1 S 1 O

72 Oxyura - IL CF 1 O 1 S 1 O

73 Biziura lobata IL CF 1 O 1 S 1 O

74 Galliformes - - - WR IF

75 Phoenicopteriformes - - - WR GS 1 O
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76 Rollandia rolland IL CF 1 O 1 S 1 1 O

77 Rollandia microptera IL NV 1 O 1 S 1 1 O

78 Tachybaptus - IL CF 1 O 1 S 1 1 O

79 Podilymbus podiceps IL CF 1 O 1 S 1 1 O

80 Podilymbus gigas IL NV 1 O 1 S 1 1 O

81 Poliocephalus - IL CF 1 O 1 S 1 1 O

82 Podiceps - IL CF 1 O 1 S 1 1 O

83 Podiceps taczanowskii IL NV 1 O 1 S 1 1 O

84 Aechmophorus - IL CF 1 O 1 S 1 1 O

85 Columbiformes Columbidae - - WR GS

86 Mesitornithiformes Mesitornithidae - - WR IF

87 Pterocliformes Pteroclidae - - WR CF

88 Otidiformes Otididae - - WR CF

89 Musophagiformes Musophagidae - - WR IF

90 Cuculiformes Cuculidae - - WR GS, IF

91 Podargidae - - WR CF

92 Caprimulgidae - - IL GS

93 Nyctibiidae Nyctibius - IL CF

94 Steatornithidae Steatornis caripensis IL CF

95 Aegothelidae Aegotheles - ? ?

96 Apodidae - - IL GS

97 Hemiprocnidae Hemiprocne - IL GS

98 Trochilidae - - IL CF

99 Opisthocomidiformes Opisthocomidae Opisthocomus hoazin WR IF 1 F

100 Sarothruridae - - WR IF 1 ?

101 - - WR IF 1 O ? ? S 1 F

102 Fulica - WR IF 1 O 1 S 1 O

103 Heliornithidae - - WR IF 1 O ? ? S 1 F

104 Aramiidae Aramus   guarauna WR CF 1 F

105 Psophiidae - - WR IF

106 Gruiidae - - WR GS 1 F

107 Chionidae Chionis - WR CF

108 Pluvianellidae Pluvianellus socialis WR CF

109 Burhinidae - - WR CF

110 Pluvianidae Pluvianus aegyptius WR CF

111 Himantopus - WR CF

112 Cladorhynchus - WR CF 1 F

113 Recurvirostra - WR CF 1 O

114 Ibidorhynchidae Ibidorhyncha struthersii WR CF 1 ? O

115 Haematopodidae - - WR CF ? ?

116 Charadriidae - - WR CF 1 F

117 Pedionomidae - - WR CF

118 Thinocoridae - - WR CF

119 Rostratulidae - - WR CF 1 ?

120 Jacanidae - - WR CF 1 F

121 Bartramia longicauda WR CF

122 Numenius WR CF

123 Limosa WR CF 1 F

124 Arenaria WR CF 1 F

125 Prosobonia WR CF

126 Calidris WR CF 1 F

127 Limnodromus WR CF 1 F

128 Lymnocryptes minimus WR CF

129 Scolopax WR CF

130 Coenocorypha WR CF

131 Gallinago WR CF 1 F

132 Xenus cinereus WR CF

133 Phalaropus WR CF 1 O

134 Actitis WR CF 1 F

135 Tringa WR CF 1 F

136 Turnicidae - - WR IF

137 Dromadidae - - WR CF

138 Glareolidae - - WR CF

139 Stercocariidae - - WR GS 1 O

140 Alle alle IL CF 1 O 1 S 1 O

141 Uria - IL CF 1 O 1 S 1 O

142 Alca torda IL CF 1 O 1 S 1 O

143 Cepphus - WR CF 1 1 O 1 1 S 1 1 O

144 Brachyramphus - IL CF 1 O 1 S 1 O

145 Synthliboramphus - IL CF 1 O 1 S 1 O

146 Ptychoramphus aleuticus IL CF 1 O 1 S 1 O

147 Aethia - IL CF 1 O 1 S 1 O

148 Cerorhinca - WR CF 1 O 1 S 1 O

149 Fratercula - WR CF 1 O 1 S 1 O

150 Laridae - - WR GS 1 O ? P 1 1 O

151 Rhynochetidae Rhynochetos jubatus WR NV

152 Eurypygidae Eurypyga helias WR GS

153 Phaethontiformes Phaethontidae Phaethon - IL GS ? ? ? ? P 1 F

154 Gaviiformes Gaviidae Gavia - IL CF 1 O 1 S 1 1 O

155 Sphenisciformes Spheniscidae - - WR NV 1 O 1 S 1 O
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156 Diomedeidae - - WR GS 1 O 1 1 S, P 1 F

157 Oceanitidae - - WR GS 1 O 1 1 S 1 F

158 Hydrobatidae - - WR GS 1 O 1 1 S 1 F

159 Macronectes - WR GS 1 O 1 1 S, P 1 F

160 Fulmarus - IL GS 1 O 1 1 S, P 1 F

161 Thalassoica antarctica IL GS 1 O 1 1 S, P 1 O

162 Daption capense IL GS 1 O 1 1 S, P 1 O

163 Pagodroma nivea IL GS 1 O 1 1 S, P 1 O

164 Aphrodroma brevirostris IL GS 1 O 1 1 S, P 1 ?

165 Pterodroma - IL GS 1 O 1 1 S, P 1 ?

166 Halobaena caerulea IL GS 1 O 1 1 S, P 1 F

167 Pachyptila - IL GS 1 O 1 1 S, P 1 F

168 Bulweria - IL GS 1 O 1 1 ? 1 ?

169 Pseudobulweria - IL GS 1 O 1 1 ? 1 ?

170 Procellaria - IL GS 1 O 1 1 S, P 1 O

171 Calonectris - IL GS 1 O 1 1 S, P 1 O

172 Ardenna - IL GS 1 O 1 1 S, P 1 O

173 Puffinus - IL GS 1 O 1 1 S, P 1 O

174 Pelecanoides - IL CF 1 O ? 1 S, P 1 O

175 Ciconiidae - - WR GS

176 Fregatidae - - IL GS

177 Sulidae - - IL GS 1 O 1 1 S, P 1 O

178 Anhingidae - - IL GS 1 O 1 S 1 O

179 Phalacrocoraxidae - - IL GS 1 O 1 S 1 1 O

180 - harrisi IL NV 1 O 1 S 1 1 O

181 Pelecanidae Pelecanus - WR GS 1 O ? ? S, P 1 F

182 Balaenicipitidae Balaeniceps rex WR GS

183 Scopidae Scopus umbretta WR GS

184 Ardeidae - - WR GS 1 F

185 Threskiornithidae - - WR GS  
186 Cathartiformes Cathartidae - - WR GS  
187 Accipitriformes - - - WR GS

188 Pandionidae Pandion - WR GS 1 F ? 1 P 1 1 O

189 Strigiformes - - - WR GS

190 Coliiformes Coliidae - - WR CF

191 Leptosomiformes Leptosomidae Leptosomus discolor WR ?

192 Trogoniformes Trogonidae - - WR CF

193 Bucerotiformes - - - WR CF, IF

194 Todidae - - WR CF

195 Momotidae - - WR CF

196 Alcedo - IL CF 1 P 1 1 O

197 Ceyx - IL CF ? P ? ? ?

198 Corythornis - IL CF 1 P 1 1 O

199 Corythornis madagascariensis IL CF

200 Ispidina - IL CF

201 Lacedo pulchella IL CF

202 Dacelo - IL CF

203 Clytoceyx rex IL CF

204 Cittura cyanotis IL CF

205 Pelargopsis - IL CF 1 P 1 1 O

206 Halcyon - IL CF ? P ? ? ?

207 Todiramphus - IL CF ? P ? ? ?

208 Caridonax fulgidus IL CF ? P ? ? ?

209 Melidora macrorrhina IL CF

210 Actenoides - IL CF

211 Syma - IL CF

212 Tanysiptera - IL CF

213 Megaceryle - IL CF 1 P 1 1 O

214 Ceryle rudis IL CF 1 P 1 1 O

215 Chloroceryle - IL CF 1 P 1 1 O

216 Meropidae - - WR CF

217 Coraciidae - - WR CF

218 Brachypteraciidae - - WR CF

219 Galbuliformes - - - WR CF

220 Piciformes - - - WR CF, FB

221 Cariamiformes Cariamidae Cariama - WR IF

222 Falconiformes Falconidae - - WR GS

223 - - - WR CF

224 - Strigops habroptila WR NV

225 - - - WR CF, FB, GS

226 cinclus WR CF 1 O 1 S 1 O

227 pallasii WR CF 1 O 1 S 1 O

228 mexicanus WR CF 1 O 1 S 1 O

229 leucocephalus WR CF 1 ?

230 schulzii WR CF ? ?
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Table 2: The relative advantages and disadvantages of foot-propelled and wing-1839 
propelled diving. References are to papers introducing the preceding hypothesis or to 1840 
relevant discussions and tests of the preceding hypothesis. 1841 
 1842 

 ADVANTAGES DISADVANTAGES 

 
FOOT-PROPULSION 

 
FP A1: Thrust is produced primarily 
through drag, which is effective at 
low swim speeds and for hovering 
during bottom-feeding (Lovvorn 
and Liggins, 2002; Ribak et al., 
2010). 

 
FP D1: Thrust is produced primarily 
through drag, which is ineffective at 
high swim speeds and inefficient 
across speeds (Fish, 2016; Johansson 
and Norberg, 2001; Lovvorn and 
Liggins, 2002; Richman and 
Lovvorn, 2008) 
 
FP D2: Thrust is only produced 
during extension of the hindlimb, 
leading to unsteadiness and therefore 
lowered swimming efficiency (Heath 
et al., 2006; Lovvorn and Liggins, 
2002; Richman and Lovvorn, 2008). 
 
FP D3: Foot-propulsion favors 
increased mass in the pelvic girdle to 
power the feet underwater, 
increasing flight costs (Gadow, 
1902; Storer, 1960; Watanabe et al., 
2011). 
 

 
WING-PROPULSION 

 
WP A1: Thrust is produced through 
lift, which is efficient across swim 
speeds and allows high swim speeds 
(Johansson and Aldrin, 2002; 
Johansson and Norberg, 2001; 
Lovvorn, 2001; Lovvorn and 
Liggins, 2002). 
 
WP A2: Thrust is produced during 
both half-strokes, reducing 
unsteadiness and thereby increasing 
swimming efficiency (Johansson 
and Aldrin, 2002; Lapsansky and 
Tobalske, 2019; Lovvorn, 2001; 
Lovvorn and Liggins, 2002) 
 
WP A3: Thrust is produced by the 
same muscles which power flight, 
circumventing a conflict of muscle 
mass allocation (Watanabe et al., 
2011).  

 
WP D1: Thrust is produced primarily 
through lift, which is ineffective at 
low swim speeds (Richman and 
Lovvorn, 2008). 
 
WP D2: Wing movements are 
hampered by dense vegetation in 
benthic environments (Richman and 
Lovvorn, 2008; Storer, 1960) 
 
WP D3: Wing-propulsion favors 
increased mass in the pectoral girdle, 
limiting aerial flight capabilities 
(Kovacs and Meyers, 2000; Storer, 
1960) and possibly increasing 
parasite drag (Wilson et al., 2008). 
 
WP D4: Selection for wing-
propelled diving favors reduced 
wing sizes, limiting aerial flight 
capabilities (Bock and von Wahlert, 
1965; Cody, 1973; Elliott et al., 
2013; Kuroda, 1954; Pennycuick, 
1987; Pennycuick, 2008; Rayner, 
1988; Storer, 1960; Thaxter et al., 
2010; Thompson et al., 1998) 
 

 1843 
 1844 
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Table 4: F statistics and P Values of tests for allometric differences in hindlimb 1845 
muscle mass [g] vs. body mass [g] between obligate foot-propelled diving species and 1846 
non-diving species. Values shown are mean ± standard deviation (lower 5% quantile – 1847 
upper 95% quantile) of estimates for 100 trees from the Ericson or Hackett backbone. 1848 
Column pairs separate tests run on the full set of species (“All species”) and those on a 1849 
subset of species represented by genetic data in birdtree.org phylogenies (“Species with 1850 
genetic data”). 1851 
 1852 

  1853 
 1854 
 1855 
 1856 
 1857 
 1858 
 1859 
 1860 
 1861 
 1862 
 1863 
 1864 
 1865 
 1866 
 1867 
 1868 
 1869 
 1870 
 1871 
 1872 
 1873 
 1874 
 1875 
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 1877 
 1878 
 1879 
 1880 
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 1882 
 1883 
 1884 
 1885 
 1886 
 1887 
 1888 



71 
 

 1889 
 1890 
Figure 1: Mass of the muscle in the hindlimb [g] versus body mass [g] for 404 1891 
species of birds. Data are presented on a log-log scale. Non-diving species are shown in 1892 
gray and exclusively foot-propelled divers are shown in purple. Data from Hartman 1893 
(1961).   1894 
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Table 5: F statistics and P Values of tests for allometric differences in pectoralis 1916 
muscle mass [g] vs. body mass [g] between diving species which utilize aquatic wing 1917 
propulsion and non-diving species + exclusively foot-propelled diving species. Values 1918 
shown are mean ± standard deviation (lower 5% quantile – upper 95% quantile) of 1919 
estimates for 100 trees from the Ericson or Hackett backbone. Column pairs separate tests 1920 
run on the full set of species (“All species”) and those on a subset of species represented 1921 
by genetic data in birdtree.org phylogenies (“Species with genetic data”). 1922 
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 1959 
 1960 
Figure 2: Mass of the pectoralis muscle [g] versus body mass [g] for 1,116 species of 1961 
birds. Data are presented on a log-log scale. Non-diving species are shown in gray, wing-1962 
propelled divers in yellow, and exclusively foot-propelled divers in purple. 1963 
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Table 6: F statistics and P Values of tests for allometric differences in 1986 
supracoracoideus muscle mass [g] vs. body mass [g] between diving species which 1987 
utilize aquatic wing propulsion and non-diving species + exclusively foot-propelled 1988 
divers. Values shown are mean ± standard deviation (lower 5% quantile – upper 95% 1989 
quantile) of estimates for 100 trees from the Ericson or Hackett backbone. Column pairs 1990 
separate tests run on the full set of species (“All species”) and those on a subset of 1991 
species represented by genetic data in birdtree.org phylogenies (“Species with genetic 1992 
data”). 1993 
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 2030 
 2031 
Figure 3: Mass of the supracoracoideus muscle [g] versus body mass [g] for 1,116 2032 
species of birds. Data are presented on a log-log scale. Non-diving species are shown in 2033 
gray, wing-propelled divers in yellow, and exclusively foot-propelled divers in purple. 2034 
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Table 7: F statistics and P Values of tests for allometric differences in combined 2057 
pectoral muscle mass (pectoralis + supracoracoideus) [g] vs. body mass [g] between 2058 
exclusively foot-propelled divers and all other species. Values shown are mean ± 2059 
standard deviation (lower 5% quantile – upper 95% quantile) of estimates for 100 trees 2060 
from the Ericson or Hackett backbone. Column pairs separate tests run on the full set of 2061 
species (“All species”) and those on a subset of species represented by genetic data in 2062 
birdtree.org phylogenies (“Species with genetic data”). 2063 
 2064 
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Table 8: F statistics and P Values of tests for allometric differences in combined 2101 
pectoral muscle mass (pectoralis + supracoracoideus) [g] vs. body mass [g] between 2102 
diving species which utilize aquatic wing propulsion and exclusively foot-propelled 2103 
divers. Values shown are mean ± standard deviation (lower 5% quantile – upper 95% 2104 
quantile) of estimates for 100 trees from the Ericson or Hackett backbone. All diving 2105 
species in this dataset were represented by genetic data in birdtree.org phylogenies. 2106 
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Table 9: F statistics and P Values of tests for allometric differences in wing area 2144 
[cm2] vs. body mass [g] between volant species and flightless species. There was 2145 
consistent support for unique intercepts (rows 1 and 2), but not unique slopes (rows 3 and 2146 
4). Values shown are mean ± standard deviation (lower 5% quantile – upper 95% 2147 
quantile) of estimates for 100 trees from the Ericson or Hackett backbone. Column pairs 2148 
separate tests run on the full set of species (“All species”) and those on a subset of 2149 
species represented by genetic data in birdtree.org phylogenies (“Species with genetic 2150 
data”). 2151 
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 2186 
 2187 
Figure 4: Wing area [cm2] versus body mass [g] for 951 species of birds. Data are 2188 
presented on a log-log scale. Non-diving species are shown in gray, wing-propelled 2189 
divers in yellow, exclusively foot-propelled in purple, and flightless species (penguins) in 2190 
green. 2191 
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Table 10: F statistics and P Values of tests for allometric differences in wing area vs. 2213 
body mass between wing-propelled and exclusively foot-propelled divers. Values 2214 
shown are mean ± standard deviation (lower 5% quantile – upper 95% quantile) of 2215 
estimates for 100 trees from the Ericson or Hackett backbone. Column pairs separate tests 2216 
run on the full set of species (“All species”) and those on a subset of species represented 2217 
by genetic data in birdtree.org phylogenies (“Species with genetic data”). 2218 
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Table 11: F statistics and P Values of tests for allometric differences in wing area vs. 2257 
body mass between divers and non-divers. There was consistent support for unique 2258 
intercepts (rows 1 and 2), but not unique slopes (rows 3 and 4). Values shown are mean ± 2259 
standard deviation (lower 5% quantile – upper 95% quantile) of estimates for 100 trees 2260 
from the Ericson or Hackett backbone. Column pairs separate tests run on the full set of 2261 
species (“All species”) and those on a subset of species represented by genetic data in 2262 
birdtree.org phylogenies (“Species with genetic data”). 2263 
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Table 12: F statistics and P Values of tests for allometric differences in wing second 2298 
moment of area vs. wing area between diving and non-divers. Values shown are mean 2299 
± standard deviation (lower 5% quantile – upper 95% quantile) of estimates for 100 trees 2300 
from the Ericson or Hackett backbone. Column pairs separate tests run on the full set of 2301 
species (“All species”) and those on a subset of species represented by genetic data in 2302 
birdtree.org phylogenies (“Species with genetic data”). 2303 
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 2342 
 2343 
Figure 5: Second moment of wing area [dimensionless] versus body mass [g] for 941 2344 
volant species of birds. Body mass is log-transformed, but not second moment of area, 2345 
as this parameter is dimensionless. Exclusively foot-propelled divers are shown in purple, 2346 
non-diving species in gray, volant wing-propelled divers in yellow, and flightless wing-2347 
propelled divers in green. 2348 
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 2369 
 2370 
Figure 6: Average dive duration [s] versus body mass [g] for 127 species of diving 2371 
birds. Data are presented on a log-log scale. Facultative divers are denoted with unfilled 2372 
circles. 2373 
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Appendix 1: Video and scientific references for avian aquatic behavior (see Table 1) 2398 
 2399 
# GROUP DIVING VIDEO REFERENCE  SCIENTIFIC REFERENCES 

1 Struthioniformes - - 
2 Rheiformes - - 
3 Tinamiformes - - 
4 Casuariiformes - - 
5 Apterygiformes - - 
6 Anhimidae - - 
7 Anseranas semipalmata - (Frith and Davies, 1961) 

8 Dendrocynga 

https://www.youtube.com/watch?v=yC6MhSSS2Ao; 
https://www.youtube.com/watch?v=2pTkHZ50i8g; 
https://www.youtube.com/watch?v=GsKM_bbkaD8; 
https://www.youtube.com/watch?v=edowUtOZHPQ  

(Clark, 1978; Johnsgard, 1967; 
Siegfried, 1973a)  

9 Thalassornis https://macaulaylibrary.org/asset/722862  (Johnsgard, 1967) 
10 Anser - - 
11 Branta - - 
12 Cereopsis novaehollandiae - - 
13 Strictonetta naevosa - - 
14 Cyanochen cyanoptera - - 
15 Cygnus - - 
16 Coscoroba coscoroba - - 
17 Sarkidiornis - - 
18 Pteronetta hartlaubii - - 
19 Oressochen - - 
20 Chleophaga - - 
21 Radjah radjah - - 
22 Alopochen aegyptiaca - - 
23 Tadorna - (Düttmann, 1992) 
24 Plectropterus gambensis - - 

25 Tachyeres patchonicus 
https://macaulaylibrary.org/asset/201638591; 
https://macaulaylibrary.org/asset/201350781; 
https://macaulaylibrary.org/asset/201694131  

(Humphrey and Livezey, 1982; 
Livezey and Humphrey, 1983; 
Livezey and Humphrey, 1986; 
Ryan et al., 1988) 

26 Tachyeres pteneres https://macaulaylibrary.org/asset/200864671  

27 Tachyeres brachypterus 

https://macaulaylibrary.org/asset/201795571; 
https://macaulaylibrary.org/asset/201691341; 
https://macaulaylibrary.org/asset/201691351;  
https://macaulaylibrary.org/asset/201686251;  
https://macaulaylibrary.org/asset/201686241  

28 Tachyeres leucocephalus - 
29 Lophonetta specularioides https://macaulaylibrary.org/asset/201713901  - 
30 Speculanas specularis - - 
31 Cairina moschata - - 
32 Nettapus pulchellus - (Nye and Dickman, 2005) 
33 Nettapus coromandelianus - (Porte and Gupta, 2019) 
34 Nettapus auratus - (Johnsgard, 1978) 
35 Callonetta leucophrys - - 

36 Aix 
https://www.youtube.com/watch?v=zNm6V7l5QqU; 
https://www.youtube.com/watch?v=TJDWn_SalpE; 
https://www.youtube.com/watch?v=PiTOi_lcSvw  

(Briggs, 1978; Kear and Johnsgard, 
1968) 

37 Chenonetta https://www.youtube.com/watch?v=u44QVK-OFKQ - 
38 Amazonetta brasilensis - - 

39 Hymenolaimus malacorhynchos 
https://macaulaylibrary.org/video/200914251;  
https://macaulaylibrary.org/video/200911091;  
https://macaulaylibrary.org/asset/201432891  

(Collier and Wakelin, 1996; 
Veltman et al., 1995) 

40 Merganetta armata 
https://macaulaylibrary.org/asset/248895471; 
https://macaulaylibrary.org/asset/201015661; 
https://macaulaylibrary.org/asset/201541621    

(Cerón and Trejo, 2009) 

41 Salvadorina waigiuensis 

https://macaulaylibrary.org/asset/201013481;  
https://macaulaylibrary.org/asset/457911; 
https://macaulaylibrary.org/asset/457910;  
https://macaulaylibrary.org/asset/457909  

(Johnsgard, 1966) 

42 Sibirionetta Formosa - - 

43 Spatula https://www.youtube.com/watch?v=irPv6I0i7q0; 
https://www.youtube.com/watch?v=ZWyErx_kHLo  (Kear and Johnsgard, 1968) 

44 Mareca https://www.youtube.com/watch?v=YE5nR6kUDno   (Kear and Johnsgard, 1968; 
Wishart, 1983) 

https://www.youtube.com/watch?v=yC6MhSSS2Ao
https://www.youtube.com/watch?v=2pTkHZ50i8g;https://www.youtube.com/watch?v=GsKM_bbkaD8
https://www.youtube.com/watch?v=2pTkHZ50i8g;https://www.youtube.com/watch?v=GsKM_bbkaD8
https://www.youtube.com/watch?v=edowUtOZHPQ
https://macaulaylibrary.org/asset/722862
https://macaulaylibrary.org/asset/201638591
https://macaulaylibrary.org/asset/201350781
https://macaulaylibrary.org/asset/201694131
https://macaulaylibrary.org/asset/200864671
https://macaulaylibrary.org/asset/201795571
https://macaulaylibrary.org/asset/201691341
https://macaulaylibrary.org/asset/201691351
https://macaulaylibrary.org/asset/201686251
https://macaulaylibrary.org/asset/201686241
https://macaulaylibrary.org/asset/201713901
https://www.youtube.com/watch?v=zNm6V7l5QqU
https://www.youtube.com/watch?v=TJDWn_SalpE
https://www.youtube.com/watch?v=PiTOi_lcSvw
https://www.youtube.com/watch?v=u44QVK-OFKQ
https://macaulaylibrary.org/video/200914251
https://macaulaylibrary.org/video/200911091
https://macaulaylibrary.org/asset/201432891
https://macaulaylibrary.org/asset/248895471
https://macaulaylibrary.org/asset/201015661
https://macaulaylibrary.org/asset/201541621
https://macaulaylibrary.org/asset/201013481
https://macaulaylibrary.org/asset/457911
https://macaulaylibrary.org/asset/457910
https://macaulaylibrary.org/asset/457909
https://www.youtube.com/watch?v=irPv6I0i7q0
https://www.youtube.com/watch?v=ZWyErx_kHLo
https://www.youtube.com/watch?v=YE5nR6kUDno
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45 Anas sp. https://www.youtube.com/watch?v=i_xzhHoZ3_k;  
https://www.youtube.com/watch?v=-oTaLr1LZCY  

(Brodsky, 1985; C K Myline, 1954; 
Kear and Johnsgard, 1968; 
McCanch, 2012; Miller, 1983; 
Paulus, 1988)  

46 Anas capensis - (Kear and Johnsgard, 1968; 
Winterbottom, 1974) 

47 Anas aucklandica - (Weller, 1975) 
48 Anas nesiotis - - 
49 Anas chlorotis https://macaulaylibrary.org/asset/201072941  (Weller, 1974) 
50 Malacorhynchus membranaceus - - 
51 Marmaronetta angustirostris - (Green, 1998) 
52 Rhodonessa caryophyllacea - (Kear, 2005) 
53 Asarcornis scutulata - (Green, 1993) 

54 Netta 
https://macaulaylibrary.org/video/201121841; 
https://macaulaylibrary.org/asset/201915681; 
https://macaulaylibrary.org/video/201922851  

(Amat, 1984; Kear, 2005) 

55 Aythya 
https://macaulaylibrary.org/asset/227012291; 
https://macaulaylibrary.org/asset/305119421; 
https://macaulaylibrary.org/asset/201012201   

(Butler and Woakes, 1979; Cronan, 
1957; Draidi et al., 2019; Lalas, 
1983; Siegfried, 1976; Stephenson 
et al., 1986) 

56 Polysticta stelleri https://macaulaylibrary.org/asset/201367751; 
https://macaulaylibrary.org/asset/201229011  (Laubhan and Metzner, 1999) 

57 Somateria 
https://macaulaylibrary.org/asset/201817441; 
https://macaulaylibrary.org/asset/201374451; 
https://macaulaylibrary.org/asset/201369051  

(Bustnes and Lønne, 1997; Gough 
et al., 2015; Guillemette et al., 
2004; Heath et al., 2006; 
MacCharles, 1997) 

58 Histrionicus histionicus 

https://macaulaylibrary.org/asset/234548481; 
https://macaulaylibrary.org/asset/234546781;  
https://macaulaylibrary.org/asset/201845311; 
https://macaulaylibrary.org/asset/201827721  

(Goudie, 2009; Mittelhauser et al., 
2008; Townsend, 1909) 

59 Melanitta perspicillata 
https://macaulaylibrary.org/asset/286905701; 
https://macaulaylibrary.org/asset/216453321; 
https://www.youtube.com/watch?v=sufoZq2yHpc  

(Beauchamp, 1992; Humphrey, 
1957; Humphrey, 1957; Kaiser et 
al., 2006; Lewis, 2005; Lovvorn et 
al., 2013; Mullarney, 1983; 
Townsend, 1909) 

60 Melanitta fusca 
https://macaulaylibrary.org/asset/201494461; 
https://macaulaylibrary.org/asset/201427121; 
https://macaulaylibrary.org/asset/200835311;  

61 Melanitta deglandi 
https://macaulaylibrary.org/asset/276504641; 
https://macaulaylibrary.org/asset/201465151; 
https://www.youtube.com/watch?v=vvOvB_etaJ4  

62 Melanitta stejnegeri https://macaulaylibrary.org/asset/201380811  
63 Melanitta nigra https://macaulaylibrary.org/asset/271088361 

64 Melanitta americana 
https://macaulaylibrary.org/asset/282321981; 
https://macaulaylibrary.org/asset/275333321; 
https://macaulaylibrary.org/asset/201363501  

65 Clangula hyemalis 
https://www.youtube.com/watch?v=oQxtr3AMbw; 
https://www.youtube.com/watch?v=QbftwiB7m1g; 
https://macaulaylibrary.org/video/201365381  

(Reynolds, 1987; Snell, 1984) 

66 Bucephala 
https://macaulaylibrary.org/asset/283243771; 
https://macaulaylibrary.org/asset/292734141; 
https://macaulaylibrary.org/asset/312220431   

(Beauchamp, 1992; Bent, 1919; 
Heintzelman, 1963; Nilsson, 1972) 

67 Mergellus albellus 
https://macaulaylibrary.org/video/201946481; 
https://macaulaylibrary.org/video/201376451; 
https://macaulaylibrary.org/asset/417976   

(Nilsson, 1970; Nilsson, 1974; 
Savitskii and Matishov, 2011) 

68 Lophodytes cucullatus 
https://macaulaylibrary.org/asset/484408; 
https://macaulaylibrary.org/asset/475202; 
https://macaulaylibrary.org/asset/306521581   

(Brooks, 1945) 

69 Mergus 

https://macaulaylibrary.org/asset/201082881; 
https://macaulaylibrary.org/asset/483951; 
https://macaulaylibrary.org/asset/479854; 
https://macaulaylibrary.org/video/201481451   

(Nilsson, 1970; White, 1957) 

70 Heteronetta atricapilla - (Weller, 1968) 

71 Nomonyx dominicus https://macaulaylibrary.org/asset/410587; 
https://macaulaylibrary.org/asset/410588  

(Goodman et al., 2017; Jenni, 1969; 
Jenni and Gambs, 1974) 

72 Oxyura 
https://macaulaylibrary.org/asset/475156; 
https://macaulaylibrary.org/asset/400196; 
https://macaulaylibrary.org/asset/201413661  

(Lalas, 1983; Siegfried, 1973b; 
Siegfried, 1976; Tome and 
Wrubleski, 1988)  

73 Biziura lobata https://macaulaylibrary.org/video/201638021; 
https://macaulaylibrary.org/asset/244893131  (Osterrieder et al., 2014) 

74 Galliformes - - 
75 Phoenicopteriformes - - 

https://www.youtube.com/watch?v=i_xzhHoZ3_k
https://www.youtube.com/watch?v=-oTaLr1LZCY
https://macaulaylibrary.org/asset/201072941
https://macaulaylibrary.org/video/201121841
https://macaulaylibrary.org/asset/201915681
https://macaulaylibrary.org/video/201922851
https://macaulaylibrary.org/asset/227012291
https://macaulaylibrary.org/asset/305119421
https://macaulaylibrary.org/asset/201012201
https://macaulaylibrary.org/asset/201367751
https://macaulaylibrary.org/asset/201229011
https://macaulaylibrary.org/asset/201817441
https://macaulaylibrary.org/asset/201374451
https://macaulaylibrary.org/asset/201369051
https://macaulaylibrary.org/asset/234548481
https://macaulaylibrary.org/asset/234546781
https://macaulaylibrary.org/asset/201845311
https://macaulaylibrary.org/asset/201827721
https://macaulaylibrary.org/asset/286905701
https://macaulaylibrary.org/asset/216453321
https://www.youtube.com/watch?v=sufoZq2yHpc
https://macaulaylibrary.org/asset/201494461
https://macaulaylibrary.org/asset/201427121
https://macaulaylibrary.org/asset/200835311
https://macaulaylibrary.org/asset/276504641
https://macaulaylibrary.org/asset/201465151
https://www.youtube.com/watch?v=vvOvB_etaJ4
https://macaulaylibrary.org/asset/201380811
https://macaulaylibrary.org/asset/271088361
https://macaulaylibrary.org/asset/282321981
https://macaulaylibrary.org/asset/275333321
https://macaulaylibrary.org/asset/201363501
https://www.youtube.com/watch?v=oQxtr3AMbw
https://www.youtube.com/watch?v=QbftwiB7m1g
https://macaulaylibrary.org/video/201365381
https://macaulaylibrary.org/asset/283243771
https://macaulaylibrary.org/asset/292734141
https://macaulaylibrary.org/asset/312220431
https://macaulaylibrary.org/video/201946481
https://macaulaylibrary.org/video/201376451
https://macaulaylibrary.org/asset/417976
https://macaulaylibrary.org/asset/484408
https://macaulaylibrary.org/asset/475202
https://macaulaylibrary.org/asset/306521581
https://macaulaylibrary.org/asset/201082881
https://macaulaylibrary.org/asset/483951
https://macaulaylibrary.org/asset/479854
https://macaulaylibrary.org/video/201481451
https://macaulaylibrary.org/asset/410587
https://macaulaylibrary.org/asset/410588
https://macaulaylibrary.org/asset/475156
https://macaulaylibrary.org/asset/400196
https://macaulaylibrary.org/asset/201413661
https://macaulaylibrary.org/video/201638021
https://macaulaylibrary.org/asset/244893131
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76 Rollandia rolland 
https://macaulaylibrary.org/asset/201287931;  
https://macaulaylibrary.org/asset/201287921; 
https://macaulaylibrary.org/asset/201287891  

(Livezey, 1989a; Roots, 2006) 

77 Rollandia microptera https://macaulaylibrary.org/video/201251181; 
https://macaulaylibrary.org/asset/201260961  (Livezey, 1989a; Roots, 2006) 

78 Tachybaptus 
https://macaulaylibrary.org/asset/221972771; 
https://macaulaylibrary.org/asset/268994431;  
https://macaulaylibrary.org/asset/201939411  

(Jenni, 1969; Ladhams, 1968; 
Ropert-Coudert and Kato, 2009) 

79 Podilymbus podiceps https://macaulaylibrary.org/asset/292561231; 
https://macaulaylibrary.org/asset/287918701  

(Bleich, 1975; Jenni and Gambs, 
1974) 

80 Podilymbus gigas - (Livezey, 1989a; Roots, 2006) 

81 Poliocephalus  
https://macaulaylibrary.org/asset/257573401; 
https://macaulaylibrary.org/asset/201881751; 
https://macaulaylibrary.org/asset/201444461  

(Ropert-Coudert and Kato, 2009) 

82 Podiceps sp. https://macaulaylibrary.org/video/201701141; 
https://macaulaylibrary.org/asset/292561221  

(Dow, 1964; Jehl, 1988; 
Kloskowski, 2004; Lalas, 1983) 

83 Podiceps taczanowskii 
https://macaulaylibrary.org/asset/200954771; 
https://macaulaylibrary.org/asset/201104471; 
https://macaulaylibrary.org/asset/201948661  

 

84 Aechmophorus 
https://macaulaylibrary.org/asset/215105421; 
https://macaulaylibrary.org/asset/201754141; 
https://macaulaylibrary.org/asset/201450211  

(Forbes and Sealy, 1988; 
Lawrence, 1950) 

85 Columbidae - - 
86 Mesitornithidae - - 
87 Pteroclidae - - 
88 Otididae - - 
89 Musophagidae - - 
90 Cuculidae - - 
91 Podargidae - - 
92 Caprimulgidae - - 
93 Nyctibius - - 
94 Steatornis caripensis - - 
95 Aegotheles - - 
96 Apodidae - - 
97 Hemiprocne - - 
98 Trochilidae - - 

99 Opisthocomus hoazin https://www.youtube.com/watch?v=wy7coZyvyW4;  
http://www.oiseaux-birds.com/card-hoatzin.html  (Abourachid et al., 2019) 

100 Sarothruridae - (Taylor, 1994) 

101 Rallidae sp. https://macaulaylibrary.org/asset/201796091; 
https://macaulaylibrary.org/asset/435299  

(Fournier and Krementz, 2018; 
Wintle and Taylor, 1993) 

102 Fulica 

https://macaulaylibrary.org/asset/222511281; 
https://macaulaylibrary.org/asset/220625601; 
https://macaulaylibrary.org/asset/201566061; 
https://macaulaylibrary.org/asset/261794001; 
https://macaulaylibrary.org/video/201537351  

(Conigliaro et al., 2011; Dow, 
1964; Fortunati and Battisti, 2011; 
García et al., 2008; Ryan and 
Dinsmore, 1980) 

103 Heliornithidae - (Alvarez del Toro, 1971) 
104 Aramus guaruana - (Walkinshaw, 1982) 
105 Psophiidae - - 

106 Gruiidae https://www.youtube.com/watch?v=EMEEclvmMuA; 
https://www.youtube.com/watch?v=p4MD_63_O3s  - 

107 Chionis - (Murphy, 1936) 
108 Pluvianellus socialis - - 
109 Burhinidae - - 
110 Pluvianus aegyptius - - 
111 Himantopus - (Hamilton, 1975) 
112 Cladorhynchus https://macaulaylibrary.org/asset/201726521 - 

113 Recurvirostra https://www.youtube.com/watch?v=RZUeeE_xmV8; 
https://macaulaylibrary.org/asset/201737631 

(Gyug and Weir, 2017; Hamilton, 
1975) 

114 Ibidorhyncha struthersii - (Ye et al., 2013) 

115 Haematopodidae 
https://community.rspb.org.uk/chat/f/the-tea-
rooms/106219/oystercatcher-swimming?pifragment-
4313=1  

- 

116 Charadriidae https://vimeo.com/351934031 

(Handbook of Australian, New 
Zealand & Antarctic birds, 1990, 
929) 

117 Pedionomidae - - 
118 Thinocoridae - - 

119 Rostratulidae https://www.10000birds.com/australian-painted-snipe-
breeding-near-broome.htm; 

(Hassell and Rogers, 2002; Rogers 
et al., 2003; Thomas, 2011) 

https://macaulaylibrary.org/asset/201287931
https://macaulaylibrary.org/asset/201287921
https://macaulaylibrary.org/asset/201287891
https://macaulaylibrary.org/video/201251181
https://macaulaylibrary.org/asset/201260961
https://macaulaylibrary.org/asset/221972771
https://macaulaylibrary.org/asset/268994431
https://macaulaylibrary.org/asset/201939411
https://macaulaylibrary.org/asset/292561231
https://macaulaylibrary.org/asset/287918701
https://macaulaylibrary.org/asset/257573401
https://macaulaylibrary.org/asset/201881751
https://macaulaylibrary.org/asset/201444461
https://macaulaylibrary.org/video/201701141
https://macaulaylibrary.org/asset/292561221
https://macaulaylibrary.org/asset/200954771
https://macaulaylibrary.org/asset/201104471
https://macaulaylibrary.org/asset/201948661
https://macaulaylibrary.org/asset/215105421
https://macaulaylibrary.org/asset/201754141
https://macaulaylibrary.org/asset/201450211
https://www.youtube.com/watch?v=wy7coZyvyW4
http://www.oiseaux-birds.com/card-hoatzin.html
https://macaulaylibrary.org/asset/201796091
https://macaulaylibrary.org/asset/435299
https://macaulaylibrary.org/asset/222511281
https://macaulaylibrary.org/asset/220625601
https://macaulaylibrary.org/asset/201566061
https://macaulaylibrary.org/asset/261794001
https://macaulaylibrary.org/video/201537351
https://www.youtube.com/watch?v=EMEEclvmMuA
https://www.youtube.com/watch?v=p4MD_63_O3s
https://macaulaylibrary.org/asset/201726521
https://www.youtube.com/watch?v=RZUeeE_xmV8
https://macaulaylibrary.org/asset/201737631
https://community.rspb.org.uk/chat/f/the-tea-rooms/106219/oystercatcher-swimming?pifragment-4313=1
https://community.rspb.org.uk/chat/f/the-tea-rooms/106219/oystercatcher-swimming?pifragment-4313=1
https://community.rspb.org.uk/chat/f/the-tea-rooms/106219/oystercatcher-swimming?pifragment-4313=1
https://vimeo.com/351934031
https://www.10000birds.com/australian-painted-snipe-breeding-near-broome.htm
https://www.10000birds.com/australian-painted-snipe-breeding-near-broome.htm


88 
 

https://macaulaylibrary.org/asset/71787301; 
https://macaulaylibrary.org/asset/47796051  

120 Jacanidae https://macaulaylibrary.org/asset/479197; 
https://macaulaylibrary.org/asset/264524381  

(Miller, 1931; Tarboton and Fry, 
1986) 

121 Bartramia longicauda - - 
122 Numenius - - 

123 Limosa - (Gratto-Trevor, 2020; McCaffery 
and Gill, 2020; Tufts, 1986) 

124 Arenaria - (John, 1980; Thompson, 1973) 
125 Prosobonia -  
126 Calidris - (Wheeler, 1962) 

127 Limnodromus https://www.youtube.com/watch?v=BXOs647QA4M; 
https://macaulaylibrary.org/asset/333067251 - 

128 Limnocryptes minimus https://samalij.wixsite.com/samsphotopoetry/single-
post/2018/12/24/jack-snipe-swimming-on-the-sea  - 

129 Scolopax - - 
130 Coenocorypha - - 
131 Gallingo - (Bowles, 1918) 
132 Xenus cinereus - (Blokhin, 2004) 

133 Phalaropus 

https://macaulaylibrary.org/asset/320923421; 
https://macaulaylibrary.org/asset/297998451; 
https://macaulaylibrary.org/asset/320937541; 
https://macaulaylibrary.org/asset/201470231  

(Colwell and Oring, 1988; King, 
1971; Mercier and Gaskin, 1985; 
Obst et al., 1996) 

134 Actitis - (Murie, 1934; Reed et al., 2020; 
Sutton, 1925) 

135 Tringa https://faculty.ucr.edu/~chappell/INW/birds2/willet.shtml; 
https://macaulaylibrary.org/asset/192850971  

(Cadwalader, 1938; Ingram and 
Salmon, 1942; Northwood, 1951) 

136 Turnicidae - - 
137 Dromadidae - - 
138 Glareolidae - - 
139 Stercocariidae - - 
140 Alle alle https://macaulaylibrary.org/asset/201226671  (Harding et al., 2009) 

141 Uria 

https://elifesciences.org/articles/55774; 
https://macaulaylibrary.org/asset/201479271; 
https://macaulaylibrary.org/asset/270060251; 
https://www.youtube.com/watch?v=nbnJsc-GPaA  

(Evans et al., 2013; Hedd et al., 
2009; Mehlum et al., 2001; 
Takahashi et al., 2008; Tremblay et 
al., 2003; Wanless et al., 1988) 

142 Alca torda https://macaulaylibrary.org/asset/213447051; 
https://macaulaylibrary.org/asset/201229751  

(Paredes et al., 2008; Shoji et al., 
2015a) 

143 Cepphus https://macaulaylibrary.org/asset/201298791; 
https://macaulaylibrary.org/asset/201483831  

(Clowater and Burger, 1994; Duffy 
et al., 1987; Masden et al., 2013; 
Shoji et al., 2015b) 

144 Brachyramphus 

https://macaulaylibrary.org/asset/201438491; 
https://macaulaylibrary.org/asset/200871991;  
https://macaulaylibrary.org/asset/201469721;   
https://macaulaylibrary.org/asset/201469711  

(Henkel et al., 2004; Thoresen, 
1989) 

145 Synthliboramphus https://macaulaylibrary.org/asset/298753421;  
https://macaulaylibrary.org/asset/201497541  (Elliott et al., 2010) 

146 Ptychoramphus aleuticus - (Elliott et al., 2010) 

147 Aethia https://macaulaylibrary.org/asset/201387021;  
https://macaulaylibrary.org/asset/425993   

148 Cerorhinca https://macaulaylibrary.org/asset/201469941; 
https://macaulaylibrary.org/asset/449444  (Kuroki et al., 2003) 

149 Fratercula https://macaulaylibrary.org/asset/270051441; 
https://macaulaylibrary.org/asset/483751  (Shoji et al., 2015a; Spencer, 2012) 

150 Laridae 
https://www.youtube.com/watch?v=n1woCgYPS8c; 
https://www.youtube.com/watch?v=pbi-DNrbfPI; 
https://www.youtube.com/watch?v=f0RSfoEFKvU   

(Baptist and Leopold, 2010; Taylor, 
1983; Verbeek, 1977) 

151 Rhynochetos jubatus - - 
152 Eurypyga helias - - 

153 Phaethon - (Corre, 1997; Sommerfeld and 
Hennicke, 2010)  

154 Gavia 

https://movie.biologists.com/video/10.1242/jeb.168831/vi
deo-1; 
https://macaulaylibrary.org/asset/167382711; 
https://macaulaylibrary.org/asset/168531151  

(Clifton and Biewener, 2018; 
Polak, 2007; Townsend, 1924)  

155 Spheniscidae https://macaulaylibrary.org/asset/201339311;  
https://macaulaylibrary.org/asset/281567361  

(Culik and Wilson, 1994; Hull, 
2000, 200; Kato et al., 2008; 
Mattern et al., 2007; Mills, 2000; 
Rey et al., 2013; Ropert-Coudert et 

https://macaulaylibrary.org/asset/71787301
https://macaulaylibrary.org/asset/47796051
https://macaulaylibrary.org/asset/479197
https://macaulaylibrary.org/asset/264524381
https://www.youtube.com/watch?v=BXOs647QA4M
https://macaulaylibrary.org/asset/333067251
https://samalij.wixsite.com/samsphotopoetry/single-post/2018/12/24/jack-snipe-swimming-on-the-sea
https://samalij.wixsite.com/samsphotopoetry/single-post/2018/12/24/jack-snipe-swimming-on-the-sea
https://macaulaylibrary.org/asset/320923421
https://macaulaylibrary.org/asset/297998451
https://macaulaylibrary.org/asset/320937541
https://macaulaylibrary.org/asset/201470231
https://faculty.ucr.edu/%7Echappell/INW/birds2/willet.shtml
https://macaulaylibrary.org/asset/192850971
https://macaulaylibrary.org/asset/201226671
https://elifesciences.org/articles/55774
https://macaulaylibrary.org/asset/201479271
https://macaulaylibrary.org/asset/270060251
https://www.youtube.com/watch?v=nbnJsc-GPaA
https://macaulaylibrary.org/asset/213447051
https://macaulaylibrary.org/asset/201229751
https://macaulaylibrary.org/asset/201298791
https://macaulaylibrary.org/asset/201483831
https://macaulaylibrary.org/asset/201438491
https://macaulaylibrary.org/asset/200871991
https://macaulaylibrary.org/asset/201469721
https://macaulaylibrary.org/asset/201469711
https://macaulaylibrary.org/asset/298753421
https://macaulaylibrary.org/asset/201497541
https://macaulaylibrary.org/asset/201387021
https://macaulaylibrary.org/asset/425993
https://macaulaylibrary.org/asset/201469941
https://macaulaylibrary.org/asset/449444
https://macaulaylibrary.org/asset/270051441
https://macaulaylibrary.org/asset/483751
https://www.youtube.com/watch?v=n1woCgYPS8c
https://www.youtube.com/watch?v=pbi-DNrbfPI
https://www.youtube.com/watch?v=f0RSfoEFKvU
https://movie.biologists.com/video/10.1242/jeb.168831/video-1
https://movie.biologists.com/video/10.1242/jeb.168831/video-1
https://macaulaylibrary.org/asset/167382711
https://macaulaylibrary.org/asset/168531151
https://macaulaylibrary.org/asset/201339311
https://macaulaylibrary.org/asset/281567361
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al., 2018; Ryan et al., 2007; Sato, 
2004; Tremblay and Cherel, 2003) 

156 Diomedidae https://www.youtube.com/watch?v=tMTfr2NCvdY  

(Bentley et al., 2021; Harper, 1987; 
Harper et al., 1985; Harrison et al., 
1991; Hedd et al., 1997; Huin and 
Prince, 1997; Kazama et al., 2019; 
Oatley, 1979; Prince et al., 1994; 
Sakamoto et al., 2009; Voisin, 
1981) 

157 Oceanitidae - 
(Handbook of Australian, New 
Zealand & Antarctic birds, 1990, 
674) 

158 Hydrobatidae - (Albores‐Barajas et al., 2011; 
Bried, 2005; Flood et al., 2009) 

159 Macronectes - (van den Hoff and Newbery, 2006) 

160 Fulmarus https://macaulaylibrary.org/asset/201220771  (Garthe and Furness, 2001; Hobson 
and Welch, 1992) 

161 Thalassoica antarctica - (Ainley et al., 1984; Spear and 
Ainley, 1998)  

162 Daption capense https://macaulaylibrary.org/asset/201437191;  
https://vimeo.com/151211264  

(Harper, 1987; Harper et al., 1985; 
Prince and Morgan, 1987; Warham, 
1996)  

163 Pagodroma nivea - 
(Harper et al., 1985; Prince and 
Morgan, 1987; Spear and Ainley, 
1998)  

164 Aphrodroma brevirostris - (Harper et al., 1985; Spear and 
Ainley, 1998)  

165 Pterodroma - 
(Bester et al., 2011; Harper et al., 
1985; Rayner et al., 2008; Spear 
and Ainley, 1998; Taylor, 2008)  

166 Halobaena caerulea - 
(Chastel and Bried, 1996; Croxall 
and Prince, 1980; Griffiths, 1982; 
Navarro et al., 2013)  

167 Pachyptila https://macaulaylibrary.org/asset/200905651;  
(Chastel and Bried, 1996; Cherel et 
al., 2002; Harper, 1987; Navarro et 
al., 2013; Robinson, 1961)  

168 Bulweria - (Mougin and Mougin, 2000) 

169 Pseudobulweria - (Ravache et al., 2020; Spear and 
Ainley, 1998) 

170 Procellaria https://macaulaylibrary.org/video/201430911  
(Brown et al., 1978; Huin, 1994; 
Poupart et al., 2020; Rollinson et 
al., 2016)  

171 Calonectris https://www.youtube.com/watch?v=1-bEtyhXKCA  

(Brown et al., 1978; Burger, 2001; 
Cianchetti-Benedetti et al., 2017; 
Grémillet et al., 2014; Matsumoto 
et al., 2012; Oka, 1994)  

172 Ardenna 

https://macaulaylibrary.org/video/201317731;  
https://macaulaylibrary.org/asset/201467411;  
https://macaulaylibrary.org/asset/201451071; 
https://macaulaylibrary.org/asset/201431051  

(Adams et al., 2019; Dunphy et al., 
2015; Oka, 1994; Ronconi et al., 
2010; Shoji et al., 2016; Skira, 
1979; Taylor, 2008; Weimerskirch 
and Sagar, 1996)  

173 Puffinus 

https://macaulaylibrary.org/asset/201915491;  
https://macaulaylibrary.org/asset/201532811; 
https://macaulaylibrary.org/asset/201049721;  
https://macaulaylibrary.org/asset/201431021;  
https://macaulaylibrary.org/asset/200905951;  
https://www.youtube.com/watch?v=76WC1JNmFv0  

(Aguilar et al., 2003; Bennet et al., 
2020; Brown et al., 1978; Péron et 
al., 2013; Ronconi et al., 2010; 
Shaffer et al., 2009; Shoji et al., 
2016; Taylor, 2008) 

174 Pelecanoides https://macaulaylibrary.org/asset/201811631;  
https://macaulaylibrary.org/asset/200905541  

(Bocher et al., 2000; Brown et al., 
1978; Dunphy et al., 2015; Navarro 
et al., 2014; Ryan and Nel, 1999; 
Taylor, 2008) 

175 Ciconiidae - - 
176 Fregatidae - - 

177 Sulidae 

https://macaulaylibrary.org/asset/305748281;  
https://www.youtube.com/watch?v=IWbu6r-
6VK8&t=20s;https://www.youtube.com/watch?v=mXXu
K9eQVUw&t=1s;   
https://www.youtube.com/watch?v=D8vaFl6J87s; 
https://www.youtube.com/watch?v=w_h_KuIk_Vs  

(Garthe et al., 2000; Garthe et al., 
2007; Grémillet et al., 2016; 
Ropert‐Coudert et al., 2009; 
Weimerskirch et al., 2005; 
Zavalaga et al., 2007)  

https://www.youtube.com/watch?v=tMTfr2NCvdY
https://macaulaylibrary.org/asset/201220771
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https://www.youtube.com/watch?v=1-bEtyhXKCA
https://macaulaylibrary.org/video/201317731
https://macaulaylibrary.org/asset/201467411
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https://macaulaylibrary.org/asset/201431051
https://macaulaylibrary.org/asset/201915491
https://macaulaylibrary.org/asset/201532811
https://macaulaylibrary.org/asset/201049721
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https://www.youtube.com/watch?v=IWbu6r-6VK8&t=20s;https://www.youtube.com/watch?v=mXXuK9eQVUw&t=1s
https://www.youtube.com/watch?v=IWbu6r-6VK8&t=20s;https://www.youtube.com/watch?v=mXXuK9eQVUw&t=1s
https://www.youtube.com/watch?v=IWbu6r-6VK8&t=20s;https://www.youtube.com/watch?v=mXXuK9eQVUw&t=1s
https://www.youtube.com/watch?v=D8vaFl6J87s
https://www.youtube.com/watch?v=w_h_KuIk_Vs
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178 Anhingidae https://macaulaylibrary.org/asset/201336971; 
https://macaulaylibrary.org/asset/227853371  (Lalas, 1983) 

179 Phalacrocoraxidae sp. https://www.youtube.com/watch?v=rF5gAUJUZXA; 
https://macaulaylibrary.org/asset/402027 

(Cooper, 1986; Frere et al., 2002; 
Lalas, 1983; Ribak, 2005; 
Stonehouse, 1967; Trayler et al., 
1989) 

180 Phalacrocoraxidae harrisi https://macaulaylibrary.org/asset/193115251; 
https://macaulaylibrary.org/asset/193125281  - 

181 Pelecanus - 

(Arnqvist, 1992; Carl, 1987; Duffy, 
1983; Hall, 1925; Schreiber and 
Clapp, 1987; Skinner, 1925; 
Zavalaga et al., 2007) 

182 Balaeniceps rex - - 
183 Scopus umbretta - - 

184 Ardeidae 
https://www.youtube.com/watch?v=ekGYwcYi4b4; 
https://www.youtube.com/watch?v=msgyPyzGedA;  
https://www.youtube.com/watch?v=1g6ODG2sqzQ  

- 

185 Threskiornithidae - -  
186 Cathartidae - - 
187 Accipitriformes - - 

188 Pandionidae https://www.youtube.com/watch?v=nMw-PspfdkQ&t; 
https://www.youtube.com/watch?v=428L7cR4AMU&t  (Winkler et al., 2020c) 

189 Strigiformes - - 
190 Collidae - - 
191 Leptosomus discolor - - 
192 Trogonidae - - 
193 Bucerotiformes - - 
194 Todidae - - 
195 Momotidae - - 

196 Alcedo 

https://macaulaylibrary.org/asset/201516191; 
https://macaulaylibrary.org/asset/201494131; 
https://macaulaylibrary.org/asset/201279521; 
https://www.youtube.com/watch?v=lNcpMauEzMU; 
https://www.youtube.com/watch?v=sLSQ-XDf_wQ   

(Forshaw, 1983; Vilches et al., 
2012; Vilches et al., 2013; 
Woodall, 1991)  

197 Ceyx 
https://macaulaylibrary.org/asset/201649161; 
https://macaulaylibrary.org/asset/201651961; 
https://macaulaylibrary.org/asset/201651941   

(Barker and Vestjens, 1989; 
Burnett, 1996; Forshaw, 1983; 
Woodall, 1991) 

198 Corythornis https://macaulaylibrary.org/asset/201254641; 
https://macaulaylibrary.org/asset/201594541 

(Libois and Laudelout, 2004; Reyer 
et al., 1988) 

199 Corythornis madagascariensis  (Woodall, 1991; Woodall, 2020) 
200 Ispindina   
201 Lacedo pulchella   
202 Dacelo   
203 Clytoceyx rex   
204 Cittura cyanotis   

205 Pelargopsis https://www.youtube.com/watch?v=5OajTIgbluM; 
https://www.youtube.com/watch?v=5d40TDAyjRs  

(Biswas et al., 2014; Biswas et al., 
2015) 

206 Halycon 

https://macaulaylibrary.org/asset/201676381; 
https://www.youtube.com/watch?v=doYxrSjfHHg;  
https://www.youtube.com/watch?v=-CgrNok5k4M; 
https://www.youtube.com/watch?v=C9DHCsyL4Zc   

(Naher and Sarker, 2014; Woodall, 
1991) 

207 Todiramphus https://www.youtube.com/watch?v=vbfLMXVnw_E; 
https://www.youtube.com/watch?v=-gN_WXNGqvs  (Fitzsimons and Thomas, 2011) 

208 Caridonax fulgidus - (Woodall and Kirwan, 2020) 
209 Melidora macrorrhina - - 
210 Actenoides - - 
211 Syma - - 
212 Tanysiptera - - 

213 Megaceryle 
https://macaulaylibrary.org/asset/201472031; 
https://macaulaylibrary.org/asset/201344031; 
https://www.youtube.com/watch?v=wF0Xxy61cBI  

(Arkell, 1979; Brush, 2020; 
Kasahara and Katoh, 2008; Kelly et 
al., 2020) 

214 Ceryle rudis https://www.youtube.com/watch?v=1Kh5CGvEj9o; 
https://www.youtube.com/watch?v=HgJJ4l4ScNM  

(Katzir and Camhi, 1993; Labinger 
et al., 1991) 

215 Chloroceryle https://macaulaylibrary.org/asset/309727341  (Remsen, 1991; Willard, 1985) 
216 Meropidae - - 
217 Coraciidae - - 
218 Brachypteraciidae - - 
219 Galbuliformes - - 
220 Piciformes - - 
221 Cariama sp. - - 

https://macaulaylibrary.org/asset/201336971
https://macaulaylibrary.org/asset/227853371
https://www.youtube.com/watch?v=rF5gAUJUZXA
https://macaulaylibrary.org/asset/402027
https://macaulaylibrary.org/asset/193115251
https://macaulaylibrary.org/asset/193125281
https://www.youtube.com/watch?v=ekGYwcYi4b4
https://www.youtube.com/watch?v=msgyPyzGedA
https://www.youtube.com/watch?v=1g6ODG2sqzQ
https://www.youtube.com/watch?v=nMw-PspfdkQ&t
https://www.youtube.com/watch?v=428L7cR4AMU&t
https://macaulaylibrary.org/asset/201516191
https://macaulaylibrary.org/asset/201494131
https://macaulaylibrary.org/asset/201279521
https://www.youtube.com/watch?v=lNcpMauEzMU
https://www.youtube.com/watch?v=sLSQ-XDf_wQ
https://macaulaylibrary.org/asset/201649161
https://macaulaylibrary.org/asset/201651961
https://macaulaylibrary.org/asset/201651941
https://macaulaylibrary.org/asset/201254641
https://macaulaylibrary.org/asset/201594541
https://www.youtube.com/watch?v=5OajTIgbluM
https://www.youtube.com/watch?v=5d40TDAyjRs
https://macaulaylibrary.org/asset/201676381
https://www.youtube.com/watch?v=doYxrSjfHHg
https://www.youtube.com/watch?v=-CgrNok5k4M
https://www.youtube.com/watch?v=C9DHCsyL4Zc
https://www.youtube.com/watch?v=vbfLMXVnw_E
https://www.youtube.com/watch?v=-gN_WXNGqvs
https://macaulaylibrary.org/asset/201472031
https://macaulaylibrary.org/asset/201344031
https://www.youtube.com/watch?v=wF0Xxy61cBI
https://www.youtube.com/watch?v=1Kh5CGvEj9o
https://www.youtube.com/watch?v=HgJJ4l4ScNM
https://macaulaylibrary.org/asset/309727341
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222 Falconidae - - 
223 Psittaciformes - - 
224 Strigops habroptila - - 
225 Passeriformes sp. - - 

226 Cinclus cinclus 
https://macaulaylibrary.org/asset/294873831; 
https://macaulaylibrary.org/video/201119371; 
https://www.youtube.com/watch?v=uKHR8PJMj-Q    

(Brownlow, 1949; Crisp, 1865; 
Dewar, 1938; Holmes, 1939; 
Ingram, 1938; Ingram et al., 1938; 
Jones and King, 1952; Tyler and 
Ormerod, 1994) 

227 Cinclus pallasii 
https://macaulaylibrary.org/asset/201361231; 
https://macaulaylibrary.org/asset/201345451; 
https://www.youtube.com/watch?v=wEUM8G0bAeY  

(Eguchi, 1990; Tyler and Ormerod, 
1994) 

228 Cinclus mexicanus 
https://macaulaylibrary.org/asset/201668521;  
https://macaulaylibrary.org/asset/201668551;  
https://www.youtube.com/watch?v=cV6IDY1TSC0  

(Goodge, 1957; Goodge, 1959; 
Murrish, 1970; Tyler and Ormerod, 
1994)  

229 Cinclus leucocephalus https://macaulaylibrary.org/asset/107415681  (Tyler and Ormerod, 1994) 
230 Cinclus schulzii - (Tyler and Ormerod, 1994) 
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https://macaulaylibrary.org/asset/294873831
https://macaulaylibrary.org/video/201119371
https://www.youtube.com/watch?v=uKHR8PJMj-Q
https://macaulaylibrary.org/asset/201361231
https://macaulaylibrary.org/asset/201345451
https://www.youtube.com/watch?v=wEUM8G0bAeY
https://macaulaylibrary.org/asset/201668521
https://macaulaylibrary.org/asset/201668551
https://www.youtube.com/watch?v=cV6IDY1TSC0
https://macaulaylibrary.org/asset/107415681
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Chapter 2 2435 

Multifunctionality constrains diversification in the avian wing 2436 

Anthony Lapsansky* 2437 

Field Research Station at Fort Missoula, Division of Biological Sciences, University of 2438 
Montana, MT USA 2439 
 2440 
*author for correspondence (tony.lapsansky@gmail.com) 2441 

Abstract: 2442 

The morphological systems of organisms often serve multiple functions. How 2443 

multifunctionality influences the evolution of morphology is an open question in biology. 2444 

Here, I test whether multifunctionality in the wings of volant diving birds has constrained 2445 

or facilitated the diversification of wing shape and size. To do so, I characterized the 2446 

wings of 2,326 wings from 955 species using geometric morphometrics – the largest 2447 

dataset of avian wing shapes or sizes assembled to date. I find that wing shape has 2448 

evolved more slowly in birds which use their wings for locomotion in both air and water 2449 

relative to birds which use their wings in a single fluid, including other diving birds. 2450 

Thus, multifunctionality has constrained the diversification of the avian wing. 2451 

Interestingly, the wings of wing-propelled divers are not different from those of foot-2452 

propelled divers, indicating that selection for wing-propelled aquatic locomotion has not 2453 

driven modification toward any specific wing shape. Finally, I find that the phylogenetic 2454 

signal in wing shape is substantially lower than in previous studies, suggesting that there 2455 

may be a functional link between wing shape and flight behavior after all. 2456 

Introduction:  2457 

We typically think of selection as acting on morphological systems for a single 2458 

behavior, but nature is rarely so simple. More often, morphological systems are 2459 
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multifunctional – they contribute to performance in multiple behaviors and across 2460 

environmental contexts. How the number of functions affects the evolution of 2461 

morphological systems is an open question in biology (Bergmann and McElroy, 2014; 2462 

Corn et al., 2021; Muñoz, 2019; Polly, 2020; Stayton et al., 2018). On one hand, traits 2463 

which serve multiple functions may experience functional trade-offs (Rose and Lauder, 2464 

1996; Stearns, 1992). This would likely constrain morphological diversification, as 2465 

evolutionary modifications which improve performance in one context would decrease 2466 

performance in another (Arnold, 1983; Arnold, 2003; Ghalambor, 2003; Schluter et al., 2467 

1991; Walker, 2007). Thus, the range of phenotypic states available to multifunctional 2468 

systems should be narrow relative to traits which serve fewer functions. For this reason, it 2469 

has been argued, that decoupling of functional traits promotes diversification (Alfaro et 2470 

al., 2004; Gatesy and Dial, 1996; Wainwright and Price, 2016). On the other hand, 2471 

multifunctionality might actually promote morphological diversification by transforming 2472 

the adaptive landscape from one with a single peak to one with multiple local maxima 2473 

(Polly, 2020; Stayton et al., 2018). 2474 

Empirical studies which test whether multifunctionality constrains or promotes 2475 

morphological diversification are rare. Stayton et al. (2018) suggest that this is “likely 2476 

because of the difficulty of identifying study systems where multiple different functions 2477 

are known to contribute to fitness, but where not every species performs the same number 2478 

of functions.”  2479 

There have been few studies conducted with the explicit goal of testing this 2480 

question in natural systems. Stayton et al. (2018) tested whether the shells of terrestrial 2481 

turtles are more diverse and/or have diversified more rapidly than those of aquatic turtles. 2482 
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Turtle shells serve multiple functions (armor, heat exchange, etc.), but only the shells of 2483 

aquatic turtles experience enough drag to constrain shell shape. Data from 274 species 2484 

indicated that the shells of terrestrial turtles are more diverse (disparate) than those of 2485 

aquatic turtles, but that this is not due to differences in the rate of morphological 2486 

evolution (Stayton et al., 2018). Corn et al. (2021) tested whether the cranial morphology 2487 

and kinematics of fishes evolved more quickly in groups which feed only through suction 2488 

versus those which bite and suck. Surprisingly, the data from 44 species indicate that 2489 

percomorph fishes which bite and suck have experienced faster rates of evolution on their 2490 

static morphology, but slower rates of evolution on feeding kinematics (Corn et al., 2491 

2021).  2492 

While these studies represent significant advancements toward understanding how 2493 

multifunctionality affects morphological diversification, their results are somewhat 2494 

limited by their study systems. The evolution of terrestriality represents a reduction in the 2495 

number of shell functions in turtles, but the relative significances of armor, heat 2496 

dissipation, and righting performance versus drag to organism fitness is unclear, and 2497 

likely shift between air and water. The evolution of biting in percomorph fishes 2498 

represents an increase in the number of functions in the cranial system, but the strength of 2499 

selection to retain suction feeding in biting fishes is unknown. As well, in both systems, a 2500 

change in the number of trait functions is conflated with changes in life-history, which 2501 

may also influence trait and lineage diversification.  2502 

Diving birds represent a powerful model system to test whether multifunctionality 2503 

constrains or promotes morphological diversification. Diving – obtaining food from a 2504 

medium in which an animal cannot continually survive or reproduce – has evolved 2505 
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independently at least 10 times across the avian phylogeny, with over 200 extant species 2506 

relying on diving for much, if not all, of their food (obligate divers). Of these, only the 2507 

penguins and a few others have lost aerial flight (Chapter 1). Of the remaining diving 2508 

birds, 83 species rely on their wings for steady-state aquatic locomotion (e.g., eiders, 2509 

puffins, shearwaters, gannets). Thus, the wings of these birds are under selection for their 2510 

ability to efficiently produce force in two fluids (two locomotor functions), whereas the 2511 

wings of volant non-diving birds, and those of flightless diving birds (i.e., penguins), are 2512 

only under selection for their ability to efficiently produce force in one (one locomotor 2513 

function). Thus, like turtles, the shift from air to water signals a change in the number of 2514 

contexts in which a morphological system must perform. More important, however, is 2515 

that not all diving birds use the same morphological system for aquatic locomotion; 115 2516 

volant species rely exclusively on their feet for steady-state aquatic locomotion (e.g., 2517 

grebes, loons, cormorants, some ducks, and coots). Therefore, while wing-propelled and 2518 

foot-propelled divers face selection for diving, share similar habitats, and rely on similar 2519 

resources, they differ in their number of wing functions (Chapter 1). Thus, by comparing 2520 

the diversity of wing shapes of diving birds which use different mechanisms for aquatic 2521 

locomotion relative to volant non-divers and flightless divers, we can test whether the 2522 

number of functions constrains or promotes morphological diversification while 2523 

controlling for ecology. 2524 

To that end, I characterized the shape and size of 2,326 wings from 955 species – 2525 

including 49 wing-propelled divers [WPD species] from five separate lineages, 46 2526 

species of exclusively foot-propelled divers [FPD species] from five separate lineages, 2527 

and 860 species of volant-non-diving and flightless-diving [NDFD] birds – using 2528 
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geometric morphometrics. I then use phylogenetic comparative methods to estimate the 2529 

rate of evolution in wing shape experienced by birds in each group and tested whether the 2530 

disparity of wing shapes exhibited by WPD species differs from FPD species in intra- and 2531 

interspecific contexts. I hypothesized that WPD species would exhibit slower rates of 2532 

morphological evolution and lower morphological disparity, both among and within 2533 

species, due to the demands of wing-propelled locomotion in multiple fluids. 2534 

Methods: 2535 

The wings used in this study were from two museums: the Burke Museum of 2536 

Natural History and Culture and the Slater Museum of Natural History. Both have 2537 

extensive collections of spread wings, with the Burke Museum holding the largest 2538 

collection of spread wings in the world. At the Burke Museum, spread wings were 2539 

photographed using a Canon EOS Rebel T2i digital camera attached to a Beseler CS-20 2540 

copy stand and leveled via a bubble-type level. To facilitate digitization, wings were 2541 

placed on their ventral side on a green “chromakey” background and illuminated via two 2542 

Britek photo lights. Photos of wings from the Slater Museum were downloaded from the 2543 

Slater Museum of Natural History’s digital collections. Only wings of females were used 2544 

in this study, both to reduce intraspecific variation and because sexual dimorphism may 2545 

co-vary with diving behavior. As well, only wings which were prepared with an 2546 

approximately straight leading edge, as exhibited during mid-downstroke in aerial flight, 2547 

were photographed. Species were classified according to their diving behavior following 2548 

Chapter 1. Only obligate divers were classified as WPD species or FPD species for this 2549 

study, as it is unclear to what extent species are selected for facultative diving (Chapter 2550 

1). 2551 
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Digitization, statistical tests, and plotting were performed in R (R Core Team, 2552 

2020). I characterized the shape of each wing using the package “StereoMorph” (Olsen 2553 

and Haber, 2019). By using geometric morphometrics rather than traditional univariate 2554 

measures (e.g., aspect ratio, wing area), I avoided making any a priori assumptions about 2555 

what aspects of wing shape might vary between and within birds. Given that wings have 2556 

few consistent landmarks across species, I followed a previous study on wing shape 2557 

(Wang and Clarke, 2015) by digitizing both the outer edge of the wing (not including the 2558 

root, i.e., the edge near the body) and the distal edge of the covert feathers for each wing 2559 

as curves. I then used the package “lambda” and the function lasec to determine how 2560 

many semi-landmarks were necessary to capture the variation in wing shape, settling on 2561 

60 semi-landmarks around the outer edge of the wing and 30 semi-landmarks on the edge 2562 

of the covert feathers (Watanabe, 2018).  2563 

All wing data were subjected to a Generalized Procrustes Analysis (GPA) using 2564 

the gpagen function in the package “geomorph” (Adams and Otárola-Castillo, 2013; 2565 

Adams et al., 2021). Potential outliers were identified using the function plotOutliers and 2566 

removed following visual comparison to the wings of the same or similar species, leaving 2567 

2,326 wings from 955 species. The mean shape and centroid size (CS) of each species 2568 

was computed and realigned using the gpagen function so that species which were more 2569 

heavily sampled [often diving species] did not have undue influence on the alignment. 2570 

The mean shape and centroid size of each species were used for all subsequent analyses. 2571 

The degree of digitization error was determined based on the Procrustes variance of 19 2572 

wings inadvertently photographed and digitized on separate days. 2573 
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Values for each species cannot be treated as independent data given their shared 2574 

evolutionary history. Thus, all analyses were conducted using the phylogenetic 2575 

comparative methods implemented in “geomorph” (Adams and Otárola-Castillo, 2013; 2576 

Adams et al., 2021). To account for phylogenetic uncertainty, I conducted all tests across 2577 

200 phylogenetic trees downloaded from birdtree.org (Jetz et al., 2012; Jetz et al., 2014), 2578 

with 100 trees based on the Hackett backbone (Hackett et al., 2008) and 100 trees based 2579 

on the Ericson backbone (Ericson et al., 2006). Rabosky (2015) highlighted issues with 2580 

birdtree.org’s method of obtaining “complete species trees”, wherein species without 2581 

genetic data are stochastically added to each tree (Rabosky, 2015). Thus, I followed 2582 

Rubin’s rule (Nakagawa and De Villemereuil, 2019) by running all analyses with the 2583 

complete set of species in the dataset as well as with the subset of species represented by 2584 

genetic data in birdtree.org phylogenies (Upham et al., 2019).  2585 

The statistical tests implemented in “geomorph” assume a Brownian motion 2586 

model of trait evolution (Adams and Collyer, 2018; Adams and Otárola-Castillo, 2013; 2587 

Clavel and Morlon, 2020). With a few exceptions, this is due to current limitations in 2588 

multivariate statistics (Adams and Collyer, 2019). Thus, I used the function physignal in 2589 

“geomorph” and mvgls in the package “mvMORPH” to calculate the multivariate version 2590 

of Blomberg’s K (Adams, 2014; Blomberg et al., 2003) and Pagel’s λ (Pagel, 1999), 2591 

respectively (Adams et al., 2021; Clavel et al., 2020). Previous studies suggested that 2592 

much of the variation in wing shape is explained by phylogenetic history (i.e., K and λ 2593 

are close to 1), but these studies were based on fewer species (Baliga et al., 2019; Wang 2594 

and Clarke, 2015). Technically, one could also use “mvMORPH” to fit models assuming 2595 

non-Brownian motion models of evolution, but my testing indicated that these methods 2596 
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were not appropriate in this case given the number of species and landmarks in my 2597 

dataset (e.g., it would require a 320 GB data matrix). Further, this method may suffer 2598 

from a high rate of model misspecification (Adams and Collyer, 2018).  2599 

As explained by Stayton et al. (2018), the evolution of shape and size are often 2600 

correlated with one another – so called, evolutionary allometry. This could affect the 2601 

estimated rate of wing shape evolution and the shape disparity between species. For 2602 

example, if divers occupy a narrower range of body sizes than other birds for reasons 2603 

unrelated to diving, this alone could drive differences in wing shape disparity. In the face 2604 

of allometry, it is possible to analyze the evolution of shape alone by generating 2605 

allometry-free shapes from the residuals of the shape versus size relationship (Stayton et 2606 

al., 2018). This only makes statistical sense if there is also no significant interaction 2607 

between allometry among groups (i.e., only if groups share a common allometry) (see 2608 

below). To fully explore the evolution of wing shape, I generated allometry-free shapes 2609 

following Stayton et al. (2018). All disparity and rate analyses were conducted for both 2610 

raw shapes and allometry-free shapes, across 200 trees, and for both an “all species” and 2611 

a “species with genetic data” subset. 2612 

To test whether WPD and FPD species occupy unique regions of the wing 2613 

morpho-space and share a common allometry, I used the function procD.pgls in 2614 

“geomorph”  (Adams et al., 2021). 2615 

To explore whether the disparity (i.e., variance) in wing shape differs between 2616 

groups, I used two methods. First, I tested whether groups differed in their intraspecific 2617 

disparity (variance in wing shape within a species). To perform this test, I used the 2618 

function morphol.disparity from “geomorph” to calculate the Procrustes variance for 2619 
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each species represented by three or more individuals (Adams et al., 2021). I then fit a 2620 

phylogenetic ANOVA (Garland et al., 1993) using the function aov.phylo from “geiger” 2621 

to test for differences in intraspecific disparity between WPD species, FPD species, and 2622 

NDFD groups (Harmon et al., 2020). Second, I tested whether WPD species and FPD 2623 

species differed in their interspecific shape disparity, following Stayton et al. (2018), 2624 

using a custom R script. Specifically, this script calculated the ratio of Procrustes 2625 

variances of FPD species versus WPD species using the procD.lm and morphol.disparity 2626 

functions in “geomorph”. To assess whether this ratio was significantly different from 2627 

1.0, the script then simulated shape evolution 999 times across each tree assuming a 2628 

Brownian motion model of evolution (using sim.char from “geiger”) and calculated the 2629 

same ratio for each iteration. Comparing the observed disparity ratio to the distribution of 2630 

simulated ratios allowed me to compute a p-value for each tree and dataset. In general, 2631 

this method constitutes a test of whether the observed difference in disparity is the result 2632 

of the age/evolutionary history of each group or the result of differences in the number of 2633 

wing functions.  2634 

To compare the rate of evolution between groups, I used the function 2635 

compare.evol.rates in “geomorph”  (Adams et al., 2021). Because the phylogenetic signal 2636 

in wing shape departed significantly from the assumption of Brownian motion (see 2637 

below), which could have substantial impacts on estimates of evolutionary rate, I 2638 

followed previous analyses (Eliason et al., 2020; Price et al., 2010) by performing a 2639 

sensitivity analysis with trees transformed by Pagel’s  λ (Pagel, 1999). Branch length 2640 

transformations were conducted using the rescale function in the “geiger” package 2641 

(Harmon et al., 2020). Both methods of assessing statistical significance for the 2642 



101 
 

compare.evol.rates function provided by “geomorph” assume Brownian motion (Adams 2643 

and Collyer, 2018; Adams and Collyer, 2019; Adams and Otárola-Castillo, 2013; Clavel 2644 

and Morlon, 2020). Thus, significance tests for differences in the mean rate estimate 2645 

between WPD species and FPD species were conducted using a randomization test 2646 

(IndependenceTest function) implemented in the “coin” package (Hothorn et al., 2021). 2647 

Results: 2648 

Phylogenetic signal 2649 

Previous studies of avian wing shape found that much of the variation is 2650 

explained by phylogeny (Baliga et al., 2019; Wang and Clarke, 2015), but this was not 2651 

the case for our dataset.  While both K and λ were close to 1.0 for wing size [log (CS)], 2652 

the phylogenetic signal for wing shape was considerably lower across test conditions 2653 

(Figure 1). 2654 

Wing shape 2655 

Multivariate phylogenetic least-squared regressions found no consistent 2656 

differences in wing shape between WPD species, FPD species, and NDFD groups (Table 2657 

2). The high degree of overlap between WPD species and FPD species is visible in a plot 2658 

of the first two principal components of wing shape (Figure 2). There was a consistent 2659 

and significant relationship between wing shape and size. Finally, while there was some 2660 

evidence for unique allometries among groups (the interaction between size and group on 2661 

wing shape), the R-squared value and F-statistics for these group-by-allometry 2662 

interactions were always low (Table 1). In other words, it is safe to assume that the 2663 

relationship between wing shape and size is the same across groups. Thus, to fully 2664 

explore the effect of multifunctionality on the evolution of wing shape, all subsequent 2665 
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analyses were conducted on both the raw shapes and a set of shapes with the effect of 2666 

wing size removed (allometry-free shapes).  2667 

Disparity 2668 

Multifunctionality could constrain the evolution of WPD species without 2669 

appreciable impacts on the rate of wing shape evolution. This would occur if the wings of 2670 

WPD species occupy only a narrow range of possible shapes exhibited by FPD species, 2671 

but the shape of the wing within this narrow range shifts relatively quickly through 2672 

evolutionary time. Though this does not appear to be the case based on Figure 2, only the 2673 

first two principal component axes are shown, and variation may exist at lower levels. I 2674 

used simulation-based methods to test whether WPD species have explored a narrower 2675 

range of wing shapes than FPD species given their branch lengths and the frequency of 2676 

evolving each strategy. The interspecific disparity of FPD species was greater than that of 2677 

WPD species across all test conditions and was significant when calculated using 2678 

allometry-free wing shapes (pEricson_allSpecies = 0.003 ±0.003,  pHackett_allSpecies = 0.006 2679 

±0.004, pEricson_genSpecies = 0.006 ±0.007, pEricson_genSpecies = 0.01 ±0.06). For no trees was the 2680 

difference in disparity significant given raw wing shapes. 2681 

There was no significant difference in intraspecific disparity between any of the 2682 

three groups (Table 3), as shown by Figure 3. 2683 

Evolutionary rate 2684 

For untransformed trees, the rate of wing shape evolution was lower in WPD 2685 

species than in FPD species. This was true both when considering all species (Figure 4A 2686 

& 4B, λ = 1) and when considering only those species represented by genetic data in 2687 

birdtree.org trees (Figure 5A & 5B, λ = 1). Though the distributions of rate estimates 2688 
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overlap considerably when taken as a whole ((Figure 4 & 5, λ = 1), if comparing the rates 2689 

for WPD species and FPD species directly and for a given tree, the estimate for WPD 2690 

species was lower than that for FPD species for > 95 % of all trees. As well, 2691 

randomization tests indicated that rate ratios for WPD species were significantly lower or 2692 

nearly significantly lower than those for FPD species across all conditions (λ = 1, All 2693 

species: Raw – p=0.056, Allo-free – p=3.4e-08; Genetic data species: Raw – p=1.1e-14, 2694 

Allo-free – p < 2.2e-16). 2695 

The available method of calculating the rate of multivariate shape evolution 2696 

assumes a Brownian motion (BM) model of evolution. Because the phylogenetic signal 2697 

in wing shape was considerably lower than that expected under BM (Figure 1), I assessed 2698 

the sensitivity of the above result to this assumption by transforming the branch lengths 2699 

of all trees by Pagel’s λ (0-0.9 in increments of 0.1) and recalculating the rate of wing 2700 

shape evolution for each group. Again, the rate of wing shape evolution was lower in 2701 

WPD species than in FPD species. This result was robust across all levels of Pagel’s λ 2702 

except for 0 – which represents a star phylogeny – including trees transformed by the 2703 

precise value of Pagel’s λ for that tree-by-shapes combination (scatter points in Figures 4 2704 

& 5). Interestingly, a slight opposite trend was found for wing size [log (CS)]. However, 2705 

this trend was not significant according to a randomization test (p = 0.67). 2706 

Discussion: 2707 

Multifunctionality has constrained the evolution of avian wing shape. The rate of 2708 

evolution in wing shape is lower for birds which use their wings for locomotion in both 2709 

air and water. This is not simply due to selection for diving, as the rate of evolution in 2710 

wing shape is consistently lower for WPD species than for species which also dive but 2711 
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which exclusively use their feet for aquatic locomotion (FPD species). This result is 2712 

robust across all test conditions except those which treat species as evolving 2713 

independently (Pagel’s λ = 0), which is almost certainly unrealistic (Figures 4 & 5). In 2714 

addition, when considering wing shape alone (allometry-free shapes), the wings of WPD 2715 

species have explored a narrower range of potential wing shapes than FPD species. Thus, 2716 

we can conclude that an increase in the number of locomotor functions, rather than a shift 2717 

in ecology, has constrained the evolution of the wing in WPD species.  2718 

When treated in aggregate, the wing shapes of WPD species are not significantly 2719 

different from those of FPD species (Table 2). Thus, that the evolution of wing shape in 2720 

WPD species is constrained may seem paradoxical. But, while no specific wing shape 2721 

can be used as a diagnostic characteristic of all WPD or FPD species, this does not 2722 

preclude species from experiencing directional selection on wing shape. The optimal 2723 

wing shapes for species within a clade are determined by each species’ specific diving 2724 

and flight strategies, and these strategies differ between clades (Chapter 1). Thus, WPD 2725 

species can experience constraints on wing shape evolution while still exhibiting a 2726 

diversity of wing shapes when considered as a single group. 2727 

Recent studies have indicated that much of the variation in wing shape – 2728 

historically thought to be determined by flight style (Rayner, 1988; Savile, 1957) – can be 2729 

explained by evolutionary history (Baliga et al., 2019; Wang and Clarke, 2015). 2730 

Importantly, Baliga et al. (2019) demonstrated that the range of motion in the wing is 2731 

strongly associated with flight behavior. Wing shape, on the other hand, was more 2732 

strongly determined by ancestry, such that the level of phylogenetic signal in wing shape, 2733 

as measured by Blomberg’s K (Adams, 2014; Blomberg et al., 2003), was close to 1.0  2734 
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(Baliga et al., 2019). In contrast, I found that phylogenetic signal in wing shape was 2735 

relatively low (Figure 1) – often less than K = 0.3. The difference between our two 2736 

studies could either be due to the difference in the number of species (61 species vs. 955 2737 

species), the distribution of species (broad taxonomic sampling vs. broad and deep 2738 

sampling), the landmarks used to characterize wing shape (outer edge vs. outer edge + 2739 

coverts), the extent of those landmarks (closed outline vs. outer edge, excluding the root), 2740 

or variation in either wing preparation or digitization in my study (i.e., error).   2741 

To explore the likelihood of each scenario, I recalculated phylogenetic signal for 2742 

1) the wings of 955 species excluding the covert landmarks, 2) a subsample of species 2743 

which mirrored those in Baliga et al. (2019) [61 species in said study or their close 2744 

relatives], and for 3) the mirrored subsampled also excluding the covert landmarks. 2745 

Removing the covert feathers from consideration had little effect on the estimated 2746 

phylogenetic signal in raw wing shape for 955 species (KEricson = 0.24 ± 0.06, KHackett = 2747 

0.24 ± 0.06). However, the phylogenetic signal in raw wing shape for the subsample of 2748 

61 species was considerably higher (KEricson = 0.68 ± 0.04, KHackett = 0.70 ± 0.04), with 2749 

little impact of removing the coverts from consideration (KEricson = 0.61 ± 0.03, KHackett = 2750 

0.62 ± 0.03). Importantly, I found that phylogenetic signal in wing shape of WPD species 2751 

and FPD species (91 species) was no greater – and often lower – than that for the full set 2752 

of species (Figure 1). Thus, the fact that phylogenetic signal in wing shape was 2753 

considerably lower in this study than in others is likely due to the taxonomic depth of my 2754 

sampling, rather than the number of species. The remaining difference in phylogenetic 2755 

signal calculated here [~0.7] versus in Baliga et al. (2019) [~0.95] may be because I did 2756 

not digitize the root of the wing or due to variation in either wing preparation or 2757 
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digitization. Variation in digitization seems unlikely given the low value of digitization 2758 

error (Figure 3, blue lines). This does not detract from the major result of Baliga et al. 2759 

(2019) – that the range of motion in the avian wing is both labile and strongly correlated 2760 

with flight behavior. However, the relatively low levels of phylogenetic signal I found 2761 

indicate that avian wing shape may be linked to flight behavior afterall. 2762 

Stayton et al. (2018) tested whether the shells of terrestrial turtles are more 2763 

diverse and/or have diversified more rapidly than those of aquatic turtles, finding that the 2764 

shells of terrestrial turtles are more diverse than those of aquatic turtles, but that this is 2765 

not due to differences in the rate of morphological evolution. Corn et al. (2021) tested 2766 

whether the cranial morphology and kinematics of fishes evolved more quickly in groups 2767 

which feed only through suction versus those which bite and suck, finding that those 2768 

which bite and suck have experienced faster rates of evolution on their static morphology, 2769 

but slower rates of evolution on feeding kinematics. Thus, in combination with the results 2770 

shown here, the consensus is that multifunctionality constrains the evolution of 2771 

morphological systems, at least in terms of their static morphology. 2772 

However, results from these systems may not be directly comparable, as they 2773 

differ in whether multifunctionality was gained or lost. Terrestrial turtles have lost a shell 2774 

function relative to aquatic turtles, whereas biting and sucking percomorph fishes have 2775 

gained a cranial function relative to pure suction feeders. Likewise, given that the 2776 

common ancestor of birds was likely volant and non-diving, species which use their 2777 

wings in air and water have gained a wing function. How this gain vs. loss influences the 2778 

effect of multifunctionality on morphological evolution is unclear. There might also be a 2779 
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fundamental difference between systems with two-vs.-one function and those with many-2780 

vs.-many-minus-one functions.  2781 

Finally, the results of Corn et al. (2021) illustrate convincingly that the effects of 2782 

multifunctionality on evolution might be different for static morphological traits than for 2783 

dynamic traits [such as feeding kinematics or wing range of motion]. Thus, exploring the 2784 

effects of multifunctionality on the evolution of wing range of motion (Baliga et al., 2785 

2019) in WPD species, FPD species, and NDFD would be especially informative.  2786 
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Figure 1: Phylogenetic signal in wing shape and 2895 

size. Phylogenetic signal in raw shapes, allometry-2896 

free shapes, and centroid size was calculated for 2897 

100 phylogenetic trees for each of two backbones. 2898 

Signals from trees based on the Ericson backbone 2899 

are in blue; Hackett are in gray.  Signals are 2900 

presented for four datasets [All species, species 2901 

with genetic data in birdtree.org phylogenies, all 2902 

diving species, and divers with genetic data in 2903 

birdtree.org phylogenies].  2904 
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Table 1: Differences in wing shape between WPD species, FPD species, NDFD 2918 

groups.  Values shown are mean, range, and standard deviation for the R-squared, F-2919 

statistic, and p-value generated by each test across 100 trees from each of two 2920 

phylogenetic backbones. All values have been rounded to two significant digits. 2921 

 2922 
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 2923 

Figure 2: Phylo-morphospace of wing shape. The wing shapes of all species based on 2924 

the first two principal components of wing shape variation. Wireframe diagrams indicate 2925 

shapes associated with the extremes of each PC axis.  2926 

 2927 

 2928 

 2929 
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Table 2: Differences in intraspecific disparity between WPD species, FPD species, 2930 

NDFD groups.  Values shown are mean, range, and standard deviation for the F-statistic 2931 

and p-value generated by each test across 100 trees from each of two phylogenetic 2932 

backbones. All values have been rounded to two significant digits. 2933 

 2934 

 2935 

 2936 

 2937 

 2938 

 2939 

 2940 

 2941 
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 2942 

Figure 3: Intraspecific disparity in wing shape versus group. Intraspecific disparity 2943 

was calculated as the Procrustes variance for species represented by 3 or more 2944 

individuals. Boxes on the left of each group pair (outlined in black) are data for all 2945 

species; the right of each group pair (outlined in gray) are for the subset of species with 2946 

genetic data. The average and average + standard deviation of digitization error are 2947 

indicated by the blue dashed and dotted lines, respectively. 2948 

 2949 
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 2950 

Figure 4: Evolutionary rates in wing shape for all WP and FP species. Evolutionary 2951 

rates for each group are expressed relative to the rate found for NDFD species. Because 2952 

the phylogenetic signal in wing shape was lower than expected under Brownian motion, 2953 

the x-axis indicates the value of Pagel’s λ used for the tree transformation, with 1 2954 

indicating no transformation and 0 indicating a star phylogeny. The scatter points are for 2955 

λ-transformations based on precise value of λ calculated for each specific tree-by-shapes 2956 

combination (“precise λ-transformation”).  (A) Raw wing shapes. (B) Allometry-free 2957 

wing shapes. 2958 
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 2959 

 2960 

Figure 5: Evolutionary rates in wing shape for species with genetic data. 2961 

Evolutionary rates for FPD species and WPD species are expressed relative to the rate 2962 

found for NDFD species. Because the phylogenetic signal in wing shape was lower than 2963 

expected under Brownian motion, the x-axis indicates the value of Pagel’s λ used for the 2964 

tree transformation, with 1 indicating no transformation and 0 indicating a star 2965 

phylogeny. The scatter points are for λ-transformations based on precise value of λ 2966 

calculated for each specific tree-by-shapes combination (“precise λ-transformation”).   2967 

(A) Raw wing shapes. (B) Allometry-free wing shapes. 2968 
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Upstroke-based acceleration and head stabilization are the norm
for the wing-propelled swimming of alcid seabirds
Anthony B. Lapsansky* and Bret W. Tobalske

ABSTRACT
Alcids, a family of seabirds including murres, guillemots and puffins,
exhibit the greatest mass-specific dive depths and durations of any
birds or mammals. These impressive diving capabilities have
motivated numerous studies on the biomechanics of alcid swimming
and diving, with one objective being to compare stroke–acceleration
patterns of swimming alcids with those of penguins, where upstroke
and downstroke are used for horizontal acceleration. Studies of
free-ranging, descending alcids have found that alcids accelerate
in the direction of travel during both their upstroke and downstroke,
but only at depths <20 m, whereas studies of alcids swimming
horizontally report upstroke-based acceleration to be rare (≤16% of
upstrokes). We hypothesized that swimming trajectory, via its
interaction with buoyancy, determines the magnitude of acceleration
produced during the upstroke. Thus, we studied the stroke–
acceleration relationships of five species of alcid swimming freely at
the Alaska SeaLife Center using videography and kinematic analysis.
Contrary to our prediction, we found that upstroke-based acceleration
is very common (87% of upstrokes) during both descending and
horizontal swimming. We reveal that head-damping – wherein an
animal extends and retracts its head to offset periodic accelerations – is
common in swimming alcids, underscoring the importance of head
stabilization during avian locomotion.

KEY WORDS: Stroke acceleration patterns, Charadriiformes, Auk,
Underwater locomotion, Diving

INTRODUCTION
When animals transition between air and water, they must cope with
dramatic changes to their sensory perception, their respiration and
the force regime to which they are subjected (Dial et al., 2015; Fish,
2016). Despite these challenges, the phylogeny of birds provides
abundant examples of secondary adaption to life in water (Vermeij
and Dudley, 2000). These species (e.g. ducks, cormorants, loons,
puffins, penguins, etc.) can reach depths that rival those of much
larger diving mammals (Ponganis, 2015).
Within birds, penguins (order Sphenisciformes, family

Spheniscidae) appear to have been the most successful at re-
invading the aquatic realm. The current records for dive depth and
duration in birds are held by the ∼25 kg emperor penguin
(Aptenodytes forsteri) at 564 m and 27.6 min, respectively, with
other penguin species not far behind (Ponganis, 2015). This aquatic
accomplishment by penguins is often attributed to their loss of flight

(Elliott et al., 2013; Storer, 1960). The rationale behind this
argument is that because air and water are drastically different
(Denny, 1993), selection cannot optimize a species for movement
in both fluids concurrently. In other words, abandoning flight
has allowed penguins to better exploit the aquatic environment
(Simpson, 1946).

However, the diving performance of alcids (order
Charadriiformes), a family of seabirds closely related to gulls and
terns, seems to contradict this notion. The alcid family contains 24
extant species including puffins, murres, guillemots and their
relatives notable for their ability to ‘fly’ underwater as well as in the
air. The current records for the depth and duration of a single dive by
an alcid are 210 m and 224 s, respectively, held by the ∼1 kg thick-
billed murre (Uria lomvia), making this species, on a mass-specific
basis, the deepest and longest-duration diver on Earth (Croll et al.,
1992). When corrected for body size, alcids exhibit dive durations
and depths far greater than penguins, despite remaining volant
(Halsey et al., 2006; Watanuki and Burger, 1999).

The impressive diving capabilities of alcids have motivated
multiple, independent studies on the biomechanics of alcid
swimming and diving (Hamilton, 2006; Johansson and Aldrin,
2002; Kikuchi et al., 2015; Lovvorn et al., 2004;Watanuki and Sato,
2008; Watanuki et al., 2003, 2006), with one key focus being to
compare stroke–acceleration patterns of swimming alcids with those
of penguins.

The stroke–acceleration patterns of flying birds are well defined,
both by empirical study and aerodynamic theory. To maintain
speed, a flying bird must produce enough thrust to counteract drag.
Flying alcids and similar species (e.g. ducks) are thought to produce
this thrust primarily or entirely via the downstroke of their wing
(Izraelevitz et al., 2018; Pennycuick, 1987; Rayner, 1988, 1995).
The upstroke contributes to weight support, along with the
downstroke, but is thought to produce only negligible thrust
outside of slow flight (Crandell and Tobalske, 2015). Thus, owing
to its stroke–acceleration pattern, an alcid maintaining speed during
level, cruising flight should experience a horizontal deceleration
during the upstroke followed by a horizontal acceleration of equal
magnitude on the downstroke.

Though their style of swimming resembles the aerial flight of
birds, swimming penguins deviate from this general stroke–
acceleration pattern in ways hypothesized to increase to their
efficiency (energy required to move at a given speed) (Clark and
Bemis, 1979; Hui, 1988; Lovvorn, 2001; Watanuki et al., 2006).
Swimming penguins accelerate forward during both downstroke
and upstroke (Clark and Bemis, 1979; Hui, 1988; Watanuki et al.,
2006). Perhaps owing to modifications of their flight apparatus only
feasible through the loss of flight (Raikow et al., 1988), penguins
produce significant amounts of thrust via their upstroke, as well as
their downstroke, which is great enough to overcome the drag (and
sometimes buoyancy) of their body. By accelerating during both
halves of the stroke cycle, penguins minimize the magnitude ofReceived 4 February 2019; Accepted 28 May 2019
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accelerations needed to maintain speed (Watanuki et al., 2006). The
alternative – large deceleration during the upstroke followed by
compensatory acceleration during the downstroke – causes an
animal to experience large deviations from its average velocity. This
is especially true in water, where the drag is greatly increased
relative to air (Denny, 1993). Because drag increases quadratically
with velocity, and because it is energetically expensive to accelerate
a body and its entrained fluid, an animal that moves at a more
constant velocity spends less energy to move at the same average
velocity (Daniel, 1984; Lovvorn, 2001; Vogel, 1994). Thus, by
accelerating forward during the upstroke in addition to during the
downstroke, penguins appear to have developed a highly efficient
swimming strategy.
All alcids studied to date have shown at least some capacity to

accelerate forward (hereafter, accelerate) during the upstroke
when swimming, in addition to during the downstroke, but the
conditions that determine the presence and frequency of upstroke-
based acceleration remain unclear. Using the pattern of bubbles
released by the plumage of a captive pigeon guillemot (Cepphus
columba) as evidence, Rayner (1995) suggested that alcids
had a hydrodynamically inactive aquatic upstroke that functioned
exclusively to reset thewing for the next downstroke. Subsequent data
collected via 3D videography of horizontally swimming alcids at
relatively shallow depths found that the upstroke was capable of
producing thrust, contrary to Rayner’s assertion, but that this
thrust rarely caused acceleration. Specifically, Johansson and
Aldrin (2002) reported acceleration during 2 of 24 (8%) upstrokes
by Atlantic puffins (Fratercula arctica) and Hamilton (2006)
reported acceleration during 5 of 32 (16%) upstrokes by common
murres (Uria aalge), suggesting that the force created by the upstroke
of a swimming alcid is only rarely sufficient to overcome drag. In
contrast, data collected via accelerometers on free-ranging alcids
indicate that these animals regularly accelerate during the upstroke
when descending, but that the magnitude of this acceleration
decreases to below zero past depths of approximately 20 m
(Lovvorn et al., 2004; Watanuki et al., 2003, 2006).
Previous authors have evoked the decrease in buoyancywith depth

(as air in the lungs and plumage compress as described by Boyle’s
law) to explain the negative relationship between the magnitude of
acceleration during the upstroke and depth (Lovvorn et al., 2004;
Watanuki et al., 2003, 2006). However, if alcids accelerate during the
upstroke when buoyancy is high, it is unclear why Johansson and
Aldrin (2002) and Hamilton (2006) did not detect consistent
upstroke-based acceleration in alcids swimming in shallow water.
We hypothesized that trajectory might determine the use of

upstroke-based acceleration in swimming alcids via the relationship
between trajectory and buoyancy. When descending in shallow
water, work against buoyancy is a major contributor to the total
work required to swim. In contrast, when swimming at depth and
horizontally, little work must be done against buoyancy to maintain
speed (Lovvorn, 2001), perhaps alleviating the need for upstroke-
based acceleration. Thus, the interaction between trajectory and
buoyancy may explain the decrease in upstroke-based acceleration
with depth over the course of the same dive in descending alcids
(Lovvorn et al., 2004; Watanuki and Sato, 2008; Watanuki et al.,
2003, 2006) and the rarity of upstroke-based acceleration in
horizontally swimming alcids (Hamilton, 2006; Johansson and
Aldrin, 2002). To test this hypothesis, we studied the stroke–
acceleration relationships of five species of alcids from three genera
using videography and kinematic analysis. Our study subjects were
captive birds swimming freely in an aquarium at the Alaska SeaLife
Center in Seward, Alaska.

MATERIALS AND METHODS
Study area and animals
Study animals included common murres [Uria aalge (Pontoppidan
1763)], pigeon guillemots (Cepphus columba Pallas 1811),
rhinoceros auklets [Cerorhinca monocerata (Pallas 1811)],
horned puffins [Fratercula corniculata (Naumann 1821)] and
tufted puffins [Fratercula cirrhata (Pallas 1769)]. This work was
performed with permission from the Alaska SeaLife Center in
Seward, Alaska, USA, from 23 to 31 June 2018 under the auspices
of the University of Montana’s Institutional Animal Care and Use
Committee (AUP 004-19BTDBS-020419). The Alaska SeaLife
Center is to home to an outdoor aviary exhibit with a large area for
aerial flight (approximately 20 m wide, 20 m long and 8–10 m tall)
over a 397,500 liter saltwater tank. The surface of the water
measures approximately 10.5×11 m and is approximately 6.5 m
deep at its deepest point. The southern edge of the tank is inset with
a large glass viewing window approximately 3.5 m wide that
extends from ∼2 m above the waterline to the floor of the tank. The
glass of the viewing window varies from ∼6.5 to ∼25.0 cm thick
from the waterline to the floor of the tank.

At the time of this study, the exhibit contained 12 horned puffins,
10 tufted puffins, four pigeon guillemots, six common murres and
two rhinoceros auklets. Individuals of each species of alcid
regularly swam past the viewing window, performing both
horizontal and descending swimming bouts, either for transport
around the exhibit or to retrieve food tossed in the water by
aquarium staff. The birds swam on their own volition and selected
their own swimming speeds and descent angles.

Videography
Videos were taken using a GoPro Hero6 Black (GoPro, Inc., San
Mateo, CA, USA) at 119.88 frames s−1 and a shutter speed of 1/480 s
in the ‘Linear View’ mode, which removes the ‘fisheye’ distortion
common to action cameras (TysonHedrick, personal communication).
The camerawas positioned on a tripod and leveled using a bubble-type
level embedded in the tripod. Because birds chose when and where to
dive, swimming bouts were sampled opportunistically. The camera
was triggered via a GoPro Smart Remote when A.B.L. noticed a bird
about to initiate a dive or swim past the viewing window. The camera
was positioned approximately 1 m below the waterline, thus all
analyzed dives were between 0 and 3 m deep.

Kinematic and data analyses
Swimming bouts were selected for kinematic analysis based on
whether birds appeared to swim at an approximately constant speed,
parallel to the viewing window (perpendicular to the camera)
as determined by A.B.L. We were stringent in this assessment,
selecting less than 5% of all footage for analysis. Preference was
given to videos taken on days with brighter natural light to facilitate
the digitization process. We analyzed 41 swimming bouts totaling
166 downstrokes and 153 upstrokes (for condition- and species-
specific values, see Table 1).

Although each bird in the tank had unique colored leg bands, we
were unable to confidently identify individuals in video sequences.
Thus, we considered each wingbeat as having been sampled from a
greater population of wingbeats representing each species. Previous
research on diving kinematics has indicated that this method
provides a reasonably accurate kinematic description for a given
species (Lovvorn et al., 1991). Given the number of individuals of
each species in the tank and the number of swimming bouts we
analyzed, it is unlikely that our data for any one species is based on
fewer than two individuals (≤6.25%).
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We performed kinematic analyses using MATLAB (2018a & b,
MathWorks, Inc., Natick, MA, USA) using the DLTdv6 digitization
tool described in Hedrick (2008) with additional analyses
performed using MATLAB and IGOR Pro (v. 6.01, Wavemetrics,
Inc., Beaverton, OR, USA). We assigned each swimming bout as
being either horizontal (trajectory <5 deg from horizontal) or
descending (>20 deg). We did not obtain video of rhinoceros
auklets engaged in descending swimming.
We digitized the eye, thewrist and the tip of the tail in every frame

of each video. To reduce digitizing error for the eye, we digitized the
eye using three consecutively blind, replicate passes for horizontal
bouts and averaged the three points at each frame. We only digitized
the eye one time for descending bouts after realizing that birds were
head-damping, wherein an animal extends and retracts the head to
offset periodic accelerations and stabilize head position (Necker,
2007; Pete et al., 2015). An additional two points were digitized (at a
single frame) corresponding to the waterline at opposite sides of the
viewing window so that we could calculate the angle of descent.
More than 43,000 points were hand-digitized for this study.
The x–y points determined via digitization were exported to

MATLAB for analysis via a custom script. The script first computed
the angle between the vector describing the true horizontal (i.e. the
waterline) and the x-direction of the video. The script then rotated all
digitized points about this angle, which was usually less than 1 deg,
to account for small errors in the manual leveling of the camera
setup. For descending bouts, the script then computed the angle
between the vectors describing the bird’s mean path and the vector
corresponding to the waterline. The script then converted, via a 2D
Euler-angle rotation matrix, the points from a global coordinate
system to a local, bird-centered coordinate system in which the
x- and y-axes were parallel and perpendicular to the bird’s
swimming direction, respectively. For horizontal bouts, we
assumed that the x- and y-axes were reasonably aligned with the
birds’ cranial-caudal and dorsal-ventral axes and, therefore, did not
transform the digitized points. Following transformation of the
descending bouts, the MATLAB scripts were identical.
We used the body length of the bird in each frame, as determined

by the distance between the eye and the tail in each frame, to convert
the x–y points to a consistent coordinate system. This method of
calibration accounts for variability in the distance between the
camera and the bird as well as any distortion of the image that
may have occurred as the light reflecting off the bird passed from
water to glass to air before reaching the camera. Specifically, we
computed the length of the body (in pixels) for each frame as the
distance between the eye and the tail using the Pythagorean
theorem. Visual inspection of these data revealed pronounced head
movement (relative to the body) in sync with the wingbeat cycle
(i.e. body length varied with position in the stroke cycle). Because
of this observation, we smoothed the raw body-length data using
the ‘smoothingspline’ method of fitting in MATLAB and a
smoothing parameter of 1E-4 to account for the head movement
of the bird (Curve Fitting ToolBox User’s Guide, 2019;

https://www.mathworks.com/help/pdf_doc/curvefit/curvefit.pdf ).
The x–y points for each frame were then divided by the body length
at that frame to convert the points’ pixel units to units of body
length. It should be noted that even if this calibration process was
imperfect – for example, if the smoothing failed to remove the
effects of head-damping completely – it would not alter our major
conclusions about the hydrodynamic function of the upstroke.
Upstroke with periods of acceleration would still have periods of
acceleration, as body length was used simply to scale the data to
units of species-specific body length. Only the magnitude of that
acceleration could change.

We opted not to convert from body length units to SI units, as data
on body length while swimming are available only for the common
murre (within Hamilton, 2006). Because alcids flex their neck when
diving, measurements taken from birds in the hand or from museum
species are not accurate proxies for the body length a species adopts
when swimming. Thus, we felt that using an estimate of body length
for the other four species would add error to our results without
improving our ability to test our hypothesis. However, we include
rough estimates of body lengths during swimming for comparison:
common murre, 0.36 m; horned puffin, 0.31 m; pigeon guillemot,
0.27 m; rhinocerous auklet, 0.30 m; tufted puffin, 0.35 m. We
caution against using these values as true data points or in strict
analyses. The conversion factor for the common murre comes from
Hamilton (2006) and is based on two birds. Those for the tufted
puffin, horned puffin and rhinoceros auklet (which are all,
technically, puffins; Wilson and Manuwal, 1986) stem from the
measured body length of a single Atlantic puffin (0.290±0.006 m),
found by using ImageJ to compute the distance between 20 pairs of
beak and tail points displayed in fig. 3B of Johansson and Aldrin
(2002). Assuming geometric similarity between these four closely
related species, we computed body length estimates in meters using
mean masses from Dunning (2008). For the pigeon guillemot,
we report a value measured on wild birds in the hand (we think) from
Cody (1973). This value is almost certainly an overestimate and
should be treatedwith caution.We encourage future studies to publish
body lengths of animals during locomotion to facilitate research on
animal locomotion under conditions in which calibration to metric
units is infeasible (e.g. birds flying in the natural environment).

To account for digitization error, we smoothed the kinematic data
using the same ‘smoothingspline’method of fitting in MATLAB as
above but using a smoothing parameter of 0.01 (Curve Fitting
ToolBox User’s Guide, 2019; https://www.mathworks.com/help/
pdf_doc/curvefit/curvefit.pdf ), based on Clifton and Biewener
(2018) (Fig. 1). We computed instantaneous velocity (body
lengths s−1; hereafter BL s−1) in the x-direction as the change
in x-position between frames divided by the duration of the frame
(1/119.88 s or 0.0083 s) for both eye and tail points (separately). We
subsequently computed instantaneous acceleration (BL s−2) as the
change in velocity between frames divided by the duration of the
frame. Because we digitized distal portions of the body rather than
the center of mass, pitching motions of the body could impact our

Table 1. Sample sizes for each alcid species and swimming trajectory

Species
Horizontal
bouts

Descending
bouts

Downstrokes during
horizontal bouts

Upstrokes during
horizontal bouts

Downstrokes during
descending bouts

Upstrokes during
descending bouts

Common murre 7 2 25 25 10 11
Horned puffin 6 3 25 23 10 8
Pigeon guillemot 5 3 27 25 8 8
Rhinoceros auklet 6 – 24 18 – –

Tufted puffin 6 3 25 24 12 11
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estimates of overall body acceleration. To resolve this potential
issue, we first computed the pitch angle (rad) in each frame relative
to the horizontal. This allowed us to remove the component of our
velocity calculation that was due to pitching from the overall
velocity calculation described above. Specifically, we assumed that
the body pitched around a point midway between the eye and the
tail, or about the approximate center of mass. Thus, the velocity due
to body pitch was calculated as the change in x-oriented body
length, where the x-oriented body length was computed as 0.5 times
the body length times the cosine of the pitch angle. We removed this
pitching velocity (BL s−1) from the overall velocity of both the eye
and the tail before computing acceleration. Because the change in
pitch angle between adjacent frames was generally quite small
relative to the change in body position, and because the pitch angles
themselves were small relative to each bird’s trajectory, pitching
generally accounted for <5% of total acceleration. To this end, we

repeated our analyses while ignoring the effects of pitching and
found no significant changes to our major results.

To differentiate between the upstroke and downstroke, we computed
the elevation of the wrist (relative to the midline of the body defined
as a line between the eye and tail). These data, along with the
velocity and acceleration data, were then exported to IGOR Pro. We
then manually picked the start and stop of each wing stroke, defined
by the maximum and minimum elevation of the wrist, and used a
custom macro to obtain the instantaneous velocity and acceleration
data based on the tail and eye points between the two points in time.

Visual inspection of the body-length data revealed obvious head
movement relative to the body in all five species (Fig. 2). For this
reason, we present acceleration data based on the tail points, but
for the sake of comparison with previous work (Hamilton, 2006;
Johansson and Aldrin, 2002), we also used the eye points to compute
the proportion of upstrokes with positive instantaneous acceleration.
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Fig. 1. Wing and body kinematics of a descending tufted
puffin. Included are the raw, digitized tail points (green dots)
and smoothed points corresponding to the tail, eye and wrist.
Data from this bout are illustrated in Figs 2 and 3.

–10

–8

–6

–4

–2

D
iff

er
en

ce
 in

 B
L 

fro
m

 m
ea

n 
(%

)

0

2

4

6

8

10

0 0.5
Time (s)

1.0 1.5

Fig. 2. Percent difference in body length (BL) relative to mean body
length for a descending tufted puffin as a function of time (s). Gray
background, downstroke; white background, upstroke, based on the
position of the wrist. Body length is measured as the distance between
the eye and the tail at each frame, after smoothing. These data were
obtained from the sequence of wingbeats shown in Fig. 1.
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We feel that the tail is a valid indicator of overall body motion in
this study. Although the tail may be used for maneuvering in some
species, we did not digitize bouts in which alcids changed direction
or turned. In addition, the tail is folded when diving, and thus
represents a fairly stiff offshoot of the body. Though it may have
been worthwhile to digitize multiple points around the border of the
body to estimate the location of the center of mass of each bird for
each frame, the time required for such a process makes it unfeasible
for a study with this large of a sample size. Further, automated
tracking methods were unable to distinguish the bird from other
objects in the tank, given the complex background.
To determine whether a given stroke resulted in acceleration, we

used the ‘findpeaks’ function in MATLAB to locate the position
and magnitude of the largest local maximum acceleration (hereafter,
‘peak acceleration’), which typically occurred at around mid-stroke
(Fig. 3). We chose this method over simply selecting the largest
accelerations to avoid sampling momentary positive accelerations
occurring at the stroke reversals and to better replicate the methods
of past studies, which specifically refer to acceleration peaks
(Hamilton, 2006; Watanuki et al., 2006).
The upstroke and downstroke of alcids contain highly negative and

positive instantaneous accelerations that are variable in their timing
betweenwingbeats.We found that because of this variability in timing,
averaging the instantaneous acceleration across wing strokes leads to
the deconstruction of the overall pattern (negative features overlap with
positive features owing to slight variation in timing). Presumably for
this reason, past studies have presented ‘representative’ acceleration
profiles rather than average plots (Lovvorn et al., 2004;Watanuki et al.,
2003, 2006). In addition to a representative plot, for both downstroke
and upstrokewe plot the average peak acceleration (i.e. the largest local
maximum occurring during each half-stroke, as described above),
average minimum acceleration, and average acceleration at the
downstroke-to-upstroke transition, along with the standard error in
mean and timing of said values, to illustrate the overall shape of the
acceleration profiles for each species.

Statistics
Plots were made using MATLAB’s basic plotting functions. To
determine whether alcids in our study head-bobbed or head-damped,

we compared the coefficient of variation in velocity (calculated as the
standard deviation in velocity divided by themean velocity; hereafter,
CVvelocity) for each complete wingbeat cycle based on either tail
points or eye points. To test for a significant difference between these
measures, we used a linear mixed-effects model (with random effects
on the intercept for both species and bout) in MATLAB. Head-
bobbing is exhibited by many bird species in walking and swimming
and occurs when a bird alternates between a globally fixed head
position and a thrusting head movement in sync with the stroke cycle
(Clifton and Biewener, 2018; Necker, 2007). Head-damping occurs
when a bird uses relative head movement to smooth or damp the
acceleration patterns of the body, thereby creating a more stable
visual field. If birds head-bobbed, then we would expect higher
CVvelocity values owing to the alternation between hold and thrust
phases of the head, whereas head-damping would result in lower
CVvelocity values. For values of maximum upstroke and downstroke,
standard deviations were computed as the square root of the summed
squared-errors for maximum upstroke and downstroke. We report
means±s.e.m.

RESULTS
Stroke–acceleration pattern
On average, alcids accelerated during the downstroke and decelerated
during the upstroke in both level and descending bouts (Table 2).
However, 100 of 115 (87%) upstrokes during horizontal bouts and 33
of 38 (87%) upstrokes during descending bouts produced peak
accelerations greater than zero (Table 2). In other words, alcids
experienced moments of acceleration during the majority of
upstrokes. The general stroke-acceleration pattern as a function of
time was M-shaped across all five species, with minima near the
stroke reversals and peaks at about mid-stroke (Figs 4 and 5). The
relative height of mean peak upstroke-acceleration to mean peak
downstroke-acceleration ranged from 0.23±0.28 BL s−2 in the pigeon
guillemot to 0.61±0.22 BL s−2 in the tufted puffin for horizontal
swimming, and from 0.06±0.50 in the horned puffin to 0.89±
0.35 BL s−2 in the pigeon guillemot for descending swimming
(Figs 4 and 5, Table 2). The timing of peak acceleration during the
downstroke was much more consistent than that during the upstroke,
as illustrated by the width of the error bars in Figs 4 and 5. The peak
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Fig. 3. Acceleration pattern (BL s−2) of a descending tufted
puffin, based on both head and tail points, versus time (s). Gray
background, downstroke; white background, upstroke, based on the
position of the wrist. These data are taken from the sequence of
wingbeats shown in Fig. 1.
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downstroke-acceleration tended to be larger, and the peak upstroke-
acceleration tended to be smaller, for descending swimming relative
to horizontal swimming, though the general stroke–acceleration
pattern is consistent under both conditions (Figs 4 and 5).

Head-damping and impacts on perceived stroke-
acceleration patterns
Alcids of all five species exhibited head movement relative to
the movement of their bodies in sync with their stroke cycle (Fig. 2).

We were interested in whether this head movement reflected ‘head-
bobbing’ or ‘head-damping’ (Necker, 2007; Pete et al., 2015). To
test between these two options, we compared CVvelocity when
computed based on the eye versus that computed based on the tail
for all complete wingbeats. The mean CVvelocity based on the eye
was significantly lower than that based on the tail (P=0.015), thus
indicating head-damping.

In comparing stroke–acceleration patterns based on the tail- versus
eye-position, head-damping had a clear effect onwhether we detected

Table 2. Stroke–acceleration patterns for five species of alcid engaged in descending and horizontal swimming

Common murre Horned puffin Pigeon guillemot Rhinoceros auklet Tufted puffin

Horizontal
Mean downstroke acceleration (BL s−2) 6.32±1.20 8.64±0.67 3.98±0.89 7.88±1.89 4.03±0.75
Mean upstroke acceleration (BL s−2) −2.44±0.50 −4.13±0.79 −3.56±0.65 −4.24±1.48 −0.923±0.56
Peak downstroke acceleration (BL s−2) 15.46±1.57 24.99±0.94 15.23±1.21 23.41±2.25 16.89±2.16
Peak upstroke acceleration (BL s−2) 6.07±0.73 9.04±1.82 3.57±0.97 8.68±1.95 10.23±1.88
Min. downstroke acceleration (BL s−2) −5.29±0.98 −11.46±1.83 −8.73±1.00 −11.54±2.26 −8.58±2.18
Min. upstroke acceleration (BL s−2) −11.51±1.17 −19.19±1.92 −13.05±1.14 −19.61±3.03 −10.93±1.65
Upstroke peak/downstroke peak 0.39±0.16 0.36±0.20 0.23±0.28 0.37±0.24 0.61±0.22
Prop. downstrokes with peak acceleration>0 24/25 25/25 27/27 23/24 25/25
Prop. upstrokes with peak acceleration>0 22/25 19/23 19/25 17/18 23/24
Prop. upstrokes with peak acceleration>0, based on head points 11/25 9/23 8/25 6/18 18/24

Descent
Mean downstroke acceleration (BL s−2) 1.84±0.88 9.65±1.41 2.34±2.83 6.32±0.89
Mean upstroke acceleration (BL s−2) −1.60±0.67 −5.18±0.55 −0.834±3.52 −3.92±0.74
Peak downstroke acceleration (BL s−2) 13.38±1.04 27.45±2.25 17.11±2.55 26.78±1.17
Peak upstroke acceleration (BL s−2) 6.35±1.11 1.53±0.76 15.22±4.77 7.77±1.08
Min. downstroke acceleration (BL s−2) −11.38±1.86 −10.62±1.90 −19.88±2.21 −14.30±1.60
Min. upstroke acceleration (BL s−2) −11.79±1.37 −16.52±1.23 −17.03±2.37 −16.84±1.46
Upstroke peak/downstroke peak 0.47±0.19 0.06±0.50 0.89±0.35 0.29±0.15
Prop. downstrokes with peak acceleration>0 10/10 10/10 8/8 12/12
Prop. upstrokes with peak acceleration>0 9/11 6/8 7/8 11/11
Prop. upstrokes with peak acceleration>0, based on head points 10/11 2/8 5/8 3/11

All data are based on tail points unless otherwise specified.
Data are presented as averages of the mean, peak and minimum accelerations, in terms of body lengths s−2 (BL s−2) from all half-strokes±s.e.m.
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acceleration on the upstroke. When acceleration was calculated based
on the position of the tail, 100 of 115 (87%) horizontal upstrokes
and 31 of 38 (87%) descending upstrokes had peak accelerations
>0 BL s−2 (Table 2). In contrast, when acceleration was calculated
based on the position of the eye, 52 of 115 (45%) horizontal upstrokes
and 20 of 38 (53%) of descending upstrokes had peak accelerations
>0 BL s−2 (Table 2). For example, in a single sequence of wingbeats
from a descending tufted puffin, 4 of 4 upstrokes showed peak
accelerations >0BL s−2 when computed based on tail points, whereas
0 of 4 showed peak accelerations >0BL s−2 when computed based on
head points (Fig. 3).

DISCUSSION
Our results revise understanding of the stroke–acceleration patterns
of swimming alcids and offer new insights into the ubiquity of
visual stabilization in avian locomotion.
Contrary to our hypothesis that the presence of upstroke-based

acceleration was determined by swimming trajectory, we found that
the upstroke consistently resulted in acceleration of the body (133 of
153 upstrokes, 87%) in both horizontal and descending swimming,
with peak accelerations ranging from 23 to 61% and 6 to 89% of that
produced during the downstroke in horizontal and descending
swimming, respectively (Table 2, Figs 4 and 5). This result is
contrary to those of two previous studies of horizontal swimming in
alcids, which found peak accelerations significantly greater than
zero in only 2 of 24 (8%) upstrokes of Atlantic puffins (Johansson
and Aldrin, 2002) and 5 of 32 (16%) upstrokes of common murres
(Hamilton, 2006). Our unique result is likely due to previous
kinematic studies including either the position of the head, or
regions of the body that are distorted by head movement, in their
computations of body acceleration. Our study indicates that the
position of the head is not a reliable indicator of overall body
position for swimming alcids (Fig. 2). Had we used the head to
compute body accelerations, we would have obtained results more

consistent with those of past studies (see data within Table 2, 72 of
153 upstrokes producing acceleration, 47%).

Our study also differs from those of Johansson and Aldrin (2002)
and Hamilton (2006) in other, contrasting ways. Thanks to
recent advancements in high-speed camera technology, we were
able to record birds swimming in a much larger volume of water
(397,000 liters) than in past kinematic studies. Johansson and
Aldrin (2002) and Hamilton (2006) were limited to the use of small
tanks to meet the lighting requirements of early-2000s high-speed
cameras. Johansson and Aldrin (2002) studied Atlantic puffins in a
tank measuring 5×1×1 m and Hamilton (2006) studied common
murres in a water tunnel with a working section measuring
4.4×0.8×0.6 m. These dimensions may have restricted the range
of motion of the animals. In addition, Johansson and Aldrin (2002)
studied wild-caught birds, whereas we and Hamilton (2006) studied
captive-raised birds. The lack of opportunities to engage in
sustained flight in captive birds may affect the flight muscles in
ways that affect swimming performance. Further, Johansson and
Aldrin (2002) filmed birds as they fled from an approaching
researcher, and Hamilton (2006) measured accelerations at series of
fixed swimming velocities, whereas birds in our study were free to
choose when, where and how fast to swim.

Nonetheless, birds in our study were confined to swim at rather
shallow depths (<6.5 m), and our sampled bouts of swimming were
at depths ≤3 m. This has implications for interpreting our results in
relation to diving in the wild because of the likely effects of
buoyancy. Penguins prepare extensively for dives by increasing
their breathing rate (Wilson, 2003) and appear to modulate their
lung volume based on the depth of the upcoming dive (Sato et al.,
2002, 2011). We know of no study in alcids on the relationship
between lung volume and dive depth, but, similar to Wilson (2003),
we did observe pre-dive panting in rhinoceros auklets, tufted puffins
and horned puffins. In addition, common murres opened their beak
to a wide angle just before diving. If alcids control the volume of air
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in their lungs based on the depth of the upcoming dive like
penguins, then alcids in our study were likely less buoyant than free-
ranging birds. Thus, the magnitude of acceleration during the
upstroke we measured may be larger than these species experience
when diving to greater depths.
The pitching motions alcids exhibit when swimming may have

also disguised the stroke–acceleration patterns of animals in
previous kinematic studies; however, our data suggest that this is
unlikely. We accounted for the impacts of pitching in our
acceleration calculations, but had we not, our results for the
relative frequency of upstroke-based acceleration would have been
similar. When the effects of pitching were ignored, and acceleration
was computed based on the position of the tail, alcids appeared to
accelerate on 104 of 115 (90%) upstrokes during horizontal bouts
and 33 of 38 (87%) upstrokes during descending bouts. When the
effects of pitching were ignored, and acceleration was computed
based on the position of the eye, alcids appeared to accelerate on 57
of 115 (50%) upstrokes during horizontal bouts and 21 of 38 (55%)
upstrokes during descending bouts. These results largely mirror our
pitch-controlled results, suggesting that head-damping is the
primary reason that previous kinematic studies failed to detect
consistent upstroke-based acceleration in swimming alcids
(Hamilton, 2006; Johansson and Aldrin, 2002). The body angle
of swimming alcids is generally quite close to their angle of descent
(generally <10 deg difference), limiting the impact of pitching on
acceleration calculations.
Studies that have used accelerometers to track the stroke–

acceleration patterns of free-ranging alcids have found that alcids
accelerate during the upstroke only in shallow water (0–20 m)
(Lovvorn et al., 2004; Watanuki et al., 2003, 2006). These authors
have hypothesized that the decrease in buoyancy with depth, which
occurs as air volumes in the bird’s respiratory system and plumage
compress, is responsible for the decrease in peak upstroke-based
acceleration. Our results indicate that this phenomenon is not driven
by the trajectory of the animal (Lovvorn et al., 2004; Watanuki and
Sato, 2008; Watanuki et al., 2006).
Interestingly, alcids decrease upstroke-based acceleration with

depth while maintaining relatively consistent downstroke kinematics
(Watanuki and Sato, 2008; Watanuki et al., 2006). As an explanation
for this behavior, Watanuki and Sato (2008) and others suggest that
alcids vary upstroke kinematics to control their speed in response to
changing buoyancy. In other words, as buoyancy decreases with
depth, alcids reduce the thrust produced by their upstroke rather than
increase their speed, perhaps to minimize drag costs (Watanuki et al.,
2003). This explanation fits with evidence from Lovvorn et al.
(1999), who found that many diving birds have characteristic speeds
with minimum coefficients of drag. However, given that a less-
pulsatile acceleration profile should decease the cost of swimming at
a given speed (Lovvorn, 2001; Vogel, 1994), it is unclear why birds
would decrease the thrust produced by the upstroke alone, rather than
vary the kinematics of both the downstroke and upstroke in
conjunction to control their speed.
We offer a potential explanation for why alcids rely on the upstroke

to regulate swimming speed based on the volume of the muscle
powering the stroke and the characteristic efficiency of muscle fibers.
This explanation assumes the contractile dynamics of the major
wing muscles (pectoralis and supracoracoideus) may be inferred
from wing motion. Watanuki and Sato (2008) found that upstroke
duration, but not downstroke duration, varies significantly with
depth. Assuming that stroke amplitude does not vary concurrently
with depth, the results of Watanuki and Sato (2008) indicate that
alcids alter upstroke velocity, and, by relation, strain rate of the

supracoracoideus muscle, to alter the thrust produced by their
upstroke. Muscle fibers of a given fiber type are most efficient over a
narrow range of strain rates (Goldspink, 1977; He et al., 2000;
Reggiani et al., 1997). Thus, varying strain rate with depth,
while likely minimizing drag costs (Lovvorn et al., 1999), probably
reduces the average contractile efficiency of supracoracoideus
contraction. However, the cost of contracting fibers in the
supracoracoideus at an inefficient strain rate may be relatively
small, as the supracoracoideus is small relative to the pectoralis
(Kovacs and Meyers, 2000). The total energetic cost of a contraction
at an inefficient strain rate is equal to the cost per muscle fiber times
the number of fibers involved. Thus, it may require less energy to
contract the supracoracoideus at highly inefficient rates of strain,
given its small volume, rather than vary strain rate to a lesser extent in
both the supracoracoideus and the larger pectoralis. In other words,
alcids mayminimize the energetic costs of swimming bymaintaining
downstroke kinematics across depths at values that maximize the
contractile efficiency of the pectoralis – varying upstroke kinematics
instead – despite the acceleration-related costs.

Alcids in the present study appeared to utilized head-damping to
smooth instantaneous accelerations while swimming, rather than
exhibiting the more traditional pattern of head-bobbing observed in
foot-propelled swimming loons (Clifton and Biewener, 2018) and
grebes (Gunji et al., 2013). Head-bobbing is characterized by
alternating between the hold and thrust phases of the head, each of
whichmay have a different function. According toNecker (2007), the
hold phase likely aids in object detection, whereas the thrust phase
may improve a bird’s ability to determine depth based on the rate of
optic flow, defined as the rate that the image of the world moves
across the retina (Martin, 2017). Head-damping has been more
commonly documented in flying birds and is a critical aspect of
flight, wherein it functions to stabilize optic flow (Dakin et al., 2016;
Goller and Altshuler, 2014; Pete et al., 2015; Ros and Biewener,
2016, 2017; Walsh et al., 2013). Head-damping in swimming alcids
may perform a function similar to its role in aerial flight.
Alternatively, owing to the kinematic similarities between aerial
flight and wing-propelled swimming in these species, alcids may
perform head-damping involuntarily because of to rigid connections
between motor neurons and vestibular/ocular pathways in the brain.
Moreover, excluding pigeon guillemots, alcids have much shorter
necks than either loons or grebes, and head-bobbing may be
ineffective for species lacking long necks. Exploring the headmotion
of diving alcidsmay reveal novel insights into the general functioning
of optic flow in avian locomotion, and thus merits further study.

Based on the pattern of bubbles released from a swimming
pigeon guillemot, Rayner (1995) predicted that the upstroke of all
swimming alcids was inactive. Although studies of other alcid
species have since disproved this position, it has remained possible
that Rayner (1995) was correct with regards to pigeon guillemots,
which are morphologically and ecologically distinct from other
alcids (Ashmole, 1971). Relative to other alcids, pigeon guillemots
are highly maneuverable in slow flight (A.B.L., personal
observation) and forage in shallow water (Clowater and Burger,
1994). Our results indicate that the wing-propelled swimming of
pigeon guillemots is not distinct from that of other alcids. Instead, as
pointed out by Johansson and Aldrin (2002), Rayner (1995) may
not have observed vorticity produced by the upstroke, which would
indicate force production, because the force of the water pressing on
the upper surface of the wing during the upstroke prevented the
release of bubbles from the feathers.

Penguins have been shown to experience accelerations of near-
equal magnitude during both downstroke and upstroke (Clark and
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Bemis, 1979; Hui, 1988; Watanuki et al., 2006). This information
has been used as evidence that penguins are supremely adapted to
swimming and, thus, more efficient underwater than alcids
(Lovvorn et al., 2004; Rayner, 1995), which produce more
unequal forces owing, potentially, to the trade-offs between aerial
and aquatic performance. However, the fact that alcids have longer
mass-specific dive durations than penguins (Halsey et al., 2006;
Watanuki and Burger, 1999), and therefore seem to consume their
oxygen supply more efficiently than penguins, calls into question
this assumption. In line with this logic, we found that alcids
experience upstroke-based accelerations ranging from 6 to 89% and
23 to 61% of that produced by downstroke in descending and
horizontal swimming, respectively. In comparison, Watanuki et al.
(2006) reports a downstroke-to-upstroke acceleration ratio for
descending little penguins (Eudyptula minor) of approximately
74% at 2 m, while Hui (1988) reports a downstroke-to-upstroke
acceleration ratio of 58% for Humboldt penguins (Spheniscus
humboldti) swimming horizontally in shallow water. Thus, alcids
produce thrust on both halves of their stroke cycle – enough thrust to
cause acceleration during both half-strokes – and the available
information indicates that the distribution of force production
between upstroke and downstroke in alcids is only slight less even
than that in penguins, at least in shallow water.
An additional factor in determining the efficiency of swimming is

the hydrodynamic method of thrust production. Penguins produce
force via lift-based hydrodynamic mechanisms on both the upstroke
and downstroke thanks to the symmetric foil shape of their wings
(Bannasch, 1995; Hui, 1988). At high speeds, lift-based propulsion
is more efficient, in terms of the energy required to produce a given
net thrust, than drag-based propulsion from both theoretical (Daniel
and Webb, 1987; Jackson et al., 1992) and empirical perspectives
(Baudinette and Gill, 1985; Fish, 1996; Richman and Lovvorn,
2008; Schmid et al., 1995; Vogel, 1994; Williams, 1999). If we
assume that drag-based propulsion is synonymous with ‘rowing’
and lift-based propulsion with ‘flapping’ (Walker and Westneat,
2002), which is a coarse but reasonable approximation for the wing-
propelled locomotion of diving birds (but see Johansson and Lindhe
Norberg, 2000; Johansson and Lindhe Norberg, 2001; Johansson
and Norberg, 2003), then lift-based propulsion is more efficient at
all speeds (Walker and Westneat, 2000). By this logic, penguins
have been considered especially efficient swimmers. However, our
data present some evidence that the aquatic upstroke-thrust of alcids
is also lift-based.
During the upstroke of alcids in our study, the wing appears to

move forward (in addition to upward) relative to the body of the
animal. Because the animal itself is moving forward, the wing
moves forward relative to the water, as well (Fig. 1). If the upstroke
were to produce force via drag, then it would have to move
backward relative to the fluid to produce thrust. Thus, the upstroke
of a swimming alcid appears to produce a lift force directed forward
and downward – much like the upstroke of a penguin. Johansson
(2003) reached a similar conclusion based on data from Atlantic
puffins. Similarly, the alcid downstroke moves downward and
slightly forward relative to the water (Fig. 1), suggesting that alcids
produce lift forces for propulsion during both half-strokes
(Johansson and Aldrin, 2002). However, because rowing
kinematics are capable of producing larger forces at slow speeds
(Walker and Westneat, 2000), alcids may utilize a more drag-based
downstroke at slow speeds (to accelerate or counter large buoyant
forces) and shift toward a more lift-based downstroke at high speeds.
Further research is necessary to elucidate the exact hydrodynamic
mechanisms by which alcids produce force in water, especially if we

wish to build bioinspired robots based on these animals (Lock et al.,
2010, 2012, 2013).

Conclusions
Our study of five species from three genera confirms that alcids
routinely accelerate during both the downstroke and upstroke in both
horizontal and descending swimming at shallow depths. We found
that the head is not a reliable indicator of body acceleration in
swimming alcids because of head-damping, offering a potential
explanation for the rarity upstroke-based acceleration detected in
past studies of horizontally swimming alcids. Future studies should
track the tail or, ideally, the center of mass of diving birds to
eliminate the effects of relative head movement on force
calculations. The use of head-damping reveals the ubiquity of the
need for head stabilization during avian wing-propelled locomotion.
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Alcids ‘fly’ at efficient Strouhal numbers
in both air and water but vary stroke
velocity and angle
Anthony B Lapsansky1*, Daniel Zatz2, Bret W Tobalske1

1Field Research Station at Fort Missoula, Division of Biological Sciences, University
of Montana, Missoula, United States; 2ZatzWorks Inc, Homer, United States

Abstract Birds that use their wings for ‘flight’ in both air and water are expected to fly poorly in

each fluid relative to single-fluid specialists; that is, these jacks-of-all-trades should be the masters

of none. Alcids exhibit exceptional dive performance while retaining aerial flight. We hypothesized

that alcids maintain efficient Strouhal numbers and stroke velocities across air and water, allowing

them to mitigate the costs of their ‘fluid generalism’. We show that alcids cruise at Strouhal

numbers between 0.10 and 0.40 – on par with single-fluid specialists – in both air and water but

flap their wings ~ 50% slower in water. Thus, these species either contract their muscles at

inefficient velocities or maintain a two-geared muscle system, highlighting a clear cost to using the

same morphology for locomotion in two fluids. Additionally, alcids varied stroke-plane angle

between air and water and chord angle during aquatic flight, expanding their performance

envelope.

Introduction
The ‘jack of all trades’ concept – the idea that the ability to function in multiple environments can

only be achieved by sacrificing maximal performance (MacArthur, 1972) – is commonly invoked in

discussing the locomotor performance of wing-propelled diving birds (Elliott et al., 2013; Simp-

son, 1946; Stettenheim, 1959; Storer, 1960; Thaxter et al., 2010). These species, which include

some or all members of the alcids (Alcidae), ducks (Anatidae), petrels and shearwaters (Procellarii-

dae), dippers (Cinclus), and the penguins (Spheniscidae), use their wings to propel themselves

underwater. Wing-propelled diving birds which have retained their ability to fly in the air – hereafter,

‘dual-medium’ species (sensu Kovacs and Meyers, 2000) – are fluid generalists. These animals use

the same locomotor apparatus to ‘fly’ in both air and water, and are, therefore, expected to fly

poorly relative to strictly aerial and strictly aquatic fliers in each environment.

Interestingly, birds in the family Alcidae (puffins, murres, and their relatives) seem to contradict

the notion of a trade-off between aerial and aquatic flight performance. As with many dual-medium

birds, alcids have high wing-loading (the ratio of body mass to wing area), and therefore display

poor maneuverability in aerial flight relative to non-diving birds (Ortega-Jimenez et al., 2011;

Shepard et al., 2019). However, the wing-loadings of alcids and other dual-medium birds are nearly

indistinguishable from those of volant birds which use their feet for aquatic locomotion (based on

data from Alerstam et al., 2007; Bruderer et al., 2010; Spear and Ainley, 1997), indicating that

high wing-loading is likely the result of selection by the aquatic environment for large body sizes or

low buoyancy (Ponganis, 2015), rather than a trade-off specific to dual-medium flight. The current

records for the depth and duration of a single dive by an alcid are 210 m and 224 s, respectively,

held by the ~1 kg thick-billed murre (Uria lomvia, Linnaeus 1758), making this alcid, on a mass-spe-

cific basis, the deepest and longest-duration diver on earth (Croll et al., 1992). When corrected for
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body size, alcids exhibit dive durations and depths far greater than even penguins (Halsey et al.,

2006).

One possible explanation for the aquatic performance of alcids is that they have mitigated the

costs of dual-medium flight. Specifically, by maintaining efficient Strouhal numbers (St) and stroke

velocities across air and water, birds in the family Alcidae may lessen the perceivable differences

between aerial and aquatic flight, thereby reducing the costs of fluid generalism.

To swim or fly, an animal must impart momentum to the surrounding fluid. Strouhal number

(St = fAU�1, where f is wingbeat frequency, A is wing excursion, and U is forward speed) describes

the pattern of vortices shed into the fluid wake by a flapping foil as it imparts that momentum

(Triantafyllou et al., 1993). Extensive research has determined that peak efficiency (in terms of the

power required to flap a foil relative to the thrust output to the fluid) for a simple heaving and pitch-

ing foil occurs at around 0.2 < St < 0.4 (Anderson et al., 1998; Triantafyllou et al., 1991;

Triantafyllou et al., 1993). Most flapping and swimming animals studied to date fall within or near

that range, with the previously studied, strictly aerial birds exhibiting 0.12 < St < 0.47 during cruising

flight (Taylor et al., 2003). That most species fall near the efficient range of St suggests that natural

selection has tuned the kinematics of animals to fly and swim efficiently (Nudds et al., 2004;

Taylor et al., 2003). Thus, alcids could achieve efficient fluid wake production in both air and water

by maintaining 0.2 < St < 0.4, and efficiency on par with previously studied single-media species by

maintaining 0.12 < St < 0.47, but the ‘jack of all trades’ concept suggests that they may unable to

do so given the substantial differences in density and viscosity between the two fluids.

Stroke velocity describes the speed at which the wing is swept through its arc during either the

downstroke or the upstroke of the wing. This parameter is likely important in determining the cost

of locomotion given that it should be proportional to the contractile velocity of the major flight

muscles, the pectoralis and the supracoracoideus (Hamilton, 2006; Tobalske and Dial, 1994;

Tobalske et al., 1999). Muscles fibers of a given fiber type and myosin isoform are most efficient at

converting metabolic power into mechanical power over a narrow range of contractile velocities

(Goldspink, 1977; He et al., 2000; Reggiani et al., 1997; Rome et al., 1988). Thus, it would

behoove alcids to operate the fibers in their flight muscles at the contractile velocity which maxi-

mizes muscle efficiency, and for that velocity to be shared across aerial and aquatic flight. Otherwise,

alcids could maintain two populations of fibers – an aerial set and an aquatic set – but this would

add mass to the animal, increasing the cost of aerial flight (Ellington, 1984a). Previous research has

demonstrated that diving alcids maintain stroke velocities within a narrow range across dive depths,

despite large variations in buoyancy, suggesting that they are responsive to the challenge of main-

taining contractile velocity (Watanuki and Sato, 2008; Watanuki et al., 2006). Although researchers

have not yet examined myosin isoforms in alcids, the two species of alcids for which histochemical

data are available possess only ‘fast’ muscle fibers (Kovacs and Meyers, 2000; Meyers et al.,

1992).

Recently, Kikuchi et al., 2015 measured the kinematics of flying and diving rhinoceros auklets

(Cerorhinca monocerata) using a combination of videography and accelerometry. The authors used

bootstrapping to coalesce measurements from various individuals to determine the range of St

exhibited by this species. The results of this study strongly suggest that this small alcid maintains

optimal St in air and water. We wanted to extend this work to determine if individuals tune their

kinematics to match optimal St on a per-flight basis. Alternatively, it is possible that the average

kinematics of this species are simply centered between 0.2 < St < 0.4. These authors also suggest,

based on wingbeat frequency, that stroke velocities of rhinoceros auklets are lower in water, but

were unable to statistically compare stroke velocities during aerial versus aquatic flight. While wing-

beat frequencies are different between aquatic and aerial flight (~2–4 Hz versus 7–11 Hz, respec-

tively), wingbeat amplitude may vary between the two environments, allowing for similar stroke

velocities.

To improve understanding of potential evolutionary trade-offs between aerial and aquatic flight,

we tested whether alcids exhibit efficient St and maintain consistent stroke velocities when flying in

water and air. We used videography to measure the wing kinematics of four species of alcids from

three genera. These species differ substantially in body mass (450 g to 1 kg) and represent opposite

branches of the alcid phylogeny. In addition to St and stroke velocity, we report a variety of kine-

matic parameters, including stroke-plane and chord angles relative to the body to contrast how the

flight apparatus is used in air versus water and during horizontal versus descending aquatic flight.
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Figure 1. Measurements of stroke-plane angle (b) and chord angle (/). The wings drawn with the thin black line indicate the position at the start of

downstroke in air (top) and water (bottom, with blue shading). The wings drawn with the dashed line indicate the position at the end of downstroke in

air and water. b was measured using the wingtip in aerial flight and the wrist in aquatic flight. / was measured at mid-upstroke and mid-downstroke

(wing drawn with thick black line) during aquatic flight.
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We hypothesized that alcids maintain efficient St and consistent stroke velocities across air and

water, which would allow this group to mitigate the costs of fluid generalism (Figure 1).

Results
Strouhal numbers (St) for horizontal aquatic flights averaged 0.18 ± 0.02 for common murres,

0.13 ± 0.01 for horned puffins, 0.15 ± 0.01 for pigeon guillemots, and 0.15 ± 0.02 for tufted puffins

(Figure 2, blue points). St for descending aquatic flights were significantly greater than those for

horizontal aquatic flights (F1,27 = 145.6, h2 = 0.729, p-value = 2.18e-12) with a relatively minor but

significant interaction between species and the type of aquatic flight (F3,27 = 3.59, h2 = 0.054,

p-value = 0.0264). Within-species post hoc tests indicated that all species exhibited greater St during

descending aquatic flights relative to horizontal aquatic flights (p = 0.0478, 4.19e-04, 9.17e-07,

5.72e-07; for species in alphabetical order). St for descending aquatic flights averaged 0.24 ± 0.01

for flights of common murres, 0.21 ± 0.04 for horned puffins, 0.29 ± 0.06 for pigeon guillemots, and

0.29 ± 0.03 for tufted puffins (Figure 2, green points).

St for aerial flights based on the ground speed of the birds averaged 0.17 ± 0.02 for common

murres, 0.22 ± 0.14 for horned puffins, 0.49 ± 0.06 for pigeon guillemots, and 0.27 ± 0.02 for tufted

puffins (Figure 2, dark red points). Except for the flights of common murres, all birds appeared to

be flying in considerable wind based on the size of the waves on the surface of the water. Thus, we

also calculated St for aerial flights based on the airspeed characteristic of each species as reported

in Spear and Ainley, 1997 (see Materials and methods for details). When estimated from the range

of measured cruising flight speeds, St for aerial flights ranged from 0.12 to 0.25 for flights of com-

mon murres, 0.13 to 0.27 for horned puffins, 0.18 to 0.27 for pigeon guillemots, and 0.16 to 0.25 for

tufted puffins (Figure 2, light red lines).

Downstroke velocities were significantly greater during aerial flights than during aquatic flights

for all four species (t-Value = 8.10, 11.5, 6.04, 25.9; df = 16.5, 19.0, 9.48, 16.5; p-values = 3.80e-07,
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Figure 2. Strouhal numbers (St) of four species of alcid in aerial and aquatic flight. Each hatch mark on the x-axis indicates a unique flight. The darker

shaded section indicates 0.2 < St < 0.4, in which propulsive efficiency is predicted to peak, and the lighter shaded region indicates 0.12 < St < 0.47,

which is the range of St exhibited during cruising flight of strictly aerial birds reported in Taylor et al., 2003. Points indicate St for horizontal aquatic

flights (blue), descending aquatic flights (green), aerial flights based on ground speed (dark red), and aerial flights calculated using the range of cruising

speeds of that species reported in the literature (light red). Each flight is represented by the mean St for that flight ± s.d., except for St calculated for

aerial flights based on airspeed, for which we chose not to indicate a central tendency.

The online version of this article includes the following source data for figure 2:

Source data 1. Strouhal numbers of four species of alcid in aerial and aquatic flight.

Lapsansky et al. eLife 2020;9:e55774. DOI: https://doi.org/10.7554/eLife.55774 4 of 17

Research article Ecology Evolutionary Biology

https://doi.org/10.7554/eLife.55774


0

500

1000

1500

2000

2500

A
n

g
u

la
r 

v
e

lo
c
it
y
 (

d
e

g
 s-

1
)

0

500

1000

1500

2000

2500

A
n

g
u

la
r 

v
e

lo
c
it
y
 (

d
e

g
 s-

1
)

Air Water

C
om

m
on

 m
ur

re

H
or

ne
d 

pu
ffi
n

P
ig
eo

n 
gu

ill
em

ot

Tu
fte

d 
pu

ffi
n

Upstroke

Downstroke

Figure 3. Stroke velocities of four species of alcid in aerial and aquatic flight. Stroke velocity was significantly

greater during aerial flights (red) than during aquatic flights (blue) for each of the four species for both downstroke

(t-Value = 8.10, 11.5, 6.04, 25.9; df = 16.5, 19.0, 9.48, 16.5; p-values = 3.80e-07, 5.19e-10, 1.55e-04, 8.56e-15; for

species in alphabetical order) and upstroke (t-Value = 10.5, 16.0, 6.83, 26.4; df = 15.0, 18.8, 9.18, 16.1;

p-values = 2.67e-08, 2.13e-12, 6.97e-05, 1.09e-14; for species in alphabetical order). The central line in each box

marks the median, while the upper and lower margins of the box indicate the quartile range. The entire range of

values lie between the whiskers.

The online version of this article includes the following source data for figure 3:

Source data 1. Stroke velocities of four species of alcid in aerial and aquatic flight.
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5.19e-10, 1.55e-04, 8.56e-15; for species in alphabetical order; Figure 3). The same was true for

upstroke velocities (t-Value = 10.5, 16.0, 6.83, 26.4; df = 15.0, 18.8, 9.18, 16.1; p-values = 2.67e-08,

2.13e-12, 6.97e-05, 1.09e-14; for species in alphabetical order; Figure 3). Wingbeat amplitudes

were greater during aquatic flights across species (F1,71 = 162.4, h2 = 0.597, p-value<2.2e-16; Fig-

ure 4) with a relatively minor but significant interaction between species and fluid (F3,71 = 3.52,

h2 = 0.039, p-value=0.019). Within-species post hoc tests indicated that all four species exhibited

significantly greater wingbeat amplitudes during aquatic flight relative to aerial flight (p-val-

ues=1.93e-06,<1.0e-08, 3.29e-04, 2.36e-05). Stroke durations were often 2-3X greater in water as

compared to air, as indicated by the differences in wingbeat frequency (Figure 4), leading to signifi-

cant differences in stroke velocities between fluids.

When horizontal and descending aquatic flights are grouped together, stroke-plane angle (b) was

significantly lower (the top of stroke plane is rotated more caudally) during aerial flights relative to

aquatic flights (F1,47 = 41.3, h2 = 0.422, p = 6.14e-08; Figure 5). Across species, stroke-plane angle

averaged 79 ± 7 deg for aerial flights, 92 ± 7 deg for horizontal aquatic flights, and 93 ± 12 deg for

descending aquatic flights. Within aquatic flights, there was no significant relationship between

stroke-plane angle and angle of descent (F1,27 = 0.0755, h2 = 0.002, p = 0.786; Figure 5).

There was a significant relationship between chord angle (a) and angle of descent for upstroke

(F1,30 = 55.7, h2 = 0.458, p = 2.55e-08; Figure 6) and downstroke (F1,27 = 8.17, h2 = 0.122,

p = 8.11e-03; Figure 6). However, a significant crossed interaction between species and angle of

descent for downstroke chord angle (F3,27 = 7.68, h2 = 0.343, p = 7.26e-4), indicates that the main

effect of angle of descent on chord angle during downstroke is uninterpretable (i.e. the response

depends on the species; Figure 6). However, alcids significantly increased chord angle (thus, the

degree of supination) during upstroke as a function of angle of descent.

Discussion
Alcids achieve efficient wake production based on St during both aerial flight (based on airspeed)

and during aquatic flight. While St for horizontal aquatic flights often fell below St = 0.2 (Figure 2,

blue points), all measured values overlapped with the range for the cruising aerial flight of strictly

aerial birds reported in the literature (Taylor et al., 2003). Because stroke velocities were substan-

tially different between air and water (Figure 3), the use of efficient St seems to come at a cost to

the contractile efficiency of the primary flight muscles. Alternatively, aerial and aquatic flight may be

powered by different sets of muscles, as discussed below.

We interpret the relatively low values of St during horizontal aquatic flight to be a consequence

of buoyancy. While swimming horizontally, alcids must counteract buoyancy as it attempts to pull

them toward their dorsal side. Buoyancy is especially strong at shallow depths, as air volumes com-

press with depth (Wilson et al., 1992). To compensate for buoyancy during horizontal aquatic flight,

alcids in this study seemed to produce quick, low excursion wingbeats with near-horizontal chord

angles (a) on the upstroke (Figure 6). Given that the upstroke produces negative heave

(ventrally directed acceleration) in swimming alcids (Watanuki et al., 2006), these kinematics seem

to be a strategy used to counteract the strong, dorsally oriented buoyancy experienced during hori-

zontal swimming at shallow depths. In contrast, descending alcids must counteract buoyancy as it

attempts to resist their forward motion and are, therefore, not required to produce negative heave

via the upstroke. Still, all values of St for horizontal aquatic flight overlapped with the range reported

for strictly aerial birds in aerial flight – 0.12 < St < 0.47 – (Figure 1), suggesting that alcids produce

wakes of similar efficiency to their fully aerial relatives even while fighting buoyancy.

From previous research, the precise range of St values which confer optimal propulsive efficiency

(the proportion of total mechanical energy expended that contributes to useful work) depends

somewhat on the kinematics of the flapping foil, but departures from that range can have substantial

effects (Anderson et al., 1998; Read et al., 2003). Data comparing St to propulsive efficiency in ani-

mals are limited, but Rohr and Fish, 2004 report that a relatively minor shift in St in cetaceans (e.g.

from 0.25 to 0.35 in Pseudorca crassidens) can reduce propulsive efficiency by 5–10% (Rohr and

Fish, 2004). The paucity of data for animals swimming and flying outside the optimal range of St

may be due to the challenge of eliciting inefficient kinematics from animals. Alternatively, because

translational velocity is partially determined by wing excursion and frequency, the convergence of St

on some range of values may be inevitable. The latter seems unlikely, however, as trout adhere to a
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Figure 4. Wingbeat amplitude and frequency of four species of alcid in aerial and aquatic flight.

Artwork by Emily Moore
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narrow range of St despite experimentally-induced disruptions to their kinematics (Nudds et al.,

2014).

One limitation of this study is that recordings of aquatic flight were made at shallow depths. How-

ever, previous work has indicated that velocity (Lovvorn et al., 2004; Watanuki and Sato, 2008;

Watanuki et al., 2006), wingbeat frequency (Watanuki et al., 2006), and wing excursion

(Kikuchi et al., 2015) of descending birds remain within a narrow range across depths, suggesting

that our results apply to wild alcids. Average velocity and wingbeat frequency of common murres

during swimming in this study were 1.63 m s�1 and 2.4 Hz, respectively, whereas Watanuki et al.,

2006 report 1.61 m s�1 and 2.6 Hz for wild birds (Watanuki et al., 2006).

In moving between air and water, alcids must cope with a dramatic shift to the forces exerted

upon them. For example, a bird in aerial flight must counteract the downward pull of gravity,

whereas the same bird in shallow water must counteract the upward pull of buoyancy. Recent work

with robotics has revealed that a simple shift in stroke-plane angle (b, Figure 1) can allow for both

aerial and aquatic propulsion from the same wing (Izraelevitz et al., 2018). The authors of this study

point to alcids as their inspiration for exploring stroke-plane angle in a hybrid, flapping wing, but, to
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Figure 5. Stroke-plane angle (b) of four species of alcid in aerial and aquatic flight. b was significantly lower (the top of the stroke plane was rotated

more caudally) during aerial flights relative to aquatic flights (F1,47 = 41.3, h2 = 0.422, p = 6.14e-08). Within aquatic flights, there was no consistent

relationship between b and the angle of descent (F1,27 = 0.0755, h2 = 0.002, p = 0.786). Jitter was added to the points representing aerial flights and

horizontal aquatic flights (descent angle = 0) to increase visibility.

The online version of this article includes the following source data for figure 5:

Source data 1. Stroke-plane angle of four species of alcid in aerial and aquatic flight.
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our knowledge, our result is the first to confirm that b varies as predicted by Izraelevitz et al., 2018

as dual-medium birds transition between air and water.

The stroke plane is rotated to a greater degree during aerial flight to values that are consistent

with strictly aerial fliers (Figure 5; Tobalske et al., 1999). In other words, during the aerial down-

stroke, while the wing is being depressed alcids also draw the wing forward. To reset the position,

alcids elevate and retract the wing during the aerial upstroke. According to Izraelevitz et al., 2018,

this stroke-plane angle helps create the vertical force needed to counteract gravity in air. In water,

wherein a bird is actually pulled up by buoyancy rather than down by gravity, the top of the stroke

plane rotates cranially (Figure 5), allowing the bird to orient net force production to counteract drag
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Figure 6. Chord angle (a) versus descent angle for aquatic flights of four species of alcids. a increased with the angle of descent for upstroke

(F1,30 = 55.7, h2 = 0.458, p = 2.55e-08) and downstroke (F1,27 = 8.17, h2 = 0.122, p = 8.11e-03). However, a significant crossed interaction between

species and angle of descent for downstroke chord angle (F3,27 = 7.68, h2 = 0.343, p = 7.26e-4), indicates that the main effect of angle of descent on

chord angle during downstroke is uninterpretable (i.e. the response depends on the species). Jitter was added to the points representing horizontal

aquatic flights (descent angle = 0) to make all points visible.

The online version of this article includes the following source data for figure 6:

Source data 1. Chord angle versus descent angle for aquatic flights of four species of alcids.
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(Izraelevitz et al., 2018). Thus, alcids shift stroke-plane angle to cope with the shift in external

forces between air and water.

We found no significant relationship between the angle of descent and stroke-plane angle, sug-

gesting that – while stroke-plane angle varies between air and water – alcids do not seem to further

modify b to fine-tune the direction of their force output (Figure 5). Instead, alcids appear to change

the orientation of their force output during aquatic flight, at least in part, by increasing upstroke

chord angle (a) with angle of descent (Figure 6).

While amplitude was greater in water for all species (Figure 4), as expected, stroke durations

were dramatically shorter, causing stroke velocities in aerial flight to be ~2X faster than those during

aquatic flight (Figure 3). The work of Kikuchi et al., 2015 suggest a similar result for rhinoceros auk-

lets; however, they report nearly equal wingbeat amplitudes across fluids (87 deg in water, 88 deg in

air). Our results may differ because we measured wingbeat amplitude in different ways.

Kikuchi et al., 2015 relied on the vertical extent of the wingtip in aerial flight and the estimated

half-wingspan. Based on our observations, the excursion of the wingtip may not be a reliable mea-

sure for inferring contractile velocity. This is because the distal feathers bend considerably during

the end of each half-stroke in air, increasing the perceived wingbeat amplitude. This means that

stroke velocity measured via the wingtip in aerial flight is not comparable to that measured at the

wrist during aquatic flight.

Assuming stroke velocity is proportional to contractile velocity of the major wing muscles, the

pectoralis and supracoracoideus, alcids either contract these muscles at inefficient velocities in one

or both fluids or maintain a two-geared system – with one set of muscle fibers used for aquatic flight

and another for aerial flight. This is because muscle fibers of a given fiber type and myosin isoform

are most efficient over a narrow range of contractile velocities (Goldspink, 1977; He et al., 2000;

Reggiani et al., 1997; Rome et al., 1988). Alcids have exceptionally long sterna, perhaps allowing

for regional specializations in the pectoralis and supracoracoideus (Hamilton, 2006; Kovacs and

Meyers, 2000; Stettenheim, 1959). Alternatively, Kovacs and Meyers indicate that the latissimus

dorsi caudalis, which is enlarged in alcids, is positioned to retract the wing as occurs during the

aquatic downstroke. Thus, alcids may rely on different muscles for powering the downstroke in each

fluid (Kovacs and Meyers, 2000). Additionally, previous histology research has documented two,

‘fast’ fiber-types in the muscles (both with fast myosin but differing slightly in oxidative and glycolytic

capacities) of Atlantic puffins (Kovacs and Meyers, 2000). These lines of evidence suggest the pres-

ence of a two-geared flight system, the number of myosin isoforms in these muscles in alcids or their

contractile properties remain unknown.

By maintaining a two-geared system, alcids would avoid the costs of inefficient muscle contrac-

tions but would have increased aerial flight costs due to the additional mass of the ‘aquatic gear’

(Ellington, 1984b). In contrast, maintaining the ‘aerial gear’ may actually benefit aquatic perfor-

mance, as muscle represents a vital oxygen storage site to diving animals (Ponganis, 2015). Consis-

tent with this hypothesis, the metabolic rate of common murres is high in aerial flight but low in

aquatic flight (Elliott et al., 2013). Future research should test whether the pectoralis and supracora-

coideus muscles contract at different speeds in aerial and aquatic flight and explore in more detail

the variation in myosin composition of those muscles to test for a two-geared system. It would be

especially interesting to explore the presence of a two-geared system in dippers (genus Cinclus) –

the only dual-medium passerine birds – given that passerines often express only one myosin isoform

(Rosser et al., 1996).

Conclusion
Alcids cruised within the efficient range of St in both aerial flight and aquatic flight, suggesting that

selection has optimized these species for locomotion in remarkably different fluids. However, alcids

flapped their wings at two discrete sets of stroke velocities according to fluid medium, indicating

that they either contract their muscles at inefficient velocities in one or both fluids or maintain a two-

geared muscle system, with one set of muscle fibers used in air and another in water. In addition,

stroke-plane (b) and chord (a) angles appear to be important in allowing alcids to shift the orienta-

tion of their force output between media and among descent angles in water. Future research

should explore the potential of a two-geared muscle system in dual-medium birds by examining

myosin isoforms in alcids and other species and test for functional and regional specializations in the

flight apparatus across dual-medium birds.
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Materials and methods

Study area and animals
Study animals were common murres (Uria aalge, Pontoppidan 1763), pigeon guillemots (Cepphus

Columba, Pallas 1811), horned puffins (Fratercula corniculata, Naumann 1821), and tufted puffins

(Fratercula corniculate, Pallas 1769).

Filming of aquatic flight was performed at the Alaska SeaLife Center in Seward, Alaska. The

Alaska SeaLife Center contains an outdoor aviary exhibit with a large area for aerial flight (approxi-

mately 20 m wide X 20 m long X 8–10 m tall) over a 397,500-liter saltwater tank. The surface of the

water measures approximately 10.5 m X 11 m and is approximately 6.5 m deep at its deepest point.

The southern edge of the tank is inset with a large glass viewing window approximately 3.5 m wide

which extends from ~2 m above the waterline to the floor of the tank. The glass of the viewing win-

dow varies from ~6.5 cm to ~25.0 cm thick from the waterline to the floor of the tank. At the time of

this study, the exhibit contained 12 horned puffins, 10 tufted puffins, 4 pigeon guillemots, and 6

common murres. Individuals of each species of alcid regularly swam past the viewing window. Birds

opted either to swim parallel to the water’s surface and at depths of 0.5–3 m, presumably for trans-

portation around the tank, or to descend to the bottom of the tank. Given the clear contrasts

between these two behaviors, we differentiate between horizontal (trajectory <10 deg) and

descending aquatic flight (trajectory >20 deg). The birds swam on their own volition and selected

their own swimming speeds and descent angles.

Videos of aquatic flight of all four species were taken using a GoPro Hero6 Black (GoPro, Inc, San

Mateo, California, USA) at 119.88 fps and a shutter speed of 1/480 s in the ‘Linear View’ mode

(Video 1, bottom panel), which removes the ‘fisheye’ distortion common to action cameras (Tyson

Hedrick, pers. comm.). The camera was positioned on a tripod and leveled using a bubble-type level

embedded in the tripod. Because birds chose when and where to dive, swimming bouts were sam-

pled opportunistically. The camera was triggered via a GoPro Smart Remote (GoPro, Inc, San Mateo,

California, USA) when we noticed a bird about to initiate a dive or swim past the viewing window.

The camera was positioned approximately 1 m below the waterline; thus, all analyzed dives were

between 0 to 3 m deep.

Videos of common murres, horned puffins, and tufted puffins in aerial flight were recorded using

a Red DSMC2 with a Helium 8K S35 sensor (Red Digital Cinema, Irvine, California, USA) at 29.97 or

59.94 fps and an auto shutter (Video 1, top panel). The camera was attached to a Cineflex gyro-sta-

bilizated system (General Dynamics Global Imaging Technologies, General Dynamics Corporation,

West Falls Church, Virginia, United States) mounted underneath a helicopter and recorded video of

birds cruising over open water in Kachemak Bay, Alaska. Videos of pigeon guillemots in aerial flight

were recorded from land at Monterey Bay, California using a Fastec Ts5 (Fastec Imaging, San Diego,

California, USA) at 239.76 fps and a shutter speed of 1/960 s. The birds flew on their own volition

and selected their own speeds.

Kinematic analyses
We performed kinematic analyses using MATLAB (2018a & b, MathWorks, Inc, Natick, Massachu-

setts, USA) using the DLTdv6 digitization tool

described in Hedrick, 2008 with additional anal-

yses performed using MATLAB and IGOR Pro (v.

6.01, Wavemetrics, Inc, Beaverton, OR). Over

45,000 points were hand-digitized for this study.

Flights perpendicular to the
camera view
We gathered data on wing excursion, wingbeat

frequency (Hz), bird-centered chord angle (/)

and stroke-plane angle (b), and translational

velocity (body lengths s�1) from flights of birds

made perpendicular to the camera view (Fig-

ure 1). We were stringent in this assessment,

Video 1. Aerial and aquatic flight of the Common

murre, Uria aalge.

https://elifesciences.org/articles/55774#video1
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selecting less than 5% of all video recordings for analysis. Still, due to the nature of the cosine law,

even if birds were swimming 20˚ off from perpendicular it would only impact our estimates of rele-

vant kinematic parameters by about 6%. Because animals are only expected to exhibit efficient St

during cruising locomotion, the flight velocity of each animal was first visualized to ensure that the

animal did not consistently accelerate or decelerate during a flight prior to its inclusion in our

dataset.

For both aerial and aquatic flights, we digitized the eye, tip of the tail, and either the wrist

(aquatic flight) or wingtip (aerial flight). The digitized points were analyzed in MATLAB using a cus-

tom script. For aquatic flights, the code first computed the angle between the bird’s mean path and

the waterline. If the bird was descending (trajectory >20 deg from horizontal), the code rotated, via

a 2D Euler-angle rotation matrix, the digitized points about that angle so that the x- and y-axes

were parallel and perpendicular to the bird’s swimming direction, respectively. For horizontal aerial

and aquatic flights (trajectory <10 deg from horizontal), we assumed that the x- and y-axes were

aligned with the bird’s direction and, therefore, did not transform the digitized points.

To convert the linear variables to a consistent set of units, we used the body length of the bird in

each frame, as determined by the distance between the eye and the distal tip of the tail in each

frame. This method of calibration accounts for variability in the distance between the camera and

the bird as well as any distortion of the image created as the light passed from the water to the cam-

era. We chose to use the entire length of the body for calibration, rather than some smaller anatomi-

cal length (e.g. culmen), as both the eye and tail were highly conspicuous in all frames of the

recorded videos. Visual inspection of the aquatic data revealed pronounced head movement (rela-

tive to the body) in sync with the wingbeat cycle (i.e. body length varied with position in the stroke

cycle) (Lapsansky and Tobalske, 2019). Because of this, we smoothed the raw body-length data

using the ‘smoothingspline’ method of fitting in MATLAB and a smoothing parameter of 1e-04 to

account for the head movement of the bird. To account for digitization error of the anatomical land-

marks themselves, we smoothed the kinematic data using the same ‘smoothingspline’ method of fit-

ting in MATLAB using a smoothing parameter of 0.01, based on Clifton and Biewener, 2018.

For aerial flights, we computed wing excursion based on the elevation of the wingtip, relative to

the average elevation of the eye and tail, and the wingbeat frequency as the number of complete

wingbeats divided by the total duration of those wingbeats for each flight. Bird-centered stroke-

plane angle was calculated as the angle between the vector describing the path of the wingtip

between its minimum and maximum elevation relative to the direction the bird was traveling (Fig-

ure 1). We were unable to measure airspeed of alcids in aerial flight without disturbing their motion.

Luckily, however, flight speeds of three of these species and their relatives have previously recorded

in the wild (Spear and Ainley, 1997). Spear and Ainley, 1997 categorized alcids as medium (tufted

puffins, pigeon guillemots, and rhinoceros auklets) and large (common murres) (Spear and Ainley,

1997). To capture the full range of airspeeds exhibited by each species, we assumed alcids to have

flown at the mean airspeed observed for birds of that size class flying in a crosswind ±1.96 * stan-

dard deviation of that measure (i.e. 95% prediction interval). Thus, we assumed medium alcids in our

study (tufted puffins, pigeon guillemots, and horned puffins) to have flown at airspeeds between

13.95 m s�1 and 18.65 m s�1 and large alcids (common murres) to have flown at airspeeds between

13.32 m s�1 and 24.68 m s�1. We also computed St based on ground speed by comparing the

movement of flying alcids to stationary objects (e.g. rocks, floating debris, standing waves) in each

video. We did not measure chord angle for aerial flights given the low frame rates of our aerial vid-

eos for three species. Each perpendicular aerial flight (totaling n = 18) is represented by between 4

and 46 complete wingbeats (median: 15).

For aquatic flights, wing excursion was calculated as the difference between the maximum and

minimum elevation of the wrist for a given wingbeat, relative to the average elevation of the eye and

tail. If anything, this is a slight underestimate of wing excursion, as the hand-wing sometimes

appeared to exhibit slightly greater excursions than the wrist (<10%). However, we chose to digitize

the wrist as it was consistently visible in all videos. Frequency was the inverse of the duration of each

wingbeat. Chord angle was the angle at mid-stroke between the position vector running from the

wingtip to the wrist and that running from the tail to the eye. Stroke-plane angle was calculated as

the angle between the bird-centered position vector describing the path of the wrist between its

minimum and maximum elevation relative to the direction the bird was traveling. For aquatic flights,

used the position of the tail to calculate velocity, as our previous work has demonstrated that the
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head is an unreliable indicator of overall body motion in swimming alcids (Lapsansky and Tobalske,

2019). Details of the velocity calculation, including how we corrected for the effects of pitching in

our calculation, are described in more detail in Lapsansky and Tobalske, 2019. The velocity due to

pitching of the body was typically <5% of the translational velocity. Each perpendicular aquatic flight

(n = 35; 24 horizontal and 11 descending) is represented by the values for between 1 and 6 com-

plete wingbeats (median: 3).

To convert the final wing excursion and velocity data from body lengths to meters (for ease of

comparison), we measured the length of the culmen relative to the length of the body (eye-to-tail) of

15 individuals of each species engaged in aerial flight in high-resolution images gathered from the

Macaulay Library at the Cornell Lab of Ornithology. We used these data to convert from body

lengths to meters for individuals in our study. The average culmen length used in this analysis (aver-

aged from values in the Birds of North America online Rodewald, 2015), calculated species-specific

body length, and the asset numbers for the photographs are included in the supplement

(Supplementary file 1). Given that St is dimensionless, our method of converting to metric units

only affects our calculations of St based on the airspeed reported in Spear and Ainley, 1997.

In addition to comparing St of alcids to the theoretical efficient range of 0.2 < St < 0.4, we also

compare these data to the range for birds in cruising flight (0.12 < St < 0.47) reported in

Taylor et al., 2003.

Flights parallel to the camera view
Stroke velocity (deg s�1) was calculated from flights made parallel to the camera view. Thus, flights

were selected for analysis when birds appeared to fly horizontally and straight at or straight away

from the camera (±10 deg). For all flights (n = 80), we digitized the wrist and the shoulder of each

bird at the maximum and minimum elevation of each wingbeat to calculate wingbeat amplitude

(deg). Stroke velocity was computed as the change in angle (deg) over the duration (sec) of the

stroke. For aquatic flights, this computation was performed on a stroke-by-stroke basis. For aerial

flights of common murres, horned puffins, and tufted puffins, the relatively slow frame rate meant

that computing the duration of each individual stroke would provide only a coarse measurement of

stroke duration. Thus, we opted to compute stroke duration for flights of these species as 0.5 * the

inverse of the wingbeat frequency of that flight. We validated this approximation by computing

stroke duration via both methods for the aerial flight of pigeon guillemots, finding no significant dif-

ferences between the two calculations (Upstroke: t-Stat = 1.67, Cohen’s d = 0.037, p=0.10, n = 70

half-strokes; Downstroke: t-Stat = 0.71, p=0.48, Cohen’s d = 0.019, n = 70 half-strokes; paired

t-tests). While the frame rate was relatively low for aerial flights of common murres, horned puffins,

and tufted puffins (29.97 or 59.94 fps), the long exposure of the video (auto-shutter) made it rela-

tively easy to locate the top and bottom of each stroke, as the wing briefly pauses before the turn-

around. Each parallel aquatic flight is represented by between 2 and 11 complete wingbeats

(median: 4) and each parallel aerial flight by between 3 and 18 complete wingbeats (median: 12).

Data visualization and statistical analyses
We plotted data using the Gramm Toolbox from Morel, 2018 in MATLAB and edited plots for visi-

bility in Adobe Illustrator version 24.1.3 (Adobe Inc, San Jose, California, USA). Statistical analyses

were performed using R version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria). To

investigate the effect of each fluid (i.e. air or water) and type of aquatic flight (i.e. horizontal or

descending) on St and kinematic parameters we built linear models (function lm in package ‘stats’)

(e.g. ln(KinematicVariable)~Species * Fluid) and assessed the significance of the fixed effects using a

type I ANOVA (function anova in package ‘stats’). If the interaction between species and fluid was

found to be insignificant, it was removed from the model and the model was fit again with only the

main effects. To ensure normality and homoscedasticity of the residuals for each model, we log-

transformed numerical data and systematically checked the diagnostic plots. We tested for the pres-

ence of outliers after each model fit using the function ‘outlierTest’ from the R package car and

excluded significant outliers from analyses (Fox and Weisberg, 2019). We report eta-squared (h2)

calculated by the function eta_sq from the R package ‘sjstats’ (Lüdecke, 2020). Pairwise post hoc

tests (for within-species differences between air and water) were performed using the TukeyHSD
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function in R and p-values for each within species comparison are reported in alphabetical order by

species name.

The stroke velocity data displayed a significant departure from homoscedasticity due to unequal

variances among species. Thus, we tested for differences in stroke velocities (both upstroke and

downstroke) within each species using the R function t.test (with var.equal = FALSE) and a Bonfer-

roni-corrected critical p-value of 0.0125 (p=0.05/4 species) to account for multiple testing.

For all statistical analyses, we treated flights as independent and used the average value of the

kinematic parameter exhibited for that flight for testing (rather than analyzing each wingbeat as

independent). For St, we propagated the standard deviation in wing excursion through to calculate

the standard deviation in St. We report means ± s.d. unless otherwise specified.
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Abstract: 2976 

We report that non-aquatic birds can locomote effectively underwater. European 2977 

starlings and house sparrows use both their feet and wings for submerged swimming and 2978 

rise to the surface at twice the speed that they would if propelled by buoyancy alone. 2979 

Despite a lack of selection for submerged swimming or experience, the kinematic 2980 

patterns of submerged swimming in non-aquatic birds closely resembles those of semi-2981 

aquatic species like puffins, shearwaters, and dippers. Non-aquatic birds generate 2982 

hydrodynamic lift with their wings and utilize unsteady aspects of fluid flow (leading-2983 

edge vortices) to enhance lift production. Our results alter current understanding of the 2984 

evolution of aquatic lifestyles in vertebrates and inform the development of engineered 2985 

systems. 2986 

Body: 2987 

Vertebrate lineages have repeatedly re-invaded water (e.g., cetaceans, pinnipeds, 2988 

sirenians), but because water is 800 times denser and 60 times more viscous than air 2989 

(Denny, 1993), reliance on aquatic environments has typically co-evolved with largescale 2990 

morphological and physiological modifications for locomotion (Fish, 2016; Houssaye 2991 

and Fish, 2016). Thus, how terrestrial clades adopt aquatic habits despite lacking 2992 

adaptations for aquatic locomotion poses a conundrum. For this reason, it has been 2993 

mailto:tony.lapsansky@gmail.com
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hypothesized that aquatic lineages must first pass-through stages of relatively inefficient 2994 

aquatic locomotion – allowing them to become “pre-adapted” to movement in water – 2995 

before developing more efficient patterns of force production (Fish, 2016). 2996 

We set out to explore whether surface-based aquatic locomotion [surface 2997 

swimming] could serve as an evolutionary steppingstone to submerged aquatic 2998 

locomotion [submerged swimming] (Fish, 2016), using non-aquatic birds as a study 2999 

system. Surface swimming is widespread across birds. In aquatic taxa, surface swimming 3000 

is used as part of a strategy to obtain food from water. Non-aquatic species, on the other 3001 

hand, contact water only rarely in the process of escaping predators or obtaining food 3002 

near the surface, and use their wings and feet to reach land after becoming entrapped by 3003 

the weight of the water and surface tension (Abourachid et al., 2019; Fish, 2016; Heers, 3004 

2018). We hypothesized that surface swimming in non-aquatic birds would utilize the 3005 

lower wingbeat frequencies, higher wingbeat amplitudes, and folded-wing postures 3006 

relative to aerial flight found in the submerged swimming of semi-aquatic birds 3007 

(Lapsansky et al., 2020). This could allow a surface-swimming population to become 3008 

pre-adapted to submerged swimming, as selection would favor morphological 3009 

modifications for more effective and efficient movement on the surface, which could then 3010 

facilitate the re-invasion of water. 3011 

Instead, we discovered that at least two species of non-aquatic birds, Passer 3012 

domesticus [House sparrow] and Sturnus vulgaris [European starling], can locomote 3013 

effectively underwater despite a lack of training, experience, or sustained selection. This 3014 

was true for all 29 individuals [16 starlings and 12 sparrows], including individuals of 3015 

two life-stages [8 adult starlings and 8 juvenile starlings], and resulted in zero perceivable 3016 
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injuries. Birds used both their wings and feet for submerged swimming, with the wings 3017 

providing the majority of thrust, similar to dippers, shearwaters, and seaducks (Chapter 3018 

1). 3019 

To constitute aquatic locomotion, animals must reach the surface more quickly 3020 

through their kinematics than they would due to buoyancy. To determine if the wing- and 3021 

foot-motion of non-aquatic birds could be considered aquatic locomotion, birds (n = 20) 3022 

were placed by a researcher <0.35 m underwater in a 3000 L tank to simulate a fall into 3023 

water from height. Each individual was dipped three times on a given day, with 5 3024 

starlings also dipped on three separate days to estimate a training effect. Because both 3025 

species are invasive in North America (where these experiments were conducted), birds 3026 

were then euthanized as per USDA guidelines and then re-dipped to determine the degree 3027 

to which buoyancy alone could explain the motion of each individual. Based on analysis 3028 

of three-dimensional (3D) videography (Hedrick, 2008; Mathis et al., 2018), birds 3029 

reached the surface more quickly (Figure 1, n = 8 starlings) and achieved higher vertical 3030 

velocities (Figure 2, n = 8 starlings) owing to the kinematics of their wings and feet. 3031 

Individuals achieved similar submergence times and vertical velocities on day 1 as on 3032 

days 2 and 3 (n = 5), indicating that there was no detectable effect of experience. 3033 

In species which use their wings for locomotion in both air and water (e.g., 3034 

puffins, dippers, seaducks), submerged swimming is achieved with lower wingbeat 3035 

frequencies, higher wingbeat amplitudes, and reduced stroke velocities (Heath et al., 3036 

2006; Lapsansky et al., 2020; Richman and Lovvorn, 2008; Watanuki, 2006) relative to 3037 

aerial flight. We found that the same is true of non-aquatic birds. Figure 3 shows 3038 

wingbeat amplitude (A) and frequency (B) of European starlings (n = 8) in submerged 3039 
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swimming relative to in ascending flight (n = 5) and flight in a wind tunnel (Tobalske, 3040 

1995). Wingbeat amplitude is high in water and similar to that exhibited during ascending 3041 

flight in air (Figure 3A). Wingbeat frequency is similar across flight conditions but 3042 

substantially lower (~60% less) in water. As a result, stroke velocity is significantly 3043 

lower in water than in air for non-aquatic birds, similar to true semi-aquatic birds 3044 

(Lapsansky et al., 2020) (Figure 4). 3045 

Additionally, all species which use their wings for locomotion in both air and 3046 

water partially fold their wing underwater, exhibiting a flexed-wing posture, which 3047 

decreases both wing length and area relative to in air. Previous authors have suggested 3048 

that this posture either increases hydrodynamic efficiency by lowering drag (Rayner, 3049 

1986; Siddall and Kovač, 2014) or is enforced by structural limitations of the avian wing 3050 

( Fish, 2016; Lock et al., 2012) – which is under selection to be both large and light for 3051 

flight (Ellington, 1984). We found that sparrows and starlings also exhibit this flexed-3052 

wing posture in water (Figure 5). 3053 

To determine the mechanism of force production underlying the aquatic 3054 

locomotion of non-aquatic birds, we used Particle Image Velocimetry (PIV) to visualize 3055 

the fluid structures produced by their wings. Vertebrates are expected to transition 3056 

through evolutionary time from forms which swim via drag-based mechanisms to forms 3057 

capable of swimming via more efficient and effective lift-based mechanisms with 3058 

increasing specialization to water (Fish, 1996; Fish, 2016). Drag is defined as a force 3059 

which acts parallel to the direction of fluid flow about a propulsor (e.g. the feet or wings), 3060 

whereas lift is defined as a force which acts perpendicular to the direction of fluid flow 3061 



149 

about a propulsor (Denny, 1993). Owing to their lack of specialization to water, we 3062 

expected non-aquatic birds would swim via drag forces. 3063 

Instead, we found evidence that non-aquatic birds produce force in water through 3064 

both lift and drag. During the downstroke, the wing is swept both ventrally and cranially. 3065 

Near the root of the wing, this leaves a starting and ending vortex which translate 3066 

approximately perpendicular to the path of the wing, indicative of lift-based force 3067 

production (Figure 6A) and similar to the wake produced by birds during slow flight in 3068 

air (Provini et al., 2012). At the wingtip, however, the deformation of the primary 3069 

feathers during downstroke – caused by the high density of water – results in the 3070 

formation of a pair of counter-rotating vortices which translate parallel to the path of the 3071 

feathers (Figure 6B), indicative of drag-based force production. The deformation of the 3072 

feathers, along with the presence of bubbles shed from the wing, complicate the flow 3073 

structure relative to aerial flight. However, data from the trefftz plane – the wake of the 3074 

bird as viewed head-on – indicate that both wings shed bound circulation at the end of 3075 

downstroke (Figure 6C). As well, there is some evidence to suggest that the flexed-wing 3076 

posture allows the formation of a leading-edge vortex (Figure 6D), which would facilitate 3077 

lift-production at the high angles of attack utilized during submerged swimming. 3078 

Our results indicate that the re-invasion of water could occur without the 3079 

steppingstone of surface swimming or largescale modifications to avian morphology. 3080 

Non-aquatic birds of two species are capable of effective submerged swimming despite 3081 

zero training or experience. Furthermore, these animals are capable of using their wings 3082 

to generate lift forces underwater. Thus, the submerged swimming of non-adapted 3083 

species has traits characteristic of specialized aquatic vertebrates, indicating that birds 3084 
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need not pass through stages of relatively inefficient aquatic locomotion before 3085 

developing more efficient patterns of force production (Fish, 2016). This is likely made 3086 

possible by the fact that fluid locomotion is an ancestral trait in birds. Unlike the 3087 

ancestors of aquatic mammals, the avian bauplan is the result of selection for lift 3088 

production in air, allowing lift production in water without modification to morphological 3089 

structures. This could explain why some diving birds display only minor morphological 3090 

modifications relative to non-aquatic species (e.g., dippers, shearwaters), whereas most 3091 

diving mammals are heavily modified relative to their terrestrial ancestors (Fish, 2016). 3092 

Finally, non-aquatic birds have not faced selection for efficient aquatic locomotion. Thus, 3093 

that non-aquatic birds partially fold their wings, reduce wingbeat frequency, and reduce 3094 

stroke velocity for submerged swimming – patterns characteristic of all volant, wing-3095 

propelled diving birds – suggests that these kinematics are not the result of selection for 3096 

efficient submerged swimming (Rayner, 1986; Siddall and Kovač, 2014), but are instead 3097 

enforced by structural limitations of the avian wing system (Fish, 2016; Lock et al., 3098 

2012). Engineered systems, which can utilize stronger materials and generate higher 3099 

power, therefore, need not replicate these patterns to effectively locomote in both air and 3100 

water (Izraelevitz et al., 2018). Key sights for adaptation in wing-propelled diving 3101 

lineages are likely an increased rigidity of the feathers to reduce bending and the tuning 3102 

of muscle fibers to the slower contractile velocities exhibited in water (Lapsansky et al., 3103 

2020).  3104 

Methods: 3105 

Birds were obtained from licensed pest control specialists. Birds were placed by a 3106 

researcher <0.35 m underwater in a 3000 L tank to simulate a fall into water from height. 3107 



151 

An initial set of birds (n = 8 juvenile starlings & 12 adult sparrows) were videoed 3108 

underwater at 500 fps using two high-speed cameras [Phantom Miro eX4, Fastec 3109 

Imaging, San Diego, California & FASTCAM 1024 PCI, Photron, Toyko, Japan] 3110 

recording through a plexiglass window in the side of the tank. Because our initial goal 3111 

was to record surface swimming, three-dimensional reconstructions based on these 3112 

camera views had low accuracy in the dimension parallel to the camera view, as the 3113 

cameras were placed close to one another. Thus, we only report data for the two planes 3114 

which were perpendicular to the camera view for this set of birds. To resolve the 3115 

kinematics of submerged swimming more accurately, a second set of birds (n = 8 adult 3116 

starlings) were videoed at 120 fps using four GoPro Hero cameras [GoPro Inc., San 3117 

Mateo, California] placed in the water and orthogonal to one another. 3118 

Ascending aerial flight (n = 5) was videoed at 500 fps using three high-speed 3119 

cameras [FASTCAM SA3, FASTCAM NOVA S6, and FASTCAM Mini AX100, 3120 

Photron, Toyko, Japan] attached to an aluminum cage [3.5 m long X 1.25 m wide X 1 m 3121 

tall] placed over the water tank. Birds were released by a researcher and ascended within 3122 

the flight cage. 3123 

The three-dimensional space was calibrated in MATLAB [Mathworks, Natick, 3124 

Massachusetts] using EasyWand (Theriault et al., 2014) with points digitized by DLTdv8 3125 

(Hedrick, 2008). Distortion coefficients for each camera with an aquatic view were 3126 

determined using the camera calibration application available in MATLAB. Videos from 3127 

the initial set of birds were digitized using DeepLabCut (Mathis et al., 2018) and 3128 

converted to the format required by DLTdv8 using a script written by Brandon Jackson 3129 

and made available on GitHub (Jackson et al., 2016). These data were then refined by 3130 
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hand. Videos from the second set of starlings (adults recorded via submerged Go Pro 3131 

cameras) were digitized directly by hand in DLTdv8. 3132 

To accurately represent both body position and velocity (Figures 1 & 2), 6 points 3133 

on the head were digitized for each individual in the initial set of birds (bill base, apex of 3134 

head, back of head, chin, eye, neck). The position and velocity of the eye was then 3135 

determined based on the initial position of the eye and the average displacement of all 6 3136 

points to account for periods in which the eye was not visible. Wingbeat amplitude, 3137 

frequency, and stroke velocity (Figures 3 & 4) were calculated for the second set of birds 3138 

based on the position of the wrist relative to the shoulder, as in Lapsansky et al. (2020). 3139 

Wingbeat amplitude, frequency, and wingspan of starlings flying in a wind tunnel were 3140 

taken from the data originally presented in Tobalske (1995). Wingspan of birds in 3141 

submerged swimming was calculated as the total distance between the tip of the 10th 3142 

primary feather on each wing (Figure 5). Measurements for a given run were averaged 3143 

and the average used in subsequent analyses and figures. 3144 

Particle Image Velocimetry (Figure 6) was accomplished using a Dual-Cavity 3145 

Diode Pumped Solid State, High Repetition Rate Laser [LaVision, Göttingen, Germany] 3146 

firing at 100 or 150 Hz with video recorded using a Mini AX100 high-speed camera 3147 

[Photron, Toyko, Japan]. The laser was position above the water and created a plane of 3148 

light perpendicular to the camera, which recorded through a plexiglass window in the 3149 

tank. The water was seeded with glass beads to enhance flow visualization. Birds were 3150 

placed by a researcher <0.35 m underwater with their backs to the laser source to reduce 3151 

the risk of eye injury. Flow processing was performed using DaVis 10 [LaVision, 3152 
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Göttingen, Germany] and corrected for distortion using a Type 22 calibration Plate 3153 

[LaVision, Göttingen, Germany]. 3154 
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3222 
Figure 1: Paths of European starlings (n = 8) engaged in submerged swimming. All 3223 
birds reached the surface of the water more quickly owing to their wing and leg 3224 
movements, with no detectable effect of experience. 3225 
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3246 
Figure 2: Average vertical velocity of European starlings (n = 8) versus trial day. All 3247 
birds achieved higher velocities owing to their wing and leg movements, with no 3248 
detectable effect of experience on velocity. 3249 
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3277 
Figure 3: Wingbeat amplitude (A) and frequency (B) of European starlings during 3278 
flight in air and water. Wind tunnel data are from Tobalske (1995).3279 
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Figure 4: Stroke velocity of European starlings during flight in air and water. Data 3326 
from alcids are replotted from Lapsansky et al. (2020).  3327 
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3338 
Figure 5: Example wingspan of a European starling locomoting in air versus in 3339 
water. Data for air are from Tobalske (1995).  Wingspan was measured as the distance 3340 
between the tips of the 10th primaries on each wing. 3341 
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3363 
3364 

Figure 6: Flow visualization of non-aquatic birds. (A) Lift-based wake structure 3365 
produced by the downstroke of a house sparrow. (B) Drag-based wake structure produced 3366 
by the downstroke of a European starling. (C) Bound circulation shed from the wings of a 3367 
European starling following downstroke. (D) Leading-edge vortex formation on the wing 3368 
of a house sparrow in mid-downstroke. 3369 
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