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Two of the biggest weaknesses in stream restoration and monitoring are: 1) subjective estimation and 

subsequent comparison of changes in channel form, vegetative cover, and in-stream habitat; and 2) the high 
costs in terms of financing, human resources, and time necessary to make these estimates. Remote sensing can 
be used to remedy these weaknesses and save organizations focused on restoration both money and time. 

However, implementing traditional remote sensing approaches via autonomous aerial systems or light detection 
and ranging systems is either prohibitively expensive or impossible along small streams with dense vegetation. 

Hand-held Structure from Motion Multi-view Stereo (SfM-MVS) photogrammetric technology can solve these 
problems by offering a resource efficient approach for producing 3D Models for a variety of environments. 
SfM-MVS photogrammetric technology is the result of cutting-edge advances in computer vision algorithms 

and discipline-specific research in the geosciences. This study found that images taken by GoPro, iPhone, and 
Digital Single-Lens Reflex cameras were all capable of producing 3D representations of heavily vegetated 

stream corridors with minimal image post-processing using workflows within Agisoft Metashape™. Analysis 
within Agisoft Metashape™ produced expected measurements from 3D textured mesh models, digital elevation 
models, and orthomosaics that were comparable to the physical measurements taken at the time of each survey 

using an arbitrary latitude, longitude, and elevation classification scheme. The methods described in this study 
could be applied in future stream restoration and monitoring efforts as a means to complement in person 
collection and measurement while limiting effort and money spent. 
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1. Introduction 

Because riparian zones serve as the interface between terrestrial and flowing freshwater 

ecosystems, it is important to identify and quantify their structural and functional roles in natural 

systems and monitor the restoration efforts being implemented (Nilsson et al. 1997; Capon et al. 

2013). Over 37,000 stream restoration projects were reported in the United States between 1980 

and 2005, but only 38% of those projects reported some sort of monitoring; 70% of those being 

monitored reported that the restoration actions were not accomplishing their intended purposes. 

(Bernhardt et al. 2005; Gloss and Bernhardt 2007; Conniff 2014). A rigorous understanding of 

the connection between riparian, geomorphic, and hydraulic processes provide a sound 

ecological foundation when identifying stream management objectives and evaluating current, 

and future, land-use practices (Gregory et al. 1991; Naiman et al. 1993). However, implementing 

studies that provide that framework typically demands a high cost in terms of financing, human 

resources, and time (Wen et al. 2017). This is especially true when carrying out and monitoring 

stream restoration efforts. 

Two of the biggest weaknesses in current stream restoration and monitoring are: 1) 

subjective estimation and subsequent comparison of changes in channel form, vegetative cover, 

and in-stream habitat; and 2) the high costs in terms of financing, human resources, and time 

necessary to make these estimates (Wen et al. 2017). Hand-held Structure from Motion Multi- 

view Stereo (SfM-MVS) photogrammetric technology-based methods might solve these 

problems by offering a resource efficient approach for producing 3D visualizations for a variety 

of environments (Snavelly et al. 2008, Carrivick et al. 2016). SfM-MVS photogrammetric 

technology is the result of cutting-edge advances in computer vision algorithms and discipline- 

specific research in the geosciences (Triggs et al. 2000). By expanding the application of hand- 
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held photogrammetric technology to stream assessment and restoration monitoring projects, it 

should be possible to both increase and improve data collection in terms of accuracy and 

efficiency. To test this assertion, this study will test the feasibility of hand-held SfM-MVS 

photogrammetric data capture (herein ‘Capture’) as a flexible, efficient, and reliable means of 

providing locally referenced spatial data to stream assessment and monitoring efforts, and try to 

answer these questions: 

1)  What is the most suitable camera (cell phone, digital SLR, GoPro) for Capture in the field, 

considering minimum resolution, affordability, and error? 

2)  What is the most suitable image processing workflow, considering computing power and 

time constraints? 

3)  What measurements can Capture provide to stream restoration specialists and researchers? 

 
This study utilized GoPro, iPhone, and Digital Single-Lens Reflex cameras to collect 

images along Rock Creek, Deer Creek, and Rattlesnake Creek. All three locations were chosen 

because of the size of the stream and the amount of vegetation present. The Rock Creek run was 

the pilot-study that served to test the feasibility of using the methodology in heavily vegetated 

environments. The Deer Creek run implemented the methodology tested at Rock Creek and 

determined the qualitative and quantitative measurements that Capture was able to produce. The 

Rattlesnake Creek run tested the same methodology but was carried out by a research assistant. 
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2. Background 
 

The technologies and methods underlying the Capture methodology employed in this 

research stem from basic photogrammetry, computer visioning, fluvial geomorphology, and 

ecology. These are described here so that the study’s methodological framework is firmly 

established before detailing the employment of Capture in the following Methodology section. 

2.1 Terminology 
 

Photogrammetry is the science and practice of making measurements from photographs. 
 

Structure from Motion (SfM) refers to algorithms used to produce three-dimensional point 

clouds from feature matched imagery for photogrammetric purposes. Multi-View Stereo 

describes the computer vision techniques that rely on SfM parameters to produce point clouds at 

a much finer scale that allows for discrete measurement of physical parameters in the scenes 

(Snavelly et al. 2008, Carrivick et al. 2016). The SfM process detects 2D features in each image 

and matches those features between pairs of images to create a coarse 3D mesh. Multi-View 

Stereo (MVS) techniques require those matched features to refine the coarse 3D mesh from SfM 

to a much denser 3D reconstruction in the form of 3D models like textured meshes, digital 

elevation models (DEMs), and orthomosaics. These products are typically georeferenced which 

places them in a specific coordinate system. However, in this study, the products were compared 

within the arbitrary coordinate system created within Agisoft Metashape™ using physical stream 

measurements between placed scale markers. Although there is no absolute definition for ‘close- 

range remote sensing’, the most widely agreed upon definition relates to images acquired from a  

distance of less than or equal to 300 meters on objects ranging from 0.5 meters to 200 meters in 

size (Luhmann et al. 2013). 
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Computer visioning software refers to the programs that contain tools, methods, and 

workflows for acquiring, processing, and analyzing digital images, and which allow extraction of 

high-resolution spatial data from real world imagery. This study employed the Agisoft 

Metashape™ computer visioning software, and the workflow is presented in the Methodology 

section that follows. Before delving into the technical SfM-MVS process, it is important to 

understand why photogrammetry and advancements in computer visioning now offer advantages 

for stream measurement and monitoring. 

2.2 Riparian and Stream Restoration 

 

The entire concept of ecological restoration is rooted in the idea that we can remedy past 

environmental damage by restoring the ability of the natural environments we have impacted to 

be shaped by the complex processes inherent within them. Stream restoration has been at the 

forefront of ecological restoration since the 1980s because streams are linked to issues ranging 

from water quality to endangered species. Beginning in the 1950s, geomorphologists began 

noting the connections between river channel morphology, flow processes, and sediment 

transport and began calling for the comprehensive measurements of river channel changes as a 

necessity for the development of proper management techniques (Horton 1945; Strahler 1952; 

Dietrich 1987; Lane et al. 1996; Lane 2000). 

This created a demand for standardized measurement and classification protocols for 

fluvial landscapes, and resulted in various attempts at a ‘one size fits all’ approach to processes 

inherently rooted in a place-based context. The most predominant, though widely contested, 

stream classification scheme is the Rosgen (1994) method which sorts streams into categories of 

types and subtypes based on channel forms, slope angle, and substrate size. The Stream Visual 

Assessment Protocol (SVAP) co-created by the United States Department of Agriculture 
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(USDA) and the Natural Resources Conservation Service (NRCS) incorporates the 

Rosgen method into the first level of its ecological assessment protocols, and ocular 

measurements include water surface and flow observations that allow channel units identification 

(e.g., pool, riffle, run), channel depth, channel width, and substrates among others (NRCS 2010). 

Although the SVAP protocol is practical and provides invaluable data, it requires a 

significant time commitment from both trainers and trainees, and doesn’t provide a 

comprehensive visual picture of the stream at the time of survey (HLA 2020). Additionally, 

determining the variance and error corresponding to ocular estimations by different research 

technicians proves difficult. To resolve this difficulty physical stream surveys have been 

continuously perfected since the 1950s resulting in more standardized ways to measure and 

quantify changes in fluvial landscapes describing channel morphology, habitat, flow processes, 

and sediment transport. This rings true for assessments like the HLA which are updated every 5 

years to reflect changes in standards for estimation (HLA 2020) 

2.3 Stream Monitoring 
 

Establishing an objective ‘baseline’ at the beginning of a restoration project is extremely 

important for long-term monitoring efforts (greater than 25 years) allow for the determination of 

rate and trajectory of change, effectiveness, and success, but acquiring robust stream 

measurements is prohibitively expensive for large-scale and/or long-term projects and in areas 

that are difficult to access (Angeler and Allen 2016). The most common alternative is 

comparison of the restoration project with a reference site that offers desired restoration targets 

and thus allows for assessment of recovery rates (Nauman et al. 2017). However, variability in 

natural landscapes, especially riparian environments, often hinders the identification of reference 

sites (Pickett and Parker 1994; White and Walker 1997). Therefore, the most recent approaches 
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to monitoring large expanses of fluvial landscapes, utilize remotely sensed images and 

photogrammetry to monitor changes to a landscape over time (Kennedy et al. 2014). These 

photogrammetric methods began emerging in the early 1980s and involved the interpretation of 

aerial imagery in conjunction with physical measurements, and were predominantly focused on 

floodplain studies using analog methods (such as described by Lewin and Manton 1975). 

However, documenting changes in stream structure and riparian vegetation with photogrammetry 

in heavily vegetated zones is either impossible or prohibitively expensive using current aerial 

and terrestrial remote sensing techniques. But with the advent of high resolution (hyperspatial) 

digital sensors, autonomous aerial vehicle (AAV) technology, and computer visioning software, 

remote sensing is being utilized to help standardize the way changes in stream structure and 

riparian vegetation is documented over time. A burgeoning solution to measuring and monitoring 

changes in stream structure and riparian vegetation in areas where traditional remote sensing 

methods cannot be implemented is the utilization of portable hand-held sensors in conjunction 

with SfM-MVS photogrammetry to create 3D ‘snapshots’ of a scene at the time of survey. 

2.4 Digital Photogrammetry 
 

Lane et al., (1994) and Lane (1998) began showing some of the applications of ground- 

based digital photogrammetry in the study of river channels, bank erosion, and gravel-bar 

surfaces in the 1990s, and photogrammetric applications have continued in tandem with image 

sensing technologies. Currently, ground based photogrammetric surveys can be conducted using 

cell phone, DSLR, and GoPro cameras and aerial photogrammetric surveys can implement 

AAVs. Digital photogrammetry can be georeferenced with total stations surveys or be used as a 

standalone tool. These surveys are cost efficient and can produce accuracy similar to total-station 

surveys (Westoby et al. 2012; Armistead 2013; Dietrich 2016). 
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There are two techniques for digital photogrammetry, close-range (< 300m from sensor 

to subject) and aerial (>300m from sensor to subject). Most close-range photogrammetry is done 

with the use of a DSLR or cell phone camera, and produces 3D models which can be developed 

to produce DEMs (American Society for Photogrammetry and Remote Sensing 2016). These 3D 

models are created by using at least 60% of the overlapping stereo pairs between images along 

with the known camera position parameters (James and Robinson, 2012). However, camera 

position, scene geometry, and keypoint identification are automatically determined when using a 

SfM-MVS approach to photogrammetry which makes it an invaluable solution to creating 3D 

models in areas where aerial sensors are impractical and terrestrial sensors like ground-based 

light detection and ranging (LiDAR) are prohibitively expensive. 

2.5 Structure from Motion-Multi-View Stereo (SfM-MVS) 
 

SfM has its roots in the computer visioning community, and was developed to track 

known points across suites of imagery from various positions to determine camera pose and 

scene geometry, and ultimately generate 3D models. The coplanarity and collinearity algorithms 

involved in this process have been developing since photogrammetry began rising to prominence 

in the 1980s, but the coplanarity algorithm was actually being applied in the 1950s and 1960s 

(Thompson 1965) when attempting to georeference and map surface features from aerial images. 

The image adjustment, which utilizes a collinearity algorithm to establish a geometric 

relationship between image and object, was developed in the early 1970s (Brown 1971; Kenefick 

et al. 1972; Granshaw 1980). Kenefick et al. (1972) actually developed a ‘self-calibrating’ image 

bundle adjustment algorithm that can model and estimate parameters even with distorted images 

from consumer grade cameras. The ability to assume that a different camera was used to 



8  

acquire every single image and calibrate each bundle individually was a breakthrough in the 

computer visioning world. 

The question driving developments in SfM-MVS is, how can known points within 

varying images be extracted for accurate measurements while being simultaneously unaffected 

by changes in camera orientation, scale, illumination, or 3D position? (Carrivick et al. 2016). 

The first step in answering this question involves the pairing of common points or, keypoints, 

between different images. A wide variety of keypoint identifiers have been developed based on 

stereo matching statistics (Lucas & Kanade 1981) and identification of planar surfaces or 

features (Moravec 1983). Initially, all of the various methods utilized for keypoint identification 

were limited by the fact that they worked best when taken from a similar viewpoint, or at a 

similar scale (Snavely 2008). The challenge, once again, is rooted in the ability to track features 

between images taken from various perspectives. These challenges were first addressed by 

Baumberg (2000) and Matas et al. (2004) in a method known as wide base-line matching which 

prioritized feature points, or pixels, that change covariantly with scale and orientation. However, 

the method that rose to prominence became the scale-invariant feature transformation (SIFT) 

object-recognition system because it provides the most feature matches of various circumstances 

(Lowe 1999 2001 2004). 

2.6 SfM-MVS Breakdown 
 

SIFT is used as the first step in the Agisoft Photoscan 3D modeling process employed in 

this study, and it has four main steps. As noted in Carrivick et al. (2016) the first step is to 

determine the scales and locations in the image sets that can be used repeatedly from various 

perspectives. 
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Once stable parameters are determined a Gaussian function is applied to the images at 

various scales, producing a Gaussian-smoothed image, and each feature point within the image is 

compared to the eight neighboring feature points at each scale and to the neighbors in the 

selected scales above and below. Once the spatial extent of the images is identified, then the 

keypoint positions can be determined in space using their location, scale, and ratio in bundles of 

the various accepted spatial extrema. After establishing keypoints that work at preferred scales, a 

consistent orientation of each keypoint is assigned based on the scale closest to the dominant 

keypoint for each image. Alternate keypoints can be selected for each image but those points 

may have a different orientation for the preferred scale. Once the orientation and scale is defined 

then each main keypoint must be described in space, showing magnitudes of color gradient, to 

avoid being completely distorted when matched with itself from other images at different scales. 

Basically, a Gaussian weighting function window establishes the magnitude of gradients over a 

keypoint and then aggregates those gradients into descriptors which are invariant to scale but 

covariant to orientation and location (Carrivick et al. 2016). A keypoint descriptor is created by 

first computing the gradient magnitude and orientation at each image sample point in a region 

around the keypoint location, as shown on the left. These are weighted by a Gaussian window, 

indicated by the overlaid circle. These samples are then accumulated into orientation histograms 

summarizing the contents over 4x4 subregions, as shown on the right, with the length of each 

arrow corresponding to the sum of the gradient magnitudes near that direction within the region 

(Lowe 2004). 
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Once the keypoint positions have been identified, relationships between those keypoints 

from different images have to be determined in order to begin building a 3D point cloud. This is 

where study design is integral to 3D model quality because there is no guarantee that a keypoint 

will have a partner in another image unless dictated in the study design. The specific method 

chosen for this study uses clearly identifiable markers with a predetermined overlap in images to 

ensure quality keypoint correspondence; it will be discussed in detail in the Methodology section 

below. The most efficient way to match keypoints between various imagery is using Euclidean 

distance of the nearest neighbor with that of the second nearest, specifying a specific value or 

‘distance ratio’ (Lowe 2004; Snavely et al. 2008). This ratio has been shown to get rid of over 

90% of the false matches while only including 5% of the correct matches in the elimination 

process. This method has also been found to perform better than a global distance threshold, and 

even the false matches are unlikely to be weighted as correct matches given the fact that 

Euclidean distance has options that are more or less correct based on distance (Lowe 2004). 

In an effort to ensure collinearity is preserved as images become transformed a 

relationship must be specified between the correctly identified keypoints in each image. To 

establish this line where all points remain unchanged regardless of transformation it is important 

to get rid of the noise surrounding each keypoint using random sampling methods to place 

keypoints into geometrically consistent matches. There are various methods utilized in this step 

of image processing, but they all work by taking random samples of keypoints and establishing 

estimations of inliers or outliers based on the least square fit of the smallest subsets. These 

estimations are then applied to larger subsets until a certain percentage of the noise surrounding 

each keypoint is selected to be kept or not. Once the outliers have been eliminated and 

collinearity has been established between keypoints across images, the SfM step can begin. 
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Although the entire process described above is often referred to as SfM, the reality is that 

SfM describes the specific step in the image processing workflow where 3D geometry (structure) 

and camera poses (motion) are determined (Ullman 1979). SfM aims to simultaneously estimate 

the 3D scene structure, camera poses and orientations (external parameters), and focal length, 

principal point, and radial distortion (internal parameters). Scene reconstruction usually begins 

by pairing two images based on a feature present in both images which can easily be identified 

and has a strong collinear baseline from vastly different perspectives. Snavely et al. (2008) 

shows that having an easily identifiable feature between two images where focal length estimates 

are available makes obtaining the remaining camera parameters much easier with bundle 

adjustments. 

Bundle adjustments are the ‘bundles’ of light rays that connect camera centers to 3D 

points with a minimal re-projection error (Szeliski 2011). Once re-projection error between each 

image has been minimized, then multiple cameras can be added into the optimization process. In 

most cases a new camera, or perspective, is chosen if it contains a keypoint with at least 75% 

match to an already selected camera. The external parameters for each additional camera can 

then be estimated using a direct linear transformation technique (Abel-Aziz and Karara 1971). 

This technique takes the existing 3D coordinates of the matched pair and produces a set of 2D 

coordinates for each new camera. The 2D coordinates are then projected into 3D object space 

using bundle adjustments for determining how keypoints in the newly projected image relate to 

previously established cameras. This is a useful transformation because it only allows the newly 

projected camera parameters and the keypoints it observes to change in 3D space by specifying a 

maximum angle threshold beyond which the location of the point will be rejected. The camera 
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will have to go back through the re-projection process before the keypoints contained in its 

perspectives are incorporated as a baseline perspective. 

If bundle adjustment tracks between images have a high re-projection error, they are 

removed in the SfM process. The best way to determine if all of the selected camera perspectives 

have a low re-projection error is to run a global re-adjustment before moving onto the scale and 

georeferencing phase. This global bundle adjustment scans the reconstructed 3D points offered 

by each camera to ensure that there are no remaining perspectives that can be reliably added to 

the model, and at this stage shouldn’t require extra computing power because the individual 

bundle adjustments have already occurred. Once completed, the SfM process produces a sparse 

point cloud and the camera poses. However, discrete distances between images or reconstructed 

points are unable to be recovered from images alone, and thus georeferencing and scaling of the 

point cloud is required (Szeliski 2011). 

To georeference a point cloud, most programs require a minimum of three ground control 

points (GCPs) or known camera positions derived from real-time kinematic differential GPS 

(rtkGPS) measurements. Having established rtkGPS targets in each image is the most commonly 

used method for georeferencing images because it allows users to specify the target coordinates 

in post-processing of the images (M.R. James and Robson 2012). Once these known coordinates 

are established the bundle adjustment, the SfM, step can be utilized again to further optimize 3D 

geometry. To optimize 3D geometry and the resulting models, additional MVS algorithms are 

utilized especially in projects with large datasets because the clustering and patch adjustments 

break the image sets into ‘chunks’ based on global affinity values between images. These 

algorithms basically construct an individual depth map, or 3D scene for each cluster of imagery 

and then merge the separate maps to create a dense, clean, 3D geometry (Furukawa et al. 2010). 
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There are a host of different MVS algorithms that typically fall into four different 

categories; 1) voxel-based (S.M. Seitz and Dyer 1999); 2) mesh change (Furukawa and Ponce 

2009); 3) geometry merging (Li et al. 2010); and 4) patch-based (M. Lhuillier and Quan 2005). 

The one utilized in this study will be the patch-based MVS algorithms (PMVS) because it is used 

in Agisoft Metashape™ and matches features using small patches (surfels), expands the patches 

of matched images, and then filters out incorrect matches. This is the most critical step in the 

SfM process because it relies on defined texture information for each surfel to produce a 3D 

model than can be transformed into a comparable DEM. If there are inconsistencies between 

surfels then the PMVS algorithms filter out that set of points creating a gap in the 3D model. The 

surfel matching, expansion, and filtering steps are repeated several times before the final, dense, 

point cloud is created. This PMVS method allows for dense reconstructions of objects while 

requiring minimal computing power and time. However, the key constraint to the entire SfM- 

MVS process is pixel-level feature detection within source imagery, especially in areas with 

ever-changing objects or scenes (Gruen 2012). 

2.7 Photographic Considerations 
 

Both Lane (2000) and Gruen (2012) argue that pixel matching is the critical consideration 

when attempting digital photogrammetry and automated modelling. The quality of the pixels is 

dependent on factors like image quality, lighting conditions, and object texturing. As described 

above, pixel matching is key to the entire SfM-MVS process and quality matching can increase 

point densities by over two orders of magnitude (Smith et al. 2016). Micheletti et al. (2015) has 

shown that a variety of camera systems can produce quality pixels and high pixel matching. 

Micheletti et al. (2015) was able to create digital terrain models (DTMs) with decimeter accuracy 
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using a smart phone camera at close range, but also showed significant accuracy improvement 

using a DSLR camera system. 

Micheletti et al. (2015), Fondstad et al. (2013), and Dietrich (2016) found that close-range 

coverage, 5-15 meter, produces optimal results when capturing images for SfM-MVS 

photogrammetry. However, there is an inverse relationship between sensor distance from subject 

and the minimum number of images required to cover the spatial extent and topographic 

complexity in a scene; the closer the sensor distance to subject the more images necessary which 

requires more computing power than aerial surveys (Smith et al. 2016). 

2.8 Historical Uses 
 

The predominant application of SfM-MVS photogrammetric technology is in land-form 

terrain modeling via AAVs (Fonstad et al. 2013). Over the past two decades, close-range digital 

photogrammetry has become a powerful tool for 3D terrain modelling, and has enabled the 

monitoring of river beds, river banks, glaciers, and much more at relatively high spatial 

resolution through the extraction of DEMs from overlapping stereo imagery. The traditional 

methodology has been to equip an AAV with a camera that has stable focal length, principal 

point, and lens distortion parameters (e.g. a metric camera) to acquire imagery that can be used 

for photogrammetric measurement (Bird et al. 2010). Recently, advances in high-resolution 

satellite image-matching techniques and machine learning algorithms have been used to create 

cost-effective, moderately scaled approaches to terrain modelling without the need to invest 

valuable resources in AAV specialization (Stumpf et al. 2015). However, these advanced remote 

sensing approaches cannot provide hyperspatial data in dynamic riverine environments and thus, 

field-deployable, close-range photogrammetric methods must be used to measure the subtle 

changes occurring within the riparian zone. 
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2.9 Advantages and Disadvantages 
 

Seemingly, the biggest attraction for using a close range hand-held SfM-MVS 

photogrammetric approach to riparian and stream assessment and monitoring is that it should be 

very cheap in terms of personnel and time constraints, compared to other survey methods. The 

only requirements are a camera and a computer. There are free software options available online, 

and countless professional options that are moderately priced. Furthermore, SfM-MVS produces 

fully 3D data which has typically only been possible with a terrestrial LiDAR scanner (TLS), and 

these data can be very easily transformed into orthophotographs and DEMs (Bemis et al. 2014). 

Additionally, the SfM-MVS workflow remains relatively unchanged regardless of spatial or 

temporal scales. This fact bodes well for this study because it can draw upon the work done in 

various environments from different scales and incorporate it into designing a study for a close 

range approach in heavily vegetated riparian environments. Lastly, as seen in Carrivick et al. 

(2016) SfM-MVS workflows can produce similar accuracy to almost any other topographic 

surveying method. The comparisons to Terrestrial Lidar Survey (TLS), Aerial Lidar Survey 

(ALS), and differential GPS (DGPS) show that photogrammetry and SfM-MVS values are 

completely dependent scale of investigation (e.g. landscape vs. site scale) (Brasington et al.2000; 

Young 2013; Gallay 2013; Bangen et al. 2014; Carrivick 2016). 

The biggest disadvantage to the SfM-MVS approach to digital photogrammetry is the fact 

that 3D accuracy and 3D point density often depends on factors that surveyors can’t control like 

ambient lighting, texture, and color of the object or scene of interest (Fondstad et al. 2013; G.A. 

Gienko and Terry 2014). This issue means that repeating a particular SfM-MVS workflow can 

be challenging especially when the surveyor has to make situation specific adjustments due to 

the conditions at the time of sampling. Additionally, objects or scenes that move between 
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each image capture (vegetation blowing in the wind) can’t be surveyed using a rigid workflow.  

While the majority of the SfM-MVS data acquisition and processing can be done by a relatively 

unspecialized user, certain complementary data like rtkGPS and physical stream measurements 

help to create more robust 3D data, and require more specialized skills. Another disadvantage is 

the fact that points cannot be attributed at the time of survey like total station surveys. Lastly, the 

visualization of large datasets can be very difficult especially if the steps prior to PMVS cannot 

produce quality image pairs. In general, the future of the SfM-MVS process in digital 

photogrammetry largely depends on applying advances in technology to real-world field 

applications to test the ‘best-fit’ methods for surveying different environments. 

3. Methodology 
 

This research included both field and lab components for data collection and processing. 
 

Unfortunately, there is a large gap in the current literature when it comes to study designs 

centered on close range hand-held photogrammetric approaches to riparian and stream 

assessment and monitoring. Particular care was taken to develop and employ an easily 

reproducible study design, including the field and lab components as this relates directly to the 

research questions. All lab work was done using University of Montana computers and software 

licenses. 

3.1 Transect and Image Acquisition 

 

The field component of this research was altered by the COVID-19 research protocols 

released by the University of Montana on 1 June 2020. The following methodology was 

employed at three different locations along Deer Creek, located in Mineral County, Montana. 

Prior to the commencement of fieldwork at Deer Creek, the methodology was pilot-tested on an 
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irrigation canal along Rock Creek, located in Missoula County, Montana (see Figure 1 below). 

To allow scaling for each image, and provide boundaries for physical measurement, at least 

coded three targets were placed on each side of the channel, and were equally spaced throughout 

each transect (along the side of the channel) (Micheletti et al. 2014). A step-by-step approach to 

image acquisition and physical stream survey is outlined in Table 1 below. 

Table 1. Basic Image Acquisitions and Physical Measurement Methodology 
 

1. Select a heavily vegetated section of stream approximately 20 meters long. 

2. Place laminated markers along streambank with coded targets all facing the same direction. 

3. Facing the coded targets, hold camera in landscape orientation (sideways), at chest height. 

4. Walk along the center of the stream taking at least 1 photo every step. The camera can pan 
left and right as needed to capture targets or objects of note on either side of the channel, but 
should always include at least one target in every photo. 

5. Obtain section length, wetted width, and distance between markers using meter stick and 
measuring tape. 

6. Catalog average size of rocks in stream and along the bank. 

7. Catalog dominant vegetation type (trees, grasses, shrubs, etc.) 

8. Catalog dominant species of vegetation if known. 

 

The placement scheme for marker locations is limited only by the requirement to have at 

least 3 markers present in each image. Where that is impossible, having at least one marker is 

necessary. There are no other restrictive parameters for marker placement such as known 

locations or predetermined distances. The rationale behind this lies in the photogrammetric 

process of keypoint identification. The markers serve two purposes: 1. Providing reference points 

for real world scale and 2. Providing reference locations for keypoint identification. 
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3.2 Rock Creek Pilot Test 
 

Figure 1. Rock Creek Pilot Test Locator Map 
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The basic image acquisition and physical measurement methodology described above 

was tested using a Sony a6500, iPhone 6 SE, and a GoPro Hero 4 along irrigation canals that 

feed into Rock Creek near Clinton, Montana and proved successful. 
 

 

Figure 2. Rock Creek Pilot Test Images. Note: Pilot test photos represent how images are taken 

with rotating the camera laterally. 
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The focal length of the Sony a6500 created issue when photographing the riparian zone; 

the stream and identifiable targets were largely absent from the images which prevented quality 

matching within Agisoft Metashape™. Therefore, because one of the cameras was unable to 

adhere to a rigid transect and image acquisition structure a more ‘free-form’ structure was 

employed. This idea of ‘free-form’ image acquisition is rooted in the literature and simply 

indicates complete coverage of the study area by taking as many photos as possible from every 

angle (Micheletti et al. 2015). This approach complemented this study’s focus on the 

unspecialized user as it dictates a simple ‘walkthrough’ of the site of interest taking more photos 

than one might believe to be necessary. 

3.3 Deer Creek Run 

 

A comprehensive physical stream survey occurred during the Deer Creek survey at the 

same time Capture data were being collected to provide physical measurements for comparison 

with Capture measurements derived from 3D models. The physical survey parameters adhered to 

the NRCS method for determining the following in-channel and riparian characteristics at each 

transect. See Table 2 below. The Deer Creek sampling took place during typical summer flows 

on July 7th and August 8th. Having two samples occur in quick succession helped to resolve the 

gaps in data collection and synchronize the software workflow. 
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Figure 3. Deer Creek Run Locator Map 
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Figure 4. Deer Creek Run Images. Note: the top image (a) shows the point cloud created in 

Metashape™ with the blue arrow showing the direction walked in the stream and the images taken 

with the DSLR camera displayed as the blue rectangles within the point cloud. The bottom left and 

right images (b and c respectively) show the same blue arrow signaling walking direction upstream 

as the images were taken. 
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Table 2. Physical Stream Measurements for Deer Creek and Rattlesnake Creek Runs 
 

1. Classify/catalog habitat type (pool, riffle, glide); 

2. Classify riparian vegetation (list species and estimate abundance of each); 

3. Measure wetted channel width; 

4. Determine average water depth in section (includes >=5 measurements of depth in each section); 

5. Average streambank substrate size (includes >=5 measurements in each section); 

6. Estimate vegetative percent cover of each streambank (extending 5m from water’s edge); 

7. Measure bank slope; 

8. Measure channel incision; 

9. Describe bank stability classification (Stable w/ vegetative cover/non-erosive; Unstable w/ eroding 

and/or bare soil; Hardened w/ concrete, riprap or bedrock). 

 
 

 

 

 

 

 
3.4 Rattlesnake Creek Run 

 

The purpose of the Rattlesnake Creek study was to determine the ease and accuracy with 

which the proposed methodology and workflow could be implemented by an unspecialized user. 

A research assistant was given the following instructions and used the same iPhone camera used 

in the Deer Creek Survey. The Rattlesnake Creek Sample took place during typical low winter 

flow conditions on 24 January, 2021. 
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Figure 5. Rattlesnake Creek Run Locator Map 
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Figure 6. Rattlesnake Creek Run Images 
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3.5 Image Acquisition 

The vast majority of SfM-MVS processes produce internal and external camera 

calibration models as mentioned above, but field-based calibrations can help to make the models 

produced in the software more accurate. In an effort to minimize inaccuracies in environments 

where extreme variability between image captures is likely to occur the following guidelines 

from Peterson et al. (2015) were adopted: 

Table 3. Camera Parameter Guidelines 
 

Lens: a fixed focal length lens. 

Camera Settings: aperture was set to constant intermediate f-stop between f/8 and f/16 depending on 

ambient light and shadows, and ISO were set as low as possible with a shutter speed of at 1/400 of a 
second; 
Camera Focus: focus was set at a constant, but where focus was altered an additional image was 

captured of a different scene to mark a spot in the photo sequence where the focus was changed (this 
resulted in a different camera being selected in Agisoft Metashape™ workflow); 

Camera Resolution: the highest possible resolution was used for sharpness and depth-of-field to be 

maintained; (low iso, high apperature) 

File Format: for the DSLR camera a RAW (+JPEG) format was used in an effort to create flexibility in 

bright or dark areas of images and to prevent data loss due to file compression; 

For cell phone camera, the highest quality compression level was used and no rolling shutter will be 

used for any image acquisition. 

GPS: for the cell phone camera, the internal GPS was used to guide the initial 3D model creation, and 
a hand-held GPS device was used for the DSLR camera unless (in the case of cell phone camera and 

hand-held GPS devices, accuracy was accounted for in Agisoft Metashape™ settings). 
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Images were captured with 24 MP Sony a6500 (herein Sensor A) equipped with a fixed 

focal length (xx mm) Nikon lens. Sensor A has a crop factor of 1.5 which gave the 35mm fixed 

lens an equivalent 50mm field of view. Sensor A also has the capability to save in RAW file 

formats which aided in post-processing (Micheletti et al. 2015). Shutter speed on Sensor A 

ranges from 1/4000s of a second to 30 seconds. For this study a standardized shutter speed, 

aperture, and flash was used for each image in an attempt to limit the variability present in close 

range remote sensing. ISO was locked at 100, and shutter speed was locked at 1/40 th of a second 

with aperture being locked at f-8. 

The average distance between images taken at all 3 sites varied between 1-3 meters 

depending on terrain to ensure stereo imagery pairs with at least 60% overlap (with the long-axis 

of the image perpendicular to image path) (Bird et al. 2010). In an effort to keep this research 

aligned with its primary goal of being stakeholder focused, I utilized the ‘black-box’ algorithms 

provided in Agisoft Metashape™ that estimate the parameters mentioned above and only 

manipulated those parameters if necessary. Camera height was difficult to standardize, but 

remained at roughly ‘chest height’, approximately equal to a standing eye height (2 m off the 

ground). The relative height of the camera at the time of survey should bear very little weight 

because the oblique angle of the images will not change much between an image taken 1.5 m off 

the ground and 2 m off the ground. 

Distance from objects like logs or other instream habitat features varied depending on 

distance from the last photo and viable walkways around the features. Extra care was taken when 

capturing images of logs, boulders, cut banks, and vegetation to maximize the chances of stereo 

pair matching. 
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Because the object distance (from sensor to features) could be approaching zero from 

certain perspectives, resulting in an out-of-focus image, the far-point and near-point for focus 

was set at infinity on Sensor A. This fixed some of the depth-of-field issues in images with no 

real object of interest. 

3.6 Lab Component 

 

The lab component used Adope Photoshop for image processing and Agisoft 

Metashape™ for 3D visualization creation. The final workflow was chosen based on the quality 

of data required/produced and ease of operation at each of the following steps: 

Table 4. Image Pre-processing Workflow 

 

The following image pre-processing workflow was used and is adopted from professional SfM- 
MVS workshop by Tommy Noble (2018): 

Download all photos and organize into appropriate folders based on survey design. 

Balance color and exposure and remove vignetting and chromatic aberration via AP. 

Back up all original and balanced images. 

Export balanced images as JPEG, TIF, or DNG. 

 
 

For a more descriptive application of the following Agisoft Metashape™ workflow 

please see Figure 7 which lists the specific workflow adopted by the United States Geological 

Survey in 2017. 
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The following Agisoft Metashape™ error minimization workflow was used once image 

pre-processing was completed and is adapted from a professional SfM-MVS workshop provided 

by Tommy Noble (2018): 

Table 5. Agisoft Metashape™ Error Minimization Workflow 

 

Add images to Agisoft Metashape™ and check EXIF info; 

Sort images by Capture group to help project organization; 

Create camera calibration groups for proper calibration; 

Align images using keypoint triangulations to create a sparse point cloud; 

Optimize point cloud by performing 1st bundle adjustment; 

Add a scale using the coded targets from each image; 

Optimize point cloud by performing 2nd bundle adjustment; 

Perform projection accuracy gradual selection to remove points with undesirable residual error (RE); 

Perform reconstruction uncertainty to remove points with undesirable RE; 

Perform reprojection error to remove points with undesirable RE; 

Optimize point cloud by performing 3rd bundle adjustment removing points with >0.3RE; 

Adjust results from final optimization to fall within 0.13 to 0.17 RMSE; 
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Figure 7. Agisoft Metashape™ Workflow developed by Tommy Noble for the USGS (Source: 

Noble 2018). 
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3.7 Lab Component Alterations 

 

Because the images taken during the time of survey were not georeferenced a new 

workflow had to be created to compare changes between spatial products produced without 

geospatial information. To do this, a standardized local coordinate system was first created. This 

local coordinate system was creating by first exporting all of the known camera positions 

following the final bundle adjustment. By exporting the local coordinate system created by the 

optimized cameras, the x,y,z locations could then be imported back into the Metashape™  

workspace, giving the model a means of comparison. However, to compare one model to 

another, they both had to be in the same workspace. Within Metashape™, workspaces are 

organized as follows: 

Table 6. Agisoft Metashape™ workspace organizational scheme. 
 
 

Chunk (term used to define a group of cameras) 

Cameras (term given to each individual image. i.e., 20 images = 20 cameras) 

Keypoints (this defines the total number of points used in dense cloud creation) 

Products (the rest of the workspace is organized by products created. i.e., DEM, 3DMESH, 

ORTHOMOSAIC, etc.) 

 

 

To get multiple models within the same workspace, new Chunks have to be added. This 

is done by selecting the workspace of choice and manually adding new Chunks and Cameras. 

Once the workflow outlined in Figure 7 above was completed in the newly created Chunk, the 

DEMs could be compared using the ‘Transform DEM’ tool present in Metashape™. This tool 

created an elevation difference map with appurtenant data. The addition of this tool to the lab 

component in this study enabled non-georeferenced change comparison. 
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4. Results 

 

The results of this study detail the products and findings of using Capture along heavily 

vegetated small streams as a complimentary method to traditional stream surveys. For each 

section of stream, images were analyzed and dense clouds, 3D meshes, DEMs, and 

Orthomosaics were created within Agisoft Metashape™. The root mean square error (RMSE) 

was used as the primary indicator of model quality. Prior to the gradual selection steps which 

compare the anticipated locations of cameras to the actual locations of cameras, scale bars were 

created using known stream measurements taken at the time of survey. As noted above, in an 

effort to test the repeatability of this research by an unspecialized user, the Rattlesnake Creek 

survey was carried out by a research assistant that followed the methodology used for the Deer 

Creek survey. The results for the Rattlesnake Creek and Deer Creek surveys are listed below. 

4.1 Photo Alignment 

 

The first consideration when importing images into Agisoft Metashape™ is photo 

alignment. For this study, the number of images that were aligned was influenced by the 

presence or absence of coded markers within each section. The absence of all markers from 

images created a large disparity between the total number of images and the number of images 

that were successfully aligned. The presence of markers produced diminishing returns once the 

number of markers exceeded 6 within each section. Table 7 below shows the relationship 

between number of markers and successful image alignment within Agisoft Metashape™. 
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Table 7. Deer Creek Run Image Count 
 
 

Sensor Number of 

Images 

Aligned with 

Markers 
Present (0) 

Aligned with 

Markers 
Present (3) 

Aligned with 

Markers 
Present (6) 

Aligned with 

Markers 
Present (12) 

DSLR      

Section 1 41 18/41 38/41 41/41 41/41 

Section 2 40 8/40 30/40 38/40 38/40 

Section 3 33 16/33 33/33 33/33 33/33 

iPhone      

Section 1 44 18/44 40/44 44/44 44/44 

Section 2 30 8/30 22/30 28/30 30/30 

Section 3 28 18/28 26/28 26/28 26/28 

GoPro      

Section 1 18 13/18 18/18 18/18 18/18 

Section 2 18 8/18 15/18 15/18 16/18 

Section 3 18 10/18 18/18 18/18 18/18 

 

 

4.2 Scale Creation 

 

The purpose of photogrammetry is the creation of measurable structure from a moving or 

roving camera. That structure is created first by identifying keypoints in each photo, filtering 

those keypoints, registering those keypoints, projecting the intersection of those keypoints onto a 

3D plane, and having those projections communicate with one another based on their relative 

location. Metashape™ automatically detects the locations of cameras and predicts where other 

projections, reprojections, and reconstructions of those projections should be. One way to make 

this process even more reliable is to implement coded markers into a survey, such as was done in 

this study. These markers are coded and printable from within the Metashape™ environment and 
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serve as keypoints in and between images. This is especially useful in areas like heavily 

vegetated streams where distinguishable features may be hard to identify. 

While conducting the physical stream survey at the time of sampling, distances were 

measured between each marker. These distances were then imported into Metashape™ as known 

scalebars. These known scalebars provided the option to compare known measurements from the 

physical survey to the measurements that were being created via Metashape™. The known vs.  

expected measurements for Deer Creek sections are see in Figure 8 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

Figure 8. Physical Measurements vs Metashape™ Measurements from Deer Creek Runs. Note: 

Numbers 1 through 6 correspond to the following sections for both Deer Creek runs: 1 = Section 
1 Run 1, 2 = Section 2 Run 1, 3 = Section 3 Run 1, 4 = Section 1 Run 2, 5 = Section 2 Run 2, 6 = 

Section 3 Run 2. (change section to S and run to R and then codify) 
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4.3 Gradual Selections 

 

The purpose of the gradual selections of points within Agisoft Metashape™ is to remove 

bad matches between keypoints within the sparse and dense clouds. The results of this section 

build on the parameters utilized by the BLM for creating models of acceptable accuracy (Noble 

2018). Metashape™ has four gradual selection methods: Image Count, Projection Accuracy, 

Reprojection Error, and Reconstruction Uncertainty; the latter three were tested and assessed by 

the RMSE and total keypoints removed for each camera along each section of Deer Creek. It is 

important to identify how many keypoints have been removed from each point cloud as the total 

number of keypoints serve as an indicator on overall model accuracy. 

4.4 Projection Accuracy 

 

Projection accuracy is the criterion that allows Metashape™ to filter out points within 

projections that were more poorly localized. Metashape™ saves an internal accuracy/scale value 

for each tie point of the correlation process. For example, Level 1 projection accuracy would 

mean that all points remaining in the cloud are correct projections from 2D to 3D space. The 

level corresponds to a set percentage, above which, a model becomes unreliable. In this study, 

that percentage was 90% of the total points meaning that level 2.2 selected 10% of the points in 

the cloud for removal before the next camera optimization step. The level corresponds to a set 

percentage, above which, a model becomes unreliable. Achieving a projection accuracy of 1 

would mean a perfect model was created from the overlap between images. The projection 

accuracy level of 2.2 was used to eliminate those pixels which, due to either poor image overlap 

or noise within surrounding pixels, could not be matched below a level of 2.2. 

Although level 1 would be ideal, it removed over 90% of the total points included in the 

model which eliminated the necessary amount for quality product creation. 
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Table 8. Images, Gradual Selection RMSE, and Number of Models by Section 
 
 

Sensor Number of 

Images 

Reconstruction 

Uncertainty 

RMSE 

Reprojection 

Error RMSE 

Projection 

Accuracy 

RMSE 

Number of 

3D Models 

DSLR      

Section 1 41 0.095 0.093 0.163 3 

Section 2 40 0.09 0.089 0.133 3 

Section 3 33 0.092 0.09 0.165 3 

iPhone      

Section 1 44 0.102 0.095 0.2 3 

Section 2 30 0.099 0.099 0.21 3 

Section 3 28 0.106 0.107 0.448 3 

GoPro      

Section 1 18 0.101 0.1 0.235 3 

Section 2 18 0.086 0.085 0.106 3 

Section 3 18 0.092 0.09 0.165 3 
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Figures 9, 10, and 11 below show the total points for Section 1 of Deer Creek after 

performing the gradual selections mentioned above. The trend in these errors for Section 1 was 

replicated in each of the other sections of the Deer Creek survey and in the Rattlesnake Creek 

survey. 

 

 

 

 

 

Figure 9. Section 1 DSLR Keypoint Totals (Deer Creek). 
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Figure 10. Section 1 GoPro Keypoint Totals (Deer Creek). 
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Figure 11. Section 1 Iphone Keypoint Totals (Deer Creek). 
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Figures 12 through 20 below show the RMSE for the gradual selection methods for each 

camera along each section of Deer Creek. 

 

 

 

 

 

 

 

 

 

 
Figure 12. Gradual Selection RMSE DSLR Section 1 (Deer Creek). 

 

 

 

 
 

 

 

 

 

 

 

Figure 13. Gradual Selection RSME DSLR Section 2 (Deer Creek). 

 

 

 
 

 

 

 

 

 

 

 

Figure 14. Gradual Selection RMSE DSLR Section 3 (Deer Creek). 
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Reconstruction Uncertainty 

Reprojection Error 

Projection Accuracy 0.106 
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Figure 15. Gradual Selection RMSE GoPro Section 1 (Deer Creek). 
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Figure 16. Gradual Selection RMSE GoPro Section 2 (Deer Creek). 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 17. Gradual Selection RMSE GoPro Section 3 (Deer Creek). 
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Figure 18. Gradual Selection RMSE iPhone Section 1 (Deer Creek) 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 19. Gradual Selection RMSE iPhone Section 2 (Deer Creek). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 20. Gradual Selection RMSE iPhone Section 3 (Deer Creek). 
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4.5 Reprojection Error 

 

Within Metashape™, the keypoints are referenced in three-dimensional space. The 3D 

point is the best fit of any given point that is matched on at least two photos. From that best fit 

3D point, rays are reprojected back onto each two-dimensional photo. The difference between 

that 2D reprojected point and original 2D sub-pixel matched point is the reprojection error. For 

this study, a reprojection error of 0.2 pixels was used which means all valid keypoints that have 

been identified are removed if they are not accurate to at least the 0.2-pixel level. A simple way 

to think of pixels in terms of accuracy is with a 1 to 1 example. If spatial accuracy is guaranteed 

to 1 pixel, or has a RMSE of 1 pixel, this means that any pixel in an image would be within 1 

meter of its ‘true’ location on the ground. For this study, all points were removed that were not 

within the 0.2-pixel range of their expected location given a known parameter. 

4.6 Reconstruction Uncertainty 

 

Reconstruction uncertainty deals with the accuracy of position points within the cloud. 

Similar to reprojection error, reconstruction uncertainty takes the intersection of two rays and 

identifies a direction in which the variation for that point position is at a maximum and a 

minimum. These minimum and maximum values are divided and a level of uncertainty is 

assigned to each point within a dense or sparse point cloud. 

Similar to projection accuracy, a level 1 reconstruction uncertainty would mean the 

position of each point within a point cloud is 100% correct. Therefore, the lower the level the 

more accurate the model. This selection removed the most points in this study, and a level of 100 

was the lowest reconstruction uncertainty that could be attained without removing over 90% of 

each dense point cloud. The large amount of vegetation present in each image created a 

significant amount of uncertainty when attempting to reconstruct a model. 
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This aligns with the results outlined by previous studies where a Leaf Area Index of over 

50% creates significant variance in model reconstruction (Duke 2018). 

4.7 Deer Creek Physical Survey 

 

The purpose of collecting physical stream data while testing each camera on each section 

of stream was to have reliable measurements that could be used to validate the measurements 

coming from Metashape™, and to create qualitative data similar to the information collected  

during traditional stream surveys. Table 9 shows all of the data from the two sampling dates on 

Deer Creek, as well as the total time each survey took for both the lab and field components. 
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Table 9: Deer Creek Runs 1 and 2 Sampling Data 
 

7/7/2020 Deer 

Creek 

Length WettedWidth Depth Large 

Woody 

Debris 

Present 

Riaprian 

Vegetation 

Classification 

Streamback 

Substrate 

Size 

Estimated 

Vegetative 

Cover 

Bank 

Incision 

Present 

Physical Section1 22 2.8 meters 22.86 N Mustards, Gravel >95% N 

Stream  meters  centimeters  clovers, sedge    

Survey      grass, bull    

      thistle, spruce    

Metashape™  

Measurements 

 22 

meters 

3.02 meters N/A      

Physical Section2 23 2.5 meters 25.4 N Willow, Cobble >95% Y 

Stream  meters  centimeters  mustards,    

Survey      sedge grass,    

      wild rose    

Metashape™  

Measurements 

 19.8 

meters 

3 meters N/A      

Physical Section3 19 2 meters 30.48 Y Clover, Sand- <85% Y 

Stream  meters  centimeters  common Cobble   

Survey      hops,    

      mustards,    

      willows    

Metashape™  

Measurements 

 21 

meters 

2.7 meters N/A      

Total Lab 

Time 

12 hours         

Total Stream 

Survey Time 

3.5 

hours 

        

Total 

Working 

Hours 

15.5 

hours 
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8/8/2020 Deer 

Creek 

Length WettedWidth Depth Large 

Woody 

Debris 

Present 

Riaprian 

Vegetation 

Classification 

Streamback 

Substrate 

Size 

Estimated 

Vegetative 

Cover 

Bank 

Incision 

Present 

Physical Section1 22.6 2.4 meters 17.78 N Mustards, Gravel >95% N 

Stream  meters  centimeters  clovers, sedge    

Survey      grass, bull    

      thistle, spruce    

Metashape™  

Measurements 

 24 

meters 

3 meters N/A      

Physical Section2 23.4 2.25 meters 17.78 N Willow, Cobble >95% Y 

Stream  meters  centimeters  mustards,    

Survey      sedge grass,    

      wild rose    

Metashape™  

Measurements 

 20 

meters 

3 meters       

Physical Section3 19 2 meters 27.94 Y Clover, Sand- <90% Y 

Stream  meters  centimeters  common Cobble   

Survey      hops,    

      mustards,    

      willows    

Metashape™  

Measurements 

 21 

meters 

3 meters N/A      

          

Total Lab 

Time 

12 hours         

Total Stream 

Survey Time 

3.5 

hours 

        

Total 

Working 

Hours 

15.5 

hours 
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4.8 Rattlesnake Creek Physical Survey 

 

One survey was completed on Rattlesnake Creek by a research assistant in an effort to test the applicability of the methodology 

by an unspecialized user. 

The research assistant received minimal training on plant/tree identification and visual vegetation estimation. They were 

provided a list of procedures and selection parameters and instructed to carry out the survey to the best of their ability. Table 10 shows 

the data from the one sample conducted along Rattlesnake Creek, complete with the Metashape™ measurements that were estimated 

via the scale bar creation and gradual selection workflows. 

Table 10: Rattlesnake Creek Run Sampling Data 
 

1/24/2021 Rattlesnake 

Creek 
Length WettedWidth Depth Large 

Woody 
Debris 

Present 

Riaprian 

Vegetation 
Classification 

Streamback 

Substrate 
Size 

Estimated 

Vegetative 
Cover 

Bank 

Incision 
Present 

18 3.75 

Physical 
Stream Survey 

Section 1 17 
meters 

3.4 meters 8 
inches 

N Dead grass and 
deciduous 

trees 

Cobble <60% N   

Metashape™  

Measurements 
 18 

meters 
3.75 meters N/A        

Total Lab 

Time 
3.5 hours           

Total Stream 

Survey Time 
1 hour           

Total Working 

Hours 
4.5 hours           
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There will always be expected variability when gathering stream data such as wetted 

widths and total stream lengths, but the results from Table 10 show the length of the section is 

accurate to 1 meter and the average wetted width is accurate down to 35 cm. 

4.9 Metashape™ Products 

 

Once the image processing, scalebar creation, and coordinate system workflows were 

completed within Metashape™, the dense point cloud could be transformed into a DEM, 

Orthomosaic, and a textured mesh or 3D model of the stream. The stream channel measurements 

(i.e., transect length, average depth, average width) were taken from the 3D meshes created 

within Metashape™. The DEMs and Orthomosaic products were also used to compare changes 

in stream bank and channel configurations. Based on the two Deer Creek Runs, Metashape™ 

has the ability to estimate changes in width and depth over a 30-day period when flows were 

declining. This translates to a potential for Metashape™ to provide measurements on changes in 

stream bank and channel configuration that may occur due to high flow events on streams with 

heavy vegetation during different times of year. Figures 21 through 26 below show the textured 

meshes created within Agisoft Metashape™ complete with measured distances used to determine 

the wetted widths for each section. Part 2 shows how the meshes can be navigated and measured 

at different points within the software. These models were created for each section of both the 

Deer Creek runs and the Rattlesnake Creek run. Figures 21 through 26 are included to show the 

3D navigation capabilities within Metashape™ which provides potential benefits if interested in 

calculating leaf area index or volumetric measurements of vegetation along stream banks. 
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Figure 21. 3D Model Section 1 iPhone Camera 
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Figure 22. 3D Model Section 1 iPhone Camera Part 2 
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Figure 23. 3D Model Section 1 DSLR Camera 
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Figure 24. 3D Model Section 1 DSLR Camera Part 2 
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Figure 25. 3D Model Section 1 GoPro Camera 
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Figure 26. 3D Model Section 1 GoPro Camera Part 2 
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5. Discussion 

 

There has been a sharp rise over the past two decades in the application of 

photogrammetry in a wide range of scientific fields including agriculture, geomorphology, and 

history because of the amount of data that can be collected and analyzed over a relatively short 

period of time (Dietrich 2016). Broad, workflow-based, photogrammetric studies have been 

carried out to better understand how the SFM-MVS processes work within different software 

programs (M.R. James and Robson 2012). Smaller scale studies gave been carried out to 

determine the impact of factors like vegetation and image count on overall 3D model accuracy 

(Duke 2018). Although a broad understanding of SFM-MVS processes is important, and 

controlled studies are crucial in determining the impacts of variables like vegetation, ambient 

lighting, and camera parameters on 3D model creation, the purpose of this study was to explore 

the efficacy of using Capture to produce quantitative and qualitative data along heavily vegetated 

streams where other remote sensing options are either impossible or prohibitively expensive. 

The results from this study demonstrate that Capture is capable of producing, locally 

coordinated 3D models within Agisoft Metashape™ using the three types of hand-held cameras 

tested in this study. The application of Capture provided similar results in comparison to the 

stream geometry measurements taken during the Deer Creek and Rattlesnake Creek surveys. The 

ability to create photogrammetric models of Deer Creek and Rattlesnake Creek proved 

successful without the need for georeferencing. Capture can be applied to many disciplines that 

require making physical measurements in areas with variable vegetation and lighting without a 

significant time investment or the need for expensive camera or GPS equipment. 
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5.1 Most Suitable Camera 
 

The results from the gradual selections carried out within Agisoft Metashape™ indicate 

that the projection accuracy and reprojection error for all models of Deer Creek and Rattlesnake 

Creek were within acceptable RMSE thresholds without removing too much of the point cloud 

for the model to still be viable. The reconstruction uncertainty of each model was too high to be 

considered a viable option for measurement as over 90% of the total points in each section’s 

dense cloud were removed to achieve an acceptable RMSE. This is not surprising as the high 

amount of vegetation included in each image made reconstructing those images near impossible. 

The impact of vegetation on photogrammetry is well documented, and this study attempted to 

solve that issue by increasing the number of images taken of each section (Duke 2018). 

However, increasing the number of images taken did not prove to be enough to remedy the 

issues caused by heavy vegetation. The only camera capable of producing a model that fit within 

the reconstruction uncertainty parameters was the Sony a6500 (DSLR) because of the high 

number of points present in the dense cloud. However, the measurements taken from the models 

that adhered to the reconstruction uncertainty RMSE threshold were not noticeably more 

accurate than the measurements taken from the models that did not adhere to the reconstruction 

uncertainty RMSE threshold. Even though an acceptable reconstruction uncertainty could not be 

achieved for each model, the number of points that remained after the projection accuracy 

selection of level 2.2 and reprojection error selection of 0.2 pixels meant that the models could 

still be used for measurement. Thus, reconstruction uncertainty was not deemed to be a 

significant determinant of accurate models within Agisoft Metashape™ when employing 

Capture along heavily vegetated streams. 
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The importance of coded markers cannot be overstated when capturing images with 
 

hand-held cameras along heavily vegetated streams. This is especially true when models will not 

be georeferenced to a real-world coordinate system, but be left in the localized coordinate system 

created within Agisoft Metashape™. As seen with the high point removal during reconstruction 

uncertainty, the amount of vegetation on the periphery of the stream makes image matching quite 

difficult. This fact was further validated by the number of misaligned images during the photo 

alignment phase in Agisoft Metashape™ when 0 markers were present during the survey. 

Interestingly enough, the number of aligned photos did not increase in a meaningful way when at 

least 3 markers were placed in each section. This proved very useful as the amount of time it 

took to place 12 individual targets within a 22-meter stretch of stream and then retrieve and 

replace them in the next section was quite high. Additionally, the placement of at least three 

markers meant at least three scale bars could be created for each section of stream. 

The results indicate that all hand-held cameras included in this study are capable of 

producing accurate models within heavily vegetated environments. The measured vs. expected 

locations of markers within each image combined with the low RMSE achieved with the 

reprojection error threshold of 0.2 pixels for each camera shows that higher megapixel cameras 

do not produce significantly more accurate models within Agisoft Metashape™. In fact, the 

models with the most accurate measurement between what was measured at the time of survey 

and what was produced via Agisoft Metashape™ were created from the iPhone camera’s images. 

Therefore, the most appropriate sensor for employing Capture along heavily vegetated streams is 

the iPhone camera, as it produced similar quality models and is the most ubiquitous camera of 

the three tested in this study. 
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If researchers are looking for highly accurate point clouds with an abundance of points 

for rigorous point selections, then a DSLR camera with at least 24 MP is best. If researchers are 

looking for the best models with the fewest images required, then a GoPro or similar camera 

with a fisheye lens would be best. 

5.2 Image Processing Workflow 
 

The results from the gradual selection methods and the image processing workflows 

indicate that the steps being implemented by the USGS are fitting using aerial photos or when 

acquiring many images from around stationary objects in conjunction with accurate GPS data. 

For this study, the USGS workflow was amended to include the merging of multiple Chunks and 

the implementation of markers within Agisoft Metashape™ in order to compare changes 

between 3D models without the need for georeferencing. Had accurate GPS data been collected 

for each image at the time of survey, then change over time comparisons could be made in the 

future as long as similar, or more accurate georeferencing steps occurred. However, the results 

from this study show that importing the local reference information from one point cloud into a 

separate Chunk within the same workspace creates the ability for local coordinate comparison. 

Figures 21 through 26 show the relationship between quantitative measurements when moving 

through the 3D models of Section 1. This pattern continued through all three sections and 

showed similar results when comparing merged chunks for each section. This could prove quite 

useful when assessing the efficacy of river restoration efforts along heavily vegetated streams 

because it could provide a more standardized means of tracking change over time without the 

need for georeferenced imagery. 
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5.3 Capture Measurements 
 

The results from this study show that the 3D models produced from images taken with an 

iPhone camera provide measurements that are close to the physically measured stream 

characteristics. They complement the image processing workflows currently being used by the 

USGS for photogrammetry studies, and provide additional steps for creating locally coordinated 

models for comparison. The physical measurements taken of the stream at the time of survey not 

only provide quantitative information, but are tied to a 3D model which serves as a navigable 

‘snapshot’ of the stream at the time of survey which could be used for future comparison. 

The lab and field effort results from Tables 9 and 10 indicate that Capture collection, 

image post processing, and model creation and comparison is a relatively quick process that 

doesn’t require much specialization. Additionally, the results show a significant reduction in both 

field and lab component times after the first Deer Creek survey was complete. The workflows 

and results presented in this study can be followed and replicated to provide the measurements 

obtained herein as well as measurements of instream habitat (i.e., pools, riffles, etc.) and large 

woody debris as long as an individual or organization has access to Agisoft Metashape™. 

Finally, Table 11 below shows the relative cost for purchase of a professional license for  

Agisoft Metashape™ compared to costs for two of the other most prominent software programs  

used for 3D model creation and comparison. 

Table 11: Professional License Fee Structure for Comparable Photogrammetry Programs 
 

 

 Annual Fee One-Time Fee 

Agisoft Metashape™ N/A $499.00 

DroneMapper N/A $999.00 

Pix4D $3,000 N/A 
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Agisoft Metashape™ is clearly the most affordable of these three programs and has all of 

the capabilities necessary for comprehensive 3D analysis without the need for georeferenced 

imagery. 

5.4 Constraints 
 

The results from the reconstruction uncertainty gradual selections indicates that these 

models cannot be considered highly accurate. The angle from which the images were taken 

combined with the heavy amount of vegetation in each image makes the uncertainty of 

reconstruction too high. This means that the models would never serve well as stand-alone 

products, but rather as a complimentary tool to traditional stream surveys. 

Another constraint of Capture along heavily vegetated streams is its inability to provide 

accurate riparian vegetation data. One of the initial purposes of this research was to remedy the 

issues inherent to visual estimation and the subsequent comparison of vegetation types and 

vegetation densities within riparian zones. Unfortunately, the study design proposed herein was 

unable to produce models that could accurately identify anything outside of the stream corridor. 

Although vegetation can clearly be seen outside of the stream corridor it is impossible to 

differentiate between various types of vegetation and approximate overall vegetative cover as the 

reconstruction uncertainty is too high using hand-held cameras. 
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An important consideration regarding image acquisition in the field relates to the internal 

filtering that occurs when capturing images with a sensor that automatically employs internal 

filtering with preferred ISO, aperture, and focus depending on conditions resulting from 

resolutions, wind, and solar angles. The iPhone and GoPro sensors differ from the Sony DSLR 

camera used in this study in that the iPhone and GoPro sensors automatically determine the best 

internal settings based on changes in objects of interest (e.g., moving vegetation resulting from 

wind, reflectivity from changing solar angles, distance to objects). The preferred setting for field 

sampling, considering the autocorrected internal parameters for the aforementioned sensors, 

would be consistent lighting, minimal wind, and similar distance to object (s) of interest (e.g., 

placed scale markers, vegetation, in stream habitats, etc.). In an effort to optimize sampling, 

increasing the number of images taken on an overcast, calm, day would be best for image 

acquisition which highlights another constraint of this research. 

Another constraint highlighted by the results of this study is future model comparison. 

For example, when evaluating the accuracy of a DEM, a comparison is typically made between 

the georeferenced DEM and a differential GPS survey to determine the error between what the 

model displayed and what was measured with the differential GPS. Because no differential GPS 

data were collected in this study, the accuracy of the models can only be compared within local 

coordinate space meaning future comparisons have to happen within the same software program 

or a software program that can compare models within an arbitrary coordinate system. The 

models cannot be exported as DEMs for use in another program like ArcGIS Pro unless they 

have accompanying spatial data. This highlights the last constraint of this study which is 

software preference and use. All of the model creation and comparison 
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occurred within Agisoft Metashape™. This study is not repeatable unless a user has access to that 

software program. The principles for image acquisition and study design would most assuredly 

translate to other studies that choose to use another program, but certain parameters may not 

translate to other programs like Pix4D and Drone Mapper. Lastly, there is an open source free-

wareoption for Drone Mapper, but this requires a degree of specialization which veers from the 

intent of this study. If a user possessed some coding ability they would be able to utilize the Open 

Drone Mapper program without paying the one-time fee presented in Table 11 above. 

The constraints mentioned above could be addressed in another study by simply 

employing a dGPS survey and expanding the comprehensive workflows outlined in this study to 

another software program. By expanding the study in these ways, one could determine the 

impact that some of the ‘black-box’ algorithms used in image processing, key-point 

identification, and feature matching have on overall model creation and create the opportunity 

for DEM comparisons in any GIS software program. Other smaller-scale studies might choose to 

focus on errors created in DEMs as a result of shading, camera height, and vegetation in an effort 

to further standardize the models produced herein. However, the capabilities of Capture outlined 

in this study make it a useful tool for complementing traditional stream surveys on small streams 

in western Montana or elsewhere. 

An avenue worth pursuing in future studies would be the use of embedded GPS data in 

the EXIF info included in each image taken by the iPhone camera. The GPS accuracy for each 

image varies depending on cell tower location and service provider, but a logical next step for 

future studies would be incorporating the appurtenant GPS data into the 3D models to establish 

known geographic locations for each model which would allow for DEM comparison and 
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registration within other GIS programs like Global Mapper and ArcGIS. This study did not attempt 

to remedy this constraint because one of the questions posed herein focused on the capability of 

each sensor to produce models of similar accuracy; including native GPS data from the only sensor 

capable of producing such information could have potentially skewed the model accuracy in favor, 

or against, the iPhone, and thus, was intentionally left out. It is worth noting here that this study 

found the iPhone camera capable of producing 3D models with comparable accuracy to both 

GoPro and DSLR cameras, answering question 1 posed in this study, so the constraint of ‘real 

world’ model comparison could potentially be addressed by employing known GPS data inherent 

to a GPS capable camera. 

The final constraint worth noting relates to water depth measurements. It is currently 

impossible to gather water depth information solely from images or 3D models. This is a 

constraint inherent to photogrammetry in general. Although the intention of this research was to 

test the ability of the models to create objective measurement, the only way gather water depth 

information is through 3D model comparison using wetted width measurements and noting 

change in depth. This measurement, along with vegetation classification and vegetative percent 

cover, were part of the physical measurements mentioned in Table 2 above. These 

measurements, among others were collected at the time of image acquisition survey. Future 

studies should explore the potential to calculate these measurements by utilizing real world 

coordinate systems for change comparisons. 

6. Conclusion 
 

The key takeaways from this study are that cell phone cameras capable of taking RAW 

formatted imagery can be used to produce accurate wetted width and stream section 

measurements within Agisoft Metashape™, that scale markers must be used to compare software 
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measurements to physical measurements when not employing dGPS corrected keypoints, and 

that Capture can complement physical stream surveys along heavily vegetated streams between 

orders 1 and 3 (Strahler 1952). The benefit to using Capture as a complementary tool instead of 

simply employing repeat photography is twofold. First, there is no need to take photos from the 

exact same location during each survey thanks to the photogrammetric principles that perform 

camera position corrections within Agisoft Metashape™. This means that surveyors can go to a 

section of stream and simply take photos as they walk within the stream corridor even if they 

begin from a slightly different location or perspective than the previous survey. This also means 

that scale marker locations do not have to be in the same location as their placement can be 

arbitrary as long as at least two markers can be seen from each image. Second, the models 

created via Capture are 3D ‘snapshots’ of the stream at the time of survey. These 3D models 

have advantages over 2D representations of stream corridors as they can be viewed from various 

angles and perspectives. This creates the opportunity for more specialized stream technicians to 

lay eyes on a particular section of stream even if they were not there at the time of survey. The 

ability for relatively untrained stream technicians to gather data along a section of stream and 

provide a navigable 3D model to more specialized technicians is an invaluable opportunity when 

it comes to measuring the efficacy of stream restoration efforts along streams where other remote 

sensing options like drone imagery or LiDAR scans are either impossible due to heavy 

vegetation or prohibitively expensive. Lastly, it is worth noting that the applications for capture 

extend to other areas outside of stream corridors. The workflows provided in this study could be 

applied along trails, river access points, landscape restoration and/or design applications, and 

documentation of various other phenomena using change over time comparisons. 
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