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O’Reilly, Grayson, M.A., Spring 2021    Environmental Philosophy 

Modal Understanding of Robustness Analysis  

Chairperson: Dr. Soazig Le Bihan 

In this thesis I offer an alternative framework through which we may account for the 
value of robustness analysis, especially in the context of climate change.  In Section 1 I argue 
that while philosophers of science have reached the relative consensus that RA does not have 
confirmatory power, it is still used in practice to confirm predictions.  Some philosophers push 
back, stating that RA may, in fact, be of confirmatory virtue or of other epistemic/cognitive 
value.  I argued that ultimately RA fails to provide increased confirmation.  In the specific 
context of climate change and climate modeling, RA is often used to lend increased confirmation 
to predictions about climate behavior.  For example, the AR 5 Synthesis Report found that 
climate models largely agree that increased GHG emissions lead to increased global surface 
temperatures.  The problem, then, is that “such agreed-on or robust findings are sometimes 
highlighted in articles and reports on climate change” providing a level of certainty to the claim 
(Parker 2011, 580).  So if not used to confirm, then what is RA useful for?  Instead of appealing 
to RA’s confirmatory power, I offer an alternative framework to account for the usefulness and 
value of RA: Le Bihan (2017) and Duwell’s (2018) modal understanding framework.  This 
alternative framework does not answer the hard problem set forth by Orzack and Sober (1993): it 
remains unclear how we bridge the gap between models and the real world.  But through the 
modal understanding framework, RA gives us a way to learn about the relationships between 
models and use their predictions in a better way, especially in the context of climate change. 
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Modal Understanding of Robustness Analysis 

While models are necessary to represent complex systems, they incontrovertibly 

misrepresent the world.1  Because of the “falsities” models contain about their target phenomena, 

or that which they are modeling, it is unclear how to assess how true or confirmed their 

predictions are.2  Robustness analysis (RA) is often offered as a remedy to this issue: when 

individual, idealized models agree with one another on a given prediction, they are thought to 

reveal something true about the world.  However, this claim remains controversial.  Over the past 

fifty years, philosophers of science have debated the value of RA and largely undermined the 

notion that RA has confirmatory power for robust predictions.  And yet, it is used to do so in 

practice.   

For example, in the context of climate change, RA is routinely used to bolster predictive 

claims agreed upon by models.  Given that “there is now a broad scientific consensus—

underwritten by a substantial and growing body of evidence—that the earth’s climate warmed 

significantly over the last century,” the rate at which this change will occur remains unclear 

(Parker 2011, 579).  Policymakers rely on climate models and RA to answer that question, 

ignoring the many philosophical analyses that undermine the confirmatory power of RA for 

robust predictions.  The challenge, as Parker (2011) explains, is that notwithstanding the 

problems of RA, “[o]f course, it does not follow that climate policy decisions should be put on 

hold” but “rather to make sensible decisions despite remaining uncertainties about the details of 

future climate change” (598). 

 
1 For the purposes of this paper, I use Jay Odenbaugh’s (2019) definition of models as 
“representations that abstract and idealize” (15). 
2 While “accuracy” may be more appropriate, I use the vocabulary of “truth” and “falsehood” 
throughout this paper to align myself more closely with the language of RA literature. 
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So if not adequate to confirm predictions, especially in the context of climate change, 

what is RA useful for?  Some have offered alternative frameworks to account for the epistemic 

value of RA.  In this paper I offer one such framework, modal understanding, that may address 

the issue described above.  Through the modal understanding framework, RA may be better 

epistemically understood and its usefulness in climate policymaking be better warranted. 

In Section 1, I explain the relative consensus that RA does not have confirmatory power, 

but is still used in practice to confirm predictions.  I investigate arguments that push back against 

this consensus and attempt to recover confirmatory power and other epistemic or cognitive value.  

I demonstrate the ways in which RA fails to provide increased confirmation and explain why 

recent analyses of RA are unsatisfactory.  Finally, I look at RA in the specific context of climate 

science as RA is often used in climate modeling to lend increased confirmation to predictions. 

In Section 2, I give an account of Le Bihan and Duwell’s conception of modal 

understanding and argue that under the modal understanding framework we are able to account 

for the epistemic value of RA, making sense of the usefulness of RA without appealing to its 

confirmatory power.  

In conclusion, I hope to convince the reader that the kind of understanding of phenomena 

that RA provides allows us to engage in some forms of reasoning that may be useful for policy 

decision making. 

1.  Robustness and Confirmation 

Conversation regarding RA in philosophical literature is often traced back to biologist 

Richard Levins’ influential 1966 article, “The Strategy of Model Building in Population 

Biology.” Levins’ main concern was how multiple models relate to a hypothesis.  He claimed 
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that we can access truths about nature when we identify what he calls “robust theorems.”3  He 

argues that when a set of models points to a common prediction, then the prediction is robust and 

likely says something true about the world.  This is accomplished by looking closely at models’ 

results and “if these models, despite their different assumptions, lead to similar results, we have 

what we can call a robust theorem that is relatively free of the details of the model.  Hence, our 

truth is the intersection of independent lies” (1966, 423).  So model agreement is supposed to be 

indicative of truth about the world (Levins 1993).  Robustness, in this way, is taken to have some 

level of confirmatory power for the robust prediction. 

Biologist Steven Orzack and philosopher Elliot Sober (1993) famously published a direct 

response to Levins wherein they argue that whether or not a prediction is “robust” in Levins’ 

sense does not have any clear bearing on the question of whether that prediction is true.  Eric 

Winsberg (2018) summarizes Orzack and Sober’s response in clear terms: 

“Orzack and Sober argued that anyone who wants to employ [Levins’] principle faces the 
following dilemma: unless the employer of RA knows that at least one member of [the 
model set] is the “true model”, then the fact that all of the members of [the model set] 
detect [the robust theorem] is no reason at all to believe [the robust theorem].  But if she 
already knows this, then it is unclear what role the rest of the set is playing.” (4) 
 

In other words, when models produce similar results they are not pointing at something true in 

the world unless we already know that one of the models is an accurate representation of the 

world.  Instead, agreement among models demonstrates that these models share some 

mathematical properties (Orzack and Sober 1993).   

 
3 I take a robust theorem to be the conditional proposition in which the robust prediction is the 
consequent.  As Weisberg (2006) describes it, a robust theorem is a hypothesis that “simply 
describes the regular connection between the effect of a causal structure on a highly general class 
of systems” (13).  For example: if structure S is in place, then prediction P.  RA literature also 
references robust outcomes, results, and properties, all of which I refer to as robust predictions. 
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Orzack and Sober asked that Levins write a response in the same issue of The Quarterly 

Review of Biology.  In his response, Levins (1993) disputed all claims against his original work 

stating that the “formal/analytic framework” used by Orzack and Sober “is not the appropriate 

domain for evaluating a model of research strategy” (547).  Despite this, Orzack and Sober’s 

criticism has remained unresolved since.  As we shall see in this section, the various attempts at 

articulating the epistemic value of RA in recent literature do no not fully address the fundamental 

challenge that Orazack and Sober posed, i.e. that RA reveals something about the mathematical 

properties of models and theories rather than something about the world. 

1.1  Consensus about the Confirmatory Power of RA 

The Orzack and Sober challenge is that RA lacks confirmatory power.  Yet it is used as 

lending confirmation to robust predictions in scientific practice (this is especially the case in 

climate science).  Confirmation occurs when evidence supports a hypothesis.  It is common 

scientific practice to take the fact that some evidence supports some hypothesis as pointing to the 

hypothesis being more likely to be true.  So taking RA to have confirmatory power means that 

agreement among models on a prediction counts as supporting evidence that points to the 

prediction as more likely to be true.  The Orzack and Sober challenge, however, highlights that 

this may not be legitimate.  Careful examination of recent literature concerning RA reinforces 

this worry as it reveals a relative consensus that RA does not have confirmatory power (Orzack 

and Sober 1993, Woodward 2006, Houkes and Vaesen 2011, Odenbaugh 2011, Odenbaugh and 

Alexandrova 2011, Parker 2011, Justus 2012).   

For example, Odenbaugh (2011) argues, contra Levins, that "our truth is nowhere in the 

lies" because we are unable to de-idealize models (1187).  Models, especially global climate 

models, are idealized insofar as they make assumptions about the target systems that are false but 
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necessary to grasp the complexities of these systems.  RA is unable to remove these assumptions, 

Odenbaugh argues, so we are not justified in trusting robust predictions.  In the context of 

climate change and climate models, Parker (2011) reiterates Orzack and Sober’s argument by 

explaining that because we are unable to confirm the truth of any one model in a set of climate 

models, there is no reason to have increased confidence in robust predictions.  

Recent analyses of RA have tried to remedy this problem by either seeking ways around 

the challenge and defending the view that RA has confirmatory power or looking at other ways 

in which RA may be epistemically valuable.  I argue none do so in a way that fully addresses the 

challenge. 

1.2  Attempts to Recover Confirmatory Power or Epistemic Value 

Some philosophers hold firm that RA may have some confirmatory power.  Let us review 

some of these accounts.  William Wimsatt (1981), like Levins, champions robustness stating that 

robust predictions are confirmed to the degree that the process of RA is able to filter out the 

“illusory parts” of the models.  “Robustness,” Wimsatt says, “is a criterion of the reality of 

entities” (75).  In one of the earliest attempts to bring RA to the foreground, he identifies 

“illusions” of RA that he argues, quoting social scientist Donald Campbell, “occur when 

confirmation is attempted and found lacking” and then points to the failure of independence of 

evidence as responsible for producing these illusions (75).  So RA fails when models are not 

independent enough from one another (often via the parameters of the considered models).4  But 

when models are sufficiently independent, RA helps to identify robust predictions that are likely 

to be true because when a prediction is robust the abstractions and idealizations of the individual 

 
4 Like many other philosophers and scientists (Stegenga and Menon 2017, Steele and Werndl 
2013, Winsberg 2018, Pirtle, Meyer, and Hamilton 2010, Odenbaugh 2011), Wimsatt calls for 
further attention to be given to how independence of evidence relates to the confirmatory power 
of RA. 
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models used to arrive at the robust prediction likely do not matter.  As Weisberg (2006) explains: 

“From Wimsatt, we learn that robustness analysis’ aim is to separate the scientifically important 

parts and predictions of our models from the illusory ones which are accidents of 

representations” (3).   

Some philosophers do not believe Wimsatt’s view is properly justified. Odenbaugh and 

Alexandrova (2011), using the work of Nancy Cartwright, argue that RA fails to de-idealize 

models because it does not overcome the problem of independence of evidence.  RA, they say, 

hinges on the ability to demonstrate the independence of models’ assumptions.  But models are 

not adequately independent because they are “different ways of doing the same thing,” in other 

words, models of the same phenomena are too closely related.  So while their predictions may 

agree, their false assumptions have not been eliminated (Odenbaugh and Alexandrova 2011, 

760). 

Jonah Schupbach (2018), like Wimsatt, is concerned with independence of evidence and 

suggests that our means for satisfying diversity of evidence in RA are not satisfactory.  For this 

reason, under prevailing frameworks for understanding RA we cannot believe that robust 

predictions are more likely to be true.  Schupbach instead offers an alternative account wherein 

RA may be a means of eliminative confirmation for explanations.  In Schupbach’s view, means 

of detection are sufficiently diverse if the explanation they provide rules out another explanation.  

In this way, “[the target hypothesis] is incrementally confirmed by ruling out possible ways that 

it could be false” (Schupbach 2018, 297).  The thought is that one observes target phenomena 

through multiple, sufficiently diverse means of detection.  The diversity of the representations, 

which each provide different explanations for the target phenomenon, then allows us to weed out 

explanations until we arrive at the best possible one. 
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It is important to note that Schupbach’s explanatory confirmation shifts the target of 

confirmation from predictions to explanations.  Traditionally, RA is not used to explain 

phenomena but to attempt to confirm predictions.  This is precisely the reason RA is pertinent to 

climate models; we are less interested in why the climate is warming and more interested in the 

degree to which it will warm.  So Schupbach’s explanatory account of RA only applies to a 

subset of RAs that target explanations of hypotheses and does not fit when applied to the types of 

RA discussed in this paper, namely the use of RA as a tool for confirming predictions. 

Michael Weisberg (2006), on the other hand, argues what RA confirms is the relationship 

between the causal structure and the prediction.  He claims that Orzack and Sober have reduced 

RA to nonempirical confirmation while missing two crucial steps in the process.  First, Weisberg 

notes that the structure of a robust theorem is that of a conditional proposition linking a common 

causal structure and a common property among the agreeing models.  Weisberg (2006) uses an 

example in population ecology to highlight this: “Ceteris paribus, if the abundance of predators 

is controlled mostly by the growth rate of the prey and the abundance of the prey controlled 

mostly by the death rate of predators, then a general pesticide will increase the abundance of the 

prey and decrease the abundance of predators” (737).  Second, the theorist must demonstrate that 

the evidence for this proposition is adequately independent.  If a set of models is sufficiently 

heterogeneous, “then it is very likely that the real-world phenomenon has a corresponding causal 

structure” (Weisberg 2006, 739).  Then, RA itself does not have confirmatory power but rather 

robust predictions “are confirmed via low-level confirmation, the sort of confirmation that 

licenses the use of a framework to construct models of phenomena in the first place” (742).  

Returning once more to the population ecology example: “we are confident that ecological 

relationships can be represented with the models described by coupled differential equations.  
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Thus when we discover the consequences of these models, we are confident that most of these 

consequences are true of any system described by the model” (741).   

Weisberg’s view faces two important issues.  First, RA only seems able to confirm 

formal relationships between model properties.  What is confirmed is a conditional proposition 

of the form: ‘if [causal structure within model] then [property of model]’.  Second, any increased 

level of confirmation for the prediction itself does not come from RA (the commonality of 

prediction among various models) but from the low-level, external, and independent 

confirmation of each model.  Were the models not externally confirmed, RA does not lend extra 

confirmation to the prediction.  So Orzack and Sober’s challenge still remains unanswered: if we 

do not know those representations to accurately represent the real world, then RA is still unable 

to offer increased confirmation of robust predictions. 

1.3  RA in Climate Science  

 Orzack and Sober’s challenge is even more prominent in the context of climate science 

and climate modeling not only because the earth processes being modelled are incredibly 

complex, necessitating abstractions and idealizations, but also because climate models are the 

best tools we have to inform us about the future effects of climate change.  While RA is often 

used to bolster predictive claims, we have seen that RA may not be capable of doing so.  So, if 

RA cannot confirm predictions produced by climate models, what is it able to do?  Wendy 

Parker and Elisabeth Lloyd offer two different views on RA in this context and demonstrate that 

it is not readily apparent how capable RA’s confirmatory power is in the practice of climate 

science.   

Parker (2011) argues that in the context of climate modeling the uncertainty of individual 

models cannot be overlooked so RA is not necessarily fit to tell scientists that predictions are 
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more likely to be true.  She looks closely at the adequacy conditions that sets of models must 

meet for model agreement to have special epistemic significance (Parker 2011).  When looking 

at how we construct sets of models we still have no way of knowing if one of the models in our 

model set is true, in other words, we have failed to overcome Orzack and Sober’s original 

critique.  When looking at how we evaluate the performance of model sets, we do not do our due 

diligence to acknowledge repeated instances of idealization and abstraction.  If our means of 

evaluation hold the same idealizations and abstractions as the models themselves that may 

artificially inflate the “frequency with which ensembles are found to capture truth” (Parker 2011, 

587).  Ultimately, she identifies some conditions under which robust predictions may have 

special epistemic significance, but concludes that they are not met in present climate modeling.  

We are left with “goals for the construction and evaluation of ensembles” that, if met, will allow 

robust predictions to “have desired epistemic significance” (Parker 2011, 598).  While we may 

be able to identify attributes that model sets must have for RA to help with confirmation, current 

iterations of RA in climate science are incapable of providing increased 

confirmation/confidence/security to a hypothesis. 

Elisabeth Lloyd (2010), on the other hand, argues that through Weisberg’s framework 

RA may have some level of confirmatory power.  First, we identify a set of models covering an 

adequately “wide range of assumptions and conditions” (Lloyd 2010, 981).  Then, as we saw 

with Weisberg’s account, what is confirmed is a conditional proposition, ‘if [causal structure 

within model] then [property of model]’.  Then, according to Lloyd and Weisberg, if the models 

within the model set share a common structure we may assume that the structure is present in the 

real world.  Lloyd (2010) uses the example of greenhouse gases causing global warming: if a set 

of sufficiently diverse models have the “common structure of greenhouse gas causation . . . it is 
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very likely that the real world phenomenon has a corresponding causal structure.  Therefore, we 

could infer that greenhouse gas concentration increases cause global warming in the real world, 

as the attribution studies have also shown” (981-982).  Lloyd’s distinctive move is to argue that 

RA may offer an increased level of confirmation not because of the low-level confirmation that 

Weisberg suggests, but because the core structure (the conditional) is backed by a variety of 

evidence. 

Lloyd notably shifts the confirmatory power of RA from the robust prediction produced 

by a set of models to the causal structure.  While Lloyd’s account may provide us with increased 

reason to believe that causal structures found in model sets will be present in the real world, 

similarly to Schupbach’s account, Lloyd’s does not seem applicable to types of RAs commonly 

used in practice, that is RAs that target robust predictions.  One may respond that if the causal 

structure is confirmed in the real world, so too is the prediction.  But if that is the case, RA is not 

the source of confirmation, rather confirmation is a virtue of “the physics [being] sound and 

well-confirmed” (Lloyd 2013, 62).  In other words, some previous confirmation of the models is 

what does the confirmatory work, not RA.  So if not used to confirm predictions, what does RA 

do that is epistemically valuable when evaluating climate models?  

2.  A Modal Understanding of Robustness Analysis 

Let us now examine RA under the modal understanding framework, proposed by Soazig 

Le Bihan (2017) and Armond Duwell (2018), and see how we may account for the epistemic 

value of RA without appealing to its confirmatory power.  Le Bihan (2017) characterizes modal 

understanding as follows: “One has some modal understanding of some phenomena if and only if 

one knows how to navigate some of the possibility space associated with the phenomena” (112).   
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In other words, when we gain knowledge about how phenomena might come to be in our world, 

we have modal understanding.   

We may come by modal understanding in a variety of ways which are rather 

comprehensively described by Duwell (2018).  He outlines three kinds of understanding 

associated with three kinds of possibility spaces: modal understanding of phenomena, internal 

modal understanding of theory, and extensional modal understanding of theory.  This paper 

focuses primarily on modal understanding of phenomena.5  

In this section, I show how RA is one way to arrive at modal understanding of 

phenomena.  First I show how to identify the possibility space.  This is the space consisting of 

representations (models) and fundamental for the modal understanding framework.  Next, I 

explain what it means to navigate the possibility space as navigating power provides modal 

understanding.  Then, I show how RA affords us navigating power, providing us with modal 

understanding of phenomena.  Finally, I explain how because RA affords navigating power it is 

epistemically valuable.  I provide examples from the IPCC AR 5 Synthesis Report, the most 

recent comprehensive report from the United Nations’ collaborative body charged with assessing 

the science of climate change, to illustrate how the value of RA as used in practice can be 

accounted for in terms of modal understanding. 

2.1  Identifying the Possibility Space 

The possibility space for understanding phenomena includes the set of representations of 

the target phenomena and the relations between those representations (Duwell 2018).  It is 

comprehensive insofar as it contains all possible representations of the target phenomena and 

subsets of the target phenomena.  Phenomena are typically represented by dependency structures 

 
5 I suspect that RA may provide other kinds of modal understanding, but that is outside the scope 
of this paper. 
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between variables and parameters.  Though not always the case, we can think of dependency 

structures as causal relationships that give rise to the target phenomena within a representation6.  

Let us note that the possibility space is also contained by “adequacy conditions” that models 

must meet.  This is because models are created by scientists with pragmatically defined and 

context-dependent goals.  So what counts as an “adequate” representation will depend not only 

on the target phenomena but on the goals of the user.7 

Let us take a simple example to illustrate how one identifies the possibility space before 

we do the same with the more complex example of climate models.  Through this example, I will 

also examine why multiple models are necessary to represent target phenomena in the first place 

and I will clarify the notion of “dependency structures.”  In the modal view, representations 

show us a variety of ways in which the target phenomena could come to be.  Let us consider 

models as an example of representations.  Because models are necessarily selective, insofar as 

they are abstracted and idealized and therefore cannot wholly capture the conditions of the real 

world, it is common to work with various models of the same phenomena.  The possibility space 

contains all possible models associated with the various possible selections.  

For example, if I wanted to model the phenomena of dropping my pen and the pen then 

falling to the ground, one model may be a theory of gravity—e.g Classical Mechanics (CM).  

And while this representation would take into account laws such as Newton’s law of universal 

gravitation to represent why and how the pen fell to the ground when I dropped it, the model 

would say nothing of the color of the pen and most likely would ignore the resistance of the air 

 
6 Le Bihan (2017) notes that dependency structures may also be mereological or logical 
relationships (114-115).  
7 See Duwell (2018), who notes that “it is certainly not the case that scientists are interested in all 
kinds of representations” (2) when determining the set of representations that make up the 
possibility space for the target phenomena, representations may have to meet adequacy 
conditions that coincide with the interests of those conducting the investigation. 
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as well as the particular shape of the pen.  In doing so, the model does not wholly capture the 

conditions of the real world; it has been necessarily abstracted and idealized.  If it were not 

necessary to do so, there would be no need for multiple models of the same phenomena.  Instead, 

when we look at a set of models that each target the same phenomena, they show how the 

phenomena could come to be under different circumstances.   

The CM model offers one way the phenomena could come to be, but Aristotelian physics 

(AP) does so as well.  It depicts four elements that always return to their natural place.  General 

Relativity offers yet another alternative representation of the phenomena.  These representations 

are all a part of the possibility space associated with the phenomena of the pen falling to the 

ground.  The possibility space then includes dependency structures that give rise to the 

phenomena in the different models and the relationships between them.  Remember, dependency 

structures are often causal relationships so they include the important factors that bring about the 

phenomena as well as the functional relationships between such factors.  In the CM model, 

gravity is a physical force where the force between two objects is expressed as dependent on the 

product of their masses divided by the square of the distance between them.  So the mass and the 

positions of masses (the pen and the Earth’s center) combined with Newton’s law of universal 

gravity explain how and why the pen fell to the ground when dropped.  In this case, movement is 

a result of a gravitational force acting on the pen.  On the other hand, in the AP model, instead of 

mass and position, what is important are the elemental makeups of the pen and Earth (both made 

mostly of earth, the heaviest element) and why elements move to their natural places (light ones 

go up while heavy ones go down).  Here movement is a function of the earth in the pen returning 

to its natural place at the center of the Earth.  We can then examine the relationships between 

these dependency structures.  Do the models share certain properties?  Do some preclude others?  
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What factors are accounted for and not accounted for?  Once we have identified some of the 

possible representations of the target phenomena and some ways in which representations relate 

to one another we have enough information to navigate the possibility space.  Note that it is 

impractical to think we can identify all of the possible representations of the target phenomena.  

Modal understanding does not require we have the ability to navigate all of the possibility space, 

just some.  Modal understanding comes in degrees. 

We may now consider the more complex example of climate models.  Again, the 

possibility space includes models of the target phenomena and their relations.  First we must 

identify the target phenomena.  The AR 5 Synthesis Report assessed 70 climate models in total 

including a variety of model types.  These climate models aim, broadly, to provide a picture of 

global climate behavior so we may identify global climate behavior as the target phenomena.  

We may treat each model as a representation of the target phenomena in the possibility space.  

To identify relations between models, we must identify dependency structures within the models.   

Climate models contain a vast number of dependency structures as they represent incredibly 

complex systems.  Note that fundamental laws of physics serve as the foundation of climate 

models.  For example: the atmosphere is a thin layer of air across the surface of the Earth held in 

place by gravity.  So atmospheric models utilize equations of gravity, combined with equations 

of fluid dynamics and thermodynamics to predict future states of the atmosphere, or in other 

words, to predict the climate.  Often, models are then “tuned” where modelers “adjust parameter 

values (possibly chosen from some prior distribution) in order to optimise model simulation of 

particular variables or to improve global heat balance” (Randall, et al. 2007, 596).  Let us look at 

one example of a dependency structure: the causal relationship between greenhouse gas (GHG) 

emissions and global surface temperature.   
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The AR 5 Synthesis Report includes important findings from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) which is a protocol developed by the World Climate 

Research Program Working Group on Coupled Modelling that aims to “provide climate 

scientists with a database of coupled [general circulation models] simulations under standardized 

boundary conditions” to facilitate “the study of intrinsic model differences at the price of 

idealizing the forcing scenario” (Covey, et al. 2003).  In other words, CMIP5 allows climate 

scientists to more easily investigate the differences between models, model predictions, and 

model retrodictions.  For example, models are run under different Representative Concentration 

Pathways (RCPs).  These pathways represent scenarios of different levels of greenhouse gas 

emissions such as RCP2.6 which is a stringent mitigation scenario in which we immediately and 

drastically slow GHG emissions or RCP8.5 which accounts for a scenario with very high GHG 

emissions.  Then, based on analyses of the various scenarios, “multiple lines of evidence indicate 

a strong, consistent, almost linear relationship between cumulative CO2 emissions and projected 

global temperature change” (IPCC 2014, 8).  The causal relationship between GHG emissions 

and global temperature change is a dependency structure. 

Importantly, the possibility space includes relations between dependency structures.  Let 

us examine some findings from CMIP5 models reported in the AR 5 Synthesis Report. 



16 
 

 

Figure 1.  Figure SPM.6 from AR5 Synthesis Report Summary for Policy 
Makers.  Global average surface temperature change based on RCPs 2.6 
(stringent), 4.5 (intermediate), 6.0 (intermediate), and 8.5 (very high). (IPCC 
2014, 11) 
 

In Figure 1 we see that 39 models were run under RCP8.5 (high GHG emissions scenario) and 

the average global surface temperature change produced by these findings is depicted by the red 

line while the measure of uncertainty is depicted by the red shading.  Similarly, 32 models were 

run under RCP2.6 (low GHG emissions scenario) and the average global surface temperature 

change produced by these findings is depicted by the blue line while the measure of uncertainty 

is depicted by the blue shading.  We are looking specifically for how representations relate to 

one another.  So when 39 CMIP5 models are run under RCP8.5, we learn how these models 

relate to one another: a high GHG emission scenario, on average, leads to increased global 

surface temperature.  Again, when 32 CMIP5 models are run under RCP2.6, we learn how these 

models relate to one another as well: a low GHG emission scenario, on average, leads to 

stagnated or slightly lowered global surface temperature.  We have identified several ways in 
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which these representations relate to one another: when models are run under similar RCPs they 

produce similar results, high GHG scenarios tend to produce increased global surface 

temperature, and low GHG scenarios tend to produce decreased global surface temperature. 

 When we can identify some of the possible representations, such as the CMIP5 models 

assessed in the AR 5 Synthesis Report, as well as dependency structures within the models and 

how they relate to one another, such as how GHG emission scenarios affect global surface 

temperature, we have adequately identified some of the possibility space associated with the 

target phenomena of global climate behavior.  Modal understanding of phenomena then hinges 

on the ability to navigate the possibility space, which we may do in a variety of ways. 

2.2  Navigating the Possibility Space 

When one knows how to navigate some of the possibility space, one has modal 

understanding.  Knowing how is here understood as having certain abilities.8  Importantly for our 

purposes, one knows how to navigate the possibility space for some phenomena if:  1) one 

knows how the models represent the target phenomena in some way and/or 2) one knows how 

the models relate to one another and/or 3) one knows how constraints apply to the possibility 

space.   

To illustrate modal understanding, let us return to our simple example of the falling pen.  

We have a set of models (Classical Mechanics, Aristotelian physics, etc.), each targeting the 

phenomena of the pen falling to the ground.  These models and some of their relations constitute 

 
8 Duwell (2018) stresses the “how” of know-how: “Notice that knowing how as opposed to 
knowing that plays an important role in navigating a possibility space.  .  .  A canonical example 
is that knowing how to ride a bike is not reducible to knowing facts about bicycle riding.  It 
would be odd to say that one knows how to ride a bike by stating facts about bicycle riding but 
not be able to ride a bike.  Hence, knowing how to do something seems essentially connected to 
being able to do something or at least having a disposition to be able to do something in proper 
conditions.” (3) 
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the possibility space.  We saw earlier that in the CM model movement is a function of 

gravitational force acting on the pen and in the AP model movement is a function of the earth in 

the pen returning to its natural place at the center of the Earth.  Le Bihan (2017) argues that even 

when models misrepresent the world, as both the CM and AP models do, they provide modal 

understanding because they tell us how “a particular dependency structure gives rise to [the 

target phenomena], or to some subset of [the target phenomena]” (117).  In other words, when 

we look at how and why the pen falls to the ground in the models, we learn how and why the pen 

could fall to the ground in the real world.  When we can “navigate the inner workings of a 

dependency structure” such as how movement occurs, we know how the model represents the 

target phenomena in some way and have modal understanding (Le Bihan 2017, 119). 

Then, “one reaches a second level of modal understanding if one also knows how 

different dependency structures for [the target phenomena] relate to one another” (Le Bihan 

2017, 119).  So modal understanding suggests that we gain some understanding of how the 

phenomena of dropping the pen and it hitting the ground may come to be by examining the 

relationship between the CM and AP models.  For instance, one might know in the CM model 

how to account for the specific mass of the pen whereas the AP model does not offer a 

satisfactory way to handle the specific mass of the pen as different from a much larger or smaller 

mass.  When looking at the models independently, we do not know what we do not know, so 

understanding is gained by examining how the dependency structures relate to one another. 

2.3  How RA Provides Navigating Power 

As it turns out, RA examines how models relate to one another thus providing us with 

modal understanding.  Below I explain how RA may tell us 1 (how the models represent the 
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target phenomena in some way), often tells us 2 (how the models relate to one another), and 

sometimes tells us 3 (how constraints apply to the possibility space). 

1) As we saw in Section 1, RA does seem capable of identifying a possible representation of 

the world.  While RA may not have the power to confirm that a causal structure identified 

in a set of models will be present in the real world, when diverse models produce similar 

results, RA may reveal a common structure that can give rise to the target phenomena 

(Lloyd 2010, Weisberg 2006).  By illuminating this common structure, RA may teach us 

how models represent the target phenomena.  In other words, because a set of models 

produces similar predictions, we may then investigate possible causes for those 

predictions which may then, in turn, reveal a common causal structure throughout the 

models.  That common causal structure, whether we are able to confirm its existence in 

the real world or not, is one way that the target phenomena (or some subset of the 

phenomena) could come to be in the real world.  So RA may tell us how models represent 

the target phenomena in some way.   

For example, if 21 CMIP5 climate models predict that, on average, under RCP8.5 

the equatorial Pacific will experience increased annual precipitation, RA tells us to pay 

special attention to these models because their predictions agree.  It may not be the case 

that because 21 models generally agree that higher GHG emission scenarios will lead to 

increased precipitation in the equatorial Pacific that the same causal structure exists in the 

real world.  But it is apparent that RA, in this case, has illuminated one way in which 

models may represent the target phenomena. 

2) RA reveals how multiple representations of the target phenomena possess a common 

property.  Instead of being a detriment, which we largely saw it to be in Section 1, that a 
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given set of possible representations have a common property, it is instead a feature of 

the possibility space.  One gains modal understanding whenever one learns about the 

features of the possibility space.   

For example, what is interesting about the CMIP5 climate models assessed in the 

AR 5 Synthesis Report, for our purposes, is how under certain GHG emission pathways 

the models agree that by 2081-2100 global surface temperature will have increased by 2 

degrees celsius compared 1850-1900.  So these models largely agree that if we continue 

to emit GHGs at high rates, the Earth will warm.  We saw in Section 1 that it may be a 

mistake to think that because models produce a robust prediction we have increased 

reason to believe that the prediction will come to fruition in the real world.  Instead, 

under the modal understanding framework robust predictions tell us how the models 

relate to one another, namely that they agree.  But as we know, RA may reveal common 

causal structures present in the models as well.  So when 39 CMIP5 models agree that 

RCP8.5 will lead to a global surface temperature increase of 2 degrees celsius by 2100, 

we do not have increased reason to think that will be the case in the real world but instead 

we learn about how global surface temperature increase may come to be: through 

increased GHG emissions.  RA in this way provides modal understanding of the target 

phenomena without relying on a confirmatory virtue. 

3) One may imagine an extreme case in which RA reveals that all models representing the 

target phenomena or theory share the same property.  In other words, all representations 

of the possibility space have the property in common.  In this case, one learns about the 

constraints on the possibility space: models that do not possess the property would 
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necessarily be outside of the possibility space.  This is, of course, quite unlikely but not 

an impossible case. 

2.2  Accounting for the Value of RA 

 Now that we have laid out how to identify and navigate the possibility space associated 

with modal understanding of phenomena, how does modal understanding account for the 

epistemic value of RA?  Le Bihan (2017) states that “the epistemic value of scientific theories 

and models is generally taken as coming in three kinds: 1 predictive power, 2 explanatory power, 

3 heuristic power” (111).  Some models, even false models, may, in fact, have predictive power.  

Newton’s theory, for instance, may still be used to send rockets to space but does not wholly 

capture the conditions of the world.  But, as Le Bihan (2017) argues: “Most philosophers, 

however, agree that this is not always the whole story, for two main reasons.  The first is that not 

all [models and theories that misrepresent the world] are good at making predictions.  The 

second is that most philosophers reject a purely instrumentalist view of science, and hope that 

[models and theories that misrepresent the world] can be conceived as affording some epistemic 

value beyond their mere predictive power” (111).  Additionally, we have seen that it is unlikely 

that robust predictions have more predictive power than non-robust ones.  What about 

explanatory power?  As models are known to misrepresent the world, and are therefore unlikely 

to be true, they cannot be taken to have explanatory power because they fail to meet the 

conditions of an adequate explanation, at least on the traditional view of explanation, which 

requires that the explanans be true for an explanation to be adequate.  We saw in Section 1 that it 

is unlikely RA is capable of “de-idealizing” models so we cannot be confident that robust 

findings have increased explanatory power (Odenbaugh 2011).  Finally, models may have 

heuristic power insofar as they can contribute to the discovery of better models but, as Le Bihan 
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(2017) explains, this too may be unsatisfying as heuristic power, like predictive power, is purely 

instrumental and says nothing about “what it is about [models and theories that misrepresent the 

world] that may or may not promote scientific progress” (111).  

The modal view explains how models and RA may be epistemically valuable: “Insofar as 

knowing-how has genuine, intrinsic, epistemic value, [models and theories that misrepresent the 

world] that have navigating power have genuine, intrinsic, epistemic value” (Le Bihan 2017, 

122).  As we have seen, RA may be capable of providing navigating power, thus facilitating 

understanding of the target phenomena.  So RA, too, may be said to have genuine, intrinsic, 

epistemic value.  While models never fully capture that which they represent, they nonetheless 

provide understanding of that which they represent.  The modal view provides depth to this 

analysis by explaining how models provide understanding: they provide navigating power.  RA 

provides us the know-how to navigate the possibility space and thus some understanding of the 

target phenomena and how the target phenomena may come to be in the real world. 

For example, when one knows how models relate to one another, “the ways in which the 

models can be changed to recover a larger portion of the phenomena become clearer” (Le Bihan 

2017, 122).  So when examining our set of 39 climate models run under GHG emission scenario 

RCP8.5, we may identify the presence or absence of other dependency structures, such as the 

causal relationship between GHG emissions and ocean acidification, to determine how that 

dependency structure relates to global surface temperature.  Does the ocean pH range increase 

with global surface temperature?  Decrease?  Must the ocean pH be at a certain level to reach 

global surface temperature predictions?  If so, what are they?  RA may allow us to answer these 

questions and, in turn, allows us to understand how we may recover a larger portion of the target 

phenomena. 
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One may also understand how to better discern different types of ways that models may 

relate to one another and how to apply these relations to other contexts.  For instance, if a climate 

model utilizes one method to represent Arctic sea ice thickness and produces a similar global 

surface temperature prediction to another model that does not account for Arctic sea ice 

thickness, scientists may then be led to investigate the nature of the relationship between Arctic 

sea ice thickness and global surface temperature.   

In these ways, and others, the modal understanding framework accounts for the value of 

RA without appealing to its confirmatory power.  Modal understanding is a form of knowledge 

and, as such, has genuine, intrinsic, epistemic value.  RA provides navigating power, affording 

us the know-how to navigate some of the possibility space, thus providing us with modal 

understanding.  So RA is epistemically valuable not because of its ability to confirm but because 

it provides us with modal understanding.  

3.  Conclusion 

We saw in Section 1 that while philosophers of science have reached the relative 

consensus that RA does not have confirmatory power, it is still used in practice to confirm 

predictions.  Some philosophers push back, arguing that RA may, in fact, be of confirmatory 

virtue or of other epistemic/cognitive value.  I argued that ultimately RA fails to provide 

increased confirmation.  In the specific context of climate change and climate modeling, RA is 

often used to lend increased confirmation to predictions about climate behavior.  For example, 

the AR 5 Synthesis Report found that climate models largely agree that increased GHG 

emissions lead to increased global surface temperatures.  The problem, then, is that “such 

agreed-on or robust findings are sometimes highlighted in articles and reports on climate 
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change” providing a level of certainty to the claim (Parker 2011, 580).  So if not used to confirm, 

then what is RA useful for? 

Instead of appealing to RA’s confirmatory power, I offer an alternative framework to 

account for the usefulness and value of RA: Le Bihan (2017) and Duwell’s (2018) modal 

understanding framework.  This alternative framework does not answer Orzack and Sober’s 

original challenge: it remains unclear how we bridge the gap between models and the real world.  

But through the modal understanding framework, RA gives us a way to learn about the 

relationships between models and use their predictions in a better way. 

 One has modal understanding when one knows how to navigate some of the possibility 

space associated with the target phenomena.  After establishing how to identify and then 

navigate the possibility space, we saw how RA may provide modal understanding in three 

distinct ways by providing knowledge of how the models represent the target phenomena in 

some way, how the models relate to one another, and how constraints apply to the possibility 

space.  Finally, I demonstrated how RA is intrinsically and epistemically valuable without 

appealing to its confirmatory power because it teaches us how the target phenomena may come 

to be. 

While it would take significantly more space and time than I have here to fully explore, it 

is my hope that because RA provides modal understanding of phenomena we will be able to 

engage in some forms of reasoning that may be useful for policy decision making.  We tend to 

think that the most useful information we get from science tells us what kinds of possible 

interventions could help us manipulate the world to achieve desired outcomes.  Policy is just this 

kind of intervention.  Explanatory understanding, i.e. understanding of the true causal structures 

underlying the phenomena, is typically taken to give us the means for such interventions.  On the 
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basis of our understanding of the world as knowledge of the underlying causal structure, we 

would be able to predict which consequences various possible interventions on that causal 

structure would have and make policy decisions accordingly.  However, because of the extreme 

complexity of many of the systems involved in policymaking, we typically cannot trust that we 

understand the world and its causal structure as it actually is.  This is especially true of climate 

change—we do not have a magical model revealing the true causal mechanisms in the world that 

would allow us to design the kinds of interventions warranted to combat rising temperatures and 

sea levels at a global scale.  Instead, we possess various highly idealized models the predictions 

of which are difficult to ascertain.  Even when multiple models agree, we have seen that it is not 

clear that this provides enough confirmatory power to warrant solidly grounded policy making.  

With the real causal mechanisms of climate change unknown to us, we must look to the possible 

causal mechanisms. 

In situations where understanding the world as possessing a clear picture of its true causal 

structure is out of reach, perhaps there is a second best option: understanding of phenomena and 

its possible causal structures.  Through the modal understanding framework RA is valuable 

precisely because it allows us to address “what—if—things—had—been—different” questions.  

When one knows how to navigate some of the possibility space associated with the target 

phenomena, one understands how the target phenomena may come to be and may thus be better 

situated to design appropriate interventions.  Again, I do not expect the modal understanding 

framework to solve the Orzack and Sober problem.  But were there enough empirical evidence 

given to us, modal understanding may give us the kind of modal reasoning useful for decision 

making, especially in the case of combating climate change.  
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