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Abstract 

The complex population dynamics of caribou (Rangifer tarandus) were studied to determine the 

patterns of their population cycles and the processes driving them. It is well established, via 

previous archaeological research and Indigenous knowledge, that large migrating caribou herds 

found in and around the tundra at northern latitudes experience population boom and busts 

roughly every several decades. However, the processes driving the dynamics of these cycles are 

relatively unknown, which makes managing caribou herds for recreational and subsistence 

harvests difficult. It has been hypothesized that a combination of intrinsic and extrinsic factors 

shape these cycles, with density-dependence, predation, harvest, climate, and others likely all 

playing a role. I aimed to determine whether caribou herds experience population cycling and, if 

so, estimate the period and amplitude of their cycles and determine which factors drive them. I 

collected population data on 43 caribou herds throughout the world, and in doing so, assembled 

the largest caribou population database to date. I used statistical interpolation to fill in the gaps 

between available data due to low sampling frequency. I quantified whether herds were cycling 

by fitting populations to sine waves and using periodograms to distinguish cycling tendencies 

from white-noise stochasticity. I collected additional information on other factors hypothesized 

to affect caribou cycles, including predator presence data, climate oscillation data, subspecies 

and ecotype data, and the latitudes of each herd. I used the interpolated data for each herd to 

determine the variables influencing the periods and amplitudes of caribou population cycles. The 

median period length was 40.5 years and the amplitude, standardized about the mean population 

size, was .871; period length and amplitude were also positively correlated. In addition, cycle 

amplitude was best predicted by period length, subspecies, biome, and average winter minimum 

temperature. Period length was best predicted by amplitude, latitude, subspecies, biome, NDVI, 

and average winter minimums. A better understanding of caribou population dynamics could 
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help wildlife professionals and policymakers adapt their caribou management strategies. Climate 

appears to be a strong driver of these cycles, and with climate change becoming an increasingly 

apparent reality in the Arctic, cyclic tendencies may prove to disappear, or become amplified and 

spell disaster for caribou populations. Caribou management strategies will need to adapt to an 

ever-changing world if we want to preserve natural caribou population cycles—but what that 

entails remains to be seen. 

 

Introduction 

Caribou (Rangifer tarandus) are one of the most intensively studied and managed 

ungulates, yet relatively little is understood about their population dynamics. What can be agreed 

upon is that many caribou herds, primarily circumpolar herds, experience drastic population 

fluctuations that span several decades. Gunn (2003) was one of the first to highlight the global 

nature of these cycles and posture the theory that climate drives changes in caribou body 

condition and thus reproductive success. The biggest obstacle to fully understanding caribou 

population cycles is the limits of available data. While Indigenous knowledge illustrates large 

boom and bust caribou population cycles over the last several centuries—illustrated in Figure 1 

below—there are few collected population data from before the mid 20th century, with some 

herds only receiving closer management attention in recent years.  
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Figure 1 

Standardized fluctuations in caribou abundance in (a) Alaska and (b) Greenland and eastern North 

America 

Note. From “Voles, lemmings and caribou – population cycles revisited?,” by A. Gunn, 2003, Rangifer, 

Special Issue No. 14, p. 107.  

 

This paper and accompanying analysis aim to understand caribou population cycles via a 

spatial approach. While individual herds may have accurate population estimates dating back 

several decades, often the breadth of available data only captures one “cycle” of the 

population—see Figure 2 below.  

Figure 2 

Herd model of the Western Arctic caribou herd with interpolated values 
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This makes in-depth temporal analysis of population cycles impossible for individual 

herds. However, by collecting data on 43 caribou herds, I was able to assemble a caribou 

population database with the goal of analyzing cycles via replication over multiple herds. 

Additional data were also collected for each herd due to suggestions that they may drive 

population cycling: number of predators, presence/absence of wolves, latitude, subspecies, 

ecotype, biome, whether the herd is semi-domestic, NDVI value, average winter monthly 

minimum temperature, and average winter monthly precipitation. The purpose of collecting these 

supplementary data was to understand the drivers of these cycles, which has the potential to 

impact caribou management strategies.  

Population cycles have long been studied in ecology. Cyclic population dynamics have 

been well-documented and studied in many small mammals such as lynx, snowshoe hares, voles, 

and lemmings (Barraquand et al., 2017; Gunn, 2003; Post, 2005). Population cycling in 

ungulates has been observed, however in fewer cases and with less research attached (Post, 2002; 

Turchin, 2003). Caribou herds have been known to cycle, via knowledge from Indigenous 

peoples and managers, for the last several centuries (and likely much longer) (Gunn, 2003). 

Additionally, the strength of density-independent factors such as climate are known to increase 

in small mammal populations at northern latitudes, a phenomenon that may be driving caribou 

population cycling at northern latitudes (Post, 2005). For example, in Alaska, large-scale climate 

oscillation (Arctic and Pacific Decadal) have been related to caribou growth rates (Joly et al., 

2011). Top-down and bottom-up factors govern small mammal population cycles, but whether 

this is the case with caribou remains to be seen (Barraquand et al., 2017; Gunn, 2003). The 

temporal scale of caribou population cycles, as well as the remote locations of many caribou 

herds, has made understanding their dynamics difficult. 
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Caribou are an incredibly valuable resource in the Northern Hemisphere. The several 

million living caribou are significant both economically and culturally to many countries and 

peoples. Reindeer husbandry is an important industry and way of life in Eurasia, while 

Indigenous communities in Alaska and Canada have relied on caribou for millennia (Baskin, 

2000; Burch, 1972). Managing caribou in the face of climate change, rapid habitat destruction, 

and expanding human populations has never been more vital than it is today. By determining the 

drivers of caribou population cycles, perhaps we can more efficiently manage caribou for both 

herd health and human benefit. For example, managing for population stability may be 

advantageous for sustenance and from an economic perspective. Regardless of the outcome, I 

hope that by fostering a better understanding of caribou population dynamics, caribou can be 

sustainably managed for the benefit of current and future generations.  

 

Methods 

Data Collection: Herd Estimates 

 I collected population estimates along with supplementary data for 43 herds. Many of the 

herds were from Alaska and Canada due to the availability of population estimates, see Figure 3 

below. I pulled population estimates from various management reports released by agencies. For 

herds in Alaska, reports were released by the Department of Fish and Game (ADFG), while in 

Canada this corresponded to individual providence departments of environment and/or natural 

resources. An example of estimates compiled in an ADFG management report can be seen in 

Table 1 below. Herds estimates I obtained for herds found outside of North America were often 

from scientific papers and government documents.  
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Figure 3 

Map of herds from which population estimates and supplementary data were collected 

 

Note. Red dots correspond to the approximate central distribution of each herd 

Table 1 

White Mountains caribou herd fall composition counts and estimated population size, 1983-2009 

 

Note. From “Caribou management report of survey-inventory activities 1 July 2008-30 June 2010,” edited 

by P. Harper, 2011, Alaska Department of Fish and Game. 
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While herd surveying techniques have improved over the last several decades, there is 

inherent observation error. To best account for survey errors, the most recent available data took 

precedent over older data. For example, if a herd was estimated to number 100,000 by a 1970 

survey but then listed as 80,000 during the same year in a 2018 management report, I would pick 

the 80,000 estimate because it was most recent. Population estimates were also prioritized over 

population (minimum) counts if both were available for the same herd, although not all herds had 

calculated population estimates. A few of the more closely monitored and smaller herds—such 

as those found in Finland, on smaller islands, or those that are managed as semi-domestic—had 

exact population estimates with no observation error. Despite numerous sources of potential 

error in the population estimates, the reliability of population estimates was not a concern. This 

study focused on population trends over time, so minute, small-scale population errors are not of 

concern. 

 

Data Collection: Supplementary Data 

 In order to understand the underlying mechanisms of caribou population cycles, 

supplementary data were collected for each herd. These supplementary data consisted of: number 

of predators, presence/absence of wolves, latitude, subspecies, ecotype, biome, whether the herd 

is semi-domestic, NDVI, average winter monthly minimum temperature, and average winter 

monthly precipitation. Predator data were collected due to the known impacts of predation on 

small mammal population cycles as well as the preliminary evidence that wolves have induced 

moose population cycling in Isle Royale National Park (Barraquand et al., 2017; Gunn, 2003; 

Post, 2002).  

 Caribou genetics and classification is a controversial subject, with numerous 

governments, management agencies, and researchers using different criteria to differentiate 
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broad-scale differences in caribou phylogeny. To promote a consistent, reasonable classification 

of caribou herds, one source was used as the final determination for caribou subspecies and 

ecotype. Generally, subspecies correlates to genetic differences between caribou herds while 

ecotype refers to behavioral differences. Each herd was given a subspecies classification, such as 

R. t. fennicus (Eurasian forest reindeer) or R. t. pearyi (Peary caribou), as well an ecotype 

classification, such as insular or montane, according to Mallory & Hillis (1998). Continued 

refinement of this classification strategy may be necessary for further research conducted on the 

collected data.  

 Biome data, defined as “summer range/winter range” was collected using herd 

management reports which contained details on the migratory patterns of each herd. Each 

seasonal range was defined as either taiga (boreal forest) or tundra. The herd’s status as either 

wild or semi-domestic was also collected, although very few herds were semi-domestic. Semi-

domestic herds are caribou that are largely free-roaming but are rounded up for harvest yearly 

and are closely managed.  

Latitudinal influences on population cycles have been well documented in small 

mammals as well, prompting the collection of the approximate central latitude of each herd 

(Post, 2005). Latitudinal gradients were thought to be an accurate proxy for weather, although 

this proved to be faulty. While latitude may be an appropriate proxy for climate in certain 

countries or regions, when dealing with a circumpolar mammal this was not the case. Climate 

oscillations, broad weather patterns, and geographical factors such as inlets and oceans, render 

latitude a weaker predictor of climate throughout the Northern Hemisphere. As a result, 

additional weather/climate data were collected, consisting of NDVI which measures habitat 

productivity, the average winter monthly minimum temperature, and the average winter monthly 
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precipitation. For all weather data, a buffer of 10,000 kilometers was incorporated to ensure that 

local weather conditions of each herd were properly captured. The Normalized Difference 

Vegetation Index (NDVI) was collected as a dynamic habitat index, measuring the changes in 

yearlong NDVI values for a region. NDVI values were available from 2003-2014 for each herd 

and gathered from: http://silvis.forest.wisc.edu/data/dhis/. To maintain consistency, temperature 

and precipitation data were also collected from 2003-2014. Unlike NDVI, precipitation and 

temperature were only collected and averaged from the winter months (December through 

March) due to the known strain that winter places on caribou stress, fitness, and pregnancy (Joly 

et al., 2015; Parker et al., 2005). Winter temperature and precipitation data for each herd were 

collected from: http://www.climatologylab.org/terraclimate.htm. 

 

Data Analysis: Interpolation 

 Caribou population surveys are not conducted every year for most herds, with many 

herds not monitored for several years in between population estimates. As a result, the collected 

herd population estimates were full of gaps, yet oftentimes a clear pattern was obvious—see 

Figure 4 below. I analyzed the missing data using the “imputeTS” R package developed by 

Mortiz & Bartz-Bielstein (2017). 
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Figure 4 

Time series model of the Central Arctic caribou herd with missing years highlighted 

 

Note. Red bars and blue dots correspond to years with no population estimate and actual surveyed 

estimates, respectively. 

 

 In order to “fill in” these gaps, Stineman (stine) interpolation as described by Stineman 

(1980) was used. This method of interpolation was favored over other interpolation methods due 

to its ability to produce reasonable population outputs. Caribou, being large mammals with slow 

gestation periods and little year-over-year population fluctuations, were a perfect fit for an 

interpolation method that produces no new inflection points or ‘“wild’ points” (Stineman, 1980). 

Stine interpolation has been used in other ecological research with success and appears to be 

suited well for datasets with abrupt changes in slope, which is necessary when considering the 

drastic population cycles being studied (Perillo & Piccolo, 1991). The method worked well with 
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my dataset, providing realistic population estimates for years without available data as seen in 

Figure 5 below.  

Figure 5 

Time series model of the Central Arctic caribou herd with interpolated herd estimates 

 

Note. Red dots and blue dots correspond to stine interpolated population estimates and actual, surveyed 

population estimates, respectively. 

 

 Each herd with at least one missing population estimate within their dataset underwent 

stine interpolation to fill in each gap. The final dataset included these interpolated values for 

further analysis. 

 

Data Analysis: Period and Amplitude 

After each of the 43 herds were compiled with supplementary data and missing years 

were interpolated, I utilized cyclic analysis to determine the cyclicity of individual herds. I then 
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estimated the period and amplitude of those herds deemed cyclic. Cyclic analysis was completed 

following the procedure for ecological time series data, “peacots,” developed by Louca & 

Doebeli (2015). Herds were considered cyclic if their periods were statistically different (p<.05) 

than normal stochasticity, more specifically an Ornstein-Uhlenbeck state space (OUSS) null 

model. Periods were determined by fitting sine waves to each of the herds and finding the 

frequency that minimized the residuals between the wave and the interpolated data. Each 

optimized frequency was computed using spectral density, determining the dominant frequencies 

of a time series. An example periodogram, which is an estimate of the spectral density of a time 

series, is provided in Figure 6 below. Period length, which is the time in years between 

population cycles, was calculated by dividing 1 by the optimized frequency. The optimized 

frequency was determined based on the power of the periodogram, which measures its predictive 

strength at a given frequency. 

Figure 6 

Periodogram of the Leaf River caribou herd 

 

Note. Power vs frequency with accompanying periodogram and null OUSS models 
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 While some herds, such as the Central Arctic herd depicted in Figure 5, are clearly cyclic, 

many were not. Limited data and stringent statistical requirements left many herds out of period 

and amplitude analysis despite some of them possibly being cyclic herds. As a result, of the 43 

herds, I only 19 were deemed cyclic via periodogram analysis. Some herds, such as the Nelchina 

herd shown in Figure 7 below, did not have enough statistical evidence to be considered cyclic 

despite Indigenous and management knowledge that the herd has cycled for centuries.  

Figure 7 

Interpolated model of the Nelchina caribou herd in Alaska from 1955-2020 

 

 The Nelchina herd appears to have lost its cyclic population tendencies in the last several 

decades, possibly due to intense predator (wolf) control (Boertje et al., 2017). I eliminated other 

herds from period and amplitude analysis for a more straightforward reason, such as the 

Adventdalen herd shown in Figure 8 below, that being obvious non-cyclic population dynamics.  
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Figure 8 

Interpolated model of the Adventdalen caribou herd in the Svalbard Islands from 1979-2018 

 

I also calculated amplitudes for each of the 19 cyclic herds, albeit with some 

modifications. While amplitude is traditionally the distance between the mean of a wave and its 

peak or trough, I had to adjust this procedure to account for herds of various sizes. While sine 

waves are on a standardized scale, caribou population cycles are not. To prevent larger herds 

numbering in the hundreds of thousands from skewing the results, I standardized each amplitude 

about the mean. Otherwise, large herds would have proportionately large amplitudes. As a result, 

relative amplitudes for each herd were calculated as follows: 

(Maximum Herd Population − Minimum Herd Population)/2

Mean Herd Population
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Data Analysis: Model Selection 

Upon the completion of preliminary period and relative amplitude analysis, I built 

generalized linear models (GLMs) using Gaussian errors and an identity link function to explain 

these variables. GLMs for period length and relative amplitude were completed in the same 

fashion and utilizing backwards stepwise elimination (Burnham & Anderson, 2003). I removed 

model components based on Akaike information criterion (AIC), but certain colinear variables 

were removed outright before stepwise elimination began. In both cases, the indicator variables 

for semi-domesticity and ecotype were removed due to high collinearity. Once those were 

removed, both the number of predators and the average winter precipitation were also removed 

due to their high collinearity with the presence/absence of wolves and the average winter 

temperature, respectively. 

Although it is generally accepted that model variables are to be removed if they incur a 

decline in AIC of at least 2, the removal of many period and amplitude model components 

resulted in an AIC drop of very close to, but not quite, 2. As a result, I decided to remove all 

variables, in a backwards, stepwise fashion, that caused any drop in AIC regardless of the 

magnitude. This process may be refined for further analysis. I confirmed model assumptions of 

normality and homoscedasticity of residuals by examining normal quantile-quantile plots and 

residuals vs. fitted values, respectively. 

 

Results 

Period and Amplitude  

 The median period length of the cyclic caribou herds was 40.5 years while the median 

relative amplitude was 0.87. See Figure 9 and Figure 10 below for boxplot visualizations of these 

data. Figure 11 is a display of the positive relationship between the two variables. 



UNDERSTANDING CARIBOU POPULATION CYCLES 17 
 

Figure 9 

Period lengths of the 19 cyclic caribou herds 

 

Note. Min=23, Q1=33, Median=40.5, Q3=50, Max=67 

 

Figure 10 

Relative Amplitudes of the 19 cyclic caribou herds 

 

Note. Min=.406, Q1=.700, Median=.871, Q3=1.126, Max=1.570 
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Figure 11 

Amplitude vs Period for the 19 cyclic caribou herds 

 

Note. Line of best fit shown in blue. Cor=.550, p=.015  

 

 

Period and Amplitude vs Latitude 

 Amplitude and period were plotted against latitude with no significant correlation—

p=.227 and p=.220, respectively—between the variables (Figures 12 and 13 below). 
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Figure 12 

Amplitude vs Latitude for the 19 cyclic caribou herds 

 

Figure 13 

Amplitude vs Latitude for the 19 cyclic caribou herds 
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Period and Amplitude vs Weather Data 

 Period and amplitude were plotted against each of the three weather data metrics: NDVI, 

average winter minimum temperature, and average winter monthly precipitation. Lines of best fit 

were plotted on the scatterplots with a p-value between the variables less than .15. See Figure 14 

below for the six correlation plots 
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Figure 14 

Period and Amplitude vs Weather Data for the 19 cyclic caribou herds

 

Note. Period vs NDVI: Cor=-.366, p=.12; Amplitude vs NDVI: Cor=-.522, p=.022; Period vs Min Temp: 

Cor=-.397, p=.093 
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Period Model Selection 

Table 2 

Stepwise, backwards selection of period length explanatory model 

Model ΔAIC 

Amp+Latitude+Wolves+Predators+Subspecies+Biome+NDVI+Temp+Precip 5.66 

Amp+Latitude+Wolves+Predators+Subspecies+Biome+NDVI+Temp 3.67 

Amp+Latitude+Wolves+Subspecies+Biome+NDVI+Temp 1.93 

Final: Amplitude+Latitude+Subspecies+Biome+NDVI+Temp 0 

Note. AIC increased after NDVI was removed from the model. As a result, it was not removed from the 

final model 
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Table 3 

Model components of the period length explanatory model 

Variable Coefficient 2.5% 97.5% p-value 

Amplitude 20.563 6.114 35.013 .027 

Latitude -1.989 -4.413 43.467 .152 

Subspecies:  

R. t. fennicus 

31.222 -1.893 64.337 .107 

Subspecies:  

R. t. granti 

21.612 -.209 43.433 .093 

Subspecies:  

R. t. groenlandicus 

6.405 -12.833 25.643 .535 

Subspecies:  

R. t. platyrhynchus 

50.434 1.238 99.630 .085 

Subspecies:  

R. t. tarandus 

30.568 -2.520 63.658 .113 

Biome: Tundra/Taiga 16.778 2.522 31.033 .054 

Biome: Tundra/Tundra 4.297 -12.343 20.937 .628 

NDVI -.002 -.005 .002 .387 

Temperature -.900 -1.842 .0419 .103 

Intercept 114.042 -27.478 255.562 .158 
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Relative Amplitude Model Selection 

Table 4 

Stepwise, backwards selection of period length explanatory model 

Model ΔAIC 

Period+Latitude+Wolves+Predators+Subspecies+Biome+NDVI+Temp+Precip 7.67 

Period+Latitude+Wolves+Subspecies+Biome+NDVI+Temp+Precip 5.67 

Period+Latitude+Wolves+Subspecies+Biome+NDVI+Temp 3.95 

Period+Latitude+Wolves+Subspecies+Biome+Temp 2.13 

Period+Latitude+Subspecies+Biome+Temp .50 

Final: Period+Subspecies+Biome+Temp 0 

Note. AIC increased after Biome was removed from the model. As a result, it was not removed from the 

final model 
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Table 5 

Model components of the relative amplitude explanatory model 

Variable Coefficient 2.5% 97.5% p-value 

Period .025 .012 .037 .003 

Subspecies:  

R. t. fennicus 

-.445 -1.093 .203 .211 

Subspecies:  

R. t. granti 

-.241 -.618 .135 .241 

Subspecies:  

R. t. groenlandicus 

.091 -.285 .467 .647 

Subspecies:  

R. t. platyrhynchus 

-.777 -1.451 -.103 .050 

Subspecies:  

R. t. tarandus 

-.289 -.764 .186 .264 

Biome: Tundra/Taiga -.253 -.750 .243 .343 

Biome: Tundra/Tundra .213 -.233 .659 .374 

Temperature .025 -.004 .053 .127 

Intercept .601 -.093 1.295 .124 
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Discussion 

Period and Amplitude 

 The median period length of the 19 cyclic caribou herds was 40.5 years, with the 

minimum and maximum lengths being 23 and 67 years, respectively. While it has been observed 

that many caribou herds cycle over the course of several decades, there has been little analysis 

completed to better understand the length of these cycles. One notable exception, Bongelli et al. 

(2020) found that nine of the North American barren-ground caribou herds’ cycles lasted 

between 26 and 55 years, similar to the span of lengths I found. The distribution of caribou 

population cycle lengths appears to be unimodal and possibly skewed slightly right, indicating 

that the 20-some year range of caribou population cycles may be the lower biological limit of 

these cycles. This solidifies evidence that caribou experience the longest-known population 

cycles of any species. 

Much like the period lengths, amplitudes of caribou population cycles have not been 

extensively studied. The relative amplitude of herd population cycles, which involved a 

standardization about the mean, was calculated as opposed to the traditional amplitude for 

reasons described previously. This means that unlike the period length, interpreting the relative 

amplitude is less straightforward. A proper interpretation of relative amplitude is best explained 

with an example. A herd with a relative amplitude of .5 indicates that the maximum (peak) herd 

population is 50% higher than its baseline (mean) population. Likewise, its minimum (trough) 

herd population is half the size of its baseline population. The median relative amplitude of the 

19 cyclic caribou herds was .871, with the minimum and maximum amplitudes being .406 and 

1.570, respectively. 
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 There was a moderate, positive, statistically significant correlation between period length 

and relative amplitude (Figure 11) with r = .550 and p = .015. This indicates that caribou 

population cycles tend to increase in magnitude as the period length increases. Therefore, herds 

with extremely long population cycles also have the most drastic boom and busts, albeit spread 

out. On the other hand, this also means that caribou herds that experience shorter population 

cycles tend to have less drastic peaks and troughs relative to their mean population.  

 

Period and Amplitude vs Latitude 

As aforementioned, latitudinal gradients in caribou population dynamics were anticipated 

due to the known impacts of latitudinal effects on small mammal population density dependence 

(Post, 2005). Additionally, climate is thought to be a driving force behind mammal population 

cycles (Barraquand et al., 2017; Gunn, 2003). While latitude may be a great predictor of 

weather/climatic conditions in certain areas, as previously explained this is not necessarily the 

case when looking at a species with a large circumpolar distribution. As a result, I expected to 

not see a significant correlation between either amplitude or period and latitude, which is exactly 

what was observed (Figure 12 and Figure 13).  

 

Period and Amplitude vs Weather Data 

While latitude was not significantly correlated with period length or relative amplitude, 

some climatic data were. Period and amplitude were plotted against each of the three weather 

data metrics: NDVI, average winter minimum temperature, and average winter monthly 

precipitation in Figure 14 above. Period length and relative amplitude both had a moderate, 

negative relationship with NDVI. However, the presence of some influential points with high 

NDVI values may be portraying that the relationship is stronger than in reality. Regardless, the 
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relationship between amplitude and NDVI was statistically significant (p = .022) while the 

relationship between period and NDVI was not, yet low enough to be convincing (p = .12). The 

only other observed relationship was between period and the average winter minimum 

temperature. Again, this moderate relationship was negative and somewhat statistically 

justifiable (p = .093). 

NDVI, which is an index measuring ecosystem productivity, had a negative relationship 

with both period length and relative amplitude. The more productive a landscape, the less 

caribou herds fluctuated over time. This would indicate that density-dependent population 

factors, which are more prevalent under favorable environmental conditions (higher NDVI 

values), promote shorter, smaller amplitude caribou cycles (Post, 2005). Poor environmental 

conditions (lower NDVI values), on the other hand, tend to be indicative of longer and more 

drastic caribou population cycles. As a result, the effect of density-dependence on caribou 

population cycles seems to increase as NDVI increases, a similar phenomenon observed in small 

mammals (Post, 2005).  

The negative relationship between the period length and the average winter minimum 

temperature may be providing insight into the same conclusion. Herds in habitats with colder 

winter temperatures tend to have longer population cycles. Extremely cold winters may decrease 

the availability of non-lichen forage, be indicative of longer winters, and overall lead to a more 

hostile living environment. As a result, density-independent factors may be more of a driving 

force for caribou population dynamics in those areas and thus extending population cycles. 

Interestingly, relative amplitude did not have a similar relationship with the winter temperatures. 

While caribou may avoid deeper snow when foraging, this behavior—and the impact of snow 
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depth across a herd’s range—on caribou population dynamics appears to be either complex or 

non-existent (Tucker et al., 1991; Tyler, 2010).  

Climate as a whole, including climatic oscillations, is known to impact caribou 

populations, however, how this impact will change (and is changing) in the face of global 

warming is complex and requires further research (Gunn, 2003; Joly et al., 2011). 

 

Period and Relative Amplitude Models 

Both the period and relative amplitude models were remarkably similar (Table 3 and 

Table 5). It is interesting to note that the model coefficients for period length and relative 

amplitude were statistically significant in the opposite model. This relationship is evident by the 

strong, positive correlation between the variables illustrated in Figure 11 above. Both models 

incorporated the indicator variables for subspecies and biome of the herd, yet not ecotype (due to 

high collinearity). It seems that biome and subspecies information sufficiently explain behavior, 

which is represented by ecotype.  

The relative amplitude model was slightly smaller, with both NDVI and latitude 

excluded. It is intriguing to see the positive coefficient of temperature in this model despite the 

lack of a relationship between the two apparent in Figure 14. On the other hand, amplitude and 

NDVI were strongly correlated (Figure 14) yet this relationship was not significant to the 

explanatory model. Refer to Table 5 for the complex relationship between amplitude and caribou 

herds of different subspecies and biomes. 

 

Future Improvements 

There are a number of areas within this project that would benefit from further refinement 

and consideration. A number of these issues have previously been highlighted, including the 
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need for more accurate and up-to-date ecotype and subspecies classifications. Relative amplitude 

measurements will need to be re-worked for future research because the data constraints of each 

herd resulted in relative amplitudes above 1 for some herds, which is technically not impossible. 

A hybrid of Barraquand et al.’s (2017) amplitude measurement, which is the amplitude of the 

fitted sine wave, with a standardization is a possible solution. Regardless, a more readily 

interpretable method of amplitude measurements is desired. I believe the period length 

measurements to be sound, but further population estimates over the coming decades will 

strengthen these estimates. Herds were deemed cyclic if their period lengths were statistically 

significant, but this is a flawed method when considering the constraints of available data. 

Multiple herds that have been known to cycle for centuries were excluded from cyclic analysis 

due to limited data. Data limitations also dampen the significance of our results because in most 

cases we only have information pertaining to one caribou population cycle per herd. Ideally, 

having multiple cycles per herd would not only strengthen the results statistically but also make 

them more accurate.  

Climate is known to play an important role in governing caribou population dynamics—

and therefore cycles (Gunn, 2003). Because of this reality, it is imperative that more climatic 

data are collected to help explain this relationship. My preliminary findings seem to suggest that 

certain climatic aspects, such as vegetation and temperatures, do play a large role in shaping 

caribou population cycles. However, the interconnectedness of climate and caribou population 

cycling is not necessarily straightforward; many influences likely shape this intricate 

relationship. 

 

 

 



UNDERSTANDING CARIBOU POPULATION CYCLES 31 
 

Management Implications 

Proper, institutional caribou management has never been more important than it is today. 

A vulnerable species on the IUCN Red List with a declining population of less than 3 million left 

globally, caribou are faced with a multitude of conservation threats (Gunn, 2016). Climate 

change and habitat loss via logging and oil extraction paint a bleak picture for the future of 

caribou—especially woodland caribou— highlighting the need for proactive conservation 

actions and proper management strategies. However, appropriate management can only stem 

from an abundance of accurate knowledge about the species. At the moment, the mechanics of 

caribou population cycles are poorly understood—an issue I aimed to tackle with my research.  

Many different management strategies have been tried to boost dwindling caribou herds, 

some options being predator control and conservative/restricted harvests. Despite the popularity 

of wolf control efforts, the results are not overwhelmingly positive. Research shows “no 

convincing support” for lower levels of wolf predation on caribou during nonlethal control and 

“no support” for improved caribou survival when either lethal or nonlethal wolf control is 

implemented (Boertje et al., 2017). While there is little evidence that wolf control is effective at 

increasing caribou numbers at the moment, more case studies are needed to accurately evaluate 

the effectiveness of this method. The Nelchina caribou herd of the southcentral region of Alaska 

is an example of a herd that has experienced drastic predator management. The population 

dynamics of the herd (Figure 7) illustrate the complicated nature of wolf control. While the herd 

(like many others) has been known to cycle, the subpopulation appears to have stopped cycling 

in the last several decades (Gunn, 2003). It would seem that predator control, along with intense 

harvest pressure, has prevented the herd from continuing its cyclic tendencies (Boertje et al., 
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2017). If the Nelchina herd is any indication, it may be possible to stop caribou population cycles 

as long as intense population management practices are in place.  

Less controversial, yet still equally vital, is determining not only how to effectively 

manage caribou, but also the end goal of said management. Do we want caribou herds to 

continue experiencing population cycles or do we want to manage for stable populations? The 

answer, from an economic and subsistence standpoint, is likely the latter. Stable caribou 

populations will provide consistent food and financial benefit to local communities and 

industries, but we do not know the prolonged ecological effects of “losing” cycles. Disrupting 

caribou population cycles may prove to have a negative impact on the flora and fauna 

communities in the area. After all, population cycles are an evolutionary construct and serve a 

purpose in food webs and ecological processes. 

My research suggests that periods and amplitudes of caribou population cycles are 

heavily intertwined, and the positive correlation between the two indicates that managing for 

stable populations may be difficult. Managing for high periods and low amplitudes, which would 

likely lead to more stable population cycles, could be impossible (Figure 11). However, 

managing for low period lengths and low amplitudes seems more feasible. How to do this, and 

whether it would lead to high enough, consistent caribou population numbers, remains to be 

seen. 
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