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Sequence annotation is typically performed by aligning an unlabeled sequence to a collection of
known sequences, with the aim of identifying non-random similarities. Given the broad diversity of
new sequences and the considerable scale of modern sequence databases, there is significant tension
between the competing needs for sensitivity and speed, with multiple tools displacing the venerable
BLAST software suite on one axis or another. In recent years, alignment based on profile hidden
Markov models (pHMMs) and associated probabilistic inference methods have demonstrated in-
creased sensitivity due in part to consideration of the ensemble of all possible alignments between a
query and target using the Forward/Backward algorithm, rather than simply relying on the single
highest-probability (Viterbi) alignment. Modern implementations of pHMM search achieve their
speed by avoiding computation of the expensive Forward/Backward algorithm for most (HMMER3)
or all (MMseqs2) candidate sequence alignments. Here, we describe a heuristic Forward/Backward
algorithm that avoids filling in the entire quadratic dynamic programming (DP) matrix, by identi-
fying a sparse cloud of DP cells containing most of the probability mass. The method produces an
accurate approximation of the Forward/Backward alignment with high speed and small memory
requirements. We demonstrate the utility of this sparse Forward/Backward approach in a tool that
we call MMOREseqs; the name is a reference to the fact that our tool utilizes the MMseqs2 software
suite to rapidly identify promising seed alignments to serve as a basis for sparse Forward/Backward.

MMOREseqs demonstrates improved annotation sensitivity with modest increase in run time
over MMseqs2 and is released under the open BSD-3-clause license. Source code and Docker image
are available for download at https://github.com/TravisWheelerLab/MMOREseqs.
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CHAPTER 1 INTRODUCTION

The dominant method for accurate annotation of biological sequences is sequence database

search, in which each unknown sequences is classified by aligning it to entities in a database of

known sequences. This alignment-based approach of annotating sequences has historically been

associated with the Smith Waterman algorithm [1] and fast heuristics such as BLAST [2]. In

the years since the introduction of BLAST, profile hidden Markov models (pHMMs [3, 4, 5, 6])

have been shown to improve sequence search sensitivity. This sensitivity was initially offset by a

significant run time penalty, but recent advances have produced pHMM software with competitive

speed.

Much of the sensitivity of pHMMs is due to their natural representation of profiles [7] - when a

collection of sequence family members is used to train the model, a pHMM captures the position-

specific letter and gap frequencies inherent to the family. The value of position-specific scores has

driven the development and use of databases of sequence alignments and accompanying pHMMs

all across bioinformatics (e.g. [8, 9, 10, 11, 12]).

Perhaps less appreciated is the fact that pHMM-based software, such as HMMER, is typi-

cally more sensitive than BLAST even when aligning to a database of individual sequences rather

than profiles [13, 14]. Unlike other alignment methods that compute just a single highest-scoring

alignment (akin to a maximum probability Viterbi alignment in pHMM terminology), pHHMs can

compute support for homology based on the sum of the probabilities of all alignments (treating

the choice of specific alignment as a nuisance variable), via the Forward/Backward algorithm. Pos-

terior probabilities resulting from the Forward/Backward algorithm also enable greater alignment

accuracy [15, 16] as well as improved mechanisms for addressing composition bias and determining

alignment boundaries.

Computing Forward/Backward is computationally expensive. Modern fast pHMM implemen-
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tations achieve their speed by avoiding this computation for most (or all) candidate sequence

relationships. HMMER3 [13] introduced a pipeline in which most candidates are never subjected

to the most computationally expensive analysis, thanks to a series of filter stages. In the first

stage (called MSV), all but an expected 2% of non-homologous sequences are removed from further

analysis based on a test for high-scoring ungapped alignment. This is followed by computation

of an optimal (Viterbi) gapped alignment score that typically allows passage of only 0.1% of non-

homologous sequence. Thus, only reasonably-likely matches survive long enough to be subjected to

the slow Forward algorithm and possible downstream analysis. In HMMER3, the result is pHMM

alignment that is typically somewhat faster than blastp for protein database search, with essentially

no loss in sensitivity over unaccelerated pHMM alignment. In common use cases, the first filter of

HMMER3 (MSV) consumes ∼70% of HMMER’s run time, and the final stage (Forward) consumes

∼20%. In cases of queries with extremely high length or large numbers of true matches, Forward

dominates run time.

A newer acceleration approach introduced in MMseqs2 [17, 18] achieves even greater speed with

some sensitivity loss. This speed is primarily due to two adjustments to the analysis pipeline. First,

a lookup table is used to restrict further computation to only involve matches with two very short

high scoring seeds; these seeds are extended to compute an ungapped alignment filter like that

used in HMMER3. Next, MMseqs2 avoids the Forward/Backward step entirely, simply computing

and reporting the Viterbi alignment. This produces impressive speed gains, and benefits from the

advantages of position-specific scores in pHMMs, but misses out on the benefits of the more robust

Forward/Backward algorithm.

Here, we describe a heuristic approach that constrains search space in the Forward/Backward

dynamic programming (DP) matrix to a high-probability cloud. We show that our sparse For-

ward/Backward approach closely approximates the results of the full Forward/Backward algorithm,

while providing a substantial reduction in space requirements and run time. We have implemented

this sparse Forward/Backward approach in C, and demonstrate its utility in the context of our new

software tool called MMOREseqs, which uses the MMseqs2 software suite as a filter and source of
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candidate alignment seeds.
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CHAPTER 2 RESULTS

The aspects of pHMM-based annotation that most leverage the available probabilistic underpin-

nings involve (i) computing the sum of probabilities of all alignments with the Forward algorithm,

and (ii) downstream analyses (including creation of an alignment) based on posterior probabilities

computed with Forward/Backward. The primary contribution of this work is development of a

method to reduce the time and memory required for these stages. In other words, we sought a

mechanism for approximating the results of filling in the quadratic-sized Forward/Backward dy-

namic programming matrices, without needing to actually fill in that entire matrix. Our approach is

a close cousin to the X-drop heuristic used in BLAST: starting with a seed that establishes a region

of interest within the dynamic programming (DP) matrix, and expanding DP calculations out in

both directions until pruning conditions are met (details are found in the Methods section). Fig. 2.1

presents a single example of the reduced computation required by our sparse Forward/Backward

for a relatively short alignment of one Pfam-based pHMM against a sequence belonging to the

matching family.

We begin by describing the data used for evaluation, then demonstrate the space-pruning efficacy

of our Cloud Search approach. We then show that sparse Forward/Backward analysis significantly

improves accuracy over Viterbi-only analysis, at the cost of a moderate increase in run time. We

close by evaluating a few basic pipeline hyperparameters, and describing the released software

implementation.



5

Benchmarks

Pfam domain benchmark

Assessment was performed primarily using a benchmark created with software (create-profmark)

that has previously been used to evaluate efficacy of the acceleration in HMMER [13]. The bench-

mark consists of 3,003 families from Pfam-A (v33.1) [8] that could be split into a training and test

set such that no training-test pair of sequences shares greater that 25% identity. The training set

defines a multiple sequence alignment for the family, which we refer to as the query. Sequences

from the other group were down-sampled such that no two sequences are > 50% identical, leaving

35,456 in total; these were used as the basis of the test set. Each true test sequence was embed-

ded in a larger unrelated sequence, to simulate the sub-sequence nature of the protein domains

in Pfam; specifically, sequences were sampled from uniprot sprot (2020 04), and shuffled prior to

embedding. This set of sequences containing true positives was supplemented with 2 million addi-

tional sequences sampled and shuffled as above, but with no embedded matches. By construction,

this benchmark contains cases that are highly difficult (and usually not impossible), for sequence

alignment tools to recognize, in order to better emphasize differences in sensitivity. For more details

on benchmark construction method and philosophy, see [13]. Note that our benchmark does not

include reversed sequences, as these are prone to producing an excess of unexpected positives due

to the surprising distribution high scores when aligning sequences to their reversals.

Long protein data set

Alignment with Pfam models represents a common use case for sequence alignment, but one that

involves relative short sequences - the median Pfam domain length is just over 300. The purpose

of our sparse Forward/Backward implementation is to avoid calculation over a full quadratic-

sized dynamic programming matrix, and longer sequences are the ones that suffer most from this

quadratic scaling; we therefore performed some tests using sequences on the longer end of the

protein sequence length distribution. Specifically, we captured 6 pairs of long sequences from

Uniprot (Table 2.1), and performed experiments to assess time and space efficiency along with
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approximation accuracy. For each pair, one sequence was designated the query and the other the

target.

Table 2.1: Long sequence pairs.

Query Target

Name Length Name Length

TITIN HUMAN 34,350 TITIN MOUSE 35,213

EBH STAAC 10,498 EBH STAEQ 9,439

VLMS LECSP 8,903 W4932 FUSPC 8,892

R1AB CVH22 6,758 R1AB BC512 6,793

HMCN1 HUMAN 5,635 HMCN1 MOUSE 5,634

RYR1 HUMAN 5,038 RYR1 PIG 5,035

Analysis pipeline - a sketch

To demonstrate the value of our sparse Forward/Backward algorithm in sequence annotation,

we have incorporated it into a tool, MMOREseqs. The MMOREseqs pipeline uses MMseqs2 search

as a subroutine, so that a candidate query/target pair are subjected to a sequence of filters and

processing operations. In MMseqs2, (i) a k-mer match stage identifies candidate matches based on

the presence of two co-diagonal k-position matches with score above a dynamically-selected thresh-

old (e.g. 120 when used on our benchmark; MMOREseqs adjusts this to 80 by default), with a

maximum of 1000 sequences allowed per query (MMseqs2 default: 300); (ii) above-threshold k-mer

matches are extended to capture only those with good-scoring ungapped alignments (MMORE-

seqs retains the MMseqs2 default), then (iii) surviving candidates are subjected to a full Viterbi

algorithm, which seeks the single highest-scoring (gapped) alignment for each query/target pair.

MMOREseqs alters the final stage to report all results with P-value of 0.01 (MMseqs2 default:

E-value=0.001); this filter is akin to the Viterbi filter of HMMER3 [13]). Alignments surviving

these filter stages serve as input to our Cloud Search and sparse Forward/Backward implemen-

tation. Using the first and last positions of the MMseqs2 alignment as begin and end positions,

our method identifies a cloud of dynamic programming matrix cells with non-negligible probability.
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With this constrained space, our method then completes a sparse variant of Forward/Backward,

which yields an overall alignment score along with position-specific posterior probabilities that

positions are aligned; these posterior probabilities are used to compute a composition bias score

adjustment along with the final sequence alignment. Because the pipeline relies heavily on MM-

seqs2 as a preprocessing stage, and identifies more good matches, we call the resulting pipeline

MMOREseqs. See Methods for more details.

Sparse Forward/Backward reduces computation, is a good approximation

To evaluate our sparse Forward/Backward method, we tested the extent to which it reduces the

number of computed cells, as this directly impacts time and space utilization. We also measured how

well the sparse analysis approximates important byproducts computed using full Forward/Back-

ward.

To analyze search space reduction, we computed the percentage of the full quadratic search

space that is explored by the sparse approach (Fig. 2.2(A)). Reduction in search space is modest

for shorter sequences; this is not surprising, as the total size of the dynamic programming matrix

is not particularly large, so that a band around the maximum-scoring alignment will consume

much of the analysis space. For longer sequences (on the order of 1,000 amino acids or longer),

our sparse method often restricts the total number of computed cells to 1% or less of the full

size of the matrix. For the longest protein sequences, a full quadratic-sized dynamic programming

matrix consumes many gigabytes of memory, challenging the capacity of most modern hardware;

a 1000-fold reduction in computed cells by our sparse method brings memory requirements into

the scale of megabytes. The reduction in the number of computed cells means that the largest

dynamic programming matrices can be computed in a small fraction of typical time, though the

time reduction relative to optimized Forward/Backward (as in HMMER) does not match the space

reduction due to additional computational overhead: (i) the value of each cell is computed more

often - once or twice during the cloud search, then twice again during the sparse Forward/Backward

step; and (ii) our approach does not leverage vector parallel instructions to speed alignment. Even



8

A.

B.

 /Full Forward Backward

 /Sparse Forward Backward

Figure 2.1: Efficacy and impact of sparsifying Forward/Backward matrix. Top panel (A) shows heatmap of
scores per cell in the Match State matrix for the sequence Q01LW8 ORYSA aligned to the model for its matching
family, DAO (FAD dependent oxidoreductase); bottom panel (B) shows the sparse set of (non-blue) cells that make
up the cloud used for computing sparse Forward/Backward. The model positions are aligned along the y-axis and
the sequence positions are aligned along the x-axis.

so, speed gains are significant (see below). Fig. 2.2(B) shows, for true positives from the domain

benchmark, that the Forward score computed on the sparse matrix closely matches the score

computed by Forward on the full matrix.

The dependency of MMOREseqs on MMseqs2 creates two common ways that a good alignment



9

B.

A.

Figure 2.2: Efficacy and impact of sparsifying Forward/Backward matrix. (A) Green points show the
fraction of the full matrix that is included in the sparse cloud, for all sparse alignments of true domain benchmark
matches that survived the MMseqs2 Viterbi filter; red points show the same sparsification for false positives surviving
the MMseqs2 Viterbi filter; blue dots (bottom right) show sparsification for long-sequence pairs. (B) Each point
represents the relationship between sparse and full Forward scores on all domain benchmark true matches. Loss of
score shows up as vertical depression below diagonal. 13,387 out of 16,299 true positive alignments lose less than 1%
of score.
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can be missed. In the most straightforward one, the MMseqs2 portion of the pipeline fails to find a

good Viterbi alignment, so the sparse Forward/Backward stage is never given a chance to compute

an alignment. The fast k-mer match stage of MMseqs2 is the common cause of such misses. These

misses are responsible for most of the sensitivity difference between MMOREseqs and HMMER (see

Fig 2.3). A more nuanced issue is that the Viterbi may identify one region as the highest-scoring

alignment, though another region may produce a superior Forward/Backward score/alignment.

Ideally, the sparse Forward/Backward stage would work with both such candidate regions, but our

pipeline implementation only analyzes the region produced by MMseqs2 with the highest Viterbi

score; this is left as future work.

Recall as a function of false annotation

We used the Pfam-based benchmark described above to assess the accuracy gains achieved with

the Forward/Backward algorithm, and to measure the efficacy of our sparse implementation in

retaining these gains. Each of the 3,003 query alignments was used to search for matching family

members in the test database (containing 35,456 true sequences mixed with 2 million simulated

sequences). An alignment was considered to be ‘true positive’ if at least 50% of the length of an

embedded target sequence was covered by an alignment with the query from the same family. A hit

that mostly covered simulated sequence was defined as a ‘false positive’. An alignment between a

query and target of differing families was treated as neutral (ignored) rather than being penalized,

since it is not possible to ensure lack of homology across assigned family labels.

Fig. 2.3 presents a modified ROC plot. For each tested method, all resulting alignments were

gathered together and sorted by increasing E-value. Each ROC curve shows how the fraction of

planted positives that has been recovered (recall) grows as a function of the increasing number of

false matches. MMseqs2 and HMMER3’s hmmsearch were run with default settings to produce

recovery results for comparison. On this benchmark, MMseqs2 labels no false matches, so that

there is only a point on the plot.

Sensitivity gains for MMseqs2 were observed by requesting a reduced k-mer score threshold
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(80), and increased E-value (E=1000) and maximum number of results per query (1000) lead to

a mix of true and false matches. Inclusion of the full Forward/Backward calculation on all pairs

passing the MMseqs2 Viterbi stage leads to a large increase in early sensitivity (MMORE-full). Note

that the full set of aligned pairs is identical in the MMORE-full and MMseqs-k80 lines; significant

gains in sensitivity are due to the superiority of Forward/Backward (supplemented by improved

bias correction) in differentiating true matches from false matches. The full Forward/Backward

establishes an upper bound on the sensitivity possible with sparse Forward/Backward.

10 3 10 2 10 1

Number of False Positives Recovered (Average per Query)

0.100
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Pfam Domain Benchmark: ROC

mmoreseqs prep-search --run-full 1 (fill entire Forward/Backward matrix)
mmoreseqs prep-search --alpha 12 --beta 20 (default)
mmoreseqs prep-search --alpha 8 --beta 12
mmoreseqs prep-search --run-mmore 0 (report MMseqs Viterbi scores)
mmseqs -s 7.5 --max-seqs 1e4 (high sensitivity)
mmseqs (default; note: no false positives)
First False Positive
1% False Discovery Rate

Figure 2.3: Recall as a function of false annotation rate. The protein domain benchmark consists of 35,456
true target sequences from 3,003 Pfam families, mixed with 2 million shuffled sequences from Uniprot. MMOREseqs
and MMseqs2 were each tested with default parameters and a couple of exploratory parameters (listed in legend).

The MMORE-sparse curve in Fig. 2.3 shows the results of the full MMOREseqs pipeline, which

filters Viterbi-aligned pairs with poor P-values, then uses surviving alignments as the basis of Cloud
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Search and sparse Forward/Backward alignment and post-processing. The slight sensitivity gap

between sparse and full Forward appears to be the result of the second source of error mentioned

above: MMseqs2 sometimes produces a (best) Viterbi alignment that does not overlap the high-

scoring alignment identified with a full Forward/Backward, so that the sparse Forward/Backward

approach fails to find the true hit. Though no solution to this concern is provided here, in the

future, this performance gap could be closed by exploring multiple good Viterbi matches in the

Cloud Search stage.

Speed and Accuracy

Assessment of sequence annotation methods must consider the tradeoff between speed and

sensitivity. In doing so, it is helpful to summarize the full sensitivity curves from Fig 2 with a

simple statistic. Here, we use recall prior to the first false positive (fraction of planted positives

assigned an E-value better than the best-scoring false positive). This summary statistic, which we

call “recall-0”, is easy to interpret, and generally agrees with other measures of relative performance.

In Fig 2.4, we plot run time and recall-0 for annotation of the Pfam-based benchmark described

above. These results show that inclusion of sparse Forward/Backward alignment in an MMseqs2-

based annotation pipeline produces increased sensitivity at a modest run time cost. We view these

results as a conservative estimate of the speed benefits of the sparse Forward/Backward approach,

because the Pfam-based domain sequences are relatively short; the relative speed/recall tradeoff is

expected to be increasingly in favor of sparse Forward/Backward for longer sequence elements.

For completeness, we include results of searching with HMMER3; it produces much higher

sensitivity at larger run time costs. The significant drop-off in sensitivity between HMMER3 and

MMOREseqs is caused by aggressive filtering of candidates by the k-mer match stage in MMseqs2.

The plot also shows the effect of further reducing the k-mer score cutoff beyond the MMOREseqs

default of 80 and alternatively increasing the post-Viterbi filter threshold to a more permissive

level. In both cases, sensitivity shows a small increase, at a cost in run time.
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Pfam Domain Benchmark: Runtime vs Recall before First False Positive
hmmsearch (default)
mmoreseqs prep-search --alpha 12 --beta 20 (default)
mmoreseqs prep-search --alpha 8 --beta 12
mmoreseqs prep-search --run-mmore 0 (report MMseqs Viterbi scores)
mmseqs -s 7.5 --max-seqs 1e4 (high sensitivity)
mmseqs (default; note: no false positives)

Figure 2.4: Run time vs. recall. Pfam-based benchmark was subjected to search with MMseqs2 variants, HM-
MER3’s hmmsearch (default), and a sampling of MMOREseqs variants intended to demonstrate a performance-
runtime tradeoffs. Parameters for each are provided in figure legend. The mmoreseqs –run-mmore=0 flag causes
MMOREseqs to run MMseqs2’s prefilter with a k-score of 80, with a maximum of 1000 reported sequences per query,
and simply reports MMseqs2’s Viterbi-based profile-to-sequence search E-values with an effective P-value of 0.01.
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CHAPTER 3 METHODS

This manuscript describes both (i) an efficient approach for identifying a sparse cloud of non-

negligible-probability cells within the standard quadratic-sized Forward/Backward sequence align-

ment search space, and (ii) release of sequence database search software that applies this approach

to annotation candidates produced by running MMseqs2 [17] with permissive parameters. We begin

with a description of the standard Forward/Backward algorithm, then describe the procedure for

identifying a sparse cloud within the corresponding alignment search space, then provide details

for construction of the software pipeline.

Default implementation of the Forward/Backward algorithm

To prepare for discussion of a sparse alignment implementation, we first describe the standard

implementation of the Forward/Backward algorithm for profile HMMs. Input to the algorithm

consists of:

• An alphabet Σ of size k (e.g. k = 20 for the amino acid alphabet).

• A length-n target sequence T = t1, t2, . . . , tn, with all tj ∈ Σ.

• A query model Q defined by a collection of values organized around three core states for each

of m positions:

– Match states (M) emit letters from Σ with a position-specific distribution, and during

alignment are used to associate (match) a letter tj from T to a position i in Q;

– Insert states (I) emit letters in between match-state letters, and during alignment allow

some letters in T to not correspond to positions in Q (i.e. to lie between matched letters).
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In principle, position-specific insertion emission probabilities are legal, but we follow the

common convention that these share a distribution with the random sequence, so that

there are no position-specific insert state emission values;

– Delete states (D) are silent states (no emission) that, in alignment, allow consecutive

letters in T to associate with non-consecutive positions in Q (i.e. some positions in Q

are not represented, or are deleted, in T ).

In support of these states, Q is described by two matrices:

1. For each position i, emissions of match state Mi are defined by a length-k vector

qi1, qi2, . . . , qik, where a value qic corresponds to the model’s probability of observing

letter c at position i (specifically, this is a succinct representation of the odds ratio for

each (i, c) pair, capturing the ratio of the emission probability of letter c at position i

over a background emission probability for c; see [5] for a more verbose form).

2. A transition matrix that captures the probability of transitioning from one state to

another in sequential positions (following common convention, we do not include tran-

sitions between D and I states):

t(Mi,Mi+1), t(Mi, Di+1), t(Mi, Ii), t(Ii, Ii), t(Ii,Mi+1), t(Di, Di+1), t(Di,Mi+1)

With this input, the Forward algorithm fills in three (m + 1)(n + 1) matrices, one for each

state (FM , F I , and FD); the value stored at a cell (i, j) in a state’s matrix corresponds to all

ways of aligning the first j letters of T with the first i model positions, ending in that state. After

initializing FM
0,0 = FD

0,0 = F I
0,0 = 0, the remaining matrix cells are computed via the recurrence

equations:
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FM
i,j = qitj · sum



FM
i−1,j−1 · t(Mi−1,Mi)

F I
i−1,j−1 · t(Ii−1,Mi)

FD
i−1,j−1 · t(Di−1,Mi)

FI
i,j = sum


FM
i,j−1 · t(Mi, Ii)

F I
i,j−1 · t(Ii, Ii)

FD
i,j = sum


FM
i−1,j · t(Mi−1, Di)

FD
i−1,j · t(Di−1, Di)

Notes:

• The result of the Forward algorithm is a ratio of the sum, over all possible alignments, of

the probability of observing T under the assumption of relationship to Q, divided by the

probability of observing T under a random model. The log of this ratio is a score, and the

E-value of an alignment can be computed based on how this score relates to the distribution

of scores for random alignments (see [19]).

• This recurrence is similar to the Viterbi recurrence for finding the highest-probability path/align-

ment; it differs in that it sums the values of alternate paths, rather than selecting the max;

• This description addresses only the core model and assumes global alignment; local alignment,

and additional states, require straightforward modifications to the recurrence, e.g. see [19]).

• The recurrence involves calculation of the products of probabilities, and can suffer from numer-

ical underflow. The Viterbi (max) method avoids underflow by performing all computations
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in log space. The is not possible for the Forward algorithm, due to the fact that it adds

probabilities. This is often addressed by moving values in and out of log space (supported

by fast approximation of log(p1 + p2)); this is the method used in our implementation. Some

implementations demonstrate further acceleration by scaling values directly in order to avoid

conversion to log space entirely [13].

• Though the recurrence suggests recursive function calls, the matrix can be computed by

filling a table in an ordered fashion, due to the ordered local dependencies of computations.

This is usually performed in row-major order (filling from upper left to lower right, one

row at a time), though dependencies allow for other orders, such as filling in sequential

anti-diagonals. A striped pattern of vectorized data access has also been used to accelerate

computation [20, 13].

The Forward algorithm computes a measure of support for the relationship between T and Q,

but does not directly produce a specific alignment between the two. One important byproduct

of the calculation is that each (i, j) cell in the Forward matrices represents the probability of all

alignments ending in the corresponding state, having accounted for the first j letters of T and the

first i positions of Q. A common followup to Forward is to perform the same sort of computation

in reverse, filling in tables from lower-right to upper-left based on an inversion of the recurrence

for Forward. This Backward algorithm computes, for each cell, the probability of all alignments

starting at tj , and model position i. The Forward and Backward matrices can be combined (see [5])

to produce, for each cell, a posterior probability of that cell being part of the true alignment.

This posterior probability matrix can serve as the basis of an alignment with maximum expected

accuracy [15, 5]. We omit details, as they are not required to understand the work here, but note

that typical calculation of each of these matrices is performed across the full quadratic alignment

space.
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Efficient search for high-probability cloud in Forward/Backward matrices

The Forward/Backward computation described above captures the total probability of all pos-

sible alignments, and in doing so, fills in multiple matrices with quadratic size (the product of the

lengths of T and Q). We improve computational efficiency with a heuristic that exploits the fact

that this is usually overkill - most possible alignments have such low probability that excluding

them from computation has no relevant impact on the overall sum of probabilities. Our approach

aims to identify which matrix cells contain non-negligible probability, and limit calculations to

touch only those cells. Doing so minimally impacts computed scores and resulting sequence align-

ments, while substantially reducing the total computation. In this section, we describe a heuristic

approach for achieving this goal. The method, which we call Cloud Search resembles the well-known

X-drop algorithm used in maximum-score alignment methods such as blast [cite]; it begins with a

seed that provides guidance on where high-probability cells are likely to be found, then expands a

search forward and backward across the matrices for a cloud of cells around this seed that appear

to contain essentially all relevant probability mass. This constrained space is then used as the basis

for all downstream analysis.

Cloud Search by pruned anti-diagonal completion

The method proceeds as follows

• Cloud Search is initiated with a pair of begin and end alignment matrix cells. As implemented

here, this pair is taken from an MMseqs2 Viterbi alignment between Q and T (Fig 3.1:

‘Viterbi Alignment’) – the first and last positions of the alignment specify the pair of cells

(ib, jb) and (ie, je). In practice a cell pair could be produced by some other approach, such as

the ungapped alignment phase in MMseqs2 or HMMER. Also, in practice, the Cloud Search

stage could be initialized by more than one such pair of begin/end cells.

• Cloud Search flood-fills the matrices forward (down and right) from the begin cell, extending

out until pruning conditions are reached (Fig 3.1: ‘Cloud Forward’). After initializing FM
ib,jb

=

FD
ib,jb

= F I
ib,jb

= 0 (red cell in upper left), neighboring cells down and right of (ib, jb) are
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computed in anti-diagonal fashion, first filling the two cells (ib+1, jb) and (ib, jb+1), then the

three cells below these, and so on. Cells on one anti-diagonal push values to cells in subsequent

anti-diagonals, so that the only cells computed on on anti-diagonal are those that are reachable

from some active cell on a previous anti-diagonal. Beginning from (ib, jb), all reachable anti-

diagonal cells are computed and retained, until the anti-diagonal achieves length γ (default:

5). After this, two pruning conditions are applied, to constrain expansion of search space

(pruning is performed based entirely on values stored in the Match state matrix FM , and all

scores are maintained in log space).

– Once all values in an anti-diagonal d have been computed, the maximum value for that

diagonal is captured as maxd. All cells with FM
i,j ≥ maxd − α are retained, and others

are pruned. Scores at this point are captured in nats (natural logarithms), with default

α = 12, so that this effectively prunes cells on an anti-diagonal that have probability

that is ∼ 6 orders of magnitude lower than the most-probable cell on that anti-diagonal.

– As flood fill continues, the overall best-seen score across all computed anti-diagonals is

captured as maxo. Any cell with score FM
i,j < maxo−β is pruned. With a default β = 20,

this prunes cells with ∼ 9 orders of magnitude drop-off from the best seen value (this is

analogous to X in the X-drop heuristic). When all cells in an anti-diagonal are pruned,

the flood fill stops.

The result of this phase is a set of cells expanding down and right from (ib, jb), schemati-

cally represented as purple cells in in Fig 3.1: ‘Cloud Forward’. This cloud of cells typically

remains in a fairly tight band around the maximum probability Viterbi path, and rarely ex-

tends much beyond the end of the alignment computed using unbounded Forward/Backward.

Importantly, this cloud search approach typically does extend well beyond the initial end cell

(ie, je), meaning that a conservative selection of initial points does not constrain the Forward

cloud search.

• After the forward Cloud Search phase, a similar backward pass is performed, beginning at
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(ie, je), and flood filling as in the previous stage, up and to the left (Fig 3.1: ‘Cloud Backward’;

green cells)

• Cloud Search concludes by selecting the union of the forward and backward clouds (Fig 3.1:

‘Cloud Union’), establishing a set of cells that hold a non-negligible expansion around the

range bounded by the initiating cells (ib, jb) and (ie, je).

(1)  Viterbi Alignment

(3)  Cloud Backward

(4)  Cloud Union

(2)  Cloud Forward

Figure 3.1: Cloud Search. In this schematic representation of Cloud Search, (1) a Viterbi alignment from MMseqs2 is
used as the source of begin- and end-points (red and green; these could come from any source); (2) a scan is performed
in the forward direction from the being point, pruning based on score-dropoff conditions, usually extending beyond
the end point; (3) an similar scan is performed in the reverse direction starting from the provided end point; and (4)
the union of the two resulting spaces is identified as the sparse cloud.

Linear space for anti-diagonal flood fill

The forward and backward cloud search stages can be computed in linear space, with three

vectors each of length at most m + n. In Fig 3.2, the top-left matrix shows the three vectors as

they correspond to the implicit complete dynamic programming matrix; in this example, when

computing the dark green cell in anti-diagonal 13, the standard recurrence requires access to two
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neighboring (orange) cells from anti-diagonal 12 and one (dark red) cell from anti-diagonal 11. The

bottom left matrix shows how these three active anti-diagonals are laid out in a three-vector data

structure during calculation of anti-diagonal 13. The right side of Fig 3.2 demonstrates how, when

computing (blue) anti-diagonal 14, the vector holding the now retired values of anti-diagonal 11

is reused. In general, for a given matrix cell F ·
i,j , its diagonal d0 = i + j is assigned to vector d0

mod 3, with the cell located at offset i in the vector. Modifications to the recurrence equations

follow naturally.

In our implementation, after each anti-diagonal is computed, it is trimmed from its outer edges,

pruning inward until the first cell is reached that survives the threshold. Remaining cells are cap-

tured to an efficient list of (anti-diagonal index, left edge index, right edge index) tuples. We have

developed an alternative implementation that conditionally prunes every cell. This approach pro-

vides no benefits over the edge-trimming approach for our pipeline, but will be the preferred option

in a future implementation that supports multiple seeds (and downstream possibly-overlapping

clouds).

Figure 3.2: Example anti-diagonal access pattern. Only three arrays are used during anti-diagonal Cloud
Search. The example shows the state in those three arrays when anti-diagonal 13 is being filled: the two previous
anti-diagonals are maintained, due to data dependencies, and those dependencies are represented with darker-colored
cells (with white letters). When the next anti-diagonal is computed, its calculations can be performed by reusing the
oldest array from the previous phase.
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Union and Reorientation:

The pruned anti-diagonal ranges from the Cloud Search are captured as a forward and backward

list of the aforementioned tuples (anti-diagonal index, left edge index, right edge index). A union of

these ranges is computed, yielding a new list that defines the unioned cloud as a list of anti-diagonal

start/stop tuples.

Next, the list is reoriented to produce a list of ranges organized by row. Let Ri refer to the set of

ranges for row i, with Ri[k] := the kth range (typically, there is only one range per row), Ri[k].start

:= the beginning of the kth range, Ri[k].end := the end of the kth range, and lasti := the index of

the right-most range in Ri. Beginning with the left-most anti-diagonal range, the following actions

are performed for each cell in each anti-diagonal range:

• compute the cell’s row i and column j, based on anti-diagonal and offset within that anti-

diagonal

• if Ri = null (no range yet exists for row i), create Ri[0] = (j, j).

• else if j == Ri[lasti].end + 1, increment Ri[lasti].end (extend the active range for that row)

• else consider that previous range closed, and begin a new range (lasti+ = 1;Ri[lasti].start =

Ri[lasti].end = j)

The run time of this procedure is proportional to the number of cells in the cloud (which empirically

grows roughly as a function of the length of the longer of the Query and Target).

Sparse Forward/Backward to recover score and alignment

With the cloud of non-negligible alignment matrix cells in hand, it is possible to compute an

approximation of the full Forward/Backward alignment algorithm by filling in only cells in the

cloud, implicitly treating all other cells as if they carry a probability of zero.
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- -  Anti diagonal wise Orientation Reorientation -  Row wise Orientation

Figure 3.3: Mapping anti-diagonal ranges to row-based ranges. During the Cloud Search phase, data is
arranged according to positions on successive anti-diagonals. After Cloud Search has completed, these ranges are
reoriented into ranges based on rows, to simplify downstream sparse calculations.

Sparse matrix organization

To compute a Forward/Backward approximation, the ranges R are used as the basis for creating

a sparse version of each of the matrices M, I , and D. Blocks of active cells in the cloud are considered

in order, and padded with cells necessary to ensure safe performance of the Forward-Backward

recursion without special cases for edge-checking. Once the padded search space list is created, it is

used as the basis of a single array layout that will hold all required cells (Fig. 3.4A). In practice, the

space required to hold active and buffer cells this is generally only slightly larger than the number

of active cells. This layout is used to allocate a sparse M, I, and D matrix in the form of an array

for computing sparse Forward, another three copies for computing Backward, and a single array

for computing per-cell posterior probabilities in support of optimal accuracy alignment.

This flat array is supported by a table of complementary offsets that enable rapid identification

of locations in the flat array corresponding to positions in the implicit matrix (Fig. 3.4B), with one

tuple of offsets for each block of active cells.

Sparse Forward-Backward

Computing the sparse approximation of Forward-Backward is a simple matter of traversing the

compressed arrays in increasing order for Forward (and decreasing order for Backward), in runs

defined by blocks of active cells. When filling in the sparse DP matrix, pad cells are set to zero,
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Sparse Forward Pseudocode

// implicit "for each row" *
foreach block b    

// implicit "for each active col in row"
foreach p in (0 .. b.len-1)    

curr  = b.flat_start + p
left  = curr - 1
up  = b.up + p
diag  = up - 1
j  = b.row        // sequence position
i  = b.col_start + p   // model position

SMX_M[curr] = qi,j * 
         (t(Mi-1,Mi)  * SMX_M[diag]  + 

            t(Ii−1,Mi)  * SMX_I[diag]  + 
          t(Di−1,Mi)  * SMX_D[diag])

SMX_I[curr] = (t(Mi,Ii)   * SMX_M[up]    + 
          t(Ii,Ii)   * SMX_I[up])

SMX_D[curr] = (t(Mi-1,Di)  * SMX_M[left]  + 
          t(Di-1,Di)  * SMX_D[left])

(compute special states N,C,J,B,E) *

Sparse Matrix_2

Page 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 ■ ■ ■ ■ 0 1 2 3 4 ■ ■ ■ ■ ■ ■ ■ ■

1 ■ ■ ■ 5 6 7 8 9 10 ■ ■ ■ ■ ■ ■ ■ ■

2 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ■ ■

3 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 ■ ■

4 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 ■ ■

5 ■ ■ 56 57 58 59 60 61 62 63 64 65 66 67 ■ ■ ■

6 ■ ■ 68 69 70 71 72 73 74 75 76 77 78 79 80 ■ ■

7 ■ ■ 81 82 83 84 85 86 87 88 89 90 91 92 93 ■ ■

8 ■ ■ 94 95 96 97 98 99 100 101 102 103 104 105 106 ■ ■

9 ■ ■ 107 108 109 110 111 112 113 114 115 116 117 118 119 ■ ■

10 ■ ■ 120 121 122 123 124 125 126 127 128 129 130 131 132 ■ ■

11 ■ ■ 133 134 135 ■ 136 137 138 139 140 141 142 143 144 ■ ■

12 ■ ■ 145 146 147 ■ ■ ■ ■ 148 149 150 151 152 153 ■ ■

13 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 154 155 156 ■ ■
Sparse Matrix_2

Page 1

block_idx flat_start row col_start len up down

0 7 1 5 3 1 16

1 15 2 4 5 6 30

2 27 3 1 13 12 42

3 44 4 3 10 29 57

4 58 5 4 8 45 70

5 69 6 3 10 57 82

6 82 7 3 11 69 95

7 95 8 3 3 82 69

8 99 8 7 6 86 112

9 108 9 3 2 95 121

10 112 9 7 6 99 125

11 121 10 3 1 108 134

12 125 10 7 7 112 137

13 134 11 3 1 121 146

14 140 11 10 4 128 149

15 152 12 13 1 143 155

Sparse Matrix_2

Page 1

block_idx flat_start row col_start len up down

0 7 1 5 3 1 16

1 15 2 4 5 6 30

2 27 3 1 13 12 42

3 44 4 3 10 29 57

4 58 5 4 8 45 70

5 69 6 3 10 57 82

6 82 7 3 11 69 95

7 95 8 3 3 82 69

8 99 8 7 6 86 112

9 108 9 3 2 95 121

10 112 9 7 6 99 125

11 121 10 3 1 108 134

12 125 10 7 7 112 137

13 134 11 3 1 121 146

14 140 11 10 4 128 149

15 152 12 13 1 143 155

Sparse Matrix_2

Page 1

M 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A. C.

B.

D.

Figure 3.4: Sparse Matrix. Example organization of a sparse cloud into a flat array with supporting offset data,
and demonstration of its use. (A) sparse cloud cells in red/pink are supplemented with the set of buffer cells (blue)
that ensure that any Forward/Backward calculation dependencies will refer to either a cloud or buffer cell (to avoid
conditionals in the DP inner loop). Numbers in the cloud/buffer cells indicate the corresponding index in the flat array.
(B) Table of values required to compute offsets into flat array during DP recurrence computation. (C) Pseudocode
for the sparse Forward implementation. The three F-matrices for default computation (FM , F I , FD) are replaced
with three flat (sparse) arrays (SMX M, SMX I, SMX D). The sparse Backwards recurrence is similarly structured.
(∗ In most cases, a single block in the flat array corresponds to a single row in the implicit full matrix, but when a
row has multiple corresponding blocks (e.g. rows 8 through 11 in this example), special states are computed only
after all blocks for the row. (D) Example of computing the DP recurrence for the implicit (2,7) cell, which requires
identification of appropriate cells in the SMX M, SMX I, SMX D arrays, using the offsets from (B).

and other cells are computed based on the standard recurrence equations, with offsets into the

compressed arrays determined using the mappings calculated during the sparse vector layout stage

(pseudocode: Fig. 3.4C). To compute cell-wise posterior probabilities, the product of the Forward

and Backward matrices are computed in the usual fashion, and a Maximum Expected Accuracy

alignment is identified based on these posterior probabilities [5].
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MMOREseqs implementation

To demonstrate the efficacy of this Cloud Search and sparse Forward/Backward implementation,

we have developed a tool that we call MMOREseqs, in reference to the fact that it runs the

open source software MM seqs2 [17] to identify alignment begin/end points for Cloud Search, then

proceeds with downstream sparse Forward/Backward and alignment to find more hits. MMseqs2

is a database search tool that performs very fast pHMM sequence database search with blast-

like accuracy, achieving this speed by performing Viterbi (maximum-probability) alignment on

candidates initially identified using a filter that requires two above-threshold k-mer matches on the

same diagonal. This approach carries some inefficiencies at the interface, but clearly demonstrates

an effective increase in alignment sensitivity with good speed.

The MMOREseqs analysis pipeline is divided into four major stages: (0) File Preparation, (1)

MMseqs2 filter, (2) MMOREseqs filter, and (3) MMORE final processing. The default version of

MMOREseqs accepts two input files: (i) a Query file consisting of one or more multiple sequence

alignments (MSAs, in Stockholm format), and (ii) a Target file consisting of one or more sequences

(in FASTA format).

(0) File Preparation Step:

The preparation phase produces all the necessary file formats required by the pipeline, based on

the raw input files. In order to implement our pruned Forward/Backward, we opted to construct

and use a pHMM with the HMMER3 format, using the tool hmmbuild. MMseqs2 constructs a

pHMM with custom format from an input MSA. We are not aware of a documented method for

converting between these two HMM formats. Importantly, MMseqs2 and HMMER use different

criteria for selecting which MSA columns are represented by model states, so that the models may

be of different length and can not necessarily be registered to each other. To overcome this, we also

depend on consensus sequences derived from the models produced by MMseqs2 and HMMER (see

below for details).

Therefore, six inputs are prepared for the primary pipeline. For the Query: an MMseqs2
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Figure 3.5: MMOREseqs Pipeline. This flowchart lays out the individual steps of the MMOREseqs pipeline,
progressing from top to bottom, left to right.

pHMM file, a file containing one consensus sequence for each MMseqs2 pHMM (FASTA format), a

HMMER pHMM file, and a file with consensus sequences for each HMMER3 pHMM (FASTA). For

the Target: the original Target file input (FASTA) and an MMseqs2-formatted sequence database

(consisting of multiple integrated files).

(1) MMseqs2 as a filter

MMOREseqs uses the MMseqs2 analysis pipeline as a filter in front of the sparse Forward/Back-

ward analysis step, and to identify the Cloud Search begin/end seed positions. We describe the
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relevant aspects of MMseqs2, because parameter selection in MMseqs stages impacts downstream

annotation results.

MMseqs k-mer filter: A key driver behind the speed of MMseqs2 is its initial two k-mer search step,

which quickly finds length-k alignments above a given score threshold τ , and identifies all candidate

query/target pairs with at least two such seeds on the same matrix diagonal (i.e. no insertions or

deletions separating high-scoring k-mer alignments). The value of τ is dynamically selected by

MMseqs2 based on input conditions (particularly search space size); for our analysis benchmark, τ

is dynamically set in MMseqs2 to 120. The MMOREseqs pipeline overrides this default, reducing

τ in order to allow more sequences to pass to later analysis stages. By testing a small number of

more lenient values, we have selected a default τ = 80 for the MMOREseqs pipeline. No change

was made to default seed length or spacing patterns in MMseqs2’s k-mer filter. Overriding the

default cap, the first 1000 k-mer filter-passing matches to a query are passed along to the next

analysis stage.

MMseqs2 Profile-to-Sequence Viterbi filter: Candidate alignments passing the two k-mer filter are

passed to the MMseqs2 implementation of Viterbi alignment between Target sequence T and the

Query model Q (using the ‘search’ module). This stage produces a maximal-scoring alignment

between Q and T, and computes significance (E-value) for each alignment. In the standard MMseqs2

pipeline, such alignments are sorted by E-value, and only those with a better-than-threshold value

are reported. In the MMOREseqs pipeline, these significance values are treated as filtering criteria,

such that the filter passes along all candidate alignments with a score corresponding to at most

P-value of 0.01 (i.e. 1% of non-homologous Q-T pairs are expected to pass the filter).

MMseqs2 Model-to-Model Mapping: Ideally, the previous step would provide landmarks in the dy-

namic programming matrix (begin/end cells) for each candidate Q-T pair passing the filter. Because

the MMOREseqs post-Viterbi stages utilize a HMMER3-style pHMM, while the Viterbi results
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correspond to an MMseqs2-style pHMM, the pipeline is required to map the MMseqs2 pHMM

position to the corresponding HMMER3 pHMM position. This is accomplished by performing a

Viterbi alignment of each MMseqs pHMM against the a consensus sequence generated from the

corresponding HMMER3 pHMM, using the MMseqs ‘search’ module. This produces an alignment

where Insert states indicate an additional node in the MMseqs pHMM, Delete states indicate an

additional node in the HMMER3 pHMM, and Match states indicates the nodes corresponding to

a common position in the MSA. This alignment can be used to map between the two pHMMs

through a linear scan.

(2) Sparse Forward/Backward module:

Each candidate alignment pair passing the previous filter is subject to Cloud Search, seeded by

the begin/end positions from sequence-to-sequence alignment. For this stage the files used are (i)

the FASTA-formatted target sequences, and (ii) the pHMM build by HMMER’s hmmbuild from

the Query MSAs.

Cloud Search: For each candidate pair, the previously-described Cloud Search step is completed,

identifying the union of forward and backward expansion from the seed cells, to produce a sparse

subset of dynamic programming matrix cells.

Cloud filter, and Forward filter: Though reduced space Forward/Backward is fast, many of the

input alignment candidates will produce such a low-quality alignment that they will not end up

being reported. To avoid time spent analyzing such candidates, MMORE performs two filters in

sequence. The more robust of these is a filter applied after computing the Forward score using the

sparse cloud: using the sparse Forward score, a P-value is computed and matches with P>1e-4 are

removed (so that 0.01% of unrelated sequences are expected to pass the filter; this is similar to the

Forward filter used in HMMER3).

But even before computing the Forward score on the sparse cloud, MMOREseqs is able to
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approximate that score using a method that we call ‘cloud filter’, which adds the Forward score

(starting at the begin cell) and Backward score (starting at the end cell) computed during Cloud

Search, approximately adjusting for score shared by the two waves. This adjustment is achieved

by estimating how much of the forward pass score must have been missed in the reverse pass,

and vice versa. To do this, MMseqs keeps track of the best score observed during forward Cloud

Search expansion (best fwd), and the best score observed before extending past the anti-diagonal

containing end cell (best infwd). The difference (Z = best fwd - best infwd) is an estimate of the

part of the forward pass’s score that is not shared by the two passes of Cloud Search. A similar value

is captured during the backward pass of Cloud Search (A = best bkwd - best inbkwd). The total

Forward score is then estimated as A + max(best infwd,best inbkwd) + Z; a P-value is computed

for this, and only candidates with corresponding P<1e-3 are passed on to the Forward stage.

Bias correction, alignment boundaries, alignment: For all downstream analyses, MMOREseqs fol-

lows the methods of HMMER3, but with a sparse matrix implementation. This (i) includes estima-

tion of the effect of composition bias on the alignment score, and corresponding score adjustment,

(ii) identification of the start and end of an aligned region based on posterior probabilities captured

in states that precede and follow the core HMMER3 model (HMMER’s ‘domain definition’ step),

and (iii) maximum expected accuracy alignment. Resulting (bias-corrected) scores are converted

to E-values as in HMMER (see [19]).

Test Environment

All tests were performed on compute nodes in the University of Montana Griz Computer Cluster

(GSCC), each with two Intel Xeon Gold 6150 (2.70GHz) 18 core processors and 754GB RAM. All

tests were performed with a single thread on a dedicated system, and standard wall clock times

were captured.
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CHAPTER 4 DISCUSSION

As implemented, MMOREseqs demonstrates that it is possible to employ powerful Forward/Back-

ward inference with significantly reduced time and memory requirements. While we expect that

MMOREseqs will play a valuable role for researchers seeking high database search sensitivity with

fast performance, we also acknowledge opportunities for improved performance. We highlight ways

in which we expect future profile HMM alignment tools to improve on the value of Cloud Search

and downstream sparse analysis.

Multiple domains

The current MMOREseqs implementation depends on MMseqs2 as a source of seeds for Cloud

Search, and in particular captures only the single best alignment produced by MMseqs2. In cases

where there are multiple regions of high-quality alignment (e.g. multiple copies of a domain, or

highly fragmented sequence match), MMOREseqs will often capture only a single aligned region.

This will often simply fail to identify multiple matches, but in some cases, an unfortunate MMseqs2

seed can mean that the best matching alignment is missed by MMOREseqs (as in Fig ??). Mecha-

nisms for identifying multiple good begin/end seeds will improve the completeness and sensitivity

of analyses based on Cloud Search and downstream processing.

Improved pipeline integration

As implemented, MMOREseqs is decidedly modular, with a burdensome interface and format

translation stage between the early MMseqs2 analysis stage and downstream Cloud Search and

Forward/Backward analysis. Obvious paths toward improved integration include (i) remaining
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tied to the MMseqs2 HMM format and (ii) porting the Cloud Search approach in to the HMMER

code base. In either case, further development calls for exploration of preferred methods for seeding

the Cloud Search stage; for example, is it really best to depend on a Viterbi prefilter and alignment

step, or is it effective to establish Cloud Search begin/end points based on simple k-mer matches?

Faster computations

The Forward/Backward recurrence calculations are modeled after the generic implementation

in HMMER, with significant overhead require to support movement back and forth to log-scaled

representations of odds ratios. Dynamic scaling in probability space is faster [13] and should be

feasible in the sparse representation described here.
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