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The nuclear receptor ligand-binding domain (LBD) is a highly dynamic entity. The FXR 

LBD shows multiple low-energy conformational states of the activation function-2 (AF-2) 

coregulator binding surface upon ligand binding, indicating the complexity of FXR 

activation. However, it is unknown how ligand binding leads to different conformational 

states within the AF-2 region centered on helix 12 (H-12) of the LBD. Here we observe 

the conformation of the coregulator binding surface (H-12 specifically) of FXR upon 

ligand binding in solution using fluorine-19 (19F) nuclear magnetic resonance (NMR) and 

simulations of this surface using molecular dynamics.  Fluorescence anisotropy of 

fluorescein-labeled coregulator peptides reveals a correlation between structural 

conformations of the coregulator binding surface and the function of FXR. While the 

coregulator surface of apo FXR and partial-agonist bound FXR exchanges between 

multiple low energy conformations, full-agonist bound FXR is restricted to few 

conformations, which favor coactivator binding. Furthermore, we find that two ligands that 

induce similar affinities for a coactivator peptide have distinct coregulator binding surface 

structures. 
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CHAPTER I 

 

 

INTRODUCTION  

 

Farnesoid X receptor (FXR) is a ligand-activated transcription factor,1 found mainly in the 

liver and kidney2. FXR maintains the homeostasis of bile acids, vital for metabolic 

regulation and liver protection by regulating bile acids3. Like other nuclear receptors (NR) 

superfamily members, FXR recruits coregulators upon ligand binding, thereby changing 

the expression level of genes involved in bile acid, glucose, and lipid metabolism. Because 

it regulates bile acids in the liver, FXR is a potential drug target for treating several liver-

related disorders, including nonalcoholic steatohepatitis (NASH) and primary biliary 

cholangitis (PBC), and diabetes4,5.  

 

Partial FXR activation is a promising strategy to target liver disorders and to reduce 

mechanism-based side effects. Partial Nuclear Receptor agonists have lower gene 

activation efficacy than full agonists, and promising results have been seen for partial FXR 

agonists in pre-clinical and phase 1 clinical data6.  

 

The ligand-binding mechanism to the ligand-binding domain (LBD) of an NR and the 

structural changes that occur upon binding that lead to gene expression changes differ 

among NRs7. Therefore, the structural changes that lead to FXR activation are unclear.  

 

NR structure is highly conserved, consisting of a set of standard functional domains. A 

highly variable N-terminal ligand-independent activation domain followed by a highly 
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conserved DNA-binding domain (DBD) and a ligand-binding domain (LBD) that consists 

of twelve alpha-helices (H-1 to H-12). A flexible hinge region separates LBD from DBD.  

There are two coregulator binding activation function (AF) sites; AF-1 is located on N-

terminus while AF-2 is on the C-terminus (H-12 of LBD). For several nuclear receptors, 

the AF-2 site is crucial for NR activation by small-molecule ligands. Ligand binding 

changes the conformation of the AF-2 helix, providing a surface for coactivator binding8. 

 

Previous studies have suggested a mousetrap model for NR activation in which H-12 is 

positioned away from the core LBD in the apo state, which switches to a more compact 

structure with H-12 contacting the core LBD upon ligand binding9. Later studies have 

revised this mouse trap model of activation. They suggest that H-12 is dynamic and 

possibly non-helical in the apostate, and H-12 is only formed and stabilized upon agonist 

binding. This model suggests that more than a single active conformation of NR-LBDs 

exists10. Studies have already shown differential effects of FXR agonists on FXR regulated 

gene expression, implying that FXR activation is more complex than the mechanism 

described by the mousetrap model11. Different FXR ligands lead to different coactivator 

recruitment profiles12,13. This phenomenon has also been reported for other NRs, including 

PPARγ14. 

 

To better understand FXR activation and observe different conformational states of H-12 

upon binding of FXR ligands, we have used ligands that have been previously 

characterized in cells as agonists and antagonists for structural investigation. We employ 

19F-NMR and molecular dynamics (MD) simulation to determine how ligand binding 
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changes the conformation of the FXR LBD. Our study indicates that a full agonist induces 

different conformational states than two partial agonists, which induce different FXR states 

from each other. However, one of them induces similar states as that of apo. Thus, this 

work enhances our understanding of FXR activation and partial FXR agonism.    

 

 

 

 

1. Nuclear Receptor (NR) 

 

Hydrophobic messenger molecules such as steroid hormones, retinoids, and free fatty acids 

control many aspects of developmental, reproductive, and metabolic processes in 

eukaryotes15. These molecules require carrier proteins (globulins) for their distribution; 

they can enter the plasma membrane and are captured by intracellular receptors. These 

“nuclear receptors” (NRs) are DNA-binding proteins that act as transcription factors16. 

Thus, the NR are ligand-activated transcriptional factors that principally act by binding 

DNA and controlling transcription. 

 

1.1 NR structure 

NR superfamily members share a standard modular domain structure, consisting of five 

domains: A-E (Fig. 1). Each of these domains plays a crucial role in NR biology. 

 

Fig. 1: Domain structure of NRs. [Figure adapted from Weikum et al., 2018]17 
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A/B: N-terminal domain (NTD): The NTD is a highly disordered domain with little 

sequence conservation and significant size differences among NRs. The NTD contains the 

activation function-1 (AF-1) region, which interacts with coregulators in a cell in a 

promoter-specific manner and, in general, is disordered. Variability in this region produces 

multiple isoforms via alternative splicing and is a target for many post-translational 

modifications18. 

 

C: DNA binding domain (DBD): The DBD is the most conserved region among all 

members of the NR superfamily. DBD consists of two subdomains. Each consists of four 

cysteine residues that coordinate a zinc ion to form a canonical DNA-binding zinc finger 

motif17,19 (Fig. 2). 

 

 

Fig. 2: NR DNA binding domain (a) NR DBD indicating significant motifs (b) folded DBD 

indicating essential regions. [Figure adapted from Weikum et al., 2018]17 

 

D: Hinge region:  A short and flexible region that separates the DBD and LBD. The hinge 

region has low sequence and size conservation among NRs. 
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E: Ligand Binding domain (LBD): The LBD is comprised of approximately 12 alpha-

helices, which form three antiparallel helical layers described as an alpha-helical sandwich. 

The LBD binds ligands in the ligand-binding pocket (LBP) and contains the primary 

surfaces involved in homodimerization or heterodimerization with other nuclear receptors. 

The LBP is primarily a hydrophobic internal pocket surrounded by helices (Fig. 3). The 

LBP is variable among NRs compared to other parts of LBD, which allows it to recognize 

a diverse group of ligands. 

 

The LBD also contains the AF-2 region consisting of helices 3, 4, and 12. The binding of 

ligand to LBP changes the conformation of the AF-2 region to facilitate interaction with 

different coregulator proteins (Fig. 3). 

 

Fig. 3: Cartoon representation of structurally conserved NR LBD and its various regions. [Figure 

adapted from Weikum et al., 2018]17 
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1.2 NR structure-function relation 

NR function is determined by two globular structural domains: a moderately conserved C-

terminal LBD and a highly conserved and centrally located DBD. The LBD serves essential 

functions as it contains an LBP specific for its cognate hormone or ligand and an AF-2 

region important for recruiting various coregulator proteins. 

The DBD docks the NR to the hexanucleotide response elements located within nuclear 

receptor-regulated promoters, leading to various transcriptional outputs. After DNA 

binding NR recruits coregulators which then interact with chromatin-remodeling proteins 

and control the general transcriptional machinery15,20. 

 

1.3 NR classification 

NRs are classified into four subtypes 17 

Type 1 NRs: These steroid receptors are activated by cholesterol-derived steroidal 

hormones. Type I NRs are found in the cytoplasm bound to chaperone proteins, but upon 

binding of ligand undergo nuclear translocation where they generally bind as homodimers 

to DNA response elements (Fig. 4a). An example of a type 1 NR is the estrogen receptor 

(ER). 

 

Type 2 NRs: These NRs are generally retained in the nucleus and swap corepressor to 

coactivator upon ligand binding. They generally form heterodimers with RXR (retinoid X 

receptor, a common heterodimeric partner of many NRs) when bound to DNA response 

elements (Fig. 4b). An example of a type 2 NR is the retinoic acid receptor (RAR). 
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Type 3 NRs:  These NRs have a mechanism of action similar to type 2 NRs but form 

homodimers when bound to DNA response elements (Fig. 4c). An example of a type 3 NR 

is the Vitamin D3 receptor (VDR) 

 

Type 4 NRs: These NRs have a mechanism of action similar to type 2 NRs but bind to DNA 

response elements as a monomer (Fig. 4d). An example of a type 4 NR is Liver receptor 

homolog 1 (LRH-1). 

 

 

Fig. 4: NRs signaling mechanism. (a) type 1 (b) type 2 (c) type 3 (d) type 4. The color scheme is 

as follows, NR (blue), chaperone protein (red), RXR (green), coactivator (purple), and corepressor 

(orange). [Figure adapted from Weikum et al., 2018] 17 
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1.4 NRs as a drug target 

NRs regulate many physiological processes such as metabolism, inflammation, 

reproduction, and development. NR activities are tightly controlled as they are responsible 

for regulating many genes21,22. Therefore, any disorder in NR activity can lead to numerous 

diseases such as diabetes, cancer, and chronic inflammation23,24. Structural and genomic 

studies of NRs have helped develop synthetic ligands targeting these receptors. However, 

since NRs regulate many genes and many ligands are not specific to a given NR, ligand 

binding often leads to both desired and undesired effects. A better understanding of the NR 

regulation mechanism could help identify ligands that affect only a subset of all NR-

regulated genes instead of all the genes under the control of a given NR. 

 

 

2. Farnesoid X Receptor (FXR) 

 

Farnesoid X receptor (FXR) is a ligand-activated transcription factor of the nuclear 

receptor type 2, superfamily1. Bile acids are physiological ligands for FXR; hence FXR is 

also known as the bile acid receptor. 

 

Bile acids are essential for the solubilization and transport of dietary lipids and a significant 

product of the enzymatic conversion of cholesterol. Bile acid bound FXR represses 

transcription of the gene encoding cholesterol 7α-hydroxylase, the rate-limiting enzyme in 

bile acid synthesis, and activates the gene encoding intestinal bile acid-binding protein, a 

candidate BA transporter, indicating a mechanism by which BA transcriptionally regulates 

its biosynthesis and enterohepatic transport25.    
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FXR plays a crucial role in bile acid homeostasis by regulating genes involved in bile acid 

synthesis, conjugation, and enterohepatic circulation. In addition, FXR as a metabolic 

regulator also plays an essential role in cholesterol, lipid, and glucose metabolism.  

 

2.1 FXR expression 

 There are two FXR genes (FXRα (NR1H4) and FXRβ (NR1H5)) in mammals26. FXRβ is 

a functional receptor in rodents but is a pseudogene in humans and primates27. The 

functional role of FXRβ is not well known. A single FXRα gene can encode FXRα1 or α2 

and FXRα3 or α4 isoforms, but the physiological role of this diversity is not clearly 

understood28. Alternate splicing gives rise to the multiple isoforms which differ at the AF-

1 domain, FXRα3 and FXRα4 possess an extended N-terminal AF-1 domain compared to 

FXRα1 and FXRα2 (Fig. 5b). These four isoforms are expressed in a tissue-dependent 

manner. FXRα is mainly expressed in the liver. FXRα1 and FXRα2 are moderately 

expressed in the ileum and adrenal gland, while FXRα3 and FXRα4 are abundantly 

expressed in the ileum and moderately expressed in the kidney2. The sequence of FXRα1 

has been chosen as the canonical sequence (uniport.org/uniport/Q96R|1). The sequence of 

the FXR-LBD is conserved among all four isoforms. 

 

2.2 FXR as a drug target 

 FXR plays an essential role in regulating systemic energy homeostasis and protecting 

many organs, including the liver and intestine. FXR as a metabolic regulator plays an 

important role in bile acid, lipid, cholesterol, and glucose metabolism and helps inter-organ 

communication, particularly the enterohepatic signaling pathway via bile acids. FXR also 
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plays various roles in the kidney, adipose tissue, pancreas, cardiovascular system, and 

tumorigenesis. Given its broad involvement in metabolism and many organs, the 

deregulation of FXR may lead to metabolic disorders and disease-causing abnormalities of 

specific organs. Such actions make FXR a potential drug target in treating metabolic 

diseases and several liver-related disorders, including nonalcoholic steatohepatitis 

(NASH), primary biliary cholangitis (PBC), diabetes, dyslipidemia, and obesity30,31. Many 

FXR agonists have been developed and are undergoing pre-clinical and clinical trials. For 

example, obeticholic Acid (OCA) is a promising candidate for treating liver and metabolic 

disorders, but it has some safety issues. The U.S. food and drug administration has recently 

approved OCA, and it is in late-stage clinical development for the treatment of NASH. 

Adverse effects include elevated cholesterol levels due to FXR over-activation32-34. This 

suggests that partial FXR activation may be an essential strategy to avoid mechanism-based 

side effects. Promising results have been reported from pre-clinical and a phase 1 clinical 

trial of a partial FXR agonist6. 

 

The effect of FXR modulation might be multifaceted according to tissue specificity and 

disease type, suggesting that FXR agonists must be used with care.  

 

2.3 FXR structure  

FXR shares a classic NR structure, consisting of common functional domains (Fig. 5a), a 

highly variable N-terminal ligand-independent transcriptional activation domain (AF-1), 

followed by a highly conserved core DNA-binding domain (DBD), a C-terminal ligand-

binding domain (LBD) that consists of twelve α-helices (H-1 to H-12), a flexible hinge 
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region which separates LBD from DBD, and a ligand-dependent activation function 

domain (AF-2).  

 

 

Fig. 5: Schematic diagram of FXR. (a) Structural organization of FXR (b) Schematic diagram of 

the four FXRα isoforms. [Figure adapted from Jiang et al., 2021] 29 

 

 

The AF-1 region is highly disordered and can interact with coregulator proteins. The FXR-

DBD interacts with DNA in a base-specific manner which allows it to recognize a specific 

DNA sequence. The DBD is highly conserved and consists of two α-helices (H-1 and H-

2) and two four cysteines/zinc nucleated modules35 (Fig. 6a). FXRα1 and FXRα3 each 

have an insert of four amino acids (MYTG) in the hinge region36 (Fig. 5b). The FXR-LBD 

binds to its cognate ligand and recruits coregulator proteins. FXR-LBD consists of 12 α-

helices that fold into three parallel layers to form an alpha-helical sandwich and contains a 

hydrophobic ligand-binding pocket (LBP) to accommodate its ligands (Fig. 6b). The AF-

2 region is in the LBD and includes H-12. For several nuclear receptors, the AF-2 site is 
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crucial for NR activation by small-molecule ligands. Ligand binding changes the 

conformation of the AF-2 helix, providing a surface for coactivator binding37. 

 

 

 

 

Fig. 6: (a) Model structure of FXR-DBD (PDB ID: 1R0O of EcR-DBD is used to represent FXR-

DBD) (b) FXR-LBD/OCA complex (PDB ID: 1OSV), FXR-LBD is in green cyan, OCA is in 

orange, and NCoA peptide is in magenta. [Figure adapted from Jiang et al., 2021] 29 

 

 

2.4 FXR: DNA binding 

FXR regulates gene expression by binding DNA as a monomer or heterodimer with 

RXR38,39. The DNA motifs recognized by FXR-DBD are called FXR response elements 

(FXREs) (Fig. 7). In the heterodimer form with RXR, the coactivator binding site (H-

10/11) undergoes allosteric conformational changes, enhancing the transcriptional activity 

of FXR to bind FXREs40,41. The dimerization mechanism between FXR-DBD and RXR-

DBD is still not clear. Diverse FXREs are localized in promoter, intergenic, and intron 

regions of many genes. The binding of FXR to FXREs leads to various biological functions 

such as metabolism, transport, kinase signaling, and glycolysis. 

(a) (b) 
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Fig. 7: FXR binds to DNA either as a heterodimer with RXR or as a monomer to regulate the 

expression of various genes. [Figure adapted from Wang et al., 2018] 40 

 

 

2.5 FXR activation: Ligand and coactivator binding 

 

The FXR-LBD contains the ligand-binding pocket (LBP) for ligand binding. The bound 

ligand can adjust LBP volume 43. Crucial polar residues (Arg, His) in the LBP form 

hydrogen bond interactions with ligands to position them into correct orientation, while 

hydrophobic residues (Ile, Phe) form hydrophobic interactions with ligands to stabilize the 

LBD43,44.  Previous studies have suggested a mousetrap model for NR activation in which 

the position of H-12 is different in liganded and unliganded (apo) states. H-12 is separated 

from the core LBD (inactive state) in the apo state, while H-12 moves to a more compact 

structure contacting the core LBD upon agonist binding (active state)9. Later studies revised 
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this mouse trap model of activation. They suggest that H-12 is dynamic and possibly non-

helical in the apostate, and H-12 is only formed and stabilized upon agonist binding.  This 

model suggests that more than a single active conformation of the FXR-LBD exists. Recent 

studies have shown differential effects of FXR agonists on FXR regulated gene expression, 

implying that FXR activation is more complex than the mechanism described by the 

mousetrap model10. These studies indicate that the unliganded FXR-LBD recruit 

corepressor such as nuclear receptor corepressor 1 (NCoR). Agonist binding stabilizes H-

12 secondary structure and/or induces an H-12 conformational favorable to coactivator 

binding. Such agonist-induced changes lead to the recruitment of a coactivator (NCoA) 

and dissociation of the corepressor (Fig. 8). 

 

In contrast, an inverse agonist stabilizes the interaction between the FXR-LBD and the 

corepressor by inducing an inactive state with a disordered H-12. Similar mechanisms have 

also been reported for other NRs like PPARγ14. Finally, there may be more than one AF-2 

and H-12 structure that favors coactivator binding as different FXR ligands lead to different 

coactivator recruitment profiles11,45.  
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Fig. 8: Mousetrap model of FXR-LBD activation; binding of an agonist ligand stabilizes the H-

12, allowing coactivator recruitment. (The model shown is of a different NR (RXR).  [Figure 

adapted from Huang et al., 2010] 46 

 

 

2.6 FXR ligands 

 

We have used commercially available FXR ligands, which have been previously 

characterized in cells and structure-function studies. These ligands include full and partial 

agonists that strongly or mildly enhance coactivator peptide recruitment, antagonists/non-

agonists that keep coactivator peptide recruitment to a basal level. The chemical structure 

of FXR ligands used in this study is shown below (Fig. 9). 

 

Tropifexor: 

Tropifexor is a novel and highly potent nonsteroidal, non-bile acid FXR agonist under 

phase 2 human clinical trial to treat primary biliary cholangitis (PBC) and nonalcoholic 

steatohepatitis (NASH)4,5. 
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XL335:   

In vitro and in vivo optimization results indicate that XL335 is a potent and selective FXR 

agonist; oral administration to mice results in reduced cholesterol and triglycerides47. It is 

currently in phase 1 clinical trial. 

  

GW4064:   

GW4064 is a highly effective and selective nonsteroidal agonist of FXR, repressing the 

significant drug-metabolizing enzyme CYP3A4 expression in human hepatocytes48. 

GW4064 was found to raise HDL cholesterol levels and decrease triglycerides in various 

animal species49. Due to some limitations (solubility, toxicity, and UV stability), it is not 

considered a promising drug candidate. However, it is instead used as a tool compound to 

investigate the physiological functions of FXR50. Many nonsteroidal compounds have been 

made based on the GW4064 structure.  

 

CDCA:  

Chenodeoxycholic Acid (CDCA) is the essential steroidal endogenous bile acid ligand of 

FXR. CDCA bound FXR regulates the bile salt export pump expression, which is crucial 

in protecting liver damage51. Therefore, CDCA is more potent compared to other bile acids. 

 

Fexaramine:  

Fexaramine is a synthetic FXR agonist that has a higher affinity to FXR than endogenous 

ligands61.  
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Ivermectin: 

Ivermectin is a drug approved for nematode and arthropod parasites is a highly selective 

FXR antagonist. Treatment of wild-type mice with ivermectin resulted in lowering serum 

glucose and cholesterol levels. In addition, Ivermectin has shown antidiabetic activity by 

enhancing insulin sensitivity in an FXR-dependent manner13. Ivermectin is safe and well-

tolerated in humans and forms the basis for the design of FXR antagonists for the treatment 

of metabolic diseases.  

 

DY268:  

DY268 has been identified to exhibit antagonistic activity towards FXR52. 

 

 

 

 

Fig. 9:  Chemical structure of FXR ligands used in thesis research. [Figure adapted for DY268 is 

from Jiang et al., 2021] 29 
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2.7 Coactivator peptides: Steroid receptor coactivator (SRC) 

 

 

Coactivators are a diverse group of proteins responsible for inducing conformational 

changes in agonist-bound NRs that are essential for NR-mediated transcriptional 

activation. A difference between coactivators and transcription factors is that coactivators 

do not directly bind DNA. Steroid receptor coactivators (SRCs) are one of the most studied 

families of coactivators and are implicated in a wide range of human diseases53. Unlike 

NRs, coactivator proteins appear mostly disordered; however, a short helical motif, termed 

the LXXLL motif53, was identified within several coactivators (including SRCs),54,55, 

which binds to a hydrophobic pocket on the LBD. Several NRs have been co-crystalized 

with their cognate ligand and coactivator regions, including peptides, that contain the 

LXXLL motif within the NR interaction domain of coactivators. These structures reveal 

LXXLL motif binding is stabilized by interactions between the motif and the NR AF-2 

surface region, including bonding between NR residues on H-3 and H-12 and the 

coactivator helix backbone amine and carbonyl groups. The SRCs contain three α-helical 

LXXLL motifs essential for their interaction with NRs. The sequences flanking these 

motifs are essential for NR selectivity56.57. SRCs are the most common coactivator for 

FXR, and most of the cocrystals of FXR are with SRC. The SRC LXXLL motif-containing 

peptides used in this work are fluorescein-labeled, namely SRC1-2 and SRC2-2 (Thermo 

Fisher Scientific). Our data shows that they have the highest affinity for FXR compared to 

other SRC family LXXLL motifs. Table 1 shows these sequences of these peptides with 

the LXXLL motif in bold. 
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Table 1: SRC peptides and their sequences. 

 

SRC peptide Sequence 

SRC1-2 LTERHKILHRLLQEGSPSD 

SRC2-2 LKEKHKILHRLLQDSSSPV 

 

 

 

3 Results:  

 

 

3.1 FXR purification: 

Due to the low solubility and yield of FXR-LBD, we have fused it with polyhistidine-

tagged Escherichia coli (E.coli) maltose-binding protein (His6-MBP). MBP enhances the 

solubility and improves the yield of its fusion protein partner, while the histidine tag 

facilitates purification by immobilized metal affinity chromatography (IMAC) using a 

nickel column58. Cleaving the MBP tag after IMAC purification using tobacco etch virus 

(TEV) protease digestion significantly decreased the stability and yield of FXR-LBD. At 

the same time, cleavage of the MBP tag did not significantly affect FXR-LBD activity, 

leading us to use MBP tagged FXR-LBD for all the experiments (Fig. 10). IMAC 

purification was followed by Fast protein liquid chromatography (FPLC) size exclusion 

purification. Only those fractions of MBP-FXR were selected from FPLC size-exclusion, 

which had the least amount of impurity. Based on the gel analysis, the major impurity 

appears to be MBP not fused to FXR (Fig. 11).   
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Fig. 10: Effect of MBP tag cleavage on FXR-LBD activity: Fluorescence anisotropy experiments 

measure the affinity of the coregulator peptide for FXR LBD in the absence (apo) and presence of 

an equimolar concentration of ligands. SRC2-2 efficacy for (a) MBP-FXR LBD wt (Kd (2.3 μM)) 

(b) MBP cleaved FXR-LBD wt (Kd (3.5 μM)). The data shown represent two technical replicates 

from a single experiment. ** 

 

**Refer to methods for sample preparation. 
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Fig. 11: SDS page gel of size exclusion purified MBP-FXR. Fractions up to 63 were collected 

for experiments.  

 

 

3.2 The efficacy of different FXR ligands in coregulator peptide recruitment 

 

We investigated the correlation of FXR coregulator binding surface structure with function 

(coactivator LXXLL motif peptide affinity) using FXR ligands of different efficacies in 

steroid receptor coactivator (SRC1-2 and SRC2-2) recruitment in vitro. In this study, we 

used six commercially available FXR ligands, including tropifexor,1 XL33547, and 

GW406448, which were reported to be agonists, CDCA an endogenous agonist51, and 

ivermectin13, which is reported to be an antagonist. We used fluorescence anisotropy (FA) 

to measure dissociation constants between fluoresceine-labeled coactivator peptides and 

FXR. The effect of the ligands mentioned above on FXR affinity for the coactivator peptide 

(SRC 2-2) is shown in (Fig. 12a). An increase in FA indicates increased binding of the 

coactivator peptide. A left shift of the curve indicates that a ligand increases the affinity of 

FXR for the peptide.   
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Fig. 12: Efficacy of FXR ligands: Fluorescence anisotropy experiments measure the affinity of 

the coregulator peptide for FXR LBD in the absence (apo) and presence of an equimolar 

concentration (41μM) of ligands. FXR ligands efficacy for (a) SRC2-2 or (b) SRC1-2 recruitment. 

The data shown represent two technical replicates from a single experiment. 

 

 

The Kd values for coregulators interacting with FXR shown in Table 2 indicate that 

Tropifexor is the most efficacious agonist. At the same time, Xl335 and GW4064 are less 

efficacious (partial agonists), and ivermectin has little effect, acting as an antagonist in this 

assay. A similar experiment using the same set of ligands and a different coactivator 

peptide (SRC 1-2) yielded similar results (Fig. 12b). Previous reports had characterized 

tropifexor, XL335, and GW4064 as agonists. However, our data show that they have 

variable efficacy.  

 

Ivermectin has been reported to enhance the binding of both corepressor and coactivator 

peptides13. However, we found that ivermectin either decreases or has no effect on the 

affinity of FXR for SRC2-2 and SRC1-2 peptides. To examine the effects of ivermectin on 

corepressor peptide affinity, we performed FA of fluoresceine-labeled corepressor peptide 

SMRT ID2 (silencing mediator of retinoid and thyroid receptor, interaction domain 2) to 
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measure dissociation constants between SMRT ID2 and FXR using a known FXR 

antagonist ligand DY 268 as standard (Fig. 13). The Kd value of FXR-DY268 (9 μM) and 

FXR-ivermectin (42 μM) for SMRT ID2 combined with the fact that apo FXR shows no 

binding to SMRT ID2 indicate both ligands increase Ivermectin recruitment of SMRT. 

Along with our data showing reduced or no effect on coactivator binding, these data 

suggest that Ivermectin and DY268 are FXR antagonists and would likely function as 

inverse agonists on FXR target genes in vivo. 

 

Table 2: Coactivator peptide affinity for FXR in the presence of ligands. 

 

Ligands SRC2-2 

Kd (μM) 

SRC1-2 

Kd (μM) 

Apo 20.5 20 

Tropifexor 1.4 2.7 

XL335 4.3 11.8 

GW4064 3.4 8.5 

CDCA 20.7 29.3 

Fexaramine 7.3 20.7 

Ivermectin 26 44.5 
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Fig. 13: Efficacy of antagonists (Ivermectin and DY268) of FXR in corepressor peptide (SMRT 

ID2) recruitment. The data shown represent the standard deviation from two technical replicates 

performed in a single experiment. NOTE: Elizabeth Sather purified the protein used in this 

anisotropy experiment. 

 

 

3.3 H-12 conformational change observed by 19-F NMR 

19-F NMR is a sensitive tool to observe structural changes59. We used 19F-NMR to observe 

the effect of ligands on H-12 dynamics. For these 19F NMR studies, a cysteine in MBP-

FXR is covalently labeled (linked) with 3-Bromo-1,1,1-trifluoroacetate (BTFA), 

containing a trifluoromethyl (-CF3) group, the source of the fluorine signal. As the CF3 

group rotates rapidly, this group produces a single NMR peak. Since MBP does not have 

any native cysteines while FXR LBD has three, BTFA labeling affects only the FXR LBD.   

 

Wild-type FXR LBD contains three native cysteines on H-9 (C419), H-10 (C432), and H-

12 (C466).  The side chains of C432 and C466 appear to be solvent-exposed in a crystal 

structure of the FXR LBD (PDB ID: 3DCT); hence, they are most likely to be labeled with 

BTFA; in contrast, C419 is inside a hydrophobic pocket and is, therefore, less likely to get 

labeled (Fig. 14). We first determined which peaks arise from each of the three labeled 

cysteines by making receptors with a single mutation (C432H or C466S) and a double 
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mutant (DM) incorporating both these mutations. We replaced these cysteines with 

histidine and serine, respectively, because they are identical to the corresponding residues 

in murine FXR. A deconvoluted spectrum of FXR-LBD wt (2x BTFA post-label) bound 

to ivermectin shows a broad and a sharp peak (Fig. 15a) while C432H and C466S shows 

one broad and sharp peak, respectively indicating the source of each peak (Fig. 15b,c). 

Spectra of the double mutant show a well-separated, very weak, and ligand-responsive 

signal from the third cysteine (C419), indicating minimal exposure and labeling of this 

cysteine (Fig. 16b). In addition, the DM spectra show a larger signal that does not change 

upon ligand binding, which likely originates from labeled co-purifying proteins. We 

analyzed difference spectra where DM spectra are subtracted from C432H or C466S 

spectra to eliminate these unchanging signals. 

 

C432H-DM difference spectra mutants (with DM spectra scaled down to 0.58 to avoid 

negative peaks) shows broad peaks for apo and ivermectin. Peak broadening indicates that 

H-12 is dynamic,60 switching between multiple conformations on the microsecond to 

millisecond timescale in the absence of ligand (apo) and when bound to an antagonist (Fig. 

16a). The binding of Tropifexor, the most efficacious agonist, results in a narrower, more 

consolidated spectrum. These NMR results indicate that H-12 dynamics correlate with an 

affinity for coactivators. Antagonist ligands and apo generate broad H-12 peaks, while 

efficacious agonists induce narrow H-12 NMR peaks consistent with a stable and 

structured H-12.    
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Fig. 14: The location of cysteines on the FXR-LBD [Figure adapted from; PDB ID: 3DCT, 

modified] 

 

C419 

C466 

C432 
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Fig. 15: Mutations in FXR-LBD bound to ivermectin to verify the source of peaks in 19F-NMR. 

Deconvoluted spectra of (a) FXR-LBD wt (b) C432H (c) C466S. peak on the rightmost side (*) is 

from impurity as the percentage of these peaks does not change, hence irrelevant here. ** 
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Fig. 16: 19-F NMR result of C432H and Double Mutant (C432H, C466S) MBP-FXR LBD-BTFA 

(pre-labeled) bound to different ligands and apoprotein. (a) C432H-DM difference spectrum (b) 

DM spectra. 

 

 

We deconvoluted the difference spectra using our previously published method60 to aid in 

spectral interpretation. The multiple peaks in the deconvoluted spectra indicate multiple 

FXR conformations, and the signal area of each peak indicates the relative population of 

each particular FXR conformation. For example, the deconvolution of C432H-DM 

difference spectra indicates a broad peak for apo and ivermectin bound FXR and sharper 

peaks for the partial and full agonists (Fig. 17). A list of major peaks in each spectrum and 

the contribution of each peak to the spectrum (%) is given in Table 3.  
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Fig. 17: Deconvoluted C432H-DM delta spectra. (a) apo (b) GW4064 (c) XL335 (d) Tropifexor 

(e) Ivermectin. 
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Table 3: List of the significant peak, size, and percentage of each spectrum in Fig. 16  

 

Spectra Peak (ppm) 

[Hz] [%] 

Peak (ppm) 

[Hz] [%] 

Peak (ppm) 

[Hz] [%] 

Peak (ppm) 

[Hz] [%] 

Peak (ppm) 

[Hz] [%] 

Peak (ppm) 

[Hz] [%] 

apo    (-84.086) 

[105.051] 

[27.8] 

 (-84.944) 

[134.274] 

[52.7] 

GW4064     (-84.299) 

[216.753] 

[77.2] 

 

XL335    (-84.025) 

[115.396] 

[98.9] 

  

Tropifexor    (-84.100) 

[217.206] 

[29.2] 

(-84.297) 

[75.606] 

[49.5] 

 

Ivermectin (-83.399) 

[183.610] 

[31.4] 

(-83.664) 

[184.722] 

[27.8] 

(-83.861) 

[164.761] 

[25.5] 

(-84.175) 

[126.255] 

[13.3] 

  

 

 

 FA data shows that DY268 increases FXR affinity for a corepressor peptide (SMRT ID2) 

more than ivermectin. The FXR ivermectin complex with or without co-bound SMRT ID2 

shows broad shifted peaks indicating considerable H-12 dynamics even after SMRT is 

recruited to this complex (Fig. 18). In contrast, DY268, the most efficacious in SMRT 

recruitment, induces an FXR 19F NMR spectrum with a much narrower peak (42 Hz), 

suggesting H-12 is relatively stable when bound to DY268. The addition of SMRT ID2 

leads to a slightly broader and right-shifted peak (54 Hz), indicating slightly increased H-

12 dynamics when SMRT is recruited (Fig. 18).       
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Fig. 18: C432H-DM difference spectrum of MBP-FXR-LBD-BTFA (pre-labeled) apo protein and 

bound to Ivermectin, DY268 and added SMRT ID2 corepressor. DM spectra were scaled down to 

0.701 to avoid negative peaks. NOTE: Elizabeth Sather purified the protein and prepared and sent 

samples for NMR analysis for the spectra displayed in this figure. 

 

 

Because H-12 contacts coactivators in published crystal structures, the addition of SRC1-

2 coactivator peptide is expected to affect H-12 19F-spectra, as expected, the addition of 

SRC1-2 consolidates the two H-12 signals in FXR-agonist complexes (Fig. 19). This result 

is consistent with our previous work in PPARγ, where the addition of coactivators to 

agonist-receptor complexes led to H-12 19F-NMR signal consolidation14.  
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Fig. 19: Addition of a peptide, SRC1-2 changes the H-12 spectra and consolidates the two H-12 

signals in FXR-agonist complexes. The deconvoluted spectrum of (a) FXR C432H bound to 

tropifexor (b) FXR C432H bound to tropifexor and peptide SRC1-2. ** 

 

 

Cleaving the MBP tag has no significant impact on the NMR signal from FXR LBD (Fig. 

20), consistent with the anisotropy data that showed little impact of cleavage on FRX 

affinity for coactivators (Fig. 10). The process of cleaving the MBP increases purity (as 

determined by Coomassie stained gel, data not shown), therefore this impurity peak is 

missing in the cleaved FXR spectra. 
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Fig. 20: Cleaving the MBP tag does not affect the 19F NMR signal. The deconvoluted spectrum 

of (a) FXR-MBP wt bound to tropifexor (b) FXR without MBP tag bound to tropifexor. The 

rightmost peak (*) in (a) is likely from impurity similar as explained in figure 15. ** 

 

 

3.4 Simulation confirms the 19F-NMR results 

 

Helix 12 19F-NMR shows broad apo and ivermectin bound wild-type FXR signals, 

indicating a dynamic H-12. In contrast, FXR bound to the partial agonists XL335, 

GW4064, and especially the most efficacious agonist Tropifexor show narrower, more 

consolidated spectra indicative of less H-12 conformational heterogeneity. We ran 

conventional MD (cMD) simulations of apo and ligand-bound FXR to define better the 

structures and dynamics indicated by the 19F NMR spectra. Simulation models were built 

using the PDB crystal structure of FXR LBD bound to respective ligands in which H-12 is 

in the active conformation (Table 3).  

 

 

 

 



34 

Table 4: cMD builds and their corresponding PDB files. 

 

cMD Build PDB ID 

Apo 3FLI 

XL335 3FLI 

Ivermectin 4WVD 

GW4064 3DCT 

Tropifexor 7D42 

Tropifexor + SRC2-3 7D42 

 

 

We ran six replicates of each simulation for a sufficiently long time to yield fairly 

consistent H-12 RMSD (average deviation over the sequence PLLCEI of H-12) relative to 

the starting structure (Fig. 21). The simulation for FXR bound to tropifexor and tropifexor 

with peptide SRC2-3 was in progress when this thesis was written and will be stopped and 

analyzed at ~100us, similar to other agonists complexes. 
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Fig. 21: MD simulations of wt FXR-LBD apo and bound to different ligands. Here we observe 

the convergence of H-12 RMSD relative to starting structure. The size of each frame is 10 ns. 

 

 

Six independent simulations (approx. 100 μs each) of Apo FXR LBD indicate H-12 

exchanges between many conformations distinct from the starting crystal structure (Fig. 

22a). This result is consistent with the broad peak observed in 19F-NMR for apo FXR-

LBD, indicating exchange between different H-12 conformations.  

 

We built the ivermectin model from the only ivermectin-containing crystal structure 

available (4WVD). Because H-12 is not resolved in 4wvd, part of H-12 was added to 4wvd 

from another FXR crystal structure (3DCT) in Chimera. Six independent simulations 

(approx. 60 μs each) indicate that H-12 exchanges between distinct conformations when 

bound to ivermectin (Fig. 22c). These results are consistent with the 19F-NMR, which 
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shows a broad peak indicating conformational exchange of H-12 when bound to 

ivermectin.   

 

Models for partial agonist XL335 and GW4064 bound FXR LBD were built using their 

crystal structures, 3FLI, and 3DCT, respectively. Six independent simulations (each 

XL335 simulation ran for approximately 100 μs while each GW4064 simulation ran for 

approximately 90 μs) indicate that partial agonist binding leads to primarily one major low 

energy conformation, H-12, which resembles the starting active H-12 conformation (Fig. 

22 b,d). This result is consistent with the 19F-NMR result, where the XL335 and GW4064 

produce single H-12, whereas apo FXR H-12 exchanges between two peaks. 

 

The simulation model for full agonist Tropifexor was built using its crystal structure 7D42. 

7D42 includes a bound coactivator (SRC2-3), which we removed for these simulations. 

Six independent simulations (each run for approx. 50 μs) indicate that H-12 occupies 

almost exclusively one major low energy conformation (Fig. 22e) similar to the starting 

active conformation in the crystal structure. This result is consistent with the 19F-NMR, 

where tropifexor induces the narrowest, most consolidated H-12 19F-NMR peak. These 

data indicate that the most efficacious agonist (tropifexor) is the most efficacious at 

stabilizing H-12. Likewise, the partial agonists provide both intermediate coactivator 

recruitment efficacy and stabilization of H-12.  

 

We surmised that the addition of a coactivator would further stabilize H-12 in the FXR-

tropifexor complex via interaction between H-12 and the coactivator. To verify this via 
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simulation, we built a simulation model of FXR bound to Tropifexor and a coactivator 

peptide SRC2-3 [KKKENALLRYLLDKDDTKD] using crystal structure 7D42 (which 

includes the co-bound SRC2-3). We ran six independent simulations (approx. 40 μs each) 

and found that H-12 shows one sharp major low energy conformation (Fig. 22f), indicating 

that the binding of a coactivator may further stabilize H-12. 
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Fig. 22: Histogram of H-12 RMSD. The sum of RMSD frequencies for all the six independent 

runs for H-12 indicates the RMSD of most conformations. RMSD close to zero indicates 

conformations similar to starting crystal structure. FXR bound to (a) apo (b) Xl335 (c) Ivermectin 

(d) GW4064 (e) Tropifexor (f) Tropifexor and coactivator SRC2-3.    
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Observation of the RMSD fluctuation of ligands in the above simulations indicates that 

agonists stay primarily in one conformation. In contrast, antagonist conformation fluctuates 

in LBP shows some correlation between ligand fluctuation and H-12 stabilization (Fig. 

23).  

 

 

 

Fig. 23: RMSD fluctuations of ligand bound to LBP of FXR-LBD. (a) Ivermectin (b) XL335 (c) 

GW4064 (d) Tropifexor. 
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3.5 Discussion 

 

FXR is a ligand-activated nuclear receptor that recruits coactivators upon binding agonists. 

The FXR conformational changes that result in increased affinity for coactivators are 

unclear. Our data suggest that conformational changes of H-12 are mainly responsible for 

FXR activity and coactivator recruitment; however, given that two partial agonists induce 

distinct H-12 structure and similar coactivator affinity, there are likely other structural 

aspects important to coactivator affinity.  

 

Our data also suggest that the binding of ligands of different efficacies leads to different 

H-12 conformational ensembles. 19F-NMR and simulation data indicate that H-12 

exchanges between multiple conformations on the microsecond to millisecond timescale 

for apo-FXR and in the presence of an antagonist (Ivermectin). In contrast, another 

antagonist/inverse agonist that induces the highest affinity for a corepressor peptide 

(DY268) induces mainly one H-12 conformation with a distinct chemical shift and likely 

distinct conformation from agonist bound FXR. There is currently no crystal structure 

available for FXR bound to DY268, so we could not perform a simulation of this complex. 

The binding of partial agonists, and to a larger degree, binding of a full agonist, stabilizes 

H-12 into a structurally active state which favors coactivator recruitment. 19F-NMR data 

clearly shows the most stabilization of H-12 (C432H mutant) by the most efficacious 

agonist (tropifexor) and inverse agonist (DY268) indicated by the sharp peaks. These data 

show a correlation between ligand efficacy and H-12 conformation. 
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Long-run simulation data are consistent with the 19F-NMR results. All simulations were 

started from FXR crystal structures with H-12 in the same active conformation. Simulation 

of Apo-FXR and Ivermectin-bound FXR results in various H-12 conformations different 

from the starting structure; such heterogeneity is expected to be conducive to forming a 

key hydrogen bond between the coactivator backbone and the H-12 charge clamp residue 

(E467)31  or hydrophobic contact between H-12 and the coactivator. The simulation is 

consistent with 19F-NMR, where we see a broad peak of H-12 indicating μs to ms lifetime 

conformational exchange. Simulations of FXR bound to partial and strong agonists show 

that H-12 maintains a conformation similar to the starting PDB active structure [For the 

full agonist, Tropifexor, H-12 shows less variance from the starting structure than the 

partial agonists (XL335 and GW4064)]. The binding of agonists consolidates FXR LBD 

into a structurally active state that favors coactivator binding.  

 

Interestingly the two partial agonists induce similar efficacy of coactivator recruitment but 

distinct H-12 conformational ensembles. This observation leaves open the possibility that 

these partial agonists could favor the recruitment of distinct sets of coactivators. 

 

3.6 Conclusion 

 

FXR plays a crucial role in protecting the liver and other organs via the regulation of bile 

acid and is crucial for regulating other metabolic processes, making FXR a potential 

therapeutic target for treating several liver-related disorders. The FXR-LBD shows 

multiple low-energy conformational states of the AF-2 coregulator binding surface. Upon 
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efficacious ligand binding, some of these states are favored, indicating that activation of 

FXR is more complex than a simple mousetrap model consisting of two well-defined states. 

Fluorescence anisotropy, solution 19F-NMR, and molecular dynamics data indicate that 

H-12 conformational changes are mainly responsible for FXR activity and coregulator 

recruitment which clarifies the structural model of FXR activation. We also found 

structural evidence that efficacious inverse agonists stabilize a distinct H-12 structure from 

efficacious agonists. Furthermore, H-12 exchanges between multiple conformations in 

Apo FXR and FXR bound to less efficacious agonists. This further defines the structural 

basis for graded agonism in FXR.   

 

3.7 Future Directions 

 

The two partial agonists, Xl335 and GW4064, induce distinct H-12 conformations as 

shown by solution 19F-NMR and molecular dynamics simulation but have similar 

coactivator affinity as shown by fluorescence data. These data indicate that there are likely 

other structural aspects important to coactivator affinity.  

 

Regions apart from the AF-2 region, including H-11 can indirectly impact H-12 

stabilization. In addition, the H-3 RMSD determined from molecular dynamics simulation 

data indicates that the binding of an agonist restricts the conformation of H-3 compared to 

apo and antagonist bound FXR (Fig. 24). 
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Fig. 24: H-3 RMSD of FXR when bound to different ligands. (a) apo (b) XL335 (c) Ivermectin 

(d) GW4064 (e) Tropifexor (f) Tropifexor + SRC2-3. 
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The simulation data can be verified using solution 19F-NMR by inserting a cysteine on H-

3, as shown in Figure 25. To observe which region of H-3 shows the largest changes in 

conformation, we could make three individual cysteine mutations in the solvent-exposed 

residues (Fig. 25). This can give us insight into any correlation between H-3 stabilization 

and agonist binding. 

 

 

 

Fig. 25: Position of residues on H-3 for possible single cysteine mutations to observe H-3 

dynamics via 19F-NMR. [Figure adapted from; PDB ID: 3DCT, modified] 
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4 Methods 

The protocol of the methods used in this work is very much similar to one of our labs' 

previous published work14. 

 

4.1 Protein purification 

 

 A pDEST-566 plasmid [pDest-566 was a gift from Dominic Esposito (Addgene plasmid 

#11517; http://n2t.net/addgene:11517; RRID: Addgene_11517)] carrying the gene for 

ampicillin resistance and N-terminally 6xHis-MBP tagged FXR containing a tobacco etch 

virus (TEV) nuclear inclusion protease recognition site between the MBP tag and protein 

[6xHis-MBP-TEV-FXR] of interest was transformed into chemically competent E.coli 

BL21 (DE3) Gold cells. Cells were grown in either terrific broth (TB) or Luria broth (LB). 

Cells grown in TB media at 37 °C were induced at an OD600 of 0.6-0.8 by adding 0.5 mM 

isopropyl β-D-1-thiogalactopyranoside (IPTG), and the temperature was lowered to 18 °C. 

Induction proceeded for 16-18 h before harvesting. Harvested cells were homogenized into 

20 mM Tris-base (pH 7.5), 500 mM NaCl, 5 mM tris(2-carboxyethyl) phosphine (TCEP), 

10% glycerol, 20 mM imidazole and lysed using a C-5 Emulsiflex high-pressure 

homogenizer (Avestin). Lysates were then clarified  (centrifugation at 19,000 g for 45 

minutes and filtered through a 0.45 μm filter) and passed through two Histrap FF 5 ml 

columns in series (GE Healthcare) overnight at a flow rate of 1 ml/min using an AKTA 

start (GE Healthcare). Protein was eluted using a gradient from 20 to 250 mM imidazole. 

Fast protein liquid chromatography was performed on AKTA start (GE Healthcare). The 

eluted 6xHis-MBP FXR was further purified by size exclusion chromatography (SEC) gel 

http://n2t.net/addgene:11517
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filtration using HiLoad Superdex 75 (GE Healthcare). SEC was performed in 50 mM Tris-

base (PH 8.3), 500 mM NaCl, 10 mM TCEP, 10% glycerol buffer. Protein purity was 

determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

analysis (Bio-Rad).   

 

4.2 FXR-LBD sequence used in this work: 246-472 

 

T P D Q Q T L L H F I M D S Y N K Q R M P Q E I T N K I L K E E F S A E E N F L I 

L T E M A T N H V Q V L V E F T K K L P G F Q T L D H E D Q I A L L K G S A V 

E A M F L R S A E I F N K K L P S G H S D L L E E R I R N S G I S D E Y I T P M F 

S F Y K S I G E L K M T Q E E Y A L L T A I V I L S P D R Q Y I K D R E A V E K L 

Q E P L L D V L Q K L C K I H Q P E N P Q H F A C L L G R L T E L R T F N H H H 

A E M L M S W R V N D H K F T P L L C E I W D V Q  

 

 

4.3 Site-directed mutagenesis 

 

Mutations in FXR LBD were generated using the Quickchange II site-directed mutagenesis 

kit (Agilent) using primers listed in Table 5. The presence of the expected mutation and 

absence of spurious mutations was confirmed by Sanger sequencing (Eurofins). 

 

Table 5: Primer sequences used for mutagenesis 

 

 

 

 

 

C432H 5’ -caggcgacccaggagatgggcaaagtgttgagga-3’ 

C466S 5’ -cgtcccagatttcagagagaagtggggtaaactt-3’ 
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4.4 Fluorescence anisotropy (FA) assay 

 

FA peptide binding assay was performed by plating a mixture of 50 nM peptide with an N-

terminal FITC tag, 12-point serial dilutions (1:2) of MBP-FXR LBD wt, and FXR ligands 

from approx. 50 μM to 24 nM. FXR-LBD and FXR ligands were added at a 1:1 ratio. This 

mixture was added to wells of low-volume 384-well black plates (Grenier Bio-one, catalog 

number 784076) to a final volume of 16 μl. Peptides were purchased from ThermoFisher 

(Waltham, MA, USA) for SRC1-2 peptide, sequence: LTERHKILHRLLQEGSPSD (19); 

SRC2-2 peptide, sequence: LKEKHKILHRLLQDSSSPV (19). All dilutions were made in 

SEC buffer (pH 8.3), 0.01% fatty-acid-free bovine albumin (BSA) (EMD Millipore, 

catalog number 126575), 0.01% Tween. Assay titrations were performed in duplicate. 

Plates were incubated in the dark at room temperature for 2 hours before being read by a 

Synergy H1 microplate reader (BioTek). FA was measured by excitation at 485 nm/20 nm 

and emission at 528 nm/20 nm for FITC/5-FAM. Data were fit using nonlinear regression 

(agonist vs. response-variable slope 4 parameters) in Prism 9.0.0.    

 

Some of the previous samples for fluorescence anisotropy were prepared using 20 mM 

Tris-base, 150 mM NaCl, 25 mM imidazole, and 10% glycerol at pH 8.0. ** Samples were 

prepared by this method in Figure 10. 

 

4.5 Preparation of 19F-NMR samples  

19F-NMR samples were prepared to a final concentration of 41 μM protein in 520 ul 

volume containing 10% D2O. The addition of ligand was done in two separate injections 
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of the compound to reduce precipitation. Injections were spaced 20-30 min apart to allow 

time for binding. All ligands were dissolved in D6-dimethylsulfoxide (DMSO). Deuterated 

solvents were obtained from Cambridge Isotope Laboratories Inc. and were at least 99% 

isotopically pure. The final concentrations of ligand for all samples were 1x ligand to the 

protein. FXR mutant proteins were purified by first lysing E.coli cells and then went 

through centrifugation at 19,000 g for 1 h, then labeled with 0.1% BTFA (9.63 M stock) 

added to the lysate, incubated at 4 °C for 15-20 minutes, then filtered using a 0.45 μm filter 

before IMAC His-tag purification. NMR samples were prepared by buffer exchanging 

protein samples >100x into 50 mM NaCl, 50 mM Tris-base, 10mM TCEP, 10% glycerol 

(pH 8.3) using 30 kD MWCO Amicon Ultra-15 concentrators (Merck Millipore) to remove 

excess NaCl. After the ligands were added in a 1:1 ratio in two steps at an interval of 15-

20 min to avoid ligand precipitation, followed by the addition of buffered D2O. 

 

Some previous 19F-NMR samples were prepared using different buffer conditions and 

labeling. MBP-FXR LBD purified in 20  mM Tris base, 150 mM NaCl, 25 mM imidazole 

and 10% glycerol at pH 8.0. 2X BTFA was labeled after purification and incubated at 4C 

overnight. Samples were buffer exchanged in 25mM MOPS, 25mM KCl and 1mM EDTA 

>100x. The rest of the methods were the same as explained earlier. **Samples were 

prepared by this method in Figures 15, 19, and 20. 
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4.6 Molecular dynamics simulation   

 

Missing residues in the crystal structure compared to our FXR LBD construct used in NMR 

were added using the modeler in Chimera software, and a PDB file was saved. This PDB 

file was then submitted to the h++ server (http://biophysics.cs.vt.edu/H++) to determine 

the state of titratable protons at pH 7.4 along with more realistic rotamers for some residues. 

This h++ PDB file was then given AMBER residue names using pdb4amber 

(AmberTools14). The ligand from this PDB file was removed, and hydrogens were added 

in Chimera then submitted to the RED server for RESP charge assignment. The output 

mol2 file was then used to prepare a gaff2 file and a force modification file (frcmod). Tleap 

was then used to generate parameter and coordinate files using ff14SB and GAFF2 values. 

A truncated octahedron solvation cell with boundaries at least 10 Å from any protein atom 

was built with TIP3P water. The system was neutralized with Na+ ions, and K+ and Cl- ions 

were added to 0.5 M. Joung and Cheatham ion parameters were used. Minimization (imin 

= 1) and equilibration were carried out in nine steps with non-bonded cutoff set to 8 Å and 

with the equilibrations carried out at 310 K. The final restart file from this process was 

used along with a hydrogen mass repartitioned parameter file (modified using parmed) to 

run new simulations with new randomized atomic velocities using 4 fs steps at 310 K. 

Analysis was carried out using CPPTRAJ. All production simulations were carried out 

using pmemd.cuda. 

 

 

 

 

 

http://biophysics.cs.vt.edu/H
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