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Asymptotically-Optimal Topological
Nearest-Neighbor Filtering

Read Sandström1 Jory Denny2 Nancy M. Amato3

Abstract—Nearest-neighbor finding is a major bottleneck for
sampling-based motion planning algorithms. The cost of finding
nearest neighbors grows with the size of the roadmap, leading
to a significant computational bottleneck for problems which
require many configurations to find a solution. In this work,
we develop a method of mapping configurations of a jointed
robot to neighborhoods in the workspace that supports fast
search for configurations in nearby neighborhoods. This expedites
nearest-neighbor search by locating a small set of the most likely
candidates for connecting to the query with a local plan. We show
that this filtering technique can preserve asymptotically-optimal
guarantees with modest requirements on the distance metric. We
demonstrate the method’s efficacy in planning problems for rigid
bodies and both fixed and mobile-base manipulators.

Index Terms—Motion and Path Planning, Semantic Scene
Understanding

I. INTRODUCTION

S
AMPLING-BASED motion planners such as PRM [1]
and RRT [2] explore a problem by sampling random

configurations for a robot and connecting them to nearby
neighbors. The nearness of two configurations is determined
by a distance metric defined over the entire configuration
space. An important component in the process of connecting
configurations is a nearest-neighbor search, which determines
which existing configurations to attempt connecting to a new
sample. Nearest-neighbor finding is a major bottleneck for
sampling-based planners. A brute-force scan requires linearith-
mic time for each connection attempt, while more advanced
methods such as the k-d tree [3] approach logarithmic time
with a sufficiently large number of configurations.

However, prior work has focused primarily on utilizing
faster computational techniques as opposed to leveraging the
shape of the free space. Such approaches rely on metrics which
ignore visibility when computing point-to-point distance. In
sampling-based planning, a nearest-neighbor must be visible
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to the query point in order to be connectable via a local plan.
Metrics which are blind to the obstacle space consider only
proximity, which can lead to failed connections in the presence
of thin walls (Fig. 1(a)). When this occurs, the compute
resources spent on nearest-neighbor finding are wasted.

Topological Nearest-Neighbor Filtering [4] presents a so-
lution to this problem by considering the connectivity of
the free configuration space, Cfree, when determining viable
nearest neighbors. This method maps configurations to local
neighborhoods in workspace that are described by a cell
decomposition mesh. Given a query point q, configurations
in q’s neighborhood can be quickly located, and the mesh’s
adjacency relationships provide a means to quickly locate
additional configurations in neighborhoods that are nearby
through the connected workspace. This works in many robotics
applications where the workspace has a large influence on the
shape of Cfree, e.g., where a rigid body must navigate a tunnel.
These candidates can be passed as an input set to another
nearest-neighbor method.

In this work, we show how the filter can preserve the
asymptotic-optimality guarantees of RRT* [5] and SST [6]
by leveraging a relationship between the distance metric and
workspace translation of each link. This is important because
asymptotically-optimal planning can require large roadmaps
to converge to desired path costs. The topological filter is
an effective way to identify promising candidates for con-
nection without considering the entire (large) roadmap. We
also show how filtering can be applied to multi-link robots
such as manipulators. We evaluate the filtering technique
in asymptotically-optimal planning settings for a rigid-body
robot, fixed-base manipulator, and mobile-base manipulator.
This work represents a portion of the author’s PhD disserta-
tion [7].

II. RELATED WORK

In this section, we describe relevant prior work on nearest-
neighbor methods in sampling-based planning, asymptotically-
optimal planners, and inner distance.

A. Nearest-Neighbor Methods

Nearest-neighbor finding has attracted significant attention
in sampling-based motion planning research as a primary
performance bottleneck. Two primary avenues have been in-
vestigated: computing the exact set of nearest neighbors, and
bounded approximations of this set.

A popular method for exact nearest-neighbor finding in
a motion planning context employs a k-d tree to quickly
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Fig. 1. (a) An example scenario where proximity alone is not a good metric for
choosing a nearest-neighbor. The planner is searching for a nearest-neighbor
for the sample Q from the roadmap (blue). The best neighbor is N , but a
pure proximity metric will choose M because it is closer in the configuration
space Cspace. (b) A configuration of a rigid-body robot (red) is contained by
the decomposition cell (blue) which contains its reference point (yellow). (c)
A configuration of a multi-link robot (red) where the neighborhood cells are
colored for the first (green), second (orange), and third (blue) joints.

compute the nearest neighbor [8]. A later work re-iterates on
this method to develop a partitioning strategy which better
respects the nuances of the orientation components [9]. The
use of k-d trees is also observed for nearest-neighbor problems
in machine learning. Other structures such as metric and cover
trees have also been suggested, although empirical evidence
suggests that these are not significantly faster than k-d trees
in problems of moderate size and dimension [10].

However, other research has noted that k-d trees perform
little better than brute-force when the problem dimension is
moderate to large [11]. Such difficulties have spurred inves-
tigation in approximate nearest-neighbor methods, which aim
to relax accuracy for a large gain in speed. Locality-sensitive
hashing is a well-known class of approximate methods which
attempts to bucket similar samples together with some form
of hashing scheme, and has been applied in both machine
learning [12], [13] and motion planning [11]. An alterna-
tive approximate method from the motion planning realm
is distance-based projection onto Euclidean space (DPES),
which measures distance to landmarks in a lower-dimensional
projected space [14].

Topological Filtering [4] investigates a nearest-neighbor
filter based on workspace connectivity. It attempts to select
a small set of candidate neighbors which are near to the
query point through some connected subset of Cfree, (e.g.
workspace). The intention is to avoid choosing points that are
nearby according to a distance metric, but are actually very
far apart through Cfree (Fig. 1(a)).

B. Asymptotically-Optimal Planners

Another area of interest in sampling-based motion planning
is the study of asymptotically-optimal (AO) planning algo-
rithms. These techniques continue to refine the solution after
an initial trajectory is identified, and asymptotically converge
to an optimal solution. The RRT* method [5] provides an RRT
with AO behavior by re-wiring the tree so that each node is
connected to the roadmap root by a minimum-cost path. As the
number of roadmap configurations increases, the cost of each
path in the tree converges asymptotically towards the global
optimum.

However, RRT* requires a steering function to support
nonholonomic robots, and is thus not applicable to systems

without a known steering function. To combat this difficulty,
the Stable Sparse Tree or SST method provides an RRT-like
algorithm which achieves asymptotic near-optimality behavior
without a steering function [6]. The tree is extended only
from the lowest-cost configuration within a given witness

region, where the witness regions are small balls in state
space that enforce sparseness. The SST* variant provides
full AO behavior by slowly reducing the witness radius over
time. Although tuning the sparseness is non-trivial, the SST is
theoretically important in being the first algorithm to provide
AO planning without a steering function.

C. Inner Distance

To support AO planners with the topological filter, we will
require a measurement of the shortest-path distance between
two cells in a workspace decomposition without entering the
obstacle space. This is known as the inner distance [15] or
Euclidean shortest-path distance. We will prefer the former
term to avoid confusion with the general Euclidean distance.
An exact computation of this distance is known to be NP-
Hard [16], but bounded approximations exist which can esti-
mate the distance in polynomial time [17].

III. TOPOLOGICAL FILTERING

Topological Filtering employs a convex cell decomposition
of the workspace, which is a partitioning of the free workspace
into a set of discrete convex cells [18], e.g. a tetrahedralization.
The decomposition provides a graph representation of adjacent
convex cells in the workspace and can be thought of as an
atlas, which we refer to as the decomposition graph. This map
encodes information about the connectivity of the cells and can
be searched to locate sets of nearby cells, or neighborhoods.

The decomposition graph can also be used as a means of
‘bucketing’ nearby configurations together. A point on the
robot’s base, termed the reference point, is chosen to represent
the robot’s rough location in workspace. Usually the object’s
centroid or bounding box center is a good choice for this
point. Let r be a robot, p be its reference point, and W

be a decomposition graph. For any configuration q ∈ Cfree,
a cell c ∈ W is said to contain q if p ∈ c when r is
configured at q (Fig. 1(b)). The cell c which contains q may
be efficiently determined by a range-searching method such
as a segment tree [18]. Since the cells of W are disjoint, each
free configuration will map to exactly one cell (boundary cases
may be decided by any deterministic method).

The topological filter leverages this relationship by mapping
configurations to their containing regions with a hash map.
Whenever a configuration q is added to the roadmap, the
filter maps q to the set for cell c, and conversely maps c to
q. This topological mapping provides an amortized constant-
time lookup of the vertices in a cell and the cell holding an
already-discovered vertex (although the latter can be efficiently
recomputed as noted above).

When searching for nearest neighbors to some configuration
q, the filter first locates the cell c which contains q. Next,
it performs a single-source shortest-path search through the
decomposition graph W starting from q and looks for the
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first cell c1 that holds a mapped configuration. It continues
searching until exceeding an additional backtrack distance

and takes all cells discovered between c1 and the end as
the topological frontier F for this query. F is a set of cells
which hold the most promising nodes for connection w.r.t. the
subset of Cspace that W is modeling (in this case, the physical
workspace). The roadmap vertices in F can be determined
using the topological map and used as the candidate set to
draw neighbors from in a traditional nearest-neighbor method,
e.g., a k-d tree. The filter’s role is thus to select a small set
of promising candidate neighbors.

This type of frontier selection represents a dynamically-
selected set of cells that extends from the first populated cell
to a backtrack distance further away from the query cell c, and
it works well in combination with k-nearest neighbor selection
strategies. For a radius-based nearest-neighbor method, we do
not need to consider the state of the roadmap and simply select
all cells within a radius of c.

IV. DISTANCE BETWEEN CELLS

Ideally, the distance between a pair of cells c1, c2 would
be computed as the minimum inner distance (Section II-C)
between any two points p1 ∈ c1, p2 ∈ c2, which is an NP-Hard
problem. When approximate nearest neighbors are acceptable,
we can employ a rough estimate of the inner distance with a
decomposition graph search where the edge weights are the
distance between cell centers, measured through the midpoint
of the shared facet. While computationally cheap, it unfor-
tunately has many failure cases and is not suitable for exact
nearest neighbors.

When we must have exact nearest neighbors (i.e. for
asymptotically-optimal planning), we require a measure of the
inner distance Tid(c1, c2) between cells. We can accept an
approximation T̂id(c1, c2) so long as it is upper-bounded by a
constant; i.e., T̂id(c1, c2) ≤ δTid(c1, c2) for all c1, c2 and some
δ > 0. With such an approximation, the frontier F will be the
set of cells where T̂id(c1, c2) ≤ δrW for an inner-distance rW .

One such approximation is to employ an occupancy grid
search by overlaying a grid with voxel length s onto the
workspace and mapping cells to voxels with collision check-
ing. An outward Manhattan search over the grid from the
voxels touching a cell c1 can then determine the minimum
distance to a voxel touching another cell c2. This yields an
approximation with δ =

√
2 for two-dimensional workspaces

and δ =
√
3 for three-dimensional workspaces.

V. TOPOLOGICAL FILTERING WITH AO PLANNERS

Asymptotically-optimal planners such as RRT* and SST
require a radius-based search given the metric defined in Cspace
to identify candidate neighbors. In this section, we will refer to
this radius as r∗ ≥ r∗RRT , where r∗RRT is ths minimum radius
for asymptotic-optimality. To employ topological filtering with
these methods, we require a radius-based frontier with a
carefully chosen radius to capture the necessary portions of
Cspace.

Preserving the optimality guarantees for either planner re-
quires that the nearest-neighbor operation locate all configu-
rations within r∗ of a query configuration q ∈ Cspace. For a

(a) (b) (c)

Fig. 2. (a) A Cspace radius (yellow) as computed by a standard distance
metric, projected onto workspace. (b) The same radius measured by inner
distance. (c) The radius-based frontier (purple) selected to model the desired
inner distance.

distance metric D(q1, q2) which measures the proximity of
two configurations q1, q2 through Cspace, this radius crite-

rion indicates that all roadmap configurations {x ∈ Cfree |
D(q, x) ≤ r∗} must be considered as candidates. However,
this choice of radius is motivated by theoretical arguments
of percolation theory in relation to random geometric graphs
in spaces without obstacles [5]. In the presence of obstacles,
we observe that percolation must occur in a graph over
Cfree rather than Cspace. Obstacle occlusion means that two
configurations q1, q2 will only be connectable by a straight
line if their inner distance in Cfree, denoted as Did(q1, q2),
is equal to their distance ignoring obstacles, D(q1, q2). This
is because inner distance measures the length of the shortest
path from q1 to q2 without leaving Cfree (Fig. 2(a),2(b)),
so D(q1, q2) 6= Did(q1, q2) indicates that the shortest path
is not a straight line as would be attempted by the local
planner. Consequently, percolation of the graph is maintained
by substituting Did for D when selecting neighbors because
the former will never omit connectable candidates.

However, we cannot feasibly compute the set of config-
urations within a Cspace ball βr∗ with respect to Did. Our
strategy then will be to leverage the workspace topology to
approximate a projection of βr∗ into the workspace W , where
we can then leverage our topological map to locate a superset
of the desired candidates. Formally, let βr∗ be a ball of radius
r∗ in the metric space MC = (Cspace, Did) which contains
some set of configurations XC ⊂ βr∗ . Let βrW be a ball in the
metric space MW = (W, Tid), where Tid represents the inner
distance in W and βrW contains a set of configurations XW .
We aim to compute an approximate mapping φ : MC → MW

such that the co-image of a ball in MW is a superset of its
counterpart in MC , i.e. φ−1(βrW ) ⊃ βC . When this is possible,
the topological filter is able to provide an over-estimate of the
configurations in βrW which satisfy the radius criterion as
measured through Cfree by Did.

To satisfy this requirement, we can leverage a relationship
between the Cspace metric Did(q1, q2) and the workspace met-
ric Tid(q1, q2). If Tid(q1, q2) ≤ αDid(q1, q2) for all q1, q2 ∈
Cfree and some constant α > 0, then all configurations
within a Did-distance of r∗ are also within an Tid-distance
of rW = αr∗. In this case, we can determine the candidate
neighbors which satisfy the radius criterion using a distance
measurement in workspace. This relation between Did and
Tid holds for many popular distance metrics, including the
canonical L2 norm. For mobile-base robots, it can be satisfied
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with α = 1 since the L2 norm will always be at least the
translational displacement. This is an approximation of the
ideal mapping between spaces φ that is sufficient to guarantee
the desired co-image property.

For satisfying distance metrics, we can employ a topological
frontier F which includes all cells within inner distance of αr∗

from the cell c containing a query point q, where inner distance
between cells c1, c2 indicates the minimum possible inner
distance between any pair of points in each cell (Fig. 2(c)).
This frontier describes a radius in connected workspace. We
argue that this set F will contain all configurations XW , and
therefore all configurations XC ⊂ XW because the relation-
ship between metric spaces establishes a valid approximation
of the ideal mapping φ.

In simpler terms, the set F includes all configurations which
may be connectable to q with a path through Cfree of length
r∗ or less. The radius criterion in optimal planners is specif-
ically meant to lower-bound this path distance, so our slight
over-estimate will yield asymptotically-optimal behavior. Any
configurations that are within an absolute D-distance of r∗ to
q with Did-distance greater than r∗ are necessarily occluded
by an obstacle and will not be connectable to q.

VI. EXTENSION TO MANIPULATORS

Applying the topological filter to multi-link robots presents
an obvious question on whether a single reference point pR is
adequate to characterize the workspace neighborhood of the
full robot body. A single pR on the robot’s base will certainly
provide a valid filter for mobile-base manipulators, but this
fails to capture connectivity for the remainder of the links.
The same issue applies to fixed-base manipulators where the
end-effector is the most important body. In these cases, there is
no choice of pR that provides a complete topological mapping
for the entire robot.

The topological filter can be extended to support filtering on
multiple links by generalizing the concept of a cell containing
a configuration. Let B = (b1, b2, . . . , bn) be an ordered tuple
of the robot R’s n individual component links. When R is
positioned at some configuration q, each of its individual
links bi ∈ B will be contained by some cell c ∈ W , where
W is the decomposition graph. We define the neighborhood

key of R at a configuration q as the ordered tuple of cells
(d1, d2, . . . , dn) occupied by R’s individual links when posi-
tioned at q (Fig. 1(c)).

The set of all valid neighborhood keys and transitions
between them is exceedingly large even for a small decompo-
sition. Each link bi ∈ B may be contained by any cell di ∈ W ,
and multiple links may also be contained by the same cell such
that di = dj for i 6= j. The number of possible neighborhood
keys is thus |W |n, so we unfortunately cannot form a graph
over that space. However we can approximate the function of
such a structure by composing a separate topological map for
each of the robot’s links.

To apply topological filtering to multiple links of R, we
can construct a separate topological map for individual links.
When searching for a nearest-neighbor to some configuration
q, the filter now begins by locating the neighborhood key for

q via the set of individual maps. The frontiers and candidates
are then identified as in the rigid-body case and joined by a
soft intersection to produce a refined candidate set.

To compute the soft intersection, we count the number of
times each candidate appears across all frontiers and select the
most frequently observed candidates. This identifies the best
available candidates and empirically produces good results.
It is achievable with the same time complexity as a strict
intersection, which is undesirable because it may produce
an empty candidate set. This can occur due to a relatively
high mobility of the end-effector (and other distal links) in
comparison with the base (and other proximal links). As
the number of links and their lengths increase, this problem
worsens because there are a greater variety of configurations
that do not simultaneously occupy the topological frontiers for
all links. An empty intersection is a worst-case scenario for the
filter because the computation performed to locate candidates
is wasted without discovering any useful information.

We also note that it is not strictly necessary to filter on all
of the links, as there is a kinematic relationship between them
defined by the properties of their adjacent joints. Depending on
the mobility of the robot, it may be desirable to filter only one
link or some subset of the links, such as the base, end-effector,
and a middle elbow. The filter will ignore the unfiltered links
in this case and only restrict the candidate set based on the
links under consideration.

To preserve AO properties we require a radius-based frontier
for each link. For fixed-base robots this is feasible by estab-
lishing a maximum ratio of workspace translation to Cspace
distance to define an α value for each link.

For mobile bases, this presents a challenge as there is often
no meaningful way to bound the ratio for links other than the
base. In such cases, a filter on the base alone will preserve the
AO properties but lack the discerning power of a filter covering
more links. The filter power can be increased by applying a
filter with a carefully selected radius to other links, but this
is a heuristic which unfortunately can’t strictly preserve the
AO properties of RRT* because a radius that is too small may
miss connectable candidates (although the asymptotic near-
optimality properties of SST will be preserved). Because this
may rule out connectable configurations that are truly within
the optimal radius r∗, the resulting planner may not converge
to the true optimal path and is thus only near-optimal.

Despite the theoretical limitations, we observe good results
in practice with mobile bases by applying the filtering radius
for the base link to the end-effector only. This prefers to
attempt rewiring between configurations with nearby end-
effector positions at the cost of true asymptotic-optimality.

In some cases however, a workspace-based filter on the
end-effector is counterproductive. This occurs for end-effector
positions where the robot has high redundancy and thus
self-mobility. High self-mobility means that there are many
possible configurations that leave the base and end-effector
fixed in the same relative configurations. It is not necessarily
the case that transitioning between all of these configurations is
easy or likely. For highly redundant manipulators, it is best to
perform filtering on links that are more proximal to the base
with lower self-mobility, or to at least include such a link
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Fig. 3. A holonomic rigid-body problem where a quadcopter must traverse a cityscape. The solid lines show the average while the colored areas represent
the spread.

in a composite multi-link filter to avoid this problem. This
sacrifices some discriminating power but avoids over-fitting
the neighbor selection on the assumption of easy transitions
between configurations with nearby end-effector locations.

VII. EVALUATION

To validate the method, we compare RRT* and SST with
brute-force, k-d tree, and topological filtering over two 3D
rigid-body (6 DOF) and two manipulator planning problems
with thin walls that extend beyond feasibility planning and
into path refinement. The k-d tree variant employs a k-d tree
only during the 1-nearest check and not the radial searches,
and is thus not applicable to SST.

A. Experiment Setup

The rigid-body problems include a quadcopter in an open
environment (Fig. 3) and a box in a moderately narrow
tunnel (Fig. 4). The first shows how the filter performs in
more open spaces, where its primary advantage is reducing
the number of candidate neighbors to consider. The second
shows how its connectivity model provides additional benefits
in workspaces with occluded visibility.

The manipulator problems include a fixed-base manipulator
maneuvering between shelves (Fig. 5) and a mobile-base

manipulator moving around shelves (Fig. 6). This covers a
range of manipulator problems where the topological filter is
expected to provide some level of utility by avoiding candidate
neighbors likely to intersect with thin walls. In all cases, the
filtering is performed only on the end-effector to maximize this
potential benefit (which also implies that the RRT* variants
are limited to asymptotic near-optimality).

The same robot is used for the fixed-base and mobile-
base problems. It has four spherical joints and is permitted to
translate but not rotate its base in the mobile version (because
rotation would be redundant with the first joint). It has eight
DOF for the fixed problem and ten for the mobile one.

All methods employ a Cspace Euclidean distance metric with
straight-line local planning and uniform random sampling in
Cfree. Each variation is run thirty times to 20k iterations.
We report the generated map size, run time, nearest-neighbor
time, path cost, and success rate (where success is defined as
generating a path before the iteration limit). The plots show
an average as well as the minimum/maximum envelope for
each method as a function of iteration count. The envelope
shows how the methods overlap in expected behavior. The
use of iterations rather than time for the x-axes is intended
to disambiguate the effects of cheaper vs. more efficacious
iterations. Times are reported in seconds and path cost in
Euclidean distance. Only successful trials are plotted.
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Fig. 4. A holonomic rigid-body problem where a box robot must traverse two L-shaped tunnels and a narrow gap. The rotation of the box substantially
increases the narrowness of the tunnels in Cspace. The solid lines show the average while the colored areas represent the spread.

All experiments were executed on a desktop computer
running CentOS 7 with an Intel® Core™ i7-3770 CPU at 3.4
GHz, 16 GB of RAM, and the GNU g++ compiler version
9.2.0. The workspace tetrahedralization was performed with a
combination of the TetGen [19] and CGAL [20] libraries and
required no more than one second to complete. The k-d tree
implementation is also from the CGAL library.

B. Analysis

1) Rigid-body Problems: In the quadcopter problem
(Fig. 3), we see that the filter provides consistently faster run
and nearest-neighbor time for both methods vs. the brute-force
and k-d tree versions. The gain is sufficient that the envelope
maximum for the filtered algorithms performs better than the
minimum for the non-filtered instances. We also observe no
loss in path quality, and that the filtered algorithms take equal
or less time to discover an initial path.

In the tunnel problem (Fig. 4), we observe a similar trend:
the filtered algorithms’ maximum envelope lies beneath the
unfiltered variants’ for both time metrics. There is no loss in
average path quality for either RRT* or SST, although the fil-
tered SST exhibits slightly higher variance than the unfiltered
version. The number of iterations until all paths solve is also
slightly higher for the filtered RRT* in comparison to the k-

d tree version, but the filter’s advantage in run time means that
it will reach that point before the k-d tree would.

In both problems, we see a clear advantage in both run-time
and nearest-neighbor time for the filtered methods which con-
tinues to increase as the iteration count grows. This supports
the hypothesis that the filter’s efficiency and efficacy grow with
roadmap size, which is a very desirable property.

2) Manipulator Problems: In the fixed-base
problem (Fig. 5), we observe reasonable benefits from
the filter in all metrics of interest. The execution and nearest-
neighbor time envelopes for the filtered RRT* are clearly
below the unfiltered versions, and the path cost converges
more quickly to a lower minimum value. The SST variants
struggle with this problem because the notion of a witness
radius does not work well with fixed-base manipulators. The
problem here is that the robot’s Cspace is entirely comprised
of its joint space, and small changes in joint space values
can yield drastically different changes in the end-effector
position. This means that small motions of the robot may be
rejected due to a lower-cost witness ‘nearby’ even though
the configurations are significantly different. The witness
regions are meant to define small neighborhoods in Cfree
where the contained configurations have similar connectivity
properties, but this breaks down for joint space due to the
large differences in semantics that can occur with small
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Fig. 5. A fixed-base manipulator problem where the robot must transition between grasping positions within pick shelves on alternate sides of the workspace.
The solid lines show the average while the colored areas represent the spread.

differences in the Cspace metric.
In the mobile-base problem (Fig. 6), we observe that the

SST problems are mitigated by the influence of the transla-
tional DOFs on the distance metric. However, the filtered SST
algorithm under-performs compared to the unfiltered version
in convergence rate; it does achieve equivalent path cost but
takes longer to do so, with more trials failing to discover
a path by the iteration limit. This occurs despite a better
extension success rate indicated by the larger map size for
the filtered version. For RRT*, we also observe a higher rate
of successful extension and comparable path cost, but with
quicker discovery of initial solution. The filtered algorithm’s
nearest-neighbor time is roughly comparable to the k-d tree
version despite working with a 25% larger roadmap.

These problems demonstrate that the filtering concept can
be applied to asymptotically-optimal manipulator problems.
Generally we observe that the step down to asymptotic near-
optimality with RRT* by filtering on the end-effector for
mobile base problems provides a better convergence rate to
lower path cost despite the reduced guarantee. This occurs
because filtering during the extension step changes the shape
of the tree to avoid excessively driving configurations up
against obstacle walls, causing more of the extensions to be
again extendable in a subsequent iteration. This also causes
the higher rate of extension success observed by the larger

maps generated by the filter. Filtering during the rewiring step
helps manage the cost of rewiring the larger map, and avoids
costly local plans which are unlikely to succeed.

VIII. CONCLUSION

We describe the topological filtering algorithm for nearest-
neighbor search with asymptotically-optimal planners, and
demonstrate that it both improves the likelihood of successful
extension and reduces the computational cost of the nearest-
neighbor process. These benefits arise from a level of obstacle-
awareness in nearest-neighbor selection provided by a an
approximation of Cfree’s connectivity.

An interesting avenue for future work is to apply the con-
cepts here with an atlas other than a workspace decomposition,
such as those generated by the AtlasRRT algorithm [21].
Because the filter only requires that the cells or charts represent
neighborhoods where connectivity is likely, virtually any atlas
with such a property could be employed. An approximate atlas
may allow application of the filtering technique to problems
where the salient details of valid paths in Cfree bear little or no
relation to workspace, such as the well-known alpha puzzle.
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