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Abstract 18 

The Allee threshold, the critical population density separating growth from decline in populations 19 

experiencing strong Allee effects, can vary over space and time but few empirical studies have examined 20 

this variation. A lack of geographically extensive, long-term studies on low density population dynamics 21 

makes studying variability in Allee effects difficult. We used North American gypsy moth population 22 

data from 1996-2016 to quantify Allee thresholds in 11 regions of the invasion front. Allee thresholds 23 

spanned a continuum from being undetectable due to strong population growth at all densities, to being 24 

unmeasurable because populations declined across all densities. The lag-1 temporal autocorrelation in 25 

Allee thresholds tended to be negative and spatial synchrony in Allee thresholds extended no further than 26 

adjacent regions. This work furthers understanding of spatiotemporal variation in Allee effects using 27 

extensive empirical data at the range edge of an invasive insect.  28 
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 29 

 30 

Introduction 31 

  Demographic Allee effects play an important role in the establishment and spread of invasive 32 

species (Taylor and Hastings 2005; Courchamp et al. 2008). When strong Allee effects occur, the per-33 

capita population growth rate becomes negative below a threshold population density—termed the Allee 34 

threshold or critical density—tending to lead to extinction (Courchamp et al. 1999). The strength of Allee 35 

effects can vary spatiotemporally (Tobin et al. 2007; Walter et al. 2017); however, the spatial and 36 

temporal structures of variation in Allee effects remain largely unknown. Allee effects have been 37 

demonstrated in North American populations of gypsy moth, Lymantria dispar (L.), a forest-defoliating 38 

pest introduced from Europe in 1868, and linked to mating failure in low-density populations (Contarini 39 

et al. 2009; Tobin et al. 2013). Tobin et al. (2007) introduced a method for estimating Allee thresholds 40 

from spatiotemporal abundance data, and applied it to gypsy moth. Based on available data at the time, 41 

Tobin and colleagues quantified Allee thresholds using three relatively large and ecologically 42 

heterogeneous regions over 8 years, 1996-2003 (Tobin et al. 2007). We used over a decade of additional 43 

data to examine 1) how the Allee threshold varied spatially over smaller, more homogenous regions; 2) 44 

the structure of temporal variability in Allee effects, and 3) whether Allee effects vary synchronously 45 

between regions.  46 

 47 

Methods 48 

We analyzed data from the Slow the Spread (STS) program, a gypsy moth management program that 49 

monitors range expansion and identifies incipient colonies ahead of the range edge for treatment (Tobin et 50 

al. 2004; Grayson and Johnson 2017). In this program, ≈100,000 georeferenced pheromone-baited traps 51 

are deployed annually across a ≈175 km-wide transition zone from North Carolina to Minnesota that 52 

separates the portion of the USA where gypsy moth is established from areas where it is not. Traps are 53 

placed on a ≈2 km grid in low gypsy moth density areas, with spacing increasing to 3-8 km towards the 54 
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established range (Tobin et al. 2004). Traps catch only adult males, but are considered a valid index of 55 

population density and have been widely used as such (Grayson and Johnson 2017). 56 

 We used the method of Tobin et al. (2007) to pinpoint the Allee threshold. In brief, the trap catch 57 

data were used to generate interpolated surfaces for 1996-2017 over a grid of 5 × 5 km cells using 58 

indicator kriging. From each grid cell, we extracted the estimated number of male moths per trapping area 59 

for each year, ni,t. and its estimate for the following year, ni,t+1. We omitted any pairs whose initial value 60 

was 0, and any cells within 1.5 km of an area treated for gypsy moth. In practice, <2% of the monitoring 61 

area was treated in any given year. We binned the data into a sequence of density categories based on the 62 

estimated abundance in year t. The width of each bin was 1 moth (i.e., 0 < ni,t ≤ 1, 1 < ni,t ≤ 2, etc.). The 63 

population replacement proportion (i.e., the proportion of pairs with ni,t+1 ≥ ni,t) was calculated for each 64 

density bin. We used local polynomial regression (Fan and Gijbels 1996) to analyze how the replacement 65 

proportion changed as a function of density. The polynomials had degree = 1 with a smoothing parameter 66 

of 0.5. The Allee threshold was defined as the lowest abundance in year t at which the replacement 67 

proportion equaled or exceeded 0.5. This approach is suited to quantifying Allee thresholds in cases 68 

where there are data on many populations through time because taking the replacement proportion helps 69 

to identify signal in noisy data, while also minimizing the effect of stochastic changes in low-density 70 

populations that can be extreme on a ni,t+1/ni,t basis. Further details are given in Supplementary Material 71 

S1.  72 

 By definition, Allee effects occur in small populations, so we considered only relatively low 73 

density populations (Tobin et al. 2007). Earlier work operationally defined low densities as ≤ 30 moths 74 

trap-1, but in some cases Allee thresholds were not estimated because population replacement proportions 75 

never exceeded 0.5 over this range (Tobin et al. 2007). To estimate Allee thresholds at higher densities, 76 

we applied the threshold estimation procedure to subsets of data with maximum trap catch densities 77 

beginning at 30 moths trap-1 and increasing sequentially by 10 moths trap-1 until an Allee threshold could 78 

be estimated or the maximum empirical trap catch density was reached. 79 
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Allee thresholds were estimated for 11 regions defined by the STS project to measure spread rates 80 

and plan treatments to eliminate nascent gypsy moth colonies (Fig. 1). These boundaries reflect 81 

geopolitical units and regional habitat. We estimated both a 1996-2016 time series of Allee thresholds and 82 

an overall Allee threshold combining data from all years. Allee thresholds were not estimated if there 83 

were data from fewer than 50 grid cells or fewer than 10 unique population density bins. Despite our new 84 

algorithm, we were unable to pinpoint an Allee threshold in regions and years where the replacement 85 

proportion never exceeded 0.5. In such cases, we used the maximum observed trap catch density as a 86 

surrogate for the Allee threshold. If the replacement proportion was ≥ 0.5 at all densities, the Allee 87 

threshold was considered 0. 88 

We quantified temporal autocorrelation and spatial synchrony in annual variation in the Allee 89 

threshold to characterize changes over time and space. Temporal autocorrelation was described using the 90 

lag-1 Spearman autocorrelation for each region. We quantified spatial synchrony in Allee thresholds by 91 

measuring pairwise Spearman correlations between all regions and plotting synchrony as a function of 92 

distance between region pairs, measured in number of regions, with adjacent regions having distance = 1 93 

and the most distant regions (1 and 11) having a distance = 10. Spearman rank correlation was deemed 94 

more appropriate than Pearson correlation given that we were not always able to quantitatively pinpoint 95 

the Allee threshold, and thus some values were best interpreted as relative, not absolute, estimates. 96 

 97 

Results 98 

 Spatiotemporal variation in gypsy moth Allee thresholds was substantial (Fig. 2a-c, Table 1). 99 

Long-term average Allee thresholds tended to be smallest in Wisconsin and the Appalachian mountains of 100 

Virginia and West Virginia, and largest in the Midwest and eastern Virginia. However, all regions 101 

experienced years with no measurable Allee threshold (i.e., all densities had population replacement 102 

proportions ≥ 0.5), and all but two regions experienced years where the Allee threshold could not be 103 

quantified because for all recorded densities, up to >800 moths per trap, the replacement proportion was < 104 

0.5. Estimated Allee thresholds were nearly identical when we excluded populations with trap catch 105 
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densities >0.1 and >0.5 moths per trap. The lag-1 temporal autocorrelation ranged from -0.56 in region 8 106 

to 0.10 in region 3 (Table 1), with a mean of -0.13. In adjacent regions the Allee threshold tended to 107 

fluctuate synchronously, but on average spatial synchrony did not extend beyond adjacent regions (Fig. 108 

2d).  109 

 110 

Discussion 111 

 By examining finer-scale geographic variation, we found differences in low-density population 112 

dynamics that were not apparent from earlier work (Tobin et al. 2007). In the Midwest (our regions 5-8), 113 

Tobin and colleagues found population replacement proportions rarely exceeded 0.5 at any trap catch 114 

density (Tobin et al. 2007), but in regions 5-6 (Illinois and Indiana) we found relatively modest Allee 115 

thresholds (Table 1). We also found that the earlier Allee threshold estimate for Virginia, West Virginia 116 

and North Carolina (our regions 9-11) was inflated by poor conditions for gypsy moth population growth 117 

and persistence in the Atlantic coastal plain (region 11) and that the Allee thresholds for southern 118 

mountainous areas were more similar to northern regions. Temperatures in the coastal plain regularly 119 

exceed the optimum for larval development and likely drive higher thresholds (Tobin et al. 2014).  120 

 Temporal variation in the Allee threshold exceeded spatial variation: every region experienced 121 

good and poor years for gypsy moth population growth, regardless of the long-term typical conditions 122 

(Fig. 2a-c). Ostensibly, year-to-year weather variation underpins some of this variability (Streifel et al.; 123 

Tobin et al. 2014). The lag-1 autocorrelation of Allee threshold time series was typically negative (Table 124 

1), implying that successive years tend to have somewhat dissimilar Allee thresholds. Further research is 125 

needed to identify the drivers of temporal variation in gypsy moth Allee thresholds, which are likely to 126 

include both density-dependent and independent factors (Walter et al. 2017). 127 

 Spatial synchrony in Allee thresholds rarely extended past adjacent regions (Fig. 2d). The lack of 128 

spatial synchrony could assist efforts to restrict the spread of the gypsy moth in North America. Since 129 

different parts of the invasion front experience favorable conditions for gypsy moth population growth in 130 

different years, it could be possible to allocate resources to areas where nascent populations are 131 
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proliferating while maintaining a consistent overall expenditure on management activities. Identifying 132 

factors associated with temporal variation in Allee thresholds would yield additional benefits in this 133 

regard. 134 

 This work contributes to a body of research on variation in Allee effects. Over 20 years and 11 135 

regions, Allee thresholds often were absent for two diametrically opposed reasons: populations at all 136 

densities tended to replace themselves or grow in size, or populations at all densities tended to decline. 137 

Our findings highlight that spatiotemporal variability can dramatically alter conclusions about the strength 138 

of Allee effects. Further work on tools for quantifying Allee effects and relating variation to ecological 139 

mechanisms has the potential to vastly increase knowledge of low-density population dynamics and the 140 

factors that drive extinction or population growth, particularly in the context of biological invasions. 141 

 142 
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Tables and Figures 178 

Table 1: Aggregate 1996-2016 Allee threshold and lag-1 temporal autocorrelation in annual Allee 179 

thresholds for STS regions 1-11 (Fig. 1). Values in brackets indicate that the maximum observed trap 180 

catch density was used as a surrogate for the Allee threshold. 181 

Region 
Allee 

threshold 
Lag-1 

autocorrelation 
1 0 0.13 

2 1.40 -0.25 

3 0 0.10 

4 2.25 -0.25 

5 11.67 -0.37 

6 6.75 -0.21 

7 [380] -0.02 

8 [550] -0.56 

9 5.24 -0.04 

10 2.42 -0.05 

11 [550] 0.05 

 182 

 183 

  184 
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 185 

Fig. 1: Map of regions defined by the STS program. 186 

 187 

  188 
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 189 

Fig. 2: Time series of Allee thresholds for by region in a) Wisconsin and Minnesota, b) Ohio, Indiana, 190 

and Illinois, and c) Virginia, West Virginia, and North Carolina; and d) spatial synchrony in Allee 191 

thresholds. Distance is measured in number of regions. In a-c, points marked with “x” indicate cases in 192 

which the maximum observed trap catch density was used as a surrogate for the Allee threshold. 193 
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