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0. 	Introduction  

Recent studies (Falco and Mulkey El], Bansal [2], Cleary [3], 

and Falco C47) of direct interest to EPA's Environmental Research 

Laboratory - Athens (EPA - AERL) were carried out to study the move-

ment, transformation and impact of pollutants in rivers and streams. 

These pollutant transport models are partial differential equations 

describing the concentrations of pollutants, bacteria, etc., in 

streams. In these models biochemical reactions are assumed to be 

pseudo-first order in pollutant concentration and biodegradation 

is assumed to follow various kinetics with Monod kinetics (see 

Falco and Mulkey Cl] or Monod [5]) often used. 

In all of the foregoing studies exact solutions are given for 

at most simplified and/or linearized problems whereas the true 

physical system is nonlinear. Numerical solutions are usually developed 

for such systems. While useful, numerical solutions are not easily 

employable in analyzing the model's adequacy and in parameter studies. 

Exact solutions readily permit these analyses. In addition, unless 

sophisticated error analysis is carried out, numerical solutions of 

complicated systems must be viewed with caution and even suspicion--

this is especially true for nonlinear systems because of potential 

nonuniqueness, singularities and bifurcation possibilities (see 

Ames [6]). 

In this report are employed four more realistic and thus more 

sophisticated nonlinear mathematical models of pollutant transport, 

turbulent diffusion and reaction in rivers and streams. These are 

akin to those used by Falco and Mulkey [1] and Falco [4]. 

The four models are described in Section 1 and dimensional 

analysis carried out in Section 2 for finite and infinite dimensional 



. models. In Section 3 exact solutions for all of the kinetic models 

(no transport, no diffusion) - the so-called stirred tank reactor - 

will be given and discussed. Section 4 shows how the exact kinetic 

solutions may be used to calculate the rate constants. An algorithm 

suitable for a digital computer is given. In Section 5 the transport 

terms will be included - the so - called plug flow model - and all 

systems solved exactly. Section 6 presents some remarks concerning 

the full system which now includes the turbulent dispersion effects. 

Travelling wave solutions for all models are discussed in detail 

in Section 7 and in Section 8 perturbation methods are applied to 

the equation for the pollutant of Models I and II. Difficulties in 

the perturbation analysis suggest that upper and lower bounds, 

involving all the parameters of the problems, will be more useful. 

These are constructed using the maximum (minimum) principle in 

Section 9 for the travelling waves and in Section 10 for the steady 

state. 

Since the parameters are not well known it is shown in Section II 

how deferred interval analysis can be used to calculate an approxi-

mation to the range of the upper bound. A summary and conclusion 

closes the report. 
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1. 	Mathematical Models 

With C., i = 1,2,3 as the concentrations of pesticide, 

bacteriaandorganiccarbon,D.,i = 1,2,3 the respective 

diffusion coefficients (actually dispersion coefficients to 

account for turbulent mixing), k i. 1,2,3 the appropriate 

rate constants and v the mean stream velocity the model is 

	

ac 	c 	2^ ,.

;T 
-r 

1 , 	
i 	

pl 	

C  
v - = 	 k 1 f 1 (C1 , C2, C 3 ) 

	

ax 	ax  

2" 

	

2 2 	 C 2 
+ V 	= D2 	+ 	C2, C3)

ax 	 Bx 
2 ^  

	

DC 3 	—  ac
3 	

C 
 

+ v 	=D3  _2  - k3
f
3
(C 	C2, C 3 ) 	(3) 

	

ax 	ax 

In these equations x represents distance along the river, T is 

time, and v is assumed constant unless otherwise specified. 

Inclusion of more spatial variables is possible especially in 

the case of no diffusion. 

Model I: Second order kinetics in all terms  

f1  = C1C2 ' f2 
= C2 C 3 	f 3 = C2 C 3 
	 (4) 

Model II: Third order kinetics in first term, second  

order in the others. 

f1  = C1C 2 C 3 
, f 2 = C2 C 3 , f 3 = C2

C 3 
	 (5) 

Model III: Second order kinetics in first term, 

Monod kinetics in the others. 

A A 	 A A 	 A 	 A A 

f
1 = C1

C2 ' f 2 
= C

2
C 3

/(K + C 3 ) ) 	f3  = C2
C 3

/(K + C 3
) (6) 

* V may be a function of x (see Section 5). 

aT 

(1)  

(2) 
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Model IV: Third order kinetics in first term, Monod  

kinetics in the others. 

f 1  = C
1 C 2, C 3 , f 2 = C2 C 3

/(K + C
3
) , f 3 = C 2 C 3/(K + C 3 ) (7) 

2. Dimensional Analysis  

When the model equations are transformed to dimensionless 

form there are a number of environmental benefits, in addition 

to the computational ones (see Kline [7] and/ or Barenblatt 

[8] for more background). 

These include 

i) Reduction of the number of independent biological, 

chemical and physical parameters; 

ii) Determination of governing independent parameters; 

iii) Converting units of parameters in a systematic 

fashion; 

iv) Guiding, generalizing and assisting in the collection 

of minimum amounts of data. Determination of unknown 

coefficients and optimum choice of variables and/or 

parameters for biological and physical experiments. 

The procedure will be described in detail for Model I 

and results recorded for the other models. In addition some 

additional results will be presented for kinetics only, in 

which a search for parameter free models is fruitful for one 

case (Model II). The first results are for a river of finite 

length L. 
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Model I  (f1  = C 1C 2, f 2 
= C2 C 3, f 3 = C 2 C 3 ) 

Let L be the river's length in some suitable units. With 

x = x/L, T = at, C1  = 8C1 , C 2  = yC 2  , C 3  = 6C 3  

equations (1), (2) and (3) become, respectively, 

	

aC 1 	av 
aC1 	D1

a
2 C1  

	

at 	L ax 	2 ax
2 - k

1
ayC1C 2  

aC 

	

2 	
aT.7  aC2 	D2a

2 C 2  + 
L —Ti-; 	L2 ax2 	k2a6C 2 C 3  

	

DC 3 	av aC 3 	D3a a
2 C 3 

	

at 	L ax L2 ax2 	k3ayC2 C 3  

With the choice a = L/v all the left hand sides become parameter 

free and the coefficients of the second derivatives become 

reciprocals of the well known Peclet (see Perry (9) numbers 

(i)L.T7 
NPe 	D . 

1 

for mass transfer. A further choice of y = V/k1
L changes (8) 

into 

	

aC1 	DC1 	1 	a2C1  

	

at 	ax = 	(1) NPe 	ax
2 	C1C2 

(8) 

(9) 

(10 ) 

When the choice (5 = v/k 2L is made equation (9) becomes 



	

ac t 	ac21  	a
2
C 2 + C2 C 3 

	

at 	ax 	(2) ---7 
NPe 

and equation (10) is transformed to 

	

DC
3 	

DC
3 	

1 	a 2 C 3 
k
3 „ 

	

at 	ax N (3) 

	

ax
2 	k1  C2 

C 3 
Pe 

Summarizing now, it is seen that the dimensionless 

variables are 

x = K/L, t = T\7/L, C1  = C1k 1L/v (actually t3 is arbitrary), 

C2 = C2 k 1 	C3 = C 3k 2 L/v and the dimensionless equations are 

(11), (12) and (13). The basic dimensionless parameters are 

those of reaction k3/k1 
and those of mass transfer N (1) , N (2) 

Pe Pe ' 

and4: ) ,InmanycasestheD.are all equal, say to D, because 

they result, primarily, from turbulent mixing. For those cases 

there are only two parameters k 3/k 1  and Npe  = Lv/D. 
^ ^ ^ 

Model II (f 1  = C1 C2 C3 , f2  = C2 C 3 , f 3  = C2 0 3 ) 

In this case the choice 

x = x/L, t = Tv/L , 
C
1 

= C1 k 1 L/v 	is again an arbitrary choice), 

C2 = C2 k1/k2 , C
3 
= C

3
k
2
L5 gives rise to the dimensionless 

equations 

a 	3 

	

C l 	Ci 	1 	a2Cl 

at + ax 	
- 

N (1) 	ax
2 	 - C1

C
2
C
3 

Pe 

	

act 	9C21 	a
2
C2  

	

+ 
	= at 	ax 	N (2) ax

2 + C
2
C
3  

Pe 

6 

(12) 

(13) 

(14) 

(15) 
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aC 3 	aC 3 1 	9
2C

3 	
[k3k2 L] + - 	 2 	C2C 3 

	

at 	ax 	N (3) 	ax 	k v 

	

Pe 	 1 

As before, if the D i  are all equal, the dimensionless equations 

contain only two  parameters. 

^ 	,... 
Model III  (f

1 
 = C1C2' f 2 = C2 C 3 /(K + C 3 ) = f 3 

Here the choice of 

x = 7/L, t = TV/L, C 1  = Ci k i L/V 	is arbitrary), C2  = C2 k 1 L5 

and C 3 = C 3
/K gives rise to the dimensionless equations 

	

9C1 	9C1 	1 	D2 Ci 

	

+ 	= at 	ax 	(1) N 	9x
2 - C1 C 2 

Pe 
 

aC2 	ac 2 1 	a
2C2 	k2L C2 C 3 

at + N 	
+ 

v ax 	(2) 	 — 1+C 
Pe 	

9x 2 
3 

	

aC 3 	aC3 - 	1 	
a 2C3 k 3  [ C2 C 3  

+ 

	

at 	ax N (3Pe
) Dx2 Kk1 	1 +C 3 

Inthisoase,whentheD
i 
 are all equal, there are three 

parameters, Npe , k 2L5 and k 3/Kk1  in the dimensionless 

equations. 

Model IV  (f 1  = C1C 2 C 3  , f 2  = C2 C 3/(K + C 3 ) = f 3 ) 

Here again the choice of 

x = X/L, t = TV/L, C1  = C1k1LK57 (13 is arbitrary) 
1% 	 A 

C2 = C2k 1LK5 and C 3 = C3
/K generates the dimensionless 

equations 

	

aC
1 	

aC1 	
a2C 

	

at 	

i 

+ ax = N (11) ax2 - C 1C 2 C  
Pe 

(16) 

(17)  

(18) 

(19) 

(20) 



	

ac2 	BC2 	1 	a2C2  

	

at 	3x 	(2) 	2 
NPe 	x  

k2L [C2C3 

 v 	1 + C3 
(21) 

	

ac3 	 1 DC3 	 3
2C3 k3 	C2C3 1 

	

at 	3x -2--  
N (3) 	3x2 K k 1+C3

i 
Pe 

(22) 

As in Model III these dimensionless equations have three 

parameters in that case where the D. are all equal. 

Remark 1:  While the foregoing dimensional analysis is the 

more familiar one there are alternatives. Of these only 

one example, for the full system of Model I, is presented. 

In that case where the river is arbitrarily long the following 

can be used. With 

_ 
x = V/D1 , t = TV2

/D1 , C1  = Ci (k lyv2  ), C2  = C2 (k1y
\;2 ) 

and C 3 = C 3
(k

2
D
1
5

2
) the dimensionless equations become 

	

C i 	3 C 1 	a2 Ci 	r 0  

	

at 	ax 	ax 

	

- 	2 - '1`- 2 

	

DC2 	3C2 	D2  3 2 C 2  

	

+ — - 	+ C2 C 3 

	

at 	ax 	D1 Bx2 

	

aC3 	ac 3 	D 3  B 2 C3  
+ 	 k3  C C 

	

at 	ax — 	---7 k 	2 3 D1 Dx 	1 

When D
1 

= D
2 

= D
3 

it is worth remarking that this dimensionless 

system has only one parameter k3 /k1 . 

Remark 2:  It is usually not possible to eliminate all parameters 

by dimensional analysis. However, in some systems a complete 

elimination is possible. That situation occurs in the kinetics 

of Model II - that is for 



= -k1C 1C 2
C
3 

dC 2   
dT 	

k2C2C 3 

A 
dC

3 	
k3C2 C 3. dT 

Here, with t = (k2
k
3
/k

1
)T, C

1 
= C

1 
, C

2 
= (k

1/k 2 )C2 and 

C 3 = (k1
/k 3

)C
3 
the dimensionless kinetic equations become 

dC 1  
dt = -C1 C2 C 3 

dC 2 -  
dt 	c2c3 

dC 3 -  
dt 	

C
2
C
3 

which are parameter free!  These cannot be compared with the classical 

results generated from (14), (15) and (16) because of the use of 

v and L in that analysis. 

3. Exact Kinetic Solutions  

In this section we derive the exact solutions for all four 

kinetic (stirred tank reactors) systems in which diffusion 

(). = 0, i = 1,2,3) and transport (17 = 0) are neglected. Alter-

native dimensional analysis must be carried out but no details 

are presented for that analysis. 

Model I: 

In this case the kinetic equations are 

A A 	dC 	 dC3 	
A A 

	

= -k1C1C2, dT 	= k
2C2C3  , dT  - k

3C2 C 3 . 

dC1  
dT 

9 

(23) 

(24) 

(25) 

dC 
1 

dT 



With t = k
1
C
2
(0)T, C 1  = C1/C1 (0) , C 2 = C2 /C2 (0), and 

C 3 = k2 C 3/k1 C2 (0) the dimensionless equations, in one parameter, 

are 

dC1   
dt 

- C

1C 2 

dC 2 -  
dt 	

C2C3 

and 

dC 3 	
k
3 

k 	3 
. C 

dt 	
1 C

2 
 

An exact solution of equations (26), (27) and (28) is 

obtained as a result of the following analysis. From (26) 

and (28), with C 1 # 0 and C 3 
# 0, 

1 	- 
dC

1 	
k
1 	1 

dC
3 = 

C1 	dt 	C2 	k3 C3 dt 

which integrates to 

C1  (t) = E 1
C
3
k1/k3 

where E1 
is a constant of integration. From (27) and (28) 

dC2 

	

	k1 dC 3 
= - dt 	k

3 
dt ' 

or 
kl  C2 (t) = E 2 - 	C

3
(t). 

Finally, substituting (30) into (28), that equation becomes 

dt 

dC 3  2 E
2 
C3 + C3

2 = -E
3
C3 

+ C 3 2 , 
k1  

10 

(26)  

(27)  

(28) 

(29)  

(30) 
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where E
3 
= k 3 E2 /k 1

. This is a Bernoulli equation readily integrable 

to 

C 3 (t) - 	  E2 E4 expEk 3 E2 t/k 1 1 + k1
/k 3 

which includes two arbitrary constants, E 2  and E 4 . 

From the dimensionless quantities it is clear that C 1 (0) = 1, 
k 2  a (0) 

C2 (0) = 1 and C 3 (0) = T- 	 . To evaluate E 1 , E 2  and E 4  these 
1 C2 (0) 

values are used. Thus from (29) 

	

k /k 	rk1  62 
 (01 ki/k3 

E1 = C 1 (0)/[C3' /-1 
i 3 _I. k 

2 C 3 (0) 

k 	(0) 	
- 	

1 	k1 1 
E2 = 1 +

23 
4 	C3 (0) 	k3 E2 • k3 C2 (0) 	

E '  

If C 3 = 0 then C2 = constant = a, so that C 1 (t) = expE-ati. 

Remark 3:  Once C 3
(t) has been calculated from (31) the relations 

(29) and (30) provide exact solutions for C 1 (t) and C 2 (t). From 

(31) it follows that C 3  + 0 as t+ ,20. Since k 1/k 3 > 0 equation (29) and 

and comment before Remark 3 imply that C i  4- 0 also. This raises 

questions about this model for long time studies. Because of this, 

we do not show any computations but delay them for Model II. 

Remark 4:  Another feature of kinetic systems which is of interest 

in analysis is the conservation law.  For these equations (26,27,28) 

of Model I there are two, namely 

k  C2 (t) + IT C 3 (t) = constant 
; 

 

and 
kl  In C1  (t) - 	In C3 (t) = constant. k3 

E2 
(31) 
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Model II  

The kinetic equations for this system are those dimen-

sionless equations of Remark 2 of Section 2. 

Integration of that system and determination of the 

conservation law is easily accomplished by rewriting the system 

as 

d In C 1 	 dC2 	dC3 
 dt 	C2C3 ' dt - C2 C 3 ,  dt - -C 2 C 3 . 

Consequently, 

d In C + 2 
cla + 	- 0 1 	

dC 

dt 	dt 	dt 

so that the conservation  law is 

valid for all 

,., 
In C1  

A 
where C.(0) 

and 

In C1 (t) 	+ 2C2 (t) 	+ C3 

	

t. 	In dimensioned 

	

k 	... 	k 	,., 1 C = + 2 	+ 	C 

(t) = constant, 

quantities 

,, 
In C

1 
 (0) 	+ 

3
(t) 

(32) 

(32) 	becomes 

k 	,., 	k 
2 	C+ 	C lz

1 	
2
(0) 	

3 (0) 

The complete 

2 	37
1 

3.  IT 3 
2 

are the initial concentrations. 

integration generates 

C2 (t) = E1  - C 

2 C(t) 	- 	
E1E 

the 

T
1 

-- i 	 3 

results 

(33) 

(34) 

(35) 

(36) 

3 
E2 + e

E 

C1  (t) = E 3 exp 

C2 (t) 	= E1/(1 + 

1
t  

E 1 E 2  

E2+ e
E
1
t  

E 2  exp(-E1t)) 

where E1 , E2 and E3 are arbitrary constants evaluated from initial 

concentrations. Thus 



k
1 	 A E

1 
= C 2

(0) + C 3 (0) = 	C2 (0) + T

k
1 

-3- 
C 3

(0) 

1;1 E‘ 3 (0) E 1 E 
E - 	

2  3 
2 	

1 (0) exp 1  E 3  - # 	
1 + E2 k

1 rA  trn E 1  - T- C3 (0) 
3 

Remark 5: The explicit nature of these solutions permits us to study 

various limiting processes. For example, from (34) it is seen that 

C 3 + 0 as t+co and hence C2+E1 
in that same limit, from equation (36). 

Also from (35) lim C1  = E 3 . These are asymptotic or limiting results. 
t+co 

This model has an appropriate asymptotic form. 

Since the equations for Model II can be made dimensionless and 

parameter free, a single master curve for each variable will suffice. 

However, when the initial data changes, new curves must be generated 

because of the dimensional analysis. Curves for two initial states 

(Ci (0) = 1,10) are given as Figures 1 and 2. 

Model III. 

This third model uses Monod kinetics (see Monod [5]) in the 

second and third equation so that the system to be studied is 

dC
1 	

.... „ 	dC2 	k C2 C 3 	dC3 	C2C3  
k 1C 1C2 ' dT 
	k

3 	
(37) 

dT 	 2 	̂ . dT  
K+C 3 	

K + a 3 
Once again a new dimensionless set of variables must be introduced 

since the full system in Section 2 employed v and L. These parameters 

play no role here! With t = k 2 T, C 1 
 = C

1
/C

1
(0), 

C2  = 	and C 3 = C 3/K equations (37) become k2K
k3C2 
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C
3 

0.12 	0.25 	0.37 	0.50 	0.62 	0.76 
	

0.87 	1.00 

FIGURE 2 DIMENSIONLESS CONCENTRATIONS VS DIMENSIONLESS 
TIME FOR C i( U) s 10 



dC
1 	

k
1
K 	dC

2 	C2C3 	dC3 - 
dt 	k3 

C1C 2 ,  dt 	1 + C 3 	dt 

To obtain the exact solution of (38) first observe that 

C2 (t) = E1 - C3
(t). 

Secondly, writing c = k iK/k 3 , 

1 +C 3  dC 3 1 	dC1 
EC 	dt C 2 2 	C3 	dt 

which upon integration yields 

Cl = E2 C 3
cexpEc C3 ]. 

The final equation for C3  comes from substituting (39) 

into the last two terms of (38), that is 

dC 3 	C3  - dt 	1 + C 3 
[E1 	C3 ] ' 

The integral of (41), by classical methods, is 

1/E 	 El 
- (1 + 	) 	-t , 

C 3 
	(E1  - C3 ) =E 1 	 3

e  

where E 1  = C2 (0) + C 3 (0) > 0, E
1 

> C 3 (t) for all t and E 3 is a posi- 

tive constant. 

Equation (42) suggests the possibility of multiple solutions 

and indeed they do exist as one can easily see for the case when 

E1  = 1. But only one of these is less than or equal to E l  and only 

that one remains thusly as t+00. 
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(38) 

(39) 

(40) 

(41) 

(42) 

Remark 6: We go no further with this analysis here since the model 



k
1
K 

C
1
(t) = E2 exp k 	

(C
3 

+
3
2
/2)]. 

3 
 

while 2 

(44) 
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is of questionable utility. The reason for this question lies in 

equation (40) where it is seen that as C3-  0 so does C 1 4-  0. However, 

we shall see equation (42) again in Model IV where a detailed analysis 

will be presented. 

Model IV  

This fourth model replaces the first equation of (37) with 

dt = -k
1
C
1
C
2 C 3 

but retains the last two equations which reflect Monod kinetics. 

With 
/s. 

t = k 2 T, C1  = C1/C1 (0), C2  = k 3C2 /k2 K and C 3  = C 3/K 

the dimensionless equations become 

dC
1  k1 K

2 	 dC2 	C2C3 	dC3 
C
1
C
2
C
3' dt 	

- 
dt 	k3 	 1 + C 3 	dt 

As in Model III 

C2 (t) = E1  - C 3 (t) 

dCi  

(43) 

Equation (44) is quite different from the corresponding result 

for C1  in Model III (compare (40)). Clearly, as C 3 4-0, C1 4-E 2 , 

a reasonable situation. 

Now the solution of the preceding Model (III) holds for C 3 , 

that is equation (42) is valid. Since nonuniqueness was alluded 

to in the analysis of Model III we show that is not true now for 

0 <C3 <El' 
 that is in the proper physical range. However, there 

are other solutions outside this range in general. 



To study the general case we rewrite (42) as 

C
3 	3 	

, 	3  
1/E1 = Ee -t (E - C) (1 + 1/E1 ) 	 (45) 

and remark that E 1 , E 3 and C 3 are positive, and the interval 

of interest for C 3 
is 0 C

31. 
The left hand side is monotone 

increasing from 0 to (E 1 ) 1/E1 on this range since the derivative 

is positive there. Similarly the right hand side is monotone 

	

-t 	1+(l/E 1
) 

decreasing from E 3e(E1 ) 	 to zero on that range since 

its derivative is always negative there. Thus there is only one 

solution, the so called fixed point, of (45) for each value of 

"time" t. This establishes that the solution is unique on this 

range. 

4. Determination of Rate Constants for Model I  

From Section 3 the solution of the dimensioned kinetic equa- 

tions C'(T) = -k 1  C1 C2' 2 C'(T) = k 2  C2 C33  ,CI (T) = -k 3C2
C
3 

is 

k 1
/k

3 
C1  (T)/C1

(0) = EC 3 (T)/C 3 (0)1, 

C 2 (T) - C 2
(0) = (k2 /k 3 )EC 3 (0) - C 3 (T)J 

and 

C3 (T) = E2 /CE 2
E 4 exp(E2k 3T) + k 2

/k 3 ] ' 

A 

where E 2 
= C2 (0) + k 2

C
3
(0)/k

3 
and E4 = 1/C 3 (0) - k 2 /k 3 E2. 

By taking logarithms the ratio k i/k 3  is obtained from (46) as 

ki/k 3  = lnECi  (T)/C i  (0) :J/ln[8 3  ( -0/63  (0) 	> 0 	(49) 
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(46)  

(47)  

(48)  



If Model I is correct the ratio should be sensibly constant. In 

practice there will be errors in the data. Thus more than one 

sample should be used. The chemical process should be sampled 

at n times, T i , j = 1,•••,n for values of C l (T j ), C2 (T j ) and 

C 3 (T j ). At each sample point calculate the ratio k1/k3 by means 

of (49). Then calculate the mean of these values and use that 

value as the expected value of k i /k 3  - that is 

kl/k 3  =
1 
 (kl /k 3 ) j /n 

To obtain k2/k3 use (47) rewritten as 

/1. 

k2/k3 = EC2 (T) - C2 (0)]/EC 3 (0) - C 3 (T)]. 	 (50) 

Using the sample values take 

k2/k 3  =
1 
 (k2 /k 3 ) j /n 

where the (k 2 /k 3 ) i  are computed from measured values at T. 

which are substituted into (50). 

Lastly, use 

k3 = (E2 T)
-1

lniCE2
(T) - k2 /k 3 J/E2

E
4

} T> 0 
	

(51) 

to obtain k
3 
by the sample and averaging process. 

The algorithm for computing these ratios would be as follows: 

(1) Sample C l , C 2 , and C 3  at n points T j , j=1,2,•••,n with 

T >0. 

(2) Compute k 1/k 3  from (49) and use the averaging process 

described above. 

(3) Compute 
k2/k3 

from (50) and use the averaging process. 

(4) Compute E2 = C 2 (0) + k 2C 3 (0)/k 3' 
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(5) Compute E 4  = EC 3 (0)] -1 - k 2 /k3E 2 . 

(6) Compute k 3 
from (51) and the averaging process. 

es. 

(7) Compute the solutions C1 (T), C 2 (T) and C 3 (T) from 

(46), (47) and (48), respectively, as continuous 

functions of time, T, using the values of the ratios 

obtained previously. 

(8) The individual rate constants can be computed from 

points (6) , (2) and (3). 

5. Exact Plug Flow Solutions  

In this section we generalize the kinetic equations to 

include the effects of transport -- that is the equations will 

be the first order partial differential equations 

pc 1 	alc 1 + v 	— k
1
f
1
(C

1
,C2' C 3 ) 

ax 
es 

ace 	DC 2  
aT 	

+ v  	k 2 f 2 (C1 ,C2, C 3 ) 
aX 

D 3 	a c3 + 	- -k 3 f 3 (C1
,C

2
,C

3
) aT 	a T 

with the same choices of f l , f 2 , and f 3  as were presented in Section 

3. Further, no additional dimensional analysis is necessary. Two 

approaches to obtain the exact solutions will be demonstrated in 

detail for Model I only. The amount of detail will be reduced 

for the other models. 

Model I  

From equations (11), (12), and (13), with all D i  E 0, the 

model equations are 

ac 	DC1 1 C 
at 	ax 	1

C2  
(52a) 
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DC 	DC2 
 at 	ax 	C2C3  

DC 3 	ac 
at + ax 

3 - 
RC2C3 

, R = k 3/k1 .  

(52b)  

(52c)  

First Method: In this first method we introduce a convected 

coordinate 

= x + t 
	

(53) 

whereupon equations (52) transform to 

dC2 	1 	dC3 	
2 

C
2
C
3 

. 
dC 	1 

	

= - C C 	- C 
dn

1 	
-2-  1 2' an t  2 2 C  3' dn 

Except for the scale factor of 1/2 these are the same as equations 

(26), (27) and (28). Their solution is 

C3 -  E2E4 expLE2 R(x + t)] + 1/R 

2E2 

C = E1 
 (y C

3
) 

1 
	1 
	

1/R 	
(54) 

1 C
2 

= 2E
2 

- T  C
3 

where we have retained the same constants as used in Model I of 

Section 3. 

With this method there are only arbitrary constants E 1 , E2 

and E4 whereas the second method permits arbitrary functions there-

by expanding the domain of permissible problems. 

Second Method:  Here equations (52) will be solved directly using 

the method of characteristics (see e.g. Ames [10]). From (52b and c) 

it is clear that 



7.i, (C2  + rz C3)  + ---i  (c 2  + R  c 3 ) = 0 

The Lagrange equations for this equation are 

d(C + 1  C ) 
dt 	dx 	2 	R 3 _ 	_ 
1 	1 	 0 

1 with characteristics w = x - t and C 2 + R  C 3 constant along that 

characteristic. Thus 

1 
C 2 (x,t) + 17 C 3 (x,t) = F(x-t) 

* 
where F is an arbitrary function.  (Already we see a difference 

in the two methods.) 

Rewriting (52a and c) we find 

D 	 1 
(ln C1 	R 

- 	ln C
3
) + 

T; 
(ln C1 
	K - 	ln C 3 ) = 0 1 	 T 

so that 

C 1  

C 3
1/R 

where G is arbitrary. Finally, setting (56) into (52c) and integra-

ting we have 

R F(x-t)  
3 C(x ' t) - 1 + H(x-t) exp[Rt F(x-t)] (58) 

where H is another arbitrary function. Clearly (58) is much 

more general than the first result of (54). 

To evaluate the arbitrary functions, F, G, and H we need only 

specify 

initial data  C1 (x,0) = f(x), C 2 (x,0) = g(x) 
and C

3
(x,0) = h(x) or 

*According to the theory the most general solution of (49) is 
1 F(C2 	K + 	C3 , x-t) = 0 where F is arbitrary. 

22 

(55)  

(56)  

= G(x-t) 	 (57) 
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boundary data C1 (0,t) = j(t), C 2 (0,t) = k(t) and C 3 (0,t) = m(t). 

We illustrate the method of determining F, G, and H using the 

initial data. Using (50) it is clear that 

C 2
(x,0) + 	C3  (x,0) = F(x) . R  

Hence F(x) = g(x) + 	h(x) which determines the function's form. 

In a similar way, from (57), 

G(x) = f(x)/[h(x)]
1/R 

and 

H(x) = Rg(x)/h(x). 

Finally, we can rewrite (56), (57), and (58) as 

1 C
2
(x,t) = g(x-t) + 1  h(x-t) - T  C 3 (x,t) 

C 1 (x ' t) = f(x-t)[C 3 (xt)/h(x-t)]
1/R 

and 

h(x-t)[Rg(x-t) + h(x-t)]  
C 3 (x '

t) - h(x-t) + Rg(x-t) exp{t[Rg(x-t) + h(x-t)]} 

In an analogous way one can employ the boundary data to determine 

the arbitrary functions. 

Model II  

For this model the equations become (see (14, 15, 16)) 

a cl 	a 
+ 
_ 
ax 

sl 
at 	= -C1C2C3 

BC 	3C 2 	2 	„ 
at + ax = 

(59a) 

(59b) 

ac 3 	8C3 - SC2C 3 at 	ax (59c) 
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where S = k 3
k
2
L/k

1v. Since (59b) and (59c) are similar to (52b) 

and (52c), with S replacing R, it follows that 

1 
C2 (x , t) + S — C3 	' (x t) =.F(x-t) 

and 

SF(x-t)  C3 (x,t) - 1 + H(x-t) exp[StF(x-t)] 

However, (59a) is quite different from (52a). To study its re-

lation to C
3 
divide by C

1 and subtract (59c) divided by S to 

obtain 

at 
 an C1  - — C3 	
a ] + 	Eln C1 - 	C3 ] = 0 S  

The solution of this equation is 

C1 ' (x t) = G(x-t)e C 3 (xt)/S  

where G is the third arbitrary function. 

As in Model I the arbitrary functions are uniquely determinable 

from boundary or initial data (loading of the stream). 

Model III 

In this case we draw our equations from (17, 18 and 19) as 

a c i 	ac 
	 — C1 C2 at 	3x (60a) 

ac22 	a  C2 C 3  
at 	ax 	+ c 3 	

(60b) 

ac 3 	3C 3 	f3  C2 C 3  
at 	ax 	1 + c 3 	

(60c) 
 



where a = k 2 L/v and 13 = k 3 /Kki . 

The relationship 

7, 
1 

C2 	' 	13 (x t) + 1  C 3  (x,t) = F(x-t) 

follows immediately from (60b) and (60c). From (60a) we have 

In C 1 

	ax 

ln C
1  

at 	 - C2 

and from (60c) 

1 	1 
at CT (ln C 3  + C3 )] + T,7  ET  (ln C 3  + C3 )] = -C 2  

Consequently, by already familiar processes, 

C1 (x,t) = G(x-t) 
C31/(3 

exp[C 3 /f3] 

is the relationship between C1  and C 3 . 

Last, we must solve for C 3 (x,t) the equation obtained from 

(60c) by substituting (61) when solved for C 2 . This will be done 

in Model IV since the analysis is exactly the same and Model IV 

is more reasonable (compare Section 3, Model IV). 

Model IV  

Here our equations are taken from (20), (21) and (22) of 

Section 2 with all D. =0, that is 

ac 
+ 	 - c

1c2 C 3 + 
(62a) 

ac2 	ac2 	C2
C 3 

at 	= a 
ax 	+ c 3 

ac33 = - 	

C2 C 3 
at 	ax 	 1 +C 3 

(62b)  

(62c) 

25 

(61) 
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where y = k 3/K
2k1 , and a = k 2 L/N. 

Because of the similarity between (62b,c) and (60b,c) it follows 

that 

1 (7   C 2 (x ' t) + 	C3 
 (x,t) = F(x-t). 

Y  
(63) 

From (62a) we have 

In C 	In C1  
1  

	

at + 	
ax 	

C
2
C
3 

and also 

C
3
2 	 C

3
2 

3 	1 	 3 	1 7T, 	I— ET  (C 3  + — 	)1 + -a  [ 	 2  7  (c 3  +  	)] = -C2 C 3  

Consequently, (compare (44)), 

C1
(x,t) = G(x,t) expEl

Y 
 (C

3 
 + C 3

2
/2)] 

provides the relation between C 1  and C 3 . Finally, the equation 

for C 3 
is the nonlinear equation 

'c3C 3 + 	
3 	 C 

1+C 3 	 Y 
[ - ya 	F(x-t) - 1  C 3 ] 	 (64) 

which integrates in a manner similar to (41), except we use charac-

teristics. The result is 

C3
(F - - 

1 	) 
-(yF+1) = e

-yatF
H(x-t), 

3 

or the more easily computable form 

1 
In C

3 
- (1 + IF) In (F - 

Y 
 - C

3 
 ) = -aytF + K(x-t). 

Here, K = In H is an arbitrary function and F is the arbitrary 

function of equation (63). 
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Remark 7: The flow velocity in rivers is rarely constant. 

Here we shall describe the determination of analytic solutions 

for Model I in the case where after dimensional analysis the 

equations are (see (52)) 

ac 	3C 1  + u (x) Dx 	= -C1 C 2 

aC 2 2 
at + u (x) 	= C2c3ax 

DC
3 at + u (x) 	= -RC2 C 3  ax 

As in the development of equation (55), 

(65a) 

(65b) 

(65c) 

a t (C2 
	R 
+ —1 C ) + u (x) ax (C 2 	R + — C 3 ' ) = 0 

The Lagrange system for this equation is 

d(C + 1  C ) 
dt 	dx 	2 	R 3 . 
1 	u( x ) 

With 
x 

U(x) = f 	" 71  u(ri ) 
* 

the solution of (66) is 

1 
C2 + T  C 3 

= F[U(x)-t] 

From (65a) and (65c) it follows that 

C1/C 3
1/R 
 = G[U(x) - t] 

Finally, using (67) in (65c) the equation for C 3  becomes 

DC3 	3C3 2 
at + u(x) 	= -R C

3 
F + C

3ax 

*Of course, if u(x) = 1, U(x) = x as in the Model discussions. 

(66) 

(67) 

(68) 



Integration of this equation gives 

R F[U(x)-t]  
C
3
(xt) - 1 + HEU(x) - tlexp{R t FEU(x) - til 

All other cases can be carried out in the same way with 

the characteristic 

U(x) - t = constant 

as the natural generalization of x-t = constant. 

6. Some Results on the Full System  

In this section we present some preliminary analytic results 

for the full systems including diffusion effects. The equations 

are those of Section 2 (Models I-IV). A number of possibilities 

will be explored including traveling wave and invariant solutions. 

./N 

6.1. 	Relationship between C 2  and C 3  for all Models. 

^ 	^ ^ 
In the interesting case where D 2  = D 3  and f 2 (C 2 ,C 3 )- f 3 (C 2 ,C 3 ) 

in equations (1), (2), and (3) a relationship always exists between 

C2  and C 3 . To obtain it we divide (2) by k 2  and (3) by k 3  and add 

the two equations whereupon 

ft- 	
9,7 	2 	

k 2 
c2  + 

3 	. 
+ N7 2— [ 	C2  + 13 3 = 

D 

	9
2 
[1 

L 	

4_ 1 
-2 

9
—
x
2 k

2 C2 	k3 	
3 

28 

*This last assumption, i.e. f 2 E...f 3  is true for all models. 
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-- a linear diffusion equation. This can be solved by classical 

1 	1 
methods using the boundary and initial data for IT- C 2  + 	C3 . 

2 	3 

Calling that solution F(x,T) -- i.e. 

1 _ 
T-  2 k

3 C 3 2 

it follows that C 3 satisfies the equation 

2^ 
3C 3 	- 3C 3 	a C 3  

- k
3
f
3
[k

2 F(x,

- 

T) - 	C3 ,C 3  
ax 	 3 	

2 
aT

+ v 	= D2 	
^ ^ 

2 	
Tc2 3 

For Model I the last term in the right hand side would be 

-k3k2 F(x,T) C 3 + k 2 C 3
2 

and for Model IV it would be 

^ 	̂ 2 
-k

3
k
2 

FC
3 

+ k
2
C
3  

K + C 3 

6.2 Traveling Wave Solutions  

For all of the full systems we can search for solutions of the 

form 

C.(x ' t) = 10.(x.-t) 	1 C.(n) 
	

(69) 

which represent concentration waves travelling to the right (down-

stream) with velocity 1. All models will support such travelling 

wave solutions. Here we discuss it for Model II (see equations 

(14), (15) and (16)). From (69) it follows immediately that 

3C. 	dC. 	3C. 	dC. 
1  
ax - 
	1 and -at1  - - dn1 whereupon equations (14), (15), and 

(16) become 



2 d C1 	(1) - NPe C1 C 2 C 3 dn 2 

d2C
2 (2) - -N

Pe 
C
2 C 3 dn

2 

dC 3 (3) k k L 
___7  . N

Pe 
	 C2C 3 = yC 2 C 3 

dn 	 k
1v 

30 

(70a) 

(70b) 

(70c)  

which are ordinary differential equations. Explicit exact solu-

tions are possible for this system under certain conditions. 

From (70b) and (70c) it always follows that 

N (2) 

C2 (n) + 	
Pe

C3  = Y i fl + Y 2 , 

where A
l and A2 are arbitrary constants. The equation for C 3 becomes 

d
2
C 3 	

N(2) 

dn 	

P --7- - YC 3 (X1 n + A 2 	
e 

--- C
3 
 ). 

Y  
(71) 

Equation (71) is autonomous if y i  = 0. The integration is then accom- 
dC 

plished by setting p 3=
1 from which it follows that  do 

d`C
3 	

dp3  
- p 	. Then (71) integrates to 

dfl
2 	3 dC 3 
	N(2) 

p = x
2' 

 vC32 
	

3 
- 2 	C

3
3 

+ A 3  3 	
Pe  

and a second integration gives rise to elliptic functions (with yO) 

and a logarithmic form (with A 3 =0). 

For Model IV the ordinary differential eautions for a traveling 

wave solution are 

2 
d C1   --7 	) - NPe C1 C2 C 3 an 

d 2 C2 	(2) k2 L C2 C3  - NPe v 1+C
3 dn 2 

d2 C3  - N 	
K

(3) 	k3  C2C3  

dn 2 

	

Pe 	2 	1 +C3 
k1  

with n= x-t, as before. 
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Remark 8:  All models possess travelling wave solutions. For Models 

I and II these will be constructed in the next section. 

6.3 Invariant (Similar) Solutions  

The general group theory and techniques for constructing 

these solutions is given in Ames [10,11]. While these equations, 

for all models, are invariant under time and space translations 

they are not invariant under the dilatation or spiral groups. 

Thus there are no similar solutions for any of these models. 

7. 	Travelling Wave Solutions for Models I and II. 

The remarks of Section 611 are amplified here by explicitly 

calculating a travelling wave solution for Models I and II. The 

solutions for C2 and C 3 are calculated exactly and that for C1 

by a perturbation analysis. With 8 = N Pe
(1) 
 = NPe

(2) 
 = N

(3) and Pe 
k3k 2 L  

A = T
2 for Model I, and A - 	for Model II, we use (11-13) 
1 	 klv 

for Model I and (14-16) for Model II. Except for the different 

values of A equations (12,13) and (15,16) are the same! 

Using C1  = f(n), C2  = g(n), C3  = h(n), n = x-t, the two 

systems become 

d
2
f 	i3fg,  d

2
g 	

" 	
d
2
h - xgh 

do 2 do 	 do 
dr1 2 

(72) 

for Model I, and 

d
2
f 	 d 

7 

2g d 
7

2
h 

2 - (3f gh ' -- 	= -13 gh ' -- 	X(gh 	 (73) 
do 	 do 	 do 

for Model II. From the last two, we deduce the conservation law 

, ho) + g(n) = E(constant) (74) 
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where we have discarded linear growth (or decay) with n. 

Using (74) in the equation for h (either (72) or (73)) results 

in the nonlinear equation. 

d 2 h 

dr)
2 - EX1-1 - 31-1 2 . 

The transformation w 2 = Ei3Xn 2 changes (75) into 

d
2
h 	, 	h

2 
- li -  

dw2 
	EX (75a) 

When (75a) is multiplied by 2 dh  and integrated with respect to dw 

w, in the interval 0 to w, there results 

dh 2 
( IT, ) 	= h2 	

3EX h
3 +[ dh(0) ] 2 - [11

2 (0) 	2 	h3 (0)], 	(76) dw 	 3EA 

(0) h 	 dh . where h(0) and dd 	are initial values of h and 	Because of dw  
dh 

physical reasons, lim h(w) = lim 17,- = 0 which can only be true in 
w÷m 	c0 .4..m 

(76) if 

[dd
h(0)

]
2 

- Ch
2 (0) - 2 h3 (0)] = 0. 

w 	 3EX 

From the two possible signs for dh  in (76) we choose the negative dw 

one, on physical grounds, which yields 

dh 2  
dw 	 3EX = -h(l+ah)

1/2
, a = 
	

(77) 

where 0 < h< 3  - EA is required. For h> -1  EX equation (76) cannot have 2 	 2 

real solutions and h< 0 is of no physical interest. 

3 
With the initial condition h(0) = 8, 0 < 0 < T  EX, equation (77) 

(75) 

integrates to 



h (w) 
e 
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20  1/2 sinh  (.1 ] 2 [cosh f  + (1 3EX ) 	 2 

 

or in the original coordinates 

h(x—t) =  	(78) 

[cosh (4ETX 
x;t ) + (1 2e  

3EX
)1/2 sinh (TETT x;t )i 2 

and,from (74) we have 

2 	 w 
g(w) = E - 	[cosh 	+ (1 - 7 	 3E X) 1/2 sinh —

2
]-2 

(79) 

Remark 9: Equation (76), with the constant term equal to zero and 

with the boundary conditions h(0) = e, lim h = 0 has other solutions 
W-±CO 

if we do not insist on the negative sign in (77). For example, 

w) = _w_ [cosh 2 	 2 
- (1 + a  e) 1 / 2 sinh _L° ]-2  

is also a solution satisfying the boundary conditions. This solu- 

3 
f tion achieves a maximum of  EX, for wo > 0, and then begins to 

decay. For this reason, it is not of physical interest. 

Now, fixing on Model I, the equation for f (see (72)) becomes 

the linear equation 

d
2
f 

--T 	(g)f = 0 
dri 

with (79) for g. For Model II the equation for f (see (73)) becomes 

the linear equation 

d
2
f . --7  - (6.gh)f = 0 

do 

In both models the equation for f is linear, but has difficult variable 

coefficients. As an easily computed alternative, we develop a 

perturbation solution in the next Section, useful in computation 

with large A. The validity of the perturbation solution is esta- 
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blished by comparison with the exact solutions for h and g just obtained. 

8. 	Perturbation Solutions for Models I and II. 

While equation (75) can be integrated exactly, a perturbation 

analysis will be useful in providing a solution for f in terms 

of elementary functions. In what follows, we shall write 
k 3 

R2 = E and carry out a perturbation in 1/A (A = 	for Model 
k
3
k 2 L  

I and 	for Model II). 
k1 v 

Upon dividing by A and writing w
2 

= Af3r1
2 
equation (75) be- 

comes 

d 	R
2 2

h 	 h
2 

h = - 
dw 

subject to the (pulselike) condition h(0) = e and lim h = 0. 
w±00 

A perturbation expansion in 1/A is assumed to exist in the 

form 

h = h 0  + (1/X)h1 + (1/A)
2 h2 

 +..., 	 (81) 

although we shall compute only the fist two terms. Upon substituting 

(81) into (80) and equating like powers of 1/A the equations for 

h 0  and hl are 

2h d 0  R
2
h
0 

= 0, h 0 (0) (0) = 6 h0  +0 as w+m , 	(82) 
dw

2 

and 

—2— R
2
h1 	0 

= -h2 
' h 1 

 (0)=0
'
h
1 + 0 as w+m. 

d h
1  

dw 

2 

(83) 

The solutions for (82) and (83) follow from standard elementary 

methods. They are 

(80) 
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h(w) = Oe -Rw  + (1/A)8 2 (e-Rw - e-2Rw )/3R
2

, 

or 

h(x-t) = 0 expE- 4(k 3NpeE/k1 ) 	(x-t)] + 

[(IMO
2
/3E]iexpE- li(k 3 NpeE/k i ) (x-t)] - 

expE-2V(k 3 NpeE/k1 ) (x-t)1}. 	(84) 

Next, g is obtained from the conservation law, (74), as 

g(x-t) = E - (1/A) h(x-t) 	 (85) 

and f is obtained from d 2 f/dn 2 = i3fg as follows. With cp 2 = im 2 

this equation becomes 

4
2 

d
2 f 	R

2
f = -(1/X)fh. 	 (86) 

Using f = f 0  + (1/A)f 1  +•••, h = h 0  + (1/A)111+••• and equating like 

powers of 1/A the equations for f 0 
and f 1  become 

2 d 2

0 
 R

2
f 0  = 0 4 

 

and 
2
f  d 

2
1  R2f 1  = -h 0

f
0

. 
4 

 

The solution of these equations yields 

cf) 	 cl) 
f = Ke

-R  + (1/X)KOCe
-R 
 - e

-(1+417 )12(t, J/R2 (X + 2TI), 	(87) 

where f(0) = K. The reader is also reminded that A = k 3/k1 , 

NPe = Lv/D and n = x-t = (7 - TrT)/L. 

Equations (84), (85) and (87) provide a perturbation solution 

for h, g and f in the parameter 1/A. They display analytically how 
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the Peclet Number, initial states and rate constant ratios affect 

the solution. In this unidirectional travelling wave solution 

x must always be larger than t and as x-t+co, C1  = f(x-t)+ 0, 

C2  = g(x-t) + E2  and C 3  = h(x-t) -+ 0. 

Exact and perturbed solutions for h and g are compared in 

Figure 3 and 4 for a range of parameter values. They are indis-

tinguishable for these ranges. Figure 5 shows the corresponding 

perturbed results for f. 

For Model II, equations (84) and (85) provide the solution 

for h and g. To obtain that for f return to the first equation 

of (73) which becomes 

2 
df 	 1 - (R2 	T  - 	h)hf 
dcp

2 (88) 

using (85) and (1)
2 

= 8x1 2 . With (81) for h equation (88) becomes 

2 

 dw
2 	

1 R2h 0  f = 	(Eh1 	0 
- h0 )f + ••• 7  

Taking f = f
0 
+ (1/A) f 1  +... and equating like powers of 1/A 

the equations for f 0  and f l  become 

2 
d f

0  

d2
- R2h

0
f
0 
 = 0 

cp 

and 

2
f  d1  R

2
h
0
f
1 = (Eh1 	0 -h

2
)f 0  , d(1)

2 

where h0  and hl are the previously computed exponential functions 

(89) 

(90) 

(ho =e exp[-R47, h1 = 8
2 (e -104 - e-2RAcib, )/3R

2
). Solutions of these 
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equations involve Bessel functions and since they become quite 

complicated they will not be detailed here (see Kamke [127). This 

complexity and the uncertainty about the values of the parameters 

in the problem suggests that simple bounds, which we develop 

later, will be more useful to the practitioner. 

Perturbation solutions are also possible for the other 

models but their solution involves complex special functions which 

are more difficult to use. 

9. Upper and Lower Bounds for Travelling Wave Solutions. 

The complexities that appear, even in the perturbations of 

Model II, suggest that upper and lower bounds for the travelling 

wave solutions (and, later, the steady state solutions) will be of 

considerable use in analyzing these problems. These bounds, containing 

the parameters of the problem, are usually found by using the 

maximum (minimum) principle (see Protter and Weinberger [131 for 

example) or differential inequalities (see Walter C141 for example). 

Analytic bounds have numerous advantages over numerical solutions. 

They include: 

a. a drastic reduction of computation time, 

b. efficient parameter studies, 

c. ease in studying limits (t, x÷0), 

d. bounds are often handier to use than complicated 

exact solutions, 

e. quality control of bounds trivially possible, while in 

numerics this is often not the case. 

A typical result from Protter and Weinberger [13] is the 

following theorem. 



df 
f (0) = f 0  > 0, . an = 0 

n _+co 

(91b) 
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Theorem.  Suppose that u(x) statisfies u" + h(x,u,u') = 0 and the 

initial conditions u(a) = y i , u'(a) = y 2 . Suppose also that 

h, 911/au and Wau' are continuous and M -1/1.1 <O. If z 1 (x) satisfies 

	

z"
1 
 + h(x'1 

 z 
	z') >0, 

z i (a)>y 1 , zi (a) > y 2 , 

and if z 2 (x) satisfies 

+ h(x,z 2 ,z)< 0, 

z 2 (a) <y l , z(a)f)( 2 , 

then we have the upper and lower bounds 

	

z 2  (x) + y l  - z 2 	< (a) 	u(x) < z 1  (x) + y - z (a) -  

z'2  (x) < u' (x) < z'(x).  - 1 

We will utilize results such as this in our analysis. 

9.1 Bounds for Travelling Wave Solutions of Pollutant Equation (f)  

for Models I and III  

For both models I and III the pollutant, f, satisfies the 

equation 

d
2
f  

+ 	g(ri)f(r1 ) = 0 
dn

2   (91a) 

with the boundary conditions 

and the physical assumption 

f (n) > 0 for all n >o 	 (91c) 



From the conservation laws 

g = E - 	h (Model I) 
	

(92a) 

g = EA 2  - X 2 h/X, (Model III) 
	

(92b) 

we have 

lim g(n) = E for Model I, 

lim g(n) = EA 2 for Model III, 
Ti.+co 

because of properties of the known solution for h. 

Since f> 0 and g> 0 it is clear from (91a) that f" >0 and 

therefore f' is monotone increasing. But since lim f' = 0 it 
--103 

follows that f' <0 and therefore f is monotone decreasing. Thus 

there exists a constant c >0 such that lim f(n) = c. If we assume 

that c> 0 then lim f" = lim $gf = E$c> 0 (EX 2 $C for Model III) and 
n ,00 

therefore lim f' = co in contradiction to (91b). Hence c E 0 - i.e. 

lim f(n) = 0 	 (93) 
Ti+c° 

Note:  For an equation of the form, -y" + a(x)y = 0 with boundary 

data y(0) = 0, lim y(x) = 0 there is a maximum and minimum principle 

whenever a(x) >0 for all x>0. Thus if -y" + a(x)y > 0 then y > 0 and 

if -y" + a(x)y < 0 then y <0. For details of this idea see Protter 

and Weinberger [13]. 

For Model I we introduce the comparison problem 

42 
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+ (E - 	Y(o) = f 0 , lim f = 0 

(94) 

-f" + E8f = 0, f(0) = f 0 , lim f = 0, 
n-)-co 

where 8 = h(0). These problems have the solutions 

Y(n) = f 0  exp{-[8(E - e/x)] 1/2 

f(n) = f 0  exp{-(E8)
1/2 n} 
	 (95) 

where the "upper bar" indicates the upper bound and the "lower 

bar" the lower bound. 

For Model III consider the comparison problems 

-f" + 8X2  (E- 12- )f = 0, Y(0) = f 0 , lim Y(n) = o 
1 

-f" + E8X 21 = 0, f(0) =f
0 , lim f(n) = 0 

11 -4- c° 

whose solutions are 

f = f 0  exP{-r8X 2
(E - IL) )J -„I/2n} 

 1 

f = f o  exp{-EE8X 2 _I
1/2

n} 

To verify that (96) are bounds for Model I we have for that 

model 

0 = -f" + 8gf = -f" + 8(E - IL)f > -f" + 8(E - 7)f. 	(98) X 	- 

With u = f - f, u(0) = 0, lim u = 0, the right hand side of 
n-;co 

equation (98), combined with the first equation of (94), gives 

8 
-u” + 8(E - X

-)u > 0 (99) 

(96) 

(97) 



The minimum principle (see the previous note) implies u >0, that 

is T(n) >f(n) for n>0. 

In the same way we can show, using the maximum principle, that 

f(n) <f(n) for n>0 and also that the solution for Model III has the  

upper and lower bounds as given by equation (97) 

9.2 Bounds for Travelling Wave Solutions of Models II and IV  

For Model IV the problem for the pollutant concentration f is 

-f" + 6X 2  (E-h)hf = 0, f(0) = f 0  > 0, lim f' = 0, 
1 	 ". 

Since g/X 2  + h/ 1  = E and 0 < h(n) <EX, for all n>0 it follows that 

lim f(n) > 0. Bounds on h can be determined using a phase plane 
ri 4-co 

analysis. When h is known, and hence g, this equation is linear 

but has complicated variable coefficients. Solutions of comparison 

problems, similar to (94) and (96), are expressible in terms of 

Bessel functions which, in turn, can be estimated as detailed below: 

f0 e
-a/m2

(1 + 	e
-mn

) < f < f < F < 	
0 
 [1 + (eb/M2 - 1)e

-Mn
7, 	(101 

0 	 — — 1+ 

where, for Model II the coefficients are 

a = E6h0 
 , b = 6h

0 
 (E - h

0  /X), M = (Ef3X)
1/2

, m = D3(EX - h0 
 )7

1/2
, 

and for Model IV the coefficients are a = EX 2 h 0 , b = h 0 6A 2 (E - T-0   ), 

M = CESX 1 X 2 7 1/2 , m = Ef3X 2 (EX 1 - h 0 )/(1 + h 0 )7 1/2 and h0 = h(0). 

Using the same coefficients the bounds 

h0 	< 	< e-Mn 	 -mn h(n) 	h0  e 	 (102) 

can also be derived for both cases. Then the bounds for g(n) follow 

from the conservation law as 

g(n) = E - 171/X < g(n) < E - h/X = g(n) 	(103) 

(100 

M
2 

h 
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for Model II, and 

X 	 X 
g(q) = EX 2  - T-2  Eh) < g( n) < Ex 2  - T-2   2(n) = 7(q) (104) 

for Model IV. 

Many upper and lower bounds for Models I-IV were computed for a 

range of the parameters. These are shown in Table I. While not 

always of uniform accuracy they do remarkably well and are usually 

very accurate for the pollutant. It should be remarked again that 

these are not coupled but are computable independently. Consequently, 

if one is interested only in the pollutant only that bound needs 

to be computed. 

10. The Steady State  

Now we treat the steady state case for all four models and 

obtain upper and lower bounds on the solutions.The details will 

be given for two cases and the results stated for the remaining 

_ 
two. The steady state is found by setting T-c

i  = 0, i = 1,2,3 and 

then we shall write C1  = p(x), C 2  = q(x) and C 3  = r(x) to distinguish 

these results from travelling wave solutions. Equations (1), (2 ), 

(3) then reduce to 

2 
 

dx
2 
P 	

dx 
wp,q,r) = 0 

2 

2 
1-4 	 + S dx - In 2flq,r) = 0 
dx 

 

2 
 

2 	 + 	
dr 

+ 	CcIlr) = 0, dx 	1 dx 

(105)  

(106)  

(107)  

ac 

where 
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TABLE I 

BOUNDS FOR TRAVELLING WAVE SOLUTIONS 

f = pollutant 
g = bacteria (obtained by conservation law) 
h = carbon 

A) Model I,II (All bounds at n = 0.1) 

Parameters Model I 

 

Both Models Model II 

       

E (3 A h(0) f f h H f f 

r-I
 .
-
I
 H

 c
)
 c
)
 c
i
 c
i
 c

) 

10 10 1 0.729 0.741 0.368 0.381 0.937 0.946 

10 10 .1 0.729 0.730 0.0368 0.0369 0.993 -  0.994 

100 100 .1 0.3679 0.3680 0.454x10 -5 0.456x10 -5 0.999 -  0.999+  

100 10 9 0.0423 0.0489 0.00041 0.00055 0.442 0.499 

10 10 9 0.368 0.385 0.381 0.419 0.464 0.517 

100 10 90 0.04 0.368 0.004 0.161 0.406 0.471 

10 100 100 0.368 0.387 0.0045 0.0064 0.406 0.471 

100 100 100 0.0423 0.0498 0 0 0.406 0.471 

B) Model III,IV (All bounds at n = 0.02) 

Parameters 	 Model III 
	

Both Models 	Model IV 

E A 1  A 2 h(0) f f h F f T 

1 10 10 10 1 0.819 0.827 .531 .619 0.951 0.9( 

1 10 10 100 .1 0.819 0.820 .053 .054 0.995 0.9S 

1 100 10 10 .1 0.531 0.533 .0135 .0145 0.995 0.9S 

1 100 100 100 .9 0.135 0.137 0 0 0.985 0.9S 

0 10 100 10 100 0.135 0.150 0 .00014 0.529x10
-5 0.4 -i 

0 100 10 10 10 0.135 0.150 .0179 .910 0.058 0.54 

0 10 100 100 1 0.1353 0.1355 0 0 0.981 0.9S 

0 100 10 100 10 0.135 0.150 0.018 .910 0.034 0.4E 



cP(p,q,r) pqr Pq pqr Pq 

1P(p,q) 
qr  

1 + r "Monod kinetics" qr 
	

(X 2 =1) 
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Model I 
	

Model II 
	

Model III 
	

Model IV 

10.1) Bounds for the Pollutant (p)  

In both Models I and III the equation 

-p" + 	+ (3pci = 0 

holds with the boundary conditions p(0) = p 0 > 0, lim p' = 0 and 
x+oo 

(108) 

the (physical) assumption p(x) >0 for all x > 0. From the conser-

vation laws q = A - r/X for Model I and q = AX 2  - X 2 r/X 1  for 

Model III we again get lim q(x) = A for Model I, and lim q(x) = 10 2  
x4.0. 

for Model III. 

The first derivative can be eliminated in (108) by setting 

P = e
-8x/2

p whereupon (108) becomes 

—p" + (3 2/4 + 8q)P = 0 
	

(109) 

with P(0) = p(0) = p 0  The behavior of P(x) as x-)-0: ,  can easily be 

shown to have the property that lim P(x) = 0. Bounds are developed 
x4-co 

for equation (109) and then transformed back to p(x). 

For Model I we introduce the comparison problems 

r 
-T" + [t3

2
/4 + 8(A - T-0  )]P = 0, i5 (0) = 15 0 , lim 15 (x) = 0 

x+cc, 	 (110) 

-P" + [8
2 /4 + A8]P = 0, P(0) = p 0 , lim P(x) = 0 

x->cc,  

where r 0 
 = r(0). These have solutions 
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= p 0  exp{- 1 
	

+ 4(A - r 0/X))]
1/2

x} 

2 = p 0  exp{- 	+ 4A)] 1/2 

For Model III the comparison problem is 

—T. + C(3 2/4 + f3x 2 (A — r 0 /X 1 )7T = 0, T(0) = p 0 , lim P(x) = 0 
x+0. 

-P" +
2
/4 + Ain 2 7 = 0, P(0) = p 0 , lim P(x) = 0 

x+c 

whose solutions are 

= p o  exp{- 2[8(f3 + 4A 2 (A - r0/x1))]
1/2 x}  

(112) 

	

1 	 , 
P = p 0  exp{- f[8.(8. + 4AA 2 )]

1/2 
 xl 

By the maximum and minimum principles we have again that 

P 	P 	T for all x 	Finally by means of p(x) = e 13x/2
P the 

bounds 

T(x) = P o  exp 	- [8( + 4(A - r0/ 
,A"]1/2x) 

(113) 

p(x) = p0  exp 21{Ei — ElsU + 4A)] 1/2 ) 

are obtained for Model I, such that p(x) p(x) p(x) for all x 0. 

For Model III the results are 

p(x) = p 0  exp 203 -  [13(13 + 4X 2 (A - r 0/y)7 1/2 } 

(114) 

1  
p(x) = p 0  exp -1-c {f3- [13(13 + 4AX 2 '

1
J
1/2

}.  

These bounds like those for f in Section 8 can be used independently 

of the other components. Of course they all involve the parameters 

of the problem and the initial data. 
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For Models II and IV the corresponding results are 

P O p(x) < fi(x) < r_(x) - 
1 +  b  

m(m+) 

1,, 2 
[1 + (e-/m  - 1)e-mx ] 

r 
1 

where m = - f  {13-[(13 + 4AX)]
1/2 1, b = r 0  13(A - --) for Model II, ' 

0 
A 

1 	 r 
f m = - 	03.- [13(13 + 4AX 1 X 2 )]

1/2
}, b = r 0 13A 2 (A - -o) for Model IV, 

A 1 

which furnish the upper bounds. The lower bounds are given by 

a -Mx ) 
p(x) 	p(x) 	p(x) = poe—a/m

2 (1 + 
m(m+) 

e 

where 

i 
1, 

M = - f-Cf3, (13 + 4(AX - r )7 1/2
), a = AtSr o 

for Model II, 

AA
1 

- r 0 	1/2 2!1 1 
M = - -2 {13 - [(3(3 + 4X 2 	1+ r0 )] 	), a = 	3), 2 r 0 for Model IV. 

Because the original bounds p and p involve complicated Bessel func-

tions they are not solved but estimates are given using their proper-

ties. 

10.2 Bounds for the Active Carbon (r)  

The equations for r(x) in the steady state case of each model 

are 

-r" + 	+ 13(AA - r)r = 0 for Models I and II, 

AX
1 

- r 
-r" + 	+ 13A2 ( 	

l+r 	
) r = 0 for Models III and IV, 

with r(0) = r
0 
 >0 and lim r' = 0 in all cases. From phase plane 

}C-1-C° 

(115) 

analysis we can show that lim r(x) = 0 with r monotone decreasing 

since 0 < r (x) < r o  < AA, . The condition r o  < AX 1  implies the uniqueness 

of the solution. 
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Since a maximum, minimum principle holds for equations of the 

form 

-y" + ay' + by = 0, y(0) = 0, 	0 as x-c,0 

comparison equations are set up for (115) with the following results: 

For Models I and II (For m and M use the appropriate values 

from Section 10.1) 

-mx 	 -Mx 
r e 	= r < r(x) < r

- 

(x) = r e 
0 	- — 	 0 

(116a) 

For Models III and IV (For m and M use the appropriate values 

from Section 9.1) 

-mx 	 -Mx r e 	= r < r(x) < r

- 

(x) = r e 0 	— — 	 0 (116b) 

Both results hold on 0 < x <00. 

A sample of bounds is shown in Table II for a range of the 

parameters. These bounds are independently computable. 

11. Interval Analysis  

In the previous two sections bounds upon the solutions were 

obtained which involved the parameters of the problems in various 

ways. In many practical problems the exact values of parameters, 

such as biokinetic rate constants, turbulent diffusivity etc, 

may not be known except on some interval - i.e. P, <P, <7 which is 

written as SE ES,] in interval notation. Interval analysis will 

be used, together with the bounds of Sections 9,10 to provide infor-

mation about the solutions when the parameters are known only on 



TABLE II 

BOUNDS FOR STEADY STATE SOLUTIONS 

p = pollutant 
q = bacteria 
r = carbon 

A) Models 1,11 (all bounds at x = 0.1) 

Both Models 

A 
_ 
0 A 

. 
r 0  P F r r P 17 

 

1 Is-1
,-1

,
-
1

0
0

0
 

10 10 1 .912 .920 .539 .564 .954 .960 

100 10 9 .906 .990 3.60 8.15 .455 .948 

10 100 .1 .9124 .9125 .00671 .00672 .9991+ .9991+ 

10 10 1 .539 .541 .067 .068 .912 .914 

10 10 10 .539 .564 .671 .787 .430 .490 

10 100 100 .539 .564 .007 .012 .403 .468 

B) Models III,IV (all bounds at x= 0.02) 

Parameters 
	 Model III 
	

Both Models 
	

Model IV 

A (3 A 1  A
1  

h(0) P P r r P T)  

1 

1 

1 

0 

0 

0 

10 

10 

10 

100 

100 

100 

10 

10 

100 

100 

100 

10 

10 

100 

10 

10 

100 

10 

1 

1 

.1 

1 

9 

1 

.884 

.583 

.8837 

.290 

.0045 

.291 

.892 

.602 

.8838 

.291 

.0046 

.293 

.583 

.149 

.015 

.4x10
-7 

0 

.0045 

.715 

.287 

.016 

.7x10
-5 

0 

.028 

.943 

.862 

.99908 

.980 

.465 

.828 

.964 

.928 

.99915 

.990 

.916 

.908 

51 

Model II Model I 
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intervals. This appears to be a better line of attack than treating 

the system statistically when the probability distributions are 

unknown. The details of interval analysis and interval arithmetic 

may be found in Moore C15,16] and Adams C177. The method is 

illustrated for the upper bound on r(x) (see equation (116b) 

	

r(x) = r o {exp 	- (3 2  + 4A 2 (110, 1 
 - r0))1/2il, 

where it is assumed that A> 0 and r 0= r(0) are positive fixed 

numbers, with AX 1 >r 0 . 

For convenience we introduce the notation p = F/r 0' 
Y 	(i3, 2

416A 2 (AA 1  - r0)) 1/2 so that p = exy/2 . The interval 

analysis is carried out under the assumption that 	A 1, and 

A 2 are independent for every 	Ef,T1 and for every A.1 
	1 1 
E [A.,T.1(1=1,2) 

such that (3, A > 	AX > 	Choose any fixed e E E,T], A 	E CA ,T ], — 	 o' 	 o 	— 	A. 
Ti - A. for example (3 0  =_If+ —7—, A i()  = 	+ 	

2 	. An outer approximation 

of the range of p(x;13, X 1 ,X 2 ) for every 13e EJ and for every 

A i  E L4,Ti ] (i=1,2), with x > 0, is to be determined. In particular, 

an upper bound T of this range, will be constructed. 

Since p is a complicated function of (3, A 1 , A 2  a crude bound 

p 0  can be obtained via the interval evaluation 

1 

P(x,13,X 1 ' 
X
2 	2 ) E eXPO(E13 ' 1:7 	 4[ 7 - ([13 2 ,T 2 ] + 43A (AA 1  -r 0  )' TT2  (AA 1  -r 0  )7) 2 )1, 

that is p E 1o 0 (x),F, 0 (x)] where 

1 

To (x) = exp{1( R  -(13 2  + 4f3X 2 (AX - r 0 )) 2 )} 
 for x > 0 1 	0 ))  )} 	 (117a) 



and 

u3._ ( -a2 	 \11/2 )) for x> 0 p (x) = expel 0 	 2 	 2 	1 	0 11  (117b) 
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But, since 8 and T both appear p 0  does not belong to the set of 

admitted functions for p. An upper envelope (lower envelope) 

is constructable by using the maximum of y =Y(R,X 1 ,A 2 ) for fixed 

x and for every 

(13  A 	A ) E [13,T1 ()EA 	14DIX 	= I ' 1' 2 	1' 2 	1' 2 	- (118) 

Instead of the direct interval evaluation of T) 0 , given by 

(117a), a deferred interval evaluation of the first order will 

be constructed. For this purpose p will be represented by a 

Taylor-polynomial with a remainder term of the first order, for 

fixed x > 0, and with Y o  = Y(18 O' A l(Y X 2° ) ' 	= ( ' A 1 dk 2" z 0=(6 0' X 10 d'20 )  

as the point of expansion. This expansion is 

p(x,z) = p(x,z 0 ) + (f3-e, 0 ) @P(x,z 0  + e)/a + 	 (119) 

(Xl -A10 )DP(x ' z 0 +"" Al 	(A2 -A20""x ' z 0+6)/@X2' 

with 8(x,z,z 0 ) E (0,1) for every z E l and fixed x. Since e is not  

known the partial derivatives have to be replaced by the range 

of these functions for every z el with x fixed. This range is not 

known so intervals must be constructed which contain the range of 

these functions: 

P(x,z) E p(x,z 0 ) + (13-13 0 
 )[ 1R2. @V;i3 + (X -A 	)CP 	j 

1 10 9x
1 
 ' px

1  

+ 	- x )E1P 	-3-T  1 2 	20 ax ' 9A 	J 2 	2 

   

(120) 

for every z E I and x >0 fixed. The bounds of these intervals are 

* 0 is used to indicate the set product. 



7r7,  
x dependent and 9p 

 ( TT TT ) stands for the lower (upper) bounds of 

an interval to be constructed which contains the range of  9 

for every z E I and x fixed. 

The bounds for the derivatives of p are obtained from an 

interval evaluation of those derivatives in the following form * . 

9p _ 9 	yx/2 _ x yx/2 9y _ x yx/2 	2+4A 2 (AA 1 -r 0 ) ( 

	

- T1 - e 	- f  e 	TT  - 2 e 

24 f3 2 +4(3), 2 (AX 1 -r 0 ) 

	

E 

(
xp x ( 	-4 ET2 7+ 4[,'n 2 (Ali -ro ) ,173 2 (A7, 1 -r o ) 7 7 x f v - 

C3,Ti + 2EX2(AAl-ro),T2(ATi-r0)] 	 9p 	ap 
	  —. ras ' TiT 

	

J 	2-2- V [3,, 	] + 4[13A 2 (AX 1 -r 0 ),T7, 2 (AX 1 -r 0 )] 
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(121) 

where 

an ( 7+27,2(A7,1-r0) 

313 4exp 11((i+ 	+ 4177■ 2 (AT 1 -r 0 ) 	1 	 )(122a) 

4e+413X 2 (AX 1 -r 0 ) 

172+4T7 	)

)(122b) 
13+2X

2  (AA 1  -r 0  ) TT  = exp F-62+4fA2(AAl-ro) 	Lc 	- -  7T 

2 (AT 1 -r 0 

4Af3X 2  

2t/(32 +4E3A 2 (AX 1 -r 0 ) 

9p 	9 	yx/2 	x yx/2 9y  _ 	x yx/2 
DA 2 	9A2 e 

= f e 	9A2 - 2 e  

There follows 

 

4f3(AA 1  - r 0 ) 
(124) 

  

2q ,2+4,x 2 (AA 1 -r 0 ) 

 

*The designation A=:B means B is defined by A. 

9p  _  9 e 	= 2 
yx/2 	x yx/2 ay  _ 	x yx/2 

9A 1 	92 1 	
e 	9A 1 	2 e 

(123) 



D( 

3  - expp-tik2+ 46X-2 (AX 1  -r )( 	 - 	0 
1 	 111 62+413 A2 (AX1 - r 0) 

(125a) 
(-2)AT2  
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Bp _ 

)6 2 +4

(-2),C,X2A  
exp pe, -41:72 +417072 (ATi -r 0 	 (125b) 

 6X2 (AX 1 -r 0
) 

and corresponding results for Bp/9X 2  and Bp/BX 2 . Using equations 

(120) to (125) the following bounds for p are obtained: 

ir 

2E if 6>6 0  
+ (X -X 

1 	

Bp 
BX, 

;i if 13 .=13, 0 	 Dp 

1  

i 

if A 1 >X 10 
Fl (x) = P(x ,z 0 ) + (6-6 0  ..k 

@X 	f X 1 A 10 1 

P(x,z) E [P 1 	' (x) P 1  (x)] where 

+ (X, -Xn
U 
,) 

if A 2 >X 20 DX 2 
L 	L   

4c  1 	<1  
--- 

Bp 
BX2 j"-  - 2- 20 

(126) 

and 

i'
Bp  

17 1 (x) = P(x,z 0 ) + (6-(3 0 ) 7 if 	 3 

	

o 	+ 	(x  _ x 	) 	B P 	if X >A  X 1 	110 

	

if if 60 	1 10 
Bp  
DX 	if X110 1 

Bp 	if X 

(A 2 - X 2d 
 

as 

DX 2 

-97 

{I 

	if X 2 5X  2 

(127) 

All the equations (117a), (122)-(125) reveal that the interval 

I ERZ3 (see (118)) must be small enough so that 

1-[13 2  + 46X 2 (AX 1  - r0)3 1/2 < 0 
	

(128) 

Equation (128) is not a consequence of 13-[6 2  +4P.X 2 (AX 1 -r 0 )] 1/2 < 0 



given by (126) and (127). If necessary these can be computed 

separately for sufficiently many points of expansion, z (m) Elm N 
such that I = u I

m
, where Im are each sufficiently small for the 

m=1 
approximations to be meaningful. 
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for every ZE I. If (128) does not hold the expressions for the 

upper bounds (7) 0  and Ti  will contain exponentials with positive 

exponents. These become unbounded as x-*c(> and are therefore not 

admissible. 

This process, in which p is represented by a Taylor-polynomial 

with a remainder, can be continued to higher order terms - e.g. 

to second order. The interval evaluation of the second derivative 

; 2 p/9(3 2 and the other five derivatives of second order can be done 

but the calculation becomes more and more difficult as the order 

of differentiation increases. The increasing complexity of those 

expressions causes the interval evaluations of the respective 

remainder terms to yield overestimates of the ranges of the 

derivatives. 

It is therefore recommended to use the approximate bounds 

Remark 10: It is observed that the following attempt at an approxi-

mation of the range of p for every z E I often yields rather inaccurate 

results. Let p(x,z) be computed for x fixed at fixed vectors 

(n)  z 	E I, n=1,2,•,9. Then p,(or o) is taken to be the largest 

(smallest) of the computed values p
(n) 

 . There is no error estimate 

for this approximation. The inaccuracy is due to the fact that 

(n) even many different random generations of the z 	do not ensure 

that the range of p can be approximated thusly. 
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12. Summary and Conclusions  

(a) For four kinetic models of stirred-tank type dimensional 

analysis has been applied, dimensionless kinetic groups obtained 

and analytic solutions developed and analyzed. In the case of 

Model II (third order kinetics for C l , second order for C 2  and 

C 3 ) the dimensionless equations are also parameter free. This is 

an interesting and somewhat unusual situation. From an examination 

of these exact solutions the following limiting results (as t.-?-.) 

are obtained: 

Model Number 	 Cl 	C2 	C3 

	

I 	 0 	? 0 	0 

	

II 	 #0 	#0 	0 

	

III 	 0 	0 	0 

IV 	 0 	0 	0 

From the exact solutions for the oft-used Model I, it is shown in 

Section 4 how these equations can be used to obtain rate constant 

ratios and the individual rate constants. 

(b) When transport effects (constant velocity) are included, 

the resulting first order hyperbolic partial differential equations 

must be dimensionally analyzed in a manner different from the 

kinetic models. This is done and exact solutions are developed in 

all four cases. It is further demonstrated that the same analysis 

can be applied when the velocity depends upon the spatial (x) co-

ordinate. In principle, there is no difficulty in extending this 

analysis to three spatial dimensions. 
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(c) When turbulent dispersion effects are included, the equations 

become coupled reaction-diffusion equations which are parabolic. 

Dimensional analysis reveals the importance of the reciprocal of a 

Peclet number for mass transport and reaction rate ratios. None 

of the model equations possess classical similar solutions. But, 

they all possess traveling wave solutions. For Models I and II 

a partial exact solution is constructed which can be used to 

generate a perturbation solution for the pollutant. Both show 

the subtle way the problem parameters enter. In particular, the 

pollutant decays according to the exponential of the negative 

of the square root of the term NpeE and by a complicated function 

of X = k 3/k 1 (see equation 87) for Model I)). On the other hand, 

the active carbon decays according to the exponential of the negative 

of the square root of NpeEk 3/k1  (see equation (84)). 

(d) The complicated functions experienced in the perturbation 

analyses suggested that upper and lower bounds be constructed in 

terms of simple functions (negative exponentials, here). This has 

been done for all travelling wave solutions in Section 9 and for 

the steady state in Section 10. Those bounds may be used independently! 

That is they are not coupled together. Moreover, the bounds show 

how the various parameters effect the solutions. This is the most 

useful and interesting result to come out of this work. 

(e) Since none of the parameters are known exactly interval 

analysis has been used in Section 11 to give deferred interval bounds 

in which the upper bound lies. 

Some of the results are verified by computer calculations. 
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