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OVERVIEW OF THE CMB 

Discovery 
In what started as an operation to characterize signals from 

an orbiting communications satellite, radio astronomers Arno 

Penzias and Robert Wilson encountered a persistent noise source 

that they could not subdue [7]. While working at Bell 

Laboratories in the 1960s on a horn-reflector radio antenna, 

Penzias and Wilson measured a signal that they did not expect, 

a (nearly) uniform radiation that would later be coined the 

cosmic microwave background (CMB) [7]. Penzias and Wilson 

shared their results with a group at Princeton led by Robert 

Dicke which had developed a theory predicting a relic thermal 

structure from the Big Bang. Dicke and his group suspected 

that, if the universe was initially hot, dense, and opaque, an 

isotropic background radiation would exist as remnant of that 

state [7]. Specifically, the sky would be radiating like an ideal 

blackbody, something which could be confirmed by measuring 

the brightness of the sky as a function of frequency. Moreover, 

Dicke’s group predicted that this radiation would be observed 

today in the millimeter range of the electromagnetic spectrum, 

the photon wavelengths having been redshifted by the 

accelerated expansion of the universe. Dicke, Penzias, and 

Wilson’s work would later be substantiated, but they themselves 

did not observe the CMB in its entirety. Microwave photons 

with wavelengths shorter than 3 cm are readily absorbed by the 

water molecules in the atmosphere, and the peak of the CMB 

spectrum occurs at a wavelength of 2 mm [7]. Penzias and 

Wilson’s microwave antenna was designed to detect signals 

with a wavelength of 7.35 cm [7], and so it would not be until 

the launch of the Cosmic Background Explorer (COBE) 

satellite that the true significance of the CMB would be 

confirmed. COBE’s data on the sky’s power spectrum 

demonstrated that the CMB was indeed very close to that of an 

ideal blackbody radiating at about 2.725 Kelvin, a value in 

correspondence with the peak wavelength of 2 mm [7]. 

Evidence for the Hot Big Bang was abound, and it has since 

been incorporated into the standard model of physics [7]. 

 

Origins and Properties of the CMB 
The cosmological history of the CMB can be divided 

 

Development and Distribution of Thermometry Hardware for the Simons 
Observatory 

 

 

Abstract 
The Simons Observatory (SO) is a new cosmic microwave background (CMB) experiment consisting of four telescopes. SO is being 

constructed at an elevation of 5,190 meters on Cerro Toco in the Atacama Desert in Chile, and is set to begin observation in 2022. 

SO will employ 60,000 detectors, yielding a sensitivity greater than all previous CMB experiments. To achieve low noise 

performance the telescope cryostats will be cooled to ~100 mK using low temperature dilution refrigerators. Measuring cryostat 

temperatures is essential for pre-deployment testing, telescope installation, and telescope monitoring during observation. The 

purpose of this project is to design, build, and test the hardware necessary for regular measurements at all temperature stages of the 

SO telescopes. This paper details my design of housekeeping hardware, contribution to temperature sensor calibration, and 

characterization of calibration discrepancies attributable to faults within my lab’s dilution refrigerator. 
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into three general epochs: recombination, decoupling, and last 

scattering [7]. The epoch of recombination was the period 

during which the universe transitioned from being ionized 

plasma to largely neutral hydrogen and helium [7]. The 

afterglow of this transition is essentially what we see in the 

CMB [8]. The epoch of photon decoupling was the subsequent 

period during which the rate of photon Thomson scattering 

became smaller than the Hubble parameter, which describes the 

rate at which the universe expands [7]. In this epoch photons 

did not travel as erratically as they did in the plasma, no longer 

as able to break apart atomic bonds as the universe 

progressively cooled [7]. Soon after, around 380,000 years after 

the Big Bang, the CMB photons underwent their last scattering 

by electrons. This epoch is designated as the epoch of last 

scattering, and is when CMB photons could travel freely 

through the universe, eventually into our detectors. The 

spherical surface around every observer in the universe with a 

radius equal to the speed of light multiplied by the time since the 

epoch of last scattering is called the surface of last scattering. 

Although the CMB is rather uniform when looking at the 

sky in its entirety, observation at smaller angular scales reveals 

anisotropies in the temperature and polarization of CMB 

photons. These anisotropies are the focus of contemporary CMB 

experiments, and are what provide insight into the physical 

properties of the surface of last scattering. For example, 

analyzing the statistical nature of temperature fluctuations in the 

CMB can lead to an understanding of the density perturbations 

of non-baryonic dark matter in this early phase of the universe. 

Mapping the polarization of CMB photons is similarly 

enlightening. There exist two predominant forms of 

polarization in the CMB: linear E-mode polarization, and 

circular B-mode polarization. E-mode polarization is caused 

primarily by the aforementioned fluctuations of matter density 

at the surface of last scattering, while the existence of B-mode 

polarization is less easily explained [12]. It is hypothesized that 

a period of rapid expansion at the onset of the Big Bang, called 

inflation, would leave a background of gravitational radiation 

[12]. Evidence for this primordial radiation may exist in the 

CMB in the form of B-mode polarization, and while B-modes 

generated by other sources have already been documented, the 

search for this particular source persists. 

SIMONS OBSERVATORY OVERVIEW 

Instrument Overview 
The Simons Observatory (SO) will consist of four new 

ground-based CMB telescopes. Construction of SO will occur 

at an altitude of 5,190 meters on Cerro Toco in Chile, adjacent 

to several other CMB experiments already in operation [2]. The 

site will have three small-aperture (~0.4 m) telescopes (SATs) 

and 1 large aperture (~6 m) telescope (LAT) with over 60,000 

transition-edge sensor (TES) cryogenic bolometers [2]. 

 

 

Figure 1: A conceptual image of the SAT array [4]. The ground (grey) screens protect 
the SATs from light contamination at the ground level. The housekeeping rack and 
other equipment are mounted below the boresight stage (green platforms 
beneath the cones pointing towards the reader) for proximity to the cryostat. The 
expanded image is the SAT receiver, and the cryostat is within that structure. The 
dilution refrigerator can be seen on the left of the receiver, inserting into the 
structure at an angle. Light is captured through the cone and cylinder 
perpendicular to the receiver. 

 

 The three small aperture telescopes (SATs) will each 

contain a single optics tube, housing seven detector arrays with a 

continuously rotating half-wave plate to modulate the 

polarization signal [6]. The three SATs will in total contain 

30,000 detectors. Two of the SAT receivers will observe at 

frequencies of 93 and 145 GHz, and the other will observe at 

225 and 280 GHz [6]. The SAT cryostat and supporting 

components and electronics will be mounted on a three-axis 

platform, allowing for scanning in azimuth, elevation, and 

rotation [6]. A diagram of the SAT Receiver mounted on the 

boresight stage of the telescope is shown in Figure 1, while 

constituent parts of the receiver are displayed in Figure 2. 
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Figure 2: Left: Cross section of the SAT optics tube and focal plane array along with 
the dilution refrigerator. Right: Back end of receiver showing primary components 
in the 4K volume [4]. 

The large aperture telescope (LAT) is a 6 m diameter 

crossed-Dragone telescope, designed with an 8 degree field  of 

view [6]. The receiver itself (LATR) can accommodate up to 13 

optics tubes, each containing three anti-reflection coated silicon 

lenses, an array of filters, and a detector array [6]. The LAT can 

house 30,000 detectors [6]. Temperature requirements for 

detector efficiency will necessitate the cooling of roughly a 

metric ton of material to 4 Kelvin, and over 100 Kg to 0.1 

Kelvin. As will be discussed, it is important to monitor the 

cooling of such a massive object to ensure that the detectors are 

operating under optimal conditions. A model of the LAT is 

shown in Figure 3, and a picture of the inside of the LATR is 

displayed in Figure 4. 

 
Figure 3 [4]: Model of the LAT. The optical path shown on the right details the path 
of light into the receiver (LATR). The LAT housekeeping equipment will be located 
within this structure. 

Science Objectives 
Through the observation of a wide range of angular scales, 

SO will shed light on some of the most important mysteries in 

cosmology. The LAT will survey 40 percent of the sky with arc-

minute resolution, hoping to improve our understanding of 

(among other things) the sum of neutrino masses, the number of 

relativistic species, the dark energy equation of state, dark 

matter properties, and the astrophysics of galaxy clusters [1]. 

The SAT will perform a deep, degree-scale survey of 10 percent 

of the sky, aiming to continue efforts to detect primordial B-mode 

polarization, which may provide information about the energy 

scale of universal inflation [1]. SO will operate with up to ten 

times the sensitivity and five times the angular resolution of the 

Plank satellite, increasing the mapping speed of current CMB 

experiments by roughly an order of magnitude [6]. SO will 

measure CMB temperature and polarization fluctuations in six 

frequency bands from 27 to 280 GHz, with the goal of rapidly 

expanding our capabilities in CMB science while informing the 

design of future CMB experiments [6]. 

 
Figure 4: The LATR with its dilution 
refrigerator (DR) (gold plated) and 
cold plate (the hexagonal plate to 
which the TES bolometers will be 
thermally coupled). From the top 
gold plate down (moving towards 
the photographer):  the  4K stage, 1K 
stage, and 100 mK stage of the DR. 
RX-102A thermistors can be seen on 
the hexagonal plate, one of which is 
on the bottom of the small central 
circle (the sensor is a small, copper 
colored circle with a white lead 
extending from it). RX-102As will be 
placed throughout the cryostat to 
monitor the bath temperature. 

 

Schedule 
The first SAT (SAT-1) is scheduled to be deployed in the fall 

of 2021, and will see first light in 2022 [6]. SO plans to begin a 5 

year survey in 2022 with the goal of extending its operation time 

[6]. This extension, titled ‘SO-Enhanced’, may occur with the 

potential addition of SO to the larger CMB-S4 project [6]. 

 

OVERVIEW OF THERMOMETRY 

HARDWARE 

For ground-based CMB instruments, TES bolometers 

have hit an irreducible noise floor due to signal contamination 

from the atmosphere. As such, SO will improve CMB 

observation by deploying an unprecedented number of 

multiplexed detectors, over 60,000 AlMn alloy TES bolometers 

with a target critical temperature of 160mK (where they 
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transition to become a superconducting material) [3]. During 

data acquisition TES bolometers are voltage biased so that they 

remain on their critical temperature, and it is only at this 

temperature that they function [4]. TES Bolometers at their core 

are sensitive thermometers (thermistors), and near their critical 

temperature small deviations in their temperature yield large, 

measurable changes in their resistance. It is important that the 

TES bolometers be able to heat up to make measurements, but 

it is equally important that this heat be dissipated in order to 

maintain the critical temperature. This dissipation is managed 

by thermally conductive “legs” connecting to the bath 

(cryostat), the geometry of which are specific to the dissipation 

needs [4]. If too much heat is deposited on the TES bolometers 

this may “saturate” them, i.e. push them off of their transition 

temperature and render them dysfunctional. Saturation can 

occur from the CMB and the surrounding atmosphere, but also 

from thermal emission from the telescope mirrors and refractive 

optics, in addition to the optics tubes and the telescope itself [4]. 

The mitigation of thermally induced systematic errors is 

essential given the sensitivity of the detectors to loading, but is 

made difficult by the amount of mass on the telescope that must 

be cooled to less than 4K. My work with SO housekeeping 

hardware primarily involved methods to address this challenge. 

The power required for saturation is in fact intimately 

related to a quantity called the bath temperature: the 

temperature of the cryostat within which the detectors are 

placed. SO receivers will operate at a bath temperature of 100 

mK, the choice of which is fundamentally related to thermal 

noise: the lower the bath temperature, the lower the thermal 

noise, and the lower noise detectors that can be used. Monitoring 

this bath temperature during telescope testing, cooldowns, and 

operation is critical to the observatory. Beyond understanding 

the saturation behavior of the TES bolometers, monitoring the 

bath temperature during telescope operation serves as a basic 

measure of functionality. Higher than expected bath 

temperatures would indicate problems with the cryostat, and 

quickly identifying and rectifying these problems ultimately 

enables the experiment to run for longer, uninterrupted 

durations. The bath temperature will also indicate whether the 

detectors are working properly, and in extreme cases (if the bath 

temperature is close to the critical temperature of 160mK, for 

example), may be cause to disregard data. The essential hardware 

for bath temperature monitoring is summarized in the sections 

below. 

 

Bluefors LD400 Dilution Refrigerator 

In general, dilution refrigerator (DR) systems are the only 

systems that provide continuous cooling power at temperatures 

below 300 mK [9]. The Bluefors LD400 employs a pulse tube 

to reach a temperature of 4 K after which the thermodynamic 

properties of a Helium-3-Helium-4 mixture are utilized to cool 

to the desired bath temperature of ~100 mK [9]. The LD400 has 

multiple temperature stages, constructed with concentric 

circular shells, as shown in Figure 4. The Bluefors LD400 DR 

is the cooling mechanism for all of the SO telescopes, and one 

will be used to cool each of the receivers. My lab, the Newburgh 

lab, along with a variety of the other testing institutions for SO, 

possess an LD400 and use it to both test elements of the 

receivers and prepare components which will eventually be 

placed in the cryostats. 

 

Lakeshore DT-670 Silicon Diode and RX-102A Ruthenium 
Oxide RTD 

The DT-670 and RX-102A are the primary sensors 

employed to monitor the temperature of the telescope cryostats. 

The DT-670 relies upon the temperature dependence of the 

forward voltage drop in a p-n junction biased at a constant 

current, and provides sensitivity for a temperature range from 

1.4 K to 500 K [11]. The RX-102A is a thick-film resistor 

consisting of bismuth ruthenate, ruthenium oxides, binders, and 

other compounds [10]. Unlike many other materials, ROXs 

have a negative temperature coefficient, meaning that as they 

cool, their resistance increases. This unique property allows 

ROXs to be sensitive down to temperatures as low as 50 mK 

[10]. As indicated by their temperature ranges, the DT-670 is 

used to monitor the first stages of cooling for the telescope 

cryostats, recording data for temperature ranges up to room 

temperature. The RX-102A sensors are used for colder 

temperatures and among other places will be installed on the 

4

The Yale Undergraduate Research Journal, Vol. 1 [2020], Iss. 1, Art. 24

https://elischolar.library.yale.edu/yurj/vol1/iss1/24



   

        YURJ | yurj.yale.edu                     

Social Sciences 

   5  

 

      STEM | Astronomy                                  VOL. 1.1 | Nov. 2020 

plates housing the detector arrays. Although it is difficult to see 

them, various ROXs are displayed in Figure 4 on the hexagonal 

cold plate to which the bolometers will be thermally coupled. 

The Newburgh lab has worked heavily with both of these sensor 

types to prepare, calibrate, and distribute them to our 

collaborators. 

 

Lakeshore LS240 and LS372 
The Lakeshore LS240 and LS372 serve as the readout 

devices for the DT-670 and RX-102A. The LS240 is a DIN rail, 

rack-mountable device which can read out temperatures from 1-

800 K, while the LS372, also rack-mountable, can make 

measurements down to and below 100 mK. The LS372 is 

accompanied by a 16 channel scanner which multiplexes the 

readout, switching between the connected thermometers. The 

location of the LS240 and LS372 devices differ between the 

SAT and LAT. For both types of telescope, shielded leads will 

transmit the temperature data from within the cryostat to a warm 

break-out box (WBOB). For the SAT, this WBOB will be 

mounted to the side of the receiver, while on the LAT it will 

likely be located within the building complex that houses the 

detectors. From the WBOB, data will be transferred to the 

appropriate read-out device, given the temperature at which 

each thermometer it connects to is measuring. On the SAT, this 

secondary step of data transmission will be to a 19 inch rack 

bolted underneath the boresight stage of the telescope, called 

the housekeeping rack. This rack will contain all of the 

housekeeping devices for the telescope, including thermometry 

read-out devices and the network and timing devices required 

for operation of the LS240s and LS372s. On the LAT the rack 

will be of the same construction, but will once again be placed 

within the building complex. Much of my work has involved 

negotiating the layout for this rack, as well as designing and 

constructing the necessary enclosures within which 

thermometry/timing hardware will be installed. 

 

DEVELOPING A DEPLOYABLE 
THERMOMETRY SYSTEM FOR THE SO 
TELESCOPE ARRAY 

My work with SO thermometry hardware can be divided 

into two main categories: the development and construction of 

SAT-1 housekeeping hardware, and the calibration of RX-102A 

(ROX) sensors. It should be noted that the focus of this report 

is on the SAT-1, the first telescope which will be deployed, but 

that my responsibilities also pertain to the LAT. The two other 

SATs will have the same hardware preparations as the SAT-1, 

and my upcoming work will, among other things, involve 

preparation for the SAT-2, SAT-3, and LAT.  

 

Development of Thermometry/Timing Enclosures for the 
SAT-1 Housekeeping Rack 

The housekeeping system is a collection of hardware and 

an overarching network that tracks the behavior and 

performance of the observatory during operation. The 

housekeeping hardware will be placed on a 19 inch rack bolted 

to the boresight stage of the SAT (underneath the green stage 

depicted in Figure 1). Much of my work has involved the design 

and construction of rack-mountable enclosures for the 

thermometry and timing housekeeping hardware. More recently 

my work has expanded to include design considerations for the 

whole rack. In 2019 I proposed a layout for the 

timing/temperature enclosures (Figure 5), and although design 

requirements have since necessitated major layout changes, the 

proposal gives an idea about the kind of space needed for this 

hardware and the types of devices that will be included. 

 
Figure 5: 2019 Proposal 
for thermometry/timing 
layout on the SAT-1 
housekeeping rack (1U is 
~1.75 in.) The 
housekeeping rack 
layout has since been 
updated as of Spring 
2020, but this diagram 
gives a sense of the rack 
size needed and displays 
many of the components 
that will be installed. 

The Atacama desert’s relatively extreme environment 

necessitates careful planning for the deployment of electrical 

equipment. The SAT-1 housekeeping rack will be shielded from 

downward precipitation (primarily snow) by the boresight 
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stage, but this stage also tips as the telescope rotates, and thus 

does not protect the rack from sideways precipitation, nor from 

the accumulation of water or dust. Operational temperature 

requirements for the hardware are also essential considerations 

when installing electronics in close quarters, and as will be 

discussed below, ensuring proper cooling is a primary concern. 

At the time of my initial layout proposal, final decisions about 

the weatherproofing of the housekeeping rack had not been 

made, and so I developed a prototype enclosure containing 

much of the thermometry electronics that would be installed at 

the observatory site. 

 
Development of the SAT-1 LS240 Power Supply Unit 
Enclosure Prototype 

The LS240 Power Supply Unit Enclosure Prototype 

(LS240 PSU) contains a power supply for both the LS240s 

themselves and for a USB hub meant to read out the data 

collected by the LS240s. This data is then re-directed out of the 

box to an ONLOGIC ML100G-10 NUC computer. The 

following paragraphs detail the construction of the LS240 PSU 

prototype, and, although this design is not what will be 

deployed, it outlines the general process of construction that will 

be replicated for the final thermometry enclosure. 

Figure 6: Electrical connection diagram for the SAT-1 LS240 PSU prototype. 

Initial design for the LS240 PSU involved my planning 

electrical connections (Figure 6), and developing a Solidworks 

model (Figure 7) which was sent to a company specialized in 

enclosure construction. Once fabrication of the enclosure was 

completed, the LS240 PSU was sent to our lab for assembly.  I 

checked the enclosure for design flaws, altered accordingly, and 

completed the electrical connections between components using 

the circuit diagram in Figure 6. A notable component in this 

design is a DPDT switch which changes the configuration of the 

AC/DC converter from compatibility with a 110 VAC supply to 

a 220 VAC supply. The observatory site in Chile will be 

designed for compatibility with 220 VAC, while all of the test 

institutions in the US will operate at 110 VAC. In order for any 

of the housekeeping electronics to be site-deployable, 

preparation for this voltage change is required. 

 
 
 
Figure 7: Solidworks prototype for the 
SAT-1 LS240 PSU. 
 
 
 
 

The next phase of the project was testing. I tested the 

electrical connections first by following the logic of the circuit 

diagram. In preparation for the possibility that the entire 

housekeeping rack be exposed to the outdoors, I then sealed the 

LS240 PSU with a weather-proof neoprene foam. I successfully 

filled the seams with a combination of the neoprene foam, 

aluminum tape, and an aluminum metal plate, and it is to be seen 

how often the sealants will need to be replaced (hopefully never 

if the adhesive of the neoprene foam stays strong). 

 

Figure 8: SAT-1 LS240 PSU (red box) 
undergoing testing. The LS240 PSU can be 
seen here connected to 1 LS240-2p and 3 
LS240-8ps, replicating the experimental 
conditions for the SAT-1. 
 

 

The final step of testing for the LS240 PSU prototype 

involved the recreation of the conditions needed on the actual 

SAT-1. I connected the power supply outputs on the front panel 

of the LS240 PSU to four of the LS240 devices, which in turn 

connected to a USB hub, also located in and powered by the 

box. This final test was passed, and the LS240 PSU has since 

been sent to UCSD for integration into their set-up with the 

SAT-1. It is being used to visualize the layout of the 

housekeeping rack, and will eventually be replaced with my 

next design, detailed in the following section. An image of the 

completed LS240 PSU undergoing testing can be seen in Figure 

8.  
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Final Design Plans for SAT-1 Thermometry/Timing 
Hardware 

In Spring 2020, I convened with collaborators from UC 

Berkeley and UCSD to finalize design plans for the SAT-1 

housekeeping rack. We decided that the back and sides of the 

rack would be fully enclosed for weather protection, while the 

front would be open (but weather proofed as much as possible) 

to allow for access to the electronics/connections. These 

protective requirements, an updated list of hardware going into 

the rack, and my need to compensate for other devices in the 

thermometry enclosure prompted massive design changes to the 

original LS240 PSU. Development of the new enclosure is an 

ongoing project, but my latest design is displayed in Figure 9 

with labels for the devices within, and the connection diagram 

can be found in Figure 10. While the new enclosure will have 

some of the same devices as the LS240 PSU (power supply, 

USB hub), most of the contents are new, and much of the 

external connection chain described in the LS240 PSU section 

will now be contained within the enclosure. The enclosure itself 

is 4U (the LS240 PSU was 2U) and will contain devices 

essential to the thermometry, continuously-rotating half wave 

plate (CHWP), and calibration grid loader housekeeping 

systems. The continuously-rotating half wave plate will be 

placed in front of the SAT-1 optics tube to modulate the 

polarization of the incident light and ultimately reduce 

atmospheric contamination of the desired signals [5]. The 

calibration grid loader is a circular device with an array of 

parallel wires which will be placed in front of the SAT-1 

cryostat. The grid loader rotates and calibrates for relative 

polarization angle sensitivity. 

 

 
Figure 9: Solidworks design for the final housekeeping thermometry hardware 
enclosure. 

Within the new thermometry enclosure, two Synaccess 

network controlled power strips, which are compatible with 110 

and 220 VAC, will replace the LS240 PSU linear power supply, 

removing the need for the DPDT switch and allowing for easy 

connection to DC power adapters for the electronics. Three 

ONLOGIC NUC computers will be contained in the enclosure, 

one to read out cold thermometry data (from the RX-102As and 

DT-670s), power the USB hub, and read out data from the 

calibration grid loader, one to monitor the timing system of the 

CHWP, and one to read out the CHWP actuators and the star 

camera. Both the CHWP and grid loader will have housekeeping 

enclosures installed on the housekeeping rack. Four Labjack 

devices will be included in the thermometry enclosure (the T7, 

Mux80 and two CB37s), all of which  will be used to read out 

warm thermometry data from thermistors installed outside of 

the telescope cryostat. The LS240s will go inside of the 

enclosure instead of standing alone on the rack (as originally 

planned with the LS240 PSU) and will channel data to the USB 

hub which connects to one of the NUCs. A copper block which 

will be thermally coupled to the housekeeping rack for cooling 

is included, which can accommodate heat straps sized to match 

power usage specs for the most dissipative components (NUCs 

and DC power adapters). Finally, two fans, one input and one 

exhaust, will be installed to help cool the electronics. The 

selection of the fans and the direction of airflow within the 

enclosure was an important consideration, especially because 

the NUC computers contain no internal fans, and many of the 

other electronics are sensitive to deviations from room 

temperature (~25C). I calculated that the fans would need to 

remove about 7 cubic meters of air per minute to ensure safe 

operation of the electronics on a hot day in the Atacama, and 

determined that the air flow should run across the width of the 

NUCs parallel to cooling fins meant to dissipate heat. It is 

ultimately most important to ensure proper functioning of the 

NUCs and LS240s, and future work will involve testing the 

cooling system while operating all of the electronics in the 

completed enclosure. 
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Figure 10: Connection diagram for the final housekeeping thermometry hardware 
enclosure. Some of the hardware described in the LS240 PSU section is shown here, 
now inside of the enclosure. There will be almost no replication of the connections 
on the electrical diagram for the LS240 PSU because most of the components 
included in that diagram are no longer required. 

 

 In addition to this enclosure, thermometry 

housekeeping will also include two LS372s. For timing, a 

boundary clock will be installed within a 1U enclosure, which 

will provide the timing synchronization for the rack, a part of an 

observatory-wide timing network. Future work will involve 

finalizing the enclosure for the boundary clock. The rest of the 

work for this final thermometry enclosure will involve much of 

the same process as for the LS240 PSU. Once the physical 

enclosure model is finalized I will submit the design for 

construction, finalize the connection diagram, assemble the 

enclosure, test it under experimental conditions, and weather-

proof it. The assembly and testing will then need to be 

completed for the enclosures on the SAT-2 and SAT-3 in 

preparation for their deployment in the coming years, and an 

entirely new design will be needed for the LAT. 

 

DESIGN OF THE SAT-1 
HOUSEKEEPING RACK ENCLOSURE 
AND COOLING SYSTEM 
 

My most recent work has involved designing the 

weather proof enclosure for the housekeeping rack, in addition 

to the cooling system meant to accompany the cooling methods 

for all of the independent enclosures/devices. The collaborators 

designing the CHWP and calibration grid loader housekeeping 

enclosures sent me their Solidworks models, and I made a 

rendition of the housekeeping rack with a proposed final layout, 

depicted in Figure 11. Figure 11 is a model of the actual rack 

frame depicted in Figure 12. Moving down the rack in Figure 

11, the Ibootbar is a network controlled power switch which will 

provide power for several of the rack components, the Network 

Switch will provide connection to the observatory’s overarching 

network and allow for housekeeping data transmission, the DR 

LS372 will provide low temperature readout for the dilution 

refrigerator in the cryostat of the SAT-1, the Thermometry 

Crate is the enclosure that I designed, the CHWP Crate controls 

the motor and readout for the CHWP, the Grid Loader Crate 

controls the calibration grid loader, and the Thermometry 

LS372 provides read out for bath temperature measurements. 

Preliminary designs for top/bottom and side covers are shown. 

The top/bottom covers each have slots for 6 120mm x 120mm 

fans for cooling. The configuration of the components in the 

rack optimizes air flow down the back and sides so as to reach 

all of the electronics. Future work will involve testing this air-

cooling method. 

 

 
 

Figure 11: Solidworks model for the SAT-1 housekeeping rack. The thermometry 
hardware enclosure can be seen at the top labeled “Thermometry Crate”, and two 
LS372s are seen in red. 
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Figure 12: The actual housekeeping rack to be 
installed on the SAT-1 boresight stage. The 
Solidworks assembly shown in Figure 11 is a 
model of this rack. 

 

 

 

In general, cooling for the housekeeping rack will be 

achieved through a combination of coupling to the cooling 

power of another equipment rack under the boresight stage of 

the SAT-1, air cooling, and conduction. Air cooling will occur 

by flowing chilled air down the sides and back of the rack. 

Coupling to the cooling power of the other equipment rack may 

provide this chilled air. Cooling through conduction necessitates 

a thermal connection between all of the most temperature 

sensitive devices to the boresight stage of the SAT-1, and would 

be done through the installation of copper plates (see Figure 9) 

and heat straps on the enclosures and rack. I will have to design 

these thermal connections. I have already collected information 

about the power consumption and temperature sensitivity of the 

devices in the rack, and future work will involve finalizing the 

design for the overarching cooling system, in addition to 

weatherproofing the rack against dust and water collection. 

 
CALIBRATION OF THE LAKESHORE 
RUTHENIUM OXIDE SENSORS (ROXs) 
 
The Calibration Process 

The Newburgh Lab is responsible for calibrating hundreds 

of temperature sensors, an endeavor that is still under way. The 

following is a description of the calibration process developed 

by members of the lab other than myself, however I have 

participated in almost every part of this process at various times. 

Aspects of the calibration process that I designed are explicitly 

mentioned as such. 

In order for the ROXs that will be placed near the detectors 

to accurately portray temperature, they must be calibrated to a 

sensor with incredibly well known properties. Lakeshore 

Cryotronics provided our lab with this well-known sensor, a 

calibrated ROX meant to be the calibration standard for the rest 

of our RX-102A thermistors. To perform calibration, the 

calibration standard and up to 24 un-calibrated ROXs are placed 

on a copper plate on the 100 mK stage of an LD400 Dilution 

Refrigerator (DR). The DR is then cooled while taking data with 

the thermometers such that calibration files for every sensor can 

be made. The entire process of calibration can be broken into 

three stages: Pre-cooldown, cooldown and warmup, and post-

warmup. An image of the copper plate in the DR can be found in 

Figure 13, and a diagram of this plate with a layout for one of 

our cool downs is displayed in Figure 14. 

For the pre-cooldown stage, the DR is opened and 

thermometers already in the fridge are removed and prepared 

for distribution to our collaborators. New ROXs are then placed 

on the copper plate and their physical location in the fridge is 

documented. The DR is then closed again, and various 

preparation steps (for example pumping on the vacuum can of 

the DR and the refilling of the liquid nitrogen dewar) are 

completed before cool down can begin. 

 

 

Figure 13: The Bluefors LD400 dilution refrigerator used for ROX calibration. The 
circular copper plate hosting the uncalibrated ROXs (and the 1 calibrated one) is on 
the bottom (100 mK) stage of the DR. Also shown are the heater (in the center of 
the copper plate), the 4K stage (top gold plate) and the 1K stage (next golden plate 
down). The heater lines likely causing calibration discrepancies (see following 
section) are located in the coils connecting the center of each plate, directly 
adjacent to the  ROX readout wires. 
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During the cool down and warm-up stage, a 24 hour period 

is taken to cool the DR from room temperature to around 50 mK, 

during which data is taken for the upper temperature range of 

the ROX calibration curves (less data points are needed for the 

upper ranges because we require these sensors to be the most 

accurate at sub-Kelvin temperatures). Once the base 

temperature is achieved, the DR is prepared for a process called 

“servo-ing”. As demonstrated in Figure 15, to gather sufficient 

data points at the necessary temperature steps for calibration, a 

heater located on the 100mK copper plate is used to deposit 

power, slowly increasing its temperature and plateauing for data 

collection. Each sensor is measured at every temperature step 

for 2 minutes at a rate of 4 Hz. The temperature read out by 

each ROX is averaged over these 2 minutes before it is 

compared to the temperature measured by the calibration 

standard. The first temperature range is from 50-240 mK in step 

sizes of 5 mK, and the second is from 260-800 mK in step sizes 

of first 20, 30, and then 35 mK. Once this process is complete, 

the fridge is returned to base temperature before initiating a 

warm-up. Python scripts written to access the data and write 

calibration files are run, including a merging script that I wrote 

to combine and format the calibration files from the different 

temperature step ranges mentioned above. Once the calibration 

files are completed for each ROX, they are uploaded to the 

LS372s where they are monitored for inconsistencies during the 

warm-up. Only after this upload can the DR be warmed to room 

temperature again. 
Figure 14: Diagram of the 100 mK 
stage copper ROX plate. Each smaller 
circle on the perimeter of the plate is 
an RX-102A sensor (labeled with X-
001, etc.). X-001 was the first ROX to 
be labeled and stays in the DR for all 
cooldowns to monitor the consistency 
of calibration. X-108, as an example, is 
the 108th sensor to be labeled; the 
numbering for ROXs goes into the 
hundreds. CAL is the Lakeshore 
calibrated thermometer. The heater in 
the middle provides heating for servo-
ing. 

 

Finally, in the post-warmup stage of calibration, once it is 

confirmed that the calibration curves are accurate to the 

behavior of every ROX, the curves are uploaded to the Simons 

Observatory Github where they can be accessed by SO 

collaborators. The process then repeats. 

 

 
Figure 15: Calibrated ROX temperature vs. time for a calibration servo in the 
Newburgh lab DR. The first series of steps is from 50-240 mK, and the second is 
from 260-800 mK. 

 

Troubleshooting Calibration Discrepancies Between the 
Bluefors and Lakeshore Calibrated ROXs 

A recent focus of my work has been in response to 

ROX calibration inconsistencies observed by collaborators at 

the University of Pennsylvania. UPenn noticed that the 

calibrated ROX thermometer provided with their Bluefors DR 

differed by as much as 10 mK from the thermometers that we 

had calibrated. After some investigation, the postdoctoral 

researcher in our lab noticed similarly odd differences between 

the thermometer pre-installed in the Bluefors DR and the 

calibration standard thermometer provided by Lakeshore. This 

revelation poses a number of difficulties, most notably that our 

previously generated calibration curves are likely incorrect. 

Figure 16: (Left) Example LS/BLF temperature comparison for the cooling section 
of a cool down: temperature of the Bluefors and Lakeshore calibrated 
thermometers vs. Ctime, the number of seconds since January 1, 1970 at midnight 
UTC (this is a standard time reference in computer applications, and the actual 
date is written in text in the middle of the figure). “15689” is the first five digits of 
the Ctime for the data frame, roughly corresponding to the day. This figure depicts 
the final stage of the DR cooldown as it reaches its base temperature of 50 mK, 
and the two calibrated thermometers match one another reasonably well. (Right) 
Example relative difference plot for the cooling section of a cool down: the 
difference in temperature between the Bluefors and Lakeshore calibrated 
thermometers as a function of the Bluefors sensor temperature. As compared to 
Figure 17, the differences here are clearly less significant. 
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Initial inquiries into the issue were inconclusive, and so 

I wrote a script to analyze the last 1.5 years of our lab’s DR cool 

down data in order to identify patterns of difference between the 

Lakeshore (LS) and Bluefors (BLF) calibrated thermometers. I 

started by making general comparison and relative and absolute 

difference plots for each day of data, in addition to similar plots 

for data across the entire time frame. The goal was to identify 

patterns on small timescales, and to additionally determine if the 

differences between the thermometers converged or diverged 

across all cool downs. 

Figure 17: (Left) Example LS/BLF temperature comparison for the servo section of 
a cool down. See Figure 16 for information on the axes labels and title. During this 
stage of the cooldown the heater depicted in Figures 13 and 14 is used to 
increment the temperature of the ROXs. As temperature increases the difference 
between the Bluefors and Lakeshore calibrated thermometers increases, 
suggesting a correlation between heater use and calibration discrepancy. (Right) 
Example relative difference plot for the servo section of a cool down. Differences 
between the calibrated ROXs with respect to the Bluefors ROX are significantly 
larger during servo than either cooling or warm-up. 

 

On smaller time scales patterns in differences became 

immediately apparent. I cross referenced the dates of each 

pattern with a detailed log of every cool down that our lab had 

performed. I then matched the patterns to particular sections of 

the cool down process. There were three sections that I 

identified: cooling: when the DR is first cooled to its base 

temperature, servo: when the heater on the copper plate on the 

100 mK DR stage is used to warm to specific temperatures and 

calibration data is taken, and warm-up: when an internal script 

is run to warm the DR back to room temperature. Examples of 

the plots generated during each of the sections are displayed in 

Figures 16-18. 

As suggested in Figures 16-18, differences between the LS 

and BLF thermometers are relatively similar in the cooling and 

warm-up sections of the cool downs, while the servo sections 

produced significantly higher differences. In some cases servos 

produced differences of up to 60 mK at 100 mK, an 

unacceptable margin of error for thermometers we are using 

primarily to monitor surfaces at sub-kelvin temperatures. In the 

servo section of every cool down the only difference between 

the physical environments of the BLF and LS ROXs is their 

proximity to the heater being used. There are two heaters 

installed in the Newburgh DR: one pre-installed by Bluefors, 

and the other installed by our lab for calibration (see Figures 13 

and 14). The greatest discrepancies in read out occur during 

servo, when our own heater is used to warm the 100mK cold 

plate. This suggests that the heater is in some way causing the 

calibration discrepancies. If this is the case, it is additionally 

possible that higher frequency noise from the lines connecting 

the heater to electronics outside of the fridge is contaminating 

the temperature data in an adjacent wire attached to the 

calibrated ROX. This last point is a related, but potentially 

separate hypothesis to explain the calibration discrepancies. 

Troubleshooting for both the combined hypothesis, and this final 

hypothesis alone, is later described. 

Figure 18: (Left) Example LS/BLF temperature comparison for the warm-up section 
of a cool down. During warm-up a script is run to return the DR to room 
temperature. Like during cooling, the Bluefors and Lakeshore calibrated 
thermometers exhibit similar behavior during warm-up. It is important to note that 
the heater on the 100mK copper plate is not used to warm the DR during this 
section of the cool down. (Right) Example relative difference plot for the warm-up 
section of a cool down. The difference between the calibrated ROXs as a function 
of the temperature of the Bluefors ROX is very similar to the cooling section. 

 

Although it is probable that our heater is the source of the 

calibration discrepancies, the exact properties of those 

discrepancies remain unknown. The overarching goal of this 

analysis is to re-calibrate the “calibrated” LS thermometer, and 

to adjust all of the other calibration files accordingly. Under 

ideal circumstances, the discrepancies observed during servo-

ing would be consistent across all cool downs, and this 
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adjustment of calibration files would only involve a simple 

curve fit. However, upon  looking at servo data across several of 

the cool downs, it is obvious that the re-calibration will not be 

this simple. Figure 19 overlays servo data for 7 cool downs, and 

as we can see there are two behaviors that emerge, one with 

significantly higher differences than the other as a function of 

the temperature of the Bluefors thermometer. The problem is 

that these two paths are not chronologically related, and adjacent 

cool downs seem to exhibit radically different behavior. 

Upcoming work by members of our lab will be to identify what 

was happening during each of those cool downs, with the hope 

of solidifying our understanding of the calibrated thermometer 

differences during servo. 

In the midst of the pandemic both graduate students and 

postdoctoral researchers have been allowed to return to  do lab 

work under restricted schedules. While I have not been allowed 

to be a part of this return, members of our lab have begun to 

implement a variety of tests on the DR set-up to further evaluate 

the BLF/LS ROX calibration differences. Once this is complete, 

we will be able to finish the rest of the ROX calibration runs 

without error, in addition to fixing the calibrations for previously 

calibrated sensors. Members of the lab will test each of the 

following solutions separately: 1.) Responding to a 

recommendation from Lakeshore about grounding the DR 

components, they will ensure that there are no shorts between 

the gas handling system and the other elements of the DR. 2.) 

They will extract and rewire the lines that provide power to the 

heater at the center of the 100 mK copper plate to distance them 

from the calibrated ROX (these lines have always been directly 

next to the wires that carry ROX data, so if they are noisy, there 

is no surprise that they have caused calibration discrepancies). 

3.) Finally, if neither of the other two measures entirely 

compensate for the discrepancies, they will place a cryogenic 

low-pass filter in front of the calibrated LS sensor, something 

that the Bluefors sensor already possesses. This would alleviate 

complications resulting from high frequency noise emitted 

(potentially) by the heating lines. Another possible solution 

would be to use the data from the BLF thermometer to re-

calibrate all of the ROX sensors, something that would alleviate 

the need to cool down each of the sensors for a second time. 

 
Figure 19: Overlay of servo section data for 7 DR cool downs. This plot overlays the 
same plot as in Figure 17 for 7 different cool downs. The formation of two different 
legs is evident, but there is no clear chronological pattern. For example, adjacent 
cooldowns on 4/19/2019 and 4/30/2019 exhibit completely different behavior. It 
should be noted that there are three different servo sections plotted for the 
4/03/2019 cooldown because three different servos were executed in the same 
temperature range. 

 
NEXT STEPS 

I will continue to work on thermometry/timing 

housekeeping hardware for SO for the coming weeks. The bulk 

of my work will involve completing the planning, design, 

construction, and testing of the thermometry/timing enclosures 

for the SAT-1 housekeeping rack, and I plan to finish the same  

for the SAT-2 and SAT-3. I will also work to complete the design 

of the housekeeping rack enclosure and cooling system. Starting 

in September 2021 I will be moving to Princeton University to 

continue work on the Simons Observatory, finishing up projects 

begun at Yale and continuing on to the assembly and testing of 

a fourth SAT (the SAT-4) which will be fielded as part of a later 

stage of the observatory’s operation. 
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