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Learning Efficiency of Multi-Agent Information
Structures∗

Preliminary and incomplete

Mira Frick Ryota Iijima Yuhta Ishii

August 17, 2021

Abstract

We study settings in which, prior to playing an incomplete information game,
players observe many draws of private signals about the state from some information
structure. Signals are i.i.d. across draws, but may display arbitrary correlation across
players. For each information structure, we define a simple learning efficiency in-
dex, which only considers the statistical distance between the worst-informed player’s
marginal signal distributions in different states. We show, first, that this index char-
acterizes the speed of common learning (Cripps, Ely, Mailath, and Samuelson, 2008):
In particular, the speed at which players achieve approximate common knowledge of
the state coincides with the slowest player’s speed of individual learning, and does
not depend on the correlation across players’ signals. Second, we build on this char-
acterization to provide a ranking over information structures: We show that, with
sufficiently many signal draws, information structures with a higher learning efficiency
index lead to better equilibrium outcomes, robustly for a rich class of games and ob-
jective functions. We discuss implications of our results for constrained information
design in games and for the question when information structures are complements
vs. substitutes.

∗Frick: Yale University (mira.frick@yale.edu); Iijima: Yale University (ryota.iijima@yale.edu);
Ishii: Pennsylvania State University (yxi5014@psu.edu). Acknowledgments to be added.
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1 Introduction

1.1 Overview

Suppose a group of players (e.g., firms) are engaged in an incomplete information
game (e.g., joint investment in a project of unknown profitability). Prior to choosing
their actions in the game, players have access to many draws of private signals about
the unknown state from some information structure (capturing, for instance, that
data is “cheap” or abundant). While signals are assumed i.i.d. across draws, we allow
them to be arbitrarily correlated across players.

This paper studies comparisons of information structures in such a setting, ad-
dressing two related questions. First, which information structures induce faster
learning? In strategic settings, learning not only concerns each agent’s beliefs about
the state, but also agents’ higher-order uncertainty about other agents’ beliefs. Thus,
for each information structure, we quantify the speed of common learning (Cripps,
Ely, Mailath, and Samuelson, 2008), i.e., the speed at which repeated signal draws
allow agents to achieve approximate common knowledge of the state. Second, when
agents observe a large number of signal draws, which information structures induce
“better” equilibrium outcomes? Based on our characterization of the speed of learn-
ing, we obtain a ranking over information structures that answers this question. The
ranking applies for a rich class of games and objective functions, permitting a robust
comparison of information structures that does not require an understanding of the
full details of the strategic environment.

We answer both these questions by introducing a learning efficiency index for
multi-agent information structures. An information structure maps each state to
a joint distribution over all agents’ private signals, where both states and signals
are assumed finite. Our index reduces each information structure to a simple one-
dimensional measure, which only quantifies how difficult the worst-informed agent
finds it to distinguish the two states that are hardest to tell apart based on her
private signal observations. Here, each agent i’s difficulty of distinguishing any two
states is measured by the (Chernoff) statistical distance between i’s marginal signal
distributions in each state. Notably, since the learning efficiency index is derived
only from agents’ marginal signal distributions, it does not depend on the correlation
across agents’ signals.

Our first main result is that this index characterizes agents’ speed of common
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learning. More precisely, for any information structure I, we consider the probability
that agents have approximate common knowledge of the true state after t i.i.d. signal
draws from I. Theorem 1 shows that, as t grows large, this probability converges to
one at an exponential rate given by the learning efficiency index of I. Approximate
common knowledge is a much more demanding notion than individual knowledge, as
it imposes confidence not only on agents’ first-order beliefs about the state, but on
their infinite hierarchy of higher-order beliefs. However, the fact that our learning
efficiency index does not depend on the correlation across agents’ signals has the
following important implication: Common learning and individual learning occur
at the same rate. Thus, with many signal observations, agents’ higher-order belief
uncertainty vanishes at least as fast as their first-order uncertainty. The proof of
Theorem 1 relies on a key lemma that uses the “second law of thermodynamics”
for Markov chains to relate players’ observations and their higher-order beliefs via
Kullback-Leibler divergence (Lemma 1) .

Second, building on Theorem 1, we use the learning efficiency index to provide
a large-sample ranking over information structures in games. With any game, we
associate an objective function over outcomes in each state, capturing, for instance,
agents’ welfare or a designer’s preferences. Theorems 2–3 show that, for a rich class of
games and objectives, information structures with a higher learning efficiency index
induce better (Bayes Nash) equilibrium outcomes whenever agents observe sufficiently
many signal draws. The only assumption imposed on the game and objective function
is that, under common knowledge of the state, the first-best outcome (according to
the objective) can be achieved by some strict Nash equilibrium of the game. As
this assumption only requires the objective and agents’ incentives to be aligned at
certainty, it allows for rich strategic externalities. For instance, if the objective is to
maximize utilitarian welfare, this assumption captures many important coordination
games in the literature, such as the illustrative example below.

Based on the structure of the learning efficiency index, our ranking has impli-
cations for the design of information structures in games: In particular, if agents
have access to many signal draws, then the way to achieve better equilibrium out-
comes is by improving the worst-informed agent’s information about the state. In
contrast, providing signals about other agents’ signals that do not contain additional
information about the state is not effective. Thus, whereas a central insight in the
literature is that higher-order belief uncertainty can be a significant source of ineffi-
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ciency in incomplete information games, our results suggest that, when agents have
access to large samples of signals, reducing higher-order belief uncertainty becomes a
second-order concern.

Illustrative example: Joint investment. Consider two players i = 1, 2, with
symmetric action sets Ai = {−1, 1, 0}, where action 1 (resp., −1) represents investing
in project 1 (resp., project −1) and 0 represents no investment. The state of the world
θ ∈ {−1, 1} captures which of the two projects will succeed and is drawn according
to some non-degenerate prior p0. Each player i’s utility takes the form

ui(a1, a2, θ) = 1{a1=a2=θ} − c|ai|;

that is, if i chooses to invest in either project, she incurs an investment cost of
c ∈ (0, 1), and she receives a payoff of 1 if and only if she invests in the correct
project and her opponent also invests in this project. Under utilitarian welfare,
1
2

(u1(a, θ) + u2(a, θ)), the efficient outcome is to play (θ, θ) in state θ. This is a strict
Nash equilibrium of the game under common knowledge of θ, but is not achievable
as a Bayes-Nash equilibrium under incomplete information.

Now suppose that, prior to playing the game, players learn about state θ from re-
peated i.i.d. signal draws. Our learning efficiency index yields a generically complete
ranking over information structures that makes it possible to compare how fast play-
ers achieve approximate common knowledge of θ, and hence how close the induced
equilibrium play is to the efficient outcome after sufficiently many signal draws. For
example, consider a simple class of binary information structures, where each player
i’s private signal realizations xi are either −1 or 1, and the joint probabilities of
players’ signals conditional on state θ are

x1 = θ x1 6= θ
x2 = θ γρ γ(1− ρ)
x2 6= θ γ(1− ρ) 1− γ(2− ρ).

Each information structure is summarized by an individual precision parameter
γ ∈ (1/2, 1), capturing the probability with which each player’s signal matches the
state, and a parameter ρ ∈ (2 − 1

γ
, 1), capturing the extent of correlation across

players’ signals. Higher values of γ improve each player’s individual learning about
state θ, while higher values of ρ facilitate more accurate predictions of the opponent’s
signals (and hence their beliefs and actions). Thus, in comparing two information
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structures parametrized by (γ, ρ) and (γ̃, ρ̃), it might not be clear how to trade off
these two considerations. Indeed, if players observe only a small number of signal
draws, whether (γ, ρ) or (γ̃, ρ̃) induces better equilibrium play can vary across different
priors p0 and investment costs c.

However, we will show that our learning efficiency index depends only on γ. Thus,
for any p0 and c, higher levels of individual precision γ guarantee better equilibrium
welfare whenever players observe sufficiently many signal draws; in contrast, the effect
of correlation ρ becomes negligible as the number of signals grows large. As we will
see, this is due to the fact that the speed of common learning is the same as the speed
of individual learning, because uncertainty about opponents’ signals vanishes faster
than uncertainty about the state.

1.2 Related Literature

Our paper bridges the literatures on higher-order beliefs and learning efficiency.
Within the former, we relate most closely to Cripps, Ely, Mailath, and Samuelson
(2008), henceforth CEMS. Their main result establishes that, in the current setting
(with finite states and signals), every information structure leads to common learning
as the number of signal observations goes to infinity.1 We derive a simple learning effi-
ciency index that characterizes the speed of common learning under each information
structure. Characterizing the speed of learning is also essential for our second contri-
bution of comparing how different information structures affect equilibrium outcomes
after a large but finite number of signal draws. As we discuss (Remark 2), our proof
uses Markov chain arguments that are related to CEMS’ approach, but is based on a
different construction.

Moscarini and Smith (2002) derive an efficiency index that characterizes the speed
of single-agent learning.2 As we discuss (Remark 1), our multi-agent index can be
seen to reduce to theirs in the single-agent case. The main novelty of our analysis
is to show that higher-order belief uncertainty vanishes at least as fast as first-order
uncertainty; thus, the multi-agent index corresponds to the slowest individual agent’s

1Several papers (e.g., Steiner and Stewart, 2011; Cripps, Ely, Mailath, and Samuelson, 2013)
study common learning when signals are correlated across draws. Liang (2019) considers non-
Bayesian agents who learn from public signals. Acemoglu, Chernozhukov, and Yildiz (2016) consider
a setting that features identification problems due to uncertainty about the information structure.

2See also Frick, Iijima, and Ishii (2021) and Fudenberg, Lanzani, and Strack (2021) in the context
of misspecified single-agent learning.
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learning index, while the correlation across agents’ signals plays no role.
Learning efficiency has also been analyzed in various social learning environments,

but most work has not focused on the role of higher-order beliefs.3 A notable exception
is Harel, Mossel, Strack, and Tamuz (2021), who consider a setting in which long-
lived agents repeatedly observe both private signals and other agents’ actions, so that
higher-order beliefs matter for agents’ inferences. They derive an upper bound on
the speed of first-order learning that holds uniformly across all population sizes. We
study learning from exogenous signals rather than from others’ actions, but provide
an exact characterization of the convergence speed of both higher-order and first-order
beliefs.

Theorems 2–3 relate to the literature on comparisons of information structures.
Blackwell’s (1951) order compares single-agent information structures in terms of
their induced payoffs in all decision problems, assuming that a single signal draw is
observed. Moscarini and Smith’s (2002) aforementioned efficiency index extends this
order to single-agent settings with a large number of i.i.d. signal draws. Mu, Pomatto,
Strack, and Tamuz (2021) (see also Azrieli, 2014) consider a more demanding order
than Moscarini and Smith (2002), by requiring the number of signal observations to
be uniform across decision problems.

Several papers extend the Blackwell order to multi-agent settings, focusing on the
single signal draw case. Gossner (2000) compares (Bayes Nash) equilibrium outcomes
for general games and objective functions. He shows that this yields a very conserva-
tive order, where no two information structures that induce different (higher-order)
beliefs can be compared. Thus, one needs to restrict the class of games and objectives
to obtain less degenerate rankings.4 In particular, Lehrer, Rosenberg, and Shmaya
(2010) focus on common interest games with utilitarian welfare, and characterize the
order based on a generalization of Blackwell’s garbling condition. Analogously, Pęski
(2008) compares min-max values in zero-sum games. Our exercise is most compa-
rable to Lehrer, Rosenberg, and Shmaya (2010), in that we also impose a form of
alignment on agents’ incentives and the objective function. However, by assuming
that agents observe many signal draws, we obtain a ranking that is a completion of

3See, e.g., Vives (1993); Duffie and Manso (2007); Hann-Caruthers, Martynov, and Tamuz (2018);
Rosenberg and Vieille (2019); Liang and Mu (2020); Dasaratha and He (2019).

4Bergemann and Morris (2016) study general games by using a different approach. They consider
Bayes correlated equilibria, which are equivalent to Bayes Nash equilibria in a setting with a mediator
who commits to sending action recommendations after observing the state and signals.
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Lehrer, Rosenberg, and Shmaya’s (2010) order and that applies to a richer class of
games and objective functions beyond the common-interest case.

2 Setting

Throughout the paper, we fix a finite set of agents I, a finite set of states Θ, and a
full-support (common) prior belief p0 ∈ ∆(Θ).

An information structure I consists of a finite set of signals Xi for each agent
i, with corresponding set of signal profiles X :=

∏
i∈I Xi, as well as a distribution

µθ ∈ ∆(X) over signal profiles conditional on each state θ ∈ Θ. Let µθi ∈ ∆(Xi) denote
the marginal distribution over agent i’s signals in state θ. We assume either that each
distribution µθ has full support over X, or that signals are perfectly correlated with
full-support marginals.5 We also assume that µθi 6= µθ

′
i for all i ∈ I and distinct

θ, θ′ ∈ Θ.
A basic game G consists of a finite set of actions Ai for each agent i, with

corresponding set of action profiles A :=
∏

i∈I Ai, as well as a utility function ui :

A×Θ→ R over action profiles and states for each agent i.
We consider settings where prior to playing a basic game G, agents observe re-

peated i.i.d. signal draws from an information structure I. Formally, for each informa-
tion structure I and t ∈ N, let PIt ∈ ∆(Θ ×X t) denote the probability distribution
over states and sequences of signal profiles that results when the state θ is drawn
according to prior p0 and, conditional on each state θ, a sequence xt = (xτ )τ=1,...,t

of signal profiles is generated according to t independent draws from µθ. For each
basic game G, we consider the incomplete information game Gt(I), where states
and signal sequences are drawn according to PIt and a strategy for agent i is a map
σit : (Xi)

t → ∆(Ai) from i’s observed signal sequences xti = (xiτ )τ=1,...,t to (one-shot)
mixed actions in Ai.

Let BNEt(G, I) denote the set of Bayes Nash equilibria (BNE) of Gt(I). That is,
a strategy profile σt = (σit)i∈I is in BNEt(G, I) if for each i ∈ I, xti ∈ X t

i , and ai with
5Formally, signals are perfectly correlated if Xi = Xj for all i, j, and for each x ∈ X and θ,

µθ(x) =

{
µθi (xi) if xi = xj for all i, j,
0 otherwise

.
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σit(ai | xti) > 0,

ai ∈ argmax
a′i∈Ai

∑
θ∈Θ,xt−i∈Xt

−i

PIt (θ, xt−i | xti)
∑

a−i∈A−i

σ−i(a−i | xt−i)ui(a′i, a−i, θ).

3 Multi-Agent Learning Efficiency

3.1 Common Learning

Our first goal is to characterize the learning efficiency of each information structure I.
To formalize learning, we employ CEMS’ notion of common learning. This captures
that, in multi-agent settings, learning not only concerns agents’ beliefs about the state
θ, but also their higher-order uncertainty about other agents’ beliefs.

Fix an information structure I. For any t ∈ N, p ∈ (0, 1), and event E ⊆ Θ×X t,
let Bp

t (E) denote the event that E is p-believed at t, i.e., that all agents assign
probability at least p to E after t draws from I. Formally,

Bp
t (E) :=

⋂
i∈I

Bp
it(E), where Bp

it(E) := Θ× {xti ∈ X t
i : PIt (E | xti) ≥ p} ×

∏
j 6=i

X t
j .

Since µθi 6= µθ
′
i for all i and θ 6= θ′, standard arguments imply that all players indi-

vidually learn the true state; that is, for all p ∈ (0, 1) and θ ∈ Θ, we have

lim
t→∞

PIt (Bp
t (θ) | θ) = 1,

where, slightly abusing notation, we also use θ to denote the event {θ} ×X t.
While individual learning only requires all agents’ first-order beliefs to eventually

assign probability arbitrarily close to 1 to the true state, CEMS’ notion of common
learning additionally considers agents’ higher-order beliefs. Let

Cp
t (E) :=

⋂
k∈N

(Bp
t )
k(E)

denote the event that E is commonly p-believed at t. Thus, at Cp
t (E), the event E

is p-believed, the event Bp
t (E) is p-believed, and so on. Common learning obtains

if the true state is eventually commonly p-believed for p arbitrarily close to 1; that
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is, for all p ∈ (0, 1) and θ ∈ Θ,

lim
t→∞

PIt (Cp
t (θ) | θ) = 1. (1)

The event that Cp
t (θ) for p close to 1 captures that players have approximate common

knowledge of state θ. Conditional on this event, for any basic game G, equilibria in
BNEt(G, I) approximate equilibria of G under common knowledge of θ (Monderer
and Samet, 1989).

The main result in CEMS is that when states and signals are finite, as in our
setting, then common learning always obtains:6

Proposition 0 (CEMS). For any information structure I, common learning obtains.

3.2 Characterization of Learning Efficiency

Proposition 0 shows that all information structures eventually lead to approximate
common knowledge of the state. However, it says nothing about the rate at which the
convergence in (1) is achieved, and hence about how each I affects equilibrium play
in any game Gt(I). To measure the learning efficiency of each information structure,
we derive a simple index that characterizes this rate for each I.

First, define the Chernoff distance between any two distributions µ, µ′ ∈ ∆(Y )

over a finite set Y by

d(µ, µ′) := min
ν∈∆(Y )

max{KL(ν, µ),KL(ν, µ′)}. (2)

Here, KL(ν, µ) :=
∑

y∈Y µ(y) log µ(y)
ν(y)

denotes the Kullback-Leibler (henceforth, KL)
divergence of ν relative to µ.7 Smaller values of KL(ν, µ) quantify that an empirical
distribution ν is better explained by the theoretical distribution µ, in the sense that
(a large number of) repeated i.i.d. draws from µ are more likely to generate empirical
distributions ν with a smaller KL-divergence relative to µ. The Chernoff distance is a
common statistical measure of the dissimilarity of distributions µ and µ′ (e.g., Cover
and Thomas, 1999). To understand this definition, observe that any minimizer ν of
(2) must satisfy KL(ν, µ) = KL(ν, µ′), so d(µ, µ′) is the distance from µ and µ′ to

6CEMS provide an example with countably infinite Θ, in which individual learning holds but
common learning fails.

7We use the convention that 0 log 0 = 0
0 = 0 and log 1

0 =∞.
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their KL-midpoint. Thus, the smaller d(µ, µ′), the more difficult it is to distinguish
µ and µ′, because repeated draws from either distribution are more likely to generate
an empirical distribution ν that is explained equally well by µ and µ′. Note that
d(µ, µ′) > 0 whenever µ 6= µ′.

Using the Chernoff distance, we introduce the following learning efficiency index:

Definition 1. For any information structure I, define the learning efficiency in-
dex in state θ by

λθ(I) := min
i∈I,θ′ 6=θ

d(µθi , µ
θ′

i ). (3)

In each state θ, Definition 1 reduces each information structure I to a simple one-
dimensional measure. For each agent i, the Chernoff distance d(µθi , µ

θ′
i ) between i’s

marginal signal distribution in state θ and in any other state θ′ captures how difficult
i finds it to distinguish θ′ from θ. The index λθ(I) is the minimum of d(µθi , µ

θ′
i ) across

all agents i and states θ′ 6= θ. Thus, it focuses only on the worst-informed agent i
and the state θ′ that i finds most difficult to distinguish from the true state θ.

Notably, since the learning efficiency indices depend only on agents’ marginal
signal distributions, the correlation across different agents’ signals plays no role. For
instance, in the illustrative example (Section 1.1), where I is summarized by an
individual precision parameter γ and a correlation parameter ρ, λθ(I) is strictly
increasing in γ but does not depend on ρ. More generally, if each agent i’s marginal
signal distributions under I Blackwell-dominate those under Ĩ, then λ(I) ≥ λ(Ĩ).

Our first main result is that λθ(I) captures the rate of common learning under
information structure I. Moreover, this coincides with the rate of individual learning:

Theorem 1. Fix any information structure I, θ ∈ Θ, and p ∈ (0, 1). As t→∞,

PIt (Bp
t (θ) | θ) = 1− exp[−λθ(I)t+ o(t)]; (4)

PIt (Cp
t (θ) | θ) = 1− exp[−λθ(I)t+ o(t)]. (5)

As highlighted by a rich literature (going back to, e.g., Rubinstein, 1989), com-
mon p-belief is a much more demanding requirement than individual p-belief: Cp

t (θ)

imposes confidence not only on agents’ first-order beliefs about the state, but on their
entire infinite hierarchy of higher-order beliefs. Based on this, it might be natural
to expect common learning to occur more slowly than individual learning. However,
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Theorem 1 shows that, as t→∞, the probability of common p-belief and the proba-
bility of individual p-belief of the true state θ both tend to 1 at the same exponential
rate, which is given by the learning efficiency index λθ(I).

That is, when agents observe large samples of signals, higher-order belief uncer-
tainty vanishes just as fast as first-order uncertainty. This point is also reflected by
the fact that the learning efficiency index λθ(I) = mini∈I,θ′ 6=θ d(µθi , µ

θ′
i ) depends only

on the worst-informed agent’s marginal signal distributions, while correlation across
agents’ signals plays no role. When players observe a small sample of signals, increas-
ing individual signal precision and increasing correlation of signals can both improve
the probability of common p-belief of the correct state. However, under large samples,
the effect of correlation becomes second-order.

The proof of Theorem 1 is in Appendix B. We sketch the argument in the next
section. The key step is a lemma relating higher-order beliefs to KL-divergence
(Lemma 1), which we use to show that higher-order uncertainty vanishes at least
as fast as first-order uncertainty.

Remark 1 (Single-agent learning efficiency). Applied to the single-agent case, I =

{i}, Theorem 1 yields that each agent i’s individual rate of learning (i.e., the rate
at which PIt (Bp

it(θ) | θ) → 1) is given by λθi (I) := minθ′∈Θ\{θ} d(µθi , µ
θ′
i ). This is

equivalent to the single-agent learning efficiency index introduced by Moscarini and
Smith (2002), which is based on the Hellinger transform:

λθi,MS(I) = min
θ′∈Θ\{θ}

max
κ∈[0,1]

− log
∑
xi∈Xi

µθi (xi)
κµθ

′

i (xi)
1−κ. (6)

Indeed, the variational formula (e.g., Dupuis and Ellis, 2011, Lemma 6.2.3.f) ensures
that d(µθi , µ

θ′
i ) = maxκ∈[0,1]− log

∑
xi∈Xi µ

θ
i (xi)

κµθ
′
i (xi)

1−κ for any distinct θ, θ′.
Thus, our efficiency index can be viewed as a multi-player generalization of Moscarini

and Smith (2002), and Theorem 1 shows that the rate of common learning, λθ(I) =

mini∈I λ
θ
i (I), corresponds to the slowest agent’s rate of individual learning. N

3.3 Proof Sketch of Theorem 1

Speed of individual learning. We first show that each agent i’s rate of individual
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learning in state θ is λθi (I) = minθ′ 6=θ d(µθi , µ
θ′
i ), i.e., as t→∞,

PIt (Bp
it(θ) | θ) = 1− exp[−λθi (I)t+ o(t)]. (7)

This can be seen by showing that λθi (I) is equivalent to Moscarini and Smith’s (2002)
single-agent efficiency index (see Remark 1). However, for clarity, we sketch a direct
proof on which we will build below to characterize the speed of common learning.

Let νit ∈ ∆(Xi) denote the empirical distribution of i’s signals up to t, which
is a sufficient statistic for i’s beliefs. By standard arguments, as t → ∞, i’s beliefs
concentrate on the state whose signal distribution minimizes KL-divergence relative
to νit. Thus, for any ε > 0, we have that for all large enough t,{

KL(νit, µ
θ
i ) ≤ min

θ′ 6=θ
KL(νit, µ

θ′

i )− ε
}
⊆ Bp

it(θ) ⊆
{

KL(νit, µ
θ
i ) ≤ min

θ′ 6=θ
KL(νit, µ

θ′

i ) + ε

}
.

(8)
Moreover, by Sanov’s theorem from large deviation theory, for any closed Di ⊆ ∆(Xi)

with non-empty interior,

PIt (νit ∈ Di | θ) = 1− exp[− inf
ν /∈Di

KL(ν, µθi )t+ o(t)], as t→∞.

For Di := {νi ∈ ∆(Xi) : KL(νi, µ
θ
i ) ≤ minθ′ 6=θ KL(νi, µ

θ′
i )}, it can be seen that

infνi /∈Di KL(νi, µ
θ
i ) = λθi (I).8 Thus, applying Sanov’s theorem to the upper and lower

bounds in (8) and letting ε→ 0 yields the desired conclusion.
Finally, (7) implies (4): Since Bp

t (θ) =
⋂
i∈I B

p
it(θ), the speed of convergence of

PIt (Bp
t (θ) | θ) is governed by the slowest individual learning rate, λθ(I) = mini∈I λ

θ
i (I).

Speed of common learning. Since Cp
t (θ) ⊆ Bp

t (θ), the speed of common
learning at θ cannot exceed the speed of individual learning and thus, by the first
part, is at most λθ(I). The main step of the proof establishes that the speed of

8Indeed, note that

inf
νi /∈Di

KL(νi, µ
θ
i ) = inf

{
KL(νi, µ

θ
i ) : KL(νi, µ

θ
i ) > KL(νi, µ

θ′

i ) for some θ′ 6= θ
}

= min
θ′ 6=θ

{
KL(νi, µ

θ
i ) : KL(νi, µ

θ
i ) = KL(νi, µ

θ′

i )
}

= min
θ′ 6=θ

d(µθi , µ
θ′

i ) = λθi (I).

12



common learning at θ is at least λθ(I), i.e., as t→∞,

PIt (Cp
t (θ) | θ) ≥ 1− exp[−λθ(I)t+ o(t)].

To see this, fix any d < λθ(I). For each t, we consider the event

Ft(θ, d) :=
⋂
i∈I

Fit(θ, d), where Fit(θ, d) :=
{

KL(νit, µ
θ
i ) ≤ d

}
.

Observe that d < λθ(I) together with (8) implies that, for all large enough t,

Ft(θ, d) ⊆ Bp
t (θ). (9)

We now show more strongly that, for all large enough t,

Ft(θ, d) ⊆ Cp
t (θ). (10)

Given this, Sanov’s theorem implies that

PIt (Cp
t (θ) | θ) ≥ PIt (Ft(θ, d) | θ) = 1− exp[−dt+ o(t)], as t→∞.

This yields the desired conclusion since d can be chosen arbitrarily close to λθ(I).
By Monderer and Samet (1989), to show (10) it is enough to prove that event

Ft(θ, d) is p-evident. That is, we want to show that, for all large enough t,

Ft(θ, d) ⊆ Bp
t (Ft(θ, d)). (11)

For this, we establish the following key lemma that uses KL-divergence to relate
i’s own observations νit to i’s beliefs about others’ observations. For any two agents i
and j, let M θ

ij ∈ RXi×Xj denote the matrix whose (xi, xj)-th element is M θ
ij(xi, xj) =

µθ(xj | xi). As CEMS observed, if agent i’s empirical signal distribution at t is νit,
then conditional on state θ, i’s expectation of j’s empirical distribution is given by
νitM

θ
ij ∈ ∆(Xj). Moreover, µθiM θ

ij = µθj .

Lemma 1. For each θ ∈ Θ, distinct i, j ∈ I, and νi ∈ ∆(Xi), we have KL(νi, µ
θ
i ) ≥

KL(νiM
θ
ij, µ

θ
j). Moreover, the inequality is strict whenever νi 6= µθi and signals are

not perfectly correlated.

13



To understand the result, suppose that i observes an empirical signal distribution
νi. Then KL(νi, µ

θ
i ) quantifies how much i’s observations deviate from i’s average

signal distribution µθi in state θ. Likewise, KL(νiM
θ
ij, µ

θ
j) quantifies how much i’s

expectation of j’s observations deviates from j’s average signal distribution µθj . Thus,
Lemma 1 says that when i forms an estimate of j’s signal observations based on i’s
signal observations, this estimate cannot be any more “atypical” than i’s own signal
observations. For example, if i and j’s signals are independent, then regardless of her
own observations, i’s estimate of j’s observations is always the average distribution
(i.e., KL(νiM

θ
ij, µ

θ
j) = 0). At the opposite extreme, if i and j’s signals are perfectly

correlated, then i expects j to observe the same signals as herself, so her estimate
of j’s observations is just as atypical as her own observations (i.e., KL(νiM

θ
ij, µ

θ
j) =

KL(νi, µ
θ
i )).

Finally, to see how Lemma 1 implies (11), consider agent i’s reasoning conditional
on the event that KL(νit, µ

θ
i ) ≤ d when t is large enough. By (9), i assigns high

probability to state θ. Hence, by a law of large numbers argument, i assigns high
probability to every other agent j’s realized empirical distribution νjt being close to
i’s expectation νitM θ

ij conditional on state θ. But then, Lemma 1 together with the
fact that KL(νit, µ

θ
i ) ≤ d implies that i also assigns high probability to the event that

KL(νjt, µ
θ
j) ≤ d for all j. Thus, Ft(θ, d) is p-evident at all large t.

Remark 2. Second law of thermodynamics. The weak inequality in Lemma 1 is an
implication of the “second law of thermodynamics” for Markov chains, which says
that the KL-divergence between any two initial distributions shrinks under iterated
application of the transition matrix (see, e.g., Section 4.4 in Cover and Thomas, 1999).
Indeed, consider the Markov chain defined on the state spaceXi∪Xj, whose transition
matrix is given by M θ

ij if the current state is in Xi and by M θ
ji if the current state is

in Xj. Then the second law applied to the initial distributions νi and µθi implies that
KL(νi, µ

θ
i ) ≥ KL(νiM

θ
ij, µ

θ
iM

θ
ij), which yields the desired inequality as µθiM θ

ij = µθj .
Relationship with CEMS. In proving Proposition 0, CEMS consider a different

Markov chain, which is defined on the space Xi and has transition matrix M θ
ijM

θ
ji.

They show that this transition matrix is a sup-norm contraction on ∆(Xi) (see their
Lemma 4), and based on this construct a different sequence of p-evident events Ft
(that are defined using the sup-norm rather than KL-divergence). While the prob-
ability of these events Ft also converges to 1, the rate of convergence is less than
λθ(I). Thus, this construction cannot be used to provide a tight bound on the speed
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of common learning.
Convergence of belief hierarchies. Theorem 1 characterizes the speed at which

players achieve approximate common knowledge in the sense of common p-belief of
the true state. Analogous results hold if proximity to common knowledge is instead
formalized in terms of commonly used topologies over belief hierarchies. See Ap-
pendix ?? for details. N

4 Ranking Information Structures in Games

So far, we have analyzed learning efficiency under each information structure I. We
now return to the setting where, following t draws of signals from I, agents play a
game. We show that, when t is sufficiently large, the learning efficiency index can
be used to rank information structures in terms of their equilibrium outcomes: Infor-
mation structures with a higher learning efficiency index induce better equilibrium
outcomes, robustly for a rich class of games and objective functions.

4.1 Objective Functions

Given any basic game G, we introduce an objective function W : A×Θ→ R, which
assigns a value to each action profile and state. We assume that in each state θ, W
is maximized by a unique action profile, {aθ,W} = argmaxa∈AW (a, θ). The objective
function can be interpreted as capturing a designer’s preferences over outcomes in the
game. A benevolent designer might seek to maximize agents’ welfare, for example,
via utilitarian aggregation, W = 1

I

∑
i∈I ui. However, we also allow for objective

functions that do not relate to agents’ utilities in any particular way.
For any information structure I and number t of signal draws, we use W to

evaluate expected equilibrium outcomes in the incomplete-information game Gt(I).
Specifically, for any strategy profile σt = (σit)i∈I in game Gt(I), let

Wt(σt, I) :=
∑

θ∈Θ,xt∈Xt

PI(θ, xt)
∑
a∈A

σt(a | xt)W (a, θ)

denote the ex-ante expected value of the objective when signal sequences xt are drawn
from information structure I in each state and each agent then chooses their action
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according to strategy σit(· | xti). Define the objective value

Wt(G, I) := sup
σt∈BNEt(G,I)

Wt(σt, I) (12)

to be the ex-ante expected value of the objective under the best BNE of Gt(I).
For any two information structures I and Ĩ, we seek to compare their objective

values Wt(G, I) and Wt(G, Ĩ) when the number t of signal draws is large. We will
see that this comparison can be carried out robustly for a rich class of games G and
objective functions W .

The one substantive restriction we impose is the following joint assumption on
G and W . Let SNE(G, θ) ⊆ A denote the set of strict Nash equilibria of G under
common knowledge of θ.

Assumption 1 (Alignment at certainty). For each θ ∈ Θ, aθ,W ∈ SNE(G, θ).

Assumption 1 requires that under common knowledge of each state θ, the W -first
best outcome aθ,W is achievable as a strict Nash equilibrium of G. Note that the
condition does not require aθ,W to be the only strict Nash of G at θ.

One simple environment that satisfies Assumption 1 is when G is a common-
interest game and W represents utilitarian welfare, i.e., ui = uj = W for all i, j.9 In
this case, agents’ incentives in G are fully aligned with W : Indeed, for any I and t,
any strategy profile σt that maximizes the expected objective Wt(σt, I) is a BNE of
Gt(I).

However, Assumption 1 is substantially more permissive than imposing full align-
ment on G and W : We only require maximization of W to be an equilibrium of G
under certainty, i.e., when players have common knowledge of the state. Except for
this requirement, there is no restriction on players’ incentives in game G or the re-
lationship with W . Beyond common interest games, this allows for rich patterns of
strategic externalities. For instance, under utilitarian welfare, Assumption 1 is satis-
fied by many important coordination games (e.g., bank runs, currency attack games,
etc.): For example, in the joint investment game in Section 1.1, the efficient action
profile at θ is (θ, θ), which is a strict Nash equilibrium under common knowledge
of θ (another strict Nash is (0, 0)). At the same time, Assumption 1 rules out set-

9Generically, any common interest game G admits a strict Nash equilibrium that uniquely maxi-
mizes utilitarian welfare.
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tings where agents’ incentives and the objective are misaligned even under complete
information (e.g., a prisoner’s dilemma game under utilitarian welfare).

Finally, an objective function W might also serve to quantify how close play
after t signal draws comes to any particular common knowledge equilibrium. Indeed,
given any basic game G and any selection aθ ∈ SNE(G, θ) of a common knowledge
equilibrium at each state θ, define W by

W (a, θ) =

1 if a = aθ

0 otherwise.

Then G and W trivially satisfy Assumption 1. In this case, the objective value
Wt(G, I) measures the ex-ante probability that, after t draws of signals from I, agents
are able to play the common knowledge equilibrium aθ in each state θ.

4.2 Ranking under Full Separation

Under Assumption 1, we now proceed to rank information structures I and Ĩ in
terms of their objective values Wt(I,G) and Wt(Ĩ,G) at large t. In this section, we
additionally assume that all agents must distinguish all states in order to maximize
W , as is the case, for instance, in the joint investment game in Section 1.1 (where
aθ,Wi = θ for all i, θ):

Assumption 2 (Full separation). For all i ∈ I and distinct θ, θ′ ∈ Θ, aθ,Wi 6= aθ
′,W
i .

Define the (ex-ante) learning efficiency index by

λ(I) := min
θ∈Θ

λθ(I) = min
i∈I,θ,θ′∈Θ,θ′ 6=θ

d(µθi , µ
θ′

i ). (13)

That is, λ(I) considers the worst-case across all states of the conditional learning
efficiency indices λθ(I).

Theorem 2. Take any information structures I, Ĩ with λ(I) 6= λ(Ĩ). The following
are equivalent:

1. λ(I) > λ(Ĩ).

2. For every basic game G and objective function W satisfying Assumptions 1–2,
there exists T such that Wt(G, I) > Wt(G, Ĩ) for all t > T .
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Theorem 2 shows that for all games G and objectivesW satisfying Assumptions 1–
2, the learning efficiency index eventually permits a generically complete ranking over
information structures: Except when the efficiency indices λ(I) and λ(Ĩ) are exactly
tied, I and Ĩ can be ranked, and the information structure with the higher effi-
ciency index strictly outperforms that with the lower index whenever agents observe
sufficiently many signals.

The structure of λ(I) suggests some general implications for the design of informa-
tion structures in games. In particular, recall that λ(I) depends only on the worst-
informed agent’s marginal signal distributions, while the correlation across agents’
signals is irrelevant. Thus, under Assumptions 1–2, Theorem 2 implies that, if agents
have access to many signal draws, then a designer should be “egalitarian” and focus
on improving the worst-informed agent’s information about the state. On the other
hand, providing signals about other agents’ signals that do not convey any additional
information about the state is not effective under large samples. This contrasts with
the central insight (e.g., Rubinstein, 1989; Carlsson and Van Damme, 1993; Weinstein
and Yildiz, 2007) that (even small amounts of) uncertainty about other agents’ signals
can be a significant source of inefficiency in incomplete information games (including
environments satisfying Assumptions 1–2). The reason for this difference is that, as
captured by Theorem 1, higher-order belief uncertainty vanishes at least as fast as
first-order uncertainty as t→∞. Thus, when agents have access to sufficiently many
signal draws, interventions that reduce uncertainty about other agents’ signals have a
negligible effect relative to ones that directly improve agents’ information about the
state.

Theorem 2 can also be contrasted with Lehrer, Rosenberg, and Shmaya (2010).
They consider the case in which agents observe a single signal draw from each informa-
tion structure and show that a generalization of Blackwell’s single-agent garbling con-
dition characterizes when W1(G, I) exceeds W1(G, Ĩ) for any common-interest game
G and utilitarian welfare criterion W . When agents observe many signal draws, The-
orem 2 yields a ranking that (i) is a completion of Lehrer, Rosenberg, and Shmaya’s
(2010) order, and (ii) applies to a richer class of environments that allows for misalign-
ment between agents’ incentives and the objective under incomplete information.10

10The former can be seen by noting that when I % Ĩ in the sense of Lehrer, Rosenberg, and
Shmaya (2010), then each agent i’s marginal signal distributions under I Blackwell-dominate those
under Ĩ, which implies that λ(I) ≥ λ(Ĩ).
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Both (i) and (ii) rely on the assumption that agents observe sufficiently many signal
draws: When t = 1, then even if information structure I yields higher utilitarian
welfare than Ĩ in common-interest games, I can be strictly worse than Ĩ in some
other environments that satisfy Assumption 1–2 but feature misaligned incentives.
Moreover, when t = 1, many information structures are incomparable even when
restricting attention to common-interest games.

To illustrate the proof of Theorem 2 (Appendix C), suppose G and W satisfy
Assumptions 1–2. We show that, for any sequence of equilibria σt ∈ BNEt(G, I),∑

θ∈Θ,xt∈Xt

PIt (θ, xt)σt(a
θ,W | xt) ≤ 1− exp[−tλ(I) + o(t)] as t→∞, (14)

and that (14) holds with equality for some BNE sequence (σt). That is, under in-
formation structure I, λ(I) is the maximal rate at which ex-post inefficient behavior
(i.e., not choosing aθ,W at θ) vanishes in some equilibrium. Thus, if λ(I) > λ(Ĩ),
then Wt(G, I) > Wt(G, Ĩ) for all large enough t, because Wt(G, I) approaches the
first-best payoff

∑
θ p0(θ)W (aθ,W , θ) faster than does Wt(G, Ĩ).

The argument for inequality (14) is purely statistical and does not consider agents’
incentives. Indeed, in Lemma C.1, we show that (14) holds for any sequence of strat-
egy profiles (σt), regardless of whether or not (σt) are equilibria. The basic idea is
that, for each agent i, the question whether i’s action under σit matches the cor-
rect efficient action aθ,Wi in each state θ can be recast as a randomized hypothesis
test. Given this, the Neyman-Pearson lemma implies that no σit can achieve a lower
ex-ante error probability than a “likelihood ratio test,” where agent i chooses ac-
tion aθ,Wi whenever her empirical signal frequency νit is best explained by µθi (i.e.,
KL(νit, µ

θ
i ) < KL(νit, µ

θ′
i ) for all θ′ 6= θ). By Sanov’s theorem and Assumption 2, the

error probability of the latter test decays at rate minθ 6=θ′ d(µθi , µ
θ′
i ) as t→∞. Taking

the minimum over all agents yields (14).
Finally, the existence of a sequence of equilibria for which (14) holds with equality

follows from the characterization of the speed of common learning in Theorem 1. By
Assumption 1, each aθ,W is a strict Nash equilibrium under common knowledge of θ.
Given this, for any sufficiently large p ∈ (0, 1) and any t, there exists a BNE σ∗t under
which each agent i plays action aθ,Wi in the event that θ is common p-belief at t.11

11The reason that aθ,W is required to be a strict Nash equilibrium in Assumption 1 is to ensure
that it can be played in a BNE even when players only have approximate common knowledge of θ.
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Thus, conditional on state θ, the probability that aθ,W is played under σ∗t is at least
PIt (Cp

t (θ) | θ). By Theorem 1, the latter probability goes to 1 at rate λθ(I) as t→∞.
Thus, the ex-ante probability of efficient play under sequence (σ∗t ) approaches 1 at
least at rate λ(I). Since, by the previous paragraph, the rate of convergence cannot
exceed λ(I), (14) must hold with equality under (σ∗t ).

Remark 3. Comparison across different sample sizes. The same arguments as in
Theorem 2 can be used to obtain a ranking of information structures under different
sample sizes: Suppose λ(I) > kλ(Ĩ) for some k > 0. Then for any basic game G
and objective W satisfying Assumptions 1–2, there exists T such that Wt(G, I) >

Wkt(G, Ĩ) for all t > T with kt ∈ N.
Beyond best-case equilibrium. In defining the objective value Wt(G, I), (12) con-

sidered the best-case BNE. If one focuses instead on the worst-case objective value
and replaces Assumption 1 with the assumption that each W (·, θ) is strictly mini-
mized by some action profile in SNE(G, θ), then Theorem 2 (applied to the objective
−W ) implies that information structures with a higher learning efficiency index in-
duce a lower worst-case objective value at all large t, because equilibrium play can
approximate the worst-case common knowledge equilibrium faster. Relatedly, in Ap-
pendix ??, we use the learning efficiency index to characterize the speed at which the
entire equilibrium set BNEt(G, I) approaches the set of common knowledge equilibria
in each state. N

4.3 General Ranking

In Theorem 2, the ranking over information structures reduces to comparing their
speed of common learning, because Assumption 2 requires all agents to distinguish
all states in order to play the efficient action profile. We now drop Assumption 2, so
that some players need not distinguish some pairs of states in order to maximize W .
We generalize Theorem 2 to this setting by constructing learning efficiency indices
that account for the presence of “equivalent” states for some players.

Formally, given any objective function W , define a partition ΠW
i over Θ for each

agent i, whose cells are given by

ΠW
i (θ) := {θ′ ∈ Θ : aθ,Wi = aθ

′,W
i } for each θ,

and let ΠW := (ΠW
i )i∈I denote the collection of all agents’ partitions. That is, ΠW

i
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divides Θ into equivalence classes of states in which the W -optimal action profile
features the same action for agent i.

Given any collection of partitions Π = (Πi)i∈I over Θ, we define the learning
efficiency index

λ(I,Π) := min
i∈I,θ,θ′∈Θ,θ′ 6∈Πi(θ)

d(µθi , µ
θ′

i ).12

That is, in identifying the worst-informed agent and hardest to distinguish states, we
do not consider all agents and pairs of states as in (13). Instead, for each agent i, we
restrict attention to pairs of states at which i’s W -optimal actions are different.

Theorem 3. Fix any collection Π = (Πi)i∈I of partitions over Θ. Take any informa-
tion structures I and Ĩ with λ(I,Π) 6= λ(Ĩ,Π). The following are equivalent:

1. λ(I,Π) > λ(Ĩ,Π).

2. For every (G,W ) satisfying Assumption 1 and ΠW = Π, there exists T such
that Wt(I,G) > Wt(Ĩ,G) for all t > T .

Theorem 3 extends Theorem 2 by dropping Assumption 2. Based on the gen-
eralized learning efficiency indices λ(·,Π), we again obtain a (generically complete)
ranking over the equilibrium outcomes induced by different information structures at
large enough t: This ranking applies for all games and objective functions that are
aligned at certainty and give rise to the same partitions Π of equivalent states.

Theorem 3 also implies the following partial order over information structures that
applies in all environments (G,W ) satisfying Assumption 1:

Corollary 1. Take any information structures I and Ĩ such that λ(I,Π) 6= λ(Ĩ,Π)

for all non-degenerate collections of partitions Π. The following are equivalent:

1. λ(I,Π) > λ(Ĩ,Π) for all non-degenerate Π.

2. For every (G,W ) satisfying Assumption 1, there exists T such that Wt(I,G) >

Wt(Ĩ,G) for all t > T .

The proof of Theorem 3 generalizes the argument in Theorem 2. That is, as in
(14), we show that, for any sequence of strategy profiles (σt),∑

θ∈Θ,xt∈Xt

PIt (θ, xt)σt(a
θ,W | xt) ≤ 1− exp[−tλ(I,ΠW ) + o(t)], (15)

12Slightly abusing notation, we set the index to be ∞ when Π is degenerate (i.e., Πi(θ) = Θ for
all i).
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with equality for some BNE sequence (σt). Note that in general λ(I,ΠW ) ≥ λ(I).
Thus, unlike in the full-separation case, to show that (15) holds with equality for some
BNE sequence (σt), it is not enough to invoke the fact that the speed of common
learning in each state is λθ(I). Nevertheless, we show based on Lemma 1 that a
similar equilibrium construction as in Theorem 2 remains valid.

Remark 4 (Monotone information structures.). Many economic environments in-
volve information structures that satisfy the monotone-likelihood ratio property with
respect to some linear order over states and signals. Appendix ?? considers such en-
vironments. We show that, in this case, the condition in Corollary 1 (i.e., λ(I,Π) >

λ(Ĩ,Π) for all Π) can be relaxed to one that is easier to verify. This exercise can be
viewed as an analog of the relaxation of the Blackwell order considered by Lehmann
(1988); Persico (2000); Athey and Levin (2018) in settings with a single agent and
single signal draw. N

5 Concluding Discussions

5.1 Information Structures as Complements vs. Substitutes

So far, we have considered repeated draws from a single information structure I.
However, our learning efficiency index can also be used to formalize whether two
information structures I and Ĩ are complements or substitutes, by considering the
effect of combining signal observations from I and Ĩ.

Specifically, given two information structures I = (X, (µθ)θ∈Θ) and Ĩ = (X̃, (µ̃θ)θ∈Θ),
consider the combined information structure I × Ĩ := (X × X̃, (µθ × µ̃θ)θ∈Θ) under
which the signal distribution at each state θ is the product of µθ and µ̃θ.

Definition 2. We say that information structures I and Ĩ are complements if
λ(I × Ĩ) ≥ λ(I) + λ(Ĩ) and substitutes if λ(I × Ĩ) ≤ λ(I) + λ(Ĩ).

To interpret this definition, consider the case in which λ(I) = λ(Ĩ) and I and Ĩ
are strict complements, i.e., λ(I × Ĩ) > λ(I) + λ(Ĩ) = 2λ(I). Then, by Theorem 1,
the speed of common learning under the combined information structure I × Ĩ is
more than twice as fast as the speed of common learning under I or Ĩ alone.13

13That is, for all p ∈ (0, 1) and large enough t, the (ex-ante) probability of common p-belief of the
true state is strictly greater if agents observe t signal draws from I × Ĩ than if agents observe 2t
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Equivalently, Theorem 2 implies that for any basic game G and objective function W
satisfying Assumptions 1–2 and any large enough t,

Wt(I × Ĩ,G) > max{W2t(I,G),W2t(Ĩ,G)}.

That is, holding fixed any (large enough) total number of signal observations, better
equilibrium outcomes are achieved if players observe a mix of signals from I and Ĩ
than if they specialize in only I or Ĩ.

The structure of our efficiency index suggests two conflicting channels that deter-
mine whether I and Ĩ are complements or substitutes. On the one hand, a “force
for substitutes” is that the Chernoff distance is subadditive, i.e., for all agents i and
states θ, θ′,

d(µθi × µ̃θi , µθ
′

i × µ̃θ
′

i ) ≤ d(µθi , µ
θ′

i ) + d(µ̃θi , µ̃
θ′

i ). (16)

Intuitively, this captures that combining multiple information sources creates more
scope for “confusing” signal realizations that do not allow an agent to distinguish
some states. For example, if observed in isolation, a particular sequence of signal
realizations from I might be indicative of state θ and a sequence of signal realizations
from Ĩ might be indicative of state θ′, but if the two sequences are observed jointly,
these two effects might cancel out and render θ and θ′ indistinguishable.14

On the other hand, the efficiency index is defined by considering the worst-case
Chernoff distance across all agents and states. When the worst agent or pair of states
differ across I and Ĩ this creates a hedging value to combining I and Ĩ, which acts
as a “force for complements.” The following example illustrates both possibilities:

Example 1. Suppose states are binary, Θ = {θ, θ′}.
Suppose first that signals under either I or Ĩ are perfectly correlated. Then the

worst-informed agent is the same across I and Ĩ. Thus, only the first channel is

signal draws from I or Ĩ alone. An analogous result holds for the speed of learning conditional on
any state θ if complementarity is defined using the conditional learning efficiency index λθ.

14Formally, observe that d(µθi , µ
θ′

i ) = minνi∈∆(Xi) KL(νi, µ
θ
i ) s.t. KL(νi, µ

θ
i ) = KL(νi, µ

θ′

i ). Com-
bined with the fact that KL-divergence is additive across independent distributions, this yields

d(µθi × µ̃θi , µθ
′

i × µ̃θ
′

i ) = min
νi∈∆(Xi),ν̃i∈∆(X̃i)

KL(νi, µ
θ
i ) + KL(ν̃i, µ̃

θ
i )

s.t. KL(νi, µ
θ
i ) + KL(ν̃i, µ̃

θ
i ) = KL(νi, µ

θ′

i ) + KL(ν̃i, µ̃
θ′

i ).

This implies (16), because KL(νi, µ
θ
i ) + KL(ν̃i, µ̃

θ
i ) = KL(νi, µ

θ′

i ) + KL(ν̃i, µ̃
θ′

i ) is possible even if
KL(νi, µ

θ
i ) 6= KL(νi, µ

θ′

i ) and KL(ν̃i, µ̃
θ
i ) 6= KL(ν̃i, µ̃

θ′

i ).

23



relevant and I and Ĩ are substitutes. In particular, (under binary states) this is
always the case if there is a single agent.

Suppose next that signals are binary, Xi = {xi, x′i} and each i’s signal distributions
are symmetric, i.e., µθi (xi) = µθ

′
i (x′i), µ̃θi (xi) = µ̃θ

′
i (x′i). Then (16) holds with equality.

Thus, only the second channel is relevant and I and Ĩ are complements. N

Existing work has studied the complementarity/substitutability of information
structures in other settings. Börgers, Hernando-Veciana, and Krähmer (2013) formal-
ize notions of complements/substitutes for single-agent information structures with a
single signal observation. Under Gaussian priors and signal distributions, Liang and
Mu (2020) study a form of complementarity, where combining multiple information
structures allows for identification of the state while each information structure alone
leads to non-identification. Complementing these papers, our approach applies to
multi-agent information structures and is based on the speed of learning.

5.2 Information Design in Games

The analysis in Section 4 has implications for the design of information structures
in games. Beyond the general design implications highlighted following Theorem 2,
the learning efficiency index can be used to solve constrained design problems where
information is relatively “cheap.”

Concretely, given any game G and objective W , consider the optimal choice of an
information structure from some set I subject to a budget constraint:

max
I∈I,t∈N

Wt(I,G) s.t. tc(I) ≤ κ.

That is, the designer optimally selects both an information structure I ∈ I and the
number t of signal draws from I, subject to a marginal cost of c(I) > 0 per draw
from I and an overall budget of κ > 0.

For any G and W satisfying Assumptions 1–2 and any finite set I, our analysis
implies that whenever κ is sufficiently large (i.e., information is sufficiently cheap),
the designer’s problem simplifies to

max
I∈I

λ(I)

c(I)
.
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Thus, the optimal information structure can be determined solely based on the learn-
ing efficiency index and per-sample cost, and the solution is robust across all games
and objectives satisfying Assumptions 1–2.

5.3 Higher-Order Expectations

Beyond its use in the proofs of Theorems 1–3, Lemma 1 can shed light on agents’
higher-order beliefs more broadly. To see this, consider a finite set of types Ti for
each agent i, with T :=

∏
i∈I Ti. Let π ∈ ∆(T ) be a (full-support) common prior

over type profiles, with marginals πi ∈ ∆(Ti). Each type ti ∈ Ti of player i induces
a conditional distribution π(· | ti) ∈ ∆(T ) over type profiles. By identifying each
tj ∈ Tj with the point-mass distribution δtj ∈ ∆(Tj), we can associate with π(· | ti)
a sequence of higher-order expectations about other agents’ types. In particular,
Eti [tj] :=

∑
tj∈Tj π(tj | ti)δtj ∈ ∆(Tj) is ti’s expectation of j’s type, EtiEtj [tk] :=∑

tj∈Tj ,tk∈Tk π(tj | ti)π(tk | tj)δtk ∈ ∆(Tk) is ti’s expectation of j’s expectation of k’s
type, and so on.

A seminal result due to Samet (1998) is that any such sequence of higher-order
expectations converges to the prior distribution as the number of iterations grows
large. Formally, consider any sequence of agents i0, i1, . . . ∈ I in which all i ∈ I

appear infinitely often and any initial type ti0 ∈ Ti0 . Then∥∥∥Eti0Eti1 · · ·Etik−1
[tik ]− πik

∥∥∥→ 0 as k →∞.

By applying Lemma 1 to this setting, we can formalize a sense in which agents’
higher-order expectations grow closer to the prior distribution at each step of the
iteration. In particular, Lemma 1 implies that

KL(Eti0 [ti1 ], πi1) ≥ KL(Eti0Eti1 [ti2 ], πi2),

and iteratively, for each k,

KL(Eti0Eti1 · · ·Etik−1
[tik ], πik) ≥ KL(Eti0Eti1 · · ·Etik [tik+1

], πik+1
).

Thus, complementing Samet’s asymptotic result, this clarifies that the informative-
ness of agents’ higher-order expectations, as measured by their KL-divergence relative
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to the prior distribution, decreases monotonically along any sequence.
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Appendix: Proofs

A Preliminaries

Let the transition matrixM θ
ij and events Fit(θ, d), Ft(θ, d) be as defined in Section 3.3.

A.1 Proof of Lemma 1

We prove the following more general claim. Lemma 1 follows since µθiM θ
ij = µθj .

Lemma A.1. For each θ ∈ Θ, distinct i, j ∈ I, and νi, ν ′i ∈ ∆(Xi) with supp(νi) ⊆
supp(ν ′i), we have KL(νi, ν

′
i) ≥ KL(νiM

θ
ij, ν

′
iM

θ
ij). The inequality is strict whenever

νi 6= ν ′i and signals are not perfectly correlated.

Proof. Consider m,m′ ∈ ∆(Xi ×Xj) defined by

m(xi, xj) = νi(xi)M
θ
ij(xi, xj), m′(xi, xj) = ν ′i(xi)M

θ
ij(xi, xj)

for each xi, xj. Note that supp(m) ⊆ supp(m′) and that the marginals of m,m′ on
Xi are νi, ν ′i, and the marginals on Xj are νiM θ

ij, ν
′
iM

θ
ij, respectively.

Let m(· | xi), m(· | xj), m′(· | xi), m′(· | xi) denote the corresponding conditional
distributions; conditional on a zero-probability signal, we specify these distributions
arbitrarily. By the chain rule for KL-divergence we have

KL(m,m′) = KL(νi, ν
′
i) +

∑
xi∈supp(νi)

νi(xi)KL(m(· | xi),m′(· | xi))

= KL(νiM
θ
ij, ν

′
iM

θ
ij) +

∑
xj∈supp(νiMθ

ij)

(νiM
θ
ij)(xj)KL(m(· | xj),m′(· | xj)).

Since m(· | xi) = m′(· | xi) = M θ
ij(xi, ·) for every xi ∈ supp(νi), we have∑

xi∈supp(νi)

νi(xi)KL(m(· | xi),m′(· | xi)) = 0,

which implies the weak inequality KL(νi, ν
′
i) ≥ KL(νiM

θ
ij, ν

′
iM

θ
ij).

To show the strict inequality, suppose that νi 6= ν ′i and signals are not perfectly
correlated. Then there exist xi, x′i such that νi(xi) > ν ′i(xi) and νi(x′i) < ν ′i(x

′
i). For
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any xj ∈ supp(νiM
θ
ij),

m(xi | xj)
m(x′i | xj)

=
νi(xi)M

θ
ij(xi, xj)

νi(x′i)M
θ
ij(x

′
i, xj)

6=
ν ′i(xi)M

θ
ij(xi, xj)

ν ′i(x
′
i)M

θ
ij(x

′
i, xj)

=
m′(xi | xj)
m′(x′i | xj)

,

where the inequality holds since M θ
ij(xi, xj),M

θ
ij(x

′
i, xj) > 0 by the full-support as-

sumption on µθ. This guarantees∑
xj∈supp(ν′iM

θ
ij)

(νiM
θ
ij)(xj)KL(m(· | xj),m′(· | xj)) > 0

by Gibbs inequality.

A.2 Preliminary lemmas

Let ‖ · ‖ denote the sup norm for finite-dimensional real vectors. The following result
is proved by CEMS (Lemma 3) based on a concentration inequality:

Lemma A.2. For any ε > 0 and q < 1, there is T such that for all t ≥ T , θ ∈ Θ,
i ∈ I,

PIt ({‖νitM θ
ij − νjt‖ < ε,∀j 6= i} | xti, θ) > q.

Let F−it(θ, d) :=
⋂
j 6=i Fjt(θ, d). The following result follows from Lemma 1 and

Lemma A.2 and plays a key role in the proofs of Theorems 1–3:

Lemma A.3. Consider any i ∈ I and partition Πi over Θ. Fix any θ ∈ Θ, d ∈
(0,mini∈I,θ′ 6∈Πi(θ) d(µθi , µ

θ′
i )) and p ∈ (0, 1). There exists T such that for all t ≥ T ,

KL(νit, µ
θ
i ) ≤ d =⇒ PIt

 ⋃
θ′∈Πi(θ)

({θ′} ∩ F−it(θ′, d)) | xti

 ≥ p. (17)

Proof. We only consider the case in which signals are not perfectly correlated. Under
perfect correlation, the argument is straightforward.
Claim 1: There exist κ ∈

(
0,mini∈I,θ′ 6∈Πi(θ) d(µθi , µ

θ′
i )− d

)
and T ′ > 0 such that for

all t ≥ T ′ and θ′ ∈ Θ,

KL(νit, µ
θ′

i ) ≤ d+ κ =⇒ PIt (F−it(θ
′, d) | xti, θ′) ≥

√
p.
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Proof of Claim 1. Lemma 1 implies that for all j 6= i, νi ∈ ∆(Xi), and θ′ ∈ Θ,

KL(νi, µ
θ′

i ) ≤ d =⇒ KL(νiM
θ′

ij , µ
θ′

j ) ≤ KL(νi, µ
θ′

i ) ≤ d.

Moreover, the first inequality on the RHS is strict when νi 6= µθ
′
i (by Lemma 1),

and the second inequality on the RHS is strict when νi = µθ
′
i . Note that KL(·, µi)

is continuous for each full-support µi ∈ ∆(Xi). Thus, since ∆(Xi) is compact, there
exists η > 0 such that for all j 6= i, νi ∈ ∆(Xi), and θ′ ∈ Θ,

KL(νi, µ
θ′

i ) ≤ d =⇒ KL(νiM
θ′

i , µ
θ′

j ) ≤ d− η.

Then there exists κ ∈ (0,mini∈I,θ′ 6∈Si(θ) d(µθi , µ
θ′
i ) − d) such that for all j 6= i, νi ∈

∆(Xi), and θ′ ∈ Θ,

KL(νi, µ
θ′

i ) ≤ d+ κ =⇒ KL(νiM
θ′

i , µ
θ′

j ) ≤ d− η/2.

Moreover, there exists ε > 0 such that for all j 6= i, νi ∈ ∆(Xi), and θ′ ∈ Θ,[
KL(νi, µ

θ′

i ) ≤ d+ κ and ‖νiM θ′

ij − νj‖ ≤ ε
]

=⇒ KL(νj, µ
θ′

j ) ≤ d.

Thus, by Lemma A.2, there exists T ′ such that PIt (Ft(θ
′, d) | xti, θ′) ≥

√
p holds for

all t ≥ T ′ and θ′ ∈ Θ.

Claim 2: Consider any κ as found in Claim 1. There exists T ′′ such that for all
t ≥ T ′′,

KL(νit, µ
θ
i ) ≤ d =⇒ PIt ({θ′ ∈ Πi(θ) : KL(νit, µ

θ′) ≤ d+ κ} | xti) ≥
√
p.

Proof of Claim 2. Take any t ≥ 1 and xti such that KL(νit, µ
θ
i ) ≤ d. Then for each

θ′ 6∈ Πi(θ), we have KL(νit, µ
θ′
i ) > d + κ. Indeed, otherwise KL(ν ′i, µ

θ
i ),KL(ν ′i, µ

θ′
i ) <

d + κ ≤ d(µθi , µ
θ′
i ) holds for some ν ′i = (1 − ε)νit + εµθ

′
i with ε > 0 small enough,

contradicting the definition of d(µθi , µ
θ′
i ).

Thus, whenever KL(νit, µ
θ
i ) ≤ d, then for any θ′ such that either θ′ 6∈ Πi(θ) or
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KL(νit, µ
θ′) > d+ κ, we have

logPIt (θ′ | xti) ≤ log
PIt (θ′|xti)
PIt (θ|xti)

= log
p0(θ′)

p0(θ)
+ t

∑
xi∈Xi

νit(xi) log
µθ
′
i (xi)

µθi (xi)

= log
p0(θ′)

p0(θ)
+ t(KL(νit, µ

θ
i )−KL(νit, µ

θ′

i ))

≤ log
p0(θ′)

p0(θ)
− tκ.

Hence, by choosing T ′′ > 0 large enough, we have that for all t ≥ T ′′ and all θ′ such
that either θ′ 6∈ Πi(θ) or KL(νit, µ

θ′) > d+ κ,

KL(νit, µ
θ
i ) ≤ d =⇒ PIt (θ′|xti) <

1−√p
|Θ|

,

proving Claim 2.

Finally, to prove Lemma A.3, let T = max{T ′, T ′′}, with T ′ and T ′′ as found in
Claims 1–2. Then, whenever t ≥ T and KL(νit, µ

θ
i ) ≤ d, we have

PIt (
⋃

θ′∈Πi(θ)

({θ′} ∩ F−it(θ′, d)) | xti) ≥
∑

θ′∈Πi(θ) s.t. KL(νit,µθ
′ )≤d+κ

PIt ({θ′} ∩ F−it(θ′, d) | xti)

=
∑

θ′∈Πi(θ) s.t. KL(νit,µθ
′ )≤d+κ

PIt (F−it(θ
′, d) | xti, θ′)PIt (θ′ | xti)

≥
∑

θ′∈Πi(θ) s.t. KL(νit,µθ
′ )≤d+κ

√
p× PIt (θ′ | xti) ≥ p,

where the second inequality uses Claim 1 and the last inequality uses Claim 2.

B Proof of Theorem 1

Fix any information structure I, θ ∈ Θ and p ∈ (0, 1). We first establish that

lim sup
t→∞

1

t
log
(
1− PIt (Cp

t (θ) | θ)
)
≤ −λθ(I). (18)

Take any d ∈ (0, λθ(I)). Applying Lemma A.3 to the case with Πi(θ) = {θ} for each
i ∈ I, there exists T > 0 such that (i) Ft(θ, d) ⊆ Bp

t (θ), and (ii) Ft(θ, d) ⊆ Bp
t (F (θ, d))
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for each i ∈ I and t ≥ T . Thus, by Monderer and Samet (1989), we have Ft(θ, d) ⊆
Cp
t (θ) for all t ≥ T . Therefore,

lim sup
t→∞

1

t
log
(
1− PIt (Cp

t (θ) | θ)
)
≤ lim sup

t→∞

1

t
log
(
1− PIt (Ft(θ, d) | θ)

)
≤ lim sup

t→∞

1

t
log

(∑
i

PIt ({KL(νit, µ
θ
i ) > d} | θ)

)
= max

i
lim sup
t→∞

1

t
logPIt ({KL(νit, µ

θ
i ) > d} | θ)

= −d,

where the last equality follows from Sanov’s theorem. Since this holds for all d <
λθ(I), this establishes (18).

We next establish that

lim inf
t→∞

1

t
log
(
1− PIt (Bq

t (θ) | θ)
)
≥ −λθ(I). (19)

Take i ∈ I and θ′ 6= θ such that d(µθi , µ
θ′
i ) = λθ(I). Take any d > d(µθi , µ

θ′
i ). Then

there is νi ∈ ∆(Xi) with KL(νi, µ
θ
i ) = KL(νi, µ

θ′
i ) < d. Hence for some ν ′i nearby νi,

KL(ν ′i, µ
θ′

i ) < KL(ν ′i, µ
θ
i ) < d.

Thus, there exist ε > 0 and an open set Ki 3 ν ′i of signal distributions such that for
all ν ′′i ∈ Ki,

KL(ν ′′i , µ
θ′

i ) + ε < KL(ν ′′i , µ
θ
i ) < d.

Then, for all large enough t, Bp
it(θ)∩{νit ∈ Ki} = ∅, because by standard arguments,

i’s beliefs at large t concentrate on states whose signal distributions minimize KL-
divergence relative to νit. Thus,

lim inf
t→∞

1

t
log
(
1− PIt (Bp

it(θ) | θ)
)
≥ lim inf

t→∞

1

t
logPIt ({νit ∈ Ki} | θ) ≥ −d,

where the final inequality holds by Sanov’s theorem. Since this is true for all d >
λθ(I), this establishes (19).
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C Proof of Theorems 2–3

Below we prove Theorem 3. Theorem 2 corresponds to the special case in which
Πi(θ) = {θ} for all θ and i. To simplify notation, we drop the superscript W from
aθ,W when there is no risk of confusion.

C.1 Bounds on inefficiency

For any I, G, and W , we first derive bounds on the probability of inefficient play
(i.e., not playing aθ in state θ) as t grows large. The following result provides a lower
bound on this probability for arbitrary sequences of strategy profiles (σt):

Lemma C.1. Fix any I, G, and W . For any sequence of strategy profiles (σt) of
Gt(I),

lim inf
t→∞

max
θ

1

t
log

(
1−

∑
xt∈Xt

PIt (xt | θ)σt(aθ | xt)

)
≥ −λ(I,ΠW ).

Proof. Pick i, θ, and θ′ 6∈ ΠW
i (θ) such that λ(I,ΠW ) = d(µθi , µ

θ′
i ). Consider any

sequence of strategy profiles (σt) of Gt(I). Consider modified strategies (σ̃it) for
player i such that, for each xti,

1. σ̃it(aθi | xti) ≥ σit(a
θ
i | xti) and σ̃it(aθ

′
i | xti) ≥ σit(a

θ′
i | xti)

2. σ̃it(aθi | xti) + σ̃it(a
θ′
i | xti) = 1.

That is, (σ̃it) is obtained by shifting all weight (σit) puts on actions other than aθi , aθ
′
i

to aθi , aθ
′
i at all signal realizations.

We also consider the sequence of strategies (σ∗it) given byσ∗it(aθi | xti) = 1 if KL(νit, µ
θ
i ) ≤ KL(νit, µ

θ′
i )

σ∗it(a
θ′
i | xti) = 1 if KL(νit, µ

θ
i ) > KL(νit, µ

θ′
i ),

where νit is the empirical signal frequency associated with xti. Note that σ∗it can be
seen as a likelihood ratio test (with threshold 1). Thus, the Neyman-Pearson lemma
for randomized tests (Theorem 3.2.1 in Lehmann and Romano, 2006) implies that for
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each t, ∑
xti∈Xt

i

PIt (xti | θ)σ̃it(aθi |xti) ≤
∑
xti∈Xt

i

PIt (xti | θ)σ∗it(aθi |xti)

or
∑
xti∈Xt

i

PIt (xti | θ′)σ̃it(aθ
′

i |xti) ≤
∑
xti∈Xt

i

PIt (xti | θ′)σ∗it(aθ
′

i |xti).
(20)

Hence,

lim inf
t→∞

1

t
log

max

1−
∑
xti∈Xt

i

PIt (xti | θ)σit(aθi |xti), 1−
∑
xti∈Xt

i

PIt (xti | θ′)σit(aθ
′

i |xti)




≥ lim inf
t→∞

1

t
log

max

1−
∑
xti∈Xt

i

PIt (xti | θ)σ̃it(aθi |xti), 1−
∑
xti∈Xt

i

PIt (xti | θ′)σ̃it(aθ
′

i |xti)




≥ lim inf
t→∞

1

t
log

min

1−
∑
xti∈Xt

i

PIt (xti | θ)σ∗it(aθi |xti), 1−
∑
xti∈Xt

i

PIt (xti | θ′)σ∗it(aθ
′

i |xti)




= min
θ′′∈{θ,θ′}

lim inf
t→∞

1

t
log

1−
∑
xti∈Xt

i

PIt (xti | θ′′)σ∗it(aθ
′′

i |xti)

 ,

where the first inequality follows from the construction of (σ̃it) and the second in-
equality uses (20). The last line is equal to −d(µθi , µ

θ′
i ) = −λ(I,ΠW ), because the

asymptotic error rate under a likelihood-ratio test with threshold 1 is given by Cher-
noff information (Theorem 3.4.3 in Dembo and Zeitouni, 2010),15 i.e.,

lim
t→∞

1

t
log

1−
∑
xti∈Xt

i

PIt (xti | θ)σ∗it(aθi |xti)

 = lim
t→∞

1

t
log

1−
∑
xti∈Xt

i

PIt (xti | θ′)σ∗it(aθ
′

i |xti)


= −d(µθi , µ

θ′

i ).

This implies that

lim inf
t→∞

max
θ′′∈Θ

1

t
log

1−
∑
xti∈Xt

i

PIt (xti | θ′′)σit(aθ
′′

i |xti)

 ≥ −λ(I,ΠW ),

15This in turn follows from a simple application of Sanov’s theorem.
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as claimed.

Under Assumption 1, the following result provides an upper bound on the proba-
bility of inefficient play under some equilibrium sequence (σt):

Lemma C.2. Fix any I and any (G,W ) satisfying Assumption 1. There exists a
sequence of BNE strategy profiles (σt) ∈ BNEt(G, I) such that, for all θ ∈ Θ,

lim sup
t→∞

1

t
log

(
1−

∑
xt∈Xt

PIt (xt | θ)σt(aθ | xt)

)
≤ −λ(I,ΠW ).

Proof. Take p ∈ (0, 1) sufficiently close to 1 that for any i and θ, choosing aθi is optimal
whenever i’s belief about the state and opponents’ actions assigns probability at least
p to {(θ′, aθ′−i) : θ′ ∈ ΠW

i (θ)}. Such a p exists because, by Assumption 1, aθi is the
unique maximizer of ui(·, aθ

′
−i, θ

′) for each θ′ ∈ ΠW
i (θ).

Fix any d < λ(I,ΠW ) := mini∈I,θ∈Θ,θ′ 6∈Πi(θ) d(µθi , µ
θ′
i ). Let Σit(d) denote the

set of i’s strategies at t such that σit(aθ | xti) = 1 whenever KL(νit, µ
θ
i ) ≤ d.

This set is well-defined by the choice of d, i.e., there is no νi ∈ ∆(Xi) such that
KL(νi, µ

θ
i ),KL(νi, µ

θ′
i ) ≤ d for some θ and θ′ 6∈ ΠW

i (θ).
Given such a p and d, use Lemma A.3 to construct a large enough T such that

(17) holds for all i and θ and t ≥ T . Then for all t ≥ T , each i’s best response
against any strategy profile in

∏
j 6=i Σjt(d) must be in Σit(d). This is because each

agent i with KL(νit, µ
θ
i ) ≤ d assigns probability at least p to {(θ′, aθ′−i) : θ′ ∈ ΠW

i (θ)}.
Thus, applying Kakutani’s fixed point theorem to the best-response correspondences
defined on the restricted strategy space

∏
i Σit(d) for all t ≥ T , there exists a BNE

sequence (σt) such that σt(aθ | xt) = 1 at Ft(θ, d) for every θ.
For this sequence of BNEs (σt) and for all θ, we have that as t→∞,

1−
∑
xt∈Xt

PIt (θ, xt)σt(a
θ | xt) ≤

∑
i

PIt ({KL(νit, µ
θ
i ) > d}) = exp[−td+ o(t)],

where the equality follows from Sanov’s theorem. Since this holds for all d <

λ(I,ΠW ), this yields the desired conclusion.
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C.2 Proof of Theorem 3

We prove that 1. implies 2. The converse is then immediate from the assumption that
λ(I,Π) 6= λ(Ĩ,Π).

Fix any information structures I and Ĩ with λ(I,Π) > λ(Ĩ,Π), and any (G,W )

satisfying Assumption 1 and ΠW = Π. Since {aθ} = arg maxaW (a, θ) for each θ ∈ Θ,
there exist constants c ≥ c̃ > 0 such that for all t, strategy profiles σt of Gt(I) and σ̃t
and Gt(Ĩ), and all θ ∈ Θ,

W (aθ, θ)−
∑
xt,a

PIt (xt | θ)σt(a | xt)W (a, θ) ≤ c

(
1−

∑
xt

PIt (xt | θ)σt(aθ | xt)

)
, (21)

W (aθ, θ)−
∑
x̃t,a

PĨt (x̃t | θ)σ̃t(a|x̃t)W (a, θ) ≥ c̃

(
1−

∑
x̃t

PĨt (x̃t | θ)σ̃t(aθ|x̃t)

)
. (22)

By Lemma C.2, there exists a sequence of BNE σt ∈ BNEt(G, I) such that

−λ(I,Π) ≥ max
θ

lim sup
t→∞

1

t
log

(
1−

∑
xt

PIt (xt | θ)σt(aθ|xt)

)

= lim sup
t→∞

1

t
log
∑
θ

p0(θ)

(
1−

∑
xt

PIt (xt | θ)σt(aθ|xt)

)
,

which by (21) implies

lim sup
t→∞

1

t
log
∑
θ

p0(θ)

(
W (aθ, θ)−

∑
xt

PIt (xt | θ)σt(aθ | xt)

)
≤ −λ(I,Π). (23)

Let σ̃t denote a strategy profile that maximizes Wt(·, Ĩ). By Lemma C.1,

−λ(Ĩ,Π) ≤ lim inf
t→∞

max
θ

1

t
log

(
1−

∑
x̃t

PĨt (x̃t | θ)σ̃t(aθ | x̃t)

)

≤ lim inf
t→∞

1

t
log
∑
θ

p0(θ)

(
1−

∑
x̃t

PĨt (x̃t | θ)σ̃t(aθ | x̃t)

)
,
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which by (22) implies

lim inf
t→∞

1

t
log
∑
θ

p0(θ)

(
W (aθ, θ)−

∑
x̃t

PĨt (x̃t | θ)σ̃t(aθ | x̃t)

)
≥ −λ(Ĩ,Π). (24)

Thus, for all large enough t, we have Wt(G, I) ≥ Wt(σt, I) > Wt(σ̃t, Ĩ) ≥ Wt(G, Ĩ),
where the strict inequality follows from (23) and (24) and the assumption that
λ(I,Π) > λ(Ĩ,Π).

References
Acemoglu, D., V. Chernozhukov, and M. Yildiz (2016): “Fragility of asymp-
totic agreement under Bayesian learning,” Theoretical Economics, 11(1), 187–225.

Athey, S., and J. Levin (2018): “The value of information in monotone decision
problems,” Research in Economics, 72(1), 101–116.

Azrieli, Y. (2014): “Comment on “the law of large demand for information”,” Econo-
metrica, 82(1), 415–423.

Bergemann, D., and S. Morris (2016): “Bayes correlated equilibrium and the
comparison of information structures in games,” Theoretical Economics, 11(2), 487–
522.

Blackwell, D. (1951): “Comparison of experiments,” in Proceedings of the Sec-
ond Berkeley Symposium on Mathematical Statistics and Probability, pp. 93–102.
University of California Press.

Börgers, T., A. Hernando-Veciana, and D. Krähmer (2013): “When are
signals complements or substitutes?,” Journal of Economic Theory, 148(1), 165–
195.

Carlsson, H., and E. Van Damme (1993): “Global games and equilibrium selec-
tion,” Econometrica, pp. 989–1018.

Cover, T. M., and J. A. Thomas (1999): Elements of information theory. John
Wiley & Sons.

Cripps, M. W., J. C. Ely, G. J. Mailath, and L. Samuelson (2008): “Common
learning,” Econometrica, 76(4), 909–933.

(2013): “Common learning with intertemporal dependence,” International
Journal of Game Theory, 42(1), 55–98.

Dasaratha, K., and K. He (2019): “Aggregative Efficiency of Bayesian Learning
in Networks,” working paper.

Dembo, A., and O. Zeitouni (2010): Large Deviations Techniques and Applica-
tions. Springer.

36



Duffie, D., and G. Manso (2007): “Information percolation in large markets,”
American Economic Review, 97(2), 203–209.

Dupuis, P., and R. S. Ellis (2011): A weak convergence approach to the theory of
large deviations, vol. 902. John Wiley & Sons.

Frick, M., R. Iijima, and Y. Ishii (2021): “Welfare Comparisons for Biased Learn-
ing,” working paper.

Fudenberg, D., G. Lanzani, and P. Strack (2021): “Pathwise Concentration
Bounds for Misspecified Bayesian Beliefs,” Available at SSRN 3805083.

Gossner, O. (2000): “Comparison of information structures,” Games and Economic
Behavior, 30(1), 44–63.

Hann-Caruthers, W., V. V. Martynov, and O. Tamuz (2018): “The speed of
sequential asymptotic learning,” Journal of Economic Theory, 173, 383–409.

Harel, M., E. Mossel, P. Strack, and O. Tamuz (2021): “Rational group-
think,” The Quarterly Journal of Economics, 136(1), 621–668.

Lehmann, E. L. (1988): “Comparing Location Experiments,” The Annals of Statis-
tics, 16(2), 521–533.

Lehmann, E. L., and J. P. Romano (2006): Testing statistical hypotheses. Springer
Science & Business Media.

Lehrer, E., D. Rosenberg, and E. Shmaya (2010): “Signaling and mediation in
games with common interests,” Games and Economic Behavior, 68(2), 670–682.

Liang, A. (2019): “Games of incomplete information played by statisticians,” work-
ing paper.

Liang, A., and X. Mu (2020): “Complementary information and learning traps,”
The Quarterly Journal of Economics, 135(1), 389–448.

Monderer, D., and D. Samet (1989): “Approximating common knowledge with
common beliefs,” Games and Economic Behavior, 1(2), 170–190.

Moscarini, G., and L. Smith (2002): “The law of large demand for information,”
Econometrica, 70(6), 2351–2366.

Mu, X., L. Pomatto, P. Strack, and O. Tamuz (2021): “From Blackwell Dom-
inance in Large Samples to Rényi Divergences and Back Again,” Econometrica,
89(1), 475–506.

Persico, N. (2000): “Information acquisition in auctions,” Econometrica, 68(1),
135–148.

Pęski, M. (2008): “Comparison of information structures in zero-sum games,” Games
and Economic Behavior, 62(2), 732–735.

37



Rosenberg, D., and N. Vieille (2019): “On the efficiency of social learning,”
Econometrica, 87(6), 2141–2168.

Rubinstein, A. (1989): “The Electronic Mail Game: Strategic Behavior Under "Al-
most Common Knowledge",” The American Economic Review, pp. 385–391.

Samet, D. (1998): “Iterated expectations and common priors,” Games and Economic
Behavior, 24(1-2), 131–141.

Steiner, J., and C. Stewart (2011): “Communication, timing, and common learn-
ing,” Journal of Economic Theory, 146(1), 230–247.

Vives, X. (1993): “How fast do rational agents learn?,” The Review of Economic
Studies, 60(2), 329–347.

Weinstein, J., and M. Yildiz (2007): “A structure theorem for rationalizability
with application to robust predictions of refinements,” Econometrica, 75(2), 365–
400.

38


	Learning Efficiency of Multi-Agent Information Structures
	Recommended Citation


