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Abstract

We develop a state-space model with a state-transition equation that takes the

form of a functional vector autoregression and stacks macroeconomic aggregates and a

cross-sectional density. The measurement equation captures the error in estimating log

densities from repeated cross-sectional samples. The log densities and the transition

kernels in the law of motion of the states are approximated by sieves, which leads to

a finite-dimensional representation in terms of macroeconomic aggregates and sieve

coefficents. We use this model to study the joint dynamics of technology shocks,

per capita GDP, employment rates, and the earnings distribution. We find that the

estimated spillovers between aggregate and distributional dynamics are generally small,

a positive technology shock tends to decrease inequality, and a shock that raises the

inequality of earnings leads to a small but not significant increase in GDP. (JEL C11,

C32, C52, E32)
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1 Introduction

Models with heterogeneity on the household side or the firm side have long been used to study

distributional effects of macroeconomic policies. Heterogeneity evolves dynamically and in

some of these models interacts closely with aggregate fluctuations. This is particularly true

in models with financing constraints that try to capture the large downturn during the recent

Great Recession. While the macroeconomics literature has demonstrated that dynamics in

heterogeneous agent (HA) models can be different from their representative agent (RA)

counterparts, it is an open question whether in the data there is strong evidence that the

dynamics of macroeconomic aggregates interacts, at business cycle frequencies, with the

evolution of the cross-sectional distribution of income and wealth on the household side and

the distribution of productivity and capital on the firm side.

This paper develops and applies econometric tools that can provide semi-structural evi-

dence about the interaction of aggregate and distributional dynamics. More specifically, we

specify a state-space model with a state-transition equation that takes the form of a linear

functional vector autoregression (fVAR) and stacks macroeconomic aggregates and a cross-

sectional distribution. The cross-sectional distribution is represented as a log probability

density function. This has the advantage that its law of motion is not constrained by non-

negativity or monotonicity restrictions and hence can be linear. We specify measurement

equations for macroeconomic aggregates as well as cross-sectional observations, treating the

underlying densities as unobserved. The measurement equation for the cross-sectional ob-

servations is nonlinear because it needs to exponentiate the log density and normalize it such

that it integrates one.

To make the functional analysis tractable and easy to implement, we approximate the log-

densities of the cross-sectional distributions as well as the transition kernels in the functional

autoregressive law of motion of the states by finite-dimensional sieves with fixed basis func-

tions and time-varying coefficients that capture the dynamics. This conveniently turns the

state-transition equation into a joint vector-autoregressive law of motion for the aggregate

variables and the time-varying coefficients of the sieve approximations. To avoid nonlinear

filtering, we effectively linearize the measurement equation for the cross-sectional observa-

tion. This approximation enables us to estimate the model in two steps. First, we estimate

the coefficients of the density approximation for each time period based on the sample of

cross-sectional observations. The approximation allows us to treat the coefficients estimates

as noisy measures of their population counterparts. The measurement errors capture the
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estimation uncertainty associated with the sieve coefficients. In the second step, we estimate

a linear state-space model using Bayesian techniques.

As mentioned before, our procedure is able to account for estimation errors in the cross-

sectional densities and can also be used with small cross-sectional sample sizes. Our im-

plementation uses spline basis functions to approximate log densities, which dates back to

Kooperberg and Stone (1990). We allow for seasonal adjustments of the cross-sectional

densities if they are combined with seasonally-adjusted aggregate data. Moreover, we show

how to adjust the measurement equation for top-coding of the cross-sectional observations.

Prior distributions are used to regularize a potentially high-dimensional estimation problem.

Finally, in order to determine the number of basis functions K for the sieve approximation

in a data-driven way, we utilize our Bayesian framework to derive a marginal data density

(MDD) approximation for the aggregate and cross-sectional data, akin to the widely-used

Schwarz criterion. Moreover, we use the MDD approximation for model selection, but it

could also be used for model averaging. We use the MDD not only to determine K, but also

to determine the prior precision (and hence the degree of shrinkage) for the coefficients of the

vector-autoregressive state-transition equation; see, for instance, Del Negro and Schorfheide

(2004) and Giannone, Lenza, and Primiceri (2015).

We apply our econometric framework to simulated and actual data. In the simulation

experiment, we generate data from a version of the Krusell and Smith (1998), henceforth KS,

model, which we solve using the method proposed by Winberry (2018). Households’ decisions

in the KS model depend on the aggregate technology shock and the cross-sectional distribu-

tion of skills and wealth. In turn, the entirety of the household-level decisions determine the

cross-sectional distribution, which leads to a joint law of motion of aggregate variables and

cross-sectional distribution. We show that estimates of our functional state-space model can

reproduce the evolution of the distribution of asset holdings and the response of the cross-

sectional distribution to a technology shock. Our MDD model selection criterion chooses a

low-dimensional sieve approximation that trades off model fit and complexity and shrinks

the coefficients that control the effect of the lagged cross-sectional distribution on current

technology to zero, capturing the fact that technology is indeed exogenous in the underlying

KS economy.

In the empirical application we fit our model to aggregate total factor productivity (TFP)

growth, GDP growth, employment, and cross-sectional data on labor earnings. The latter

are scaled by the labor share of GDP. The empirical model is able to capture the time

path of the cross-sectional densities. Based on the degree of shrinkage selected with the
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MDD criterion, there is strong evidence that aggregate dynamics do not Granger-cause

cross-sectional dynamics and vice versa. Our estimated covariance matrix of the fVAR

innovations is, however, not block diagonal, and we are able to detect small but in many

cases statistically significant effects of TFP shocks on the cross-sectional density of earnings.

Most notably, the mass of individuals that earn less than GDP per capita rises in response

to a TFP shock. From the response of the densities, we can also compute the response of

percentiles and inequality measures. Here we find that earnings at the 10th percentile rise,

whereas earnings at the 90th percentile fall. Thus, the expansion reduces inequality, which

is also reflected in the response of the Gini coefficient. Overall, however, the effect is small.

We also consider the effect of a distributional shock that is constructed to increase in-

equality in the short run. This shock is associated with a slight increase in the employment

rate and GDP, generating a positive correlation between inequality and aggregate economic

activity. As a robustness exercise, we consider two simplified vector autoregressions (VARs)

that combine the aggregate variables with a set of percentiles or with measures of inequality.1

While these simplified VARs deliver qualitatively similar IRFs as the functional model, the

responses are less precisely estimated and often feature odd long-run dynamics. A key prob-

lem with VARs that use quantiles of cross-sectional distributions is that nothing prevents

the quantiles from crossing in a simulation or an impulse response function, which is clearly

undesirable. The functional model, on the other hand, is coherent and parsimonious in the

sense that any distributional statistic can be derived from it.

The structure of the transition equation in our functional state-space model resembles

that of HA models solved with linearization techniques. This solution method was initially

proposed by Reiter (2009) and has been further developed in several papers, including Kaplan

and Violante (2018), Childers (2018), and Winberry (2018). The basic idea is to first solve

for the stationary solution of the HA model with only idiosyncratic uncertainty, using a

global solution technique. In a second step, one computes a first-order perturbation of the

solution with respect to the aggregate shocks. This leads to a vector autoregressive law

of motion that includes the time-varying coefficients associated with the basis functions

that are used to approximate cross-sectional distributions in the first step. This solution

technique is convenient for the likelihood-based estimation of HA models as in Mongey and

Williams (2017), Acharya, Chen, Del Negro, Dogra, Matlin, and Sarfati (2019), Liu and

Plagborg-Møller (2019), Bayer, Born, and Luetticke (2020), Cho (2020).

1An example of this approach is Coibion, Gorodnichenko, Kueng, and Silvia (2017).
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In general, our econometric framework allows researchers to examine the following type

of quantitative questions in a semi-structural framework that does not require the solution,

calibration, or estimation of an HA model: First, does micro-level heterogeneity affect the

propagation of aggregate shocks to aggregate variables?2 Second, what is the effect of an

aggregate shock on cross-sectional distributions? Third, what is the effect of a change in the

cross-sectional distribution on macroeconomic aggregates?

The aforementioned questions are front and center in the quantitative macroeconomics

literature. In order to address the first question, researchers often compare implications,

such as impulse response functions, correlations, or forecasts from models with and without

micro-level heterogeneity that share an otherwise identical identification structure. Recent

examples include Ahn, Kaplan, Moll, Winberry, and Wolf (2018), Kaplan and Violante

(2018), Ottonello and Winberry (2020), Acharya, Chen, Del Negro, Dogra, Matlin, and

Sarfati (2019), Bayer, Born, and Luetticke (2020), Cho (2020), and Villalvazo (2021). Het-

erogeneity often leads to amplification of shocks and additional persistence; see also Krueger,

Mitman, and Perri (2016). A key challenge is to find a parameterization for the HA and RA

model that allows a meaningful comparison. In our setting we can easily make comparisons

between the functional state-space model and VARs that only include aggregate variables.

The second question, i.e., the effect of aggregate shocks on cross-sectional distributions is

also frequently studied in the context of HA models. For instance, the paper by Ahn, Kaplan,

Moll, Winberry, and Wolf (2018) studies the effect of factor-specific productivity shocks on

inequality dynamics, whereas Kaplan and Violante (2018) examine the distributional effects

of monetary policy shocks. Bayer, Born, and Luetticke (2020) use their estimated HA model

to construct a historical decomposition of an inequality measure with respect to a collection

of aggregate shocks. Bhandari, Evans, Golosov, and Sargent (2021) report responses of

the dispersion of assets to a TFP shock in a HANK model under optimal monetary-fiscal

policy. Mongey and Williams (2017) analyze the effect of macro shocks on the dispersion

of sales growth. Finally, examples of research examining the third question are papers by

Huggett (1997) and Auclert and Rognlie (2020). The former considers a one-sector growth

model with idiosyncratic shocks and shows that a redistribution of asset holdings among

households while keeping the overall capital stock fixed at its steady state level, triggers a

2From the perspective of a linearized HA model, heterogeneity could affect the steady state (mean) and

the elasticities (slope coefficients). That is something our framework is unable to detect. However, we can

measure potential indirect effects: an aggregate shock may shift the cross-sectional distribution, which in

turn triggers movements in the aggregate variables in subsequent periods.
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response of the aggregate variables. Auclert and Rognlie (2020) show that a rise in inequality

may lower aggregate output if monetary policy does not react to it.

There is an extensive literature on the statistical analysis of functional data. General

treatments are provided in the books by Bosq (2000), Ramsey and Silverman (2005), and

Horvath and Kokoszka (2012). Much of the literature assumes that the functions are observed

without error. Our state-transition equation embodies the widely studied functional autore-

gressive model (see Bosq (2000) for a detailed analysis), but also includes a finite-dimensional

vector of states. Functional autoregressive models can be estimated by functional principal

component analysis, which approximates the functions by linear combinations of the eigen-

functions of the sample covariance operator associated with theK largest eigenvalues. Rather

than using what the literature considers to be an optimal (in a least squares sense) empirical

orthonormal basis, we use a spline basis that is chosen independently of the data in our

analysis.

Applications of functional data analysis in macroeconometrics are growing steadily. Many

of them are related to the yield curve. The state-space model Diebold and Li (2006) could be

interpreted as a functional model for yield-curve data, but there is no infinite-dimensional

aspect to the analysis in the sense that it is assumed (and empirically justified) that the

yield-curves can be represented by three time-varying parameters. Inoue and Rossi (2020)

estimate what they call a VAR with functional shocks, which uses a similar representation

of the yield curve as in Diebold and Li (2006) and focuses on the identification of functional

monetary policy shocks. Meeks and Monti (2019) use functional principal component re-

gression to estimate a New Keynesian Phillips curve in which the distribution of inflation

expectations appears on the right-hand side. Hu and Park (2017) develop an estimation

theory for a functional autoregressive model with unit roots and fit it to yield curve data

and Chang, Kim, and Park (2016) use a functional time series process to capture the evolu-

tion of earnings densities with a focus on unit-root components. Both papers use functional

principal components analysis.

The remainder of this paper is organized as follows. In Section 2 we present our functional

state-space model for a group of macroeconomic time series and a sequence of cross-sectional

distributions. We develop an approximate filter for the state-space model that facilitates the

likelihood-based estimation. We use Bayesian inference and derive an approximation to

the marginal data density that is used for dimensionality and hyperparameter selection.

Implementation details such as the choice of basis functions, the handling of top coding

and seasonal adjustments, the choice of prior distributions, and the posterior sampler are
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discussed in Section 3. Section 4 contains the results from the simulation experiment in which

we estimate the functional state-space model based on data generated from the KS economy.

The empirical application is presented in Section 5 and Section 6 concludes. Supplemental

derivations, and additional computational details and empirical results are relegated to the

Online Appendix.

2 A Functional State Space Model

VARs can be viewed as approximations to the equilibrium dynamics arising from linearized

RA models and have proved to be useful for the evaluation and development of dynamic

stochastic general equilibrium (DSGE) models. Moreover, VARs are widely used in empiri-

cal macroeconomics independently of DSGE models, to study business cycle fluctuations, the

propagation of shocks, and to generate macroeconomic forecasts. In this paper, we develop

a fVAR that is embedded in a state space model and can play a similar role as traditional

VARs in environments in which macroeconomic aggregates interact with cross-sectional dis-

tributions. While we will not establish a formal link between our functional model and the

solution of HA models, it does capture the salient features and provides a natural reference

model for the evaluation of HA models. Moreover, just as VARs, our functional model can

be used as a stand-alone tool for empirical work in macroeconomics.

The variables in the functional model comprise an ny×1 vector of macroeconomic aggre-

gates Yt and a cross-sectional density pt(x). In our empirical application Yt consists of (log)

TFP growth, per-capita GDP growth, and the log employment rate. The cross-sectional

variable x is earnings as a fraction of per-capita GDP. Throughout this paper, we will work

with log densities defined as `t(x) = ln pt(x). We decompose Yt and `t into a deterministic

component
(
Y∗, `∗(x)

)
and fluctuations around the deterministic component. Let

Yt = Y∗ + Ỹt, `t = `∗ + ˜̀
t. (1)

For notational convenience we assumed that the deterministic component is time-invariant

and could be interpreted as a steady state. This assumption could be easily relaxed by letting

(Y∗, `∗) depend on t. We assume that the deviations from the deterministic component(
Yt, `t(x)

)
evolve jointly according to the following linear fVAR law of motion:

Ỹt = ByyỸt−1 +

∫
Byl(x̃)˜̀

t−1(x̃)dx̃+ uy,t (2)

˜̀
t(x) = Bly(x)Ỹt−1 +

∫
Bll(x, x̃)˜̀

t−1(x̃)dx̃+ ul,t(x).
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Here uy,t is mean-zero random vector with covariance Ωyy and ul,t(x) is a random element

in a Hilbert space with covariance function Ωll(x, x̃). We denote the covariance function for

uy,t and ul,t(x) by Ωyl(x).

To condense the notation, we define integral operators with kernels Byl(x̃) and Bll(x, x̃)

as

Byl[g] =

∫
Byl(x̃)g(x̃)dx̃, Bll[g](x) =

∫
Bll(x, x̃)g(x̃)dx̃.

Using the operator notation, we can write (2) more compactly as

Ỹt = ByyỸt−1 + Byl[˜̀t−1] + uy,t (3)

˜̀
t(x) = Bly(x)Ỹt−1 + Bll[˜̀t−1](x) + ul,t(x).

For now, (3) should be interpreted as a reduced-form fVAR in which uy,t and ul,t(x) are one-

step-ahead forecast errors. We could easily add more lags, but our simulation experiment

and the empirical analysis will be based on a single lag. The system will subsequently serve

as the state-transition equation in a functional state-space model.

Section 2.1 describes the sampling from the functional state-space model. Rather than

focusing on an infinite-dimensional model in which the densities and operators are treated

nonparametrically, we consider a collection of finite-dimensional models, presented in Sec-

tion 2.2, in which log densities and kernels associated with integral operators are represented

through finite-dimensional sieves. Section 2.3 develops an approximate linear filter for the

finite-dimensional functional state-space models and in Section 2.4 we present a large-sample

approximation of the marginal data density that can be used to select the degree of the sieve-

approximation in a data-driven manner.

2.1 Sampling and Measurement

We assume that in every period t = 1, . . . , T an econometrician observes the macroeconomic

aggregates Yt as well as a sample of Nt draws xit, i = 1, . . . , Nt from the cross-sectional

density pt(x). In practice, Nt is likely to vary from period to period, but for the subsequent

exposition it will be more convenient to assume that Nt = N for all t. We collect the time t

cross-sectional observations in the vector Xt = [x1t, . . . , xNt]
′. We also assume that the draws

xit are independently and identically distributed (iid) over the cross-section and independent

over time. The measurement equation for the cross-section observations takes the form

xit ∼ iid pt(x) =
exp{`t(x)}∫
exp{`t(x)}dx

, i = 1, . . . , N, t = 1, . . . , T. (4)
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The assumption of xit being iid across i and t is consistent with data sets that comprise

repeated cross sections.3 It is also approximately consistent with panel data sets if the unit

index i is randomly re-assigned in every period t. Thus, to the extent that the cross-sectional

densities pt(x) are estimated from a panel data set, there is some potential loss of information

in our functional modeling approach. However, on the positive side, the functional modeling

approach does not require the econometrician to make assumptions about the evolution of

xit at the level of an individual, a household, or a firm.

2.2 A Collection of Finite-Dimensional Models

Equations (1), (3) and (4) define a state-space model for the observables {Yt, Xt}Tt=1. The

log density `t(·) is the state variable. To implement the estimation of the functional model

we use a collection of finite-dimensional representations, indexed by a superscript (K). Let

`
(K)
t (x) =

K∑
k=1

αk,tζk(x) =
[
ζ1(x), . . . , ζK(x)

]
·


α1,t

...

αK,t

 = ζ ′(x)αt (5)

and

`(K)
∗ (x) = ζ ′(x)α∗.

To simplify the notation a bit, we did not use (K) superscripts for the vectors ζ(x), αt, and

α∗. Here ζ1(x), ζ2(x), . . . is a sequence of basis functions. We define α̃t = αt − α∗ such that

˜̀(K)(x) = `
(K)
t (x) − `

(K)
∗ (x). For theoretical considerations it is convenient to demean the

vector of basis functions and assume that
∫
ζ(x)dx = 0. For applications this normalization

is not important.

To construct the measurement equation of the cross-sectional observations in (4), we

define the K-dimensional vector of sufficient statistics

ζ̄(Xt) =
1

N

N∑
i=1

ζ(xit).

This allows us to write a K’th order representation of the density of Xt:

p(K) (Xt|αt) = exp
{
NL(K)(αt|Xt)

}
, (6)

L(K)(αt|Xt) = ζ̄ ′(Xt)αt − ln

∫
exp {ζ ′(x)αt} dx.

3If the data exhibit spatial correlation, then our estimation approach below essentially replaces the

likelihood function for x1t, . . . , xNt by a composite likelihood function that ignores the spatial correlation;

see Varin, Reid, and Firth (2011).
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We represent the kernels Bll(x, x̃) and Byl(x̃), the function Bly(x), and the functional

innovation ul,t(x) that appear in the state-transition equation (3) as follows:

B
(K)
ll (x, x̃) = ζ ′(x)Bllξ(x̃), B

(K)
yl (x) = Bylξ(x̃) (7)

B
(K)
ly (x) = ζ(x)′Bly, u

(K)
l,t (x) = ζ ′(x)uα,t,

where ξ(x) is a second K×1 vector of basis functions and uα,t is a K×1 vector of innovations.

The matrix Bll is of dimension K ×K, Byl is of dimension ny ×K, and Bly is of dimension

K×ny. Let B
(K)
yl [·] and B

(K)
ll [·](x) be the operators associated with the kernels B

(K)
yl (x) and

B
(K)
ll (x, x̃). Then we can write (3) as

Ỹt = ByyỸt−1 + B
(K)
yl [˜̀

(K)
t−1] + u

(K)
y,t (8)

˜̀(K)
t (x) = B

(K)
ly (x)Ỹt−1 + B

(K)
ll [˜̀

(K)
t−1](x) + u

(K)
l,t (x).

Combining (1), (5), (7), and (8) yields the following vector autoregressive system for the

macroeconomic aggregates and the sieve coefficients (omitting K superscripts):[
Yt − Y∗
αt − α∗

]
=

[
Byy BylCα

Bly BllCα

][
Yt−1 − Y∗
αt−1 − α∗

]
+

[
uy,t

uα,t

]
, (9)

where Cα =
∫
ξ(x̃)ζ ′(x̃)dx̃. Let u′t = [u′y,t, u

′
α,t]. We will subsequently assume that the

innovations are Gaussian:

ut ∼ N(0,Σ). (10)

2.3 Approximate Filtering

The K-dimensional approximation of the functional model has a state-space representation

with state vector αt, measurement equation (6), and state-transition equation (9). Due

to the measurement equation for Xt, the state-space representation is nonlinear and the

computation of the exact likelihood requires a nonlinear filter. To avoid the use of a nonlin-

ear filter in the empirical application, we will conduct approximations justified by large-N

approximations of Bayesian posteriors and marginal likelihoods.

We collect the parameters (α∗, Y∗, B,Σ) in the vector θ. Here the matrix B comprises

Byy, Byl, Bly, and Bll. Although the dimension of θ depends on the degree of approximation

K, we omit the (K) superscript. Let Y1:t denote the sequence Y1, . . . , Yt. Starting from a
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distribution p(K)(αt−1|Y1:t−1, X1:t−1, θ), for each period t the filter computes:

p(K)(Yt, αt|Y1:t−1, X1:t−1, θ) =

∫
p(K)(Yt, αt|Yt−1, αt−1, θ)p

(K)(αt−1|Y1:t−1, X1:t−1, θ)dαt−1

p(K)(Yt, Xt|Y1:t−1, X1:t−1, θ) =

∫
p(K)(Xt|αt)p(K)(Yt, αt|Y1:t−1, X1:t−1, θ)dαt (11)

p(K)(αt|Y1:t, X1:t, θ) ∝ p(K)(Xt|αt)p(K)(Yt, αt|Y1:t−1, X1:t−1, θ).

The first equation in display (11) iterates the state-transition equation (9) forward and

integrates over the hidden state αt−1. The second equation generates a forecast of the

observables (Yt, Xt) using the measurement equation (6). The third equation updates the

density of the hidden state αt using Bayes Theorem (here ∝ denotes proportionality). Note

that the density p(K)(Xt|αt) defined in (6) does not depend on θ.

The state-transition density p(K)(Yt, αt|Yt−1, αt−1, θ) is Normal under the assumption

that the shock vector ut is normally distributed. We will now approximate p(K)(Xt|αt) by

conducting a second-order Taylor series expansion of L(αt|Xt) in (6) around the maximum

likelihood estimator (MLE)

α̂t = argmaxαt L
(K)(αt|Xt). (12)

Let V̂t be the negative inverse Hessian associated with L(αt|Xt) evaluated at α̂t. Then, we

can write

p(K)(Xt|αt) = exp

{
NL(K)(α̂t|Xt)−

N

2
(αt − α̂t)′V̂ −1

t (αt − α̂t) +NR
}
, (13)

where R is the remainder term from the second-order Taylor series approximation. Ab-

stracting from the remainder, the expression on the right-hand side of (13) is proportional

to a measurement equation density from a model that treats the MLE α̂t(Xt) of the density

coefficients as observables and uses the measurement equation

α̂t(Xt) = αt +N−1/2ηt, ηt ∼ N(0, V̂t). (14)

in conjunction with the VAR in (9). By replacing (6) by (14) we obtain a linear Gaussian

state-space model and the likelihood function can be evaluated with the Kalman filter.

To summarize, our large-N approximation of the filtering problem leads to a convenient

two-step procedure. In the first step, the researcher computes the sequence of MLEs α̂t from

the cross-sectional observations Xt, separately for each period t = 1, . . . , T . In the second

step, the researcher estimates a linear state-space model in which the α̂ts are interpreted

as noisy measures of the latent αts. Because the measurement error variance vanishes at

rate N−1, for large cross-sectional sample sizes, the estimation of a state-space model can be

replaced by the estimation of a VAR in which the latent αts are replaced by their MLEs.
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2.4 Bayesian Model Selection Criterion

In order to be able to determine the sieve order K in a data-driven way, we will now derive

a large-N approximation to the Bayesian marginal data density (MDD) which for a sample

of time dimension T is defined as

p(K)(Y1:T , X1:T |λ) =

∫ ( T∏
t=1

p(K)(Yt, Xt|Y1:t−1, X1:t−1, θ)

)
p(θ|λ)dθ, (15)

where λ is a vector of hyperparameters that control the variance of the prior distribution. We

will proceed by deriving a convenient representation for p(K)(Yt, Xt|Y1:t−1, X1:t−1, θ), which

was defined in the second equation of display (11):

p(K)(Yt, Xt|Y1:t−1, X1:t−1, θ) =

∫
p(K)(Xt|αt)p(K)(Yt, αt|Y1:t−1, X1:t−1, θ)dαt.

The density p(K)(Xt|αt) can be viewed as a likelihood function for αt and p(Yt, αt|·) character-

izes the prior distribution for αt. Note from the expansion in (13) that the likelihood function

concentrates around α̂t as N −→ ∞. Using standard Bayesian asymptotic arguments, we

obtain the Laplace approximation

p(K)(Yt, Xt|Y1:t−1, X1:t−1, θ) ≈ exp
{
NL(K)(α̂t|Xt)

}∣∣V̂t/N ∣∣1/2 (16)

×(2π)K/2p(K)(Yt, α̂t|Y1:t−1, X1:t−1, θ).

The first term on the right-hand-side is the maximized likelihood function from the cross-

sectional density estimation. The second term is the familiar penalty for model complexity

which is asymptotically dominated by N−K/2 and the last term can be interpreted as the

prior density for αt evaluated at α̂t.

We now turn to p(K)(Yt, α̂t|Y1:t−1, X1:t−1, θ) which is defined in the first equation of display

(11). Standard Bayesian large-N asymptotics imply that

αt−1|(Y1:t−1, X1:t−1, θ)
approx∼ N

(
α̂t−1, V̂t−1/N

)
. (17)

By combining (17) with (9) and integrating out αt−1, we can deduce that p(K)(Yt, α̂t|Y1:t−1, X1:t−1, θ)

is the density associated with the VAR[
Yt − Y∗
α̂t − α∗

]
=

[
Byy BylCα

Bly BllCα

][
Yt−1 − Y∗
α̂t−1 − α∗

]
+

[
ũy,t

ũα,t

]
, (18)

where [
ũy,t

ũα,t

]
∼ N

(
0, Σ̃

)
, Σ̃ = Σ +

1

N

[
BylCαV̂t−1C

′
αB
′
yl BylCαV̂t−1C

′
αB
′
ll

BllCαV̂t−1C
′
αB
′
yl BllCαV̂t−1C

′
αB
′
ll

]
.
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Thus, replacing the latent αt by the MLE α̂t added a 1/N term to the innovation covariance

matrix, which we will ignore subsequently.4 We deduce that we can write

p(K)(Yt, α̂t|Y1:t−1, X1:t−1, θ) ≈ p(K)(Yt, α̂t|Yt−1, αt−1 = α̂t−1, θ) (19)

The approximation of the MDD can be completed as follows. Substituting (19) into the

right-hand side of (16) and plugging the resulting expression into the marginal data density

formula (15) leads to

p(K)(Y1:T , X1:T |λ) ≈ (2π)KT/2

(
T∏
t=1

exp
{
NL(K)(α̂t|Xt)

}∣∣V̂t/N ∣∣1/2) (20)

×
∫ ( T∏

t=1

p(K)(Yt, α̂t|Yt−1, αt−1 = α̂t−1, θ)

)
p(θ|λ)dθ.

The MDD formula has two parts that can be evaluated independently. The expression in the

first line of (20) can be viewed as a Bayesian information criterion for selecting the number

of basis functions in the estimation of cross-sectional densities. An increase in the number

of terms K improves the goodness-of-fit L(K)(α̂t|Xt) but is penalized through the O(N−K/2)

determinant. The expression in the second line on the right-hand-side of the equation is

the MDD associated with the VAR in (9) where the latent αts are replaced by the MLEs

α̂t. There exists a large literature on how to evaluate VAR MDDs either analytically or

numerically for a variety of specifications and we will provide further details below. In

Sections 4 and 5 we not only use the MDD to determine K, but also to determine the

hyperparameter λ jointly with K.

3 Implementation Details

We now provide some of the implementation details. The choice of basis functions is de-

scribed in Section 3.1 and some preliminary transformations of the estimated basis function

coefficients is discussed in Section 3.2. Section 3.3 provides details on the specification of the

measurement equation for the basis function coefficients and the state-transition equation of

the empirical state-space model. Priors and the computation of posteriors for the parameters

of the state-space model are discussed in Section 3.4 and Section 3.5 explains how forecasts

and impulse response functions for the basis function coefficients can be converted back into

cross-sectional densities.
4We consider applications in which the cross-sectional dimension N is much larger than the time series

dimension T .
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3.1 Basis Functions

A convenient basis for the log density is a spline which is a piecewise polynomial function

with knots xk, k = 1, . . . , K − 1. There is a large literature on log-spline density estimation

dating back to Kooperberg and Stone (1990). A typical choice is to consider a cubic spline

that is restricted to be linear and upward sloping on the interval (−∞, x1) and linear and

downward sloping on the interval [xK−1,∞). Thus, the estimated density has the tails of a

Laplace density, which are a bit thicker than Gaussian tails.

In our two application we restrict x to the interval [0, x̄]. For the estimation based on

simulated data in Section 4 we also use a cubic function for the last segment of the spline:

ζ1(x) = x (21)

ζk(x) =
[

max{x− xk−1, 0}
]3
, k = 2, . . . , K.

We exclude the constant function ζ0(x) = 1 because it is redundant in light of the normaliza-

tion imposed in the definition of LK(αt|Xt) in (6). For the empirical application in Section 5

we construct the spline from x = x̄ to x = 0, rather than from x = 0 to x = x̄, using a linear

element for the right tail

ζK(x) = max {x̄− x, 0} (22)

ζk(x) =
[

max {xk−1 − x, 0}
]3
, k = K − 1, . . . , 1.

For both applications we compared three spline specifications for a given K: (21), (22), and

the aforementioned linear-cubic-linear specification. For the simulated data (21) is preferred

because the right tail of the simulated asset distributions is very thin. For the actual data

it is desirable that the right-most segment of the spline is linear because under the cubic

specification the density was increasing between the top coded value (see below) and the

upper bound x̄ in some periods. Near zero, on the other hand, the cubic segment was more

successful approximating the density than the linear segment.

3.2 Sieve Coefficients

The first step in the estimation of the functional model is the computation of the MLEs

α̂t for t = 1, . . . , T . We discuss three adjustments that may be required to implement the

empirical analysis.
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Top Coding. In our empirical application the cross-sectional observations are top-coded.

Because we standardize cross-sectional earnings by GDP per-capita which grows in real

terms over time, the top-coded earnings value, which we take to be the maximum in every

given time period t generally, falls over time until the statistical agency resets the maximum

income level.

We define the censoring point ct = maxi=1,...,N xit and let Nt,max =
∑N

i=1 I{xit = ct}. If

Nt,max = 1 we assume that the observed sample is not constrained by the top-coding and

use the standard likelihood function described above. We introduce the unknown parameter

πt = P{xit ≥ ct} and drop the top-coded observations from the definition of ζ̄(Xt) by letting

ζ̄(Xt) =
1

Nt

N∑
i=1

ζ(xit)I{xit < ct}.

The log-likelihood function (divided by Nt, see (6)) under top coding is given by

L(K)(αt, πt|Xt) =
Nt,max

Nt

lnπt +
Nt −Nt,max

Nt

ln(1− πt) (23)

+ζ̄ ′(Xt)αt −
Nt −Nt,max

Nt

ln

∫ ct

0

exp
{
ζ ′(x)αt

}
.

The first line captures the likelihood of sampling top-coded observations and the second line

represents the continuous density of the observations that are not top coded. Notice that

log-likelihood function can be independently maximized with respect to πt and αt, where

π̂t = Nt,max/Nt. The modified definition of L(K)(αt, π̂t|Xt) requires a slight rescaling of V̂t.

Further details are provided in the Online Appendix.

In our application, the top-coded values exceed the largest knot in every period t, i.e.,

x̄t > xK−1 for all t, which means that all spline coefficients remain identifiable. If, on the

other hand, the top-coded value is less than xK−1 in some period t, then some elements of

the αt vector are not identifiable from the cross-sectional information. These elements can be

treated as missing values in the estimation of the linear state-space representation described

in Section 3.4 below and will be implicitly imputed by the VAR law of motion (9).5

Compression. The vector ˆ̃αt = α̂t − α∗ may exhibit collinearity. Even though K basis

functions may be necessary to approximate the cross-sectional densities, the time variation

might be concentrated in a lower-dimensional space, because, for instance, only the means

5There is a large literature on handling missing values in state-space models. Textbook treatments are

available in Harvey (1989) and Durbin and Koopman (2001). An application to the estimation of mixed-

frequency VARs is provided in Schorfheide and Song (2015).
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of the cross-sectional distributions are varying over time. This feature can be captured by

assuming that the time-variation is captured by a K̃ < K dimensional factor at:

(αt − α∗)′ = a′tΛ, (24)

where Λ is a K̃ × K matrix. As is well known from the factor model literature, Λ and at

are only identified up to a K̃ × K̃ dimensional invertible matrix. In principle, the matrix Λ

and the sequence of vectors at, t = 1, . . . , T have to be estimated simultaneously under this

factor structure,

To avoid the simultaneous estimation of the cross-sectional densities, we take the following

short cut. First, we compute the α̂ts period-by-period without imposing any restrictions.

Second, conditional on α∗ we compute the demeaned (and potentially seasonally adjusted)

MLEs ˆ̃αt = α̂t−α∗ and arrange them in a T×K matrix ˆ̃α with rows ˆ̃α′t. Third, we conduct a

principal components analysis which is based on the eigenvalue decomposition of the sample

covariance matrix ˆ̃α′ ˆ̃α/T . Let M̂ be K × K̃ matrix of eigenvectors associated with the K̃

non-zero eigenvalues (in practice greater than 10−10). Then, let

â = ˆ̃αM̂, Λ̂ = (â′â)−1â′ ˆ̃α, (25)

where â is the T × K̃ matrix with rows â′t.

We can now replace (13) by6

p(K)(Xt|at, α∗, Λ̂) = exp

{
NL(K)(α∗ + Λ̂′ât|Xt)−

N

2
(at − ât)′Λ̂V̂ −1

t Λ̂′(at − ât) +NR
}
.

To evaluate the MDD formula in (20), we replace (2π)KT/2 by (2π)K̃T/2, L(K)(α̂t|Xt) by

L(K)(α∗ + Λ̂′ât|Xt), and we change the penalty term from |V̂t/N |1/2 to |(Λ̂V̂ −1
t Λ̂′)−1/N |1/2.

Seasonal Adjustments. In our empirical application xit is based on quarterly earnings

data from the Current Population Survey (CPS). Unlike the macroeconomic variables stacked

in Yt, the quarterly earnings data are not seasonally adjusted. Deterministic seasonal ad-

justments of the cross-sectional densities can be incorporated in the model by replacing the

vector of constants α∗ = αt − α̃t by a time-varying process. In our application the time

period t is a quarter. We let α∗,t =
∑4

q=1 αq,tsq(t), where sq(t) = 1 if period t is associated

with quarter q and sq(t) = 0 otherwise.

6Because our goal is to eliminate perfect collinearities, we choose an eigenvalue cut-off that yields α∗ +

Λ̂′ât = α̂t in Sections 4 and 5.
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3.3 State-Space Representation

After subtracting α∗ (or α∗,t in case of the seasonal adjustment) and compressing the αt

coefficients, we can express the state-space representation in terms of the lower-dimensional

vectors at and ât. The measurement equation (14) is replaced by

ât = at +N−1/2ηt, ηt ∼ N
(
0, (Λ̂V̂ −1

t Λ̂′)−1
)
. (26)

The state transition is essentially given by (9) but we need to adjust it for the compression

of the αt vector. Moreover, we now absorb the matrix Cα into the matrices of regression

coefficients: [
Yt − Y∗
at

]
=

[
Φyy Φya

Φay Φaa

][
Yt−1 − Y∗
at−1

]
+

[
uy,t

ua,t

]
. (27)

We assume that the innovations are normally distributed and write the state transition more

compactly as

Wt = Φ1Wt−1 + ut, ut ∼ N(0,Σ), (28)

where Wt = [(Yt − Y∗)′, a′t]′.

3.4 Priors and Posteriors

The estimation of the state-space model is done conditional on the sequence V̂t, t = 1, . . . , T ,

and the compression matrix Λ̂. Moreover, in our implementation we also condition on esti-

mates of the deterministic components, Ŷ∗ and â∗. Thus, the remaining unknown coefficients

are concentrated in the state-transition equation (28), which takes the form of a multivariate

linear Gaussian regression model. The state transition can be expressed in matrix form as

W = ZΦ + U, (29)

where W , Z, and U have rows W ′
t , W

′
t−1, and u′t, respectively and for a VAR(1) without

intercept Φ = Φ′1. Defining φ = vec(Φ) we use a prior distribution of the form

Σ ∼ IW (ν, S), φ|λ ∼ N
(
µ
φ
, P−1

φ (λ)
)
, (30)

where IW (·) is the Inverse-Wishart distribution with ν degrees of freedom and scale matrix

S.
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The prior precision matrix P φ(λ) is a function of a vector of hyperparameters λ =

[λ1, λ2, λ3]′ and takes the form

P φ(λ) = λ1


(Σ−1)yy ⊗

[
D̂y 0

0 λ2D̂a

]
(Σ−1)ya ⊗

[ √
λ3D̂y 0

0
√
λ2D̂a

]

(Σ−1)ay ⊗

[ √
λ3D̂y 0

0
√
λ2D̂a

]
(Σ−1)aa ⊗

[
λ3D̂y 0

0 D̂a

]
 . (31)

The partitions of Σ−1 conform with the partition W ′
t = [(Yt−Y∗)′, a′t]. The matrices D̂y and

D̂a are diagonal matrices of dimension ny ×ny and K̃ × K̃ that are used to rescale the prior

variances based on the variability of the regressors. For instance, one can set the jj element

of D̂y equal to a (pre-)sample variance σ̂2(Yjt). This scaling is common for Minnesota-type

VAR priors.

The hyperparameter λ1 controls the overall precision of the prior distribution; λ2 scales

the relative precision of the prior distribution for the coefficients that control the effect of

at−1 on Yt; likewise, λ3 scales the relative precision of the prior distribution for the coefficients

that control the effect of Yt−1 on at. Unlike the more commonly used matrix-Normal Inverse-

Wishart prior that mimics the Kronecker structure of the likelihood function, the prior in

(30) allows us to control the degree of spillovers from distributional dynamics to the aggregate

dynamics and vice versa. If the prior mean µ
φ

is zero, then as λ2, λ3 −→ ∞, the posterior

distributions of Φay and Φya concentrate around zero, which shuts down spillover effects.

Conditional on λ, it is straightforward to sample from the posterior distribution of (φ,Σ)

using a Gibbs sampler following the approach in Carter and Kohn (1994) that iterates over

the blocks:

φ|(Σ,W1:T , λ), Σ|(φ,W1:T , λ) a1:T |(φ,Σ, Ỹ1:T , â1:T ). (32)

Here it is important to recall that W1:T = [Ỹ1:t, a1:T ] and note that conditional on a1:T the

MLEs â1:T do not contain any information about (φ,Σ). The Online Appendix describes

how to sample from φ|(Σ,W1:T , λ) and Σ|(φ,W1:T , λ). Sampling from a1:T |(φ,Σ, Ỹ1:T , â1:T ) is

implemented by a standard forward filtering and backward simulation approach that utilizes

the Kalman filter in the forward iteration and the simulation smoother for the backward

simulation. The Online Appendix also discusses how the second part of the MDD formula –

the one associated with the VAR in (29), see the second line on the right-hand side of (20)

– can be evaluated using a combination of the Rao-Blackwellization approach in Fuentes-

Albero and Melosi (2013) and Geweke (1999)’s modified harmonic mean estimator.
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3.5 Recovering Cross-Sectional Densities

Based on the estimated state-transition equation (27) we can generate forecasts and im-

pulse response functions for the compressed coefficients at. However, the dynamics of these

coefficients in itself are not particularly interesting. Thus, we have to convert them back

into densities using the following steps (which can be executed for each draw of at from the

relevant posterior distribution). First, use (24) with Λ = Λ̂ to transform at into αt. If the

estimation is based on a seasonal adjustment, α∗ can be replaced by α∗,t, or, if the goal is to

compute impulse responses, one could use the average of the seasonal dummies as intercept.

Second, compute

p(K)(x|αt) =
exp

{
ζ ′(x)αt

}∫
exp

{
ζ ′(x̃)αt

}
dx̃
.

4 A Simulation Experiment

To examine our functional state-space model’s ability to capture the joint dynamics of ag-

gregate variables and a cross-sectional distribution, we first estimate it based on artificial

data simulated from a Krusell and Smith (1998) economy. The model economy and its ap-

proximate solution is described in Section 4.1. The estimation results are summarized in

Section 4.2.

4.1 Model Economy and Data Generating Process

The model economy consists of a continuum of households j ∈ [0, 1]. Household j chooses

consumption and asset holdings to maximize

E0

[
∞∑
t=0

βt
c1−σ
jt − 1

1− σ

]

subject to the budget constraint

xjt+1 + cjt = (1− τ)Wtεjt + bWt(1− εjt) + xjt(1 +Rt), xjt+1 ≥ x. (33)

Here εjt ∈ {0, 1} is an exogenous two-state Markov process that determines the efficiency

units of labor supplied by the household j in period t. Households with εjt = 1 receive

after-tax labor income (1− τ)Wt and households with εjt = 0 receive unemployment benefits

bWt. The total labor supply L =
∫
εjtdj is fixed over time. We assume that the government
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balances its budget constraint in each period by setting τ = b(1 − L)/L. The asset xjt is

a claim on the aggregate capital stock and generates a risky return Rt and households face

the borrowing constraint xjt+1 ≥ x.

The representative firm produces output Yt according to the production function

Yt = exp{zt}Kα
t L

1−α, zt = ρzzt−1 + σzωt, ωt ∼ N(0, 1),

where zt is an exogenous aggregate productivity shock that follows an AR(1) law of motion,

and Kt is the aggregate capital stock. Factor prices are given by

Rt = α exp{zt}Kα−1
t L1−α − δ, Wt = (1− α) exp{zt}Kα

t L
−α, (34)

where δ is the depreciation rate of capital. In equilibrium, the net supply of assets equals

the capital stock: Kt =
∫
xjtdj.

The aggregate state of the economy is St = (zt, µt), where µt is the distribution of

households over (εjt, xjt) pairs. Because εjt takes only two values, it is convenient to use µt,ε

to denote the conditional distribution of assets given the employment status εt. To simulate

data from the model economy, we construct an approximate solution in which the density

associated with µt,ε can be written as a mixture of a discrete and continuous part:

qt,ε(x) = m̂t,ε∆x(x) + (1− m̂t,ε)pt,ε(x). (35)

Here, m̂t,ε is the mass of individuals for whom the borrowing constraint x is binding. ∆x(x)

is the Dirac function with the property that ∆x(x) = 0 for x 6= x and
∫

∆x(x)dx = 1. This

function captures the mass of households for which the borrowing constraint is binding. The

continuous part of the asset distribution is represented by the (proper) density pt,ε(x).

Following Winberry (2018) we represent the density pt,ε(x) as follows:

pt,ε(x) = exp

{
γt,ε,0 + γt,ε,1(x−mt,ε,1) +

3∑
k=2

γt,ε,k
[
(x−mt,ε,1)k −mt,ε,k

]}
. (36)

Here the mt,ε,ks are the time-varying centralized moments of the distribution. The γt,ε,ks are

a set of time-varying coefficients that can be determined from the moments by solving the

system of equations

mt,ε,1 =

∫
xpt,ε(x)dx; mt,ε,k =

∫
(x−mt,ε,1)kpt,ε(x)dx, k = 2, 3;

∫
pt,ε(x)dx = 1.
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The desired consumption of household j in absence of the borrowing constraint is given

by

c∗jt =
[
βEt[(1 +Rt+1)c−σjt+1]

]−1/σ
.

According to (33) the return Rt+1 depends on the capital stock Kt+1, which in turn depends

on the cross-sectional distribution of assets:

Kt+1 =
∑
h=0,1

P{ε = h}
[
x · m̂t+1,ε=h + (1− m̂t+1,ε=h)

∫
xpt+1,ε=h(x)dx

]
.

Actual consumption may be lower than desired consumption of the borrowing constraint is

binding. Asset holdings in period t+ 1 can be determined from the budget constraint (33).

Doing this for each household j determines the t + 1 distribution of asset holdings. Thus,

the model generates a joint autoregressive law of motion for

ςt =
(
zt, m̂t,ε=0, m̂t,ε=1,mt,ε=0,mt,ε=1

)
, (37)

where mt,ε = [mt,ε,1,mt,ε,2,mt,ε,3]′ represents pt,ε(x).

We use the method of Winberry (2018) to solve the KS economy. The method involves

two steps. First, we construct a nonlinear solution for the version of the model without aggre-

gate uncertainty. To do so, we replace the unknown decision rule for (transformed) desired

consumption (−1/σ) ln c∗jt with a Chebychev polynomial and integrals through quadrature

approximations. This leads to a rational expectations system in ςt, (Kt, Rt,Wt), the Cheby-

chev polynomial coefficients, the quadrature approximation points of the asset distribution,

and the density evaluated at these points.7 The system is then linearized around the steady

state and solved with a standard solver for linearized rational expectations (LRE) systems.

The solution to the LRE system can be written as a VAR in ςt, defined in (37), and a set

of equations that relate the remaining variables to the state vector ςt. To generate data, we

simulate the law of motion for ςt for 2,000 periods and draw iid cross-sectional observations

from (35), where pt,ε(x) is defined in (36).

We calibrate the KS economy to loosely match features of annual U.S. data. The pa-

rameterization is summarized in Table 1. The left panel of Figure 1 depicts the time series

of the aggregate capital stock from t = 1 to t = 200. The capital stock peaks in period

t = 27 and reaches a trough in period t = 150. The densities of asset holdings (normalized

to one) for the unemployed and employed households are plotted in the center panel and

the right panel of the figure. We condition on x > x = 0 and plot pt,ε(x) given in (36). The

7For the subsequent simulations we use 25 quadrature nodes and a Chebychev polynomial of order three.
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Table 1: Calibration of Krusell-Smith Economy

Parameter Value Parameter Value

β Discount factor .93 b Unempl. benefits .15

σ Utility curvature 1 π(ε0 → ε1) Unempl. to Empl. .5

x Borrowing constraint 0 π(ε1 → ε0) Empl. to Unempl. .038

α Capital share .36 ρz TFP Persistence .859

δ Capital depreciation .10 σz TFP Innovation StdDev .028

Notes: Annual parameterization

Figure 1: Features of Simulated Data
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densities illustrate that employed households hold more assets than unemployed households

and that in a boom period (high capital stock due to favorable technology shocks) the asset

distribution shifts to the right.

4.2 Functional Model Estimation

We now estimate the functional model based on the simulated time series and cross-sectional

data. Because according to the calibration in Table 1 the employment rate is 93%, we focus

on the asset distribution of the employed households and omit information about the assets

of the unemployed from the estimation. Because due to precautionary savings behavior the

mass of employed individuals with zero assets is essentially zero and does not vary over time,

the aggregate variable in our estimation is simply log productivity zt and we provide the
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Table 2: Knot Placement

Percentiles

K 0.01 0.025 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

4 X X X

6 X X X X X

8 X X X X X X X

10 X X X X X X X X X

14 X X X X X X X X X X X X X

22 X X X X X X X X X X X X X X X X X X X X X

Notes: Percentiles refer to distribution of pooled observations (across i = 1, . . . , N and t = 1, . . . , T ) for
N=10,000 and T=2,000.

econometrician with iid draws from the cross-sectional distribution xit ∼ pt,ε=1(x), where

pt,ε=1(x) was defined in (36).

The empirical model differs from the data generating process (DGP) in the following

dimensions. First, strictly speaking, the DGP takes the form of a first-order autoregressive

process only if the asset distribution of the unemployed is also included in the vector of

endogenous variables. Second, the representation of the densities in the DGP are based on

polynomial basis functions whereas the density in the empirical model is based on cubic

splines. Third, the DGP is based on a VAR that includes the moments mt,ε,k whereas

the empirical model is based on a VAR that includes the spline coefficient vector at. The

relationship between the mt,ε,ks and the polynomial basis function coefficients γt,ε,k in the

DGP is nonlinear. Overall, for a sufficiently large K, we expect the empirical model to

deliver a good approximation to the DGP, but for any given K it does not nest the DGP.

The first step in the analysis is the determination of the approximation order K, and the

hyperparameter λ based on the MDD approximation. We use the spline basis in (21) and

place the knots at pre-determined percentiles of the empirical distribution of the simulated

xits, pooled across a large simulation with Nsim = 10, 000 and Tsim = 2, 000. Table 2

summarizes the knot locations as a function of K. For K = 4, we use the 25th, 50th, and

75th percentiles. As K increases, we add lower and upper percentiles. Moving from K = 8

to K = 10, we only add percentiles in the left tail of the distribution, because this part of

the distribution is most affected by business cycle variations.

For the subsequent estimation we fix the time series dimension at T = 250 and consider

three choices of N : 1,000, 5,000, and 10,000. Conditional on N we evaluate the approximate
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Figure 2: Normalized Log Marginal Data Density
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marginal data density p(K)(Y1:T , X1:T |λ) in (20) over a grid of K and λ values.8 For each

element of the λ vector, we consider 10 equally-spaced values of lnλj between -5 and 6. For

each K we maximize the MDD with respect to λ to obtain λ̂(K,N). Figure 2 shows three

cuts of the log MDD as a function of λ. The figure is based on K = 10 and N = 10, 000.

In the left panel we vary λ1 and keep λ2 and λ3 fixed at λ̂2 and λ̂3, respectively. In the

remaining panels we vary the other two λ elements. The maximum of the log MDD function

is normalized to zero. The log MDD is quite sensitive to λ1 and the maximum with respect

to λ2 is attained at the boundary of the grid.

In Table 3 we report λ̂(K,N) for various choices of K and the cross-sectional sample size

N . The table also contains the values of the log MDD at λ̂(K,N). Rather than reporting raw

log MDD values, in each column we report log differentials with respect to λ̂(K = 4). Several

important results emerge. First, as N increases from 1,000 to 5,000 or 10,000 the selected

dimension of the spline approximation increases from 6 to 10 because the improvement in

the fit of the cross-sectional densities outweighs the dimensionality penalty. Because for any

fixed K the log-spline density specification does not nest the true cross-sectional density,

there is no “true” K in this simulation design.

Second, the hyperparameter λ1 controls the overall precision (inverse variance) of the

prior distribution for the vector autoregressive coefficients φ. The λ̂1(K) are weakly increas-

8For each (K,λ) combination we generate 5,500 draws from the posterior distribution (φ,Σ)|(Ỹ1:T , â1:T )

using a Gibbs sampler. After discarding the first 500 draws we use a modified harmonic mean estimator to

construct a numerical approximation of p(K)(Ỹ1:T , â1:T |λ). Details are provided in the Appendix.
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Table 3: Hyperparameter Estimates and Log MDD Differentials for T = 250

N=1,000 N=5,000 N=10,000

K λ̂1 λ̂2 λ̂3 MDD λ̂1 λ̂2 λ̂3 MDD λ̂1 λ̂2 λ̂3 MDD

4 1.2 403 5.3 0 0.3 403 5.3 0 0.1 403 5.3 0

6 1.2 403 5.3 1,374 0.3 403 5.3 7,300 0.3 403 5.3 14,978

8 5.3 403 1.2 978 1.2 403 1.2 8,137 0.3 403 5.3 16,853

10 5.3 403 1.2 915 1.2 403 1.2 8,187 1.2 403 1.2 17,039

14 5.3 403 1.2 795 5.3 403 0.3 7,908 5.3 403 0.1 16,740

Notes: For each K we maximized the MDD with respect to λ1, λ2, and λ3. The table reports λ̂ estimates
for each (K,N) pair. The log MDD differentials are computed with respect to K = 4.

Figure 3: Cross-sectional Fit (N = 10, 000, T = 250, K = 10 Selected)
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density estimates for various K, and the true density from which the asset values were sampled.

ing in K, indicating that as the dimension of the vector W ′
t = [(Yt − Y∗)′, a′t] increases more

shrinkage toward the prior mean is desirable. Third, for every (K,N) combination λ̂2 = 403

which is the maximum value of the λ grid. Recall that λ2 scales the relative precision of the

prior distribution for the coefficients that control the effect of the cross-sectional density rep-

resented by at−1 on the aggregate variable Yt. A value of λ̂2 = 403 implies that the resulting

estimate of the spill-over effect is essentially zero. The estimate λ̂3 is substantially smaller

than λ̂2. Thus, we deduce that based on the estimated model aggregate dynamics spill into

distributional dynamics, but not vice versa. This is consistent with the KS model economy

in which technology is exogenous, but productivity fluctuations affect the asset distribution.

In Figure 3 we compare the fit of the estimated cross-sectional densities (various K) for
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Figure 4: Impulse Responses to a 3-Standard-Deviation Technology Shock
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N = 10, 000

p(K)(x|α̂t) = exp

{
ζ ′(x)α̂t − ln

∫
exp

{
ζ ′(x̃)α̂t

}
dx̃

}
(38)

to the “true” cross-sectional density and a histogram of the cross-sectional observations. The

three panels correspond to different time periods. Recall from Figure 1 that the capital stock

peaks in period 27 and reaches a trough in period t = 150. The fit of the estimated densities

varies over time as the shape of the “true” density changes. For K = 4 and K = 6 there is

some mismatch in the left tail in periods t = 27 and t = 150. The fit generally improves as

K increases and for the selected K = 10 we essentially have a perfect fit.

We proceed by estimating the state-space representation for K = 10 and λ = λ̂(10) on

the N = 10, 000 sample using the Gibbs sampler described in Section 3.4.9 Figure 4 shows

impulse responses to a 3-standard-deviation technology shock. We compute “true” responses

from the approximate solution of the KS economy and estimated responses from the state-

space representation given by (26) and (27). Because the technology process is exogenous in

the KS economy, its innovation can be easily identified using a Cholesky factorization of Σ.

For each (Φ,Σ) we generate an impulse response function for at by iterating (27) forward.

Once we have the impulse response sequence {at+h}Hh=1 we reconstruct the density pK(x|αt+h)
by reversing the compression step in Section 2.2 to transform {at+h}Hh=1 into {αt+h}Hh=1 and

9We generate 11,000 draws from the posterior and drop the first 1,000.
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plugging the coefficients into (38).

The “shocked” density is compared to the steady state density that is obtained by using

the α∗ coefficients. The left and center panels of Figure 4 show the difference between the

shocked and the steady state densities at horizons h = 5 and h = 15, respectively.10 We

refer to this difference as the response of the density. In the right panel of Figure 4, we

show the response of the fraction of individuals with assets greater than 4 as a function of

h. This fraction is computed from the density response. To capture parameter uncertainty,

we execute the calculations for each draw (Φ,Σ) from the posterior distribution and plot (in

blue) the posterior median responses and bands that represent pointwise 5 and 95 percentiles.

The “true” responses from the KS model are plotted in red.

According to the KS model, a positive technology shock increases asset holdings and shifts

the asset distribution to the right. In the left and center panels of the figure this is reflected

in the increase of the density for x-values above 3.3 and a drop for asset holdings below

3.3. Moreover, it can be seen in the right panel, that the fraction of individuals with asset

holdings greater than 4 increases by roughly six percentage points (0.06). The estimated

responses capture the “true” dynamics well. The posterior median density response decays

slightly slower than the “true” response, but, accounting for parameter uncertainty, the

bands that delimit pointwise 90% credible bands cover the “true” response. To summarize,

the estimated functional state-space model is successful in capturing the joint dynamics of

the cross-sectional asset distribution and the technology shock.

5 Empirical Analysis

The empirical analysis focuses on the joint dynamics on total factor productivity, real per-

capita GDP, and employment at the aggregate level, and the cross-sectional distribution

of earnings at the micro level. Estimation results for the functional state-space model are

presented in Section 5.1. In Section 5.2 we report impulse responses of aggregate variables,

the cross-sectional distribution, and inequality measures derived from the cross-sectional

distribution to aggregate shocks. Two robustness exercises are conducted in Sections 5.3

and 5.4. Finally, in Section 5.5 we examine the response to a distributional shock that raises

inequality.

10Timing convention: the system is in steady state in period h = 1 and the shock occurs at h = 2.
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Figure 5: Earnings and GDP

Log Earnings and GDP Log Earnings/GDP

Notes: Left panel: average log earnings (blue, solid) and log per capita GDP (red, dashed). Right panel:
average log earnings-to-GDP ratio (blue, solid) and demeaned log labor share (red, dashed) of the nonfarm
business sector. In both panels per-capita GDP is scaled by 2/3 to account for the labor share.

5.1 Data and Model Estimation

Data. We use three macroeconomic aggregates in our empirical analysis: total factor pro-

ductivity (TFP), real per-capita GDP, and the employment rate. In addition, we use cross-

sectional data on earnings. Real per-capita GDP (A939RX0Q048SBEA) is provided by the

Federal Reserve Bank of St. Louis’ FRED database and the TFP series (dtfp) is obtained

from Fernald (2012). Weekly earnings (PRERNWA) are obtained from the monthly Current

Population Survey (CPS) through the website of the National Bureau of Economic Research

(NBER). Weekly earnings are scaled to annual earnings by multiplying with 52. Based

on the CPS variable PREXPLF “Experienced Labor Force Employment” we construct an

employment indicator which is one if the individual is employed and zero otherwise. This

indicator is used to compute the aggregate employment rate.

In the left panel of Figure 5 we plot average log nominal earnings computed from the

cross-sectional data and log nominal per-capita GDP. We scale per-capita GDP by a factor

of 2/3 to account for the labor share.11 After this re-scaling the mean of log earnings and log

11Nominal per-capita GDP is obtained by multiplying real per-capita GDP by the GDP deflator
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per-capita GDP have approximately the same level. However, the mean log earnings grow

more slowly than per-capita GDP. In the right panel of the Figure we plot the average log

earnings-to-GDP ratio (here per-capita GDP is again scaled by 2/3) and the demeaned log

labor share of the nonfarm business sector (obtained from the Bureau of Labor Statistics).

The drop in the log earnings-to-GDP ratio is of the same order of magnitude as the fall in

the labor share over the sample period.

In the remainder of this paper we simply standardize individual-level earnings by (2/3)

of nominal per-capita GDP. Rather than taking a logarithmic transformation of the earnings

data, we apply the inverse hyperbolic sine transformation, which is given by

x = g(z|θ) =
ln(θz + (θ2z2 + 1)1/2)

θ
=

sinh−1(θz)

θ
, z =

Earnings

(2/3) · per-capita GDP
. (39)

The function is plotted in the Online Appendix. We set θ = 1. For small values of z the

function is approximately equal to z and for large values of z it is equal to ln(z)+ln(2). This

transformation avoids the thorny issue of applying a log transformation to earnings that are

close to zero. Below we will refer to x as transformed data and to z as original data.

Density Estimation. We take the time period t to be a quarter. For each t we estimate a

cross-sectional density for the transformed earnings-to-GDP ratio; see (39). As in the simu-

lation study in Section 4, we consider different approximation orders K. We use the spline

basis in (22) and place the knots at pre-determined percentiles of the empirical distribution

of the xits pooled across i and t; see Table 2.

In the top row of Figure 6 we show three types of density estimates for the transformed

earnings in 2000:Q1 and 2010:Q1: log spline estimates for K = 10 and K = 22, and

histograms. While the K = 10 density estimates are smooth, the K = 22 estimates capture

the jaggedness of the histograms. The spike in the right tail visible in the histograms captures

the top coding. It is more pronounced in 2010:Q1 because incomes rise over time and more

households reach the top income level (until the top values gets reset by the statistical

agency). By construction, the log-spline density estimates extrapolate the top-coded income

values.

In the bottom row of the figure we overlay the sample percentiles of the earnings/GDP

distribution and percentiles computed from the log spline density estimates p(K)(x|α̂t) for

K = 10 and K = 22. The earnings/GDP distribution has a pointmass at zero, representing

(GDPDEF from FRED). The factor 2/3 is a rule-of-thumb number that happens to align the levels in

the left panel. The average labor share of the nonfarm business sector over the sample period is 0.6.
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Figure 6: Fitted Densities and Percentiles of Earnings/GDP Distribution
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the unemployed individuals, and a continuous part, representing individuals with non-zero

earnings. We normalize the estimated density p(K)(x|α̂t) so that it integrates to the fraction

of employed individuals in the sample and apply the change-of-variable formula to convert

the density for transformed earnings x = g(z|θ) into actual earnings z; see (39) and the

Appendix for further details.

Overall, the estimated cross-sectional densities are able to reproduce the time path of

the empirical percentiles well, except for some small inaccuracies in the 90th percentile

toward the end of the sample. The estimated percentiles for the two specifications are

virtually indistinguishable, despite the difference in the density plots in the top panels.
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Median earnings (relative to the approximate labor share of per-capita GDP) fall steadily

from above one in 1990 to below one in 2017. A similar pattern is observed for the 80%

percentile. During the Great Recession, there is a noticeable drop of earnings at the 10%

and 20% percentile, followed by a slow and steady rise from 2010 to 2017. Earnings at the

80% and 90% percentiles rise during the Great Recession relative to their 2005 levels.

Functional State-Space Model Estimation. The log-spline density estimation yields a

sequence of coefficient vectors {α̂(K)
t }. We then apply the seasonality adjustment and the

compression described in Section 3.2 to obtain {â(K)
t }. The vector Yt of aggregate variables

is composed of TFP growth, real per-capita GDP growth, and the (un)employment rate

from the CPS data. We set Y∗ equal to the mean of these series. After computing growth

rates for TFP and GDP our sample ranges from 1989:Q2 to 2017:Q3. We consider 1990:Q1

as period t = 1 and use 1989:Q4 to initialize the lag in the first-order vector autoregressive

law of motion. The estimation of the functional state-space model is based on the prior

distribution in (30) and (31). We set ν = nw +5, where nw is the dimension of the vector Wt

in the state-transition equation (28), and let Σ = νΣ̂, where Σ̂ is the OLS estimator of Σ in

(28) that is obtained when the latent at in the definition of Wt is replaced by the estimate

ât. The prior for φ is centered at µ
φ

= 0.

Hyperparameter Selection and Granger Causality. We proceed by evaluating the

(approximate) log MDD as a function of the model dimension K ∈ {4, 6, 8, 10, 14, 22} and

the hyperparameter vector λ. For each element of the λ vector we consider ten equally-

spaced values of lnλj on the interval [−5, 6]. Recall that the hyperparameter λ1 controls

the overall precision of the prior distribution. The remaining two hyperparameters control

the relative precision of the prior for the submatrices Φya (λ2) and Φay (λ3).

Results are summarized in Table 4. For each value of K we report the optimal λ̂ (columns

2-4) and the log MDD differentials for K(λ̂) relative to K = 4 (column 5). With respect to K,

the log MDD is maximized for the largest value considered, K = 22. That is consistent with

the visual impression from Figure 6. The additional knots are used to capture the jagged

pattern of the histograms and the improvement in fit still outweighs the dimensionality

penalty induced by the MDD.

The overall degree of selected shrinkage captured by λ̂1(K) is weakly increasing in the

dimensionality K. Moreover, there is generally stronger shrinkage of the off-diagonal blocks

to zero. The optimal values λ̂2(K) and λ̂3(K) are either 95 or 403, indicating the absence of



31

Table 4: Hyperparameter Estimates and Log MDD Differentials

Optimal λ Alternative λ

K λ̂1 λ̂2 λ̂3 MDD λ1 λ2 λ3 MDD

4 1.2 95 403 0 1.2 1 1 -38

6 1.2 95 403 8,697 1.2 1 1 8,651

8 1.2 403 403 9,594 1.2 1 1 9,527

10 5.3 403 95 9,707 5.3 1 1 9,634

14 5.3 95 403 10,177 5.3 1 1 10,089

22 5.3 403 95 13,667 5.3 1 1 13,559

Notes: The log MDD differentials are computed with respect to (K = 4, λ = λ̂). For each K we maximized

the MDD with respect to λ to obtain λ̂(K). We also report log MDD differentials for a set of alternative λ
values.

strong Granger-causal relationships between the aggregate variables and the cross-sectional

income distribution.

The last column reports log MDD differentials obtained by setting λ1 = λ̂1 and λ2 =

λ3 = 1, meaning that the degree of shrinkage is identical for the coefficients in the diagonal

blocks (Φyy, Φaa) and the off-diagonal blocks (Φya, Φay). The differentials are also computed

relative to (K = 4, λ = λ̂). This configuration allows for greater spillovers between aggregate

and cross-sectional dynamics. Holding K fixed, relaxing the shrinkage for the off-diagonal

blocks leads to a deterioration of the log MDD between 38 (K = 4) and 108 (K = 22).

Thus, the larger the dimensionality of the approximation of the cross-sectional density, the

stronger the empirical case for shrinking the spillover coefficients to zero to balance the

trade-off between in-sample fit and model complexity.

The mechanical application of the MDD criterion suggests to proceed with K = 22.

However, we are concerned that the jagged pattern of the histograms that the K = 22

(and higher) specification is approximating – see Figure 6 – is more an artifact of the data

collection (e.g., survey respondents rounding their earnings) than a genuine feature of the

earnings distribution. Moreover, because the earnings are standardized by the continuously

evolving GDP per capita, in terms of x-coordinates, the spikes shift from period to period,

inducing spurious dynamics. Thus, in the remainder of this section we first present results for

K = 10, which delivers smooth estimates of the cross-sectional densities. We then proceed

in Section 5.3 with comparing K = 10 to K = 22 results. While the impulse responses of

the cross-sectional densities computed based on K = 22 inherit the saw-tooth pattern visible
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in the density estimates, the responses for percentiles and inequality statistics derived from

the density responses are indeed very similar for K = 10 and K = 22.

5.2 Effects of Aggregate Shocks

Identification. In the vector Yt we order TFP growth first, GDP growth second, and

the employment rate third. Let Σtr be the lower-triangular Cholesky factor of Σ such that

Σ = ΣtrΣ
′
tr and let Ω be an orthonormal matrix. The relationship between the reduced-form

innovations ut and the structural innovations εt is given by:

ut = ΣtrΩεt. (40)

It is well known that Ω is not identifiable from the data. Denote the jth column of Ω

by Ω·j. We label the first structural shock as technology shock and assume that it is the

only shock that affects measured TFP contemporaneously. Thus, Ω·1 = ι1, where ιj is an

ny × 1 vector whose jth element is one and all other elements are zero. Moreover, we let

Ω·j = ιj for j = 2, 3. We refer to shocks ε1,t, ε2,t, and ε3,t as aggregate shocks because they

do not affect the cross-sectional distribution contemporaneously. The shocks ε2,t and ε3,t do

not have a strict economic interpretation. We refer to them as shocks to GDP growth and

the employment rate. Much of the subsequent discussion will focus on the propagation of

technology shocks.

Response of Aggregate Variables. Impulse response bands (delimited by the 10th and

90th percentile of the posterior distribution) computed conditional on the posterior mean

estimates of the state-space representation for K = 10 are plotted in Figure 7. Because

the distributional responses are generally small, we scale the IRFs by a factor of three and

consider three-standard-deviation shocks throughout this section. We compare responses

based on λ2 = λ̂2, λ3 = λ̂3 against responses obtained by estimating the state-space model

with λ2 = λ3 = 1. Recall that under the estimated hyperparameters, we are essentially

shrinking the off-diagonal blocks Φay and Φya to zero. By setting λ2 and λ3 equal to one, we

are allowing for more flexibility.

First, the TFP growth shock raises the level of TFP permanently. GDP also rises per-

manently and employment shows a positive response (real business cycle instead of New

Keynesian dynamics). Allowing for more flexibility by setting λ2 = λ3 = 1 does not change

the IRF bands, except that they become slightly wider. Second, the GDP growth shock

raises GDP permanently, creates a temporary employment boom and a drop in measured
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Figure 7: Responses of Aggregate Variables to Aggregate Shocks
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Notes: IRFs for three-standard deviation aggregate shocks (orthogonalized via Cholesky factorization; see
(40)). Panels depict responses of the log level of TFP and GDP, scaled by 100, and responses of the
employment rate in percent. The bands correspond to pointwise 10th and 90th percentiles of the posterior

distribution for K = 10. Solid blue responses are based on λ̂2 = 403 and λ̂3 = 95; dashed red responses are
based on λ2 = λ3 = 1.

total factor productivity in the long run. While the 10th percentiles of the responses look

very similar across hyperparameter settings, the 90th percentiles are shifted upward for

λ2 = λ3 = 1, in particular for the medium-run and long-run response of GDP to its own

shock. Finally, the third shock leads to a drop in the employment rate and it raises TFP

and GDP with a one-period delay. While the effect on employment is very similar across the

two hyperparameter configurations, the TFP and GDP bands widen and shift downward as

the shrinkage of the off-diagonal blocks is reduced.

To summarize, the most noticeable effect of the change in hyperparameters is the widen-

ing of the IRF bands, i.e., the decrease of the prior precision slightly reduces the posterior

precision. In the Online Appendix we compare IRFs of aggregate variables to aggregate
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shocks for K = 10 and K = 22. Recall that according to Table 4 K = 22 attains the largest

MDD among the specifications considered. The IRF bands for these two specifications are

almost identical, which is consistent with the system being approximately block diagonal.

We have also compared the λ̂ IRFs against IRFs in which we force of off-diagonal blocks

of the Φ matrix to be exactly equal to zero (not shown in the figure). We found the two sets

of IRFs to be effectively non-distinguishable. Thus, we conclude that in order to measure the

response of GDP and employment to an aggregate TFP growth shock, we do not need to keep

track of the earnings distribution. Krusell and Smith (1998) showed that in a benchmark

stochastic growth model with household heterogeneity and uninsurable idiosyncratic risk,

the aggregate dynamics of output, consumption, and investment in response to a TFP shock

are almost identical to their RA counterpart. This HA model feature is consistent with our

empirical result.

Distributional Responses. We will now examine the response of the cross-sectional dis-

tribution of earnings (original data) to a TFP shock. Even though the off-diagonal blocks

Φay and Φya of the VAR coefficient matrix are close to zero, the TFP shock can affect the

earnings distribution through the impact vector Σtrι1. Figure 8 shows posterior median re-

sponses to a three-standard deviation TFP innovation and bands delimited by the 10th and

90th percentiles of the posterior distribution. The top and center left panels reproduce the

responses of TFP and employment to a technology shock previously shown in Figure 7. The

employment response is hump shaped. At its peak the employment rate increases between

0.3% and 0.7%.

The remaining panels show the response of the earnings distribution at various horizons.

As in Section 4, the density responses are constructed as follows. First, we compute the

impulse response of at from the vector autoregressive state transition equation. Second, we

convert that at sequence into a sequence of densities p(K)(x|αt). We normalize these densities

so that they integrate to the employment rate. Third, we compute the differential between

the shocked density and the steady state density.

Because the employment rate rises in response to a technology shock, the area under

the density differential function is positive. According to the median response the mass

of individuals earning less than the labor share of GDP per capita increases substantially

and initially there is a slight drop in the mass of individuals earning between 1.3 and 2.

On impact the 80% bands are wide and include both positive and negative responses. For
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Figure 8: Earnings Density (Transformed Data) Response to a TFP Shock
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Notes: Responses to a 3-standard-deviations shock to TFP for K = 10. The system is in steady state at
h = −1 and the shock occurs at h = 0. The plot depicts 10th (dashed), 50th (solid), and 90th (dashed)
percentiles of the posterior distribution. As distributional responses we depict differences between the shocked
and the steady state cross-sectional density at various horizons.

horizons h = 4, 8, and 12 and earnings below GDP per capita, the density differential bands

include mostly positive values.

Most of the probability mass is added between 0.5 and 1.0. This mass comes from two

directions: first, unemployed individuals who find jobs and receive strictly positive instead of

zero labor earnings, and, second, individuals whose earnings do not rise as strongly as GDP

per capita. The first effect is consistent with a model in which individuals are heterogeneous

with respect to their idiosyncratic productivity and only individuals whose productivity

exceeds a state-dependent threshold work; see, for instance, Chang and Kim (2006) and

Chang, Kim, Kwon, and Rogerson (2019). In response to an expansionary TFP shock

previously unemployed low productivity individuals are hired. If wages per efficiency unit

are constant, these individuals are likely to earn less than GDP per capita. The second effect

requires adjustments on the intensive margin or some heterogeneity in wages per efficiency
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Figure 9: Inequality Measure (Original Data) Responses to a TFP Shock
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Notes: Responses to a 3-standard-deviations shock to TFP for K = 10. The system is in steady state at
h = −1 and the shock occurs at h = 0. The plot depicts 10th (dashed), 50th (solid), and 90th (dashed)
percentiles of the posterior distribution.

unit. A strong wealth effect that leads wealthy individuals to reduce their hours or a relative

fall of efficiency unit-specific wages for some individuals is required to shift their earnings

from above 1.0 to below 1.0.

A key advantage of the functional modeling approach is that in any period t the cross-

sectional earnings density fully summarizes the earnings distribution. Based on the impulse

response of the cross-sectional density, we can now compute impulse response functions of

various summary statistics. Figure 9 shows responses for the fraction of individuals with

an earnings-to-per-capita-GDP ratio less than one, the Gini coefficient, and the 10th, 50th,

and 90th percentiles of the distribution. The impulse responses are computed relative to an

average level of these statistics, indicated by a solid black line. All statistics are computed

after assigning zero earnings to the unemployed individuals.

According to the posterior median of the IRF, overall the fraction of individuals earning

less than per-capita GDP increases from 43.5% to 43.8%. While the density differential
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response for h = 0 depicted in Figure 8 looked “insignificant,” converted into the fraction

earning less than per-capita GDP, the response is positive with a probability of almost

90% even on impact. As individuals move from being unemployed (zero earnings) to being

employed (positive earnings) the Gini coefficient falls from 0.4256 to 0.4224. Earnings at the

10th percentile of the cross-sectional distribution also increase from 0.224 to 0.236, at the

median they stay roughly constant around 1.005, with a band that ranges upon impact from

approximately 0.995 to 1.015. Earnings at the 90th percentile fall very slightly, from 2.496

to 2.483. The posterior median of the ratio of earnings at the 90th and 10th percentile drops

by 5.1% from 11.13 to 10.56 two periods after the impact of the shock. This compression of

the earnings distribution is consistent with the decrease in the Gini coefficient.

5.3 Robustness Analysis 1: Results for K = 22

According to Table 4 the MDD is maximized with respect to K for the largest value consid-

ered, namely K = 22. We previously presented results for K = 10, because they were based

on a smoother density. As a robustness exercise, we compare selected IRFs for K = 10 and

K = 22 in Figure 10. The density responses look quite different for the two model specifi-

cations. For K = 22 the posterior median appears to be much more volatile as a function

of the earnings. The swings trace out movements of the jagged density estimates shown

in Figure 6. The Gini coefficient responses on the other hand, are almost identical for the

two values of K, with the exception of a small level shift. In the Online Appendix we also

plot the responses of the percentiles and the fraction of individuals with earnings less than

GDP per capita. It turns out that the K = 22 IRFs are quantitatively very similar to the

responses depicted in Figure 9, confirming that our results are robust with respect to the

dimensionality K of the density approximation.

5.4 Robustness Analysis 2: Comparison to Simple VARs

The advantage of the functional approach is that once the dynamics of the cross-sectional

densities have been estimated, it is straightforward to compute the dynamics of any statistic

associated with the densities. We previously considered impulse responses of the fraction

of individuals earning less than GDP per capita, the Gini coefficients, and the quantiles

of the earnings distribution, all computed from the original data. As a robustness check,

we estimate two simple VARs. The first VAR combines the aggregate variables with the
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Figure 10: Earnings Density and Gini Responses to a TFP Shock: K = 10 vs. K = 22
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Notes: Responses to a 3-standard-deviations shock to TFP. The system is in steady state at h = −1 and the
shock occurs at h = 0. The plot depicts 10th (dashed), 50th (solid), and 90th (dashed) percentiles of the
posterior distribution. As distributional responses we depict differences between the shocked and the steady
state cross-sectional density at various horizons. Density responses are reported for transformed data, Gini
responses are reported for original data.

fraction of individuals earning less than GDP per capita and the Gini coefficient series

directly computed from the cross-sectional observations. The second VAR combines the

aggregate variables with the 10th, 20th, 50th, 80th and 90th percentiles.

Both VARs take the form of (29) with the prior in (30), where Wt is redefined to include

the relevant distributional statistics. The estimated hyperparameters for the Gini coefficient

VAR are λ̂1 = 0.29, λ̂2 = 403, and λ̂3 = 403. The estimated λs for the percentile VAR are

λ̂1 = 1.25, λ̂2 = 403, and λ̂3 = 5.29. For the Gini specification the MDD criterion shrinks

toward a block diagonal Φ matrix. For the percentile VAR, on the other hand, the MDD

criterion leads to less shrinkage on the parameter block that controls the effect of lagged

aggregate variables on the percentiles of the current cross-sectional distribution. In fact the

λ̂ pattern is similar to the one obtained from the functional VAR applied to data simulated

from the KS economy.

Figure 11 overlays impulse responses to a three standard deviation technology shock for

TFP, the fraction of individuals earning less than per-capita GDP, and the Gini coefficient

from the functional state-space model and the Gini coefficient VAR. While the 90th per-
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Figure 11: Functional vs. Alternative VAR: Inequality Statistics Responses to a TFP Shock
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Notes: Responses to a 3-standard-deviations shock to TFP. The system is in steady state at h = −1 and
the shock occurs at h = 0. The bands correspond to pointwise 10th and 90th percentiles of the posterior
distribution. Solid blue responses are based on the functional state-space model for K = 10; dashed red
responses are based on the alternative VAR. Inequality responses are computed for the original data.

centiles of the posterior distributions of impulse responses line up quite accurately, the 10th

percentiles differ substantially. Under the simple VAR, the 10th percentiles for the fraction

of earnings and the Gini coefficient continue to fall as the horizon increases, which is not

particularly plausible.

Figure 12 overlays impulse responses to a three standard deviation technology shock for

TFP and various percentiles of the earnings distribution from the functional state-space

model and the percentile VAR. The bands of the TFP responses line up almost perfectly.

While the responses for the 10th and 20th are quite similar, the functional model delivers

substantially tighter bands than the finite-dimensional VAR that contains the sample quan-

tiles, in particular after 20 to 30 quarters when the widths of the functional VAR bands is

close to zero. The bottom edges of the bands for the responses of the 50th, 80th, and 90th

percentiles are much lower for the simplified VAR than the functional VAR. Overall, the

width of the IRF bands suggests that the functional approach allows for a much sharper

inference, despite a higher but still parsimonious parameter count (ten series instead of two

or five series to represent the dynamics of the cross section), and is therefore preferable.

5.5 Effects of a Distributional Shock

The shocks considered in the previous subsection only affected the aggregate variables upon

impact. We will now consider the effects of a distributional shock which we define to be a
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Figure 12: Functional vs. Alternative VAR: Quantile Responses to a TFP Shock
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Notes: Responses to a 3-standard-deviations shock to TFP. The system is in steady state at h = −1 and
the shock occurs at h = 0. The bands correspond to pointwise 10th and 90th percentiles of the posterior
distribution. Solid blue responses are based on the functional state-space model for K = 10; dashed red
responses are based on the alternative VAR. Percentile responses are computed for the original data.

shock that does not move the aggregate variables upon impact. A distributional shock could

reflect, for instance, an unanticipated revenue neutral change in fiscal policy that triggers

a redistribution of earnings, or a change in the underlying idiosyncratic earnings processes

such as an increase in earnings risk.

The aggregate effect depends on the nature of the distributional shock. To the extent that

the marginal propensity to consume is negatively correlated with income, higher inequality

may lower aggregate consumption. If inequality comes from a rise in idiosyncratic volatility,

then it could raise precautionary savings. Auclert and Rognlie (2020) show that in general

equilibrium a falling interest rate may weaken the negative relationship between inequality

and aggregate output, and that the net effect is sensitive to monetary and fiscal policy.

In our fVAR setting the distributional shock is an abstract object that is not directly

tied to idiosyncratic earnings processes. Building on the notation in (40), let Q·4 = q,

where q′ = [0, q′α] and the partition of q conforms with the partition of u′t = [u′y,t, u
′
α,t]. By

construction, Q·4 is orthogonal to Q.j, j = 1, . . . , 3. We choose the unit-length vector qα as
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Figure 13: Responses to a Distributional Innovation ε∗t (Maximize Gini-Coefficient)
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Notes: Responses to a 3-standard-deviation distributional innovation ε∗t for K = 10. The system is in steady
state at h = −1 and the shock occurs at h = 0. The plot depicts 10th (dashed), 50th (solid), and 90th
(dashed) percentiles of the posterior distribution. As distributional responses we depict differences between
the shocked and the steady state cross-sectional density at various horizons. Density response is reported
for transformed data, all other responses for original data.

a function of (Φ,Σ) to generate a maximal increase in inequality upon impact, as measured

by the Gini coefficient.

The results are depicted in Figure 13. The average response of the Gini coefficient spikes

upon impact by construction of the distributional shock and then dies out fairly quickly

according to the autoregressive dynamics. Earnings at the 10th percentile fall while earnings

at the 90th percentile rise relative to the labor share of GDP per capita. The posterior

median ratio of earnings at the 90th and 10th percentiles rises by 5.3% from 11.13 to 11.72,

confirming that the shock increases inequality. The bottom left panel shows the density

response upon impact of the shock. Probability mass shifts from the 1.0 to 2.5 range into

the 0 to 1.0 range, leaving essentially only the labor income of individuals who are earning

more than 2.5 times of GDP per capita unaffected.

The bottom center and right panels show the response of two aggregate variables: the
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employment rate and GDP. By construction, neither employment nor GDP respond to the

distributional shock upon impact. At the posterior median both employment and GDP

increase, but not by much. The employment response is hump shaped and peaks at 0.03%,

whereas the effect on GDP is an increase of 0.08% in the long run. While the TFP shock

generates a negative relationship between economic activity and inequality, the particular

distributional shock constructed here generates a weak positive relationship. The bands

for the GDP and employment rate responses do include zero, which is consistent with the

response that Auclert and Rognlie (2020) find for standard neoclassical models.

6 Conclusion

We developed a functional state-space model that stacks macroeconomic aggregates and

cross-sectional distributions to provide semi-structural evidence about the interaction of ag-

gregate and distributional dynamics. We documented that the model estimated on simulated

data is able to reproduce the impulse response dynamics of the underlying KS model econ-

omy. In our empirical analysis we found that adding the earnings distribution to a VAR

in TFP growth, GDP growth, and employment does not affect the propagation of aggre-

gate variables to aggregate shocks, which is consistent with model-based findings reported

in Krusell and Smith (1998). We find that an expansionary TFP shock decreases earnings

inequality in our sample because it raises earnings at the bottom of the earnings distribu-

tion. Finally, we show that a distributional shock that raises inequality has a small positive,

albeit not significant, effect on aggregate output. We expect the techniques developed in this

paper to be widely applicable to study the interaction between macroeconomic aggregates

and cross-sectional distributions and useful for the evaluation of the most recent vintage of

HA models. Useful extensions left for future work include the introduction of time-varying

volatility and allowing for mixed-frequency observations.
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Online Appendix: Heterogeneity and Aggregate Fluctuations

Minsu Chang, Xiaohong Chen, and Frank Schorfheide

A Functional State-Space Model – Further Details

A.1 Hessian Matrix

An important object in the analysis is the Hessian matrix of the log-likelihood function for

the cross-sectional observations. Let ζk(x), k = 1, . . . , K be the sequence of basis functions

for the approximation of the cross-sectional density p
(K)
t (x) and let Xt = {x1t, . . . , xNt}. To

simplify the notation, we will subsequently drop the (K) superscript. Recall that ζ̄k(Xt) =

1
N

∑N
i=1 ζk(xit). The log likelihood function of Xt has the form

L(αt|Xt) =
K∑
k=1

αk,tζ̄k(Xt)− ln

∫
exp

{
K∑
k=1

αk,tζk(x)

}
dx. (A.1)

The first-order derivatives with respect to αk,t for k = 1, . . . , K are given by

L(1)
k (αt|Xt) = ζ̄k(Xt)−

∫
ζk(x) exp

{∑K
k=1 αk,tζk(x)

}
dx∫

exp
{∑K

k=1 αk,tζk(x)
}
dx

(A.2)

= ζ̄k(Xt)−
∫
ζk(x)p(x|αt)dx.

The second-order derivatives with respect to (αk,t, αl,t) are given by

L(2)
kl (αt|Xt) = −

∫
ζk(x)

∂p(x|αt)
∂αl,t

dx

= −E
[
ζk(xit)

∂ ln p(xit|αt)
∂αl,t

]
= −E

[
ζk(xit)

(
ζl(xit)−

∫
ζl(x)p(x|αt)dx

)]
.

Thus, we can write

L(2)
kl (αt|Xt) (A.3)

= −
∫ (

ζk(x)−
∫
ζk(x)p(x|αt)dx

)(
ζl(x)−

∫
ζl(x)p(x|αt)dx

)
p(x|αt)dx.

Note that the Hessian elements only depend on αt but not on the data Xt.
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A.2 Top Coding

Likelihood Function with Censoring. We define the censoring point ct as

ct = max
i=1,...,N

xit

Moreover, we let

Nt,max =
N∑
i=1

I{xit = ct}.

If Nt,max = 1, we assume that the observed sample is not constrained by the top-coding

and use the standard likelihood function described in the main text. If Nt,max > 1 we use a

likelihood function that assumes that any earnings value exceeding ct is coded as ct.

Recall that in the main text we ignored the dependence of the cross-sectional sample size

N on t in the notation and defined p(K)(Xt|αt) = exp
{
NL(K)(αt|Xt)

}
, where

L(K)(αt|Xt) = ζ̄ ′(Xt)αt − ln

∫ ∞
0

exp
{
ζ ′(x)αt

}
dx, ζ̄(Xt) =

1

N

Nt∑
i=1

ζ(xit).

We introduce the unknown parameter πt = P{xit ≥ ct}. We drop the top-coded obser-

vations from the definition of ζ̄(Xt) und make the time dependence explicit in the notation.

Let

ζ̄t(Xt) =
1

Nt

Nt∑
i=1

ζ(xit)I{xit < ct}. (A.4)

The log likelihood function is obtained as follows: the sample contains Nt,max top-coded

observations where the probability of sampling a top-coded observation is πt. The probability

of samping an observation that is not top-coded is (1 − πt). Conditional on not being top-

coded, the observation xit < ct is sampled from a continuous density with a domain that is

truncated at ct. Thus, dividing the log-likelihood by the sample size Nt, we obtain

L(K)(αt, πt|Xt) =
Nt,max

Nt

lnπ +
Nt −Nt,max

Nt

ln(1− πt) (A.5)

+ζ̄ ′t(Xt)αt −
Nt −Nt,max

Nt

ln

∫ ct

0

exp
{
ζ ′(x)αt

}
dx.

Notice that regardless of the value of αt, the MLE of πt is

π̂t = argmaxπ∈[0,1] L(K)(αt, πt|Xt) = Nt,max/Nt. (A.6)
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Moreover, regardless of the value of πt, the MLE of αt is given by

α̂t = argmaxαt L
(K)(αt, πt|Xt) (A.7)

= argmaxαt ζ̄
′
t(Xt)αt −

Nt −Nt,max

Nt

ln

∫ ct

0

exp
{
ζ ′(x)αt

}
dx.

The objective function for αt is almost identical to what we had without top coding, except

for a definition of ζ̄t(Xt) that drops the top-coded observations in the summation and the

factor of (Nt −Nt,max)/Nt in front of the normalization constant of the density.

Recovering the Density for Uncensored Observations. To reconstruct the full density

we can use

p(x|αt) =
exp

{∑K
k=1 αk,tζk(x)

}
∫∞

0
exp

{∑K
k=1 αk,tζk(x)

}
dx
. (A.8)

Note that here we dropped the censoring indicator function and the integration is now from

0 to∞. Once the αt’s have been estimated based on the censored observations, we work with

the full density in the functional state-space model and its K-dimensional approximation.

Modification of Hessian Matrix. We now re-compute the score and the Hessian. Drop-

ping the (K) superscript we obtain the following first derivatives with respect to αk for

k = 1, . . . , K:

L(1)
k (αt|πt, Xt) = ζ̄t,k(Xt)−

(
Nt −Nt,max

Nt

)∫ ct

0

ζk(x)p̄(x|αt)dx,

where

p̄(x|αt) =
exp

{∑K
k=1 αk,tζk(x)

}
∫ ct

0
exp

{∑K
k=1 αk,tζk(x)

}
dx

I{x < ct}.

We can now deduce from our previous calculations that

L(2)
kl (αt|πt, Xt) (A.9)

= −
(
Nt −Nt,max

Nt

)∫ ct

0

(
ζk(x)−

∫ ct

0

ζk(x)p̄(x|αt)dx
)

×
(
ζl(x)−

∫ ct

0

ζl(x)p̄(x|αt)dx
)
p̄(x|αt)dx.

Thus, compared to the standard case in (A.3), the limits of integration change and there is

an additional factor (Nt −Nt,max)/Nt.
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A.3 VAR State-Transition Equation

In this section we describe how to sample from the conditional posterior distributions

φ|(Σ,W, λ) and Σ|(φ,W, λ) that appear in the Gibbs sampler (20) and how to approximate

the aggregate component of the marginal data density in (20) given by:∫ ( T∏
t=1

p(K)(Yt, α̂t|Yt−1, αt−1 = α̂t−1, θ)

)
p(θ|λ)dθ.

Throughout this section we adopt the convention that φ = vec(Φ). Recall that the prior

distribution for the VAR parameters was given in (30) and has the form

Σ ∼ IW (ν, S), φ|λ ∼ N
(
µ
φ
, P−1

φ (λ)
)
.

Posteriors. The state-transition equation in matrix form was given by W = ZΦ + U ; see

(29). Let nw be the dimension of Wt, then the likelihood function for (Φ,Σ) is given by

p(W |Φ,Σ) (A.10)

= (2π)−nwT/2|Σ|−T/2 exp

{
−1

2
tr
[
Σ−1(Φ− Φ̂)Z ′Z(Φ− Φ̂)

]}
exp

{
−1

2
tr
[
Σ−1Ŝ

]}
,

where

Φ̂ = (Z ′Z)−1Z ′W, Ŝ = W ′W −W ′Z(Z ′Z)−1Z ′W.

The prior density takes the form

p(φ,Σ|λ) = (2π)−nwnz/2|P φ|1/2 exp

{
−1

2
(φ− µ

φ
)′P φ(φ− µ

φ
)

}
(A.11)

×CIW |Σ|−(ν+nw+1)/2 exp

{
−1

2
tr
[
Σ−1S

]}
,

where CIW is the normalization constant of the IW prior.

The conditional posteriors φ|(W,Σ, λ) and Σ|(W,φ, λ) can be obtained as follows:

p(φ|W,Σ, λ) ∝ p(W |Φ,Σ)p(φ|λ) (A.12)

× exp

{
−1

2
(φ− φ̂)′(Σ−1 ⊗ Z ′Z)(φ− φ̂)

}
× exp

{
−1

2
(φ− µ

φ
)′P φ(φ− µ

φ
)

}
.
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Define

P̄φ = P φ + Σ−1 ⊗ Z ′Z, µ̄φ = P̄−1
φ

(
P φµφ + (Σ−1 ⊗ Z ′Z)φ̂

)
.

We deduce that the conditional posterior distribution of φ takes the form

φ|(W,Σ) ∼ N
(
µ̄φ, P̄φ

)
. (A.13)

The conditional posterior of Σ can be obtained as follows:

p(Σ|W,φ, λ) ∝ p(W |Φ,Σ)p(Σ|λ) (A.14)

∝ |Σ|−T/2 exp

{
−1

2
tr
[
(W − ZΦ)′(W − ZΦ)]

}
×|Σ|−(ν+nw+1)/2 exp

{
−1

2
tr
[
Σ−1S

]}
.

Define

ν̄ = ν + T, S̄ = S + (W − ZΦ)′(W − ZΦ)

and deduce that

Σ|(W,φ) ∼ IW
(
ν̄, S̄

)
. (A.15)

Marginal Data Density. Treating W as observed, we can approximate the marginal data

density p(W |λ) for the VAR using Geweke (1999)’s modified harmonic mean estimator. We

begin by integrating out φ directly:

p(W |Σ, λ) =

∫
p(W |φ,Σ)p(φ|λ)dφ (A.16)

= (2π)−nwT/2|Σ|−T/2
∫

exp

{
−1

2
(φ− φ̂)′(Σ−1 ⊗ Z ′Z)(φ− φ̂)

}
× exp

{
−1

2
tr
[
Σ−1Ŝ

]}
(2π)−nwnz/2|P φ|1/2 exp

{
−1

2
(φ− µ

φ
)′P φ(φ− µ

φ
)

}
dφ.

= (2π)−nwT/2|Σ|−T/2|P φ|1/2|P̄φ|−1/2 exp

{
−1

2
tr
[
Σ−1Ŝ

]}
× exp

{
−1

2

[
φ̂′(Σ−1 ⊗ Z ′Z)φ̂+ µ′

φ
P φµφ − µ̄

′
φP̄φµ̄φ

]}
.

We now can express

p(W |λ) =

∫
p(W |Σ, λ)p(Σ|λ)dΣ. (A.17)
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To implement the modified harmonic mean estimator, we need to evaluate the prior

density

p(Σ|λ) = CIW |Σ|−(ν+nw+1)/2 exp

{
−1

2
tr
[
Σ−1S

]}
,

where

CIW =
|S|ν/2

2nwν/2πnw(nw−1)/4
∏nw

i=1 Γ((ν + 1− i)/2)
,

in addition to p(W |Σ, λ) in (A.16).

We use a modified harmonic mean estimator of the following form

p(W |λ) ≈
[

1

Nsim

Nsim∑
i=1

f
(
vech(Σi)

)
p(W |Σi, λ)p(Σi|λ)

]−1

, (A.18)

where vech(A) stacks the non-redundant elements of a symmetric matrix A and {Σi}Nsimi=1

are draws from the posterior distribution p(Σ|W,λ). We choose the following function f(θ):

f(θ) = τ−1(2π)−nθ/2|V̄θ|−1/2 exp[−0.5(θ − θ̄)′V̄ −1
θ (θ − θ̄)]

×I
{

(θ − θ̄)′V̄ −1
θ (θ − θ̄) ≤ F−1

χ2
nθ

(τ)

}
,

where θ = vech(Σ), nθ = nw(nw+1)/2×1, and θ̄ and V̄θ are numerical approximations of the

posterior mean and covariance matrix of θ, computed from the posterior draws θi = vech(Σi).

In order to evaluate the MDD approximation, it is important to extract a normalization

constant from the likelihood p(W |Σi, λ) in (A.16). Let p(W |Σi, λ) = Cig(W |Σi, λ) where

Ci is the normalization constant for draw i. Denote the maximum of the normalization

constants as Cmax. Then

p(W |λ) ≈
[

1

Nsim

Nsim∑
i=1

f
(
vech(Σi)

)
p(W |Σi, λ)p(Σi|λ)

]−1

=

[
1

Nsim

Nsim∑
i=1

f
(
vech(Σi)

)
Cig(W |Σi, λ)p(Σi|λ)

]−1

=

[
1

Cmax
× 1

Nsim

Nsim∑
i=1

f
(
vech(Σi)

)
Ci

Cmax
g(W |Σi, λ)p(Σi|λ)

]−1

Since the object of interest is ln p(W ),

ln p(W |λ) ≈ ln(Cmax)− ln

(
1

Nsim

Nsim∑
i=1

exp
{

ln f
(
vech(Σi)

)
− ln g(W |Σi, λ)

−(lnCi − lnCmax)− ln p(Σi|λ)
})

,
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which avoids exponentiating a large numbers.

B Solution of the KS Model

The aggregate state of the economy is s = (z, µ), where µ is the distribution of households

over (ε, x) pairs. We write µε to denote the conditional distribution of the assets given the

employment status ε. Expectations of test functions h(x) under this measure are denoted

by Eµε [h(x)] =
∫
h(x)dµε. Note that z is an exogenous state variable and µ an endogenous

state variable. A recursive competitive equilibrium is a list of functions

x′(ε, x; s), R(s), W (s), µ′(s). (A.19)

We will subsequently construct approximations to these functions.

B.1 Evolution of Asset Holdings

We begin with the evolution of asset holdings conditional on the exogenous two-state ε

process. The distribution of asset holdings at the beginning of the next period can be

determined as follows. For all measurable sets A,∫
I{x ∈ A}dµ′ε =

∑
ε̃

π(ε̃|ε)
∫

I{x′(ε̃, x; s) ∈ A}dµε̃. (A.20)

There is always a mass of individuals m̂ε at the borrowing constraint x. The evolution

of this mass can be characterized as follows:

m̂′ε =
∑
ε̃

π(ε̃|ε)
(∫

x>x

I{x′(ε̃, x; s) = x}dµε̃ + I{x′(ε̃, x; s) = x}m̂ε̃

)
. (A.21)

It is temping to assume that the distribution of asset holdings conditional on x > x is

continuous. Unfortunately, that is not the case if ε is a discrete random variable and z is a

continuous random variable. Suppose that z is large, then all individuals with x assets that

transition from unemployment to employment will make the same choice of asset holdings x̃

which generates a point mass at x̃. The solution method described subsequently will ignore
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this difficulty and characterize the distribution of x given x > x by the first three moments

and then approximate it with a continuous density.

We will write the density associated with µε as

qε(x) = m̂ε∆x(x) + (1− m̂ε)pε(x).

The discrete part corresponds to a point mass of m̂ε at x. Using ∆x(x) to denote the Dirac

function with the property that ∆x(x) = 0 for x 6= 0 and
∫

∆x(x)dx = 1. The continuous

part is represented by the (proper) density pε(x).

Next period’s point masses are given by

m̂′ε =
∑
ε̃

π(ε̃|ε)
[
(1− m̂ε̃)

∫ (∫
I{ηi ≤ x− x′(ε̃, x; s)}pη(η)dη

)
pε̃(x)dx (A.22)

+m̂ε̃

∫
I{ηi ≤ x− x′(ε̃, x; s)}pη(η)dη

]
,

where, according to Bayes Theorem, π(ε̃|ε) = π(ε̃)π(ε|ε̃)/π(ε). Note that the updating

formula for the point mass has two parts. The first part captures households that were

unconstrained at the beginning of the period, but are constrained at the end of the period.

The second part captures households that remain at the borrowing constraint.

The continuous part of next period’s asset distribution is given by

p′ε(x) =
∑
ε̃

π(ε̃|ε)
[
(1− m̂ε̃)

∫
pη(x− x′(ε̃, x̃; s))I{x > x}pε̃(x̃)dx̃∫ ∫
pη(x− x′(ε̃, x̃; s))I{x > x}pε̃(x̃)dx̃dx

(A.23)

+m̂ε̃
pη(x− x′(ε̃, x; s))I{x > x}∫
pη(x− x′(ε̃, x; s))I{x > x}dx

]
,

with the understanding that the decision rule x′(·) is through s also a function of m̂ε and

pε(x). Equations (A.22) and (A.23) define a law of motion for the cross-sectional density

qε(x).

B.2 Firms and Households

Based on the asset distribution approximation, we can re-define the aggregate state as s =(
z, m̂e, pe, m̂u, pu

)
. Technology evolves according to

z′ = ρzz + σzω
′. (A.24)
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The capital stock has to equal the net asset holdings:

K(s) =
∑
ε

π(ε)

[
(1− m̂ε)

∫
xpε(x)dx+ m̂εx

]
. (A.25)

Profit maximization of the representative firm implies

R(s) = αezKα−1(s)L1−α − δ (A.26)

W (s) = (1− α)ezKα(s)L−α .

We now turn to the optimization problem of the households. They take R(·), W (·), and

µ(·) as given. Define the conditional expectation

ψ(ε, x; z, m̂ε, pε) = βE
[(

1 +R(z′, m̂′ε, p
′
ε)
)
c
(
ε′, x′; z′, m̂′ε, p

′
ε

)−σ∣∣∣∣ε, x; z, m̂ε, pε

]
. (A.27)

The desired asset holdings in the next period can be obtained by substituting the consump-

tion that satisfies the Euler equation into the budget constraint:

x′∗(ε, x; s) = W (s)
(
(1− τ)ε+ b(1− ε)

)
+
(
1 +R(s)

)
x− ψ−1/σ(ε, x; s). (A.28)

The actual asset holdings have to take into account the borrowing constraint:

x′(ε, x; s) = max
{
x, x′∗(ε, x; s)

}
. (A.29)

Once the asset holdings are determined, consumption is given by

c(ε, x; s) = W (s)
(
(1− τ)ε+ b(1− ε)

)
+
(
1 +R(s)

)
x− x′(ε, x; s). (A.30)

B.3 Finite-dimensional Approximation

Going forward, we will transition to using time subscripts for all aggregate states. We

approximate the density pt,ε(x) using the following finite-dimensional – denoted by (K)

superscript – representation:

p
(K)
t,ε (x) = exp

{
γt,ε,0 + γt,ε,1(x−mt,ε,1) +

K∑
k=2

γt,ε,k
[
(x−mt,ε,1)k −mt,ε,k

]}
. (A.31)
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Here mt,ε,k are centralized moments of the distribution. As it will become apparent below,

we will essentially discretize the approximate density. The moments mt,ε,k are then used to

summarize the discretized distribution and reduce the dimensionality of the state space.

The parameters γt,ε,k and the moments mt,ε,k must be consistent with each other:

mt,ε,1 =

∫
xp

(K)
t,ε (x)dx (A.32)

mt,ε,k =

∫
(x−mt,ε,1)kp

(K)
t,ε (x)dx.

We also require that the approximate density integrates to one:

γt,ε,0 = − ln

∫
exp

{
γt,ε,1(x−mt,ε,1) +

K∑
k=2

γt,ε,k
[
(x−mt,ε,1)k −mt,ε,k

]}
dx. (A.33)

Conditional on the moments mt,ε,k, we can use (A.32) and (A.33) to recover the γ′t,ε,ks.

We now approximate the law of motion for the probability masses m̂t,ε and the moments

mt,ε,k. First,

m̂t+1,ε =
∑
ε̃

π(ε̃|ε)
(∫

I{x′t(ε̃, x) = x}(1− m̂t,ε̃)p
(K)
t,ε̃ (x)dx (A.34)

+I{x′t(ε̃, x = x) = x}m̂t,ε̃

)
The mass of households at the borrowing constraint in period t+1 consists of the households

that were unconstrained in period t and then hit the constraint in period t + 1 and those

who were constrained in period t and remained constrained. One also has to account for the

employment transitions: π(ε̃|ε) is the probability of having been in employment status ε̃ in

period t given that the period t+ 1 employment status is ε.

Second, the moments of the continuous part of the asset distribution have to satisfy

mt+1,ε,1 =
∑
ε̃

π(ε̃|ε)
(∫

I{x′t(ε̃, x) > x}x′t(ε̃, x)(1− m̂t,ε̃)p
(K)
t,ε̃ (x)dx (A.35)

+I{x′t(ε̃, x) > x}x′t(ε̃, x)m̂t,ε̃

)
mt+1,ε,k =

∑
ε̃

π(ε̃|ε)
(∫

I{x′t(ε̃, x) > x}[x′t(ε̃, x)−mt+1,ε,1]k(1− m̂t,ε̃)p
(K)
t,ε̃ (x)dx

+I{x′t(ε̃, x) > x}[x′t(ε̃, x)−mt+1,ε,1]km̂t,ε̃

)
.
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Conditional on the decision rule x′t(ε, x) and the initial density approximation p
(K)
t,ε̃ (x), Equa-

tions (A.34) and (A.35) define a law of motion for mt,ε,k and m̂k
t,ε. Combined with (A.31)

and (A.32) one obtains a transition equation for p
(K)
t,ε̃ (x).

The characterization of the law of motion for m̂t,ε and mt,ε,k involves integrals of the form∫
h(x)p

(K)
t,ε (x)dx.

These integrals are approximated using Gauss-Legendre quadrature. Let {xj, ωj}Jj=1 be a

collection of quadrature nodes and weights, then∫
h(x)p

(K)
t,ε (x)dx ≈

J∑
j=1

h(xj)ωjp
(K)
t,ε (xj).

Thus, for instance, we can define the quadrature approximation

mQ
t+1,ε,1 =

∑
ε̃

π(ε̃|ε)
( J∑

j=1

I{x′t(ε̃, xj) > x}x′t(ε̃, xj)(1− m̂t,ε̃)ωjp
(K)
t,ε̃ (xj) (A.36)

+I{x′t(ε̃, x) > x}x′t(ε̃, x)m̂t,ε̃

)
.

In order to implement the integration, we are effectively discretizing the cross-sectional

density of assets. However, rather than treating the p
(K)
t,ε (xj) directly as state variables

and eliminating the moments, we treat the lower dimensional vector of moments as state

variables. This imposes some parsimony on the characterization of the law of motion of the

cross-sectional densities by reducing the state space from J to K (in the numerical illustration

J = 25 and K = 3) and through (A.31) we can easily interpolate the density in-between the

grid points xj. We will subsequently work with the quadrature approximation and drop the

Q superscript.

Recall that in our notation pKt,ε(x) is a properly normalized density. The aggregate capital

stock can be obtained from the moments of the asset distribution:

Kt =
∑
ε

π(ε) [(1− m̂t,ε)mt,ε,1 + m̂t,εx] . (A.37)

In turn, the factor prices can be written as

Rt = αeztKα−1
t L1−α − δ (A.38)

Wt = (1− α)eztKα
t L
−α. (A.39)
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Aggregate total factor productivity evolves according to

zt = ρzzt−1 + σzωt. (A.40)

We approximate the conditional expectation in the Euler equation using Chebychev polyno-

mials:

ψ
(L)
t (ε, x) = exp

{
L∑
l=1

θt,ε,lTl(ξ(x))

}
, (A.41)

where Tl(·) is the l’th order Chebychev polynomial and ξ(x) = 2(x−x)/(x̄−x)−1 transforms

the interval [x, x̄] into the interval [−1, 1]. Using the ψ(·) we write that asset and consumption

choices as

x′∗,t(ε, x) = Wt

(
(1− τ)ε+ b(1− ε)

)
+
(
1 +Rt

)
x−

[
ψ

(L)
t (ε, x)

]−1/σ
(A.42)

x′t(ε, x) = max
{
x, x′∗,t(ε, x)

}
ct(ε, x) = Wt

(
(1− τ)ε+ b(1− ε)

)
+
(
1 +Rt

)
x− x′t(ε, x).

The coefficients for the Chebychev polynomial are determined by collocation. Define a

grid {xl}Ll=1, then {θt,ε,l}Ll=1 are obtained by solving the system of equations:

exp

{
L∑
i=1

θt,ε,iTi(ξ(xl))

}
= β

∑
ε̃

π(ε̃|ε)Et
[
(1 +Rt+1)c−σt+1

(
ε̃, x′t(ε̃, xl)

)]
, l = 1, . . . , L.

(A.43)

B.4 A Nonlinear Rational Expectations System

We now collect the equations that characterize the equilibrium approximation. For simplicity,

we assume that x = 0 which allows us to drop some indicator functions. Using (A.31), define

pt,ε,j = p
(K)
t,ε (xj)

so that we can write

pt,ε,j = fp
(
xj;mt,ε,1, . . . ,mt,ε,K , γt,ε,1, . . . , γt,ε,K), j = 1, . . . , J, (A.44)
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where the function fp(·) is given by (A.31). Using the quadrature approximations, we can

express the consistency conditions between the γt,ε,ks and the mt,ε,ks as

mt,ε,1 =
J∑
j=1

xjωjfp
(
xj;mt,ε,1, . . . ,mt,ε,K , γt,ε,1, . . . , γt,ε,K) (A.45)

mt,ε,k =
J∑
j=1

(xj −mt,ε,1)kωjfp
(
xj;mt,ε,1, . . . ,mt,ε,K , γt,ε,1, . . . , γt,ε,K), k = 2, . . . , K.

This set of equations is used to determine the γt,ε,ks as a function of the mt,ε,ks.

Now define

x′t,ε,j = x′(ε, xj; st), j = 1, . . . , J.

Moreover, assume that the first value of the x grid corresponds to the lower bound on asset

holdings: x1 = 0. Then we can write

mt+1,ε,1 =
∑
ε̃

π(ε̃|ε)
( J∑

j=1

x′t,ε̃,j(1− m̂t,ε̃)ωjpt,ε̃,j + x′t,ε̃,1m̂t,ε̃

)
(A.46)

mt+1,ε,k =
∑
ε̃

π(ε̃|ε)
( J∑

j=1

[x′t,ε̃,j −mt+1,ε,1]k(1− m̂t,ε̃)ωjpt,ε̃,j + [x′t,ε̃,1 −mt+1,ε,1]km̂t,ε̃

)
,

k = 2, . . . , K

m̂t+1,ε =
∑
ε̃

π(ε̃|ε)
( J∑

j=1

(1− m̂t,ε̃)ωjpt,ε̃,j + I{x′t,ε̃,1 = 0}m̂t,ε̃

)
.

The capital stock, the factor prices, and TFP are given by

Kt =
∑
ε

π(ε)(1− m̂t,ε)mt,ε,1 (A.47)

Rt = αeztKα−1
t L1−α − δ

Wt = (1− α)eztKα
t L
−α

zt = ρzzt−1 + σzεz,t.

We now turn to the households’ asset holding and consumption decision. With a slight

change in notation write

ψ
(L)
t (ε, x; θt,ε,1, . . . , θt,ε,L) = exp

{
L∑
l=1

θt,ε,lTl(ξ(x))

}
.
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The desired asset holdings, actual asset holdings, and consumption can be summarized with

the following functions:

x′∗,t(ε, x) = fx′∗(ε, x;Wt, rt, θt,ε,1, . . . , θt,ε,L) (A.48)

= Wt

(
(1− τ)ε+ b(1− ε)

)
+
(
1 +Rt

)
x−

[
ψ

(L)
t (ε, x; θt,ε,1, . . . , θt,ε,L)

]−1/σ

x′t(ε, x) = fx′(ε, x;Wt, Rt, θt,ε,1, . . . , θt,ε,L)

= max
{

0, fx′∗(ε, x;Wt, Rt, θt,ε,1, . . . , θt,ε,L)
}

ct(ε, x) = fc(ε, x;Wt, Rt, θt,ε,1, . . . , θt,ε,L)

= Wt

(
(1− τ)ε+ b(1− ε)

)
+
(
1 +Rt

)
x− fx′(ε, x;Wt, Rt, θt,ε,1, . . . , θt,ε,L).

Thus,

x′t,ε,j = fx′(ε, xj;Wt, Rt, θt,ε,1, . . . , θt,ε,L), j = 1, . . . , J. (A.49)

Finally, we can use the definition of ψ
(L)
t (ε, x):

ψ
(L)
t (ε, xl; θt,ε,1, . . . , θt,ε,L) (A.50)

= β
∑
ε̃

π(ε̃|ε)Et
[
(1 +Rt+1)f−σc (ε̃, xl;Wt+1, Rt+1, θt+1,ε,1, . . . , θt+1,ε,L)

]
, l = 1, . . . , L.

Overall, we obtain a rational expectations system in the following variables:

{pt,ε,j}︸ ︷︷ ︸
2J

, {γt,ε,k}︸ ︷︷ ︸
2K

, {mt,ε,k}, {m̂t,ε}︸ ︷︷ ︸
2(K + 1)

, Kt, Rt, Wt, zt︸ ︷︷ ︸
4

, {x′t,ε,j}︸ ︷︷ ︸
2J

, {θt,ε,l}︸ ︷︷ ︸
2L

.

Note that (A.44) delivers 2J equations that determine {pt,ε,j}; (A.45) delivers 2K equations

that implicitly determine {γt,ε,k}; (A.46) generates 2(K + 1) equations that determine the

evolution of {mt,ε,k} and {m̂t,ε}; (A.47) comprises 4 equations that determine the aggregate

variables Kt, Rt, Wt, and zt; (A.49) delivers 2J equations that determine {x′t,ε,j}; and, finally,

(A.50) generates 2L equations that determine {θt,ε,l}. Thus, the system contains as many

equations as variables.

B.5 Steady State and Local Dynamics

The model can now be solved by finding the steady state of the system defined by Equa-

tions (A.44) to (A.50), which amounts to solve the model without aggregate shocks using a
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projection approach. The system can then be log-linearized around the steady state and the

first-order dynamics can be obtained with a standard algorithm that solves linear rational

expectations models, as provided by DYNARE. Winberry’s MATLAB code treats {mt,ε,k},

{m̂t,ε} and z as state (pre-determined) variables and includes W , R, {pt,ε,j}, and {θt,ε,l} as

non-predetermined variables. The variables {γt,ε,k} and {x′t,ε,j} are substituted out.
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C More About the Empirical Analysis

C.1 Data Construction

The observations on real per capita GDP, GDP deflator, and the unemployment rate are

downloaded from the Federal Reserve Bank of St. Louis’ FRED database:

https://fred.stlouisfed.org/.

The TFP series is available from the Federal Reserve Bank of San Francisco:

https://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/.

The labor share series is available from the Bureau of Labor Statistics, labor productivity

and cost measures: https://www.bls.gov/lpc/.

The CPS raw data are downloaded from

http://www.nber.org/data/cps basic.html.

The raw data files are converted into STATA using the do-files available at:

http://www.nber.org/data/cps basic progs.html.

We use the series PREXPLF (“Experienced Labor Force Employment”), which is the same

as in the raw data, and the series PRERNWA (“Weekly Earnings”), which is constructed

as PEHRUSL1 (“Hours Per Week at One’s Main Job”) times PRHERNAL (“Hourly Earn-

ings”) for hourly workers, and given by PRWERNAL for weekly workers. STATA dictionary

files are available at:

http://www.nber.org/data/progs/cps-basic/

We pre-process the cross-sectional data as follows. We drop individuals if (i) the em-

ployment indicator is not available; and (ii) if they are coded as “employed” but the weekly

earnings are missing. In addition, we re-code individuals with non-zero earnings as employed

and set earnings to zero for individuals that are coded as not employed. A CPS-based un-

employment rate is computed as the fraction of individuals that are coded as not employed.

By construction this is one minus the fraction of individuals with non-zero weekly earnings,

which is used to normalize the cross-sectional density of earnings. It turns out that the CPS-

based unemployment rate tracks the aggregate unemployment rate (UNRATE from FRED)
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Figure A-1: CPS Unemployment

Notes: CPS unemployment rate (blue, solid) and aggregate unemployment rate (red, dashed).

very closely; see the left panel of Figure A-1. The levels of the two series are very similar,

but the CPS unemployment rate exhibits additional high-frequency fluctuations, possibly

due to seasonals that have been removed from the aggregate unemployment rate.

C.2 Data Transformations

We transform the raw earnings-GDP ratio, denoted by z below, using the inverse hyperbolic

sine transformation, which is given by

x = g(z|θ) =
ln(θz + (θ2z2 + 1)1/2)

θ
=

sinh−1(θz)

θ
. (A.51)

The transformation is plotted in the center panel Figure A-2 for θ = 1. Note that g(0|θ) = 0

and g(1)(0|θ) = 1, that is, for small values of z the transformation is approximately linear.

For large values of z the transformation is logarithmic:

g(z|θ) ≈ 1

θ
ln(2θz) =

1

θ
ln(2θ) +

1

θ
ln(z).

The inverse of the transformation takes the form

z = g−1(x|θ) =
1

θ
sinh(θx) =

1

2θ
(eθx − e−θx).
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Figure A-2: Estimated Log Earnings Distributions
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Notes: Center panel: inverse hyperbolic sine transformation (blue, solid) for θ = 1, logarithmic transforma-
tion (red, dashed), and 45-degree line (magenta, dotted). Left and right panels: each hairline corresponds
to the estimated density of earnings for a particular quarter t, where t ranges from 1989:Q1 to 2017:Q3.

Most of the calculations in the paper are based on px(x). But in some instances, it is

desirable to report for pz(z). From a change of variables (omitting the θ), we get

pz(z) = px(g(z))|g′(z)|,

where

g′(z) =
1 + θz

(θ2z2+1)1/2

θz + (θ2z2 + 1)1/2
=

1

(θ2z2 + 1)1/2
.

Whenever we do convert the estimated densities back from z to x, we recycle the density

evaluations at xj. Thus, we evaluate pz(z) for grid points zj = g−1(xj), which leads to

pz(zj) = px(xj)
∣∣g′(g−1(xj))

∣∣,
where

∣∣g′(g−1(xj))
∣∣ =

1(
1
4
(eθxj − e−θxj)2 + 1

)1/2
=

2

(e2θxj + e−2θxj + 2e2θxje−2θxj)
1/2

=
2

eθxj + e−θxj
.

In the left and right panels of Figure A-2 we overlay the log-spline estimates of the cross-

sectional densities. The left panel shows the density of the original earnings whereas the

right panel shows the densities of transformed earnings-to-GDP ratio which is obtained by

the change-of-variables.
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Figure A-3: Estimated âk,t versus Smoothed ak,t
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Notes: The red solid lines correspond to the smoothed ak,t series, whereas the blue dashed lines represent
the estimated series âk,t.

C.3 Estimated versus Smoothed Coefficients

Figure A-3 overlays the estimated âk,t versus the smoothed ak,t’s generated as output of the

Gibbs sampler. Recall that as part of the transformation from α̂t into ât we demean and
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orthogonalize the series. The discrepancy is the measurement error ηk,t, which is generally

small. All of the series show low frequency movements around zero in combination with

some high frequency fluctuations. By construction, the smoothed series are smoother than

the actual series.

C.4 Shock Identification

Here we provide additional details on how to identify a shock that maximizes the contribution

to the variance of variable i at horizons h = 1, . . . , h̄. Define the matrix M =
[
0ny×nαc , Iny

]
and the vector ei that has a one in position i and zeros elsewhere such that we can write

wi,t+h − E[wi,t+h] = . . .+ e′i

h−1∑
j=0

Φj
1ΣtrMqα + . . . .

We can now define q∗α as the impact effect of the shock that maximizes the forecast error

variance over horizons h = 1, . . . , h̄:

q∗α = argmax e′i

[
h̄∑
h=1

h−1∑
j=0

Φj
1ΣtrMqαq

′
αM

′Σ′tr(Φ
j
1)′

]
ei. (A.52)

Using the facts that x′A′x = tr[xx′A] and tr[AB] = tr[BA], we can rewrite the objective

function as

e′i

[
h̄∑
h=1

h−1∑
j=0

Φj
1ΣtrMqαq

′
αM

′Σ′trΦ
j′

1

]
ei (A.53)

=
h̄∑
h=1

h−1∑
j=0

tr

[
(eie

′
i)(Φ

j
1ΣtrM)(qαq

′
α)(M ′Σ′trΦ

j′

1 )

]

=
h̄∑
h=1

h−1∑
j=0

tr

[
(qαq

′
α)(M ′Σ′trΦ

j′

1 )(eie
′
i)(Φ

j
1ΣtrM)

]

= q′α

[
h̄∑
h=1

h−1∑
j=0

(M ′Σ′trΦ
j′

1 )(eie
′
i)(Φ

j
1ΣtrM)

]
qα

= q′αSqα.

The optimization problem can therefore be expressed as Lagrangian

L = q′αSqα − λ(q′αqα − 1), (A.54)
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which leads to the first-order condition

Sqα = λqα. (A.55)

At the first-order condition, we obtain that L = λ. Thus, the solution is obtained by finding

the eigenvector associated with the largest eigenvalue of the matrix S.

C.5 Impulse Responses: K = 10 versus K = 22

In Figure A-4 we compare bands for the impulse responses of aggregate variables to aggregate

shocks for K = 10 and K = 22. They are essentially identical.

In Figures A-5 and A-6 we compare bands for the impulse responses of the cross-sectional

density and inequality measures to aggregate shocks for K = 10 and K = 22. While the

density responses look different, the responses of the inequality measures and percentiles

derived from these densities are very similar.
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Figure A-4: Responses of Aggregate Variables to Aggregate Shocks: K = 10 vs. K = 22
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Notes: IRFs for three-standard deviation aggregate shocks (orthogonalized via Cholesky factorization; see
(40)). Panels depict responses of the log level of TFP and GDP, scaled by 100, and responses of the
employment rate in percent. The bands correspond to pointwise 10th and 90th percentiles of the posterior
distribution for K = 10. Solid blue responses are based on K = 10 (same as main text); dashed red responses
are based on K = 22.



Online Appendix – This Version: May 20, 2021 A.23

Figure A-5: Earnings Density (Transformed Data) Response to a TFP Shock: K = 10 vs.

K = 22

K = 10 (Main Text) K = 22 (Alternate)
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Notes: Responses to a 3-standard-deviations shock to TFP. The system is in steady state at h = −1 and the
shock occurs at h = 0. The plot depicts 10th (dashed), 50th (solid), and 90th (dashed) percentiles of the
posterior distribution. As distributional responses we depict differences between the shocked and the steady
state cross-sectional density at various horizons.
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Figure A-6: Inequality Measure (Original Data) Responses to a TFP Shock: K = 10 vs.

K = 22

K = 10 (Main Text) K = 22 (Alternate)
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Notes: Responses to a 3-standard-deviations shock to TFP. The system is in steady state at h = −1 and
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