
University of Dayton University of Dayton

eCommons eCommons

Honors Theses University Honors Program

5-1-2021

A Study on Formal Verification for JavaScript Software A Study on Formal Verification for JavaScript Software

Zachary S. Rowland
University of Dayton

Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses

 Part of the Computer Sciences Commons

eCommons Citation eCommons Citation
Rowland, Zachary S., "A Study on Formal Verification for JavaScript Software" (2021). Honors Theses.
334.
https://ecommons.udayton.edu/uhp_theses/334

This Honors Thesis is brought to you for free and open access by the University Honors Program at eCommons. It
has been accepted for inclusion in Honors Theses by an authorized administrator of eCommons. For more
information, please contact mschlangen1@udayton.edu,ecommons@udayton.edu.

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/uhp_theses
https://ecommons.udayton.edu/uhp
https://ecommons.udayton.edu/uhp_theses?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/uhp_theses/334?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mschlangen1@udayton.edu,ecommons@udayton.edu

A Study on Formal Verification

of JavaScript Software

Honors Thesis

Zachary Rowland

Department: Computer Science

Advisor: Phu H. Phung, Ph.D.

May 2021

A Study on Formal Verification for

JavaScript Software

Honors Thesis

Zachary Rowland

Department: Computer Science

Advisor: Phu H. Phung, Ph.D.

May 2021

Abstract
Information security is still a major problem for users of websites and hybrid mobile applications. While
many apps and websites come with terms of service agreements between the developer and end user, there
is no rigorous mechanism in place to ensure that these agreements are being followed. Formal methods can
offer greater confidence that these policies are being followed, but there is currently no widely adopted tool
that makes formal methods available for average consumers. After studying the current state-of-the-art in
JavaScript policy enforcement and verification, this research proposes several new techniques for applying
model checking to JavaScript that strikes a balance of low runtime overhead and fine-grained policy
enforcement that other techniques do not achieve.

Acknowledgements
A big thank you to Dr. Phung for advising me throughout the year.

Table of Contents

Abstract Title Page

Introduction 1

Formal Methods Overview 3

Proof-based Verification 4

Model Checking 6

State-space Exploration Beyond Model Checking 9

Information Flow 10

JavaScript & Web Security Survey 11

Formalizing JavaScript Semantics 12

Static Verification 13

Dynamic Policy Enforcement 13

Proposed JavaScript Model Checking Framework 15

JavaScript to C Translation 16

JavaScript to NuSMV Translation 17

Datalog Implementation 18

Automaton Encoding in JavaScript 19

Conclusion 21

References 23

Appendix A: JS2C Implementation Details 25

Appendix B: JS2NuSMV Implementation Details 26

Appendix C: Datalog Verification Details 27

Appendix D: Automaton-based Encoding Details 29

Page | 1

Introduction

Web technologies have become essential to the proper functioning of our society.

Websites and web applications are now the standard method of communicating for

business and pleasure. Additionally, many commonly used web services are available as

a hybrid mobile application, a smartphone app developed using web technologies. Mobile

applications for many commonly used web services such as Gmail, Twitter, and

Instagram are implemented as hybrid mobile applications because the majority of the

code can be copied from the website implementation reducing the total amount of code

that needs to be maintained. Furthermore, the advent of Node.js allowed even server-side

code to be written in the same language as the front-end website code.

The language in which the behavior of such web services is implemented is called

JavaScript—a dynamic and permissive language that was not developed to tackle the

security challenges it faces today. Its lack of security features and error checking makes it

easy for the developer to overlook programming mistakes. Its complex and ill-defined

specification makes it difficult for the consumer to read and analyze. JavaScript and web

security have been the subject of much research since the language’s inception and the

growth of the web, but no definitive solution to JavaScript's security problems has been

implemented on a large scale.

The current security standards for handling sensitive information on the web is the

same as standards for handling physical property. Websites and hybrid mobile apps are

expected to come with a privacy policy, an agreement between the software developer

Page | 2

and the end user about how the user’s information will be used. The privacy policy is

enforced with threat of legal action upon violation. This security standard offers very

little control to users over their own private information and device usage because legal

restrictions can be and frequently are broken with little to no repercussions.

Formal methods of software verification and enforcement offer promising tools

for users to gain some level of confidence in the security of the software they use. But

currently, the study and implementation of robust formal methods is confined to

academic research and big industry. The aim of this work is to study the applicability of

formal methods to JavaScript with the eventual goal of integrating formal methods into a

tool for user-specified policy enforcement and verification. Additionally, several methods

are proposed for providing simplistic model-checking support for JavaScript. There is

little research studying the integration of model-checking with the web environment since

it is traditionally studied in the context of embedded systems and electronic circuits.

However, model-checking has the potential to verify simple security policies relevant to

end-users.

This thesis is being conducted within the Intelligent Systems Security Lab, whose

research goals include offering software security and privacy solutions to average users.

This thesis provides a survey of formal verification tools and techniques for JavaScript

among other languages and discusses ways that a specific verification technique called

model checking can be implemented for JavaScript.

Page | 3

Formal Methods Overview

Formal methods or formal verification is the use of mathematical modeling and

reasoning to prove that software always exhibits correct intended behavior and never

unintended behavior. Many software insecurities arise from a mismatch between the

behavior that developers expect the software to exhibit and the actual exhibited behavior

of the final product. These mismatches can arise from either under-specification or

mistakes in the implementation. Under-specification occurs when the programmer does

not know the exact intended behavior of a software system. Often a programmer will not

realize that certain behavior is undesirable until the program exhibits that behavior. This

could cause the programmer to make arbitrary implementation choices in situations

where the exact behavior of the system is assumed to be unimportant. Implementation

mistakes arise when the programmer understands the intended behavior, but fails to write

code that properly exhibits this behavior. This is often caused by a lack of understanding

or assumptions made about the programming language’s proper semantics.

The purpose of Formal Methods is to reduce or eliminate both of these sources of

software mistakes. Under-specification can be avoided by using formal specification

languages that require every possible input to the program to be properly considered, and

implementation mistakes can be avoided by mathematically connecting the concrete

program to an abstract specification. Formal methods achieve safety guarantees by

relying on precise mathematical modeling and proof techniques. This requires

traditionally informal concepts such as a “program” or “safety” to be represented in

Page | 4

formal, machine-readable language. Any system of formal software verification has three

fundamental components:

1. A formal language or modeling system for describing software programs.

2. A formal language for expressing properties of programs.

3. An algorithm that evaluates a program model against a property expressed in

the formal property language.

Since software programs are fundamentally just complex state transition systems,

they are usually modeled as such. A transition system describes how a system in a given

“current configuration” (i.e. current state), can evolve over time into other configurations

via a set of predefined transitions. In a typical imperative programming language, the

state of the program consists of the values assumed by all of its variables or the data

stored in relevant sections of memory. The transitions would be the program statements

themselves that describe how the state is modified over the course of an execution.

Program properties, or policies, can be expressed in one of several ways

depending on the verification method being used. Like programs, a property can simply

be a transition system that defines the valid ways that the program is allowed to

transition. However, properties can also be expressed in propositional or first-order logic,

temporal logics, or as a set of reachable states among other methods.

Proof-based Verification

Proof-based verification is one of the two major branches of formal verification

techniques. A proof-based verification technique is any technique where the program and

Page | 5

properties are represented as logical formulas. Verification under a proof-based modeling

system means performing a logical deduction starting from the program’s formulas to the

desired property.

The most commonly used proof-based verification method for imperative

programs is called Hoare Logic which encodes a program as a set of precondition-

statement-postcondition triples. A Hoare triple is a statement of the form {𝜙𝜙}𝐶𝐶{𝜓𝜓} where

𝐶𝐶 is a program and 𝜙𝜙 and 𝜓𝜓 are logical formulas that express properties about the

program state. The statement {𝜙𝜙}𝐶𝐶{𝜓𝜓} means “if condition 𝜙𝜙 holds before program 𝐶𝐶 is

executed, then condition 𝜓𝜓 will hold after 𝐶𝐶 is executed.” For example, if skip

represents a program that performs no action, then any Hoare triple {𝜙𝜙}𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝜙𝜙} will be

true. As another example, suppose x := e; is a program that evaluates an expression e

and stores the result in a variable x, then {𝜙𝜙[𝑥𝑥 → 𝑒𝑒]}𝑥𝑥 ≔ 𝑒𝑒; {𝜙𝜙} will be true (𝜙𝜙[𝑥𝑥 → 𝑒𝑒]

represents the formula 𝜙𝜙 with all occurrences of 𝑥𝑥 replaced with 𝑒𝑒).

In Hoare Logic, a property is a precondition-postcondition pair (𝜙𝜙,𝜓𝜓), and a

proof that a program 𝑃𝑃 satisfies the property is a derivation of the statement {𝜙𝜙}𝑃𝑃{𝜓𝜓}.

This derivation is constructed by breaking down 𝑃𝑃 into smaller programs, constructing

proofs for each subprogram, and combining the resulting proofs into a single program for

𝑃𝑃. For example, suppose 𝑃𝑃 = 𝑠𝑠1; 𝑠𝑠2 is a program that executes the two statements 𝑠𝑠1 and

𝑠𝑠2 in sequence. Then we could derive {𝜙𝜙}𝑠𝑠1; 𝑠𝑠2{𝜓𝜓} if we had Hoare triples {𝜙𝜙}𝑠𝑠1{𝜈𝜈} and

{𝜈𝜈}𝑠𝑠2{𝜓𝜓} where 𝜈𝜈 is some intermediate condition.

Page | 6

Proof-based verification offers the benefits of being direct and flexible. Programs

don’t need to undergo significant translation in order to reason about them. Hoare logic

can directly reason about common programming constructs such as if-statements and

while-loops which eliminates errors from being introduced during translation. However,

proof-based verification is also difficult to automate. As with proofs in other areas of

math, it is not trivial to determine how to combine the atomic propositions to reach the

desired conclusion.

Model Checking

The other major branch of formal verification is model-based verification where

the program is transformed into some abstract model (usually a state-transition system)

before verification. Model Checking is a particular method of model-based verification,

but it is general enough to be representative of the entire model-based strategy, so this

thesis will largely omit discussion of other model-based methods.

Model Checking is a formal verification system that verifies temporal properties

against a program represented as a finite-state transition system. There is no single

standard way to encode programs as transition systems. One such encoding is called a

Kripke structure, a triple (𝑆𝑆,𝑅𝑅, 𝐼𝐼) where 𝑆𝑆 is a set of program states and 𝐼𝐼 is a mapping

from states to sets of atomic propositions. 𝑅𝑅 ⊆ 𝑆𝑆 × 𝑆𝑆 is the transition relation that

specifies which states the program can evolve into from the current state. For

deterministic programs, 𝑅𝑅 can be a function 𝑆𝑆 → 𝑆𝑆. A program can also be modeled as a

labeled transition system (𝑆𝑆,𝐴𝐴𝐴𝐴𝐴𝐴,→) where 𝑆𝑆 is the set of states, 𝐴𝐴𝐴𝐴𝐴𝐴 is a set of actions

Page | 7

that can be taken by a program. The arrow →⊆ 𝑆𝑆 × 𝐴𝐴𝐴𝐴𝐴𝐴 × 𝑆𝑆 is a three-way relation that

describes which states evolve into which other states when some action is performed.

The power of model checkers comes from their ability to verify policies written in

a temporal logic. A temporal property is a restriction on the order in which states can be

reached. A simple example of a temporal property is a no-send-after-read property which

says that if the program performs some “read” action (such as fetching information from

the user’s photo album or contacts list), then the program is not allowed to subsequently

perform a “send” action (such as transmitting data to a remote server). More formally a

temporal property restricts which traces a program is allowed to step through. A valid

trace or path is an infinite sequence of states 𝑠𝑠1, 𝑠𝑠2, … such that for each pair of adjacent

states 𝑠𝑠𝑖𝑖, 𝑠𝑠𝑖𝑖+1, there is a valid transition from 𝑠𝑠𝑖𝑖 to 𝑠𝑠𝑖𝑖+1 in the transition relation.

Temporal properties can be expressed in two main formalisms. The first is linear-

temporal logic (LTL), an extension of first-order logic that includes constructs for

reasoning about changing properties over time. These two constructs are the X and U

operators. If 𝜙𝜙 and 𝜓𝜓 are LTL formulas, then 𝑋𝑋 𝜓𝜓 means 𝜓𝜓 is true for every possible next

state of the system, and 𝜙𝜙 𝑈𝑈 𝜓𝜓 means that 𝜙𝜙 remains true at least until the system reaches

a state where 𝜓𝜓 is true. Other temporal operators can be defined in terms of these two

constructs such as 𝐺𝐺 𝜓𝜓 meaning “𝜓𝜓 will always (globally) be true” and 𝐹𝐹 𝜓𝜓 meaning “𝜓𝜓

is guaranteed to eventually be true after a finite number of transitions”. Linear temporal

logic is the property language used by the SPIN model checker discussed below.

The other temporal logic is computation tree logic (CTL) which introduces trace

quantifiers A (for all traces) and E (there exists a trace) in addition to the X and U

Page | 8

operators. These quantifiers allow for expressing that it is possible for some property to

be true, but the execution of the program might not follow the trace that holds that

property. In CTL, a trace quantifier or a temporal operator cannot stand by itself. CTL

can express properties about “every state in every trace” or “every state in at least one

trace”, but does not allow for reasoning about “every trace” directly. CTL is the temporal

language used by the NuSMV model checker.

Because there are many languages that may need model checking, popular

general-purpose model checkers generally implement model checking on a simpler

custom language called a modeling language. To use a general-purpose model checker, a

developer would need to translate their program from the language in which it was

written into the modeling language of the model checker. SPIN and NuSMV are both

general purpose model checkers that follow this design philosophy. SPIN (which stands

for Simple Promela Interpreter) operates on C-inspired meta-language called Promela.

SPIN is useful for verifying properties of concurrent programs because of Promela’s

built-in support for processes. The input language for NuSMV is much closer to a direct

specification language for finite-state machines which makes NuSMV less amenable to

software-verification than SPIN. However, NuSMV makes up for it in speed, support for

CTL logic in addition to LTL, and more advanced model checking techniques such as

bounded model checking.

There are, however, model checking tools available for widely used practical

programming languages. CPAchecker is a hybrid tool for model-checking and dataflow

analysis (discussed below) that operates directly on the C language. Policies are specified

Page | 9

using LTL or a policy automaton. Java PathFinder is a similar tool for Java. These tools

must deal with aspects of real programming languages such as floating-point arithmetic,

dynamically-sized data structures, and pointer manipulation that most general-purpose

model checkers intentionally avoid. Consequently, they run slower and produce more

confusing failure analysis.

State-space Exploration Beyond Model Checking

While model checking encapsulates most other verification techniques centered

around traversing the program’s state-space, the simplifications made by other techniques

are worth mentioning. These other techniques are not applicable for verifying temporal

properties, only for determining reachability of a state or set of states from the program’s

starting state.

A dataflow analysis requires states to be expressed as a tuple of values

(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) which represent variable bindings. Dataflow simplifies the state-space

search by eliminating information about how the fields of the state relate to each other.

Specifically, if a variable 𝑥𝑥𝑖𝑖 assumes a value 𝑣𝑣𝑖𝑖 in some reachable state 𝑠𝑠1, and a variable

𝑥𝑥𝑗𝑗 assumes 𝑣𝑣𝑗𝑗 in some other reachable state 𝑠𝑠2, then a dataflow analysis will assume that

there is some reachable state where both 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 assume those values simultaneously.

Instead of maintaining a set of reachable states, the algorithm only needs to maintain a

much smaller set of reachable values for each variable. This dodges the state-space

explosion problem that model checking has because the amount of memory needed to

Page | 10

store the set of reachable states is now linear instead of exponential in the number of

variables.

Symbolic execution is more directly geared toward analyzing software programs

than model checking. A symbolic executor will interpret a program by initializing

program variables to symbolic values. When operations are performed on these symbolic

values, the computations that would be performed are simply saved in the form of a

mathematical expression. When the symbolic execution is complete, state-reachability

properties can be verified by analyzing the resulting expressions for each program

variable.

Information Flow

With regard to information privacy in particular, policies often need to talk about

the history of a piece of data, not just its contents. An information-flow policy restricts

the actions a program can perform on a piece of data based on the history of function

calls and computations that generated the data. For example, the standard web

environment provides a JavaScript API function getcurrentposition that asks the

browser to determine the current geolocation coordinates of the device using GPS or

other means. Apps and websites often passively collect geolocation coordinates just for

information gathering purposes. The user might want to block this passive collection

while allowing the coordinates to be used for desired tasks such as navigation in a Maps

application.

Page | 11

Information-flow properties of a program can be verified statically using a form

of abstract interpretation, but currently it is more common to guarantee safety by

enforcing information-flow such policies at runtime. Enforcement usually involves

modification of the runtime environment or heavy instrumentation of the program code.

While information-flow policies are very expressive and relevant to most users, runtime

enforcement usually entails significant overhead. The most common way of enforcing

information-flow is a technique called secure multi-execution which, as the name implies,

requires executing the program multiple times concurrently causing the program to run at

least several times slower.

The significant enforcement overhead is required since information flow policies

are, in general, more fine-grained than temporal policies. Enforcing a no-send-after-read

policy is one way of making sure information does not leak out of a program, but since

any send after any read is blocked, plenty of benign “send” actions will also be blocked

despite not containing any sensitive information. Information flow policies can often

express more accurately the precise behaviors that the user wants to allow and block

without over- or undercompensating.

JavaScript & Web Security Survey

Here, we examine the current state-of-the-art verification tools for JavaScript that

make use of the formal verification techniques discussed above. Most work in JavaScript

language-based security can be categorized into one of three categories. Formalizing the

semantics of JavaScript means mathematically describing the precise procedure for the

Page | 12

execution of a JavaScript program which has been hitherto informal. Proper formalization

of the language semantics provides the groundwork for the other two methods of static

policy verification and dynamic policy enforcement.

Formalizing JavaScript Semantics

Any solid verification framework must be based on a precise, formal

understanding of the execution of a program. Unfortunately, JavaScript interpreters were

built ad-hoc, so their behavior is not fully understood. JavaScript’s runtime semantics are

described informally as the ECMAScript specification, but this specification is lengthy

and includes ambiguities. Therefore, the past two decades have seen a number of

attempts to formalize the semantics of JavaScript. In 2008, Maffeis et. al. defined the first

operational semantics for JavaScript. The first mechanized semantics was JSCert (Bodin,

2014), a formalization of the JavaScript semantics in the Coq theorem-prover. The Coq

semantics have the benefit of being mechanized making them easier to work with without

making mistakes. However, using the semantics in theorem proving is still only semi-

automatic and requires a lot of human intervention. In 2015, Park et. al. modeled the

JavaScript semantics in the K-semantics framework. The K system automatically

generates a parser and model-checker for the semantics.

JavaScript is a very large language and formalizing the entire specification is a

huge undertaking. Furthermore, the formalized semantics, while being complete, would

not be tractable enough to implement in practice. These concerns prompted Guha et. al.

Page | 13

to take a different approach: defining a smaller language called lambda-JS with fewer

constructs and translating JavaScript into lambda-JS via a “desugaring process”.

Static Verification

Automatic program verification did not start being developed until later. A major

step forward in automatic JavaScript verification is the symbolic execution tool JaVerT

(JavaScript Verification Tool) (Fragoso Santos, 2019). JaVerT allows users to verify

precondition-postcondition properties similar to how one would with a proof-based

verification system. JaVerT is built on separation logic, an extension of Hoare Logic that

enables reasoning about programs that manipulate pointer values and more complex data

structures. JaVerT allows verification to be compositional—proven properties of

individual functions of a program can be combined into properties of the program as a

whole.

The verification of individual functions of a program is an important part of

verification, however the input-output policy specification limits JaVerT’s ability to

handle programs that, in theory, are designed to run indefinitely. Unfortunately, most web

programs are designed to handle various events and callbacks such as mouse clicks or

displaying information in real time which requires an execution thread to be alive

indefinitely.

Page | 14

Dynamic Policy Enforcement

Infrastructure for analyzing information flow through JavaScript programs has

been implemented by JSFlow (Hedin, 2014) and FlowFox (De Groef, 2012). JSFlow is

implemented as an extension to the Firefox web browser. FlowFox is implemented as a

modified Firefox browser.

Phung et. al. (2009) proposed a policy enforcement technique called lightweight

self-protecting JavaScript where a JavaScript program is modified before runtime to

monitor calls to built-in API functions. This technique exploits the fact that JavaScript

allows any code to redefine global variables. Since applications are given access to user’s

data via JavaScript API functions bound to variables, these API functions can be

“rewritten” to implement a desired security policy.

The desired policy is enforced via an inlining process that occurs after the

sensitive API functions are defined. Suppose the policy requires restricting access to the

function getPosition in the nav.geoloc object. Before any untrusted code is

executed, a reference to the original getPosition function is saved to be accessed

later by the enforcement code. The enforcement code is then defined as a JavaScript

function and assigned to the global variable nav.geoloc.getPosition overwriting

the reference to the original function. Upon invocation, this new function will check if the

calling the original sensitive API function will cause a policy violation. If not, execution

proceeds with the original invocation, otherwise the original invocation is blocked.

The benefits of self-protecting JavaScript are the ease of implementation and

small runtime overhead. The inlining code can be implemented in JavaScript itself and

Page | 15

injected into a website or hybrid mobile application by an additional script inclusion.

Unlike information flow, runtime overhead only occurs at the beginning of the execution

(to load the enforcement script) and when the untrusted code attempts to call a sensitive

API function.

However, the policies that are enforceable by self-protecting JavaScript are

limited when compared to other methods. No monitoring of the behavior of the untrusted

code is done apart from calls to API functions. This means information flow policies

cannot be enforced directly as it is not possible to track information as it is passed

between variables. The primary set of policies that can be handled are temporal policies

on the set of monitored API functions, which prompts the use of model checking to verify

the soundness of the enforcement. The next section discusses several strategies for

integrating model checking with JavaScript.

Proposed JavaScript Model Checking Framework

One of the main goals of this thesis was to develop a method of implementing

model checking for JavaScript. To our knowledge, there is no widely used existing tool

for validating JavaScript code using model checking. There are also many security

policies relevant to end-users that can be expressed as temporal properties. Users may

want to limit the frequency of certain actions to combat passive information gathering or

restrict reading and sending personal information. Temporal properties are also easily

enforced using lightweight self-protecting JavaScript, so interoperability between the

policy enforcement mechanism and the static policy validation method could be possible.

Page | 16

Since constructing a model checker from scratch would be time consuming,

instead a series of translators were built from JavaScript into other languages with

dedicated model checking tools. The following subsections discuss implementations of

translators to C and NuSMV as well as a strategy for encoding JavaScript programs and

temporal policies in Datalog.

Building such a translator requires overcoming two major hurdles. The first

challenge is deciding how much of the JavaScript syntax and semantics should be

supported by the translator. Enough of the language needs to be supported to be useful,

but supporting the entire language would be infeasible. The second challenge is

developing a method of formal abstraction for the translator, or a set of formal guidelines

that detail the amount and kinds of details that are preserved and discarded during the

translation.

JavaScript to C Translation

The C language is a good candidate for a target language because of its variety of

matured analysis tools such as CPAchecker. It is also much more expressive than general

purpose modeling languages such as Promela which were not designed to be executed as

normal programs. The C language is powerful enough to emulate key JavaScript features

like dynamic typing and IEEE-754 floating-point arithmetic. To take advantage of the

benefits of C, we have developed a prototype translator called JS2C which preserves the

semantics of the original JavaScript program as much as possible. More specific

information including code snippets can be found in Appendix A.

Page | 17

Dynamic typing is emulated in C by representing all possible JavaScript values

inside a structure called JSVar which contains type information in addition to the value

itself. Values of primitive types such as number and boolean in JavaScript are easily

mapped to instances of JSVar in C. Likewise, all JavaScript operators and functions are

mapped to C functions that operate on JSVar instances. Currently, only non-dynamic

primitive types are supported, but support for JavaScript objects and strings could be

supported in the future using the heap and careful memory management. First-class

functions could possibly be implemented using function pointers. More advanced

features like dynamic code generation and the eval construct might not be feasibly

supported.

JavaScript to NuSMV Translation

While translation to C would be more direct, making simplifications during the

translation is in many cases desirable because reducing complexity reduces the likelihood

of introducing errors. Additionally, if the code being analyzed is intended to be policy

enforcement code such as the code injected by self-protecting JavaScript, then support for

more complex JavaScript semantics might not even be necessary. Enforcement code

should only be constructed using simple language constructs anyway to avoid

complexity. The prototype JS2NuSMV translates JavaScript programs that follow precise

formatting guidelines into a representative NuSMV module.

Additionally, our code instruments the original JavaScript to bring the semantics

of the original program closer to the semantics of the NuSMV language. This is

Page | 18

accomplished by injecting calls to custom JavaScript to make sure that type checking or

arithmetic operators are performed correctly. For example, a call to a function opADD

will be substituted for each use of JavaScript’s addition operator. This function is less-

permissive than the addition operator performing only 32-bit signed integer arithmetic

and throwing an exception for invalid arguments. The modified JavaScript program could

then theoretically be deployed instead of the original written JavaScript for extra safety

guarantees at the cost of some runtime overhead.

This method provides the benefit of flexibility, but places heavy restrictions on

what constructs are allowed in a JavaScript input program. Features like dynamic typing,

floating-point arithmetic, and function calls are often difficult to implement in modeling

languages, and implementing dynamic code generation and eval seems practically

impossible.

Datalog Implementation

Implementing a translation from one syntax to another can be confusing and

inelegant. Another option is to encode information about JavaScript programs in Datalog,

a logic-programming language based on the concepts of facts and rules. A fact is a

construct of the form predicate(obj1, obj2, …) that specifies some relationship between

the objects in the parentheses. A rule specifies how to derive a fact given a set of other

facts. Given a set of initial facts and rules, Datalog will find all facts that can be derived

by repeated application of the rules.

Page | 19

Information about the reachability of program states can be encoded using a fact

path(s1, s2) which means that there exists a sequence of valid transitions from state s1

to state s2. The path predicate satisfies a transitive property that can be encoded as the

rule path(s1, s3) :- path(s1, s2), path(s2, s3).

The path predicate can be used to verify some temporal policies like the no-send-

after-read policy. First, the program statements need to be encoded as corresponding rules

involving path. Suppose in state 𝑠𝑠1, the program has just performed a “read” action while

in 𝑠𝑠2, the program has just performed a “send” action. Then the policy is violated if the

Datalog system is able to derive any such rule path(s1, s2). Appendix C includes an

example of how a specific program can be encoded and verified.

Automaton Encoding in JavaScript

One of the major challenges of formal verification is properly abstracting a

program written in a practical programming language such as JavaScript into a

mathematical model. Verifying properties on a general program requires dealing with the

complex semantics of the language in which it was written. However, if we turn our

focus away from policy verification to policy enforcement, the task becomes easier. This

section describes a method of generating self-protecting JavaScript enforcement code that

is correct with reasonable certainty.

Suppose that we want to enforce a temporal property that restricts access to a set

of global API functions. We will express the property as a transition system 𝐴𝐴 =

(𝑆𝑆,𝑀𝑀, 𝛿𝛿) where 𝑆𝑆 is a set of states, 𝑀𝑀 is the set of sensitive API functions that need to be

Page | 20

monitored, and 𝛿𝛿: 𝑆𝑆 × 𝑀𝑀 → 𝑆𝑆 ∪ {undefined} is a partial function mapping state-

transition pairs to next states. A sequence of method calls 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑛𝑛 starting from an

initial state 𝑠𝑠𝑖𝑖 is considered safe if 𝛿𝛿(⋯𝛿𝛿(𝛿𝛿(𝑠𝑠𝑖𝑖,𝑚𝑚1),𝑚𝑚2)⋯ ,𝑚𝑚𝑛𝑛) ≠ undefined.

We can enforce this temporal property onto untrusted code by using self-

protecting JavaScript. The enforcement code will keep track of the state of the program

as the untrusted code calls API functions. If the untrusted code attempts to take a

transition that does not exist, the enforcement code will block the call so that the security

state remains defined. Each call to an API function 𝑚𝑚 must be replaced with an

enforcement method that performs the following:

1. 𝑠𝑠’ ← 𝛿𝛿(𝑠𝑠,𝑚𝑚);

2. 𝑖𝑖𝑖𝑖(𝑠𝑠’ ≠ undefined) { 𝑠𝑠 ← 𝑠𝑠’; 𝑚𝑚(arguments); }

We can implement an automaton in JavaScript directly. If the number of security

states and monitored methods is finite and tractable, the states and transitions can be

encoded in JavaScript as string values and the transition function 𝛿𝛿 can be encoded as an

object delta where delta[“s”][“m”] evaluates to either a new state or

undefined. For example, a reduce-reset policy with six states and two transition

functions is easily representable:

var reduceResetAutomaton = {

 "initialstate": "5",

 "transitions": {

 "0": {"reset": "5"},

 "1": {"reduce": "0", "reset": "5"},

 "2": {"reduce": "1", "reset": "5"},

 "3": {"reduce": "2", "reset": "5"},

 "4": {"reduce": "3", "reset": "5"},

 "5": {"reduce": "4", "reset": "5"}

Page | 21

 }

};

The benefit of encoding the security policy directly in JavaScript is that the same

monitor code can be used for all security policies. This means that a proof of correctness

of the enforcement mechanism would come down to proving properties of a small

amount of fixed JavaScript code instead of general JavaScript programs.

Conclusion

A step toward the development of lightweight user-centered verification of

JavaScript is developing model checking support for JavaScript software. This paper

presented implementations of translators from JavaScript into C and NuSMV which

demonstrate the usefulness and feasibility applying model checking. Future work should

include the implementation of a full JavaScript model checking pipeline. Ideally, a single

tool would handle both the abstraction of JavaScript programs into models and the model

checking itself. However, the abstraction and validation processes could remain separate

components. Significant effort would need to be put into formalizing the abstraction of

JavaScript programs based on a mechanized JavaScript semantics. Additionally, there

will almost certainly be aspects of JavaScript that a model checking tool would not be

able to properly handle, so a rigorous specification of allowable input programs must also

be developed. Such a tool could become the basis for new information security standards

for the web based on demonstrable proof of policy adherence instead of trust of

adherence to legal obligations.

Page | 22

While significant progress has been made on language-based web security, our

ability to analyze the security of JavaScript and provide safety guarantees is still limited.

Static analysis tools like JaVerT are big steps forward, but still only have limited uses and

adoption. Information flow enforcement tools like JSFlow and FlowFox are good

demonstrations of the feasibility of information flow analysis for JavaScript. However,

significant runtime overhead and incompatibility with some webpages hinder their

potential for practical use. Lightweight runtime monitoring techniques such as Phung’s

self-protecting JavaScript are most likely able to provide the desired balance between

policy expressivity and efficiency. However, confidence of the soundness of the

implementation will only come with a close comparison with formal JavaScript

semantics. and a formalization of the enforcement code needs to be done to gain more

confidence that the enforcement is sound and tamper-proof. As technology improves and

more research is conducted, a workable solution to JavaScript security should come into

focus sometime in the near future.

Page | 23

References

Bodin, M., Charguéraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudziuniene, D.,

Schmitt, A., and Smith, G. A trusted mechanized JavaScript specification.

Conference Record of the Annual ACM Symposium on Principles of

Programming Languages (2014), 87-100.

Bugliesi, M., Calzavara, S., and Focardi, R. Formal methods for web security. Journal of

Logical and Algebraic Methods in Programming 87 (2017).

De Groef, W., Devriese, D., Nikiforakis, N., and Piessens, F. Flowfox : A web browser

with flexible and precise information flow control. In Proceedings of the 2012

ACM Conference on Computer and Communications Security (New York, NY,

USA, 2012), CCS ’12, Association for Computing Machinery, p. 748-759.

Fragoso Santos, J., Maksimovic, P., Sampaio, G., and Gardner, P. JaVerT 2.0:

compositional symbolic execution for JavaScript. Proceedings of the ACM on

Programming Languages 3, POPL (2019), 1-31.

Guha, A., Saftoiu, C., and Krishnamurthi, S. The essence of javascript. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics) 6183 LNCS (2010), 126-150.

Hedin, D., Birgisson, A., Bello, L., and Sabelfeld, A. JSFlow: Tracking information flow

in JavaScript and its APIs. Proceedings of the ACM Symposium on Applied

Computing (2014), 1663-1671.

Maffeis, S., Mitchell, J. C., and Taly, A. An Operational Semantics for JavaScript.

Advances in Parallel Computing 13, C (2008), 63-70.

Page | 24

Park, D., Stefnescu, A., and Rosu, G. KJS: A complete formal semantics of JavaScript.

Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI) 2015-June (2015), 346-356.

Phung, P. H., Reddy, R. S., Cap, S., Pierce, A., Mohanty, A., and Sridhar, M. A multi-

party, fine-grained permission and policy enforcement framework for hybrid

mobile applications. Journal of Computer Security 28, 3 (2020), 375-404.

Phung, P. H., Sands, D., and Chudnov, A. Lightweight self-protecting JavaScript.

Proceedings of the 4th International Symposium on Information, Computer and

Communications Security, ASI-ACCS’09 (2009), 47-60.

Pupo, A. L. S., Nicolay, J., and Boix, E. G. Guardia: Specification and enforcement of

JavaScript security policies without VM moditications. ACM International

Conference Proceeding Series (2018).

Taly, A., Erlingsson, U., Mitchell, J. C., Miller, M. S., and Nagra, J. Automated analysis

of security-critical JavaScript APIs. Proceedings – IEEE Symposium on Security

and Privacy (2011), 363-378.

Page | 25

Appendix A: JS2C Implementation Details

JS2C prepends its output C file with a prelude that emulates JavaScript’s

semantics with C structures and functions. Below is a sample of the constructs included.

// Numbers, Booleans, and undefined types are supported

enum JSType {JSnumber, JSboolean, JSundefined};

typedef union {

 double asNum;

 long asBool;

 unsigned long asHex;

} JSVal;

// A JavaScript type coupled with data

typedef struct {

 enum JSType type;

 JSVal val;

} JSVar;

// Common values are represented using macros

#define jsTrue ((JSVar){JSboolean, {.asBool = 1}})

// Implicit operations defined in the ECMAScript specification

// are implemented as C functions.

JSVar ToBoolean(JSVar v) {

 return ((v.type == JSboolean) ? v :

 (v.type == JSundefined) ? jsFalse :

 (v.val.asNum == 0.0) ? jsFalse :

 (ISNAN(v.val.asHex)) ? jsFalse :

 jsTrue);

}

// The semantics of JavaScript operators are emulated as C functions.

JSVar jsAND(JSVar x, JSVar y) {

 return (ToBoolean(x).val.asBool) ? y : x;

}

Page | 26

Appendix B: JS2NuSMV Implementation Details

JS2NuSMV prepends a prelude to the modified JavaScript program that redefines

common operators. Below is an example of the redefinition of the JavaScript addition “+”

operator to only perform signed 32-bit integer arithmetic:

function opADD(x, y) {

 if (!Number.isInteger(x) || !Number.isInteger(y))

 throw "Arguments must be integers";

 var result = x + y;

 if (result >= 2**31)

 result -= 2**32;

 else if (result < -(2**31))

 result += 2**32;

 return result;

}

Page | 27

Appendix C: Datalog Verification Details

The code below is a simple representation of enforcement code that implements a

no-send-after-read policy. The functions trySend and tryRead represent public API

functions exposed to the untrusted code while the functions send and read represent the

sensitive API functions that need to be monitored. The enforcement code acts as a

mediator between the untrusted and sensitive code bases.

var canSend = true;

function trySend() {

 if (canSend) send();

}

function tryRead() {

 canSend = false;

 read();

}

This enforcement code is modeled as the following Datalog program. The

program state is represented as a pair (𝑐𝑐, 𝑎𝑎) where 𝑐𝑐 ∈ {true, false} represents the value

of the canSend variable and 𝑎𝑎 ∈ {none, send, read} is the last sensitive API function that

was called. The predicate path(c1, a1, c2, a2) means there is a path from state (𝑐𝑐1, 𝑎𝑎1)

to state (𝑐𝑐2,𝑎𝑎2). The functions trySend and tryRead are each translated into a set of rules

that describe the action performed and the value of canSend after calling the function.

% start state is reachable

path(true, none, true, none). canSend

% models the behavior of trySend

path(true, A, true, send) :- path(true, none, true, A).

path(false, A, false, none) :- path(true, none, false, A).

Page | 28

% models the behavior of tryRead

path(C, A, false, read) :- path(true, none, C, A).

% transitive property

path(C1, A1, C3, A3) :- path(C1, A1, C2, A2),

 path(C2, A2, C3, A3).

The no-send-after-read policy is satisfied if and only if the query “path(C1, read,

C2, send)?” returns any facts. The presence of such a fact would mean that that a send

was performed after a read, and that these two states are reachable from the starting state.

Page | 29

Appendix D: Automaton-based Encoding Details

A temporal policy can be enforced in JavaScript by using self-protecting

JavaScript to inject a security automaton into a program. The security automaton is

represented as an object in JSON format. Below is an example of a reduce-reset

automaton that allows a “reduce” action to be performed a maximum of five consecutive

times before a “reset” action is taken.

var reduceResetAutomaton = {

 "initialstate": "5",

 "transitions": {

 "0": {"reset": "5"},

 "1": {"reduce": "0", "reset": "5"},

 "2": {"reduce": "1", "reset": "5"},

 "3": {"reduce": "2", "reset": "5"},

 "4": {"reduce": "3", "reset": "5"},

 "5": {"reduce": "4", "reset": "5"}

 }

};

The abstract transitions need to be associated with method calls in the JavaScript

program. This can be done by defining a transitionbindings object. When the untrusted

code calls a sensitive API function, the corresponding abstract transition is retrieved from

this object.

var transitionbindings = [

 {"object": api, "method": "sendSMS", "transition": "reduce"},

 {"object": window, "method": "handlereset", "transition": "reset"}

];

Finally, at the beginning of the program’s execution, the API functions need to be

rewritten as described by self-protecting JavaScript. This code rewrites each JavaScript

method in the transitionbindings. The new self-protecting methods transition the abstract

Page | 30

state in parallel with the execution of the concrete program and block sensitive API calls

if the corresponding abstract transition is not present.

function enforceAutomaton (automaton, transitionbindings) {

 var state = automaton.initialstate;

 var getMonitorFunction = function (transition) {

 return function (obj, func, args) {

 newstate = automaton.transitions[state][transition];

 if (newstate === undefined

 || !(newstate in automaton.transitions)) {

 console.log("MONITOR: transition not allowed.");

 return;

 }

 state = newstate;

 console.log("MONITOR: new state is " + state);

 func.apply(obj, args);

 };

 };

 for (binding of transitionbindings) {

 intercept(binding.object, binding.method,

 getMonitorFunction(binding.transition));

 }

}

	A Study on Formal Verification for JavaScript Software
	eCommons Citation

	TH_Rowland_Cover
	Honors Thesis

	TH_Rowland_Title
	TH_Rowland_TOC
	TH_Rowland_Pages
	Introduction
	Formal Methods Overview
	Proof-based Verification
	Model Checking
	State-space Exploration Beyond Model Checking
	Information Flow

	JavaScript & Web Security Survey
	Formalizing JavaScript Semantics
	Static Verification
	Dynamic Policy Enforcement

	Proposed JavaScript Model Checking Framework
	JavaScript to C Translation
	JavaScript to NuSMV Translation
	Datalog Implementation
	Automaton Encoding in JavaScript

	Conclusion
	References
	Appendix A: JS2C Implementation Details
	Appendix B: JS2NuSMV Implementation Details
	Appendix C: Datalog Verification Details
	Appendix D: Automaton-based Encoding Details

