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Abstract 
Information security is still a major problem for users of websites and hybrid mobile applications. While 
many apps and websites come with terms of service agreements between the developer and end user, there 
is no rigorous mechanism in place to ensure that these agreements are being followed. Formal methods can 
offer greater confidence that these policies are being followed, but there is currently no widely adopted tool 
that makes formal methods available for average consumers. After studying the current state-of-the-art in 
JavaScript policy enforcement and verification, this research proposes several new techniques for applying 
model checking to JavaScript that strikes a balance of low runtime overhead and fine-grained policy 
enforcement that other techniques do not achieve. 
 
 
 
Acknowledgements 
A big thank you to Dr. Phung for advising me throughout the year. 
 
 
 
 
 
 
 
 
 
 
 

 



Table of Contents 
 

 

Abstract Title Page 

Introduction 1 

Formal Methods Overview 3 

Proof-based Verification 4 

Model Checking 6 

State-space Exploration Beyond Model Checking 9 

Information Flow 10 

JavaScript & Web Security Survey 11 

Formalizing JavaScript Semantics 12 

Static Verification 13 

Dynamic Policy Enforcement 13 

Proposed JavaScript Model Checking Framework 15 

JavaScript to C Translation 16 

JavaScript to NuSMV Translation 17 

Datalog Implementation 18 

Automaton Encoding in JavaScript 19 

Conclusion 21 

References 23 

Appendix A: JS2C Implementation Details 25 

Appendix B: JS2NuSMV Implementation Details 26 

Appendix C: Datalog Verification Details 27 

Appendix D: Automaton-based Encoding Details 29 

 



Page | 1 

 

 

Introduction 

Web technologies have become essential to the proper functioning of our society. 

Websites and web applications are now the standard method of communicating for 

business and pleasure. Additionally, many commonly used web services are available as 

a hybrid mobile application, a smartphone app developed using web technologies. Mobile 

applications for many commonly used web services such as Gmail, Twitter, and 

Instagram are implemented as hybrid mobile applications because the majority of the 

code can be copied from the website implementation reducing the total amount of code 

that needs to be maintained. Furthermore, the advent of Node.js allowed even server-side 

code to be written in the same language as the front-end website code. 

The language in which the behavior of such web services is implemented is called 

JavaScript—a dynamic and permissive language that was not developed to tackle the 

security challenges it faces today. Its lack of security features and error checking makes it 

easy for the developer to overlook programming mistakes. Its complex and ill-defined 

specification makes it difficult for the consumer to read and analyze. JavaScript and web 

security have been the subject of much research since the language’s inception and the 

growth of the web, but no definitive solution to JavaScript's security problems has been 

implemented on a large scale. 

The current security standards for handling sensitive information on the web is the 

same as standards for handling physical property. Websites and hybrid mobile apps are 

expected to come with a privacy policy, an agreement between the software developer 
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and the end user about how the user’s information will be used. The privacy policy is 

enforced with threat of legal action upon violation. This security standard offers very 

little control to users over their own private information and device usage because legal 

restrictions can be and frequently are broken with little to no repercussions. 

Formal methods of software verification and enforcement offer promising tools 

for users to gain some level of confidence in the security of the software they use. But 

currently, the study and implementation of robust formal methods is confined to 

academic research and big industry. The aim of this work is to study the applicability of 

formal methods to JavaScript with the eventual goal of integrating formal methods into a 

tool for user-specified policy enforcement and verification. Additionally, several methods 

are proposed for providing simplistic model-checking support for JavaScript. There is 

little research studying the integration of model-checking with the web environment since 

it is traditionally studied in the context of embedded systems and electronic circuits. 

However, model-checking has the potential to verify simple security policies relevant to 

end-users. 

This thesis is being conducted within the Intelligent Systems Security Lab, whose 

research goals include offering software security and privacy solutions to average users. 

This thesis provides a survey of formal verification tools and techniques for JavaScript 

among other languages and discusses ways that a specific verification technique called 

model checking can be implemented for JavaScript. 
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Formal Methods Overview 

Formal methods or formal verification is the use of mathematical modeling and 

reasoning to prove that software always exhibits correct intended behavior and never 

unintended behavior. Many software insecurities arise from a mismatch between the 

behavior that developers expect the software to exhibit and the actual exhibited behavior 

of the final product. These mismatches can arise from either under-specification or 

mistakes in the implementation. Under-specification occurs when the programmer does 

not know the exact intended behavior of a software system. Often a programmer will not 

realize that certain behavior is undesirable until the program exhibits that behavior. This 

could cause the programmer to make arbitrary implementation choices in situations 

where the exact behavior of the system is assumed to be unimportant. Implementation 

mistakes arise when the programmer understands the intended behavior, but fails to write 

code that properly exhibits this behavior. This is often caused by a lack of understanding 

or assumptions made about the programming language’s proper semantics. 

The purpose of Formal Methods is to reduce or eliminate both of these sources of 

software mistakes. Under-specification can be avoided by using formal specification 

languages that require every possible input to the program to be properly considered, and 

implementation mistakes can be avoided by mathematically connecting the concrete 

program to an abstract specification. Formal methods achieve safety guarantees by 

relying on precise mathematical modeling and proof techniques. This requires 

traditionally informal concepts such as a “program” or “safety” to be represented in 
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formal, machine-readable language. Any system of formal software verification has three 

fundamental components: 

1. A formal language or modeling system for describing software programs. 

2. A formal language for expressing properties of programs. 

3. An algorithm that evaluates a program model against a property expressed in 

the formal property language. 

Since software programs are fundamentally just complex state transition systems, 

they are usually modeled as such. A transition system describes how a system in a given 

“current configuration” (i.e. current state), can evolve over time into other configurations 

via a set of predefined transitions. In a typical imperative programming language, the 

state of the program consists of the values assumed by all of its variables or the data 

stored in relevant sections of memory. The transitions would be the program statements 

themselves that describe how the state is modified over the course of an execution. 

Program properties, or policies, can be expressed in one of several ways 

depending on the verification method being used. Like programs, a property can simply 

be a transition system that defines the valid ways that the program is allowed to 

transition. However, properties can also be expressed in propositional or first-order logic, 

temporal logics, or as a set of reachable states among other methods. 

Proof-based Verification 

Proof-based verification is one of the two major branches of formal verification 

techniques. A proof-based verification technique is any technique where the program and 
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properties are represented as logical formulas. Verification under a proof-based modeling 

system means performing a logical deduction starting from the program’s formulas to the 

desired property. 

The most commonly used proof-based verification method for imperative 

programs is called Hoare Logic which encodes a program as a set of precondition-

statement-postcondition triples. A Hoare triple is a statement of the form {𝜙𝜙}𝐶𝐶{𝜓𝜓} where 

𝐶𝐶 is a program and 𝜙𝜙 and 𝜓𝜓 are logical formulas that express properties about the 

program state. The statement {𝜙𝜙}𝐶𝐶{𝜓𝜓} means “if condition 𝜙𝜙 holds before program 𝐶𝐶 is 

executed, then condition 𝜓𝜓 will hold after 𝐶𝐶 is executed.” For example, if skip 

represents a program that performs no action, then any Hoare triple {𝜙𝜙}𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝜙𝜙} will be 

true. As another example, suppose x := e; is a program that evaluates an expression e 

and stores the result in a variable x, then {𝜙𝜙[𝑥𝑥 → 𝑒𝑒]}𝑥𝑥 ≔ 𝑒𝑒; {𝜙𝜙} will be true (𝜙𝜙[𝑥𝑥 → 𝑒𝑒] 

represents the formula 𝜙𝜙 with all occurrences of 𝑥𝑥 replaced with 𝑒𝑒). 

In Hoare Logic, a property is a precondition-postcondition pair (𝜙𝜙,𝜓𝜓), and a 

proof that a program 𝑃𝑃 satisfies the property is a derivation of the statement {𝜙𝜙}𝑃𝑃{𝜓𝜓}. 

This derivation is constructed by breaking down 𝑃𝑃 into smaller programs, constructing 

proofs for each subprogram, and combining the resulting proofs into a single program for 

𝑃𝑃. For example, suppose 𝑃𝑃 = 𝑠𝑠1; 𝑠𝑠2 is a program that executes the two statements 𝑠𝑠1 and 

𝑠𝑠2 in sequence. Then we could derive {𝜙𝜙}𝑠𝑠1; 𝑠𝑠2{𝜓𝜓} if we had Hoare triples {𝜙𝜙}𝑠𝑠1{𝜈𝜈} and 

{𝜈𝜈}𝑠𝑠2{𝜓𝜓} where 𝜈𝜈 is some intermediate condition. 
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Proof-based verification offers the benefits of being direct and flexible. Programs 

don’t need to undergo significant translation in order to reason about them. Hoare logic 

can directly reason about common programming constructs such as if-statements and 

while-loops which eliminates errors from being introduced during translation. However, 

proof-based verification is also difficult to automate. As with proofs in other areas of 

math, it is not trivial to determine how to combine the atomic propositions to reach the 

desired conclusion. 

Model Checking 

The other major branch of formal verification is model-based verification where 

the program is transformed into some abstract model (usually a state-transition system) 

before verification. Model Checking is a particular method of model-based verification, 

but it is general enough to be representative of the entire model-based strategy, so this 

thesis will largely omit discussion of other model-based methods. 

Model Checking is a formal verification system that verifies temporal properties 

against a program represented as a finite-state transition system. There is no single 

standard way to encode programs as transition systems. One such encoding is called a 

Kripke structure, a triple (𝑆𝑆,𝑅𝑅, 𝐼𝐼) where 𝑆𝑆 is a set of program states and 𝐼𝐼 is a mapping 

from states to sets of atomic propositions. 𝑅𝑅 ⊆ 𝑆𝑆 × 𝑆𝑆 is the transition relation that 

specifies which states the program can evolve into from the current state. For 

deterministic programs, 𝑅𝑅 can be a function 𝑆𝑆 → 𝑆𝑆. A program can also be modeled as a 

labeled transition system (𝑆𝑆,𝐴𝐴𝐴𝐴𝐴𝐴,→) where 𝑆𝑆 is the set of states, 𝐴𝐴𝐴𝐴𝐴𝐴 is a set of actions 
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that can be taken by a program. The arrow →⊆ 𝑆𝑆 × 𝐴𝐴𝐴𝐴𝐴𝐴 × 𝑆𝑆 is a three-way relation that 

describes which states evolve into which other states when some action is performed. 

The power of model checkers comes from their ability to verify policies written in 

a temporal logic. A temporal property is a restriction on the order in which states can be 

reached. A simple example of a temporal property is a no-send-after-read property which 

says that if the program performs some “read” action (such as fetching information from 

the user’s photo album or contacts list), then the program is not allowed to subsequently 

perform a “send” action (such as transmitting data to a remote server). More formally a 

temporal property restricts which traces a program is allowed to step through. A valid 

trace or path is an infinite sequence of states 𝑠𝑠1, 𝑠𝑠2, … such that for each pair of adjacent 

states 𝑠𝑠𝑖𝑖, 𝑠𝑠𝑖𝑖+1, there is a valid transition from 𝑠𝑠𝑖𝑖 to 𝑠𝑠𝑖𝑖+1 in the transition relation. 

Temporal properties can be expressed in two main formalisms. The first is linear-

temporal logic (LTL), an extension of first-order logic that includes constructs for 

reasoning about changing properties over time. These two constructs are the X and U 

operators. If 𝜙𝜙 and 𝜓𝜓 are LTL formulas, then 𝑋𝑋 𝜓𝜓 means 𝜓𝜓 is true for every possible next 

state of the system, and 𝜙𝜙 𝑈𝑈 𝜓𝜓 means that 𝜙𝜙 remains true at least until the system reaches 

a state where 𝜓𝜓 is true. Other temporal operators can be defined in terms of these two 

constructs such as 𝐺𝐺 𝜓𝜓 meaning “𝜓𝜓 will always (globally) be true” and 𝐹𝐹 𝜓𝜓 meaning “𝜓𝜓 

is guaranteed to eventually be true after a finite number of transitions”. Linear temporal 

logic is the property language used by the SPIN model checker discussed below. 

The other temporal logic is computation tree logic (CTL) which introduces trace 

quantifiers A (for all traces) and E (there exists a trace) in addition to the X and U 
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operators. These quantifiers allow for expressing that it is possible for some property to 

be true, but the execution of the program might not follow the trace that holds that 

property. In CTL, a trace quantifier or a temporal operator cannot stand by itself. CTL 

can express properties about “every state in every trace” or “every state in at least one 

trace”, but does not allow for reasoning about “every trace” directly. CTL is the temporal 

language used by the NuSMV model checker. 

Because there are many languages that may need model checking, popular 

general-purpose model checkers generally implement model checking on a simpler 

custom language called a modeling language. To use a general-purpose model checker, a 

developer would need to translate their program from the language in which it was 

written into the modeling language of the model checker. SPIN and NuSMV are both 

general purpose model checkers that follow this design philosophy. SPIN (which stands 

for Simple Promela Interpreter) operates on C-inspired meta-language called Promela. 

SPIN is useful for verifying properties of concurrent programs because of Promela’s 

built-in support for processes. The input language for NuSMV is much closer to a direct 

specification language for finite-state machines which makes NuSMV less amenable to 

software-verification than SPIN. However, NuSMV makes up for it in speed, support for 

CTL logic in addition to LTL, and more advanced model checking techniques such as 

bounded model checking. 

There are, however, model checking tools available for widely used practical 

programming languages. CPAchecker is a hybrid tool for model-checking and dataflow 

analysis (discussed below) that operates directly on the C language. Policies are specified 
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using LTL or a policy automaton. Java PathFinder is a similar tool for Java. These tools 

must deal with aspects of real programming languages such as floating-point arithmetic, 

dynamically-sized data structures, and pointer manipulation that most general-purpose 

model checkers intentionally avoid. Consequently, they run slower and produce more 

confusing failure analysis. 

State-space Exploration Beyond Model Checking 

While model checking encapsulates most other verification techniques centered 

around traversing the program’s state-space, the simplifications made by other techniques 

are worth mentioning. These other techniques are not applicable for verifying temporal 

properties, only for determining reachability of a state or set of states from the program’s 

starting state. 

A dataflow analysis requires states to be expressed as a tuple of values 

(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) which represent variable bindings. Dataflow simplifies the state-space 

search by eliminating information about how the fields of the state relate to each other. 

Specifically, if a variable 𝑥𝑥𝑖𝑖 assumes a value 𝑣𝑣𝑖𝑖 in some reachable state 𝑠𝑠1, and a variable 

𝑥𝑥𝑗𝑗 assumes 𝑣𝑣𝑗𝑗  in some other reachable state 𝑠𝑠2, then a dataflow analysis will assume that 

there is some reachable state where both 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 assume those values simultaneously. 

Instead of maintaining a set of reachable states, the algorithm only needs to maintain a 

much smaller set of reachable values for each variable. This dodges the state-space 

explosion problem that model checking has because the amount of memory needed to 
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store the set of reachable states is now linear instead of exponential in the number of 

variables. 

Symbolic execution is more directly geared toward analyzing software programs 

than model checking. A symbolic executor will interpret a program by initializing 

program variables to symbolic values. When operations are performed on these symbolic 

values, the computations that would be performed are simply saved in the form of a 

mathematical expression. When the symbolic execution is complete, state-reachability 

properties can be verified by analyzing the resulting expressions for each program 

variable. 

Information Flow 

With regard to information privacy in particular, policies often need to talk about 

the history of a piece of data, not just its contents. An information-flow policy restricts 

the actions a program can perform on a piece of data based on the history of function 

calls and computations that generated the data. For example, the standard web 

environment provides a JavaScript API function getcurrentposition that asks the 

browser to determine the current geolocation coordinates of the device using GPS or 

other means. Apps and websites often passively collect geolocation coordinates just for 

information gathering purposes. The user might want to block this passive collection 

while allowing the coordinates to be used for desired tasks such as navigation in a Maps 

application. 
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Information-flow properties of a program can be verified statically using a form 

of abstract interpretation, but currently it is more common to guarantee safety by 

enforcing information-flow such policies at runtime. Enforcement usually involves 

modification of the runtime environment or heavy instrumentation of the program code. 

While information-flow policies are very expressive and relevant to most users, runtime 

enforcement usually entails significant overhead. The most common way of enforcing 

information-flow is a technique called secure multi-execution which, as the name implies, 

requires executing the program multiple times concurrently causing the program to run at 

least several times slower. 

The significant enforcement overhead is required since information flow policies 

are, in general, more fine-grained than temporal policies. Enforcing a no-send-after-read 

policy is one way of making sure information does not leak out of a program, but since 

any send after any read is blocked, plenty of benign “send” actions will also be blocked 

despite not containing any sensitive information. Information flow policies can often 

express more accurately the precise behaviors that the user wants to allow and block 

without over- or undercompensating. 

JavaScript & Web Security Survey 

Here, we examine the current state-of-the-art verification tools for JavaScript that 

make use of the formal verification techniques discussed above. Most work in JavaScript 

language-based security can be categorized into one of three categories. Formalizing the 

semantics of JavaScript means mathematically describing the precise procedure for the 
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execution of a JavaScript program which has been hitherto informal. Proper formalization 

of the language semantics provides the groundwork for the other two methods of static 

policy verification and dynamic policy enforcement. 

Formalizing JavaScript Semantics 

Any solid verification framework must be based on a precise, formal 

understanding of the execution of a program. Unfortunately, JavaScript interpreters were 

built ad-hoc, so their behavior is not fully understood. JavaScript’s runtime semantics are 

described informally as the ECMAScript specification, but this specification is lengthy 

and includes ambiguities. Therefore, the past two decades have seen a number of 

attempts to formalize the semantics of JavaScript. In 2008, Maffeis et. al. defined the first 

operational semantics for JavaScript. The first mechanized semantics was JSCert (Bodin, 

2014), a formalization of the JavaScript semantics in the Coq theorem-prover. The Coq 

semantics have the benefit of being mechanized making them easier to work with without 

making mistakes. However, using the semantics in theorem proving is still only semi-

automatic and requires a lot of human intervention. In 2015, Park et. al. modeled the 

JavaScript semantics in the K-semantics framework. The K system automatically 

generates a parser and model-checker for the semantics. 

JavaScript is a very large language and formalizing the entire specification is a 

huge undertaking. Furthermore, the formalized semantics, while being complete, would 

not be tractable enough to implement in practice. These concerns prompted Guha et. al. 
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to take a different approach: defining a smaller language called lambda-JS with fewer 

constructs and translating JavaScript into lambda-JS via a “desugaring process”. 

Static Verification  

Automatic program verification did not start being developed until later. A major 

step forward in automatic JavaScript verification is the symbolic execution tool JaVerT 

(JavaScript Verification Tool) (Fragoso Santos, 2019). JaVerT allows users to verify 

precondition-postcondition properties similar to how one would with a proof-based 

verification system. JaVerT is built on separation logic, an extension of Hoare Logic that 

enables reasoning about programs that manipulate pointer values and more complex data 

structures. JaVerT allows verification to be compositional—proven properties of 

individual functions of a program can be combined into properties of the program as a 

whole. 

The verification of individual functions of a program is an important part of 

verification, however the input-output policy specification limits JaVerT’s ability to 

handle programs that, in theory, are designed to run indefinitely. Unfortunately, most web 

programs are designed to handle various events and callbacks such as mouse clicks or 

displaying information in real time which requires an execution thread to be alive 

indefinitely. 
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Dynamic Policy Enforcement 

Infrastructure for analyzing information flow through JavaScript programs has 

been implemented by JSFlow (Hedin, 2014) and FlowFox (De Groef, 2012). JSFlow is 

implemented as an extension to the Firefox web browser. FlowFox is implemented as a 

modified Firefox browser. 

Phung et. al. (2009) proposed a policy enforcement technique called lightweight 

self-protecting JavaScript where a JavaScript program is modified before runtime to 

monitor calls to built-in API functions. This technique exploits the fact that JavaScript 

allows any code to redefine global variables. Since applications are given access to user’s 

data via JavaScript API functions bound to variables, these API functions can be 

“rewritten” to implement a desired security policy. 

The desired policy is enforced via an inlining process that occurs after the 

sensitive API functions are defined. Suppose the policy requires restricting access to the 

function getPosition in the nav.geoloc object. Before any untrusted code is 

executed, a reference to the original getPosition function is saved to be accessed 

later by the enforcement code. The enforcement code is then defined as a JavaScript 

function and assigned to the global variable nav.geoloc.getPosition overwriting 

the reference to the original function. Upon invocation, this new function will check if the 

calling the original sensitive API function will cause a policy violation. If not, execution 

proceeds with the original invocation, otherwise the original invocation is blocked. 

The benefits of self-protecting JavaScript are the ease of implementation and 

small runtime overhead. The inlining code can be implemented in JavaScript itself and 
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injected into a website or hybrid mobile application by an additional script inclusion. 

Unlike information flow, runtime overhead only occurs at the beginning of the execution 

(to load the enforcement script) and when the untrusted code attempts to call a sensitive 

API function. 

However, the policies that are enforceable by self-protecting JavaScript are 

limited when compared to other methods. No monitoring of the behavior of the untrusted 

code is done apart from calls to API functions. This means information flow policies 

cannot be enforced directly as it is not possible to track information as it is passed 

between variables. The primary set of policies that can be handled are temporal policies 

on the set of monitored API functions, which prompts the use of model checking to verify 

the soundness of the enforcement. The next section discusses several strategies for 

integrating model checking with JavaScript. 

Proposed JavaScript Model Checking Framework 

One of the main goals of this thesis was to develop a method of implementing 

model checking for JavaScript. To our knowledge, there is no widely used existing tool 

for validating JavaScript code using model checking. There are also many security 

policies relevant to end-users that can be expressed as temporal properties. Users may 

want to limit the frequency of certain actions to combat passive information gathering or 

restrict reading and sending personal information. Temporal properties are also easily 

enforced using lightweight self-protecting JavaScript, so interoperability between the 

policy enforcement mechanism and the static policy validation method could be possible. 
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Since constructing a model checker from scratch would be time consuming, 

instead a series of translators were built from JavaScript into other languages with 

dedicated model checking tools. The following subsections discuss implementations of 

translators to C and NuSMV as well as a strategy for encoding JavaScript programs and 

temporal policies in Datalog.  

Building such a translator requires overcoming two major hurdles. The first 

challenge is deciding how much of the JavaScript syntax and semantics should be 

supported by the translator. Enough of the language needs to be supported to be useful, 

but supporting the entire language would be infeasible. The second challenge is 

developing a method of formal abstraction for the translator, or a set of formal guidelines 

that detail the amount and kinds of details that are preserved and discarded during the 

translation. 

JavaScript to C Translation 

The C language is a good candidate for a target language because of its variety of 

matured analysis tools such as CPAchecker. It is also much more expressive than general 

purpose modeling languages such as Promela which were not designed to be executed as 

normal programs. The C language is powerful enough to emulate key JavaScript features 

like dynamic typing and IEEE-754 floating-point arithmetic. To take advantage of the 

benefits of C, we have developed a prototype translator called JS2C which preserves the 

semantics of the original JavaScript program as much as possible. More specific 

information including code snippets can be found in Appendix A. 
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Dynamic typing is emulated in C by representing all possible JavaScript values 

inside a structure called JSVar which contains type information in addition to the value 

itself. Values of primitive types such as number and boolean in JavaScript are easily 

mapped to instances of JSVar in C. Likewise, all JavaScript operators and functions are 

mapped to C functions that operate on JSVar instances. Currently, only non-dynamic 

primitive types are supported, but support for JavaScript objects and strings could be 

supported in the future using the heap and careful memory management. First-class 

functions could possibly be implemented using function pointers. More advanced 

features like dynamic code generation and the eval construct might not be feasibly 

supported. 

JavaScript to NuSMV Translation 

While translation to C would be more direct, making simplifications during the 

translation is in many cases desirable because reducing complexity reduces the likelihood 

of introducing errors. Additionally, if the code being analyzed is intended to be policy 

enforcement code such as the code injected by self-protecting JavaScript, then support for 

more complex JavaScript semantics might not even be necessary. Enforcement code 

should only be constructed using simple language constructs anyway to avoid 

complexity. The prototype JS2NuSMV translates JavaScript programs that follow precise 

formatting guidelines into a representative NuSMV module. 

Additionally, our code instruments the original JavaScript to bring the semantics 

of the original program closer to the semantics of the NuSMV language. This is 
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accomplished by injecting calls to custom JavaScript to make sure that type checking or 

arithmetic operators are performed correctly. For example, a call to a function opADD 

will be substituted for each use of JavaScript’s addition operator. This function is less-

permissive than the addition operator performing only 32-bit signed integer arithmetic 

and throwing an exception for invalid arguments. The modified JavaScript program could 

then theoretically be deployed instead of the original written JavaScript for extra safety 

guarantees at the cost of some runtime overhead. 

This method provides the benefit of flexibility, but places heavy restrictions on 

what constructs are allowed in a JavaScript input program. Features like dynamic typing, 

floating-point arithmetic, and function calls are often difficult to implement in modeling 

languages, and implementing dynamic code generation and eval seems practically 

impossible. 

Datalog Implementation 

Implementing a translation from one syntax to another can be confusing and 

inelegant. Another option is to encode information about JavaScript programs in Datalog, 

a logic-programming language based on the concepts of facts and rules. A fact is a 

construct of the form predicate(obj1, obj2, …) that specifies some relationship between 

the objects in the parentheses. A rule specifies how to derive a fact given a set of other 

facts. Given a set of initial facts and rules, Datalog will find all facts that can be derived 

by repeated application of the rules. 
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Information about the reachability of program states can be encoded using a fact 

path(s1, s2) which means that there exists a sequence of valid transitions from state s1 

to state s2. The path predicate satisfies a transitive property that can be encoded as the 

rule path(s1, s3) :- path(s1, s2), path(s2, s3). 

The path predicate can be used to verify some temporal policies like the no-send-

after-read policy. First, the program statements need to be encoded as corresponding rules 

involving path. Suppose in state 𝑠𝑠1, the program has just performed a “read” action while 

in 𝑠𝑠2, the program has just performed a “send” action. Then the policy is violated if the 

Datalog system is able to derive any such rule path(s1, s2). Appendix C includes an 

example of how a specific program can be encoded and verified. 

Automaton Encoding in JavaScript  

One of the major challenges of formal verification is properly abstracting a 

program written in a practical programming language such as JavaScript into a 

mathematical model. Verifying properties on a general program requires dealing with the 

complex semantics of the language in which it was written. However, if we turn our 

focus away from policy verification to policy enforcement, the task becomes easier. This 

section describes a method of generating self-protecting JavaScript enforcement code that 

is correct with reasonable certainty. 

Suppose that we want to enforce a temporal property that restricts access to a set 

of global API functions. We will express the property as a transition system 𝐴𝐴 =

(𝑆𝑆,𝑀𝑀, 𝛿𝛿) where 𝑆𝑆 is a set of states, 𝑀𝑀 is the set of sensitive API functions that need to be 
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monitored, and 𝛿𝛿: 𝑆𝑆 × 𝑀𝑀 → 𝑆𝑆 ∪ {undefined} is a partial function mapping state-

transition pairs to next states. A sequence of method calls 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑛𝑛 starting from an 

initial state 𝑠𝑠𝑖𝑖 is considered safe if 𝛿𝛿(⋯𝛿𝛿(𝛿𝛿(𝑠𝑠𝑖𝑖,𝑚𝑚1),𝑚𝑚2)⋯ ,𝑚𝑚𝑛𝑛) ≠ undefined. 

We can enforce this temporal property onto untrusted code by using self-

protecting JavaScript. The enforcement code will keep track of the state of the program 

as the untrusted code calls API functions. If the untrusted code attempts to take a 

transition that does not exist, the enforcement code will block the call so that the security 

state remains defined. Each call to an API function 𝑚𝑚 must be replaced with an 

enforcement method that performs the following: 

1. 𝑠𝑠’ ← 𝛿𝛿(𝑠𝑠,𝑚𝑚); 

2. 𝑠𝑠𝑖𝑖(𝑠𝑠’ ≠ undefined) { 𝑠𝑠 ←  𝑠𝑠’;  𝑚𝑚(arguments); } 

We can implement an automaton in JavaScript directly. If the number of security 

states and monitored methods is finite and tractable, the states and transitions can be 

encoded in JavaScript as string values and the transition function 𝛿𝛿 can be encoded as an 

object delta where delta[“s”][“m”] evaluates to either a new state or 

undefined. For example, a reduce-reset policy with six states and two transition 

functions is easily representable: 

var reduceResetAutomaton = { 

    "initialstate": "5", 

    "transitions": { 

        "0": {"reset": "5"}, 

        "1": {"reduce": "0", "reset": "5"}, 

        "2": {"reduce": "1", "reset": "5"}, 

        "3": {"reduce": "2", "reset": "5"}, 

        "4": {"reduce": "3", "reset": "5"}, 

        "5": {"reduce": "4", "reset": "5"} 
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    } 

}; 

 

The benefit of encoding the security policy directly in JavaScript is that the same 

monitor code can be used for all security policies. This means that a proof of correctness 

of the enforcement mechanism would come down to proving properties of a small 

amount of fixed JavaScript code instead of general JavaScript programs. 

Conclusion  

A step toward the development of lightweight user-centered verification of 

JavaScript is developing model checking support for JavaScript software. This paper 

presented implementations of translators from JavaScript into C and NuSMV which 

demonstrate the usefulness and feasibility applying model checking. Future work should 

include the implementation of a full JavaScript model checking pipeline. Ideally, a single 

tool would handle both the abstraction of JavaScript programs into models and the model 

checking itself. However, the abstraction and validation processes could remain separate 

components. Significant effort would need to be put into formalizing the abstraction of 

JavaScript programs based on a mechanized JavaScript semantics. Additionally, there 

will almost certainly be aspects of JavaScript that a model checking tool would not be 

able to properly handle, so a rigorous specification of allowable input programs must also 

be developed. Such a tool could become the basis for new information security standards 

for the web based on demonstrable proof of policy adherence instead of trust of 

adherence to legal obligations. 
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While significant progress has been made on language-based web security, our 

ability to analyze the security of JavaScript and provide safety guarantees is still limited. 

Static analysis tools like JaVerT are big steps forward, but still only have limited uses and 

adoption. Information flow enforcement tools like JSFlow and FlowFox are good 

demonstrations of the feasibility of information flow analysis for JavaScript. However, 

significant runtime overhead and incompatibility with some webpages hinder their 

potential for practical use. Lightweight runtime monitoring techniques such as Phung’s 

self-protecting JavaScript are most likely able to provide the desired balance between 

policy expressivity and efficiency. However, confidence of the soundness of the 

implementation will only come with a close comparison with formal JavaScript 

semantics. and a formalization of the enforcement code needs to be done to gain more 

confidence that the enforcement is sound and tamper-proof. As technology improves and 

more research is conducted, a workable solution to JavaScript security should come into 

focus sometime in the near future. 
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Appendix A: JS2C Implementation Details 

JS2C prepends its output C file with a prelude that emulates JavaScript’s 

semantics with C structures and functions. Below is a sample of the constructs included. 

 

// Numbers, Booleans, and undefined types are supported 

enum JSType {JSnumber, JSboolean, JSundefined}; 

 

typedef union { 

    double asNum; 

    long asBool; 

    unsigned long asHex; 

} JSVal; 

 

// A JavaScript type coupled with data 

typedef struct { 

    enum JSType type; 

    JSVal val; 

} JSVar; 

 

// Common values are represented using macros 

#define jsTrue ((JSVar){JSboolean, {.asBool = 1}}) 

 

// Implicit operations defined in the ECMAScript specification 

// are implemented as C functions. 

JSVar ToBoolean(JSVar v) { 

    return ((v.type == JSboolean) ? v : 

            (v.type == JSundefined) ? jsFalse : 

            (v.val.asNum == 0.0) ? jsFalse : 

            (ISNAN(v.val.asHex)) ? jsFalse : 

            jsTrue); 

} 

 

// The semantics of JavaScript operators are emulated as C functions. 

JSVar jsAND(JSVar x, JSVar y) { 

    return (ToBoolean(x).val.asBool) ? y : x; 

} 
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Appendix B: JS2NuSMV Implementation Details 

JS2NuSMV prepends a prelude to the modified JavaScript program that redefines 

common operators. Below is an example of the redefinition of the JavaScript addition “+” 

operator to only perform signed 32-bit integer arithmetic: 

function opADD(x, y) { 

    if (!Number.isInteger(x) || !Number.isInteger(y)) 

        throw "Arguments must be integers"; 

    var result = x + y; 

    if (result >= 2**31) 

        result -= 2**32; 

    else if (result < -(2**31)) 

        result += 2**32; 

    return result; 

} 
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Appendix C: Datalog Verification Details 

The code below is a simple representation of enforcement code that implements a 

no-send-after-read policy. The functions trySend and tryRead represent public API 

functions exposed to the untrusted code while the functions send and read represent the 

sensitive API functions that need to be monitored. The enforcement code acts as a 

mediator between the untrusted and sensitive code bases. 

var canSend = true; 

 

function trySend() { 

    if (canSend) send(); 

} 

 

function tryRead() { 

    canSend = false; 

    read(); 

} 

This enforcement code is modeled as the following Datalog program. The 

program state is represented as a pair (𝐴𝐴, 𝑎𝑎) where 𝐴𝐴 ∈ {true, false} represents the value 

of the canSend variable and 𝑎𝑎 ∈ {none, send, read} is the last sensitive API function that 

was called. The predicate path(c1, a1, c2, a2) means there is a path from state (𝐴𝐴1, 𝑎𝑎1) 

to state (𝐴𝐴2,𝑎𝑎2). The functions trySend and tryRead are each translated into a set of rules 

that describe the action performed and the value of canSend after calling the function. 

 

% start state is reachable 

path(true, none, true, none). canSend 

 

% models the behavior of trySend 

path(true, A, true, send) :- path(true, none, true, A). 

path(false, A, false, none) :- path(true, none, false, A). 
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% models the behavior of tryRead 

path(C, A, false, read) :- path(true, none, C, A). 

 

% transitive property 

path(C1, A1, C3, A3) :- path(C1, A1, C2, A2), 

                        path(C2, A2, C3, A3). 
 

 

The no-send-after-read policy is satisfied if and only if the query “path(C1, read, 

C2, send)?” returns any facts. The presence of such a fact would mean that that a send 

was performed after a read, and that these two states are reachable from the starting state. 
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Appendix D: Automaton-based Encoding Details 

A temporal policy can be enforced in JavaScript by using self-protecting 

JavaScript to inject a security automaton into a program. The security automaton is 

represented as an object in JSON format. Below is an example of a reduce-reset 

automaton that allows a “reduce” action to be performed a maximum of five consecutive 

times before a “reset” action is taken. 

var reduceResetAutomaton = { 

    "initialstate": "5", 

    "transitions": { 

        "0": {"reset": "5"}, 

        "1": {"reduce": "0", "reset": "5"}, 

        "2": {"reduce": "1", "reset": "5"}, 

        "3": {"reduce": "2", "reset": "5"}, 

        "4": {"reduce": "3", "reset": "5"}, 

        "5": {"reduce": "4", "reset": "5"} 

    } 

}; 

 

The abstract transitions need to be associated with method calls in the JavaScript 

program. This can be done by defining a transitionbindings object. When the untrusted 

code calls a sensitive API function, the corresponding abstract transition is retrieved from 

this object. 

 

var transitionbindings = [ 

    {"object": api, "method": "sendSMS", "transition": "reduce"}, 

    {"object": window, "method": "handlereset", "transition": "reset"} 

]; 

 

Finally, at the beginning of the program’s execution, the API functions need to be 

rewritten as described by self-protecting JavaScript. This code rewrites each JavaScript 

method in the transitionbindings. The new self-protecting methods transition the abstract 
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state in parallel with the execution of the concrete program and block sensitive API calls 

if the corresponding abstract transition is not present. 

 

function enforceAutomaton (automaton, transitionbindings) { 

    var state = automaton.initialstate; 

 

    var getMonitorFunction = function (transition) { 

        return function (obj, func, args) { 

            newstate = automaton.transitions[state][transition]; 

            if (newstate === undefined 

            || !(newstate in automaton.transitions)) { 

                console.log("MONITOR: transition not allowed."); 

                return; 

            } 

            state = newstate; 

            console.log("MONITOR: new state is " + state); 

            func.apply(obj, args); 

        }; 

    }; 

 

    for (binding of transitionbindings) { 

        intercept(binding.object, binding.method, 

                  getMonitorFunction(binding.transition)); 

    } 

} 
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