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Abstract 
Over 80% of the Earth’s surface is exposed to seasonal cold temperatures less than 5.0oC. Ectotherms 
implement a variety of strategies to survive seasonal, or permanent, cold exposure. Some of the most 
common overwintering strategies are migration, hibernation, and freeze avoiding behavior. However, 
freeze tolerance is a minority choice among ectotherms. This strategy permits organisms to survive 
between 50.0 to 70.0% of their total body water volumes frozen primarily in extracellular spaces for up to 
several months at a time. Freeze tolerant organisms undergo minimal supercooling of their body fluids to 
ensure ice formation is slow and produce a wide variety of specific proteins to control the size of ice 
crystals forming in the body. Freezing gives rise to severe physiological stressors which must be mitigated 
in order to survive freezing and thawing. While freeze tolerance is not fully understood, a growing body of 
evidence highlights several core tenants of this complex physiological process. When a non-freeze tolerant 
organism freezes, osmotic stress caused by the removal of pure water to form ice crystals in the 
extracellular fluid causes cells to shrink. As ice crystals thaw, water is rapidly reintroduced into the 
extracellular fluid causing local hypotonicity. Consequently, cells experience a rapid influx of water 
molecules, inducing acute cell swelling which progresses and ultimately causes cell lysis which leads to 
irreparable damage to an organism’s tissues and organs. Many freeze-tolerant animals combat dehydration 
stress by the seasonal accumulation or rapid mobilization at ice-nucleation of colligative cryoprotectants 
that diffuse across cell membranes through specific integral transmembrane proteins in order to limit 
cellular volume changes. Cope’s gray treefrog, Dryophytes chrysocelis, is a treefrog capable of freezing 
65% of its total body water content for extended periods of time during harsh winter months. This treefrog 
is unique because it is the only known freeze-tolerant anuran which mobilizes glycerol as a cryoprotectant. 
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Glycerol diffuses moves across cell membranes through integral transmembrane protein channels called 
aquaglyceroporins. This thesis presents a comprehensive literature review which focuses primarily on 
proposed cellular mechanisms that mitigate dehydration stress caused by the formation of pure ice crystals, 
as well as anoxic and oxidative stresses caused by freezing-induced ischemia and subsequent blood 
reperfusion during thawing. This thesis also proposes further research to elucidate vital information about 
the mechanisms permitting D. chrysoscelis’ freeze tolerance. Finally, the biomedical application of human 
organ and tissue cryopreservation is discussed, and an argument is presented that glycerol may be a 
superior cryoprotectant to use in future cryopreservation studies.  
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I. Introduction 
Cold weather exposes organisms to severe physiological stressors that must be 

mitigated with naturally developed mechanisms. Surviving in the cold must be a priority 

for many organisms as more than 80% of the Earth’s surface is exposed to seasonal 

and/or permanent temperatures of less than 5oC (Maayer, 2014). Ectothermic animals 

survive cold temperatures by utilizing behavioral avoidance, freeze avoidance, or freeze 

tolerance – the general tenants of these behaviors are shown in Figure 1 (Sømme, 1999; 

Storey, 2006; Voituron et al., 2009; Lee, 2010; Storey & Storey, 2017; Toxopeus, 2018). 

Behavioral avoidance requires an organism taking action to avoid prolonged cold 

exposure by migrating, hibernating, or burrowing (Storey & Storey, 2017; Toxopeus, 

2018), while freeze avoidance involves an organisms’ mechanistic reaction to sensing 

cold temperatures which may include: supercooling, cryoprotective dehydration, and 

vitrification (depressing freezing point of body fluids, removing water available for 

freezing, and modifying body fluid composition to prevent ice crystallization 

respectively; Storey, 2006; Elinsky et al., 2008; Sformo et al., 2010; Storey & Storey, 

2017; Toxopeus, 2018). While behavioral and freeze avoidance tend to be common to 

ectotherms, freeze tolerance is a minority choice for ectotherm overwintering (Storey & 

Storey, 2017).  

 Freeze tolerance has been observed across many species of microbes, insects, 

intertidal invertebrates, small soil invertebrates, as well as vertebrate amphibians and 

reptiles and involves an organism freezing around 50-70% of its total body water volume 

primarily in extracellular spaces for up to several months at a time (Storey, 2006; 

Maayer, 2014; Storey & Storey, 2017; Toxopeus, 2018). Freeze tolerance is a complex, 
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and integrated, physiological survival strategy that varies among species and, to date, is 

not fully understood. When frozen, an organism has no respiration or cardiopulmonary 

function, voluntary muscle movement, transmembrane transport, immeasurable nerve 

conductance, and experiences hypometabolism (Lee, 2010; Storey & Storey, 2017; 

Toxopeus, 2018). Freezing also exposes organisms to severe physiological stress 

including dehydration, hypoxia/anoxia, ischemia, osmotic stress, reduced enzyme 

activity, increased gas solubility, increased oxidative stress, and impaired cell-cell 

signaling (Storey & Storey, 2017). Non-freeze tolerant animals die if they freeze, as 

severe osmotic stress associated with ice formation and thawing cause irreparable tissue 

damage – shown in Figure 2a (Storey, 2006; Voituron et al., 2009; Maayer, 2014; Storey 

& Storey, 2017; Toxopeus, 2018). Water freezes in the extracellular fluid (ECF) as pure 

ice crystals. Ice crystal growth removes available solvent in solution, causing the 

osmolarity of the ECF to increase rapidly, quickly becoming hyperosmotic to nearby 

cells (Storey, 1997; Krane, 2007; Costanzo & Lee 2013; do Amaral et al. 2017; Storey & 

Storey 2017). In accordance with the principle of osmosis, osmotic pressure pulls water 

out of cells’ intracellular fluid (ICF) into the surrounding hyperosmotic extracellular fluid 

to maintain equilibrium (Storey, 1997; Krane, 2007; Costanzo & Lee 2013; do Amaral et 

al. 2017; Storey & Storey 2017). The dehydration of cells causes them to shrink, severe 

shrinkage may damage a cell’s cytoskeleton or plasma membrane rendering the cell 

unviable (Storey, 1997; Krane, 2007; Costanzo & Lee 2013; do Amaral et al. 2017; 

Storey & Storey 2017). When ice begins to thaw, the ECF is flooded with pure solvent, 

decreasing osmolarity and rapidly becoming hypoosmotic to nearby cells (Storey, 1997; 

Krane, 2007; Costanzo & Lee 2013; do Amaral et al. 2017; Storey & Storey 2017). 
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Consequently, cells rapidly experience a large influx of water, causing cells to swell 

(Storey, 1997; Krane, 2007; Costanzo & Lee 2013; do Amaral et al. 2017; Storey & 

Storey 2017). When a cell swells past a critical threshold, the plasma membrane ruptures, 

killing the cell (Storey, 1997; Krane, 2007; Costanzo & Lee 2013; do Amaral et al. 2017; 

Storey & Storey 2017). Mechanisms to prevent widespread damage from the 

compression and lysis of cells by mitigating osmotic stress during freezing and thawing is 

clearly a priority in freeze tolerant organisms and has been observed in nearly every 

known freeze tolerant organism – shown in Figure 2b (Storey, 1997; Storey, 2006; 

Krane, 2007; Voituron et al., 2009; Costanzo & Lee 2013; Maayer et al., 2014; do 

Amaral et al. 2017; Storey & Storey 2017). 
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II. Principles of Freeze Tolerance 

A. Ice Formation & Management: 

 While the percentage of total body water sequestered as ice in freeze tolerant 

organisms varies (~45-55% in reptiles, ~50-70% in amphibians, up to ~82% in insects), 

controlling the rate and location of ice nucleation is integral to surviving freezing and 

thawing (Storey, 1997; 2006; Voituron et al., 2009; do Amaral et al., 2017; Storey & 

Storey, 2017; Toxopeus, 2018). Freeze-tolerant organisms usually initiate ice formation 

at temperatures slightly lower than their body fluid’s normal equilibrium freezing point 

(FP) by supercooling body fluids to a supercooling point (SCP) approximately 2-3oC 

below the equilibrium FP (Claussen et al., 1990; Storey, 1997; Raymond et al., 2016; 

Storey & Storey, 2017). Freezing near the equilibrium FP serves to slow the rate of ice 

formation and prevents large instantaneous ice surges, water instantly converted to ice, 

giving freeze tolerant organisms a longer time period to implement responses to freezing 

(Claussen et al., 1990; Storey, 1997; Raymond et al., 2016; Storey & Storey, 2017). 

When wood frogs are frozen at -2.5oC, it takes approximately 1-hour post-nucleation to 

confirm freezing, several hours before voluntary muscle movement is lost, and nearly 24 

hours before maximal ice content is observed (Storey, 1997; Storey & Storey, 2017).  

Freeze tolerant organisms’ SCPs are varied and dependent upon the individual’s 

physiology and environmental climate, as i     nsect SPCs can range from -1oC 

(Chymomyza costata larvae) to as low as -54oC (Pytho deplanatus; Alpine Beetles) and      

reptiles have been observed to supercool down to -15oC (Ring,      1982; Costanzo et al., 

1998; Baker et al., 2003; Storey, 2006; Koštál et al., 2011; Toxopeus, 2018). Extensive 

supercooling can also be a hinderance to surviving freezing, as it exposes organisms to 
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the risk of lethal instantaneous ice formation (Claussen et al., 1990; Storey, 1997; 

Raymond et al., 2016; Storey & Storey, 2017). This process is exemplified in the chorus 

frog P. triseriata; when ice nucleation is initiated between -1 & -2oC, the frogs show 

100% survival rate, but when ice nucleation begins around -6oC, a 0% survival rate is 

observed (Swanson et al., 1996). It is clear that freeze tolerant organisms need to control 

the rate of ice formation, partially accomplished through equilibrating to an SCP only a 

few degrees (Celsius), below the normal equilibrium FP, to allow ample time to 

implement physiological responses to freezing. Controlling the rate of formation also 

allows a freeze tolerant organism to control the location of ice within the body.  

 Ice nucleation is triggered in three ways: an organism contacts environmental ice 

(inoculating body fluids across an epithelial layer - usually skin), epithelial contact with 

nonspecific ice-nucleating agents (often produced by microbes in gut or on skin), or 

through specific action of ice-nucleating proteins synthesized by the organism (Storey & 

Storey, 2017). Ice-nucleating agents (INAs) are any agent which promotes formation of 

ice crystals; including dust, minerals, proteins, and macromolecules, INAs are not 

specifically produced by an organism to initiate freezing (Duman, 2001; Costanzo et al., 

2004). Freeze avoiding organisms commonly sequester INAs in intracellular vesicles and 

organelles during cold hardening or excrete them in feces or urine to prevent freezing 

(Duman, 2001; Storey & Storey, 2017). However, it is commonplace for freeze tolerant 

organisms to utilize INAs to trigger freezing, a few examples found in freeze tolerant 

animals include gut and skin bacteria, some blood proteins, and stored mineral crystals 

(Duman, 2001; Storey & Storey, 2017). Ice nucleating proteins (INPs) are specifically 

synthesized by an organism to promote regulated ice formation in freeze tolerant animals 
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(Davies, 2014; Duman, 2015; Storey & Storey, 2017). Accumulating INAs and INPs 

allow freeze tolerant organisms to form ice crystals within their bodies at high subzero 

temperatures (Storey & Storey, 2017). The presence of these two types of ice nucleators 

give freeze tolerant organisms the capacity to maintain their SCP slightly below the 

equilibrium FP of their body fluid and freeze in a slow and organized fashion. In contrast, 

freeze avoidant animals that survive subzero temperatures at a low SCP accumulate 

antifreeze proteins (AFPs) that prevent ice crystals from growing larger than microscopic 

in size and limiting exposure to INAs (by sequestering in cells or excreting in waste) to 

minimize the risk of lethal instantaneous ice formation. AFPs have been identified in 

many cold-water marine fish as well as a diverse set of freeze-avoiding terrestrial insects 

but have never been identified in cold-hardy amphibians or reptiles to date (DeVries, 

1971; Duman, 2001; Fletcher, 2001; Davies, 2014; Duman, 2014; Storey & Storey, 

2017). Controlling ice nucleation in a slow ordered pattern via INPs and INAs at high 

subzero temperatures gives freeze tolerant organisms more time to implement a 

coordinated response to freezing to minimize cell damage. Cell damage is most directly 

minimized by ice formation exclusively in the ECF (Wharton & Ferns, 1995; Sinclair & 

Renault, 2010; Ali & Wharton, 2014; Raymond & Wharton, 2016; Storey & Storey, 

2017). Ice almost always forms in the extracellular spaces of freeze tolerant organisms, 

the only know exceptions are a few Insects including Cephus cinctus wasp larvae; 

Celatoblatta quiquemaculata nymphs and some nematodes (Panagrolaimus sp.) under 

specific conditions (Salt, 1961; Wharton & Ferns, 1995; Sinclair & Wharton, 1997; 

Sinclair & Renault, 2010; Ali & Wharton, 2014; Storey & Storey, 2017). Intracellular ice 

formation may damage the cytoskeleton, plasma membrane, and any organelles within a 
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cell if crystals grow too large (Wharton & Ferns, 1995; Sinclair & Renault, 2010; Ali & 

Wharton, 2014; Raymond & Wharton, 2016; Storey & Storey, 2017). As previously 

mentioned, freeze-avoidant organisms minimize INA exposure to prevent nucleation and 

accumulate AFPs to keep ice crystals microscopic. However, freeze tolerant organisms 

use many complex mechanisms to prevent cytosolic ice formation including membrane 

adaptations and osmoregulation which promote ice nucleation in the ECF, and minimize 

the risk of ice propagation into cytosol.  

B. Dynamic Osmoregulation: 

 The formation of pure ice crystals exclusively in the ECF poses unique challenges 

to freeze tolerant organisms that must be mitigated to ensure survival of freezing and 

thawing (Storey, 1995; 2006; Krane, 2007; Storey & Storey, 2017; do Amaral, 2018). Ice 

crystal formation consequently increases the osmolarity of the ECF as the amount of 

available solvent decreases against a fixed quantity of solutes in solution (Storey, 1997). 

Dictated by the principles of osmosis, water effluxes out of cells into the hyperosmotic 

ECF in an attempt to equilibrate the osmolarity of both fluid volumes (Storey, 1997; 

Krane, 2007; Costanzo & Lee 2013; Storey & Storey 2017; do Amaral et al. 2018). 

Congruent with the colligative property of freezing point depression, increasing the 

osmolarity of a fluid will invariably decrease its FP. As a freeze proceeds, the osmolarity 

of both the ECF and ICF increase in tandem until the FP of the ICF is equal to the current 

temperature of the organism’s body ([FPICF = Tbody]Storey, 1997; Krane, 2007; Costanzo 

& Lee 2013; Storey & Storey 2017; do Amaral et al. 2018). Therefore, the percentage of 

total body water that freezes in an organism depends upon the temperature of the 

environment, and quantity of solute held in both the ECF and ICF. The osmotic forces 
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associated with freezing and thawing directly change cell volume (Storey, 1997; Krane, 

2007; Storey & Storey 2017; do Amaral et al. 2018). The loss of water from the ICF 

occurring in response to a freeze causes cells and organs throughout an animal’s body to 

shrink (Storey, 1997; Krane, 2007; Storey & Storey 2017; do Amaral et al. 2018). If a 

cell drops below a critical minimum volume, compression may damage the plasma 

membrane (preventing the phospholipid bilayer from being a functional barrier post-

thaw) (Lee, 2010; Toxopeus, 2018). On the other hand, the influx of water into cells 

associated with ice crystals melting in the ECF causes cells and organs to swell (Storey, 

1997; Krane, 2007; Mutyam et al., 2011, do Amaral et al., 2017). If a cell swells past a 

critical maximum volume, the plasma membrane may rupture (cell lysis) (Storey, 1997; 

Toxopeus 2018). The cytoskeleton structure within a cell may also be damaged by 

significant cell compression or expansion, as well as increased ionic strength within the 

ICF resulting from dehydration (Harrison, 2001; Orrenius et al., 2003; Zachariassen et 

al., 2004; Teets et al., 2013; Storey & Storey, 2013; Toxopeus, 2018). 

Increased ionic strength caused by loss of available solvent during freezing poses 

additional challenges to freeze-tolerant organisms (Lee, 2010; Toxopeus, 2018). 

Increasing the concentration of hydrogen cations in vivo will lower the pH of an 

organism’s body fluids which may denature proteins, decrease enzyme activity, and even 

disrupt mitochondrial function (Harrison, 2001; Toxopeus, 2018). Increasing the 

concentration of calcium ions can disrupt concentration-dependent cell signaling, and 

even activate unfavorable cellular processes like apoptosis (Orrenius et al., 2003; Teets et 

al., 2013; Toxopeus, 2018). Increasing ferrous ion concentration can facilitate the 

formation of reactive oxidative species (ROS) causing oxidative stress (Storey & Storey, 
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2013; Toxopeus, 2018). High concentrations of trace metals (i.e., copper & magnesium) 

may lead to cytotoxicity (Zachariassen et al., 2004; Toxopeus, 2018). High 

concentrations of extracellular potassium ions (Hyperkalemia) can cause impaired muscle 

function as well as compromised nerve conductance in many vertebrates (MacMillan et 

al., 2014; Toxopeus, 2018). Therefore, to prevent irreparable tissue damage and death 

during freezing and thawing, freeze-tolerant organisms must control the percentage of 

total body water that is sequestered during freezing and limit changes in cell volume 

during both processes (Storey, 1997; Storey, 2006; Krane, 2007; Voituron et al., 2009; 

Costanzo & Lee 2013; Maayer et al., 2014; do Amaral et al. 2017; Storey & Storey 

2017). The most direct mechanistic way of limiting cell volume change is by mitigating 

the severe osmotic stress associated with freezing and thawing through dynamic 

osmoregulation.  

Freeze tolerant organisms have adapted vast and varied mechanisms of dynamic 

osmoregulation to prevent drastic changes in cell volume during a freeze-thaw cycle. One 

of the most important, and well characterized, adaptations of freeze tolerance is the 

utilization of low molecular weight metabolites called cryoprotectants (Storey, 1997). 

There are two general types of cryoprotectants which aid freeze tolerance in unique ways 

(Storey, 1997). The first category is the colligative cryoprotectants (and will be the main 

focus of this section) that are accumulated at high concentrations, ranging from 0.2 to 2 

M, reduce the percentage of water that freezes in the ECF, preventing a critical reduction 

in cellular volume during freezing by increasing the osmolarity of body fluids (Storey, 

1997). The second category includes membrane protectants that are accumulated at low 

concentrations, typically less than 0.2 M, and interact directly with the plasma membrane 
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(Storey, 1997). Membrane protectants stabilize the phospholipid bilayer and maintain 

membrane fluidity (prevent an irreversible transition to the solid, or gel, state) when the 

cell is compressed due to volume reduction during freezing (Storey, 1997). Trehalose and 

proline are the two most common membrane protectants. Both have been extensively 

studied and confirmed to interact directly with the polar heads of membrane lipids to 

stabilize the bilayer (Rudolph & Crowe, 1985; Crowe et al., 1987; Storey, 1997). 

Elevated levels of trehalose and proline have been consistently observed in freeze tolerant 

insects during the winter. Proline is also a common major intracellular free amino acid in 

marine invertebrates and its concentration can be changed rapidly in response to osmotic 

stress. In fact, several common intracellular osmolytes (including free amino acids) 

accumulated by marine invertebrates have been observed to function as membrane 

protectants (Loomis et al., 1989; Storey, 1997). 

Cryoprotectants may be accumulated seasonally as part of a cold acclimation 

phase or mobilized rapidly at the onset of freezing (not mutually exclusive) and are 

utilized by most freeze-tolerant insects and amphibians (Storey, 2017). Notably, the use 

of cryoprotectants is poorly developed in reptiles, as current research indicates that 

reptiles do not utilize osmolytes as cryoprotectants during cold acclimation or freezing. 

Seasonal lactate accumulation ranging from 2 to 10mM in blood plasma was observed in 

the freeze-tolerant reptile species C. picta, E. blandingii, and M. terrapin and was 

previously hypothesized to function as a cryoprotectant (Storey et al., 1988; Churchill & 

Storey, 1991; Churchill & Storey, 1992; Storey et al., 1993; Hartley et al., 2000; 

Costanzo et al., 2001; Baker et al., 2003; Costanzo et al., 2004; Dinkelacker et al., 2005; 

Storey, 2006). However, further studies disproved this hypothesis and found that lactate 
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conferred no protective effect in these animals. Furthermore, there is no evidence for 

enhanced metabolite production for cryoprotection in any freeze-tolerant reptile species; 

nor does plasma osmolality change seasonally, with cold acclimation, or in response to 

freezing (Storey et al., 1993; Costanzo et al., 2004; Storey et al., 2004; Voituron et al., 

2004; Storey, 2006). This observation, though important, does not invalidate the integral 

role cryoprotectants serve in freeze tolerance as reptiles appear to be the outlier when 

considering all freeze tolerant organisms, especially insects and amphibians.  

The most commonly occurring natural colligative cryoprotectants are carbohydrates in 

terrestrial animals (Storey, 1997; Storey & Storey, 2017; Toxopeus, 2018). Carbohydrate 

cryoprotectants are derived from large glycogen reserves which are accumulated during 

feeding in late summer and early autumn (Costanzo & Lee, 1993; Jackson & Ultsch, 

2010; Storey & Storey, 2017; Toxopeus, 2018). Glycogen is stored in the liver of frogs 

and fat bodies of insects and may be catabolized gradually during a cold acclimation 

period and retained in cytosol and blood plasma or rapidly at the onset of ice nucleation 

(Costanzo & Lee, 1993; Storey, 1997; Krane, 2007; Jackson & Ultsch, 2010; Mutyam et 

al., 2011; Storey & Storey, 2017; Toxopeus, 2018). Glycerol, a polyhydric alcohol 

derivative of glucose and triacylglycerols (TAGs), is the most common cryoprotectant 

among insects and is produced in both freeze-tolerant and freeze-avoidant species 

(Storey, 1997; Toxopeus, 2018). Glycerol is accumulated at high concentrations in 

insects, Pyrrharctica Isabella, for example, accumulates over 800mM of glycerol in the 

haemolymph (invertebrate analog of blood; Marshall & Sinclair, 2011). Some insect 

species utilize other polyhydric alcohols (including sorbitol, ribitol, erythritol, threitol, 

and ethylene glycol), amino acids (proline, arginine) and the disaccharides trehalose and 
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sucrose in a few instances (Storey, 1997; Toxopeus, 2018). For example, Hemideina 

maori may accumulate up to 300 mM trehalose in haemolymph, and exposure to high 

concentrations of proline and arginine in vivo increased the freeze tolerance of 

Chymomyza costata and even conferred freeze tolerance to Drosophila melanogaster 

(Neufeld & Leader, 1998; Koštal et al., 2011; 2012; 2016). Many species accumulate two 

or more cryoprotectants, the most common pairing observed in insects is glycerol and 

sorbitol. Studies of Eurosta solidaginis (gall fly) larvae and Bombyx mori (silkmoth) eggs 

imply differential cryoprotective roles of glycerol and sorbitol when used as a pair based 

upon the observation of independent periods, and rates, of synthesis and accumulation in 

these freeze tolerant insects (Storey, 1997). Freeze-tolerant bacteria (extremophilic 

psychrophiles) and freeze-avoidant mesophilic and extremophilic bacteria also utilize 

carbohydrates, polyhydric alcohols, and amino acids as cryoprotectants. Although 

different from insects, the most commonly observed cryoprotectants in bacteria include 

sucrose, mannitol, glycine, and betaine (Chattopadhyay, 2006; Maayer, 2014).  Trehalose 

is also observed to be the primary cryoprotectant in E. coli (Chattopadhyay, 2006; 

Maayer, 2014). Although there are seemingly endless metabolites used as 

cryoprotectants, glycerol is one of the most popular natural cryoprotectant molecules 

because it is highly soluble, nontoxic, extremely compatible with central metabolic 

pathways, yields two osmotically active molecules from one glycogen hexose subunit, 

and shows optimal conversion efficiency (carbon dioxide is not lost unlike in the 

biosynthesis of C2, C4, or C5 polyolys; Storey & Storey, 1992; Storey, 1997; Layne, 

1999; Irwin & Lee, 2003; Layne & Stapleton, 2009; do Amaral et al., 2018; Toxopeus, 
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2018). Although, in-spite of its favorability, glycerol is sparsely utilized as a 

cryoprotectant by only a few amphibian species.  

 The salamander S. keyserlingii as well as the hylid family of frogs (studied in the 

recently named Dryophytes genus) are the only known amphibians that produce glycerol 

as a cryoprotectant (Berman et al., 1984; Storey & Storey, 1985; 1986; Storey, 1997; 

Krane, 2007; Mutyam et al., 2011; Storey & Storey, 2017; do Amaral et al., 2018). 

Glucose and urea tend to be much more commonly used as cryoprotectants in 

amphibians. Glucose is produced rapidly at the initiation of freezing from liver glycogen 

stores and distributed from the liver into blood plasma and other organs (Storey, 1987; 

1997; Rosendale et al., 2014; Storey & Storey; 2017). The process of freeze dependent 

glucose mobilization has been well characterized in the Rana and Pseudacris frog 

species. Urea, on the other hand, is not synthesized as a direct response to freezing, 

instead it accumulates as part of a widely developed dehydration response common to 

many amphibian species (Costanzo et al., 2008; 2008; 2013; Storey & Storey, 2017). 

Urea has been repeatedly observed to accumulate throughout the year as hibernation sites 

begin to dry (Hillman et al., 2009; Navas, 2010; Storey & Storey, 2017). To combat 

water loss and dehydration stresses, amphibians synthesize and circulate urea to increase 

body fluid osmolarity to slow the loss of water from the body and promote the uptake of 

water from the soil through the skin (Storey, 1997; Costanzo et al., 2008; 2008; Hillman 

et al., 2009; Navas, 2010; Costanzo et al., 2013; Storey & Storey, 2017; Mutyam et al., 

2018). This mechanism has been identified in toads and frogs that estivate underground 

(or spend long, dormant, periods underground), as well as freeze-tolerant frogs (Storey, 

1997; Costanzo et al., 2008; 2008; Hillman et al., 2009; Navas, 2010; Costanzo et al., 
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2013; Storey & Storey, 2017; Mutyam et al., 2018). Freeze-tolerant Alaskan wood frogs 

showed significant accumulation of urea during cold acclimation periods in late autumn 

that increased from ~10 to ~86 µmol/mL in blood plasma, and further enhanced 

acclimation levels under drying conditions (up to ~ 187 µmol/mL; Costanzo et al., 2013). 

But when frozen for 48 hours, only frog liver showed significant increases in urea 

concentration (~ 114 to 157 µmol/mL; Costanzo et al., 2013). The production and 

seasonal accumulation of cryoprotectants alone is not enough to confer freeze-tolerance 

to an organism. Cryoprotectants produced in liver cells, hepatocytes, need to be 

circulated throughout the entire body of an organism to increase the osmolarity in all 

organs, tissues, and blood plasma. Since these colligative cryoprotectants are by 

definition polar and hydrophilic, they cannot readily diffuse across the semipermeable 

plasma membranes surrounding every cell in the body. Therefore, a freeze tolerant 

organism needs to utilize a quick but energetically favorable method to distribute 

cryoprotectants before freezing causes ischemia. 

 This problem is mitigated by the presence of integral transmembrane transport 

and carrier proteins which allow the transmembrane flux of cryoprotectants. The most 

important classes of transmembrane proteins related to cryoprotectant diffusion in vivo 

characterized in freeze-tolerant vertebrates and focused on in this review include 

aquaporins, aquaglyceroporins, glucose transporters, and facultative urea transporters. 

 Aquaporins (AQPs) are highly specific integral transmembrane channel proteins 

that allow for the facilitated diffusion of water across cell membranes (Krane, 2007). 

Maintaining fluid homeostasis is imperative for all life processes, not just surviving a 

freeze/thaw cycle (Krane, 2007). While the osmotically driven transmembrane simple 
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diffusion of water molecules through the phospholipid bilayer can occur, the process is 

slow (Krane, 2007). Mammals and amphibians require precise regulation of water, and 

ion, movement that allows rapid diffusion during processes such as secretion and 

reabsorption (Krane, 2007). The presence of AQPs in cell membranes increase the 

permeability of the phospholipid bilayer to water, allowing for a more rapid diffusion rate 

while decreasing the time necessary for two separate fluid volumes to equilibrate their net 

concentrations in vivo (Preston & Agre, 1991; Preston et al., 1992; Krane, 2007). 

Aquaglyceroporins (GLPs), are an additional subset of the selective MIP superfamily of 

integral transmembrane protein channels that allow the facilitated diffusion of glycerol, 

urea, and other small molecules in addition to water (Hara-Chikuma & Verkman, 2006; 

Krane, 2007). GLPs are presumed to be crucial in conferring freeze-tolerance to 

vertebrates that utilize glycerol as a cryoprotectant, as they may allow for the facilitated 

diffusion of glycerol, and potentially urea, throughout various tissues of an animal 

(Schmid, 1982; Storey & Storey, 1985; Costanzo et al., 1992; Layne & Jones, 2001; 

Irwin & Lee, 2003; Krane, 2007; Zimmerman et al., 2007; Mutyam et al., 2011; do 

Amaral et al., 2017; do Amaral et al., 2020). Specifically, AQPs and GLPs are 

hypothesized to play a vital role in conferring freeze-tolerance to Cope’s gray treefrog, 

Dryophytes chrysoscelis. The history, structure, function, and classifications of AQPs and 

GLPs, as well as their hypothesized role in anuran freeze-tolerance, will be discussed in 

greater detail in further sections of this review.  While the AQP family of channel 

proteins are extremely important for allowing rapid osmoregulation during freezing or 

thawing, animals that utilize glucose as a primary cryoprotectant must depend on an 

entirely different protein.  
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 In vertebrates, glucose moves across cell membranes through carrier-mediated 

facilitated diffusion. These glucose-specific carrier proteins are classified as the glucose 

transporter (GLUT) family. These proteins were first identified in humans (Mueckler et 

al., 1985), and there are now 14 unique GLUT protein isoforms characterized in 

mammals (Thorens & Mueckler, 2010). GLUT proteins have been further identified in 

fish, birds, and amphibians (Wang et al., 1994; Castillo et al., 2009; Rosendale, 2014). 

This protein family plays an important role in maintaining glucose homeostasis in all 

vertebrate species, especially during exposure to hypoxia and dehydration stress. During 

hypoxia, the abundance of GLUT protein is regulated to promote glycolysis, providing an 

organism metabolic energy and preventing hypoxic injury (Bunn & Poyton, 1996; Lin et 

al., 2000). Dehydration, glucose deprivation, hyperosmolarity, and high pH are all known 

to elicit a change in GLUT expression (Ismail-beigi, 1993; Vannucci, et al., 1994; 

Ramasamy et al., 2001). Although GLUT proteins have been expansively studied in 

mammalian stress tolerance, little information is available regarding their role in 

amphibians. Recently, there are four well-known proteins in this family identified in 

amphibians, and are named GLUT-1, 2, 3, or 4 (Rosendale et al., 2014). The two most 

extensively studied family members are GLUT-1 and GLUT-3, these proteins mediate 

unidirectional uptake of glucose into cells independent of insulin. GLUT-1 is widely 

distributed and expressed in nearly every tissue in amphibians and mammals, while 

GLUT-3 is mostly localized to neurons. Conversely, GLUT-4 provides insulin-sensitive 

glucose uptake into cells and is often observed to be present in adipose tissues, skeletal 

muscle, and the heart. The last family member, GLUT-2, is unique as it allows for the 

bidirectional transport of glucose molecules into, or out of, cells. GLUT-2 is almost 
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exclusively found in the liver and intestines. It is understood that GLUT-2 is the primary 

protein responsible for exporting cryoprotective glucose molecules from the liver into 

blood plasma during freezing in amphibians (Rosendale et al., 2014). This protein shows 

low-affinity and high-capacity for glucose transport in mammalian and amphibian liver 

and has also been observed to increase in abundance in freeze-tolerant wood frogs 

collected from Alaska, Canada, and Ohio (Storey & Storey, 2017). Furthermore, changes 

in GLUT-2 expression varies in species, population, seasonal and stress-specific 

regulatory patterns (Rosendale et al., 2014). The bidirectionality of GLUT-2, also allows 

for hepatocytic reuptake of glucose during thawing to reduce blood glucose levels, 

mitigating hyperglycemia (Rosendale et al., 2014). Glucose cannot be easily cleared by 

the kidneys and is instead converted back into liver glycogen rapidly during and after 

thawing. Dynamic regulation of GLUT-2 expression in the plasma membranes of 

hepatocytes is crucial to surviving freezing and thawing in organisms which utilize 

glucose as a primary cryoprotectant. This protein mediates rapid export of glucose into 

blood plasma as it is produced in the liver during freezing. Blood plasma glucose then 

circulates throughout the body and enters tissue cells via GLUT-1 or GLUT-3 to increase 

the osmolarity of the ICF before freezing causes the cessation of cardiopulmonary 

function. Additionally, upon thawing, the exuberant levels of glucose still present in the 

blood plasma mostly enter back into the liver through GLUT-2 to be converted to 

glycogen (some glucose is excreted in urine), preventing hyperglycemia and associated 

cell damage (Storey & Storey, 2017). The dynamic regulation of GLUT-2 allows glucose 

to be used as a cryoprotectant without seasonal accumulation (which would prove 

dangerous to animals as prolonged hyperglycemia can lead to severe cell damage and 
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death), instead liver glycogen stores accumulated during late-summer and early-autumn 

feeding are catabolized as an immediate response to freezing (Rosendale et al., 2014). 

Liver glycogen-derived glucose cryoprotectants are mostly converted back to glycogen in 

the liver during thawing, which allows organisms to maintain sufficient glycogen stores 

necessary for surviving multiple freeze/thaw cycles over the winter season. The GLUT 

and AQP protein families (including GLP subfamilies) are emphasized heavily in 

contemporary vertebrate freeze-tolerance research. However, one family of proteins 

specific to urea, a third common amphibian cryoprotectant, has received much less 

attention. 

 Urea accumulates independently from freezing and is associated with a common 

amphibian response to dehydration stress. However, freezing exposes animals to 

dehydration stressors and urea is ultimately accumulated and confers a cryoprotective 

effect in amphibians. Some GLP subtypes have been observed to exhibit permeability to 

urea, but if urea permeable GLPs are not expressed in an animal, or abundantly expressed 

in plasma membranes, a new problem arises. Urea is able to cross plasma membranes 

through facultative urea transporters (UTs), an integral transmembrane glycoprotein 

which allows for the diffusion of urea (Klein et al., 2012). This family of proteins was 

first identified in mammals and designated the SLC14A protein family (Klein et al., 

2012). Consisting of two subgroups, UT-B (or Slc14A1) and UT-A (or Slc14A2), UTs are 

crucial to the kidney’s ability to concentrate urine. The UT-B protein was first isolated 

from mammalian erythrocytes (red blood cells), and to date only two unique isoforms 

have been identified (Klein et al., 2012). The UT-B isoforms are present primarily in the 

descending vasa recta of the kidney (Klein et al., 2012). Currently 6 distinct UT-A 
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isoforms have been characterized, 3 of which are localized to the kidney medulla, 2 in the 

inner medullary collecting duct, and 1 is expressed in the thin descending limb of the 

kidney (Klein et al., 2012). In amphibians, UTs have been identified in just one toad 

species (Bufo marinus) and four Ranid species (R. esculenta, R. sylvatica, R. pipens, & R. 

septentrionalis; Couriaud et al., 1999; Konno et al., 2006; Sun et al., 2015; Storey & 

Storey, 2017). Exposing the toad UT to the peptide hormone responsible for regulating 

various aspects of amphibian water homeostasis (arginine vasotocin) in vitro resulted in 

increased urea uptake and protein expression in cells. The ranid UTs are highly conserved 

among each other, showing ~95% amino acid similarity, and are substantially expressed 

in kidney and bladder, supporting urea reuptake if needed (Rosendale et al., 2014). 

Additionally, UT expression was observed in the skin of R. sylvatica and protein levels 

have been observed to increase seasonally, as well as in response to experimental 

dehydration (Rosendale et al., 2014). More research must be completed to identify 

whether additional amphibian species express UT proteins, and their role in dehydration 

responses as a potential link to freeze-tolerance. In freeze-tolerant amphibians, polar 

colligative cryoprotectants (commonly glucose, urea, and glycerol) may be accumulated 

seasonally or produced at the initiation of freezing to increase the osmolarity of body 

fluids which, in-turn, causes body fluids to supercool and limits the percentage of total 

body water that may freeze in the ECF. These cryoprotectants then diffuse across plasma 

membranes facilitated by specific channel or carrier proteins, allowing colligative 

molecules to quickly disperse throughout the entire volume of body fluids efficiently 

before freezing results in the cessation of cardiopulmonary function. However, this 

mechanism is similar to dehydration responses observed across many amphibian species. 
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In fact, it is presumed that preexisting mechanisms of dehydration tolerance may have 

been adapted through natural selection to support freeze tolerance in amphibians.   

 It has long been known that amphibians exemplify the best known capacity for 

dehydration tolerance among vertebrates and are able to survive losing on average 50-

60% of total body water volumes. Interestingly, the mechanisms that allow for severe 

dehydration tolerance include dynamic osmoregulation to slow water loss and promote 

water uptake through the skin from surrounding soil. Dehydration responsive 

osmoregulation is accomplished by production of colligative molecules such as urea or 

other osmolytes paired with the dynamic regulation of AQPs and other transport proteins 

in tissue specific manners. Additionally, a seasonal acclimation period has been observed 

in toad and frog species as underground estivation sites begin drying during the late-

summer and early-autumn periods. During this acclimation period, amphibians over-feed 

to develop extensive liver glycogen stores, kidney function and urine excretion rate is 

decreased, urea is gradually accumulated in body fluids, and transport proteins are 

increasingly expressed in cell membranes. These characteristics are nearly identical to 

physiological changes during cold acclimation in freeze tolerant amphibians. In fact, 

several studies observing the physiological responses of some freeze-tolerant amphibians 

to severe dehydration provide evidence that the same mechanisms used for a 

cryoprotection in response to freezing are utilized in severe cases of dehydration (Storey 

& Storey, 1986; 1988; 1992; Costanzo et al., 1993; Voituron et al., 2005; 2009 Higgins et 

al., 2013; Costanzo et al., 2015; Storey & Storey, 2017). When exposed to controlled 

whole body dehydration stress, the wood frog R. sylvatica and spring peeper P. crucifer 

tolerated the loss of ~50-60% of their total body water volumes, nearly identical to the 
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percentage of body water converted to extracellular ice during freezing (Churchill & 

Storey, 1993; 1994; 1995). It was also found that these two species responded to 

dehydration by rapidly mobilizing glucose from liver glycogen, which was subsequently 

exported to other organs, and significantly more glucose was mobilized in frogs collected 

in autumn than those collected in the spring (Storey & Storey, 1988). A parallel study 

investigating the dehydration response of the freeze-intolerant leopard frog R. pipens, 

found that exposure to controlled whole body dehydration, resulted in the loss of ~50% 

of its total body water volume. Additionally, R. pipens exhibited significant liver 

glycogenolysis, and glucose export to organs throughout the body as a dehydration 

response (albeit to a lower extent than R. sylvatica and P. crucifer) (Churchill & Storey, 

1993; 1994; 1995). Nonetheless, these studies provide evidence that the metabolic 

response of mass glucose mobilization from liver glycogen stores is present in both 

freeze-tolerant and intolerant amphibians. Many questions still remain regarding the 

origin of vertebrate freeze-tolerance and specific adaptations to repurpose pre-existing 

mechanisms.  

  It is generally presumed that pre-existing mechanisms have been adapted to 

manage ice formation within the body, as well as the ability to survive the prolonged 

cessation, and subsequent reactivation, of vital processes during both freezing and 

thawing. The well-developed capacity for ice-formation management and dynamic 

osmoregulation observed in, and necessary to, freeze-tolerance may have been adapted 

from pre-existing mechanisms of dehydration tolerance. The ability to implement these 

mechanisms serve to sequester ice crystals in extracellular spaces, control ice formation 

in an ordered and slow manner, limit the total volume of water that freezes in an 
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organism, and tolerate multiple potential freeze/thaw cycles over winter months. 

However, these adaptations which prevent mechanical and osmotic damage to cells, do 

not ensure protection form the dangers associated with ceasing all vital body functions 

for prolonged periods of time, or provide a mechanism for restarting body functions in a 

coordinated and efficient manner. One potential developmental link may be derived from 

the impressive hypoxia and anoxia tolerance observed in freeze-tolerant organisms.   

C. Hypoxia/Anoxia Tolerance: 

 When frozen, organisms are exposed to significant hypoxic (inadequate oxygen 

supply) or anoxic (no oxygen supply) conditions resulting from the cessation of vital 

body functions and associated ischemia (inadequate blood supply to an organ or body 

part) throughout the entire body. Prolonged hypoxia and anoxia interrupt aerobic 

metabolism, and the ensuing lack of ATP will cause metabolic damage as all available 

blood-bound and cytosolic oxygen molecules are rapidly depleted (Hermis-Lima et al., 

2001; Churchill, 2004; Storey, 2004; 2006). However, the reintroduction of oxygen can 

be equally as deadly (Hermis-Lima et al., 2001; Churchill, 2004; Storey, 2004; 2006). 

Damage occurring when oxygen becomes rapidly available after a period of ischemia are 

called reperfusion injuries (Storey, 2006). These injuries are caused when high levels of 

reactive oxidative species (ROS) are formed when an anoxic tissue experiences a large 

influx of oxygen (Storey, 2006). A quick burst of ROS in a cell can overwhelm normal 

antioxidant defenses and degrade macromolecules or trigger cellular apoptosis 

mechanisms (Storey, 2006). A severe lack of oxygen may also cause acidosis resulting 

from carbon dioxide levels continually increasing in the blood, without being expired 

from the lungs. As predicted by the bicarbonate buffer system, this buildup of carbon 
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dioxide will inadvertently increase the concentration of H+ ions and decrease blood pH. 

Therefore, to survive long-term freezing, an organism must survive on endogenous fuel 

reserves through a well-developed anaerobic metabolic capacity, stabilize 

macromolecules, prevent the initiation of cellular apoptosis mechanisms, and prevent 

acidosis. Accordingly, these responses are not unique to freeze-tolerant organisms, as 

anoxia tolerance has been frequently observed in a wide variety of species (Storey & 

Storey, 2017). 

 The most impressive anoxia-tolerant vertebrate is C. picta, painted turtle, a 

facultative anaerobe capable of surviving 3-4 months continually submerged in cold, 

deoxygenated, water (Jackson & Ultsch, 2010; Storey & Storey, 2017). These turtles 

have adapted to store enormous amounts of fermentable fuels (primarily liver glycogen), 

utilize their shell to release calcium and carbonate ions that buffer lactate anions and H+ 

(anaerobic metabolism end products) as well as storing large quantities of lactate, and 

even the capacity for strong metabolic rate depression to as low as ~10% of their normal 

aerobic metabolic rate (Storey, 2007; Jackson & Ultsch, 2010; Storey & Storey, 2017). 

The freshwater turtle species, T. s. elegans is another excellent facultative anaerobe 

capable of surviving up to three consecutive months submerged in cold, deoxygenated, 

water (Jackson, 2002; Storey, 2006). As adults, these turtles are also known to possess 

the highest levels of antioxidant enzyme activity among all known ectothermic 

vertebrates (Wilmore & Storey, 1997; 1997; Storey, 2006). The characteristics of these 

two species would also lend themselves beneficial in long-term freezing survival. In fact, 

studies of the freeze tolerant frog R. sylvatica found that there were significantly higher 

levels of antioxidant enzymes present in all organs when compared to levels in the freeze-
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intolerant leopard frog R. pipiens (Joanisse & Storey, 1996; Storey, 2006). Furthermore, 

y-glutamyl transpeptidase (an antioxidant enzyme) increased by ~2.5-fold during freezing 

in the liver of both R. sylvatica and C. picta (Hemmings & Storey, 1996; 2000; Storey, 

2006). Catalase activity has been observed to increase significantly in the liver of several 

turtle hatchling species in response to both anoxia and freezing exposure (Dinkelacker et 

al., 2005; Storey, 2006). Additionally, this study found that species with low capacities 

for freezing, had a significantly higher increase in liver catalase activity (Dinkelacker et 

al., 2005; Storey, 2006). This finding provides evidence that constitutive liver activity in 

freeze-tolerant organisms may be mostly sufficient to mitigate the oxidative stress 

associated with both freezing and anoxia exposure (Storey, 2006). Further studies have 

found that inducible reactive oxygen species (ROS) defenses are observed more often in 

species rarely exposed to anoxic/ischemic conditions (Hermes-Lima et al., 2001; Storey 

2006). One example is the garter snake T. sirtalis; when exposed to freezing, the activity 

of both catalase (CAT)and glutathione peroxidase increased significantly in skeletal 

muscle, however anoxia exposure only increased superoxide dismutase (SOD) 

significantly in liver (Hermes-Lima & Storey, 1993). More recent studies have confirmed 

the hypothesis that many freeze-tolerant reptiles and amphibians, as well as species 

exposed to frequent anoxic periods alone possess high constitutive, or seasonally 

induced, antioxidant enzyme activities. However, additional anoxia-responsive 

enhancements of ROS defenses have been observed.  

One example of employing anoxia-responsive enhancements of constitutive 

antioxidant defenses is observed in the freshwater turtle T. s. elegans. When exposed to 

anoxic water submergence, mRNA transcript levels of ferritin (an iron-binding protein) 
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plus two forms of SOD (both the cytoplasmic Cu/Zn-binding isoform and the 

mitochondrial Mn-binding isoform) were upregulated in adult turtles (Storey & Storey, 

2017). The increased transcription levels were regulated by just one transcription factor, 

nuclear factor kappaB (NF-KB; Storey & Storey, 2017). Adaptations to defending against 

environmental oxidation stress are not limited to high constitutive activity levels and 

upregulating gene transcription (Storey & Storey, 2017). Post-translational modifications 

of enzymes which may alter the stability and enzymatic properties of a specific enzyme 

are another route to quickly respond to environmental changes. Recent studies of SOD 

and CAT enzymes purified from wood frog skeletal muscle demonstrate a role of 

posttranslational modification in enhancing pre-existing antioxidant defenses during 

freezing (Dawson & Storey, 2016; Storey & Storey, 2017). When comparing a control 

group held unfrozen at 5oC to an experimental group frozen for 24 hours at -3oC, no 

change in mRNA transcript or protein levels were observed between either Cu/Zn-SOD 

or Mn-SOD. However, the two groups of purified enzymes had significantly different 

properties which serve to enhance enzymatic function in frozen skeletal muscle (Cu/Zn-

SOD: Vmax increased 1.5-fold; Mn-SOD: lower Km, and reduced sensitivity to urea-

mediated denaturation). Further investigation also revealed that improved functionality of 

SOD enzymes from frozen skeletal muscle correlated positively with increased 

phosphorylation on SOD at both serine and tyrosine residues versus SOD from the 

control group (2.63 & 1.27-fold greater, respectively). Similar to purified SOD, CAT 

purified from skeletal muscle extracts of frozen wood frogs increased in efficiency as 

Vmax increased by 1.5-fold and Km for hydrogen peroxide decreased by ~36% when 

compared to the control (Storey & Storey, 2017). Improved efficiency of CAT also 
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positively correlated to increased enzymatic phosphorylation of serine and tyrosine 

residues (1.60 & 1.27-fold, respectively) (Storey & Storey, 2017). Post-translational 

phosphorylation of both SOD and CAT in wood frogs during freezing confers increased 

enzymatic activity to further enhance the pre-existing high constitutive level of 

antioxidant defense is mediated by two separate protein kinases (enzyme that hydrolyzes 

ATP and subsequently transfers a phosphoryl to another protein) which are already 

known to be associated with other adaptive responses supporting freeze tolerance (Storey 

& Storey, 2017). The two kinases involved in adapted responses to freezing and thawing 

are protein kinase A (PKA) and AMP-activated protein kinase (AMPK) which will be 

discussed in more detail further in this review. In freeze-tolerant organisms, defending 

against ROS by maintaining high constitutive, or seasonally increasing, antioxidant 

enzyme activity levels, which may be further enhanced by upregulated transcription of 

antioxidant enzyme genes, or by posttranslational modifications on pre-existing enzymes 

as an anoxia exposure response is crucial in preventing reperfusion injuries caused by 

freeze-derived ischemia and associated anoxic conditions are resolved when an organism 

thaws (Storey & Storey, 2017). Antioxidant enzymes are a great defense against ROS, 

and indirectly stabilize macromolecules to ensure cell survival. However, these enzymes 

alone are not sufficient to protect an organism from ROS molecules denaturing 

macromolecules, or the numerous stresses associated with extended periods of anoxia. 

Often, chaperone proteins are also produced to aid in stabilizing macromolecules. 

ROS formed by blood reperfusion during thawing is not the only denaturing force 

an organism is exposed to during a freezing cycle. As previously mentioned in this 

review, the dehydration experienced during freezing causes cells to shrink and sharp 
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increases in the osmolarity of both the ECF and ICF. By removing water volume, 

molecules in the cytosol are packed closely together. This molecular crowding may 

promote unfavorable interactions between macromolecules, potentially leading to the 

aggregation of denatured proteins (Toxopeus, 2018). Therefore, freeze-tolerant organisms 

need to stabilize molecules through mechanisms other than antioxidant enzyme 

upregulations. As mentioned earlier, freeze-tolerant insects often produce and accumulate 

membrane stabilizing cryoprotectants during a seasonal cold-acclimation phase 

(Toxopeus, 2018). Of which, the major intracellular free amino acids proline and arginine 

are presumed to reduce protein aggregation by clustering together and forming cytosolic 

chains that physically buffer unfavorable protein-protein interactions (Rudolph & Crowe, 

1986; Arakawa & Tsumoto, 2003; Das et al., 2007; Koštal et al., 2016; Toxopeus, 2018). 

However, a more sophisticated mechanism has been widely observed in freeze-tolerant as 

well as anoxia-tolerant organisms. 

Chaperone proteins facilitate the folding, trafficking, and assembly of new 

proteins, prevent unfolded protein aggregation, and promote refolding of existing proteins 

that have folded incorrectly. Many chaperones are expressed constitutively by organisms, 

while expression of some are induced by physiological stressors. The most extensively 

studied inducible chaperone proteins are the family of heat shock proteins (HSP), that 

prevent protein denaturation and aggregation as well as promoting the refolding of 

denatured or misfolded proteins (King & MacRae, 2015). HSP expression is triggered 

when an organism is exposed to dramatic temperature changes, osmotic stress, anoxia 

exposure, and many other stressors (Storey & Storey, 2011; 2012). Several studies 

primarily focused upon insects and arthropods have concluded that a necessary process in 
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developing winter cold hardiness is the seasonal, cold-induced, or freeze-responsive 

upregulation of chaperone proteins (Rinehart et al., 2006; Zhang et al., 2011; Lu et al., 

2014). HSPs have been observed to be upregulated under the coordination of heat shock 

transcription factor (HSF1) in both of the anoxia-tolerant turtle species C. picta and T. s. 

elegans in response to low oxygen levels (Storey & Storey, 1997; 2011). In addition to 

HSPs, anoxia triggers strong increases in mRNA transcription and protein levels of two 

resident endoplasmic reticulum (ER) chaperone proteins, glucose regulated protein 78 

(GRP78) and GRP94 closely associated with the unfolded protein response (UPR) in both 

turtles (Ramaglia & Buck, 2004; Krivoruchko & Storey, 2010; 2013; 2017). The UPR is 

a mechanism which manages stresses that affect protein folding/assembly in the ER by 

suppressing ribosomal protein synthesis in the ER, increasing GRP levels in the ER to 

improve folding capacity, and in some cases increasing unfolded protein degradation via 

the proteasome (a protein complex containing protease enzymes that degrades ubiquitin-

tagged proteins through peptide bond breaking proteolysis reactions) (Schröder, 2008). 

There is extremely limited data regarding the UPR in amphibian and hatchling turtle 

freeze tolerance, but the stress induced HSP and GRP upregulation in adult turtles predict 

a plausible role of chaperone proteins in freeze tolerance. Data supporting this hypothesis 

was identified in wood frogs, as HSP70 levels were significantly higher in cold-

acclimated winter frog liver, than in warm-acclimated summer frog liver (Kiss et al., 

2011; Naicker et al., 2012; Storey & Storey, 2017). Additional evidence was collected 

from a study of freeze-tolerance in yeast, 19 different chaperone deletion mutants 

reduced cell viability after a freeze-thaw cycle in the presence and absence of glycerol as 

a cryoprotectant (Storey & Storey, 1997). Studies on insect freeze-tolerance found that 
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chaperone proteins play a crucial role in preventing cold-induced depolymerization of 

actin microfilaments in the cytoskeleton, as chaperonin containing T-complex 

polypeptide-1 (CCT) was strongly upregulated in onion maggot pupae (Delia antiqua) 

during cold acclimation (Kayukawa & Ishikawa, 2009). Furthermore, the upregulation of 

chaperone T-complex protein 1 (TCP-1) during cold acclimation was identified in E. 

solidaginis, suggesting the potential chaperone mediated reassembly of dissociated 

cytoskeleton monomers post-freeze (Voituron et al., 2018). However, more extensive 

research needs to be completed in order to elucidate the role of chaperone proteins in 

freeze-tolerance. Stabilizing macromolecules is crucial to maintaining cell viability after 

enduring a freeze/thaw cycle as well as returning to normal physiological activity after 

thawing. The capacity of freeze-tolerant organisms to employ high constitutive levels of 

antioxidant enzyme activity that may be further enhanced by upregulation of transcription 

for new protein synthesis or posttranslational modifications to enzymes in response to 

anoxic or freezing conditions to protect against ROS and stabilize macromolecules may 

have been adapted from pre-existing mechanisms of anoxia-tolerance. Additionally, 

dynamic regulation of chaperone proteins to stabilize cellular proteins has been observed 

in anoxia-tolerant vertebrates and insects. Chaperone proteins are presumed to be 

regulated in many freeze-tolerant organisms, adapted from pre-existing anoxia tolerance 

mechanisms, but more research must be completed to conclude if a beneficial, consistent, 

and widespread use of chaperone proteins is observed in freeze-tolerant organisms. Aside 

from surviving denaturing stress during anoxic and freezing exposure, freeze-tolerant 

organisms must survive on endogenous fuel reserves for the duration of a freeze.  
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In order to survive long-term freezing up to several months at a time, an organism 

must store vast carbohydrate reserves, possess a well-developed glycolytic capacity, 

optimize facultative anaerobic metabolism, employ hypometabolism, and regulate 

metabolic enzymes. These requirements are necessary to sustain ATP production under 

anoxic/frozen conditions and ensure enzymatic function at subzero temperatures, while 

decreasing the overall need for ATP during a frozen state to prevent entirely depleting 

carbohydrate stores (Storey & Storey, 2017). When cardiopulmonary function ceases 

during extracellular ice formation, cells will continue metabolic processes until oxygen 

levels are depleted, at which point anaerobic glycolysis becomes the main source of ATP 

production. Many species of both reptiles and amphibians have been observed to 

accumulate lactate, glycolytic fermentation end product, while frozen, indicating the use 

of lactic acid fermentation as a main supplier of ATP (Voituron et al., 2002; 2009; 

Sinclair et al., 2013; Storey & Storey, 2017). Reptiles and amphibians rely on their 

extensive anoxia-tolerance to aid in freezing survival by minimizing their energetic needs 

while frozen through metabolic rate depression (MRD), in which an organism enters a 

hypometabolic state that slows the rate of metabolic reactions through suppressing non-

vital, and energetically expensive, bio-synthetic processes such as de novo protein 

synthesis (Voituron et al., 2002; 2009; Sinclair et al., 2013; Storey & Storey, 2017). The 

combination of strong MRD and the consequences of subzero temperatures on enzyme 

kinetics greatly decrease the cellular demand for ATP production in vivo, which allows 

freeze-tolerant organisms to survive through anaerobic catabolism of large endogenous 

glycogen stores accumulated during feeding periods in late-summer and early-autumn 

(Voituron et al., 2002; 2009; Sinclair et al., 2013; Storey & Storey, 2017). An additional 
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source of ATP in muscle tissues may be creatinine phosphate reserves and has been 

observed in wood frogs (Storey & Storey, 1986). Creatinine kinase (CK; an enzyme that 

catabolizes the reversible phosphorylation of creatinine; creatinine + ATP  creatinine-P 

+ ADP) in wood frog muscle undergoes specific regulation while the animal is frozen 

(Dieni & Storey, 2009; Storey & Storey, 2017). Temperature effects and posttranslational 

modifications (PTMs), mainly phosphorylation, increased CK activity by 35% and 

decreased Km for creatinine by 39% (with no change in protein quantity) when comparing 

frogs frozen at -3oC for 24 hours to unfrozen frogs acclimated to 5oC (Storey & Storey, 

1986). It was determined that two protein kinases, AMP-activated protein kinase 

(AMPK) and calcium/calmodulin-dependent protein kinase (CaMK), were capable of 

phosphorylating CK enzymes in response to freezing (Storey & Storey, 1986). AMPK is 

commonly known as a cellular “energy sensor” and responds to increases in intracellular 

concentrations of AMP when ATP is scarce - shown in Figure 3 (Storey & Storey, 

1986). The activity of this kinase increased 4.5-fold in wood frog muscle when frozen, 

suggesting AMPK may be crucial to regulating many enzymes involved in energy 

metabolism during freezing (Rider et al., 2006). Another enzyme phosphorylated by 

AMPK in response to freezing in wood frog skeletal muscle is AMP deaminase (AMPD). 

During physiological stress when ATP is consumed faster than it is produced, AMPD 

works in tandem with adenylate kinase to stabilize the relative levels of AMP, ADP, and 

ATP (Storey & Storey, 2017). Mechanistically, AMPD catalyzes the conversion of AMP 

into IMP and NH4
+ and adenylate kinase converts 2 ADP molecules into 1 ATP and 

AMP molecule (reaction of both enzymes in tandem: 2ADP  ATP + AMP  IMP + 

NH4
+) (Storey & Storey, 2017). AMPD is regulated in several ways when wood frogs 
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freeze to increase AMP affinity such as an increase in the myosin-bound form, decrease 

in temperature (25 to 5oC), the presence of 250mM glucose, and phosphorylation by four 

different enzymes (Storey & Storey, 2017). Metabolic control resulting in 

hypometabolism is implemented to decrease the cellular demand for ATP, allowing an 

organism to preserve their extensive glycogen stores for several months at a time. MRD 

is presumed to have been adapted from pre-existing mechanisms in anoxia-tolerant 

vertebrates and is an extremely complicated process that varies by species involving 

dynamic regulation of genes, ribosomes, and proteins to suppress non-vital metabolic 

processes in addition to ensuring existing enzymes involved in vital mechanisms and 

anaerobic ATP production are able to function under a variety of stressors. Literature 

regarding MRD’s role in freeze tolerance is scarce, but PTMs including phosphorylation 

are presumed to be integral in maintaining metabolic enzyme function and exerting 

coordinated metabolic responses. In order to survive long-term freezing periods, an 

organism needs to possess prolific capacities to respond rapidly to the numerous 

physiological challenges associated with severe dehydration and anoxia exposure at 

subzero temperatures. The anuran order of amphibians are exemplary models of 

mitigating the physiological stressors of freeze tolerance capacities and will be the 

primary focus of the remainder of this review.  
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III. Physiology of Anuran Freeze Tolerance 

A. Physiological Consequences of Freezing: 

 Among vertebrates, freeze tolerance is rarely employed as an overwintering 

survival strategy and has only been observed consistently in one chelonian, squamate, 

and caudata species as well as several unique anuran species (Berman et al., 1984; 

Voiiturin et al., 2003; 2009). Freeze tolerant anurans experience varying durations of 

time frozen and frequency of freeze/thaw cycles per year, which mainly depends on their 

over-wintering environment. Anurans have been documented to survive in a frozen state 

for up to several months at a time, and have adapted mechanisms over time to cope with 

the physiological consequences of freezing; including the cessation of cardiopulmonary 

function, no voluntary muscle movement, no inter-tissue transport, dehydration and 

hypoxia/anoxia exposure in all cells and tissues, nerve conductance in both the central 

and peripheral nervous systems become immeasurable, and ice crystals form in every 

cavity, lumen, and extracellular space in the body. The majority of research investigating 

freeze tolerant vertebrates are mechanistic studies focused on anurans native to North 

America. However, the evolutionary significance of developing freeze-tolerance has 

received little attention (Voituron et al., 2018). It is known that the capacity to survive up 

to 65% total body water volume frozen as extracellular ice has evolved several times and 

at different time periods among anurans (Voituron et al., 2018). It is presumed that 

freeze-tolerance was adapted from pre-existing mechanisms involved in the well-

developed dehydration and anoxia tolerances present in anurans. In fact, anuran freeze 

tolerance shares common characteristics between all species in spite of being genetically 

distant.  
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 All freeze tolerant anurans accumulate and maintain large stores of liver glycogen 

by seasonal overfeeding during late-summer and early-autumn (do Amaral et al., 2018). 

Anurans also exhibit a specific freezing pattern in which ice crystals grow exclusively in 

extracellular spaces (Storey & Storey, 2017). These animals minimize supercooling to an 

SCP approximately 2-3oC below the normal equilibrium FP of their body fluids, in order 

to minimize the risk of deadly instantaneous ice surges and slow the rate of ice formation 

to allow an organism time to implement freeze-responsive physiological changes (Storey 

& Storey, 2017). Ice nucleation begins by contact with external ice or some other INA on 

the skin and slowly propagates inward over several hours. Ice formation on the skin 

instantaneously results in a surge of adrenergic signaling that is maintained during several 

hours as freezing progresses which causes a sharp rise in both respiration and heart rate, 

as well as initiating cryoprotectant mobilization in the liver (Storey & Storey, 2017). One 

consequence of increased cardiopulmonary function derived from a surge of adrenergic 

signaling is a small rise in body temperature that further depresses the rate of freezing 

(Storey & Storey, 2017). The process of freezing water is also an exothermic process, and 

may contribute, in part, to the observed increase in body temperature. Nonetheless, this 

increase in body temperature provides additional time for an animal to mobilize and 

distribute cryoprotectants throughout the body and implement other necessary 

physiological changes to survive freezing and thawing. Ice propagation follows a 

predictable pattern in which ice progressively moves inward from the skin and the liver is 

always the last organ to freeze, presumably due to possessing the highest concentration of 

colligative cryoprotectants (Storey & Storey, 2017). The thawing process also follows 

this pattern in reverse, wherein the liver thaws first, and the skin is the final tissue. 
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Similar to freezing, thawing is a dynamic process. Initiated when the environmental 

temperature increases above the body fluid FP (on average between -1.0 and -0.5oC), 

thawing then progresses in equilibrium with the temperature of the external environment 

(Storey & Storey, 2017). Just as sequestering body water as extracellular ice depresses 

the equilibrium FP of body fluids, reintroducing water into solution as ice melts increases 

the equilibrium FP of body fluids. Therefore, thawing only progresses to completion if 

environmental temperature gradually increases above the organism’s SCP. Thawing 

follows additional patterns across all freeze-tolerant anuran species.  

 Vital signs deactivated by freezing are always restored in a specific order. 

Heartbeat is recovered first, and blood perfusion to the skin is restored shortly thereafter 

(Storey & Storey, 2017). Respiration then resumes, characterized by low levels of oxygen 

consumption at the beginning of the thaw, and higher than normal levels directly after the 

completion of thawing which eventually normalize (Storey & Storey, 2017).  Finally, 

skeletal muscle reflexes are restored up to 48 hours post-thaw (Storey & Storey, 2017). 

Motor function is additionally observed to recover in a consistent pattern, in which 

animals first exhibit a reflex response to pinch, coordinated limb responses to stimulation 

second, assuming voluntary normal body posture third, and voluntary locomotion is 

restored last (Storey & Storey, 2017). In order to successfully reactivate organ systems 

and resume physiological homeostasis, anurans must ensure cells are not destroyed 

following freezing and thawing by mitigating mechanical damage to cells caused by ice 

formation and cellular volume changes derived from the associated severe dehydration 

stress.  
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B. Ice Management: 

 Anurans make use of various mechanisms in order to limit ice formation 

exclusively to extracellular spaces as well as drastically slow the rate of ice formation, 

providing enough time to implement freeze-responsive physiological changes. One 

method by which anurans manage ice formation and propagation in vivo is minimal 

supercooling of body fluids, usually to an SCP only 2 to 3oC below the equilibrium FP of 

their body fluids. Extensive supercooling, often observed in freeze-avoidant animals, 

substantially increases the risk of experiencing a deadly instantaneous ice surge, in which 

large volumes of body water freeze instantaneously. Instead, by maintaining a relatively 

high SCP, anurans mitigate the risk of instantaneous ice surges and exploit the dynamic 

freezing process by allowing gradual decreases in environmental temperature to dictate 

what percentage of total body water is sequestered as extracellular ice in a slow and 

ordered manner. Additionally, anurans are known to utilize many proteins and other 

agents that interact with ice to prevent or manage crystallization. 

 Freeze avoidant organisms tend to implement mechanisms designed to prevent ice 

inoculation. For example, terrestrial arthropods rely on their waterproof exoskeletons 

(integument) to resist ice inoculation as well as seasonally accumulate colligative 

cryoprotectants (primarily glycerol) and produce antifreeze proteins (AFPs) which bind 

ice crystals and prevent them from growing larger than a microscopic size. While the use 

of AFPs by freeze-tolerant anurans is an area for future research, it is plausible that AFPs 

may be produced seasonally and localized to the cytosol to protect against intracellular 

ice formation. More recent work has identified the existence of a novel antifreeze 

glycolipid (AFG) common to several insects in both freeze tolerant and avoiding species, 
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as well as two anuran species, Alaskan wood frogs and a European frog R. lessonae. 

AFGs are associated with the apical or extracellular side of the plasma membrane and 

interact with ice crystals in order to prevent extracellular ice from inoculating ice crystals 

in the ICF, as well as limit ice recrystallization in the ECF. Ice nucleating proteins (INPs) 

often play integral roles in anuran freeze tolerance. These proteins are seasonally 

synthesized and accumulated by the organism specifically to promote the regulated, and 

ordered, formation of ice in the ECF. Ice nucleating agents (INAs; nonspecific proteins or 

other molecules which initiate ice formation) are also vital in anuran ice management as 

natural ice nucleation in frogs primarily results from skin contact with extracellular ice or 

INA action on epithelial cells in the skin or gut. It has been recently discovered that 

bacteria such as Pseudomonas and Enterobacter found in the skin or gut of the wood frog 

R. sylvatica produce INAs that initiate freezing. Both INPs and INAs are crucial to 

freeze-tolerant anurans as they provide a mechanism to initiate ice nucleation and 

propagation at high subzero temperatures, allowing anurans to minimize supercooling so 

that freezing occurs slowly in an ordered manner. Modern genomic work has allowed for 

the classification of a third-class ice-active proteins. Ice-binding proteins (IBPs), are 

produced to actively prevent the restructuring of small ice crystals into larger crystals. An 

IBP recently characterized in wood frogs is the novel freeze-responsive protein (FR10), 

which is excreted into the ECF in the winter and associates with the plasma membrane to 

bind ice crystals in the ECF. The freeze-responsive 10 (fr10) gene was first identified 

nearly twenty years ago, and studies of fr10 transcripts have found that gene transcript 

levels are strongly upregulated in wood frog liver after 24-hour freezing at 2.5oC and 

increased by 1.8 to 3.8-fold in other tissues including brain, heart lung, testes, and 
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skeletal muscle. Furthermore, transcription is upregulated in the heart and brain when 

exposed to dehydration stress, as well as the heart, kidney, and lung under anoxia. INPs 

and IBPs are not the only proteins that undergo differential expression seasonally, or in 

response to freezing. A wide range of metabolic enzymes are regulated in order to 

promote a hypometabolic state during freezing in anurans.  

C. Differential Regulation of Energy Metabolism: 

 Anurans are exposed to anoxic conditions due to the cessation of 

cardiopulmonary function when frozen for extended periods of time. Freezing-induced 

ischemia forces cells to depend on anaerobic metabolism of endogenous fuel stores to 

produce ATP, as available oxygen is rapidly depleted. It is well known that anurans 

seasonally build extensive liver glycogen stores by late-summer and early-autumn 

feeding. However, large glycogen stores alone are not sufficient to sustain a frog’s high 

basal demand for ATP, potentially for several months at a time. While the subzero 

temperatures maintained during a frozen state do impact enzyme kinetics negatively, 

anurans utilize a process known as metabolic rate depression (MRD) to enter a 

hypometabolic state as low as 1-30% of the basal metabolic rate. Presumed to have been 

adapted from pre-existing mechanisms of anoxia tolerance, MRD is an extremely 

intricate, integrated physiological response induced by freezing in anurans and requires 

meticulous research before it is fully understood. It is understood that MRD suppresses 

energy-expensive non-vital cellular processes including ATP driven primary active 

transport, many forms of biosynthesis, and mitosis/meiosis by reversible phosphorylation 

and other PTMs on proteins, as well as utilizing microRNAs and sequestering mRNA 

transcripts in intracellular storage granules or P-bodies to prevent translation of undesired 
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mRNA transcripts. However, the remainder of this section will focus on the enzymatic 

regulation of common metabolic enzymes among anurans.  

 As discussed earlier, AMPK is presumed to play a vital role in the enzymatic 

regulation of metabolism during freezing. As it reversibly phosphorylates both CK 

(changes conformation to favor creatinine-P hydrolysis) and AMPD to ensure their 

function at subzero temperatures under anoxic conditions. These two enzymes (as well as 

adenylate kinase; AK) function to maintain relatively equal levels of intracellular AMP, 

ADP, and ATP which is crucial to maintain vital cellular processes and prevent metabolic 

damage. Additional freeze responsive PTMs to common metabolic enzymes occur to 

improve the efficiency of anaerobic glycolytic fermentation and prevent metabolites from 

falling into alternative metabolic routes. Studies of dehydrogenase enzymes have found 

that PTMs are not limited to rate-limiting enzymes. Multiple dehydrogenase enzymes 

have been observed to undergo reversible modifications including lactate dehydrogenase 

(LDH), glutamate dehydrogenase (GLDH), and glucose-6-phosphate dehydrogenase 

(G6PDH). LDH catalyzes the reversible conversion of pyruvate to lactate (the end 

product of fermentation), and anoxia-induced phosphorylation and acetylation PTMs 

have been observed in the liver of anoxia-tolerant red-eared slider turtles. These two 

PTMs resulted in reduced LDH pyruvate affinity and increased the sensitivity of LDH to 

high pyruvate concentration as an inhibitor. LDH purified from wood frog skeletal 

muscle was exposed to five separate PTMs. In dehydrated frogs, acetylation and 

ubiquitination actually increased LDH’s affinity for pyruvate, lactate, and NAD+ as well 

as increasing the enzymes sensitivity to urea inhibition. High intracellular concentrations 

of lactate can lead to acidosis, and the PTMs on LDH may actually serve to decrease the 
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amount of lactate accumulated in cells during a frozen state. Evidence supporting this 

presumption lies in the varied concentrations of L-alanine (alternative end product of 

fermentation) accumulated across different tissues of wood frogs. This reversible reaction 

(pyruvate + L-glutamate � L-alanine + a-Ketoglutarate) catalyzed by the enzyme alanine 

transaminase may indirectly become more favorable when PTMs on LDH decrease its 

substrate affinity, removing pyruvate from the cytosol without increasing intracellular 

lactate pools. L-alanine has been observed to accumulate in tissue specific patterns in 

frozen wood frogs as the ratio of lactate:alanine buildup was approximately 1:1 in liver, 

1:2 in skeletal muscle, with almost no alanine accumulated in the heart and liver. 

Phosphorylation of G6PDH, may serve to decrease the function of this enzyme, 

preventing G6P destined for fermentation to be converted into 6P-gluconate and pulled 

into the pentose-phosphate pathway. Additional enzymatic regulation does exist, as 

nearly every animal enzyme involved in the major metabolic pathways of glycogen, 

glucose, urea, and fatty acid metabolism can be subject to PTMs. Current research has 

barely scratched the surface of the vast intertwined regulatory controls of enzymes 

resulting from PTMs (such as methylation, acetylation, phosphorylation, ubiquitination, 

sumoylation, and O-glcNAcylation), and many studies must be completed before the 

profoundly precise metabolic control exhibited during freezing can be fully understood. 

MRD effectively suspends anurans into a hypometabolic state as low as 1-30% of the 

normal metabolic rate so that extensive liver glycogen stores can provide sufficient ATP 

while frozen for up to several months. However, anuran glycogen stores do not serve 

only as an ATP supply while frozen, the colligative cryoprotectants glucose and glycerol 

are synthesized by glycogenolysis during freezing.  
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D. Cryoprotectants: fight, flight, or freeze 

In anurans, the adrenal medulla secretes the catecholamine neurohormone 

epinephrine into blood at the initiation of ice nucleation on the skin. Epinephrine plays a 

vital role in cryoprotectant mobilization, especially in species reliant upon glucose 

production at the initiation of freezing, by quickly activating glycogenolysis in the liver. 

This process has been extensively studied in the ranid wood frog complex and is shown 

in Figure 4. Activating glycogenolysis to synthesize glucose is a short, ATP-

independent, pathway involving only three enzymes: glycogen phosphorylase (GP), 

phosphoglucomutase (PGM), and glucose-6-phosphatase (G6Pase). ß-adrenergic 

signaling is an element of the commonly known “fight or flight” response in all 

vertebrates but has been adapted by wood frogs to induce high levels of sustained glucose 

output from the liver (that can be measured in as little as 2-5 minutes post-nucleation) 

over the course of several hours during freezing. The binding of epinephrine to integral 

membrane ß2-adrenergic G-protein channel receptors (GPcR) stimulates the synthesis of 

cAMP, which causes dissociation of the inactive protein kinase A (PKA) tetramer R2C2, 

releasing both the regulatory and catalytic (PKAc) subunits. PKAc in turn, 

phosphorylates glycogen phosphorylase kinase (GPK), which subsequently 

phosphorylates inactive GP (GPb), activating the enzyme (GPa) which cleaves hexose 

units from glycogen polysaccharides. Glucose-1-phosphate resulting from the actions of 

GPa is converted to glucose-6-phosphate (G6P) by PGM. G6P is subsequently 

transferred to the ER, where G6Pase, anchored to the ER membrane (amino terminal and 

active site on the lumen side), produces glucose that is released near the plasma 

membrane. The bidirectional integral membrane carrier protein GLUT-2 exports glucose 
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from the liver and into the blood, where it is circulated throughout the body. The location 

of G6Pase expression in the ER is vital in both exporting glucose and minimizing the 

reconversion of glucose back to glycogen. Glucose needs to be exported from the ER 

close to the plasma membrane, in order to be quickly exported via GLUT-2, before a 

cytosolic enzyme involved in glycogenesis binds the glucose molecule. The capacity for 

continued large-scale glucose output is determined, in part, by the size of liver glycogen 

stores. On average, wood frogs from Ontario, Canada possess glycogen stores that 

account for approximately 18% of their total liver mass (Storey & Storey, 2017). Studies 

between Alaskan and Ohioan wood frogs have found that Alaskan frogs, which can 

survive freezing at much colder temperatures than Ohioan frogs, maintain liver glycogen 

stores 3.5-fold higher than Ohioan frogs (Storey & Storey, 2017). Additionally, Alaskan 

frogs possess a much higher hepatosomatic index (or more massive liver vs. total dry 

body weight) plus significantly higher levels of ß2-adrenergic receptors in hepatocyte 

membranes during the early hours of freezing that, over time, fell to low levels of 

expression in fully frozen and thawed frogs (Storey & Storey, 2017). ß2-adrenergic 

signaling is continually stimulated in wood frog hepatocytes during the first few hours of 

freezing to produce extreme hyperglycemic conditions. Intracellular hepatocyte cAMP 

levels were 2-fold greater during a 24-hour freezing condition compared to an unfrozen 

control (Storey & Storey, 2017). Plus, PKAc levels were 8-fold and 5-fold greater in 

hepatocytes of frozen frogs versus control at 1 and 5 hours, respectively, after freezing 

began (Storey & Storey, 2017). Furthermore, GP and glycogen synthase (GS) protein 

levels are observed to be lowest during summer months, and highest in winter months in 

both Alaskan and Ohioan wood frog hepatocytes (Storey & Storey, 2017). Notably, the 
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freeze-responsive increases in PKA and activated GP were significantly higher in 

Alaskan frogs when compared to Ohioan frogs (Storey & Storey, 2017). Compared to the 

freeze-intolerant leopard frog, R. pipiens, wood frogs possess both 12-fold and 13-fold 

higher GP activity and glucose output, respectively, in hepatocytes (Storey & Storey, 

2017). Unlike wood frogs, the treefrog complex of anurans utilize glycerol as a primary 

cryoprotectant instead of glucose.  

Glycerol is presumed to be accumulated seasonally by treefrogs as part of a 

necessary cold acclimation period to provide a base-level cryoprotective effect, and 

further mobilization of glycerol occurs directly in response to freezing potentially in the 

liver via ß2-adrenergic signaling – shown in Figure 4 (do Amaral et al., 2020). 

Conflicting data regarding the extent of seasonal glycerol accumulation does exist, 

however this is believed to be a result of varied feeding and cold acclimation protocols 

among laboratories conducting studies (do Amaral et al., 2020). Glycerol is one of the 

most common colligative cryoprotectants observed in nature but is sparsely employed by 

amphibian species, even though glycerol may serve as a superior cryoprotectant 

molecule. Unlike glucose, glycerol forms two osmotically active molecules from one 

G6P molecule but is more energy-expensive to synthesize (net input of 1 ATP and 

NADH) and reconvert to glycogen. However, glycerol is easily cleared by the kidneys 

and excreted in the urine bypassing the need for reconversion to glycogen in the liver. 

Additionally, glycerol does not expose an organism to hyperglycemia. This allows freeze 

tolerant organisms to circulate base levels of the cryoprotectant for extended periods of 

time while reducing the emphasis on extensive glycogen catabolism at the initiation of 

freezing. Finally, mobilizing glycerol instead of glucose prevents repetitive exposure to 
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the cellular stresses associated with hyperglycemia if exposed to several freeze/thaw 

cycles over the course of one winter. The third well-known cryoprotectant utilized by 

anurans is also observed to be seasonally accumulated, however the circulation of this 

molecule is independent of freezing. 

Urea contributes to the freeze tolerance of both wood frogs and treefrogs but is 

not produced as a direct colligative response to freezing. Urea is presumed to be 

accumulated in response to dehydration (one of the main physiological stressors 

associated with freeze tolerance) and its synthesis has been consistently observed in 

dehydration exposure in both unfrozen wood and treefrogs. Urea accumulation occurs 

naturally as anuran habitats begin to dry during late summer, with circulating urea levels 

peaking in the winter. This process is widely observed across dehydration-tolerant 

vertebrate species and is presumed to have been adapted by freeze-tolerant vertebrates to 

aid in freezing survival as its accumulation is usually seen in tandem with glucose or 

glycerol production to enhance colligative action during freezing.  

While the mechanism has not been fully elucidated, evidence suggests urea 

production may be a byproduct of cold-induced protein ubiquitination and subsequent 

degradation (do Amaral et al., 2020). In fish and frogs, transcription of genes associated 

with the ubiquitin proteasome pathway have been observed to be upregulated in response 

to cold exposure (do Amaral et al., 2020). Conjugation between ubiquitin and its target 

proteins promote proteasome binding (do Amaral et al., 2020). Proteasome binding a 

ubiquitinated target protein results in the degradation of the target protein (do Amaral et 

al., 2020). The amino acids resulting from proteolytic activity may be used in synthetic 

pathways of ATP, carbohydrates, and proteins (do Amaral et al., 2020). Although, it is 
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unlikely that ATP is synthesized from non-carbohydrate sources during freezing due to 

hypoxic conditions (do Amaral et al., 2020). Additionally, ubiquitin proteasome derived 

amino acids may act as cryoprotectant molecules on their own, or a source of urea 

production (do Amaral et al., 2020). Furthermore, analysis of the treefrog D. 

chrysoscelis’ hepatic transcriptome revealed that transcripts of several genes involved in 

amino acid trafficking and amino acid flux were downregulated in both cold and frozen 

animals (do Amaral et al., 2020). This finding suggests that amino acids derived from 

proteolytic responses to cold exposure may be accumulated in the liver of D. 

chrysoscelis, necessitating further research to determine if these amino acids are in fact a 

source of the colligative cryoprotectant urea (do Amaral et al., 2020).  
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IV. Dryophytes chrysoscelis 

A. Cope’s Gray Treefrog: 

 Dryophytes chrysoscelis, Cope’s gray treefrog, is a freeze tolerant anuran 

naturally inhabiting an expansive territory covering central and eastern North America. 

D. chrysoscelis and its closely related sister species, D. versicolor, are able to survive up 

to 65% of their total body water volume frozen as extracellular ice crystals. These 

treefrogs mitigate the physiological stressors associated with freezing and thawing by 

accumulating high concentrations of the colligative cryoprotectant glycerol, in tandem 

with urea, presumed to cross cell membranes through a family of integral transmembrane 

channel proteins called aquaglyceroporins (Schmid, 1982; Storey & Storey, 1985; 

Costanzo et al., 1992; Layne & Jones, 2001; Irwin & Lee, 2003; Krane, 2007; 

Zimmerman et al., 2007; Mutyam et al., 2011; Storey & Storey, 2017; do Amaral et al., 

2017; 2020). Though conflicting data regarding the accumulation pattern and source of 

glycerol exists, D. chrysoscelis is believed to accumulate glycerol during a necessary cold 

acclimation period (taking place in late summer and early autumn) to provide a base level 

cryoprotective effect, which is further elevated by rapid glycerol synthesis and 

mobilization in response to freezing (Schmid, 1982; Storey & Storey, 1985; Costanzo et 

al., 1992; Layne & Jones, 2001; Irwin & Lee, 2003; Krane, 2007; Zimmerman et al., 

2007; Mutyam et al., 2011; Storey & Storey, 2017; do Amaral et al., 2017; 2020). 

Glycerol is the most common naturally occurring colligative cryoprotectant utilized by 

freeze-tolerant and avoiding invertebrates, often in combination with the disaccharide 

trehalose or the free amino acid proline (Storey, 1997). However, glycerol accumulation 

is a unique mechanism among vertebrates as the only known animals are the salamander 
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S. keyserlingii and treefrogs (Storey & Storey, 2017). On the other hand, extensive 

studies have concluded that the Rana and Pseudacris anuran species widely rely on 

glucose as a cryoprotectant (Storey & Storey, 1986; 1988; 1992; Costanzo et al., 1993; 

Voituron et al., 2005; 2009; Higgins & Swanson, 2013; Costanzo et al., 2015; Storey & 

Storey, 2017). This molecule is not accumulated seasonally but is rapidly synthesized 

from liver glycogen stores in as little as 2-5 minutes after the initiation of freezing via ß2-

adrenergic signaling (Storey & Storey, 1996). Specific information regarding the 

integrated mechanisms involved in mitigating the physiological stressors associated with 

freezing and thawing remains largely unknown among all freeze-tolerant species and 

requires extensive attention before this awe-inspiring feat of nature can be fully 

appreciated. However, D. chrysoscelis is a promising model for uncovering mechanisms 

applicable for biomedical research investigating the cryopreservation of mammalian 

tissues and organs.  
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V. Aquaporins: Discovery, Function, & Structure 

A. Discovery: 

 Aquaporins (AQPs) are highly specific integral transmembrane channel proteins 

that allow the facilitated diffusion of water molecules across cell membranes. Since their 

initial discovery, AQPs have been characterized as a subfamily of the major intrinsic 

protein (MIP) family that also includes the other homologous transmembrane protein 

channel subfamilies of aquaglyceroporins and Super-AQPs. The initial study of water 

transport was catalyzed by the observation that certain amphibian tissues (skin & bladder) 

are more permeable to water than others (Ussing, 1965; Carbrey & Agre, 2009). The 

initial observation of high-water permeability of amphibian skin by Hans Ussing and his 

colleagues was further expanded with the advent of the electron microscope. This 

technology allowed researchers to visualize structures believed to be protein channels in 

amphibian bladder that increased in number as the tissue’s permeability to water 

increased (Kachadorian et al., 2000; Carbrey & Agre, 2009). These observations 

eventually led to the shuttle hypothesis in which a tissue’s water permeability is regulated 

by the subcellular localization of water channels. Evidence supporting this hypothesis 

was found in amphibian bladder samples, protein aggregates were observed to be 

localized to the cytosol during a state of diuresis (low water reabsorption) and expressed 

in the plasma membrane during a state of antidiuresis (high water reabsorption) (Wade et 

al., 1981). Eventually, other water-permeable tissues became subject to research.  

 Studies with red blood cells (RBCs) headed by A.K. Solomon, suggested pores in 

the cell membrane were responsible for the low Arrhenius activation energy water 

transport observed in RBCs (Solomon, 1968). Additionally, Robert Macey et al. 
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discovered that RBC water movement could be reversibly inhibited in the presence of 

HgCl2 (Macey et al., 1984). These studies suggested that a protein with free sulfhydryl 

groups that mercury can access, are responsible for water transport across the cell 

membrane of erythrocytes. It was not until the late 1980s that the first water channel 

(AQP1) was incidentally characterized by Dr. Peter Agre while attempting to identify the 

Rh blood group antigens (Agre et al., 1987; Saboori et al., 1988). The protein was 

temporarily named channel-like integral protein of 28 kDa (CHIP28) (Smith & Agre, 

1991). As more and more CHIP28 homologs were identified in other organisms, the 

name aquaporin was finally suggested for this water channel protein family in 1993 

(Agre et al., 1993; Carbrey & Agre, 2009). Further research aimed at identifying the 

structure of newly discovered AQPs continued on into the early/mid-2000s, eventually 

confirming the crystal structures of isolated AQPs (Murata et al., 2000; Fu et al., 2000; 

Sui et al., 2001; Savage et al., 2003; Gonen et al., 2005). Currently, 17 different isoforms 

of mammalian AQPs have been identified and characterized. This protein family shares 

many common characteristics, yet protein functionality and permeability are determined 

by amino acid substitutions at only a handful of vital positions in the peptide chain.  

B. Structure: 

 Weighing approximately 28-30 kDa, the general structure of the aquaporin 

(shown in Figure 5 and Figure 6) protein is a tetramer consisting of four independent 

pores (Wspalz et al., 2009). Each individual pore is a monomer and assumes an hourglass 

shape consisting of 6 transmembrane right-handed helical domains (H1-H6) and 2 short 

a-helical loops – Figure 5 (Gorin et al., 1984; Wspalz et al., 2009). Loop B connects H2 

to H3 and is named HB while Loop E connects H5 and H6 and is named HE. Both the 
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amino (N) and carboxy (C) terminus jut into the cytosol from the bottom of H1 and H6, 

respectively (Smith & Agre, 1991; Wspalz et al., 2009). Additionally, each monomer is 

highly symmetrical resulting from an ancient gene duplication event and can be split into 

halves, the first consisting of H1-H3 plus the HB loop while the second half contains the 

H4-H6 plus the HE loop (Verbavatz et al., 1993; Wspalz et al., 2009). Characteristic of 

AQPs, both HB and HE possess the highly conserved asparagine-proline-alanine (NPA) 

motif in the loops that are responsible for assuming an hourglass shape (Jung et al., 1994; 

Wspalz et al., 2009). Each repeat assumes an opposite orientation in the plasma 

membrane, allowing loop B and E to meet in the center of the bilayer (Jung et al., 1994; 

Wspalz et al., 2009). Driven by van der Waals interactions, the prolines in the NPA 

motifs of each loop stack, forming a platform on which HB and HE extend toward the 

cytosolic and extracellular surfaces of the plasma membrane, respectively (Wspalz et al., 

2009). Each monomer is stabilized by the extensive stacking of helices and 

tetramerization – Figure 6 (Wspalz et al., 2009). While the protein fold and overall 

structure is highly conserved among all AQPs, variation in the structure of the pore is the 

major determinant of the channel protein’s selectivity.  

 An AQP’s, permeability and selectivity is controlled by the tightest constriction 

throughout the protein pore (Wspalz et al., 2009). When a molecule passes through the 

amphipathic pore of an AQP, it is conducted through the poor by a series of interactions 

with both amino acid side chains and carbonyl groups on the protein backbone (Wspalz et 

al., 2009). On average, water molecules propelled through an AQP pore travel a distance 

of approximately 25Å and encounter two sites which interact strongly with water 

(Wspalz et al., 2009). The first site is the NPA motif, located equidistant from the 
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cytosolic and extracellular membrane surfaces, that serves to reorient water molecules, 

interrupting hydrogen bonding between water molecules that could affect the flow 

(Wspalz et al., 2009). Additionally, the asparagine (N) residues act as hydrogen donors to 

passing water molecules to further conduct them through the pore (de Groot & 

Grubmuller, 2005; Wspalz et al., 2009). The second site of interaction is responsible for 

determining the channel’s selectivity, as it is the narrowest constriction throughout the 

pore (Wspalz et al., 2009). This constriction, averaging a diameter of approximately 2.8Å 

in AQPs, is located near the extracellular pore mouth and is formed by four amino acid 

residues and is named the aromatic residue/arginine (ar/R) constriction (Wspalz et al., 

2009). In human AQP1, the ar/R constriction is shaped by phenylalanine at the 56th 

residue, histidine at 180, cysteine at 189, and arginine at 195 (or Phe56, His180, Cys189, 

Arg195 respectively; Wspalz et al., 2009). The interactions between these residues confer 

an extremely hydrophilic site, while also limiting the pore diameter to 2.8Å, identical to 

the diameter of a water molecule (Wspalz et al., 2009). The residues composing the ar/R 

constriction are widely conserved among AQPs (i.e., bovine AQP1; Phe58, His182, 

Cys191, Arg197). However, Cys189 seems to be the exception. Notably, this residue is 

the site of the previously mentioned free sulfhydryl group where HgCl2 binds the AQP, 

inhibiting water diffusion (Preston et al., 1993; Wspalz et al., 2009). Aside from the NPA 

motif and the ar/R constriction, amino acids contained within the AQP’s transmembrane 

pore are mostly hydrophobic residues with polar carbonyl groups oriented inward along 

one side of the pore forming a backbone that propels water molecules through the protein 

via hydrogen bonding (Wspalz et al., 2009). Carbonyl oxygens effectively function as a 

ladder within the AQP pore, as these hydrogen bond acceptor sites are responsible for 



P a g e  |52 

 

directionally conducting water molecules through the pore (Wspalz et al., 2009). 

Additionally, this continual formation of hydrogen bonds between AQPs and water 

molecules alleviates the energy required to remove a water molecule from solution and 

into the pore (solvation energy; Wspalz et al., 2009). AQPs are vital to preserving water 

homeostasis. This MIP subfamily is presumed to have evolved from an ancient gene 

duplication event, as AQPs are highly conserved across many genetically distant 

organisms. However, a relatively small number of amino acid substitutions in the peptide 

chain dictate the unique functionality and localization observed between AQP homologs 

and isoforms, all-the-while maintaining a common functionality and structure.  

C. Function: 

 Over time, extremely complex cellular mechanisms for maintaining fluid 

homeostasis have been selected for and developed in vertebrates. Natural selection has 

resulted in immense capabilities for both amphibians and mammals to sense and regulate 

fluid volumes/composition through coordinated mechanisms that allow the precise 

regulation of both water and ion transporters, a process vital to life (Krane, 2007). While 

osmotic pressure can drive the simple diffusion of water molecules across cell 

membranes, the advent of AQPs dramatically increased membrane permeability to, and 

speed at which, water can diffuse across cell membranes (Krane, 2007). These proteins 

allow the rapid and selective transmembrane diffusion of water molecules across the 

phospholipid bilayer crucial to regulated physiological processes such as absorption and 

secretion Krane, 2007). Every AQP is linked by the general characteristic of allowing the 

free facilitated diffusion of water molecules across cell membranes through an integral 

membrane protein channel. However, over 450 members of the MIP superfamily have 
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been discovered and characterized since Dr. Peter Agre’s discovery of AQP1 (originally 

CHIP28) in the late 1980s across a wide variety of organisms (Krane & Kishore, 2003; 

Chaumont et al., 2005; Peterson et al., 2005; Tanghe et al., 2006; Suzuki et al., 2007). For 

the sake of brevity, this section will outline the general function, localization, and 

regulation of major mammalian AQPs, as they are the point of reference for most 

comparative characterization studies of AQP homologs in other organisms.  

 There are 13 characterized mammalian MIP genes, 7 of these genes are AQPs 

(denoted AQP0, 1, 2, 4, 5, 6, 8), 4 of which are GLPs (denoted AQP3, 7, 9, 10; these 

proteins will be discussed in depth later in this review), and the last two genes are 

functionally classified as SuperAQPs (denoted AQP11, 12) (Zardoya, 2005; Gonene & 

Walz, 2006; Gorelick et al., 2006; Krane, 2007) . The functional permeability of 

SuperAQPs as well as their physiological role in mammalian fluid homeostasis are 

unknown and require further research (Morishita et al., 2004; 2005; Itoh et al., 2005; 

Gorelick et al., 2006). However, AQP11 is known to be expressed in the proximal tubules 

of the kidney (held in cytosolic vesicles), liver, testis and brain of mammals while 

AQP12 has been identified in acinar cells of the pancreas (Krane, 2007). AQP0 is 

expressed in the lens fiber cells of the eye and is permeable exclusively to water, however 

the protein’s observed level of permeability is much lower than other AQPs (Gorin et al., 

1984; Dunia et al., 1987; Berry et al., 2000; Francis et al., 2000; Krane, 2007). It may 

also serve a secondary role in cell-cell adhesion, as extracellular portions of AQP0 are 

known to bind to extracellular portions of the same protein on other cells (Gorrin et al., 

1984; Hasler et al., 1998; Fotiadis et al., 2000; Wspalz et al., 2009). Unlike AQP0, AQP1 

is widely distributed constitutively throughout many mammalian tissues including both 



P a g e  |54 

 

the proximal tubule and thin descending limb of the loop of Henle in the kidney, 

erythrocytes, epithelial cells in capillaries and the cornea, the choroid plexus, ear, lungs, 

GI tract, skeletal and heart muscle (Denker et al., 1988; Nielson et al., 1993; 1995; Krane, 

2007). This protein seems to be the default mammalian AQP based on its high 

permeability to water and wide range of tissue distribution. There is evidence that AQP1 

may not be permeable to just water, this AQP may be permeable to both CO2 and NO 

(Wspalz et al., 2009). If confirmed, AQP1 may play an important role in managing the 

blood’s bicarbonate buffer system, since this protein is well known to be expressed on 

erythrocytes (Wspalz et al., 2009). Additionally, NO is an important signaling molecule 

known to induce vasodilation by relaxing smooth muscles, and AQP1 may allow 

erythrocytes to transport NO to smooth muscle in blood vessels and the GI tract (Wspalz 

et al., 2009). On the other hand, AQP2 is not nearly as widely dispersed throughout 

mammalian tissues (Wspalz et al., 2009). Localized to the principal cells of the collecting 

duct and connecting tubules, this AQP is known for its tight regulation by the peptide 

hormone arginine vasopressin (AVP; or antidiuretic hormone, ADH) (Wspalz et al., 

2009). AVP is released into the blood during dehydration conditions, and the resulting 

signal cascade created in target cells at the collecting duct and connecting tubules 

(kidney) initiate the trafficking and insertion of cytosolic AQP2, sequestered in 

intracellular vesicles, into the apical cellular membrane causing increased water 

reabsorption from the kidneys (Wspalz et al., 2009). AQP4 is also expressed in the 

kidney (basolateral membrane of collecting duct principal cells and connecting tubules), 

as well as the retina, ear, airways, lung, GI tract, fast-twitch skeletal muscle, glial cells at 

the blood brain barrier, and astrocytes (Wspalz et al., 2009). AQP5 is expressed in 
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salivary and lacrimal glands, trachea, nasopharynx and airway epithelium, alveolar type I 

cells, ear, eye, placenta, and the pancreas (Wspalz et al., 2009). AQP6 is a unique protein 

in this subfamily and is localized to intracellular vesicles in type A intercalated cells of 

the collecting duct in the kidney (Wspalz et al., 2009). This AQP is presumed to play a 

role in urinary acid secretion due to its low water and selective anion (primarily NO3
- and 

Cl-) permeability when pH drops below 4.0 and is gated by Hg (Wspalz et al., 2009). 

Finally, AQP8 (localized in the Testis, sperm, GI tract, placenta, proximal tubule and 

collecting duct of the kidney, airways, liver, salivary glands, glial and neuronal cells, and 

pancreas) also exhibits unique permeabilities to Urea and NH3 in addition to water 

(Wspalz et al., 2009). Of the 7 AQP isoforms identified in mammals, each shows the 

same basic characteristics with varying permeabilities, mechanisms of regulation, and 

localization patterns. This motif is also evident when comparing AQPs to GLPs, another 

important MIP subfamily.  
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VI. Aquaglyceroporins: Comparative Structure & Function 

A. Structure: 

 Aquaglyceroporins (GLPs) are another MIP subfamily of highly specific integral 

transmembrane proteins. Unlike AQPs, GLPs permit the facilitated diffusion of glycerol, 

urea, and other small uncharged molecules across cell membranes in addition to water. 

The molecular structures of GLPs are surprisingly similar to AQPs in that they are 

tetramers with 4 individual hourglass shape pores (Wspalz et al., 2009). Additionally, 

each monomer possesses the 6 right-handed transmembrane helices (H1-H6), the 2 a-

helical loops (B & E), both the HB and HE domains, the NPA box (except AQP7), and 

even the ar/R constriction which determines pore selectivity (Wspalz et al., 2009). 

However, the main structural difference between the two families lies within the 

composition of the ar/R constriction near extracellular opening of the channel protein 

pore (Wspalz et al., 2009). As discussed earlier, AQPs share a highly conserved grouping 

of Phe, Arg, and His residues that interact to produce a hydrophilic constriction 

approximately 2.8Å in diameter, the same size as a water molecule (Wspalz et al., 2009). 

However, when comparing the well characterized E. coli GLP (GlpF) to mammalian 

AQP1, the difference between the two ar/R constriction sites are blatant (Wspalz et al., 

2009). The ar/R constriction in GlpF consists of tryptophan (Trp48), glycine (Gly191), 

phenylalanine (Phe200), and arginine (Arg205) (Wspalz et al., 2009). These residues 

interact to form a substantially more hydrophilic region measuring approximately 3.4Å in 

diameter, or relatively the same size as a carbon-hydroxyl group (C-OH) present on 

polyols (multiple hydroxyl groups) like glycerol (Wspalz et al., 2009). In AQP1, the 

histidine residue (common to water specific AQPs) directly opposite of the arginine 
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residue confers a hydrophilic edge next to an aromatic residue in the constriction, the 

strength of which is enhanced by the cysteine residue’s sulfhydryl functional group 

extending down into the pore (Wspalz et al., 2009). In contrast, GlpF (and virtually all 

GLPs) the lack of histidine and an additional aromatic residue instead of cysteine, while 

conserving the arginine residue, within the constriction forms a “greasy slide” (Wspalz et 

al., 2009). This hydrophobic ladder provides GlpF the ability to efficiently conduct 

glycerol, small linear polyols, and urea through the channel but does compromise water 

permeability through the pore (Wspalz et al., 2009). In addition to differing ar/R 

constriction amino acid composition, GlpF is asymmetric and possesses extracellular 

loops of varying lengths when compared to AQP1 (Wspalz et al., 2009). Five specific 

amino acid positions (P1-P5) are consistently different between both mammalian and 

non-mammalian AQPs and GLPs (Wspalz et al., 2009). P1 is contained within the H3 

section of the protein and is observed to be nonaromatic in AQPs but aromatic in GLPs 

(Wspalz et al., 2009). Loop E houses P2 and P3, both of which are small and uncharged 

residues in AQPs. However, asparagine is observed at P2 in GLPs while either lysine or 

arginine occupies P3. Both P4 and P5, found in the H6 domain of the protein, are always 

aromatic in AQPs. Conversely, GLPs conserve proline residues at P4 and a nonaromatic 

residue at P5. An additional structural difference has been observed in the mammalian 

GLP AQP7, as the NPA box is not conserved. Instead loop B substitutes proline for an 

additional alanine (NAA), and loop E contains a serine residue instead of alanine (NPS) 

(Wspalz et al., 2009). While AQPs and GLPs share similar molecular structures, 

substituting just a few amino acid residues has an immense impact on channel selectivity. 

While the physiological roles of several mammalian AQP isoforms have been revealed, 
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while the functionality of GLPs have proven more challenging to unveil, partially due to 

the fact that the importance of glycerol to mammals is not fully understood.   

B. Function: 

 GLPs, like AQPs, are highly selective integral transmembrane protein channels 

that allow the facilitated diffusion of glycerol, urea, and other small uncharged molecules 

as well as water across the cell membrane. As a subgroup of the MIP superfamily, these 

proteins share many common characteristics with AQPs, and appear to assume 

approximately identical molecular structures at a glance. However, upon further 

examination of sequence homologies, the structural differences within the ar/R 

constriction site and 5 other amino acid residue positions become apparent. These crucial 

amino acid positions are conserved across mammalian and non-mammalian species and 

have been found to consistently determine the functionality of the protein. Among 

mammals, 4 of 13 characterized MIP genes have been phylogenetically classified as 

GLPs denoted as AQP3, 7, 9, 10. All 4 of these mammalian GLPs exhibit permeability to 

urea, glycerol, and water. Additionally, AQP7 and 9 exhibit permeability to arsenite. 

AQP3 is expressed across many tissues including the kidney’s principal cells of the 

collecting duct and connecting tubules on the basolateral membrane, the airways, lung, 

GI tract, brain, ear, urinary bladder, cornea, and epidermis. Studies of AQP3 gene 

knockouts in mice have resulted in diminished capacities to concentrate urine, 

insufficient skin hydration/elasticity, and even slower wound healing than wild type mice 

strains. The expression patterns of AQP7 are less cumbersome than AQP3, as this protein 

has been identified in the testis, sperm, proximal tubule of the kidney, adipose tissues, 

and skeletal muscle. AQP7 is presumed to play a role in glycerol diffuse from adipose 
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cells when hydrolysis of triacylglycerols (TAGs) occurs during periods of fasting or 

extended exercise. Gene knockout studies of AQP7 in mice has resulted in adipocyte 

enlargement (hypertrophy), increased body fat and weight, as well as insulin resistance 

and diabetes associated with aging. AQP9 is expressed in the liver, testis, sperm, spleen, 

leukocytes, kidney, lung, as well as astrocytes and ependymal cells in the central nervous 

system. This GLP is presumed to play a crucial role in glycerol uptake into the liver from 

the blood to undergo gluconeogenesis during periods of fasting (Ishibashi et al., 1998; 

Carbrey et al., 2003; Carbrey & Agre, 2009). AQP9 null mice exhibit slightly elevated 

blood plasma levels of glycerol and TAGs. However mating leptin-resistant diabetic mice 

with the AQP9 null mice to produce double mutants, and subsequently exposing them to 

fasted conditions, results in immensely high accumulation of blood glycerol plus 

abnormally low blood glucose concentrations (Rojek et al., 2007; Carbrey & Agre, 2009). 

Finally, AQP10 is localized only in the duodenum and jejunum of the GI tract, but the 

GLP’s functionality remains unknown as information is scarce. Attempts to uncover the 

specific mechanisms involved in regulating mammalian GLP expression, as well as their 

physiological role in maintaining homeostasis have proved difficult, partially because we 

do not fully understand how mammals utilize glycerol. It may then be more productive to 

divert attention and resources to investigating the roles of GLP orthologs identified in 

other organisms, specifically vertebrates that possess extensive capacities for managing 

osmotic stress and have an understood, and heavily emphasized, utilization of glycerol, 

urea, and/or other small uncharged polyols.  
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C. Mammalian MIP Superfamily Orthologs in Anurans: 

 Amphibians are well known for their impressive dehydration tolerance and 

osmoregulatory capacities. These vertebrates were also the first organisms observed to 

possess varied levels of water permeability across different tissues that increased as the 

level of protein pore structures expressed in the plasma membrane increased. This 

discovery eventually led to Hans Ussing and colleagues developing the “shuttle 

hypothesis” in the 1960s. Further investigations in mammalian erythrocytes conducted by 

A. K. Solomon and Robert Macey suggested that a protein pore selective to water 

containing a free sulfhydryl group to which HgCl2 can bind and effectively inhibit 

transmembrane diffusion does exist and confers increased water permeability to 

mammalian erythrocytes. This elusive protein pore was not successfully isolated until the 

late 1980s when Dr. Peter Agre unintentionally purified this protein, denoted as CHIP28, 

while searching for the blood Rh antigen protein. However, the name aquaporin was 

suggested in 1993 as a rapidly increasing number of orthologs were identified among a 

wide variety of organisms. Today, over 450 different MIP genes have been characterized, 

several of these genes are present in anurans.  

 To date, 6 classifications of MIP proteins have been identified in anurans 

including orthologs of AQP1, 2, 3, & 9 plus two classifications unique to anurans 

(AQPa1 & AQPa2). AQP1 orthologs have been identified in D. chrysocelis (HC-1), D. 

japonica (AQP-h1), B. marinus (AQP-t1), & R. esculenta (FA-CHIP) (Abrami et al., 

1994; Ma et al., 1997; Hasegawa et al. 2003; Krane, 2007; Suzuki et al., 2007; 

Zimmerman et al., 2007). Similar to the mammalian gene, these orthologs function as a 

water selective AQP, widely expressed throughout various tissues in the body (Abrami et 
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al., 1994; Ma et al., 1997; Hasegawa et al. 2003; Krane, 2007; Suzuki et al., 2007; 

Zimmerman et al., 2007). Orthologs of the mammalian AQP2 gene have only been 

identified in one anuran, D. chrysocelis (Krane, 2007; Zimmerman et al., 2007). This 

protein (HC-2) functions as a water selective AQP localized to the primary organs of 

osmoregulation (skin, bladder, and kidney; Krane, 2007; Zimmerman et al., 2007). AQP3 

orthologs have been identified in 4 anuran species including D. chrysocelis (HC-3), D. 

Japonica (AQP-h3BL), X. laevis (AQP3), and X. tropicalis (AQP; Schreiber et al., 2003; 

Akabane et al., 2007; Krane, 2007; Zimmerman et al., 2007). These proteins are 

commonly expressed in erythrocytes, hepatocytes, skeletal muscle, and the bladder and 

function as GLPs (Krane, 2007; Zimmerman, 2007). The last mammalian ortholog 

identified in anurans is HC-9 in D. chrysoscelis, which functions like the mammalian 

AQP9 GLP and is primarily expressed in hepatocytes. AQPa1 is a novel AQP protein 

identified only in X. laevis (Virkki et al., 2002; Krane, 2007). This protein’s amino acid 

sequence shares less than 50% similarity with the closest related mammal AQP 

sequences (Virkki et al., 2002; Krane, 2007). This AQP also exhibits a unique sensitivity 

to mercury inhibition, likely due to its unique amino acid structure. Another anuran-

exclusive class of AQPs are the AQPa2 group (Virkki et al., 2002; Krane, 2007). This 

group consists of two AQPs found in D. japonica (AQP-h2, AQP-h3) which share high 

homology between themselves, as well as to AQP-t2 and AQP-t3 found in B. marinus 

(Tanii et al., 2002; Hasegawa et al., 2003; Krane, 2007; Suzuki et al., 2007).  AQP-h2 is 

expressed in both the ventral skin and the urinary bladder, while AQP-h3 is only 

expressed in the ventral skin in D. japonica (Krane, 2007; Suzuki et al., 2007). 

Expression of both of these proteins is upregulated by arginine vasotocin (AVT; 
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Hasegawa et al., 2005; Krane, 2007). AVT-induced upregulation is presumed to play a 

role in D. japonica’s metamorphosis (transition from aquatic to terrestrial habitat), as co-

expression of the AVT receptor, AQP-h2, and AQP-h3 are observed during this period 

(Hasegawa et al., 2004; Krane, 2007). While data is fairly limited, research on anuran 

MIPs have shed some insight on their physiological function and regulation, especially in 

the cold acclimation and freezing/thawing of D. chrysoscelis. 
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VII. Evidence of Seasonal Cold Acclimation & 

Aquaglyceroporin Facilitated Cryoprotectant Diffusion in D. 

chrysoscelis  

A. Cold Acclimation: 

 D. chrysoscelis (Cope’s gray treefrog) is a freeze-tolerant anuran capable of 

surviving freezing and thawing after a necessary cold acclimation period. Cold 

acclimation allows freeze-tolerant organisms to survive low temperatures and prepare for 

the physiological stressors associated with freezing by inducing changes in gene 

expression, enzyme function, and cell membrane composition (Costanzo & Lee, 2013; 

Storey & Storey, 2017; do Amaral et al., 2018). D. chrysoscelis has been presumed to 

withstand freezing by accumulating high levels of glycerol and urea during the cold 

acclimation period, which are able to freely diffuse across cell membranes during 

freezing and thawing through GLPs. However, data regarding glycerol accumulation has 

been conflicting. Some studies have suggested that glycerol is accumulated to high levels 

in response to cold exposure as an anticipating freezing, with no further mobilization 

upon ice-nucleation (Layne, 1999; Zimmerman et al., 2007). Others have observed no 

significant increase in glycerol levels in cold-acclimated frogs, even when exposed to 

cold conditions for extended time periods and is instead mobilized at the initiation of 

freezing (do Amaral et al., 2018). Likely, the truth probably lies somewhere in the middle 

as cold acclimation may result in glycerol accumulation but is not failsafe (Layne & 

Stapleton, 2008; do Amaral et al., 2018; 2020). Glycerol accumulation may be influenced 

by the frog’s individual physiology (energetic and osmotic status), the effects of 
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decreased periods of light exposure (photophase; naturally occurs during winter as days 

grow shorter during), low temperatures, fasting, and even experimental methods (i.e. 

feeding schedule, rate of cooling, temperature of acclimation) (Costanzo & Lee 2005; 

Layne & Stapleton, 2008; do Amaral et al., 2018). Additionally, the liver is thought to be 

the main site of glycerol synthesis, however, do Amaral et al., 2018, observed cold 

treefrogs to possess higher glycerol levels in muscle than the liver and blood plasma in 

both cold and warm frogs (Irwin & Lee, 2003; do Amaral et al., 2018). This implies low 

levels of glycerol synthesis in skeletal muscle, likely derived from carbohydrate or lipid 

catabolism (Marsh & Taigen, 1987). Regardless, more research must be completed in 

order to determine the precise mechanism of D. chrysoscelis’ glycerol accumulation, 

however it is currently presumed that both anticipatory and freeze-responsive glycerol 

accumulation occur together. In contrast, substantial evidence suggests that urea is 

accumulated during cold acclimation. 

R. sylvatica, a freeze-tolerant wood frog, rapidly produces glucose in response to 

the initiation of freezing, but additionally accumulates urea in response to dehydration 

during cold acclimation which further enhances colligative cryoprotection (Clausen & 

Costanzo, 1990; Storey, 1997; Costanzo & Lee, 2005; Costanzo et al., 2015; do Amaral 

et al., 2018). Urea is accumulated from protein catabolism during cold acclimation in 

wood frogs, which is presumed to be the source of urea in cold treefrogs (Costanzo & 

Lee, 2005; Costanzo et al., 2015; do Amaral et al., 2018). Urea accumulation may be 

further enhanced by the significant depression of kidney function observed in D. 

chrysoscelis during cold acclimation (Zimmerman et al., 2007; do Amaral et al., 2018). 

Notably, dehydration of warm-acclimated (WA) does not induce glycerol synthesis, 
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however mild dehydration of cold-acclimated (CA) frogs may induce protein catabolism, 

circulating urea and supplying amino acids for glycerol synthesis in the liver (Raymond 

& Driedzic, 1997; Zimmerman et al., 2007; Costanzo et al., 2015; do Amaral et al., 

2018). Consistent with other freeze-tolerant anurans, D. chrysoscelis builds large liver 

glycogen stores during cold acclimation (Storey & Storey, 1985; Costanzo & Lee, 2003; 

do Amaral et al., 2018). However, the amount of stored glycogen differs between studies 

likely due to differing housing/feeding conditions (Storey & Storey, 1985; Costanzo & 

Lee, 2003; do Amaral et al., 2018). After exposure to consistent cold conditions for 

several months, liver glycogen stores showed no change in size (do Amaral et al., 2018). 

This suggests that, like other freeze-tolerant anurans, D. chrysoscelis’ basal metabolism is 

supported by non-carbohydrate metabolites, such as proteins and lipids during cold 

conditions (Dinsmore & Swanson, 2008; Costanzo et al., 2013; do Amaral et al., 2016; 

2018). However, the maintenance of glycogen reserves does raise concerns as it is 

believed to be the source of glycerol. As anticipatory accumulation of glycerol via 

glycogenolysis may compromise the ability to mobilize glucose, and subsequently 

glycerol at the initiation of freezing. Liver glycogen store maintenance in the liver of CA 

treefrogs requires additional attention in order to understand the interplay between 

anticipatory and freeze responsive glycerol mobilization in D. chrysoscelis. Aside from 

the accumulation of colligative molecules, cold acclimation in D. chrysoscelis affects 

kidney function.  

The renal system is integral to conserving colligative cryoprotectants in freeze-

tolerant anurans (Krane, 2007). Enduring multiple freeze/thaw cycles over the course of 

one winter deplete anuran liver glycogen stores potentially due to glucose excretion in 
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urine (Lee & Costanzo, 1993; Layne et al., 1996; Krane, 2007). This poses a serious 

threat of glycogen depletion, especially in wood frogs as renal tubules in the kidney have 

dismal capacities for glucose reabsorption that may be overwhelmed under extreme 

hyperglycemic conditions (Layne et al., 1996; Krane, 2007). To mitigate glucose loss, 

wood frogs rapidly initiate glycogenesis during thawing to reconvert as much glucose to 

glycogen as possible while minimizing potential urine excretion and hyperglycemia. 

These frogs may also reabsorb glucose excreted in the urine via GLUT transporters in the 

skin. However, gray treefrogs maintain high glycerol blood plasma levels for weeks at a 

time in anticipation of and during freezing. In order to preserve glycerol levels, D. 

chrysoscelis is presumed to depress the overall rate of kidney filtration as a part of the 

cold acclimation period. The glomerular filtration rate (GFR) and the urine filtration rate 

(UFR) of warm, hydrated, treefrogs as well as the decrease in GFR and UFR are 

consistent among studies (Shoemaker & Nagy, 1977; Shoemaker & Bickler, 1979; 

Vondersaar & Stiffler, 1989; Zimmerman et al., 2007). Dehydrating warm treefrogs 

(23oC) by 20% of standard body mass over 48 hours results in GFR to decrease by 

approximately 84% (226±107 µL/hr to 37± 6 µL/hr), and UFR to drop greater than 97% 

(85±37 µL/hr to 2±0.06 µL/hr) of the level observed in warm hydrated frogs, without 

inducing significant changes in plasma glucose or glycerol concentrations (Zimmerman 

et al., 2007). The observed greater proportional drop in UFR compared to GFR suggests 

that water reabsorption is heightened, in either the bladder or renal tubules. Both of these 

tissues are responsive to vasotocin, or the amphibian ADH (Shoemaker & Nagy, 1977; 

Uchiyama, 1994; Zimmerman et al., 2007). Acclimating treefrogs to cold temperatures 

(2oC) resulted in the accumulation of ~51mmol/L of glycerol (plus ~2.9mmol/L of 
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glucose) in blood plasma, a GFR of 6±0.4 µL/hr (<3% GFR of warm hydrated frogs, and 

~1/6th GFR of warm dehydrated frogs), and a UFR of 4±0.7 µL/hr (~2-fold higher than 

warm dehydrated frogs) (Zimmerman et al., 2007). Additionally, urine glycerol excretion 

rate nearly tripled with cold acclimation (18±10 nmol/hr to 52±6 nmol/hr) versus warm 

acclimated frogs (Zimmerman et al., 2007). It is possible that cutaneous (through the 

skin) absorption of glycerol excreted in urine occurs, however the capacity of skin 

glycerol transport in D. chrysoscelis remain unknown (Zimmerman et al., 2007). Water 

and glycerol reabsorption in the kidney are mediated by AQP and GLP orthologs in D. 

chrysoscelis, which have also been found to be regulated as part of the cold acclimation 

process.  

The AQPs (HC-1 & HC-2) and GLPs (HC-3 & HC-9) in Cope’s gray treefrog 

have been consistently observed to undergo thermal regulation during the cold 

acclimation period. In fact, HC-1 is presumed to be a homolog of AQP1 because it shares 

nearly perfect amino acid sequence and the wide-ranging tissue expression patterns as the 

known AQP1 homolog found in D. japonica (a sister species of D. chrysoscelis), AQP-h1 

(Hasegawa et al., 2003; Zimmerman et al., 2007). HC-1 exhibits high water permeability 

at both 10 and 23oC, is inhibited by ~55% in the presence of HgCl2, and also exhibits low 

permeability to glycerol at 23oC, but no permeability at 10oC (Zimmerman et al., 2007). 

The mRNA expression levels of this protein is temperature sensitive however, as CA 

treefrogs express increased HC-1 mRNA levels in hepatocytes plus decreased levels in 

the brain and kidney when compared to WA frogs (Zimmerman et al., 2007). While its 

nucleotide sequence is divergent from others, HC-2 is believed to be a member of the 

AQP2 family as it still shares about 78-83% amino acid similarity to other AQP2 proteins 
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(Zimmerman et al., 2007). As expected, this protein is expressed primarily in the organs 

of osmoregulation, is presumed to be regulated by amphibian ADH, and retains high 

water permeability at both warm and cold temperatures (Zimmerman et al., 2007). This 

AQP’s mRNA expression also varies with temperature changes. HC-2 mRNA is found to 

be highly expressed in the skin of CA treefrogs, compared to a complete absence of 

mRNA transcripts in the skin of WA treefrogs (Zimmerman et al., 2007). HC-3 is a 

functional GLP and is most similar to anuran and mammalian AQP3. This protein is a 

weak water transporter compared to HC-1 and HC-2, and its permeability to water 

decreases by more than 50% as temperature is decreased from 23 to 10oC (Zimmerman et 

al., 2007). However, over this same temperature change, HC-3 maintains high 

permeability to glycerol (Zimmerman et al., 2007). HC-3 has also been observed to be 

upregulated in the liver, lung, bladder, gut, brain, muscle, and bladder while being 

downregulated in the skin of CA treefrogs (Zimmerman et al., 2007). The increased 

expression in the bladder paired with decreased skin expression under cold temperatures, 

supports the idea of increased glycerol conservation in the renal system (Zimmerman et 

al., 2007). Additionally, upregulation of HC-3 in skeletal muscle, erythrocytes, liver, and 

bladder corresponds to the increased glycerol levels found in the liver and skeletal muscle 

of CA treefrogs compared to WA frogs (Krane, 2007; Zimmerman et al., 2007). An 

additional GLP (HC-9) is thermally regulated primarily by increased expression in 

hepatocytes during cold acclimation periods (Stogsdill et al., 2017; do Amaral et al., 

2020). All of these changes in AQP/GLP expression, renal filtration rates, and 

cryoprotectant management and accumulation during the necessary cold acclimation 

period all serve to confer a baseline cryoprotective effect to D. chrysoscelis without 
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causing extensive supercooling or metabolic damage. However, while cold acclimation 

does provide some protection to the physiological stressors of extracellular ice formation 

the process is not completely understood and requires extensive research. What is known, 

is that cold acclamation alone is not sufficient to protect Cope’s gray treefrog from 

extensive freezing for extended periods of time. Many additional freeze-responsive 

mechanisms exist and must be implemented for D. chrysoscelis to survive up to 65% of 

its total body water volume frozen as extracellular ice for up to several months at a time. 

The liver is an organ thought to be the primary source of freeze-responsive glycerol 

synthesis, and therefore vital to D. chrysoscelis’ freeze tolerance.  

B. Liver Transcriptome: 

 In freeze-tolerant anurans, the liver is vital to cryoprotectant synthesis and 

metabolic regulation. Yet many mechanisms induced by cold acclimation and freezing 

remain elusive in all freeze-tolerant organisms, including differential gene expression in 

hepatocytes. However, since the beginning of the “Human Genome Project” in 1990, 

DNA technology has improved at an exponential rate, all the while becoming less 

expensive and more accessible to researchers. Successful efforts generated a hepatic 

transcriptome of 34,936 genes for D. chrysoscelis via high-throughput RNA sequencing 

(RNA-Seq), to examine the differential gene expression of hepatocytes in response to 

both cold acclimation and freezing (do Amaral et al., 2020). By analyzing differential 

gene expression at transcript-level, cold acclimation was found to cause the 

downregulation of 629 genes and upregulation of 1917 genes compared to WA treefrogs 

while freezing resulted in the downregulation of 1093 genes and upregulation of 2223 

versus WA frogs (do Amaral et al., 2020). However, frozen frogs only upregulated 18 
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and down regulated 7 genes significantly compared to CA frogs (do Amaral et al., 2020). 

On the other hand, analyzing differential expression at the gene-level highlighted a much 

lower number of regulated genes in all three comparisons (CA:WA, CA:frozen, 

frozen:WA; do Amaral et al., 2020). Just 20-44% of genes found in transcript-level 

analysis were found in the gene-level analysis, while 86-91% of genes in the gene-level 

analysis were also regulated at the transcript-level (do Amaral et al., 2020). The shared 

results of the two analyses result in 277 genes downregulated and 382 upregulated in CA 

versus WA frogs, 530 downregulated and 519 upregulated in frozen versus WA frogs, 

and no genes downregulated and just 3 genes upregulated in frozen versus CA D. 

chrysoscelis (do Amaral et al., 2020). Of all the genes found to undergo significant 

differential expression, ~3.6% were non-coding RNAs (do Amaral et al., 2020). This 

finding suggests that both coding and non-coding RNAs undergo thermal state regulation 

in the hepatic transcriptome of D. chrysoscelis as 7 C/D box small nucleolar RNAs 

(SNORDs) were upregulated in CA, and 8 were upregulated in frozen frogs, versus WA, 

3 H/ACA box small nucleolar RNAs (SNORAs) were upregulated in CA, and 5 were 

upregulated in frozen frogs versus WA, as well as two micro RNAs (miR-30 & miR-142) 

which were upregulated in both CA and frozen frogs versus WA frogs (do Amaral et al., 

2020). The importance of snoRNAs in cold acclimation and freeze tolerance remains 

unknown, but their thermoregulation in response to both phenomena suggests they may 

play a crucial role in managing transcription and translation (do Amaral et al., 2020). It is 

known that snoRNAs modify rRNAs and other types of RNA molecules, during freezing 

conditions specific snoRNAs may serve to improve or inhibit ribosomal function as well 

as guide specific mRNA transcripts to ribosomes for specific proteins, or tag mRNA 
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sequences for degradation (do Amaral et al., 2020). SnoRNA5 was found to be 

upregulated in frozen treefrogs, this molecule is associated with reperfusion injury and 

may play some role in managing the ischemic conditions experienced during freezing 

(Costanzo & Lee, 1961; Merchen et al., 2014; do Amaral et al., 2020). The upregulation 

of miR-30 and miR-142 in response to cold exposure provides more evidence that 

noncoding RNAs play a role in freeze tolerance (do Amaral et al., 2020). The levels of 

miR-30 have been observed to increase during freezing in the skeletal muscle of the 

freeze-tolerant wood frog R. sylvatica (Bansal et al., 2015; do Amaral et al., 2020). This 

miRNA has been observed to prevent apoptosis and liver fibrosis (formation of large 

amounts of scar tissue when the liver attempts to repair damaged cells), but the specific 

role in freeze-tolerance is unknown (Deng et al., 2010; Zheng et al., 2015; do Amaral et 

al., 2020). R. sylvatica differentially regulates several other miRNAs including miR-21 

(liver & skeletal muscle) and miR-16 (liver), however most miRNAs in the brain of this 

wood frog were found to be downregulated when frozen, suggesting a potential 

neuroprotective role (Storey & Storey, 2017; Hadj-Moussa & Storey, 2018; do Amaral et 

al., 2020). Additional research suggests that some miRNAs may actually improve their 

function under cold temperatures. 11 miRNAs were identified in the anoxia-tolerant T. s. 

elegans, this group was found to have ~640 different target genes at 37oC, but at 5oC 

these 11 miRNAs targeted 1262 different genes (Biggar et al., 2009; 2016; Storey & 

Storey, 2017). Often, miRNAs function in vivo to suppress the translation of their target 

mRNA preventing biosynthesis of proteins and undesirable cell processes, an ability 

crucial to an organism suspended in a hypometabolic state (Storey & Storey, 2017). The 
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hepatic transcriptome found heavy differential expression of genes associated with 

metabolic processes and glycerol synthesis (do Amaral et al., 2020).  

 Enzymes involved in the glycerol synthesis pathway, showed significant but 

surprising differential expression (do Amaral et al., 2020). Genes that promote glycerol 

synthesis were not upregulated (do Amaral et al., 2020). In fact, neither glycerol-3-

phosphate dehydrogenase (G3PDH: DHAP + NADH  G3P + NAD+) or glycerol-3-

phosphatase (G3Pase: G3P  Glycerol + Pi) did not experience any differential 

regulation (do Amaral et al., 2020). Additionally, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), glutamate dehydrogenase (GLUD1), and alanine 

aminotransferase (GPT2) were all downregulated (do Amaral et al., 2020). This implies a 

reduced role for glycerol synthesis in the accumulation of this molecule in cold and 

frozen frogs (Driedzic, 2015; do Amaral et al., 2020). However, an enzyme necessary for 

the metabolism of glycerol in the liver (glycerol kinase: GK) was also observed to be 

downregulated (do Amaral et al., 2020). It is probable that downregulating GK, reduces 

the metabolism of glycerol, thereby promoting glycerol accumulation indirectly (do 

Amaral et al., 2020). One enzyme, glycerol kinase 5, was upregulated but its function in 

treefrogs is currently unknown (do Amaral et al., 2020). Looking at the transcriptional 

data of the glycerol synthesis pathway, the data collected infers transcriptional 

upregulation of genes promoting hepatic glycerol synthesis is not the cause of glycerol 

accumulation during cold acclimation or freezing (do Amaral et al., 2020). A potential 

combination of various regulatory mechanism may contribute to glycerol accumulation 

instead, including diminished glycerol metabolism, production of glycerol from other 

sources (i.e. fat stores), or tightly regulating the transport and distribution of glycerol (do 
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Amaral et al., 2020). It also feels necessary to raise the point that not upregulating 

transcription of enzymes involved in hepatic glycerol synthesis does not invalidate the 

hypothesis that liver glycogen is the source of glycerol. Many other factors play roles in 

regulating enzymatic function, PTMs may occur on G3PDH and G3Pase that increase 

enzymatic function promoting glycerol synthesis, or preexisting mRNA transcripts of 

enzymes involved in this pathway may be guided to ribosomes ensuring their translation. 

Where glycerol is synthesized, and how it is accumulated in D. chrysoscelis requires 

extensive research rendering definitive evidence before a conclusion can be drawn. For 

example, AQP and GLP membrane expression has been shown to increase in response to 

cold and freezing in D. chrysoscelis, however transcripts of both HC-3 and HC-9 showed 

no significant change in response to cold or freezing in the hepatic transcriptome (do 

Amaral et al., 2020). This change in expression is presumed to be caused by PTMs which 

cause GLPs stored in intracellular vesicles to be trafficked to cell membranes (Stogsdill 

et al., 2017; do Amaral et al., 2020). However, glycerol synthesis is not the only 

metabolic pathway that undergoes differential expression.  

 Likely triggered by a signaling cascade at the initiation of freezing, treefrogs 

mobilize glucose by activating glycogenolysis (Costanzo et al., 1992; do Amaral et al., 

2018; 2020). In fact, the anabolic breakdown of glycogen is transcriptionally promoted in 

hepatocytes (do Amaral et al., 2020). Phosphorylase kinase b (PHKA2 & PHKB2) and 

the ß-catalytic subunit of protein kinase A (PRKACB) transcripts are upregulated in 

frozen frogs, potentially promoting glucose and subsequent glycerol synthesis (do 

Amaral et al., 2020). Glucose export may also be promoted by transcription as G6Pase 

and pyruvate dehydrogenase kinase 2 (PDK2) by increasing glucose available for hepatic 
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export and the conversion of pyruvate to acyl-CoA, respectively (do Amaral et al., 2020). 

Enzymes associated with glycolysis (including PFKM & GAPDH) are downregulated, 

potentially suppressing glycolysis, consistent with other freeze-tolerant anurans (Storey 

& Storey, 2017; do Amaral et al., 2020). Notably, an upregulation of hexokinase (HK) 

and downregulation of glucokinase regulatory protein (GCKR) was seen in hepatocytes, 

which would actually favor glycolysis (do Amaral et al., 2020). Additionally, low glucose 

export from the liver has been observed in previous studies of D. chrysoscelis, now this 

observation may be supported by the finding that glucose transporters in hepatocytes 

were either downregulated or had no change in expression during cold or freezing 

exposure (Zimmerman et al., 2007; do Amaral et al., 2018; 2020). Overall 

proteins/enzymes involved in carbohydrate and lipid metabolism were found to be 

downregulated in response to cold acclimation and freezing (do Amaral et al., 2020). 

However dynamic gene expression in the hepatic transcriptome suggests that extremely 

robust intertwined mechanisms of gene and protein regulation impact cryoprotectant 

accumulation and mobilization in response to cold and freezing exposure require 

extensive research before they are completely understood (do Amaral et al., 2020). In 

addition to regulation of metabolic mRNA transcripts, stress related proteins undergo 

dynamic regulation.  

 The chaperone proteins HSP70, HSP90AA1, HSPH1, and HSPA5 were all 

upregulated in cold and frozen hepatocytes (do Amaral et al., 2020). HSP upregulation, 

as discussed earlier in this review, is associated with cold hardiness and stress responses 

among many insect, reptiles, and amphibians. Surprisingly, HIF1A (HSP transcription 

factor crucial to the hypoxia response) which is known to be upregulated in T.s. elegans, 
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C. picta, and R. sylvatica did not undergo any transcriptional dynamic regulation in D. 

chrysoscelis hepatocytes (do Amaral et al., 2020). Additionally, genes associated with 

increased antioxidant defenses were downregulated (CAT, GSTO1, MGST1, NFE2L2) 

(do Amaral et al., 2020). However, it is unknown if D. chrysoscelis possesses high 

constitutive antioxidant defenses, like other freeze-tolerant anurans, rendering 

transcription of new proteins unnecessary (do Amaral et al., 2020). Furthermore, genes 

associated with apoptosis inhibition and other stress responses were found to be generally 

upregulated (do Amaral et al., 2020). It is clear that Cope’s gray treefrog implements 

dynamic regulation of mRNA transcription in response to cold acclimation and freezing, 

however further research must be completed in order to develop a broad understanding of 

how transcription integrates with translation, PTMs, and cell-signaling as well as what 

tissue specific changes are employed during these responses. In addition to RNA-Seq 

techniques, studies of erythrocytes harvested from D. chrysoscelis have provided insight 

as to how cryoprotectants and cold acclimation impact survival of freezing and thawing 

in vitro.  

C. Erythrocyte Post-Freeze Viability Assays: 

 A study conducted by Geiss et al. in 2019 aimed to determine how cold 

acclimation and presence of cryoprotectants affect the percentage of cells in a live 

erythrocyte culture that survive one freeze/thaw cycle, or the post-freeze viability (pfv), 

in vitro – Results summarized in Figure 7 and Figure 8. To accomplish this, blood 

samples from both WA and CA treefrogs were collected and incubated at 0.0oC or frozen 

to -8.0oC for 30 minutes (cooling rate of -0.35oC/min) in the presence and absence of 

cryoprotectants. The cryoprotectants tested in both groups were 150mM glycerol, 
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glucose, urea, or 83mM of NaCl which were preincubated into PBS solutions of 280mM 

(Geiss et al., 2019). Cell viability was assessed via hemoglobin leakage assays which 

determine the percentage of remaining live cells to cells that experienced cell lysis due to 

osmotic stress by creating a proportion of the amount of hemoglobin that has leaked into 

solution versus the amount of hemoglobin remaining in erythrocytes (Costanzo & Lee, 

1991; Geiss et al., 2019).   

 It was determined that freezing erythrocytes from WA frogs in 280mM PBS 

without any cryoprotectants reduced cell viability from 85.1±2.6% all the way down to 

18.9±1.3% (Geiss et al., 2019). In contrast, freezing erythrocytes from CA treefrogs with 

no preincubations resulted in a pfv of 45.8±2.9%, while unfrozen erythrocytes maintained 

a viability of 88.9±4.9% 18.9±1.3% (Geiss et al., 2019). Therefore, without any 

cryoprotectants added to solution, CA erythrocytes were naturally 2.4-fold more freeze 

tolerant than WA erythrocytes (Geiss et al., 2019). Preincubating WA erythrocytes 

suspensions with 150mM of urea, increased pfv by 2.5-fold (or 47.4±5.2%), a level 

similar to CA erythrocytes in the absence of cryoprotectants (Geiss et al., 2019). 

Conversely, the addition of any other cryoprotectant (glycerol, glucose, sorbitol, NaCl) 

did not significantly improve WA erythrocyte pfv (Geiss et al., 2019). Freezing CA cells 

with pre-incubations of 150mM urea resulted in a pfv of 71.9±1.6%, and 150mM 

glycerol resulted in a pfv of 71.6±8.9%, neither of these values were significantly 

different than CA solutions preincubated with either cryoprotectant (Geiss et al., 2019). 

Additionally, glucose and the non-permeating cryoprotectants (NaCl, sorbitol) conferred 

no cryoprotective effect to frozen CA erythrocytes (Geiss et al., 2019). This study shows 

evidence that freeze tolerance of erythrocytes in D. chrysoscelis is conferred by a 
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necessary cold acclimation phase, that is further enhanced by the accumulation of the 

cryoprotectants glycerol and urea (Kane, 2007; Zimmerman et al., 2007; Pandey et al., 

2010; Mutyam et al., 2011; Stogsdill et al., 2017; do Amaral et al., 2018; Geiss et al., 

2019; do Amaral et al., 2020). It is presumed that part of the erythrocyte cold acclimation 

period is increasing the membrane expression of the HC-3 GLP (permeable to both 

glycerol and urea), based on the observation that glycerol had no cryoprotective effect on 

WA treefrogs, and the cryoprotective effect of urea in CA erythrocytes was significantly 

greater (Kane, 2007; Zimmerman et al., 2007; Pandey et al., 2010; Mutyam et al., 2011; 

Stogsdill et al., 2017; do Amaral et al., 2018; Geiss et al., 2019; do Amaral et al., 2020). 

Additionally, HC-3 membrane expression has been found to increase by ~2.5-fold in CA 

erythrocytes compared to WA (Kane, 2007; Zimmerman et al., 2007; Pandey et al., 2010; 

Mutyam et al., 2011; Stogsdill et al., 2017; do Amaral et al., 2018; Geiss et al., 2019). 

HC-9 membrane expression has also been found to significantly increase in D. 

chrysoscelis hepatocytes in response to CA, potentially increasing the capacity for 

hepatic export and distribution of glycerol throughout the body (Kane, 2007; Zimmerman 

et al., 2007; Pandey et al., 2010; Mutyam et al., 2011; Stogsdill et al., 2017; do Amaral et 

al., 2018; Geiss et al., 2019; do Amaral et al., 2020). Over the past 15 years, substantial 

breakthroughs in understanding the mechanisms conferring freeze-tolerance to Cope’s 

gray treefrog have been made, this treefrog remains largely enigmatic. Future research 

aimed at specific questions must be completed before we can illustrate specific, 

integrated, mechanisms that D. chrysoscelis depends upon to mitigate the severe 

physiological stressors associated with freezing and thawing.  
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VIII. Future Research  

A. Research Questions: 

 Current research of D. chrysoscelis has served to uncover more questions we need 

to answer. The first of which is the site of glycerol synthesis and the method of 

accumulation, we need to be able to identify the specific source of glycerol synthesis. Is it 

actually synthesized from liver glycogen stores, or another tissue like skeletal muscle or 

fat bodies? Or is glycerol synthesized from a variety of tissues? We also need to 

definitively outline the accumulation patterns of glycerol in vivo. Is glycerol accumulated 

in anticipation of freezing, at the initiation of freezing, or a combination of both? If 

glycerol is accumulated seasonally and produced at ice-nucleation, is one method more 

emphasized? In time, we have to describe how metabolism is regulated to produce 

glycerol. We know the enzymes of the glycerol synthesis pathway are not 

transcriptionally upregulated, but other enzymes that could metabolize glycerol are 

downregulated in hepatocytes. What role do non-coding RNAs, translation, PTMs, and 

chaperone proteins play? Aside from information regarding glycerol, the importance of 

AQPs and GLPs must be defined. 

 We must determine if glycerol diffusion through GLPs extends to other cell types. 

We also need to determine if there are additional GLPs/AQPs in Cope’s gray treefrog that 

have not yet been characterized. We also do not know how cryoprotectant diffusion 

affects restricted cell types, as erythrocytes exist in a suspension and are free to move 

about in solution in change volume. On the other hand, restricted cell types such as 

hepatocytes are more limited in volume changes as they are surrounded by neighboring 
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cells that cannot move freely. Do cryoprotectants have a weaker protective effect on these 

cell types? We also need to determine if the effects of cryoprotectants of glycerol and 

urea are additive, or if a maximum osmolarity limit exists, in which additional colligative 

molecules offer no more protection. We must also determine how treefrogs anticipate 

freezing and initiate cold acclimation. Additionally, the epigenetic responses to freezing 

and thawing have received little to no attention. Do epigenetic changes increase freeze-

tolerance over the frog’s lifetime? Are they inheritable? The questions we must answer 

are vast and open ended, only by approaching them piece-by-piece will we find answers. 

Most of which will be additional questions, but these will be more refined and focused on 

increasingly narrow topics additionally informed by discoveries in other species and 

technological innovations that make research more accessible and efficient.  

B. Hypothesis & Specific Aims: 

Hypothesis 1: Post-freeze cell viability will be enhanced in erythrocytes and hepatocytes 

from cold acclimated treefrogs vs. warm acclimated frogs when frozen in the presence of 

cryoprotectants. 

Specific Aim 1: Test the post freeze cell viability of erythrocytes and hepatocytes 

for warm and cold acclimated frogs 

in varying concentrations and combinations of glucose, urea, and glycerol. 

Hypothesis 2: Expression and membrane localization of glyceroporins HC-3 in 

erythrocytes and HC-9 in hepatocytes will be increased in cells from cold acclimated vs. 

warm acclimated animals. 

Specific Aim 2: Quantify the subcellular localization of GLPs in cold and warm 

acclimated erythrocytes and hepatocytes using immunocytochemistry. 
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C. Proposed Methodology: 

Erythrocyte Live Harvest 

Erythrocyte samples will be collected at Wright State University, then transported 

back to the University of Dayton and used in post-freeze viability studies as previously 

described (Geiss et al., 2019). Blood samples collected from live warm and cold 

acclimated frogs will be immediately placed in Complete Cell Culture Media (CCCM), at 

the same temperature to which the frog is acclimated, as previously described (Mutyam et 

al., 2011; Geiss et al., 2019). An aliquot of blood samples will be used to determine the 

number of live and dead erythrocytes using Trypan Blue and a hemocytometer to 

calculate cell viability as a percentage (Krane, 2007; Geiss et al., 2019). RBCs will be 

separated from the whole blood sample by centrifugation and PBS wash at respective 

temperature of frog acclimation (Geiss et al., 2019). 

Hepatocyte Isolation 

Liver tissue will be obtained from warm acclimated treefrogs as previously 

described (do Amaral, 2015). To isolate hepatocytes, the liver will first be flushed of 

blood using “frog saline”. Hepatocytes will be harvested by in situ perfusion of the liver, 

and isolated as described (do Amaral et al. 2015). After successfully isolated, hepatocytes 

will be stored at the temperature of acclimation until experiments were conducted (do 

Amaral et al., 2015). An aliquot of isolated hepatocyte suspensions will be tested for 

erythrocyte contamination, and cell viability calculated as a percentage (do Amaral et al., 

2015).  

In Vitro Freezing 
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Prior to freezing, isolated erythrocytes and hepatocytes from warm or cold 

acclimated experimental groups will be preincubated with varying concentrations and 

combinations of cryoprotectants. Each group will be suspended in an isosmotic PBS 

solution as described (Geiss et al., 2019). A cold and warm acclimated suspension 

containing no cryoprotectants, for both erythrocytes and hepatocytes will serve as the 

control groups. The cryoprotectants used in the experiment will be glycerol, urea, and 

glucose. One cryoprotectant will be added alone in suspension, to test individual efficacy 

of each. Cryoprotectants will also be added in pairs and groups of three in varying ratios 

to determine if the effect of multiple cryoprotectants is additive, exponential, 

antagonistic, or logarithmic. To provide consistency in the colligative effect, the total 

osmolarity of cryoprotectants used to preincubate cell suspensions will always equal 150 

mOsM. Each suspension will be tested in the presence or absence of GLP inhibitor, 

mercury chloride, to examine the functionality of respective GLPs in freeze tolerance. 

Each group will be tested in triplicates, to increase sample size and calculate a mean 

value of post-freeze viability. Preincubated suspensions will be frozen by chilling to -

8.0oC on an ethanol bath resting at 0.0oC, reduced at a rate of - 0.35oC/min (Geiss et al., 

2019). Frozen cells will remain at -8.0C for 30 minutes, then thawed at 4C for 15 minutes 

as described (Geiss et al. 2019). 

Acute Cryoinjury Assessment (Lactate Dehydrogenase Assay) 

Post-freeze viability of erythrocyte and hepatocyte suspensions will be assessed 

via leakage of lactate dehydrogenase (LDH) (do Amaral et al. 2015). LDH is a 

cytoplasmic enzyme present in all animal cells responsible for the reduction of pyruvate 

to lactate under anaerobic conditions (BioLegend Inc., San Diego, California). LDH 
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rapidly leaks out of cells when impaired by stress, injuries, chemicals, or intracellular 

signaling (BioLegend Inc., San Diego, California). If cells lyse during a freeze/thaw cycle 

causing the plasma membrane to tear, or rupture, LDH will be present in the extracellular 

fluid (ECF) in quantifiable amounts (do Amaral et al., 2015). Intracellular and 

extracellular LDH activity will be determined using a reagent kit (do Amaral et al. 2015). 

The ratio of ECF LDH activity to total LDH activity will be calculated to estimate LDH 

leakage of each sample. The data will be replicated in triplets and averaged (do Amaral et 

al. 2015). 

Immunocytochemistry 

Immunocytochemistry is a technique used to visualize the subcellular localization 

of a specific protein by binding its specific antibody to the protein of interest. Then a 

secondary antibody (labelled with fluorescent dyes) is bound to the protein- antibody 

complex. The binding pattern of the newly formed protein-antibody-secondary-antibody 

complex exhibits specific visible light wave absorbances that can be examined with 

confocal light microscopy to extrapolate subcellular localization of the protein in 

question. In this experiment, the expression of GLPs HC-3 and HC-9 will be examined in 

each experimental and control group used in the experiment. Hepatocytes and 

erythrocytes isolated from warm and cold acclimated treefrogs will be fixed on gelatin 

coated slides and dried (Mutyam et al., 2011). Slides will be washed and labelled with 

peptide-derived, rabbit polyclonal antibody against HC-3 or HC-9; then with a goat anti-

rabbit fluorescein-conjugated secondary antibody (Vector Laboratories) in 1% blocking 

serum as described      (Mutyam et al., 2011). Immunofluorescence will then be analyzed 

using the Olympus Fluoview 1000 Laser Scanning Confocal Microscope. Fluorescence 
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intensity representing protein subcellular localization will be analyzed and compared 

using image J analysis software. 

Statistical Analysis 

Each experimental group (n=3-4) will be done in triplicates to calculate a viable 

mean, standard error of the mean (SEM) will also be calculated. A two-way repeated-

measures analysis of variance (ANOVA) is necessary to determine if the response of 

experimental variables is a function of population or treatment, or their interaction (Geiss 

et al. 2019). Mean values within each population will need to be compared using a one-

way, repeated-measures ANOVA followed by a Bonferroni post hoc test (do Amaral et 

al. 2015). 
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IX. Significance & Justification 

A. Predicted Outcomes & Impact: 

The results of this work will also allow us to compare post-freeze viability 

between two different cell types, erythrocytes and hepatocytes that reside in different in 

vivo environments. In frogs, erythrocytes circulate as single cells in suspension whereas 

hepatocytes reside within the liver, a structurally restricted multicellular organ composed 

of different cellular and non-cellular elements. Therefore, these experiments will examine 

the freeze competence of both suspension and non-suspended cells. The inhibitor and 

immunocytochemical studies will also allow us to determine the functional requirement 

of GLPs in cellular freeze competence. The data collected in this experiment will provide 

new insight to the mechanism of freeze tolerance of D. chrysoscelis. We will produce the 

first tangible data set comparing the difference in post-freeze viability of hepatocytes (a 

restricted cell type, limited in its ability to change volume without affecting neighboring 

cells) to erythrocytes (a suspension cell, unrestricted in changes to volume and shape). 

We may also present strong evidence that HC-3 and HC-9 are necessary in D. 

chrysoscelis’ freeze tolerance as we test how inhibiting GLPs can affect post-freeze 

viability rates. In a broad scope, progress in understanding the physiological mechanisms 

of freeze tolerance is applicable to the biomedical research of human organ 

cryopreservation. The ability to successfully freeze organs in a safe and accessible 

manner will serve to extend the potential range of organ recipients and allow for the 

creation of organ and/or tissue banks alleviating the need for extensive waiting lists for 

transplants. Glycerol may also be superior to glucose as a cryoprotectant molecule as it 

does not cause hyperglycemia, does not need to be cleared by the liver through 
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glycogenesis, and is easily excreted in urine by the renal system. In fact, this molecule is 

already widely used as a cryoprotectant in the long-term storage of frozen bacteria and 

animal sperm.  

B. Intellectual Merit: Krogh Principle 

 Dr. August Krogh was a comparative physiologist who won the Nobel Prize in 

1920. He claimed that “For many problems there is an animal which it can be most 

conveniently studied”. This statement rings true regarding collaborative attempts to 

elucidate the cellular mechanisms of freeze tolerance. Anurans are an intuitive model for 

research regarding osmoregulation and thermoregulation. One reason is that anurans are 

fairly evolved vertebrates with many similarities to mammals which also exhibit 

impressive capacities for dehydration and anoxia tolerance. Additionally, the AQPs & 

GLPs found in Copes’ gray treefrog are comparable to mammalian MIPs, and the initial 

research of AQPs began with observations made in differential anuran tissue water 

permeability.  

C. Broader Impacts: Biomedicine, Cryobiology, & Organ Preservation 

 The research plan described above will be crucial in gaining new insights into the 

cellular mechanisms of D. chrysoscelis’ freeze tolerance. It will provide the first direct 

comparison of post-freeze viability in suspended and non-suspended cell types as well as 

the tissue-specific functional requirements of GLPs in D. chrysoscelis. Research 

exploring the mechanisms which permit freeze tolerance in anurans is widely applicable 

to biomedicine, specifically to the cryopreservation of human organs and tissues. 

Developing techniques to freeze and thaw human organs and tissues in a safe, efficient, 

manner will extend the potential range of organ donations and make possible the creation 
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of organ and tissue banks which would operate in a similar capacity as modern blood 

banks.  

 Today, organ and tissue donations are limited primarily by range because human 

organs and tissue remain viable for only a few hours after being removed from a living 

donor. As a consequence, when a trauma patient is declared brain-dead, their organs can 

only be given to a recipient residing in close vicinity to the hospital completing the organ 

and tissue harvesting procedure. Theoretically, a brain-dead patient could be kept alive in 

a persistent vegetative state to give the transplant candidate with the highest priority 

enough time to travel to the donor’s hospital. However, doing so would give rise to 

ethical dilemmas regarding the patient’s autonomy and other patients who may be 

eligible for different transplants from the same donor. An innovative solution to this 

dilemma is developing safe and efficient procedures which allow healthcare professionals 

to cryogenically preserve human organs and tissues. This development would effectively 

give donor organs and tissues infinite shelf-lives. As a result, organs could be harvested, 

frozen, transported to a distant recipient, thawed, and transplanted into the recipient 

without any geographical or time-based constraints. Furthermore, organs and tissues can 

be harvested from eligible organ donors even if no transplant candidates are identified. 

These organs could be frozen and stored in “organ banks” across the globe and, once an 

eligible recipient is identified, frozen organs could be transported to hospitals in close 

proximity to the recipient. Not only does the cryopreservation of human organs and tissue 

minimize time and distant constraints, but the newfound capacity to harvest and store 

organs for extended periods of time may directly combat the world-wide shortage of 

organs available to those in need of life-saving transplants. The unique combination of 
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colligative cryoprotectants utilized by D. chrysoscelis may prove vital to developing safe 

and effective techniques for humans.  

 As examined in great lengths previously in the review, Cope’s gray treefrog is the 

only freeze-tolerant vertebrate (aside from one species of salamander) known to 

seasonally accumulate glycerol as a colligative cryoprotectant. Other anurans, 

specifically of the Ranid family, are known to mobilize glucose as a colligative 

cryoprotectant at the initiation of freezing by way of ß2-adrenergic signaling. In humans, 

glycerol may be a superior cryoprotectant molecule for several reasons. First, glycerol 

produces two osmotically active metabolites from the cleavage of one glycogen hexose 

subunit while glucose only yields one. Notably, glycerol production is more energy 

expensive than glucose production. However, energy requirements may prove negligible 

if glycerol solutions are injected into human organs and tissues prior to freezing. Another 

advantage is that glycerol does not cause extremely dangerous, and potentially fatal, 

hyperglycemic conditions. Furthermore, glycerol is less physiologically stressful to 

remove from circulation in the blood because it is readily converted to glycogen in 

hepatocytes and is excreted in urine by the renal system. Glucose does not easily pass 

through the renal system and is removed from circulation by insulin-induced uptake into 

fat and muscle cells. Glycerol uptake does not need to be induced by pancreatic hormone 

secretion and can diffuse into cells through GLPs, a family of integral transmembrane 

channel proteins distributed among a variety of tissues in humans.  
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X. Reflection 

 Completing an honors thesis in the midst of a global pandemic has proven to be a 

more difficult task than expected. I’ve faced a number of setbacks and disappointments 

over the last year. Aside from adjusting to the new demands of remote education, I was 

unable to do any of my proposed lab-based research. I dedicated a large portion of my 

free time in the fall 2019 and early spring 2020 semesters in Dr. Krane’s lab learning 

various new techniques so that I could complete my research during the summer and fall 

of 2020. However, unforeseen circumstances would not only prevent me from finishing 

my training in the spring but also keep me out of the lab for the entire summer. I was not 

approved to return to the lab until late in the fall of 2020, and at that point Dr. Krane and 

I decided that there would not be enough time to complete my training, let alone any 

meaningful research, and still complete my thesis in time. Luckily, we did have a 

contingency plan so I could do some meaningful work and meet the requirements of the 

Dean’s Summer Fellowship.  

 After learning I would not be allowed in Dr. Krane’s lab in the summer of 2020, 

we decided that I would author a comprehensive literature review, with the intent to 

publish, that explores the various cellular mechanisms permitting freeze tolerance among 

a variety of organisms, the specific mechanisms of Cope’s gray treefrog, the goals for 

future research on this animal, and the biomedical applications of understanding freeze 

tolerance. Beginning this review felt like I tried to learn to swim by diving into an 

Olympic pool while wearing a weighted vest. Not only did I have to learn everything I 

possibly could about freeze tolerance over the course of a few months, I had to learn how 

to read academic journal articles, process that information, organize it into coherent 
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arguments, and then synthesize a narrative from this knowledge. The only truly relevant 

course I had taken prior to this summer was a year of organic chemistry and one-semester 

courses of biochemistry and physiology. As a result, the majority of my research process 

was dedicated to learning the biological and statistical topics presented as common 

knowledge within journal articles. On top of that, I was studying for the MCAT most of 

the summer because my testing date got delayed from March 5th all the way to June 28th. 

So, my summer consisted of me sitting at a desk between twelve and fifteen hours a day, 

six days a week. I guess the best time to do that is during a pandemic, but by July the 

social isolation began to wear on me, and I was starting to experience severe burn-out. I 

significantly cut-back on my working hours in the second half of the summer and right 

around that time the Black Lives Matter movement had increasingly become the center of 

media focus. As I began digesting more and more information about the protests across 

the country, I found the way information was delivered through the news strange. 

Everything seemed to disingenuously focus on property damage occurring during 

protests, and not the actions which caused the nation to protest or how the police’s 

escalations during protests incite riots – even though 93% of BLM protests have incurred 

no damage to any public, private, or personal property. I was curious as to why no one 

was talking about the countless innocent lives lost as a result of police violence, and 

hyper focusing on people stealing from multi-billion-dollar corporations who have 

insurance specifically for these situations. I began educating myself and opened my eyes 

to the brutal history of racism in America, and how historical precedence has created 

lasting, and pervasive, impacts on a wide variety of oppressed minorities in the United 

States. I also began to educate myself politically, and I learned about the serious flaws of 
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American society and partisan legislation which actively works to maintain the status quo 

without improving the material conditions of the countless number of American citizens 

living at or below the poverty line. It seems to me that neither party truly wants to change 

anything, one party chooses to actively ignore systemic issues in this nation while the 

other just offers empty slogans without taking any action.  

 My own efforts to educate myself this summer inspired me to take action. I 

couldn’t go out into the streets to protests because I was in close proximity with a few 

immunocompromised people on a daily basis, but I recognized that I have a unique 

position of power. I am the president of Alpha Epsilon Delta (AED), an honors society 

for over 100 brilliant pre-health professional students, and I decided to help do my part to 

make sure that my peers learned what I had. The American healthcare industry itself is 

systemically racist. While it is true that the CDC has declared racism to be a public health 

epidemic and mainstream attention has been given to the fact that BIPOC face a COVID 

mortality rate at least twice as high as white Americans, a very small number of US 

citizens, especially those who are white, cis gendered, heterosexuals, truly understand 

how deeply rooted racism is in our healthcare system. As a straight white man, I 

understand that no matter how hard I try I will never be able to truly understand the 

realities of racial discrimination and sexism. Yet at the same time, my demographic 

status, which does limit my ability to understand these issues, also puts me in a position 

where my advocacy cannot be immediately dismissed through the same bigoted and 

misogynistic tropes used to silence minorities and women when they demand equality. 

Working closely with Dr. Scheltens, we decided to make racism in healthcare a central 

theme in AED’s meetings this year. We hosted a variety of speakers who focused 
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specifically on these issues, organized a book club that read the phenomenal novel “Black 

Man in a White Coat” by Damon Tweedy, MD, and provided anti-racism training to our 

members as well as exercises to recognize implicit biases while practicing medicine. I did 

what I could to make ensure that the flaws of American healthcare were made 

indisputable to our members.  

 As a future physician, I intend to dedicate my life not only to always treating my 

patients to the best of my abilities but to be an unflinching advocate for the necessary 

reforms to ameliorate the long and deadly practices which disproportionately harm 

women, POC, and members of the LGBTQ+ community to this day. I do not think it is 

possible for one to be a good physician without demanding every single one of their 

patients is offered the same level of human dignity, access to care, and quality of care 

regardless of socioeconomic status. I personally believe the most direct way to begin 

actualizing this goal is by implementing a universal, single payer, healthcare system in 

the United States. I believe this thesis project has sufficiently prepared me for the next 

chapter of my professional career so that I may become and extremely successful student 

in medical school.  

 I now have the tools to approach a new complex topic, evaluate primary sources, 

and use this knowledge to synthesize a detailed narrative. In addition to this ability, I can 

identify research questions which remain unanswered within a particular field and 

propose methodologies that may uncover answers to said questions. I believe I have the 

capacity to complete proposed methodologies based upon my prior lab protocol training, 

even though I was unable to complete any hands-on work myself in this thesis. Aside 

from practical skills, I have a newfound confidence in myself. I am deeply satisfied with 
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the work I have completed. Starting this thesis, I felt in over my head and was honestly 

unsure if I would actually be able to finish; but here I am, approaching 25,000 words. The 

sense of responsibility, determination, discipline, and self-motivation I developed while 

writing this thesis will be crucial to my success for the rest of my life. For the first time in 

my life, I feel like I am truly prepared for medical school and that I was undoubtedly 

made to become a physician. The only thing that could ever hold me back from achieving 

greatness is myself.  
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XII. Figure Legends 

Figure 1: The Core Tenants of Organism Responses to Seasonal Cold Temperature. 

Figure 1 shows four major responses to seasonal exposure to cold temperatures in an 

organism’s environment. The first response is migration and occurs when an organism 

moves to a warmer habitat for the winter to avoid cold temperatures and returns to the 

original habitat when temperatures rise. The next three responses involve an organism 

remaining in its habitat during seasonal cold temperature. Hibernation occurs when an 

organism enters a state of seasonal hypometabolic activity after building large 

endogenous fuel stores and implementing metabolic rate depression. Organisms which 

exhibit freeze avoidance behavior prevent ice nucleation by supercooling their body 

fluids, mainly through the production of antifreeze proteins (AFPs) and cryoprotective 

dehydration in order to increase the osmolarity of body fluids. Together, these 

mechanisms work to implement freezing point depression. At the same time, freeze 

avoiding organisms modify their cell membrane composition to maintain structural and 

functional integrity of cells. Freeze tolerance is a minority choice among ectotherms and 

is accomplished by allowing 50-70% of an organism’s total body water volume to freeze 

primarily in extracellular spaces in a slow and controlled manner by way of minimal 

supercooling (~ 1.0oC below the normal freezing point of an organism’s body water) as 

well as the production of a wide variety of proteins which control ice crystal formation 

and maintain vital cellular processes. Freeze tolerant organisms also combat a wide 

variety of physiological stressor as a result of freezing. Freezing causes dehydration 

stress which is mitigated by dynamic osmoregulation through the production of 

colligative cryoprotectants and their transmembrane diffusion through specific proteins to 
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combat osmotic stress. Freezing also causes ischemia which induces anoxic conditions 

and oxidative stress in frozen animals, which is mitigated by implementing 

hypometabolism, strict enzymatic regulation to prevent wasting energy on non-vital 

cellular processes and ensuring the function of crucial metabolic enzymes during cold 

conditions, building large stores of endogenous liver glycogen as a source energy, and 

regulating protein synthesis by way of genetic control to preserve energy. Oxidative 

stress is directly minimized by implementing strict regulation of apoptosis mechanisms, 

increasing antioxidant defenses, and the production of chaperone proteins to ensure 

translation of target proteins.  

Figure 2A: Freezing and Thawing in Non-Freeze Tolerant Cells Resulting in 

Osmotically Induced Cellular Lysis. In figure 2a, box 1 (far left) is a suspended cell in an 

isotonic solution with non-penetrating solutes (red triangle) and water permeable integral 

transmembrane protein channels (pink cylinders). Box 2 (middle left) shows the early 

stages of freezing as pure ice crystals form in the extracellular fluid (ECF). This removes 

available solvent from the ECF, increasing its osmolarity and rendering the solution 

hypertonic to the cell. Based on the principle of osmolarity, water is pulled out of the cell 

into the hypertonic ECF causing the cell to shrink. Box 3 (middle), freezing has 

completed, cell volume has significantly reduced in an attempt to equilibrate. Box 4 

(middle right) shows ice crystals rapidly thawing in the ECF. As water thaws, the ECF is 

rapidly diluted and results in local hypotonicity of the ECF. Resulting from hypotonic 

conditions, water rapidly influxes into cells, causing acute swelling. Box 5 (far right) 

shows acute cell swelling progressing and ultimately causing cell lysis.   
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Figure 2B: The Colligative Cryoprotectant Glycerol and its Facilitated Diffusion through 

Glyceroporins May Prevent Severe Changes in Cellular Volume During Freezing and 

Thawing. In figure 2b, box 1 shows a suspended cell in an isotonic solution containing 

both penetrating (green circles = glycerol) and non-penetrating solutes (red triangles) as 

well as water specific and glycerol specific (green cylinders; aquaglyceroporins) integral 

transmembrane protein channels. Box 2 shows the initiation of freezing. In response to 

the increasing hypertonicity of the ECF, glycerol moves into the cell to increase 

intracellular osmolarity which mitigates water movement into the ECF. Box 3 shows 

more glycerol entering the cell to further increase ICF osmolarity as freezing progresses 

while significantly preventing large water volume loss within the cell. Box 4 shows 

glycerol moving out of the cell in response to local hypotonicity of the ECF preventing a 

large influx of water into the cell. Box 5 shows the cell and ECF returning to isotonic 

conditions after thawing has completed.  

Figure 3: The Function of AMP-Activated Protein Kinase in the Synthesis of ATP. 

Figure 3 shows active AMPK phosphorylating creatinine kinase (CK) and AMP 

deaminase (AMPD). The top pathway shows phosphorylated CK (CK-P) converting 

creatinine-P and ADP into creatinine and one ATP. The middle pathway shows adenylate 

kinase converting two molecules of ADP into one molecule of ATP and AMP. 

Phosphorylated AMPD (AMPD-P) then converts AMP into one molecule of inosine 

monophosphate IMP and an ammonium cation (NH4
+). The bottom pathway shows the 

net conversion resulting from AMPK-P activation of CK and AMPD which produces two 

ATP molecules from three ADP molecules. 
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Figure 4: The Metabolic Pathways of Glucose and Glycerol Synthesis in Hepatocytes. In 

figure 4, the first process in both pathways is epinephrine binding to a ß2-adrenergic 

GPcR which activates the G protein. The activated G protein then activates Adenyl 

cyclase which converts ATP into cyclic AMP (cAMP), beginning the G-protein signaling 

cascade. The newly formed cAMP activates protein kinase A (PKA becomes PKAc). 

PKAc activates glycogen phosphorylase kinase (GPK) by phosphorylation (becomes 

GPK-P). GPK-P phosphorylates inactive glycogen phosphorylase (GPb) converting it into 

the active form (GPa). GPa then cleaves 1 hexose subunit from a hepatocytic glycogen 

chain. Glucose 1-phosphate (G1P) is then converted to glucose 6-phosphate by 

phosphoglucomutase (PGM). G6P can enter either pathways. On the right-hand side is 

the gluconeogenesis pathway. G6P is transported into the endoplasmic reticulum where it 

interacts with glucose 6-phosphatase (G6Pase). G6P is converted into glucose, exported 

out of the endoplasmic reticulum near the cell membrane where it is subsequently 

exported out of the cell via the GLUT-2 glucose transporter protein. Conversely, G6P can 

enter the Glycerol synthesis pathway where G6P is converted into Fructose 6-phosphate 

(F6P) where it undergoes standard glycolysis reactions until Dihydroxyacetone is 

produced (DHAP). DHAP is converted to glyceraldehyde 3-phosphate (G3P) by 

glyceraldehyde 3-phosphate dehydrogenase (G3PDH). G3P is then converted into 

glycerol where it exits the cell through integral transmembrane protein channels (GLPs). 

In the case of Cope’s gray treefrog, glycerol would exit hepatocytes via HC-9. 

Furthermore, G3P may enter the lactate fermentation pathway shown in the bottom left 

corner.  



P a g e  |125 

 

Figure 5: The General Structure of Human AQP1 Monomer in an Open and Closed 

Conformation. In figure 5, the top image shows the open conformation of an AQP1 

monomer. Repeat 1 is composed by H1-H3, the intracellular amino terminus of the 

protein, Loop A (connecting H1 and H2), Loop B which contains the NPA motif 

(connecting H2 and H3). The NPA motif contribits to the pore’s hourglass structure and 

is represented by the box in the top right corner. Repeat 1 is connected to Repeat 2 by 

Loop C. Repeat 2 contains H4-H6, Loop D (connecting H4 and H5), Loop E which 

contains the NPA motif and a cysteine residue acting as the binding site for mercury 

chloride which inhibits diffusion (connecting H5 and H6), and the intracellular carboxy 

terminus. The bottom image shows the closed monomer. In the center of the monomer is 

the creation of the hourglass structure as a result of the reactions between the NPA motifs 

of Loop B and Loop E. Additionally, both terminal ends of the protein point into a cell’s 

cytoplasm adjacent to each other as H1 and H6 come together to create the closed 

conformation.  

Figure 6: The General Structure of Human AQP1 Tetramer in Closed Conformation. The 

top image in figure 6 shows human AQP1 in tetrameric form. The tetramer is composed 

of 4 monomers. 2 monomers are oriented in the same direction and are connected to the 

other 2 monomers via interactions between H4 amino acid chains. The protein possesses 

4 independent pores that allow water diffusion. The bottom image shows the same 

tetrameric AQP1 from a top-down view of the protein’s extracellular surface.  

Figure 7A: Post-Freeze Viability of Erythrocytes from Warm Acclimated Animals is 

Improved by Urea Alone While Erythrocytes from Cold Acclimated Animals is 

Improved by Both Urea & Glycerol. Adapted from: Geiss L et al. Postfreeze viability of 
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erythrocytes from Dryophytes chrysoscelis. J Exp Zool Part A Ecol Integr Physiol 331: 

308–313, 2019. The figure on the top shows that freezing erythrocytes from warm 

acclimated animals in a PBS control decreases post-freeze viability by approximately 

80.0% and was only significantly improved by the addition of urea into the PBS 

suspension. The bottom image shows that freezing erythrocytes from cold acclimated 

animals in PBS decreased post-freeze viability by approximately 50.0% and was 

significantly improved by both urea and glycerol.  

Figure 7B: Erythrocytes from Cold Acclimated Animals Exhibit Increased Post-Freeze 

Viability vs. Erythrocytes from Warm Acclimated Animals; Enhanced by Either Glycerol 

or Urea. Adapted from: Geiss L et al. Postfreeze viability of erythrocytes from 

Dryophytes chrysoscelis. J Exp Zool Part A Ecol Integr Physiol 331: 308–313, 2019. 

This figure shows that erythrocytes of cold acclimated frogs exhibit higher post-freeze 

viability rates versus cells from warm acclimated animals among every measure, and that 

glycerol and urea were the only osmolytes to significantly enhance post-freeze viability 

of cold acclimated animal erythrocytes while urea was the only osmolyte to improve 

warm acclimated post-freeze viabilities.     
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Chapter XIII: Figures 

Figure 1: 
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Figure 2A: 
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Figure 2B:  
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Figure 3: 
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Figure 4:  
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Figure 5: 
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Figure 6: 
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Figure 7A: 
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Figure 7B: 
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