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ABSTRACT 

A multidisciplinary and multi-objective optimization approach that integrates the design of the 

control surfaces’ sizes, active control systems, and estimator for an aircraft’s wing with three 

control surfaces is developed. Due to its attractive stability robustness properties, a control 

system based on the LQR (Linear Quadratic Regulator) is built for each control surface. The 

geometrical parameters of the control surfaces such as the span wise and chord lengths, the 

design details of the LQR penalty matrices, and the locations of the estimator poles are tuned by 

a widely used multi-objective optimization algorithm called NSGA-II (Non-dominated Sorting 

Genetic Algorithm). Four objectives are considered: minimizing impacts of external gust loads, 

maximizing stability robustness and extending flutter boundaries, reducing control energy 

consumption, and minimizing the Frobenius norm of the estimator gains. The solution of the 

multi-objective optimization problem is a set called Pareto set and the set of the corresponding 

function evaluation is called Pareto front. The solution set contains various geometrical 

configurations of the control surfaces with different feedback gains, which represent different 

degrees of optimal compromises among the design objectives. The optimization results 

demonstrate the competing relationship between the design objectives and necessity of handling 

the design problem in a multidisciplinary and multi-objective context. Three major results are 

obtained from inspecting the profiles of the closed-loop eigenvalues at various airspeeds 1) a 

unique control gain can be designed for the entire flight envelope, 2) the flutter boundaries can 

be infinitely extended, and 3) a unique observer gain can be designed for the entire flight 

envelope. The third chapter of this thesis presents a multi-objective and multidisciplinary optimal 

design of a cascade control system for an aircraft wing with four aerodynamic ailerons actuated 

by four identical brushless DC motors. The design of the control system is broken into a 
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secondary and primary control algorithm. The primary control algorithm is designed based on 

the concept of LQR and then applied to mathematical model of the wing and its control surfaces 

to calculate their required deflections. The output of the primary controller serves as set-point for 

the secondary control loop which consists of the dynamic of the DC motor and Proportional 

Velocity (PV) based controller. Then, an optimal design of the control algorithms is carried out 

in multi-objective and multidisciplinary settings. Three objectives are considered: 1) the speed of 

response of the secondary controlled system must be faster than that of the primary one, 2) the 

controlled system must be robust against external disturbances affecting both control layers, and 

3) optimal energy consumption. The decision variables of the primary as well as secondary 

control algorithms and the sizing elements of the control surfaces form the design parameter 

space of the optimization problem. Both geometrical and dynamic constraints are applied on the 

setup parameters. The multi-objective optimization problem (MOP) is solved by NSGA-II, 

which is one of the popular algorithms in solving MOPs. The solution of the MOP is a set of 

optimal control algorithms that represent the conflicts among the design objectives. Numerical 

simulations show that the design goals are achieved, the secondary control is always fast enough 

to prevent the propagation of disturbances to the primary loop, the inner and outer control 

algorithms are robust against disturbance inputs, and the primary control loop stays stable when 

the air stream velocity varies from 80 to 1000 (𝑚 𝑠⁄ ) even at its worst relative stability value. 

The presented study may become the basis for multi-objective and multidisciplinary optimal 

design for aeroelastic structure having actuator dynamics. 
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CHAPTER 1: INTRODUCTION 

1.1 Literature Review   

Multidisciplinary design of flexible structures such as aircraft wings has helped improve 

their performance in the past. During the design, wing’s geometrical parameters and control 

gains are varied to simultaneously satisfy multiple and often conflicting requirements. Design 

objectives such as maximizing the stability of the aeroelastic structures, suppression of 

instabilities, robustness against gust loads and measurement noise, and minimizing energy 

consumption are critically important when designing active aeroelastic controls (Singh, 

McDonough, Kolonay, and Cooper, 2014). Therefore, additional work on the subject can further 

improve their performance by combining the concept of multidisciplinary design with that of 

multi-objective optimization.  

There have been a few research efforts in the field of multidisciplinary optimal design of 

aircraft wings. Khot and his colleagues optimized a realistic wing with constraints on the 

strength and frequency distribution and obtained a feasible flexible wing structure (Khot, Appa, 

and Eastep, 2000). Then, the structure design was utilized in an optimal controller design to 

determine the actuator force distribution. Several articles have optimized wing control surface 

sizing using a MATLAB optimization toolbox feature, constrained optimization solver, 

simultaneously calculating control gains for receptance-based control Singh and McDonough 

(2014); Brown and Singh (2015); Brown, Singh and Kolonay (2017). Specifically, Singh et al. 

(2014) developed two optimization problems. The first problem used the control surface chord 

length of a wing with a single control surface as a parameter. In the second problem, the span 

wise length of the first control surface of a wing with multiple control surfaces was chosen as a 

variable. In both problems the objective was to minimize the control system energy through 
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minimization of the norms of the control gains satisfying some constraints of closed-loop poles; 

these poles define the extension of the open loop flutter boundary. Whereas in Brown and Singh 

(2015), the span wise lengths, locations, and chord sizes of a leading and trailing control surface 

were tuned to satisfy static constraints regarding the size of the control surfaces, in addition to 

dynamic constraints related to the active pole placement for flutter boundary extension. 

Alternatively, Brown et al. (2017) implemented genetic algorithms to tune the location, size, and 

number of leading and trailing control surfaces for a fighter wing model. The main goal was to 

achieve optimized aeroelastic control of flutter boundary extension with minimum control effort, 

leading to two cases being considered. The first case had a fixed number of control surfaces 

while chords, span lengths, and locations were tuned. The second case tuned the number and 

locations of control surfaces while their sizes were both fixed. Both geometrical static and 

dynamic constraints were applied for optimization. 

The combination of multidisciplinary design-optimization approaches and wing 

aerostructure design with control-system design was implemented (Stanford, 2016; Nam, 

Chattopadhyay, and Kim, 2000; Haghighat, Martins, and Liu, 2012). A series of aeroelastic 

optimization problems under a variety of static and dynamic aeroelastic constraints was solved, 

(Stanford, 2016). One such optimization problem, the wing mass was minimized by tuning 

structural variables such as skin thickness and stiffener details, the quasi-steady deflection 

scheduling of a series of control surface distributed along the trailing edge for maneuver load 

alleviation and trim attainment. Nam et al. (2000) utilizes genetic algorithms for an integrated 

simultaneous aeroservoelastic design of a composite wing. Variables such as ply orientation of 

the composite layer, wing sweep angle, taper ratio, span wise location and size of control 

surfaces were chosen as design parameters for the genetic algorithm. A weighted sum of 25 
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index values was defined as the objective function, which represents the LQR performance index 

based on output feedback controller airspeed and the root mean square values of the gust 

response at various airspeeds. The outcome of this work showed improvements when compared 

to baseline models. In Haghighat et al. (2012), the main design goal was to maximize the 

endurance of a high-altitude long-endurance aircraft by tuning win planform parameters, 

structural sizing, and control gains simultaneously. The results showed the simultaneous design 

of the control system along with structural components of wings at early stage of design 

improves aircraft performance. 

Multidisciplinary design of aircraft wings with active flight control systems has helped 

improve wing performance in the past. In this kind of design, wing geometrical parameters and 

control gains are tuned to simultaneously achieve multiple and often conflicting criteria. Design 

requirements include, but are not limited to, suppression of instabilities and extension of flutter 

boundaries, robustness against gust loads and measurement noises, and minimization of energy 

consumption (Singh et al., 2014). Therefore, additional work on the subject can further improve 

the performance of aerospace structures by combining the concept of multidisciplinary design 

with that of multi-objective optimization. The need of multidisciplinary design optimization 

(MDO) was extensively discussed by Livne and Jackson (Livne, 1999), (Jackson and Livne, 

2014).  

Optimization of aeroelastic structures has been addressed in several papers. For instance, 

(Karpel and Sheena, 1989) used a computer program to optimally resize a wing structure and 

achieve a maximum control effectiveness with minimum weight increase. Sizes of upper skin 

and lower skin were factored as design parameters. Pettit (Pettit and Grandhi, 2003) used a 

gradient-based optimization algorithm to optimize a fighter-like wing modeled with finite 
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elements. The mean thickness values of the wing’s elements were tuned to alleviate gust 

response and improve aileron effectiveness. Vio and Cooper (2008) made use of evolutionary 

algorithms to reduce the impact of passive gust loads on a typical commercial aircraft wing by 

tuning the orientation and thickness of the layers in the composite layup. The optimization 

process was repeated for different combinations of objectives such as maximizing flutter speed 

and minimizing the wing’s mass, maximizing the flutter speed via thickness at base model, and 

minimizing the maximum gust response while minimizing mass concurrently. In similar fashion, 

genetic algorithms were utilized to enhance the aerodynamic performance of a wing used on the 

RQ-7 Shadow UAV (Ahuja and Hartfield, 2010). Specific design variables were chosen such as 

chord span, dihedral angles, and inclination angle; then a cost function was created by 

aggregating three objectives: minimum wing weight, maximum lift, and minimum drag. Nikbay 

and Acar (2012) showed through the optimal design of an AGARD wing and changing structural 

parameters such as taper ratio, sweep angle, elasticity, and shear modulus etc. that the flutter 

boundaries of the structure can be extended. Boopathy, Rumpfkeil, and Kolonay (2015) 

proposed robust and optimal structural sizing of a fighter wing configuration under both 

structural and material uncertainties. The weight of the wing was minimized through adjusting 

the cross-section area and thickness of structural members. Kim, Jeon, and Lee (2006) 

introduced a multi-objective design optimization of supersonic fighter wing. The wing’s 

planform parameters such as the sweep angle, aspect ratio, linear twist angle, area, and taper 

ratio; airfoil shapes setup knobs such as the thickness ratio, maximum camber of the airfoil at the 

wing root, and thickness ratio, and maximum camber of airfoil at the wing tip; and four 

parameters related to the structural skin thickness of the wing were tuned by the response surface 



5 

 

method and genetic algorithm. A weighted sum of the wing weight, drag, and/or lift-to-drag ratio 

was used as a design objective. 

Multidisciplinary design of flexible structures has been reported in several manuscripts. 

For example, an MDO of an aircraft wing was investigated by Khot et al. (2000) to enhance the 

wing roll performance at a high dynamic pressure. The structure of the wing was optimized first 

to obtain a feasible flexible wing. Then, an optimal control design was conducted to determine 

the distribution of actuator forces. Singh and McDonough (2014) formulated two optimization 

problems. In the first problem, the chord fraction of an aileron attached to a wing was selected as 

a variable. In the second problem, only the span-wise length of the first control surface of a wing 

having multiple control surfaces was selected as a design variable. In both problems, the 

optimization goal was to minimize the control system energy through minimizing the norms of 

the control gains while satisfying some constraints on closed-loop poles, which define the 

extension of the open loop flutter boundary. Likewise, Brown and Singh (2015) optimally 

adjusted the locations, span wise lengths, and chord sizes of a leading and trailing edge control 

surface under static constraints related to the size of the control surfaces as well as dynamic 

constraints related to the active pole placement for flutter boundary extension. In another study, 

Brown et al. (2017) used genetic algorithms to tune the size, location, and number of leading and 

trailing control surfaces of a fighter wing model. The optimization goal was to achieve an active 

aeroelastic control for flutter boundary extension with minimum control effort. Therein, two 

cases were considered. In the first optimization problem, the number of control surfaces were 

fixed while their chords, span lengths, and locations were tuned. In the second optimization 

problem, the number and locations of control surfaces were tuned while their sizes were fixed. 

Stanford (2016) solved a series of aeroelastic optimization problems for a subsonic transport 
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wing under a variety of static and dynamic aeroelastic constraints. In one of these optimization 

problems, the mass of the wing was minimized by simultaneously tuning structural variables 

(skin thickness, stiffener details), the quasi-steady deflection scheduling of a series of control 

surfaces distributed along the trailing edge for maneuver load alleviation and trim attainment, 

and the design details of a Linear Quadratic Regulator (LQR). By the same token, Nam and his 

co-authors (2000) employed genetic algorithms for an integrated simultaneous aeroservoelastic 

design of a composite aircraft wing. Eight design variables consisting of ply orientation of the 

composite layer, wing sweep angle, taper ratio, aspect ratio, span wise location and size of the 

control surfaces were selected as design parameters. The objective function was defined as a 

weighted sum of 25 index values, which are LQR performance index based on an output 

feedback controller at a design airspeed and the root mean square values of the gust responses for 

various airspeeds. The results showed considerable improvements in both objectives when the 

optimized models were compared to baseline models. Another MDO study was presented by 

Haghighat et al. (2012). Therein, the main design goal was to maximize the endurance of a high-

altitude long endurance aircraft by tuning wing planform parameters (wing area and span-wise 

twist distribution), structural sizing (spar-wall thicknesses), and control gains (diagonal elements 

of the state weighting matrix of the LQR algorithm) concurrently. The results showed the 

simultaneous design of the control system along with structure of the wing at the early stages of 

aircraft design improves aircraft performance. 

In all the aforementioned studies, the dynamics of the actuators driving the control 

surfaces was ignored. It is well-known that implementing an active aeroelastic control on a given 

wing needs actuators. The dynamics of the actuators has great influence on the overall system 

performance. The first attempt toward including actuators’ dynamics in the control system 
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design was in 2016 (Singh, Brown, and Kolonay, 2016). Therein, a receptance-based controller 

was designed for a wing with a leading and trailing control surface and the control gains required 

to place the closed-loop poles at prescribed locations were computed by solving a set of 

nonlinear equations in the least-square sense. Second and third-order models of the actuator were 

tested and simultaneous control of aeroelastic structure and actuators were designed. However, 

an optimal design of cascade active aeroelastic controls for the wing, ailerons, and actuators in 

multi-objective and multidisciplinary settings has not been investigated yet. The cascade control 

design is selected because it significantly improves the performance of feedback controllers. 

Unlike single feedback control loops, cascade control methods can act quickly to prevent 

external excitations from propagating through the process and ensure the controlled variable does 

not deviate from its desired level (Smith and Corripio, 1985). 

It is evident from the literature that genetic algorithms have been used in many studies. One 

of the popular genetic algorithms is the NSGA-II. The working principle of this algorithm is 

introduced in the next section.  

1.2 NSGA-II 

NSGA developed in Srinivas and Deb (1994) is a non-domination based genetic 

algorithm. Even though it performs well in solving MOPs, its high computational effort, lack of 

elitism, and the implementation of what is called sharing parameter had necessitated 

improvements. As a result, a modified version of the algorithm named NSGA-II was presented in  

Deb, Pratap, Agarwal, and Meyarivan (2002). The new version has a better sorting algorithm, 

includes elitism, eliminates the need for the sharing parameter, and has less computational 

burden. As shown in Figure 1, the algorithm incorporates eight basic operations: Initialization, 
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fitness evaluation, non-domination ranking, crowding distance calculation, tournament selection, 

crossover, mutation, and combination (Deb et al., 2002). 

The algorithm starts with the initialization process in which a random population, Npop, 

that satisfies the lower and upper bound constraints is generated. Once the population is 

initialized, fitness function evaluations, F(Pop), takes place in the second stage. Using these 

function values, the candidate solutions are sorted based on their non-domination and placed into 

different fronts. The solutions in the first front dominate all the other individuals while those in 

the second front are dominated only by the members in the first front. Similarly, the solutions in 

the third front are dominated by individuals in both the first and second fronts, and so on. Each 

candidate solution is given a rank number, rnk, of the front where it resides. For instance, 

members in first front are ranked 1 and those in second are given a rank of 2 and so on. 

 

 

Figure 1: NSGA-II algorithm flowchart 
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To improve the diversity of the solution, a parameter called the crowding distance is 

computed for each solution. This parameter measures how close an individual is to its neighbors. 

The crowding distance is calculated front wise since comparing the crowding distance between 

two individuals from two different fronts is meaningless. The larger the average crowding 

distance, the better the diversity of the population. After that, the parents for the next generation 

are selected. One of the popular algorithms used for this purpose is the binary tournament 

selection method. At each iteration 𝑖 =  1 ∶  𝑛𝑐, where 𝑛𝑐  =  𝑟𝑜𝑢𝑛𝑑(𝑁𝑝𝑜𝑝 = 2) and 𝑛𝑐 is the 

number of parents, two random integer numbers are uniformly generated between 1 and 𝑁𝑝𝑜𝑝. 

These values are used to fetch two candidate parents from 𝑃𝑜𝑝. A candidate solution is selected 

if its rank is smaller than the other or if its diversity measure is bigger than the other. Then, a 

crossover algorithm such as the arithmetic crossover method (Beyer and Deb, 2001; Deb and 

Agrawal, 1995) and a mutation algorithm such as the simple mutation approach (Kakde, 2004) 

are applied on the selected parents to produce new children. These two operations are repeated 

nc times which result in a new offspring of size 𝑁𝑝𝑜𝑝. Elaborated details about crossover and 

mutation methods can be found in Haupt and Ellen Haupt (2004). After that, the new children are 

merged with the current population. This combination guarantees the elitism of the best 

individuals. Finally, individuals are sorted based on their crowding distance and rank values. 

First, the sorting is performed with respect to the crowding distance in a descending order. Then, 

an ascending order of the population is followed based on the rank values. The new generation is 

produced from the sorted population until the size reaches 𝑁𝑝𝑜𝑝. As long as the number of 

generations, gen, is not equal to the maximum number of iterations, Ngens, the selection, 

crossover, mutation, merging, ranking and sorting process are repeated. 
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NSAG-II works well on two-objective and three-objective problems. For many-objective 

optimization problems (with more than three objectives), large populations are used to enhance 

the search ability of the algorithm but at the expense of the computation time (Shibuchi, Sakane, 

Tsukamoto, and Nojima, 2009). A study on the effect of the size of the decision variable space 

on the performance of NSGA-II and other evolutionary algorithms showed that NSGA-II 

converges to the true Pareto front on all the test problems when the number of design parameters 

is less than or equal to 128 (Durillo, Nebro, Coello, Luna, and Alba, 2008; Durillo et al., 2010). 

In this, the size of the objective space is 4 and that of decision variable space is between 4 and 

10. Therefore, NSGA-II is expected to perform well in these two problems. 

 

1.3 Outline of the Thesis 

This thesis is based on the author’s research on multidisciplinary optimal design of an active 

control system and state estimator for an aircraft wing and multidisciplinary and multi-objective 

optimal design of a cascade control system for a flexible wing with embedded control surfaces 

having actuator dynamics in the past year. Chapter 2 proposes multidisciplinary optimal design 

of an active control system and state estimator for an aircraft wing. The third chapter of this 

thesis presents a multi-objective and multidisciplinary optimal design of a cascade control 

system for an aircraft wing with four aerodynamic ailerons actuated by four identical brushless 

DC motors. Chapter 4 summarizes the thesis. 
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CHAPTER 2: MULTIDISCIPLINARY OPTIMAL DESIGN OF AN ACTIVE CONTROL 

SYSTEM AND STATE ESTIMATOR FOR AN AIRCRAFT WING 

2.1 Introduction 

A multidisciplinary and multi-objective optimization approach that integrates the design 

of the control surfaces’ sizes, active control systems, and estimator for an aircraft’s wing with 

three control surfaces is developed in this chapter. Four objectives are considered: minimizing 

impacts of external gust loads, maximizing stability robustness, extending flutter boundaries, 

reducing control energy consumption, and minimizing the Frobenius norm of the estimator gains. 

Wing’s mathematical model, control system and observer design, formulation of the 

optimization problem, and discussion of the results are delineated in the next sections.  

2.2 Mathematical Model of an Aircraft’s Wing with Multiple Control Surfaces 

Consider the flexible wing having three control surfaces shown in Figure 1. The matrix-

differential equation which rules the dynamic of the system is given by  

𝑴�̈�(𝑡) + (𝑪 − 𝜌𝑽𝑪𝒂)�̇�(𝑡) + (𝑲 − 𝜌𝑽
𝟐𝑲)𝒒(𝑡) = 𝑭𝒄𝒖(𝑡) + 𝑭𝒈𝒘𝒈(𝑡)   (1) 

The vector q(t) = [𝑞1(𝑡), 𝑞2(𝑡), 𝑞3(𝑡), 𝑞4(𝑡)]
𝑇 represents the generalization coordinate, u(t) = 

[𝛽1(𝑡), 𝛽2(𝑡), 𝛽3(𝑡)]
𝑇denotes the vector of the control surface deflection, 𝑭𝒄 is the matrix 

describing the influence of the controls on the system dynamics, and 𝑭𝒈 describes the influence 

of the aerodynamic load, 𝒘𝒈(𝑡), on the system behavior. The matrices M, 𝑪𝒂, C, 𝑲𝒂, and K are 

the structural inertia, aerodynamic damping, structural damping, aerodynamic stiffness, and 

structural stiffness matrices, respectively. The reader can refer to Appendix C or more details 

about the model and the numerical values used in the simulation. 
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Figure 2: Flexible aircraft wing model with three control surfaces (Singh et al., 2014) 

 

The bending deformation (transverse direction) z and rotation 𝜃 at a point (x, y) on the 

wing are related to the generalized coordinates and the wing’s dimensions by the following 

equations: 

𝑧 = 𝑦2𝑞1 + 𝑦
3𝑞2 + 𝑦(𝑥 − 𝑥𝑓)𝑞3 + 𝑦

2(𝑥 − 𝑥𝑓)𝑞4    (2) 

𝜃 = 𝑦𝑞3 + 𝑦
2𝑞4     (3) 

where, 𝒙𝒇 is the flexural axis location aft of leading edge. 

 

2.3 Optimal Full-State Feedback Control System 

The state-space model of the system described in Eq. (1) reads 
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�̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖𝒖(𝑡) + 𝑩𝒈𝒘𝒈(𝑡)     (4) 

The output equation is given by 

 𝒚(𝑡) = 𝑪𝒐𝒙(𝑡)     (5) 

Where, 𝒙(𝑡) = [𝑞1(𝑡), 𝑞2(𝑡), 𝑞3(𝑡), 𝑞4(𝑡), �̇�1(𝑡), �̇�2(𝑡), �̇�3(𝑡), �̇�4(𝑡)]
𝑇 is the state vector. The 

system matrices A, 𝑩𝒖 , 𝑩𝒈, and 𝑪𝒐 are given by 

                                              𝑨 = [
𝟎𝟒𝒙𝟒 𝑰𝟒𝒙𝟒

−𝑴−𝟏(𝑲 − 𝜌𝑽𝟐𝑲𝒂) −𝑴−𝟏(𝑪 − 𝜌𝑽𝑪𝒂)
]                               (6) 

 

                                                          𝑩𝒖 = [
𝟎𝟒𝒙𝟑
𝑴−𝟏𝑭𝒄

]                                                                          (7) 

 

                                                          𝑩𝒈 = [
𝟎𝟒𝒙𝟑
𝑴−𝟏𝑭𝒈

]                                                                         (8) 

                                                 𝑪𝒐 = [𝑰𝟒𝒙𝟒 𝟎𝟒𝒙𝟒]                                                                   (9) 

Where, I and 0 denote the identity and zero matrices, respectively. It is evident from the system 

configuration that the system is completely controllable. In other words, the controlled system 

with the three actuators (control surfaces), shown in Figure 1, can move any state of the system 

from any initial state to any other final state in a finite time interval. Also, the system is 

completely observable. That is, with the on-board sensors’ distribution given in Eq. (9), the first 

four states can be measured directly and then used to estimate the last four states. A MIMO full-

state feedback law for the state-space system given in Eq. (4) can be written as 

𝒖(𝑡) = −𝑲𝒄𝒙(𝑡)     (10) 

where, 𝑲𝒄 ∈ 𝑹
𝟑𝒙𝟖 is the state feedback gain matrix. Substituting Eq. (10) into Eq. (4), the closed-

loop dynamics is given by 
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�̇�(𝑡) = (𝑨 − 𝑩𝒖𝑲𝒄)𝒙(𝑡) + 𝑩𝒈𝒘𝒈(𝑡)   (11) 

Taking the Laplace of Eq. (11), we obtain 

(𝒔𝑰 − 𝑨 + 𝑩𝒖𝑲𝒄)𝑿(𝑠) = 𝑩𝒈𝑾𝒈(𝑠)    (12) 

where, X(s) and 𝒘𝒈(𝑠) are the Laplace transforms of x(t) and 𝒘𝒈(𝑡), respectively. Using this 

equation and Eq. (5), the transfer function matrix GTF(s) from the gust loads to the system’s 

outputs is provided by 

𝑮𝑻𝑭(𝑠) =
𝒀(𝒔)

𝑾𝒈(𝑠)
= 𝑪𝒐(𝒔𝑰 − 𝑨 + 𝑩𝒖𝑲𝒄)

−𝟏𝑩𝒈.   (13) 

Here, Y(s) denotes the Laplace transform of y(t). This transfer function matrix is very crucial in 

the design of an aircraft’s wing since one of the design requirements is to alleviate the impacts of 

extreme aerodynamic loads on the system performance. It is obvious that by increasing the 

values of the elements of the feedback gain matrix 𝑲𝑪, the gust loads’ effects can be reduced. 

However, this conflicts with the requirement of minimizing the control energy needed to 

stabilize the system and suppress flutter. 

2.4 Linear- Quadratic Regulator (LQR) Design 

The state feedback gain matrix 𝑲𝑪  plays a very important role in the performance of the 

closed-loop system. This variable can be either directly tuned if the stable ranges of its elements 

are known, or indirectly calculated by solving the Algebraic Riccati Equation (ARE) which 

results in a Linear Quadratic Regulator (LQR). The latter is very attractive since it does not 

require any stability analysis and the user only needs to adjust some weighting factors and then 

numerically solve the ARE to obtain 𝑲𝑪  that stabilizes the controlled system. In this case, 𝑲𝑪 

minimizes the following performance index: 

𝐽 = ∫ [𝒙𝑻(𝑡)𝑸𝒙(𝑡) + 𝒖𝑇(𝑡)𝑹𝒖(𝑡)]𝑑𝑡
∞

0
,     (14) 
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where 𝑸 =  𝑸𝑇 is a positive semidefinite matrix that penalizes the departure of system states 

from the equilibrium, and 𝑹 =  𝑹𝑇  is a positive definite matrix that penalizes the control input. 

Using Lagrange multiplier-based optimization method, the optimal 𝑲𝑪 is given by 

𝑲𝐶  =  𝑹
−1𝑩𝑢

𝑇𝑷.      (15) 

The matrix 𝑷 ∈ ℝ8×3 can be calculated by solving the following ARE: 

𝑨𝑇𝑷 +  𝑷𝑨 −  𝑸 − 𝑷𝑩𝑹−𝟏𝑩𝑢
𝑇𝑷 =  0    (16) 

It is evident from equations (15) and (16) that Q and R are the design knobs that greatly impact 

the calculation of 𝑲𝑪 and in turn the performance of the system under control. Thus, the most 

important step in the design of an optimal controller using LQR is the choice of Q and R 

matrices. Conventionally, these matrices are elected based on the designer’s experience and 

adjusted iteratively to obtain the desired performance. Arbitrary selection of Q and R will result 

in a certain system response which is not optimal in true sense (Tewari, 2002). Many efforts have 

been directed toward developing systematic methods for selecting the weighting matrices. For 

instance, Bryson presented an approach for choosing the starting values of Q and R matrices, but 

this method only suggests the initial values and later the coefficients are to be tuned iteratively 

for optimal performance (Bryson, 2018). Analytical approach of selecting the Q and R matrices 

for a second order crane system was developed in Oral, Çetin, and Uyar (2010). Another 

analytical method of calculating the Q and R matrices for a third order system represented in the 

control canonical form was proposed in El Hajjaji and Ouladsine (2001). Developing an 

analytical technique to find Q and R for high order systems such as the system at hand is very 

tedious if it is not possible because of the dimension of the system. Therefore, we suggest a 

numerical approach through using an optimization algorithm to tune these matrices such that the 

design goals are optimized simultaneously. 
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The LQR does not only guarantee the system stability but also the stability margins. This 

feature is very valuable for high-order dynamic systems where finding the feasible regions of the 

control gains are very difficult. On the other side, LQR requires that you have a good model of 

the system, and all the states in the system available for feedback. If not all the states are 

available, an observer should be used to estimate the unavailable ones. As a result, stability 

margins may get arbitrarily small. To avoid this situation, the estimator dynamics should be 

faster than the closed-loop dynamics i.e., the estimator eigenvalues should not be closer to the 

imaginary axis than those of the regulator. This can be done free of cost since the estimator does 

not require a control input (Tewari, 2002). As a result, the estimator poles can be pushed further 

into the left-half plan without causing concern of large control effort. 

2.5 Luenberger Observer 

Practically speaking, only a subset of the states is available for feedback when the control 

system is designed. A cost-effective approach to determine the states that are not directly 

measured is to design an observer, which is nothing but a computer algorithm that uses the 

system mathematical model, available measurements, and feedback control signals to provide an 

estimate of the unavailable states. Luenberger observer is one of the popular and traditional 

estimators that can be used for this end (Luenberger, 1964). The dynamics of the Luenberger 

observer of the state-space system given in Eq. (4) reads 

 

𝑥(𝑡) = [𝑨�̂�(𝑡)  +  𝑩𝑢𝑢(𝑡)  +  𝑳[𝑦(𝑡) − �̂�(𝑡)].    (17) 

 

�̂�(𝑡)  =  𝑪𝑜 �̂�(𝑡)      (18) 
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The term 𝑳[𝒚(𝑡) − �̂�(𝑡)] injects the error between measurements 𝒙(𝑡) and model predictions 

�̂�(𝑡), scaled by a user-chosen observer gain vector 𝑳 ∈  ℝ8×4. Letting 𝒆(𝑡) =  𝒙(𝑡) − �̂�(𝑡), the 

error dynamics is governed by the following equation 

𝑒(𝑡)  =  (𝑨 −  𝑳𝑪𝒐)𝑒(𝑡)      (19) 

By examining this equation, we notice that the estimation error system is asymptotically stable, 

𝒆(𝑡) → 𝟎, if we select L such that the eigenvalues of (𝑨 −  𝑳𝑪𝒐) have negative real parts. That 

is, we can assign the eigenvalues (i.e., speed) of the error system by selecting L appropriately. 

Furthermore, the selection of L comes free of cost since the estimator does not require any form 

of physical control effort. As a result, the eigenvalues of the estimator 𝜆𝑒 can be placed to the left 

of the fastest mode of the closed-loop, 𝜆𝑐𝑚𝑖𝑛 system as follows 

𝜆𝑒 = 𝑟 × (1: 8)𝜆𝑐𝑚𝑖𝑛,      (20) 

where, 𝜆𝑐𝑚𝑖𝑛  =  𝑚𝑖𝑛(𝑟𝑒𝑎𝑙(𝑨 − 𝑩𝒖𝑲𝒄)) and 𝑟 ≥ 2 can be tuned to find the optimal trade-offs 

between the observer speed of response and noise amplifications, which are directly related to 

the values of L. It can be noticed that 𝜆𝑐𝑚𝑖𝑛 is scaled by 𝑟 × (1 ∶  8) to avoid placing the 

estimator poles at the same location since the pole placement can be badly conditioned if the 

designer picks out unrealistic pole locations (MathWork, 2020). The proposition in Eq. (20) is 

introduced in this thesis to avoid this situation though other setups are also possible. Then, the 

MATLAB command “place” can be used to calculate L.  

2.6 Multi-Objective Optimization 

Multi-objective optimization problems (MOPs) are stated as follows: 

min
𝒌∈𝐷

{𝑭(𝒌)},               (21) 
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where a design variable vector 𝒌 =  [𝑘1, 𝑘2, … , 𝑘𝑛] must be found to minimize a vector 𝐹 =

 [𝑓1(𝒌),… , 𝑓𝑚(𝒌)]. The domain 𝐷 ⊂ ℝ𝑛 can in general be expressed by inequality and equality 

constraints: 

𝐷 =  {𝒌 ∈ ℝ𝑑|𝑔𝑖(𝑘) ≤ 0, 𝑖 = 1,… , 𝑙,

𝑎𝑛𝑑 ℎ𝑗(𝒌) =  0, 𝑗 =  1,… ,𝑚}
   (22) 

The solution of a MOP is known as the Pareto set and its image is called the Pareto front. 

Therefore, the concept of dominancy (Pareto, 1971) (original edition in French in 1927) is used 

to define the optimal solutions. Such solutions are non-dominated to each other. Simply stated, 

there exists no other solutions in the entire search space which dominate any of these solutions. 

MOPs are solved by multi-objective optimization algorithms which can be classified as 

evolutionary-based and gradient-based algorithms. The reader can refer to Jones, Mirrazavi, and 

Tamiz (2002); Marler and Arora (2004); and Tian, Cheng, Zhang, and Jin (2017) for 

comprehensive survey of MOP algorithms. 

Control systems’ design problems are complicated and non-convex, therefore 

evolutionary algorithms are the methods of choice (Woźniak, 2010). They outperform classical 

direct and gradient-based methods which suffer from the following problems: 1) the convergence 

to an optimal solution depends on the initial solution supplied by the user, and 2) most 

algorithms tend to get stuck at a local or suboptimal solution when solving non-convex, and 

complex problems. On the other side, evolutionary algorithms are computationally expensive 

(Hu, Huang, and Wang, 2003). However, the computational cost can be justified if a more 

accurate solution is desired, and the optimization is conducted offline. The most widely used 

multi-objective optimization algorithm is the NSGA-II (Sardahi and Boker, 2018; Xu, Sardahi, 
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and Zheng, 2018). It yields a better Pareto front as compared to SPEA2 (strength Pareto 

evolutionary algorithm) and PESA-II (Pareto Envelope based Selection Algorithm).  

Therefore, in this thesis, we use the NSGA-II to solve the multi-objective optimal control 

problem at hand. The reader can refer to Section 1.2 or (Sardahi, 2016) for more details about the 

working principle of this algorithm. NSAG-II works well on two-objective and three-objective 

problems. For many objective optimization problems (with more than three objectives), large 

populations are used to enhance the searchability of the algorithm but at the expense of the 

computation time (Ishibuchi, 2009). A study on the effect of the size of the decision variable 

space on the performance of NSGA-II and other evolutionary algorithms showed that NSGA-II 

converges to the true Pareto front on all benchmark problems when the number of design 

parameters is less than or equal to 128 (Durillo et al., 2008). In this work, the size of the 

objective space is 4 and that of decision variable space is 15. Therefore, NSGA-II is expected to 

perform well in solving the optimization problem at hand.  

 2.7 Multi-objective and Multidisciplinary Optimal Design 

Three pieces of information are needed for any optimization problem. They are the 

tunable parameters, fitness functions, and constraints. The design parameter spaces k (see 

Equation (21)) are given by, 

𝒌 =  [𝑄1, … , 𝑄8, 𝑅1, 𝑅2, 𝑅3, 𝛼1, 𝛼2, 𝐸𝑐 , 𝑟].    (23) 

The parameters 𝑄1, … , 𝑄8, are the values on the main diagonal of (Q), and 𝑅1, … , 𝑅3 are the 

elements on the main diagonal of (R). These variables are numerically adjusted to optimally tune 

𝑲𝐶 . The span lengths and chord of the ailerons are also tuned by varying 𝛼1, 𝛼2, and 𝐸𝑐 . Where 

𝛼1 and 𝛼2 set the length of first (𝑠1  =  𝛼1�̅�) and second (𝑠2  =  𝛼2�̅�) aileron. Having the values 

of 𝑠1 and 𝑠2, the length of the third aileron can be simply calculated (𝑠3  =  �̅� −  (𝑠1  +  𝑠2)) . It 
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is worth noting that by changing 𝛼1, 𝛼2, and 𝐸𝑐 , the size of the control surfaces is accordingly 

tuned. The size of the control surface decides both the amount of control energy required to 

derive it and the ability of the closed loop to reject external aerodynamic loads. The reader can 

inspect the control and gust loading influence matrices 𝑭𝒄 and 𝑭𝑔 (Kumar, Nair, Begum, and 

Tharani, 2012) to see how these geometrical parameters enter these two matrices. The variable 𝑟 

dictates the locations of the estimator’s poles relative to the further left pole of the closed-loop 

system, and in turn the speed of response of the observer. These design knobs were tuned to 

minimize the following design objectives 

min
𝑘∈𝐷

{𝜆𝑐𝑚𝑎𝑥  , ‖𝑮𝑻𝑭(𝑗𝜔)‖∞, ‖𝑩𝒖𝑲𝑐‖𝐹 , ‖𝑳‖𝐹}.    (24) 

The relative stability of the controlled system is expressed by 𝜆𝑐𝑚𝑎𝑥, where 𝜆𝑐𝑚𝑎𝑥  =

𝑚𝑎𝑥(𝑟𝑒𝑎𝑙 (𝑒𝑖𝑔 [𝑨 − 𝑩𝒖𝑲𝑐])) represent the real parts of eigenvalues of the closed-loop 

dynamic matrix. Small values of 𝜆𝑐𝑚𝑎𝑥 indicate better stability robustness of the system under 

control. The fitness function ‖𝑮𝑻𝑭(𝑗𝜔)‖∞ describe the disturbance rejection capability of the 

closed-loop system to gust loads. A general definition of ‖𝑮𝑻𝑭(𝑗𝜔)‖∞ is given by 

‖𝑮𝑻𝑭(𝑗𝜔)‖∞ = sup
𝜔∈[𝜔𝑖,𝜔𝑓]

𝜎(𝑮𝑻𝑭(𝑗𝜔)) ,     (25) 

where 𝜎 is the largest singular value among the transfer function elements. That is, the maximum 

value of ‖𝑮𝑻𝑭(𝑗𝜔)‖∞ is minimized. The values of 𝜔𝑖 and 𝜔𝑓  are set to 0 and 1000, respectively, 

as suggested in Singh et al. (2014). For a controlled system to have a good disturbance rejection, 

we must have ‖𝑮𝑻𝑭(𝑗𝜔)‖∞  <<  1. The third objective, ‖𝑲𝑐‖𝐹, is the Frobenius norm of the 

control matrix and it is given by 

‖𝑩𝒖𝑲𝑐‖𝐹 = √∑ ∑ |𝑚𝑖𝑗|
28

𝑖=1
8
𝑗=1 ,     (26) 
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where 𝑚𝑖𝑗 are the elements of feedback gain matrix, 𝑩𝒖𝑲𝒄 (refer to Eq. (10)). Generally 

speaking, the minimization of this norm leads to minimization of the control energy, which is 

one of the design objectives in this work. The fourth fitness function ‖𝑳‖𝐹 , is the Frobenius 

norm of the estimator gain matrix and it is defined by 

‖𝑳‖𝐹 = √∑ ∑ |𝑙𝑖𝑗|
24

𝑖=1
8
𝑗=1 ,      (27) 

where 𝑙𝑖𝑗 are the elements of L. Small values of this cost function leads to slow estimator 

dynamics but less noise amplification, and vice versa. Therefore, it is crucial to optimize this 

objective function to ensure optimal estimator performance.  

The MOP in Eq. (25) was solved by tuning the elements of k in Eq. (23) under the 

following constraints 

𝐷 =  {𝒌 ∈  𝑹𝟏𝟓|𝑄𝑖 ∈  [0, 100]}, 𝑖 =  1,… , 8,

𝑅𝑗  ∈  [0.0001,100], 𝑗 =  1, 2, 3,

𝛼1, 𝛼2 ∈ [0.01;  0.98],

𝐸𝑐  ∈ [0.01, 0.5],

and 𝑟 ∈  [2, 10]𝑔.

   (28) 

Here, D denotes the feasible search space. The upper bounds on 𝑄𝑖, 𝑅𝑗 are chosen so that the 

penalties on the departures of the states from their desired positions and control utilization is 

high. The upper and lower limits of 𝛼1, 𝛼2  suggest that the fractional lengths of the three control 

surfaces range from 1% to 98% of the airfoil span length. In contrast to the work proposed in 

Singh and McDonough (2014) where 𝛼1 was constrained between 1% and 25% and the lengths 

of the second and third control surfaces were fixed, this wider ranges expand the domain of the 

search space in the direction of 𝛼1  and 𝛼2 and add another degree of freedom to the design 

space. The geometric constraint on the control surface chord fraction 𝐸𝑐  is chosen according to 

the work presented in Singh et al. (2014). A relationship between the design objectives can be 
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achieved by tuning the individual weights 𝑄𝑖, 𝑅𝑗, and the control surfaces’ widths and lengths. 

The design variable 𝑟 was chosen between 2 and 500 to ensure the estimator is at least two times 

faster than the fastest closed-loop mode and at most 500 times faster. 

To solve this multi-optimization problem, NSGA-II is used. There is no specific guide on 

how to set up the number of populations and generations for this algorithm. However, according 

to the MATLAB documentation, the population size can be set in different ways and the default 

population size is 15 times the number of the design variables n. Also, the maximum number of 

generations should not be greater than 200𝑥𝑛. In this study, the population size and the number 

of iterations is set to 50𝑥𝑛, where n is the size of the setup variables. The MOP is solved at 𝑉 =

 87.5𝑚/𝑠, which marks the beginning of flutter and open-loop’s instability. 

2.8 Results and Discussion 

The properties of the Pareto set and Pareto front; sensitives of the dominant poles of the 

open-loop system, closed-loop system, and estimator to the airspeed; and responses of the 

controlled, uncontrolled, and observer models at selected objective values are discussed here.  

The optimization problem at hand is 15 ×  4. That is, 15 decision variables and 4 objectives. 

So, it is difficult to depict all the objectives in one graph. Instead, 2D projections from the 4D 

design space are produced as shown in Figures 3, 4, and 5. The color in these two figures is 

mapped to the value of the objective ‖𝑩𝒖𝑲𝒄‖𝐹   with red denotes the highest value, and dark blue 

denotes the lowest value. It is evident from these figures that there is a competing relationship 

among the design objectives. For instance, by inspecting the subplots (a) and (b) of Figure 3, we 

note that at the maximum stability robustness 𝜆𝑐𝑚𝑎𝑥 = −31.0577, ‖𝑩𝒖𝑲𝒄‖𝐹  and ‖𝑳‖𝐹 read 

2.5633e+06 and 9.6214e+07, respectively. While, at the minimum stability robustness 𝜆𝑐𝑚𝑎𝑥 =

−10.1686, ‖𝑩𝒖𝑲𝒄‖𝐹   and ‖𝑳‖𝐹  read 3.0799e+05 and 4.7418e+06, respectively. Another 



23 

 

example can be found in Figure 4. We notice that at the best disturbance rejection 

‖𝑮𝑻𝑭(𝑗𝜔)‖∞  =  0.0011, ‖𝑩𝒖𝑲𝒄‖𝐹   and ‖𝑳‖𝐹  read 2.4639e+06 and 9.2596e+ 07, respectively. 

While, at the worst gust loads’ rejection ‖𝑮𝑻𝑭(𝑗𝜔)‖∞  =  0.0057, ‖𝑩𝒖𝑲𝒄‖𝐹   and ‖𝑳‖𝐹 read 

2.3481e + 04 and 5.6637e+ 06, respectively. That is, better disturbance rejection and stability 

robustness can be achieved at the high control energy and estimator gain. High estimator gains 

may lead to high measurement noise amplifications. A third example is shown in Figure 5 where 

there is a conflict between the objective of minimizing the control energy consumption and that 

of attenuating sensors’ noise amplification. Small values of ‖𝑳‖𝐹 and ‖𝑩𝒖𝑲𝒄‖𝐹  are required to 

reduce the impact of measurement noise on the closed-loop performance as indicated by the dark 

blue region. On the other side, small energy levels mean bad aerodynamic load repudiation. As a 

result, the decision-maker should choose the solution that gives the best compromise between 

these objectives. 

2.9 Stability Robustness 

The profile of the dominant open-loop pole 𝜆𝑜𝑚𝑎𝑥, closed-loop pole 𝜆𝑐𝑚𝑎𝑥 at the best 

and the worst stability robustness, and the estimator eigenvalue 𝜆𝑒𝑚𝑎𝑥 are shown in Figure 6, 7, 

and 8, respectively. Figure 6 shows the open-loop system is sensitive to the airspeed, V (m/s), 

and becomes more unstable when V increases. Figure 7 shows the profile of 𝜆𝑐𝑚𝑎𝑥 at different 

degrees of relative stability. As expected, the closed-loop system shows better relative stability at 

𝜆𝑐𝑚𝑎𝑥 = −31.0577 than that at 𝜆𝑐𝑚𝑎𝑥 = −10.1686. As can be seen from the locations of 

max (𝜆𝑟) relative to the imaginary axis, border between stability and instability. This stresses the 

fact that LQR has very good stability robustness properties (Chen, 2015), which makes it an 

attractive choice for the system at hand. That is, regardless of the degree of the relative stability, 

the results indicate that the Pareto optimal controls will always stabilize the controlled system at 
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any airspeed. Meaning the controlled system will never flutter, and the flutter velocity can be 

boundlessly extended. Moreover, a unique control gain can be designed for the entire flight 

envelope. In active aeroelastic control, flutter must be placed outside the flight envelope of an 

aircraft. Typically, a 15% flutter free margin or more is needed beyond the design envelope for 

both civil and military aircrafts (Carey & Buttrill, 1996). Furthermore, a unique control gain is 

desired for a designated velocity range of interest because it simplifies the real-time control 

implementation (Singh et al., 2016). Figure 8 shows the profile of 𝜆𝑒𝑚𝑎𝑥 at different degrees of 

estimator relative stability. The estimator shows better relative stability at 𝜆𝑒𝑚𝑎𝑥  =

 −6.5623𝑒 +  03 than that at 𝜆𝑒𝑚𝑎𝑥 =  −937.6681. In general, the estimator dynamics will 

always be stable regardless the change in the airspeed value. 

2.10 Time- Domain Response 

For the velocity, V=87.5 m/s (onset of flutter), the closed loop and estimator response is 

computed when they are excited by a discrete “1-cosine” gust loading (Haghighat et al., 2012). It 

is clear that the responses at 𝑚𝑖𝑛(𝜆𝑐𝑚𝑎𝑥) (see Figure 9) 𝑚𝑖𝑛(‖𝑮𝑻𝑭(𝑗𝜔)‖∞) (see Figure 11) 

𝑚𝑎𝑥(‖𝑩𝒖𝑲𝒄‖𝐹) (see Figure 13), and 𝑚𝑎𝑥(‖𝑳𝑭‖) (see Figure 15) are the best or closest to the 

knee point. While those at 𝑚𝑎𝑥(𝜆𝑐𝑚𝑎𝑥) (shown in Figure 10), 𝑚𝑎𝑥(‖𝐺𝑇𝐹(𝑗𝜔)‖∞) (shown in 

Figure 12) min (‖𝑩𝒖𝑲𝒄‖𝐹) (shown in Figure 14), and min (‖𝑳‖𝐹)( shown in Figure 16) are the 

worst or furthest from the knee point. But in all cases, the closed-loop control system can 

suppress the flutter and stabilize the system and the estimator converges quickly. These 

responses also confirm the conflicting nature of the design objectives. 
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Figure 3: Projections of the Pareto front. (a) ‖𝑲𝑐‖𝐹  versus 𝜆𝑐𝑚𝑎𝑥 , (b) ‖𝑳‖𝐹  versus 𝜆𝑐𝑚𝑎𝑥 . The 

color code represents the levels of ‖𝑩𝒖𝑲𝑲𝒄‖𝐹 with red denotes the highest value, and dark blue 

denotes the lowest value. 
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Figure 4: Projections of the Pareto front. (a) ‖𝐾𝑐‖𝐹  versus ‖𝑮𝑻𝑭(𝑗𝜔)‖∞, (b) ‖𝑳‖𝐹 versus 

‖𝑮𝑻𝑭(𝑗𝜔)‖∞. The color code represents the levels of ‖𝑩𝒖𝑲𝑲𝒄‖𝐹  with red denotes the highest 

value, and dark blue denotes the lowest value. 

 

Figure 5: A 2D projection of the Pareto front. ‖𝑲𝒄‖𝐹  versus ‖𝑳‖𝐹 . The color code represents 

the levels of ‖𝑩𝒖𝑲𝑐‖𝐹 with red denotes the highest value, and dark blue denotes the lowest 

value. 
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Figure 6: Profile of the open-loop poles, 𝜆𝑜𝑚𝑎𝑥, with change in airspeed 

 

Figure 7: Profile of the close-loop poles, 𝜆𝑐𝑚𝑎𝑥cmax, with change in airspeed. Green curve with 

* marker represents 𝜆𝑐𝑚𝑎𝑥  =  −31.0577. Black curve with diamond marker is the profile of 

𝜆𝑐𝑚𝑎𝑥  =  −10.1686. 
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Figure 8: Profile of the observer poles, 𝜆𝑒𝑚𝑎𝑥, with change in airspeed. Green curve with * 

marker represents 𝜆𝑒𝑚𝑎𝑥  =  −937.6681. Black curve with diamond marker is the profile of 

𝜆𝑒𝑚𝑎𝑥  = −6.5623 × 10
3. 

 
Figure 9: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response 

and blue solid line: estimator response at 𝑚𝑎𝑥  (𝜆𝑐𝑚𝑎𝑥). 
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Figure 10: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response 

and blue solid line: estimator response at 𝑚𝑖𝑛(𝜆𝑐𝑚𝑎𝑥). 

 
Figure 11: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response 

and blue solid line: estimator response at 𝑚𝑖𝑛(‖𝑮𝑻𝑭(𝑗𝜔)‖∞). 
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Figure 12: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response 

and blue solid line: estimator response at 𝑚𝑎𝑥(‖𝑮𝑻𝑭(𝑗𝜔)‖∞). 

 
Figure 13: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response 

and blue solid line: estimator response at 𝑚𝑎𝑥(‖𝑩𝒖𝑲𝒄‖𝑭). 
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Figure 14: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response 

and blue solid line: estimator response at 𝑚𝑖𝑛(‖𝑩𝒖𝑲𝒄‖𝑭). 

 
Figure 15: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response 

and blue solid line: estimator response at 𝑚𝑎𝑥(‖𝑳‖𝑭).  
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Figure 16: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response 

and blue solid line: estimator response at 𝑚𝑖𝑛(‖𝑳‖𝑭). 
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CHAPTER 3: MULTI-OBJECTIVE OPTIMAL DESIGN OF AN ACTIVE 

AEROELASTIC CASCADE CONTROL SYSTEM FOR AN AIRCRAFT WING WITH A 

FOUR CONTROL SURFACE 

3.1 Introduction     

In this chapter, we investigate a multi-objective and multidisciplinary optimal design of a 

cascade control structure applied to a light-weight wing having four ailerons driven by four DC 

motors. The cascade control system consists of a primary and secondary control algorithm. The 

primary control loop uses a full-state feedback controller to compute the desired deflection of 

each aileron to ensure stability and gust loading alleviation. The output of this controller enters 

the secondary control loop as a reference signal. The secondary control loop uses a PV controller 

to drive the actuator to desired levels. The control system design is decoupled into primary and 

secondary and executed in multi-objective and multidisciplinary settings. The setup gains of the 

primary and secondary control loops as well as spans and chords of control surfaces are tuned to 

attain robustness against external upsets, less expenditure of energy, and high-speed ratio of the 

secondary controller compared to the primary. Under both geometrical and dynamic constraints, 

the MOP is solved NSGA-II. The optimal solutions are obtained, and a post-processing 

algorithm is used to help the decision-maker choose a solution for implementation. Robustness 

of the primary controller against undesired inputs and variation in the free airspeed is 

investigated. 

3.2 Two-Layer Cascade Control System  

A cascade control system consists of two feedback controllers, outer (main, master, or 

primary) and inner (auxiliary, slave, or secondary). Cascade controllers can greatly enhance 

control performance for disturbances entering the inner loop and is recommended for use when 
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the inner loop is much faster than the outer loop (Corripio, 2000). In this work, the cascade 

control system shown in Figure 17 is implemented. The outer control loop uses the dynamics of 

the wing and its moveable aerodynamic surfaces to calculate the required control surface rotation 

𝜷𝒅(𝑠) to bring the perturbed system states 𝒒(𝑠)  =  0 to their desired equilibrium values 

𝒒𝒅(𝑠)  =  0. The inner control system takes 𝜷𝒅(𝑠) as its reference input and calculates the 

required control effort to drive the actuator and bring 𝜷(𝑠) as close as possible to its desired 

level. The primary controller’s output serves as the secondary controller’s set point. Both control 

algorithms should be designed such that they are insensitive to external disturbances 

𝑤𝑔(𝑠) and 𝐷𝐼(𝑠) and measurements noise (𝑁𝑂(𝑠)and 𝑁𝐼(𝑠)). The most important consideration 

in designing cascade controllers is the auxiliary loop must be faster than the main loop and the 

faster the better (Bolton, 2015). If that is the case, then the secondary controller will take a very 

quick corrective action to attenuate the effect of any disturbance that enters the actuators and 

prevent its propagation to the primary loop. In fact, if the inner controller is not faster than the 

outer one, the cascade design has no advantage, and the overall control system may become 

unstable since the slave controller is not acting fast enough to respond to the demands of the 

master one. The mathematical model of the wing and its aileron, outer control algorithm, 

dynamics of the actuators, and the design of the inner control loop are delineated next. 
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Figure 17: Cascade control system acting on an aeroelastic structure and actuators. 

 

3.3 Mathematical Model of an Aircraft’s Wing with Multiple Control Surfaces 

An aircraft wing (Singh et al., 2014) with four control surfaces is depicted in Figure 18 

and its dynamics is described by the following matrix differential equation 

𝑴𝒒(̈𝑡)  + (𝑪 − 𝜌𝑉 𝑪𝒂)𝒒(̇𝑡)  + (𝑲 − 𝝆𝑉
2𝑲𝒂)𝒒(𝑡)  =  𝑭𝒄𝜷𝒅(𝑡)  +  𝑭𝒈𝒘𝒈(𝑡).  (29) 

Where, M, C, and K denote the structural inertia, damping, and stiffness matrices, respectively. 

While, 𝑪𝒂 and 𝑲𝒂 are respectively the aerodynamic damping and stiffness matrices. The vector 

𝒒(𝑡)  =  [𝑞1(𝑡), 𝑞2(𝑡), 𝑞3(𝑡), 𝑞4(𝑡)]
𝑇represents the generalization coordinates;𝜷𝒅(𝑡)  =

 [𝛽1(𝑡), 𝛽2(𝑡), 𝛽3(𝑡)]
𝑇 is the vector of the control surfaces’ deflections; and 𝑭𝑐 describes the 

influence of the control vector on the system dynamics. The vector 𝒘𝒈(𝑡) models the external 

gust loads and 𝑭𝒈 represents the influence of these loads on the model. The variable V is the 

airspeed (𝑚/𝑠) and 𝜌 is the air density (𝑘𝑔 𝑚3⁄ ). The reader can refer to Appendix C for more 

details about the model and the numerical values used in the computer simulation. 
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The bending deformation (transverse deflection) z and rotation 𝜃 at any point (x; y) on the 

wing are related to the generalized coordinates and the wing’s dimensions by the following 

equations: 

𝑧 =  𝑦2𝑞1  +  𝑦
3𝑞2  +  𝑦(𝑥 − 𝑥𝑓)𝑞3  +  𝑦

2(𝑥 − 𝑥𝑓)𝑞4  (30) 

𝜃 =  𝑦𝑞3  +  𝑦
2𝑞4     (31) 

where, 𝑥𝑓 is the flexural axis location aft of leading edge. The parameters 𝑠1, 𝑠2, 𝑠3, and 𝑠4 

decide the span lengths and locations of the control surfaces, while 𝐸𝑐  denotes the fraction chord 

of each aileron. These variables are of special interest since they dictate the sizing and location 

of the flabs but also the amount of control energy required to drive them and ability of the 

structure to reject aerodynamic loads. The system in Eq. (29) can be re-written as 

𝒒(̈𝑡)  =  𝑴−1(𝑭𝒄𝜷𝒅(𝑡) + 𝑭𝒈𝒘𝒈(𝑡) − (𝑪 − 𝝆𝑉𝑪𝒂)�̇�(𝑡) − (𝑲 − 𝝆𝑉
2𝑲𝒂)𝒒(𝑡), (32) 

which can be represented by the following state-space model 

�̇�(𝑡) =  𝑨𝒙(𝑡) + 𝑩𝒖𝛽𝑑(𝑡) + 𝑩𝒈𝒘𝒈(𝑡).   (33) 

The output equation is given by 

𝒚(𝑡)  =  𝑪𝒐𝒙(𝑡)     (34) 

The state vector is defined as 

𝒙(𝑡) = [𝑞1(𝑡), 𝑞2(𝑡),  𝑞3(𝑡), 𝑞4(𝑡), �̇�1(𝑡), �̇�2(𝑡), �̇�3(𝑡), �̇�4(𝑡)]
𝑇   (35) 

The system matrices A, 𝑩𝒖, 𝑩𝒈, and 𝑪𝒐 are given by 

𝑨 = [
04×4 𝑰4×4

−𝑴−1(𝑲 − 𝜌𝑽2𝑲𝑎) −𝑴−1(𝑪 − 𝜌𝑽𝑪𝑎)
]   (36) 

 

𝑩𝒖  = [
𝟎4×4
𝑴−1𝑭𝑔

]     (37) 
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𝑩𝒈  = [
𝟎4×4
𝑴−1𝑭𝑔

]     (38) 

𝑪𝑜  = [𝑰4×4 𝟎4×4].      (39) 

Where, I and 0 denote the identity and zero matrices, respectively. The dynamics of the system is 

now in the standard state-space form and a control system can be designed. 

 

 

Figure 18: Flexible aircraft wing model with four control surfaces (Singh et al., 2014). 

 

3.4 Primary Control System 

A MIMO full-state feedback law for the state-space system given in Eq. (33) can be 

written as 

𝜷𝒅(𝑡) =  −𝑲𝐶𝒙(𝒕),      (40) 
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where, 𝑲𝐶 ∈ ℝ
𝟒×𝟖 is the state feedback gain matrix. Substituting Eq. (40) into Eq. (33), the 

closed-loop dynamics is given by 

�̇�(𝑡) = (𝑨 − 𝑩𝒖𝑲𝑪)𝒙(𝑡) + 𝑩𝒈𝒘𝒈(𝑡).    (41) 

Taking the Laplace of Eq. (41), we obtain 

(𝑠𝐈 − 𝐀 + 𝐁𝑢𝑲𝐶)𝑿(𝑠) =  𝑩𝒈𝑾𝒈(𝑠),    (42) 

where, 𝑿(𝑠) and 𝑾𝒈(𝑠) are the Laplace transforms of 𝒙(𝑡) and 𝒘𝒈(𝑡), respectively. Using this 

equation and Eq. (34), the transfer function matrix 𝑮𝑻𝑭(𝑠) from the gust loads to the system’s 

outputs is provided by 

𝑮𝑻𝑭(𝑠) =  
𝒀(𝒔)

𝑾𝒈(𝒔)
= 𝑪𝒐(𝒔𝑰 −  𝑨 + 𝑩𝒖𝑲𝑪)

−1𝑩𝒈.    (43) 

Here, 𝒀(𝑠) denotes the Laplace transform of 𝒚(𝑡). This transfer function matrix is very crucial in 

the design of an aircraft’s wing since one of the design requirements is to alleviate the impacts of 

extreme aerodynamic loads on the system performance. It is obvious that by increasing the 

values of the elements of the feedback gain matrix 𝑲𝑪, the gust loads’ can be attenuated. 

However, this conflicts with the requirement of minimizing the control energy needed to 

stabilize the system and suppress flutter. The state feedback gain matrix 𝑲𝑪 can be designed in 

different ways. One of the popular methods in classical optimal control is the Linear Quadratic 

Regulator (LQR). The optimal state feedback control gain matrix 𝑲𝑪 can be obtained by 

minimizing the following performance index: 

𝐽 = ∫ [𝒙𝑇𝑸𝒙(𝑡) + 𝒖𝑇(𝑡)𝑹𝒖(𝑡)]
∞

0
𝑑𝑡,   (44) 

where 𝑸 =  𝑸𝑇 is a positive semidefinite matrix that penalizes the departure of system states 

from their equilibrium points, and 𝑹 =  𝑹𝑇 is a positive definite matrix that penalizes the control 

input. Using Lagrange multiplier-based optimization method, the optimal 𝑲𝐶  is given by 
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𝑲𝐶  =  𝑹
−1𝑩𝑢

𝑇𝑷.     (45) 

The matrix 𝑷 ∈ ℝ8×3 can be calculated by solving the following Algebraic Riccati Equation 

(ARE): 

𝑨𝑇𝑷 +  𝑷𝑨 −  𝑸 − 𝑷𝑩𝑹−1𝑩𝑢
𝑇  𝑷 =  𝟎    (46) 

By examining Eqs. (45) and (46), we can notice that the weighting matrices Q and R play an 

important role in the LQR optimization process. That is, the elements of the Q and R matrices 

affect greatly the performance of a closed-loop system. Thus, the most important step in the 

design of an optimal controller using LQR is the choice of Q and R matrices. Conventionally, 

these matrices are elected based on the designer’s experience and adjusted iteratively to obtain 

the desired performance. Arbitrary selection of Q and R will result in a certain system response 

which is not optimal in true sense. Many efforts have been directed toward developing 

systematic methods for selecting the weighting matrices. For instance, Bryson presented an 

approach for choosing the starting values of Q and R matrices, but this method only suggests the 

initial values and later the coefficients are to be tuned iteratively for optimal performance 

(Bryson, 2018). Hence, an optimization algorithm is needed to tune the elements of these 

matrices such that the desired response is achieved. Analytical way of selecting the Q and R 

matrices for a second order crane system was developed in Oral et al. (2010). Another analytical 

method of calculating the Q and R matrices for a third order system represented in the control 

canonical form was proposed in El Hajjaji and Ouladsine (2001). Developing an analytical 

technique to find Q and R for high order systems such as the system at hand is very tedious if it 

is not possible because of the dimension of the system. Therefore, we suggest a numerical 

approach through using an optimization algorithm to tune these matrices such that the design 

goals are optimized simultaneously. 
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3.5 Actuator Dynamics 

Conventional hydraulic actuators (HAs) have been widely used in aircraft systems such 

as Airbus A380 and Gulfstream G65026. However, they require high maintenance, and their 

performance is sensitive to both pressure and temperature which in turn leads to high operating 

costs and low efficiency. Recently, there has been a tendency in the aerospace domain towards 

increasing the exploitation of electrical-mechanical actuators (EMAs) in aircraft applications. 

These actuators have been recently introduced in large commercial aircrafts such as Airbus A380 

and Boeing 787. Compared to HAs, EMAs have higher energy efficiency; better dynamic 

characteristics; smaller weights, better safety, reliability, and diagnostic features because they do 

not use any poisonous and flammable hydraulic fluids; less power transmission complexity; and 

less maintenance cost since they do not experience hydraulic leaks. There are two common types 

of EMAs: linear and rotary. In the case of linear EMAs, the rotational motion of the motor is 

converted into linear by a ball-screw mechanism. While in the case of rotary EMAs, the motor 

output shaft is connected to a gearbox to increase its torque and reduce its angular speed. Then, 

the output shaft of the gearbox is connected to the moveable aerodynamic surface either directly 

to the hinge line or by a connecting rod assembly (Habibi, Jeff, and Greg, 2008), (Qiao et al., 

2018). Here we choose a linear EMA driven by a power amplifier and its output shaft is 

connected to a ball-screw mechanism which drives a slider-crank mechanism converting the 

linear movement of the ball-screw mechanism into a control surface deflection as shown in 

Figure 19. 
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Figure 19: (a) EMA components (Habibi et al., 2008), and (b) slider-Crank Mechanism (Zhang 

and Zhou, 2017). 

The dynamics of the amplifier, electric motor, and gearbox assuming it does not have a backlash 

is given by 

𝑋(𝑠)

𝑉𝑚(𝑠)
=

𝑲𝑎

𝑠(𝜏𝑠+1)
,      (47) 

where, 𝑉𝑚(𝑠) is the input voltage, 𝑋(𝑠) is the linear displacement of the gearbox. Following the 

work presented in Habibi et al. (2008), the DC gain of the motor 𝐾𝑎 and time constant 𝜏 are set 

to 0.0452 and 0.0026, respectively. 

The deflection of the aileron can be calculated from the kinematic equations of the slider-

crank mechanism and it is given by: 
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𝛽 = 𝑐𝑜𝑠−1 [
(1+𝑛−𝑋 𝑎)2⁄ −𝑛2+1

2(1+𝑛−𝑋 𝑎⁄ )
].     (48) 

Where, 𝑛 =  𝑏 𝑎⁄ . Following the work proposed in (Zhang and Zhou, 2017), the length of crank 

a is set to 100 mm; and the length of linkage b is set to 170 mm. On the other side, the required 

linear movement of the ball-screw mechanism X to achieve this value of 𝛽 can be calculated as 

follows 

𝑋 = 𝑎 [𝑛 (1 − √1−
𝑠𝑖𝑛2(𝛽)

𝑛2
) + 1 − cos (𝛽)].    (49) 

Since we are dealing with a wing having four control surfaces, four EMAs and slider-crank 

mechanisms are required. Furthermore, the dynamics of the slider-crank mechanisms is not 

included in the simulation and will consider in future studies. That is, only the above kinematic 

equations are used to convert X into 𝛽 and vice versa. Our focus is on decoupling the control 

system design into a primary and secondary loop by considering the dynamics of the wing and 

the EMA.  More details about the motor model and the kinematic equations of the slider-crank 

mechanism can be found in Appendix B.  

3.6 Secondary Control Loop 

 The dynamics of the actuators greatly affect the performance of the aeroelastic structure. 

Assuming that all the flaps are driven by identical EMAs and their dynamics are given in Eq. 

(47), the dynamic of the actuators can be described by the following differential equation 

𝜏�̈�(𝑡)  +  �̇�(𝑡)  =  𝐾𝑎(𝑉𝑚(𝑡) + 𝐷𝐼(𝑡)).    (50) 

Here, 𝐷𝐼(𝑠) denotes external disturbances affecting the actuators as shown in Figure 17. 

Inspecting the dynamics of the system, we notice the system already has integrator dynamics. As 

a result, a simple PV (Proportional-Velocity controller is enough to stabilize the system and 

provide a good tracking. The PV control law is given by 
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𝑉𝑚(𝑡) =  𝑘𝑝(𝑋𝑑(𝑡) − 𝑋(𝑡)) − 𝑘𝑣�̇�(𝑡),    (51) 

Where 𝑘𝑝 and 𝑘𝑣 are respectively the proportional and velocity gains. Substituting Eq. (51) into 

Eq. (50), applying Laplace transformation, and simplifying, we get 

𝑋𝑗(𝑠) =  
𝐾𝑎

𝜏𝑠2+(1+𝐾𝑎𝑘𝑣𝑗)𝑠+𝐾𝑎𝑘𝑝𝑗

[𝑘𝑝𝑗𝑋𝑑(𝑠) + 𝐷𝐼𝑗(𝑠)].    (52) 

Using the superposition principle and setting 𝑋𝑑  =  0, the disturbance sensitivity function is 

given by 

𝐷𝑆𝐹𝑗 =
𝑋𝑗(𝑠)

𝐷𝐼𝑗(𝑠)
=

𝐾𝑎

𝜏𝑠2+(1+𝐾𝑎𝑘𝑣𝑗)𝑠+𝐾𝑎𝑘𝑝𝑗

.    (53) 

The closed-loop characteristic equation read 

𝐶𝐸𝑗 = 𝜏𝑠
2 + (1 + 𝐾𝑎𝑘𝑣𝑗) 𝑠 + 𝐾𝑎𝑘𝑝𝑗     (54) 

Where 𝑗 =  1, 2,… , 4. These equations are very useful in the design of the control system. One 

of the design goals in this work is to attenuate the impacts of 𝐷𝐼𝑗(𝑠) and prevent them from 

propagating to the outer loop. To this end, Eq. (53) can be used to quantify these impacts. Also, 

the speed of responses of the inner control systems should be at least two times faster than that of 

the outer control loop. The speed of response of any system is a function of its dominant closed 

loop poles which can be found from Eq. (54). Furthermore, the control energy expenditure of the 

actuators can be quantified by using the Frobenius norm of their control parameters as follows 

𝐸𝐽  = √|𝑘𝑝𝑗|
2

+ |𝑘𝑣𝑗|
2

     (55) 

Having all the objectives defined and all the tuning parameters specified, the multi-

objective optimization can be readily formulated. 
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3.7 Multi-Objective Optimal Design 

The design variables of the primary and secondary controllers as well as the geometrical 

parameters of the control surfaces are tuned by the NSGA-II. The decision vector is given by, 

𝒌 =  [𝑄1, … , 𝑄8, 𝑅1, … ,  𝑅4,  𝛼1, … , 𝛼3,  𝐸𝑐 ,  𝑘𝑝1 , … , 𝑘𝑝4 , 𝑘𝑣1 , … , 𝑘𝑣4 ]. (60) 

The parameters 𝑄1, … , 𝑄8 and 𝑅1, … ,  𝑅4 are the diagonal elements of Q and R, respectively. 

These design variables are employed to indirectly tune 𝑲𝐶 . The sizes and locations of the control 

surfaces are tuned by and adjusting their span-wise ( 𝛼1, … , 𝛼3) and chord lengths(  𝐸𝑐). While, 

 𝑘𝑝1 , … , 𝑘𝑝𝑚 , 𝑘𝑣1 , … , 𝑘𝑣𝑚 are the setup gains of the auxiliary control algorithms. The constraints 

on the design variables are defined as follows: 

𝐷 =

{
  
 

  
 

𝒌 ∈ ℝ24

|

|

𝑄1, … , 𝑄4 ∈ [0, 100]

𝑅1, … , 𝑅𝑚 ∈ [0.00001, 100]

𝑎1, … , 𝑎𝑚−1 ∈ [0.01,0.97]

𝐸𝑐 ∈ [0.01, 0.25]

𝑘𝑝1, … , 𝑘𝑝𝑚 ∈ [10 × 10
3, 30 × 106]

𝑘𝑣1, … , 𝑘𝑣𝑚 ∈ [100,300] }
  
 

  
 

   (61) 

The upper and lower limits of 𝑄1, … , 𝑄8 and 𝑅1, … ,  𝑅4 are chosen so that the penalties on the 

departures of the states from their equilibrium values and control energy expenditure change 

widely from low to high values. This choice expands the search space of these variables and 

allows the optimization algorithm to find all the optimal trade-offs solution within this space. 

The ranges of  𝛼1, … , 𝛼3 allows the span-wise length of the four ailerons to change from 0.01 to 

0.97 of the wingspan lengths. It is worth noting the length of the fourth control surface is given 

by:  [1 − ( 𝛼1,  𝛼2, 𝛼3)] × 𝑠̅. So, only three design parameters are needed to tune the span-wise 

lengths. Following the work presented in 12, 𝐸𝑐𝑗  is chosen to be between 0.01 and 0.25. The 

ranges of the inner control gains are chosen according to stability constraint required by Eq. (54) 
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and to guarantee that the secondary control loop is faster than the primary one. These setup gains 

are optimally tuned to simultaneously achieve the following cost functions: 

min
𝒌∈𝐷

{−𝑟, 𝐷𝑎𝑣 , 𝐸𝑎𝑣}      (62) 

The objective r quantifies speed ratio of the secondary controlled systems versus the primary 

feedback control loop, and it is given by 

𝑟 =
𝜆𝑆𝑀𝑥

𝜆𝑃𝑀𝑖
,        (63) 

where 𝜆𝑆𝑀𝑥  is the dominant closed-loop eigenvalue from the four secondary controlled loops and 

𝜆𝑃𝑀𝑖  is the fastest mode of the primary control structure. Mathematically, 𝜆𝑆𝑀𝑥   and 𝜆𝑃𝑀𝑖  read 

𝜆𝑆𝑀𝑥  =  𝑚𝑎𝑥 [𝑚𝑎𝑥 (𝑟𝑒𝑎𝑙 (𝑒𝑖𝑔(𝐶𝐸𝐽)))].       (64) 

𝜆𝑃𝑀𝑖   =  𝑚𝑎𝑥 [𝑚𝑎𝑥 (𝑟𝑒𝑎𝑙(𝑒𝑖𝑔(𝑨 − 𝑩𝑲𝐶)))].   (65) 

The function 𝑒𝑖𝑔 finds the eigenvalues of the system, real function returns only the real parts of 

these eigenvalues, max returns the dominant pole, and min returns the smallest value of its input, 

which is in our case the fastest pole. To ensure that the inner control system has a faster reaction 

time than the outer one, the following constraint was applied to the objective space  

𝑟 >  2.     (66) 

This could be roughly interpreted as the secondary reaching its steady state in one-half the time 

of the primary after an open loop step change in the manipulated variable. This constraint also 

ensures that closed-loop eigenvalues of the inner closed-loop system are separated from those of 

the outer one. The attenuation of external disturbances affecting both control loops can be 

quantified by 

𝐷𝑎𝑣  =  
1

2
[‖𝑮𝑻𝑭(𝑖𝜔𝑙)‖∞ +𝑚𝑎𝑥𝑗(‖𝐷𝑆𝐹𝑗(𝑖𝜔2)‖∞)

],  (67) 
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where 𝑮𝑻𝑭(𝑗𝜔) is the ∞ - norm of transfer function defined in Eq. (43) and returns the 

maximum value among the ∞ - norm of 𝐷𝑆𝐹𝑗 given in Eq. (53). It should be noted that small 

values of these functions indicate better disturbance rejection. The variable 𝜔1 ∈  [0, 100] as 

suggested in Singh et al. (2014). The values of 𝜔2 and 𝜔3 ∈ [0, 2] as proposed in Sardahi and 

Boker (2018). The third objective in Eq. 62 defines the average control energy of the slave 

controllers 

𝐸𝑎𝑣  =  𝑚𝑒𝑎𝑛[𝐸𝑗], 𝑗 =  1,… , 4.    (68) 

The operator mean returns the average value of the Frobenius norms defined in Eq. (55). 

To solve this multi-objective optimization problem with the objective and decision spaces 

defined respectively in Eq. (62) and Eq. (60) under the constraints of Eq. (61) and Eq. (66), the 

non-dominated sorting genetic algorithm (NSGA-II) is used. There is no specific guide on how 

to set up the number of populations and generations for this algorithm. However, according to 

the MATLAB documentation, the population size can be set in different ways and the default 

population size is 15 times the number of the design variables 𝑛𝑣𝑎𝑟. Also, the maximum number 

of generations should not be greater than 200 × 𝑛𝑣𝑎𝑟. In this study, the population size and 

maximum number of iterations are set to 50 × 𝑛𝑣𝑎𝑟, where 𝑛𝑣𝑎𝑟 is equal to 24. 

3.8 Numerical Results 

Properties of the Pareto front and Pareto set, responses of the primary and secondary 

controlled systems to external disturbances and measurement noise, and robustness of the 

primary controller to air stream velocity 𝑉 at 𝜆𝑃𝑀𝑥  =  𝑚𝑎𝑥 [𝑟𝑒𝑎𝑙(𝑒𝑖𝑔(𝑨 − 𝑩𝑲𝐶))] are 

discussed here. 
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3.9 Properties of Pareto Cascade Optimal Controls 

The Pareto front and six different projections from the Pareto set are shown in Figure 20-26. 

The size of the Pareto front is 720 × 3 and that of the Pareto set is 720 × 24. That is, there are 

720 optimal and compromise solutions to choose from. Each point on the front expresses a 

different degree of trade-off among the design objectives. The Pareto front shows a conflicting 

relationship between 𝑬𝑎𝑣 and 𝑫𝑎𝑣. For instance, at 𝑬𝑎𝑣   =  8.3637 × 10
5, 𝑫𝑎𝑣  reads 

1.0970 × 10−3; while at 𝑬𝑎𝑣   =  9.5276 × 10
6, 𝑫𝑎𝑣  is 0.728 × 10−3. Despite this non-

agreement relationship between the two objectives, the values of 𝑫𝑎𝑣  show the proposed 

cascade control system has a very good disturbance capability. The Pareto front also shows the 

speed ratio between the inner and outer is greater than 2, which is one of the requirements in the 

design of cascade control system. We also notice that when r is 3.0099, 𝑬𝑎𝑣  is equal to 

8.3637 × 105; while at the maximum value of the speed ratio (𝑟 =  74.9257), 𝑬𝑎𝑣 reads 

5.8055 × 106. Between these two points, we can find large values of r associated with small 

energy and vice versa. For example, at 𝑟 =  6.0310, 𝑬𝑎𝑣   =  3.6943 × 10
6; while at 𝑟 =

24.8903, 𝑬𝑎𝑣   =  2.5462 × 10
6. However, by inspecting the Pareto front we notice that 𝑫𝑎𝑣  at 

𝑟 =  6.0310 and 𝑟 =  24.8903 reads 0.6068 × 10−3 and 1.2646 × 10−3, respectively. 

Meaning, even though it is attractive to ensure that the speed ratio is high, and the control energy 

is small, the disturbance attenuation should be also high especially for the system at hand which 

experiences unavoidable aerodynamic gust loads. The optimization algorithm returns 720 

optimal implementations of the cascade control with different control gains and aileron sizes. So, 

it is up to the decision-maker to choose which point to implement. However, some post-

processing algorithm such as that reported in Sardahi and Sun (2017) can be used to help the 

decision-maker. The algorithm starts by finding the ideal point (𝑷𝑰 as shown in Figure 20) of the 
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Pareto front. This point is made of the minimum values of all the objectives and so it is not the 

Pareto front. It is worth noting this point cannot be found by any optimization algorithm due to 

the competing relationships among the design objectives. Then, the Euclidean distance between 

each point on the Pareto front and 𝑷𝑰 is calculated. After that, the Euclidean distance values are 

sorted in an ascending order with the first point labeled 𝑷𝑵 and the last point labeled 𝑷𝑭. So, 

implementing 𝑷𝑵 can be appealing to the designer since it is the closet point to 𝑷𝑰. 𝑷𝑭 is one of 

the optimal solutions, but it can be less catchy to the decision-maker because it is the furthest 

point from 𝑷𝑰. Between 𝑷𝑵 and 𝑷𝑭 there are many other optimal options. These two points were 

also added to the six projections of the Pareto set as shown in Figure 21-26. The color codes are 

explained in the captions of these figures. Figure 21 shows that the optimal ranges of 𝛼1, 𝛼2, 𝛼3, 

are [0.0175, 0.0933], [0.0300, 0.1825], and [0.7277, 0.8611], respectively. As a result, the span 

length of the fourth control is between 0.0102 and 0.1362 of the wingspans. That is, to achieve 

the selected design objectives simultaneously, the optimization algorithm suggests keeping the 

span-wise lengths of the two middle ailerons greater than those attached to left and right edge of 

the wing. The color code in this figure is mapped to the value of 𝐸𝐶  and its optimal is between 

0.0144 and 0.2473. At 𝑷𝑵, 𝑟 =  5.2498, 𝑫𝑎𝑣  =  0.909 × 10−3, 𝑬𝑎𝑣  =  1.4117 × 10
6 and the 

design parameters are given by 

𝑄1…8  =  [90.5589,73.4348,10.8965,43.1048,0.3958, 25.1081,0.0141, 1.2945]  (69) 

𝑅1…4  =  [63.9256,75.1654,61.0558,85.0132]   (70) 

𝛼1…3  =  [0.0640,0.1005, 0.7501]     (71) 

𝐸𝑐  =  0.2092     (72) 

𝑘𝑃1…4  =  [1.5884,2.9971,3.1380, 3.2453] × 10
6    (73) 

𝑘𝑣1…4  =  [609.4665, 731.7387,904.4938, 890.7366]      (74) 
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While at 𝑷𝑭, 𝑟 =  71.6299, 𝑫𝑎𝑣  =  1.11 × 10
−3, 𝑬𝑎𝑣  =  8.6510 × 10

6 and the design 

parameters are given by 

𝑄1…8  =  [93.5302,65.2186,50.9763,38.9561,0.1466, 11.0741,0.0055, 0.1585]     (75) 

𝑅1…4 𝑅1…4 =  [47.6938, 70.2664, 85.8683, 88.0736]    (76) 

𝛼1…3  =  [0.0648,0.0822, 0.8060]     (77) 

𝐸𝑐  =  0.2332           (78) 

𝑘𝑃1…4  =  [10.271,10.270,28.636, 12.901] × 10
6    (79) 

𝑘𝑣1…4  =  [1.4063,1.3806, 1.4644, 1.4735] × 10
3    (80) 

It can be noticed that a cascade controller designed at 𝑷𝑵 will have less energy consumption and 

better disturbance rejection than that designed at 𝑷𝑭. On the other side, the speed ratio of the 

inner control algorithm to the outer one is better if the implementation is done at 𝑷𝑭. When r is 

large, the inner closed-loop system will attenuate 𝑫𝑰 (see Figure 17) very quickly before it 

propagates to the outer one. The closed-loop response of the inner and outer control algorithm is 

discussed next. 

3.10 Effect of External Disturbances  

The response of the inner and outer controlled systems is simulated assuming zero initial 

conditions and under the excitation of a discrete “1-cosine” gust loading disturbing the primary 

loop and a sinusoidal internal disturbance given by 

𝑤𝑔𝑗(𝑡)  =
�̅�𝑔

2
(1 − cos

2𝜋𝑡

𝑳𝑔
) 𝑓𝑜𝑟 0 <  𝑡 >  𝑳𝑔.    (78) 

𝐷𝐽𝑗(𝑡)  =  𝐴𝑠𝑖𝑛(𝜔𝑡)          (79) 

Here, �̅�𝑔 is the maximum gust velocity, and 𝑳𝑔 is the total length of gust bump. Following the 

work proposed in Haghighat et al. (2012), we set 𝑳𝑔 to 0.5s. Different from this work, we set �̅�𝑔 
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to 10 ×  4.575 𝑚/𝑠 instead of 4.575 m/s to show the ability of both control layers to deal with 

this upset. The amplitude of A and 𝜔 are set to 1 and 2, respectively. The index 𝑗 =  1, … , 4 

since we have four ailerons and actuators. Using Eq. (30), the deflection of the wing in the z-

direction is calculated at the following points 

(𝒙, 𝒚)  = [(−0.3, 1) (−0.2, 4) (0.1, 5) (0.4, 2)]   (80) 

The time response of 𝑧1(𝑡) to 𝑧4(𝑡) at either 𝑷𝑵, and 𝑷𝑭 (Figures 27 and 28) show the outer 

control algorithm can successfully stabilize regardless of the aerodynamic loads. The tracking 

behaviors of the inner loop at these two design options are shown in Figures 29 and 30. Since the 

dynamics of the secondary controlled system was made faster than that of the 

primary closed-loop system, the tracking error between 𝛽(𝑡) and 𝛽𝑑(𝑡) is very small. Tracking 

absolute errors are tabulated in Table 1. The table shows the tracking errors at 𝑷𝑭 are smaller 

than those at 𝑷𝑵 which is due to the high speed of ratio at 𝑷𝑭 compared to that at 𝑷𝑵. The 

profiles of the input voltages shown in Figures 31 and 32 show similar behavior because the 

acting external disturbances are the same and the dimensions of the ailerons at these two points 

are also very close from each other. 

Table 1: Inner controller racking absolute errors at PN, and PF 

 

3.11 Effect of Air Stream Velocity 

It is very important to ensure the closed-loop outer system is stable regardless of the 

variation in V. At 𝜆𝑃𝑀𝑥, the relative stability of the primary controlled system is the lowest. 

Among the closed-loop eigenvalues, this pole is the closet one to the boundary between stability 
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and instability. So, if the closed-loop system stays stable at this value as V varies, the other 

optimal options will also guarantee stability. To this end, the profile of 𝜆𝑃𝑀𝑥 as V varies from 80 

to 1000 (𝑚/𝑠) is depicted in Figure 33. The figure shows the outer closed-loop system is 

sensitive to the change in V but always stays stable. In other words, the primary control system 

suppresses flutter instabilities for any air stream velocity even at its lowest relative stability 

value. Typically, a 15% flutter free margin or more is needed beyond the design envelope for 

both civil and military aircrafts (Hu et al., 2003). These observations also confirm the fact that 

controlled systems designed based on the LQR principle have very good stability robustness 

properties (Chen, 2015). 

 

 

Figure 20: 3D visualization of the Pareto front. The color code indicates the value of the 

objective function 𝑬𝑎𝑣. Red denotes the highest value, and dark blue denotes the smallest value. 

𝑷𝑰, 𝑷𝑵, and 𝑷𝑭 are the ideal, knee, and far point, respectively. 
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Figure 21: Projection #1 of the Pareto set. The color code indicates the value of 𝐸𝑐 . Red denotes 

the highest value, and dark blue denotes the smallest value 

 

Figure 22: Projection #2 of the Pareto set. The color code indicates the value of 𝑄4. Red denotes 

the highest value, and dark blue denotes the smallest value. 
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Figure 23: Projection #3 of the Pareto set. The color code indicates the value of 𝑄8. Red denotes 

the highest value, and dark blue denotes the smallest value. 
 

 

Figure 24: Projection #4 of the Pareto set. The color code indicates the value of R_4. Red 

denotes the highest value, and dark blue denotes the smallest value. 



54 

 

 

Figure 25: Projection #5 of the Pareto set. The color code indicates the value of 𝑘𝑝4. Red 

denotes the highest value, and dark blue denotes the smallest value. 

 

Figure 26: Projection #6 of the Pareto set. The color code indicates the value of 𝑘𝑣4. Red 

denotes the highest value, and dark blue denotes the smallest value. 
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Figure 27: The response of the outer closed loop system at 𝑷𝑵. 

 

 

Figure 28: The response of the outer closed loop system at 𝑷𝑭. 
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Figure 29: Tracking performance of the secondary control algorithm at 𝑷𝑵. 

 

Figure 30: Tracking performance of the secondary control algorithm at 𝑷𝑭. 
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Figure 31: Voltage signals entering the actuators at 𝑷𝑵. 

 

Figure 32: Voltage signals entering the actuators at 𝑷𝑭. 
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Figure 33: Profile of 𝜆𝑟 versus V. 
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CHAPTER 4: SUMMARY AND FUTURE DIRECTIONS 

4.1 Conclusions 

We have studied the multidisciplinary and multi-objective optimal design of a cascade 

control system applied to wing with four control surfaces having actuator dynamics. The 

optimization problem with 24 design parameters and 3 objective functions is solved by NSGA-II 

algorithm. The decision variable space consists of 4 parameters related to the span wise and 

chord lengths of the control surfaces, 12 setup gains related to the LQR penalty matrices, and 8 

gains belong to the inner control loops. The objective space contains three objectives: 

minimization of the controlled system response to gust loads acting on the wing and internal 

disturbance acting on the actuators, and maximization of speed ratio between the auxiliary and 

main control loops, and minimization of the control energy utilization. The optimal trade-off 

solutions in terms of the Pareto set and front are obtained. The Pareto set includes multiple 

design options from which the decision-maker can choose to implement. The Pareto front 

demonstrate the competing nature between the design objectives. This conflicting nature can be 

also seen from the closed-loop system response at selected design points. The profiles of the 

inner and outer system states show that the secondary controlled is fast enough to prevent 

internal upsets from spreading to the outer control.  

Future studies will focus on the dynamics of the ball-screw and slider-crank mechanisms 

and their impact on the closed-loop performance. The addition of adding a leading edge and the 

cross section of the wing will give more depth to the tunable physical parameters.  
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67 

 

APPENDIX B 

B.1. Electromagnetic Actuator  

The EMA shown in Figure 15 (see chapter 3) is described by the following equations  

𝐺𝑒 =
1/𝑅𝑐
𝐿𝑐
𝑅𝑐𝑠

+1
=

1/𝑅𝑐

𝜏𝑒𝑠+1
,                                                                   (B.1) 

𝜏𝑒 and 1/𝑅𝑐 are the motor’s electrical time constant and gain. Assuming the inductance is very 

small (𝐿𝑐 = 0 → 𝜏𝑒 = 0), which is the case in many inductive loads. The motor’s dynamics can 

be reduced to the following transfer function  

𝐺𝑒=1/𝑅𝑐 .                                                                  (B.2) 

The transfer function of the mechanical part of the motor (motor shaft and gearbox) is 

approximated by 𝐺𝑚𝑒𝑐ℎ such that 

𝐺𝑚𝑒𝑐ℎ =
1 𝐾𝑚𝑣⁄
𝐽𝑚
𝐾𝑚𝑣

𝑠+1
=

𝐾𝑚

𝜏𝑚𝑠+1
,                                                                   (B.3)        

         Definitions and values of some of the parameters used in the computer simulations are 

tabulated in Table 2.    

Table 2: Motor parameters (Habibi et al., 2008). 

Symbol Definition Value 
𝐽𝑚 Rotor inertia 0.000391, lb 𝑖𝑛.2 

𝐾𝑐 Torque constant 2.376, in.lb/A 

𝐾𝑚𝑣 Viscous friction and damping 0.00116, in.lb s/rad 

𝐾𝜔 Back emf constant   0.1342, V s/rad 

𝑅𝑐 Winding resistance 2.12,Ω 

𝛕𝐦 Mechanical time constant 0.3371, s 

 

B.2. Slider-Crank Mechanism  

The kinematic equations of the slider-crank mechanism in Figure 16 (see chapter 3) read 
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Knowing that sinΦ2 + cosΦ2 = 1, cosΦ2 = 1 − sinΦ2, cosΦ = √1 − sinΦ2 and setting 

n =
𝑏

𝑎
,  we notice that sinΦ =

sin 𝛽

𝑛
 . After few steps of mathematical substitutions and 

simplifications, the relationship between the rack-pinion displacement X and slider-crank angular 

displacement 𝛽 can be found as follows  

cosΦ = √1 − sinΦ2 = √1 −
sin 𝛽2

𝑛2
        (B.4) 

X = 𝑎 [𝑛 (1 − √1 −
sin 𝛽2

𝑛2
) + (1 − cos 𝛽)]                                                                    (B.5) 

𝑋

𝑎
= [𝑛 (1 − √1 −

sin 𝛽2

𝑛2
) + (1 − cos𝛽)]        (B.6) 

𝑋

𝑎
=  𝑛 − 𝑛√1 −

sin 𝛽2

𝑛2
+ 1 − cos𝛽         (B.7) 

𝑋

𝑎
=  𝑛 − 𝑛√

𝑛2−sin 𝛽2

𝑛2
+ 1 − cos𝛽        (B.8) 

𝑋

𝑎
= n − √𝑛2 − sin𝛽2 + 1 − cos 𝛽        (B.9) 

𝑋

𝑎
− n − 1 = −√𝑛2 − sin 𝛽2 − cos𝛽        (B.10) 

√𝑛2 − sin𝛽2 + cos 𝛽 = 1 + 𝑛 −
𝑋

𝑎
        (B.11) 

now, sin 𝛽2 + cos𝛽2 = 1       sin 𝛽2 = 1 − cos 𝛽2      (B.12) 

√𝑛2 − 1 + cos𝛽2 + cos 𝛽 = 1 + 𝑛 −
𝑋

𝑎
       (B.13) 

{
𝐴 = cos𝛽

𝐵 = 1 + 𝑛 −
𝑋

𝑎

          (B.14) 

√𝑛2 − 1+ 𝐴2 + A = 𝐵         (B.15) 

𝑛2 − 1+ 𝐴2 = 𝐵2 + 𝐴2 − 2AB        (B.16) 
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A =
𝐵2−𝑛2+1

2𝐵
           (B.17) 

cos𝛽 =
(1+𝑛−

𝑋

𝑎
)2−𝑛2+1

2（1+𝑛−
𝑋

𝑎
）

         (B.18) 

𝛽 =arccos
(1+𝑛−

𝑋

𝑎
)2−𝑛2+1

2（1+𝑛−
𝑋

𝑎
）

                                                     (B.19) 
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APPENDIX C 

C.1. Wing having three control surfaces.  

According to Kumar, Laura, Raymond, and Jonathan (2012), the parameters and matrices for the 

system given in Eq. (1) are as follows: 

𝑐̅ = (
𝑐2

2
− 𝑐𝑥𝑓) , 𝑐̃ = (

𝑐3

3
− 𝑐2𝑥𝑓 + 𝑐𝑥𝑓

2) , 𝑒𝑑 = √𝐸𝑐(1 − 𝐸𝑐)  ,  

 𝑏𝑐 = 𝑎𝑤/𝜋(1 − 𝐸𝑐)𝑒𝑑, 𝑎𝑐 = 𝑎𝑤/𝜋(cos
−1(1 − 𝐸𝑐) + 2𝑒𝑑) 

𝑴 = 𝑚

[
 
 
 
 
�̅�5𝑐/5

�̅�6𝑐/6

�̅�4𝑐̅/4

�̅�5𝑐̅/5

�̅�6𝑐/6

�̅�7𝑐/7

�̅�5𝑐̅/5

�̅�6𝑐̅/6

�̅�4𝑐̅/4

�̅�5𝑐𝑐̅/5

�̅�3𝑐̃/3

�̅�4𝑐̃/4

�̅�5𝑐̅/5

�̅�6𝑐𝑐̅/6

�̅�4𝑐̃/4

�̅�5𝑐̃/5 ]
 
 
 
 

 

𝑪𝑎 =

[
 
 
 
 
−𝑐𝑎𝑤�̅�

5/10

−𝑐𝑎𝑤�̅�
6/12

−𝑐2𝑒𝑎𝑤 �̅�
4/8

−𝑐2𝑒𝑎𝑤𝑠̅
5/10

−𝑐𝑎𝑤�̅�
6/12

−𝑐𝑎𝑤�̅�
7/14

𝑐2𝑒𝑎𝑤�̅�
5/10

𝑐2𝑒𝑎𝑤�̅�
6/12

0
0

𝑐3𝑀�̇��̅�
3/24

𝑐3𝑀�̇��̅�
4/32

0
0

𝑐3𝑀�̇��̅�
4/32

𝑐3𝑀�̇��̅�
5/40]

 
 
 
 

 

𝑲 = [

4𝐸𝐼�̅�
6𝐸𝐼�̅�2

0
0

6𝐸𝐼�̅�2

12𝐸𝐼�̅�3

0
0

0
0
𝐺𝐽�̅�

𝐺𝐽�̅�2

0
0

𝐺𝐽�̅�2

4𝐺𝐽�̅�3/3

] 

𝑲𝑎 =

[
 
 
 
 0
0
0
0

0
0
0
0

−𝑐𝑎𝑤�̅�
4/8

−𝑐𝑎𝑤�̅�
5/10

𝑐2𝑒𝑎𝑤�̅�
3/6

𝑐2𝑒𝑎𝑤�̅�
4/8

−𝑐𝑎𝑤�̅�
5/10

−𝑐𝑎𝑤�̅�
6/12

𝑐2𝑒𝑎𝑤�̅�
4/8

𝑐2𝑒𝑎𝑤�̅�
5/10]

 
 
 
 

 

𝑭𝑐 = 𝜌𝑉
2𝑐

[
 
 
 
 
−𝑎𝑐𝑠1

3/6 −𝑎𝑐(𝑠2
3 − 𝑠1

3)/6 −𝑎𝑐(�̅�
3 − 𝑠2

3)/6

−𝑎𝑐𝑠1
4/8 −𝑎𝑐(𝑠2

4 − 𝑠1
4)/8 −𝑎𝑐(�̅�

4 − 𝑠2
4)/8

𝑐𝑏𝑐𝑠1
2/4

𝑐𝑏𝑐𝑠1
3/6

𝑐𝑏𝑐(𝑠2
2 − 𝑠1

2)/4

𝑐𝑏𝑐(𝑠2
3 − 𝑠1

3)/6

𝑐𝑏𝑐(�̅�
2 − 𝑠2

2)/4

𝑐𝑏𝑐(�̅�
3 − 𝑠2

3)/6 ]
 
 
 
 

 

𝑭𝑔 = 𝜌𝑉𝑐

[
 
 
 
 
−𝑎𝑐𝑠1

3/6 −𝑎𝑤(𝑠2
3 − 𝑠1

3)/6 −𝑎𝑤(�̅�
3 − 𝑠2

3)/6

−𝑎𝑐𝑠1
4/8 −𝑎𝑤(𝑠2

4 − 𝑠1
4)/8 −𝑎𝑤(�̅�

4 − 𝑠2
4)/8

𝑐𝑒𝑠1
2/4

𝑐𝑒𝑠1
3/6

𝑐𝑒(𝑠2
2 − 𝑠1

2)/4

𝑐𝑒(𝑠2
3 − 𝑠1

3)/6

𝑐𝑒(�̅�2 − 𝑠2
2)/4

𝑐𝑒(�̅�3 − 𝑠2
3)/6 ]
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Table 3: Aeroelastic system parameters for the wing having three control surfaces 

Parameter Symbol  Value  

Semi-span (m) �̅� 6 

Chord (m) 𝑐 1 

Mass per unit area (𝑘𝑔/𝑚2) 𝑚 10 

Air density (𝑘𝑔/𝑚3) 𝜌 1.225 

2D lift curve slope 𝑎𝑤 2𝜋 

Unsteady torsional velocity term 𝑀�̇� 1.2 

Eccentricity ratio 𝑒 0.15 

Position of flexural axis 𝑥𝑓 0.4𝑐 

Flexural rigidity 𝐸𝐼 400 × 103 

Torsional rigidity 𝐺𝐽 200 × 103 

For the aircraft’s wing with four control surfaces described by Eq. (29), 𝑭𝒄 , 𝑭𝑔, and the system 

parameters are given by:  

𝑭𝒄 = 𝝆𝑽
𝟐𝒄

[
 
 
 
 
−𝒂𝒄𝒔𝟏

𝟑/𝟔

−𝒂𝒄𝒔𝟏
𝟒/𝟖

𝒄𝒃𝒄𝒔𝟏
𝟐/𝟒

𝒄𝒃𝒄𝒔𝟏
𝟑/𝟔

−𝒂𝒄(𝒔𝟐
𝟑 − 𝒔𝟏

𝟑)/𝟔

−𝒂𝒄(𝒔𝟐
𝟒 − 𝒔𝟏

𝟒)/𝟖

𝒄𝒃𝒄(𝒔𝟐
𝟐 − 𝒔𝟏

𝟐)/𝟒

𝒄𝒃𝒄(𝒔𝟐
𝟑 − 𝒔𝟏

𝟑)/𝟔

−𝒂𝒄(𝒔𝟑
𝟑 − 𝒔𝟐

𝟑)/𝟔

−𝒂𝒄(𝒔𝟑
𝟒 − 𝒔𝟐

𝟒)/𝟖

𝒄𝒃𝒄(𝒔𝟑
𝟐 − 𝒔𝟐

𝟐)/𝟒

𝒄𝒃𝒄(𝒔𝟑
𝟑 − 𝒔𝟐

𝟑)/𝟔

−𝒂𝒄(�̅�
𝟑 − 𝒔𝟑

𝟑)/𝟔

−𝒂𝒄(�̅�
𝟒 − 𝒔𝟑

𝟒)/𝟖

𝒄𝒃𝒄(�̅�
𝟐 − 𝒔𝟑

𝟐)/𝟒

𝒄𝒃𝒄(�̅�
𝟑 − 𝒔𝟑

𝟑)/𝟔 ]
 
 
 
 

 

𝑭𝑔 = 𝜌𝑉𝑐

[
 
 
 
 
−𝑎𝑐𝑠1

3/6

−𝑎𝑐𝑠1
4/8

𝑐𝑒𝑠1
2/4

𝑐𝑒𝑠1
3/6

−𝑎𝑤(𝑠2
3 − 𝑠1

3)/6

−𝑎𝑤(𝑠2
4 − 𝑠1

4)/8

𝑐𝑒(𝑠2
2 − 𝑠1

2)/4

𝑐𝑒(𝑠2
3 − 𝑠1

3)/6

−𝑎𝑤(𝑠3
3 − 𝑠2

3)/6

−𝑎𝑤(𝑠3
4 − 𝑠2

4)/8

𝑐𝑒(𝑠3
2 − 𝑠2

2)/4

𝑐𝑒(𝑠3
3 − 𝑠2

3)/6

−𝑎𝑤(�̅�
3 − 𝑠3

3)/6

−𝑎𝑤(�̅�
4 − 𝑠3

4)/8

𝑐𝑒(�̅�2 − 𝑠3
2)/4

𝑐𝑒(�̅�3 − 𝑠3
3)/6 ]
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Table 4: Aeroelastic system parameters for the wing having four control surfaces 

Parameter Symbol  Value  

Semi-span (m) �̅� 10 

Chord (m) 𝑐 1 

Mass per unit area (𝑘𝑔/𝑚2) 𝑚 10 

Air density (𝑘𝑔/𝑚3) 𝜌 1.225 

2D lift curve slope 𝑎𝑤 2𝜋 

Unsteady torsional velocity term 𝑀�̇� 1.2 

Eccentricity ratio 𝑒 0.25 

Position of flexural axis 𝑥𝑓 0.5𝑐 

Flexural rigidity 𝐸𝐼 4 × 106 

Torsional rigidity 𝐺𝐽 2 × 105 

 


	Multidisciplinary and Multi-Objective Optimal Design of a Cascade Control System for a Flexible Wing with Embedded Control Surfaces Having Actuator Dynamics
	tmp.1627320611.pdf.LAHcw

