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ABSTRACT
A multidisciplinary and multi-objective optimization approach that integrates the design of the
control surfaces’ sizes, active control systems, and estimator for an aircraft’s wing with three
control surfaces is developed. Due to its attractive stability robustness properties, a control
system based on the LQR (Linear Quadratic Regulator) is built for each control surface. The
geometrical parameters of the control surfaces such as the span wise and chord lengths, the
design details of the LQR penalty matrices, and the locations of the estimator poles are tuned by
a widely used multi-objective optimization algorithm called NSGA-II (Non-dominated Sorting
Genetic Algorithm). Four objectives are considered: minimizing impacts of external gust loads,
maximizing stability robustness and extending flutter boundaries, reducing control energy
consumption, and minimizing the Frobenius norm of the estimator gains. The solution of the
multi-objective optimization problem is a set called Pareto set and the set of the corresponding
function evaluation is called Pareto front. The solution set contains various geometrical
configurations of the control surfaces with different feedback gains, which represent different
degrees of optimal compromises among the design objectives. The optimization results
demonstrate the competing relationship between the design objectives and necessity of handling
the design problem in a multidisciplinary and multi-objective context. Three major results are
obtained from inspecting the profiles of the closed-loop eigenvalues at various airspeeds 1) a
unique control gain can be designed for the entire flight envelope, 2) the flutter boundaries can
be infinitely extended, and 3) a unique observer gain can be designed for the entire flight
envelope. The third chapter of this thesis presents a multi-objective and multidisciplinary optimal
design of a cascade control system for an aircraft wing with four aerodynamic ailerons actuated

by four identical brushless DC motors. The design of the control system is broken into a
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secondary and primary control algorithm. The primary control algorithm is designed based on
the concept of LQR and then applied to mathematical model of the wing and its control surfaces
to calculate their required deflections. The output of the primary controller serves as set-point for
the secondary control loop which consists of the dynamic of the DC motor and Proportional
Velocity (PV) based controller. Then, an optimal design of the control algorithms is carried out
in multi-objective and multidisciplinary settings. Three objectives are considered: 1) the speed of
response of the secondary controlled system must be faster than that of the primary one, 2) the
controlled system must be robust against external disturbances affecting both control layers, and
3) optimal energy consumption. The decision variables of the primary as well as secondary
control algorithms and the sizing elements of the control surfaces form the design parameter
space of the optimization problem. Both geometrical and dynamic constraints are applied on the
setup parameters. The multi-objective optimization problem (MOP) is solved by NSGA-II,
which is one of the popular algorithms in solving MOPs. The solution of the MOP is a set of
optimal control algorithms that represent the conflicts among the design objectives. Numerical
simulations show that the design goals are achieved, the secondary control is always fast enough
to prevent the propagation of disturbances to the primary loop, the inner and outer control
algorithms are robust against disturbance inputs, and the primary control loop stays stable when
the air stream velocity varies from 80 to 1000 (1n/s) even at its worst relative stability value.
The presented study may become the basis for multi-objective and multidisciplinary optimal

design for aeroelastic structure having actuator dynamics.
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CHAPTER 1: INTRODUCTION
1.1 Literature Review

Multidisciplinary design of flexible structures such as aircraft wings has helped improve
their performance in the past. During the design, wing’s geometrical parameters and control
gains are varied to simultaneously satisfy multiple and often conflicting requirements. Design
objectives such as maximizing the stability of the aeroelastic structures, suppression of
instabilities, robustness against gust loads and measurement noise, and minimizing energy
consumption are critically important when designing active aeroelastic controls (Singh,
McDonough, Kolonay, and Cooper, 2014). Therefore, additional work on the subject can further
improve their performance by combining the concept of multidisciplinary design with that of
multi-objective optimization.

There have been a few research efforts in the field of multidisciplinary optimal design of
aircraft wings. Khot and his colleagues optimized a realistic wing with constraints on the
strength and frequency distribution and obtained a feasible flexible wing structure (Khot, Appa,
and Eastep, 2000). Then, the structure design was utilized in an optimal controller design to
determine the actuator force distribution. Several articles have optimized wing control surface
sizing using a MATLAB optimization toolbox feature, constrained optimization solver,
simultaneously calculating control gains for receptance-based control Singh and McDonough
(2014); Brown and Singh (2015); Brown, Singh and Kolonay (2017). Specifically, Singh et al.
(2014) developed two optimization problems. The first problem used the control surface chord
length of a wing with a single control surface as a parameter. In the second problem, the span
wise length of the first control surface of a wing with multiple control surfaces was chosen as a

variable. In both problems the objective was to minimize the control system energy through
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minimization of the norms of the control gains satisfying some constraints of closed-loop poles;
these poles define the extension of the open loop flutter boundary. Whereas in Brown and Singh
(2015), the span wise lengths, locations, and chord sizes of a leading and trailing control surface
were tuned to satisfy static constraints regarding the size of the control surfaces, in addition to
dynamic constraints related to the active pole placement for flutter boundary extension.
Alternatively, Brown et al. (2017) implemented genetic algorithms to tune the location, size, and
number of leading and trailing control surfaces for a fighter wing model. The main goal was to
achieve optimized aeroelastic control of flutter boundary extension with minimum control effort,
leading to two cases being considered. The first case had a fixed number of control surfaces
while chords, span lengths, and locations were tuned. The second case tuned the number and
locations of control surfaces while their sizes were both fixed. Both geometrical static and
dynamic constraints were applied for optimization.

The combination of multidisciplinary design-optimization approaches and wing
aerostructure design with control-system design was implemented (Stanford, 2016; Nam,
Chattopadhyay, and Kim, 2000; Haghighat, Martins, and Liu, 2012). A series of aeroelastic
optimization problems under a variety of static and dynamic aeroelastic constraints was solved,
(Stanford, 2016). One such optimization problem, the wing mass was minimized by tuning
structural variables such as skin thickness and stiffener details, the quasi-steady deflection
scheduling of a series of control surface distributed along the trailing edge for maneuver load
alleviation and trim attainment. Nam et al. (2000) utilizes genetic algorithms for an integrated
simultaneous aeroservoelastic design of a composite wing. Variables such as ply orientation of
the composite layer, wing sweep angle, taper ratio, span wise location and size of control

surfaces were chosen as design parameters for the genetic algorithm. A weighted sum of 25
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index values was defined as the objective function, which represents the LQR performance index
based on output feedback controller airspeed and the root mean square values of the gust
response at various airspeeds. The outcome of this work showed improvements when compared
to baseline models. In Haghighat et al. (2012), the main design goal was to maximize the
endurance of a high-altitude long-endurance aircraft by tuning win planform parameters,
structural sizing, and control gains simultaneously. The results showed the simultaneous design
of the control system along with structural components of wings at early stage of design
improves aircraft performance.

Multidisciplinary design of aircraft wings with active flight control systems has helped
improve wing performance in the past. In this kind of design, wing geometrical parameters and
control gains are tuned to simultaneously achieve multiple and often conflicting criteria. Design
requirements include, but are not limited to, suppression of instabilities and extension of flutter
boundaries, robustness against gust loads and measurement noises, and minimization of energy
consumption (Singh et al., 2014). Therefore, additional work on the subject can further improve
the performance of aerospace structures by combining the concept of multidisciplinary design
with that of multi-objective optimization. The need of multidisciplinary design optimization
(MDO) was extensively discussed by Livne and Jackson (Livne, 1999), (Jackson and Livne,
2014).

Optimization of aeroelastic structures has been addressed in several papers. For instance,
(Karpel and Sheena, 1989) used a computer program to optimally resize a wing structure and
achieve a maximum control effectiveness with minimum weight increase. Sizes of upper skin
and lower skin were factored as design parameters. Pettit (Pettit and Grandhi, 2003) used a

gradient-based optimization algorithm to optimize a fighter-like wing modeled with finite
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elements. The mean thickness values of the wing’s elements were tuned to alleviate gust
response and improve aileron effectiveness. Vio and Cooper (2008) made use of evolutionary
algorithms to reduce the impact of passive gust loads on a typical commercial aircraft wing by
tuning the orientation and thickness of the layers in the composite layup. The optimization
process was repeated for different combinations of objectives such as maximizing flutter speed
and minimizing the wing’s mass, maximizing the flutter speed via thickness at base model, and
minimizing the maximum gust response while minimizing mass concurrently. In similar fashion,
genetic algorithms were utilized to enhance the aerodynamic performance of a wing used on the
RQ-7 Shadow UAV (Ahuja and Hartfield, 2010). Specific design variables were chosen such as
chord span, dihedral angles, and inclination angle; then a cost function was created by
aggregating three objectives: minimum wing weight, maximum lift, and minimum drag. Nikbay
and Acar (2012) showed through the optimal design of an AGARD wing and changing structural
parameters such as taper ratio, sweep angle, elasticity, and shear modulus etc. that the flutter
boundaries of the structure can be extended. Boopathy, Rumpfkeil, and Kolonay (2015)
proposed robust and optimal structural sizing of a fighter wing configuration under both
structural and material uncertainties. The weight of the wing was minimized through adjusting
the cross-section area and thickness of structural members. Kim, Jeon, and Lee (2006)
introduced a multi-objective design optimization of supersonic fighter wing. The wing’s
planform parameters such as the sweep angle, aspect ratio, linear twist angle, area, and taper
ratio; airfoil shapes setup knobs such as the thickness ratio, maximum camber of the airfoil at the
wing root, and thickness ratio, and maximum camber of airfoil at the wing tip; and four

parameters related to the structural skin thickness of the wing were tuned by the response surface



method and genetic algorithm. A weighted sum of the wing weight, drag, and/or lift-to-drag ratio
was used as a design objective.

Multidisciplinary design of flexible structures has been reported in several manuscripts.
For example, an MDO of an aircraft wing was investigated by Khot et al. (2000) to enhance the
wing roll performance at a high dynamic pressure. The structure of the wing was optimized first
to obtain a feasible flexible wing. Then, an optimal control design was conducted to determine
the distribution of actuator forces. Singh and McDonough (2014) formulated two optimization
problems. In the first problem, the chord fraction of an aileron attached to a wing was selected as
a variable. In the second problem, only the span-wise length of the first control surface of a wing
having multiple control surfaces was selected as a design variable. In both problems, the
optimization goal was to minimize the control system energy through minimizing the norms of
the control gains while satisfying some constraints on closed-loop poles, which define the
extension of the open loop flutter boundary. Likewise, Brown and Singh (2015) optimally
adjusted the locations, span wise lengths, and chord sizes of a leading and trailing edge control
surface under static constraints related to the size of the control surfaces as well as dynamic
constraints related to the active pole placement for flutter boundary extension. In another study,
Brown et al. (2017) used genetic algorithms to tune the size, location, and number of leading and
trailing control surfaces of a fighter wing model. The optimization goal was to achieve an active
aeroelastic control for flutter boundary extension with minimum control effort. Therein, two
cases were considered. In the first optimization problem, the number of control surfaces were
fixed while their chords, span lengths, and locations were tuned. In the second optimization
problem, the number and locations of control surfaces were tuned while their sizes were fixed.

Stanford (2016) solved a series of aeroelastic optimization problems for a subsonic transport
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wing under a variety of static and dynamic aeroelastic constraints. In one of these optimization
problems, the mass of the wing was minimized by simultaneously tuning structural variables
(skin thickness, stiffener details), the quasi-steady deflection scheduling of a series of control
surfaces distributed along the trailing edge for maneuver load alleviation and trim attainment,
and the design details of a Linear Quadratic Regulator (LQR). By the same token, Nam and his
co-authors (2000) employed genetic algorithms for an integrated simultaneous aeroservoelastic
design of a composite aircraft wing. Eight design variables consisting of ply orientation of the
composite layer, wing sweep angle, taper ratio, aspect ratio, span wise location and size of the
control surfaces were selected as design parameters. The objective function was defined as a
weighted sum of 25 index values, which are LQR performance index based on an output
feedback controller at a design airspeed and the root mean square values of the gust responses for
various airspeeds. The results showed considerable improvements in both objectives when the
optimized models were compared to baseline models. Another MDO study was presented by
Haghighat et al. (2012). Therein, the main design goal was to maximize the endurance of a high-
altitude long endurance aircraft by tuning wing planform parameters (wing area and span-wise
twist distribution), structural sizing (spar-wall thicknesses), and control gains (diagonal elements
of the state weighting matrix of the LQR algorithm) concurrently. The results showed the
simultaneous design of the control system along with structure of the wing at the early stages of
aircraft design improves aircraft performance.

In all the aforementioned studies, the dynamics of the actuators driving the control
surfaces was ignored. It is well-known that implementing an active aeroelastic control on a given
wing needs actuators. The dynamics of the actuators has great influence on the overall system

performance. The first attempt toward including actuators’ dynamics in the control system
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design was in 2016 (Singh, Brown, and Kolonay, 2016). Therein, a receptance-based controller
was designed for a wing with a leading and trailing control surface and the control gains required
to place the closed-loop poles at prescribed locations were computed by solving a set of
nonlinear equations in the least-square sense. Second and third-order models of the actuator were
tested and simultaneous control of aeroelastic structure and actuators were designed. However,
an optimal design of cascade active aeroelastic controls for the wing, ailerons, and actuators in
multi-objective and multidisciplinary settings has not been investigated yet. The cascade control
design is selected because it significantly improves the performance of feedback controllers.
Unlike single feedback control loops, cascade control methods can act quickly to prevent
external excitations from propagating through the process and ensure the controlled variable does
not deviate from its desired level (Smith and Corripio, 1985).

It is evident from the literature that genetic algorithms have been used in many studies. One
of the popular genetic algorithms is the NSGA-I1. The working principle of this algorithm is
introduced in the next section.

1.2 NSGA-II

NSGA developed in Srinivas and Deb (1994) is a non-domination based genetic
algorithm. Even though it performs well in solving MOPs, its high computational effort, lack of
elitism, and the implementation of what is called sharing parameter had necessitated
improvements. As a result, a modified version of the algorithm named NSGA-II was presented in
Deb, Pratap, Agarwal, and Meyarivan (2002). The new version has a better sorting algorithm,
includes elitism, eliminates the need for the sharing parameter, and has less computational

burden. As shown in Figure 1, the algorithm incorporates eight basic operations: Initialization,



fitness evaluation, non-domination ranking, crowding distance calculation, tournament selection,
crossover, mutation, and combination (Deb et al., 2002).

The algorithm starts with the initialization process in which a random population, Npop,
that satisfies the lower and upper bound constraints is generated. Once the population is
initialized, fitness function evaluations, F(Pop), takes place in the second stage. Using these
function values, the candidate solutions are sorted based on their non-domination and placed into
different fronts. The solutions in the first front dominate all the other individuals while those in
the second front are dominated only by the members in the first front. Similarly, the solutions in
the third front are dominated by individuals in both the first and second fronts, and so on. Each
candidate solution is given a rank number, rnk, of the front where it resides. For instance,

members in first front are ranked 1 and those in second are given a rank of 2 and so on.

Figure 1: NSGA-II algorithm flowchart



To improve the diversity of the solution, a parameter called the crowding distance is
computed for each solution. This parameter measures how close an individual is to its neighbors.
The crowding distance is calculated front wise since comparing the crowding distance between
two individuals from two different fronts is meaningless. The larger the average crowding
distance, the better the diversity of the population. After that, the parents for the next generation
are selected. One of the popular algorithms used for this purpose is the binary tournament
selection method. At each iterationi = 1: n., wheren, = round(Npop = 2) and n. is the
number of parents, two random integer numbers are uniformly generated between 1 and Npop.
These values are used to fetch two candidate parents from Pop. A candidate solution is selected
if its rank is smaller than the other or if its diversity measure is bigger than the other. Then, a
crossover algorithm such as the arithmetic crossover method (Beyer and Deb, 2001; Deb and
Agrawal, 1995) and a mutation algorithm such as the simple mutation approach (Kakde, 2004)
are applied on the selected parents to produce new children. These two operations are repeated
nc times which result in a new offspring of size Npop. Elaborated details about crossover and
mutation methods can be found in Haupt and Ellen Haupt (2004). After that, the new children are
merged with the current population. This combination guarantees the elitism of the best
individuals. Finally, individuals are sorted based on their crowding distance and rank values.
First, the sorting is performed with respect to the crowding distance in a descending order. Then,
an ascending order of the population is followed based on the rank values. The new generation is
produced from the sorted population until the size reaches Npop. As long as the number of
generations, gen, is not equal to the maximum number of iterations, Ngens, the selection,

crossover, mutation, merging, ranking and sorting process are repeated.
9



NSAG-I11 works well on two-objective and three-objective problems. For many-objective
optimization problems (with more than three objectives), large populations are used to enhance
the search ability of the algorithm but at the expense of the computation time (Shibuchi, Sakane,
Tsukamoto, and Nojima, 2009). A study on the effect of the size of the decision variable space
on the performance of NSGA-II and other evolutionary algorithms showed that NSGA-II
converges to the true Pareto front on all the test problems when the number of design parameters
is less than or equal to 128 (Durillo, Nebro, Coello, Luna, and Alba, 2008; Durillo et al., 2010).
In this, the size of the objective space is 4 and that of decision variable space is between 4 and

10. Therefore, NSGA-II is expected to perform well in these two problems.

1.3 Outline of the Thesis

This thesis is based on the author’s research on multidisciplinary optimal design of an active
control system and state estimator for an aircraft wing and multidisciplinary and multi-objective
optimal design of a cascade control system for a flexible wing with embedded control surfaces
having actuator dynamics in the past year. Chapter 2 proposes multidisciplinary optimal design
of an active control system and state estimator for an aircraft wing. The third chapter of this
thesis presents a multi-objective and multidisciplinary optimal design of a cascade control
system for an aircraft wing with four aerodynamic ailerons actuated by four identical brushless

DC motors. Chapter 4 summarizes the thesis.
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CHAPTER 2: MULTIDISCIPLINARY OPTIMAL DESIGN OF AN ACTIVE CONTROL
SYSTEM AND STATE ESTIMATOR FOR AN AIRCRAFT WING
2.1 Introduction
A multidisciplinary and multi-objective optimization approach that integrates the design

of the control surfaces’ sizes, active control systems, and estimator for an aircraft’s wing with
three control surfaces is developed in this chapter. Four objectives are considered: minimizing
impacts of external gust loads, maximizing stability robustness, extending flutter boundaries,
reducing control energy consumption, and minimizing the Frobenius norm of the estimator gains.
Wing’s mathematical model, control system and observer design, formulation of the
optimization problem, and discussion of the results are delineated in the next sections.
2.2 Mathematical Model of an Aircraft’s Wing with Multiple Control Surfaces

Consider the flexible wing having three control surfaces shown in Figure 1. The matrix-
differential equation which rules the dynamic of the system is given by

Mg(t) + (€ — pVC)q(t) + (K — pV*K)q(t) = Fou(t) + Fywgy(t) 1)
The vector q(t) = [q1(t), g2(t), q5(t), g4 (t)]T represents the generalization coordinate, u(t) =
[B.(D), B (t), B3 ()] denotes the vector of the control surface deflection, F, is the matrix

describing the influence of the controls on the system dynamics, and F , describes the influence
of the aerodynamic load, w(t), on the system behavior. The matrices M, C,, C, K,, and K are

the structural inertia, aerodynamic damping, structural damping, aerodynamic stiffness, and
structural stiffness matrices, respectively. The reader can refer to Appendix C or more details

about the model and the numerical values used in the simulation.

11



Flexural axis

Figure 2: Flexible aircraft wing model with three control surfaces (Singh et al., 2014)

The bending deformation (transverse direction) z and rotation € at a point (X, y) on the

wing are related to the generalized coordinates and the wing’s dimensions by the following

equations:

— 2 3 — 2(x — 2
z=y1 +y qz +y(x — xp)q3 + ¥ (x — x£)q4 )
0 =yqs +Y°qs 3)

where, x is the flexural axis location aft of leading edge.

2.3 Optimal Full-State Feedback Control System

The state-space model of the system described in Eq. (1) reads
12



x(t) = Ax(t) + Bu(t) + Byw,(t) (4)
The output equation is given by
y(t) = Cox(t) ()
Where, x(t) = [q1(t), 42(t), qs(£), 44(t), 41(£), 42(t), 43 (t), 4o (£)]" is the state vector. The

system matrices A, B,, , B4, and C, are given by

04x4 I4x4

A= l—M‘l(K — pVZKa) —M_l(C —pVCy 6)

_ 04x3
Bu - M—IFC (7)

043
By = |m-1F ®)

g

Co = [Taxa 04x4] (9)

Where, | and 0 denote the identity and zero matrices, respectively. It is evident from the system
configuration that the system is completely controllable. In other words, the controlled system
with the three actuators (control surfaces), shown in Figure 1, can move any state of the system
from any initial state to any other final state in a finite time interval. Also, the system is
completely observable. That is, with the on-board sensors’ distribution given in Eq. (9), the first
four states can be measured directly and then used to estimate the last four states. A MIMO full-
state feedback law for the state-space system given in Eg. (4) can be written as

u(t) = —K.x(t) (10)

where, K, € R3*8 is the state feedback gain matrix. Substituting Eq. (10) into Eq. (4), the closed-

loop dynamics is given by
13



x(t) = (A— B,K)x(t) + Bywy(t) (11)

Taking the Laplace of Eq. (11), we obtain

(sI —A+ B,K)X(s) = BgWy(s) (12)

where, X(s) and w, (s) are the Laplace transforms of x(t) and w (), respectively. Using this

equation and Eq. (5), the transfer function matrix GTF(s) from the gust loads to the system’s

outputs is provided by

Y(s)

GTF(s) = e

=C,(sI — A+ B,K,)" B, (13)

Here, Y(s) denotes the Laplace transform of y(t). This transfer function matrix is very crucial in
the design of an aircraft’s wing since one of the design requirements is to alleviate the impacts of
extreme aerodynamic loads on the system performance. It is obvious that by increasing the
values of the elements of the feedback gain matrix K, the gust loads’ effects can be reduced.
However, this conflicts with the requirement of minimizing the control energy needed to
stabilize the system and suppress flutter.
2.4 Linear- Quadratic Regulator (LQR) Design

The state feedback gain matrix K. plays a very important role in the performance of the
closed-loop system. This variable can be either directly tuned if the stable ranges of its elements
are known, or indirectly calculated by solving the Algebraic Riccati Equation (ARE) which
results in a Linear Quadratic Regulator (LQR). The latter is very attractive since it does not
require any stability analysis and the user only needs to adjust some weighting factors and then
numerically solve the ARE to obtain K, that stabilizes the controlled system. In this case, K
minimizes the following performance index:

J = [ [xT(©Qx(t) + u” () Ru(t)]dt, (14)
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where Q = QT is a positive semidefinite matrix that penalizes the departure of system states
from the equilibrium, and R = RT is a positive definite matrix that penalizes the control input.
Using Lagrange multiplier-based optimization method, the optimal K is given by

K. = R1BTP. (15)

The matrix P € R®*3 can be calculated by solving the following ARE:

ATP + PA— Q- PBR™'BIP = 0 (16)

It is evident from equations (15) and (16) that Q and R are the design knobs that greatly impact
the calculation of K. and in turn the performance of the system under control. Thus, the most
important step in the design of an optimal controller using LQR is the choice of Q and R
matrices. Conventionally, these matrices are elected based on the designer’s experience and
adjusted iteratively to obtain the desired performance. Arbitrary selection of Q and R will result
in a certain system response which is not optimal in true sense (Tewari, 2002). Many efforts have
been directed toward developing systematic methods for selecting the weighting matrices. For
instance, Bryson presented an approach for choosing the starting values of Q and R matrices, but
this method only suggests the initial values and later the coefficients are to be tuned iteratively
for optimal performance (Bryson, 2018). Analytical approach of selecting the Q and R matrices
for a second order crane system was developed in Oral, Cetin, and Uyar (2010). Another
analytical method of calculating the Q and R matrices for a third order system represented in the
control canonical form was proposed in El Hajjaji and Ouladsine (2001). Developing an
analytical technique to find Q and R for high order systems such as the system at hand is very
tedious if it is not possible because of the dimension of the system. Therefore, we suggest a
numerical approach through using an optimization algorithm to tune these matrices such that the

design goals are optimized simultaneously.
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The LQR does not only guarantee the system stability but also the stability margins. This
feature is very valuable for high-order dynamic systems where finding the feasible regions of the
control gains are very difficult. On the other side, LQR requires that you have a good model of
the system, and all the states in the system available for feedback. If not all the states are
available, an observer should be used to estimate the unavailable ones. As a result, stability
margins may get arbitrarily small. To avoid this situation, the estimator dynamics should be
faster than the closed-loop dynamics i.e., the estimator eigenvalues should not be closer to the
imaginary axis than those of the regulator. This can be done free of cost since the estimator does
not require a control input (Tewari, 2002). As a result, the estimator poles can be pushed further
into the left-half plan without causing concern of large control effort.

2.5 Luenberger Observer

Practically speaking, only a subset of the states is available for feedback when the control
system is designed. A cost-effective approach to determine the states that are not directly
measured is to design an observer, which is nothing but a computer algorithm that uses the
system mathematical model, available measurements, and feedback control signals to provide an
estimate of the unavailable states. Luenberger observer is one of the popular and traditional
estimators that can be used for this end (Luenberger, 1964). The dynamics of the Luenberger

observer of the state-space system given in Eq. (4) reads

x(t) = [AZ(t) + Byu(t) + L[y(t) — y(©)]. (17)

yt) = CoX(t) (18)
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The term L[y(t) — y(t)] injects the error between measurements x(t) and model predictions
x(t), scaled by a user-chosen observer gain vector L € R8*4, Letting e(t) = x(t) — X(t), the
error dynamics is governed by the following equation

e(t) = (A— LC,)e(t) (19)

By examining this equation, we notice that the estimation error system is asymptotically stable,
e(t) — 0, if we select L such that the eigenvalues of (A — LC,) have negative real parts. That
IS, we can assign the eigenvalues (i.e., speed) of the error system by selecting L appropriately.
Furthermore, the selection of L comes free of cost since the estimator does not require any form
of physical control effort. As a result, the eigenvalues of the estimator 1, can be placed to the left
of the fastest mode of the closed-loop, 4., . system as follows

Ao =7 % (1:8)1 (20)

Cmin’
where, A, = min(real(A — B,K.)) and r = 2 can be tuned to find the optimal trade-offs
between the observer speed of response and noise amplifications, which are directly related to

the values of L. It can be noticed that A, is scaled by r X (1 : 8) to avoid placing the

estimator poles at the same location since the pole placement can be badly conditioned if the
designer picks out unrealistic pole locations (MathWork, 2020). The proposition in Eg. (20) is
introduced in this thesis to avoid this situation though other setups are also possible. Then, the
MATLAB command “place” can be used to calculate L.

2.6 Multi-Objective Optimization

Multi-objective optimization problems (MOPs) are stated as follows:

r’?Eigl{F (k)}, (21)
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where a design variable vector k = [kq, ks, ..., k,] must be found to minimize a vector F =
[f1(K), ..., fn(K)]. The domain D c R™ can in general be expressed by inequality and equality
constraints:

D = {keR%g;(k)<0,i=1,..,1,
and hj(k) = 0,j = 1,..,m}

(22)

The solution of a MOP is known as the Pareto set and its image is called the Pareto front.
Therefore, the concept of dominancy (Pareto, 1971) (original edition in French in 1927) is used
to define the optimal solutions. Such solutions are non-dominated to each other. Simply stated,
there exists no other solutions in the entire search space which dominate any of these solutions.
MOPs are solved by multi-objective optimization algorithms which can be classified as
evolutionary-based and gradient-based algorithms. The reader can refer to Jones, Mirrazavi, and
Tamiz (2002); Marler and Arora (2004); and Tian, Cheng, Zhang, and Jin (2017) for
comprehensive survey of MOP algorithms.

Control systems’ design problems are complicated and non-convex, therefore
evolutionary algorithms are the methods of choice (Wozniak, 2010). They outperform classical
direct and gradient-based methods which suffer from the following problems: 1) the convergence
to an optimal solution depends on the initial solution supplied by the user, and 2) most
algorithms tend to get stuck at a local or suboptimal solution when solving non-convex, and
complex problems. On the other side, evolutionary algorithms are computationally expensive
(Hu, Huang, and Wang, 2003). However, the computational cost can be justified if a more

accurate solution is desired, and the optimization is conducted offline. The most widely used

multi-objective optimization algorithm is the NSGA-II (Sardahi and Boker, 2018; Xu, Sardahi,
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and Zheng, 2018). It yields a better Pareto front as compared to SPEA2 (strength Pareto
evolutionary algorithm) and PESA-I11 (Pareto Envelope based Selection Algorithm).

Therefore, in this thesis, we use the NSGA-I11 to solve the multi-objective optimal control
problem at hand. The reader can refer to Section 1.2 or (Sardahi, 2016) for more details about the
working principle of this algorithm. NSAG-I1 works well on two-objective and three-objective
problems. For many objective optimization problems (with more than three objectives), large
populations are used to enhance the searchability of the algorithm but at the expense of the
computation time (Ishibuchi, 2009). A study on the effect of the size of the decision variable
space on the performance of NSGA-II and other evolutionary algorithms showed that NSGA-II
converges to the true Pareto front on all benchmark problems when the number of design
parameters is less than or equal to 128 (Durillo et al., 2008). In this work, the size of the
objective space is 4 and that of decision variable space is 15. Therefore, NSGA-II is expected to
perform well in solving the optimization problem at hand.

2.7 Multi-objective and Multidisciplinary Optimal Design

Three pieces of information are needed for any optimization problem. They are the
tunable parameters, fitness functions, and constraints. The design parameter spaces K (see
Equation (21)) are given by,

k = [Q4,...,Q5,R{, Ry, R3, a4, a3, E., 7). (23)

The parameters Q4, ..., Qg, are the values on the main diagonal of (Q), and R, ..., R; are the
elements on the main diagonal of (R). These variables are numerically adjusted to optimally tune
K. The span lengths and chord of the ailerons are also tuned by varying a;, a,, and E.. Where
a, and a, set the length of first (s; = a;5) and second (s, = «,5) aileron. Having the values

of s; and s,, the length of the third aileron can be simply calculated (s; = §— (s; + s3)) . It
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is worth noting that by changing a,, a,, and E,, the size of the control surfaces is accordingly
tuned. The size of the control surface decides both the amount of control energy required to
derive it and the ability of the closed loop to reject external aerodynamic loads. The reader can
inspect the control and gust loading influence matrices F, and F, (Kumar, Nair, Begum, and
Tharani, 2012) to see how these geometrical parameters enter these two matrices. The variable r
dictates the locations of the estimator’s poles relative to the further left pole of the closed-loop
system, and in turn the speed of response of the observer. These design knobs were tuned to
minimize the following design objectives

Min{Acmaz , IGTFG@)lleo, IBuKcllp, ILI|F3- (24)

The relative stability of the controlled system is expressed by A max, Where Acpmax =
max(real (eig [A — B,K_])) represent the real parts of eigenvalues of the closed-loop
dynamic matrix. Small values of A.,,,, indicate better stability robustness of the system under
control. The fitness function ||GTF (jw)||. describe the disturbance rejection capability of the
closed-loop system to gust loads. A general definition of ||GTF (jw)|| is given by

IGTF(jw)llo = sup o(GTF(jw)), (25)

welwpwr
where o is the largest singular value among the transfer function elements. That is, the maximum
value of ||GTF (jw)||. is minimized. The values of w; and w, are set to 0 and 1000, respectively,
as suggested in Singh et al. (2014). For a controlled system to have a good disturbance rejection,
we must have ||GTF (jw)|l., << 1. The third objective, ||K,||¢, is the Frobenius norm of the

control matrix and it is given by

2
”Bch“F = \/Z?zlz?zllmij| ) (26)
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where m;; are the elements of feedback gain matrix, B, K (refer to Eq. (10)). Generally
speaking, the minimization of this norm leads to minimization of the control energy, which is
one of the design objectives in this work. The fourth fitness function ||L|| ¢, is the Frobenius

norm of the estimator gain matrix and it is defined by

e = 22 Sl @
where [;; are the elements of L. Small values of this cost function leads to slow estimator
dynamics but less noise amplification, and vice versa. Therefore, it is crucial to optimize this
objective function to ensure optimal estimator performance.

The MOP in Eg. (25) was solved by tuning the elements of k in Eq. (23) under the
following constraints

D = {k € R¥|Q; € [0,100]},i = 1,...,8,
R; € [0.0001,100],; = 1,2,3,
a,, a, € [0.01; 0.98], (28)

E. €[0.01,0.5],

andr € [2,10]g.
Here, D denotes the feasible search space. The upper bounds on Q;, R; are chosen so that the
penalties on the departures of the states from their desired positions and control utilization is
high. The upper and lower limits of a,, @, suggest that the fractional lengths of the three control
surfaces range from 1% to 98% of the airfoil span length. In contrast to the work proposed in
Singh and McDonough (2014) where a; was constrained between 1% and 25% and the lengths
of the second and third control surfaces were fixed, this wider ranges expand the domain of the
search space in the direction of @; and a, and add another degree of freedom to the design

space. The geometric constraint on the control surface chord fraction E, is chosen according to

the work presented in Singh et al. (2014). A relationship between the design objectives can be
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achieved by tuning the individual weights Q;, R;, and the control surfaces’ widths and lengths.

The design variable » was chosen between 2 and 500 to ensure the estimator is at least two times
faster than the fastest closed-loop mode and at most 500 times faster.

To solve this multi-optimization problem, NSGA-II is used. There is no specific guide on
how to set up the number of populations and generations for this algorithm. However, according
to the MATLAB documentation, the population size can be set in different ways and the default
population size is 15 times the number of the design variables n. Also, the maximum number of
generations should not be greater than 200xn. In this study, the population size and the number
of iterations is set to 50xn, where n is the size of the setup variables. The MOP is solved atV =
87.5m/s, which marks the beginning of flutter and open-loop’s instability.

2.8 Results and Discussion

The properties of the Pareto set and Pareto front; sensitives of the dominant poles of the
open-loop system, closed-loop system, and estimator to the airspeed; and responses of the
controlled, uncontrolled, and observer models at selected objective values are discussed here.

The optimization problem at hand is 15 X 4. That is, 15 decision variables and 4 objectives.
So, it is difficult to depict all the objectives in one graph. Instead, 2D projections from the 4D
design space are produced as shown in Figures 3, 4, and 5. The color in these two figures is
mapped to the value of the objective ||B,K .||z with red denotes the highest value, and dark blue
denotes the lowest value. It is evident from these figures that there is a competing relationship
among the design objectives. For instance, by inspecting the subplots (a) and (b) of Figure 3, we
note that at the maximum stability robustness A4 = —31.0577, ||B, K || and ||L|| » read
2.5633e+06 and 9.6214e+07, respectively. While, at the minimum stability robustness A, =

—10.1686, ||B,K_ || and |[L|| read 3.0799e+05 and 4.7418e+06, respectively. Another
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example can be found in Figure 4. We notice that at the best disturbance rejection
IGTF(jw)|l, = 0.0011, |B,K_|lr and ||L||r read 2.4639e+06 and 9.2596e+ 07, respectively.
While, at the worst gust loads’ rejection ||GTF (jw)||l, = 0.0057, ||B,K || and ||L||» read
2.3481e + 04 and 5.6637e+ 06, respectively. That is, better disturbance rejection and stability
robustness can be achieved at the high control energy and estimator gain. High estimator gains
may lead to high measurement noise amplifications. A third example is shown in Figure 5 where
there is a conflict between the objective of minimizing the control energy consumption and that
of attenuating sensors’ noise amplification. Small values of ||L|| and || B, K .|| are required to
reduce the impact of measurement noise on the closed-loop performance as indicated by the dark
blue region. On the other side, small energy levels mean bad aerodynamic load repudiation. As a
result, the decision-maker should choose the solution that gives the best compromise between
these objectives.
2.9 Stability Robustness

The profile of the dominant open-loop pole 2,4, Closed-loop pole A, at the best
and the worst stability robustness, and the estimator eigenvalue A,,,,, are shown in Figure 6, 7,
and 8, respectively. Figure 6 shows the open-loop system is sensitive to the airspeed, V (m/s),
and becomes more unstable when V increases. Figure 7 shows the profile of 4., at different
degrees of relative stability. As expected, the closed-loop system shows better relative stability at
Aemax = —31.0577 than that at A.,,,, = —10.1686. As can be seen from the locations of
max (4, relative to the imaginary axis, border between stability and instability. This stresses the
fact that LQR has very good stability robustness properties (Chen, 2015), which makes it an
attractive choice for the system at hand. That is, regardless of the degree of the relative stability,

the results indicate that the Pareto optimal controls will always stabilize the controlled system at
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any airspeed. Meaning the controlled system will never flutter, and the flutter velocity can be
boundlessly extended. Moreover, a unique control gain can be designed for the entire flight
envelope. In active aeroelastic control, flutter must be placed outside the flight envelope of an
aircraft. Typically, a 15% flutter free margin or more is needed beyond the design envelope for
both civil and military aircrafts (Carey & Buttrill, 1996). Furthermore, a unique control gain is
desired for a designated velocity range of interest because it simplifies the real-time control
implementation (Singh et al., 2016). Figure 8 shows the profile of A,,,,, at different degrees of
estimator relative stability. The estimator shows better relative stability at Ap;q =
—6.5623e + 03 than that at A,,,,, = —937.6681. In general, the estimator dynamics will
always be stable regardless the change in the airspeed value.
2.10 Time- Domain Response

For the velocity, V=87.5 m/s (onset of flutter), the closed loop and estimator response is
computed when they are excited by a discrete “1-cosine” gust loading (Haghighat et al., 2012). It
is clear that the responses at min(Aqmq,) (See Figure 9) min(||GTF (jw)||.) (see Figure 11)
max(||B,K.||r) (see Figure 13), and max(||Lg||) (see Figure 15) are the best or closest to the
knee point. While those at max(A.,qx) (Shown in Figure 10), max(||GTF (jw)||s) (shown in
Figure 12) min (||B,K_.||r) (shown in Figure 14), and min (||L||z)( shown in Figure 16) are the
worst or furthest from the knee point. But in all cases, the closed-loop control system can
suppress the flutter and stabilize the system and the estimator converges quickly. These

responses also confirm the conflicting nature of the design objectives.
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Figure 3: Projections of the Pareto front. (a) [|K. || versus A, ., (b) ||L||r versus A, .The

color code represents the levels of ||B, KK || with red denotes the highest value, and dark blue
denotes the lowest value.
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Figure 4: Projections of the Pareto front. (a) ||K. || versus ||GTF (jw)l|e, (b) ||L||z versus
|IGTF(jw)||- The color code represents the levels of || B, KK_ ||z with red denotes the highest
value, and dark blue denotes the lowest value.
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Figure 5: A 2D projection of the Pareto front. ||K .|| versus ||L||z. The color code represents
the levels of || B, K .|| with red denotes the highest value, and dark blue denotes the lowest
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Figure 7: Profile of the close-loop poles, A.,,4,CMax, with change in airspeed. Green curve with
* marker represents A.mqx = —31.0577. Black curve with diamond marker is the profile of
Aemay = —10.1686.
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Figure 9: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response
and blue solid line: estimator response at max (Acmax)-
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Figure 10: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response
and blue solid line: estimator response at min(A:max)-
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Figure 11: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response
and blue solid line: estimator response at min(||GTF (jw)|| o )-
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Figure 12: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response
and blue solid line: estimator response at max(||GTF (jw)||w)-
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Figure 13: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response
and blue solid line: estimator response at max(||B, K.||r)-
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Figure 14: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response
and blue solid line: estimator response at min(||BuK.||f).
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Figure 15: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response
and blue solid line: estimator response at max(||L||¢).
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Figure 16: The response of control surfaces at V=88 m/sec (red solid line: closed-loop response
and blue solid line: estimator response at min(||L||¢).
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CHAPTER 3: MULTI-OBJECTIVE OPTIMAL DESIGN OF AN ACTIVE
AEROELASTIC CASCADE CONTROL SYSTEM FOR AN AIRCRAFT WING WITH A
FOUR CONTROL SURFACE

3.1 Introduction

In this chapter, we investigate a multi-objective and multidisciplinary optimal design of a
cascade control structure applied to a light-weight wing having four ailerons driven by four DC
motors. The cascade control system consists of a primary and secondary control algorithm. The
primary control loop uses a full-state feedback controller to compute the desired deflection of
each aileron to ensure stability and gust loading alleviation. The output of this controller enters
the secondary control loop as a reference signal. The secondary control loop uses a PV controller
to drive the actuator to desired levels. The control system design is decoupled into primary and
secondary and executed in multi-objective and multidisciplinary settings. The setup gains of the
primary and secondary control loops as well as spans and chords of control surfaces are tuned to
attain robustness against external upsets, less expenditure of energy, and high-speed ratio of the
secondary controller compared to the primary. Under both geometrical and dynamic constraints,
the MOP is solved NSGA-II. The optimal solutions are obtained, and a post-processing
algorithm is used to help the decision-maker choose a solution for implementation. Robustness
of the primary controller against undesired inputs and variation in the free airspeed is
investigated.
3.2 Two-Layer Cascade Control System

A cascade control system consists of two feedback controllers, outer (main, master, or
primary) and inner (auxiliary, slave, or secondary). Cascade controllers can greatly enhance

control performance for disturbances entering the inner loop and is recommended for use when
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the inner loop is much faster than the outer loop (Corripio, 2000). In this work, the cascade
control system shown in Figure 17 is implemented. The outer control loop uses the dynamics of
the wing and its moveable aerodynamic surfaces to calculate the required control surface rotation
B4(s) to bring the perturbed system states q(s) = 0 to their desired equilibrium values

qq(s) = 0. The inner control system takes B4(s) as its reference input and calculates the
required control effort to drive the actuator and bring B(s) as close as possible to its desired
level. The primary controller’s output serves as the secondary controller’s set point. Both control
algorithms should be designed such that they are insensitive to external disturbances

w, (s) and D, (s) and measurements noise (N, (s)and N;(s)). The most important consideration
in designing cascade controllers is the auxiliary loop must be faster than the main loop and the
faster the better (Bolton, 2015). If that is the case, then the secondary controller will take a very
quick corrective action to attenuate the effect of any disturbance that enters the actuators and
prevent its propagation to the primary loop. In fact, if the inner controller is not faster than the
outer one, the cascade design has no advantage, and the overall control system may become
unstable since the slave controller is not acting fast enough to respond to the demands of the
master one. The mathematical model of the wing and its aileron, outer control algorithm,

dynamics of the actuators, and the design of the inner control loop are delineated next.
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Figure 17: Cascade control system acting on an aeroelastic structure and actuators.

3.3 Mathematical Model of an Aircraft’s Wing with Multiple Control Surfaces
An aircraft wing (Singh et al., 2014) with four control surfaces is depicted in Figure 18

and its dynamics is described by the following matrix differential equation

Mq(t) +(C—pV €)q(t) + (K = pV?K)q(t) = FcPa(t) + Fawy(t).  (29)
Where, M, C, and K denote the structural inertia, damping, and stiffness matrices, respectively.
While, €, and K, are respectively the aerodynamic damping and stiffness matrices. The vector
q(t) = [q1(t), q2(t), q3(t), q4(t)] represents the generalization coordinates;B,4(t) =

[B,(t), B, (t), B3(£)]" is the vector of the control surfaces’ deflections; and F. describes the
influence of the control vector on the system dynamics. The vector w,(t) models the external
gust loads and F ;4 represents the influence of these loads on the model. The variable V is the
airspeed (m/s) and p is the air density (kg/m?3). The reader can refer to Appendix C for more

details about the model and the numerical values used in the computer simulation.
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The bending deformation (transverse deflection) z and rotation 8 at any point (x; y) on the

wing are related to the generalized coordinates and the wing’s dimensions by the following

equations:
z = y2q; + y3q, + y(x —x£)qz + y*(x — x£)q4 (30)
0 = yqz + y2qa (31)

where, x; is the flexural axis location aft of leading edge. The parameters s;, s,, s3, and s,
decide the span lengths and locations of the control surfaces, while E,. denotes the fraction chord
of each aileron. These variables are of special interest since they dictate the sizing and location
of the flabs but also the amount of control energy required to drive them and ability of the
structure to reject aerodynamic loads. The system in Eq. (29) can be re-written as

q(t) = M7 (FBa(t) + Fgw,(t) = (C— pVC)q(t) — (K — pV*K,)q(D),  (32)

which can be represented by the following state-space model

x(t) = Ax(t) + B,f4(t) + Byw,(0). (33)

The output equation is given by

y(t) = Cox(t) (34)

The state vector is defined as

x(t) = [q1(8), q2(8), q3(6), 44 (1), 41 (1), G2 (8), 43 (1), 42 ()]" (35)

The system matrices A, B, B4, and C, are given by

_ O4x4 Iyxs
A=y M ey (36)

04—X4—

Bu = |m-1F,

(37)
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04><4

By =|m-1F,

(38)

C, = [I4><4 04><4]- (39)
Where, | and 0 denote the identity and zero matrices, respectively. The dynamics of the system is

now in the standard state-space form and a control system can be designed.

A8 e
T
= -~

Flexmal axis

Figure 18: Flexible aircraft wing model with four control surfaces (Singh et al., 2014).

3.4 Primary Control System
A MIMO full-state feedback law for the state-space system given in Eq. (33) can be

written as

Ba(t) = —Kcx(t), (40)
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where, K. € R**8 s the state feedback gain matrix. Substituting Eq. (40) into Eq. (33), the
closed-loop dynamics is given by

x(t) = (A— B,Kc)x(t) + Bywy(t). (41)

Taking the Laplace of Eq. (41), we obtain

(sI—A + B,K:)X(s) = ByWy(s), (42)

where, X(s) and W, (s) are the Laplace transforms of x(t) and w,(t), respectively. Using this
equation and Eq. (34), the transfer function matrix GTF (s) from the gust loads to the system’s

outputs is provided by

GTF(s) = % = C,(sI- A + B,K;)'B,. (43)

Here, Y (s) denotes the Laplace transform of y(t). This transfer function matrix is very crucial in
the design of an aircraft’s wing since one of the design requirements is to alleviate the impacts of
extreme aerodynamic loads on the system performance. It is obvious that by increasing the
values of the elements of the feedback gain matrix K, the gust loads’ can be attenuated.
However, this conflicts with the requirement of minimizing the control energy needed to
stabilize the system and suppress flutter. The state feedback gain matrix K. can be designed in
different ways. One of the popular methods in classical optimal control is the Linear Quadratic
Regulator (LQR). The optimal state feedback control gain matrix K, can be obtained by
minimizing the following performance index:

J = J, [x"Qx(t) + u” () Ru(t)] dt, (44)

where Q = QT is a positive semidefinite matrix that penalizes the departure of system states
from their equilibrium points, and R = RT is a positive definite matrix that penalizes the control

input. Using Lagrange multiplier-based optimization method, the optimal K- is given by
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K; = R 'BTP. (49)

The matrix P € R®*3 can be calculated by solving the following Algebraic Riccati Equation
(ARE):

AP + PA— Q- PBR'BLP = 0 (46)

By examining Eqgs. (45) and (46), we can notice that the weighting matrices Q and R play an
important role in the LQR optimization process. That is, the elements of the Q and R matrices
affect greatly the performance of a closed-loop system. Thus, the most important step in the
design of an optimal controller using LQR is the choice of Q and R matrices. Conventionally,
these matrices are elected based on the designer’s experience and adjusted iteratively to obtain
the desired performance. Arbitrary selection of Q and R will result in a certain system response
which is not optimal in true sense. Many efforts have been directed toward developing
systematic methods for selecting the weighting matrices. For instance, Bryson presented an
approach for choosing the starting values of Q and R matrices, but this method only suggests the
initial values and later the coefficients are to be tuned iteratively for optimal performance
(Bryson, 2018). Hence, an optimization algorithm is needed to tune the elements of these
matrices such that the desired response is achieved. Analytical way of selecting the Q and R
matrices for a second order crane system was developed in Oral et al. (2010). Another analytical
method of calculating the Q and R matrices for a third order system represented in the control
canonical form was proposed in El Hajjaji and Ouladsine (2001). Developing an analytical
technique to find Q and R for high order systems such as the system at hand is very tedious if it
is not possible because of the dimension of the system. Therefore, we suggest a numerical
approach through using an optimization algorithm to tune these matrices such that the design

goals are optimized simultaneously.
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3.5 Actuator Dynamics

Conventional hydraulic actuators (HAs) have been widely used in aircraft systems such
as Airbus A380 and Gulfstream G65026. However, they require high maintenance, and their
performance is sensitive to both pressure and temperature which in turn leads to high operating
costs and low efficiency. Recently, there has been a tendency in the aerospace domain towards
increasing the exploitation of electrical-mechanical actuators (EMAS) in aircraft applications.
These actuators have been recently introduced in large commercial aircrafts such as Airbus A380
and Boeing 787. Compared to HAs, EMAs have higher energy efficiency; better dynamic
characteristics; smaller weights, better safety, reliability, and diagnostic features because they do
not use any poisonous and flammable hydraulic fluids; less power transmission complexity; and
less maintenance cost since they do not experience hydraulic leaks. There are two common types
of EMAs: linear and rotary. In the case of linear EMAS, the rotational motion of the motor is
converted into linear by a ball-screw mechanism. While in the case of rotary EMAs, the motor
output shaft is connected to a gearbox to increase its torque and reduce its angular speed. Then,
the output shaft of the gearbox is connected to the moveable aerodynamic surface either directly
to the hinge line or by a connecting rod assembly (Habibi, Jeff, and Greg, 2008), (Qiao et al.,
2018). Here we choose a linear EMA driven by a power amplifier and its output shaft is
connected to a ball-screw mechanism which drives a slider-crank mechanism converting the
linear movement of the ball-screw mechanism into a control surface deflection as shown in

Figure 19.
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Figure 19: (a) EMA components (Habibi et al., 2008), and (b) slider-Crank Mechanism (Zhang
and Zhou, 2017).

The dynamics of the amplifier, electric motor, and gearbox assuming it does not have a backlash
is given by

X(s) _  Kg
Vin(s)  s(ts+1)’

(47)

where, 1;,,(s) is the input voltage, X(s) is the linear displacement of the gearbox. Following the
work presented in Habibi et al. (2008), the DC gain of the motor K, and time constant t are set
to 0.0452 and 0.0026, respectively.

The deflection of the aileron can be calculated from the kinematic equations of the slider-

crank mechanism and it is given by:
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_ 1 (1+n—X/a)2—n2+1]
p = cos [ 2(1+n—X/a)

(48)
Where, n = b/a. Following the work proposed in (Zhang and Zhou, 2017), the length of crank
a is set to 100 mm; and the length of linkage b is set to 170 mm. On the other side, the required

linear movement of the ball-screw mechanism X to achieve this value of 8 can be calculated as

follows

X=aln<1— /1—“’f—§’”>+1—cos(ﬁ)l. (49)

Since we are dealing with a wing having four control surfaces, four EMAs and slider-crank
mechanisms are required. Furthermore, the dynamics of the slider-crank mechanisms is not
included in the simulation and will consider in future studies. That is, only the above kinematic
equations are used to convert X into 8 and vice versa. Our focus is on decoupling the control
system design into a primary and secondary loop by considering the dynamics of the wing and
the EMA. More details about the motor model and the kinematic equations of the slider-crank
mechanism can be found in Appendix B.
3.6 Secondary Control Loop

The dynamics of the actuators greatly affect the performance of the aeroelastic structure.
Assuming that all the flaps are driven by identical EMASs and their dynamics are given in Eq.
(47), the dynamic of the actuators can be described by the following differential equation
X(t) + X(t) = K,(V,,(t) + D,;(1)). (50)
Here, D, (s) denotes external disturbances affecting the actuators as shown in Figure 17.
Inspecting the dynamics of the system, we notice the system already has integrator dynamics. As
a result, a simple PV (Proportional-Velocity controller is enough to stabilize the system and

provide a good tracking. The PV control law is given by
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Vi (8) = kp(Xa(8) — X (£)) = kX (D), (51)
Where k,, and k,, are respectively the proportional and velocity gains. Substituting Eq. (51) into

Eqg. (50), applying Laplace transformation, and simplifying, we get

Kq
152+(1+Kakvj)s+l(a

- |y Xa(s) + Dy ()| (52)

Using the superposition principle and setting X; = 0, the disturbance sensitivity function is

given by

DSF, = X9 _ Ka (53)

] 7 by T w52 +(1+Kaky )5+ Kakp,
The closed-loop characteristic equation read
CE; =157 + (1 + Kok, ) s + Kaky, (54)
Where j = 1,2, ...,4. These equations are very useful in the design of the control system. One
of the design goals in this work is to attenuate the impacts of D, (s) and prevent them from

propagating to the outer loop. To this end, Eg. (53) can be used to quantify these impacts. Also,
the speed of responses of the inner control systems should be at least two times faster than that of
the outer control loop. The speed of response of any system is a function of its dominant closed
loop poles which can be found from Eq. (54). Furthermore, the control energy expenditure of the

actuators can be quantified by using the Frobenius norm of their control parameters as follows

2
E, =\/|kpj| +

Having all the objectives defined and all the tuning parameters specified, the multi-

2

ky,

(55)

objective optimization can be readily formulated.
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3.7 Multi-Objective Optimal Design

The design variables of the primary and secondary controllers as well as the geometrical
parameters of the control surfaces are tuned by the NSGA-I1I. The decision vector is given by,
k = [Q ...Qg Ry, e, Ry a4, @3, Egy ks iy s s Ky, |- (60)
The parameters Q4, ..., Qg and R4, ..., R, are the diagonal elements of Q and R, respectively.
These design variables are employed to indirectly tune K. The sizes and locations of the control
surfaces are tuned by and adjusting their span-wise ( a4, ..., a3) and chord lengths( E.). While,

k kp,.» kv, -, ky, are the setup gains of the auxiliary control algorithms. The constraints

py - oy
on the design variables are defined as follows:

( Q4,...,Q4 €10,100] )
R, .., R, € [0.00001,100]
ay, ., a1 € [0.01,0.97]
E. € [0.01,0.25] ( (61)
kp,, -, ky € [10 X 10%,30 x 10°]
\ Ky oo by €[100,300] )

D =<k e R*

The upper and lower limits of Q,, ..., Qg and R4, ..., R, are chosen so that the penalties on the
departures of the states from their equilibrium values and control energy expenditure change
widely from low to high values. This choice expands the search space of these variables and
allows the optimization algorithm to find all the optimal trade-offs solution within this space.
The ranges of a4, ..., a3 allows the span-wise length of the four ailerons to change from 0.01 to
0.97 of the wingspan lengths. It is worth noting the length of the fourth control surface is given
by: [1 — (ay, @y, a3)] X §. So, only three design parameters are needed to tune the span-wise

lengths. Following the work presented in 12, E, is chosen to be between 0.01 and 0.25. The

ranges of the inner control gains are chosen according to stability constraint required by Eq. (54)
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and to guarantee that the secondary control loop is faster than the primary one. These setup gains
are optimally tuned to simultaneously achieve the following cost functions:

Il?eilr)l{_r' Daw Eav} (62)

The objective r quantifies speed ratio of the secondary controlled systems versus the primary

feedback control loop, and it is given by

e (63)

B APML"
where Ag,, is the dominant closed-loop eigenvalue from the four secondary controlled loops and

Ap,,; 1 the fastest mode of the primary control structure. Mathematically, 45, and 4, read
Asy, = max [max (real (eig(CE,)))]. (64)

Ap,. = max [max (real(eig(A - BKC)))]. (65)

Mi
The function eig finds the eigenvalues of the system, real function returns only the real parts of
these eigenvalues, max returns the dominant pole, and min returns the smallest value of its input,
which is in our case the fastest pole. To ensure that the inner control system has a faster reaction
time than the outer one, the following constraint was applied to the objective space

r > 2. (66)

This could be roughly interpreted as the secondary reaching its steady state in one-half the time
of the primary after an open loop step change in the manipulated variable. This constraint also
ensures that closed-loop eigenvalues of the inner closed-loop system are separated from those of
the outer one. The attenuation of external disturbances affecting both control loops can be

quantified by
Doy = ||| 6TF (@)l + max;([|DSF(iw)| )], (67)
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where GTF (jw) is the co - norm of transfer function defined in Eq. (43) and returns the
maximum value among the o - norm of DSF; given in Eq. (53). It should be noted that small
values of these functions indicate better disturbance rejection. The variable w, € [0,100] as
suggested in Singh et al. (2014). The values of w, and w5 € [0, 2] as proposed in Sardahi and
Boker (2018). The third objective in Eq. 62 defines the average control energy of the slave
controllers

E, = meanlEl,j = 1,..,4. (68)

The operator mean returns the average value of the Frobenius norms defined in Eq. (55).

To solve this multi-objective optimization problem with the objective and decision spaces
defined respectively in Eq. (62) and Eq. (60) under the constraints of Eq. (61) and Eq. (66), the
non-dominated sorting genetic algorithm (NSGA-II) is used. There is no specific guide on how
to set up the number of populations and generations for this algorithm. However, according to
the MATLAB documentation, the population size can be set in different ways and the default
population size is 15 times the number of the design variables nvar. Also, the maximum number
of generations should not be greater than 200 X nvar. In this study, the population size and
maximum number of iterations are set to 50 X nvar, where nvar is equal to 24.

3.8 Numerical Results

Properties of the Pareto front and Pareto set, responses of the primary and secondary
controlled systems to external disturbances and measurement noise, and robustness of the
primary controller to air stream velocity V at Ap,, = max [real(eig(A — BK))] are

discussed here.
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3.9 Properties of Pareto Cascade Optimal Controls

The Pareto front and six different projections from the Pareto set are shown in Figure 20-26.
The size of the Pareto front is 720 x 3 and that of the Pareto set is 720 x 24. That is, there are
720 optimal and compromise solutions to choose from. Each point on the front expresses a
different degree of trade-off among the design objectives. The Pareto front shows a conflicting
relationship between E,,, and D, For instance, at E,, = 8.3637 x 10°, D, reads
1.0970 x 1073; whileat E,, = 9.5276 x 10°, D, is 0.728 x 1073, Despite this non-
agreement relationship between the two objectives, the values of D,,, show the proposed
cascade control system has a very good disturbance capability. The Pareto front also shows the
speed ratio between the inner and outer is greater than 2, which is one of the requirements in the
design of cascade control system. We also notice that when r is 3.0099, E,, is equal to
8.3637 x 10°; while at the maximum value of the speed ratio (r = 74.9257), E, reads
5.8055 x 10°. Between these two points, we can find large values of r associated with small
energy and vice versa. For example, atr = 6.0310, E,, = 3.6943 x 10°%; whileatr =
24.8903, E,, = 2.5462 x 10°. However, by inspecting the Pareto front we notice that D,,, at
r = 6.0310 and r = 24.8903 reads 0.6068 x 1073 and 1.2646 x 1073, respectively.
Meaning, even though it is attractive to ensure that the speed ratio is high, and the control energy
is small, the disturbance attenuation should be also high especially for the system at hand which
experiences unavoidable aerodynamic gust loads. The optimization algorithm returns 720
optimal implementations of the cascade control with different control gains and aileron sizes. So,
it is up to the decision-maker to choose which point to implement. However, some post-
processing algorithm such as that reported in Sardahi and Sun (2017) can be used to help the

decision-maker. The algorithm starts by finding the ideal point (P; as shown in Figure 20) of the
47



Pareto front. This point is made of the minimum values of all the objectives and so it is not the
Pareto front. It is worth noting this point cannot be found by any optimization algorithm due to
the competing relationships among the design objectives. Then, the Euclidean distance between
each point on the Pareto front and P, is calculated. After that, the Euclidean distance values are
sorted in an ascending order with the first point labeled P, and the last point labeled Pg. So,
implementing Py can be appealing to the designer since it is the closet point to P;. P is one of
the optimal solutions, but it can be less catchy to the decision-maker because it is the furthest
point from P;. Between Py and P there are many other optimal options. These two points were
also added to the six projections of the Pareto set as shown in Figure 21-26. The color codes are
explained in the captions of these figures. Figure 21 shows that the optimal ranges of a;, a5, as,
are [0.0175, 0.0933], [0.0300, 0.1825], and [0.7277, 0.8611], respectively. As a result, the span
length of the fourth control is between 0.0102 and 0.1362 of the wingspans. That is, to achieve
the selected design objectives simultaneously, the optimization algorithm suggests keeping the
span-wise lengths of the two middle ailerons greater than those attached to left and right edge of
the wing. The color code in this figure is mapped to the value of E. and its optimal is between
0.0144 and 0.2473. At Py, r = 5.2498, D,, = 0.909 x 1073, E,, = 1.4117 x 106 and the
design parameters are given by

Q, s = [90.5589,73.4348,10.8965,43.1048,0.3958,25.1081,0.0141, 1.2945] (69)

R, . = [63.9256,75.1654,61.0558,85.0132] (70)
a, 5 = [0.0640,0.1005,0.7501] (71)

E. = 0.2092 (72)

kpi s = [1.5884,2.9971,3.1380,3.2453] x 10° (73)
kyi 4 = [609.4665,731.7387,904.4938,890.7366] (74)
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While at Pp, r = 71.6299,D,, = 1.11 x 1073, E,, = 8.6510 x 10° and the design
parameters are given by

Q, s = [93.5302,65.2186,50.9763,38.9561,0.1466,11.0741,0.0055,0.1585]  (75)

R1..4R, , = [47.6938,70.2664,85.8683,88.0736] (76)
a, 3 = [0.0648,0.0822,0.8060] (77)

E, = 0.2332 (78)

kpy o = [10.271,10.270,28.636,12.901] X 10° (79)

kyi s = [1.4063,1.3806,1.4644,1.4735] x 103 (80)

It can be noticed that a cascade controller designed at Py will have less energy consumption and
better disturbance rejection than that designed at Pr. On the other side, the speed ratio of the
inner control algorithm to the outer one is better if the implementation is done at Pr. When r is
large, the inner closed-loop system will attenuate D; (see Figure 17) very quickly before it
propagates to the outer one. The closed-loop response of the inner and outer control algorithm is
discussed next.
3.10 Effect of External Disturbances

The response of the inner and outer controlled systems is simulated assuming zero initial
conditions and under the excitation of a discrete “1-cosine” gust loading disturbing the primary
loop and a sinusoidal internal disturbance given by

Wg

2mt
wy; (t) :7<1—cos%>for0 <t > Ly (78)

D;;(t) = Asin(wt) (79)
Here, w, is the maximum gust velocity, and L, is the total length of gust bump. Following the

work proposed in Haghighat et al. (2012), we set L, to 0.5s. Different from this work, we set w,
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to 10 x 4.575m/s instead of 4.575 m/s to show the ability of both control layers to deal with
this upset. The amplitude of A and w are set to 1 and 2, respectively. Theindexj = 1,...,4
since we have four ailerons and actuators. Using Eq. (30), the deflection of the wing in the z-
direction is calculated at the following points
(x,y) =[(-0.3,1) (—0.2,4) (0.1,5) (0.4,2)] (80)

The time response of z; (t) to z,(t) at either Py, and P (Figures 27 and 28) show the outer
control algorithm can successfully stabilize regardless of the aerodynamic loads. The tracking
behaviors of the inner loop at these two design options are shown in Figures 29 and 30. Since the
dynamics of the secondary controlled system was made faster than that of the

primary closed-loop system, the tracking error between g (t) and S, (t) is very small. Tracking
absolute errors are tabulated in Table 1. The table shows the tracking errors at Py are smaller
than those at Py which is due to the high speed of ratio at Pr compared to that at Py. The
profiles of the input voltages shown in Figures 31 and 32 show similar behavior because the
acting external disturbances are the same and the dimensions of the ailerons at these two points

are also very close from each other.

Table 1: Inner controller racking absolute errors at PN, and PF

T T T T
S oo, = Br|de | [ |Bo, = Bo| dv | [ |Be,— Bs|dz | [ |Bs, — B| d
(1] [i] [i] (1]
Py | 0.1028% 103 | 0.1028% 10° | 0.6568% 103 | 03698 % 107
P, | 0031110 | 00311 x 10 | 03230 % 10 | 0.1097 x 10~

3.11 Effect of Air Stream Velocity
It is very important to ensure the closed-loop outer system is stable regardless of the
variation in V. At 4,,, , the relative stability of the primary controlled system is the lowest.

Among the closed-loop eigenvalues, this pole is the closet one to the boundary between stability
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and instability. So, if the closed-loop system stays stable at this value as V varies, the other

optimal options will also guarantee stability. To this end, the profile of A, as V varies from 80

to 1000 (m/s) is depicted in Figure 33. The figure shows the outer closed-loop system is
sensitive to the change in V but always stays stable. In other words, the primary control system
suppresses flutter instabilities for any air stream velocity even at its lowest relative stability
value. Typically, a 15% flutter free margin or more is needed beyond the design envelope for
both civil and military aircrafts (Hu et al., 2003). These observations also confirm the fact that
controlled systems designed based on the LQR principle have very good stability robustness

properties (Chen, 2015).

10

% 10°

D gy 00 Eq,

Figure 20: 3D visualization of the Pareto front. The color code indicates the value of the
objective function E,,,. Red denotes the highest value, and dark blue denotes the smallest value.
P,, Py, and Py are the ideal, knee, and far point, respectively.
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Figure 21: Projection #1 of the Pareto set. The color code indicates the value of E.. Red denotes
the highest value, and dark blue denotes the smallest value

Figure 22: Projection #2 of the Pareto set. The color code indicates the value of Q,. Red denotes
the highest value, and dark blue denotes the smallest value.
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Figure 23: Projection #3 of the Pareto set. The color code indicates the value of Qg. Red denotes
the highest value, and dark blue denotes the smallest value.

Figure 24: Projection #4 of the Pareto set. The color code indicates the value of R_4. Red
denotes the highest value, and dark blue denotes the smallest value.
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Figure 25: Projection #5 of the Pareto set. The color code indicates the value of k,,. Red
denotes the highest value, and dark blue denotes the smallest value.
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Figure 26: Projection #6 of the Pareto set. The color code indicates the value of k,,. Red
denotes the highest value, and dark blue denotes the smallest value.
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Figure 27: The response of the outer closed loop system at Py,.
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Figure 28: The response of the outer closed loop system at Pp.
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Figure 30: Tracking performance of the secondary control algorithm at Pp.
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Figure 31: Voltage signals entering the actuators at Py.
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Figure 32: Voltage signals entering the actuators at Pp.
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Figure 33: Profile of A, versus V.

58



CHAPTER 4: SUMMARY AND FUTURE DIRECTIONS

4.1 Conclusions

We have studied the multidisciplinary and multi-objective optimal design of a cascade
control system applied to wing with four control surfaces having actuator dynamics. The
optimization problem with 24 design parameters and 3 objective functions is solved by NSGA-I1I
algorithm. The decision variable space consists of 4 parameters related to the span wise and
chord lengths of the control surfaces, 12 setup gains related to the LQR penalty matrices, and 8
gains belong to the inner control loops. The objective space contains three objectives:
minimization of the controlled system response to gust loads acting on the wing and internal
disturbance acting on the actuators, and maximization of speed ratio between the auxiliary and
main control loops, and minimization of the control energy utilization. The optimal trade-off
solutions in terms of the Pareto set and front are obtained. The Pareto set includes multiple
design options from which the decision-maker can choose to implement. The Pareto front
demonstrate the competing nature between the design objectives. This conflicting nature can be
also seen from the closed-loop system response at selected design points. The profiles of the
inner and outer system states show that the secondary controlled is fast enough to prevent
internal upsets from spreading to the outer control.

Future studies will focus on the dynamics of the ball-screw and slider-crank mechanisms
and their impact on the closed-loop performance. The addition of adding a leading edge and the

cross section of the wing will give more depth to the tunable physical parameters.
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APPENDIX B
B.1. Electromagnetic Actuator

The EMA shown in Figure 15 (see chapter 3) is described by the following equations

— 1/Rc _ 1/Rc
Ge - L¢ 1 - TeS+1' (Bl)
Res

7, and 1/R,. are the motor’s electrical time constant and gain. Assuming the inductance is very
small (L, = 0 - 7, = 0), which is the case in many inductive loads. The motor’s dynamics can
be reduced to the following transfer function

G,=1/R.. (B.2)
The transfer function of the mechanical part of the motor (motor shaft and gearbox) is

approximated by G,,,.., such that

G _ 1/Kmy _ Km
mech — Jm

Kmv

(B.3)

S+1 B Tm5+1’

Definitions and values of some of the parameters used in the computer simulations are
tabulated in Table 2.

Table 2: Motor parameters (Habibi et al., 2008).

Symbol Definition Value
Jm Rotor inertia 0.000391, Ib in.?
K, Torque constant 2.376, in.Ib/A
Koy Viscous friction and damping 0.00116, in.lb s/rad
K, Back emf constant 0.1342, V s/rad
R, Winding resistance 2.12,Q
Tm Mechanical time constant 0.3371, s

B.2. Slider-Crank Mechanism

The kinematic equations of the slider-crank mechanism in Figure 16 (see chapter 3) read
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Knowing that sin @2 + cos ®2? = 1, cos ®? = 1 — sin ®?, cos ® = V1 — sin ®2 and setting
n= g, we notice that sin ® = % . After few steps of mathematical substitutions and

simplifications, the relationship between the rack-pinion displacement X and slider-crank angular

displacement g can be found as follows

cos® =VI—simnd? = |1-LL (B.4)
X=a [n<1 - J1- Sizf) + (1 — cos )] (B.5)
e ml1- 1-2E) y (- ] (B.6)
o= [n = (1 —=-cosp) :
X_ . / _sing? —

S=n-—n 1 T 1—cospf (B.7)
X=n-n nz_smﬁ2+1—cosﬁ (B.8)
a n2 '
X=n- n? —sinf? + 1 —cosf (B.9)

a

X W1 =—/m2 —<npB?—
-—n 1=—/n?—sinf? —cospf (B.10)
Jn?—sinp?+cosfp=1+n —% (B.11)

now, sin %2 + cosp? =1 sinB? =1 - cosf? (B.12)
\/n2—1+cos,82+cos/3=1+n—§ (B.13)
A =cosf
{B=1+n_£ (B.14)
a
VRZ—1+AZ+A =8 (B.15)
n%— 1+ A% = B2 + A2 — 2AB (B.16)

68



B?-n?+1

A=
2B
8 (1+n—§)2—n2+1
COSp =————
2 (1+n—£)
a
(1+n-52-n241
f =arccos——*———

X
2 (1 +n—a)
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APPENDIX C
C.1. Wing having three control surfaces.
According to Kumar, Laura, Raymond, and Jonathan (2012), the parameters and matrices for the

system given in Eq. (1) are as follows:

c? c?
c'=<——cxf ,6=<——czxf+cx]? veq =+\E.(1—E.),

2 3
b. =a,/n(1 —Eey, a. = ay,/m(cos (1 — E.) + 2ey,)

§5¢/5 5§%c/6 §*c/4  §°C/5
§%c/6 §7c/7 §%°cc/5 §%cc/6
s*c/4 55¢/5 53¢/3  §*¢/4
s5¢/5 s5°¢/6 §*c/4  §°¢/5

—ca,s°/10  —ca,,5%/12 0 0
C = —ca,5%/12 —ca,s’/14 0 0
¢ | -c?ea,5*/8 c2ea,,5°/10 c3Myp53 /24 c3My5*/32
—c?ea,,55/10 cea,56/12 C*Mps*/32 c>My5°/40
4EIS  6EI5? 0 0
K = | 6EI5* 12E15* 0 0
| 0 0 GJ5  GJ3?
0 0 GJS* 4G]53/3
-ca,s*/8 —ca,5°/10

—ca,s5°/10 —ca,,5%/12
c’ea,s®/6 c?ea,s5*/8
c’ea,,5*/8 c?ea,s°/10

@)
Q
Il
cococo
cococo

[ a051/6 _ac(sz - 51)/6 _ac(§3 - 53)/6_
2| e /8 —ac(s§ —s1)/8 —a.(s*—s3)/8
lcb o S% cb.(s? —s?)/4 cb.(5% —s%)/4

ch.s3/ cb.(s3 —s3)/6  cb. (5% —s3)/6]

—acs7/6  —ay(s3 —s7)/6 —ay(5° —$3)/6]

_ac51/8 _aw(sg 4)/8 _aw(s -S )/8

ces? 4 ce(ss —s?) /4 ce(52 —s2)/4

ces? /6 ce(s3 —s3)/6 ce(s3 —s3)/6 |
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Table 3: Aeroelastic system parameters for the wing having three control surfaces

Parameter Symbol | Value
Semi-span (m) s 6

Chord (m) c 1

Mass per unit area (kg/m?) m 10

Air density (kg/m3) p 1.225
2D lift curve slope Ay 21
Unsteady torsional velocity term M, 1.2
Eccentricity ratio e 0.15
Position of flexural axis Xf 0.4c
Flexural rigidity EI 400 x 103
Torsional rigidity GJ 200 x 103

For the aircraft’s wing with four control surfaces described by Eq. (29), F. , F4, and the system

parameters are given by:

—a.s3/6
—a.s7/8
cb.s%/4
cb.s3/6

F. = pV?c

—a.s3/6
—a.s;/8
ces? /4
ces3 /6

F, =pVc

—a.(s; —s1)/6
—a.(s; —s1)/8
Cbc(s% - S%)/‘l'
Cbc(sg - Si)/6

—ay(s3 —s7)/6
—ay, (s —s7)/8
ce(s3 —s2)/4
ce(s3 —s3)/6

—a.(s3 —s3)/6
—a.(s3 —s3)/8
Cbc(Sé - S%)/‘l‘
Cbc(sg - S%)/6

—ay(s3 —s3)/6
—a,,(s3 —53)/8
ce(s3 —s2)/4
ce(s3 —s3)/6
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—a.(5* - 53)/8
cb (5% — s3)/4
cb (53 —s3)/6

_avw(s_3 - Sg)/6
—aw(s_4 _S§)/8
ce(5% —s2)/4
ce(s® —s3)/6



Table 4: Aeroelastic system parameters for the wing having four control surfaces

Parameter Symbol | Value
Semi-span (m) S 10
Chord (m) c 1
Mass per unit area (kg/m?) m 10

Air density (kg/m3) p 1.225
2D lift curve slope Ay 21
Unsteady torsional velocity term M, 1.2
Eccentricity ratio e 0.25
Position of flexural axis Xf 0.5¢
Flexural rigidity EI 4 x 10°
Torsional rigidity GJ 2 x10°
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