

Marshall University Marshall Digital Scholar

Physical Therapy Faculty Research

Physical Therapy

1-2020

Improvement in overground walking after treadmill-based gait training in a child with agenesis of the corpus callosum

Gena Henderson

Matthew Beerse

Huaqing Liang

Diego Ferreira

Jianhua Wu

Follow this and additional works at: https://mds.marshall.edu/physical_therapy_faculty

Part of the Physical Therapy Commons

60

Physical Therapy

2		
4	1	Improvement in overground walking of a child with agenesis of the corpus callosum after
5	2	treadmill-based gait training
6 7	-	the cardinal based gate thanning
8	3	
9		
10 11	4	Abstract
12	5	Background and Purpose: Agenesis of the corpus callosum (ACC) is a rare congenital brain
13	5	Dackground and Turpose. Agenesis of the corpus canosum (ACC) is a face congenitar oran
14	6	defect that produces a wide variety of cognitive and motor impairments. Literature is scarce
16		
17 18	7	regarding this population's response to physical rehabilitation. Treadmill-based gait training
19	8	(TT) has been shown to improve walking ability in some pediatric populations, but has not been
20	0	(11) has been shown to improve warking ability in some pediatric populations, but has not been
21 22	9	investigated in children with ACC.
23		
24 25	10	<u>Case Description</u> : Our subject was a 13-year-old female with ACC and cortical visual
25 26	11	impairment who ambulated independently using a reverse walker for household and short
27	11	impairment who ambulated independently using a reverse warker for nousehold and short
28 29	12	community distances. We implemented a home-based TT intervention (two phases of 3-
30		
31 22	13	month training over six months) and conducted a lab-based gait analysis at four time points:
32 33	14	baseline after each of two training phases and 3 months after cessation of training. The
34	17	busenne, after each of two training phases, and 5 months after cessation of training. The
35 36	15	intervention consisted of weekly bouts of TT. Phase 1 incorporated 15-minute forward,
37		
38	16	backward, and incline walking; Phase 2 continued this protocol and added another 10-minute
39 40	17	short-burst interval training. Data collected at each lab visit included spatiotemporal parameters
41	17	short ouist inter fur duming. Dua concerce at each has visit included spartotemporal parameters
42 43	18	and kinematics (joint angles) during overground and treadmill walking.
44	10	
45	19	Outcomes: After both phases of training, our subject increased step length, decreased step width
46 47	20	and foot progression angle, and decreased variability of most spatiotemporal parameters
48	20	and root progression angre, and accreased variability of most spanotemporal parameters.
49 50	21	Further, after Phase 2 our subject increased peak extension at the hip, knee and ankle, decreased
50 51		
52	22	crouch gait, and improved minimum foot clearance during overground walking. Most gait
53 54	23	improvements were retained for three months after cessation of the intervention.
55	20	mproventento verte retained for three months area cossidion of the meet cention.
56		
57 58		
59		

Discussion: This report demonstrates that TT may be a safe and effective treatment

intervention dosage on gait improvements and generalization in individuals with ACC.

to per perien only

PTJ Manuscript in Review

paradigm for children with ACC. Future research should investigate the effect of

2	
3 4	24
5 6	25
7 8	26
9 10 11	27
11 12 13	28
13 14 15	29
16 17	30
18 19	31
20 21	32
22 23	52
24 25 26	22
20 27 28	34
29 30	35
31 32	36
33 34	37
35 36	38
37 38 20	39
39 40 41	40
42 43	41
44 45	42
46 47	43
48 49	44
50 51 52	45
52 53 54	46
55 56	40
57	
58 59	
60	

Physical Therapy

2
3
4
5
6
7
8
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
21
22
23
24
25
25
26
27
28
20
29
30
31
32
22
22
34
35
36
27
57
38
39
40
41
-TI 40
42
43
44
45
16
40
47
48
<u>1</u> 0
50
50
51
52
53
54
55
56
57
57
58

60

47 Introduction

48 Agenesis of the corpus callosum (ACC) is a congenital brain defect; its exact incidence is 49 not well documented, but the highest estimates place it as occurring in seven of every 1000 50 births.¹ A wide variety of presentations, ranging from normal IQ and motor function to 51 significant cognitive and motor impairments can be seen in ACC.²⁻⁴ The incidence of specific presentations is unclear in the literature. A survey by Moes, Schilmoeller & Schilmoeller ⁵ 52 53 reported that developmental delay was present in 66-79% of children with ACC and noted 54 significantly delayed attainment of most gross motor milestones when compared to a typically developing sibling group. In contrast, a meta-analysis by D'Antonio, et al.² reported gross motor 55 56 delays in just 4.4% of children with isolated complete ACC and cognitive delays in 15.2% and 57 17.3% of children with isolated partial and complete ACC, respectively.

58 Although the presentation of ACC varies significantly, it has been reported to affect 59 individuals at all levels of the International Classification of Functioning, Disability and Health 60 framework⁶, including Body Structures and Functions, Activities, and Participation. Some of the 61 most common sensorimotor impairments reported in individuals with ACC include low muscle 62 tone, decreased cognitive function, difficulties in learning, and poor sensory processing, balance 63 and bilateral coordination.^{2,4,5,7-9} Delayed gross motor skills have been reported in children with 64 low muscle tone¹⁰ and in children with decreased cognition¹¹, suggesting that children with 65 ACC who demonstrate hypotonia or cognitive delays may also be at risk for motor delays. Interestingly, Meyer, Roricht & Niehaus³ reported on six individuals who were incidentally 66 67 discovered to have callosal agenesis without any symptoms other than an inconsistent difficulty 68 with achieving heel-toe gait. This suggests that abnormalities in gait may be present in otherwise

69 unaffected individuals with ACC. However, the specific characteristics of gait in children with70 ACC have not been examined in the literature.

Additionally, despite evidence of the potential for motor delays in children with ACC^{2,5,9}, there is a lack of literature describing this population's response to rehabilitation. Chiappedi & Bejor¹ recommend that rehabilitation, including physical therapy (PT), begin early in children with ACC to minimize secondary complications and take advantage of the plasticity of the young child's nervous system. Akbal ¹² described a case in which a 2-year-old child with ACC responded well to conventional PT intervention, gaining the ability to sit, stand, and walk with an assistive device over the course of five years of treatment. Pacheco, Queiroz, Niza, da Costa & Ries ¹³ also reported improved postural control and transfers in a 2-year-old child with ACC following PT intervention that focused on functional training. Examination of the efficacy of specific training protocols, as well as the response of older children to therapy, is lacking. Treadmill training (TT) has shown its efficacy in accelerating the onset of walking and improving the quality of gait pattern in infants with Down Syndrome¹⁴⁻¹⁷ although the literature supporting its efficacy in other populations is inconclusive.^{15,18} However, improved walking speed following some TT protocols has been observed in children with cerebral palsy (CP)¹⁹⁻²¹ and in ambulatory young children with developmental delay¹⁸. In their systematic review, Dewar, Love & Johnston²⁰ noted that ambulatory children with CP who participated in TT that progressively increased belt speed demonstrated the greatest increase in walking speed. Backward walking on a treadmill has also been reported to improve postural control²², step length, walking speed, and postural symmetry²³ in children with hemiplegic CP. Incline walking on a treadmill has been found to increase the activity of the hip, knee, and ankle extensors in healthy young adults.²⁴ Further, Bjornson, Moreau & Bodkin ²⁵ found that a TT protocol

Page 5 of 59

1

Physical Therapy

2	
3	
4	
5	
6	
7	
, 0	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
20	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
72 //2	
43	
44 1	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
20	
5/	
58	
59	
60	

92 utilizing short-burst interval training (SBIT) globally improved walking performance in children 93 with CP, increasing overground walking speed, Timed Up-and-Go performance, and amount of 94 time spent engaging in moderate-to-high intensity walking during the day. As reduced capacity for rapid force generation is strongly correlated with decreased functional walking ability²⁶ and 95 96 slower walking velocities²⁷ in individuals with CP, SBIT may potentially present an effective 97 approach to augmenting training effects in other populations. However, to our knowledge, a TT 98 paradigm including these components has not been investigated in children with ACC. 99 The purpose of this study, therefore, is to investigate the effect of a novel treadmill 100 intervention paradigm on the gait parameters of a child with ACC. This intervention was 101 designed with two phases, the first of which incorporated **15 minutes of** forward, backward, and 102 incline walking (Phase 1), and the second of which maintained the protocol of Phase 1 and added 103 another 10 minutes of SBIT (Phase 2). We hypothesized that our subject would improve (a) 104 spatiotemporal gait parameters, such as increasing walking speed and step length, and (b) joint 105 kinematics, such as increasing peak joint extension angles, following Phase 1 of TT, that our

subject would demonstrate greater improvements in these same parameters following Phase 2,and that the improvements would persist three months following cessation of the TT protocol.

39 40 108

109 **Patient Information**

110 Our subject was a 13-year-old female with ACC and cortical visual impairment **that** 111 **limited her vision both at a distance and in her lower visual field**. This study was approved 112 by the institutional review board at the hosting university. A **parent consent** form was signed by 113 the parent and assent was obtained from the subject.

115 Clinical Findings

At baseline, our subject demonstrated hypotonia throughout her trunk and extremities. She also demonstrated weakness about her trunk and lower extremities, most notably her abdominals, hip extensors, and ankle plantarflexors, as evidenced by a crouched stance and excessive anterior pelvic tilt during both standing and walking. She ambulated with modified independence using a reverse walker for household and short community distances and was able to transition independently in and out of her walker from both short-sitting on a chair and sitting on the floor. Her height and body mass increased from 116.5 to 122cm and from 26.3 to 27.4 kg, respectively, between visit 1 (before intervention) and visit 4 (three months after intervention). **Therapeutic Intervention** The subject received an intervention that consisted of once-weekly bouts of TT for two phases of twelve weeks each. All TT sessions were conducted by the same licensed physical therapist in the subject's home on a Life Fitness T3i home fitness treadmill (Rosemont, IL) with a 137cm x 51cm belt. Phase 1 The protocol consisted of ten minutes forward incline walking followed by five minutes backward walking (Table 1); no rest was provided between forward and backward walking. This phase of the training protocol was designed to increase walking speed by combining progressive, incremental increases in belt speed with incline and backward walking to increase demand on hip, knee, and ankle extensors.^{24,28}

Page 7 of 59

Physical Therapy

The subject wore shoes and bilateral supramalleolar orthoses during the training. During forward walking, the subject held an anterior bar on the treadmill independently. During backward walking, the subject was given bilateral hand-held assist by the therapist. For forward walking, treadmill speed was initially set at 0.22 m/s, generally considered the minimum speed for household ambulation.²⁹ Speed was increased as quickly as possible, so long as the subject visually appeared to achieve near-full knee extension in terminal swing and maintain an upright trunk for >75% of steps (Table 1). Speed was progressively increased up to 1.34 m/s, the typical walking speed for community ambulators.²⁹ After a speed of 1.34 m/s was reached, the grade was increased by the increment of 0.5% and the speed was lowered when necessary. For backward walking a similar pattern was followed, although treadmill speed was only increased up to 0.36 m/s due to the subject's difficulty coordinating backward stepping and intolerance to higher speeds. Phase 2 The protocol consisted of the protocol at phase 1 immediately followed by ten minutes of SBIT consisting of alternating bouts of 30-second slow walking and 30-second fast walking (Table 1). This resulted in a total training time of 25 minutes for each session during Phase 2. Treadmill speed was adjusted following the same guidelines set forth in Phase 1. For the SBIT, the "slow" speed was set to 75% and the "fast" speed to 150% of the current forward walking

⁴⁶ 17 156

Timeline of gait evaluation

speed.

Gait data were collected in our lab at four time-points: before the intervention (visit 1), within one week of completing Phase 1 (visit 2) and Phase 2 (visit 3) of the intervention, and three months after cessation of the intervention (visit 4). Gait data were collected using an eight-

camera Vicon motion capture system (Vicon, Denver, CO) with a Plug-In Gait Lower Body marker set and a sampling rate of 100 Hz. Reflective markers were placed bilaterally on the anterior superior iliac spine, posterior superior iliac spine, lateral thigh, lateral knee, lateral tibia, lateral ankle, heel, and toe. Anthropometric measures including height, weight, and leg length were collected. The subject walked barefoot overground at a self-selected speed for five good trials in which the subject walked through the 10m camera field without stopping with a reverse walker, and on a treadmill at various speeds while holding onto an anterior bar for two minutes. Three treadmill speeds were used: her overground walking speed from the first visit, twice that speed, and three times that speed (which was approximately the top speed she achieved during TT); these speeds ranged from 0.4 to 1.2 m/s. Gait data were processed using Vicon Nexus 2.3 (Vicon, Denver, CO). Gait events (heel-strike and toe-off) were manually labeled for overground trials and were **identified** using an anterior/posterior (AP) velocity change of each heel marker for treadmill trials; a velocity change from positive to negative indicated a heel-strike event and a change from negative to positive indicated a toe-off event.^{30,31} Spatiotemporal parameters and joint kinematics were calculated for both overground and treadmill walking using custom MATLAB (Mathworks, Natick, MA) programs. Step length was calculated as the AP difference between the ipsilateral and contralateral heel markers at heel strike. Step width was calculated as the medial/lateral (ML) difference between the heel markers at heel strike. Foot progression angle (FPA) was calculated as the angle between the toe marker and the heel marker in reference to the line of forward progression. Positive FPA values represent out-toeing, while negative FPA values represent in-toeing.

183 Temporal variables included cycle, stance, swing, and double support times of gait cycle. Cycle

Page 9 of 59

Physical Therapy

I	
2	
3	
4	
5	
6	
0 7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
25	
55	
36	
37	
38	
39	
40	
-7U // 1	
41	
42	
43	
44	
45	
46	
17	
4/	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
52	
20	
~	

60

184 time was defined as the elapsed time between two consecutive ipsilateral heel strikes. Stance 185 time was defined as the time between each ipsilateral heel strike and subsequent toe off, while 186 swing time was defined as the time between each ipsilateral toe off and subsequent heel strike. 187 Double support time was calculated for the first double support phase of each gait cycle. 188 We determined peak joint extension angles at the hip, knee, and ankle. Hip joint angles 189 were calculated as the angle between the vector formed by the knee and thigh markers and a line 190 perpendicular to the vector formed by the ipsilateral ASIS and PSIS, projected onto the sagittal 191 plane. A positive angle represents hip flexion and a negative angle represents hip extension. 192 Knee joint angles were calculated as the angle between the vector formed by the knee and thigh 193 markers and the vector formed by the knee and tibia markers; angles were subtracted from 180° 194 to give the anatomical angle. Ankle joint angles were calculated as the angle between the vector 195 formed by the knee and ankle markers and the vector formed by the heel and toe markers. Angles 196 were subtracted from 90°; positive values represented dorsiflexion and negative values 197 represented plantarflexion. Joint angles were time-normalized to 100% of a full gait cycle, and 198 peak joint extension angles were defined as the maximum angle at each joint for each gait cycle. 199 Normalized trials across each visit were then averaged together to produce mean angles for each 200 joint. As kinematic patterns of treadmill walking at each visit were found to be similar, 201 regardless of speed, we collapsed the kinematic treadmill data across all speeds prior to 202 further analysis. To investigate the variability of our variables, coefficient of variation (CV) 203 was calculated as the ratio of standard deviation to mean value for each variable. All trials within 204 each visit were combined when calculating the CV. 205 Additionally, our subject demonstrated a crouched gait pattern at baseline, an often-

206 progressive abnormality associated with increased knee flexion, decreased foot clearance in

2	
3 4	2
5 6	2
7	2
9	2
10 11	2
12 13	2
14 15	2
16 17	2
18 19	2
20 21	2
22 23	2
24 25	2
26 27	2
28 29	2
30 31	2
32 33	~
34 35	2
35 36	2
37 38	2
39 40	2
41 42	2
43 44	~
45 46	2
47 48	2
49 50	2
51 52	2
52 53	
54 55	
56 57	
58 50	
60	

207	swing phase ³² , and increased fatigue. ³³ We therefore evaluated both progression of crouch,
208	defined as the amount of knee flexion at initial contact ³⁴ , as well as minimum foot clearance
209	(MFC). To calculate MFC, the trajectory of the toe marker during swing phase of each step was
210	plotted and visually identified as either a bimodal pattern with two peaks or a unimodal pattern
211	with only one peak (Fig. 1a-b). ³⁵ The percentage of steps following a bimodal pattern was
212	calculated. MFC was calculated on all steps following a bimodal pattern and was defined as the
213	minimum vertical height of the toe marker between the two peaks of the toe marker during
214	swing phase ³⁶ .
215	
216	Outcomes
217	Treadmill intervention
218	The subject completed 10/12 recommended training sessions over each phase of
219	intervention. Missed sessions were due to subject illness or travel. The subject was able to
220	tolerate increases in treadmill parameters at most visits without report of adverse effects
221	(Table 1).
222	Overground spatiotemporal gait parameters and variability
223	The subject demonstrated improvements in some overground spatial gait
224	parameters over the course of study. Although her walking speed initially increased after
225	Phase 1, this increase was not maintained after Phase 2 and returned to baseline by visit 4
226	(Table 2); cadence followed a similar pattern (Fig 2a). Step length increased by 36.9% from
227	visit 1 to visit 4 (Fig 2c). Step width decreased at visits 2 and 3 and remained 48.3%
228	decreased from baseline at visit 4; it demonstrated substantially greater improvements

1		
2 3 4	229	following Phase 2 than following Phase 1 (Fig 2e). FPA decreased consistently across all
5 6	230	visits, demonstrating an 18.4% decrease from baseline at visit 4 (Fig 2g).
7 8 0	231	Several spatiotemporal parameters demonstrated decreased variability over the
9 10 11	232	course of the study. Variability of cadence (Fig 2b), step length (Fig 2d), FPA (Fig 2h), cycle
12 13	233	time, stance time, and swing time (Table 2) all decreased across the course of the study.
14 15	234	Step width variability was less consistent, increasing initially but returning to baseline by
16 17 18	235	visit 4 (Fig 2f).
19 20	236	Overground peak joint extension angles
21 22	237	All peak joint extension values were found when the joints were in flexed positions;
23 24 25	238	however, their values substantially decreased following Phase 2 of the intervention (Table
25 26 27	239	3). At visit 4, peak hip extension was 19.57° (21.6% increase from baseline), peak knee
28 29	240	extension was 23.93° (13.0% increase from baseline), and peak ankle plantarflexion was
30 31	241	2.49° (60.6% increase from baseline). The measured changes in our subject's joint angles
32 33	242	generally exceed the minimal detectable change for healthy adults ³⁷ , indicating that these
34 35 36	243	changes are outside the measurement error associated with motion capture.
37 38	244	Overground crouch angle
39 40	245	Crouch angle worsened between visits 1 and 2 but demonstrated a notable improvement
41 42 43	246	following Phase 2 (Table 3). Average crouch angle decreased to 23.97° at visit 3 and was
43 44 45	247	32.33° at visit 4, remaining 12.6% decreased from baseline.
46 47	248	Overground minimum foot clearance
48 49	249	The subject demonstrated improvements in MFC both during and after training. While
50 51 52	250	both bimodal (Fig 1c) and unimodal (Fig 1d) trajectories were seen at all visits, the
52 53 54	251	percentage of steps in which the toe marker followed a bimodal trajectory increased to
55 56		
57 58		
59 60		PTJ Manuscript in Review

2	
3	
4	
4	
5	
6	
7	
Ω.	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
27	
52	
33	
34	
35	
36	
27	
57	
38	
39	
40	
<u></u> Δ1	
40	
42	
43	
44	
45	
46	
47	
4/	
48	
49	
50	
51	
51	
ے ح	
53	
54	
55	
56	
57	
5/	
58	
59	
60	

1

34.9% by visit 4, a 29.3% increase from baseline (Fig. 1e). Typically developing children
demonstrate a MFC of approximately 2 cm³⁸; our subject's MFC during steps with a
bimodal trajectory increased to 1.46 cm by visit 4, a 33.9% increase from baseline (Fig 1f). *Treadmill peak joint extension angles and crouch angles*

256 Kinematic patterns were distinct between overground and treadmill walking at all visits, 257 with treadmill patterns more closely approximating typical movement (Fig. 3). At visit 4, peak 258 hip extension was 16.67° (35.1% increase from baseline), peak knee extension was 20.13° 259 (29.7% increase from baseline), and peak ankle plantarflexion was -0.84° (112.2% increase 260 from baseline). Like overground walking, peak joint extension during treadmill walking 261 demonstrated greater improvements following Phase 2 than following Phase 1 and retained 262 for three months after cessation of the intervention. Crouch angles during treadmill walking also demonstrated notable improvements; it decreased to 13.97° at visit 3 and was 263 264 21.25° at visit 4, remaining 30.0% decreased from baseline.

265

266 **Discussion**

267 Overall, TT was found to be a **safe**, well-tolerated, and effective paradigm to improve the 268 walking ability of our subject with ACC. TT is regarded as an effective rehabilitation tool not 269 only because it allows for controlled, repetitive practice of stepping, but because its parameters can be modulated to induce specific desired gait adaptations.¹⁵ For example, typically developing 270 271 children adapt to faster walking speeds by increasing step length and cadence.³⁹ Our subject with 272 ACC demonstrated similar adaptation by walking overground with increased step length and 273 peak extension angle at the hip, knee, and ankle joints following training. Additionally, the 274 width of the treadmill belt provides an environmental constraint to the medial-lateral base of

Page 13 of 59

Physical Therapy

support during walking: this pattern also appeared to generalize to overground walking as our subject decreased both her step width and FPA following training. While some of our observed changes in overground walking speed and cadence did exceed the reported minimally clinically important differences (MCID) of children with cerebral palsy⁴⁰, they lacked consistency. For this reason, we believe that the changes in these parameters represents variability rather than clinically important differences; this also suggests that published MCID values for other pediatric populations may not be valid for children with ACC. SBIT has been proposed as an effective way to increase muscle power and promote higher stride rates during community walking in children with CP.²⁵ Our subject's primary gait abnormalities at baseline were her decreased walking speed and crouched gait pattern. Weakness of the plantarflexors is strongly associated with crouch gait.⁴¹ A SBIT protocol, therefore, could address both impairments by increasing demand on the plantarflexors and facilitating increased community walking speed. Our subject's reduced crouch following Phase 2 of our intervention

backward and incline walking are known to increase the demand on hip and knee extensors and ankle plantarflexors in healthy adults^{24,28}, however no improvements in crouch or peak joint extension were noted during overground walking following Phase 1. Increases in walking speed increase demand on the plantarflexors in typically developing children.³⁹ It may be that only the SBIT component of Phase 2, which involved walking at the highest speeds, generated sufficient challenge to our subject's plantarflexors to induce strength gain. Further, we saw improvements in our subject's MFC following Phase 2 of training. At baseline she demonstrated low foot clearance, placing her at risk for trip-related falls⁴²; she also demonstrated a high percentage of steps with a unimodal toe trajectory, which has been proposed as a strategy to minimize falls in

suggests that it may have been effective at improving strength in this muscle group. Both

1 2					
3 4 5 6 7 8 9	298	other special populations. ³⁵ In addition to demonstrating increased MFC over time, she also			
	299	demonstrated an increasing percentage of steps wherein her toe trajectory followed a bimodal			
	300	pattern. This suggests that her gait pattern improved to such a degree that she was not obligated			
9 10 11	301	to use as many compensations to clear her foot during swing phase. Crouch gait frequently leads			
12 13	302	to abnormal joint kinematics in the swing phase of gait ³² , so the improvements in crouch may			
14 15	303	have enabled our subject to achieve more normalized foot clearance. Additionally, the changes ir			
 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 20 	304	variability of spatiotemporal parameters represent clinically meaningful improvements. Impaired			
	305	variability of movement can be seen in a variety of special populations and limit the efficiency of			
	306	performance. ^{31,43,44} Given her excessive variability at baseline, our subject's ability to decrease			
	307	7 the variability of several spatiotemporal parameters may represent improved movement			
	308	consistency, rhythmic timing control, and postural stability during gait.			
	309	9 Our subject produced a significantly more typical gait pattern on the treadmill than sl			
	310	did overground, suggesting that she can produce a much more normalized pattern than she			
	311	utilizes during daily walking activities. The moving belt of the treadmill is known to provide a			
	312	stimulus that encourages push-off and regular stepping. ⁴⁵ A trend toward a more upright gait			
	313	pattern with increased hip and knee extension in stance was noted over time, as was increased			
39 40 41	314	movement into plantarflexion near toe-off, suggesting an improved push-off. The improvements			
42 43	315	seen during treadmill walking suggest that our training paradigm was effective at improving the			
44 45	316	subject's ability to walk at faster speeds, with a more upright posture and a more normalized gait			
46 47 48	317	pattern. Generalization of these improvements to overground walking was more limited; similar			
49 50	318	changes were seen, but to a lesser degree than were exhibited during treadmill walking. It is			
51 52	319	critical to note, however, that our subject has a cortical visual impairment that has the potential to			
53 54 55	320	alter her overground gait pattern; her lower field limitations, in particular, may predispose			
56 57					

58 59

Page 15 of 59

Physical Therapy

her to choose strategies that allow her to respond easily to unexpected obstacles. We proposed that she was capable of producing such a normalized gait pattern on a treadmill within a relatively fixed environment, but she chose a more cautious gait pattern during overground walking due to her limited visual ability to perceive the environment. Alternatively, the dosage of **our TT intervention** might be insufficient to allow for complete generalization from treadmill to overground walking. Pilot work investigating the effects of SBIT on children with CP found overground walking speed improved only in the group which trained at a high frequency of 5 times per week.²⁵ However, many aspects of our subject's spatiotemporal parameters improved from visit 1 to 4, which supports, to a certain degree, the dosage of our training.

Given a single subject in our study, the generalizability of our findings is limited to the wide variety of presentations within individuals with ACC. Another limitation was that our subject walked overground at a higher speed at visit 2 than at other visits. While it is possible that Phase 1 of our training protocol induced this, its lack of persistence with continued training suggests that this instead represents natural variability in the subject's gait speed. Several gait parameters demonstrated apparent declines from baseline at this visit; notably, crouch increased, peak joint extension decreased, and MFC decreased with an increased percentage of atypical toe trajectories in swing phase. Rather than representing adverse effects of our training protocol, we believe that these are simply compensations observed during fast walking. This is also supported by a lack of these compensations during treadmill walking at visit 2, when speed was controlled and comparable to other visits. This alteration in preferred overground walking pace at visit 2 represents a confounding factor when comparing the relative effectiveness of the two phases of our protocol. Finally, the discrepancy in training time between the two phases also

1 2		
2 3 4	344	represents a confounding factor when comparing their relative effectiveness. Although we
5 6	345	believe that the SBIT component of Phase 2 represents a novel task for our subject, we
7 8 9	346	cannot be certain that its inclusion did not simply increase the dosage of task-specific
9 10 11	347	walking practice on the treadmill from 15 to 25 minutes, and that it was the dosage
12 13	348	increase rather than the specifics of the SBIT that caused the increased improvements seen
14 15 16	349	following Phase 2.
16 17 18	350	Overall, this study demonstrates that TT can be a safe and effective treatment paradigm
19 20	351	to use for improving the gait patterns of children with ACC. Future research is needed to
21 22	352	determine if these findings can be reproduced and generalized in other individuals with ACC,
23 24 25	353	specifically those of different ages and who present with different motor impairments.
26 27 28 29	354	Additionally, more TT protocols, particularly with different SBIT designs, should be investigated
	355	in this population to determine if increased generalization to overground walking can be seen
30 31 32	356	with increased dosage for individuals with ACC.
33 34		
35 36 27		
37 38 39		
40 41		
42 43		
44 45 46		
47 48		
49 50		
51 52		
55 55		
56 57		
58 59		DTI Manuscript in Dovinu
60		P I J Manuscript in Review

Physical Therapy

2				
3 4	357	Refere	References	
5 6	358	1.	Chiappedi M, Bejor M. Corpus callosum agenesis and rehabilitative treatment. Ital J	
7 8 0	359		Pediatr. 2010;36:64.	
9 10 11	360	2.	D'Antonio F, Pagani G, Familiari A, et al. Outcomes Associated With Isolated Agenesis	
12 13	361		of the Corpus Callosum: A Meta-analysis. Pediatrics. 2016;138(3).	
14 15	362	3.	Meyer BU, Roricht S, Niehaus L. Morphology of acallosal brains as assessed by MRI in	
16 17 18	363		six patients leading a normal daily life. J Neurol. 1998;245(2):106-110.	
10 19 20	364	4.	Siffredi V, Anderson V, Leventer RJ, Spencer-Smith MM. Neuropsychological profile of	
21 22	365		agenesis of the corpus callosum: a systematic review. Dev Neuropsychol. 2013;38(1):36-	
23 24 25	366		57.	
25 26 27	367	5.	Moes P, Schilmoeller K, Schilmoeller G. Physical, motor, sensory and developmental	
28 29	368		features associated with agenesis of the corpus callosum. Child Care Health Dev.	
30 31	369		2009;35(5):656-672.	
32 33 34	370	6.	Kovac ML, Simeonsson RJ. Agenesis of the corpus callosum: classifying functional	
35 36	371		manifestations with the ICF-CY. Disabil Rehabil. 2014;36(13):1120-1127.	
37 38	372	7.	Bigler ED, Rosenstein LD, Roman M, Nussbaum NL. The clinical significance of	
39 40 41	373		congenital agenesis of the corpus callosum. Arch Clin Neuropsychol. 1988;3(2):189-200.	
42 43	374	8.	Mueller KL, Marion SD, Paul LK, Brown WS. Bimanual motor coordination in agenesis	
44 45	375		of the corpus callosum. Behav Neurosci. 2009;123(5):1000-1011.	
46 47 48	376	9.	Sauerwein HC, Lassonde M. Cognitive and sensori-motor functioning in the absence of	
40 49 50	377		the corpus callosum: neuropsychological studies in callosal agenesis and callosotomized	
51 52 53 54 55	378		patients. Behav Brain Res. 1994;64(1-2):229-240.	
57 58 59 60			PTJ Manuscript in Review	

3 4	379	10.	Strubhar AJ, Meranda K, Morgan A. Outcomes of infants with idiopathic hypotonia.
5 6	380		Pediatr Phys Ther. 2007;19(3):227-235.
7 8	381	11.	Smits-Engelsman B, Hill EL. The relationship between motor coordination and
9 10 11	382		intelligence across the IQ range. Pediatrics. 2012;130(4):e950-956.
12 13	383	12.	Akbal A. Long Term Outcomes of Physical Therapy A Patients With Agenesis of The
14 15	384		Corpus Callosum. Ortadogu Medical Journal. 2013;5(3):85-87.
16 17 18	385	13.	Pacheco SC, Queiroz AP, Niza NT, da Costa LM, Ries LG. Pediatric neurofunctional
19 20	386		intervention in agenesis of the corpus callosum: a case report. Rev Paul Pediatr.
21 22	387		2014;32(3):252-256.
23 24 25	388	14.	Angulo-Barroso RM, Wu J, Ulrich DA. Long-term effect of different treadmill
25 26 27	389		interventions on gait development in new walkers with Down syndrome. Gait Posture.
28 29	390		2008;27(2):231-238.
30 31 32	391	15.	Damiano DL, DeJong SL. A systematic review of the effectiveness of treadmill training
32 33 34	392		and body weight support in pediatric rehabilitation. Journal of neurologic physical
35 36	393		therapy : JNPT. 2009;33(1):27-44.
37 38	394	16.	Ulrich DA, Ulrich BD, Angulo-Kinzler RM, Yun J. Treadmill training of infants with
39 40 41	395		Down syndrome: evidence-based developmental outcomes. Pediatrics. 2001;108(5):E84-
42 43	396		E84.
44 45	397	17.	Wu J, Looper J, Ulrich BD, Ulrich DA, Angulo-Barroso RM. Exploring effects of
46 47 48	398		different treadmill interventions on walking onset and gait patterns in infants with Down
49 50	399		syndrome. Developmental Medicine & Child Neurology. 2007;49(11):839-945.
51 52			
53 54			
55 56 57			
58 59			
60			PTJ Manuscript in Review

1 2			
3 4	400	18.	Valentin-Gudiol M, Mattern-Baxter K, Girabent-Farres M, Bagur-Calafat C, Hadders-
5 6	401		Algra M, Angulo-Barroso RM. Treadmill interventions in children under six years of age
7 8	402		at risk of neuromotor delay. Cochrane Database Syst Rev. 2017;7:Cd009242.
9 10 11	403	19.	Chrysagis N, Skordilis EK, Stavrou N, Grammatopoulou E, Koutsouki D. The effect of
12 13	404		treadmill training on gross motor function and walking speed in ambulatory adolescents
14 15	405		with cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil.
16 17 18	406		2012;91(9):747-760.
19 20	407	20.	Dewar R, Love S, Johnston LM. Exercise interventions improve postural control in
21 22	408		children with cerebral palsy: a systematic review. Dev Med Child Neurol.
23 24 25	409		2015;57(6):504-520.
23 26 27	410	21.	Moreau NG, Bodkin AW, Bjornson K, Hobbs A, Soileau M, Lahasky K. Effectiveness of
28 29	411		Rehabilitation Interventions to Improve Gait Speed in Children With Cerebral Palsy:
30 31	412		Systematic Review and Meta-analysis. Physical therapy. 2016;96(12):1938-1954.
32 33 34	413	22.	El-Basatiny HM, Abdel-Aziem AA. Effect of backward walking training on postural
35 36	414		balance in children with hemiparetic cerebral palsy: a randomized controlled study. Clin
37 38	415		<i>Rehabil.</i> 2015;29(5):457-467.
39 40 41	416	23.	Kim SG, Ryu YU, Je HD, Jeong JH, Kim HD. Backward walking treadmill therapy can
42 43	417		improve walking ability in children with spastic cerebral palsy: a pilot study. Int J
44 45	418		Rehabil Res. 2013;36(3):246-252.
46 47 48	419	24.	Franz JR, Kram R. The effects of grade and speed on leg muscle activations during
49 50	420		walking. Gait Posture. 2012;35(1):143-147.
51 52	421	25.	Bjornson KF, Moreau N, Bodkin AW. Short-burst interval treadmill training walking
53 54	422		capacity and performance in cerebral palsy: a pilot study. Dev Neurorehabil. 2018:1-8.
55 56 57			
58 59			
60			PIJ Manuscript in Review

2 3 4	423	26.	Moreau NG, Falvo MJ, Damiano DL. Rapid force generation is impaired in cerebral
4 5 6	424		palsy and is related to decreased muscle size and functional mobility. Gait Posture.
7 8	425		2012;35(1):154-158.
9 10 11	426	27.	Geertsen SS, Kirk H, Lorentzen J, Jorsal M, Johansson CB, Nielsen JB. Impaired gait
12 13	427		function in adults with cerebral palsy is associated with reduced rapid force generation
14 15	428		and increased passive stiffness. Clin Neurophysiol. 2015;126(12):2320-2329.
16 17 18 19 20	429	28.	Cipriani DJ, Armstrong CW, Gaul S. Backward walking at three levels of treadmill
	430		inclination: an electromyographic and kinematic analysis. The Journal of orthopaedic
21 22	431		and sports physical therapy. 1995;22(3):95-102.
23 24 25	432	29.	Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. Journal of
23 26 27 28 29 30 31 32 33 34 35 36	433		aging and physical activity. 2015;23(2):314-322.
	434	30.	Zeni JA, Richards JG, Higginson JS. Two simple methods for determining gait events
	435		during treadmill and overground walking using kinematic data. Gait & posture.
	436		2008;27(4):710-714.
	437	31.	Beerse M, Henderson G, Liang H, Ajisafe T, Wu J. Variability of spatiotemporal gait
37 38	438		parameters in children with and without Down syndrome during treadmill walking. Gait
39 40 41	439		& Posture. 2019;68:207-212.
42 43	440	32.	van der Krogt MM, Bregman DJ, Wisse M, Doorenbosch CA, Harlaar J, Collins SH.
44 45	441		How crouch gait can dynamically induce stiff-knee gait. Ann Biomed Eng.
46 47 48	442		2010;38(4):1593-1606.
49 50	443	33.	Lundh S, Nasic S, Riad J. Fatigue, quality of life and walking ability in adults with
51 52	444		cerebral palsy. Gait Posture. 2018;61:1-6.
53 54			
55 56 57			
58 59			
60			PTJ Manuscript in Review

Page 21 of 59

1

Physical Therapy

445	34	Rozumalski A Schwartz MH Crouch gait natterns defined using k-means cluster
	Эч.	
446		analysis are related to underlying clinical pathology. <i>Gait Posture</i> . 2009;30(2):155-160.
447	35.	Alcock L, Galna B, Lord S, Rochester L. Characterisation of foot clearance during gait in
448		people with early Parkinsons disease: Deficits associated with a dual task. Journal of
449		biomechanics. 2016;49(13):2763-2769.
450	36.	Winter DA. Foot trajectory in human gait: a precise and multifactorial motor control task.
451		<i>Physical therapy.</i> 1992;72(1):45-53; discussion 54-46.
452	37.	Wilken JM, Rodriguez KM, Brawner M, Darter BJ. Reliability and Minimal Detectible
453		Change values for gait kinematics and kinetics in healthy adults. Gait Posture.
454		2012;35(2):301-307.
455	38.	Liang H, Ke X, Wu J. Transitioning from the level surface to stairs in children with and
456		without Down syndrome: Motor strategy and anticipatory locomotor adjustments. Gait
457		Posture. 2018;66:260-266.
458	39.	Schwartz MH, Rozumalski A, Trost JP. The effect of walking speed on the gait of
459		typically developing children. Journal of biomechanics. 2008;41(8):1639-1650.
460	40.	Oeffinger D, Bagley A, Rogers S, et al. Outcome tools used for ambulatory children with
461		cerebral palsy: responsiveness and minimum clinically important differences.
462		Developmental medicine and child neurology. 2008;50(12):918-925.
463	41.	Steele KM, van der Krogt MM, Schwartz MH, Delp SL. How much muscle strength is
464		required to walk in a crouch gait? Journal of biomechanics. 2012;45(15):2564-2569.
465	42.	Begg R, Best R, Dell'Oro L, Taylor S. Minimum foot clearance during walking:
466		strategies for the minimisation of trip-related falls. <i>Gait Posture</i> . 2007;25(2):191-198.
		PTJ Manuscript in Review
	 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 	 445 34. 446 447 35. 448 449 450 36. 451 452 37. 453 38. 456 457 458 39. 459 460 40. 461 462 463 41. 464 465 42.

1 2			
2 3 4	467	43.	Fetters L. Perspective on Variability in the Development of Human Action. Physical
5 6	468		<i>Therapy</i> . 2010;90(12):1860-1867.
7 8 0	469	44.	Smith BA, Stergiou N, Ulrich BD. Patterns of gait variability across the lifespan in
9 10 11	470		persons with and without down syndrome. Journal of neurologic physical therapy :
12 13	471		JNPT. 2011;35(4):170-177.
14 15 16	472	45.	Thelen E. Treadmill-elicited stepping in seven-month-old infants. Child development.
16 17 18	473		1986;57(6):1498-1506.
19 20	474		
21 22 22	475		
23 24 25	476		
26 27	477		
28 29	478		
30 31 32	479		
33 34	480		
35 36 27	481		
37 38 39	482		
40 41	483		
42 43	484		
44 45 46	485		
47 48	486		
49 50	487		
51 52 53	488		
54 55	489		
56 57			
58 59			DTI Manuscript in Dovinu
60			P I J Manuscript in Keview

Page 23 of 59

Physical Therapy

	Session	Forward speed	Forward incline	Backward speed	Backward incline	Interval training speed
		(m/s)	(% grade)	(m/s)	(% grade)	(slow/fast, in m/s)
Phase 1	1-3	1.03	3.0	0.27	0.5	n/a
	4-5	1.07	3.0	0.27	0.5	n/a
	6	1.07	3.0	0.31	0.5	n/a
	7	1.12	3.0	0.31	0.5	n/a
	8-9	0.94	3.5	0.31	0.5	n/a
	10	0.98	3.5	0.31	0.5	n/a
Phase 2	1	0.98	3.5	0.31	0.5	0.72/1.43
	2-3	1.03	3.5	0.31	0.5	0.72/1.43
	4	1.07	3.5	0.31	0.5	0.72/1.43
	5	1.07	3.5	0.36	0.5	0.76/1.52
	6	1.07	3.5	0.36	0.5	0.72/1.43
	7	1.07	3.5	0.36	0.5	0.76/1.52
	8	1.07	3.5	0.36	1.0	0.76/1.52
	9	1.12	3.5	0.36	1.0	0.76/1.52
	10	1.12	3.5	0.27	1.5	0.76/1.52

 At Phase 2, the slow and fast interval training speeds were 75% and 150% of the forward walking speed, respectively. Total training time for each session in Phase 1 was 15 minutes (10 minutes forward, and 5 minutes backward). Total training time for each session in Phase 2 was 25 minutes (10 minutes forward, 5 minutes backward, and 10 minutes intervals). n/a: not applicable.

3 4	496
5	
7	
8	
9 10	
11	
12 12	
14	
15	
16 17	
18	
19 20	
20	
22	
23 24	497
25	498
26 27	499
28	501
29	502
30 31	503
32	504
33 34	505
35	507
36 37	508
38	509
39 40	511
40 41	
42 42	
43 44	
45	
46 47	

6 Table 2: Mean (SD) and coefficient of variation (CV) of temporal gait variables during overground wa	alking
--	--------

	Speed	Cycle time	Stance time	Swing time	Double support	
	(m/s)	(sec)	(sec)	(sec)	time (sec)	
Visit 1	0.30 (0.06)	1.17 (0.25)	0.82 (0.19)	0.36 (0.08)	0.23 (0.09)	
Visit 2	0.39 (0.17)	1.15 (0.12)	0.82 (0.10)	0.33 (0.07)	0.25 (0.07)	
Visit 3	0.23 (0.06)	1.47 (0.10)	1.00 (0.11)	0.46 (0.06)	0.27 (0.06)	
Visit 4	0.28 (0.13)	1.24 (0.07)	0.84 (0.08)	0.40 (0.04)	0.22 (0.07)	
Visit 1	20.0	21.0	23.5	23.5	36.6	
Visit 2	42.1	10.6	12.0	20.3	29.5	
Visit 3	23.7	6.9	10.5	13.1	22.7	
Visit 4	44.2	5.7	9.5	10.7	32.0	
	Visit 1 Visit 2 Visit 3 Visit 4 Visit 1 Visit 2 Visit 3 Visit 4	Speed (m/s) Visit 1 0.30 (0.06) Visit 2 0.39 (0.17) Visit 3 0.23 (0.06) Visit 4 0.28 (0.13) Visit 1 20.0 Visit 2 42.1 Visit 3 23.7 Visit 4 44.2	Speed Cycle time (m/s) (sec) Visit 1 0.30 (0.06) 1.17 (0.25) Visit 2 0.39 (0.17) 1.15 (0.12) Visit 3 0.23 (0.06) 1.47 (0.10) Visit 4 0.28 (0.13) 1.24 (0.07) Visit 1 20.0 21.0 Visit 2 42.1 10.6 Visit 3 23.7 6.9 Visit 4 44.2 5.7	SpeedCycle timeStance time(m/s)(sec)(sec)Visit 10.30 (0.06)1.17 (0.25)0.82 (0.19)Visit 20.39 (0.17)1.15 (0.12)0.82 (0.10)Visit 30.23 (0.06)1.47 (0.10)1.00 (0.11)Visit 40.28 (0.13)1.24 (0.07)0.84 (0.08)Visit 120.021.023.5Visit 242.110.612.0Visit 323.76.910.5Visit 444.25.79.5	SpeedCycle timeStance timeSwing time(m/s)(sec)(sec)(sec)Visit 10.30 (0.06)1.17 (0.25)0.82 (0.19)0.36 (0.08)Visit 20.39 (0.17)1.15 (0.12)0.82 (0.10)0.33 (0.07)Visit 30.23 (0.06)1.47 (0.10)1.00 (0.11)0.46 (0.06)Visit 40.28 (0.13)1.24 (0.07)0.84 (0.08)0.40 (0.04)Visit 120.021.023.523.5Visit 242.110.612.020.3Visit 323.76.910.513.1Visit 444.25.79.510.7	

Note that for gait analysis, visit 1 was before the intervention, visit 2 was after phase 1 (three months) of the intervention, visit 3 was after phase 2 (another three months) of the intervention, and visit 4 was the follow-up (three months after phase 2 of the intervention).

Only

Variability is expressed as the coefficient of variation (CV).

Page 25 of 59

Physical Therapy

	Hip a	angle	Knee	angle	Ankle	angle	Crouc	h angle
	(deg	rees)	(degrees)		(degrees)		(degrees)	
	OG	ТМ	OG	ТМ	OG	ТМ	OG	TM
Visit 1	24.97	25.69	27.51	28.62	6.33	7.38	36.98	30.35
	(12.10)	(5.25)	(12.77)	(6.90)	(12.62)	(3.45)	(4.90)	(7.30)
Visit 2	26.36	25.82	34.97	29.69	11.93	5.05	43.78	31.77
	(8.52)	(6.28)	(11.80)	(4.99)	(12.96)	(4.75)	(13.55)	(4.64)
Visit 3	18.58	16.64	17.94	12.91	6.69	1.66	23.97	13.97
	(10.08)	(7.72)	(6.73)	(4.61)	(3.83)	(3.42)	(6.14)	(5.03)
Visit 4	19.57	16.67	23.93	20.13	2.49	-0.84	32.33	21.25
	(15.84)	(8.61)	(8.65)	(4.14)	(12.78)	(2.60)	(4.69)	(3.90)

Table 3: Mean (standard deviation) of neak extension angles at the hip, knee, and ankle and crouch angle during overground (OG) and

At the hip, negative values represent hip extension while positive values represent hip flexion. At the knee, negative values represent knee hyperextension while positive values represent knee flexion. At the ankle, negative values represent plantarflexion while positive values represent dorsiflexion. Crouch is defined as the amount of knee flexion present at initial contact. Note that for gait analysis, visit 1 was before the intervention, visit 2 was after phase 1 (three months) of the intervention, visit 3 was after phase 2 (another three months) of the intervention, and visit 4 was the follow-up (three months after phase 2 of the intervention).

1 2		
3 4	525	Figure captions
5 6	526	
7 8 0	527	Fig 1: Toe trajectories in swing phase and minimum foot clearance during overground walking
9 10 11	528	at visits 1-4. A representative (a) bimodal and (b) unimodal toe trajectories during swing phase,
12 13	529	averaged (c) bimodal and (d) unimodal trajectories at each visit, (e) percent of steps which
14 15	530	demonstrated bimodal trajectories at each visit, and (f) minimum foot clearance during bimodal
16 17 18	531	steps at each visit.
19 20 21 22 23 24 25	532	
	533	Fig 2: Mean (SD) and coefficient of variation (CV) of gait variables during overground walking
	534	at visits 1-4. (a) Cadence mean, (b) cadence CV, (c) step length mean, (d) step length CV, (e)
26 27	535	step width mean, (f) step width CV, (g) foot progression angle mean, and (h) foot progression
28 29	536	angle CV. Note that visit 1 was before the intervention, visit 2 was after phase 1 (three months)
30 31 32	537	of the intervention, visit 3 was after phase 2 (another three months) of the intervention, and visit
32 33 34 35 36 37 38 39 40 41	538	4 was the follow-up (three months after phase 2 of the intervention).
	539	
	540	Fig 3: Mean joint kinematics over a time-normalized gait cycle at visits 1-4 at the (a) hip, (b)
	541	knee, and (c) ankle during both overground (OG) walking, represented by a dashed line, and
42 43	542	treadmill (TM) walking, represented by a solid line. Positive joint angles represent flexion and
44 45	543	negative joint angles represent extension. Toe-off during OG walking is represented by a vertical
46 47 48	544	grey line, and toe-off during treadmill walking is represented by a vertical black line. Note that
49 50	545	visit 1 was before the intervention, visit 2 was after phase 1 (three months) of the intervention,
51 52	546	visit 3 was after phase 2 (another three months) of the intervention, and visit 4 was the follow-up
53 54	547	(three months after phase 2 of the intervention).
55 56 57		
58 59		

PTJ Manuscript in Review

PTJ Manuscript in Review