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Abstract 

Anticipatory postural adjustments (APAs) are usually generated to minimize the 

potential postural disturbance induced by predictable external perturbations. Visual 

information about a perturbation is important for the generation of APAs but whether 

people can rely on auditory information to generate APAs is unknown. The aim of this 

study was to investigate the role of an auditory cue in generating APAs when visual 

information is not available. Fifteen young adults participated in the study when they 

received external perturbations with visual information but no auditory information 

available, without neither visual nor auditory information, with both visual and auditory 

information available, and with only auditory information available. Electromyography 

(EMG) activities of eight leg and trunk muscles and displacements of the center-of-

pressure (COP) were recorded and analyzed during the anticipatory and compensatory 

(CPAs) phases. Outcome measures included the latencies and integrals of muscle 

activities, COP displacements, and indices of co-contraction and reciprocal activation of 

muscles. The results showed that after a short training, participants were able to rely 

only on the auditory cue to generate APAs comparable to that when the visual 

information was available. In addition, a training effect was found such that the 

participants demonstrated stronger APAs and less demands for CPAs through the 

training trials. The outcome provides a foundation for future studies focusing on the 

utilization of auditory cues for postural control in older adults and individuals who have 

vision deficit. 

 
Key words: auditory cue, external perturbation, balance control, anticipatory postural 
adjustments  
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1. Introduction 

While standing or walking, people frequently experience external perturbations 

(i.e. a hit or a bump) that create dynamic forces and disturb their balance. To maintain 

balance, the central nervous system (CNS) uses two strategies to regulate the activities 

of the trunk and leg muscles: anticipatory postural adjustments (APA) and 

compensatory postural adjustments (CPA). APAs are feed-forward postural reactions 

that occur before the perturbation impact and they are generated to control the position 

of the center-of-mass (COM) and hence to minimize the potential postural disturbance 

(Bouisset and Zattara 1987; Massion 1992; Aruin et al. 2001). On the other hand, CPAs 

serve as corrective measures after the actual perturbation impact to restore the position 

of the COM (Nashner and Cordo 1981; Alexandrov et al. 2005). If APAs are generated 

timely and appropriately, it could help to reduce the instability caused by the external 

perturbation and consequentially reduce the need for large CPAs after the perturbation 

impact (Santos et al. 2010a; Santos et al. 2010b). 

APAs are usually observed as the activation or inhibition of the trunk and leg 

muscles and a slight posterior shift of COP position when people see the external 

perturbation coming from the front but before the physical impact happens (Massion 

1992). However, the generation of APAs majorly relies on the availability and accuracy 

of the visual information. When the visual information becomes unavailable and the 

perturbation is unexpected (such as being hit in a crowded place in real life scenery or 

being asked to close the eyes in a lab setting), CPAs are the only mechanism used by 

the CNS to restore balance (Santos et al. 2010a; Piscitelli et al. 2017). Furthermore, it 

was shown that when the same magnitude of external perturbation was applied to a 
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body, larger EMG responses were required and larger COP peak displacement was 

observed in the CPAs phase when the eyes were closed and therefore the perturbation 

was unpredictable (Santos et al. 2010a; Santos et al. 2010b; Zhang et al. 2019). 

Additionally, when the visual information about the forthcoming perturbation was 

manipulated such that it became less accurate, the APAs appeared to be less efficient 

with a smaller magnitude and/or delayed muscle latencies (Aruin et al. 2001; Mohapatra 

et al. 2012; Mohapatra and Aruin 2013). 

To maintain balance, the CNS employs two patterns of activation of trunk and leg 

muscles: co-contraction and reciprocal activation (Mochizuki et al. 2004). Co-contraction 

of the muscles involves simultaneous activation of agonist and antagonist muscles 

which increases the joint stiffness and consequentially the level of joint stability. Co-

contraction of muscles is commonly used by older adults in response to an external 

perturbation (Lee et al. 2015) and is associated with increased energy expenditure. 

Reciprocal activation of the muscles involves activation of agonist muscle followed by 

activation of the antagonist muscle and is a more efficient strategy to maintain an 

upright posture (van der Fits et al. 1998). In previous studies involving predictable 

perturbations, a reciprocal activation of muscles was dominant in the APAs phase 

(Chen et al. 2017) and could still be observed in the CPAs phase (Santos et al. 2010a). 

Specifically, when seeing the perturbation coming from the front, participants activated 

the ventral muscles and inhibited the dorsal muscles during the APAs phase (Chen et 

al. 2017). On the other hand, when participants closed their eyes and the perturbation 

became unpredictable, no APAs were observed and a larger magnitude of co-
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contraction muscle activities were required during the CPAs phase to maintain balance 

(Santos et al. 2010a).  

People learn to generate and scale the magnitude of the muscle responses to 

the expected perturbation through previous experiences (Bastian 2006) and such 

experiences are gained majorly based on visual information. A previous study 

investigated the anticipatory forearm muscle activities under the condition that the visual 

information was excluded but an auditory cue was given when participants were 

catching a falling ball (Lacquaniti and Maioli 1987). It was reported that seated 

participants were unable to generate consistent anticipatory activities because the 

impact time was unpredictable using that novel auditory cue (Lacquaniti and Maioli 

1987). On the other hand, it was demonstrated that while seated, people were able to 

acquire and optimize the APAs of the postural forearm after 40-60 trials for a bimanual 

task, and this interlimb coordination was related to a central timing signal but not related 

to the force of the voluntary movement of the other forearm (Paulignan et al. 1989; 

Massion et al. 1999). Furthermore, when experiencing a postural perturbation while 

standing, people were able to enhance their APAs after several trials of exposure if the 

magnitude and timing of the perturbation were consistent (Aruin et al. 2015b; Arghavani 

et al. 2019). Therefore, if people were given repetitive exposures allowing to build a 

connection between the timing of an auditory cue and postural perturbations, they might 

be able to rely on this auditory signal to generate APAs. Older adults (Kanekar and 

Aruin 2014) and people with visual impairment (Alghadir et al. 2019) have diminished 

postural control and also diminished APAs in the events of postural perturbations. Using 

auditory information could be beneficial to these populations. However, to our 
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knowledge, the feasibility and effectiveness of using an auditory cue to generate APAs 

in standing after a short period of training has never been examined in any population. 

The purpose of this study was to determine the role of an auditory cue in generating 

APAs in response to an external perturbation in young adults. The hypothesis was that 

with training, young adults would be able to make connections between the auditory cue 

and the moment of the perturbation and generate APAs relying only on the auditory cue.  

 

2. Materials and Methods 

2.1 Subjects 

Fifteen healthy young adults (8M/7F) between the ages of 18 to 35 years old 

were recruited for the study. The exclusion criterion was having any injuries to the 

musculoskeletal system within the past six months. The mean (SD) of the participants’ 

age, height, and weight were 29.1 (4.8) years, 168.3 (7.6) cm, and 62.8 (12.1) kg 

respectively. The study was approved by the hosting university’s institutional review 

board and all the participants provided written informed consents before the data 

collection. 

2.2 Procedure 

The participants were instructed to stand in the middle of a force plate (AMTI, 

Watertown, MA, USA) and be prepared for an external perturbation provided by an 

aluminum pendulum attached to the ceiling (Fig.1). The pendulum was initially 

positioned at an angle of 30 degrees to the vertical at a distance of 0.6m from the body, 

and it was released by the same research assistant. An additional load equaling to 5% 

of each participant’s body weight was attached at the end of pendulum (Chen et al. 
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2017). There were two wooden boards covered with foam pads extended from the end 

of the pendulum. The settings were adjusted for each participant so that these two foam 

boards would hit the front side of both shoulders simultaneously. The participants were 

asked to stand barefoot with feet shoulder width apart. The headphones were worn by 

the participants throughout the whole experiment to block the noise caused by the 

release of the pendulum. A removable (30x30cm) screen (white foam board) was 

placed in front of the participants at eye level that could block the sighting of the 

upcoming pendulum but did not affect peripheral vision. Participants were asked to 

maintain an erect posture with their upper extremities along the body (with the palms 

towards the body). Then, after a “ready” signal, a research assistant released the 

pendulum with a 1-10 seconds delay so that the participant could not predict the timing 

of the release based on experience with previous trials. Prior to the main experiment, 

participants were provided with two to three practice trials of receiving the pendulum 

perturbation with full vision. The experiment consisted of 5 conditions implemented in 

the following order: baseline while vision was available (BL_V condition) for 5 trials, 

baseline while vision was not available (BL_NV condition) for 5 trials, Acclimation 

condition for 10 trials, training (Tr) condition for 50 trials, and one Catch trial (Fig.1). 

 

< Fig. 1 > 

 

Firstly, for the BL_V condition, participants received the pendulum perturbation 

with full visual information available. Then for the BL_NV condition, participants 

received the pendulum perturbation with the white screen blocking the vision. For the 
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Acclimation condition, participants received the pendulum impact with both full visual 

information (vision was not blocked) and an auditory cue. The timing between the 

release of the pendulum and the physical contact of the pendulum was 0.5 second for 

all the trials. The auditory cue (a beep) indicating the moment of the pendulum release 

was delivered to subjects via the headphones at a consistent timing of 0.5 second 

before the physical contact of the pendulum so that participants could use the auditory 

signal to predict the timing of the pendulum contact. A magnetic switch (Absolute 

Automation, Casco, MI, USA) was attached to the frame holding the pendulum and it 

sent the signal to initiate the beep (1 kHz, 0.25s duration) triggered by the pendulum 

release. Then, during the Tr condition, participants received the pendulum perturbations 

with their vision blocked, but they still received the same auditory cue at the time of the 

pendulum release. Finally, one Catch trial was performed when the participants heard 

the auditory cue, but the pendulum was stopped by a researcher before the impact. 

Rest was provided to the participants when needed to avoid fatigue. 

An accelerometer (PCB Piezotronics, Inc., Depew, NY) was attached to the end 

of the pendulum to identify the moment of its impact with the participants’ shoulders 

(T0). An electromyographic (EMG) system (Myopac, RUN Technologies, USA) was 

used to record the leg and trunk muscle activities bilaterally from tibialis anterior (TA), 

medial gastrocnemius (MG), rectus femoris (RF), biceps femoris (BF), gluteus medius 

(GM), external obliques (EO), rectus abdominus (RA), and erector spinae (ES). The 

skin area was cleaned with alcohol wipes. The disposable surface electrodes (Red Dot, 

3M, St. Paul, MN, USA) were attached in pairs with a center-to-center distance of 25mm 

and the placements were based on the recommendations reported in the literature (Zipp 



9 
 

1982). The ground electrode was placed on the right lateral malleolus. A customized 

LabView 8.6.1 software (National Instruments, Austin, TX) was used to collect the data 

from the switch, accelerometer, force plate, and the EMG system at a frequency of 1000 

Hz, as well as sending a beeping sound at the time of pendulum release. 

2.3 Data analysis  

 A custom-written MATLAB program (Mathworks, Natick, MA, USA) was used for 

data processing. The time of the pendulum impact (T0) was defined using the 

accelerometer data as the first time point when the acceleration exceeded 5% of its 

peak value (Aruin et al. 2015a). The force plate and the EMG signals were aligned 

according to T0.  

 The EMG signals were filtered with a fourth order high-pass Butterworth filter with 

a cut-off frequency of 30Hz (Drake and Callaghan 2006). Then the EMG signals were 

full-wave rectified and linear envelopes were created with a 20Hz low-pass Butterworth 

filter. The baseline of muscle activity was calculated using the mean value between -

500ms and -450ms (Aruin et al. 2001; Santos et al. 2010a). The muscle latency was 

defined as the first time point within a window of 50ms that the EMG amplitude was 

consistently greater (activation) or smaller (inhibition) than its baseline value ± 2SD. All 

the latency detections were checked visually by an experienced researcher for the 

accuracy. Integrals of the EMG activities (IntEMGi) were calculated during two 300ms 

windows: (1) anticipatory postural adjustments (APA), from -250ms to +49ms; and (2) 

compensatory postural adjustments (CPA), from +50ms to +350ms (Santos et al. 

2010a). Then each integral was further corrected by the integral of corresponding 

baseline activity. Furthermore, EMG integrals were normalized by the absolute 
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maximum EMG integral value across all conditions for each muscle and participant 

respectively (Lee 2019): 

NormEMG_APAi = 
(∫ 𝐸𝑀𝐺𝑖

+49

−250
− 6 ∫ 𝐸𝑀𝐺𝑖)

−450

−500
𝐼𝑛𝑡𝐸𝑀𝐺𝑖𝑚𝑎𝑥

⁄  

NormEMG_CPAi = 
(∫ 𝐸𝑀𝐺𝑖

+350

+50
− 6 ∫ 𝐸𝑀𝐺𝑖)

−450

−500
𝐼𝑛𝑡𝐸𝑀𝐺𝑖𝑚𝑎𝑥

⁄  

where i stands for each of the eight muscles tested.  

As a result, all the NormEMG integral values were within -1 to +1. The negative values 

represented the inhibition of muscle activities with respect to the background activity. In 

addition, to evaluate the co-contraction and reciprocal activation of the muscle activities, 

a whole body model was used and the C and R indices were calculated for the APA and 

CPA phases respectively using the equation below (Chen et al. 2017): 

C = ∫ 𝑁𝑜𝑟𝑚𝐸𝑀𝐺_𝑣𝑒𝑛𝑡𝑟𝑎𝑙 +  ∫ 𝑁𝑜𝑟𝑚𝐸𝑀𝐺_𝑑𝑜𝑟𝑠𝑎𝑙 , 

R = ∫ 𝑁𝑜𝑟𝑚𝐸𝑀𝐺_𝑣𝑒𝑛𝑡𝑟𝑎𝑙 −  ∫ 𝑁𝑜𝑟𝑚𝐸𝑀𝐺_𝑑𝑜𝑟𝑠𝑎𝑙  

where the ventral muscles include TA, RF, and RA, and dorsal muscles include MG, 

BF, and ES. 

 Force plate data were filtered with a fourth order low-pass Butterworth filter with a 

cut-off frequency of 40Hz (Kanekar and Aruin 2014). Then, the center-of-pressure 

(COP) time series were derived from the force plate data and its displacements in the 

anterior-posterior (AP) direction were used for further analysis. The baseline of COP-AP 

was calculated using the mean value from -500ms to -450ms and the baseline was 

subtracted from the COP-AP time series. The COP-AP displacement at T0 and its peak 

value after T0 were identified. 
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Since the pendulum hit both the participants’ shoulders, the perturbation can be 

considered symmetrical. Therefore, only the EMG parameters of the right side were 

used in the analysis. For each participant, data were then organized into 5-trial blocks 

and the average of the 5 trials was used for further analysis. Specifically, there was 1 

block for BL_V condition, 1 block for BL_NV condition, 2 blocks for Acclimation 

condition, and 10 blocks for Tr condition. There was 1 single trial for the Catch 

condition. For the Catch condition, only the outcomes during the APA phase (muscles 

latencies, integrals during APA, and COP at T0) were used for further analysis. 

 

2.4 Statistical analysis 

A series of one-way repeated measure ANOVAs were conducted on the 

dependent variables (EMG latency, normalized EMG integrals at two epochs for each 

muscle, C and R indices, COP at T0, and COP peak) for the BL_V and 2 blocks of 

Acclimation conditions. No differences were found in any of the variables and the 

Acclimation condition was excluded from further analysis. A series of one-way repeated 

measure ANOVAs were conducted on the abovementioned dependent variables to test 

the condition effect among BL_V, BL_NV, Tr_1 through Tr_10 and Catch conditions. 

Post-hoc pairwise comparisons with Bonferroni adjustments were conducted when 

necessary. Skewness and kurtosis were used to assess the normality of the data and a 

log transformation of the data was applied when necessary. Statistical significance was 

set at α=0.05. 

 

3. Results 
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3.1 EMG profiles 

 The EMG traces obtained from the two lower leg muscles (TA and MG) of a 

representative participant during different conditions are shown in Fig.2. An activation of 

the TA and inhibition of MG before T0 could be observed in BL_V condition when visual 

information was available. No APAs were observed in the BL_NV condition when 

neither visual nor auditory information was available. However, later during the Training 

trials (Tr_6 and Tr_10 in Fig.2) when the auditory cue was provided, strong anticipatory 

activity of muscles was observed.  

< Fig. 2 > 

3.2 EMG latency 

For most muscles tested, the general pattern in BL_V condition was that the 

ventral muscles (TA, RF, and RA) displayed increased activation, while the dorsal 

muscles (MG, BF, and ES) displayed an inhibition of muscle activities prior to the T0. In 

the BL_NV condition, the latencies of muscles were detected after T0, or slightly before 

T0. Throughout the Training conditions, the latencies of the muscles gradually became 

seen earlier and reached the same level as the BL_V (Table 1). Statistical analysis 

showed that there were significant differences among conditions for the latencies of TA 

(F(12,167)=6.38, p<0.001), MG (F(12,150)=13.61, p<0.001), RF (F(12,168)=9.39, 

p<0.001), EO (F(12,166)=6.94, p<0.001), and RA (F(12,161)=4.19, p<0.001). Post-hoc 

analysis revealed that latencies in BL_NV condition were later than in all the other 

conditions in all the above-mentioned muscles (all p<0.05). The latencies in BL_V were 

seen earlier than in Tr_1 in TA and MG, and earlier than in Tr_1 through Tr_4 in RF (all 

p<0.05). Additionally, the latencies during Tr_1 were significantly later than duringTr_6 
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through Tr_10 and Catch in TA and MG, later than in Tr_5 through Tr_10 and Catch in 

RF, and later than in Tr_10 and Catch conditions in EO and RA. The latencies during 

Tr_2 and Tr_3 were also significantly later than during Tr_10 and Catch in TA, MG, and 

EO (all p<0.05). No significant differences in the latencies were found among Tr_6 

through Tr_10 for any muscles. 

Even though all the participants demonstrated some level of inhibition in the BF 

and ES muscles prior to T0, the latency of that inhibition activity could only be detected 

in less than half of the participants. In those participants, the latencies of BF and ES 

muscles appeared similar among all the conditions except for BL_NV, and the latencies 

in BL_NV condition were later than that in all the other conditions. Due to the amount of 

missing data, statistical analysis on the latencies of BF and ES were not conducted, but 

the data are presented in Table 1. 

< Table 1 > 

3.3 EMG integrals 

A larger activity during APA phase and a relatively smaller activity during CPA 

phase was observed in the BL_V compared to BL_NV condition. Throughout the 

Training condition, the general trend was an increase of integrals of APA activities and a 

decrease of integrals of CPA activities for all the muscles examined (Fig.3).  

For the EMG integrals during the APA phase, statistical analysis revealed 

significant differences among conditions for TA (F(12,168)=2.91, p=0.001), MG 

(F(12,168)=2.13, p=0.017), RF (F(12,168)=4.26, p<0.001), and EO (F(12,168)=2.97, 

p<0.001). Post-hoc analysis showed that the APA integrals during BL_NV condition 

were significantly smaller than those in all the other conditions except Tr_1 for the 
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muscles mentioned above (all p<0.05). Additionally, the EMG integrals during Tr_1 were 

significantly smaller than that during Tr_10 for TA, RF, and EO. The EMG integrals 

during Tr_10 were also significantly larger than that during Tr_2 to Tr_4 for RF, and 

larger than that during Tr_3 and Tr_5 for EO (all p<0.05). 

For the EMG integrals during the CPA phase, statistical analysis showed 

significant differences among conditions for TA (F(11,154)=6.91, p<0.001), RF 

(F(11,154)=5.45, p<0.001), BF (F(11,154)=3.10, p<0.00), GM (F(11,154)=14.61, 

p<0.001), EO (F(11,154)=4.91, p<0.001), RA (F(11,154)=5.75, p<0.001), and ES 

(F(11,154)=7.75, p<0.001). Post hoc analysis revealed that CPA integrals for BL_NV 

condition were significantly larger than integrals for Tr_2 through Tr_10 for TA, RF, GM, 

EO, RA, and ES (all p<0.05). The CPA integrals for BL_V were significantly smaller than 

that in Tr_1 for TA and RF (both p<0.05). Additionally, the CPA integrals during Tr_1 

were larger than Tr_9 through Tr_10 for all these muscles. The CPA integrals during 

Tr_10 were smaller than Tr_2 and Tr_3 for TA, RF, and BF; and smaller than Tr_3 and 

Tr_5 for RA and ES (all p<0.05). No differences in the APA or CPA integrals were found 

among Tr_6 through Tr_10 for any muscles. 

< Fig. 3 > 

 

3.4 C and R indices 

 Generally, during the APA phase in all the conditions except BL_NV, R index 

was larger than C index; while during the CPA phase, C index was larger than R index 

(Fig.4). Statistical analysis revealed that there were significant differences among 

conditions for R index during the APA phase (F(12,168)=4.10, p<0.001) and C index 
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during the CPA phase (F(11,154)=12.65, p<0.001). Post-hoc analysis showed that for 

the BL_NV condition, R_APA was smaller while C_CPA was larger than in all the other 

conditions (all p<0.05). Tr_1 showed a smaller R_APA and a larger C_CPA than in Tr_9 

through Tr_10. Additionally, Tr_10 showed a smaller C_CPA than in Tr_1 through Tr_5 

(all p<0.05). 

< Fig. 4 > 

3.4 COP displacements 

When the participants could see the forthcoming pendulum (BL_V), their COP 

moved posteriorly during the APA phase (prior to the perturbation impact). When the 

moment of the pendulum impact was unpredictable (BL_NV), the COP at T0 was close 

to 0, and the peak displacement during the CPA phase was larger. Overall, throughout 

the Training condition, there was a gradual increase of the posterior displacement of the 

COP at T0 during the APA phase and a decrease of peak displacement during the CPA 

phase (Fig.5a and 5b). Statistical analysis showed that there were significant 

differences among conditions for both COP at T0 (F(12,168)=8.84, p<0.0001) and peak 

displacement (F(11,154)=4.13, p<0.0001). Post hoc analysis revealed that for COP at 

T0, BL_NV displayed a significantly smaller posterior displacement than in all the other 

conditions except Tr_1 (all p<0.05). Additionally, Tr_1 had a significantly smaller COP 

posterior displacement than BL_V, Tr_4 through Tr_10, and Catch conditions; and 

Tr_10 showed a significantly larger posterior displacement than Tr_1 through Tr_4 (all 

p<0.05). For the COP peak displacement, BL_NV has the largest value and it was 

significantly larger than all the other conditions (all p<0.05). BL_V showed a smaller 
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value than Tr_2 and Tr_3; and Tr_10 displayed a smaller value than Tr_1 through Tr_3 

(all p<0.05). 

< Fig. 5 > 

 

4. Discussion 

This study examined whether the APA associated with an external perturbation 

could be generated using an auditory cue only. The results demonstrated that with 

repetitive exposures to the perturbation, young adults were able to rely only on an 

auditory cue to generate adequate APAs that were comparable to that when visual 

information was available. As such, our hypothesis was supported.  

 

4.1 Role of availability of visual or auditory information in postural control 

The effect of availability of visual information in generating APAs has been 

explored in the literature (Aruin et al. 2001; Santos et al. 2010a; Santos et al. 2010b; 

Mohapatra et al. 2012; Zhang et al. 2019). In agreement with the previous studies, our 

results showed minimal change of muscles activities before the perturbation impact 

when the vision was obstructed and therefore the perturbation was unexpected. When 

an auditory cue was provided to the participants (especially during Tr_6 through Tr_10), 

they showed anticipatory activation/inhibition of the trunk and leg muscles prior to the 

perturbation impact similarly as that when visual information was available. 

Furthermore, when either visual or auditory information was available, participants 

generally displayed earlier latencies for the leg muscles (between -250ms to -100ms) 
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than the trunk muscles. The observation of such a distal to proximal pattern of APA 

generation is in line with the previous literature (Santos et al. 2010a).  

Additionally, the existence of a relationship between the magnitude of APAs and 

CPAs for postural control and that the generation of strong APA can result in reduced 

requirements of muscle responses in the CPA phase has been described in the 

previous literature (Santos et al. 2010a; Santos et al. 2010b). In agreement with that, we 

also report larger EMG integrals during the APA phase and smaller integrals during the 

CPA phase when either visual (BL_V) or auditory (Tr_1 through Tr_10) information was 

available, but smaller APA and larger CPA when the perturbation was unpredictable 

(BL_NV). Previous studies showed that when visual information about the upcoming 

perturbation was available, there was a backward displacement of the COP in 

preparation for the perturbation (Stapley et al. 1998; Santos et al. 2010b). Similar 

backward COP displacements were observed in the current study when the participants 

obtained information about the forthcoming perturbation using either visual information 

(BL_V) or an auditory cue (Training and Catch conditions). This initial posterior 

movement of the COP could create the momentum that assists the whole body to move 

forward in preparation for the upcoming perturbation (Santos et al. 2010b). The COP 

peak displacement reflected the body sway after the perturbation impact, and it was 

smaller in conditions with either visual or auditory information as compared to the 

unpredictable perturbation condition (BL_NV). These results suggest that young adults 

could use the auditory cue to control their postural stability while dealing with external 

perturbations as effectively as visual information. 
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In the baseline condition with vision obstructed (BL_NV), some muscle activities 

were observed in the APA phase. We speculate that it was due to the awareness of the 

upcoming perturbation impact, even though participants did not know the exact timing of 

the impact. Importantly, participants demonstrated the same level of muscle responses 

in the APA phase in conditions with auditory cue either with (Training condition) or 

without (Catch condition) the physical perturbation impact. This outcome indicates that 

participants were able to generate APAs relying on the auditory cue only. 

 

4.2 Learning effects of using auditory information for postural control 

It was reported that not only the availability of the visual information affects the 

generation of APAs, but also the quality of the visual information is important in 

generating effective APAs. For example, the visual information was manipulated in the 

previous studies by partially blocking the trajectory of the dropping load into the 

extended arms (Aruin et al. 2001), by using positive and negative glasses creating a 

misperception of the position of the pendulum during front perturbations (Mohapatra et 

al. 2012), or by using low-frequency light making the visual information about the 

forthcoming pendulum inaccurate (Mohapatra and Aruin 2013). All these studies 

reported delayed and/or diminished APA because participants were not able to 

accurately predict the timing of the external perturbations. 

In the current study, we observed that participants displayed an earlier and 

stronger muscle response in the APA phase and a reduced muscle response in the 

CPA phase relying only on the auditory cue after repetitive exposures. The use of a 

combination of auditory cues and visual obstruction to examine the anticipatory muscle 
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activities prior to the task of catching the ball while seated was described in the 

literature (Lacquaniti and Maioli 1987), and the authors reported inconsistent 

anticipatory activities. However, in that study, the perturbation was not fully predictable 

because the auditory cue did not provide sufficient information about the timing of the 

perturbation (dropped ball) (Lacquaniti and Maioli 1987). Our study presented a 

constant timing between the auditory cue and the physical impact of the perturbation, 

allowing the participants to build a connection between the auditory cue and the 

postural perturbation so that they were able of generating proper APAs using the 

auditory cue only after a short period of training. Our results also agree with the 

previous studies showing that people were able to optimize the APAs of the postural 

forearm during a seated unloading perturbation after 40-60 trials of training. In the 

previous studies, the timing of the unloading was triggered by the voluntary movement 

of the other forearm and, similarly to our study, it was learned through repetition training 

(Paulignan et al. 1989; Massion et al. 1999).  

In the current study, we also observed a less effective APA during the early 

training trials (most prominently during the Tr_1 block), exemplified by delayed latencies 

and smaller APA integrals of muscle activity. Some variables displayed a quick and 

large adjustment even after one block of training (i.e. APA and CPA integrals for ES and 

GM), while other variables demonstrated a gradual change during the first 4-5 blocks of 

training trials and then reached a plateau afterwards (i.e. APA and CPA integrals for RF 

and TA) (Fig.2 & Fig.3). We speculate that at the beginning of the training, the 

participants were not capable of using this relative novel auditory cue efficiently and the 

CNS was in an unstable state for generating appropriate APAs. However, after the 
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participants were repetitively exposed to the auditory cue indicating the exact time of the 

perturbation, they gradually enhanced muscle responses and increased the COP 

posterior displacement in the APA phase. Consequently, smaller muscle responses 

were needed in the CPA phase. This observation indicates that overall young adults 

might need 20 to 25 repetitions to learn how to use a new auditory cue effectively to 

optimize the whole body response for the upcoming perturbation. It is important to note 

that we included an Acclimation condition (10 trials) when both the visual and auditory 

information was available before the Training condition in this study. These acclimation 

trials facilitated the abilities of participants to build the connection between the timing of 

the relative novel auditory cue and pendulum perturbation. Without such connections, 

they might need to perform more repetitive perturbations before they were able to 

generate proper APAs relying solely on auditory cue. 

 

4.3 Patterns of muscle activity  

 Our results revealed that the study participants used reciprocal activation rather 

than muscle co-contraction during the APA phase (indicated by a larger R index than C 

index) in all the conditions when the moment of the pendulum release could be 

predicted (BL_V and Training conditions). Moreover, the calculated R and C indices 

showed that prior to the perturbation the ventral muscles were activated while the dorsal 

muscles were inhibited, which is in accord with the outcomes of the previous studies 

(Santos et al. 2010a; Chen et al. 2017). Specifically, in agreement with the previous 

literature, this reciprocal pattern was most prominent in the TA-MG pair with MG 

demonstrated large negative integrals representing muscle inhibition (Lee et al. 2015; 
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Chen et al. 2017). The use of reciprocal activation of muscles suggests that CNS was 

able to use an efficient strategy for postural control when the perturbation was 

predictable with either visual or auditory information available. 

 Similar to the findings of the previous study (Chen et al. 2017), our results 

showed a larger C index than R index during the CPAs phase, suggesting that the CNS 

increased the stiffness of the joints to enhance posture stability after the perturbation 

impact (Lee et al. 2015). However, it is interesting to note that with repetitive training, 

there was a decrease of the C-CPA index even though the R-CPA index remained the 

same. It seems that while the CNS mainly adopted the same co-contraction pattern in 

the CPA phase, it managed to regulate the level of muscle activities and maintain the 

posture stability in a more efficient manner.  

 This study included only young adults and all the pendulum perturbation training 

was performed in one session. Therefore, the results cannot be generalized to other 

populations and it is unknown whether the ability of using auditory cue effectively could 

last for a longer time. Older adults and other clinical populations showed delayed and 

ineffective APAs for postural perturbation (Kanekar and Aruin 2014; Aruin et al. 2015a). 

Future researches could examine whether these populations are capable of using the 

auditory cue by itself or combined with visual information to assist them in generation 

proper APAs for postural control, and also investigate the retention for this training 

effect. 

 

5. Conclusions 
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The outcome of the study demonstrated that it is feasible to use an auditory cue 

to elicit APAs for an otherwise unpredictable postural perturbation. After an acclimation 

training of 10 trials with combined auditory and vision cues, and a short training of 20-25 

trials with the auditory cue only, young adults were able to rely only on the auditory cue 

to generate APA comparable to that with visual information available. Additionally, the 

generation of APA in conditions with auditory cues resulted in the reduction of muscle 

responses during the balance restoration phase of postural control after the perturbation 

impact. 
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Figure legends 

 

Fig.1 A schematic representation of the experimental setup. The pendulum impact is 

applied to both the shoulders. m is an additional mass (5% of participant’s body mass). 

BL_V: baseline with visual information available; BL_NV: baseline with visual 

information blocked 

 

Fig.2 EMG traces of the tibialis anterior (TA) and medial gastrocnemius (MG) of a 

representative participant during different conditions. The vertical dotted line shows the 

moment of perturbation impact (T0). Time scales are in seconds and EMG scales are in 

arbitrary units. BL_V: baseline with visual information available; BL_NV: baseline with 

visual information blocked; Tr: training conditions. Tr_1 represents the beginning of the 

training, Tr_6 represents the middle of the training, and Tr_10 represents the end of the 

training. Note that the scales for both muscles during the BL_NV condition are bigger 

than the others, signifying the larger magnitude of muscle responses during the CPA 

phase. 

 

Fig.3 Mean (SE) of normalized EMG integrals of postural muscles during the 

anticipatory (APA) and compensatory (CPA) phases of postural control. Muscles 

included rectus abdominus (RA), erector spinae (ES), gluteus medius (GM), external 

obliques (EO), rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and 

medial gastrocnemius (MG). BL_V: baseline with visual information available; BL_NV: 

baseline with visual information blocked; Tr: training conditions 
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Note that positive values indicate muscle activation and negative values indicate muscle 

inhibition relative to background activities. Also note that the scale for MG is different 

than the other muscles. Tr_7 to Tr_9 conditions are not included in the figure. 

 

Fig.4 Mean (SE) of C and R indices calculated for the whole-body model during the 

anticipatory (APA) and compensatory (CPA) phases of postural adjustments. BL_V: 

baseline with visual information available; BL_NV: baseline with visual information 

blocked; Tr: training conditions 

 

Fig.5 A) Mean (SE) of center-of-pressure (COP) displacements at T0. B) Mean (SE) of 

COP peak displacements after T0. Values are presented in meters, and positive values 

represent posterior displacements. BL_V: baseline with visual information available; 

BL_NV: baseline with visual information blocked; Tr: training conditions. Note that Tr_7 

to Tr_9 conditions are not included in the figure. 
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Fig.1 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Condition BL_V BL_NV Acclimation  Training Catch 

Number of trials 5 5 10 50 1 

Visual information      

Auditory cue      

 
  

m 

A white foam board is 
used to block the vision. 

Force Plate 

Auditory cue is provided 
via headphones. 
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Fig.2 
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Fig.3 
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Fig.4 
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Fig.5 
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Table 1. Mean ± SE of EMG latencies (in ms) of the postural muscles in each condition. 

Muscle BL_V BL_NV Tr_1 Tr_2 Tr_3 Tr_4 Tr_5 Tr_6 Tr_10 Catch 

RA -36 
±13 

-3   
±10 

-26 
±11 

-44 
±14 

-55 
±12 

-34 
±12 

-37 
±14 

-62 
±15 

-55 
±16 

-123 
±11 

ES -158 
±26 

-22   
±2 

-140 
±0 

-149 
±22 

-170 
±29 

-121 
±12 

-132 
±10 

-140 
±15 

-61 
±45 

-120 
±14 

GM -9  
±17 

29  
±13 

-5  
±17 

-8  
±17 

 7  
±19 

-7  
±22 

 1  
±18 

-18 
±17 

-4  
±17 

-51 
±14 

EO -122 
±16 

-24 
±13 

-87 
±12 

-88 
±13 

-94 
±14 

-116 
±15 

-99 
±15 

-113 
±15 

-126 
±15 

-156 
±18 

RF -161 
±18 

-33 
±13 

-89 
±11 

-108 
±14 

-104 
±14 

-100 
±16 

-120 
±14 

-122 
±16 

-142 
±12 

-143 
±17 

BF -242 
±21 

-2   
±26 

-200 
±20 

-181 
±19 

-181 
±8 

-215 
±19 

-206 
±13 

-197 
±23 

-211 
±15 

-173 
±26 

TA -122  
±22 

-16 
±12 

-65 
±15 

-75 
±17 

-75 
±17 

-82 
±20 

-92 
±15 

-95 
±19 

-112 
±18 

-112 
±11 

MG -223 
±19 

 3   
±29 

-121 
±44 

-168 
±28 

-159 
±29 

-160 
±27 

-149 
±30 

-206 
±15 

-182 
±19 

-218 
±20 

 
BL_V: baseline with visual information available; BL_NV: baseline with visual 
information blocked; Tr: training conditions. 
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