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Polymer-capped Nanoparticle Transport in Granular Media Filtration: Deviation from 1 

the Colloidal Filtration Model  2 

Ijung Kim1, Tongren Zhu2, Sungmin Youn3, and Desmond F. Lawler4 3 

Abstract: The single-collector removal efficiency based on the colloidal filtration model is widely used to 4 

quantify deposition of nanoparticles in porous media filtration. The validity of this theory for nanoparticles, 5 

especially at filtration rates used in water treatment, was evaluated. Granular media filtration experiments 6 

were performed under widely variant physical conditions. Chemical effects were minimized by selecting 7 

spherical branched polyethylenimine capped silver nanoparticles as a positively charged nanoparticle to 8 

avoid electrostatic repulsion with the negatively charged silica filter media. The model and experimental 9 

results agreed well for 50 and 100 nm particles, but 10 nm particles were removed to a lesser extent than 10 

the model predicted. An updated Derjaguin-Landau-Verwey-Overbeek calculation was performed for the 11 

interaction energy between polymer-capped nanoparticles and the collector surface, under constant 12 

potential, constant charge, and mixed assumptions. The effect of particle size on these calculations was 13 

dramatic, leading to far less attractive energy for the smallest particles in the mixed case, and even repulsion 14 

in the constant charge case. These revised calculations are the primary means to explain the unexpected 15 

data. 16 
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Introduction 18 

A major contribution of the career of Charles O’Melia was his insights about granular media filtration, 19 

with some of the key articles published in this journal (O’Melia 1985; Ramaley et al. 1981; Wiesner et al. 20 

1987; Logan et al. 1995). He introduced the concept, now universally accepted in the environmental 21 

engineering community and beyond, that particle capture in water and wastewater filters involved two 22 

steps that could be conceptually divided: transport to the vicinity of the media surface and attachment to 23 

that surface (O’Melia and Stumm 1967). But, in the days of those writings, little concern was voiced 24 

about nanoparticles; then, we had few, if any, engineered nanoparticles, and we did not even have that 25 

word!  Now, the extensive use of engineered nanoparticles (ENPs) has caused great research interest in 26 

the transport and deposition of these particles in porous media, such as granular media filters (Petosa et al. 27 

2010). Despite the plethora of research, the question remains whether the transport of nanoparticles at the 28 

relatively high filtration velocities used in water treatment is similar to that studied in earlier times with 29 

larger particles. 30 

Regarding the transport of nanoparticles in granular media filtration, the attachment efficiency (α) has 31 

often been estimated as a correction to the single collector contact efficiency (𝜂𝜂𝑜𝑜) calculated from one of 32 

several possible colloidal filtration models (Benjamin and Lawler 2013). This approach to determine α 33 

has been adopted by many researchers because the colloidal filtration model has shown good agreement 34 

with experimental results for larger particles in general. However, considering the recent shift of research 35 

focus from supra-micrometer colloids to nanoparticles, it is worthwhile to determine whether the colloidal 36 

transport model properly describes nanoparticle transport. Though the colloidal filtration model has been 37 

updated by simulations of the detailed contact between nanoparticles and the filter media (Long and 38 

Hilpert 2009; Ma et al. 2009; Nelson and Ginn 2011; Tufenkji and Elimelech 2004), little effort has been 39 

made to verify the colloidal filtration model with experimental evidence at nano size under the conditions 40 



found in water treatment practice. In particular, though nanoparticles less than 30 nm were reported to 41 

show more distinguished properties than their larger counterparts (Auffan et al. 2009), few researchers 42 

have tested whether the effects of size within the nano range are well predicted by the existing filtration 43 

models. Because the ENPs are usually coated with polymer capping, the Hamaker constant (𝐴𝐴), and thus 44 

the van der Waals (vdW) attraction is reduced by the capping. In addition, the favorable deposition 45 

assumption when the approaching particles and the surface are oppositely charged needs to be discussed 46 

under different electrostatic boundary conditions: constant potential case (Hogg et al. 1966), constant 47 

charge case (Usui 1973), and mixed case (one surface with constant potential and the other with constant 48 

surface charge density) (Kar et al. 1973).  49 

The objective of this study was to verify the colloidal filtration model with experimental results of the 50 

transport of nanoparticles in granular media filtration under conditions similar to those in water treatment 51 

plants. The widely accepted model of Tufenkji and Elimelech (2004) was the filtration model of choice; 52 

this model resulted from extensive trajectory simulations that specifically included nanoparticles. By 53 

using positively charged particles with negatively charged filter media, it was assumed that no energy 54 

barrier to attachment would exist, and experiments were conducted under various physical conditions and 55 

various nanoparticle sizes. The physical parameters that were varied included the velocity, media size, 56 

and media depth. To isolate the effect of physical parameters, the chemical parameters were controlled in 57 

a way to minimize their effect on the filtration experiments. An updated analytical expression for the vdW 58 

attraction was proposed to include the effect of polymer capping; and Derjaguin-Landau-Verwey-59 

Overbeek (DLVO) energy was calculated under different electrostatic conditions. The experimental 60 

results were compared with the Tufenkji and Elimelech colloidal filtration model to evaluate the 61 

applicability of the model to nanoparticles. 62 

Materials and Methods 63 



Chemicals. 10, 50, and 100 nm spherical branched polyethylenimine (BPEI) silver nanoparticles 64 

(AgNPs) were purchased from Nanocomposix (San Diego, CA). The sizes of AgNPs were confirmed by 65 

transmission electron microscopy (TEM, FEI Tencai), nanoparticle tracking analysis (NTA, LM10 66 

Nanosight), and dynamic light scattering (DLS, Malvern Zetasizer NanoZS). The electrophoretic mobility 67 

(EPM) of AgNPs was determined by electrophoretic light scattering (ELS, Malvern Zetasizer NanoZS) in 68 

1 mM NaNO3 over the pH range of 4 to 12. The EPM values were converted to ζ potentials via the 69 

Smoluchowski approximation built into the DLS software (Philippe 2015; Pokhrel and Dubey 2013). 70 

Though surface potentials of soft particles are better obtained from EPM through the Ohshima’s soft 71 

particle theory (Kuznar and Elimelech 2007; Ohshima 1995), this theory has an assumption (linear 72 

structures of polymer) that does not apply to BPEI particles (branched structures of polymer). Therefore, 73 

in this study, the surface potential of BPEI AgNPs was calculated from the ζ potential using the Gouy-74 

Chapman equation with the distance between the slipping plane and the particle surface taken as 0.5 nm 75 

(van Oss et al. 1990)  76 

Column Tests. Spherical glass beads with diameters in the range of 300~355, 425~500, and 710~850 µm 77 

were purchased from MO-SCI (St. Louis, MO) for use as the filter media. Each group of beads was 78 

sieved on a pair of US sieves corresponding to the designated size range (#45 (354 µm) and #50 (297 79 

µm), #35 (500 µm) and #40 (425 µm), and #20 (841 µm) and #25 (710 µm), respectively). Prior to use, 80 

the beads were washed by the following cleaning process (Darby 1988): rinsing with deionized (DI) water 81 

10 times, sonication in 1 M HNO3 solution overnight followed by rinsing with DI water 10 times, 82 

sonication in DI water for 10 min followed by rinsing with DI water 20 times, and complete drying in a 83 

105˚C oven. 84 

A cylindrical column with a 3.81 cm inner diameter was employed for the filtration tests. The filtration 85 

test system was designed to keep the AgNP suspension and the background solution separate until the two 86 

solutions were mixed immediately before the filter entrance (Fig. S1). The flow rate of each solution was 87 

controlled to achieve the designated filtration velocity (2, 4, or 8 m/h) and influent AgNP concentration 88 



(100 µg/L). A series of filtration tests was conducted under varying filter depth, filtration velocity, 89 

particle size, and filter media size. Immediately prior to each test, the flow of background water through 90 

the column was established for at least 45 pore volumes. Then, each filtration test consisted of two 91 

phases: 45 pore volumes of filtration with AgNPs followed by 45 pore volumes of filtration without 92 

AgNPs. The main purpose of each test was to obtain the removal efficiency, that is, a plateau in relative 93 

concentration (effluent Ag concentration over influent Ag concentration,𝑐𝑐 𝑐𝑐0⁄ ) according to the test 94 

condition, to compare with model predictions. Ionic strength was fixed at 1 mM of NaNO3, and pH was 95 

controlled at 7.0 ± 0.1 using 0.025 mM bicarbonate buffer. The influent and effluent samples were 96 

acidified in 3% trace metal grade HNO3 solution, and Ag concentration was analyzed using inductively 97 

coupled plasma-optical emission spectroscopy (ICP-OES) (Varian 710, Agilent, Santa Clara, CA). 98 

Theoretical removal efficiency. The theoretical removal efficiency was calculated using the colloid 99 

filtration model (Benjamin and Lawler 2013)  100 

 𝐶𝐶
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= 𝑒𝑒𝑒𝑒𝑒𝑒 �− 3
2

(1−𝜀𝜀)𝛼𝛼𝜂𝜂0
𝑑𝑑𝑐𝑐

𝐿𝐿� (1) 101 

with all the variables defined in the Notation section. 𝛼𝛼 is 1 under the favorable deposition assumption 102 

(no repulsive forces between the approaching particle and the collector), and 𝜂𝜂0 is determined using the 103 

Tufenkji and Elimelech model (2004). The theoretical removal efficiency (𝑐𝑐 𝑐𝑐0⁄ ) calculated from Eq. 1 104 

was compared with the experimental results of AgNPs remaining (effluent concentration over influent 105 

concentration) from ICP-OES measurement.  106 

Particle-collector interaction. Because the molecular weight of capping BPEI is small and the steric 107 

interaction between the particle and the collector is greatly reduced without the presence of polymeric 108 

coating on the collector surface (Lin and Wiesner 2012), only the classical DLVO interaction was 109 

considered. The energy of interaction was calculated using the sum of the electrical double layer (EDL) 110 

repulsion (𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸) and the vdW attraction (𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣). An updated analytical expression for the 𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣 was 111 

derived between a polymer-coated particle and an uncoated collector surface. Without considering 112 



retardation effects, the plate-plate vdW attraction in medium 4 (water) between a flat surface of material 3 113 

and another flat surface of material 2 coated by a layer of material 1 of thickness δ can be derived from 114 

the summation of vdW attraction between the collector and the polymer capping and that between the 115 

collector and the metal core. 116 

The vdW attraction between a molecule in plate 3 and capping layer 1 is: 117 

 𝑉𝑉143(𝑧𝑧) = ∫ ∫ −𝜌𝜌1𝑁𝑁𝐴𝐴
𝑀𝑀𝑀𝑀1
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6
𝜌𝜌1𝑁𝑁𝐴𝐴𝐶𝐶143𝜋𝜋

𝑀𝑀𝑀𝑀1
[𝑧𝑧−3 − (𝑧𝑧 + 𝛿𝛿)−3] (2) 118 

All variables were defined in the Notation section. The subscript “143” indicates interaction between 119 

capping 1 and plate 3 suspended in a medium 4. The vdW attraction between a molecule in plate 3 and 120 

plate 2 is: 121 

 𝑉𝑉243(𝑧𝑧) = ∫ ∫ −𝜌𝜌2𝑁𝑁𝐴𝐴
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The plate-plate interaction between plate 3 and plate 2 coated with layer 1 is: 123 

 𝑉𝑉𝑝𝑝𝑝𝑝(𝐻𝐻) = ∫ [𝑉𝑉143(𝑧𝑧)+𝑉𝑉243(𝑧𝑧)] 𝜌𝜌3𝑁𝑁𝐴𝐴
𝑀𝑀𝑀𝑀3
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Where 𝐴𝐴143 and 𝐴𝐴243 is the overall Hamaker constant for the interaction between capping 1 or 125 

plate 2 and plate 3 in medium 4. 𝐴𝐴143 can be calculated by (Petosa et al. 2010) 126 

 𝐴𝐴143 = ��𝐴𝐴11 − �𝐴𝐴44���𝐴𝐴33 − �𝐴𝐴44� (5) 127 

and the Hamaker constants of silver, water, and glass in vacuum (e.g., 𝐴𝐴33, etc.) are available 128 

from literature. The Hamaker constant of capping 1 can be calculated as a composite of polymer 129 

and medium 4 (Vincent 1973), with a segment density 𝜙𝜙 assumed to be 0.1 throughout the capping 130 

layer (Lin et al. 2012).  131 

 𝐴𝐴11 = �𝜙𝜙�𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
0.5 + (1 − 𝜙𝜙)(𝐴𝐴44)0.5�

2
 (6) 132 



From Lin and Wiesner (2010), the plate-plate interaction can be converted to the sphere-plate interaction 133 

by 134 

 𝑉𝑉𝑠𝑠𝑠𝑠(ℎ) = 2π �(𝑎𝑎 + ℎ)∫ 𝑉𝑉𝑝𝑝𝑝𝑝(𝐻𝐻)𝑑𝑑𝑑𝑑 − ∫ 𝑉𝑉𝑝𝑝𝑝𝑝(𝐻𝐻)𝐻𝐻𝐻𝐻𝐻𝐻ℎ+2𝑎𝑎
ℎ

ℎ+2𝑎𝑎
ℎ � (7) 135 

Therefore, the vdW interaction between plate 3 and particle 2 coated by layer 1 is: 136 

𝑉𝑉𝑠𝑠𝑠𝑠(ℎ) = −𝐴𝐴143
6
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When there is no capping layer around sphere 2 (𝛿𝛿 = 0), Eq. 8 becomes (Hunter 2001) 138 

 𝑉𝑉𝑠𝑠𝑠𝑠(ℎ) = −𝐴𝐴243
6
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� (9) 139 

Analytical expressions for the electrical double layer (EDL) interaction based on constant potential (Hogg 140 

et al. 1966), constant charge (Usui 1973) and mixed (constant potential for the collector and constant 141 

charge for the particle) (Kar et al. 1973) assumptions were used to quantify the electrostatic interaction 142 

between two oppositely charged surfaces: the positively charged particle and the negatively charged 143 

collector. These expressions are summarized in Table 1. The DLVO interaction between the approaching 144 

BPEI AgNPs and the silica collector was calculated with the equations in Table 1 to interpret 145 

experimental results.  146 

Results and Discussion 147 

Characterization of BPEI AgNPs. The size of BPEI AgNPs determined by TEM images through 148 

ImageJ software (Fig. S2, Table 2) was close to the size reported by the manufacturer. The hydrodynamic 149 

diameter (HDD) measured by NTA and DLS (Fig. S3, Table 2) was considered to include the thickness of 150 

the capping agent (MacCuspie et al. 2011). The TEM measurements appear to indicate a more nearly 151 

monodisperse particle size than was found from NTA and DLS, an apparent artifact of the latter systems. 152 

The surface charge of BPEI AgNPs was positive (Fig. S4) because BPEI includes amine groups that 153 

would be protonated at the pH of these experiments (pH 7) (Stumm and Morgan 1996). However, the 154 



surface charge decreased as particle size decreased, probably due to decreased H+ density on the particle 155 

surface (Barisik et al. 2014) or greater degree of hydroxylation (Chae et al. 2010). Nevertheless, the point 156 

of zero charge of BPEI AgNPs was somewhat higher than pH 11 regardless of particle size, proving that 157 

the surface charge of BPEI AgNPs in the filtration test was positive. The molecular weight of the BPEI 158 

was reported by Nanocomposix, Inc. to be approximately 2500 Daltons. Using the method from Yang et 159 

al. (2014), the capping layer thickness was estimated to be approximately 8 nm. This value is smaller than 160 

but in the same range as the difference between the TEM radius and the HDD radius and was used as the 161 

capping layer thickness to calculate the energy of interaction. 162 

Particle aggregation. Aggregation of BPEI AgNPs was negligible at I=1 mM of NaNO3 and pH 7 (Fig. 163 

S5). This result was consistent with previous reports that the stability of BPEI AgNP would be greatest 164 

near pH 7 (El Badawy et al. 2010) and the aggregation of BPEI AgNP would be insignificant even at 165 

I=1000 mM (El Badawy et al. 2012). Therefore, the stability of BPEI AgNPs was assured in the filtration 166 

condition.  167 

Effect of filter depth. For the contact efficiency (𝜂𝜂0) estimation from the experimental results, the 168 

stabilized relative concentrations of 10, 50, and 100 nm BPEI AgNPs were examined at three different 169 

filter depths (2, 4, and 8 cm) with 4 m/h filtration velocity and 325 µm filter media size. The overall result 170 

qualitatively followed the general expectation that deeper filter depth results in greater particle deposition 171 

(Fig. S6). The time to reach a stabilized relative concentration was slightly increased as the filter depth 172 

became shallower. The removal trend as a function of particle size indicates the greater AgNP capture of 173 

smaller AgNPs due to their more vigorous Brownian motion; that is, the diffusion coefficients, calculated 174 

from the measured average hydrodynamic diameters, of the 10 nm, 50 nm and 100 nm AgNPs under the 175 

experimental condition are 1.3×10-9 cm2/s, 5.2×10-10 cm2/s and 3.7×10-10 cm2/s, respectively. The 176 

number of potential collisions between particles and media grains as the water flowed through the filter 177 

would be inversely proportional to these values. Note that the relative concentration was nearly constant 178 

after a short period. Even though the tests were conducted at the low range of the ratio of filter depth to 179 



filter media size (𝐿𝐿/𝑑𝑑𝑐𝑐) (62, at the lowest), a constant level of AgNP deposition was maintained for a 180 

sufficient period to obtain an apparent steady state relative concentration. This result might be due to slow 181 

ripening as a consequence of low influent AgNP concentration.  182 

Effect of filtration velocity. To investigate the effect of filtration velocity, three filtration velocities (2, 4, 183 

and 8 m/h) were applied to the filtration of 10, 50, and 100 nm BPEI AgNPs with 4 cm filter depth and 184 

325 µm filter media size. Particles have less time to contact the filter media with increased filtration 185 

velocity, leading to less particle deposition. The effect of increased velocity on deposition is expected to 186 

be greater for particles whose capture is by sedimentation than for particles captured by Brownian motion 187 

(Tufenkji and Elimelech 2004). Although Ag has a relatively high density (10.49 g/cm3), sedimentation of 188 

these small nanoparticles onto the filter media was calculated to be negligible in comparison to deposition 189 

by Brownian motion. The single collector contact efficiency calculated by Tufenkji and Elimelech model 190 

revealed that, even for the largest particle (100 nm) under the highest filtration velocity (8 m/h), the 191 

contact efficiency due to sedimentation was only 1.9×10-5, much smaller than the contact efficiency from 192 

Brownian motion which was 3.1×10-3 (by two orders of magnitude). The velocity effect was apparent in 193 

all particle sizes tested (Fig. S7). The results from these experiments show a moderate change in AgNP 194 

deposition caused by the velocity variation (i.e., an increase of approximately 0.3 in the relative 195 

concentration at the plateau with the four-fold increase in filtration velocity). 196 

Effect of filter media size. Three different filter media sizes (325, 463, and 776 µm) were employed to 197 

study the effect of filter media size on the filtration of 10, 50, and 100 nm BPEI AgNPs. The filtration 198 

tests were conducted with 4 cm filter depth and 4 m/h filtration velocity. With regard to the three sizes of 199 

AgNPs, the AgNP deposition increased as filter media size decreased (Fig. S8) due to the decreased pore 200 

sizes, the increased number of media layers for the same depth, and the increased surface area of the filter 201 

media. As the size of AgNPs increased from 10 nm to 100 nm, the AgNP deposition decreased for all 202 

filter media sizes. Specifically, when the filter media size was 776 µm, the fraction removed for the 10, 203 

50, and 100 nm particles was 54%, 38% and 19% of the corresponding values for the 325 µm media. In 204 



particular, only 8% of the 100 nm AgNPs were captured in 776 µm filter media even under favorable 205 

attachment conditions. If nanoparticles are to be removed using granular media filtration, small filter 206 

media size would be necessary. 207 

Effect of particle size. All of the tests followed the general knowledge that the filtration efficiency is 208 

lowered at less filter depth, higher velocity, and greater media size, but the objective in this research was 209 

to test whether these trends fit the predictions of the Tufenkji and Elimelech model. In Fig. 1, the model 210 

predictions and the experimental results are compared, using both the mean diameter and the 211 

hydrodynamic diameter determined by TEM and NTA, respectively, in the model predictions. Recall 212 

from Table 2 that these two values for each particle size were substantially different, with the 213 

hydrodynamic diameter being 30 to 40 nm larger than the mean diameter. The hydrodynamic diameter 214 

includes the solvent and macromolecules that adhere to particle surface in a liquid medium; using this 215 

measure in the predictions accounts for the fact that the added layer on the core particle decreases the 216 

diffusivity of the particle. In virtually all cases shown in Fig. 1, the two sets of model predictions bracket 217 

the experimental results, but in some cases, one of the predictions fits much better. 218 

Considering the predictions using the mean (TEM) diameter, the experimental results were quite 219 

consistent with the colloidal filtration model expectation in the case of the 50 and 100 nm BPEI AgNPs 220 

(parts (d) to (i) of Fig. 1). Of the 18 experiments shown for these two larger particles, only three have 221 

results that were closer to the model predictions using the hydrodynamic diameter, and several results 222 

were predicted quite precisely by using the mean diameter. However, the removal efficiency of 10 nm 223 

BPEI AgNPs (parts (a) to (c) of Fig. 1) was approximately 20~30% less than the model prediction using 224 

the mean diameter for the model particle size, and most of the results were predicted somewhat better (but 225 

not precisely) using the hydrodynamic diameter. Taken together, these results suggest that the colloidal 226 

filtration model is generally quite valid, but the effect of particle size is not accounted for quite properly. 227 

One way to describe these results is to say that the assumption of favorable deposition is accurate for 228 



larger size particles, but as particle size becomes smaller, the favorable deposition assumption tends to be 229 

questionable.  230 

1) Explanation from the energy of interaction 231 

The energy of interaction between the approaching AgNPs and the silica media grains was calculated 232 

using equations in Table 1, and values of the parameters are summarized in Table S1. Because the BPEI 233 

polymer capping layer gives a lower Hamaker constant when interacting with the silica collector surface, 234 

the vdW attraction between the coated particle and the surface is lower (i.e., less negative) than that 235 

between an uncoated particle and the surface; these results are shown in Fig. 2. The separation distance in 236 

this and subsequent Fig.s is from the outside of the capping layer to the edge of the filter media. Although 237 

particles of different sizes have the same capping layer thickness, the smallest particles (10 nm) are 238 

affected most by the reduced vdW attraction from the polymer capping because the capping layer 239 

represents a greater fraction of the particle as the particle size decreases.  240 

Three different assumptions for the EDL interactions (constant surface potential, constant surface charge, 241 

and mixed charge and potential) were employed, and the results are shown in Fig. 2. Constant surface 242 

potential assumes that the electrochemical equilibrium exists in the double layer during the course of 243 

particle interaction; therefore, the surface potential remains constant (Derjaguin and Landau 1941; Hogg 244 

et al. 1966). The constant surface charge approach accepts that the equilibrium is unrealistic during a 245 

Brownian collision; hence, the surface charge remains constant (Frens and Overbeek 1972; Usui 1973; 246 

Verwey and Overbeek 1948). The constant surface potential and charge assumptions are considered two 247 

extremes to the possible EDL energy of interaction; and the mixed approach lies between the two 248 

extremes (Kar et al. 1973). As the particle size decreases, Brownian motion increases and the assumption 249 

of the constant potential case that electrochemical equilibrium is maintained at all times becomes 250 

increasingly unrealistic; video clips from the NTA measurements of the 10 and 100 nm particles are 251 

shown in Fig. S9, and the much higher particle velocities of the smaller particles are obvious. Imagining 252 

that ions can rearrange themselves at that speed to always maintain equilibrium is clearly unrealistic. 253 



Under the constant potential assumption, the interaction remains attractive if the particle and the collector 254 

surface are oppositely charged. However, under the mixed approach, the EDL attraction became much 255 

smaller for all the particle sizes; the EDL attraction for the 10 nm particle (which has less negative ζ 256 

potential) even became negligible. When the constant charge assumption was applied, the EDL 257 

interaction between the 10 nm particle and the collector surface became repulsive. Therefore, as the 258 

particle size gets smaller, the EDL interaction becomes less attractive and even repulsive as the 259 

electrochemical equilibrium assumption becomes less valid. 260 

When the total DLVO interaction was calculated (Fig. 4), the results for the constant potential case (Fig. 261 

4a) were consistent with the original hypothesis of the experimental work that the oppositely charged 262 

particles and media grains would lead to an attractive condition at all separation distances. On the 263 

contrary, the reduced vdW attraction and the repulsive EDL interaction under the constant charge 264 

assumption (Fig. 4b) caused a net repulsive interaction for the 10 nm particle. Under the mixed case (Fig. 265 

4c), though no repulsive energy exists for the 10 nm particle, the attraction was nevertheless negligible 266 

and any external repulsion would cause hindrance between the particle and the collector. As a result, the 267 

assumption of favorable deposition was not valid for the filtration of 10 nm BPEI-AgNPs, even though 268 

the particle and the silica collector are oppositely charged. The deposition attachment efficiency (𝛼𝛼) was 269 

less than unity, thus leading to a reduced deposition than that calculated from the Tufenkji and Elimelech 270 

model.  271 

2) Other explanations 272 

The 10 nm AgNPs showed a much greater degree of deviation between the experimental results and the 273 

model predictions, suggesting a possible alteration of nanoparticle properties as the size gets smaller than 274 

50 nm. Others have suggested that some size dependent properties are more likely to appear below 10 nm 275 

(Bian et al. 2011), but, little is known about the details. For example, the vigorous Brownian motion of 276 

nanoparticles, especially at extremely small size, could change the deposition of nanoparticles. Either 277 



increased or decreased removal can be anticipated by an increased number of collisions with filter media. 278 

An increase would be consistent with standard filtration theory. A decrease could possibly occur because 279 

of the vigorous Brownian motion of nanoparticles 10 nm or less. The greater Brownian motion means that 280 

the 10 nm particles have a far higher velocity than the larger nanoparticles used in this study (Bhatt et al. 281 

2013). In aerosol filtration, Wang and Kasper (Wang and Kasper 1991) proposed that nanoparticles below 282 

10 nm could rebound off collector surfaces because the time of interaction was so short; while this 283 

phenomenon is less likely in water where the  mean free path is far smaller than in air, we note the 284 

possibility. Further research would be necessary to investigate this possible explanation. 285 

The smallest particles could also display the greatest hydrophilicity because, as the particle size decreases, 286 

the increased curvature allows a greater surface density of bound water molecules. Chae et al. (2010) 287 

reported decreased fullerene deposition onto silica surfaces as the size decreased and ascribed this result 288 

to the more hydrophilic nature of smaller nanoparticles; in their case, this phenomenon made their 289 

particles more negative and caused greater stabilization, but in our case, it makes the surface charge less 290 

positive, and therefore diminishes the attraction to the negatively charged filter media. This phenomenon 291 

also explains the difference in measured potentials of the different particle sizes reported in Table 2. 292 

Another possible reason for variation in removal efficiency of smaller nanoparticles than predicted by the 293 

model is the stronger steric stabilization by the capping agent. As with water, a greater density of organic 294 

molecules, and therefore a greater abundance of the edge and corner sites (Grassian 2008), can adsorb 295 

onto smaller particles, so that smaller BPEI AgNPs are likely to have a denser capping layer compared to 296 

the larger particles. Further estimation of the adsorbed layer thickness on AgNPs is required to support 297 

this argument. 298 

Conclusions 299 

The effect of physical parameters on the transport of BPEI AgNPs in granular media filtration was 300 

experimentally evaluated under favorable attachment conditions; and DLVO interaction was calculated to 301 



explain the interaction between the polymer-capped AgNPs and the bare silica collector. A stable relative 302 

concentration of the effluent was obtainable during the test period due to low influent AgNP 303 

concentration, which retarded ripening and prevented aggregation in the suspension. Brownian motion 304 

was dominant in the experimental conditions tested in this study. Deeper filter depth, lower filtration 305 

velocity, and smaller filter media size led to more AgNP deposition, as expected. With regard to the 306 

physical variables and their values tested in this study, the removal efficiency for all particle sizes was 307 

significantly enhanced by decreasing filter media size from 776 to 325 µm. This result suggests, 308 

consistent with theory, that the selection of filter media size could be a decisive factor for nanoparticle 309 

removal using granular media filtration.  310 

When using the mean (TEM) diameter for the model predictions, the transport of 100 nm and 50 nm 311 

BPEI AgNPs in granular media filtration showed good agreement with the expectations from the colloidal 312 

filtration model of Tufenkji and Elimelech, proving the validity of the model. However, as the particles 313 

decreased to 10 nm, experimental results differed from the model predictions. The presence of the 314 

polymer capping reduced the vdW attraction, and EDL interaction was found to be repulsive under some 315 

modeling approaches, even though the particle and the collector were oppositely charged. As the particle 316 

size became smaller, the role of the polymer capping became more important in the surface interaction. 317 

The effect of the surface capping must be considered when evaluating the transport of ENPs by applying 318 

colloidal filtration models. At this small size, experimental results also tended to move toward the 319 

predictions using the (larger) hydrodynamic diameter. These results imply a variation in nanoparticle 320 

property as particles get smaller. Since size-dependent nanoparticle transport is not well understood, more 321 

experimental evidence with different types of nanoparticles is required to support the conceivable 322 

arguments in favor of such an effect. 323 

Further investigation on the transport of the smaller-sized nanoparticles is required to obtain sufficient 324 

experimental data to update the colloidal filtration model especially in the size range less than 50 nm. The 325 

conformation of the surface capping must be included and the EDL interaction model must be carefully 326 



chosen. The updated colloidal filtration model would be beneficial for predicting contact efficiency (𝜂𝜂𝑜𝑜) 327 

in such a small particle size range, which then could lead to an accurate estimation of the attachment 328 

efficiency (𝛼𝛼) under unfavorable attachment conditions.  329 

In his 1985 paper in this journal, O’Melia asked three questions: “What do packed bed filters remove 330 

from suspension in water treatment plants? How do they accomplish this removal? How can this 331 

knowledge be used in water treatment practice?” In this paper, we have updated his answers to account 332 

for nanoparticle removal; the quest for firm answers to his (and the field’s) questions continues. 333 
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Notation 336 

𝐴𝐴 Hamaker constant 

𝑎𝑎 particle radius 

𝐶𝐶 coefficient of atom-atom pair potential 

𝑐𝑐 effluent particle concentration 

𝑐𝑐0 influent particle concentration 

𝑑𝑑𝑐𝑐 average collector grain diameter 

𝐻𝐻 
plate-plate separation distance (from the outside of 

the capping layer to the edge of the filter media) 

ℎ 
plate-sphere separation distance (from the outside 

of the capping layer to the edge of the filter media) 

𝐿𝐿 filter bed depth 

𝑀𝑀𝑀𝑀𝑖𝑖 molecular weight of material 𝑖𝑖 

𝑁𝑁𝐴𝐴 Avogadro number 



𝑣𝑣0 filtration velocity 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 
Interaction between material 𝑖𝑖 and material 𝑗𝑗 in 

medium 𝑘𝑘 

𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 total DLVO energy of interaction 

𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸 electric double layer interaction 

𝑉𝑉𝑝𝑝𝑝𝑝 plate-plate interaction 

𝑉𝑉𝑠𝑠𝑠𝑠 plate-sphere interaction 

𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣 van der Waals attraction 

𝛼𝛼 deposition attachment efficiency 

𝛿𝛿 capping layer thickness 

𝜀𝜀 porosity 

𝜀𝜀𝑜𝑜 dielectric permittivity in vacuum 

𝜀𝜀𝑟𝑟 relative dielectric permittivity of solution 

𝜂𝜂𝑜𝑜 single collector contact efficiency 

𝜅𝜅 inverse Debye length 

𝜌𝜌i density of material 𝑖𝑖 

𝜙𝜙 segment density of the capping layer 

𝛹𝛹𝑑𝑑𝑝𝑝 surface potential of flat plate 

𝛹𝛹𝑑𝑑𝑠𝑠 surface potential of spherical particle 

Supplemental Data 337 

Table S1, Figs. S1-S8, and Videos S1-S2 are available online in the ASCE Library (ascelibrary.org). 338 
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Fig. 1. Comparison of experimental results and model predictions under different physical conditions. 432 

(The physical conditions specified in the top figure in each column also apply to the figures below.  In all 433 

cases, the model results are found using both the diameter found from electron microscope (TEM) 434 

measurements and the hydrodynamic diameter (HDD) determined by NTA measurements.) 435 

Fig. 2. Effects of particle size and BPEI capping on vdW attraction. 436 

Fig. 3. Effects of different surface potential models on energy of interaction between AgNPs and 437 

silica media grains:  a)10 nm AgNPs, b) 50 nm AgNPs and c) 100 nm AgNPs (cc: constant 438 

charge; cp: constant potential; mixed: constant potential for the collector and constant charge for 439 

the particle). 440 

Fig. 4. Total DLVO interaction under a) constant potential, b) constant charge, and c) mixed 441 

case. (Note the difference in scales on the ordinates.) 442 



Table 1. Analytical expression of particle-surface DLVO interaction of different types  443 

Interaction Analytical Expression Reference 

𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣 

(uncapped) 
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(Hunter 

2001) 

 

𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣 (capped) 
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study 
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𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸  (constant 

potential) 
𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸 =  𝜋𝜋𝜀𝜀𝑜𝑜𝜀𝜀𝑟𝑟𝑎𝑎 �
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(Hogg et 

al. 1966) 

𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸  (constant 

charge) 
𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸 =  𝜋𝜋𝜀𝜀𝑜𝑜𝜀𝜀𝑟𝑟𝑎𝑎 �
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(Usui 

1973) 

𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸 (mixed) 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸 =  4𝜋𝜋𝜀𝜀𝑜𝑜𝜀𝜀𝑟𝑟𝑎𝑎 �
𝛹𝛹𝑑𝑑𝑝𝑝𝛹𝛹𝑑𝑑𝑠𝑠arctan(𝑒𝑒−𝜅𝜅ℎ) +
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(Kar et al. 

1973) 

𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣  

 444 

Table 2. BPEI AgNP properties used for filtration tests 445 

Manufactured 

size 

Mean TEM 

diameter (nm) 

Hydrodynamic diameter (nm) ζ potentiala 

(mV) 
pHpzc 

NTA DLS 

10 nm 8.3±2.6 33.3±21.3 38.0±16.7 13.0 11.3 

50 nm 45.0±4.0 83.6±35.4 87.6±33.1 42.0 11.4 

100 nm 93.4±9.8 119.0±66.7 130.2±38.6 47.3 11.2 

aMeasured at I=1 mM of NaNO3 and pH 7. 446 
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