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Introduction 

Background on Attention 

 With countless stimuli continuously bombarding us in our environments, what 

determines how we allocate our limited attention? We are constantly being overwhelmed with 

information, not all of which is important, so we must devise ways to prioritize certain stimuli 

while ignoring others, not allowing them to reach our conscious attention. Traditionally, 

attention is categorized according to a dichotomy, which consists of top-down attention versus 

bottom-up attention (Carrasco, 2011). Top-down attention is voluntary and involves the selective 

processing of stimuli that are relevant to one’s goals. On the other hand, bottom-up attention is 

driven by the salience of stimuli; it is involuntary and goal-irrelevant, involving the reflexive 

allocation of attention. For example, when searching for your yellow car in a crowded parking 

lot, you would allocate top-down attention to search for the color yellow, and you would not 

attend to cars of any other color. However, if a car’s headlights began flashing near you, this 

physically salient stimulus would suddenly and briefly capture your attention according to a 

bottom-up mechanism. Though these flashing headlights are irrelevant to your goal of finding 

your yellow car, this information is distracting and automatically captures attention, though 

briefly.  

The neural mechanisms that are implicated in top-down and bottom-up attention are 

complex. Bottom-up attention has an earlier time course than does top-down attention (Connor, 

Egeth, & Yantis, 2004). Part of this difference in time course is due to the specific neural 

mechanisms, as top-down attention has been argued to utilize primarily feedback mechanisms, 

while bottom-up attention relies mainly on feedforward mechanisms (Pinto et al., 2013; 

Theeuwes, 2010). In order to describe the mechanisms associated with these types of attention, 
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“feature maps” have been used, into which processed visual features are separated (Wolfe, 1994; 

Katsuki & Constantinidis, 2012). These feature maps represent basic stimulus components, 

including color and orientation. These feature maps are then combined to form a saliency map. 

The superior colliculus is an important brain structure in salience determination (Veale, Hafed & 

Yoshida, 2017; White et al., 2017). Feature and saliency maps are mostly concerned with 

bottom-up attention, which is reliant largely, but not entirely, on feedforward processes, 

contributing to a faster onset as compared to top-down attention (Khorsand, Moore & Soltani, 

2015; Pinto et al., 2013). 

Top-down and bottom-up attention do not rely on entirely different mechanisms, though. 

Top-down and bottom-up attention interact in order to guide attention, so a proposed “priority 

map” has been used to account for the combination of factors that are top-down and bottom-up 

which drive attention (Bisley and Goldberg 2010; Serences and Yantis 2006). By utilizing this 

concept of a priority map, the portion of the map with highest activation can be denoted as the 

area to which attention is projected (Koch and Ullman, 1985). In both top-down and bottom-up 

attention, the dorsolateral prefrontal cortex and the posterior parietal cortex are believed to be 

essential (Katsuki & Constantinidis, 2012; Arcizet et al., 2011; Constantinidis and Steinmetz, 

2005; Gottlieb et al., 1998; Kusunoki et al., 2000). Furthermore, with these same brain areas 

being implicated in both kinds of attention, top-down and bottom-up attention should not be 

viewed as two entirely separate processes, since they are interconnected in complex ways 

(Katsuki & Constantinidis, 2012). Top-down and bottom-up attention rely on the coactivation of 

the same network of parietal and prefrontal cortical areas, which include the lateral intraparietal 

cortex and the frontal eye field (Paneri & Gregoriou, 2017; Buschman & Miller, 2007). The 

priority map receives input from stimuli in the environment driven by both modes of attention, 
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and whichever stimulus elicits the greatest activity in the priority map is the one that reaches 

attention.  

 This dichotomy of attention assumes a simple split of stimuli into one of these two 

categories (top-down or bottom-up). However, stimuli cannot always be categorized neatly 

according to this dichotomy, as there are many situations in which this dichotomy fails (Awh et 

al., 2012). One of these instances considers the persistent effects of reward histories, which can 

be developed following the presentation of items associated with reward and which have the 

capacity to influence attention in subsequent tasks in a manner that is neither top-down nor 

bottom-up exclusively (Yantis et al., 2012). This phenomenon, value-driven attentional capture, 

is subsequently described in greater detail. 

Background on Value-Driven Attentional Capture 

Let us reconsider the example of searching for a specific car in a busy parking lot. 

Imagine now that you see your friend in the parking lot, who cannot find her red car. She offers 

you $100 to find her red car. Therefore, you utilize top-down, goal-directed attention to select for 

the color red, ignoring cars of all other colors. Eventually, you find her car, and she rewards you 

the $100 for accomplishing the task. Then, you see another friend in the parking lot, who cannot 

find his minivan. You offer to help and begin utilizing top-down attention to select for minivans 

only, ignoring sports cars, pickup trucks, and other cars in the lot. Now, the color red is no longer 

relevant to your task. However, you find yourself becoming distracted by red cars in the lot, 

since your previous task involved you selecting for the color red. Because of this distraction by 

red cars, you take longer to find your friend’s minivan. Since your task is now to search for your 

friend’s minivan, the color red is no longer task-relevant, nor does it have features that would 
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make it physically salient. So, how do we explain this attentional capture by red cars when 

searching for minivans?  

When completing tasks that involve stimuli with reward contingencies, it is beneficial for 

the observer to allocate attention to the rewarded stimuli. Moreover, the observer seeks to 

maximize reward, so voluntarily allocating attention to rewarded stimuli would increase the 

likelihood of the observer maximizing the possible reward gained from an experiment. However, 

if a once rewarded stimulus was presented again in a later task, one in which this stimulus was 

now solely a distractor, the observer may become distracted by this stimulus, due to the 

development of reward associations in the previous task, during which the observer benefitted 

from attending to the stimulus that had a certain reward contingency. In an unrewarded 

subsequent task, the attentional capture that may occur has been described as value-driven 

attentional capture (VDAC), a phenomenon in which stimuli that lack physical salience are 

rendered in a color that once signaled reward and are now capable of slowing responses and 

capturing eye movements, though now lacking the reward contingency that was once present 

(Anderson et al., 2011).  
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Typical VDAC Methodology & Results 

 

 Anderson and colleagues (2011) presented the foundational methodology for studying 

and measuring VDAC. Their methods include a visual search task utilizing a training phase and a 

test phase (Figure 1). During the VDAC training phase, observers are presented with a search 

array, and their task is to search for a color-defined target (red or green). One of these colors is a 

predictor of high reward while the other is a predictor of low reward. Observers are not explicitly 

informed of these reward contingencies and are only instructed to indicate the orientation of a 

line contained within the red or green shape. The colors red and green are never presented on the 

same trial. As observers proceed through this training phase, they use provided reward feedback 

to associate each target color with either high or low reward. The typical VDAC test phase tasks 

observers with searching for a shape-defined target (e.g. a circle among diamonds or a diamond 

among circles) and indicating the orientation of a line contained within the shape singleton in the 

search array. In the test phase, color is completely irrelevant; however, on half of the trials, one 

Figure 1. Trial sequence in the typical VDAC training and test phases, as proposed by 

Anderson and colleagues (2011). 
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of the distractor shapes in the search array is rendered in one of the target-defining colors from 

the training phase, either the color that predicted high reward or the color that predicted low 

reward. 

When quantifying VDAC, changes in response time (RT) are typically used. 

Traditionally, mean RT is found for each condition. When the previously high-value distractor 

color is present in the test phase, it is common to find slowed orientation judgements compared 

to when the low-value distractor color is present and compared to when neither distractor color is 

present (Anderson & Halpern, 2017, Exp 1, Reanalysis of Anderson et al. 2011b). When 

considering these results within the context of the traditional dichotomy of attention, we 

encounter one of the many circumstances under which this dichotomy fails. For test phase trials 

on which one of the training phase target colors is present, the traditional dichotomy of attention 

would assume no reason to prioritize the stimulus whose color was previously rewarded. From 

the viewpoint of the dichotomy, these previously rewarded colors are no longer task-relevant, 

nor are they physically salient, thereby predicting no reason that they should capture attention 

when presented in the test phase. However, a multitude of experimental evidence conflicts with 

the predictions of the traditional dichotomy, thereby demonstrating its inadequacy (Anderson et 

al., 2011; Anderson et al., 2016; Jiao et al., 2015; Anderson & Yantis, 2013; Anderson & 

Halpern 2017). 

Neural Basis of VDAC 

 When stimuli that were previously associated with high reward are presented, stronger 

neural responses result. Specifically, stronger responses evoked by visual stimuli are observed in 

ventral visual cortex and caudate tail (Anderson, Laurent & Yantis, 2014; Anderson et al., 2016; 

Donohue et al, 2016; Yamamoto, Kim & Hikosaka, 2013). Additional research has shown 
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stronger responses in the early visual cortex (MacLean & Giesbrecht, 2015; Serences, 2008). 

Anderson (2019) mentions two different mechanisms through which previously rewarded stimuli 

can elicit attentional capture on a neural level. The first mechanism involves an increase in 

response in the visual perceptual system, which also includes feature-selective responses in early 

visual cortex and possibly in object-selective cortex (MacLean & Giesbrecht, 2015; Serences, 

2008; Hickey & Peelen, 2015; Hickey, Kaiser & Peelen, 2015). The signals produced by 

previously rewarded stimuli impact the priority map in the parietal cortex. Anderson (2019) 

discusses how previously rewarded stimuli follow trends similar to bottom-up attentional 

capture, in that processing occurs earlier in the visual system and relies heavily on feedforward 

mechanisms. This serves as an explanation for how previously rewarded stimuli could obtain 

priority over more slowly processed top-down stimuli. The second mechanism that Anderson 

(2019) mentions has to do with the caudate tail, which influences reflexive eye movements. This 

mechanism would permit information that is reward-associated to yield higher priority in the 

parietal cortex and could help explain situations where priority is given to reward-associated 

stimuli over those which are processed in either a top-down or bottom-up manner.  

 In a study by Anderson, Laurent, and Yantis (2014), the authors demonstrate that cortical 

structures including the extrastriate cortex for both the left and right visual field shows increased 

activation when a previously valued distractor is present in the test phase versus when it is 

absent. Also, the authors discuss subcortical structures that show increased activation when 

previously valued distractors are present, and these structures include the caudate tail, primarily. 

Anderson and colleagues (2016) demonstrate a correlation between value-based distraction and 

distractor-evoked dopamine response. Moreover, this dopamine release occurs in the right 

posterior caudate, right posterior, putamen, and right anterior caudate. Since reward is no longer 
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associated with the stimuli in the test phase, when dopaminergic release was measured in this 

experiment, distraction by previously rewarded stimuli may be due to dopaminergic reward-

prediction errors, since dopamine is mistakenly released in response to stimuli that are no longer 

associated with reward. 

Controversy in the Literature Regarding VDAC 

 While learned reward is commonly attributed to driving distraction in the test phase, there 

is an alternate explanation in the literature for the capture effects that occur in the test phase. 

Some studies offer an explanation for the VDAC effects that focuses on selection history, not 

reward learning, driving attentional capture in the test phase (Grubb & Li, 2018; Sha & Jiang, 

2016). Consistently deploying attention to some stimulus feature can result in the development of 

a selection history, which can engender lasting attentional biases, even when the stimulus feature 

is no longer relevant to the present task (Awh et al., 2012). In the traditional VDAC paradigm, 

observers must find target-defined colors in a search array before indicating the orientation of the 

line contained within the shape. Could it be the case that selection histories, rather than reward 

histories, drive attentional capture in the VDAC test phase?  

 

Figure 2. Different types of training phase feedback. A. Example of reward feedback for a 

correct trial in training, which is used during the typical VDAC training phase. B. Example of 

accuracy-based feedback on a correct trial, which could be used during a training phase where 

reward has been removed. 
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If selection history drives attentional capture, then the slowed RTs in the test phase when 

a previous target color was presented should still be observed in the absence of reward in the 

training phase. To test this experimentally, rather than giving observers a high or low reward for 

correct judgements, observers can be provided accuracy-based feedback only. Furthermore, as 

opposed to reward feedback which notifies the observer of reward gained on each trial and total 

accrued reward, accuracy-based feedback only informs observers whether they made a correct 

determination on each training phase trial (Figure 2). Some research has demonstrated the ability 

to elicit capture effects by former targets in the test phase by merely using accuracy-based 

feedback in the training phase, as opposed to reward feedback (Sha & Jiang, 2016; Grubb & Li, 

2018).  

In their 2018 publication, Grubb and Li investigate the selection history versus reward 

history debate by completing experiments that elicited capture in the test phase after using 

accuracy-based feedback in the training phase. In the background study to their Registered 

Report (Attention, Perception, & Psychophysics, 2013), Grubb and Li utilize a modified version 

of the short-training VDAC paradigm proposed by Anderson and colleagues (2011, Exp. 3). 

These modifications include adding a group of observers who only received correct/incorrect 

feedback during training and utilizing visual instead of auditory feedback. In this background 

experiment, they found that RTs in the test phase slow when the training phase target is present 

as a distractor in the test phase. Interestingly, this modulation of RT occurred for each of the 

groups, including that which only received accuracy-based feedback.  

In the preregistered study, Grubb and Li explore a possible difference in methodology 

that could have accounted for accuracy-based feedback still resulting in capture in test in their 

background study but not in Anderson and Halpern (2017), in which the authors found that 
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accuracy-based feedback was not sufficient to create capture effects. This methodological 

difference had to do with the type of accuracy-based feedback in the training phase. Anderson 

and Halpern (2017, Exp. 2A) only inform observers of responses that were either incorrect or too 

slow. They do not inform observers of correct responses, thereby not providing positive 

feedback. Grubb and Li also mention two studies from Anderson, Laurent, and Yantis (2012; 

2014), both of which signal accurate responses by withholding negative feedback in training, a 

scenario which consistently failed to elicit capture in test. Grubb and Li, on the other hand, 

explicitly display “correct” when observers made the right judgement in training, as their 

feedback consisted of “correct,” “incorrect,” or “too slow.”  

In order to investigate whether the withholding of negative feedback influences the 

occurrence of capture in test, Grubb and Li include two accuracy-based feedback groups in their 

preregistered study, one that received identical feedback to that in the background study and one 

that only received “incorrect” or “too slow,” thereby having correct responses indicated by the 

withholding of negative feedback. Grubb and Li replicate the finding that capture occurs in the 

test phase just by using accuracy-based feedback in training. However, the authors find no 

evidence that capture was reliant on the presentation of positive feedback in the training phase, 

as the “correct”-delivered and “correct”-withheld groups both showed capture in the test phase. 

Therefore, Grubb and Li present further evidence that accuracy-based feedback in training is 

capable of engendering capture in the test phase. 

On the other hand, there is also a significant body of research that has demonstrated that 

accuracy-based feedback is not sufficient to create capture effects, with Anderson and colleagues 

at the forefront of these studies (Anderson, Laurent & Yantis, 2011, 2012, 2014; Anderson & 

Yantis, 2012; Anderson & Halpern, 2017). This conflicting literature on the reward dependence 
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of capture effects in the test phase invokes the need for a more in-depth analysis of the 

methodological minutia of the training phase which could give rise to these conflicting results. 

 The potential role of selection history has been debated, though a clear consensus on its 

role has yet to be determined. Anderson and Halpern (2017) mention that greater magnitude of 

attentional capture by the previously high-reward color as compared to capture by the previously 

low-reward color must be due to the difference in learned value, since these colors possess the 

same histories as targets and are of the same physical salience. Therefore, other than for reward 

learning, this argument assumes no reason for capture to be greater when one of these colors is 

presented in the test phase over the other. Le Pelley and colleagues (2016) also support the 

hypothesis that selection does not have a major role in determining capture effects, since they 

propose that selection history is equated for the high-value and low-value colors. Moreover, in 

training, it is equally likely that the high-value or low-value color will appear on any given trial, 

and as long as any other differences are controlled for, Le Pelley and colleagues (2016), like 

Anderson and Halpern (2017), argue that the only factor that could be contributing to capture 

differences in the test phase is the difference in value of the two colors in training. However, 

upon further investigation of the training phase, this explanation is called into question. 

Addressing the Inconsistencies in VDAC Studies 

Prioritization of Training Phase Targets. While it is certainly true that there is equal 

probability of the high- or low-reward color appearing on any given trial of a typical VDAC 

training phase, observers may not prioritize each of these colors equally in training. Differences 

in prioritization could thereby lead to differences in selection history for each color. Observers’ 

motivation in the training phase should be to obtain maximum reward, and in order to do this, 

preallocating attention to the high-value color once the observers learn the reward contingencies 
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may be a beneficial strategy to accrue maximum reward (Grubb & Li, 2018). Once observers 

learn the reward contingencies of the training phase colors, they could deploy feature-based 

attention (FBA) voluntarily towards the high-value color prior to each trial, so as to ensure they 

do not miss trials on which a high-reward color is present. Feature-based attention is attention 

that is selectively allocated to visual features, including object color, and can enhance these 

features (Carrasco, 2011). If observers deploy FBA towards the high-value color in training, they 

are developing stronger selection biases for the high-value color than for the low-value color. 

This strategy to preallocate FBA to the high-value color may also be a beneficial strategy given 

the strict time constraints of the typical training phase, as mentioned by Grubb and Li (2018). 

When shown the search array in training, observers are given a strict window of time during 

which they must make a response (600 ms in Anderson et al., 2011, Exp 1; 800 ms in Anderson 

et al., 2011, Exp 3 and in Anderson & Halpern, 2017, Exp 1). With such limited time to make a 

response, a reward-maximization strategy may be beneficial to ensure that observers miss as few 

trials where the high-value color is present as possible. In order to confidently decipher the 

causes of capture in the test phase, a more comprehensive understanding of the types of attention 

deployed in the training phase is required.  

The Importance of the Low-Value Color. As mentioned, typical VDAC test phase 

results include capture by the high-value color when presented as a distractor in the test phase. 

However, there have been studies that have used versions of the paradigm proposed by Anderson 

and colleagues (2011) that have consistently failed to demonstrate capture by the low-value color 

when presented in the test phase (see Anderson & Halpern, 2017, Exp 1). Moreover, in Anderson 

and Halpern (2017, Exp. 1), the authors showed nearly identical RTs for trials on which the 

previously low-value color was present and trials on which neither training phase color was 
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present. This finding has not been of primary concern in the literature, though, because a 

difference in capture by the high-value color when presented in training has been interpreted as 

being the result of learned value in training (Anderson & Halpern, 2017; Jiao et al., 2015; Roper, 

Vecera & Vaidya, 2014). However, by bringing our attention back to the failure of the low-value 

color to elicit capture in the test phase, we may actually be surprised. Assuming that observers 

learn the reward contingencies for the high- and the low-value colors in training, why would the 

low-value color, when presented in the test phase, fail to modulate attention to any extent? In 

order to address this question, we might reconsider the workings of the training phase, 

specifically in terms of the development of reward associations for the low-value color. 

 There are a couple possible explanations for the lack of capture by the low-value training 

phase color when presented in the test phase. It could be the case that VDAC is truly dependent 

on the relative value for high-value color as compared to the low-value color. In the literature, 

some studies argue that the magnitude of reward modulates the amount of capture in the test 

phase (Failing & Theeuwes, 2018; Le Pelley et al., 2014). However, another explanation could 

be that people do not actually learn much about the reward contingencies for the low-value color 

in training. If this were the case, observers could potentially be over-attending to the high-value 

color and failing to actually learn about the low-value color. This over-attention to the high-value 

color could be a result of selection biases due to reward maximization strategies being employed 

by observers, which implies that it may be the case that selection biases are being developed for 

the high-value color in training, while the low-value reward contingency is not actually being 

learned.  
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Supplementing RT Analyses with Computational Modeling  

When analyzing RT data, utilizing RT distributions are extremely useful(Hohle, 1965; 

Ratcliff, 1978). Moreover, merely using measures of central tendency, such as mean or median 

RT, can potentially cause important information about the distributions of RTs to be overlooked 

(Schmiedek et al., 2007; Heahtcote, Popiel & Mewhort, 1991). Therefore, it is beneficial to 

supplement traditional analyses using measures of central tendency with distributions that model 

RT data well. It has been shown that RT distributions are not Gaussian (normal) distributions, 

and instead, they are best represented by a mixture of a Gaussian distribution and an exponential 

distribution, termed an exponentially modified Gaussian distribution (ex-Gaussian, Luce, 1991; 

Whelan, 2008).  

The ex-Gaussian distribution is useful because it can adequately be described by three 

parameters (Figure 3). These three parameters are mu (μ), the mean of the Gaussian component, 

sigma (δ), the standard deviation of the Gaussian component, and tau (τ), the mean of the 

exponential component. The Gaussian and exponential components of the distribution possess 

psychological meaning as well, which can be useful in characterizing RTs. The Gaussian 

Figure 3. The ex-Gaussian function has both an exponential component and a Gaussian 

component. It can be described by three parameters (μ, δ, τ). 
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component has been proposed to describe the transduction component, which consists of more 

automatic processes, including the time required by the sensory process and the time to 

physically make a motor response, while the exponential component has been proposed to 

describe decision-based processes, meaning the time required for the observer to make a decision 

about the stimuli (Hohle, 1965; Luce, 1991; Schmiedek et al., 2007; Lacouture & Cousineau, 

2008). By fitting RT distributions with ex-Gaussian functions, there is more that could 

potentially be revealed about the underlying cognitive processes that yield the distribution of 

RTs. 

In VDAC, these distributions of RTs are useful in helping to determine the underlying 

causes of capture in the test phase. Moreover, we can analyze potential differences in parameter 

values for each distribution of RTs (previously high-value color present, previously low-value 

color present, no training phase color present). Since mu is representative of the sensory 

component, a greater value for mu is indicative of a longer sensory process taking place. 

Therefore, when relating this to VDAC, we would expect a larger mu value when a training 

phase value-color is presented as a distractor in the test phase. When a previously valued 

distractor color is present in test, this color automatically captures attention, thereby causing a 

longer sensory process. Once the previously valued color grasps attention briefly, the sensory 

process must bring attention back to the task at hand. Due to attention reflexively being allocated 

to the training phase color, we would expect a greater mu value, due to the longer sensory 

process. Since tau represents the decision process, a greater value for tau would be indicative of a 

longer time needed to make a decision about the stimuli on the screen. We would not expect tau 

to differ when comparing the distributions in a typical VDAC experiment, since the attentional 

capture in VDAC is likely due to the reflexive allocation of attention to the previously valued 
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color, a phenomenon that would likely be described by the mean of the Gaussian component 

(mu), which accounts for the more automatic processes. 

The Present Study  

 In this study, we asked whether observers learned the reward contingencies for the low-

value stimulus in a modified VDAC training phase. The modifications to the training phase 

sought to provide observers with an environment where reward alone drove attentional capture 

by eliminating benefits of adopting a reward maximization strategy as well as the creation of 

biased selection histories. We hypothesized that observers would develop reward associations for 

the low-value stimulus and show VDAC effects in the test phase. Since our modifications sought 

to limit confounding factors, we expected the magnitude of reward alone to drive attentional 

capture. The modified training phase consisted of two stimuli, and the task was to choose a 

stimulus (left or right) while using feedback to maximize reward. On each trial, a value stimulus 

(high or low) was paired with a “no-value” match. Following the modified training phase, 

observers completed a traditional VDAC test phase, which entailed indicating the orientation of a 

line contained within a unique shape. In the test phase, color was completely irrelevant. To 

analyze the test phase data, we completed a traditional response time analysis utilizing the mean 

and completed a computational modeling analysis to confirm the reliability of the results. 

As a preview of our results, observers learned the reward contingencies in training; 

however, there was no significant difference in learning between the high-value and low-value 

stimuli. In the test phase, RTs slowed when the high-value training phase color was present 

relative to when the low-value training phase color was present. However, the low-value training 

phase color did not slow RTs relative to when neither training phase value color was present. 

Fitting these data with ex-Gaussian distributions confirmed the results from the RT analyses and 
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further revealed the complexities of the psychological mechanisms resulting in these capture 

effects. 

Methods 

 Observers and Procedure 

22 adults (aged 18-24, 13F) participated in the experiment for monetary compensation. 

All had normal color vision and provided written informed consent before participating; 

experimental procedures were approved by the Institutional Review Board at Trinity College. 

Each observer completed a single experimental session, consisting of a training phase and a test 

phase. At the end of the session, observers were paid according to their cumulative reward 

earnings from the training phase (mean earnings, $10.41) as well as an additional $5 from the 

test phase.  

Apparatus 

The experiment was programmed in PsychoPy (Peirce, 2007) and run on a 3.0GHz Dual-

Core Intel Core i7 Mac Mini; stimuli were displayed on 27.0" LED-Lit Dell Gaming Monitor 

(model: S2716DG). Participants were seated in a darkened experimental testing room 

approximately 96 cm from the monitor. Responses were collected with a Logitech F310 gaming 

controller.  
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Training Phase

 

Modifications Overview 

We addressed this selection history versus reward history debate by modifying the 

traditional VDAC training phase in a number of ways. In typical studies using the traditional 

VDAC paradigm, the training phase consisted of six shapes in the search array. Instead, we 

presented two shapes in the training phase search array on each trial. We also modified the task. 

Observers no longer were instructed to search for red or green and instead were instructed to use 

feedback to maximize reward. Limiting the search array to two shapes and modifying the 

instructions allowed us to determine potential reward learning for each value color individually. 

Also, by increasing the response window significantly, we eliminated the time constraints of 

typical VDAC training phases, thereby minimizing the incentive to adopt a reward maximization 

strategy because of strict time constraints. These modifications were designed to decrease the 

benefit of preallocating FBA to the high-reward color, which is crucial in limiting selection 

Figure 4. Trial sequences for the training and test phases. See text for details.  
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history effects. By not specifically instructing observers to search for red or green, they would 

not as easily be able to utilize FBA. 

Methodological Details 

A randomly selected period of fixation (400, 500, or 600 ms) began each trial, followed 

by the presentation of a visual search array. Participants had a virtually unlimited response 

window (10 seconds). The search array consisted of two stimuli, one which was a diamond and 

the other a circle (radius, 1.15 DVA), both presented on the horizontal meridian, one to the left 

and one to the right of a central fixation cross (eccentricity, 5 DVA). The diamond was sized to 

match the area of the circle. One of these stimuli contained a line oriented 45 degrees clockwise 

of vertical, and the other stimulus contained a line oriented 45 degrees counterclockwise of 

vertical. The stimuli never contained the same internal line orientation, and the orientation was 

randomly selected on each trial. Prior to the training phase, two pairs of colors were randomly 

chosen from a set of ten colors (red, lime, blue, yellow, magenta, cyan, white, gray, orange, tan). 

One pair of colors consisted of a high-value color and a “no-value” match; the other pair 

consisted of a low-value color and a different “no-value” match. Therefore, each stimulus had 

three distinct features on each trial (shape, color, and internal line orientation).  

On each trial, one pair of colors was presented, either the high-value color and its “no-

value” match or the low-value color and its “no-value match.” On every trial, the shape and 

internal line orientation for each of the colors in the pair was randomly chosen, so that there was 

one square and one diamond present, as well as one CW internal line and one CCW internal line. 

Prior to the commencement of the training phase, observers were instructed to “use the feedback 

to learn which object will give the highest reward on each trial.” Importantly, observers were not 

told that color was the reward-defining feature. Observers selected either the stimulus on the left 
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or the right by pressing one of two buttons on a gaming controller (two-alternative forced-choice 

task). Throughout training, observers needed to learn that color was the relevant feature, so that 

they could maximize reward. All stimuli appeared against a black background.  

Following a response, the chosen object alone remained present for 1000 ms. Choosing a 

high-value color yielded high reward ($0.10) with probability 0.8, low reward ($0.02) with 

probability 0.1, or no reward with probability 0.1. Choosing a low-value color yielded low 

reward ($0.02) with probability 0.8, high reward ($0.10) with probability 0.1, or no reward with 

probability 0.1. Finally, choosing the “no-value” match for either value color yielded no reward 

with probability 0.8, low reward ($0.02) with probability 0.1, or high reward ($0.10) with 

probability 0.1. After each trial, observers were shown their reward for the current trial, 

displayed above the total accrued reward. If no response was made before the deadline, the 

words “too slow” were displayed. There was a 1000 ms break between trials. 

Test Phase 

The experimental design of the test phase was a direct replication of that in Grubb and Li 

(2018), which itself was a replication of the “short-training” paradigm proposed by Anderson 

and colleagues (2011, Exp. 3). The sizes of the shapes in the test phase were identical to those 

used in the training phase. Prior to completion of the test phase, observers completed two blocks 

of practice trials, with each block containing 10 trials. A random period of fixation was once 

again presented to begin each trial. Following the fixation period, the search array appeared for 

1200 ms. The visual search array consisted of six differently colored items positioned at the 

vertices of an imaginary hexagon encompassing a central fixation point, but the target was now 

defined as the unique shape: a diamond among five circles, or a circle among five diamonds. 

However, on half of the trials, one of these six distractor shapes was rendered in a color that 
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matched a training phase color, either the color that predicted high-value reward or the color that 

predicted low-value reward. The high-value training phase color was present on a quarter of the 

total test phase trials and likewise for the low-value training phase color. The high-value and 

low-value training phase colors were never present on the same trial.  

In the other half of the trials, none of the distractor shapes were rendered in a color that 

matched a training phase value color. Additionally, the “no-value” match colors never appeared 

in the test phase, not as distractors and not as targets. In all trials, the target itself was never the 

high-value or low-value training phase color, and the target appeared equally often at each of the 

six possible locations. On trials when a training phase value color was not present, the six objects 

were rendered in the remaining six colors from the above list once the training phase high-value 

and low-value colors and their “no-value” matches were excluded. On trials with a training phase 

value color present, the colors of remaining five distractors were randomly chosen from this list 

of six colors without replacement. When a training phase value color was present, it appeared 

equally often at each of the five remaining non-target locations. Observers were told that color 

was irrelevant, and they were instructed to “respond as quickly as possible while minimizing 

errors.” The task was to report the orientation (horizontal or vertical) of a line contained inside 

the target (the unique shape), using one of two buttons on the gaming controller. The five 

distractors all contained an internal line that was oriented 45 degrees clockwise or 

counterclockwise of vertical. An interstimulus interval (ISI) of 1000 ms followed the 

presentation of the search array. After the ISI, accuracy-based feedback appeared on the screen 

for 1500 ms. Feedback consisting of “correct,” “incorrect,” and “too slow” was displayed for 

accurate responses, inaccurate responses, and missed response deadlines, respectively. All 

stimuli appeared against a black background.  
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RT Analyses 

In line with convention (e.g., Anderson et al., 2011; Anderson & Halpern, 2017), the 

dependent variable for all RT-based analyses was mean RT for correct trials only; individual 

distributions were first trimmed to remove responses occurring 3 standard deviations above or 

below the condition mean.  

Training Phase 

We determined the proportion of trials on which a value stimulus was selected during the 

training phase in an attempt to show learning taking place. Also, we determined the proportion of 

trials on which the high-value stimulus was selected compared to the proportion of trials on 

which the low-value stimulus was selected. We compared the proportion of trials on which the 

different stimuli were selected utilizing paired t-tests to determine the learning of reward 

contingencies. 

Test Phase 

In the test phase, we determined the mean RTs for trials on which a previously valued 

stimulus was presented as a distractor and for trials on which no previously valued distractor was 

present. We compared these mean RTs utilizing paired t-tests to determine any differences in 

capture brought about by the distractors rendered in a previously valued color. 

Computational Model  

To supplement the traditional RT analyses with an alternate approach that utilizes the 

entire distributions of RTs, we fit the response time distributions with computational models. 

Specifically, we utilized the ex- Gaussian function to model the distributions. With the 
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computational tools written in MATLAB source code provided by Lacouture and Cousineau 

(2008), we used maximum likelihood estimation to determine the parameters mu, sigma, and tau 

for each distribution (previously high-value distractor present, previously low-value distractor 

present, and no previously valued distractor present). Once we determined these parameters for 

each distribution, we were able to calculate the mean of each distribution (x̄ = μ + τ). By 

comparing the means of the distributions utilizing paired t-tests, we were able to supplement our 

RT analyses. Furthermore, the distributions also allowed us to analyze potential differences in 

specific parameters. We completed paired t-tests to potentially determine differences in specific 

parameters by distribution, which would reveal more specific insight into the specific 

components of RT modulation occurring in the test phase. 

Recoverability Procedure 

In order to assess the reliability of our findings using the ex-Gaussian distributions, we 

completed a parameter recovery exercise. To begin, we determined the minimum and maximum 

values that we observed in our experimental participants for each parameter. Using the ranges for 

each parameter, we determined ten values for each parameter that were equally spaced beginning 

with the minimum value and ending with the maximum value. Furthermore, by utilizing all 

possible combinations of these parameter values, we were able to obtain 1000 different 

combinations. Then, for each of these 1000 sets of parameter values, we generated 240 random 

trials of simulated data. We were then able to complete our original model-based analysis on this 

extensive new data set. Once we determined the parameters from this simulated data, we were 

able to determine whether we successfully recovered the original parameters. The ideal results 

for this procedure would be a tight correlation between the parameters from the true experiment 

and the simulated parameters (Wilson & Collins, 2019). 
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Results 

Response Time Analyses 

Training Phase  

As the training phase trials progressed, observers demonstrated learning of the value 

stimuli. Figure 5A demonstrates the overall trend of learning that occurred, as the proportion of 

observers choosing the value stimulus increased across trials. For both the high- and low-value 

conditions, the proportion of value choices began around chance (0.5), meaning that observers 

were guessing a stimulus. However, as the trials progressed, observers showed learning for each 

Figure 5. Results from the training phase data. A. Scatterplot displaying proportion of 

participants choosing each value stimulus over time, showing learning for each value stimulus. 

B. Bar graph displaying the proportion of high-value and low-value stimulus choices in 

comparison to each “no-value” match, averaged across participants.   

 

A. 

B. 
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value stimulus, as the proportion of value choices increased over time. A single factor ANOVA 

revealed that learning of the value stimuli impacted observers’ decisions, as they selected the 

value stimuli more often than chance would predict (ANOVA, F=28.61, p<0.0001). To 

determine if learning occurred for both the high-value and low-value conditions separately, 

paired-sample t-tests were completed for each value condition, and the results are displayed in 

Table 1. These analyses revealed that participants chose both the high-value stimulus and the 

low-value stimulus significantly more often than chance. However, learning did not significantly 

differ for the high-value condition compared to the low-value condition.  

 

 

 

Test Phase 

 High vs. Chance  Low vs. Chance  High vs. Low 

t-statistic 7.28  7.91  1.00 

df 21  21  21 

p-value <0.0001  <0.0001  0.1635 

mean within-

participant different 
0.263  0.233  0.031 

Table 1. Summary of t-tests comparing proportion of trials on which the value stimuli were 

chosen. 

Figure 6. Results from the test phase data. A. Bar graph displaying the mean RTs in each 

condition. B. Bar graph displaying the mean, within-participant differences in RT. 

 

B. A. 
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In the test phase, RTs slowed when the high-value training phase color was present as a 

distractor relative to when neither training phase color was present (one-tailed, paired t-test, 

t(21)=2.5380, p=0.0096). Further analysis revealed that RTs slowed significantly when the high-

value training phase color was present relative to when the low-value training phase color was 

present (one-tailed, paired t-test, t(21)= 1.9169, p= 0.0345). This was not the case for the low-

value training phase color, when present, relative to when neither training phase color was 

present. The low-value training phase color did not slow RTs relative to when neither training 

phase value color was present (one-tailed, paired t-test, t(21)=0.0715, p=0.4718). Figure 6 

displays this RT modulation by the high-value distractor when present, while the mean RTs for 

the low and none condition are nearly identical. Analysis of error rates confirmed that these 

changes in response time were not the result of simple speed-accuracy tradeoffs (see Table 2). 

There were no significant differences in accuracy when comparing any of the distributions (high-

value vs. none: paired t-test, t(21)= -0.7160, p= 0.2409; high-value vs. low-value: paired t-test: 

t(21)= -0.9925, p=0.1661; low-value vs. none: paired t-test: t(21)= 0.6526, p=0.2605).  

 

Training Phase Value Color RT (ms)  % Correct 

Mean SD Mean SD 

High 736.6 41.8  91.1 76.1 

Low 725.4 40.9  92.3 53.7 

Neither 725.0 44.6  91.8 52.0 

 

 

 

Table 2. Summary of test phase statistics, depending on the presence of the previously valued 

color. 
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Computational Model 

 Using the ex-Gaussian distributions, we computed the means of each distribution (Table 

3). The results of the computational model confirmed the results from the response time 

analyses. We determined the means of the distributions by summing mu and tau (x̄ = μ + τ). 

When comparing the mean of the distribution for the data when the high-value training phase 

color was present to that when no training phase distractor was present and to that when the low-

value training phase distractor was present, the high-value distribution had a significantly greater 

mean (Table 3). Again, there was no significant difference between the mean of the distribution 

when the low-value training phase color was present as compared to the distribution when no 

training phase color was present (Table 3).  

 High vs. None High vs. Low Low vs. None 

t-statistic 1.9269 1.9514 -0.4169 

df 21 21 21 

p-value 0.0338 0.0322 0.6595 

mean within-

participant difference 
8.8663 11.2838 -2.4175 

  

To investigate the potential impact of a change in mu or tau, we completed paired t-tests 

comparing mu and tau values for each distribution. We found a significant difference in mu 

when comparing mu from the high-value distribution to mu from the distribution for trials when 

neither previously valued distractor was present (Table 4). However, this was the only significant 

difference found when searching for differences in individual parameters.  

Table 3. Summary of t-tests comparing the means of the distributions. 
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High vs. None  High vs. Low  Low vs. None 

Mu Tau Mu Tau Mu Tau 

t-statistic 1.1477 -0.6192  1.9098 -1.0633  -0.8031 0.4933 

df 21 21  21 21  21 21 

p-value 0.1320 0.5425  0.0350 0.2997  0.7846 0.6269 

mean within-

participant difference 
20.8457 -11.9795 

 
28.2540 -16.9702 

 
-7.4082 4.9907 

 

Recoverability Procedure 

 

 After determining the range for each parameter in our experiment (mu: 491.52 ms – 

774.42 ms; sigma: 2.29E-10 ms – 179.76 ms ; tau: 4.15 ms – 261.58 ms), we divided these 

values into ten equal steps. These steps served as the simulated values for each parameter, 

derived from the parameter values obtained in our experiment. The recoverability procedure 

revealed a near linear relationship for each parameter in Figure 7. Each box plot that represents a 

simulated value is composed of 100 estimated values. Another representation of the relationship 

Table 4. Summary of t-tests investigating potential differences in mu or tau between 

distributions. 

Figure 7. Parameter recovery for mu, sigma, and tau. 
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between fit and simulated parameter values is demonstrated in Table 5, which presents the values 

obtained from our range of parameters as well as the median estimated values. 

mu  sigma  tau 

simulated estimated  simulated estimated  simulated estimated 

491.52 492.29  2.29E-10 1.45E-07  4.15 4.84 

522.95 524.03  19.97 20.19  32.75 33.29 

554.38 554.66  39.95 38.84  61.36 57.79 

585.82 587.23  59.92 59.74  89.96 91.78 

617.25 617.80  79.89 78.01  118.56 116.22 

648.69 649.37  99.86 97.21  147.17 147.67 

680.12 680.49  119.84 120.02  175.77 176.09 

711.55 711.73  139.81 136.54  204.37 203.68 

742.99 743.36  159.78 158.05  232.97 230.51 

774.42 775.59  179.76 176.93  261.58 261.75 

 

Discussion 

Limitation due to COVID-19 

Before we begin our discussion of the results, we acknowledge that a major limitation to 

the present study is that we are only analyzing data from 22 participants. Our initial intention 

was to replicate this experiment with slight modifications on a significantly larger dataset; 

however, restrictions on in-person experiments due to COVID-19 made this replication intent 

impossible. Therefore, we remain cognizant of this limitation and are cautious when interpreting 

our data. 

Methodological Modifications 

 Our modifications to the training phase sought to provide an environment where 

observers could learn reward contingencies, while limiting other confounding factors. 

Table 5. Summary of median simulated parameter values for every fit value used 

for mu, sigma, and tau. 
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Presentation of the search array for ten seconds eliminated any time constraints that could have 

potentially incited observers to use some kind of reward maximization strategy, as discussed by 

Grubb and Li (2018). Furthermore, it would not have benefited observers to preallocate attention 

to the high-value color in our training phase, due to the lack of a time constraint. In our training 

phase, observers did not know prior to the experiment what feature of the stimuli would yield 

reward. Moreover, the content of our instructions was another instrumental difference in our 

training phase as compared to others typically used in VDAC experiments. By only instructing 

observers to use feedback to maximize reward, we incited observers to determine the reward 

contingencies on their own, assuming their strategy was to maximize total accrued reward. We 

attempted to decrease their potential use of FBA, since we did not bias them to searching for two 

specific colors before the commencement of the experiment.  

Once observers learned that color was the reward predicting feature in training, they 

would not have benefitted from adopting a reward maximization strategy that involved the 

preallocation of attention to the high-value color. Moreover, since we did not restrain the training 

phase temporally, observers could be searching for either color once they made reward 

associations, since there was an equal likelihood that the high- or low-value color would appear 

in training. Adopting a reward maximization strategy similar to the one described by Grubb and 

Li (2018) would not have necessarily harmed observers in our training phase, but it certainly 

would not have benefitted them, and for that reason we can do not expect them to have used this 

type of strategy. 

Learning in the Training Phase 

 In our analysis of data from the training phase, we found that observers learned the value 

for both the high-value and low-value colors. VDAC studies in the literature typically have 
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explicit directions to search for red or green in training (Anderson & Halpern, 2017, Exp 1, 

Reanalysis of Anderson et al., 2011b; Roper, Vecera, & Vaidya, 2014). These studies 

demonstrate learning of the reward contingencies for the high-value color by demonstrating 

capture by the high-value color in the test phase. However, they are unable to explicitly 

demonstrate learning of the low-value color in training, since the low-value color does not have 

any capture effects in the test phase. Furthermore, our ability to demonstrate learning of the low-

value color in training is a crucial result when considering outcomes in the test phase of typical 

VDAC studies.  

We also determined that learning for the high-value color as compared to the low-value 

color was not significantly different. This is an important result, because our data imply that 

observers learn the high-value color and the low-value color equally well. However, we remain 

cautious when interpreting this result. While we can be confident that observers learn the reward 

contingencies for both the high- and low-value colors in training, we remain open to the 

possibility of a difference in learning for the high-value color as compared to the low-value 

color. With more data, could a difference in learning have emerged? Future research is needed to 

investigate this possibility.  

We can now revisit one of the possibilities mentioned prior when analyzing the Anderson 

and Halpern (2017, Exp 1) study. In this study, the authors found that RTs for trials on which the 

previously low-value training phase color was preset were nearly identical to RTs for trials on 

which no training phase color was present. One of the possibilities for these identical RTs is that 

observers do not learn much about the reward contingencies for the low-value color. However, 

we have demonstrated that this is not the case, as observers do learn the reward contingencies for 

the low-value color. 
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 Demonstrating learning for the low-value stimulus in training is novel in the literature. 

Given that the reward associations were made for the low-value stimulus, we expected the low-

value color to modulate attention in the test phase. Capture effects by the high-value color in test 

are explained by many as occurring due to reward learning (Anderson, Laurent & Yantis, 2011, 

2012, 2014; Anderson & Yantis, 2012; Anderson & Halpern, 2017). If learning for the high-

value color and low-value color is equal, the low-value color should modulate attention in the 

test phase significantly if capture truly is dependent on persistent reward histories. Ruling out 

this possibility based on the data from our study is an important step to understanding how 

capture effects are created in the test phase. 

Modulation in the Test Phase 

 Interestingly, we did not find capture effects by the previously low-value training phase 

color in the test phase. The previously high-value training phase color, when presented as a 

distractor in the test phase, modulated attention. This modulation of attention by the high-value 

color, but not by the low value color has been displayed by experiments completing versions of 

the standard VDAC paradigm (see Anderson & Halpern, 2017, Exp 1, Reanalysis of Anderson et 

al. 2011b). However, our study demonstrated learning of the value of the low-value color in 

training. So, why did the low-value color from training fail to show capture effects in the test 

phase when presented? This question points to the complexity of the VDAC training phase.  

The attentional capture effects are likely not due to selection history alone or reward 

learning alone. Further examination of the different mechanisms at play resulting in capture or 

the lack thereof must be a task of future research. How selection history effects manifest 

themselves in terms of influencing attentional capture can blur the lines between selection 

history and reward history effects. Moreover, a sense of accomplishment due to positive 
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performance on a task can be accompanied by reinforced sensory processes resulting in bias 

towards a specific stimulus feature such as the high-value color in training. This feature of 

perceptual learning has been investigated for the ability of certain stimulus features to invoke this 

internal reward signaling (Watanabe & Sasaki, 2015; Kim & Anderson, 2019). Though our 

feedback in the training phase presented the reward gained on that trial and the total accrued 

reward and did not include accuracy-based feedback including “correct or “incorrect,” the sense 

of accomplishment from reward gain on a particular trial could have invoked internal reward 

signaling for the successful completion of the task along with external reward signaling for the 

specific monetary gain. If this were the case, it could have been the case that associations to the 

high-value color were greater than those to the low-value color in training since the internal 

reward signaling would have been greater when $0.10 was gained as opposed to when $0.02 was 

gained. This could have resulted in the reward learning for the low-value stimulus in training, but 

the subsequent failure to modulate attention in test. This explanation that relative value 

influences the magnitude of capture in the test phase is one of the possibilities proposed prior 

when attempting to explain the nearly identical capture effects for trials on which the previously 

low-value training phase color was present and the trials on which no training phase color was 

present in Anderson and Halpern (2017, Exp 1). 

 To address this possibility, an interesting modification could be made to our experiment 

in an attempt to equate this potential difference in prioritization. This modification involves 

dividing the training phase trials into blocks. One group of participants would undergo the 

training phase as one block which consists of trials containing only the low-value color and its 

“no-value” match followed by trials consisting of solely the high-value color and its “no-value” 

match. Another group would complete these same training phase blocks, but in the reverse order. 
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Finally, the third group, a control group, would complete this training phase in an identical 

manner as the one from this experiment with trials interspersed. Breaking the training phase into 

blocks would allow observers to explicitly focus on learning the rules independently of one 

another, for those in the two experimental groups. By learning the reward predictor, independent 

of whether it is high or low, subsequently searching for that reward predictor on every trial 

would certainly prevent observers from prioritizing one color over another or from preallocating 

attention to one color over the other once the reward contingencies are learned, since the focus of 

the block is entirely on one color, as opposed to two colors of different value predictions. 

Furthermore, observers could learn the reward-predictor in the specific block and search for that 

specific reward-predictor on every trial. When completing the block containing the low-value 

color, observers’ strategy should be to always attend to the low-value color once it is learned, 

since there will be no threat of the high-value color appearing on any trial in the block. This 

strategic presentation of trials in the training phase could result in stronger associations made for 

the low-value stimulus.  

By then having observers complete an identical test phase, the previously low-value 

training phase color could potentially have capture effects when compared to trials on which no 

training phase color was present. It has been demonstrated that the magnitude of reward 

associated with the distractor previously impacts the extent of capture that occurs (Failing & 

Theeuwes, 2018; Le Pelley et al., 2014). Therefore, it could be the case that the low-value color, 

when presented as a distractor in test, captures attention compared to baseline, but does so to an 

extent less than the high-value color is able. Such an experiment would more thoroughly 

investigate the possibility that VDAC effects are dependent on relative reward magnitude. These 

types of methodological minutia are crucial to understanding the learning that takes place in the 
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typical VDAC paradigms. Our experiment begins to unravel the complexities of the training 

phase; however, further investigation is certainly needed. 

Ex-Gaussian Function 

Confirmation and Extension of Results  

 The distributions we modeled using the ex-Gaussian function supported the traditional 

RT analyses we completed. The mean of the distribution for trials on which the previously high-

value training phase color was present was significantly greater than the mean of the distribution 

both for trials on which the previously low-value training phase color was present and for trials 

on which neither training phase color was present. However, the mean of the distribution for 

trials on which the low-value training phase color was present was not significantly different 

from the distribution for trials when neither training phase color was present. Therefore, we can 

have a greater degree of confidence in our results from the traditional RT analyses. 

 We also utilized the RT distributions to address a different possibility, which sought to 

understand whether the specific parameter values differed for the different distributions. We 

found that mu was significantly greater for the high-value distractor present distribution 

compared to the low-value distractor present condition. A greater value for mu translates to the 

mean of the Gaussian component being greater. This implies that when the previously high-value 

distractor was present, the sensory process required more time. This interpretation would account 

for the previously high-value distractor capturing attention and resulting in a longer sensory 

process since the observers’ attentional systems have to refocus attention after being distracted 

by the previously high-value distractor before allowing the observer to make a decision about the 

search array. However, we will not over-interpret this significant value of mu. We did not find 
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any other significant differences in parameter values among the distributions. While it may be 

the case that mu is significantly greater for the high-value distractor condition, we would have 

expected this to hold true when comparing the high-value distractor condition to the “no-value” 

distractor condition as well, which was not the case in our experiment. Additional and more 

extensive research on VDAC utilizing the ex-Gaussian function to try to understand the 

psychological underpinnings of these RTs is needed. 

Recoverability Procedure 

Based on the parameter recovery exercise, we confirmed that our results from the 

computational model were reliable. As displayed by the tight correlation between the estimated 

parameters and the simulated parameters in Figure 7, we were able to recover the parameters 

successfully. This exercise was very important, since we are now able to have confidence that 

the data we fit with the ex-Gaussian function provided meaningful parameter values. 

Future Directions 

 Recent research has demonstrated differences in capture effects on an individual basis, 

suggesting differences in capture based on the specific observer. Much of this research has 

focused on the impact of depressive symptoms on capture affects due to reward learning 

(Anderson et al., 2017; Anderson et al., 2014). Moreover, these studies demonstrate that the 

magnitude of attentional capture by previously rewarded stimuli is sharply decreased in those 

who demonstrate symptoms of depression. Therefore, depressive symptoms may be an important 

factor to consider when participants complete studies on VDAC. One study by Marchner and 

Preuschhof (2018) screened participants for acute depressive symptoms prior to administration 

of the VDAC experiment, since they considered the potential impact of depressive symptoms on 
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the magnitude of capture effects. This consideration is especially important when measuring 

VDAC effects, and more research regarding depressive effects on capture may reveal the 

importance of considering these effects in future experiments.  

 We have only begun to scratch the surface on the complex happenings of the learning 

that takes place in the VDAC training phase. Importantly, this study has shown that observers do 

learn the reward contingencies for the low-value color. However, by no means does this study 

reveal the specific mechanisms of attentional capture in the test phase. We encourage future 

investigation into the workings of the training phase and broad consideration of all the possible 

factors that could impact capture in the test phase, from the selection history versus reward 

history problem to the potential impact of individual differences on capture effects. 
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