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I. INTRODUCTION 

Artificial intelligence is entering medical practice. The combina-

tion of medical big data and machine learning techniques allows de-

velopers to create AI usable in medical contexts — also called “black-

box medicine” due to its inherent opacity — that can help improve 

human health and health care. Only a few years ago, black-box medi-

cine seemed far from real-world use. Today, there are already FDA-

approved devices that use AI to diagnose diabetic retinopathy or to 

flag radiologic images for further study.1 Hospitals have used AI to 

help develop care pathways for increasingly specified groups of pa-

tients. Future uses are multiplying. 

But there is a problem lurking in the development of AI in medi-

cine.2 A key promise of medical AI is its ability to democratize medi-

cal expertise, allowing providers of all sorts to give care that 

otherwise might be beyond their capacity.3 Medical AI is typically 

trained in high-resource settings: academic medical centers or state-

                                                                                                    
1. See infra Section III.C.1. 
2. Actually, there are lots of problems, including how to set proper incentives, how to 

regulate for safety and efficacy, how to use the tort system to encourage providers and hos-

pitals to adopt the best medical AI products, challenges to the doctor-patient relationship, 
and questions of diminishing human expertise. For an initial overview on those problems 

and an introduction to medical AI generally, see W. Nicholson Price II, Black-Box Medi-

cine, 28 HARV. J.L. & TECH. 419 (2015) [hereinafter Price, Black-Box Medicine] (introduc-
ing medical AI and canvassing several issues). This Article is focused on a different 

problem. 

3. See, e.g., Victoria J. Mar &. Peter H. Soyer, Artificial Intelligence for Melanoma Di-
agnosis: How Can We Deliver on the Promise?, 29 ANNALS ONCOLOGY 1625, 1625 (2018) 

(“[A]rtificial intelligence (AI) promises a more standardised level of diagnostic accuracy, 

such that all people, regardless of where they live or which doctor they see, will be able to 
access reliable diagnostic assessment.”). 
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of-the-art hospitals or hospital systems.4 These sites typically have 

well-trained, experienced practitioners and are most likely to have 

high-quality data collection systems; training medical AI in these sys-

tems makes intuitive sense. Democratizing medical expertise, though, 

requires deploying that medical AI in low-resource settings like com-

munity hospitals, community health centers, practitioners’ offices, or 

rural health centers in less-developed countries.5 This translation runs 

into a problem: low-resource contexts have different patient popula-

tions and different resources available for treatment than high-

resource contexts, and disparities in available data make it hard for AI 

to account for those differences. 

The translational disconnect between high-resource training envi-

ronments and low-resource deployment environments will likely re-

sult in predictable decreases in the quality of algorithmic 

recommendations for care, limiting the promise of medical AI to actu-

ally democratize excellence. To take a simple example: at Memorial 

Sloan Kettering, one of the best cancer centers in the world, it may 

well make sense to give a patient a cocktail of powerful chemothera-

peutics with potentially fatal side effects, since trained oncology nurs-

es and other specialists are available to monitor problems and 

intervene if things go wrong. In a community hospital without those 

safeguards, though, it may be a better call to administer less drastic 

remedies, avoiding the chance of catastrophic failure. That danger is 

even more pronounced in even lower-resource settings, such as rural 

areas of less-developed countries. But medical AI trained only on data 

from Memorial Sloan Kettering would have no way of taking that 

resource constraint into account and would provide a poor recommen-

dation to providers in those lower-resource settings.6 

Contextual bias is an under-addressed kind of bias in the legal AI 

literature.7 Rather than the bias arising from problems in the underly-

ing data, such as when policing algorithms end up silently replicating 

                                                                                                    
4. See MICHAEL E. MATHENY ET AL., NAT’L ACAD. OF MED., AI & MACHINE LEARNING 

IN HEALTH CARE, Section 2.E.2 (forthcoming 2019) (manuscript at 46) (on file with author) 

(noting that “[i]n the United States, MIT, Stanford and Carnegie Mellon pioneered AI re-

search in the 1960s, and these, and many others, continue to do so today”). 
5. I focus in this Article on medical AI that is used in health-care settings, not consumer-

focused devices, though some of the same issues arise in the latter context as well. 

6. It is not impossible to take resource constraints into account in AI decision-making, 
but, as the rest of this Article demonstrates, doing so is complicated and requires more data 

than are available from just high-resource settings.  

7. For a “whirlwind tour” of AI bias issues, see Karen Hao, This Is How AI Bias Really 
Happens and Why It’s So Hard to Fix, MIT TECH. REV. (Feb. 4, 2019), 

https://www.technologyreview.com/s/612876/this-is-how-ai-bias-really-happensand-why-

its-so-hard-to-fix [https://perma.cc/XNG3-XWY7]. In the computer science literature, see, 
for example, Adarsh Subbaswamy & Suchi Saria, Counterfactual Normalization: Proactive-

ly Addressing Dataset Shift and Improving Reliability Using Causal Mechanisms, ARXIV, 

Aug. 9, 2018, https://arxiv.org/pdf/1808.03253v1.pdf [https://perma.cc/CCZ5-W6JP] (re-
vised from print version). 
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racial bias in underlying arrest patterns and the data they generate8 or 

when health algorithms accurately mirror racial or gender biases al-

ready present in health care,9 this bias arises in the process of translat-

ing algorithms from one context to another. The care provided in 

high-resource contexts may be superb and untinged by problematic 

human bias of any kind, and this bias would still arise.10 

I do not mean to suggest that AI developers are unaware of the 

challenges of translating AI from one context to another, or the differ-

ences between high- and low-resource contexts. The technique of 

“transfer learning,” for instance, focuses on taking insights from one 

environment and using them in another.11 And some work, especially 

nonprofit work in the global health space, focuses intently on develop-

ing robust AI especially for deployment in low-resource contexts in 

less-developed countries.12 But this Article places the dynamics of 

cross-context translation into a legal context where, particularly in the 

United States, incentives actively promote problematic development 

patterns; it also suggests why the data most useful to address problems 

of contextual bias are least likely to be available.  

This Article analyzes how medical AI can run into problems 

through an otherwise reasonable process of development and deploy-

ment. It proceeds in four Parts. Part II briefly describes the promise of 

artificial intelligence in medicine, focusing on the idea of democratiz-

ing medical expertise. Part III explores the incentives for developing 

                                                                                                    
8. See, e.g., Andrew D. Selbst, Disparate Impact in Big Data Policing, 52 GA. L. REV. 

109, 119–43 (2018). 
9. See, e.g., Ziad Obermeyer et al., Dissecting Racial Bias in an Algorithm Used to Man-

age the Health of Populations, 366 SCI. 447, 447 (2019) (finding that a widely used algo-

rithm used to predict patient risk was biased based on race because the algorithm predicted 
health care costs, and less is spent on African-American patients than comparable white 

patients). 

10. High-resource care may be biased. See, e.g., David A. Ansell & Edwin K. McDonald, 
Bias, Black Lives, and Academic Medicine, 372 NEW ENG. J. MED. 1087, 1087–89 (2015). 

But contextual bias can occur independently from any bias in the high-resource care on 

which the training data are generated, as described in Parts IV and V. 
11. See, e.g., Jenna Wiens et al., A Study in Transfer Learning: Leveraging Data from 

Multiple Hospitals to Enhance Hospital-Specific Predictions, 21 J. AM. MED. INFORMATICS 

ASS’N 699, 699 (2014) (examining the transfer of learning among three hospitals); Dianbo 
Liu et al., FADL: Federated-Autonomous Deep Learning for Distributed Electronic Health 

Record, ARXIV, Nov. 28, 2018, https://arxiv.org/pdf/1811.11400.pdf [https://perma.cc/ 

DHA6-R3ZV] (suggesting a federated network where generalized insights can be applied in 
individual contexts); Awni Y. Hannun et al., Cardiologist-Level Arrhythmia Detection and 

Classification in Ambulatory Electrocardiograms Using a Deep Neural Network, 25 

NATURE MED. 65, 69 (2019) (noting need to calibrate algorithms to local populations). 
12. See, e.g., Valentina Bellemo et al., Artificial Intelligence Using Deep Learning to 

Screen for Referable and Vision-Threatening Diabetic Retinopathy in Africa: A Clinical 

Validation Study, 1 LANCET DIGITAL HEALTH e35 (2019) (validating in Zambia a model 
trained on diabetic patients from Singapore); ELEONORE PAUWELS, U.N. UNIV. CTR. FOR 

POLICY RESEARCH, THE NEW GEOPOLITICS OF CONVERGING RISKS: THE UN AND 

PREVENTION IN THE ERA OF AI 28 (2019), https://i.unu.edu/media/cpr.unu.edu/attachment/ 
3472/PauwelsAIGeopolitics.pdf [https://perma.cc/2Y7S-7JAP]. 
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medical AI in high-resource medical contexts. It explores how techno-

logical factors around data availability are buttressed by legal and 

economic incentives to focus AI training on high-resource contexts. 

Part IV, the heart of the paper, lays out the different types of er-

rors that can arise when medical AI trained in high-resource contexts 

is deployed in low-resource contexts. It notes problematic differences 

in patient populations, differences in recommended treatments based 

on the available resources of the medical environment, and systematic 

influences on cost. 

Part V addresses a question of scope: isn’t all medicine contextu-

al? Treatments are developed and doctors are trained in one set of 

contexts — often high-resource — and then care occurs in a wide ar-

ray of different contexts. In one sense, medical AI embodies the same 

type of contextual bias. But medical AI carries the illusory promise of 

being different because it can theoretically take into account exactly 

those contextual differences to tailor care and can learn from its own 

performance. However, this safeguard fails if medical AI lacks data 

from different contexts to adjust its recommendations. The resulting 

contextual bias is especially insidious because medical AI is typically 

opaque, hiding the negative effects that may result. 

Part VI discusses potential solutions. It begins with two obvious 

but flawed solutions. First, could we rely on human doctors “in the 

loop” to provide common-sense checks on medical AI contextual bias 

errors? Unfortunately, even assuming that doctors have the 

knowledge, incentive, and willingness to correct AI errors — assump-

tions that may not be merited — in many low-resource situations 

where AI can bring the most benefit, well-trained human providers 

will simply not be present. Second, could we simply rely on labeling 

to inform users of its limitations? I argue that labeling is unlikely to 

solve the problem, since training-based labels are difficult to design, 

likely to be ignored, and, if followed, would eviscerate much of the 

promise of democratizing expertise. This Part suggests instead that a 

better solution requires a combination of public investment in data 

infrastructure and regulatory mandates of data showing that AI focus-

es well across different contexts. This combination would ameliorate 

the problem of contextual translation and help ensure that medical AI 

actually does provide benefits more broadly, rather than just to those 

who can already access high-resource care. 

Part VI also notes that while the problem of contextual bias needs 

addressing, policymakers should not be misled by the Nirvana falla-

cy.13 Some forms of even imperfect medical AI promise substantial 

                                                                                                    
13. See Harold Demsetz, Information and Efficiency: Another Viewpoint, 12 J.L. & 

ECON. 1, 1 (1969) (defining the “nirvana approach” as seeking “to discover discrepancies 
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benefit to underserved patients, and the field’s growth should not be 

strangled while we await perfection. 

Before proceeding, one caveat is in order. Medical AI is on the 

cusp of entering practice, and a few specific examples of medical AI 

are already available. But it is early yet, and some of the features key 

to this discussion are largely in development, especially AI that rec-

ommends a particular treatment for a particular patient. The predicates 

of the argument made here — medical AI, training in high-resource 

contexts, differences in patient population and resources, and impact 

of resources on treatment plans — are all already present. I argue that 

their combination is likely to lead to problems in the process of con-

textual translation, barring action specifically taken to avoid those 

problems. But I cannot yet point to instances where such problems 

have happened, and it is possible that careful developers and regula-

tors will ensure that they never do, even without explicit policy inter-

vention.14 Nevertheless, the risk needs to be identified and brought to 

the fore now. Medical AI is developing rapidly and will become in-

creasingly embedded in medical practice; the problem of pervasively 

biased treatment will be easier to avoid than to fix. 

II. THE PROMISE OF BLACK-BOX MEDICINE 

Medical AI promises big things. Big data and machine learning 

can help health-care providers explore new biological relationships 

and new methods of treatment, automate many low-level tasks that fill 

providers’ days, and raise the general level of care by allowing many 

types of providers to access expertise through the intermediary of 

medical AI.15 Each of these possibilities can bring substantial changes 

to the world of health care. This Part briefly describes the first two, 

and then focuses in depth on the third, which the rest of this Article 

addresses. 

A. Advancing Medical Knowledge 

Black-box medicine’s headline promise is to stretch the bounda-

ries of medical care by uncovering and using new information about 

                                                                                                    
between the ideal and the real” and finding “the real is inefficient” without comparing rele-

vant choices between real institutional arrangements). 
14. Cf. Jorge L. Contreras, The Anticommons at 20: Concerns for Research Continue, 

361 SCI. 335, 336 (2018) (noting that concerns about innovation stagnation theorized by 

Michael Heller and Rebecca Eisenberg twenty years earlier had not come to pass in part due 

to community efforts to avoid them). 
15. See generally W. Nicholson Price II, Artificial Intelligence in the Medical System: 

Four Roles for Potential Transformation, 18 YALE J. HEALTH POL’Y L. & ETHICS, 21 YALE 

J.L. & TECH., Special Issue 122 (2019). (describing these three roles and also noting the use 
of AI in resource allocation). 
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how humans work and how to care for them. Human biology is tre-

mendously complex and our tools for understanding it are limited; 

artificial intelligence promises to find and use complex underlying 

relationships to improve care, discover new treatments, and advance 

scientific hypotheses even if we don’t understand those underlying 

relationships.16 

Medical AI is already pushing boundaries. IBM’s Watson for 

Drug Discovery used AI to identify genes likely to be associated with 

Alzheimer’s disease and flagged them as potential targets for new 

drugs.17 AI systems can similarly allow things we can’t do now; a 

wearable device could predict the onset of stroke by analyzing a per-

son’s gait18 or AI software could notice the onset of Parkinson’s dis-

ease by monitoring trembling of a computer mouse and the 

characteristics of web searches.19 AI systems could also predict which 

patients might react better to a particular treatment by noticing subtle 

groupings among patients that are currently undetectable through 

standard analysis.20 All of these possibilities promise to push past the 

current frontiers of medical knowledge. 

B. Automating the Routine 

A second, more quotidian promise of medical AI is automating 

medical drudgery. The problem here is that much of medical practice 

consists of tasks that aren’t really about practicing medicine; instead, 

they focus on paperwork and routine tasks that often don’t do much to 

help patients and contribute to physician burnout. Providers are del-

uged with data searching and data entry tasks; one study found that 

physicians spent almost half of their time on electronic health record 

work and desk work, and only a quarter of their time seeing patients.21 

                                                                                                    
16. See Price, Black-Box Medicine, supra note 2, at 434–37. 

17. See, e.g., Nadine Bakkar et al., Artificial Intelligence in Neurodegenerative Disease 

Research: Use of IBM Watson to Identify Additional RNA-Binding Proteins Altered in Amy-
otrophic Lateral Sclerosis, 135 ACTA NEUROPATHOLOGICA 227, 229 (2018) (describing 

IBM Watson’s processing of the scientific literature to identify new genes linked to ALS). 

18. See Fei Jiang et al., Artificial Intelligence in Healthcare: Past, Present, and Future, 2 
STROKE & VASCULAR NEUROLOGY 230, 240 (2017). 

19. See Ryen W. White et al., Detecting Neurodegenerative Disorders from Web Search 

Signals, NATURE: NPJ DIGITAL MED., Apr. 23, 2018, at 1, 1. 
20. Jiang et al., supra note 18, at 239–40 (noting proposed AI-based stroke treatment 

models); id. at 241 (describing AI-based cancer treatment prediction). AI may also enhance 

existing medical device usage. Charlotte A. Tschider, Deus ex Machina: Regulating Cyber-
security and Artificial Intelligence for Patients of the Future, 5 SAVANNAH L. REV. 177, 189 

(2018) (describing the evolution of medical devices from self-executing, device-bound code 

to AI and distributed infrastructure models). 
21. Christine Sinsky et al., Allocation of Physician Time in Ambulatory Practice: A Time 

and Motion Study in 4 Specialties, 165 ANNALS INTERNAL MED. 753, 753 (2016); see also 

Ming Tai-Seale et al., Electronic Health Record Logs Indicate that Physicians Split Time 
Evenly Between Seeing Patients and Desktop Medicine, 36 HEALTH AFF. 655, 655 (2017) 
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Even in the examination room, physicians spent only about half of 

their time interacting with patients — and about a third interacting 

with electronic health records and desk work.22 The ability of AI to 

automate at least some of this work could have a profound effect on 

the provision of health care, potentially improving the doctor-patient 

relationship23 and reducing the rate of provider burnout.24 

Automation of routine tasks, though not as exciting as pushing 

medical frontiers, could still change medical practice for the better. 

Some action could happen on the front end: AI could automatically 

identify and highlight the most relevant medical information from 

patient medical records to reduce the time spent scrolling through rec-

ords looking for information.25  It could provide the most relevant 

medical literature to doctors based on natural-language processing.26 

And speech-recognition software based on AI could automatically 

transcribe patient conversations and provider notes and fill out forms 

afterward.27 Assuming eventual accuracy on the part of AI, such assis-

tance could also reduce the rate of transcriptional errors and even im-

prove privacy as details are read by machines rather than medical 

scribes. 

                                                                                                    
(finding that physicians “logged an average of 3.08 hours on office visits and 3.17 hours on 

desktop medicine each day”). 
22. See Sinsky et al., supra note 21, at 753. 

23. Cf. Maria Alcocer Alkureishi et al., Impact of Electronic Medical Record Use on the 

Patient–Doctor Relationship and Communication: A Systematic Review, 31 J. GEN. 
INTERNAL MED. 548, 550–57 (2016) (evaluating many studies and finding both positive and 

negative impacts of EHRs on patient-doctor relationships). 

24. In a 2018 survey, “too many bureaucratic tasks” was the most commonly cited con-
tributor to physician burnout. Carol Peckham, National Physician Burnout and Depression 

Report 2018, MEDSCAPE (Jan. 17, 2018), https://www.medscape.com/slideshow/2018-

lifestyle-burnout-depression-6009235#13. 
25. See Kory Kreimeyer et al., Natural Language Processing Systems for Capturing and 

Standardizing Unstructured Clinical Information: A Systematic Review, 73 J. BIOMEDICAL 

INFORMATICS 14, 14 (2017); cf. Theresa A. Koleck et al., Natural Language Processing of 
Symptoms Documented in Free-Text Narratives of Electronic Health Records: A Systematic 

Review, 26 J. AM. MED. INFORMATICS ASS’N 364, 365 (2019) (explaining that the previous-

ly manual process of extracting symptom information from patient records could be auto-
mated through natural language processing to reduce time spent by clinical experts). 

26. Cf. Kreimeyer et al., supra note 25, at 15. 

27. Id.; see also Linda Dawson et al., A Usability Framework for Speech Recognition 
Technologies in Clinical Handover: A Pre-Implementation Study, 38 J. MED. SYS., June 

2014, at 1, 1. Yet another potential use for medical AI comes in its use to analyze and direct 

medical resources: assigning scarce resources to patients based on likelihood of aiding them, 
improving workflow, or even finding ways to optimize medical billing. Cf. I. Glenn Cohen 

et al., The Legal and Ethical Concerns That Arise from Using Complex Predictive Analytics 

in Health Care, 33 HEALTH AFF. 1139, 1140 (2014). These interventions, focused less 
directly on care encounters, are outside the scope of this work. 
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C. Democratizing Expertise 

Finally, medical AI promises to democratize medical expertise. 

Today, there are tremendous differences in the quality and level of 

care patients receive based on the context in which they receive that 

care.28 This is reflected in everything from the availability of a spe-

cialist (e.g., whether a patient can see a board-certified ophthalmolo-

gist or dermatologist rather than relying on a primary care physician 

for more complex care) to the type of practitioner involved (e.g., phy-

sician versus nurse practitioner) to the qualifications of the provider 

(e.g., top-of-her-class with elite fellowships to less-exalted qualifica-

tions).29 Medical AI promises to reduce this variation by “leveling 

up” — allowing a much broader swath of providers to provide care at 

the level of excellent specialists, which is what I mean by democrati-

zation of medical expertise. Medical AI is scalable in a way that hu-

man expertise simply is not; although gathering data, training 

algorithms, and validating algorithmic performance are all hard and 

expensive tasks,30 duplicating an existing algorithm for use in another 

setting is much easier and cheaper than training new people for the 

same tasks.31 It’s not free or easy — information infrastructure still 

needs to be set up,32 and the data the algorithm will analyze need to be 

properly collected and formatted on-site33 — but an algorithm is easi-

er to copy than an oncologist. 

This Section describes how AI can democratize different types of 

medical expertise. It then considers where AI can bring expertise — a 

span that ranges from other high-resource settings like mid-level hos-

                                                                                                    
28. See, e.g., John E. Wennberg, Unwarranted Variations in Healthcare Delivery: Impli-

cations for Academic Medical Centres, 325 BMJ 961, 962–63 (2002); DARTMOUTH ATLAS 

PROJECT, https://www.dartmouthatlas.org [https://perma.cc/YA3A-5JCY] (cataloging re-

gional differences in care). 
29. I recognize that quality of care is not uni-dimensional; for a gastrointestinal problem, 

a patient would likely rather see a novice nurse practitioner than an experienced neurosur-

geon, and with good reason. Nevertheless, there are many situations for which the expertise 
of a well-trained specialist can improve care. 

30 . See W. Nicholson Price II, Big Data, Patents, and the Future of Medicine, 37 

CARDOZO L. REV. 1401, 1411 (2016) [hereinafter Price, Big Data]. 
31. Such duplication is not costless, of course, and in some situations doing the transfer 

right might actually be more expensive than home-growing a solution. See, e.g., JAMES E. 

TCHENG ET AL., NAT’L ACAD. OF MED., OPTIMIZING STRATEGIES FOR CLINICAL DECISION 

SUPPORT: SUMMARY OF A MEETING SERIES 28 (2017) (“While the creation of CDS [clinical 

decision support] content in-house is an expensive and resource-intensive endeavor, sharing 

CDS content, either with peers or through the licensing of vendor content, is presently per-
ceived to be equally or more expensive; thus this duplication of effort at each site has per-

sisted.”). 

32. See W. Nicholson Price II, Risk and Resilience in Health Data Infrastructure, 16 
COLO. TECH. L.J. 65, 71 (2017) [hereinafter Price, Risk and Resilience]. 

33. Further down the road, AI can help here too; natural language processing will make it 

easier to accept unstructured data about patients rather than requiring data to be in a certain 
format. See supra Section II.B. 
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pitals to very low-resource settings like rural providers in less-

developed countries. 

1. Diagnostics and Treatment Recommendations 

AI can democratize different types of medical expertise. Though 

medical expertise comes in many flavors, with many interconnections, 

we can usefully consider two rough classes: diagnostics and treatment 

recommendations.34 

a. Diagnostics 

Diagnosis is the process of figuring out what’s wrong with a pa-

tient.35  If a patient comes in complaining of an exceptionally bad 

headache, is she suffering from tension headache, a migraine, or a 

subdural hematoma? One demands over-the-counter painkillers, an-

other a large set of unpredictable medications, and the last an immedi-

ate trip to the emergency department to avoid death or severe brain 

injury. Fans of the television series House will readily recognize the 

recurrent problem of finding out what malady (or combination of 

maladies) underlies a collection of symptoms. Diagnosis is hard 

(though Dr. House makes it look easy); it depends on recognizing the 

right symptoms and using them to identify underlying problems from 

a vast realm of possibilities. Excellent diagnosticians, when available, 

are tremendously valuable to medical care — but not everyone can be 

an excellent diagnostician. Providers may reach incorrect diagnoses 

because they never acquired the relevant medical knowledge, the 

knowledge they acquired is outdated, they lack time to conduct the 

relevant research, they suffer from heuristic biases such as recalling 

                                                                                                    
34. Both of these forms of expertise can also be advanced by AI. See supra Section II.A. 

This section focuses on their democratization. There are more things AI can do in medicine. 
Prognostics, for instance, are an area of active development; it is good to be able to predict 

what will happen to a patient, to know how long they might live, and who may become 

sicker. Cf. Ziad Obermeyer & Ezekiel J. Emanuel, Predicting the Future — Big Data, Ma-
chine Learning, and Clinical Medicine, 375 NEW ENG. J. MED. 1216, 1217 (2016) (discuss-

ing machine learning and prognostics generally); Alvin Rajkomar et al., Scalable and 

Accurate Deep Learning with Electronic Health Records, NATURE: NPJ DIGITAL MED., May 
8, 2018, at 1, 1 (presenting a model with high accuracy predicting patient mortality, un-

planned readmission, and prolonged length of stay). This Article focuses on diagnostics and 

treatment recommendations as two possibilities for medical AI focused most closely on 
direct patient care. 

35. Diagnosis is not always entirely separable from treatment. In many circumstances, 

the mere provision of a correct diagnosis can provide relief to patients who know more 
about what is happening to them and can enable useful self-care. See, e.g., Sumi Sexton & 

Robert Loflin III, The Relief of Getting a Diagnosis, 80 AM. FAM. PHYSICIAN 1223, 1223 

(2009); see also racheldoesstuff, A Diagnosis, YOUTUBE (Nov. 17, 2017), 
https://www.youtube.com/watch?v=uic_3vlI5BE [https://perma.cc/F4BS-U2LW]. 
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memorable rare diseases rather than common ones,36 or, most simply, 

they are unfamiliar with the area of care. Artificial intelligence, based 

largely on pattern recognition, can help democratize diagnostic exper-

tise, allowing access to this expertise even when an excellent human 

diagnostician is not available.37 

EyeDiagnosis’s IDx-DR software for diabetic retinopathy is an 

example of leveling-up that AI can bring to medical diagnosis.38 Dia-

betic retinopathy is a condition wherein diabetes causes loss of small 

blood vessels in the retina; new blood vessels that grow to replace 

them can cause vision problems.39 The current standard of care is for 

patients with diabetes to visit an ophthalmologist yearly to check for 

signs of retinopathy, so that treatment can begin before the retina 

worsens. 40  But this requires regularly visiting an ophthalmologist, 

which is not easy or even possible for many patients.  

EyeDiagnosis has developed a system that enables primary care 

physicians (or other non-specialist practitioners) to use an essentially 

automated camera to take images of the retina; those images are then 

analyzed by a machine-learning algorithm trained on a gold-standard 

dataset of retina images (annotated by expert ophthalmologists).41 The 

algorithm returns a diagnosis of more-than-mild diabetic retinopathy, 

in which case the patient should seek further care, or not, in which 

case the patient should ideally be retested in a year.42 IDx-DR is ap-

proved by FDA for this level of autonomous diagnosis and performs 

at a level comparable to ophthalmologists, even when operated by 

novices.43 In this scenario, the diagnostic expertise is that possessed 

by most ophthalmologists (and by their supporting camera techni-

cians). IDx-DR brings that level of diagnostic expertise to primary 

care physicians without the relevant experience.44 

                                                                                                    
36. See, e.g., Jill G Klein, Five Pitfalls in Decisions About Diagnosis and Prescribing, 

330 BMJ 781, 782 (2005). 

37. AI diagnosis is not just about democratizing expertise. AI could also replace very 
easy, routine diagnostics (automating drudgery) or point us to disease variants previously 

unrecognized (advancing medical knowledge). But to the extent that many maladies are 

diagnosable by expert diagnosticians but not by those with less experience or expertise, AI 
can help bridge that gap. 

38. IDx-DR, IDX, https://www.eyediagnosis.net/idx-dr [https://perma.cc/9GZR-MTUB]. 

39. AM. ACAD. OF OPHTHALMOLOGY, QUALITY OF CARE SECRETARIAT, INFORMATION 

STATEMENT: SCREENING FOR DIABETIC RETINOPATHY 1, 1 (2014), https://www.aao.org/ 

clinical-statement/screening-diabetic-retinopathy [https://perma.cc/XW88-VZ27]. 

40. Id. at 2. 
41. IDx-DR, supra note 38. 

42. Id. 

43. See Performance, IDX, https://www.eyediagnosis.net/performance [https://perma.cc/ 
3Q83-6QLB]. 

44. In clinical trials for the IDx-DR, the developer specifically sought out technicians 

who had not been trained on any retinal imaging system — the opposite of an imaging ex-
pert. Id. 
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b. Treatment Recommendations  

After diagnosis comes treatment. Once providers have determined 

what ails the patient, they must select from a menu of possibilities to 

determine the best option for improvement.45 Consider a well-trained 

and experienced oncologist; knowing that a patient has a certain type 

of cancer, she also (hopefully) knows what the best course of treat-

ment is: surgery, radiotherapy, chemotherapy, or some combina-

tion — and within each class, which drugs or protocols are likely most 

effective, given what she knows about the patient. That expertise, like 

diagnostic expertise, is hard-won and hard to apply; becoming a 

skilled oncologist takes time, money, and practice. Such expertise is 

accordingly hard to come by, especially outside specialized cancer 

centers like Memorial Sloan Kettering or MD Anderson. 

Medical AI offers possibilities of democratizing expertise here as 

well. Indeed, one well-known example of medicine, IBM’s Watson 

for Oncology (“Watson Oncology”), addresses exactly this chal-

lenge.46 I should note that this example is in some ways a problematic 

one. There appears to be some discrepancy between how IBM says 

Watson Oncology works and how it actually works in practice, though 

details are scarce.47 I will analyze the program as described by IBM, 

on the basis that this description is at least aspirational; where others 

offer critiques of this account, I’ll note them in footnotes. Whatever 

the precise contours of Watson Oncology, it is by far the highest-

profile example of using AI to democratize medical expertise existing 

today. 

Watson Oncology uses machine-learning-based natural language 

processing to analyze patient medical records to determine cancer 

type and then provides recommendations for treatment.48 The system 

is an AI/decision-rule hybrid: AI is involved in the initial stages, but 

the treatment recommendation is based not on any particular machine-

learning approach, but instead on what oncologists at Memorial Sloan 

Kettering would do when faced with a similar patient.49 IBM aims 

                                                                                                    
45. This picture is naturally somewhat stylized; sometimes, for instance, providers may 

need to jump straight from symptoms to treatment without knowing the underlying problem, 

as when treating severe dehydration without first determining the cause. 

46. IBM Watson Health, IBM, https://www.ibm.com/watson/health/oncology-and-
genomics [https://perma.cc/F39K-UF64]. 

47. Casey Ross & Ike Swetlitz, IBM’s Watson Supercomputer Recommended ‘Unsafe 

and Incorrect’ Cancer Treatments, Internal Documents Show, STAT (July 25, 2018), 
https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-

treatments [https://perma.cc/EVP7-AB72]. 

48. IBM Watson Health, supra note 46. According to STAT, Watson Oncology is actual-
ly trained on synthetic patient records (that is, records created by doctors to match typical 

patient patterns) rather than actual patient records. Ross & Swetlitz, supra note 47. 

49. A. Michael Froomkin et al., When AIs Outperform Doctors: Confronting the Chal-
lenges of a Tort-Induced Over-Reliance on Machine Learning, 61 ARIZ. L. REV. 33, 43 
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explicitly to use Watson Oncology to democratize medical expertise 

(for a price, of course). It licenses Watson Oncology for use at hun-

dreds of hospitals worldwide50 and has evaluated its performance at 

hospitals (relatively high-resource hospitals, to be sure) in Thailand,51 

India,52 and Mexico.53 Results from initial trials in Mexico conclude 

that “Oncologists . . . felt [Watson Oncology] would be particularly 

beneficial in clinics that lack subspecialist expertise.”54 Watson On-

cology is thus especially targeted at contexts that lack existing oncol-

ogist expertise. 

Democratization of the expertise needed to recommend treat-

ments, though, does not always translate to democratization of the 

expertise needed to actually treat. If medical AI recommends taking 

tablet A over tablet B for a particular patient, as long as both tablets 

are available, that recommendation may be easy to follow. But if med-

ical AI recommends a complicated surgery, successful implementa-

tion depends on the presence of a skilled surgeon. This problem is 

explored in more detail below, and is a key challenge for democratiz-

ing medical expertise.55 

2. Contexts of Application 

AI has the potential to democratize medical expertise to many 

medical contexts, ranging from other high-resource contexts like ma-

                                                                                                    
(2019) (“[Watson Oncology] is really a decision-support tool enhanced with prepro-

grammed suggestions based on what a committee of doctors at Sloan Kettering said they 
would do when presented with various symptoms and scenarios.”). 

50. See Watson Health: Get the Facts, IBM, https://www.ibm.com/blogs/watson-health/ 

watson-health-get-facts [https://perma.cc/KU84-MEBD]; see also Manipal Hospitals 
Adopts Watson for Oncology to Help Physicians Identify Options for Individualized, Evi-

dence-Based Cancer Care Across India, IBM (Dec. 2, 2015), https://www-03.ibm.com/ 

press/us/en/pressrelease/48189.wss [https://perma.cc/5JJP-KWXD]. 
51. Suthida Suwanvecho et al., Concordance Assessment of a Cognitive Computing Sys-

tem in Thailand, 35 J. CLINICAL ONCOLOGY SUPPLEMENT 6589 (2017), 

https://meetinglibrary.asco.org/record/150478/abstract [https://perma.cc/Y3AU-4W9T] 
(abstract presented at the 2017 American Society for Clinical Oncology Annual Meeting). 

Notably, some disagreement between Thai oncologist recommendations and Watson Oncol-

ogy’s recommendations was attributed to “local oncologist preferences.” Id. 
52. S.P. Somashekhar et al., Early Experience with IBM Watson for Oncology (WFO) 

Cognitive Computing System for Lung and Colorectal Cancer Treatment, 35 J. CLINICAL 

ONCOLOGY SUPPLEMENT 8527 (2017), http://ascopubs.org/doi/abs/10.1200/ 
JCO.2017.35.15_suppl.8527 [https://perma.cc/DS38-VFW5] (abstract presented at the 2017 

American Society for Clinical Oncology Annual Meeting). 

53. Catherine Sarre-Lazcano et al., Cognitive Computing in Oncology: A Qualitative As-
sessment of IBM Watson for Oncology in Mexico, 35 J. CLINICAL ONCOLOGY e18166 

(2017), https://meetinglibrary.asco.org/record/152386/abstract [https://perma.cc/G7B9-

LW6B] (abstract presented at the 2017 American Society for Clinical Oncology Annual 
Meeting). 

54. Id. Other appraisals are less complimentary. See Ross & Swetlitz, supra note 47 

(quoting a doctor from Jupiter Florida hospital describing the product as “a piece of s—”). 
55. See infra Section IV.A. 
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jor hospitals, to medium-resource contexts like community hospitals 

or community health centers, to low-resource contexts like rural pro-

viders in less-developed countries. The higher-resource the destina-

tion context, the easier the translation — but the smaller the potential 

for transforming medical care. 

The most straightforward translation is from the absolute top-

notch, very high-resource hospitals to other slightly-less-high-

resource hospitals — taking the expertise of Memorial Sloan Ketter-

ing’s cancer center, for instance, and making it accessible to smaller 

hospitals with less specialized or less experienced oncologists. IBM is 

already doing this; it’s the easiest path, because those settings already 

have the basic resources and infrastructure in place. The information 

technology is in place, and oncologists are already on hand who can 

take AI recommendations and use them to change — ideally to im-

prove — their own practice (or reject them, as the case may be).56 

This is democratization of expertise on a small scale; very valuable, 

but perhaps not transformative. But this is not the only potential con-

text. 

Close to the other end of the spectrum, medical AI could be de-

ployed to genuinely low-resource contexts: small rural hospitals, 

community health centers or clinics, solo practitioners’ offices or 

small doctors’ practices. Where specialists are unavailable — to say 

nothing of highly skilled, experienced specialists — medical AI could 

make a tremendous difference in the type and level of care that could 

be offered. IDx-DR provides exactly this sort of potential: in places 

without available ophthalmologists, the AI/camera combination al-

lows providers to check patients with diabetes for diabetic retinopa-

thy, availing themselves of ophthalmologic expertise through the AI 

system.57 Deploying AI in these contexts demands resources, but al-

most certainly far fewer resources than improving care by training and 

employing new medical specialists. 

AI could truly transform care in the lowest-resource contexts. In 

Liberia, as of 2016, there were 298 doctors for a population of 4.5 

million, including only fifteen pediatricians and six ophthalmolo-

gists.58 In rural India, a single doctor can be responsible for as many 

                                                                                                    
56. See supra note 51 (noting that some Thai oncologists rejected Watson Oncology rec-

ommendations based on local preferences); see also Ross & Swetlitz, supra note 47 (noting 

that some Watson Oncology recommendations, based on Memorial Sloan Kettering prac-
tice, differed from national guidelines); infra Section VI.A (noting difficulties with using 

human-in-the-loop safeguards for medical AI generally). 

57. See discussion supra Section II.C.1. 
58. Al-Varney Rogers, Liberian Doctors Threaten Go-Slow over Salary Arrears, FRONT 

PAGE AFR. (Nov. 15, 2016), https://frontpageafricaonline.com/health/liberian-doctors-

threaten-go-slow-over-salary-arrears [https://perma.cc/MGA3-LLCG] (citing a July 2016 
report by the Liberia Medical and Dental Council). 
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as 30,000 residents in the rural health system.59 In such low-resource 

environments, medical AI could provide front-line access for simple 

diagnostics and treatment recommendations, triaging patients who 

need to seek further help, as well as the more complex tasks that AI 

can facilitate in higher-resource contexts. In India, where the doctor 

shortage extends to ophthalmologists, the Google AI team is already 

deploying its own AI system to diagnose diabetic retinopathy for pa-

tients who cannot access ophthalmologists for recommended yearly 

screenings.60 Further work has suggested that smartphones may be 

suitable for such machine-learning diagnoses, which could lower the 

barriers to AI-mediated care even further.61 Overall, while AI has the 

potential to incrementally improve care in relatively high-resource 

settings, it could revolutionize care in very low-resource contexts. 

 

* * * 

 

Medical AI can make a difference in many areas of medicine, but 

one of the most exciting is democratizing medical expertise, especial-

ly by bringing diagnostic and treatment recommendation expertise to 

lower-resource settings where they are otherwise unavailable. The 

next Part explores the first part of that process: developing algorithms 

that incorporate medical expertise. 

III. WHERE MEDICAL AI IS DEVELOPED — AND WHY 

Black-box medical algorithms are predominantly developed in 

partnership with high-resource medical settings. These are often aca-

demic medical systems, but I also include high-resource standalone 

hospitals. I’ll refer to the group collectively as “High-Resource Hospi-

tals.” In a typical arrangement, the AI system developer partners with 

the High-Resource Hospital with an agreement to use the High-

Resource Hospital’s data to train and develop a new medical algo-

rithm. In the examples above, IBM’s Watson Oncology partners with 

                                                                                                    
59. Devarsetty Praveen et al., SMARTHealth India: Development and Field Evaluation of 

a Mobile Clinical Decision Support System for Cardiovascular Diseases in Rural India, 2 

JMIR MHEALTH & UHEALTH, Oct.–Dec. 2014, at e54, https://mhealth.jmir.org/2014/4/e54/ 

pdf [https://perma.cc/73M5-2RV4]. 
60. Kamala Thiagarajan, The AI Program That Can Tell Whether You May Go Blind, 

GUARDIAN: THE UPSIDE (Feb. 8, 2019, 1:00 AM), https://www.theguardian.com/world/ 

2019/feb/08/the-ai-program-that-can-tell-whether-you-are-going-blind-algorithm-eye-
disease-india-diabetes [https://perma.cc/Y6AY-CW2X]; see also Varun Gulshan et al., 

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Reti-

nopathy in Retinal Fundus Photographs, 316 J. AM. MED. ASS’N 2402, 2402 (2016) (de-
scribing an AI diagnostic system). 

61. Ramachandran Rajalakshmi et al., Automated Diabetic Retinopathy Detection in 

Smartphone-Based Fundus Photography Using Artificial Intelligence, 32 EYE 1138, 1138 
(2018). 
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Memorial Sloan Kettering62 and EyeDiagnosis partners with the Uni-

versity of Iowa Health System and the University of Arizona.63 At the 

academic/pre-development level, similar patterns manifest: over 500 

medical AI studies have been based on the MIMIC dataset, the most-

used publicly available health dataset for AI — which includes data 

only from patients seen at Beth Israel Deaconess Medical Center, a 

high-resource Harvard-affiliated hospital in Boston.64 

Developer focus on High-Resource Hospitals does not reflect the 

delivery of medical care, either nationally or worldwide. Academic 

medical centers, for instance, make up only a small fraction of all 

hospitals, and deliver a small (though larger) fraction of care.65 Many 

more medical encounters take place in practitioner offices, community 

health centers, or community hospitals than in High-Resource Hospi-

tals of various flavors. 

Algorithm developers partner with High-Resource Hospitals for a 

varying combination of technical, legal, and business reasons.66 First 

and most importantly, High-Resource Hospitals are more likely to 

have large, high-quality data sets. Second, training algorithms on data 

from High-Resource Hospitals may facilitate convincing potential 

clients or insurers that the algorithm is high-quality and worth paying 

for. Third, training algorithms on High-Resource Hospital data de-

creases the risk of adverse outcomes from three legal processes: re-

ceiving regulatory approval, avoiding tort liability for potential 

problems once the algorithm is in use, and winning reimbursement 

from payers. 

                                                                                                    
62. Memorial Sloan Kettering Trains IBM Watson to Help Doctors Make Better Cancer 

Treatment Choices, MEMORIAL SLOAN KETTERING CANCER CTR. (Apr. 11, 2014), 

https://www.mskcc.org/blog/msk-trains-ibm-watson-help-doctors-make-better-treatment-

choices [https://perma.cc/HB8U-36VT]. 
63. Pipeline, IDX, https://www.eyediagnosis.net/pipeline [https://perma.cc/L5W4-S2UZ].  

64. Rebecca Robbins, How Patient Records from One Boston Hospital Fueled an Explo-

sion in AI Research in Medicine, STAT (July 12, 2019), https://www.statnews.com/2019/ 
07/12/boston-hospital-records-fuel-artificial-intelligence-research [https://perma.cc/YGF6-

AKWZ]. 

65. See, e.g., Joanna Bisgaier et al., Academic Medical Centers and Equity in Specialty 
Care Access for Children, 166 ARCHIVES PEDIATRICS & ADOLESCENT MED. 304, 304 

(2012) (observing that academic medical centers were “only 6% of the nation’s hospitals 

[yet] provide 28% of all discharges of Medicaid enrollees”); Academic Medical Centers: 
Shaping the Future of Healthcare, UCI HEALTH (June 23, 2016), http://www.ucihealth.org/ 

news/2016/06/academic-medical-centers-future-of-healthcare [https://perma.cc/F89N-

BY65] (noting that “[a]cademic medical centers make up 2 to 2.5 percent of all hospitals in 
the country”). 

66. I do not claim that all of these reasons apply in each case, and they may be of varying 

strength; one anonymous industry insider, for instance, described data availability as a 
“need to have” and potential easing of FDA review as “nice to have.” 
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A. That’s Where the Data Are 

The first reason for developer focus on High-Resource Hospitals 

is fundamental: High-Resource Hospitals have more data. Indeed, 

they may be the only places that actually have high-volume, high-

quality data. To take one simple example: health data are hard to use 

or access unless they are in electronic format. In health care settings, 

that typically means that the data are recorded in an electronic health 

record.67 By now, electronic health records are almost universal; by 

2017, essentially all hospitals had adopted electronic health records 

systems, as had about 90% of office-based practices.68 However, if a 

developer wants longitudinal data, or the ability to track results over 

time, adoption one or two years ago is insufficient — and in 2008, 

only about 10% of hospitals had EHR systems in place.69 Which hos-

pitals were those? High-Resource Hospitals.70 

The mere presence of electronic health records is not enough. For 

a health-care provider to collect data that can be used to develop med-

ical AI, the provider needs the right infrastructure.71 This includes 

developing (1) systems so that providers input the right data, in the 

right format; (2) databases to ensure that data are collected, catego-

rized, and made available for future use; and (3) quality checks to en-

sure that the data collected are correct.72 This infrastructure can be 

                                                                                                    
67. Other health data that can be used for training medical AI include pharmacy records 

or insurance claims data — or non-medical data such as internet search histories or personal 
health trackers. See generally SHARONA HOFFMAN, ELECTRONIC HEALTH RECORDS AND 

MEDICAL BIG DATA: LAW AND POLICY (2016). These, too, need to be in electronic format. 
However, electronic health records are the most direct source of data about health-care 

encounters in particular. Id. at 9. 

68. Vindell Washington et al., The HITECH Era and the Path Forward, 377 NEW ENG. J. 
MED. 904, 904–05 (2017). Electronic health record adoption received a substantial push in 

the HITECH Act, which largely mandated their adoption. See What is the HITECH Act?, 

HIPAA J., https://www.hipaajournal.com/what-is-the-hitech-act [https://perma.cc/8W63-
5BJ2]. 

69. Washington et al., supra note 68, at 905 (showing data for nonfederal acute care hos-

pitals). Older, paper-based records may be digitized by scanning, but such data migration 
creates a complicated hybrid system. See, e.g., Diane Dolezel & Jackie Moczygemba, Im-

plementing EHRs: An Exploratory Study to Examine Current Practices in Migrating Physi-

cian Practice, 12 PERSP. HEALTH INFO. MGMT., Winter 2015, at 1e, 1e, 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700870/pdf/phim0012-0001e.pdf 

[https://perma.cc/39DX-RP7D]. Eventually, this problem will lessen as even new EHR 

systems acquire longitudinal data over time — but that will take substantial time, by defini-
tion, and if developers are to take advantage of that eventual broadening, policymakers must 

ensure that the current system is not locked in as the default, legal and otherwise.  

70. See, e.g., John D. Halamka et al., Early Experiences with Personal Health Records, 
15 J. AM. MED. INFORMATICS ASS’N 1, 1 (2008) (describing early EHR systems at the Palo 

Alto Medical Foundation, Beth Israel Deaconess Medical Center, and Boston Children’s 

Hospital). 
71. Price, Big Data, supra note 30, at 1413. 

72. Id. at 1411–15; see also Sharona Hoffman & Andy Podgurski, The Use and Misuse of 

Biomedical Data: Is Bigger Really Better?, 39 AM. J.L. & MED. 497, 515–20 (2013) (de-
scribing pitfalls and precautions for biomedical database development). 
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complex, challenging, and expensive.73 It demands information tech-

nology resources, data scientists or data managers (themselves in 

short supply), and attention from management.74 These requirements 

are a priori harder to meet for low-resource health-care providers than 

for High-Resource Hospitals — they have fewer resources, by defini-

tion — skewing the distribution of health-record data to the latter con-

text. 

Law also creates hurdles to the collection and use of big health 

data for research purposes, especially through the Health Insurance 

Portability and Accountability Act’s75 Privacy Rule (the HIPAA Pri-

vacy Rule) 76  and requirements for informed consent. 77  Under the 

HIPAA Privacy Rule, “covered entities” — including essentially all 

health-care providers and hospitals78 — are prohibited from using or 

disclosing individually identifiable health information without author-

ization, except for a list of specifically identified purposes.79 Research 

is not one of those specifically identified purposes.80 Providers wish-

ing to use patient data for research purposes must therefore either ob-

tain individual authorization81  (a closely prescribed and potentially 

sample-biasing process)82 or remove identifying information from the 

sample (which makes linking different data together difficult).83 

The requirement to obtain informed consent and research approv-

al for use of patient data similarly imposes costs on that use.84 In-

                                                                                                    
73. See Hoffman & Podgurski, supra note 72; Price, Big Data, supra note 30, at 1411–

15. 

74. HOFFMAN, supra note 67, at 152–68; see also Hoffman & Podgurski, supra note 72, 
at 527–32; Price, Big Data, supra note 30, at 1414–15. 

75. Health Insurance Portability and Accountability Act of 1996, Pub. L. No. 104-191, 

110 Stat. 1936 (codified as amended in scattered sections of 26, 29, and 42 U.S.C.). 
76. Standards for Privacy of Individually Identifiable Health Information, 45 C.F.R. §§ 

160, 164 (2018). State privacy rules also come into play and further complicate the situa-

tion. See Barbara J. Evans, The Ethics of Postmarketing Observational Studies of Drug 
Safety Under 505(o)(3) of the Food, Drug, and Cosmetic Act, 38 AM. J.L. & MED. 577, 594 

(2012). 

77. See W. Nicholson Price II, Drug Approval in a Learning Health System, 102 MINN. 
L. REV. 2413, 2446–48 (2018) [hereinafter Price, Drug Approval]. 

78. 45 C.F.R. § 160.103 (2018). 

79. Id. § 164.502. 
80. See Rebecca S. Eisenberg & W. Nicholson Price II, Promoting Healthcare Innova-

tion on the Demand Side, 4 J.L. & BIOSCIENCES 3, 35–36 (2017) (describing the lack of a 

research exemption, and noting that the “operations” and “quality improvement” exemp-
tions do not cover research). 

81. See Kayte Spector-Bagdady & Andrew G. Shuman, Reg-ent Within the Learning 

Health System, 158 OTOLARYNGOLOGY — HEAD & NECK SURGERY 405, 405 (2018). 
82. See, e.g., Sharona Hoffman & Andy Podgurski, Balancing Privacy, Autonomy, and 

Scientific Needs in Electronic Health Records Research, 65 SMU L. REV. 85, 114–19 

(2012) (describing this bias). 
83. See Eisenberg & Price, supra note 80, at 36–37. 

84. See, e.g., Hoffman & Podgurski, supra note 82, at 123 (describing empirical evidence 

on informed consent costs); Mark J. Pletcher et al., Informed Consent in Randomized Quali-
ty Improvement Trials: A Critical Barrier for Learning Health Systems, 174 JAMA 
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formed consent requirements are part of a suite of oversight and ethi-

cal requirements,85 typically enforced by institutional review boards 

that review research.86 Obtaining informed consent for research use of 

patient data can be an arduous and costly process.87 

These legal hurdles tend to concentrate the collection and use of 

patient health data for research purposes in High-Resource Hospitals. 

The hurdles may be justified — though that claim has been ques-

tioned88 — and certainly were put in place to serve laudable aims.89 

Nevertheless, the costs imposed by these legal hurdles weigh especial-

ly heavily in low-resource contexts, like small hospitals, community 

health centers, or solo practitioners in rural areas, which have fewer 

resources to start with. Even de-identifying patient data to comply 

with the HIPAA Privacy Rule and informed consent requirements 

may impose its own costs.90 Those low-resource settings are unlikely 

to have the resources to spend on addressing legal compliance issues, 

just as they are unlikely to have spare resources to meet the techno-

logical requirements for a useful data infrastructure that can support 

future research.91 These resource constraints help drive the concentra-

tion of medical big data — and the concomitant ability to develop 

black-box medical algorithms — in high-resource contexts. 

B. Reputational Effects 

Reputational effects also push algorithm developers to partner 

with High-Resource Hospitals. Developers of black-box medical algo-

rithms must persuade potential clients that these algorithms will pro-

vide excellent results, whether diagnoses or treatment 

                                                                                                    
INTERNAL MED. 668, 668 (2014) (describing how informed consent requirements make 
large-scale clinical trials and data collection more challenging). 

85. See, e.g., Ruth R. Faden et al., Informed Consent, Comparative Effectiveness, and 

Learning Health Care, 370 NEW ENG. J. MED. 766, 768 (2014). 
86. See Price, Drug Approval, supra note 77, at 2446 n.208. 

87. See id. at 2457; Charlotte A. Tschider, The Consent Myth: Improving Choice for Pa-

tients of the Future, 96 WASH. U. L. REV. 1505, 1507 (2019) (finding HIPAA’s informed 
consent process largely incompatible with health AI). 

88. See, e.g., Price, Drug Approval, supra note 77, at 2449–52. See generally CARL E. 

SCHNEIDER, THE CENSOR’S HAND (2015) (critiquing research oversight by institutional 
review boards, including the procedural requirements of informed consent). 

89. See, e.g., Nancy E. Kass et al., The Research-Treatment Distinction: A Problematic 

Approach for Determining Which Activities Should Have Ethical Oversight, 43 HASTINGS 

CTR. REP., S4, S5 (Jan.–Feb. 2013). 

90. See, e.g., Elizabeth Ford et al., Extracting Information from the Text of Electronic 

Medical Records to Improve Case Detection: A Systematic Review, J. AM. MED. 
INFORMATICS ASS’N 1007, 1013 (2016). 

91. Interview with Researcher, Univ. of Mich. (Feb. 2018) (describing the process of de-

veloping a learning health system at a low-resource Michigan health system); Interview 
with Medical AI Researcher, Vanderbilt Univ. (July 2018). 
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recommendations.92 Making that pitch is likely easier when the devel-

oper can state that the algorithm is trained on data from presumably 

expert doctors at High-Resource Hospitals, rather than a more run-of-

the-mill medical practice.93 IBM, for instance, notes that “Watson for 

Oncology can provide clinicians with evidence-based treatment op-

tions based on expert training by Memorial Sloan Kettering (MSK) 

physicians.”94 

C. Legal Influences 

Finally, three legal regimes also suggest the utility of training al-

gorithms with data from practitioners at the top of their profession: 

FDA approval, tort liability, and insurer reimbursement. In no case 

does the legal regime require high-resource context training, but in 

each case risk-averse developers may find that such training decreases 

the possibility of unexpected problems. 

1. FDA Approval 

Many forms of medical AI will require FDA approval to be mar-

keted. The FDA regulates “medical devices” under the Federal Food, 

Drug, and Cosmetics Act and defines “device” quite broadly so that 

many forms of medical AI will qualify.95 The FDA has released guid-

ance on regulating Software as a Medical Device (“SaMD”) general-

ly96 and has also released guidance on regulation of clinical decision 

support software under the 21st Century Cures Act (“Cures Act”).97 

Both suggest that FDA will regulate medical AI.98 And indeed, a few 

                                                                                                    
92. See Price, Black-Box Medicine, supra note 2, at 465–66. Empirical studies on the 

challenge of provider adoption present an interesting avenue for future work. To my 

knowledge, none yet exist. 
93. Interview with Lawyer for a Major Medical AI Developer (May 2018). 

94. IBM Watson Health, supra note 46; see supra Section II.C.1.b. 

95. See 21 U.S.C. § 321(h) (2012). 
96. See FDA, SOFTWARE AS A MEDICAL DEVICE (SAMD): CLINICAL EVALUATION — 

GUIDANCE FOR INDUSTRY AND FOOD AND DRUG ADMINISTRATION STAFF (2017), 

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/software-
medical-device-samd-clinical-evaluation-guidance-industry-and-food-and-drug-

administration [https://perma.cc/VCH3-CJUG]. 

97 . See FDA, CLINICAL DECISION SUPPORT SOFTWARE: DRAFT GUIDANCE FOR 

INDUSTRY AND FOOD AND DRUG ADMINISTRATION STAFF (2019), https://www.fda.gov/ 

regulatory-information/search-fda-guidance-documents/clinical-decision-support-software 

[https://perma.cc/GP6D-CXEY]; 21st Century Cures Act, Pub. L. No. 114-255, 130 Stat. 
1033, 1130–33 (2016) (amending 21 U.S.C. § 360j (2012)). 

98. See W. Nicholson Price II, Regulating Black-Box Medicine, 116 MICH. L. REV. 421, 

439–42 (2017). Under the 21st Century Cures Act, many forms of clinical decision support 
software are excluded from the definition of medical devices. 21st Century Cures Act, Pub. 

L. No 114-255, 130 Stat. at 1130–33 (2016). That is, software that merely informs doctors 

of treatment options or that makes recommendations may not be regulated as a medical 
device — but only if the software provides an explanation of its recommendations and al-
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devices using medical AI have already been allowed on the market by 

FDA, including one product that uses machine learning to estimate 

cardiac volume;99 one product that identifies radiological images of 

breast abnormalities for further review;100 and one product, the IDx-

DR mentioned above, that analyzes retinal images to autonomously 

diagnose diabetic retinopathy.101 Many more medical AI devices are 

likely to come through FDA’s approval or clearance pathways.102 

Training medical AI with high-quality data from high-resource 

contexts may ease the path to FDA approval. The FDA does not yet 

have any explicit standards or rules about the quality or source of data 

used in training medical AI.103 In a sense, the agency is learning as it 

goes along in this area of very new technology.104 Nevertheless, all 

                                                                                                    
lows the provider “to independently review the basis for such recommendations . . . so that 
it is not the intent that such [providers] rely primarily on any of such recommendations to 

make a clinical diagnosis or treatment decision regarding an individual patient.” 21st Centu-

ry Cures Act, Pub. L. No. 114-255, 130 Stat. at 1131 (2016). Medical AI — at least the type 
of medical diagnosis and treatment AI discussed here — will rarely meet this description 

because it will typically be unable to provide reasoning sufficient for independent review. 

See Price, supra, at 440. This will not be the case for all medical AI; some systems at least 

make claims to explain the reasoning behind their decisions, though this is a contested area 

and there may be tradeoffs between algorithmic performance and explainability require-

ments. Other types of AI are not medical devices because they do not inform or direct the 
care of individual patients; AI used in billing, or to provide medical literature references to 

doctors, would be excluded. See, e.g., 21st Century Cures Act, Pub. L. No. 114-255, 130 
Stat. at 1131 (2016). Nevertheless, as described below, even when FDA approval is not 

required, such as for devices with sufficient explainability to sit within § 3060’s exemption, 

FDA approval brings other benefits. See infra Section III.C.3.  
99. Letter from FDA to Arterys, Inc. (Jan. 5, 2017), https://www.accessdata.fda.gov/ 

cdrh_docs/pdf16/K163253.pdf [https://perma.cc/H6M4-6QQH] (determining that the Arter-

ys Cardio DL system is substantially equivalent to legally marketed predicate devices). 
100 . Letter from FDA to Quantitative Insights, Inc. (July 19, 

2017), https://www.accessdata.fda.gov/cdrh_docs/pdf17/DEN170022.pdf 

[https://perma.cc/UX5U-T2X5] (classifying QuantX as a Class II medical device under the 
de novo pathway). 

101. Press Release, FDA, FDA Permits Marketing of Artificial Intelligence-Based De-

vice to Detect Certain Diabetes-Related Eye Problems (Apr. 11, 2018), 
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm604357.htm 

[https://perma.cc/5K8X-JMBU]. 

102. The extent to which FDA will evaluate AI medical devices as components of a larg-
er system or holistically is also unclear. See Tschider, supra note 20, at 207 (describing 

limitations of classifying health-care AI systems as components when they may be used for 

differing diagnostic purposes). 
103. Interview with Senior FDA Official (June 2018). 

104. Interviews with Regulatory Affairs Personnel at Medical AI Developers (May and 

June 2018); see FDA, Challenge Questions, https://www.fda.gov/downloads/ 
MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/UCM605686.pdf 

[https://perma.cc/SA26-5BWV]; FDA, Digital Health Software Precertification (Pre-Cert) 

Program, https://www.fda.gov/medicaldevices/digitalhealth/digitalhealthprecertprogram/ 
default.htm [https://perma.cc/AB4S-5VST]. 
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things being equal, training algorithms on the highest quality data 

available removes at least one cause for risk and uncertainty.105  

2. Tort Liability 

The tort regime also creates incentives for medical AI develop-

ment.106 The tort landscape for medical AI is largely theoretical, as the 

technology is just entering practice. Even the limited scholarly work 

on the topic has focused more on medical malpractice liability of pro-

viders using medical AI, rather than on liability for the developers of 

the AI products.107 If a patient is injured through the failure of medical 

AI, however, liability could be found for developers on theories of 

negligence or strict liability, alleging design or manufacturing de-

fect.108 Successful tort claims against a medical AI developer face 

numerous challenges, including identifying the injury, demonstrating 

causation within the context of opaque recommendations, overcoming 

the reluctance of courts to find liability for software generally,109 and 

avoiding the doctrine of the learned intermediary.110 But there is still a 

risk of liability. 

High-quality data from high-resource settings could serve as po-

tential insulation from possible tort liability. It is not clear whether 

design defect or manufacturing defect would more accurately encap-

sulate a failure to train an algorithm correctly. But training algorithms 

on data from excellent doctors in high-resource settings creates an 

easier case that the developer exercised due care in the development 

process. To the extent that developing algorithms based on high-

                                                                                                    
105. All things may not be equal. For instance, if a lower-resource setting also provides 

lower-quality care (not a certainty), then an AI system could more easily show a greater 
effect in the lower-resource setting. 

106. Tort law shapes other aspects of the development of black-box medicine. See, e.g., 

W. Nicholson Price II, Medical Malpractice and Black-Box Medicine, in BIG DATA, 
HEALTH LAW, AND BIOETHICS 295, 295–96 (I. Glenn Cohen et al. eds., 2018) [hereinafter 

Price, Medical Malpractice]; Froomkin et al., supra note 49, at 35. Among other aspects, to 

the extent that tort law relies on demonstrating causation, and to the extent that demonstrat-
ing causation is hampered by essentially opaque machine-learning algorithms, we might 

expect that tort law pushes medical AI away from explainability and reliance on explicit 

factors, and toward models that are harder to interrogate — and therefore harder landscapes 
to pinpoint causation. 

107. See, e.g., Froomkin et al., supra note 49, at 55; Price, Medical Malpractice, supra 

note 106, at 295; Nicolas P. Terry & Lindsay F. Wiley, Liability for Mobile Health and 
Wearable Technologies, 25 ANNALS HEALTH L. 62, 81 (2016). 

108. Cf. Daniel A. Crane, et al., A Survey of Legal Issues Arising from the Development 

of Autonomous and Connected Vehicles, 23 MICH. TELECOMM. & TECH. L. REV. 191, 261 
(2017) (discussing potential products liability claims against software providers in the event 

of an autonomous vehicle crash). 

109. Cf. Frances E. Zollers et al., No More Soft Landings for Software: Liability for De-
fects in an Industry that Has Come of Age, 21 SANTA CLARA COMPUTER & HIGH TECH. L.J. 

745, 766 (2004). 

110. See Timothy S. Hall, Reimagining the Learned Intermediary Rule for the New 
Pharmaceutical Marketplace, 35 SETON HALL L. REV. 193, 195 (2004). 
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resource data becomes standard practice, failure to do so — if injuries 

result — could potentially be viewed as a failure to exercise due care 

in development.111 

Although tort law seems unlikely to be a principal source of in-

centives to develop algorithms on high-resource data, it likely rein-

forces existing pressures in that direction. 

3. Insurer Reimbursement 

Finally, convincing insurers that these new technologies should 

be reimbursed could easily follow a similar pattern.112 Training algo-

rithms on the data from highly skilled doctors is at least a proxy signal 

of quality. All things being equal, it suggests that the algorithms are 

likely to be higher quality, and therefore worthier of reimbursement. 

While the source of the training data is unlikely completely to replace 

other quality metrics (e.g., patient outcomes, decreased costs), linking 

an algorithm to the reputation of its training data may supplement 

those metrics on the path to reimbursement by payers.113 

 

* * * 

 

These issues are not totally distinct. The link between FDA ap-

proval and reimbursement by the Centers for Medicare and Medicaid 

Services (“CMS”), the largest payer in the United States, is substantial 

for drugs, though less so for medical devices in general.114 However, 

the link is prominent in the development of new diagnostic tests, in-

cluding those reliant on big data.115  Foundation Medicine pursued 

FDA approval of its Foundation One biomarker test simultaneously 

with CMS review for payment in a prominent example of joint FDA 

approval/CMS coverage determination. 116  CMS suggested that the 

                                                                                                    
111. See Froomkin et al., supra note 49, at 36–37, 49 (arguing that as medical AI im-

proves, it will become standard of care to use it and a failure to do so might result in liabil-
ity). 

112. See, e.g., Rachel E. Sachs, Prizing Insurance: Prescription Drug Insurance as Inno-

vation Incentive, 30 HARV. J.L. & TECH. 153, 178–79 (2016) (describing insurance reim-
bursement process); cf. Rebecca S. Eisenberg & Harold Varmus, Insurance for Broad 

Genomic Tests in Oncology, 358 SCI. 1133, 1133 (2017) (describing the practice of insurers 

declining to cover new next-generation sequencing techniques because of lack of clinical 
evidence). 

113. See Price, Black-Box Medicine, supra note 2, at 462–64 (discussing reimbursement 

challenges for black-box medicine). 
114. See Rachel E. Sachs, Delinking Reimbursement, 102 MINN. L. REV. 2307, 2309, 

2311, 2342 (2018). 

115. See Rachel E. Sachs, Innovation Law and Policy: Preserving the Future of Person-
alized Medicine, 49 U.C. DAVIS L. REV. 1881, 1885 (2016). 

116. See Eisenberg & Varmus, supra note 112, at 1134; Press Release, FDA, FDA An-

nounces Approval, CMS Proposes Coverage of First Breakthrough-Designated Test to 
Detect Extensive Number of Cancer Biomarkers (Nov. 30, 2017), https://www.fda.gov/ 
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level of reimbursement available for such next-generation diagnostics 

would be linked to the type of FDA review sought.117 Devices taken 

through FDA’s more stringent Class III approval pathway would re-

ceive full reimbursement, while devices that were only “cleared” 

through FDA’s less-stringent 510(k) clearance pathway would receive 

lower reimbursement rates.118 This stringent difference did not make 

it into final policy.119 

FDA approval is also linked to tort liability. State tort lawsuits al-

leging negligent design of medical devices are preempted if the device 

was approved by FDA through the premarket approval process (but 

not if the device was cleared under the 510(k) pathway).120 Thus, to 

the extent that the FDA approval pathway is smoothed by the demon-

stration of high-quality data reliance, that also has indirect impacts on 

the ease of obtaining reimbursement for the product and on reducing 

tort liability. 

D. Caveats 

The reliance on medical data from High-Resource Hospitals is 

both over-determined and under-determined. In many situations, firms 

will rely on High-Resource Hospital data for multiple reasons, any 

combination of which may be independently sufficient. By contrast, in 

two notable exceptions, algorithms may be trained on data from dif-

ferent sources. 

First, some types of medical data are so highly standardized that 

the particular setting from which they arise does not matter very 

much. For instance, because ophthalmological examinations are high-

ly standardized, the field has developed gold-standards for images and 

                                                                                                    
news-events/press-announcements/fda-announces-approval-cms-proposes-coverage-first-

breakthrough-designated-test-detect-extensive [https://perma.cc/ZBL2-A7SM]. 

117. See CTRS. MEDICARE & MEDICAID SERVS., PROPOSED DECISION MEMO FOR NEXT 

GENERATION SEQUENCING (NGS) FOR MEDICARE BENEFICIARIES WITH ADVANCED 

CANCER (CAG-00450N) (Nov. 30, 2017), https://www.cms.gov/medicare-coverage-

database/details/nca-proposed-decision-memo.aspx?NCAId=290 [https://perma.cc/LP8R-
PVFS]; Rebecca S. Eisenberg, Opting into Device Regulation in the Face of Uncertain 

Patentability, MARQ. INTELL. PROP. L. REV. (forthcoming) (draft on file with author) [here-

inafter Eisenberg, Device Regulation]. 
118. See Eisenberg, Device Regulation, supra note 117, at 20–21; Price, Regulating 

Black-Box Medicine, supra note 98, at 438 (describing the approval and clearance path-

ways). 
119. See CTRS. MEDICARE & MEDICAID SERVS., DECISION MEMO FOR NEXT 

GENERATION SEQUENCING (NGS) FOR MEDICARE BENEFICIARIES WITH ADVANCED 

CANCER (CAG-00450N) (Mar. 16, 2018), https://www.cms.gov/medicare-coverage-
database/details/nca-decision-memo.aspx?NCAId=290 [https://perma.cc/WB86-AXWW]. 

120. See Riegel v. Medtronic, Inc., 552 U.S. 312, 323, 326–27 (2008) (finding preemp-

tion for devices that underwent premarket approval); Medtronic, Inc. v. Lohr, 518 U.S. 470, 
496–98 (1996) (finding no preemption for devices cleared through 510(k)). 
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diagnoses for use in training ophthalmologists, and these data can 

similarly be used to train medical AI.121 

Second, the picture changes drastically in an international con-

text. The particular patterns of health data acquisition, storage, and 

use — especially legal, but also technical — are artifacts of the pecu-

liar American health system. For instance, when the federal govern-

ment mandated that hospitals and other providers adopt EHRs, it left 

the choice of system to the market.122 As a result, different providers 

and hospitals use different EHR systems, which makes it hard to as-

semble data from different medical environments.123  In China and 

some other international contexts, on the other hand, the central gov-

ernment mandates specific EHRs and their adoption, and data collec-

tion is thus more widespread and uniform across different medical 

contexts, though those contexts may bring other challenges.124 Algo-

rithms trained on foreign data, then, may be less likely to rely on data 

from High-Resource Hospitals.125 

On the other hand, reliance on U.S. data from High-Resource 

Hospitals may be over-determined in some cases. The concentration 

of those data at High-Resource Hospitals may be a sufficient condi-

tion to drive company reliance on High-Resource Hospital data, be-

cause without those data, there is nothing on which to train the 

algorithms. However, the other factors mentioned — reputation and 

avoidance of legal risks — might themselves be independently suffi-

cient were the data to become available from more contexts.126 This 

matters because if use of data from High-Resource Hospitals is indeed 

over-determined for a subset of algorithm developers, then fixing 

merely one problem — availability of data or a broader path to FDA 

                                                                                                    
121 . See WISCONSIN FUNDUS PHOTOGRAPH READING 

CENTER, https://www.ophth.wisc.edu/research/fprc [https://perma.cc/S8W3-RF88]. 

122. See HOFFMAN, supra note 67, at 1–2. 
123. See Price, Risk and Resilience, supra note 32, at 70. 

124. See, e.g., Luxia Zhang et al., Big Data and Medical Research in China, 360 BMJ, 

Feb. 5, 2018, at 1–2. Of course, there may be other concerns with centrally-mandated EHR; 
for instance, although the United Kingdom developed a plan to centralize health data for 

biomedical research, that process was halted amid intense controversy. See Siobhan Fenton, 

Controversial Mega-database of Medical Records Scrapped Over Privacy Concerns, 
INDEPENDENT (July 6, 2016), https://www.independent.co.uk/life-style/health-and-families/ 

health-news/nhs-database-medical-records-care-data-scrapped-privacy-concerns-chilcot-

report-a7123126.html [https://perma.cc/7FAR-33V9]. 
125. See, e.g., Kasumi Widner & Sunny Virmani, New Milestones in Helping Prevent 

Eye Disease with Verily, GOOGLE (Feb. 25, 2019), https://www.blog.google/technology/ 

health/new-milestones-helping-prevent-eye-disease-verily [https://perma.cc/5BCK-7XU9] 
(describing Google working with data from a chain of Indian eye hospitals). But see Corinne 

Abrams, Google’s Effort to Prevent Blindness Shows AI Challenges; Company’s AI Can 

Detect a Condition That Causes Blindness in Diabetes Patients, But in Rural India It 
Doesn’t Always Work, WALL ST. J. (Jan. 26, 2019), https://www.wsj.com/articles/googles-

effort-to-prevent-blindness-hits-roadblock-11548504004 [https://perma.cc/V3GU-WZDJ] 

(describing challenges using Google’s algorithms in field clinics). 
126. See supra Sections III.B–C. 
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approval, for instance — will not actually result in medical AI being 

trained on data from different contexts. Instead, solving just part of 

the problem may result in developers continuing to train principally 

on data from High-Resource Hospitals. 

But what is the impact of training medical AI on data from High-

Resource Hospitals? The reasons listed above all seem reasonable 

justifications for training algorithms on those data. What’s the prob-

lem? The next Part explores the challenges that arise in translating 

algorithms trained on data from High-Resource Hospitals into less-

elite health-care settings. 

IV. TRANSLATIONAL CHALLENGES 

The promise of black-box medicine — at least, the promise that is 

the focus of this work — is that it can help democratize medical ex-

pertise, raising the level of run-of-the-mill practitioners and improving 

medical care. Achieving those goals requires that algorithms actually 

be deployed in those run-of-the-mill settings. How will algorithms 

trained on data from High-Resource Hospitals fare outside those set-

tings? This Part argues that problems are likely to arise in translation 

in two principal areas: quality of care and cost of care. 

One preliminary note: other technical challenges arise in the pro-

cess of translation itself, which are not the focus of this Part. For ex-

ample, it can be difficult to ensure that algorithms trained on data 

from one electronic health record system can accurately analyze data 

within the context of another electronic health record system.127 One 

study found that an algorithm developed in Washington state to iden-

tify lung cancer patients who would likely respond to targeted therapy 

performed well in Washington, but quite poorly in Kentucky, based in 

part on different language used in electronic health records.128 Such 

technical issues may be particularly likely when the deployment con-

text is relatively under-resourced; community health centers may be 

ill-equipped to deal with EHR incompatibility issues, for instance. 

Nevertheless, even if these more straightforward technical hurdles are 

overcome, less visible challenges of decreased patient care quality and 

increased cost may remain.129 

                                                                                                    
127. See Price, Risk and Resilience, supra note 32, at 71. 

128. See Bernardo Haddock Lobo Goulart et al., Validity of Natural Language Pro-
cessing for Ascertainment of EGFR and ALK Test Results in SEER Cases of Stage IV Non-

Small-Cell Lung Cancer, JCO CLINICAL CANCER INFORMATICS 1, 7 (2019). 

129. In fact, overcoming technical challenges may give a false sense of security, thus ob-
scuring the other problems that arise in translation. 
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A. Treatment Quality 

The most significant problem with applying algorithms developed 

in High-Resource Hospitals in lower-resource settings is that those 

algorithms are likely to make diagnoses and treatment recommenda-

tions that are systematically suboptimal in those lower-resource set-

tings. These can arise in at least two different ways: differences in 

diagnoses and treatment recommendations based on systematically 

different patient populations, and differences in recommended treat-

ments based on treatment rankings whose order shifts with available 

medical resources. This distinction is a bit abstract, so the next sec-

tions will illustrate with examples from current care and then describe 

how these examples could become embedded in relatively opaque 

black-box algorithms and negatively impact the quality of care. 

1. Patient Population Differences 

Algorithmic translation can cause problems in care when there are 

systematic differences between the patient populations used to train 

the algorithm and those where the algorithm is later used. If the pa-

tients in the training data — the High-Resource Hospital — differ 

systematically from the patients in low-resource settings where the 

algorithm is deployed as part of an AI system, the system won’t do a 

good job dealing with those patients. 

Patient population differences, including ancestral origin/genetic 

variation, socioeconomic status,130 or general health status,131 can in-

fluence recommendations for treatment in many ways. These differ-

ences can influence both proper diagnosis and proper treatment. 

Consider two examples, one on the prediction side and one on the 

treatment side. 

A prominent example on the diagnosis/prophylactic front comes 

from hypertrophic cardiomyopathy.132 In this condition, the wall of 

the heart thickens abnormally, potentially leading to abnormal 

rhythms and even sudden death; it is particularly dangerous for young 

athletes who can be asymptomatic and then die during strenuous exer-

                                                                                                    
130. See, e.g., Dhruv Khullar, A.I. Could Worsen Health Disparities, N.Y. TIMES  

(Jan. 31 2019), https://www.nytimes.com/2019/01/31/opinion/ai-bias-healthcare.html 

[https://perma.cc/6QXJ-SQZS] (noting AI may entrench current inequities in health: “If, for 

example, poorer patients do worse after organ transplantation or after receiving chemother-
apy for end-stage cancer, machine-learning algorithms may conclude such patients are less 

likely to benefit from further treatment — and recommend against it.”). 

131. For instance, of all patients with a particular disease, those with the most severe 
symptoms might disproportionately choose to go to High-Resource Hospitals, which would 

skew the data from which an algorithm could learn. 

132. See Arjun K. Manrai et al., Genetic Misdiagnoses and the Potential for Health Dis-
parities, 375 NEW ENG. J. MED. 655, 655 (2016). 
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tion.133 Genetic tests are used to identify the disorder — but a 2016 

study found that black Americans were underrepresented in the initial 

data, and as a result many black patients were told they were at risk 

based on a mutation that does not in fact predict a higher risk for 

them.134 Medical AI could easily use this type of genetic information, 

especially once genetic sequencing becomes more common, to drive 

preliminary diagnoses and recommendations for further screening — 

and unless that medical AI was trained on more representative data, it 

would provide poor results for underrepresented groups.135 

On the treatment side, consider clopidogrel, marketed in the Unit-

ed States as Plavix for preventing heart attacks and stroke.136 The 

gene CYP2C19 is related to the efficacy of clopidogrel. One particular 

CYP2C19 allele reduces how well clopidogrel works — but only ap-

pears in those of European ancestry 10–20% of the time, as opposed 

to those of Pacific Islander descent (40–77%) or East Asian descent 

(23–45%).137 Unfortunately, 95% of participants in the initial clinical 

studies were of European descent — leading to the conclusion that the 

drug is much more broadly effective than it actually is.138 The state of 

Hawaii sued Bristol-Myers Squibb and Sanofi-Aventis, the makers of 

Plavix, for false, unfair, and deceptive marketing based on the failure 

to disclose that treatment efficacy differed based on patient popula-

tions.139 

Differences between patients are well-recognized. Those differ-

ences drive the development of precision medicine: the idea that med-

ical treatment should take into account the characteristics of each 

individual patient.140 For drugs, that means getting the right drug to 

the right patient, at the right time.141 For medicine to take those differ-

ences into account, though, especially AI, medical technologies need 

to be developed in environments that actually show representative 

variation. If, as posited here, certain types of variation are not reflect-

ed in development environments, those potential benefits are lost. 

That is to say, if High-Resource Hospitals have notably different pa-

                                                                                                    
133. See id. at 656. 

134. See id. at 659–60. 

135. See Lucia A. Hindorff, et al., Prioritizing Diversity in Human Genomics Research, 
19 NATURE REVS. GENETICS 175, 175 (2018) (“Increased attention to diversity will increase 

the accuracy, utility and acceptability of using genomic information for clinical care.”). 

136. See Alan H.B. Wu et al., The Hawaii Clopidogrel Lawsuit: The Possible Effect on 
Clinical Laboratory Testing, 12 PERSONALIZED MED. 179, 179 (2015). 

137. See id. at 180. 

138. See Rachel Huddart et al., Are Randomized Controlled Trials Necessary to Establish 
the Value of Implementing Pharmacogenomics in the Clinic?, 106 CLINICAL 

PHARMACOLOGY & THERAPEUTICS 284, 285 (2019). 

139. See Vence L. Bonham et al., Will Precision Medicine Move Us Beyond Race?, 374 
NEW ENG. J. MED. 2003, 2004 (2016). 

140. See, e.g., Margaret A. Hamburg & Francis S. Collins, The Path to Personalized 

Medicine, 363 NEW. ENG. J. MED. 301, 301 (2010). 
141. See, e.g., id. 
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tient populations, then we should expect that medical AI trained on 

data from those populations and then deployed in different settings 

should encounter problems based on those patient population differ-

ences. 

And in fact, at least some High-Resource Hospitals show substan-

tially skewed patient populations. Roosa Tikkanen and her colleagues 

found that white patients were three times as likely as black patients 

to be admitted to academic medical centers in New York City in 2009, 

controlling for insurance status, age, and gender.142 Even after the 

Affordable Care Act went into effect, the ratio was still more than two 

to one.143 Thus, the data collected in those High-Resource Hospitals 

would substantially underrepresent black patients. This pattern is not 

universal among High-Resource Hospitals; Boston academic medical 

centers did not show the same underrepresentation as in New York.144 

Other studies have found similar results in terms of minority represen-

tation in academic medical centers.145 

Genomic data provide a useful example of the underrepresenta-

tion of diverse populations in big health data. To be sure, genomic 

data differ from electronic health records — EHRs are records of pa-

tient care that may be used for research, while genome sequences are 

frequently generated specifically for research purposes. Nevertheless, 

genomic data are key elements of big health data, especially those that 

push boundaries to increase the precision of medicine, and are im-

portant for medical AI. And genomic sequence databases are tremen-

dously non-representative. In 2009, 96% of participants in genome-

wide association studies were of European descent.146 More recently, 

the diversity of those databases has increased — but almost exclusive-

ly because of increased genomic sequencing efforts by Asian cen-

                                                                                                    
142. Roosa Sofia Tikkanen et al., Hospital Payer and Racial/Ethnic Mix at Private Aca-

demic Medical Centers in Boston and New York City, 47 INT’L J. HEALTH SERVS. 460, 464 
(2017). 

143. Id. 

144. See id. High-Resource Hospitals whose patient populations are more generally rep-
resentative will tend to produce algorithms with fewer translational problems — at least on 

the dimension of patient population differences. 

145. See, e.g., Neil S. Calman et al., Separate and Unequal Care in New York City, 9 J. 
HEALTH CARE L. & POL’Y 105, 107 (2006); Romana Hasnain-Wynia et al., Disparities in 

Health Care Are Driven by Where Minority Patients Seek Care: Examination of the Hospi-

tal Quality Alliance Measures, 167 ARCHIVES INTERNAL MED. 1233, 1237–38 (2007); 
Ashish K. Jha et al., The Characteristics and Performance of Hospitals that Care for Elder-

ly Hispanic Americans, 27 HEALTH AFF. 528, 533–35 (2008). 

146. See Anna C. Need & David B. Goldstein, Next Generation Disparities in Human 
Genomics: Concerns and Remedies, 25 TRENDS GENETICS 489, 490 (2009). 
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ters.147 Patients of Latin-American and African descent remain rare in 

these databases.148 

More generally, researchers are increasingly realizing that the da-

ta used to train medical AI are not representative of the populations in 

which those AI may be used. Voice recognition AI often performs 

poorly when analyzing accented voices.149 And the databases of skin 

lesions used to train dermatological AI to recognize melanomas are 

largely missing images from patients with darker skin.150 

Overall, differences in patient populations may limit the generali-

zability of medical AI. Where AI is trained on data including only a 

limited and non-representative set of patients, it will work less well 

for patients outside that set. This problem has a familiar flavor; other 

forms of medical intervention, such as drugs, are also developed in 

particular patient contexts, and generalizability is an ongoing chal-

lenge.151 Some instances will matter more than others. It might be the 

case that retinal images look pretty much the same from any popula-

tion of patients in the world, so that contextual bias in retinal-image-

based diagnoses is a minimal concern — but skin images look very 

different depending on whether the skin is fair or not. The problem 

will vary, unsurprisingly, depending on the context. 

But a second set of translational challenges also exists, more de-

pendent on the pattern of medical AI’s development: challenges that 

arise from the differences in resource capacity between High-

Resource Hospitals and other settings where black-box medical algo-

rithms will be deployed. 

                                                                                                    
147. See Alice B. Popejoy & Stephanie M. Fullerton, Genomics Is Failing on Diversity, 

538 NATURE 161, 163 (2016). 
148. See id. at 162. All of Us, the NIH-led initiative to obtain health records and genomic 

sequences for more than a million Americans, is a notable effort to reflect patient diversity 

and is discussed in detail below. See infra Section VI.C. 
149. See Sonia Paul, Voice is the Next Big Platform, Unless You Have an Accent, WIRED, 

(March 20, 2017, 12:00 AM), https://www.wired.com/2017/03/voice-is-the-next-big-
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which it’s been introduced.”); see also Will Knight, AI Programs are Learning to Exclude 

Some African-American Voices, MIT TECH. REV. (Aug. 16, 2017), 
https://www.technologyreview.com/s/608619/ai-programs-are-learning-to-exclude-some-
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150. See Adewole S. Adamson & Avery Smith, Machine Learning and Health Care Dis-

parities in Dermatology, 154 JAMA DERMATOLOGY 1247, 1247 (2018). 

151. For a small sampling of the extensive literature on pharmacogenomics, a field based 
on this reality, see, for example, Mary V. Relling & William E. Evans, Pharmacogenomics 

in the Clinic, 526 NATURE 343 (2015), and Simona Volpi et al., Research Directions in the 

Clinical Implementation of Pharmacogenomics: An Overview of US Programs and Projects, 
103 CLINICAL PHARMACOLOGY & THERAPEUTICS 778 (2018). 
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2. Resource Capacity Differences 

A second major source of contextual bias occurs because differ-

ences in resources change which option is better — that is, which 

treatment option an algorithm should recommend. This problem arises 

with treatment recommendations in a way that it doesn’t with diag-

nostic expertise. When medical AI gives a particular diagnosis, it 

simply provides that information, which is either accurate or not, 

whatever the situation. Whether a patient actually has a subdural he-

matoma does not depend on whether the patient presents at Mass 

General or in a rural Nigerian clinic. Whether AI gets that diagnosis 

right may change based on the contexts of training and application.152 

But the right diagnosis — the ground truth — does not change. 

Treatment recommendations are different, because they need to be put 

into practice — the provider and patient must actually undertake the 

treatment, and that process differs in different contexts.153 

Given a menu of treatment options for a given ailment, the “best” 

or most appropriate option in a high-resource setting may well be 

quite different than the best option in a low-resource setting. The most 

straightforward version of this dichotomy is when recommended 

treatment options are simply unavailable. In lower-resource settings, 

patients and providers may not have access to machines necessary for 

certain types of care (e.g., directed radiotherapy or laparoscopic sur-

gery) or certain drugs, either because they are too expensive or be-

cause they require specific conditions for transport and storage. In the 

very lowest-resource settings, drugs that require refrigeration may not 

be available if reliable cold-chain transport is absent. But these types 

of context disparities, while troubling, are at least easy to see; if AI 

says to do X, but X isn’t possible, that’s an easy recommendation to 

ignore. Algorithms with lots of those unhelpful recommendations 

won’t improve care very much in lower-resource contexts, but at least 

those algorithms won’t actively compromise care. 

More problematically, some treatments work very well when per-

formed by experts with excellent support structures, but poorly if per-

formed without those resources. Algorithms trained in high-resource 

settings may learn to prefer treatments that are only the best treat-

ments when performed in those same high-resource settings. When 

those algorithms are applied in lower-resource settings, lower-quality 

care may result, and that drop in quality may be tough to observe. 

Some examples may clarify the pattern. 

Gallbladder cancer and inflamed gallbladders demonstrate the 

tremendous difference in optimal choice based on the resources of the 

                                                                                                    
152. See supra Section IV.A.1. 
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medical setting.154 Gallbladder cancer is both extremely rare and ex-

tremely aggressive; if it metastasizes beyond the gallbladder, patients 

have among the worse outcomes of any cancer. Cholecystitis, or in-

flammation of the gallbladder, on the other hand, is common. Chole-

cystitis is treated with a low-risk, technically straightforward surgery 

wherein the surgeon laparoscopically removes the inflamed gallblad-

der. Often, though, a patient will present to a doctor with what appears 

to be cholecystitis, but is actually gallbladder cancer. When that hap-

pens, the surgeon needs to notice — in the middle of the laparoscopic 

surgery — the signs of likely cancer and then decide — again, mid-

surgery — whether to try to remove the cancer or stop the surgery and 

send the patient to a higher-resource hospital.155 Doing the surgery 

(that is, removing the cancer and some surrounding tissue) 

requires significantly more surgeon skill, as well as 

surgeon education/understanding of the anatomy of 

the liver, the gallbladder, and the blood vessels and 

ducts. It also requires different, more specialized op-

erative instruments. It will take longer, and it can be 

much harder. But if it’s done correctly, the patient 

has their appropriate, necessary cancer operation at 

the time of (suspected) diagnoses. They may be 

cured at that point, or they might need chemo, but it 

gives them the best treatment and the best long-term 

survival. 

The problem with this option is that if there’s an er-

ror, the surgeon can seriously injure the liver itself, 

the blood vessels and ducts to/from the liver, or, 

much worse, tear the gallbladder and spill cancer 

throughout the abdomen. Any of those has severe 

consequences that will require significant resources 

to address (or . . . advance the cancer and kill the pa-

tient).156 

On the other hand, stopping the surgery and sending the patient to 

a better-trained surgeon with better equipment has essentially no risk 

(except the time elapsed), and no immediate benefit. Choosing to pur-

                                                                                                    
154. E-mail from Dr. Clare French, General Surgeon, SurgOne, P.C. (on file with au-
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sue the surgery may well be the right option in a setting with trained 

surgeons and better equipment — but is often a poor option in settings 

without those resources.157 AI helping make that choice could easily 

make the wrong choice if trained only in environments with highly 

skilled surgeons. 

Interventions do not have to be surgical. Choices among drugs 

may also be resource-dependent. Consider the example of a chemo-

therapeutic raised above: while a powerful drug may be most effica-

cious against a cancer, it may also carry high risks of serious side 

effects that require highly skilled monitoring to avoid. In a high-

resource setting, the stronger chemotherapeutic may be the right call; 

outside such a setting, it may be catastrophic. 

Overall, diagnostics and interventions that are the best options in 

high-resource settings will frequently not be the best options in low-

resource contexts. When black-box algorithms are trained exclusively 

in high-resource settings, we should expect them to perform worse in 

low-resource settings where both patient populations and available 

resources are different. 

B. Cost 

Training medical AI in High-Resource Hospitals may also bias 

the resulting algorithms toward selecting more costly procedures. 

High-Resource Hospitals are on the cutting edge of medical treatment; 

they are where the most sophisticated and up-to-date techniques and 

technologies are developed and used. Academic medical centers also 

tend to treat patients more intensively than do other medical set-

tings.158 These treatments are often excellent — some researchers find 

that academic medical centers do better by patients than other hospi-

tals159 — but they are also more expensive.160 
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To the extent that providers in high-resource settings tend to 

choose more intense, more costly interventions, medical AI will learn 

those patterns and recommend them when translated to low-resource 

settings. Such effects may develop over time. If an algorithm continu-

ally suggests that patients get PET scans, for instance, and a commu-

nity hospital does not have a PET scanner, obviously the patient 

cannot get that scan at that time. But providers in that hospital may 

note the continued recommendations and push for the hospital to buy 

a PET scanner to comport with the algorithm, resulting in higher costs 

over time. Such higher costs may be warranted — perhaps the hospi-

tal really needs a PET scanner to provide appropriate care efficiently 

and effectively. But in other cases, the AI may just suggest the more 

expensive option because that option is more prevalent in high-

resource contexts, when a lower-cost option may be more appropriate 

for the lower-resource context. 

 This pattern is likely to result in anti-frugal effects. Although 

medical AI may reduce some costs — presumably, software is cheap-

er to run than an additional diagnostician is to hire — it may increase 

other costs by systematically changing preferred patterns of care to 

more closely match those at high-resource, more expensive care set-

tings.161 Overall, translation between contexts looks to have problem-

atic effects on both the quality of care and the cost of care. 

V. ISN’T ALL MEDICINE CONTEXTUAL? 

On being presented with these translational challenges, one might 

ask: isn’t all medicine contextual anyway? That is to say, isn’t it the 

case that all medicine depends on the particular patient in front of the 

particular provider, the evidence upon which the intervention is based 

and in what populations that evidence was developed, and the re-

sources available to the provider in the immediate medical encoun-

ter? 162  This Part gives three replies to this question: first, even if 

medical AI is just contextual like other medicine, that is worth noting; 

second, the opacity of medical AI may hide contextual changes that 

would otherwise be noticed; and third, the rhetoric and development 
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of medical AI suggests that contextual dependence will not be a prob-

lem, making its existence more striking. The next Part addresses a 

different set of issues, focusing on how medicine already deals with 

contextual knowledge, and why those tools work less well for medical 

AI. 

First, even if the ultimate conclusion from this work is only that 

medical AI is contextual like other types of medicine, and that its con-

textual effects may be concentrated across the gradient of resources, 

that is worth knowing. Medical AI has the apparent promise of ad-

dressing contextual challenges in medicine by distributing expertise 

and by taking account of patient variations to make care especially 

precise — and hopefully, it will fulfill that promise! But unless the 

status quo is changed, medical AI is subject to its own set of contex-

tual biases. It is not an automatic panacea. 

Second, opacity makes it potentially harder to spot problems that 

may arise from contextual bias than to spot parallel problems in well-

understood systems. Medical AI is black-box medicine; it is difficult 

to know how it makes its recommendations.163 This opacity makes it 

hard to spot the problems of contextual bias when they appear. If a 

provider consults a Physician’s Desk Reference and sees that a partic-

ular treatment option is generally preferred but requires more re-

sources to perform well than are available in a low-resource setting, 

she can decide to pursue a less effective but more practical option. But 

if this recommendation comes from an algorithm with no reasoning 

given — it might be based on specific patient characteristics, or the 

particulars of the diagnosis, or something else — it is harder to know 

whether that recommendation or some alternative is the better 

choice.164 Thus, medical AI’s contextual bias may be harder to under-

stand and to rectify than in other medical situations.  

Third and most importantly, the nature of machine-learning sys-

tems and the possibility of self-improvement provides an illusory 

safety rail. This requires some unpacking. For other medical technol-

ogies, we recognize (or, at least, we’re starting to recognize) that the 

technology is developed in a specific context and might not work so 

well when deployed in other contexts. When the clinical trials used to 

approve a drug include no pregnant women, we recognize — or 

should — that evidence for its safe and effective use in pregnant 

women is lacking.165 Perhaps more pointedly, whether or not the drug 

works safely for pregnant women, we don’t expect the drug to change. 
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But that’s not true for medical AI. Machine-learning systems hold out 

the possibility of improvement; it’s right there in the name. Data from 

deployment and use can be used to improve the algorithms so that 

they get better over time.166 And so we might reasonably be more op-

timistic about context-specificity in medical AI: while the algorithm 

isn’t perfect when it starts, it will learn from deployment contexts and 

improve. But that safeguard is illusory. Contexts where medical AI is 

likely to run into problems are precisely the contexts where we lack 

the data needed to improve its performance: low-resource environ-

ments that lack the data infrastructure to train, improve, or even eval-

uate algorithms.167 That lack of infrastructure doesn’t end with the 

deployment of some black-box medicine implementations. Rather, 

unless that deployment is embedded within new data infrastructure 

that itself returns data to the algorithm’s development, we should ex-

pect that any contextual problems will remain unaddressed even as the 

algorithm is used in the new context. Thus, medical AI holds out the 

promise of improvement over time, but that promise will do little to 

solve the problem of contextual bias in low-resource contexts. 

So yes — all medicine is contextual, and black-box medicine is as 

well. But given black-box medicine’s capacity for democratizing ex-

pertise, opacity, and capability for self-improvement in aspects other 

than contextual bias, bias in black-box medicine demands special at-

tention. 

VI. SOLUTIONS 

The problem of contextual bias in medical AI is likely to dampen 

the potential benefits of democratizing medical expertise. Reducing 

this problem will be tricky. This Part discusses several possible solu-

tions and closes with a discussion of traps to avoid in implementing 

them. 

Two fairly obvious solutions for the quality problem both have 

real challenges. First, for several reasons, “humans-in-the-loop” — 

providers who can review and implement care options — won’t pre-

vent the problems above, though they may sometimes ameliorate 

them. Second, labeling of medical AI based on how and where it was 

trained faces substantial difficulties in implementation, and even if it 

works as intended, will not solve the problem. 

Two quality solutions have more promise. First, public invest-

ment in data infrastructure can help tackle the problem at the front-
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end by increasing the representativeness of data on which medical AI 

is trained. Second, regulatory requirements of at least some evidence 

of cross-contextual efficacy will reduce the incentives developers face 

to develop medical AI only in high-resource contexts. 

Cost is its own tremendous tangle of issues; I briefly discuss how 

we might think through addressing it. 

Finally, a coda considers three traps to avoid: too much contextu-

alization, too little contextualization, and the innovation-stunting pa-

ralysis of the Nirvana fallacy. 

A. Provider Safeguards and Humans-in-the-loop 

Why doesn’t the presence of human providers in care settings re-

solve the concerns described above? Medical practice already incor-

porates variation between different contexts; different doctors have 

different preferred strategies, and patients are different everywhere. 

The way we tend to resolve this is by relying on providers at the point 

of care to make the decision that is most appropriate for the patient in 

front of them — the original version of “personalized medicine.” Why 

doesn’t that work here to avoid these problems? I posit four reasons of 

increasing force: (1) present provider ignorance; (2) reliance on algo-

rithms; (3) future provider ignorance; and (4) provider absence. Each 

reduces the force providers can bring to bear to correct translational 

errors of medical AI — and, more generally, should decrease our con-

fidence in relying on “human-in-the-loop” safety mechanisms for 

medical AI. 

1. Present Provider Ignorance 

First, providers often don’t know what the best options are, and 

therefore may not be suited to exercise independent corrective judg-

ment on the decisions of algorithms. Famously, a large fraction of 

medicine as practiced is not evidence-based. 168  Providers may not 

know which option is preferable in general among a menu of options, 

much less what treatment is preferable for the specific patient in front 

of them or in the specific resource context of the medical encounter. 

The examples from current practice listed above exemplify this pat-

tern; it may be the wrong call to undertake surgical removal of 
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gallbladder cancer in low-resource settings, but some providers still 

choose those options. Why would we assume that providers would 

somehow acquire the knowledge to correct the errors of medical AI 

when they currently make at least some similar errors in practice 

without AI present?169 

2. Reliance on Algorithms 

Second, even if providers currently know what the ideal diagnos-

tic or treatment pathway is, they may not actually exercise independ-

ent judgment when confronted with an algorithm providing a different 

conclusion. Automation bias refers to a phenomenon where individu-

als rely on the results of automation even when they know or should 

know that the automation is wrong.170 Sometimes, the individuals fol-

low incorrect recommendations (commission errors), and sometimes 

they fail to notice problems when the software does not flag them for 

review (omission errors).171 Both types of errors have been observed 

in the context of clinical decision support software in areas including 

prescriptions, mammogram interpretation, EKG interpretation, and 

clinical scenario management.172 Overall, we probably want at least 

some level of automation bias, because good software still improves 

the level of care, even if it occasionally makes mistakes.173 If provid-

ers are constantly second-guessing medical AI, we lose the benefits of 

increased performance and efficiency that they promise.174 Neverthe-

less, the presence of automation bias decreases our ability to rely on 

humans-in-the-loop to correct problems of medical AI, whether based 

on problems with contextual translation or not. 
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3. Future Provider Ignorance 

Third, even if providers currently know enough to correct the er-

rors of medical AI, that knowledge base may decrease over time as 

medical AI becomes more commonplace. Michael Froomkin, Ian 

Kerr, and Joelle Pineau have painted a picture of what might happen 

to medical practice as medical AI becomes better and more availa-

ble.175 They argue that as medical AI becomes more competent, doc-

tors will be pushed to rely on it by, among other things, medical 

malpractice, and that over time doctors will lose the knowledge neces-

sary to practice medicine well and to know how well medical AI is 

performing.176 One need not accept their argument wholesale to be-

lieve that as medical AI comes to perform at at-or-above human levels 

on some medical tasks, and to be widely available, the incentives for 

providers to train in those tasks will substantially decrease. This ten-

dency will likely interact with the automation bias described immedi-

ately above, with the result that providers will be less able to catch 

errors resulting from problems in medical AI. 

4. Provider Absence 

Fourth and finally, all the models of humans-in-the-loop to reduce 

errors from medical AI, including contextual translation errors, rely 

on humans actually being present to take their place in the loop. But 

this is quite an assumption and will often be wrong. Consider again 

the benefit of medical AI on which this work focuses: the possibility 

of democratizing expertise, making high-level medical expertise 

available to those who otherwise might not have it. When we assume 

the presence of a skilled provider who can oversee the recommenda-

tions of medical AI, in a partnership rather than a replacement model, 

and can correct errors of the sort discussed above, we assume away 

this problem that medical AI can help us fix. Of course, a skilled sur-

geon can recognize the problems of trying to remove gallbladder can-

cer without the right operating tools, and could countermand the 

recommendation of medical AI to proceed — but what about the 

common situation where there is no skilled surgeon present? An ex-

cellent pathologist may recognize the mistakes of an AI-provided di-

agnosis of a particular pathology slide, but often there will be no 

excellent pathologist available, especially in the type of lower-

resource settings on which this work focuses. 

                                                                                                    
175. See generally Froomkin et al., supra note 49 (describing changes to existing medical 

liability rules to maintain physician participation and to avoid over-reliance on medical AI). 

176. Id.; see also Federico Cabitza et al., Unintended Consequences of Machine Learning 
in Medicine, 318 J. AM. MED. ASS’N 517, 517 (2017). 
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In low-resource medical settings, we simply cannot assume the 

presence of practitioners with the right set of knowledge to recognize 

and fix the suboptimal recommendations medical AI may provide 

when its insights translate poorly to that exact low-resource context. 

Whether we are talking about community health centers, community 

hospitals, solo practitioners, or rural health settings with very limited 

provider availability, those settings will lack many types of exper-

tise — and again, that’s precisely the point of medical AI.177 This is 

not to say that human-in-the-loop is not a laudable model; there are 

reasons to prefer rich provider involvement178 (though there are also 

reasons to circumscribe that involvement179), and reasons to suspect 

that in high-resource contexts skilled providers will be unwilling to 

cede responsibility to medical AI.180 But relying on humans to catch 

AI errors will not work in many contexts where medical AI promises 

to do a tremendous amount of good. 

B. Labeling 

Labeling medical AI to provide more information to users pro-

vides a solution that is both obvious and problematic. It is obvious 

because labeling is a common and straightforward way to recognize 

the limitations of technology, especially medical technology. It is 

problematic for three reasons. First, it is unclear how to label medical 

AI appropriately to recognize the problem of contextual bias. Second, 

providers often ignore medical labels and use technologies “off-

label.” Third, even if providers follow labeling restrictions about 

where to use medical AI, such a path hobbles the goal of democratiz-

ing medical expertise. 

Labeling could mean two distinct things in this context: the more 

general labels that give instructions for any product, or FDA-

mandated labeling. Labels are familiar in many regulated contexts;181 

                                                                                                    
177. See supra Section II.C.2. 

178. See Kiel Brennan-Marquez & Stephen E. Henderson, Artificial Intelligence and 
Role-Reversible Judgment, 109 J. CRIM. L. & CRIMINOLOGY 137, 146–48 (2019); Selbst & 

Barocas, supra note 174, at 1138–39. 

179. For instance, if providers consistently second-guess the recommendations of algo-
rithms, and the algorithms perform at a higher level than the average provider, provider 

reversal will on average lessen the quality of recommendations. See Price, Medical Mal-

practice, supra note 106, at 299–305 (discussing this dynamic); Selbst & Barocas, supra 
note 174, at 1129. 

180. Among other things, for the foreseeable future, providers are likely to bear ultimate 

responsibility for final medical decisions. See Price, Medical Malpractice, supra note 106, 
at 303. But see Cabitza et al., supra note 176, at 517 (noting provider willingness to defer to 

algorithms). 

181. See generally Omri Ben-Shahar & Carl E. Schneider, The Failure of Mandated Dis-
closure, 159 U. PA. L. REV. 647 (2011) (surveying mandatory disclosure regimes). 
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cigarettes carry warnings about potential health risks182 and food car-

ries labels stating nutrition content.183 Labeling relies on a combina-

tion of disclosure and choice: product users should be able to choose 

how and whether to use a particular product, but they should be in-

formed about the salient facts before making that choice (particularly 

if those facts are hard for users to discern on their own).184 

The FDA mandates its own specific form of labeling for products 

it regulates, including drugs and medical devices — which as de-

scribed above, will typically include medical AI.185 Labels for medical 

devices must include adequate direction for use, including 

“[s]tatements of all conditions, purposes, or uses for which such de-

vice is intended.”186 Use outside those conditions, just like for drugs, 

is “off-label use.”187 The rest of this Section will assume the existence 

of an FDA-approved label for medical AI as a medical device, but 

similar arguments apply to non-FDA-approved labeling that just dis-

closes information about a product to inform users. 

Determining what information should go on a medical AI label 

will be hard. Ideally, a label would provide enough information such 

that those choosing to deploy it in a new context would know how 

well to expect the algorithm to perform in that context, and what types 

of failure or errors might be expected — and we don’t know that yet. 

This Article has sought to open that conversation — mentioning, 

among other things, patient composition and resource availability 

(broadly defined) of the setting in which the algorithm was trained. 

But to really know how to impose labeling requirements that contain 

enough information to inform use meaningfully, we need to know a 

lot more about the relevant sources of patient and provider variation 

                                                                                                    
182. See, e.g., Kristin M. Sempeles, Note, The FDA’s Attempt to Scare the Smoke Out of 

You: Has the FDA Gone Too Far with the Nine New Cigarette Warning Labels?, 117 PA. 

ST. L. REV. 223, 232–35 (2012) (describing the labeling regime); see also Sara C. Hitchman 
et al., Changes in Effectiveness of Cigarette Health Warnings Over Time in Canada and the 

United States, 2002–2011, 16 NICOTINE & TOBACCO RES. 536, 536 (2013) (evaluating the 

effectiveness of warning labels). 
183. Nutrition Labeling and Education Act, Pub. L. No. 101-535, 104 Stat. 2353 (1990). 

184. Ben-Shahar & Schneider, supra note 181, at 649–50. 

185. See supra Section III.C.1. 
186. 21 C.F.R. § 801.5 (2019); see also FDA, General Device Labeling Requirements, 

https://www.fda.gov/medical-devices/device-labeling/general-device-labeling-requirements 

[https://perma.cc/8U4W-SH69] (citing 21 C.F.R. § 801.5 (2019)). 
187. See, e.g., Randall S. Stafford, Off-Label Use of Drugs and Medical Devices: A Re-

view of Policy Implications, 91 CLINICAL PHARMACOLOGY & THERAPEUTICS 920, 920 

(2012) (providing an overview of off-label use of drugs and devices); Jamie S. Sutherell et 
al., Pediatric Interventional Cardiology in the United States is Dependent on the Off-Label 

Use of Medical Devices, 5 CONGENITAL HEART DISEASE 2, 2–3 (2010) (finding that half of 

all pediatric cardiac interventions involved an off-label use and that 99% of stent implanta-
tions were off-label). 
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than we know now.188 This is not to say that such labeling is a futile 

enterprise, but it will be difficult to get right. 

More problematic is how labels are actually used or not used in 

clinical care. In general, transparency is of limited efficacy in shaping 

the use of technology, though it is a commonly-prescribed solution.189 

Off-label use of drugs is famously common.190 Perhaps unsurprising-

ly, some of the most common off-label uses, such as pediatric use 

without trials to support pediatric approval, 191 mimic common gaps in 

health big data. And although drug labels rarely specify that they are 

principally tested in relatively ancestrally homogeneous populations, 

we might think of the widespread use of drugs or other treatments in 

ancestral minorities in whom the treatments were not originally tested 

as a sort of ersatz off-label use. So, too, we should expect that medical 

AI would be used off-label just as other medical treatments are.192 If 

an algorithm were trained in a relatively limited population, then us-

ing it in another population would be unsurprising — especially if the 

algorithm otherwise seems to be a good tool, trained on data from 

doctors in a high-resource setting.193 

Third, finally, and most importantly: even if labels are well-

designed and even if providers actually follow them — that just gets 
us back to the original problem. Recall the key goal of medical AI 

that drives the issue of translation across contexts (and the rest of this 

work): democratizing medical expertise, and allowing the provision of 

excellent medical care in settings where it might otherwise be outside 

the capabilities of providers in that setting. If labels state that medical 

AI is developed in high-resource settings with relatively limited pa-

tient populations and should be limited to similar situations, and if 

providers follow those labels to avoid using the medical AI in low-

resource settings with different patient populations, then the medical 

AI doesn’t actually democratize expertise at all. Respecting limita-

                                                                                                    
188. One parallel solution is to just let the algorithms sort all of this variation out, such 

that rather than labels noting variation, the algorithms themselves take all relevant variation 
into account. But this begs the question — that solution requires that algorithms be devel-

oped with enough data to see that range of variation, which by hypothesis throughout this 

piece is not the case. 
189. See, e.g., Ben-Shahar & Schneider, supra note 181, at 679. But see Ryan Bubb, 

TMI? Why the Optimal Architecture of Disclosure Remains TBD, 113 MICH. L. REV. 1021, 

1042 (2015) (arguing for the effectiveness of some disclosures). 
190. See, e.g., Rebecca S. Eisenberg, The Problem of New Uses, 2 YALE J. HEALTH 

POL’Y L. & ETHICS 717, 731 nn.62–63 (2005) [hereinafter Eisenberg, Problem of New 

Uses]. 
191. See Sutherell et al., supra note 187, at 2–3. 

192. One could imagine technological limitations built into algorithms, such that an algo-

rithm trained only on adults, for instance, would simply not provide a recommendation in a 
pediatric case. This would be challenging to implement and would also not solve the imme-

diately following problem. 

193. See supra Section III.B (describing the reputational benefit of training in high-
resource settings). 
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tions of algorithmic development by avoiding potentially problematic 

contexts is like responding to the problem of biased policing by keep-

ing police out of minority neighborhoods entirely: it may decrease the 

problem of bias, but it also loses any potential benefit that the tech-

nology or intervention might give to those in the second context.194 

Labeling may still have some benefit. If, for instance, providers or 

other purchasers of medical AI actually do follow restrictive labeling, 

then developers would face incentives to demonstrate cross-context 

efficacy to obtain a broader label and therefore broader use.195 But 

this assumes that labels are closely followed, and also that the re-

sources available in low-resource settings are sufficient to outweigh 

incentives to focus development on high-resource settings — assump-

tions that are easy to challenge. On the other hand, training-based la-

bels might be of more use when combined with two other 

interventions: investment in data infrastructure and regulatory man-

dates for cross-context efficacy data. 

C. Representative Datasets 

A third way to ameliorate problems in contextual translation in-

volves addressing the root of the issue: the initial training data. If the 

existing dynamic is principally driven by data location — High-

Resource Hospitals are where the data are196 — then policymakers 

could push to generate and collect more data to change that initial 

condition. The public — and by public, here I largely mean the gov-

ernment, whether state or federal197 — can invest in two types of data 

infrastructure. 198  First, it can invest in infrastructure for data: re-

sources like computer servers, personnel, standards, and procedures 

that let data be collected, controlled for quality, and made available at 

lower-resource settings such as community health centers.199 The pub-

lic can also invest in the infrastructure of data: large collections of 

                                                                                                    
194. See, e.g., Solon Barocas & Andrew D. Sebst, Big Data’s Disparate Impact, 104 

CALIF. L. REV. 671, 689–90 (2016); I. Glenn Cohen & Harry S. Graver, Cops, Docs, and 

Code: A Dialogue Between Big Data in Health Care and Predictive Policing, 51 U.C. 

DAVIS L. REV. 437, 443–44 (2018). 
195. See Eisenberg, Problem of New Uses, supra note 190, at 734–35. 

196. See supra Section III.A. 

197. Private investors could also invest in funding such data infrastructure, but private 
investment in infrastructure tends to be socially suboptimal because private actors cannot 

adequately capture the spillover benefits that infrastructural goods provide for other innova-

tors and downstream users. See BRETT M. FRISCHMANN, INFRASTRUCTURE: THE SOCIAL 

VALUE OF SHARED RESOURCES 66 (2012); Price, Risk and Resilience, supra note 32, at 77–

78. Private firms also have incentives to keep data collected as trade secrets to maintain 

competitive advantage, which causes problems both for data aggregation across firms and 
for external validation of medical AI models. See Price, Big Data, supra note 71, at 1432–

35. 

198. Price, Risk and Resilience, supra note 32, at 78–79. 
199. Id. 
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data that can enable broad sets of future innovation and economic ac-

tivity, such as developing black-box medical algorithms.200 

Investing in infrastructure for data could take several forms. Most 

obviously, grants specifically directed to support the purchase of 

computer systems or the hiring of data personnel could ameliorate the 

data acquisition problem of low-resource settings.201 Less obviously, 

governments can set standards, which themselves are a sort of infra-

structure. Electronic health records currently use a hodgepodge of 

formats due to an early decision not to federally mandate a centralized 

format; this situation has resulted in problems of interoperability and 

data fragmentation.202 The federal government is moving to address 

interoperability problems, but could and probably should go further to 

require standards for electronic health records.203 Government efforts 

could also ease the burden of developing data infrastructure: adding a 

research exemption to the HIPAA Privacy Rule, for instance, would 

make it easier for low-resource settings to collect data by removing 

one set of legal concerns.204 

The advantage of public funding of infrastructure for and of data, 

whether through grant funding or direct spending, is that such infra-

structure does not have to follow the pre-existing patterns of what is 

collected and where. Instead, data collected through a public infra-

structure effort can better represent the care that many patients actual-

ly experience. 205  If high-quality data are collected about a wide 

variety of patients, the concerns about effects from different patient 

populations decrease.206 And if data are collected about a wider range 

of care settings — not just High-Resource Hospitals, but community 

hospitals, community health centers, practitioner’s offices, and the 

like — those data can more accurately reflect the resources available 

in the care setting, the range of practices followed, the types of treat-

ment implemented, and the outcomes that result.207 

                                                                                                    
200. Id.; see also Price, Big Data, supra note 71, at 1439–44 (proposing an infrastructure 

model for gathering data to promote the development of black-box medical algorithms); 
MATHENY ET AL., supra note 4, at 169–71 (arguing that, for medical AI to reach its poten-

tial, datasets must be conceptualized as a “public good”). 

201. Even here, there may be backlash along the lines of, “Why fund data when we have 
insufficient funding for care?” The awkward answer is that better, broader data make future 

care better and cheaper — but that may be a difficult sell to those facing resource gaps. 

202. Julia Adler-Milstein, Moving Past the EHR Interoperability Blame Game, NEJM 

CATALYST (July 18, 2017), http://catalyst.nejm.org/ehr-interoperability-blame-game 

[https://perma.cc/BPT7-4SLM]. 

203. Id. 
204. See Price, Drug Approval, supra note 77, at 2460–61. In fact, an earlier draft of the 

21st Century Cures Act included such a provision, but it was removed in the final text. Id. 

205. Indeed, grant funding involving data collection could be conditioned on a require-
ment that data be more representative. 

206. See supra Section IV.A.1. 

207. This data collection goal is essential to the development of a learning health system 
more broadly. See Elizabeth A. McGlynn et al., Developing a Data Infrastructure for a 
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The difficulty of this endeavor should also not be minimized. 

There are reasons that data collection practices today are as they 

are.208 Gathering data well is hard and can be expensive.209 Privacy 

concerns are also implicated in the gathering, use, and sharing of large 

amounts of sensitive health data.210 Nevertheless, investment in those 

data-gathering capacities — across many contexts — is likely to pay 

substantial dividends down the line, including in those same low-

resource contexts. 

The NIH’s All of Us initiative is a prominent example of exactly 

this type of infrastructural investment in data.211 All of Us (formerly 

the Precision Medicine Cohort) is a part of the Precision Medicine 

Initiative. 212  Through All of Us, the NIH plans to gather detailed 

health information — including genetic sequences, treatment infor-

mation, and outcome data — from over one million Americans. Cru-

cially, the sample population for All of Us is meant to be nationally 

representative.213 According to Francis Collins, the Director of the 

NIH, the program has a goal that half of its participants come from 

traditionally underrepresented groups.214 If the definition of diversity 

is broadened to include socioeconomic status and rural status, then the 

                                                                                                    
Learning Health System: The PORTAL Network, 21 J. AM. INFORMATICS ASS’N 596, 598–

600 (2014). Increased data infrastructure also allows other types of innovation and meas-

urements of health system quality more generally. Id. 

208. See supra Section III.A. 

209. Id. Secondary questions also arise as to the best allocation of resources. One might 
argue that any new resources allocated to low-resource medical contexts should be aimed 

directly at improving care rather than improving data infrastructure. That calculus is com-
plex. I argue here only that investment in data infrastructure in low-resource contexts will 

benefit patients in those contexts down the road, not that such investment is the best use of 

scarce resources. However, infrastructure is often a useful investment, considering the 
amount by which it can increase innovation and future welfare. See, e.g., W. Nicholson 

Price II, Grants, 34 BERKELEY TECH. L.J. 1, 59 (2019) (discussing the role of government 

grants in providing infrastructure for future innovation). 
210. I have examined the privacy concerns of medical big data and medical AI in some 

detail elsewhere. See Roger Allan Ford & W. Nicholson Price II, Privacy and Accountabil-

ity in Black-Box Medicine, 23 MICH. TELECOMM. & TECH. L. REV. 1, 19–20 (2016) (dis-
cussing the privacy challenges of medical AI in general and noting the tension between 

third-party validation and privacy protections); Price, Drug Approval, supra note 77, at 

2458 (describing the limitations HIPAA and other privacy rules place on the innovation of a 
learning health system where patient data are constantly used to improve medical 

knowledge); W. Nicholson Price II & I. Glenn Cohen, Privacy in the Age of Medical Big 

Data, 25 NATURE MED. 37, 42 (2019) (surveying the privacy landscape for medical big data 
and arguing against a “privacy maximalist” approach). 

211. See NAT’L INST. OF HEALTH, All of Us Research Program, https://allofus.nih.gov 

[https://perma.cc/T2B9-6Z3D]. Other examples include the UK Biobank. See Editorial, UK 
Biobank Data on 500,000 People Paves Way to Precision Medicine, NATURE (Oct. 10, 

2018), https://www.nature.com/articles/d41586-018-06950-9 [https://perma.cc/WK9U-

GJZW]. 
212. NAT’L INST. OF HEALTH, supra note 211. 

213. Id. 

214 Francis Collins, Keynote: An Update on All of Us, PROC. PRECISION MED. WORLD 

CONF. (June 6, 2018). 
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NIH plans to draw 75% of participants from diverse groups more gen-

erally.215 This goal speaks directly to diversity and representativeness 

of patient population, and at least indirectly to the diversity of medical 

contexts, given that many of these participants are likely to seek med-

ical care in low-resource contexts.216 Efforts like All of Us should be 

supported, continued, and expanded. 

To be clear, more representative datasets do not need to be pub-

licly funded. The dynamics described in Part III make non-

representative data an easy default for private parties, but private par-

ties could also seek to address it (especially if required to as described 

immediately below). One approach could blend private spending on 

infrastructure for data with private acquisition of data. If developers 

sought data from low-resource contexts but recognized that those con-

texts lacked the resources to generate high-quality data, those devel-

opers could themselves provide the resources — technological or 

personnel-based — in exchange for access to the data generated, 

which would then fuel better performance down the road. 

D. FDA Regulation and Concordance 

The FDA could also play a role in decreasing problems of contex-

tual translation. As described above, the reliance on data from High-

Resource Hospitals may be over-determined: not only are data cur-

rently found in high-resource contexts, but using data from those con-

texts also helps avoid risks arising from FDA regulation, tort liability, 

and insurance reimbursement pathways. To help reduce these pres-

sures to focus medical AI training on data from a limited set of medi-

cal contexts, the FDA approval process for medical AI products could 

be shifted to require explicit concordance data and demonstration of 

cross-context performance. 

The FDA could explicitly require that developers seeking clear-

ance or approval for medical devices using AI or machine learning 

include concordance data demonstrating performance in contexts out-

side the original development context.217 More specifically, if an algo-

rithm proposes to recommend treatment pathways based on patient 

characteristics, FDA could require that the validation of those path-

ways consider not only the high-resource contexts where the algo-

                                                                                                    
215. Id. 
216. See supra Section IV.A.1. 

217. The FDA could implement such requirements for other technology, including other 

algorithms; however, as described in this Article, black-box algorithms are particularly 
worrisome and therefore merit special attention. 
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rithm was developed but also low-resource contexts where it is likely 

to be deployed.218 

A requirement for low-resource concordance demonstrations 

would not be trivial. In the current state of the world, low-resource 

contexts will often have insufficient data to allow purely data-based 

validation. 219  Thus, demonstrating concordance now might require 

extra clinical trials, which are costly and don’t always match well 

with the development of black-box medicine.220 Implementation of 

better data infrastructure — ideally, of a data-based learning health 

system more broadly — should eventually decrease the difficulty of 

validation of performance in different environments.221 The near term 

is likely to be messy. But FDA requirements and infrastructural in-

vestments could interact in a self-sustaining cycle: infrastructural in-

vestments in data can help support the ability to demonstrate 

concordance to FDA, while FDA requirements to demonstrate con-

cordance would encourage data infrastructure investment. 

While FDA requirements for concordance would be unusual, such 

requirements have some precedent. The FDA already encourages 

greater gender, racial, and ethnic diversity among clinical trial partici-

pants, though it does not require it.222 Clinical research funded by the 

NIH has even stronger diversity requirements; in 1993, Congress 

passed the National Institutes of Health Revitalization Act, which re-

quired the NIH Director to ensure inclusion of women and minorities 

in clinical research. 223  These requirements are not squarely on 

point — the NIH policy stems from grant funding of clinical trials, 

and FDA encouragement is voluntary — but they demonstrate a simi-

lar commitment to ensuring that clinical trials show that treatments 

work in different groups. 

                                                                                                    
218. See, e.g., Performance, supra note 43, at 4–5 (describing clinical trial testing IDx-

DR in ten primary care clinics across the United States). 

219. See supra Section III.A; see also Ford & Price, supra note 210, at 18–21 (2016) 
(discussing the idea of data-based validation); Price, Regulating Black-Box Medicine, supra 

note 98, at 432–37 (same). 

220. See Price, Regulating Black-Box Medicine, supra note 98, at 434–35. 
221. This infrastructure, as described above, would also weaken the primary motivator 

for focus on High-Resource Hospitals, their predominance in possessing relevant data. See 

supra Section VI.C. 
222. FDA, FDA Encourages More Participation, Diversity in Clinical Trials (Jan. 16, 

2018), https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm535306.htm 

[https://perma.cc/V24R-8TN2]; FDA, Racial and Ethical Minorities in Clinical Trials (Aug. 
6, 2018), https://www.fda.gov/forconsumers/byaudience/minorityhealth/ucm472295.htm 

[https://perma.cc/QVT7-3A68]. 

223. Pub. L. No. 103-43, § 131, 107 Stat. 122, 133–35 (1993) (codified at 42 U.S.C. 
§ 492B (1988)); see also NAT’L INST. OF HEALTH, NIH Policy and Guidelines on the Inclu-

sion of Women and Minorities as Subjects in Clinical Research (Oct. 9, 2001), 

https://grants.nih.gov/grants/funding/women_min/guidelines.htm [https://perma.cc/QVT7-
3A68]. 
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FDA involvement in demonstrating concordance and applicability 

across contexts could also help resolve the other two legal incentives 

currently pushing for development based on high-resource data: tort 

liability and insurance reimbursement.224 When FDA approves a med-

ical device as a Class III device (i.e., a higher-risk device) under its 

premarket approval pathway, state tort liability is largely preempted 

for that device under Riegel v. Medtronic.225 Thus, at least for compa-

nies that pursue Class III premarket approvals — and assuming that 

concordance data helps persuade FDA to grant such approvals — tort 

liability concerns should also largely be resolved by that process.226 

This doesn’t resolve all liability concerns. Bringing a device to market 

through the 510(k) preclearance pathway (i.e., a finding that the de-

vice has an already-approved predicate device on the market) does not 

preempt state tort lawsuits,227 and so far developers have been able to 

use that pathway (or de novo classification228) and to bring devices to 

market as Class I or Class II devices rather than undergoing the costli-

er premarket approval pathway for Class III devices.229 

Finally, FDA approval, especially if that process includes con-

cordance data, should help resolve issues of insurer reimbursement. 

As described above, FDA approval and CMS reimbursement deci-

sions are frequently linked,230 and private payers frequently follow 

CMS’s lead.231 An FDA-approved demonstration that an algorithm 

works in different contexts could similarly support payer determina-

tions that the technology is worth reimbursing across those different 

contexts, even in the absence of the current quality proxy of training 

                                                                                                    
224. See supra Sections III.C.2–3. 

225. See Riegel v. Medtronic, Inc., 552 U.S. 312, 345 (2008). 
226. This analysis assumes that Riegel’s bright-line rule — Class III premarket approval 

preempts state tort suits — remains. The possibility of medical AI changing over time with 

new data might suggest that this rule should be revisited because a prior approval might no 
longer serve as evidence of current safety in the same way as for a relatively static medical 

device. 

227. See Medtronic, Inc. v. Lohr, 518 U.S. 470, 471 (1996).  
228. As far as I know, no court has yet determined whether a determination by FDA un-

der the de novo pathway that a device is Class II is sufficient to preempt state tort liability. 

Predicting the result is outside the scope of this work. 
229. See supra notes 99–101. I have argued elsewhere that a rigid premarket approval 

process is likely to stifle innovation in black-box medicine. Price, Regulating Black-Box 

Medicine, supra note 98, at 451–54. The FDA is currently engaged in efforts to ease the 
path to market for digital health generally, including medical AI.  

See FDA, Digital Health Innovation Action Plan, https://www.fda.gov/downloads/ 

MedicalDevices/DigitalHealth/UCM568735.pdf [https://perma.cc/ZLP9-G77U]. It remains 
to be seen how much FDA’s efforts at more flexible market pathways will end up making 

premarket approval itself a more attractive option for developers. See Eisenberg, Device 

Regulation, supra note 117 (discussing this dynamic in the context of diagnostics more 
generally). 

230. See supra Section III.C.3; see also Sachs, Delinking Reimbursement, supra note 

114, at 2311. 
231. Eisenberg & Price, supra note 80, at 31–32. 
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on data from high-resource medical contexts. Such FDA approval 

incentives could be even stronger if reimbursement is greater for de-

vices that go through full premarket approval rather than 510(k) clear-

ance — a difference that CMS currently is pressing.232 

FDA approval modifications will not be a panacea, of course; in-

surers may still prefer the cachet of high-resource settings and devel-

opers may also seek the prima facie liability reduction that could 

come with name-brand training data. Persuading providers and health 

systems to adopt black-box medical systems may also still be easier 

while partnering prominently with High-Resource Hospitals.233 But 

linking FDA approval, with its concomitant benefits, to a develop-

ment process that at least attempts to ensure validity across contextual 

translation may help ease the path to broadly useful medical AI. 

E. Incorporating Cost 

The cost problem is extremely tough. As described above, algo-

rithms that learn about the right kind of care in high-resource settings 

may simultaneously learn that the right kind of care is an expensive 

form of care, with many interventions and fancy, costly tools.234 This 

may sometimes even be correct; sometimes, high-intervention care is 

the right way to go, and some costly interventions rightly spread from 

high-resource contexts to low-resource contexts. But it also creates 

the possibility for AI acting as a vector in increasing costs in a system 

which sorely needs to reduce costs, and in which AI has at least the 

potential to contribute to that reduction.235 

A potential solution is easy to state but hard to implement. The 

most straightforward way for AI algorithms to address cost issues 

would be to add those issues to the AI’s optimization function: that is, 

when scoring outcomes as desirable or undesirable (for the purposes 

of care recommendations, at least), the cost of care could be included 

in the score, rather than just patient health measures. Algorithms 

would then prioritize not simply outcomes or duplicating the patterns 

prevalent in High-Resource Hospitals, but also cost-effectiveness. 

Implementing such measures could be quite challenging, espe-

cially since in the U.S. rationing health dollars is a hot-button issue.236 

And, at least in a fee-for-service system, which still exists in many 

contexts, provider and health system incentives typically push for 

more care, and costlier care, rather than efficient and cost-effective 

                                                                                                    
232. See CTRS. MEDICARE & MEDICAID SERVS., supra note 119 and accompanying text. 

233. See supra Section III.C.3. 
234. See supra Section IV.B. 

235. Id. 

236. See, e.g., Elizabeth Weeks Leonard, Death Panels and the Rhetoric of Rationing, 13 
NEV. L.J. 872, 873–74, 886 (2013). 
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care. It seems more likely that the first medical AI systems focused on 

cost will aim to promote revenue maximization rather than efficien-

cy.237 But building costs into the initial models could eventually help 

some AI systems reduce system costs, assuming that cost reduction 

becomes a goal of system developers. 

F. Traps to Avoid 

Figuring out how best to develop and to deploy AI to democratize 

medical expertise is hard. It’s made harder because contextual bias is 

not the only challenge that medical AI faces. If we try too hard to 

eliminate contextual bias, we could wind up with any of three related 

problems: too much contextualization, insufficient contextualization, 

or inadequate adoption.238 

First, pushing too hard to ensure that AI is trained for each con-

text could result in too much contextualization. One potential solution 

to the problem of contextual bias is to train AI in a wide variety of 

contexts so that every context has its own AI matched specifically to 

it. But the health system is rife with disparity, and AI might replicate 

or enhance those disparities.239 Not only do many low-resource con-

texts lack the capacity to generate the data to train medical AI, or to 

support the training and validation necessary once those data are gath-

ered, any AI that might result would be trained on a context with, by 

definition, a lack of resource-based expertise. Medical AI trained in 

health centers in rural India would avoid any problems of contextual 

bias when translated to other rural Indian health centers (or perhaps to 

other developing-world rural health centers), but it would lack the 

benefit of being trained on providers with the most extensive training, 

tools, and experience in high-resource settings. Such an approach 

would democratize only limited forms of medical expertise and would 

leave much of the benefit of medical AI on the table.240 

                                                                                                    
237. AI developed by payers, on the other hand, might prioritize efficiency. See Eisen-

berg & Price, supra note 80, at 16–18. 

238. A separate and complex set of issues concerns the distributional effects of efforts to 
ensure broad applicability — why not just allow medical AI to be developed for those in 

high-resource contexts, and perhaps those benefits will eventually trickle down to those in 

low-resource contexts? One preliminary answer might be that to the extent that medical AI 
is touted for its benefit in democratizing expertise, this Article takes that goal as a given and 

focuses on how to actually achieve it successfully. Other answers about the ideal path for 

development and spread of new technology more generally are outside the scope of this 
work. 

239. See, e.g., Khullar, supra note 130; Charlotte A. Tschider, Regulating the Internet of 

Things: Discrimination, Privacy, and Cybersecurity in the Artificial Intelligence Age, 96 
DENV. U. L. REV. 87, 98–100 (2018) (describing concerns of AI systems codifying existing 

disparities). 

240. See, e.g., Alvin Rajkomar et al., Ensuring Fairness in Machine Learning to Advance 
Health Equity, 169 ANNALS INTERNAL MED. 866, 866–868 (2018). 
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Second, trying to avoid variation in algorithmic performance in 

different contexts could result in too little contextualization. In an ide-

al world, medical AI would be able to take advantage of differences in 

resources. If a hospital has a top-notch PET scanner and very experi-

enced surgeons, AI algorithms that make recommendations should 

consider those options within the set of possibilities. In an ideal world, 

everyone would have access to the best care, but that is not our world, 

and not all hospitals have such resources. We don’t want medical AI 

never to suggest using a PET scanner or undertaking a risky surgery 

just because those are unhelpful or actively harmful suggestions in 

some medical contexts. And patient populations do differ, both as 

groups and as individuals; medical AI should be able to take account 

of those differences as well.241 Part of the appeal of black-box medi-

cine is the possibility of intensely personalized analysis and recom-

mendations for care; requiring too stringent replicability across 

contexts might sacrifice some of that precision. Those designing con-

cordance policies need to tread a middle path. 

Third, focusing too much on these problems — contextual bias, 

too much contextualization, and insufficient contextualization — 

could result in decisionmakers throwing up their hands and avoiding 

the new problems that come with medical AI, preferring the status 

quo. This is the Nirvana fallacy, where new options are compared to 

perfection rather than a flawed status quo.242 But the status quo itself 

already has lots of problems, some of which form the impetus for 

medical AI in the first place.243 The promise of democratizing exper-

tise is enticing precisely because we have too few experts, and many 

patients face barriers to accessing high-quality care in all but the high-

est-resource settings. Avoiding the adoption of medical AI because it 

might not work as well in low-resource contexts does nothing to aid 

patients who already lack options because of the lack of resources.244 

Ultimately, even flawed medical AI may prove transformative for 

millions of patients, and we should endeavor to see that promise even 

while we try to avoid the pitfalls of cross-context translation. 

VII. CONCLUSION 

Medical AI has tremendous promise to bring excellent medical 

care to those that might not otherwise see such care. Translating 

                                                                                                    
241. See Price, Black-Box Medicine, supra note 2, at 425–30. 

242. Demsetz, supra note 13, at 1. 

243. See Price, Black-Box Medicine, supra note 2, at 434–37. 
244. Adoption of medical AI is already likely to face barriers from providers and poten-

tially patients; too much focus on contextual bias is likely to increase already-existing hur-

dles. See, e.g., Price, Black-Box Medicine, supra note 2, at 437–42 (discussing barriers to 
adoption). 
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black-box algorithms from high-resource contexts to low-resource 

contexts, though, brings the risk of problems; what works well in one 

context may not in another. If we are to avoid the risks of compromis-

ing care for those in low-resource settings, now is the time to consider 

how medical AI can be developed not just for those who already have 

access to excellent care, but for those who can benefit most from the 

advent of this new technology. 

 


	Medical AI and Contextual Bias
	W. Nicholson Price II
	Recommended Citation

	tmp.1630337044.pdf.Gff_8

