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1. INTRODUCTION 

The purpose of this project is to examine the . feasibility of performing 

incremental/ concurrent file reorganization. The typical motivation for any reorganiza-

tion is to improve the performance of the database system. Incremental reorganization 

is an on-line strategy where the file is reorganized concurrently. with usage at specified 

times. With this approach, the part of the file which is being reorganized is locked 

while user access is permitted to the remainder of the file. In any environment where 

the database system must be available 24 hours per day, typical off-line reorganization 

would be intolerable. In this work, we develop algorithms for several 

incremental/concurrent file reorganization problems. 

Our research project deals with two categories of physical structure change: intra-

structural and inter-structural change. By intra-structural change, we mean that the 

file structure created by the reorganization process is of the same type as the structure 

that existed prior to the reorganization, e.g., rebuilding a B+ tree to decrease its 

height. Inter-structural change refers to the fact that the reorganization process 

changes the initial file structure to one of a different type, e.g., converting from an in-

dexed file to a hash based file. The next two sections summarize the work that has 

been accomplished in each of these categories. 

Before proceeding, we want to first provide some measures for judging the 

efficiency of our proposed algorithms. Accessing a file which is stored on a secondary 

storage device is accomplished by using a single main memory buffer area of a 

specified size. Our objective as stated earlier is to develop efficient reorganization al-

gorithms. To measure efficiency, we can consider the minimization of the number of 

pages swapped in and out of the fixed size buffer during the reorganization process. 

As an alternative, if we can request any size buffer area, we can consider the minimi-

zation of the buffer size so that each page iavolved in the reorganization will be 

fetched from secondary storage only once. Hence, we achieve the minimum number 



of page accesses at the expense of using more main memory. However, having a 

larger buffer area for some types of reorganization may mean that a larger portion of 

the file will be locked and unaccessible to users. This gives rise to a third measure for 

efficiency, namely how the reorganization process interferes with user access, e.g., are 

fewer transactions processed when reorganizing. 

2. INTRA-STRUCTURAL REORGANIZATION 

Work in this area, done before the inception of the grant, involved the follow- 

in g: 

1) clustering records [4] 

2) removal of overflow records [5]. 

The first problem involves the rearrangement of records, from a file, on pages of 

secondary storage. The reorganization process uses the output of some record cluster- 

ing algorithm. The record clustering algorithm determines a near optimal placement 

of records on pages so as to minimize the total number of page accesses for some set 

of queries. Knowing the new placement of records to pages, our reorganization algo- 

rithm would then rearrange the records to reflect the new clustering. The original ap- 

proach, presented in [4] was limited since it required a minimum buffer size to work. 

There were also some additional improvements that could be made so as to further 

reduce the number of page accesses made during the reorganization. This later work 

was done as part of the grant and is described in [6]. Overall, our improvements lead 

to an additional 25% saving in page accesses as compared with the original work in [4]. 

While working on the clustering reorganization, we realized that it was similar 

to the problem of scheduling page fetches for a relational join operation when indexes 

are used. For both problems, a sequence of page fetches must be determined so as to 

minimize the total number of page accesses, either in computing the join or in per- 



forming the reorganization. From the join problem perspective, we can think of a 

cluster as consisting of a record from one of the joining relations and several records 

from the other joining relation, where the records that join together (and their ad-

dresses) can be easily found by searching the two indexes. Adapting our reorganiza-

tion approach, we developed an efficient join processing algorithm which uses non-

clustered indexes [2]. We developed two variations: one which tried to find the 

minimal buffer size that would still guarantee a single access per page and the other 

which tried to minimize the number of page accesses for a fixed size buffer. For the 

first variation, we compared our method with one that recently appeared in the litera-

ture, and our method used about 30% less buffer space. For the second variation, we 

compared our method with that of the nested-loops and sort-merge join methods. 

Under our particular assumptions, our method performed the join with about 40% 

fewer page accesses. The results of this work is presented in [2]. 

3. INTER-STRUCTURAL REORGANIZATION 

This part of the project involves the conversion from one file structure to 

another. Until the reorganization is complete, part of the file would reside in the ori-

ginal file structure (unreorganized) and part in the new file structure (reorganized). 

The motivation for doing the conversion is that the old file structure is no longer op-

timal for answering the current set of queries. Hence, a more approriate file structure 

is needed. 

We decided to start with the conversion of a B+ tree file to that of a linear 

hash file. The B+ tree is used widely in database systems as the primary index struc-

ture. It allows for direct access (retrieval of a record by its key value) with a cost of 3 

or 4 page accesses, depending oa the height of the tree. It also allows for efficient 

sequential processing (accessing some or all of the records in key sequence). Howev-

er, if only direct access is needed, then a hash based file is more efficient with a cost 

of about 1 page access, on the average. Thus, the conversion process, which we first 



examine, is motivated by a change in database processing, where efficient sequential 

and direct access is originally needed but now, only efficinet direct access is needed. 

The type of .hash file which we use is a linear hash file which has appeared 

often in the database literature since its inception in the late seventies. This type of 

hash file is dynamic (like the B+ tree) in that it grows and shrinks gracefully, one 

page at a time. One requirement is that we want to reorganize in-place, i.e., using the 

storage of the original file and perhaps a small additional amount. The reorganization 

process takes one page at a time from the B4 tree and inserts the records from that 

page in the linear hash file. As we reorganize a page from the B+ tree file, that page 

can be added to the linear hash file. During the reorganization, it is also clear which 

file would have to be accessed to find a particular key. This allows the benefits of the 

partial linear hash file to be gained immediately. 

We have developed a database simulation program which incorporates the reor-

ganization of a B+ tree file to that of a linear hash file [1]. In addition, we have dev-

ised an analytic model of the conversion process [1]. The results from the analytic 

model are within 3% (on the average) of those observed from the simulation. The 

results of the simulation support the idea of doing file conversion concurrently with 

database usage. Here, our measure of efficiency is the system throughput. In other 

words, how does the reorganization affect other concurrently executing transactions. 

As we show in [1], the effect is not very determental. 

The second problem, under this category of reorganization, is the companion 

problem of doing the file conversion in the reverse direction. That is, converting a 

linear hash file to a B+ tree file. For this problem, we also develop an efficient algo-

rithm. We utilize our database simulation model in evaluating our method. In addi-

tion, we develop an analytic model for this conversion problem [6]. The results show 

that our model is representative of the simulatioh process. The difference between 

the two is only 4%, on the average. 



4. CONCLUSION 

In conclusion, we would like to summarize our accomplishments, as they relate 

to the two components of this research project. 

Category I (intra-structural reorganization) 

a) improved our original clustering algorithm 

b) adapted our clustering algorithm for join processing 

Category II (inter-structural reorganization) 

a) developed a simulation and analytic model for the B+ tree to 
linear hash file conversion 

b) developed a simulation and analytic model for the linear hash 
file to B+ tree conversion 

Overall, I feel that the accomplishments/results of this project were quite good. We 

looked at a problem area that few researchers have examined and have reasonably 

shown the feasibility of doing incremental/concurrent reorganization. We presented 

one paper at the 1988 IEEE Data Engineering Conference. Another paper has been 

accepted for publication in IEEE Transactions on Software Engineering and two more 

papers have recently been submitted to journals. 

As a last remark, we have assumed (in our work) that the database administra-

tor has decided that reorganization is necessary. However, it would be nice to devise 

an adaptive database system which would recognize the need for reorganization as well 

as the specific reorganization function needed. This could then be coupled with 

incremental/concurrent reorganization to have a more fully automated database ad-

minister. 
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ABSTRACT 

The motivation for this paper is to show that the efficient reorganization of (1) a B+ tree file 

into a linear hash file and (2) a linear hash file into a B+ tree file, can be done concurrently with 'user 

transaction processing. The conversion process, in general, is motivated by a change in database pro-

cessing requirements. For case (1), efficient sequential and direct access are originally needed but now 

only efficient direct access is needed. For case (2), the opposite is true. This is quite reasonable for a 

database system which accomodates new and changing applications. Several existing database systems, 

e.g. INGRES [24], IMS [22] and IDMS [22], allow this type of reorganization but the reorganization is 

performed off-line. We devise an algorithm which performs the conversion for case (1) and case (2), 

and present an analytic model of the conversion process for each. We also employ a typical database 

simulation model to evaluate the reorganization scheme. The results from the analytic model for case 

(1) are within 3% (on the average) of the observed simulation results and for case (2) are within 4% 

(on the average) of the observed simulation results. The results of the simulations support the idea of 

doing file conversion concurrently with database usage, especially when compared to an off-line reor-

ganization approach. 

1. INTRODUCTION 

We define file reorganization as the process of changing the physical structure of the file [22]. 

Reorganization may be performed for a variety of reasons such as to reduce retrieval time or compact 

space. Concurrent reorganization is an on-line strategy where the file is reorganized concurrently with 

usage [22]. With this approach, the part of the file which is being reorganized is locked while user ac-

cess is permitted to the remainder of the file. The relational database system, System R [2], supports 

concurrent reorganization to some extent in allowing new attributes to be added to existing relations as 

well as allowing the creation of new indexes or the deletion of old ones without dumping and reloading 

the data, i.e. without performing off-line reorganization. In any environment where the database system 

must be available 24 hours per day, i.e. highly available systems [5], typical off-line reorganization can-

not be tolerated. Additional work in concurrent reorganization can be found in [15,16,23]. 

In this paper we are concerned with a category of file reorganization where the file structure 



created by the reorganization process is of a different type than that which existed prior to the reorgani-

zation. This might also be called file conversion. An example of this would be to convert an indexed 

file to a hash based file (or vice versa) as can be done in INGRES with the modify operation [24]. 

However, in INGRES this is done off-line, i.e. prohibiting user access during the process. This can also 

be done in IDMS [22] with an unload/reload utility and in IMS [22], changing between HIDAM and 

HDAM structures. The conversion is motivated by a change in user access patterns of the database. 

For example, an indexed file structure is chosen originally, since it can efficiently handle range queries. 

Now, however, the predominate type of query is exact-match. Performance can be improved by having 

a file structure that can more efficiently handle exact-match queries, e.g. a hash based file structure. We 

assume, the current access patterns will hold for some time in the future, so that the conversion is 

beneficial. 

In this paper, we propose concurrent reorganization schemes which allow (1) an on-line 

conversion of a B+ tree to a linear hash file and (2) an on-line conversion of a linear hash file to a B+ 

tree. The conversion, in either case, works quiet nicely since both file structures are dynamic, i.e. they 

can grow and shrink one page at a time. Until the reorganization is complete, part of the file would ex-

ist as a B+ tree and part as a linear hash file. It will also be quiet clear which file has to be accessed for 

a given query. In section 2, we review some of the relevant-work which exists. In section 3, we exam- . 

 ine the B+ tree to linear hash file conversion process, as well as the linear hash file to B+ tree conver-

sion process. In sections 4 and 5, we introduce an analytic model for the B+ tree to linear hash file 

conversion and an analytic model for the linear hash file to B+ tree conversion, respectively. The 

simulation model with results are included in section 6. 

2. BACKGROUND 

First of all we will briefly review linear hashing which was originally proposed in [13] and ex-

tended by various researchers [10,11,17,19]. Linear hashing is intended for files that expand and con-

tract dynamically. For the expansion process buckets (i.e. pages) are split in a cyclic manner. One rule 

that can be used to decide when to expand is to split the next bucket in the cycle whenever any bucket 

overflows. This is referred to as uncontrolled splitting [13]. In addition, random access of a given 
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record, on the average, requires approximately 1 disk access [13]. 

In linear hashing, the hash function to be applied changes as the file grows or shrinks. The 

function, h 0  : k --) {0, 1 ..... N-1) is used to initially load the file where k is a key. The hash function is 

dynamically modified creating a sequence of hash functions h 1 ,h2,...,h i  such that for any k either 

h i(k) = h i-1 (k) or h i(k) = hi-1(k) + 2 i-1 x N. 

When a key is to be inserted, the appropriate function is used to find the correct bucket. Colli-

sions are handled by creating a chain of overflow buckets and in addition a split is performed. The splits 

are performed in linear order, starting from bucket 0. When all N buckets are split, the address space 

doubles in size and the splitting process starts again from bucket 0. Two variables are maintained for 

this process: NEXT, which denotes the next chain to be split and LEVEL, which represents the number 

of times the address space has doubled in size. These variables are updated as follows: 

NEXT 4— (NEXT + 1) mod Nx 2LEVEL  

if NEXT = 0 then LEVEL 4— LEVEL + 1. 

Using these two variables, the bucket where a record is to be stored is determined as follows: 

BUCKET 4— h LEVEL(keY) 

if BUCKET < NEXT then BUCKET 4— h -LEVEL+ 1(key) 

where h(key) is defined as key mod 2 LEVELx N. LEVEL 

Hashing is the appropriate file organization when random access is needed but when both ran-

dom and sequential access is needed a more appropriate structure to use is the B+ tree [3]. The B+ 

tree or other variants of the B-tree [3] have been widely used in recent years for storing large files of 

information on secondary storage, e.g. System R [2], The average random access search time is typically 

3 or 4 disk accesses depending on the height of the tree. Efficient sequential processing is provided by 

linking the leaf nodes of the B+ tree together in key sequence order. A sample B+ tree is shown in 

figure 1. 
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Fig. 1. B+ tree example 

To allow for concurrent operations on these file structures, both have undergone modification. 

The method for achieving greater concurrency is to provide a way to detect and recover from the effect 

of concurrent updates. In [8,12], schemes were presented to allow for concurrent manipulation of B+ 

trees. In [12], a single additional link in each node allows a process to easily recover from tree 

modifications performed by other concurrent processes. Their solution uses a simple locking scheme 

and requires only a small and constant number of nodes to be locked by an update process at any given 

time. In [4], a solution for concurrent access to a linear hash file is presented. Part of the solution in-

volves a minor modification to the hash file, i.e. keeping a LOCAL-LEVEL variable with each bucket. 

The other part carries over the idea of additional links from B+ trees in the form of recalculation [4]. 

The notion of recalculation is as follows: upon gaining access to a bucket, a process checks whether the 

LEVEL value used to calculate the address matches LOCAL-LEVEL, and if not, it increments its value 

and recalculates the address until a match is found. The buckets reached in this manner are those that 

were created by splitting buckets at addresses already accessed during this search. A simple locking 

scheme is also employed to control access to the shared variables, LEVEL and NEXT, as well as to the 

buckets. We should note that a primary bucket and all of its overflow buckets (i.e. a chain) are locked 

as a unit. 

3. CONVERSION BETWEEN B+ TREE AND LINEAR HASH FILES 

Besides performing the reorganization on-line, we also want to use the storage space of the ori-

ginal file with perhaps a small additional amount. The amount of additional storage will depend on the 

specific conversion process. We will first examine the B+ tree to linear hash file conversion and then 

the reverse conversion process. Initial work on the B+ tree to linear hash file conversion problem has 

0 
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appeared in [14]. 

The reorganization process takes one page at a time from the B+ tree file and inserts the 

records from that page in the linear hash file. As we reorganize a page from the B+ tree file, that 

page, i.e. the storage unit, can be added to the linear hash file when a subsequent split operation is per-

formed on the hash file. However, the first page, i.e. page 0, is added when the first 8+ tree page is 

reorganized. 

The reorganization process proceeds in physical address sequence of pages, e.g. 0,1,2,.... If the 

key sequence of the records corresponds to the physical address sequence then during reorganization 

the database system need only keep track of the highest key (record) moved from the original B+ tree 

file to the hash file. Knowing the highest key will allow the database system to direct searches, updates 

and deletes for a key of smaller or equal value to the linear hash file and for a larger key to the remain-

ing B+ tree file. This allows the benefits of the partial linear hash file to be gained immediately, i.e. as 

each page is converted. 

However, due to splitting pages in the B+ tree file, the physical sequence of data pages may 

not correspond exactly to the key sequence. Some B+ tree file systems like IBM's VSAM [3] group 

consecutive pages (control intervals, a la IBM) into larger physical areas (control areas). Therfore 

when a page is split, an empty page within the same area is used. If the empty page is not physically 

adjacent to the old one then the key sequence - physical sequence pairing is lost. However, the two 

pages are still within the same area. Although, in the worst case the area may be full, thus causing an 

additional area to be allocated. If there still is a somewhat limited form of clustering, in that key se-

quence is maintained between areas, then once an entire area has been converted to the linear hash file 

structure, the pages within that area will be accessible through the hash file. Once again, the decision to 

use the B+ tree or linear hash file will be based on the high key value previously mentioned. 

As an alternative, we could proceed in key sequence, regardless of the key-page sequence 

correspondance, but we would have to employ indirect addressing. The hash function would produce an 

entry in a page table which would contain the relative page (bucket) number. Using a page table would 

increase i/o time if the table could not be maintained in memory. This tradeoff would have to be ex- 
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plored before committing to this approach. 

A very high level (abstract) view of the B+ tree to linear hash file conversion algorithm is 

presented in figure 2. The Insert_separately procedure is basically the insert procedure of [4], where 

each key is inserted separately. 

Procedure BtreeHash; 
Begin 

For each leaf page, 1page, in sequence 
of the B+ tree do 

Begin 
Get exclusive lock on 1page; 
Get 1page; 
Get shared lock on state variables; 
Calculate bucket address in Linear 

Hash file for all keys in 1page; 
If the number of distinct bucket 

addresses + # of keys > threshold 
then 

Insert_Separately 
(each key is inserted as a separate 
operation, requires exclusive locks) 

else 
Insert_Group 
(keys belonging to the same bucket 
are inserted in one operation, requires 
exclusive locks); 

If an overflow has occurred 
then 

Split; 
Release locks; 

End; 
End. 

Fig. 2. B+ tree to linear hash file conversion algorithm 

The Insert_ coup procedure in figure 2 generates a reorganization transaction which inserts 

multiple records on the same page. This saves i/o and cpu time since the same page need not be 

locked and written multiple times. However, during this process the state variables have a shared lock 

on them which means that concurrent updates on the hash file cannot take place. This procedure would 

be used initially during the conversion since the hash file is small and there is a greater likelyhood that 

keys will hash to the same bucket. On the other hand, the Insert_separately procedure generates a reor-

ganization transaction which inserts a single record. This is useful when the linear hash file becomes 
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large enough such that keys from the B+ tree leaf pages hash to different buckets. The advantage here 

is that the lock on the state variables can be released once the linear hash file page has been locked. 

Which procedure to call is controlled by a threshold value. For example, if more than 50% of the keys 

from the B+ tree leaf page hash to different pages then call Insert_separately otherwise call 

Insert_ coup. 

An example of the conversion process using the B+ tree of figure 1 follows. The algorithm and 

the example illustrate the simple case where the leaf pages appear in physical sequential order by key 

value. The algorithm is easily adapted to handle the more general case by keeping track of the pages 

that have been reorganized and by delaying the updating of the global variable high_key until the pages 

which represent a consecutive range of key values have been converted. The analytic and simulation 

models of sections 4 and 6 are based on this more general and more realistic situation. However, at 

this point the simple case will suffice to illustrate the conversion concepts. 

Example 1 (refer to figure 3) 

Step 1. get an exclusive lock on page 0, bring leaf page 0 into the buffer, make into hash page structure 

(i.e. containing records and local_level) using key mod 2 0x 1 as the current hash function and up-

date high_key to 3. This requires a shared lock on the state variables (next and level) and an ex-

clusive lock on the high_key variable. Afterwards, all locks are released. 

Step 2. get an exclusive lock on page 1, bring leaf page 1 into the buffer, using our previous hash func-

tion, both keys 4 and 7 would hash to page 0 so get an exclusive lock on page 0, get page 0 and add 

records to overflow chain for page 0. The overflow generates a split which is done after the records 

on page 1 have been inserted in the hash file. Performing the split at this time allows page 1 to be 

added to the hash file storage space. We should note that splitting is done if overflow occurs but 

after all the records on the current page, which is to be reorganized, have been inserted. This is 

necessary, as in this case, so that there will be a new page which can be used for the split. If the 

page needed for the split, i.e. at location NEXT + 2 LEVEL x N, has not been converted then the 

split is deferred. This requires exclusive locks on the state (since LEVEL is increased to 1) and 
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high_key (which is set to 7) variables. Afterwards, all locks are released. 

Step 3. get an exclusive lock on page 2, bring leaf page 2 into the buffer, the keys 8, 11 and 17 hash to 

pages 0, 1 and 1 respectively, obtain exclusive lock on page 0 and insert key 8, obtain exclu .sive 

lock on page 1 and insert keys 11 and 17 on an overflow page (we should note that having an ex-

clusive lock on a primary page precludes access by other transactions on the overflow chain as well 

as on that primary page), locks would be released. a split process is generated next which requires 

exclusive locks on pages 0 and 2, afterwards the locks are released. 

Step 4. similar to previous steps except that page 3 is being converted. 

Step 5. similar to previous steps but with page 4 being reorganized. 

step 4 4820 1  17 251 	 3 7 11 

   

step 5 4 8 20 I 1 17 25 130 46 50 13 7 11_1 

Fig. 3. File structure changes during conversion example 1 

For this particular example, the linear hash file used one less page of storage as did the leaf 

pages of the B+ tree file. In general, this is not the case but as we will see in section 6, the additional 

space used by the linear hash file will be insigLificant. If we consider the space used by the index, the 

linear hash file will probably require less. 

At this time, we can examine the conversion of a linear hash file to a B+ tree file. The reor-

ganization process takes one page (i.e. a bucket) and its associated overflow pages from the linear hash 

file and inserts the records contained on those pages in the B+ tree. As we reorganize a page from the 

linear hash file, that page, i.e. the storage unit, can be added to the B+ tree file when a subsequent 

split operation on a B+ tree node is performed. However, the first page, i.e. page 0, is added when the 



first linear hash file page is reorganized. 

The reorganization process proceeds in physical address sequence of pages, e.g. 0,1,2,...n, in the 

linear hash file. Knowing the highest page that has been converted will allow the database system to 

direct searches, updates and deletes to the appropriate file. For example, if a search request is made for 

a key, k, where h i(k) is greater than the address of the last converted page, then the linear hash file will 

contain the desired key, if it is present. Otherwise, the key will be in the B+ tree file, if present. 

A very high level version of the linear hash file to B+ tree conversion algorithm is presented in 

figure 4. 

Procedure HashBtree; 
Begin 

For each page, hpage, of the linear 
hash file, in ascending order, do 

Begin 
Get exclusive lock on hpage; 
Get hpage and any associated overflow pages; 
Sort keys contained on those pages; 
Btree_Insertion; 
[insert sorted keys in order, 
requires locking] 
Release locks; 

End; 
End; 

Fig. 4. Linear hash file to B+ tree conversion algorithm 

The Btree_Insertion procedure, in figure 4, inserts keys, in ascending order, in the B+ tree. 

Hence, if several keys belong on the same page of the B+ tree, multiple page accesses of the same 

pages (i.e. index and data pages) can be eliminated. A different approach which can be used is the batch 

modification algorithm in [9]. In [9], an efficient algorithm is presented which takes a differential file of 

sorted records which are tagged as inserts, deletes or updates; and modifies the B+ tree file accordingly. 

The keys are not only inserted in sorted order but as a group. Using this approach, it might be possible 

to reduce the number of page acceses even further. 

An example of the linear hash file to B+ tree conversion, using the linear hash file in step 5 of 

figure 3, is shown below. Since we use the B link-tree structure [12], only one type of lock is used which 
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prevents multiple updates but never prevents a read. In addition, with this scheme, at most 3 nodes 

will be locked at any one time, thus providing a high level of concurrency. To simplify matters, we do 

not mention the horizontal pointers of the B link -tree in the example. 

Example 2 (refer to figure 5) 

Step 1. Get a lock on page 0 of the linear hash file, bring page 0 into the buffer, convert it to a B+ tree 

leaf page and make a dummy root (i.e. root has pointer to leaf page but no key), release lock. 

Step 2. Get lock on page 1, bring page 1 into the buffer, sort the keys,' access the root of the B+ tree, 

follow pointer to leaf page, get lock on leaf page. Inserting key 1 causes a split. Likewise, inserting 

key 25 causes a split and a key insertion in the root node. So a new page is added and the keys are 

distributed. This also causes the insertion of key 8 into the root. To do this, a lock is required on 

the root and we must backtrack to the root. Release locks. 

Step 3. Get lock on page 2, bring page 2 into the buffer, sort the keys, access root of B+ tree, follow 

pointer to leaf page, get lock on leaf page. Key 30 is inserted in the page with keys 20 and 25. In-

serting key 46 causes a split, so a new page is added and the keys are distributed. We backtrack to 

the root, obtain a lock on it and insert key 30. In a similar manner, key 50 is inserted except that 

no splitting is required. Release locks. 

Step 4. Get lock on page 3 of the linear hash file, bring page 3 into the buffer, access the root of the 

B+ tree, follow pointer to leaf page 0, get lock on leaf page, insert key 3 and key 7. Inserting key 

7 causes a split process. The root is locked next and key 4 is inserted. This causes the root to split. 

The keys are distributed and a new root node is produced containing key 20. Locks are released. 
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Fig. 5. File structure changes during conversion example 2 

4. ANALYTIC MODEL OF B+ TREE FILE TO LINEAR HASH FILE CONVERSION 

In this section we present a simple analytic model of the conversion process. In particular, we 

want to determine the breakpoint, i.e. how many pages need to be converted before the throughput of 

the system with concurrent reorganization will equal the throughput of a system with only transaction 



processing using the B+ tree file. After this point, the performance of the system with concurrent reor-

ganization becomes better. The various properties that we are interested in are as follows. 

convert(i) : cost of converting ith page from B+ tree to linear hash file (in pages) 

split(j) : cost of performing jth split in linear hash file (in page accesses) 

btree : expected cost of a transaction for the B+ tree file (in page accesses) 

bhash(i) : expected cost of a transaction using the B+ tree / linear hash file 
after the ith page has been converted (in page accesses) 

height : height of B+ tree 

mp : multiprogramming level 

n : number of leaf pages in B+ tree file 

nrec : number of records in B+ tree leaf page 

r : reorganization unit 

rpr : probability that a transaction only reads 

wpr : probability that a transaction does an update, i.e. 1-rpr 

lfpr : probability that an insertion in the linear hash file is to 
the left of the split pointer 

rtpr : probability that an insertion is to the right of the split pointer 

ovfi(m) : overflow chain length for home page left of the split pointer 
for a linear hash file with m records 

ovfr(m) : overflow chain length for home page right of the split pointer 
for a linear hash file with m records 

To simplify our analysis, we will not take into account the effect of locking. Access to our file is 

based on a single key, so the probability that two transactions will block each other will be small. (In 

the simulation of section 6, the queries were generated randomly with a uniform distribution so our as-

sumption should not be too severe.) Even though the reorganization process locks at most nrec home 

pages in the linear hash file, the conflict will still be fairly small. We should also note that when a page 

is converted (excluding the first page), a split operation is performed to add that physical page to the 

linear hash file. This varies from the algorithm but it is a close approximation which will simplify our 

model. 

-12- 



The major cost of query processing is accesses to secondary storage. As such, we will use the 

number of i/o page accesses which a given conversion process makes, multiplied by the multiprogram-

ming level (which is fixed) as the time to complete a given reorganization process. The number of 

transactions that can be processed using the B+ tree file during the time it would take to convert L 

pages for the B+ tree / linear hash file is defined below. 

z  mp (convert (i)-Lps  lit (i)) (1) 
btree 

i=1 

For the file system where the conversion is taking place, we have the following number of transactions 

that can be processed for the same time frame. 

z 	Mconvert (0+ split Q121 
bhash(i— 1) 	

(2) 

We have a factor of mp-1 in the numerator of (2) since the conversion process is being performed con-

currently with transaction processing. Hence, the time available for user transactions is reduced. 

The derivations of the following formulas are straightforward and are omitted. Similar formulas 

for the linear hash file operations are presented in [18]. The individual terms of (1) and (2) are derived 

as follows. 

split (0= 2(1+ ovf I (i*nrec))+ (1+ ovfr(i*nrec)) 

convert (i)= 1+ nrec [(2+ ovf I (i*nrec))*Ifpr+ (2+ ovf r(i*nrec))* (1— If pr)] 

btree= reheight+ (1— rpr)(height + 1) 

bhash (0= (rpr)[height n— Li/rJ r  
+ ((I+ ovf I (i*nrec))*If pr + (1+ ovf r (i*nrec))(1-1f pr) LtiR J r ]+ 

 (1— rpr)Rheight+ 1) n— Lil r Jr + ((2+ ovf (i*nrec))*If pr+ (2+ ovf r(i*nrec))(1— lf pr) / r r  ] 

The bhash formula has a component for searching/updating the part of the file that resides in the B+ 

tree and linear hash structure. For the reorganization unit of 1 page, there is a probability of i/n that 

the query accesses the linear hash structure and (n-i)/n that it accesses the B+ tree structure. If the 

reorganization unit is 5 for example, then groups of 5 pages would have to be converted before any of 

j=1 



the records from those 5 pages could be accessible through the linear hash structure. Hence, in gen-

eral, for a reorganization unit of r, the probability that a B+ tree leaf page is accessed is (n- Li/r r)/n 

and the probability that a linear hash file page is accessed is ( Li/r ] r)/n. 

To simplify our problem, we will make one last assumption. We will assume that overflow is 

negligible. This should not limit our model too much since a successful search in a linear hash file re-

quires on the average a single access [131. This assumption has a direct effect on convert(i) and 

split(i). It means that the cost of converting and splitting a page is constant. Hence, when we want to 

compute the breakpoint, i.e. the value such that 

L 	 L 

	

, v.,
z, 	 mpE 

convert (0+ split (i) 	convert (i)+ split (i)  (mp— 1) 
bhash (i — 1) 	 btree 	

0 , 	(3) 
 

	

i.1 	 i•1 

we can cancel out the convert(i) + split(i) term. Once again, this simplification is not entirely correct 

but it should yield a reasonable approximation. 

In addition bhash(i) becomes the following: 

r r  ) + (1 rpr)[(height + 1) n—  rPr(height  n  
n

r r  + 
	

Jr  +2  Lil l. J r  
] • 

Thus, through simplification, the breakpoint equation of (3) becomes 

	

L—I 	 L. 

	

1 	 1  

	

(mp— 1) E 	 M77j r mPE 	 — 0 (4) n— Li/rjr
+(2—rpr) 	 rpr*height + (1— rpr)(height + 1) 

	

i.-o (height + 1— rpr) 	 iss1 

	

n 	 n 

Since the denominator of the term in the second summation is a constant we can further simplify (4) 

and group terms to get (5). 

L-1 
1 	 mp*L  

(height + 1— rpr)n— (height-1) IFT1 r 	(mp— 1)(height + 1— rpr)n — 
0 	(5) 

i.o 

At this point, we would like a closed form expression for the summation in (5) . We can replace the 

summation with 
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L -1 
1 	 1  

	

height-1 LI.°  (height+ 1- rpr)n 	L i/  rj r 
height -1 

With a little effort, we can derive an equivalent summation in a more suitable form, as shown below. 

Ltd r.1-1 
( r  1 	 1 	 L mod r  

height- 1 	(height + 1- rpr)n 	(heigt+  1- rpr)n  
p=o 	 LLIrj 

height- 1 	 height - 1 

1 	height- 1  
) + 

(height+ 1- rpr)n 	(hezght+ 1- rpr)n • 
height- 1 

Using the Harmonic numbers [20], H„=£ 1=, we can do a further reduction to yield 
=1 

1  

	

r*H 	 L mod r  
height - 1 (r*H  (H ark+ 1- rpr) 	014110: + 1” 'PO R 	11. r1 

Might-1 	 Might-1 	 (height + 1- rpr)n 	IL I r 
height -1 

1 )  + 	height  1 
(height+ 1- rpr)n 	(height+ 1- rpr)n • 

height- 1 

Using the approximation [6], H „= In (n )+ y+1/2n, and substituting back into (5) yields the following : 

1 	(helLti4.E)n ) 	1 	in(  (height + 1- rpr)n  
L 

Un(— 
 height- 1 2( height+ 1- rpr) 	' 	height- 1 	

U./7-j) 

(height -1) 

1
+ 	

L mod r  
(height+ 1- rpr)n 	 (height + 1- rpr)n  2( 	 LL/d) 	r( 	 LLIrj) 

	

height- 1 	 height- 1 

1
+ 	

height- 1 	 trip (height - 1)  
- 

r (height + 1- rpr)n ) 	(height + 1- rpr)n ] 	(mp- 1)(height+ 1- rpr)n 	
0 	(6). 

 
(height- 1) 

Since all the but one variable in (6) are known, we simply need to find the root of equation (6) 

which is not a difficult task. We can use an iterative method for approximating a real root of an equa-

tion [7]. In a subsequent section, we will compare the results of our analytic model with those of the 

simulation model. 
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5. ANALYTIC MODEL OF LINEAR HASH FILE TO B+ TREE FILE CONVERSION 

For the linear hash file to B+ tree conversion, we are interested in the following properties. 

convert(i) : cost of converting ith page from linear hash file to B+ tree (in pages) 

bhash : expected cost of a transaction for the linear hash file (in page accesses) 

btree(i) : expected cost of a transaction using the linear hash / B+ tree file 
after the ith page has been converted (in page accesses) 

m : branching factor of B+ tree 

n : number of primary pages in the linear hash file 

Irec : average number of records in linear hash file 

erpr : probability that a transaction reads a single record (exact match read) 

ewpr : probability that a transaction updates a single record (exact match write) 

rrpr : probability that a transaction reads records within a specified range (range query) 

min : minimum number of records in range query 

max : maximum number of records in range query 

brec : average number of records in a 3+ tree data page 

bprob(j,i,rs) : probability that j consecutive keys from a range of rs keys are 
in the 13+ tree, after i pages of the linear hash file have been converted 

hprob(j,i,rs) : probability that j consecutive keys from a range of rs keys are in 
the linear hash file, after i pages of the linear hash file have been converted 

To simplify our analysis, as in the previous analytic model, we will not take into account the 

effect of locking. This is reasonable for an environment where the majority of the transactions are 

read-only. In addition, we assume, as we did previously, that overflow in the linear hash file is neglig-

ble. Lastly, we make the assumption that the cost to convert any page in the linear hash file is con-

stant. This is obviously not true since the insertion of a certain key may just involve reading index 

pages and writing a data page whereas the insertion of some other key may involve splitting a data page 

as well as index pages. To incorporate the probability that a node either at the data level or at any in-

dex level will be split would overly complicate our model as well as being difficult. Since one goal of 

our model is simplicity, although not at the sacrifice of accuracy, we make the constant page conversion 
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assumption. In addition, for the particular environment which we study, this assumption should not be 

too bad since we will always maintain the root of the B+ tree in memory, the branching factor of the 

B+ tree will be 30 and the maximum height of the B+ tree will be only 3. 

The breakpoint which we want to compute is the value of L such that 

L  convert(i) 	L  convert(i)  
(mP-1)1 twee (i- 1) 

mpE 
bhash - 

0, 	(7) 

i=1 	 1=1 

The terms btree(i) and bhash are defined below. 

btree(i) = erpr ( 1 -n  + 1 1-log„,lrec*il) + ewpr( n n  i  2 + —( Flo& Irec*il) + 1) + - 

max- min+ 1 	 brec +  

max  
rrpr 	 I  

[E(bprob (j ,k)* hprob (k - j ,k )* (k - j)) + 
k=nua i=o 

[log. Irec*il* E bprob(j ,k)] (8) 
/-1 

bluish = erpr + 
ewpr*2  + rrpr*  [max+ min  

2 ( 9) 

In cost equations (8) and (9), we assume that the range queries are uniformly distributed 

between min and max keys per query. Hence, the summation from min to max is divided by 1/(max- 

min+ 1). We also assume that all keys within the range are present in the database. In equation (8), if 

j keys from the range are in the B+ tree, we assume that they are contained on the minimal number of 

pages, where each page contains brec records. As a reminder, brec really is the average number of 

records per data page. Again, this is a simplification, due in part to the fact that the keys are main- 

tained in sorted order. If rs-j keys are in the linear hash file, then those keys are contained on rs-j dis- 

tinct pages as we will see later. This is due to the modulo hash function and a file size greater than rs-j. 

The interesting part of equation (8) is determining the probabilities: bprob(j,i,k) and hprob(k- 

j,i,k). One point, which we can make, about these probabilities is that bprob(j,i,k) = hprob(k-j,i,k). 

That is, if j keys out of k keys are in the B+ tree file then the remaining k-j keys must be in the linear 

hash file. We need to consider four cases to determine bprob(j,i,k). The individual cases are depen- 

dent upon the number of pages already converted, i; the number of pages remaining to be converted, 
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n-i; and the range size, k. The four cases are shown below and we will later show that these cases yield 

the correct probabilities. 

Case I: if i < k and n-i 	k then bprob(j,i,k) = 

(a) 2/n, if j < i 

(b) (k-i+ 1)/n, if j= i 

(c) 0, if j> i 

Case II: if i < k and n-i < k then bprob(j,i,k) = 

(a) 0, if n-i < k-j or j > i 

(b) (k-(n-i)+ 1)/n, if n-i > k-j 

(c) 2/n, if n -i > k-j and $ i 

Case III: if 	k and n-i2 k then bprob(j,i,k) = 

(a) 2/n, if j < k 

(b) (i-k+ 1)/n, if j= k 

Case IV: if k and n-i< k then bprob(k-j,i,k) = 

(a) 2/n, if jj< n-i 

(b) (k-(n-i)+ 1)/n, if j= n-i 

(c) 0, if j> n-i 

For all four cases, we have the following: 

k 

bprob (0,i ,k ) = 1 — I bprob(j,i,k ) 
i=1 

Hence, the probability that a specific file, either the B+ tree or linear hash file, has 0,1,...,rangesize 

number of records of the range query in it, is 1. We should also point out, that case II and case III can-

not both occur during the conversion process for a fixed value of k. This can be seen by simply looking 

at the inequality conditions for these cases. 

We will now show that the four cases reflect the actual probabilities. We should again mention 
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i-1 	i 	 n-1 

n-k+ j 

n-1 

0 

i-j 	 i+ k-j-1 

that the modulo hash function, i.e. h ievei(key) = key mod 2level,  forces consecutive keys into adja-

cent buckets. Note that we consider the last bucket to be adjacent to the first. For example, 14 mod 8 

is 6, 15 mod 8 is 7 and 16 mod 8 is 0. We also assume that n.?. k, so each key in the range of size . k is 

contained in a different bucket. The original file can be thought of as being divided into two partitions: 

the first, representing buckets already converted to the B+ tree and the second, representing the 

remaining buckets of the linear hash file. 

Case I: i< k and 	k 

The following diagram illustrates the state of the converted file, where the left side represents 

the i converted pages and the right side represents the n-i pages to be converted. 

i-1 	i 	 n-1 

partition 1 
	

partition 2 

(a) If j< i, we know that the j consecutive blocks have to be the first j blocks (i.e. 0 through j-

1) or the last j blocks (i.e. i-j through i-1) of partition 1. This is necessary since all the blocks 

in the range query have to be consecutive and since partition 1 is larger than the number of 

consecutive blocks, of the range which it contains. That is, we cannot choose some other j 

blocks because this would result in a nonconsecutive sequence of blocks. The following two di-

agrams illustrate the two possible situations. 



Thus, the first key of the range either appears in bucket n-k+ j or bucket i-j. Since it is equally 

likely, i.e., 1/n, for the first key of a range query to appear in any bucket, the probability for 

this part of case I is 2/n. 

(b) For j = i, we have the following three possibilities. 

(1) 

0 
	

i-1 	i 	 n-1 

k-1. 

i-1 	i 	 n-1 

EM 
n-k+ i 

i-1 	i 	 n-1 

FM 
x 	y 

The situations depicted in (1) and (2) are analagous to those in part (a) of case I. Si-

tuation (3) has two variable bucket addresses, x and y. This situation represents the transition 

from (1) to (2) or vice versa. Hence the value of x ranges from k-2 to i. So for situation (3) 

we have a probability of (k-2-i+ 1)/n of this happening. With situation (1) and (2) included, 

we have a probability of (k-i+ 1)/n for part (b). 

(c) If j> i, then it is obvious that partition 1 has a 0 probability of containing j keys. 

(2) 

0 

(3) 

0 
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Case II: i < k and n-i < k 

In this case, the number of keys in the range query is too large to be contained entirely in parti-

tion 1 or partition 2. 

(a) If the size of partition 2, i.e., n-i, is smaller than k-j, then partition 1 cannot possibly con-

tain j keys. Partition 1 would have to contain more than j keys. Hence, the probability that 

partition 1 contains j keys would be 0. Likewise, if j > i then we would also have a 0 probabili-

ty, since the number of buckets in partition 1 is less than the number of keys it is suppose to 

contain. 

(b) If the size of partition 2 is equal to k-j, i.e. n-i= k-j, then we have a similar situation as we 

had in case I (b) (3), except that the roles of partitions 1 and 2 are switched. Hence, we have a 

probability of (k-(n-i)+ 1)/n. This holds for the same reason as does case I (b) (3). 

(c) If the size of partition 2 exceeds k-j, i.e. n-i> k-j, then we have a similar situation as in case 

I (b) (1) and case I (b) (2). Hence, we have a probability of 2/n. This holds true as long as 

Case III: iZ k and 	k 

(a) Here we have the same situation as in case I (a) (1) and case I (a) (2) when j< k. Thus, 

we have a probability of 2/n. 

(b) Since the size of each partition is greater than the range size, k, all the k keys may be con-

tamed in a single partition. Two examples of this are shown below. 

(1) 

0 
	

i-1 	i 	 n-1 

k-1 
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(2) 

0 
	

i-1 	i 	 n-1 

DM 1 
i-k 

Both (1) and (2) illustrate a situation of k consecutive buckets. Hence if the starting key is in 

bucket 0,1,...,i-k; partition 1 will contain all k keys. So, we have a probability of (i-k+ 1)/n 

that partition 1 contains all k keys of the range. 

Case IV: iz k and n-i< k 

This case is the mirror image of case I, i.e., we simply exchange the roles of partitions 1 and 2. 

6. DATABASE SIMULATION MODEL AND RESULTS 

The simulation model is an adaptation of the models presented in [1,21] and is shown in figure 

6. The simulation model uses a fixed multiprogramming level and a dynamic locking scheme where the 

lockable units are pages. The simulation parameter values used for the experiments, which pertain to 

both conversion problems, are given in table I and are typical of those in [1,21]. Tables II and III con-

tain the parameter values specific to the simulation of the given conversion problem. 
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Fig. 6. Database simulation model 



Table I. General simulation parameter settings 

Parameter Value 
multiprogramming  level 10 
write probability 0.25 
page i/o time 35 ms 
page cpu time 15 ms 
lock iio time 0 
lock request cpu time 2.5 ms 
lock release cpu time 2.5 ms 

Table II. B+ tree to linear hash file simulation parameter values 

Parameter Value 
database size 143 pages 
data page size 10 records 
data page load factor 0.70 
B+ tree height 3 
reorganization unit 1,5,10,15, 

20,25,... 

Table III. Linear hash file to B+ tree simulation parameter values 

Parameter Value 
database size 128 pages 
hash page size 11 records 
tree branching factor 30 
range size 5-25,5-50,5-100 
write probability 20% 
read probability 50% to 20% 
range probability 30% to 60% 

The model simulates transactions made against the database. The transactions are of two 

different types: file processing and reorganization. File processing transactions are submitted by users 

for retrieval or update of the file. In the simulation, a fixed number of transactions are active at any one 

time. When the first user transaction terminates, a reorganization process is entered into the system. 

When each reorganization process terminates, a new one is generated. Therefore, only one reorganiza-

tion process is active at a time. All reorganization processes require locks which are requested one at a 

time and which prevent update transactions. To prevent deadlock in our database model, locks are re-

quested in a fixed linear order. We also assume that to write an existing page, a transaction must first 

read it. 
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Initially, user transactions arrive one time unit apart and are placed on the READY queue. A 

transaction then goes through the following stages. 

(a) The transaction is removed from the READY queue and one lock is requested. If the lock is 

granted, the transaction is placed on the bottom of the I/O queue. If the lock is denied, the 

transaction is placed at the bottom of the BLOCKED queue. The blocking transaction is record-

ed. 

(b) After completing the required I/O, the transaction does one of two things. If the I/O is a read 

then the transaction is placed at the bottom of the CPU queue. If the I/O is a write then the 

transaction, if it were not finished, would request another lock and cycle around again. If the 

transaction is finished after the write then all locks are released. All transactions blocked by the 

completed transaction are placed on the front of the READY queue. 

(c) After completing the required cpu for the page accessed, the transaction, if it were not finished, 

would request a lock on another page and repeat the cycle or if the current page is to be written 

after being read, the transaction would be placed at the bottom of the I/O queue. If the tran-

saction is finished after the cpu processing then all locks are released. All transactions blocked 

by the completed transaction are placed on the front of the READY queue. 

The motivation for the B+ tree to linear hash file conversion is the need for efficient direct ac-

cess only. As such, we will restrict the file processing transactions to just those. These transactions in-

volve accessing two index pages (i.e. nonleaf nodes) and a data page (i.e. leaf node). To simplify the 

simulation we assume that the pages in the B+ tree do not split or merge. The reorganization transac-

tion type can actually be divided into two classes. One class accesses a data page from the B+ tree file 

and places the records from that page into the linear hash file. This may involve accessing as many as 

ten (i.e. page size in records) primary pages in the linear hash file as well as additional overflow pages. 

The other class, due to a split, accesses two pages from the linear hash file and possibly some overflow 

pages. 

For the linear hash file to B+ tree conversion, there are three types of file processing transac-

tions: exact match read, exact match write (update) and range read (range query). For the exact match 



transactions, a random key is chosen. For the range query, a random number, R, is chosen for the 

range size (between some minimum and some maximum value). Next, a random key, K, is chosen, 

such that the key whose value is K+ R-1 is also contained in the file. We should make note that the 

keys in the linear hash file are consecutive. Hence, when we have a range of size R, we know that R 

records will be retrieved. This is necessary so that we can determine how many pages will be accessed 

for a range query in the analytic model. 

The results of the various simulation runs for the B+ tree to linear hash file coversion are 

summarized in table IV. The unit parameter indicates the increment (in pages) for which converted 

pages are made accessible through the linear hash file. For example, the value 5 indicates that after 

every group of 5 pages from the B+ tree file have been converted, the records from those pages can be 

accessed through the linear hash file. This means that the keys (records) that have been processed so 

far, i.e. in physical page sequence, represent a consecutive range of key values. Since the reorganiza-

tion is done in page sequence, the higher values for unit represent a greater disparity between key and 

physical page sequences. The value of 1 indicates that page and key sequences are the same. Unit may 

be thought of as the size of a control area. The breakpoint gives the time in seconds in which the con-

current reorganization method starts to produce a higher throughput of transactions as compared with 

only transaction processing of the B+ tree. For the case where the unit is 15 	11 percent of the da- 

tabase size) we see that the breakpoint occurs around 375 seconds 	2/5 of total reorganization time). 

The columns under max decrease indicate the maximum number of transactions delayed and the time 

at which this maximum delay occurred. The columns under max increase show the maximum improve-

ment of throughput and the time at which this happens, i.e. when the reorganization is completed. The 

first line of the table shows the result of doing off-line reorganization which requires 125 seconds. Dur-

ing that time period the B+ tree file could have serviced 1092 transactions. We should also point out 

that for a much larger database, the off-line reorganization time would be much larger and more in-

tolerable than for our case. 

The average time, for the various simulations, to complete the conversion of the B+ tree to 

linear hash file was approximately 961 seconds. The average load factor for the linear hash file was 66 
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percent with 1.03 accesses per successful search. In addition, on the average only 5.6 percent more 

pages were used by the linear hash file as compared with (only) the leaf pages of the B+ tree file. We 

see from table IV that as the unit increases, so does the breakpoint and the delay in throughput while 

the improvement decreases. Of course, when the unit is 1, we have our best result. Although it prob-

ably is not a very practical situation. However, other situations where the unit is between 15 (a 11% 

of database) and 35 (a 24% of database) appear to be more practical and still yield good results, in 

terms of breakpoint and delay. The results are especially good when compared with the delay of off-line 

reorganization. 

At this time, we would like to present a comparison of our analytic model with the simulation 

model. Table V shows the breakpoint, in number of pages, as computed using our analytic model and 

as observed from the simulation runs. The maximum difference between the two is only 7% and on the 

average it is about 2%. So, even though we made several simplifying assumptions for our analytic 

model, the value of the breakpoint predicted was fairly close to the observed value. The difference is 

probably due to the fact that there is a small amount of overflow with the linear hash file and that the 

time to convert and split a page is not constant. 



Table IV. Summary of b+ tree to linear hash file simulation results 

unit 
break 
point 
(sec) 

max decrease max increase 

trans time 
sec) 

trans time 
(sec) 

offline 1092 125 
1 284 63 132 3134 958 
5 314 75 168 2980 958 

10 336 92 173 2816 962 
15 375 111 175 2686 967 
20 413 126 232 2448 961 
25 434 130 228 2285 954 
30 453 164 180 2124 960 
35 485 193 208 1949 962 
40 538 223 240 1959 969 
50 575 294 308 1462 951 
71 625 438 452 832 964 
100 800 642 665 774 963 

Table V. Comparison of analytic model & simulation results 
for b+ tree to linear hash file conversion 

unit 

breakpoint (pages) 

% 
cliff. simulation 

analytic 
model 

1 46 46 0.00 
5 49 50 2.00 

10 53 54 1.85 
15 58 59 1.69 
20 62 64 3.13 
25 67 67 0.00 
30 70 71 1.41 
35 75 77 2.60 
40 82 84 2.38 
50 89 88 -1.14 
71 97 101 3.96 
100 120 129 6.98 

In the linear hash file to B+ tree conversion simulation, we varied the range query size as well 

as the various transaction type probabilities so that we could see the effect that they have on the break-

point. The results of the various simulation runs are shown in tables VI, VII and VIII. For this 

conversion problem, we were primarily interested in the comparison of the simulation results with the 
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analytic model results. 

The first observation which we can make is that by increasing the probability of a range query 

for a given range size, the breakpoint occurs sooner. However, this appears to be true up to some paint. 

For example, in tables VII and VIII, we see that, for the simulation, there is no difference when the 

breakpoint occurs when we have 50% or 60% range queries. This is probably due to a majority of the 

queries having to access records from both the old linear hash file as well as the new B+ tree file, as 

opposed to just accessing records in the B+ tree file which would be more efficient. Another point 

which we observe is that by increasing the range size, for a fixed transaction probability, the breakpoint 

also occurs sooner. For example, compare each row of table VI with the corresponding row of table 

VII. One last observation is that there is not much difference when the range size is between 5 and 50 

as compared with a range size between 5 and 100. Again, an explanation for this is that range queries 

are accessing records from both file structures during the conversion process. 

Looking at the simulation results in table VI, we see that in the first row, the breakpoint occurs 

when 42% of the linear hash file has been converted. If we examine the last row, we see that the 

breakpoint occurs when only 30% of the file has been converted. For table VII, the breakpoint varies 

from having 29% of the file converted to having 27% of the file converted. Likewise, for table VIII, the 

breakpoint ranges from 30% to 26%, as the percentage of linear hash file converted. 

Comparing our analytic model with the simulation, we see that the maximum difference is ap-

proximately 11% (table VI), and the average difference is about 5% (table VI), 3% (table VII) and 4% 

(table VIII). So, we see that the analytic model is a fairly good reflection of the simulation. 



Table VI. Comparison of analytic model & simulation results 
for linear hash file to B+ tree conversion (5 5 range size 5. 25) 

prob 

breakpoint (pages) 

% 
cliff. simulation 

analytic 
model 

rrpr= .3 
erpr= .5 

54 56 3.57 

rrpr= .4 
erpr= .4 

49 49 0.00 

rrpr= .5 
erpr= .3 

42 45 6.67 

rrpr= .6 
erpr= .3 

38 43 11.63 

Table VII. Comparison of analytic model & simulation results 
for linear hash file to B+ tree conversion (5 5 range size 5 50) 

breakpoint (pages) 

% analytic 
_prob simulation_ model cliff. 
rrpr= .3 37 39 5.13 
erpr= .5 
rrpr= .4 34 36 5.56 
erpr= .4 
rrpr= .5 35 35 0.00 
erpr= .3 
rrpr= .6 35 34 -2.94 
erpr= .3 

Table VIII. Comparison of analytic model & simulation results 
for linear hash file to B+ tree conversion (5 5 range size 5 100) 

prob 

breakpoint (pages) 

% 
cliff. sim ulation 

analytic 
model 

rrpr= .3 
erpr= .5 

38 37 2.70 

rrpr= .4 
erpr= .4 

34 36 5.56 

rrpr= .5 
erpr= .3 

33 35 5.71 

rrpr= .6 
erpr= .3 

33 34 2.94 
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7. CONCLUSION 

The motivation for this work has been to show that the B+ tree to linear hash file conversion 

and the linear hash file to B+ tree conversion can be done concurrently with user transaction process-

ing. The conversion is necessary for improving the performance of the database system and doing the 

conversion concurrently with database usage is necessary for any system which must be available 24 

hours a day. We devised two algorithms which perform the two conversions and introduced an analyt-

ic model for each conversion. We also used a typical database simulation model and ran various experi-

ments. The results of the experiments support the idea of doing file conversion concurrently with data-

base usage, especially when compared to an off-line reorganization approach. 
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ABSTRACT 

The problem of file reorganization which we consider involves altering the placement of records 

on pages of a secondary storage device. In addition, we want this reorganization to be done in-place, 

i.e., using the file's original storage space for the newly reorganized file. The motivation for such a phy-

sical change is to improve the database system's performance. For example, by placing frequently and 

jointly accessed records on the same page or pages, we can try to minimize the number of page accesses 

made in answering a set of queries. The optimal assignment (or reassignment) of records to clusters is 

exactly what record clustering algorithms [1,4,9] attempt to do. However, record clustering algorithms 

usually do not solve the entire problem, i.e., they do not specify how to efficiently reorganize the file to 

reflect the clustering assignment which they determine. Our algorithm is a companion to general record 

clustering algorithms since it actually transforms the file. The problem of optimal file reorganization is 

NP-hard [3]. Consequently, our reorganization algorithm is based on heuristics. The algorithm's time 

and space requirements are reasonable and its solution is near optimal. In addition, the reorganization 

problem which we consider in this paper is similar to the problem of join processing when indexes are 

used [2,5]. 

1. INTRODUCTION 

One of the ways in which the performance of a database system can be improved is through 

reorganization based on record clustering. In this paper, we deal with a single file, containing multi-

attribute records which are grouped into pages (i.e, blocks) in secondary storage. The target records of 

a multi-attribute query will usually be distributed over the entire file space and the number of pages ac-

cessed in the file can be as many as the number of target records for the query [7]. Thus, the objective 

of record clustering and reorganization is to reduce the expected number of page accesses. The result 

of a query Qi  is the set of records, in the file, which satisfy the conditions specified in the query. By 

using some directory (or directories), it is possible to access only those pages containing one or more 

records in the answer of the query. A common measure of the efficiency of answering a query is the 

number of page accesses required to retrieve the desired records [7]. If each page retrieved, in 
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response to a query, contains only one record, then many pages will be accessed. On the other hand, 

if each retrieved page contains many records, then few pages will be accessed. 

Record clustering algorithms [1,4,10] assign frequently and jointly accessed records to the same 

page(s) in such a way that the total number of pages accessed in response to a set of queries, with some 

probability of occurrence, can be minimized. Record clustering algorithms usually focus on finding an 

optimal clustering but stop short of specifying an optimal procedure for rearranging the records, in the 

file, to match the clustering [9,10]. We consider this rearrangement of records to be our file reorgani-

zation problem. The reorganization process involves bringing pages from the file into a main memory 

buffer area, constructing new pages by rearranging records on the pages in the buffer and writing new 

pages back to the file. The cost of reorganization equals the number of pages that must be transferred 

from (to) secondary storage to (from) main memory. The problem of optimal file reorganization has 

been shown to be NP-hard [3]. Therefore, our approach will be to develop a heuristic algorithm whose 

time and space requirements are reasonable and whose solution is near optimal. 

We should mention that our reorganization problem is similar to the problem of scheduling 

page fetches for a relational join operation when indexes are used in processing the join [2,5]. For both 

problems, a sequence of page fetches must be determined so as to minimize the total number of page 

accesses, either in computing the join or in performing the reorganization. The main difference is that 

with file reorganization, we have to rearrange the records. Thus, when we have the necessary pages in 

the buffer, we must construct the new page and write it to secondary storage. This means that other 

records will also be moved. Some of those records may not be associated with any cluster, i.e. those 

records may reside on any page in the file. However, every page in the buffer must eventually be writ-

ten back to secondary storage. This would cause additional page accesses for reorganization as opposed 

to join processing, since for join processing, nothing has to be done with records in the buffer that do 

not join with any other records. From the join problem perspective, we can think of a cluster as con-

sisting of a record from one of the joining relations and several records from the other joining relation, 

where the records in the cluster agree on the joining attribute. The records that join together (and 

their addresses) can be easily found by searching the two indexes. 
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2 . PREVIOUS RESEARCH ON FILE REORGANIZATION 

In [1], a clustering algorithm, which is tightly coupled to the reorganization, is presented. Their 

clustering approach is to sort the records of the file in ascending order of the concatenated key. The 

concatenated key A 1 ,A2 ,...,Ak  is selected such that the attributes appear in nonincreasing order of their 

probability of appearence in a query. Since sorting is expensive, i.e., producing a total ordering of all 

records, they propose a partial-sort method that restricts the sorting to those records that can fit into the 

buffer. So the reorganization is efficient but is limited to their clustering method. In addition, experi-

mental evidence [4,10] has shown that the partial-sort clustering method performs very poorly. 

In [10], an adaptive record clustering scheme is introduced. They present an elegant as well as 

conceptually simple clustering algorithm. Their algorithm does not classify queries into types nor does 

it collect individual query statistics. Preliminary experiments has shown very good results [10]. Once 

the clusters have been determined, they assign reocrds in each cluster, i.e., from the first cluster to the 

last cluster, to pages. They have a few cases which they consider when deciding whether a new page or 

an existing page can be used. We consider this a logical assignment of records, i.e., some logical page 

should contain a certain set of records. (This is what our algorithm will expect as input.) We do not 

consider this an effective approach for reorganization for the following reasons. 

1) Reorganization is constrained by the size of the main memory buffer area. 

2) The actual numbering of the clusters is somewhat arbitrary and as such, the set of pages 

which currently store records from cluster i_ i  and clusteri  may be disjoint. Thus, the 

pages which are brought into the buffer when constructing cluster i4  will be of no use 

when constructing cluster i . This could cause an excessive number of page faults. 

Another approach for file reorganization based on record clustering is the 

dynamic_cost_reorganization algorithm [3]. However, as we will show, there exist some problems and 

limitations with this method. Since we want to later compare our algorithm with the 

dynamic_cost_reorganization algorithm, we will briefly review it here. The algorithm assumes that in-

put and output to the secondary storage device is accomplished by using a main memory buffer area of 

fixed size. Two mappings are required as input, one is PG which corresponds to the old (file) state and 
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the other is NPG which corresponds to the new (file) state. These mappings satisfy the following: 

PG : R P 

NPG : P' 2R' 

where R = set of record identifiers, 

P = set of physical page numbers, 

P' = set of logical page numbers and 

2R' = set of subsets of R of size < pagesize. 

To implement the mapping PG, there is a Page table which associates with every record 

identifier, the physical page number on which it resides. This introduces another level of indirection 

between any directory (index) and the data file, but has the advantage that moving records within the 

data file does not affect the directory. Normally, in a tree structured directory [6,7], the leaves contain 

pointers to records. In this case, the leaves contain record identifiers. As previously mentioned, the 

output of a record clustering algorithm is assumed to be a set of logical pages: 1,2,...,M where each log-

ical page contains at least one record and at most pagesize records. The records for each logical page 

are mutually exclusive such that NPG(i) fl NPG(j) = 0 for 1 < i,j < M and i j. Logical page 0 is 

a special case and is the set of records in R which are not related to any logical page i, where 

1 < i < M. Given the above two mappings, PG and NPG, the mapping D : P' P is defined as fol-

lows: D k  = {PG( r) I r E NPG(k)} where k E P' Thus D k  gives the set of physical pages which con-

tain record(s) of logical page k. Buffer is the set of physical pages currently residing in the buffer. D' k 

 is the set of pages containing record(s) of logical page k and currently residing in secondary storage, 

i.e., D'k  = D k  - Buffer. The dynamic_cost_reorganization algorithm of [3] is shown below. 

Algorithm: dynarnic_cost_reorganization 
Begin 

While all the logical pages are not constructed do 
Begin 

1: Determine the current logical page, clp, based on the cost function 
function cost(k) = ID' k  I/ ID k  I; 

2: Determine physical pages to be swapped from the buffer using the 
fewest_records buffer paging policy; 
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3: Bring in D' clp physical pages; 
4: Rearrange the records in the buffer such that all the records which make 

up clp are contained on a single physical page; 
5: Write the physical page which contains clp to secondary storage; 
6: Rearrange records in the buffer such that records which belong to the 

same logical page are grouped together as follows: 
a) for each logical page, k, which has records in the buffer, set 

Sk  = Ir E NPG(k) and PG(r) E Buffer}; 
b) Order the above sets, excluding S 0, by nonincreasing size to obtain 

S i  ,,S2 ,,•••,S rc ; 
c) Allocate the sets in order: 	Sn ' and so  to buffer '  

pages in order 1,2,.. , 
End; 

End; 
The fewest_records buffer replacement policy (step 1.2) is to select the pages in reverse order 

of consolidation, i.e., page[lBuffer1],...,page[1], where page[x] represents the page in position x in the 

buffer. However, the dynamic_cost_reorganization algorithm suffers from the following problems 

and/or limitations. 

1. The buffer capacity in pages must not be less than the page size in records, otherwise, 

the algorithm does not work in some cases. 

2. If there is not enough buffer space to bring in D' clp  physical pages, several physical 

pages in the buffer are written to disk to make enough free buffer space. It may be 

inefficient to write out those physical pages at once before trying to construct clp, the 

current logical page, with the given buffer status. 

3. If the number of records of clp is less than the pagesize, then other records are put on 

the page, e.g. page p, which is written to disk. If some of the records of another logical 

page k are contained on physical page p, then for the construction of logical page k, 

page p has to be brought into the buffer again. The construction of logical page clp 

may be destroyed. 

4. Some logical pages do not need to be processed. For example, if there is only one physi-

cal page which contains records for logical page k, then logical page k does not need to 

be processed. 

In the next section, we present our clusterjeorganization algorithm which works for any size of 

main memory buffer (i.e., > 2 pages) and solves the previously mentioned problems. We assume a 

'Buffer I; 
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paged buffer system as well as the existance of a Page table. The same mapping definitions and same 

notations will be used to enhance the ease of cross-referencing with the dynamic_cost_reorganization al-

gorithm [3]. 

3. EFFICIENT FILE REORGANIZATION 

This section deals with the problem of efficiently reorganizing the file, for a given record clus-

tering. We assume that the dominating cost for reorganization is that incurred by page accesses 

to/from secondary storage [7]. Input and output to the secondary storage device is accomplished by us-

ing a main memory buffer area of fixed size. Thus, our goal is not only to reorganize the file but to 

minimize the number of pages swapped in and out of the buffer during the reorganization process. As 

mentioned, the mappings PG and NPG are used. Buffer, D k, D 'k  and clp are defined exactly as in the 

previous section. We need to define one more mapping, LPN : R P' which is defined as 

LPN(r) = k, where r E NPG(k) such that LPN gives the logical page number for the corresponding 

record. The implementation of the mapping LPN can be accomplished by using a hash table. Before 

we explain our cluster_reorganization algorithm, we need to present the following definitions. 

1) A voikrecordr is a record which is not related to any logical page, i.e., LPN(r) = 0. 

2) A nenvoidjecord r is a record which is related to any one of the logical pages, i.e., 

LPN(r) = k where 1 < k < M. 

3) A void_physical page p is a physical page that consists only of void_records, i.e., for 

each record r E p, LPN(r) = 0. 

4) A perfect_physical page p is a physical page where for each record r E p, LPN(r) = k 

and k O. Hence dk  -= (p). 

5) A composite_physical page p is a physical page which contains one or more logical pages 

and there exists a record r E p such that LPN(r) = k, k h  0 and D k  - {p} h 0 . 

6) A logical page is in the ready state if all the records related to that logical page reside in 

the buffer. 

7) A logical page is in the perfect state if all the records related to that logical page reside 

-7- 



in a perfect physical page. 

8) A logical page k is in the post_ready_ptate if D ' k  = D'cip  and k 	clp. 

The following notations are also used: 

X = current available buffer space, i.e., Buffer_capacity - 'Buffer', 

N = number of nonvoid_records in physical page p, 

TVR = total number of void_records in the buffer, 

RS = set of logical pages which are in the ready state, 

PS = set of logical pages which are in the post_ready state, 

MAX = subset of RS whose combined number of records for each constituent logical 

page < pagesize and maximum among other subsets, 

'MAXI = the number of constituent logical pages for set MAX and 

SIZE = the combined number of records for each constituent logical page for set 

MAX. 

To bring clp into the ready state, it is necessary to bring in D' clp  physical pages from secondary 

storage into the buffer. If there is space in the buffer (i.e., X h  0), there is no problem in bringing in 

a physical page from secondary storage. However, if X = 0 and D' clp  0 , i.e., X = 0 while there are 

some physical pages which have to be brought into the buffer, then to bring in the next physical page in 

D' ic, a page frame needs to be made available in the buffer. In this situation, to free a page frame, the 

following steps are used: 

step 1: Try to construct a perfect_physical page 

step 2: If step 1 is not possible then try to construct a void_physical page 

step 3: If steps 1 & 2 are not possible then build a composite_physical page 

step 4: Write the above constructed physical page to secondary storage 

When step 3 is satisfied, we call it overflow. However, if X = 0 and D ' k  = 0 , i.e., if X --- 0 

after bringing in all the physical pages in D ' k  into the buffer, then to continue the reorganization pro-

cess, we also need to follow the above steps. In this case, if step 3 is satisfied, it is called underflow. 

We should note that a composite_physical page which is written to disk will eventually be read back into 
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the buffer. 

Once clp is brought into the ready state and SIZE plus TVR is greater than or equal to the 

pagesize, then it is possible to make a perfect_physical page. However, to reduce the possibility of 

overflow or underflow when the next logical page is constructed, the following two steps are used. 

step A: While (MAXI= 1 & SIZE = pagesize do 
construct a perfect physical page using records of logical page in MAX 

step B: If X = 0 then follow the above 4 steps for freeing a page frame. 

Overflow and underflow are not promising situations since they propagate additional page 

accesses. So the reorganization algorithm must try to minimize the possibility of those situations. The 

possibility of overflow/underflow is directly related to the order of logical page construction and by the 

access sequence of those physical pages related to each logical page. The sequence of bringing in those 

physical pages which are related to each logical page will be discussed first. Afterwards, the dynamic 

order of logical page construction, as directed by our cost function, will be shown. To bring logical 

page k into the ready_state, we must bring in D' k physical pages from secondary storage into the buffer. 

Let the result of sorting those physical pages in D ' k  in nondecreasing order of nonvoid_records in each 

physical page be denoted as the bring_in_sequence, BIS. There are three observations concerned with 

overflow and underflow conditions which are related to BIS. These observations are proved in the ap-

pendix and provide some measure of the "goodness' of our algorithm. For these observations and for 

the cost function which will be explained next, the following notations are used. 

Yk  = max(N1' N2' ' Nm  ) where {1,2,...,m}-=D' k 

Z k =EiVi - Yk 

Observation 1: If BIS of D' k causes overflow when bringing logical page k into the ready_state, then 

any other sequence also causes overflow. 

Observation 2: If (X - 1) * pagesize + TVR > Z k then logical page k does not cause overflow by using 

BIS. 

Observation 3: If X > 2 and (X - 2) pagesize + TVR > Z k  then logical page k does not cause 
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overflow or underflow by using BIS. 

Because of overflow and underflow, in some cases it is possible to be faced with the situation 

where some physical pages are brought into the buffer and written out repeatedly without making any 

progress. This condition, which causes an infinite looping, is referred to as thrashing. Bringing clp into 

the ready_state might cause thrashing. Checking whether this will happen is very difficult. So, instead 

of checking thrashing, it is much easier to check whether clp and the current buffer contents contain 

the possibility of causing thrashing. Thus, the thrashing_possibility (TP) is defined as true if clp causes 

overflow or underflow in the presence of at least one ready state logical page. Therefore, once clp is 

decided according to the dynamic cost function which will be explained later, TP of clp is always 

checked before trying to bring clp into the ready state. The algorithm for TP is given below. 

Algorithm thrashing_possibility; 
/* Let D' 	= {1,2,...,m} and the bring_in_sequence be 1,2,...,m */ . 	p 
Begin 

TP := false; 
If RS 7.4 0 and X < m 
Then 

Begin 
E 	TVR + (pagesize - N1) + 	+ (pagesize - Nx-1); 
CRS RS; 
i 	X; 
While TP and i < m and CRS 74 0 Do 
Begin 

E 	E + pagesize - N i ; 
If i = m Then CRS CRS U PS U clp; 
find MAX and SIZE for set CRS; 
CRS := CRS - MAX; 
E := E - (pagesize - SIZE); 
If E > 0 Then i :=--- i + 1 
Else 

Begin 
TP := true; 
PS := 0 ; 

End; 
End; 

End; 
End; 

When TP of clp is true, instead of bringing clp into the ready_state, we try to construct a 

perfect_physical page with logical pages in the ready state and void_records in the buffer. If there is 

not a sufficient number of void_records in the buffer, then one physical page which has the maximum 
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number of void_records in secondary storage, needs to be brought into the buffer. 

All the composite_pages on disk should be brought into the buffer at least once to finish the 

reorganization process. The number of pages needed to construct any logical page is not our concern. 

The ultimate objective is to minimize the total number of pages swapped in and out of the buffer. 

Based on the above three observations for the given buffer contents, the logical page which has the 

minimum possibility of causing overflow or underflow is the one which has minimum Z k. Moreover, 

after bringing a logical page into the ready state or perfect state, we want to increase the probability of 

having sufficient buffer space. To accomplish this, we select a logical page which has minimum 

Zk  + Yk  among logical pages which are not in either the perfect state nor ready state. Our cost func-

tion is defined as follows: 

COST(k) = cost to bring logical page k into the ready_state = (Z k, Yk), 

COST(i) < COST(j) if Z i  < Zj  or L i  = Zj  and Yi  < Yj. 

The above cost function takes into account the entire contents of the buffer. According to this 

cost function, our heuristic rule for the selection of clp is the following: find a logical page which has 

minimum Zk  value and if there is more than one logical page which has the same Z k  value, then select 

the one which has the minimum Yk value. The purpose of our cost function, COST(k), is to provide a 

means for ranking those logical pages which are not in the perfect_state. This allows us to determine a 

sequence of constructing logical pages which will hopefully minimize the total number of disk accesses 

for reorganization. Based on the ideas discussed so far, our new heuristic rorganization algorithm is 

presented. 

Algorithm cluster reorganization; 
Input: data file, NPG, PG, pagesize, buffer capacity 
Output: reorganized data file 
Begin 

step 0: /* Initialization */ 
X := Buffer capacity; Buffer := 0 ; RS := 0 ; TVR 	0; 
For each nonvoid_record r, determine LPN(r); 
For each physical page p, determine N ; 
Find COST for each logical page & sore COST table in nonincreasing order; 
Find logical pages which are already in the perfect state & delete them 

from the sorted COST table; 
step 1: /* Reorganization */ 



While the COST table is not empty do 
Begin 

1.1: Find clp which has minimum cost among logical pages in the COST table 
& not in RS; 

If all the logical pages in the COST table are in RS then 
set clp to 0; 

1.2: If clp h 0 and clp contains thrashing possibility (TS} 
then set clp to 0; 

1.3: if clp = 0 then 
Begin 

D` 	:= 0 ; 
Find 	& SIZE for logical pages in RS; 
If SIZE + TVR < pagesize then 

Begin 
Find a physical page p on disk which has a minimum number 

of nonvoid_records; 
If p is not a perfect_physical page and N < pagesize or p is a 

perfect_physical page and N p  < SIZE')  
Then D' clp  := {p} 
Else 

Begin 
Select a logical page k whose number of records is maximum 

among logical pages in RS; 
For each record r of logical page k do 
Begin 

LPN(r) := 0; 
TVR TVR + 1; 
NpG(r) 	NPG(r)  - 1; 

End; 
End; 

1.4: While D'clp 	0 do 
Begin 

While X 0 and D ci  ,p  0 do 
Begin 

Bring in a physical page which has a minimum number of nonvoid_records 
in D ' clp" 

X := X -1; 
Buffer := Buffer U {p}; 

D'clp {p}; 
Examine each record r in physical page p, if necessary adjust TVR and 

if LPN(r) enters the ready_state then RS := RS U LPN(r); 
End; 
If clp 0 and D'clp = 0 
Then 
Begin 

Find MAX and SIZE for logical pages in RS; 
While (MAXI= 1 and SIZE = pagesize do 
Begin 

Construct & write out perfect_physical page p; 
Delete logical page k in MAX from the COST table; 

End; 
Delete k from the COST table; 

End; 
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X := X + 1; 
RS := RS - MAX; 
Buffer := Buffer - {p}; 
Find MAX and SIZE for logical pages in RS; 

End; 
End; 
If clp = 0 or (clp 0 and X = 0 and RS 	) 
Then 
Begin 

Find MAX & SIZE for logical pages in RS; 
If SIZE + TVR > pagesize 
Then 
Begin 

Construct and write out perfect_physical page p 
using records of logical pages in MAX and 

(pagesize - SIZE) void_records; 
Delete logical pages in MAX from the COST table; 
X := X + 1; 
RS := RS - MAX; 
Buffer := Buffer - {p}; 
TVR := TVR - (pagesize - SIZE); 

End; 
End; 
If X = 0 and TVR > pagesize 
Then 
Begin 

construct and write out void_physical page p; 
X X + 1; 
Buffer := Buffer - {p}; 
TVR := TVR - pagesize; 

End; 
If X = 0 
Then 
Begin 

Construct and write out composite_physical page p; 
X := X + 1; 
Buffer := Buffer - {p}; 
Adjust TVR; 

End; 
End; 

1.5: For each logical page k whose cost has been changed & whose 
status is not the perfect state do 
Find COST(k) and insert k into the proper position in the COST table; 

End; 
step 2: /* Buffer clearance */ 

For each physical page p in the Buffer do 
Begin 

write out physical page p to secondary storage; 
Buffer := Buffer - {p}; 

End; 
End; 

To conclude this section, we want to make some remarks about the time and space complexity 
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of our algorithm. Let M be the total number of logical pages and N be the total number of records in 

the file. Since pagesize and buffer capacity are constants, it is easy to show that the worst case time 

complexity is 0(MN) and moreover, if M = N / pagesize, then it is 0(N 2). As far as the worst case 

space complexity is concerned, the storage requirement is 0(N). 

4. A FILE REORGANIZATION EXAMPLE 

To explain our cluster reorganization algorithm more clearly, we provide the following exam- 

ple. 

Example 1: Assume that the pagesize is 5 records, the buffer_capacity is 3 pages, and NPG and PG 

are given as follows: 

NPG 	 PG 

A: Al A2 A3 A4 A5 	 Al 1 A2 3 A3 5 A4 7 

B: B1  B2  B3 	 C1 1 C2 3 C3 5 C4 7 

C: C2  C3  C4 	 D 1 1 D 2 3 E3 5 E5 7 

D: D 1 D 2 	 F1 1 G2 3 H3 5 H4 7 

E: El E2 E3 E4 E5 	 G 1 1 1 3 b2 5 14 7 

F: F1 F2 F3 	 B1 2 B2 4 B3 6 A5 8 

G: G 1 G2 G 3 G 4 	 El 2 E2 4 E4 6 H5 8 

H: H i  H 2  H 3  H4  H5 	 F2 2 G3 4 F3 6 b3 8 

I: I 1 12 13 14 

	

	 H 1 2 112 4 G4 6 b4 8 

b 1 2 12 4 13 6 b5 8 

For the above two mappings, A through I represent logical pages and A l  through 14  represent 

their corresponding record identifiers. The integer which follows each record identifier, in PG, indi-

cates the physical page where the corresponding record resides. Each b i  represents a void record. The 

cost for each logical page is calculated using the cost function, COST(k) = (Z k,Yk). Those costs are 

sorted and are stored in the COST table as follows. 
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COST(k) : (5,5) (9,5) (9,5) (14,5) (15,5) (15,5) (15,5) (16,5) (18,5) 

k: D B F C G H I A E 

Logical page D becomes clp and to bring logical page D into the ready_state, physical pages 7 

and 8 are brought into the buffer (Fig. la). Since MAX = {D} and SIZE + TVR < pagesize, we can 

not bring logical page D into the perfect state. 

BUFFER 

1 Al C1 D 1 F1 G 1 

3 A2 C2 D 2 G 2 I 1 

TVR--=-0 
RS-=-{D } 

(a) 

BUFFER 

1 A l C1 D 1 F1 G 1 

3 A2 C2 D 2 G 2 I1 

8 A 5 H5 b3 b4 b5 

TVR=3 
RS={D } 

(b)  

BUFFER 

1 Al C 1 A5 F 1 G 1 

3 A 2 C2 H5 G 2 I1 

8 D 1 D 2 b3 b4 b5 

MAX—{D } 
SIZE-=2 

(c ) 

Figure 1: Buffer Contents 

The updated costs for logical pages are as follows: 

COST(k) : (0,0) (4,5) (5,4) (5,5) (6,5) (9,5) (10,5) (15,5) (18,5) 

k: D CF G AB I H E 

According to the COST table, logical page C becomes clp. D ' c  = {5,7} and the 

bring_in_sequence is 5 and 7. However, clp causes overflow since logical page D is in the ready_state. 

Therefore, TP (thrashing possibility) becomes true and clp is set to 0. Since SIZE + TVR < pagesize, 

we find a physical page which has the maximum number of void records, i.e., physical page 8. Now, 

physical page 8 is brought into the buffer (Fig. lb), records in the buffer are rearranged (Fig. lc) and 

the perfect_physical page 8 is written out to secondary storage. Now, the updated COST table is as fol-

lows. 



COST( 	: (4,5) (4,5) (5,4) (5,5) (9,5) (10,5) (13,5) (18,5) 

k:ACF - GB I H E 

At this point, logical page A becomes clp. To bring logical page A into the ready state, physical 

pages in D'A  = {5,7} have to be brought into the buffer. Physical page 5 is brought into the buffer 

first because N 5=4 and N7=5 (Fig. 2a). Since X=0 and it is not possible to make a perfect 

physical_page or a void_physical page, we must construct a composite_physical page. The specified 

records are placed on physical page 1 (Fig. 2b) which is then written out to disk. Physical page 7 is 

then brought into the buffer (Fig. 2c). 

BUFFER 	 BUFFER 	 BUFFER 

I Al C1 A5 F1 G I 	 1 E3 H 3 H5 II G 1 	 7 A4 C4 E5 H4 14 

3 A 2 C2 H 5 G 2 I1 	 3 A 2 C2 A5 G 2 F1 	 3 A2 C2 A5 G 2 F1 

5 A3 C3 E3 H3 b2 	 5 A 3 C3 Al C 1 b2 	 5 A3 C3 Al C1 b2 

TVR=1 	 TVR=1 	 TVR=1 
RS=O 	 RS=0 	 RS={A,C} 

(a) 	 (b) 	 (c) 

Figure 2: Buffer Contents 

Now, logical pages A and C are in the ready_state. Logical page A and C contain 5 and 4 

records respectively. The records of logical page A are collected on physical page 7 (Fig 3a) and written 

out to disk. 

BUFFER 	 BUFFER 	 BUFFER 

7 A4 Al A2 A3 A5 	 2 B1 El F2 H 1 b 1 

3 E5 C2 I4 G2 F1 	 3 E5 H 4 I4 G 2 F1 	 3 E5 H 4 I4 G 2 F1 

5 H 4 C3 C4 C 1 b2 	 5 C2 C3 C4 C1 b2 	 6 B3 E4 F3 G 4 I3 

TVR=1 	 TVR=1 	 TVR=1 
MAX={A} 	 MAX={C} 	 RS=-.{F} 

-16- 



(a) 
	

(b) 	 (c) 

Figure 3: Buffer Contents 

The updated COST table is as follows. 

COST(k) : (0,0) (5,4) (9,5) (9,5) (10,5) (10,5) (14,5) 

k: C F H B G I E 

At this point, logical page F becomes clp where D' F=--{2,6}. However, clp causes underflow in 

the presence of logical pages in the ready_state. Thus, clp is set to 0. Due to the fact that 

SIZE + TVR > pagesize, a perfect_physical page must be constructed from records of logical page C 

and one voidjecord b2  (Fig. 3b). Physical page 5 is written to disk. Now, the only necessary change 

to the COST table is to delete the cost for logical page C. Therefore, clp={F} and physical pages in 

D'F, i.e., {2,6}, are brought into the buffer (Fig. 3c). Now, because X=0, TVR-=1, and SIZE=3; the 

reorganization process continues by making a composite_physical page. Page 2 is constructed (Fig. 4a) 

and is written to disk. 

BUFFER 	 BUFFER 	 BUFFER 

2 E4 El E5 G 2 1 4 	 8 D 1 D 2 b3 b4 b5 	 8 D 1 D 2 F 1 F2 F3 

3 F2 H4 b 1 H 1 F 1 	 3 F2 H4 b 1 H 1 F1 	 3 b4 H 4 b l H 1 b3 

6 B3 B1 F3 G 4 13 	 8 B3 B1 F3 G 4 13 	 6 B3 B1 b5 G 4 I3 

TVR=1 	 TVR=4 	 TVR=4 
RS={F} 	 ,F} 	 SIZE=5 

(a) 	 (b) 	 (c) 

Figure 4: Buffer Contents 

The updated COST table is as follows. 

COST(k) : (0,0) (0,5) (5,5) (10,5) (10,5) (10,5) 
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k:F B H 	G 	I E 

The current logical page, clp, is set to logical page B where D' B={4}. However, clp causes 

overflow in the presence of the ready state logical page so clp is set to 0 and because 

SIZE + TVR < pagesize, physical page 8 which has the maximum number of void_records is brought 

into the buffer (Fig 4.b). Since MAX={D,F} and SIZE=5, records from logical page D and F are col-

lected on physical page 8 (Fig. 4c) which is written to disk. Now, the updated COST table is the same 

as the previous COST table except that the cost for logical page F has been deleted. The current logical 

page is set to B and physical page 4 is brought into the buffer (Fig. 5a). Records of logical page B and 

two void_records are collected on physical page 6 (Fig. 5b) which is written to disk. This is done since 

X=0 and SIZE + TVR > pagesize. 

BUFFER 	 BUFFER 	 BUFFER 

4 B2 E2 G 3 H2 12 	 4 b5 E2 G 3 H2 12 	 4 b5 E2 G 3 H2 12 

3 b4 H 4 b 1 H 1 b3 	 3 b4 11 4 G4 H 1 13 	 3 b4 11 4 G4 H 1 13 

6 B3 B1 b 5 G 4 1 3 	 6 B3 B1 B2 b 1 b3 	 1 E3 H 3 H 5 I 1 G 1 

TVR=4 	 TVR=4 	 TVR=2 
RS={B} 	 SIZE=3 	 RS={H} 

(a) 	 (b) 	 (c) 

Figure 5: Buffer Contents 

The updated COST table is as follows. 

COST(k) : (0,5) (5,5) (5,5) (5,5) 

k: H G I E 

Logical page H becomes clp and D 'H={1}. To bring logical page H into the ready_state, physi-

cal page 1 is brought into the buffer (Fig. 5c) and records from logical page H are collected on physical 

page 3 (Fig. 6a) which is written to disk. 
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BUFFER 	 BUFFER 	 BUFFER 

4 b 5 E2 G 3 b4 I2 	 4 b5 E2 G 3 b4 I2 	 4 b 5 G 2 G 3 b4 I2 

3 H 2 H4 H 3 H 1 H5 	 2 E4 El E5 G 2 I4 	 3 E4 El E5 E2 E3 

1 E3 G 4 I3 I 1 G 1 	 1 E3 G 4 I3 I 1 G 1 	 1 I4 G 4 I3 I1 G 1 

TVR=2 
SIZE=--5 	 RS—{E,G,I} 

(a) 	 (b) 
	

(c) 

Figure 6: Buffer Contents 

The updated COST table is shown below and logical page G becomes clp with D' G ={2}. 

COST(k) : (0,5) (0,5) (0,5) 

k:G I E 

Now physical page 2 is brought into the buffer (Fig. 6b) and because MAX={E} and SIZE---5, 

records of logical page E are collected on physical page 2 (Fig. 6c). Physical page 2 is written out to 

disk and the COST table becomes the following. 

COST(k) : (0,0) (0,0) 

k : G 	I 

Now, all the logical pages which are not in the perfecLstate are in the ready state so clp be-

comes 0. Since MAX--{G}, SIZE-=-4 and TVR=2; we use the 4 records of logical page G and 1 void 

record to construct perfect_physical page 1 (Fig. 7a) which is written to disk. The updated COST table 

is the same as the above COST table except that the cost for logical page G has been deleted. For the 

same reason as stated above, we can use the records of logical page I and 1 void record to construct 

physical page 4 (Fig. 7b) which gets written to secondary storage. 
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BUFFER 
	

BUFFER 	 BUFFER 

4 b 5 G 2 G 3 G 1 G 4 

1 14 b4 13 I 1 12 	 1 14 b4 13  11 12 

TVR=2 	 TVR=1 
SIZE=4 	 SIZE=--4 

(a) 
	

(b) 
	

(c) 

Figure 7: Buffer Contents 

Now, the buffer is empty so the reorganization process is finished. The total number of disk accesses is 

22 and all logical pages are in the perfect state. 

In closing this section, we want to mention that we have found an example where transforming 

each logical page into a perfect state is not possible. This problem is due to a lack of void records in 

the file in conjunction with our requirement of doing an in-place reorganization. 

5. EXPERIMENTAL RESULTS FOR FILE REORGANIZATION 

In this section, we present the results of a number of file reorganization experiments. For each 

experiment, we compare our cluster_reorganization algorithm with the dynamic_cost_reorganization al-

gorithm [3]. In [3], it was shown, for certain assumptions (which we are not restricted to), that the 

dynamic_cost_reorganization algorithm makes approximately 40% fewer page accesses than a reorgani-

zation strategy that uses a linear ordering. Linear ordering means that logical pages are converted into 

perfect_physical pages in order of their logical page names (or numbers), e.g., A,B,C,... (or 1,2,3,...). 

In our experiments, we randomly generate records for 25 logical pages where the pagesize is 10 records. 

The record identifiers for the file are in the range from 1 to 1000. Tables 1, 2 and 3 represent the ex-

perimental results for a buffer capacity of 7, 10 and 20 pages respectively. For each fixed size buffer 

capacity, the size of a logical page is determined as a percentage of the size of the physical page. It 

varies from 1% to 100% in some cases, 50% to 100% in others and is set to 100% in the remaining 
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cases. Another parameter in our experiments is the hit ratio, i.e., the percentage of physical pages con-

taining relevant logical pages. In our experiments, the hit ratio varies from 30% to 100% In the third 

and fourth columns in each table, the number of disk accesses necessary for the reorganization is 

shown for cluster_reorganization and dynamic_cost_reorganization algorithms, respectively. In the last 

column, we show the difference of disk accesses by (DYN - CLU) / DYN, where CLU and DYN 

represent the number of disk accesses made by cluster reorganization and dynamic_cost reorganization 

algorithms, respectively. We also compared the correctness of each reorganization algorithm by check- • 

ing the number of logical pages which were not constructed correctly. Those numbers are represented 

in the fifth and sixth columns in each table for cluster reorganization and dynamic_cost_reorganization, 

respectively. In each table, *** means, for the specific input and parameter values, that the correspond-

ing algorithm does not work. 

From our experiments, we find that cluster_reorganization generates a correct result for any 

value of buffer capacity, hit ratio and logical page size. Moreover, the number of disk accesses required 

for cluster_reorganization is much less than that of dynamic_cost_reorganization and when the buffer 

capacity is greater than or equal to the pagesize, the number of disk accesses is mostly optimal. Due to 

the assumptions made by the dynamic_cost_reorganization algorithm, in general it will not work 

correctly (or possibly not terminate) when the buffer capacity is less than the pagesize or when the logi-

cal page size does not equal the physical page size. If it does terminate in either of those cases, as evi-

denced in our experiments, around 30% of the logical pages are not correctly constructed. Considering 

those results, we find that our cluster_reorganization algorithm is superior to the 

dynamic cost reorganization algorithm since our algorithm is more general and makes fewer page 

accesses. 



Table I. Buffer capacity = 7 pages 

logical 
pagesize 

in % 

hit 
ratio 

page 
accesses 

logical 
not made 

pages 
by 

difference 
in % 

CLU DYN CLU DYN 
1 100 _ 30 60 *** 0 *** *** 

1_100 40 80 114 0 5 29.8 
1_100 47 94 *** 0 *** *** 

1_100 56 112 144 0 6 22.2 
1_100 _ 66 132 162 0 8 18.5 
1 100 _ 74 146 *** 0 *** *** 

1 _100 83 166 *** 0 *** *** 

50_100 30 66 104 0 9 36.5 
50_100 40 84 122 0 9 31.1 
50_100 50 102 149 0 12 29.2 
50 100 58 116 152 0 8 23.7 
50 100 65 130 168 0 6 22.6 
50 100 69 138 170 0 6 18.8 
50_100 84 168 200 0 7 16.0 
100 30 80 88 0 0 9.1 
100 40 94 114 0 0 17.5 
100 50 110 122 0 0 9.8 
100 60 130 *** 0 *** *** 

100 79 164 *** 0 *** *** 

100 88 180 *** 0 *** *** 

100 96 194 *** 0 *** *** 



Table II. Buffer capacity = 10 pages 

logical 
pagesize 

in % 

hit 
ratio 

page 
accesses 

logical 
not made 

pages 
by 

difference 
in % 

CLU DYN CLU DYN 
1_100 30 60 94 0 8 36.2 
1_100 40 80 118 0 6 32.2 
1_100 , 50 100 132 0 7 24.2 
1_100 66 132 164 0 6 19.5 
1_100 73 142 170 0 4 16.5 
1_100 84 166 190 0 6 12.6 

50_100 30 60 92 0 10 34.8 
50_100 40 80 108 0 8 25.9 
50_100 47 94 118 0 8 20.3 
50_100 64 128 152 0 6 15.5 
50100 84 168 186 0 6 9.7 
50_100 90 180 204 0 7 11.8 
100 30 68 74 0 0 8.1 
100 40 86 96 0 0 10.4 
100 50 104 110 0 0 5.5 
100 60 122 130 0 0 6.2 
100 78 156 162 0 0 3.7 
100 85 170 178 0 0 4.5 
100 96 192 198 0 0 3.0 



Table III. Buffer capacity = 20 pages 

logical 
pagesize 

in % 

hit 
ratio 

page 
accesses 

logical 
not made 

pages 
by 

difference 
in % 

CLU DYN CLU DYN 

1_100 30 60 92 0 7 34.8 

1_100 38 76 116 0 6 34.5 

1_100 48 96 124 0 9 22.6 

1_100 52 102 136 0 8 25.0 

1_100 62 124 156 0 8 20.5 

1 _100 78 156 180 0 8 13.3 

50_100 30 60 88 0 8 31.8 

50_100 40 80 108 0 8 25.9 
50100 50 100 116 0 5 13.8 
50_100 60 120 152 0 9 21.1 
50_100 72 144 168 0 8 14.3 

50_100 86 172 198 0 10 13.1 
100 30 60 60 0 0 0.0 
100 40 80 80 0 0 0.0 
100 50 100 100 0 0 0.0 

100 60 120 120 0 0 0.0 
100 69 138 138 0 0 0.0 
100 80 170 170 0 0 0.0 
100 96 192 192 0 0 0.0 

6. CONCLUSION 

In this work, we have developed an efficient heuristic algorithm for the problem of file reorgan-

ization which involves changing the placement of records on pages of secondary storage. The 

cluster_reorganization algorithm can be used for any size of main memory buffer area. Our algorithm 

utilizes heuristic functions to decide the reorganization sequence of logical pages and to decide the 

bring-in sequence of physical pages. 

We have also considered the problem of overflow, underflow and thrashing which could occur 

during the reorganization period. We did a comparison with another approach [3] which showed that 

our algorithm is more general and caused fewer page faults during the reorganization. In addition, it 

generated the correct result for the given record clustering input with the same time and space com-

plexity as the algorithm in [3]. 
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APPENDIX 

Observation 1: If BIS of D' k causes overflow when bringing logical page k into the ready_state, then 

any other sequence also causes overflow. 

Proof: Let the result of sorting 	 in nondecreasing order of nonvoid_reocrds in each 

physical page in D'k  be 1,2,...,m. Let the number of nonvoid_records be e l ,e 2 ,...,e m  in each physical 

page 1,2,...,m; respectively. If m < X, then no sequence causes overflow, so in the following two 

cases, only consider the situation where M > X. 

Case I: RS = 0 

Because there is no logical page, in the ready_state, which is contained in the buffer, a 

perfect_physical page cannot be constructed until all the physical pages in D' k  are brought into 

the buffer. So, an overflow could occur only when X=0, the total number of void_records in 

the buffer is less than the pagesize, and one or more physical pages in D ' k  are not in the buffer. 

Assume that n, (n < X and n < m), physical pages are brought into the buffer. Because 

(e i  + e•1  ... e1  +1 + 	+ .+ n-1) 	 equal is greater than or equ to (e i  + ei+  + 	+ ei±n_ i), where 

<i j, we know that if (TVR + e• + 	+ ei+ n-1 ) is less than the pagesize then 

(TVR + e•j 	j + 	+ e•+ n-1)  is also less than the pagesize. This means that if BIS causes 

overflow then any other sequence also does. 

Case II: RS 	0 

To make room in the buffer, if some number of logical pages are in the ready state, there are 

enough void_records to construct a perfect_physical page and X=0; then this perfect 

physical_page will be written to disk. If (TVR + SIZE + e i  + 	+ ei±n_ i ) is less than the 

pagesize then (TVR + SIZE + e i  + 	+ ej+ n_ i) is also less than the pagesize. Therefore, if 

BIS causes overflow then any other sequence also does. fl 

Observation 2: If (X-1) * pagesize + TVR ? Zk, then logical page k does not cause overflow by using 
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BIS. 

Proof: Let the result of sorting D' k={1,2,...,m} in nondecreasing order of nonvoid records in each 

physical page be 1,2,...,m. If X > m then it does not cause overflow. Therefore, assume that X < m 

and that the first X-1 physical pages were brought into the buffer according to the bring in sequence. 

After bringing in X-1 physical pages, the number of void_records in the buffer will be 

TVR + el  + + ex.]:  Because Z k  = Ni  + + Nx_ i  + Nx  + + Nm , it is obvious from the 

given condition that TVR + el eX-1 > Nx  + Nx+ 1  + + Nm_ i . Because only X-1 phy-

sical pages were brought into the buffer, there is room for one more physical page. Now, physical page 

X can be brought into the buffer and because TVR + e l  + + ex_ i  > Nx  + Nx+  + + Nm_ 

1' NX nonvoid_records from physical page X can be replaced by N x  void_records. Physical page X 

becomes a void_physical page and can be written to disk. This leaves TVR + e l  + 	+ ex-1  - Nx  

void_records and room for one page in the buffer. Now physical page X+ 1 can be brought into the 

buffer and because TVR + e l  + + ex-1  - Nx  Nx+ 1  Nm...1 , Nx+ 1  nonvoid_records 

from physical page X+ 1 can be replaced by N x+ 1  void records and physical page X+ 1 becomes a 

void_Physical page and can be written to disk. This leaves TVR + e l  + + ex-1  - Nx  - Nx+ 1 

 void_records and room for one page in the buffer. With the same approach for X+ 2,...,m-1 physical 

pages; m-X void void_physical pages can be made and room for one page can be made in the buffer at 

each step. Now, the last physical page can be brought into the buffer without causing any overflow. 

Therefore, if BIS is used and (X-1) *pagesize + TVR > Z' k , then there will be no overflow when 

bringing logical page k into the ready_state. 

Observation 3: If X > 2 and (X-2) * pagesize ± TVR > Z k, then logical page k does not cause 

overflow or underflow by using BIS. 

Proof: Because (X-2) * pagesize is less than (X-1) * pagesize, it is trivial to prove that if (X- 

2) * pagesize + TVR > Zk, then by using the bring in sequence, logical page k does not cause 

overflow. Now, we want to prove the second part of this observation. From the first part of this obser- 
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vation, after bringing in m-1 physical pages from disk, at least two buffer frames will be free. Hence, 

the last physical page can be placed in either of the two buffer frames and overflow will not occur. 0 
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ABSTRACT 

Finding efficient procedures for implementing relational database operations, such as the join, is an im-

portant database problem. In this paper, we examine join processing when the access paths available 

are nonclustered indexes on the joining attribute(s) for both relations involved in the join. We use a 

bipartite graph model to represent the pages from the two relations which contain tuples that are to be 

joined. We are interested in minimizing the number of page accesses needed to compute a join in our 

database environment. We explore this problem from two perspectives. The first is to reduce the max-

imum buffer size so that no page is accessed more than once and the second is to reduce the number of 

page accesses for a fixed buffer size. We have developed heuristics for these problems and include per-

formance comparisons of these heuristics and another method which recently appeared in the literature. 

The results show that one particular heuristic performs very well for addressing the problem from ei-

ther perspective. 

1. INTRODUCTION 

Relational query optimization has been the focus of much research in the past several years 

[4,5,6,7,8]. Optimization strategies try to minimize a particular cost function which might include one 

or more of the following: secondary storage access cost, main storage cost and computation cost. Typi-

cally, the dominating cost is that of accessing a secondary storage device, i.e., page accesses from a 

secondary storage device to a main memory buffer [4,11]. For the optimization of a relational query, 

we would like to find efficient procedures for implementing relational database operations. In this pa-

per, we are concerned with one specific relational operator, namely the join, since it is one of the most 

time consuming operations [11]. 

An efficient implementation of the join with respect to specific database implementations, i.e., 

available access paths, has been widely studied [7,8,10,12]. The sort-merge method [4] is usually the 

best when no indexes on the joining attribute(s) are available. However, if one of the two relations is 

small enough to fit in the available buffer frames (pages), then the nested block method [4] is prefer-

able; or if one relation is much larger than the other and indexes are available, then the nested block 
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method using indexes is better. We should note that the type of index, e.g., clustered, where the tu-

ples of a relation are ordered based on the indexing attribute(s); or nonclustered, where the preceeding 

property does not hold, will affect the performance of a method for join processing which uses indexes. 

In this paper, we examine join processing when the access paths available are nonclustered indexes 

on the joining attribute(s) for both relations participating in the join. We assume as in [10] that 

indexes are stored on pages separated from those containing the relation tuples. Typically, the indexes 

are implemented as B-trees. The leaves of a B-tree contain entries which consist of a key value and the 

addresses of all tuples in a relation which contain that key value. By using the joining indexes of the 

two relations we can determine which pages contain tuples to be joined. As in [7,8], we assume that 

not all combinations of pages will need to be examined. This is reasonable for either of the following 

two cases [7]: one is that a restriction operator is combined with a join and the other is that the tuples 

on a page(s) for one relation contain no common values of the joining attributes with tuples from a 

page(s) for the other relation. 

As previously stated, we are interested in trying to minimize the number of page accesses needed 

to compute a join. We will examine this problem from two different perspectives. The first is to 

reduce the maximum buffer size so that no page involved in the join is fetched more than once. This 

implies that we need to determine a sequence of pages that are brought into the buffer. One approach 

to this problem is presented in [8]. The second problem is to try to reduce the number of page 

accesses for a fixed buffer size. The case for a two page buffer was considered in [7,8] and shown to be 

NP-hard, and consequently, it is unlikely that a polynomial time solution exists for this problem. We 

suspect that the first problem is also NP-hard. It is a variation of the minimum cut linear arrangement 

problem [3] which is NP-hard. 

We use a bipartite graph as a model for our problems as done in [7,8]. In Section 2, we prove that 

the maximum buffer size needed to join relations R and S is bounded by IR 1+ IS I- 1, where IR I is 

the number of pages in relation R, and so forth. We should note that this bound applies only when IR I 

and IS d are each greater than one. This assumes that any sequence of page accesses is possible. A simi-

lar statement, albeit for general graphs, is made in [8] and an algorithm is presented for finding a page 
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access sequence, which requires much less than this upper bound. However, no experimental or analyti-

cal evidence is presented in regard to how much less this would be. 

In Section 2, we present our two heuristics which try to minimize or at least reduce the amount of 

buffer space needed when no page is reaccessed from a secondary storage device. For the purpose of 

comparison, we review the algorithm from [8] in Section 3. In Section 4, we present the results of ex-

periments comparing our two heuristics with the method reviewed in Section 3. In Section 5, we show 

that our heuristics for the first problem are also applicable for the second problem and display additional 

experimental results in Section 6. 

2. GRAPH MODEL AND HEURISTICS FOR REDUCING BUIllihR SIZE 

The particular graph model which we employ has been referred to as a page-pair bigraph [7] and a 

page connectivity graph [8]. In this paper, we shall adopt the terminology of [7], i.e., a page-pair bi-

graph. The page-pair bigraph, representing the join of relations R and S, consists of two sets of vertices: 

(r1 ,r2 ,...,rn ) and {s 1 ,s 2 ,...,sm }, where ri  represents a data page from relation R and so forth. An edge 

between r• and• exists if. r. and s• have tuples to be joined. This information can be obtained directly 
sl 

from the indexes for relations R and S. The page-pair bigraph may consist of several connected com-

ponents depending on the tuples from R and S to be joined. An example of a page-pair bigraph is 

shown in Figure 1. 

The first problem which we study involves determining a sequence of pages involved in the join 

such that each page is accessed at most once and the main memory buffer space needed is minimized. 

When any page is accessed (i.e., brought into the buffer) it must reside there until all pages that are to 

be joined with it have been accessed. This is necessary to guarantee that a page is only accessed once. 

This problem is closely related to the query locality set model [1], the hot set model [9] and the work-

ing set model [2]. In 11,91, the idea is to determine the pages and the number of buffer frames needed 

to provide efficient processing, i.e., a large number of page faults will not occur. 



Figure 1. A page-pair bigraph representing the join of R and S 

The following two theorems give a bound on the maximum buffer size needed to join two relations 

under different constraints. 

THEOREM 1: The maximum buffer size needed to join relations R and S, when IR I > 1 and IS I 

1, is IR I+ IS I. 

PROOF: Clearly, the maximum buffer size cannot be greater than the total number of pages of 

both relations. So, our only concern is to show that this maximum can be achieved. Consider a page-

pair bigraph where a single S node is connected to all of the R nodes. If all of the R pages are brought 

into the buffer, then the buffer size becomes IR I. Before any of the R pages can be released, the single 

S page must be brought into the buffer. This yields a maximum buffer size of IR I+ IS I. 0 

THEOREM 2: The maximum buffer size needed to join relations R and S, when IR I> 1 and 

IS I> 1, is IR I+ IS 1-1. 

PROOF: (By contradiction) Let the maximum buffer size be IR I+ IS I. Without loss of generali-

ty, let sj  be the last page to be accessed. Consider the contents of the  buffer  directly  before sj  is ac-

cessed. The buffer size is IR I+ IS I- 1. All of the R pages may remain in the buffer if they are con-

nected to sj . However, for the S pages to remain in the buffer, they would also have to be connected to 

sl
. This would contradict the fact that we started with a bipartite graph, where S nodes can only be con-

nected to R nodes and vice versa. Hence, the maximum buffer size can not exceed IR IS I- 1. 
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This maximum can be achieved for a fully connected bipartite graph as follows. First, bring IR I- 1 

pages of relation R into the buffer. Next, bring in IS I- 1 pages of relation S. Finally, the remaining R 

page is brought into the buffer. At this point, the buffer size is IR 1+ IS 1 -  1. In addition, all of the S 

pages in the buffer may be released. El 

We define the following function for the buffer size: 

131 	1 , 
B.1 	1 B.-11 - D•-1  + 1, for 	IR 1+ Is 1, 	(1) 

where131 .= buffer size after the ith page is brought into the buffer; 

D 1 = 0 ' 
D. = number of pages (frames) in the buffer that are made 

available after the jth page has been accessed, 
for j -= 1,2,..., IR 1+ IS 1. 

The following inequalities hold for (1): 

D i  < Bi , for i 	IR 1+ Is 1, 

EDk  < 5, for j  =1,2,..., 	I+ IS I, 
k=1 

B. < j, for j = 1,2,..., IR 1+  IS!. 

The above inequalities characterize the state of the buffer. The first states that the number of pages 

(frames) in the buffer that can become available ranges from 0 to the current buffer size. The second 

inequality specifies that the total number of pages released, after the jth page is brought into the buffer, 

cannot exceed j. We should note, if we are only considering relations which satisfy Theorem 2, then 

the maximum value for j in the last inequality would be IR I+ IS I- 1. 

From equation (1), the maximum buffer size needed is defined as MAX{13 
l' B2, •"' BN } where 

N = IR I+ IS . Thus, our objective is to develop a process of determining a page access sequence 

which minimizes MAX{13 I' B2, "” BN } over possible page access sequences. Since the problem ap-

pears to be NP-hard, we consider a heuristic approach. We can develop heuristics based on the proper-

ties of optimal page access sequences. 

PROPERTY 1: To minimize MAX{131 ,B2 , ...,BN }, maximize D i  for all i. 

PROOF: Consider the following two page access sequences S 1  = (Pil ,Pi2 ,...,PiN) and 
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S2  = (P. 
,PJ2

.  , 	
i 

...,P. 
N 

 ). The buffer size sequences for S 1  and S2 are (Bi ,B2 ,...,l3N) and 
il  

( B '1 ,B '2 , ...,B N) , respectively. 

Let us assume that 

MAX {B1 ,B2' - '"BN} < MAX{13'1'13'2'"”B'N}' 
	(2) 

Thus, at some point we have 

Bi  = MAX{Bi ,...,BN} and = 

Hence, from (2) we know that B i  < Err  

From equation (1) we can derive the following: 

B = i - ED„,. 

i- 
B can be derived in a similar manner as B •=j- ED 'e.  

Therefore, 

i_ 1 

- E 	< - ED tk. 

no 

The second inequality, which holds for equation (1), implies 

i_ 1 	j_ 1 
> E D. and j > ED lc 

m.4 	 k .4  

We can consider the following two cases: 

Case I: If i > j for 13i  < 

i- 1 	i-1 
then EDk  > ED ik 

18 ■1 	km4 

since B. < Eri, which is yielded by B. < B. and B 1  Err  where B1  the maximum value for sequence B 

Case II: If i < j for B 1  < 



i- 1 	1 
then EDk > ED 1 k, 

ks..1 	1-4 

since B.j  < Bi  and B.1  < 13'. which in turn imply that B.
.1 
 < B. 

 1 
1-1 	i- 1  

Thus, if we maximize D i , for each i, we can minimize MAX{B 1 ,B2 ,...,BN}, since EDk > ED 'k. CI 
1=1 	1=1 

Thus, at any time i, if the page is chosen which makes available the most buffer frames, then this will 

lead to an optimal page access sequence. Unfortunately, Property 1 is of little help in determining the 

next page in the sequence, when none of the pages that can be accessed next will free a buffer frame. 

From Property 1, we see that we can minimize MAX{B1' B2"'"  B., 	 1 } by maximizing D. for each i. 

However, by Property 2, as we will show, it is sufficient to choose the next page to access if it frees at 

least one buffer frame. 

PROPERTY 2: If there exist several pages {P.
J11 

 ,P. 
2

,...,P. } which are candidates to be accessed 
 Jic 

next, i.e., D i  > 0 for ith page c {P. ,...,P. }, then the order of accessing these K pages is immaterial 

in terms of affecting the maximum buffer size. 

	

PROOF: Let the current buffer size be 	n. Without loss of generality, we can let D i_ l  = 0. 

Whichever page is brought in first will increase the buffer size by 1. Using equation (1), we have 

Bi  = n+ 1. The buffer size needed for accessing the remaining K-1 pages will not exceed n+ 1. This 

can be seen from equation (1) and the fact that D i  > 0 for the ith page E {P. 
l 
 ,...,P. }. Hence, the ord- 

er of accessing only these K pages is immaterial in terms of affecting the maximum buffer size. That is, 

the buffer size will not exceed n+ 1 when accesing any of the K pages. 0 

From Properties 1 and 2, we see that for an optimal page access sequence, it is sufficient to choose 

the ith page, the one that makes at least one buffer frame available. These properties form the basis 

for our primary heuristic, i.e., heuristic 1, which follows. 

Heuristic 1. 

Step 1. Choose an R and an S node from the page-pair bigraph G, 
e.g. ri  and s. to load in the buffer such that 

(a) (r.,s.j) is an edge in G, and 
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(b) the sum of the degree of r i  and the degree of 
Si  is minimal over all remaining r's and s's 
in G. 

Then delete (r.,s j) from G. 

Step 2. Choose the next R or S page, call it p, to bring in 
the buffer using the following strategy: 

(a) find a node q in the buffer such that it is 
connected to the fewest number of nodes outside 
the buffer, and 

(b) find a node p, such that (q,p) is an edge in G 
and that the number of edges connecting p to a 
node not in the buffer is minimal. 

If there is more than one node that satisfies (a), 
then (b) determines which of the nodes is chosen. 

Step 3. Delete all edges (r i,$) from G where ri  
and are contained in the buffer (either r. 

S il or sj  was the node selected in step 2). 

If the degree of a node, r i, in G becomes zero, 
then the page (frame) storing r i  in the buffer 
becomes available and node ri  is deleted. 

If G contains no more edges, then quit; 
else if no pages of the buffer are being used, 
then goto step 1; 
else goto step 2. 

The goal of heuristic 1 is to eliminate at least one page from the buffer after a new page is 

fetched. For example, if node q, chosen in step 2(a), is only connected to a single node p, chosen in 

step 2(b), then after p is fetched, the page holding q will be released. We can define the degree for 

each page (node) in the buffer as the number of pages (nodes) outside the buffer that are to be joined 

(adjacent) to it. If there does not exist a page in the buffer that has a degree of one, heuristic 1 will at 

least choose a page which has the smallest degree. Eventually, this will reduce the degree of some page 

to one. 

If we apply heuristic 1 to the page-pair bigraph of Figure 1, the following page access sequence is 

produced: r2 ,s3 ,r1 ,s1' r4 ,s4 ,s2 ,r3 . The buffer size after each page is accessed, i.e., B 1  through B8, is 
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1,2,2,2,3,3,3,2. That is, the buffer contents are r 2 ; r2  and s 3 ; s3  and r 1 ; r1  and si ; r1 , s i  and r4; r1 , r4 

 and 54 ; r 1 , r4  and s2 ; s2  and r3  where the page proceeding each semicolon is the page brought into the 

buffer. Hence, a buffer size of 3 pages is needed for accessing the pages in the generated access se-

quence. Theorem 3 gives an upper bound on the maximum buffer size produced by heuristic 1. 

sn+ 1 

s2n-1 

s3n-5 

s(n2-n)/2+ 1 

Figure 2. A page-pair bigraph for heuristic 1 yielding maximum buffer size 

THEOREM 3: The maximum buffer size produced by heuristic 1 is no greater than MAX( IR I, 

Is I) + 1. 

PROOF: Consider the page-pair bigraph in Figure 2 where 

IR 1= n and IS 1= (n2-n)/2+ 1 

and for i > 1, ri  is connected to 8 1 ,52 ,...,5m  where 
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m =1 + E( n — j)• 

The graph in Figure 2 is constructed as such so that the maximum number of pages needed at any time 

(according to heuristic 1) to make a frame available will be accessed. The approach to create the max-

imum buffer size is to alternate between bringing in a single R page and a set of S pages which will free 

that R page. Since IR I< IS I, we want to delay as long as possible bringing the R pages into the buffer. 

The reason for this is that once all the R pages are in the buffer, every access to an S page will result in 

freeing that S page from the buffer. Thus, our buffer size will not exceed its current size. 

To start with, heuristic 1 chooses r 1  and s1 in step 1 to bring into the buffer. The maximum 

number of page accesses needed at this time to make a frame available is bounded by MIN( IR I, IS 1 

)-1 or n-1 to be specific. This can easily be seen because r 1  is connected to MIN( IR 1, IS 1) -1  pages 

and s 1  is connected to MIN( IR 1, IS 1)-1 R nodes and heuristic 1 looks for a page in the buffer which 

is connected to the fewest number of pages. Since the degree of the two pages are the same, heuristic 1 

might bring in S or R pages. If it were to bring in all the R pages connected to s l' then our entire 

buffer size would be bounded by MIN( IR 1, IS 1)+ 1. We will show this later with an example. For 

our purposes let heuristic 1 bring in the MIN( IR , 1 S 1)-1 S pages, i.e., the following n-1 pages: 

s2 ,s3 ,...,sn . At this point the buffer size is n+ 1 and when the frame holding r 1  becomes available the 

buffer size is reduced to n, i.e., the buffer contains s i ,...,sn . Now the maximum number of page 

accesses needed to make a frame available cannot be greater than MIN( IR I, IS  1)-1 or n-1 since there 

are only n-1 remaining R pages. The next page chosen is r 2  since it is connected to the fewest number 

of pages outside the buffer. We see that r 2  has a degree of n-2 and that all the S nodes in the buffer 

also have a degree of n-2. Let heuristic 1 bring 
in 5n+ 1'—'52n-2 which will free r2 . Again, this requires 

the maximum number of page accesses possible to free a frame in the buffer. Thus, the buffer size is 

now n+ (n-2)+ 1 and when the frame holding r 2  is freed the buffer size becomes n+ (n-2). Once 

again, if the n-2 remaining R pages were brought into the buffer instead of the S pages, the maximum 

buffer size would be only n+ n-1. At this time, the maximum number of page accesses needed to make 

a frame available is n-3. Page r3  would be chosen and n-3 S pages would be accessed, i.e., 52n- 



1 ,...,s3n_ 5 . This yields a buffer size of n+ (n-2)+ ( n-3)+ 1. By induction, it is easy to see that the 

buffer size produced when the nth (i.e., MIN( IR I, IS I)th) R page is accessed is 

1 + 	n - j)} 

giving the maximum buffer size of MAX( IR I ,  IS 1)+ 1 .0 

The result of Theorem 3 may seem discouraging since the nested block method [4,111 only re-

quires a maximum buffer size of MIN( IR I, I S I)+ 1. However, in the worst case example, i.e., a high 

degree for R and S nodes, we would not propose using our heuristic. As stated earlier, the premise for 

using heuristic 1 is that all (or a large percentage of) combinations of pages will not have to be exam-

ined. As will be shown in Section 4, experimental results support the usefulness of heuristic 1 for our 

environment. 

Here, we show an example using a fully connected bipartite graph, i.e., the number of S vertices 

adjacent to each R vertex is IS I, giving a total of IR 1* IS ledges in the graph. We can assume that IR I 

< I S I since we can simply rename the relations so that this will hold. Heuristic 1 could choose any 

edge to start with, call the vertices of the chosen edge. and s.. Now, the degree of r i  and s• is de- r' 

creased 	 nce the degree of s. will be less 

than or equal to that of ri  since IR I < IS I. So, another R page will be accessed, call it r k . Again, the 

degree ofs . will be decreased and will be less than that of either r i  or rk in the buffer. Following this 

argument, the remaining R pages will be accessed and will remain in the buffer. This yields a buffer 

size of IR I + 1, i.e., MIN( IR I ,  IS I) + 1. At this time, the page (buffer frame) for s j  will become 

available. The remaining S pages will be fetched one at a time and after each one is fetched the buffer 

frame which it occupies will become available for the next S page. Hence, the maximum buffer size will 

be MIN( IR I, IS I) + 1 . 

Before we leave heuristic 1, we would like to comment on its worst case running time by way of 

theorem 4. 

THEOREM 4: The worst case time complexity of heuristic 1 is O(( IR l*IS 1) 2 ). 

PROOF: We consider a fully connected bipartite graph and let IR 1 < IS I. As will be seen in step 
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2, the worst case time will be dependent on the product of the current buffer size and the degree of the 

pages (nodes) in the buffer. Although the buffer size will not reach the maximum possible, the degree 

of the pages in the buffer will attain MAX( IR I, IS I). 

Step 1 is done once and requires examinimg each edge. In the case where the bipartite graph is ful-

ly connected, there exist IR 1 *  I S ledges. Hence, step 1 requires O( IR 1* IS I) time. 

In step 2, the pages in the smaller of the two sets, i.e., R, are fetched first. The buffer grows from 

2 to IR 'frames and the degree of each of the IR 'pages is IS I. Thus, the time taken here is 

lit I 	i 
E Ei* Is I 

,-t 

which is O( IS I* IR 1 3). Next the remaining pages in the larger set, i.e., S, are fetched. The buffer size 

remains the same until all the pages have been accessed. As each S page is fetched the degree of each 

R page contained in the buffer is decreased by 1. Hence, the time taken is 
Is I IR 
E 	Is I - 
17..4 j•I 

which is O( IS 1 2  * IR 1 2). 

Step 3 is done IR I+ IS I- 2 times but the total amount of work done is proportional to IR I* IS I -

I, i.e., all edges except for the one edge deleted in step 1 must eventually be deleted. This yields 

O( IR I* IS I) time. 

So, we have O( IR I* IS I) time for steps 1 and 3 and O(( IR I* IS 1) 2) time for step 2. This pro-

duces a worst case time complexity for heuristic 1 of O(( IR I* IS 1)2).0 

Heuristic 2. 

Step 1. Same as heuristic 1. 

Step 2. Choose the next R or S node„ call it p, to bring in 
the buffer such that 

(a) an edge exists in G between p and a node in the 
buffer, and 

(b) the number of edges connecting p to a node 
outside the buffer is minimal. 
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Step 3. Same as heuristic 1. 

In step 1 of heuristic 2, we choose the first, two pages (i.e., an edge in the page-pair bigraph) to be 

brought in the buffer such that they are connected to the fewest number of other pages. In step 2, we 

pick a page to be accessed such that it is connected to the fewest number of pages not in the buffer. 

The motivation behind this approach is to bring a page into the buffer that will hopefully remain there 

for a shorter period of time (i.e., for a fewer number of additional page accesses) than some other page. 

Thus, the buffer size will decrease sooner. This approach makes the assumption that the length of stay 

of a page in the buffer is dependent on the number of pages it is to be joined with, independent of the 

other pages in the buffer. This heuristic was developed for comparison purposes as discussed in Section 

4. It is not expected to have a near optimal performance. If we apply this heuristic to the page-pair bi-

graph of figure 1, the following page access sequence is produced: r 2 ,83 ,r1 ,s1 ,s4 ,r4,82 ,r3 . The buffer 

size after each page is accessed, i.e.,B 1 , B2 , ... , B8 , is 1,2,2,2,3,4,3,2. Thus, it requires a buffer size of 4 

pages. 

3. PREVIOUS APPROACH FOR DETERMINING THE BUFFER SIZE 

In [8], an alternative approach for determining the buffer size is presented. Their goal is to find an 

access sequence requiring much less than the upper bound of IR 1+ IS I- 1. We should note that in 

[8], they discuss the following algorithm in the context of a general graph, i.e., where tuples from more 

than one relation can be stored on a single data page. 

Algorithm 1. 

Step 1. Create an acyclic graph, G', from the original graph. 

Step 2. Select any node, say n r, of the acyclic graph and 
consider the tree with n r as the root. 

Step 3. Find Bound(r), where r is the root of the tree under 
consideration and Bound(r) is an expression for the 
upper bound on the buffer size for the given tree. 

Step 4. Let noden
l 

	root be the ot of the subtree that requires 
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the largest buffer among the su.btrees of n r; i.e., 
Bound( j) =MAX {Bound( son r)}. 

If the buffer size for the tree under consideration 
is larger than that for the previous tree or when 
the tree with root n. has already been considered, 
then quit; 
else consider the new tree with n i  as the root 

(i.e., r becomes j) and goto step 3. 

With the preceeding algorithm, an upper bound on the buffer size for a given tree is computed. This 

bound guarantees enough buffer space for any access sequence derived from a tree traversal in which a 

page is accessed when it is first visited. 

In [8], they prove that their algorithm selects the tree that requires the smallest buffer among all 

possible trees of the acyclic graph. However, the bound for this tree is independent of the order of 

traversal, except for accessing a node when it is first visited. Thus, the resulting tree gives the 

minimum upper bound but the question is "how good is this bound." An additional question concern-

ing this approach is "how can we traverse the tree to further minimize the buffer size." One traversal 

of the tree might result in a smaller buffer size than those of others, but how do we find the 

corresponding tree traversal. 

4. EXPERIMENTAL RESULTS OF METHODS FOR REDUCING BUFFER SIZE 

In this Section, we present the results of numerous experiments which compare algorithm 1 and 

heuristics 1 and 2. For completeness, we include a third heuristic, random, which consists of three 

steps: the first step randomly selects a node to be fetched, the second step randomly chooses the next 

node to be fetched from the set of nodes that are connected to nodes in the buffer, and the third step is 

the same as that in heuristic 1. 

For each of the entries in Table I, 40 random bipartite graphs were generated with the specified 

maximum degree. The maximum degree is defined as a fraction, a, times the number of S pages. We 

should note that the degree of an S node could be greater than the maximum degree, a I S  I, of an R 

node. Each bipartite graph had IR 1= IS 1= 50 giving a total of 100 nodes in the graph. For each of 
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the 50 R nodes, we generated a random number, M, between 1 and the maximum degree for an R 

node. We then chose M random S nodes to be connected to the R node. The results are shown in 

Table I, giving the mean and the standard deviation for the buffer size in pages. 

Table I. Mean and standard deviation for buffer size in pages 

a 
0 05 0.10 0.20 

METHOD MEAN STD DEV MEAN STD DEV MEAN STD DEV 
RANDOM 5.175 1.358 23.950 3.707 

- 

51.625 
ALGORITHM 1 5.325 1.058 19.375 3.071 45.100 4.576 
HEURISTIC 2 3.750 0.829 15.275 2.408 44.675 5.110 
HEURISTIC 1  3.375 0.696 11.300 1.568 27.350 2.505, 

In Table II, we show the percent of fewer pages needed for the buffer using heuristics 1 and 2, and al-

gorithm 1, as compared to the random method. For all three sets of experiments where a = 0.05, 0.1, 

and 0.2, corresponding respectively to a maximum degree for an R node of 2, 5, and 10 nodes, we see 

that heuristic 1 performs better than heuristic 2 which in turn performs better than algorithm 1. Not 

only is heuristic 1 better on the average but it is better in each individual experiment performed. For 

the case where a = 0.10, we see that heuristic 1 uses approximately 53% fewer buffer frames on the 

average than the random solution while algorithm 1 uses only 19% fewer buffer frames on the average. 

Table II. Per cent fewer pages for buffer as compared to random 

a 
METHOD 0.05 0.10 0.20 
ALGORITHM 1 -2.899 19.102 12.639 
HEURISTIC 2 _27.536 36.221 13.462 
HEURISTIC 1 34.783 52.818 47.022 

Instead of only making a comparison between different methods which utilize nonclustered 

indexes, we can compare our experimental results to an alternate join method. For doing this, we 

choose the nested block method [4,11]. Using this approach, the required buffer size to guarantee a 

single access per page is MIN( IR I, IS 1) + 1. That is, we need enough pages (frames) to hold the 
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smaller of the two relations plus one page for the other relation. Relative to our experiments, this 

value would be 51. Hence, for a = 0.05 and a = 0.10, all of the methods in Table I seem good when 

their results are compared with a buffer size of 51. For the situation where a = 0.10, algorithm 1 uses 

62% fewer pages and heuristic 2 uses 78% fewer on the average. However, when we consider 

a = 0.20, algorithm 1 uses only 12% fewer pages while heuristic 1 uses 46% fewer pages and the ran-

dom solution uses approximately 1% more than that of the nested block method. We should mention 

that the sort-merge method [4,11] would not require fewer pages since for sorting a relation, each page 

of that relation has to be accessed, and has to remain in the buffer to guarentee a single access per 

page. 

5. REDUCING THE NUMBER OF PAGE ACCESSES FOR A FIXED BUFFER SIZE 

In this Section, we examine our second problem, i.e., reducing the number of page accesses for a 

fixed buffer size. Since the buffer size is fixed, we may need to access a page more than once to join 

the appropriate tuples. The minimum buffer size needed to compute the join of two relations is two 

pages. For the two page buffer case, the minimum number of page accesses is greater than or equal to 

E+ 1 where E is the number of edges in the page-pair bigraph which is connected [7]. The maximum 

is less than or equal to 2E [7]. Also in [7], they proved that checking the existence of a minimum 

solution (i.e., E+ 1) is NP-hard unless the graph is Eulerian. Hence, if the page-pair bigraph contains 

an Eulerian path, then a minimum solution exists. However, this is only a sufficient condition but not 

a necessary one [7]. In both [7,8], heuristics are suggested. However, we present heuristics for the 

more general case where the buffer size can be greater than or equal to two. The two heuristics which 

we propose are just slight modifications of heuristics 1 and 2, as presented earlier. The difference is the 

addition of the page replacement scheme (step 2.5) which is shown below. The page replacement 

scheme assumes a pessimistic view of the buffer situation in trying to reduce page accesses. That is, if a 

node (page) in the buffer is going to be swapped out, then in the worst case it could be brought in one 

additional time for each page it is connected to outside the buffer, assuming it were to be swapped out 

each time. 
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Step 2.5. If a node (i.e., a page) in the buffer has to be 
replaced to make room for the new node, then 
choose the node that 

(a) is connected to the fewest number 
of nodes outside the buffer, and 

(b) is not connected to the new node. 

If all nodes in the buffer are connected to 
the new node then only (a) determines the 
node to be replaced. 

6. EXPERIMENTAL RESULTS OF METHODS FOR REDUCING PAGE 
ACCESSES FOR A FIXED BUFFER SIZE 

The game experiments generated in Section 4 were performed to compare the modified heuristics, 

called heuristics 1' and heuristic 2', with the random approach which uses the same page replacement 

policy. The results are shown in Tables III, IV, and V. For these experiments, we vary the buffer size 

from initially 2, by a multiple of 2, to B. The value of B is the greatest multiple of 2 which is less than 

the buffer size needed to ensure a single access per page (as found in the Section 4 experiments). In 

Table VI, we show the difference, in per cent of page accesses, between our heuristics and the random 

method. 

Table III. Number of page accesses for a = 0.05 

7  BUFFER SIZE 
2 

METHOD MEAN STD DEV 
RANDOM 1' 100.525 4.117 
HEURISTIC 2' 92.775 3.986 
HEURISTIC 1' 	J 92.300 3.709 

Table IV. Number of page accesses for a = 0.10 

BUFFER SIZE 
2 4 8 

METHOD MEAN STD DEV MEAN STD DEV MEAN STD DEV 

RANDOM 1' 143.750 6.220 134.400 7.742 126.925 7.780 

HEURISTIC 2' 130.000 6.116 120.600 5.847 109.050 5.244 

HEURISTIC 1' 128.975 6.122 115.775 5.322 102.450 3.653 



Table V. Number of page accesses for a = 0.20 

BUFFER SIZE 

,..._ 2 4 8 	1-6 
MEAN 

185.925 

STD DEV 

11.626 

METHOD MEAN STD DEV MEAN STJ) DEV  
15.410 

MEAN 

225.075 

STD DEV 

13.576 RANDOM 1' 261.250 16.486 244.200 

HEURISTIC 2' 242.975 16.658 225.175 15.305 198.750 12.868 163.000 10.445 

HEURISTIC 1' 242.150 16.834 200.925 13.608 161.725 10.037 124.950 6.946 

Table VI. Per cent fewer page access as compared to random' 

BUFFER SIZE 
a METHOD 2 4 8 16 
0.05 HEURISTIC 2' 7.710 

HEURISTIC 1' 8.182 
0.10 HEURISTIC 2' 9.565 10.268 14.083 

HEURISTIC 1' 10.278 13.858 19.283 
0.20 HEURISTIC 2' 8.995 7.790 11.896 12.330 

HEURISTIC 1' 7.311 17.721 28.146 32.795 

From Tables III through VI, we see that in all experiments, heuristic 1' performs better than heuristic 

2' which in turn performs better than random' for all buffer sizes considered. 

During the experiments, information about the page-pair bigraphs was collected. The mean and 

standard deviation for the number of nodes and the number of edges are shown in Table VII. 

Table VII. The mean and standard deviation for the number of nodes and 
the number of edges in the page-pair bigraphs 

a 
0.05 0.10 0.20 

MEAN STD DEV MEAN STD DEV MEAN STD DEV 
NODES 88.775 2.850 98.050 1.378 99.700 0.557 
EDGES 74.650 4.120 122.150 7.020 240.725 16.852 

In Table VII, for the case where a = 0.05, we see that all the pages for the S relation are not used. Of 

the 88.775 mean number of nodes in the graph, 50 represents the pages in the R relation. So, on the 

average only 38.775 out of the 50 nodes of the S relation are used. In addition, the minimum number 

of edges required if the graph is connected is one less than the number of nodes. So we see that the 
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average graph consists of several connected components and hence cannot achieve the minimum of 

E+ 1 page accesses, i.e., 75.650. If we examine Table III, we see that heuristic 1' required 92.3 page 

accesses on the average. If we compare the mean page accesses (for a buffer size of 2) from Tables IV 

and V with the number of edges in Table VII, we find that for a = 0.1, heuristic 1' requires only about 

5% more than the minimum; and for a = 0.2, heuristic 1' requires approximately 0.2% more. 

As a further point of comparison, for experiments where the buffer size is greater than two, we can 

compare heuristic 1' with the nested block and the sort-merge methods. The number of page accesses 

for the nested block method as defined in [11] is IR 1*(1+ rig /03_1m where B is the buffer size. 

The sort-merge method requires the following number of page accesses [6]: 2 IR I log B4  IR I+ 2 IS 1 

logB_ i  IS I+ IR I+ IS 1. Table VIII shows a comparison of these methods. 

Table VIII. Comparison of heuristic 1' results with calculated number of page 
accesses for nested block and sort - merge, (a=0.2) 

BUFFER SIZE 
METHOD 4 8 16 
HEURISTIC 1' 161.725 124.950 
SORT-MERGE • 

200.925 
812 510 388 

NESTED BLOCK 900 450 250 

The comparison in Table VIII fits our expectation, i.e., heuristic 1' performs the best. This is due to 

the environment we have assumed, i.e., a page from the R relation is to be joined with a small number 

(20% maximum) of pages from the S relation. 

The values for heuristic 1' exclude the cost of searching the indexes for relations R and S. To be 

fair, we should include this cost. An approximation for the number of leaf pages in the index for rela-

tion R can be defined as a IR where a is the size of one index entry divided by the size of one tuple. 

This would represent the maximum number of leaf pages to be accessed. If the data is uniformly distri-

buted, then the minimum number of leaf pages to be read would be a IR I/ I{key values} I. A reason-

able estimate for a might be 0.25 for both relations. So, in the worst case, an additional 26 page 

accesses would be needed to read the leaf pages for the indexes of R and S. The height of the index 
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()-tree) is usually between 2 and 4. So, an additional 1 to 3 pages would be needed to reach a leaf 

page for each index. At that point the leaf pages can be traversed without accessing any other nonleaf 

nodes. Thus, the total page accesses for both indexes would be approximately 32. Even so, heuristic 1' 

would still require the fewest number of page accesses, 157 compared to 250 (for nested block) for a 

buffer size of 16. 

To complete this Section, we include one further table which shows the relationship between the 

buffer size and the per cent of page accesses above the minimum, i.e., the number of nodes in the 

graph (refer back to Table VII). If we examine the entry for heuristic 1', a = 0.20, in Table IX; we 

find that when the buffer size is 2 pages, we make about 143% more page accesses than the minimum. 

Notice, that the buffer size of 2 pages is only 7% of the buffer space required to achieve the minimum 

number of page accesses. However, as we increase the buffer size, the number of page accesses drops 

substantially. For example, a buffer size of 16 pages is only 48% of the buffer size required to achieve 

the minimum. In this case, we make only 25% more page accesses. From Table DC, we can see the tra-

deoff between the buffer size and the number of page accesses using a particular method. In a database 

system, where there is buffer pooling, the number of available pages (frames) at a given time may be 

smaller than that necessary to achieve the minimum number of page accesses. Using heuristic 1' we 

could determine the number of additional page accesses that would be needed and decide whether we 

should perform the join with a smaller buffer size or to wait until we have the needed number of buffer 

pages to ensure a single access per page. As an alternative (although not typical of current database 

systems), it might be viable to employ a dynamic buffer allocation scheme where we ask for additional 

buffer frames when needed during the join instead of having them allocated at the start of the join. In 

addition, since we know the page access sequence, ala heuristic 1', it might be necessary to only hold a 

specified (maybe large) number of frames over a short period of time. 



Table IX. Per cent more page accesses as compared to the minimum 
of a single access per page 

BUFFER SIZE 

a METHOD 2 4 8 16 

0.05 RANDOM' 13.236 

HEURISTIC 2' 4.501 

HEURISTIC 1' 3.971_ _ _ . 
0.10 RANDOM' 49.662 39.927 32.145 

HEURISTIC 2' 35 346 25.560 13.535 

HEURISTIC 1' 34.279 20.536 6.663 

0.20 RANDOM' 162.036 144.935 125.752 86.484 

HEURISTIC 2' 143.706 125.853 99.348 63.490 

HEURISTIC 1' 142.879 101.530 62.212 25.326 

7. CONCLUSION 

In this paper we have presented strategies for reducing the number of page accesses to perform a 

join when nonclustered indexes are available. We also assumed that under certain conditions [7], only a 

small number of the total possible page combinations will need to be examined. One direction is to find 

the minimum buffer size which would guarantee that no page would be reaccessed. Two heuristic ap-

proaches were developed and performance comparisons of these heuristics and the method in [8] were 

given. The second direction involves modifying our heuristics so that they would apply when there is a 

fixed buffer size. The results of these experiments showed that one particular heuristic worked well for 

addressing the problem from either perspective. 
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ABSTRACT 

The motivation for this paper is to show that the efficient reorganization of a B+ tree file into a 

linear hash file can be done concurrently with user transaction processing. This conversion is motivated 

by a change in database processing where efficient sequential and direct access are originally needed but 

now only efficient direct access is needed. This is quite reasonable for a database system which accomo-

dates new and changing applications. Several existing database systems, e.g. INGRES [22], IMS [20] 

and IDMS [20], allow this type of reorganization but the reorganization is performed off-line. We dev-

ise an algorithm which performs the conversion and present an analytic model of the conversion pro-

cess. We also employ a typical database simulation model to evaluate the reorganization scheme. The 

results from the analytic model are within 3% (on the average) of the observed simulation results. The 

results of the simulation support the idea of doing file conversion concurrently with database usage 

especially when compared to an off-line reorganization approach. 

1. INTRODUCTION 

We define file reorganization as the process of changing the physical structure of the file [20]. 

Reorganization may be performed for a variety of reasons such as to reduce retrieval time or compact 

space. Concurrent reorganization is an on-line strategy where the file is reorganized concurrently with 

usage [20]. With this approach, the part of the file which is being reorganized is locked while user ac-

cess is permitted to the remainder of the file. The relational database system, System R [2], supports 

concurrent reorganization to some extent in allowing new attributes to be added to existing relations as 

well as allowing the creation of new indexes or the deletion of old ones without dumping and reloading 

the data, i.e. without performing off-line reorganization. In any environment where the database system 

must be available 24 hours per day, i.e. highly available systems [5], typical off-line reorganization can-

not be tolerated. Additional work in concurrent reorganization can be found in [13,14,21]. 

In this paper we are concerned with a category of file reorganization which we call inter-

structural change. By inter-structural change, we mean that the file structure created by the reorganiza-

tion process is of a different type than that which existed prior to the reorganization. This might also be 

called file conversion. An example of this would be to convert an indexed file to a hash based file as 



can be done in INGRES with the modify operation [22]. However, in INGRES this is done off-line, 

i.e. prohibiting user access during the process. This can also be done in IDMS [20] with an 

unload/reload utility and in IMS [20], changing a. HIDAM structure to HDAM. This conversion is 

motivated by a change in database processing where efficient sequential and direct access are originally 

needed but now only efficient direct access is needed. 

In this paper, we propose a concurrent reorganization scheme which allows an on-line and in 

place conversion of a B+ tree to a linear hash file. The conversion works quiet nicely since both file 

structures are dynamic, i.e. they can grow and shrink one page at a time. Until the reorganization is 

complete, part of the file would exist as a B+ tree and part as a linear hash file. It will also be quiet 

clear which file has to be accessed for a given search key request. In section 2, we review some of the 

relevant work which exists. In section 3, we examine the B+ tree to linear hash file conversion process. 

In section 4, we introduce an anlytic model of the conversion process and present the simulation model 

with results in section 5. 

2. BACKGROUND 

First of all we will briefly review linear hashing which was originally proposed in [12] and ex-

tended by various researchers [9,10,15,17]. Linear hashing is intended for files that expand and contract 

dynamically. For the expansion process buckets (i.e. pages) are split in a cyclic manner. One rule that 

can be used to decide when to expand is to split the next bucket in the cycle whenever any bucket 

overflows. This is referred to as uncontrolled splitting [12]. In addition, random access of a given 

record, on the average, requires approximately 1 disk access [12]. 

In linear hashing, the hash function to be applied changes as the file grows or shrinks. The 

function, h 0  : k — (0,1,...,N-1) is used to initially load the file where k is a key. The hash function is 

dynamically modified creating a sequence of hash functions h i ,h2 ,...,h i  such that for any k either 

h i(k) = h i..1 (k) or h i(k) = hi-1(k) + 2 i4 XN. 

When a key is to be inserted, the appropriate function is used to find the correct bucket. Colli-

sions are handled by creating a chain of overflow buckets and in addition a split is performed. The splits 

are performed in linear order, starting from bucket 0. When all N buckets are split, the address space 



doubles in size and the splitting process starts again from bucket 0. Two variables are maintained for 

this process: NEXT, which denotes the next chain to be split and LEVEL, which represents the number 

of times the address space has doubled in size. These variables are updated as follows: 

NEXT 4— (NEXT + 1) mod N X 2LEVEL  

if NEXT = 0 then LEVEL 4— LEVEL + 1. 

Using these two variables, the bucket where a record is to be stored is determined as follows: 

BUCKET 4— h LEvEL ( key) 

if BUCKET < NEXT then BUCKET 4— hLEVEL+  1(key) 

where h(key) is defined as key mod 2 LEVEL  X N. LEVEL 

Hashing is the appropriate file organization when random access is needed but when both ran-

dom and sequential access is needed a more appropriate structure to use is the B+ tree [3]. The B+ 

tree or other variants of the B-tree [3] have been widely used in recent years for storing large files of 

information on secondary storage, e.g. System R [21. The average random access search time is typically 

3 or 4 disk accesses depending on the height of the tree. Efficient sequential processing is provided by 

linking the leaf nodes of the B+ tree together in key sequence order. A sample B+ tree is shown in 

figure 1. 

Fig. 1. B+ tree example 

To allow for concurrent operations on these file structures, both have undergone modification. 

The method for achieving greater concurrency is to provide a way to detect and recover from the effect 

of concurrent updates. In [8,11], schemes were presented to allow for concurrent manipulation of B+ 
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trees. In [11], a single additional link in each node allows a process to easily recover from tree 

modifications performed by other concurrent processes. Their solution uses a simple locking scheme 

and requires only a small and constant number of nodes to be locked by an update process at any given 

time. In [4], a solution for concurrent access to a linear hash file is presented. Part of the solution in-

volves a minor modification to the hash file, i.e. keeping a LOCAL-LEVEL variable with each bucket. 

The other part carries over the idea of additional links from B+ trees in the form of recalculation [4]. 

The notion of recalculation is as follows: upon gaining access to a bucket, a process checks whether the 

LEVEL value used to calculate the address matches LOCAL-LEVEL, and if not, it increments its value 

and recalculates the address until a match is found. The buckets reached in this manner are those that 

were created by splitting buckets at addresses already accessed during this search. A simple locking 

scheme is also employed to control access to the shared variables, LEVEL and NEXT, as well as to the 

buckets. We should note that a primary bucket and all of its overflow buckets (i.e. a chain) are locked 

as a unit. 

3. B+ TREE TO LINEAR HASH FILE CONVERSION 

Besides reorganizing on-line, we also want to satisfy the requirement of reorgainizing in place, 

i.e. using the storage of the original file with perhaps a small additional amount. The reorganization 

process takes one page at a time from the 8+ tree file and inserts the records from that page in the 

linear hash file. As we reorganize a page from the B+ tree file, that page, i.e. the storage unit, can be 

added to the linear hash file when a subsequent split operation is performed on the hash file. However, 

the first page, i.e. page 0, is added when the first 8+ tree page is reorganized. 

The reorganization process proceeds in physical address sequence of pages, e.g. 0,1,2,.... If the 

key sequence of the records corresponds to the physical address sequence then during reorganization 

the database system need only keep track of the highest key (record) moved from the original B+ tree 

file to the hash file. Knowing the highest key will allow the database system to direct searches, updates 

and deletes for a key of smaller or equal value to the linear hash file and for a larger key to the remain-

ing B+ tree file. This allows the benefits of the partial linear hash file to be gained immediately, i.e. as 

each page is converted. 
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However, due to splitting pages in the B+ tree file, the physical sequence of data pages may 

not correspond exactly to the key sequence. Some B+ tree file systems like IBM's VSAM [3] group 

consecutive pages (control intervals, a la IBM) into larger physical areas (control areas). Therfore 

when a page is split, an empty page within the same area is used. If the empty page is not physically 

adjacent to the old one then the key sequence - physical sequence pairing is lost. However, the two 

pages are still within the same area. Although, in the worst case the area may be full, thus causing an 

additional area to be allocated. If there still is a somewhat limited form of clustering, in that key se-

quence is maintained between areas, then once an entire area has been converted to the linear hash file 

structure, the pages within that area will be accessable through the hash file. Once again, the decision to 

use the B+ tree or linear hash file will be based on the high key value previously mentioned. 

As an alternative, we could proceed in key sequence, regardless of the key-page sequence 

correspondance, but we would have to employ indirect addressing. The hash function would produce an 

entry in a page table which would contain the relative page (bucket) number. Using a page table would 

increase i/o time if the table could not be maintained in memory. This tradeoff would have to be ex-

plored before committing to this approach. 

The B+ tree to linear hash file conversion algorithm is presented in figure 2. The 

Insert separately procedure is basically the insert procedure of [4], where each key is inserted separate-

ly. 

Variables 
State consists of global variables NEXT and LEVEL, 
Leaf page consists of a set of keys and a link to the next page 

Procedures 
X _lock and S lock acquire exclusive and shared locks respectively, 
Get retrieves a page from secondary storage, 
X_unlock and S_unlock release exclusive and shared locks respectively, 
Addrecord places one record on a page (either primary or overflow), 
Add_multi_records places a group of records on a page 

Procedure BtreeHash; 
Begin 

1page := address of first leaf page; 
1page set 	0 ; 
While (lpage 	Null) Do 
Begin 

X_lock( 1page); 
Get(lpage); 
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1page set := 1page set U {lpage}; 
new_high_jcey := highest key E 1pagetkeys; 
nextjpage := 
Sjock(state); 
bucket set 	; 
bucket_key_set 	; 
overflow 	false; 
split_is_needed := false; 
For each key, k E 1paget.keys Do 
Begin 

1 := level; 
bucket := Hash(1,k); 
If bucket < next 
Then 

Begin 
1 := 1 + 1; 
bucket := Hash(1,k); 

End; 
bucket_set := bucket_set U {bucket}; 
bucket jcey set := bucket_Icey_set U {(bucket,k)}; 

End; 
If ibucket_set I X (record_size .4-page_,size) > threshold 
Then 

Insert_separately(lpage) 
Else 

Insert_Group(lpage,bucket_siet,brket_key_set); 
if split_is_needed and (next + 2 eve  X n E 1page_,set) 
then 

Begin 
Split; 
split_is_needed := false; 

End; 
X_unlock(lpage); 
1page := next 1page; 

End; 
End; 

Procedure Insert_group(lpage,buckeLset,bucket_key_pet); 
Begin 

For each b E bucket set do 
Begin 

If 1page h  b 
Then 

Begin 
X lock( b) ; 
Get(b); 
keys := {lc i  I (bi,ki) E bucket_key_set and b 1  = b}; 
Add_multi records( b,keys, overflow) ; 
If overflow Then split_is_needed := true; 
X_unlock(b); 

End 
Else 

Begin 
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keys := 	1(bi,ki) E bucket_key_set and b i  = b}; 
Add_multi_records( b,keys,overflow); 

End; 
End; 
S unlock(state); 
X_Iock( high jcey); 
high_key 	new_high_key; 
X_unlock( highkey); 

End; 

Procedure Insert separately(Ipage); 
Begin 

For each key, k E 1page t.keys Do 
Begin 

1 := level; 
bucket := Hash(1,k); 
If bucket < next - 
Then 

Begin 
1 := 1 + 1; 
bucket := Hash(1,k); 

End; 
X_Iock( bucket); 
S_unlock(state); 
Get(bucket); 
While (localjevel 74 1) Do 

Begin 
1 := 1 + 1; 
previous :=-- bucket; 
bucket Hash(I,k); 
If bucket h  previous 
Then 

Begin 
XJock(bucket); 
X_unlock(previous); 
Get( bucket) 

End; 
Addrecord( bucket, k,ove rflow) ; 
X_unlock(bucket); 
If overflow Then split js_needed := true; 

End; 
If all keys E 1paget.keys have not been inserted 
Then Sjock(state); 

End; 
End; 

Fig. 2. B+ tree to linear hash file conversion algorithm 

The Insert_group procedure in figure 2 generates a reorganization transaction which inserts 

multiple records on the same page. This saves i/o and cpu time since the same page need not be 
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locked and written multiple times. However, during this process the state variables have a shared lock 

on them which means that concurrent updates on the hash file cannot take place. This procedure would 

be used initially during the conversion since the hash file is small and there is a greater likelyhood that 

keys will hash to the same bucket. On the other hand, the Insert separately procedure generates a reor-

ganization transaction which inserts a single record. This is useful when the linear hash file becomes 

large enough such that keys from the B+ tree leaf pages hash to different buckets. The advantage here 

is that the lock on the state variables can be released once the linear hash file page has been locked. 

Which procedure to call is controlled by a threshold value. For example, if more than 50% of the keys 

from the B+ tree leaf page hash to different pages then call Insert_,separately otherwise call 

Insert_group. 

An example of the conversion process using the B+ tree of figure 1 follows. The algorithm and 

the example illustrate the simple case where the leaf pages appear in physical sequential order by key 

value. The algorithm is easily adapted to handle the more general case by keeping track of the pages 

that have been reorganized and by delaying the updating of the global variable high key until the pages 

which represent a consecutive range of key values have been converted. The analytic and simulation 

models of sections 5 and 6 are based on this more general and more realistic situation. However, at 

this point the simple case will suffice to illustrate the conversion concepts. 

Example 

Step 1. get an exclusive lock on page 0, bring leaf page 0 into the buffer, make into hash page 

structure (i.e. containing records and local evel) using key mod 2 0 X 1 as the current hash 

function and update high key to 3. This requires a shared lock on the state variables (next and 

level) and an exclusive lock on the high key variable. Afterwards, all locks are released. 

0 

I 1 3  

Step 2. get an exclusive lock on page 1, bring leaf page 1 into the buffer, using our previous hash 

function, both keys 4 and 7 would hash to page 0 so get an exclusive lock on page 0, get page 0 



and add records to overflow chain for page 0. The overflow generates a split which is done after 

the records on page 1 have been inserted in the hash file. Performing the split at this time al-

lows page 1 to be added to the hash file storage space. We should note that splitting is done if 

overflow occurs but after all the records on the current page, which is to be reorganized, have 

been inserted. This is necessary, as in this case, so that there will be a new page which can be 

used for the split. If the page needed for the split, i.e. at location NEXT + 2 LEVEL  X N, has 

not been converted then the split is deferred. This requires exclusive locks on the state (since 

LEVEL is increased to 1) and highJcey (which is set to 7) variables. Afterwards, all locks are 

released. 

0 
	

1 

I 4 	1 1 3 7 	1 

Step 3. get an exclusive lock on page 2, bring leaf page 2 into the buffer, the keys 8, 11 and 15 

hash to pages 0, 1 and 1 respectively, obtain exclusive lock on page 0 and insert key 8, obtain 

exclusive lock on page 1 and insert keys 11 and 15 on an overflow page (we should note that 

having an exclusive lock on a primary page precludes access by other transactions on the 

overflow chain as well as on that primary page), locks would be released. a split process is gen-

erated next which requires exclusive locks on pages 0 and 2, afterwards the locks are released. 

0 	 1 
	

2 

14 8 

 

1 1 3 7 

 

   

11 15 

Step 4. similar to previous steps except that page 3 is being converted, 

0 
	

2 	3 

1 4 8 20 	1 15 25 	 3711 	1 



Step 5. similar to previous steps but with page 4 being reorganized, 

0 	1 	2 	3 

14 8 20 1 15 25 I 30 46 50 I 3 7 11 I 

 

For this particular example, the linear hash file used one less page of storage as did the leaf 

pages of the B+ tree file. In general, this is not the case but as we will see in section 5, the additional 

space used by the linear hash file will be insignificant. If we consider the space used by the index, the 

linear hash file will probably require less. 

4. ANALYTIC MODEL OF CONVERSION PROCESS 

In this section we present a simple analytic model of the conversion process. In particular, we 

want to determine the breakpoint, i.e. how many pages need to be converted before the throughput of 

the system with concurrent reoeganization will equal the throughput of a system with only transaction 

processing using the B+ tree file. After this point, the performance of the system with concurrent reor-

ganization becomes better. The various properties that we are interested in are as follows. 

convert(i) : cost of converting ith page from B+ tree to linear hash file (in pages) 

split(j) : cost of performing jth split in linear hash file (in page accesses) 

btree : expected cost of a transaction for the B+ tree file (in page accesses) 

bhash(i) : expected cost of a transaction using the B+ tree / linear hash file 
after the ith page has been converted (in page accesses) 

height : height of B+ tree 

mp : multiprogramming level 

n : number of leaf pages in B+ tree file 

nrec : number of records in B+ tree leaf page 

r : reorganization unit 

rpr : probability that a transaction only reads 

wpr : probability that a transaction does an update, i.e. 1-rpr 

lfpr : probability that an insertion in the linear hash file is to 
the left of the split pointer 
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rtpr : probability that an insertion is to the right of the split pointer 

ovfl(m) : overflow chain length for home page left of the split pointer 
for a linear hash file with m records 

ovfr(m) : overflow chain length for home page right of the split pointer 
for a linear hash file with m records 

To simplify our analysis, we will not take into account the effect of locking. Access to our file is 

based on a single key, so the probability that two transactions will block each other will be small. (In 

the simulation of section 5, the queries were generated randomly with a uniform distribution so our as-

sumption should not be too severe.) Even though the reorganization process locks at most nrec home 

pages in the linear hash file, the conflict will still be fairly small. We should also note that when a page 

is converted (excluding the first page), a split operation is performed to add that physical page to the 

linear hash file. This varies from the algorithm but it is a close approximation which will simplify our 

model. 

The major cost of query processing is accesses to secondary storage. As such, we will use the 

number of i/o page accesses which a given conversion process makes, multiplied by the multiprogram-

ming level (which is fixed) as the time to complete a given reorganization process. The number of 

transactions that can be processed using the B+ tree file during the time it would take to convert L 

pages for the B+ tree / linear hash file is defined below. 

E  mp( convert( 1)+8plit 	( 1)  
b tree 

1-4 

For the file system where the conversion is taking place, we have the following number of transactions 

that can be processed for the same time frame. 

E  mp- 0( convert( 0 +spill( i))  
(2) 

Mash ( i) 

We have a factor of mp-1 in the numerator of (2) since the conversion process is being performed con-

currently with transaction processing. Hence, the time available for user transactions is reduced. 

The derivations of the following formulas are straightforward and are omitted. Similar formulas 



for the linear hash file operations are presented in [1.6]. The individual terms of (1) and (2) are derived 

as follows. 

split( i) (1+ov f I( i*nrec ) ) +( 1 + ovf r( Onrec)) 

convert(1)+nrec R 2+ ovf l(i*nrec)) *If pr+( 2+ ovfr( i*nree ) ) At( 1— I f pr)] 

b tree pr*height+(1— rpr)(height+1) 

b hash (i) rpr)[height'IL:Z11  rir  +((l+ovfl(i*nrec)) *if pr +(l+ovfr( ianrec))( 1— lf pr) 	]+ 

(1— rpoRheight+Dilz_ 	r 
+((2+ovf l(iinrec)) pr+(2+ovf r(i*nrec))(1— If pr) Le riJr ] 

The bhash formula has a component for searching/updating the part of the file that resides in the B+ 

tree and linear hash structure. For the reorganization unit of 1 page, there is a probability of i/n that 

the query accesses the linear hash structure and (n-i)/n that it accesses the B+ tree structure. If the 

reorganization unit is 5 for example, then groups of 5 pages would have to be converted before any of 

the records from those 5 pages could be accessible through the linear hash structure. Hence, in gen-

eral, for a reorganization unit of r, the probability that a B+ tree leaf page is accessed is (n-Li/r J r)/n 

and the probability that a linear hash file page is accessed is ( Li/r J r)/n. 

To simplify our problem, we will make one last assumption. We will assume that overflow is 

negligible. This should not limit our model too much since a successful search in a linear hash file re-

quires on the average a single access [12]. This assumption has a direct effect on convert(i) and 

split(i). It means that the cost of converting and splitting a page is constant. Hence, when we want to 

compute the breakpoint, i.e. the value such that 

( rnp_ 1) v,  convert(1)+split(i) 	rnpE  convert( i)+split( 	(3)  

	

bliash(i) 	 btree 

we can cancel out the convert(i) + split(i) term. Once again, this simplification is not entirely correct 

but it should yield a reasonable approximation. 

In addition bhash(i) becomes the following: 



rpr( height  n— 	+  Li/dr  ) + ( 1 rpr) Rheight+1) 	Li/rjr
+2 

 Liirjr 
n 	n 	 n 	n 

Thus, through simplification, the breakpoint equation of (3) becomes 

L 	 L 
1  1 	  ( mp- 1) E 	 mpE 	 —0 (4) 

■ =4 (height+1— rpr) n-diLL.j '. +( 2 rpr) -i/1-177j1= 	(.4 rpritheight+(1— rpr)(height+1) 
n 	 n 

Since the denominator of the term in the second summation is a constant we can further simplify (4) 

and group terms to get (5). 

1 	 mp*L  
E  (height+1— rpr) n- ( height— 1) 	( mp — 1)(height+1— rpr) n 	0 	( 5 ) 

At this point, we would like a closed form expression for the summation in (5). We can replace the 

summation with 

L 
11  

height— 1 E (height+1— rpr) n  
height— 1 

With a little effort, we can derive an equivalent summation in a more suitable form, as shown below. 

kL +OM- 1 
1 	 1 	 (L +1) mod r  

height— 1 (r 

	

h eigh t+1— rpr)n 	
+ 

fteight+1— rpr)n  
I(L+1)/rj 

height— 1 	 height— 1 

1  
• (height+1— rpr) n  )  

height— 1 

Using the Harmonic numbers [18], H„=E— r, we can do a further reduction to yield 

1 	 (L +1) mod r  

	

height— 1
( rAtH (Height+l- Tr) n 	"II  heiht -LILt I(L -1-1)/r1

+ 
(height+1— rpr) n 	

height— 1 
height— 1 	 height— I 	 L +1) lr J 

'i/r Jr 



(height+1 — rpr)n ) • 
height — 1 

Using the approximation [6], H„ ,===,In(n)+1+1/2n, and substituting back into (5) yields the following : 

(height+1 — rPr)n 	+1)/r.1) y[In( (height+1— rPOn 	 1  
height— 1 	2(height+1— rpr) 	height— 1 

(height— 1) 

1  (L +1) mod r  

r( (height+1 — rPOn 	kL -F1)/rj) (height+1 — rpr) n 	
I(/' +1) /d) 	height — 1 

2( 
height— 1 

1 	mp(height— 1) 	
0 (6). 

r(height+1— rpr)n  )1 	( mp — 1) ( height+1 — rpr) n 
(height — 1) 

Since all the but one variable in (6) are known, we simply need to find the root of equation (6) 

which is not a difficult task. We can use an iterative method for approximating a real root of an equa-

tion [7]. In the next section we will compare the results of our analytic model with those of the simu-

lation model. 

5. DATABASE SIMULATION MODEL AND RESULTS 

The simulation model is an adaptation of the models presented in [1,19] and is shown in figure 

3. The simulation model uses a fixed multiprogramming level and a dynamic locking scheme (two-

phase) where the lockable units are pages. The simulation parameter values used for the experiments 

are given in table I and are typical of those in [1,,19]. 
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Fig. 3. Database simulation model 



Table I. Simulation parameter settings 

Parameter Value 
multiprogramming level 10 
write probability_ 0.25 
page i/o time 35 ms 
1,  :e cpu time 15 ms 
lock i/o time 0 
lock request cpu time 2.5 ms 
lock release cpu time 2.5 ms 
database size 143 pages 
data page size 10 records 
data page load factor 0.70 
B+ tree height 3 
reorganization unit 1,5,10,15, 

20,25,... 

The model simulates transactions made against the database. The transactions are of two 

different types: file processing and reorganization. File processing transactions are submitted by users 

for retrieval or update of the file. Since the motivation for the conversion is the need for efficient direct 

access only, we will restrict the file processing transactions to just those. These transactions involve ac-

cessing two index pages (i.e. nonleaf nodes) and a data page (i.e. leaf node). To simplify the simula-

tion we assume that the pages in the B+ tree do not split or merge. Since there will be only one reor-

ganization process running at a time, the splitting and merging of B+ tree pages would have more of 

an effect on user transaction time than they would on reorganization time. 

The reorganization transaction type can actually be further subdivided. One class accesses a data 

page from the B+ tree file and places the records from that page into the linear hash file. This may in-

volve accessing as many as ten (i.e. page size in records) primary pages in the linear hash file as well as 

additional overflow pages. The other class, due to a split, accesses two pages from the linear hash file 

and possibly some overflow pages. 

In the simulation, a fixed number of transactions are active at any one time. The file process-

ing transactions are randomly generated where 25 per cent of them are writes. When the first user tran-

saction terminates, a reorganization process is entered into the system. When each reorganization pro-

cess terminates, a new one is generated. Therefore, only one reorganization process is active at a time. 
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All reorganization processes require exclusive locks which are requested one at a time. To prevent 

deadlock in our database model, locks are requested in a fixed linear order. We also assume that to 

write an existing page, a transaction must first read it. 

Initially, user transactions arrive one time unit apart and are placed on the READY queue. A 

transaction then goes through the following stages. 

(a) The transaction is removed from the READY queue and one lock is requested. If the lock is 

granted, the transaction is placed on the 'bottom of the I/O queue. If the lock is denied, the 

transaction is placed at the bottom of the BLOCKED queue. The blocking transaction is record-

ed. 

(b) After completing the required I/O, the transaction does one of two things. If the I/O is a read 

then the transaction is placed at the bottom of the CPU queue. If the I/O is a write then the 

transaction, if it were not finished, would request another lock and cycle around again. If the 

transaction is finished after the write then all locks are released. All transactions blocked by the 

completed transaction are placed on the front of the READY queue. 

(c) After completing the required cpu for the page accessed, the transaction, if it were not finished, 

would request a lock on another page and repeat the cycle or if the current page is to be written 

after being read, the transaction would be placed at the bottom of the I/O queue. If the tran-

saction is finished after the cpu processing then all locks are released. All transactions blocked 

by the completed transaction are placed on the front of the READY queue. 

The results of the various simulation runs are summarized in table II. The unit parameter indi-

cates the increment (in pages) for which converted pages are made accessible through the linear hash 

file. For example, the value 5 indicates that after every group of 5 pages from the B+ tree file have 

been converted, the records from those pages can be accessed through the linear hash file. This means 

that the keys (records) that have been processed so far, i.e. in physical page sequence, represent a con-

secutive range of key values. Since the reorganization is done in page sequence, the higher values for 

unit represent a greater disparity between key and physical page sequences. The value of 1 indicates 

that page and key sequences are the same. Unit may be thought of as the size of a control area. The 
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breakpoint gives the time in seconds in which the concurrent reorganization method starts to produce a 

higher throughput of transactions as compared with only transaction processing of the B+ tree. For the 

case where the unit is 15 (=-: 11 percent of the database size) we see that the breakpoint occurs around 

375 seconds (t-z--- 2/5 of total reorganization time). The columns under max decrease indicate the max-

imum number of transactions delayed and the time at which this maximum delay occurred. The 

columns under max increase show the maximum improvement of throughput and the time at which 

this happens, i.e. when the reorganization is completed. The first line of the table shows the result of 

doing off-line reorganization which requires 125 seconds. During that time period the B+ tree file 

could have serviced 1092 transactions. We should also point out that for a much larger database, the 

off-line reorganization time would be much larger and more intolerable than for our case. 

The average time, for the various simulations, to complete the conversion of the B+ tree to 

linear hash file was approximately 961 seconds. The average load factor for the linear hash file was 66 

percent with 1.03 accesses per successful search. In addition, on the average only 5.6 percent more 

pages were used by the linear hash file as compared with (only) the leaf pages of the B+ tree file. We 

see from table II that as the unit increases, so does the breakpoint and the delay in throughput while 

the improvement decreases. Of course, when the unit is 1, we have our best result. Although it prob-

ably is not a very practical situation. However, other situations where the unit is between 15 (=--= 11% 

of database) and 35 (c:_.-• 24% of database) appear to be more practical and still yield good results, in 

terms of breakpoint and delay. The results are especially good when compared with the delay of off-line 

reorganization. 

At this time, we would like to present a comparison of our analytic model with the simulation 

model. Table III shows the breakpoint, in number of pages, as computed using our analytic model and 

as observed from the simulation runs. The maximum difference between the two is only 5.5% and on 

the average it is less than 3% So, even though we made several simplifying assumptions for our ana-

lytic model, the value of the breakpoint predicted was fairly close to the observed value. The difference 

is probably due to the fact that there is a small amount of overflow with the linear hash file and that the 

time to convert and split a page is not constant. 



Table II. Summary of simulation results 

unit 
break 
point 
(sec) 

max decrease max increase 

trans time 
(sec) 

trans time 
(sec) 

offline 1092 125 
1 284 63 132 3134 958 
5 314 75 168 2980 958 

10 336 92 173 2816 962 
15 375 111 175 2686 967 
20 413 126 232 2448 961 
25 434 130 228 2285 954 
30 453 164 180 2124 960 
35 485 193 208 1949 962 
40 538 223 240 1959 969 
50 575 294 308 1462 951 
71 625 438 452 832 964 

100 800 642 865 774 963 
121 925 805 817 271 968 

Table III. Comparison of analytic model & simulation results 

unit 

breakpoint (pages) 

% 
diff. simulation –_. 

analytic 
model 

1 46 _ 44 4.55 
5 49 48 2.08 

10 53 53 _ 0.00 
15 58 _ 57 1.75 
20 62 62 0.00 
25 67 _ 65 3.08 
30 70 70 0.00 
35 75 75 0.00 
40 82 82 0.00 
50 89 86 3.49 
71 97 

—  100 -3.00 
100 120 ___ 127 -5.51 
121 138 143 -3.50 

In addition, graphs for a few of the simulation runs appear in figures 4, 5 and 6. 



6. CONCLUSION 

The motivation for this work has been to show that the conversion of the B+ tree file to a 

linear hash file is reasonably done concurrently with user transaction processing. The conversion is 

necessary for improving the performance of the database system and doing the conversion concurrently 

with database usage is necessary for any system which must be available 24 hours a day. We devised an 

algorithm which performs the conversion and introduced an analytic model. We also used a typical data-

base simulation model and ran various experiments. The results of the experiments support the idea of 

doing file conversion concurrently with database usage especially when compared to an off-line reorgan-

ization approach. In future work, we will examine the process of converting a linear hash file to a B+ 

tree file concurrently with usage. 



0 
0 
0 
N 

O 

0 
0 
0 
0 

0 
cri 

0 
0 
0 
CO 

0 

0 

O 

O 
0 
0 
N 

0 
0 

80 	360 	24C 	320 	LLCCI 	14130 	560 	640 	720 	800 	8A0 	960 
MILE (IN SEC) 

0= concurrent reorganization & database processing 
A = database processing only 

Fig. 4. Throughput graph for unit = 5 



o o o 

o o o 

0 
0 
0 
0— 

o o o al 

o 
C cv 

8 

500 	600 	700 	860 	900 	1000 	3100 	3200 
TIME i J3 SEC) 

300 400 300 200 

0 = concurrent reorganization & database processing 
A = database processing only 

Fig. 5. Throughput graph for unit = 15 



0 

N 

C 
C 
0 

C 
cn 

z 

0 

o 

C 
C 
,) 

C 

N  
N 

C 

80 	160 	240 	320 	400 T1 
 mr.X80 SEC) 540 	

640 	720 	800 	880 960 

El= concurrent reorganization & database processing 
A = database processing only 

Fig. 6. Throughput graph for unit = 30 



REFERENCES 

1. Agrawal, R., Carey, M. and Livny, M., "Models for Studying Concurrency Control Performance: Al-
ternatives and Implications," 1985 SIGMOD Conference Proceedings, ACM, May 1985, 108-121. 

2. Astrahan, M., et al., "System R: Relational Approach to Database Management," ACM TODS, 1, 2, 
June 1976, 97-137. 

3. Comer, D., "The Ubiquitous B-Tree," Computing Surveys, ACM, 11, 2, June 1979, 121-137. 

4. Ellis, C., "Concurrency and Linear Hashing," Technical Report, Computer Science Dept., University 
of Rochester, NY, March 1985. 

5. Kim, W., "Highly Available Systems for Database Applications," Computing Surveys, ACM, 16, 1, 
March 1984, 71-98. 

6. Knuth, D., The Art of Computer Programming, Volume 1: Fundamental Algorithms, Addison-
Wesley, Reading Mass., 1969. 

7. Kronsjo, L., Algorithms: Their Complexity and Efficiency, John Wiley and Sons, New York, 1979. 

8. Kwong, Y. and Wood, D., "A New Method for Concurrency in B-trees," IEEE TSE, 8, 3, May 1982, 
211-222. 

9. Larson, P., "Linear Hashing with Partial Expansions," 1980 VLDB Conference Proceedings, 1980, 
224-232. 

10. Larson, P., "Linear Hashing with Overflow Handling by Linear Probing," ACM TODS, 10, 1, March 
1985, 75-89. 

11. Lehman, P. and Yao, S., "Efficient Locking for Concurrent Operations on B-trees," ACM TODS, 6, 
4, Dec. 1981, 650-670. 

12. Litwin, W., "Linear Hashing: A New Tool for File and Table Addressing," 1980 VLDB Conference 
Proceedings, 1980, 212-223. 

13. Omiecinski, E., "Incremental File Reorganization Schemes," 1985 VLDB Conference Proceedings, 
1985, 346-357. 

14. Omiecinski, E., "Concurrency During the Reorganization of Indexed Files," 1985 COMPSAC 
Proceedings, 1985, 482-488. 

15. Ouksel, M. and Scheuermann, P., "Storage Mappings for Multidimensional Linear Dynamic Hash-
ing," 1983 PODS Conference Proceedings, ACM, 1983, 90-105. 

16. Ramamohanarao, K. and Lloyd, J., "Dynamic Hashing Schemes," The Computer Journal, 25, 4, 
1982, 478-485. 

17. Ramamohanarao, K. and Sacks-Davis, R., "Recursive Linear Hashing," ACM TODS, 9, 3, Sept. 
1984, 369-391. 

18. Reingold, E., Nievergelt, J. and Deo, N., Combinatorial Algorithms, Prentice-Hall, Englewood 

-24- 



Cliffs, NJ, 1977. 

19. Ries, D. and Stonebraker, M., "Locking Granularity Revisited," ACM TODS, 4, 2, June 1979, 210-
227. 

20. Sockut, G. and Goldberg, R., "Database Reorganization - Principles and Practice," ACM Computing 
Surveys, 11, 4, Dec. 1979, 371-395. 

21. Soderlund, L., "Concurrent Database Reorganization - Assessment of a Powerful Technique 
through Modeling," 1981 VLDB Conference Proceedings, 1981, 499-509. 

22. Stonebraker, M., Wong, E., Kreps, P. and Held, G., "The Design and Implementation of INGRES," 
ACM TODS, 1, 3, Sept. 1976, 189-222. 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124

