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Summary/Work Package Title 
Fault-Tolerant Distributed Computing  

Report Month  10/1/85 - 12/31/85  

Date Prepared  February 10, 1986  
Contract No.  MDA 904-86-C-5002  
ContractorGeorgia Tech Research Corp.  

FUNDS EXPENDITURE REPORT 

Column A Column B 	Column C Column D 	 Column E Column F 

           

           

           

ORIGINAL PROPOSAL 
Cumulative Expenditures to Date Cost to 

Complete 
Pct. Dollar Estimate 

Value 

Latest 
Cost 
Estimate 

Latest 	Reporting 
Accepted 	Quarter 
Revised 	Expendi- 	Total 	Dollar 

Proposal 	tures 	Man Hours 	Value 

1. Direct Labor 
Number 	Hourly Dollar 

Type 	Of Hours 	Rate Total 

PI 	 525 	$26.98 $14,164.50 $795.91 29.5 $795.91 5.6% $13,368.59 $14,164.50 
GRA 	 1950 	$12.38 $24,142.85 $8,183.81 661 $8,183.81 33.9% $15,959.04 $24,142.85 
Clerical 	260 	$8.33 $2,166.67 $325.00 39 $325.00 15.0% $1,841.67 $2,166.67 

Total 	Direct Labor $40,474.02 $9,304.72 $9,304.72 23.0% $31,169,30 $40,474.02 
Burden @ 21.0% $3,429.54 $235.39 $235.39 6.9% $3,194.15 $3,429.54 
(Excluding GRA Labor) 

Total Direct Labor and Burden $43,903.56 $9,540.11 $9,540.11 21.7% $34,363.45 $43,903.56 

2.TRAVEL EXPENSE $3,200.00 $633.81 $633.81 19.8% $2,566.19 $3,200.00 

3.GENERAL & ADMINISTRATIVE EXPENSE $1,500.00 $300.00 $300.00 20.0% $1,200.00 $1,500.00 

4. COMPUTING CHARGES $2,300.00 $575.00 $575.00 25.0% $1,725.00 $2,300.00 

TOTAL DIRECT COSTS $50,903.56 $11,048.92 $11,048.92 21.7% $39,854.64 $50,903.56 

5. INDIRECT COSTS @ 63.5 $32,323.76 $7,016.06 $7,016.06 21.7% $25,307.70 $32,323.76 

TOTAL CONTRACT PRICE $83,227.33 $83,227,33 

TOTAL COMMITMENTS AND $18,064.98 $18,064.98 21.7% 

EXPENDITURES 
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Date Prepared 	April 18, 1986  
Contract No. 	MDA904-86-C-5002  
Contractor 	Georgia TechgEsearch Cow.  

a 
Summary/Work Package Title 
Fault Tolerant Distributed Computing 

Report Month 1/1/86 - 3/31/86  

  

FUNDS EXPENDITURE REPORT 

       

               

Column A 

  

Column 8 	Column C 

 

Column 0 	 Column E 	Column F 

               

Latest 	Reporting 	Cumulative Expenditures to Date Cast to 
	

Latest 
ORIGINAL PROPOSAL 
	

Accepted 	Quarter 	 Complete 
	

Cost 
Revised 	Expendi- 	Total 	Dollar 	Pct. Dollar Estimate 

	
Estimate 

Proposal 	tures 	Man Hours 	Value 	Value 

1. Direct Labor 
Number 	Hourly 

Type 	Of Hours 	Rate 
Dollar 
Total 

PI 	 525 	$26.98 $14,164.50 $1,200.61 74 $1,996.52 14.17. $12,167.98 $14,164.50 
GRA 	1950 	$12.38 $24,142.85 $7,577.14 1273 $15,760.95 65.31 $8,381.90 $24,142.85 
Clerical 	260 	$8.33 $2,166.67 $1,116.67 173 $1,441.67 66.5% $725.00 $2,166.67 

Total Direct Labor $40,474.02 $9,894.42 $19,199.14 47.4% $21,274.88 $40,474.02 
Burden 	21.0% $3,429.54 $486.63 $722.02 21.1% $2,707.53 $3,429.54 
(Excluding GRA Labor) 

Total Direct Labor and Burden $43,903.56 $10,381.05 $19,921.15 45.4% $23,982.41 $43,903.56 

2.TRAVEL EXPENSE $3,200.00 $0.00 $633.81 19.8% $2,566.19 $3,200.00 

3.GENERAL & ADMINISTRATIVE EXPENSE $1,500.00 $1,200.00 $1,500.00 100.0% $0.00 $1,500.00 

4.COMPUTING CHARGES $2,300.00 $575.00 $1,150.00 50.0% $1,150.00 $2,300.00 

TOTAL DIRECT COSTS $50,903.56 $12,156.05 $23,204.96 45.6% $27,698.60 $50,903.56 

5.INDIRECT COSTS E 63.5 $32,323.76 $7,719.09 $14,735.15 45.6% $17,588.61 $32,323.76 

TOTAL CONTRACT PRICE $83,227.33 $83,227.33 

TOTAL COMMITMENTS AND $19,875.13 $37,940.12 45.67. 
EXPENDITURES 
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Date Prepared 
	

July 21, 1986 
	

Summary/Work Package Title 
Contract No. 	 MDA904-86—C-5002 
	

Fault Tolerant Distributed Com:111dt 
Contractor 
	

Georgia Tech Research Corp. 
	

Report Month 4/1/86 — 6/30/86  

FUNDS EXPENDITURE REPORT 

Column A Column B 	Column C Column D Column E 	Column F 

            

Latest 	Reporting 
	

Cumulative Expenditures to Date Cost to 
	

Latest 

ORIGINAL PROPOSAL 
	

Accepted 	Quarter 
	

Complete Cost 
Revised 	Expendi- 
	

Total 	Dollar 	Pct. Dollar Estimate 
	

Estimate 
Proposal 	tures 
	

Man Hours 	Value 	Value 

1. Direct Labor 
Number 	Hourly 

Type 	Of Hours 	Rate 
Dollar 
Total 

PI 	 525 	$26.98 $14,164.50 $2,576.59 169.5 $4,573.11 32.3% $9,591.39 $14,164.50 
GRA 	 1950 	$12.38 $24,142.85 $3,033.33 1518 $18,794.28 77.8% $5,348.57 $24,142.85 
Clerical 	260 	$8.33 $2,166.67 $425.00 224 $1,866.67 86.2% $300.00 $2,166.67 

Total Direct Labor $40,474.02 $6,034.92 $25,234.06 62.3% $15,239.96 $40,474.02 
Burden @ 21.07. $3,429.54 $630.33 $1,352.35 39.4% $2,077.19 $3,429.54 
(Excluding GRA Labor) 

Total 	Direct Labor and Burden $43,903.56 $6,665.26 $26,586.41 60.6% $17,317.15 $43,903.56 

2.TRAVEL EXPENSE $3,200.00 $2,452.70 $3,086.51 96.5% $113.49 $3,200.00 

3.GENERAL & ADMINISTRATIVE EXPENSE $1,500.00 $0.00 $1,500.00 100.0% $0.00 $1,500.00 

4.COMPUTING CHARGES $2,300.00 $575.00 $1,725.00 75.07. $575.00 $2,300.00 

TOTAL DIRECT COSTS $50,903.56 $9,692.96 $32,897.92 64.6% $18,005.64 $50,903.56 

5. INDIRECT COSTS @ 63.5 $32,323.76 $6,155,03 $20,890.18 64.6% $11,433.58 $32,323.76 

TOTAL CONTRACT PRICE $83,227.33 $83,227.33 

TOTAL COMMITMENTS AND $15,847.98 $53,788.10 64.6% 
EXPENDITURES 
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Summary/Work Package Title 
Fault-Tolerant Distributed Computing 

Report Month 7/1/-86 - 9/30/86  

Data Prepared November 26, 1986  
Contract No. MDA 904-86-C-5002  
Contractor Georgia Tech Research Corp.  

Column A Column B 	Column C 

 

Column D 

ORIGINAL PROPOSAL 
Latest 	Reporting 
Accepted 	Quarter 
Revised 	Expendi- 
Proposal 	tures 

Cumulative Expenditures to Date 

Total 	Dollar 	Pct. Dollar 
Man Hours 	Value 	Value 

1. Direct Labor 
Number 	Hourly 

Type 	Of Hours 	Rate 
Dollar 
Total 

Dollar 
Total 

PI 	 525 	$26.98 $14,164.50 $14,164.50 $7,905.14 462.5 $12,478.25 88.1% 
GRA 	1950 	$12.38 $24,142.85 $25,164.85 $8,431.43 2198 $27,213.33 108.1% 
Clerical 	270 	$8.33 $2,247.65 $2,247.65 $408.33 268 $2,233.32 99.4% 

Total Direct Labor $40,555.00 $41,577.00 $16,744.90 $41,924.90 100.8% 
Burden 4 21.0% $3,446.55 $3,446.55 $1,961.98 $3,305.58 95.9% 
(23.5% after 	1 JUL 86) 
(Excluding GRA Labor) 

Total Direct Labor and Burden $44,001.55 $45,023.55 $18,706.88 $45,230.48 100.5X 

2.TRAVEL EXPENSE $3,200.00 $2,178.00 $0. 00 $2,130.43 97.8% 

3.GENERAL & ADMINISTRATIVE EXPENSE $1,500.00 $1,500.00 $503.80 $2,003.80 133.6% 

4.COMPUTING CHARGES $2,300.00 $2,300.00 $0.00 $1,583.80 68.9X 

TOTAL DIRECT COSTS $51,001.55 $51,001.55 $19,210.68 $50,948.51 99.9X 

5.INDIRECT COSTS @ 63.5 $32,385.99 $32,385.99 $12,198.78 $32,352.31 99.9% 

TOTAL CONTRACT PRICE $83,387.54 $83,387.54 

TOTAL COMMITMENTS AND $31,409.46 $83,300.82 99.9% 
EXPENDITURES 
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QUARTERLY PROGRESS REPORT 
FAULT TOLERANT DISTRIBUTED COMPUTING 
CONTRACT #MDA 904-86-C-5002 
REPORTING PERIOD: 1 JAN 86 - 31 MAR 86 
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1. Project Status 
During the past quarter, work has continued on each of the three project tasks. These 

efforts are closely related to other work in progress within the Clouds Project, our major 
research effort in the area of reliable distributed computing. 

Under the Language Support for Robust Distributed Programs task, work continues in two 
major areas: the integration of the Aeolus compiler with the Clouds kernel services and the use 
of the Aeolus language system as a testbed for studying the problems of programming in 
action-object systems. 

Under the Storage Management for an Action-Based Operating System task, the 'focus of 
our work has been on implementation, testing and integration with the virtual memory 
management mechanisms of the Clouds kernel. 

Under the Operating System Support for Reliable Distributed Computing task, our efforts 
are directed toward specification and functional design of the operating system services which 
will be implemented on top of the object and action management mechanisms provided by the 
Clouds kernel. Our current focus is on a fault-tolerant job scheduler and an applications-level 
distributed database system. 

The work on the tasks of this project is proceeding on schedule. Working in combination 
with other efforts in progress within the Clouds project, we are now in the process of debugging 
our initial prototype system. 

2. Language Support for Robust Distributed Programs 
As described in the last report, work in the systems programming language effort continues 

in two major areas: the design and implementation of the Aeolus language itself, as well as the 
use of the language as a testbed for the study of programming methodologies to achieve 
resilience and availability in action/object systems such as Clouds. 

2.1 Language Design and Implementation 
A new and substantially complete version of the reference manual for Aeolus[wilk 85] has 

been distributed locally for comment during the preceding quarter. This manual contains not 
only the description of the complete language (which, as we have mentioned in previous 
reports, has been considerably revised over the past year), but also provides definitions of the 
interfaces of Aeolus with its runtime libraries as well as with the object and action management 
features of the Clouds kernel. The most important portions of this manual have been 
summarized, along with commentary on the rationale underlying the major new features of the 
language, in a recent paper submitted to the IEEE Computer Society 1986 International 
Conference on Programming LarigUageS.[Wilk86] (This paper is attached as Appendix A.) 

The implementation of the Aeolus compiler has advanced considerably during the preceding 
quarter, taking into account the revisions mandated by the new version of the reference manual. 
The kernel routines for remote procedure call and primitive object management have recently 
been tested; runtime support for the interface with these kernel routines has been defined, and 
the testing of Aeolus code making use of the Clouds object management facilities awaits the 
implementation (now in progress) of a transport/linking mechanism to move compiled objects 
from our compiler development environment under Unix to machines running the Clouds 
kernel. As mentioned in our last report, use of the Clouds action management facilities from 
Aeolus code awaits the implementation of the action management portion of the kernel from 
Kenley's design[Ken186] and pseudo-code implementation; this work is now in progress. 

2.2 Programming Methodologies for Action/Object Systems 
Our current work on the study of programming methodologies appropriate to distributed 

systems was described in our last report. This work involves the study of various methods of 
achieving resilient, available objects through the use of replication. Similar work[Birm85 ,Birm85a] 
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has recently been reported by researchers on the ISIS system at Cornell; however, that work 
(unlike ours) does not consider the problems introduced by network partitions, assuming rather 
that all failures are of the so-called fail-stop variety. In our work, we take into account the 
problems involved in reconciling the states of replicated objects which have run in independent 
partitions during a network failure. Thus, we may achieve higher availability in situations in 
which temporary violations to consistency are tolerable. Our work, as well as recent 
work[Dasg861 by other researchers in the Clouds project, has also suggested some of the 
functionality which will be required of the fault-tolerant job scheduler for the support of 
availability in Clouds. It is in the job scheduler that we envision most, if not all, of the 
knowledge about individual machines in the system will be concentrated, such as whether a 
certain machine is available or what the current loads are on the individual machines. Thus, the 
job scheduler is the natural portion of the system to support functionality such as the creation of 
distributed replicants of an object class, the selection of the most appropriate individual replicant 
from a class of such replicants to perform work requested of the class, or the support of forward 
progress (that is, moving work started on an object running on a system which subsequently 
failed to another system on which another replicant of the object exists). We anticipate that our 
work in the coming months will provide a firmer design for the interface needed with the job 
scheduler. 

3. Storage Management for an Action-Based Operating System 

The major components of the storage management system have been implemented and 
tested. The major effort this last quarter has been the completion of the partition and segment 
systems. Work has also continued on the device driver for the RA81 disk. We have 
demonstrated the support of page fault handling and object operation invocations[Spaf86] this 
quarter. More information on the features described in this report will be contained in a 
forthcoming paper•[Pitt86] 

The primary work on the partition system was the implementation of the partition mounting 
routines. These routines examine the storage devices attached to the system in order to locate 
partitions. Then the routines make those partitions available to the system. The mounting of 
partitions includes the creation of the in-memory structures for the partitions and the addition 
of these structures to the system tables. Also, the mounting routines examine all segments 
which reside on the partition, if any, in order to initialize the allocation maps and to check the 
integrity of the segments. At this time, however, there is no support for the repair of the 
damaged segments; such segments would simply be flagged to the system. Data recovery is 
attempted during these checks for segments involved in action events. That is, the storage 
manager will try to complete commits that were in progress at the time of the crash and perform 
aborts on those segments on which actions were operating, but had not yet started to commit. 
The implementation of these routines were deferred until the routines that support action events 
were in a stable state. 

The work in the segment system has been in two areas (with much overlap between them): 
virtual memory support and action event support. In addition, the routines for creating and 
removing segments were tested. The collection of the routines described below form the high 
level interface of the storage management system. to the rest of the kernel. 

Virtual memory support is provided in two set of operations. First there are the read and 
write segment block routines. These operations provide for the transfer of page-sized blocks of 
data between the physical memory on the VAXen and disk storage. These routines provide the 
page-in and page-out facilities for the virtual memory page-fault mechanism. Mappings 
between the virtual memory pages of a segment and the disk images of the segment are 
maintained by these routines. We have also placed some support for the action action 
management system in these routines, as the write routine will maintain several versions of 
recoverable pages on disk. 
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Support for providing mappings of segment data into virtual memory is found in the map 
window routines and the segment activate routines. A segment on disk is activated by creating 
an entry for it in the active segment table and initializing the entry with some basic data about 
the segment such as its size and type. After the segment is activated, portions of the segment 
can be mapped into virtual memory by creating the appropriate window descriptors. Each 
window descriptor describes the location, size, and characteristics of the segment portion 
(window) that is being mapped. The active segment table entry maintains the physical page 
mappings and disk mappings for the segment. 

The segment system supports both segments which have permanent disk images (objects) 
and volatile segments (heap storage for object operation mils), which do not. Both types are 
handled by the same mechanisms, although volatile segments are never activated by the segment 
activate routine; they are created on the fly by the map window routine. Routines also exist for 
the removal of windows and the modification of windows. 

Recovery of segment data is provided by two routines: a precommit routine and an end-of-
action routine. The end-of-action routine is responsible for performing both commits and aborts 
depending upon the flag passed to the routine. The precommit is responsible for phase one 
support of the two phase commit protocol. This routine is called by the action management 
system[icen1861 to examine recoverable segments touched by an action and to create shadow 
versions of the segments which were modified by the action. Precommit basically examines the 
page tables that map each segment to discover which pages are modified and then forms a 
minimal shadow on disk for that segment. The information used to create the shadow is stored 
in a descriptor in the active segment table entry for the segment. The end-of-action takes the 
information in the descriptor and uses the information to either commit the changes (the shadow 
becomes the new permanent version) or to abort the changes (the shadow is ignored and return 
to free storage). Both routines require special cases for objects which were created or deleted 
by the action. The code is present for the end-of-action routine, but the corresponding code 
must still be implemented in the precommit routine. 

The storage currently supports a working device driver for RLO2 removable pack device, 
which provides conventional i/o services plus support for flushing action requests to disk. 
Partition support is complete, providing partition creation and activation operations, i/o 
operations, directory lookup facilities, and a storage allocation mechanism. Currently, object 
and paging partitions are supported. Segment objects support is almost complete. Segments can 
be created and destroyed. Virtual memory mapping of segments is complete and integrated 
with mapping of objects. Work still needs to be done in aging segments from active status. 
Segment page fault handling on local segments is complete. Page fault handling for remote 
segments remains to be completed. Support for multiple virtual memory versions for action 
management is provided. The operations supporting the commit of action are as described 
above. 

4. Operating System Support for Reliable Distributed Computing 

The design of the Clouds kernel and the action management systems have been completed. 
The design work is progressing on some enhancements and application of the Clouds system. 

The two notable design projects are the fault tolerance enhancer and the distributed database 
system. A probe based monitoring system is being developed that will tie into the 
reconfiguration system and also incorporate duplicated actions to allow the Clouds system to 
have forward progress in case of failures and allow intelligent, automatic system health 
maintenance. 

4.1 Probes, Monitoring and Fault Tolerance 

The basic fault tolerance mechanism supported by Clouds is the action paradigm 
implemented by the action management system. The action paradigm ensures consistency of the 
computing environment in the face of failures. It is a backward recovery scheme. A failed 
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action causes an implicit rollback, and the action may not be able to execute until the fault has 
been rectified. This degree of fault tolerance can be improved by the usage of better techniques 
that allow the action to continue using alternate paths of execution. 

The key to improved fault tolerance lies in the implementation of a mechanism for the 
system to monitor itself. The monitoring can be at several levels, discussed later, but the basic 
components of the monitoring system are probes. 

Probes in Clouds are a form of emergency status enquiries, that can be sent from a process 
to an object or to another process. When a probe is sent to an object, the probe causes the 
invocation of a probe-procedure defined by default in the object. The probe procedure returns to 
the caller a status report of the object. This includes the status of the synchronization 
mechanisms, the actions currently executing in the object and other relevant information. 

The system monitoring subsystem consists of a process (daemon) that runs at each site 
(monitor). The monitor has a list of components that it needs to keep track of. The list is has a 
static part and a dynamic part. The static part contains capabilities to various critical system 
components (network drivers, disk drivers, schedulers, action management system and so on). 
The dynamic part consists of capabilities to user defined objects and actions that the user 
expressly records with the monitor, for tasks that require a high degree of fault tolerance. 

The monitor at one site has a logical backup, that is a monitor at another site. The various 
monitors act as primaries for the site it runs on and doubles as a backup for a remote monitor. 
This allows the distributed system to detect site failures and network partitions. 

The monitor periodically probes all the components in its list. The status of these 
components are stored in a fully replicated database. This database has the same structure and 
properties as the database used to locate Clouds objects, i.e. it is highly available, but may not 
be consistent at all sites, or may contain out of date data. The inconsistency of the database does 
not cause major disruptions in service. The data in the database are used by various system 
services and the reconfiguration system. 

4.2 Object Based Distributed Database 

A distributed database system, under design as of present is using the object paradigm built 
into the Clouds system, to build a sophisticated, flexible distributed database that supports 
consistency, availability, failure tolerance and replication. 

One of the notable differences in structure between conventional database systems and a 
system supported by Clouds is the storage mechanism. Instead of files, we have a more 
powerful construct namely objects. In the following sections we describe how to implement a 
database system, using the object paradigm. Subsequently we discuss approaches to implement 
concurrency control and transaction commit for the database objects and transactions under the 
Clouds environment. We also provide insights into the effective management of the distributed 
database and how to provide support for data replication (the Clouds kernel does not support 
replication). 

Virtually any kind of database system can be supported in the object based architecture. 
However to avoid getting into all the design approaches for various data modeling paradigms, 
we choose to discuss the most popular database model, the relational database model. The 
approaches for implementing other models would be different, but can be derived from the 
basic ideas in our design. 

The basic building blocks in a relational database are relations and the relational operators 
that access the relations. At a slightly lower level are the access mechanisms used for fast access 
to individual or groups of tuples in the relational tables using key searching, indexing or hashing 
techniques. 

The obvious way to implement an object-based relational database system is to use a relation 
per object scheme. An object holds all the data of the relation and contains the access 
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mechanisms to access the data. Thus the object defines operators that do key lookups, 
projections, tuple insertions, tuple deletions range queries and other such operations on the 
objects. A good feature of this approach is that the object can be encapsulated and be 
independent of any systemwide definition of structure or storage mechanisms. The internal 
structure of the object, that is the data organization (binary tree, B-tree, table unsorted), is not 
visible to the database system from outside and thus different relations can be organized in 
different ways and yet look functionally identical. The organization of each object could be 
tailored to the method that suites the data contained and the size of the object. The scheme of 
building a relational database by using relational objects, fragment handlers, access objects and 
multi-operator objects using Clouds has an interesting and important payoff. Distribution, 
concurrency control, recovery and transaction commit is automatic. 

All the objects used by our system uses the Clouds default synchronization and recovery 
services. This implies, all accesses to data in any object uses the 2-phase locking protocol. The 
locking granularity is an object. For this reason we chose to use the fragmentation scheme. As 
described above, the handlers, shared objects and relational operators, do not update local 
permanent data and hence are never exclusively locked, permitting uninhibited concurrent 
access. 

Clouds keeps track of each object touched by every transaction. The updates on these objects 
are made on shadow versions, and the permanent versions are not updated. When a transaction 
commits, all the object it touched are committed, that is the shadows are written to permanent 
storage and all locks are released. The commit uses a 2-phase commit strategy to ensure that 
site failures and network partitions do not give rise to inconsistent versions. 

If a transaction aborts all updates are also cleaned up, by discarding the shadow versions. It 
is interesting to note that Clouds keeps only one shadow version for every object in use, that is, 
if several transactions are in the process of updating the same object, they would work on the 
same in-core version of the object. In this case if one transaction commits, it will cause the 
uncommitted updates of another transaction to be flushed to permanent storage. This scheme 
causes errors if the objects are recoverable but not synchronized. In our design, this situation 
cannot arise, as we use synchronized objects, and more than one transaction cannot update the 
same object concurrently. 

The distributed database also support fragmentation of relations for efficient access as well 
as finer lock granularities. Replication is supported for higher availability. Fault tolerance is 
supported by the Clouds system and the monitoring scheme outlined above. The design is 
conceptually simple and yet quite general and powerful. 
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ABSTRACT 

The goal of the Clouds project at Georgia Tech is the implementation of a fault-
tolerant distributed operating system based on the notions of objects, actions., and 
processes, which will provide an environment for the construction of reliable 
applications. The Aeolus programming language developed from the need for an 
implementation language for those portions of the Clouds system above the kernel 
level. Aeolus has evolved with these purposes: 

• to provide the power needed for systems programming without sacrificing 
readability or maintainability; 

• to provide abstractions of the Clouds notions of objects, actions, and processes as 
features within the language; 

• to provide access to the recoverability and synchronization features of the Clouds 
system; and 

• to serve as a testbed for the study of programming methodologies for action-
object systems such as Clouds. 

In this paper, the features provided by the language for the support of readability 
and maintainability in systems programming are described briefly, as is the rationale 
underlying their design. Considerably more detail is devoted to features provided 
for support of object and action programming. Finally, an example making use of 
advanced features for action programming is presented, and the current status of the 
language and its use in the Clouds project is described. 
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1. Introduction 
The goal of the Clouds project at Georgia TeCh[Alla2, Allc83 , Allc83a] is the implementation of 

a fault-tolerant distributed operating system based on the notions of objects, actions, and 
processes, which will provide an environment for the construction of reliable applications. The 
Aeolus'. programming language developed from the need for an implementation language for 
those portions of the Clouds system above the kernel level. Aeolus has evolved with these 
purposes: 

• to provide the power needed for systems programming without sacrificing readability or 
maintainability; 

• to provide abstractions of the Clouds notions of objects, actions, and processes as features 
within the language; 

• to provide access to the recoverability and synchronization features of the Clouds system; 
and 

• to serve as a testbed for the study of programming methodologies for action-object systems 
such as Clouds. [LeB185, Wilk86] 

The intended users of Aeolus are systems programmers working on servers for the Clouds 
system. Clouds provides powerful features for the efficient support of resilient objects where 
the semantics of the object are taken into account; it is assumed that the intended users have the 
necessary skills to make use of these features. Thus, although support for the automatic 
recovery and synchronization features of Clouds is available, we have avoided providing very-
high-level features for programming resilient objects in the language, with the intention of 
evolving designs for such features out of our experience with programming in Aeolus. These 
features will then be incorporated into an applications language for the Clouds system, which 
should allow programmers unskilled in fault-tolerant programming to write resilient objects. 

Aeolus has its roots in a long line of structured programming languages, including Simula, 
Pascal, Modula-2, and Adams. Thus, many of its features should be easy to understand for 
those familiar with one of these languages, and little space will be devoted here to discussion of 
such features; a description of the complete language is available in the Reference 
Manual.[wilk85] Syntax and examples will be provided here only for those features of Aeolus 
which differ significantly from those of its predecessors, although the programming example 
discussed in section 6 should provide a feel for the flavor of the language. 

1. Aeolus was the king of the winds in Greek mythology. 
Ma is a registered trademark of the U.S. Government—Ma Joint Program Office. 
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An overview of the Clouds system from the point of view of Aeolus has been provided in a 
previous paper.[Le13185] Briefly, the main structuring features of Aeolus (as of the Clouds 
system) are objects, actions, and processes. Clouds supports the object concept as a convenient 
structuring principle for facilitating recovery and synchronization. Besides supporting the 
Clouds object concept, Aeolus also allows the programmer to use the object features of the 
language for the specification of abstract data types, without necessarily invoking the object and 
action management features of the Clouds system. Thus, Aeolus objects provide a separate 
compilation facility as well as access to the object support of Clouds; the separation of object 
specifications into definition and implementation parts (much as are modules in Modula-2 or 
packages in Ada) provides a safe interface to separately-compiled objects, as well as facilitating 
the design of large systems consisting of many objects (possibly implemented by several people) 
or the use of predefined objects. Aeolus pseudo-objects provide a means of isolating system 
dependencies such as input/output or low-level machine architecture—into object-lice modules 
which provide operations facilitating machine-level programming. 

The Clouds notion of actions corresponds roughly to the transaction concept of distributed 
database work, providing an "all-or-nothing" assurance of atomic execution. Support of actions 
in Aeolus is fairly low-level. Essentially, means are provided for specifying that an operation 
(procedure) of an object may be invoked as an action, or that an operation invocation is to be 
executed as a (toplevel or nested) action. Also, the status of action executions may be checked 
by means of calls to a Clouds action manager. 

The process concept in Aeolus corresponds roughly to the program construct of Pascal or 
Modula-2. That is, a process ties together the constituent parts (objects) of a programmed 
system, and the invocation of a process provides activity in the Clouds system, since Clouds 
objects are passive. 

In this paper, the features provided by the language for the support of readable, 
maintainable systems programs are described briefly, as is the rationale underlying their design. 
Considerably more space is devoted to the detailed description of features provided for the 
support of object and action programming. Finally, an example making use of advanced 
features for action programming is presented, and the current status of the language and its use 
in the Clouds project is described. 

2. Support for Systems Programming 

In this section, those features of Aeolus which are provided for the support of readable, 
maintainable systems programs, and which are not directly related to the support of 
action/object programming, are described briefly. These include structured types for access to 
low-level data representation, expression and statement constructs necessary for doing systems 
programming in a concurrent environment, and the typing mechanism. 

2.1 Access to Law-Level Data Representation 

Aeolus provides a wide range of traditional type classes. These include type names (the 
names of previously-declared types, including object types), and anonymous types (including 
enumerations, pointer types, structured types, and locks). Of interest here are those structured 
types providing access to the low-level representation of data, as is often required in systems 
programming, and those constructs providing support for synchronization in a concurrent 
environment. 

Aeolus provides the traditional structured types, such as arrays, records, and sets. All types 
in Aeolus may be parameterized (see below); for example, the parameterized record type in 
Aeolus is similar in concept to the discriminated record type of Ada. The extension of 
parameterization to other types allows type constraints to be expressed in terms of parameters, 
and allows parameterized array types to be declared without the necessity of embedding them in 
record types. The parameterized array construct indirectly provides support for arrays with a 
flexible number of elements (so-called "dynamic" arrays); these may be simulated by using 

April 17, 1986 
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pointers to parameterized arrays. Two important parameterized array types provided by the 
Aeolus implementation are strings and bitstrings. The string type allows convenient 
manipulation of character sequences. The bitstring, on the other hand, provides the most 
primitive structured abstraction of data, that of simply a sequence of bits: 

type bitstring( length : unsigned ) Is array [ unsigned[ 1..length ]] of bit 

The length constraint of the bitstring (in bits) is indicated by the value of the parameter 
"length." For example: 

type nybble is bitstring( 4 ) 

Each "system" object2  provides declarations of several useful bitstring types. These types 
are referred to collectively as the storage classes, since they define the units of storage 
supported by the hardware of most computer systems: types bit, byte, word, longwoni, and 
quadword, with lengths BITS1ZE, BYTESIZE, WORDSIZE, LONGWORDSIZE, and 
QUADWORDSIZE, respectively. 

Another important bitstring type, address, is also defined by the "system" object. The 
address type is defined as bitstring(ADDRESSSIZE). The relationship between address types and 
pointer types is discussed below. 

Several operations are provided for manipulation of bitstring data, including bitwise Boolean 
operations and shift operators. Access to individual bits of a bitstring is, of course, through 
array index operations. The provision of a true bitstring type addresses a lack experienced by 
users of both the Ada and C languages.[Evan 841 

Another structured type providing access to low-level data representation is the structure, a 
special case of a record construct somewhat similar to the packed record construct of Pascal or 
the packed pragma as applied to the record construct (with representation specification) in Ada. 
The declaration of a structure type specifies the storage class which the structure will fit. A 
field in a structure typically represents a bitstring or scalar; the fields are packed together 
consecutively within an object of the specified storage class (without implicit padding), with the 
first field specified starting at the most significant bit position in the storage class. The compiler 
checks that the fields declared for the structure together fit into the specified storage class. 

2.2 Constructs Supporting Synchronization 

Features provided by Aeolus for the support of synchronization and mutual exclusion in a 
concurrent environment include the lock construct, the region construct, and the shared type 
attribute. 

A lock type may be used to declare variables which in turn may be used to implement 
locking protocols on particular values in some domain. 3  A lock declaration includes the 
specification of a compatibility list, which defines, for a given made of the lock, which other 
modes are compatible with that mode. 4  The presence of an identifier in a compatibility list 
serves as a declaration of that identifier as a mode of the lock type; the modes of a lock type 

2. There exists a "system" pseudo-object for each computer system for which the Aeolus compiler is implemented. 
(At present, the "system" objects include VAX_System and PC_System, for the DEC VAX 11/780 and the Intel 
8086-8088-80286 families of computers, respectively.) Each such object defines system-dependent constants, types, 
and operations required for systems programming The appropriate object (determined by target code generation 
and controllable by compiler option) is imported implicitly by every cotnpiland. 

3. Note that a lock is obtained for a value of an object, and not on the object itself. Thus, for instance, a lock may be 
obtained on a file name even if that file does not yet exist. The lock structure is directly supported by the Clouds 
architecture. 

4. A lock may be set with a specified mode only if other modes already set, if any, are compatible with that mode. 
Thus, a process adhering to a protocol using that lock may wish to block until the requested mode is available. 
Operations are provided by object standard for testing, setting, and releasing locks. 

April 17, 1986 
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may together be thought of as an enumeration. An empty compatibility list indicates that the 
given mode is incompatible with all other modes. 

The lock declaration may also specify the domain of values which may be locked. If the 
domain specification is omitted, a simple lock (i.e., one which does not lock over any particular 
domain) is assumed. For example: 

type simpleJock Is lock ( busy : a 

typo fileJock Is lock ( read : [read] , 
write : p 	) domain Is string( 20 ) 

The declaration of "simplejock" above defines a lock type with a single mode "busy" which is 
incompatible with itself; thus, only one client may set a lock variable of type "simplejock" at 
any one time. The declaration of "filejock," on the other hand, defines a lock type over the 
domain of strings of length 20. Clients may set a lock variable of type "file_lock" on a given 
string with modes "read" or "write." The "read" mode is specified as being compatible with 
other settings of "read" mode; the "write" mode is incompatible with itself and with "read" 
mode. Thus, a client may set the lock with "read" mode on a given string even if several other 
clients have outstanding settings of the lock with "read" mode on that string; however, a client 
wishing to set the lock with "write" mode on a given string must wait for all outstanding settings 
of "read" mode on that string to be released. 

All locks obtained during execution in the environment of an action (see section 4) are 
retained and propagated to the ancestor of that action upon committal unless explicitly released. 
Locks obtained under an action are released if the action aborts or successfully performs a 
toplevel commit. A lock is available to be granted under an action even if conflicting locks are 

. held under one or more of the ancestors of that action, but not if conflicting locks are held under 
an action which is not an ancestor of that action. 

The * power of the Aeolus/Clouds lock construct in supporting user-defined synchronization 
lies in the specification of arbitrary locking modes, and arbitrary compatibilities between those 
modes, as well as the dissociation of locks from the locked data. To support mutual exclusion, 
Aeolus provides a critical region construct, access to which is controlled by association of the 
region with a designator for a shared variable. The shared variable is associated with a 
semaphore, yielding the familiar semantics of critical regions. In Aeolus, any type may have 
the attribute shared, which is inherited by any types of which the shared type is an element. In 
particular, Aeolus arrays may consist of shared elements; thus, the granularity of mutual 
exclusion may be tailored to achieve higher concurrency. 

2.3 Type Compatibility and Conversion in Aeolus 
The principal goal in the design of the Aeolus typing mechanism was the provision of strong 

typing where possible, but also the provision of escapes from strong typing where the special 
demands of systems programming required. Another concern which affected the design of 
these mechanisms was that programs be readable and maintainable by members of a fairly 
rapidly-changing research group. Thus, the desirability of brevity of notation was felt to be 
subordinate to that of rapid comprehension of code by readers (including the original authors of 
the code). Code must be entered only once; it must be read and understood possibly many 
times. Thus, we attempted to make the typing mechanism as simple as possible, simplifying the 
tasks both of the compiler and of the reader, who must otherwise remember numerous 
compatibility and implicit conversion rules, increasing the possibility of misunderstanding or 
confusion. 

The operands of a binary operation in Aeolus are said to be compatible if they are of the 
same type, that is, if the types of the operand are equivalent. Type equivalence in Aeolus is by 
name. 
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As in Ada, a constraint which is associated with a scalar type (by way of a constraint 
specification in the type's declaration, or via a constraint declaration) is not considered part of 
that type, but rather is an attribute which is given to a member of that type. 5  Thus, a 
constrained member is compatible with a member -which has the same type but a different (or 
no) constraint. 

Types may be parameterized, that is, some of the attributes of a type may depend on the 
values of formal type parameters. (Object types may also be parameterized; see section 3.) In 
contrast to constraints, the parameters of a type as specified in the declaration of that type are, 
in general, considered to be a part of that type. The exception is when the specification of these 
parameters is delayed (via an empty actual type parameter option). (A member of a type with 
delayed parameterization is sometimes said to be associated with a delayed constraint.) A type 
with delayed parameterization is compatible with all possible parameterizations of that type. 
Types with delayed parameterization, when used as the types of formal procedure parameters, 
make possible generic operations on structured types such as arrays; and when used as pointer 
base types, allow the definition of pointers to arrays with flexible sizes. 

The requirement for strict name equivalence of types is relaxed somewhat in the case of 
array slices, since slices, by their nature, cannot be associated with a named type. Rather, a 
slice is similar to a member of an unconstrained array type, any type parameter values of which 
are derived from the slice bounds, and which takes on as its base type the base type of the 
named type of the array from which the slice was derived. An array slice with n elements is 
compatible with any array or array slice with n elements and a compatible element type. Also, 
a slice of one element is compatible with any variable of a type compatible with the element 
type of the slice. Note that this implies the following correspondences: 

bit < = > bitstringslice[1..1] < = > bitstring( 1) 
char < = > 	stringslice[1.. 1] 	< = > string(1) 

Thus, bit is compatible with array [ integer[ 1..1 ] ] of bit; char is compatible with 
array [ integer[ 1..1 ] ] of char; and, in general, type t is compatible with an array of one 
element of element type t. 

In the interest of keeping the implementation effort for Aeolus within reasonable bounds, it 
was decided not to provide facilities for the specification of overloading of user-defined 
operations in the current language. However, certain overloadings are available on predefined 
operators. In keeping with the goal of simplicity in the typing mechanism as stated above, the 
overloading of a binary operator is available only for operands which are compatible according 
to the definitions stated above. As seen from another point of view, this means that Aeolus 
does not perform implicit conversions. However, it is sometimes desirable to perform 
operations on operands of differing types. Thus, Aeolus provides the programmer with 
powerful means of explicit type conversion. Explicit type conversion functions are defined 
between members of closely related types within certain limitations.[Wilk 85] In general, the name 
of a type may be used as the name of a conversion function; this type is the target type of the 
conversion. 

Explicit conversions are allowed between types one of which is derived from the other 
(derived types), between different numeric types, between enumeration and numeric types, 
from an enumeration type to a string type, and between array types each of which meets 
conditions similar to those sperified by Ada. Also, conversion is allowed (in both directions) 
between a type which is a bitstring type and any type with the same size (in bits) as the source 

5. Constraints are used for range checking (if enabled) and for determining the sizes of structures, not for type 
checking. 
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type. In particular, conversions may be made between any array, record, or structure type and 
a bitstring type or array of bitstring type (e.g., array of byte or word) with the same size. 
Thus, access may be obtained to the bit representation of data in an explicit manner. Also, 
conversion is allowed from any pointer type to type address. In the other direction, conversion 
is allowed from type address to any pointer type; however, the result of such a conversion may 
be used only for dereferences, and may not be assigned to a pointer variable. Values may be 
assigned to address variables directly, by conversion from a pointer type, or via the addr 
operation, which yields the storage address of a static or dynamic data item; a value may be 
assigned to a pointer variable only by use of an allocator, or via assignment from another 
variable of the same pointer type. Thus, a safe (although restrictive) pointer mechanism is 
maintained separately from a permissive mechanism permitting address computations when 
necessary. 

Finally, Aeolus provides a less restrictive (and less safe) means of type conversion in 
addition to the explicit (checked) conversion functions described above; the retype function is 
similar in spirit to the unchecked conversicrt function of Ada. Of course, unchecked conversion 
may be used to convert addresses to any pointer type, thus violating the safety of the pointer 
mechanism. The intent of the retype function is to make such "end runs" around the typing 
mechanism obvious to the reader of the code, and when used with restraint and care it makes 
possible the sort of generic bookkeeping activity necessary in systems programming (e.g., 
memory allocation routines). 

3. Support for Objects 

The object construct provides support for data abstraction in Aeolus. A collection of related 
data items may be encapsulated within an object, which also may provide operations (procedures 
that operate) on the data. The only access to the data of an object is via these operations; thus, 
an object can strictly control manipulation of its encapsulated data, helping guarantee the 
invariants of the abstraction. 

The object concept is supported at the lowest levels of the Clouds kernel; hence, we feel 
justified in using the term "object" to describe the data-abstraction facility of Aeolus, since an 
Aeolus/Clouds object has a real existence in the system. However, Aeolus does not provide a 
sophisticated inheritance mechanism such as that available in Smalltalk, nor does it provide for 
dynamic typing of objects. Aeolus provides a simple class mechanism in the object type 
described below; all instances of an object type inherit all operations (and other definitions) of 
that type. It was felt that, although an inheritance mechanism providing differential sharing of 
object operations would be useful, the support for such a mechanism should be left to higher-
level portions of the system in order to keep the kernel as simple as possible; thus, inheritance 
will be among the features to be included in the language design to be evolved from our 
experience with Aeolus, as mentioned in the Introduction. Also, communication between 
objects in Aeolus is based on direct operation invocation rather than on message-passing, 
reflecting the fact that Clouds is not a message-passing system, but uses remote procedure call 
to support distributed computation. Hence, Aeolus is not strictly an object-oriented language in 
the sense of Rentsch.[Rent82] However, it provides access to an object concept supported 
throughout the Clouds system. The applications language to be based on our experience with 
Aeolus will likely come closer to the concept of "object-oriented language" in the strict sense. 

An Aeolus object may have parameters indicating, for instance, sizes or element types of the 
abstraction implemented by the object; thus, an object implementing, for instance, a bounded 
stack abstraction may be parameterized by the element type and maximum number of elements 
of the stack. Then, various instances of the bounded stack object may be created (instantiated) 
with differing element types and sizes; the implementation of the object need not be concerned 
with details such as the element representation, and the programmer does not need to create 
new object types for each combination of element type and stack size. Support for such generic 
objects increases the level of abstraction available to the programmer, and makes possible the 
creation of libraries of reusable object types, in a spirit similar to that of the generic package 
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construct of Ada. 

The object construct also provides a safe separate compilation mechanism. The separation of 
an object specification into a definition part and an implementation part allows checking across 
the interface to an object, as well as allowing the use of an object definition before the 
corresponding implementation part is finished (thus facilitating top-down design). 

3.1 Object Definition Parts 

The definition part of an object defines the interface of the object with other compilands. It 
specifies the attributes of the object itself as well as the constants, types, and operations which 
the object provides to other objects and to processes. (Note that variables may not be declared 
in object definition parts; it was felt that the sharing of variables between objects was not in 
accord with the principle of data encapsulation embodied by the object construct, which requires 
that all access to object data be through operations on the object.) The declaration of the object 
name in the header of the object definition defines a type, called an object type, with that name, 
which may be used in the declaration of variables to hold capabilities to instances of that object 
type (see below). An example of an object definition part is included in the Appendix. 

Specification of the autosynch keyword in an object definition header causes code to be 
generated for automatic synchronization of object operation invocations based on programmer-
supplied indications of operation effects (see below). This mechanism provides a simple 
read/write locking protocol; it may be used with any object class (see below). 6  

The object class is also specified in the object definition header. The object classes fall into 
two groups: the non-Clouds object classes (pseudo and local) do not use any of the Clouds 
facilities for action or object management, and are thus similar to modules in Modula-2 (for 
pseudo-objects) or to generic packages in Ada (for local objects), while the so-called Clouds 
object classes (nonrecoverable, recoverable, and autorecoverable) may make use of the object 
management facilities and (for recoverable and autorecoverable types) the action management 
facilities. Thus, the rationale behind the non-Clouds object classes is the same as that 
underlying the design of the corresponding features in Ada or Modula-2, that is, the provision 
of data-abstraction facilities usable "locally" (without resorting to operating system facilities). 
On the other hand, the Clouds object classes provide access to the support for data abstraction 
provided by the Clouds system when the expense of that support is warranted; the separate 
classes of Clouds object allow the programmer to specify the degree of support (and of incurred 
expense) required. The definitions of the object classes are as follows: 

non-Clouds object classes: 

pseudo (or pseudo-local) There may exist only one instance of a given pseudo-object type. 
This class of objects is used mainly for definition of system libraries, for interfacing 
with (separately-compiled) collections of procedures written in another programming 
language, for abstraction of machine and system dependencies, and as a basic 
separate-compilation mechanism. 

local The standard class of non-Clouds object, which may have multiple instances. 
Management of local objects is provided by the Aeolus runtime system. Unlike Clouds 
objects, a local object -  may have no existence independent of the process or object 
which created it. Local objects simulate Clouds objects without incurring the expense 
of the use of the action and object management facilities. 

6. For more information on the mechanisms supplied by the Clouds system to support synchronization and recovery, 
see Allchin's dissertation.[ 	11 ] 
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Clouds object classes: 

nonrecoverable The basic class of Clouds object. Objects of class nonrecoverable make use 
of the object management facilities, but may not contain features requiring 
action management, such as recoverable areas, permanent and per-action 
variables, or action event handlers (see section 4). 

recoverable 	The "roll-your-own recovery" type of Clouds object, as opposed to the 
autorecoverable class of objects (described below), which provides 
completely automatic recovery. In some cases, the programmer may be able 
to use knowledge of the semantics of the object and its operations to program 
synchronization and recovery mechanisms more efficient than the automatic 
mechanisms supplied by the autorecoverable class of objects. Automatic 
recovery involves checkpointing of the entire object state; automatic 
synchronization is based on a simple read-write model of operation 
interactions on entire operations. As will be discussed in section 4, Aeolus 
provides facilities that allow the programmer to specify which parts of the 
object state are to be checkpointed (recoverable areas), to access information 
about the states of actions and to change these states (via operations on the 
action manager), and to control the recovery process by specification of what 
is to be done during action events (action event handlers); also, the 
programmer may specify finer-grained locking mechanisms for greater 
control of synchronization (via the lock type; see section 2). Only 
recoverable objects may contain recoverable area specifications and action 
event handler specifications. 

autorecoverable As mentioned above, autorecoverable objects provide completely automatic 
recovery. The entire object state (the global variables of the object) is 
recoverable, and the default event handlers are used. 

Operations on objects of class recoverable or autorecoverable may be executed only within an 
action environment (see section 4). An instance of an object (other than of class pseudo) is 
created by use of an allocator, a construct also used for allocation of pointer values (and similar 
to that used for allocating "access objects" [pointers] in Ada). This underscores the similarity in 
treatment between object capabilities and pointers, in particular, the processes of creation, 
initialization, and deletion (disposal), as well as their use as elements in lists and other 
structures and as parameters to objects and object operations. The values of any object 
parameters must be specified by using a constructor in the allocator. The allocator yields a 
capability to the newly-created object instance, which may be assigned to a variable of that 
object type. The variable may thereafter be used to qualify operation invocations on that object 
instance. The init object event handler (see below) for the object is executed during the 
instantiation process, as are any variable initializations required by the object. 

The definition part also performs any necessary imports of other object definitions before 
the declarations of the object definition are given. These are called its visible declarations since 
the declarations are available to any object which imports the object definition. As stated 
above, the visible declarations of an object may include specifications of constants, types, or 
operations, but not of variables. Finally, specifications of the object's operations are provided. 
An operation specification may optionally be given one of the attributes examines or modifies, 
which indicate that the operation reads from or writes to the object's state, respectively. This 
information is used by the compiler to generate automatic read or write locking for each 
operation if the autosynch attribute is specified for the object. If no operation effect is specified, 
the compiler assumes that the operation neither reads nor modifies the object state, and thus no 
automatic locking would be done for that operation. The autosynch feature thus provides 
automatic synchronization according to a simple multiple read.ers/single writer protocol. An 
object operation (or other procedure) meeting certain conditions[wilk 851 may also be given the 
inline attribute, indicating that inline code expansion of the operation is desired; thus, the use of 
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operations to access portions of encapsulated data is made more efficient. We have found in 
our experience that when complicated data structures are encapsulated (such as compiler type 
attribute records), the number of operations which exist merely to provide controlled access to 
small portions of the hidden data structure becomes very large; the efficient support of such 
operations thus becomes important to encourage the use of encapsulation. 

3.2 Object Implementation Parts 

The implementation part of an object provides the actual code for the operations of the 
object, as well as the definitions of any private constants, types, variables, or procedures needed 
by the object. (An example of an object implementation part is provided in the Appendix.) 
These definitions are, of course, hidden from other compilands; only those definitions specified 
in the object definition part are available outside the implementation part. This supports the 
hiding of encapsulated data required by the data-abstraction feature, and is similar in concept to 
Ada package and Modula-2 module implementations. 

The definition part of the object being implemented is implicitly imported by the 
implementation part; also, any objects imported by the definition part are available in the 
implementation part. The implementation part may import other objects as well via its own 
import clauses. All constants, type definitions, and operations declared in the objects made 
available by any of these methods are visible in the implementation part; also, the names of 
these imported object types may be used as the types of variables declared in the 
implementation part. Such variables must be initialized by use of an allocator. 

Variables declared in the outer level of the block of the object implementation part are 
global to the object, and are static ("own") variables; that is, the values of such variables 
survive between calls to the object's operations. The global variables of an object are called 
collectively the object's state. In an object of class recoverable, part of the object state may be 
specified to be in a recoverable area; also, the programmer may specify an action events part 
and/or a per-action variables part. Recoverable areas, action events, and per-action variables 
are described in section 4. 

In order to allow the object to participate in its own creation and deletion, an object 
implementation part contains specifications of handlers for the 'so-called abject events. The 
object events include the init or object initialization event, the handler for which is executed 
whenever an instance of the object is created by use of an allocator; the remit or object 
reinitialization event, the handler for which is executed—if the object has registered its desire 
for reinitialization with the action manager—when the system is reinitialized after a crash or 
network partition; and the delete or object deletion event, the handler for which is executed 
when the object instance is destroyed. No default handler for the init object event is assumed; if 
no action is desired for the ink event, the programmer must supply a NULL statement as the 
handler body. The intent is to help prevent the accidental omission of object state initialization 
by the programmer. If no handler for the remit object event is specified, the handler is by 
default the same as that specified for the init event. If no handler for the delete object event is 
specified, it is assumed to be NULL. 

3.3 Object Operation Invocations 

An invocation of an object operation looks much lice a procedure invocation, except that, 
outside the implementation part of the object itself, an operation name must be qualified by the 
name of a variable representing an instance of that object type (or, for pseudo-objects, by the 
name of the object type itself). Thus, for an instance of a bounded-stack type, we may have 

stackjnstance@push( elem ) 

When an object invokes one of its own operations, however, the usual procedure call syntax is 
used. 

Invocations of pseudo-object and local object operations have semantics essentially similar to 
those of calls to procedures local to a compiland. The situation is different for operations 
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declared in objects which use the Clouds object-management facilities (i.e., the so-called 
"Clouds objects"). 7  Invocations of operations on Clouds objects are handled by the compiler 
through operations on the Clouds object manager on the machine on which the invoking code is 
running. The Clouds object on which the operation is being invoked need not be located on the 
same machine as the invoking code; the object manager then makes a remote procedure call 
(RPC) to the object manager on the machine on which the called object resides. The 
location—local or remote—of the object being operated upon, however, need not concern the 
programmer, as the RPC process is transparent above the object-management level. 

4. Support for Actions 

The action concept provides an abstraction of the idea of work in the Clouds system; an 
action represents a unit of work. Actions provide failure atomicity, that is, they display "all-or-
nothing" behavior: an action either runs to completion and commits its results, or, if some 
failure prevents completion, it aborts and its effects are cancelled as if the action had never 
executed. The rationale for the action concept and the mechanisms supporting it in the Clouds 
system are described in Allchin's dissertation;[ 83a] the design for the implementation of these 
mechanisms is described in Kenley's theSiS.Xe1861 

Support for actions in the Aeolus language is relatively low-level. The methodology of 
programming with actions is not at present well-understood compared with experience in 
programming with objects; thus, rather than providing high-level syntactical abstractions such as 
those available for object programming, Aeolus allows access to the full power and detail of the 
Clouds system facilities for action management. The major syntactic support provided by 
Aeolus for action programming is in the programming of action events, recoverable areas, 
permanent and per-action variables, and action invocations. 

4.1 Action Events 

At several points during the execution of an action, the action interacts with the action 
manager of the Clouds system to manage the states of objects touched by that action, including 
writing those states to permanent (stable or safe) storage, and recovering previous permanent 
states upon failure of an action. Thus, failure atomicity may be provided by the action 
management system. The action events include: 

event name 

BOA 
toplevel_precommit 

nested_precommit 
commit 

abort 

purpose 

beginning of action 
prepare for commit for a toplevel action 
prepare for commit for a nested action 
normal end of action (EOA) 
abnormal end of action 

The interactions with the Clouds action manager necessary when such events take place are done 
by default procedures supplied by the Aeolus compiler and runtime system; these procedures 
are called action event handlers. When an action event occurs for a particular action, the action 
manager(s) involved invoke the event handlers for each object touched by that action. 

As was described in section 3, by use of the autorecoverable class of object, the programmer 
may take advantage of the recovery facilities of the Clouds system by having the compiler 
generate the necessary code automatically. This automatic recovery mechanism requires 

7. This is because the code for pseudo-objects and for local objects is actually linked into the code of the compiling 
using these objects, whereas the axle for Clouds objects is physically separate from the code of the invoking 
compiland This code is paged in on demand by the object manager; see Allchin's dissertation.[Alla 3al 
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checkpoints of the entire state of the object, and uses the default action event handlers. 
However, it is sometimes possible for the programmer to improve the performance of object 
recovery by providing one or more object-specific event handlers which make use of the 
programmer's knowledge of the object's semantics; these programmer-supplied event handlers 
then replace the respective default event handlers for that object. Thus, if object class keyword 
recoverable is specified in the definition header of the object being implemented, the 
programmer may give an optional action event part in the object's implementation part. 
Following the keywords action events, the programmer lists the name of each action event 
handler provided by the object implementation as well as the name of the action event whose 
default handler the specified handler is to override. Thus, for example, the specification (say, 
in an object implementing a bounded-stack abstraction): 

action events 
stack_BOA overrides BOA, 
stack_nested_precommit overrides nested_precommit 

indicates that the default handlers for the BOA and nested_preco ► mit action events are to be 
replaced by the procedures named "stack_BOA" and "stack_nested_preconunit," respectively, 
for the bounded-stack object type only. 

4.2 Recoverable Areas 

As mentioned in section 3, if an object being implemented is of class recoverable, then some 
of its variables may be declared in a recoverable area. The state of a recoverable area which 
has been touched by an action is maintained on a version stack by a Clouds action manager, and 
is saved to permanent storage upon commit of the action which touched it. If an action which 
touched a recoverable area is aborted, the version of that area which existed before the action 
touched it is restored. 8  Thus, the use of recoverable areas allows the programmer to provide 
finer granularity in the specification of that part of the object state which must be checkpointed, 
since the use of automatic recovery on object (the autorecoverable object class) performs 
checkpoints on the entire state of the object. 

The interaction with the action manager necessary to manage the states of recoverable areas 
is implemented by the action event handlers as described above. Again, the default event 
handlers may be overridden by programmer-supplied event handlers for the entire object to 
achieve better performance. 

4.3 Permanent and Per-Action Variables 

It may sometimes be desirable to make large data structures resilient. In such cases, the 
recoverable area mechanism may be inefficient, since it requires the creation of a new version 
of the entire recoverable area for each action which modifies the area. Often in such cases the 
programmer make take advantage of knowledge of the semantics of the data structure to 
efficiently program the recovery of the data structure. The Aeolus language provides two 
constructs which aid in the custom programming of data recovery, the so-called permanent and 
per-action variables, constructs proposed by McKendry.[McKe 85] 

Any type may be given the attribute permanent. This attribute indicates that members of 
that type are to be allocated on the permanent heap, a dynamic storage area in the object storage 
of each object instance. This area receives special treatment by the Clouds storage manager; in 
particular, it is shadow paged during the toplevel preconvnit action event. 9  Any type which has 

8. For more information on the semantics of recoverable areas and the mechanisms to support them, see Allchin's 
dissertation.[Ak83a1 

9. More information on the management of permanent heap storage is available in several papers on the Clouds system.[pitt85,Ken186.wi1166] 
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as its base or element type a type with the attribute permanent inherits that attribute. 
Permanent variables may be assigned values only within a toplevel preconvnit event handler. 

Aeolus also provides the per-action variable construct. An object implementation part of 
class recoverable may declare a single per-action variable section. A per-action specification 
resembles a recoverable area specification, and the semantics is also similar, in that each action 
which touches an object with per-action variables gets its own version of the variables; however, 
the programmer may access the per-action variables not only of the current action, but also of 
the parent of the current action. Also, per-action variables are allocated in volatile storage, that 
is, in storage the contents of which may be lost upon node failure. The variables in a per-action 
specification are accessed as if they were fields in a record described by the specification; two 
entities of this "record type" are implicitly declared: Self and Parent, which refer respectively 
to the per-action variables of the current action and its immediate ancestor. 

Permanent and per-action variables may be used together to simulate the effect of 
recoverable areas at a much lower cost in space per action. In general, the per-action variables 
are used to propagate changes to the resilient data structure up the action tree; these changes are 
then applied during the toplevel precanmit action event to the actual data structure in permanent 
storage. The use of permanent and per-action variables is shown more fully in the 
programming example shown in the Appendix (and described in section 6). 

4.4 Action Invocations 

The right-hand side of an assignment statement may take the form of an action invocation. 
Here, the right-hand side (which consists of an operation invocation which, if the operation is 
value-returning, is embedded in another assignment statement) is invoked as an action; the 
action ID of this action is assigned to the variable designated by the left-hand side of the action 
invocation. Thus, for example, if the bounded-stack object mentioned in section 3 were defined 
as a recoverable object, we might invoke one of its operations as an action: 

al D := action( stack_instance@push( 	) ) 

The action ID may be used as a parameter in operations on the action manager which provide 
information about the status of the action, cause a process to wait on the completion of an 
action, or explicitly cause an action to commit or abort.° The programmer may specify that an 
action be created as a "top-level" action, that is, as an action with no ancestors; a top-level 
action cannot be affected by an abort of any other action. Otherwise, the action is created as a 
"nested" action, that is, as a child (in the so-called action tree) of the action which created it; as 
described below, a nested action may be affected by an abort of one of its ancestors. 
Optionally, a timeout value may be specified; if the action has not committed by the expiration 
of this timeout, the action will be aborted. If no timeout value is specified, a system-defined 
default value is used. 

In Clouds, we distinguish between operations invoked as an action and operations executing 
in an action environment . 11  We say that an operation is executing in an action environment if that 
operation is invoked as a toplevel or nested action, or if the invoker of the operation is 
executing in an action environment. Thus, it is a sufficient, but not a necessary, condition that 
an operation be invoked as an action to be running in an action environment. Only an operation 
or internal procedure of a recoverable or autorecoverable object may be invoked as an action; 
however, all operation invocations on such objects must be executing in an action environment. 
Thus, operations of a non-Clouds object or of a nonrecoverable Clouds object may execute in an 
action environment, but may not be invoked as an action. All recoverable or autorecoverable 

10. The interface to the Clouds action manager is described in the Reference Manual. [will'251 
11. Some transaction systems require the creation of one or more nested actions to encapsulate every remote operation 

invocation. In Clouds, such encapsulation is not required, but is available at the programmer's option. 
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Clouds objects operations of which are invoked within the environment of an action are said to 
be touched by that action. 

The semantics of an action invocation is as follows: the action manager operation 
CreateActicn is invoked with the name of the operation'to be performed as well as the list of 
arguments to be passed to that operation.' 2  The action manager then invokes the BOA event 
handler on the object to which the operation belongs. Next, the action manager creates and 
dispatches a process in which the operation code runs. When an object is first touched by the 
action, the BOA handler of that object is invoked. An attempt by an operation invoked as an 
action to return to its caller is considered an implicit attempt to commit the action, and will cause 
control to transfer to the Commit operation of the action manager, which terminates the process 
and invokes the precommit event handler of each object touched by the action. (An explicit 
invocation of the Commit operation has the same effect.) If precommit of the object is 
successful, the action manager then invokes the commit event handler of each touched object. If 
the action (or one of its ancestors) invokes the Abort operation of the action manager, the action 
manager terminates the process corresponding to the action and invokes the abort event handler 
of each object touched by that action. 

It may sometimes occur that an object operation may be called either as an action invocation, 
or as an ordinary object operation invocation (even in an action environment). In the case that 
an operation is invoked normally (that is, not invoked as an action), an invocation of the action 
manager operation Commit by the operation will cause the action manager to merely return 
control to the point of invocation of the original operation; thus, in this case the Commit call is 
effectively a normal procedure return. On the other hand, an invocation of the Abort operation 
by an operation invoked normally will cause the parent action of the invoker of the original 
operation to abort. Aeolus does not provide an explicit exception-handling mechanism. This 
function is subsumed, for operations executing within an action environment, by the action 
event handling mechanism. However, in the case of operations not invoked as actions, a call to 
the Abort action manager operation—as described above—provides a mechanism similar to an 
exception-handling mechanism with a single exceptional condition (say, "error"). 

5. Support for Processes 

The final structuring feature of the Aeolus language provides an abstraction of the process 
concept of the Clouds system. (The process is analogous to the program construct of Pascal or 
Modula-2.) The invocation of a process provides activity in the Clouds system; processes may 
be considered the "glue" which binds object operations, and possibly actions, to do useful work. 

A process is introduced by a header which gives the name of the process, as well as clauses 
detailing any imports of object definitions necessary. Following any import clauses, the body 
(process block) of the process is specified; the statement part of this block is the entry point 
when the process is activated, and execution begins there after any necessary variable 
initializations of the process block have been performed. 

6. A Programming Example 

In this section, we discuss an example of systems programming using the constructs which 
Aeolus provides for access to the powerful features of the Clouds system for action and object 
programming. The text of the example object discussed here is provided in the Appendix. 

Since the use of a recoverable data structure requires the creation of a complete copy of the 
data structure on the version stack for each action which modifies the data structure, the 

12. The exact details of the manner in which this information is provided depends on whether the operation is a local 
procedure or a publicly-visible operation of the object to which it belongs. 
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implementation of a replicated object can become inefficient as the size of the data structure 
increases. Fortunately, we can use semantic knowledge about the object to simulate the effect 
of recoverable variables at a fraction of their cost. The technique which we use was proposed 
by McKendryimcice85] Essentially, rather than require that the system allocate a new version of 
a complete data structure for each new action, we make use of per-action variables (described in 
section 4) to maintain "change lists" for each action. These may be viewed as "intention lists" 
for operations such as insertion or deletion in a data structure. Since each action can access both 
its own recoverable variables and those of its parent, we may arrange to propagate the change 
lists of an action to its parent, usually by coding an event handler for the nested_precommit 
action event. (We may also wish to arrange to clean up after ourselves in an abort action event 
handler.) The actual modification of the data structure itself is delayed until the 
toplevel_precommit action event. In a handler for this event, we must arrange to perform the 
changes maintained in the change lists (say, insertions and deletions) on the actual data 
structure; the actual data structure is maintained in permanent storage. Note that the 
Aeolus/Clouds system enforces the restriction that data in permanent storage may only be 
modified at toplevel precommit; then, the Clouds storage management systengitts 51 assures the 
stability of permanent storage and the atomicity of changes to it. 

The use of this technique often requires the use of linked lists or similar data structures 
allocated in a heap in the permanent area of per-object storage. This permanent heap requires 
special run-time support for its management, which must maintain the heap's consistency across 
failures. 

In the example shown in the Appendix, we show a proposed design for the permanent heap 
manager. To maintain the consistency of the heap, this PERMHEAP object uses the same 
techniques which the permanent heap mechanism is designed to support, i.e., per-action 
variables and associated action-event handlers. In the implementation shown, the "free list" 
(i.e., the list of available blocks of permanent storage) is itself kept in permanent storage to 
ensure the resilience of the permanent heap structure. (Thus, the PERMHEAP object must 
actually be bootstrapped from a non-resilient version.) For the purposes of this example, we 
have written PERMHEAP as a recoverable object. In practice, the permanent heap support 
would be part of the runtime support code compiled into a recoverable object, rather than a 
separate object. 

The PERMHEAP object maintains lists of those blocks of the heap allocated and freed by 
each action, in per-action variables. Also, each action which allocates a block of storage obtains 
a lock on the value of the address of that block. (Blocks of storage are uniquely identified by 
their starting addresses.) The presence of a lock on a block of storage indicates that it has been 
allocated by some action which has not yet committed; since changes to the actual "free list" are 
not made until toplevel precommit of the action allocating storage, this lock is necessary to 
inform other actions that the block is probably unavailable. A call to the ALLOCATE 
operation of PERMHEAP will return the address of a block of memory in the permanent heap 
area of the object; the address of the block is also added to the ALLOCATED per-action list 
and is locked. If a block of memory was allocated by the action which is trying to free it, a call 
to PERMHEAP's FREE operation will remove that block from the ALLOCATED list and 
release the lock on its address, effectively causing the block to never have been allocated. If, on 
the other hand, the block was not allocated by the invoking action, the address of the block to be 
disposed is merely added to the FREED per-action list; actual disposal is performed at toplevel 
precommit. 

No special processing is required if an action allocating or freeing storage aborts, since its 
locks are released and no alteration to the permanent "free list" has taken place. Thus, 
effectively no allocations or frees have taken place. (Note that the contents of permanent 
storage blocks on the "free list" are considered dispensible; nevertheless, these contents may be 
modified only at toplevel precommit.) When a nested action enters its commit phase, its 
ALLOCATED and FREED per-action lists are propagated to its parent. Memory blocks on the 
permanent heap allocated by an action are actually removed from the "free list" when the 
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action's toplevel ancestor (to which the nested action's per-action lists have been propagated) 
enters its precommit phase; also, blocks freed by the action are added to the "free list" at this 
time. 

In Clouds, locks (as well as all portions of the object state which are not specified to be 
permanent or recoverable, including per-action variables) are maintained in volatile storage. 
Thus, information concerning uncommitted allocations and frees of an object using permanent 
heap support may be lost due to node failure. However, this will not cause a problem, since 
uncommitted actions running at a node at the time of its failure will be aborted. Recall that 
locks belonging to an action are released if that action is aborted; thus, the effect is the same as 
if the actions had been aborted in a non-failure case, i.e., as if the allocations and frees had 
never been performed. 

Note that this implementation of the PERMHEAP object does not provide strict 
serializability. To see this, consider some action, A, which exhausts (or nearly exhausts) the 
permanent heap, causing other actions B and C trying to allocate permanent memory to fail. 
Action A may well be aborted itself. Actions B and C which failed because of A might not have 
failed had they been executed serially. However, such breaches of strict serializability do not 
affect the consistency of the permanent heap mechanism, and thus are of little concern in this 
context. 

7. Status of the Aeolus Implementation 

In the Clouds systems programming language effort, work is currently continuing in two 
major areas as of winter 1986: the implementation of the Aeolus compiler as well as its 
integration with the Clouds kernel services, and the use of the Aeolus language system as a 
testbed for studying the problems of programming in action-object systems. 

Work on the compiler is in progress on one of the DEC VAX 11/750s of the Clouds system, 
under the BRL version of Berkeley UNIX 4.2. The Amsterdam Compiler Kit[T 3] is being 
used for code generation for both the VAXen and the IBM PC AT workstations of the Clouds 
project. The basic portion of the compiler implementation has been finished, including support 
for non-Clouds objects. Current work on the Aeolus implementation is being concentrated on 
those areas of functionality needed for interfacing with the kernel to provide support for object 
and action management. We anticipate that the functionality required for a prototype 
implementation in Aeolus of the recently-completed action management design[n 186] will be 
available in summer 1986. (The interfaces to action management are described in the 
Reference Manual[wilk85] for Aeolus.) The actual implementation of action management is 
being done in C, as it will be merged with the kernel code (which is also in C). Concurrently, 
work is progressing on the development of structured editing tools for Aeolus using the 
GANDALF structured-editor generator system.Nc 3/165 1 

Our plans to use the Aeolus/Clouds system as a testbed for studying programming 
methodologies in action-object systems have been described in a previous paper.[LeB185] As one 
of these ongoing studies, we are working towards the development of a distributed object filing 
system for Clouds; alternate implementations of the file system will compare the efficiency of 
different schemes for achieving consistency and availability. Of special interest are the trade-
offs available among different schemes between consistency and availability, particularly when 
semantic knowledge of an object may be brought to bear. This research will be described in a 
forthcoming paper.[Wilk86] 

IM  UNIX is a registered trademark of AT&T. PC AT is a registered trademark of IBM. 
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Appendix 

The following example is discussed in section 6 of this paper. Reserved words of Aeolus are 
indicated by boldface. 

definition of recoverable object permheap is 
Gives the publically-visible definitions provided by the PERMHEAP object. 

operations 

procedure allocate ( size : unsigned ) returns address modifies 
Return a pointer to a block of memory of the given "size" (in words) in 

I permanent memory. 

procedure free ( block : address ) modifies 
Dispose the block of memory indicated by "block". 

end definition. I permheap 

Implementation of I recoverable I object permheap Is 
I Support for the permanent heap, using per-action variables for recovery management. 

import list 
The definition part of the LIST object is shown here for clarity. 

definition of local object list ( elem_type : type ) is 
-- This object implements a linked list abstraction. The object is parameterized 
-- by the element type of the list; if the element type Is specified to be permanent 
-- by a (recoverable) importing object, then the linked list itself will be allocated 
-- in permanent storage (only recoverable objects may declare permanent variables). 
-- The list is initially empty. Mutual exclusion Is provided on MODIFY operations. 

type compatibleJist is list( elem type ) 

operations 
procedure add ( elem : elem type ) modifies 

-- Adds ELEM to the list. 
procedure append ( I : compatibleJist ) modifies 

-- Appends all elements in list L to this list. 
procedure remove ( elem : elem type ) modifies 

-- If ELEM is on the list, removes it. 
procedure find ( slam : elem type ) returns boolean examines 

-- If ELEM is on the list, returns TRUE, otherwise FALSE. 
procedure nth ( n : unsigned, notthere : out boolean ) 

returns elem type modifies 
-- If the Nth element exists, returns it and sets NOTTHERE to FALSE, 
-- otherwise sets NOTTHERE to TRUE. 

end definition. 

The local declarations of the PERMHEAP object. 

I Here, we give the names of alternate handlers for some of the action events. 
I Note that no alternate handler is given for the ABORT event (see section 6). 

action events 
nested commit is permheap_nested_commit, 

toplevel_precommit is permheap top_precommit 

April 17, 1986 
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The PERM_BLOCKENTRY type Is used for the maintenance in the permanent heap of the 
list of free storage blocks. Each block Is uniquely identified by its address. 

type permJalockentry Is permanent new address 

I The list of free storage blocks. Since the base type of this list is permanent, 
I the list itself is allocated in permanent storage. 
I This list may be modified only during the toplevel_precommit action event. 
I The size of each entry is stored in the first word of that entry. 

freelist : list( permJlockentry ) := new list 

I The BLOCKENTRY type is used in the declaration of the per-action variables 
below. Pointers to this type are allocated on the normal (not the 

I permanent) heap, and may be modified outside of the toplevel_precommit 
I event handler. 

type blockentry is new address 

I The per-action variables for permanent-heap recovery management. 
We will maintain lists of memory blocks allocated and freed by each action. 

per action 
allocated : list( blockentry ) := new list 
freed : list( blockentry ) := new list 

end per action 

I When an action allocates a block of permanent storage, it must obtain a lock on that 
I block until it commits to prevent other actions from attempting to allocate that block. 
I Rather than associate a lock with the actual storage block, we lock the block's address 
(of type BLOCKENTRY). Recall that locks obtained by an action are propagated to its 

I parent upon nested commit, and released upon abort or toplevel commit. 

entryJock : lock ( busy : [1) domain Is blockentry 

procedure first_fit ( size : unsigned ) returns blockentry Is 
A private operation of the PERMHEAP object. Given a size in words, FIRST.YIT finds 
the first entry on the FREELIST for a block of storage of size at least as large as 
SIZE and returns a pointer to that entry. (For the purposes of this example, we 
will assume that such a block exists.) Of course, another strategy could also be 
used here (such as best fit, or fragmentation and compaction). We'll assume that 
repeated invocations of FIRST_FIT by the same action return different addresses. 

begin 
I The details of this operation are omitted here. Even if an appropriate block of 
I storage is found on the FREELIST, FIRST_FIT must also test the ENTRY_LOCK to check 
whether this block has not already been allocated by some as yet uncommitted action. 

end procedure I firstjit I 
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! ALLOCATE and FREE are public operations of the PERMHEAP object. 

procedure allocate (I size : unsigned I) 1 returns address 1 is 
I Return the address of a block of memory of the given SIZE in permanent storage. 
Since the block is from the FREELIST, its former contents are expendable. 
The Set_Lock operation used here is non-blocking, i.e., it returns immediately with 

1 value FALSE if the requested lock is not available. 

entry : blockentry 

begin 
loop I keep going until we find an available block 

entry := first_fit( size ) 
if Set_Lock( entryjock, busy, entry ) then 

Self.allocated@add( entry ) add the entry to the ALLOCATED list for this action 
return address( entry ) 

end If 
end loop 

end procedure I allocate I 

procedure free (I block : address I) Is 
! Add a BLOCK of memory to the FREED list for freeing during toplevel precommit. 

entry : blockentry 
notthere : boolean 

: unsigned := 1 

begin 
I First, scan the ALLOCATED list to see if BLOCK was allocated by the current action 
loop 

entry := Self.allocated@nth( i, notthere ) 
if notthere then 

exit . 
elsif entry = blockentry( block ) then I Yes, 

Self.allocated@remove( entry ) 	I so remove it from ALLOCATED list 
ReleaseLock( entryJock, busy, entry ) 
return . 	 ! we're done 

end if 
I += 1 

end loop 

I If we get here, BLOCK wasn't allocated by the current action, so put it on the FREED list 
Self.freed@add( entry ) 

end procedure I free ! 

! The following are the alternate action event handlers for this object. 

procedure permheap_nested_commit 0 Is 
I The alternate handler for the NESTED COMMIT action event. We'll propagate the items on 
I the ALLOCATED and FREED lists of this action to the corresponding lists of its parent action. 

begin 
Parent.allocated@append( Self.allocated ) 
Parent.freed@append( Self.freed ) 

end procedure 1permheap_riested commit I 
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procedure permheap_top_precommit 0 Is 
I The alternate handler for the TOPLEVEL_PRECOMMIT action event. We'll traverse the FREED 
I list, adding each entry there to the actual FREELIST in permanent storage; then, we'll 	- 
! traverse the ALLOCATED list, removing each entry there from the FREELIST. 

entry : blockentry 
notthere : boolean 

: unsigned := 1 

begin 
Add each entry on the FREED list to the FREELIST in permanent storage 

loop 
entry := Self.freed@nth( i, notthere 
If notthere then 

exit . 
end if 

Convert the entry to the permanent type before adding to FREELIST. 
freelist@add( perm_blockentry( entry ) ) 

end loop 

Remove each entry on the ALLOCATED list from the FREELIST; the locks on these 
I entries will be released automatically. 
loop 

entry := Self.allocated@nth( I, notthere ) 
If notthere then 

exit . 
end if 
freelist@remove( perm_blockentry( entry ) ) 

end loop 
end procedure 1 permheap top_precommit 

InIthandier is I handler for the INIT (Initialization) object event 
begin 

Perform Initialization (not shown) of FREELIST to indicate that all 
1 of the permanent heap is available. 

end inithandier 

I The REINIT object event handler is by default the same as the INIT handier. 
The DELETE object event handler for this object is by default NULL. 

end Implementation. permheap I 
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1. Project Status 
During the past quarter, work has continued on each of the three project tasks. These 

efforts are closely related to other work in progress within the Clouds Project, our major 
research effort in the area of reliable distributed computing. 

Under the Language Support for Robust Distributed Programs task, work continues in two 
major areas: the integration of the Aeolus compiler with the Clouds kernel services and the use 
of the Aeolus language system as a testbed for studying the problems of programming in 
action-object systems. 

Under the Storage Management for an Action-Based Operating System task, the focus of 
our work has been on documentation of the design and implementation of the kernel storage 
manager and on implementation of a device driver to enable us to use our large disk drives on 
machines running the Clouds kernel. 

Under the Operating System Support for Reliable Distributed Computing task, our efforts 
are directed toward specification and functional design of the operating system services which 
will be implemented on top of the object and action management mechanisms provided by the 
Clouds kernel. Our immediate focus is to obtain a working, robust kernel to provide a basis for 
the implementation of these designs. 

The work on the tasks of this project is proceeding on schedule. Working in combination 
with other efforts in progress within the Clouds project, we are expect to have a working system 
by the end of the next quarter. 

2. Language Support for Robust Distributed Programs 
Work continues in the two major areas of the systems programming language effort: the 

design and implementation of the Aeolus language itself, as well as the use of the language as a 
testbed for the study of programming methodologies to achieve resilience and availability in 
action/object systems such as Clouds. 

2.1 Language Design and Implementation 
We consider the design of the Aeolus language to be essentially complete, and thus (barring 

the discovery of significant flaws) have frozen the design at its present stage. Therefore, we 
will be concentrating our efforts on the implementation portion of this task in the current 
quarter. 

In our last report, we mentioned our recent paper[Wilk861 describing the rationale underlying 
the design of the Aeolus language. This paper has been accepted for presentation at the IEEE 
Computer Society 1986 International Conference on Computer Languages, and for publication 
in the conference proceedings. (A copy of the latest revision—based on the referees' 
comments—of this paper is attached as Appendix A.) 

During the last quarter, the Clouds team member responsible for the Aeolus implementation 
was working on structure-editor generating systems at Siemens Research and Technology 
Laboratory in Princeton, NJ, under a cooperative arrangement between Siemens and the School 
of Information and Computer Science. Since his return to Georgia Tech at the beginning of 
July, progress has resumed on the implementation effort. We are now proceeding rapidly 
towards our goal of providing support for Clouds objects in the compiler by the end of the 
summer. We have developed a scheme for treating the Clouds object type information 
generated by the Aeolus as objects—called TypeManagers—under the Clouds kernel. The 
Aeolus compiler currently runs under Unix. Thus, when a Clouds object is compiled, a Unix 
"a.out"-style load file is created; the Unix header is then stripped from this file to yield a 
description for the object in the format expected by Clouds. A TypeManager, once created 
under a system running the Clouds kernel, requests this object description file from the Unix 
system and stores the description as the TypeManager's object data. Subsequently, when the 
"create" operation is invoked on the TypeManager, the object description is used to create an 
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instance of that object type. To create TypeManagers, we will "hard-wire" a TypeManager for 
TypeManagers into the kernel. A similar scheme will be used to create ProcessManagers, 
which will accept the code of Aeolus processes from the Unix system, and will also provide 
operations to activate and kill these processes. A TypeManager for ProcessManagers will also 
be "hard-wired" into the kernel. We are currently working with members of the kernel group 
to integrate these features into the Clouds kernel; other work proceeding concurrently includes 
adding runtime support for interfacing with object management, and the generation by the 
compiler of the data structures (such as tables of operation descriptors and entry points) needed 
by this runtime support. 

2.2 Programming Methodologies for Action/Object Systems 

In our last report, we described how our work on programming methodologies for 
action/object systems such as Clouds had led to some preliminary work on the design of a fault-
tolerant job scheduler for the support of availability. During the last quarter, the scope of this 
investigation has expanded to include work on an object filing system for Clouds. This came 
about as we grew to realize that the replication scheme which we are currently considering in 
support of availability would require heavy interaction between the manager for a replicated 
object, the job scheduler, and the object filing system. The object filing system (OFS) should: 

• be resilient and highly available (through replication); 

• provide a mapping from object names (strings) to Clouds object capabilities; 

• impose some familiar structure (e.g., a Unix-like hierarchical structure) on the flat, global 
system name space provided by the Clouds object manager; 

• provide efficient forms for the most common types of I/O (such as text I/O) without the 
necessity of the context switches which would be required if such I/O were modelled with 
Clouds objects. 

In the OFS, an object name may represent a group of objects (the set of replicas of a 
replicated object), rather than a single instance. We intend that this mechanism should be, in 
general, transparent to the user (although special-purpose applications, such as DBMSs, may 
require that, in addition, finer control of replication be available than that provided by a general 
mechanism). 

We have found that the generality of the abstract object structure supported by Clouds poses 
problems for replication methods which are not presented by a less general, flat object structure 
(for instance, files or queues). The problem lies in the possibility of the arbitrarily complex 
logical nesting of Clouds objects. Although Clouds objects may not be physically nested (that is, 
one object may not physically contain another object), an object may contain a capability to 
another object. If an object A creates another object B, and retains sole access to B's capability 
(by refraining from passing the capability to other objects and from registering the capability 
with the OFS), we say that object B is internal to object A. The internal object B may be 
regarded as being logically nested in object A. If, on the other hand, object A passes B's 
capability to some object not internal to A, or if A registers B's capability with the OFS, we say 
that B is an external object; an external object is potentially accessible by objects not internal to 
the object which created the external object. 

Problems arise with replication schemes when internal and external objects are mixed 
together in the same structure, i.e., when an object may contain capabilities to both internal and 
external objects. These problems are associated with the method which is used to propagate the 
state of a replicated object among its replicas. One such method is to execute the computation 
from which the desired state results on each replica; we refer to this scheme as idemexecution. 
Another method is to execute the computation at one replica, and then copy the state of that 
replica to the other replicas; we refer to this scheme as cloning. Note that the scheme which is 
used to ensure that the replicas maintain consistent states (e.g., quorum consensus) is not 
involved in these problems, and is considered separately in our investigation. 
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External objects cause problems when idemexecution is used to propagate state among 
replicas. If the replicated object performs some operation on an external object (e.g., a print 
queue server), then—under idemexecution—that operation will be repeated by each replica. If 
the operation being performed on the external object is not idempotent, this can cause serious 
problems (e.g., multiple submissions of a job to the print queue). Also, trouble may arise due 
to idemexecution if the operation on the external object is non-deterministic (for instance, 
random number generation, or disk block allocation among multiple concurrent processes). 

On the other hand, internal objects cause problems when cloning is used to propagate state. 
For example, assume that each replica of an object creates a set of internal objects. Then, when 
an operation is performed on one of the replicas, its state—under cloning—is copied to each of 
the other replicas. However, the capabilities to the internal objects of the replicas are contained 
in their states; thus, each replica now contains capabilities to the internal objects of that replica 
on which the operation was actually performed, and the information about the internal objects 
of the other replicas are lost. 

Our current research includes an investigation of a "taxonomy" of object structures on which 
the corresponding state-propagation methods may be safely used, as well as of how these state-
propagation methods—or the Clouds object-naming mechanism—may be altered to safely 
handle more general cases. Our current feeling is that the latter may be achieved with minimal 
alterations to the kernel, via having the kernel interact with the OFS and the job scheduler. 

3. Storage Management for an Action-Based Operating System 

The preceeding quarter saw the additional testing of the storage management system and the 
writing of a dissertation[Pi] which describes the storage manager. 

Some additional functions remain to be implemented in the storage manager, primarily at 
the segment system level. These functions are for the most part cleanup routines. The core 
functionality of the storage manager, including recovery management, object memory 
management, and directory management have been implemented and tested. 

Work is still proceeding on the RA81 device driver. A prototype driver is expected during 
summer quarter of 1986. The primary problems in developing the driver have been due to the 
sophistication of the interface to the drive, as well as to the complexity of the device itself. For 
the prototype, we have decided to postpone development of some functions, such as the bad-
block-forwarding supported by the RA81. The addition of this facility to the RA81 device 
driver turned out to be much more complex than we had expected. 

The dissertation "Storage Management for a Reliable Distributed Operating System"[Pitt 86] 
was defended at the end of June. The dissertation describes the three major subsystems of the 
storage manager: the device system, the partition system, and the segment system. For each 
subsystem, the structures and operations that comprise the subsystem are defined. The 
dissertation describes the basic services provided by the storage manager: object memory 
support, recovery management, and directory management. The dissertation highlights the 
.integration of virtual memory management with object memory support and recovery 
management. One of the claims of the dissertation is that this integration provides a efficient 
system. 

The dissertation describes three algorithms that support the two-phase commit of actions in a 
Clouds system. It is shown how these algorithms support action management and also crash 
recovery. A chapter in the dissertation is devoted proving the correctness of these algorithms, 
based on the assumptions made for the Clouds system. 

4. Operating System Support for Reliable Distributed Computing 

The efforts under this task are aimed toward building operating system services on top of the 
Clouds kernel. Therefore the availability of the kernel is a crucial factor in the progress of this 
work. 
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The implementation of the Clouds kernel is nearing completion. The current status is as 
follows. The object management system has been tested to handle object invocations, both local 
and remote. This uses the communication system which uses Ethernet routines to communicate 
to other Clouds sites as well as Unix machines. The object management system uses a search 
and invoke strategy for locating objects in a uniform, location independent manner, that works 
even if some of the sites are non functional. The global searches occur efficiently as they use a 
hash table based decision function based on the Bloom filter (we call this the "Maybe Table"). 

The storage management system (Task 2) provides the functions of basic virtual memory, 
object memory, shadowing, flushing and commit. It also provides directory services for object 
lookup (using capabilities), and interfaces with the Maybe Table handling routines. This system 
has also been implemented and tested. 

The current thrust is directed at integrating the object management system, the storage 
management system, and the communication system effectively to get an operational general 
purpose distributed operating system. With all the components tested individually, we expect the 
integration phase to last about two to three months. Currently we are using Unix machines to 
provide terminal access to the Clouds system over an Ethernet. The Unix systems are also 
providing developmental support for compilation of objects which are transferred to Clouds on 
demand over the network using some communication utilities that have been developed. 

After the integration, we will start implementation of the Action Management system. The 
action management policies have been designed, but the implementation is not complete. 

On the design side, the research has resulted in the design of several subsystems, notably a 
monitoring system and a distributed database system. The monitoring system fits into the 
Clouds reconfiguration strategies and uses a new mechanism called probes to monitor the health 
of the distributed system. The database is a conventional distributed database in a novel 
implementation environment. The object and action support provided by Clouds lend themselves 
effectively to implement a database system (modified to the object based structure) and provide 
concurrency control and recovery mechanisms in an environment that is simple to use. 

The monitoring system designed makes use of probes. Probes are high priority messages in 
Clouds that can be sent to processes, action or objects. If sent to processes or actions, a probe 
causes a jump to a probe handler (similar to software signals). The probe handler generates a 
reply to the sender of the probe containing status information about the process or the action. 
The object probes work along similar lines, except that the probe causes the invocation of the 
probe handler in the object. 

The monitoring system uses probes to monitor the health of critical system components. The 
monitors are replicated at each site and they keep status information in fully replicated 
databases. Each monitoring process has a backup monitor that monitors it from another site. 
Using this scheme we can keep good records of the global system state, and can handle failures 
by tying into the reconfiguration system and restarting failed actions at healthy sites. The design 
is reported in detail in [Dasg861 

The relational database system is an application environment under design to function in the 
object oriented environment supported by Clouds. Conventional database design suffers from 
two deficiencies. The data models proposed by database designers do not match the components 
supported by the operating system, and thus the implementors have to contrive mechanisms to 
support the database. Also the services (concurrency control, recovery) needed by databases are 
often not available and have to be built on top of a conventional operating system, giving rise to 
inefficient and often incorrect implementations. 

The object oriented approach provided by Clouds allows relational databases to be 
encapsulated in objects and the implementation matches both the environment as well as the 
data model, giving rise to better performance, clean elegant systems interfaces and a modular 
implementation. The synchronization and recovery support provided by Clouds also effectively 
provides database services giving rise to easier to implement database management functions. 
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Fine granularities of locking structures can be attained by relation fragmentation, that gives rise 
to more efficient access strategies. But as the objects hide the fragmentation details, the 
interfaces are just as clean and transparent. Further details can be found in [Dasg86a] 
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ABSTRACT 

The goal of the Clouds project at Georgia Tech is the implementation of a fault-
tolerant distributed operating system based on the notions of objects, actions, and 
processes, to provide an environment for the construction of reliable applications. 
The Aeolus programming language developed from the need for an implementation 
language for those portions of the Clouds system above the kernel level. Aeolus has 
evolved with these purposes: 

• to provide the power needed for systems programming without sacrificing 
readability or maintainability; 

• to provide abstractions of the Clouds notions of objects, actions, and processes as 
features within the language; 

• to provide access to the recoverability and synchronization features of the Clouds 
system; and 

• to serve as a testbed for the study of programming methodologies for action-
ob ject systems such as Clouds. 

In this paper, the features provided by the language for the support of readability 
and maintainability in systems programming are described briefly, as is the rationale 
underlying their design. Considerably more detail is devoted to features provided 
for support of object and action programming. Finally, an example making use of 
advanced features for action programming is presented, and the current status of the 
language and its use in the Clouds project is described. 
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1. Introduction 
The goal of the Clouds project at Georgia TeCh[A1162, Allc83, A1163a] is the implementation of 

a fault-tolerant distributed operating system based on the notions of objects, actions, and 
processes, to provide an environment for the construction of reliable applications. The Aeolus' 
programming language developed from the need for an implementation language for those 
portions of the Clouds system above the kernel level. Aeolus has evolved with these purposes: 

• to provide the power needed for systems programming without sacrificing readability or 
maintainability; 

• to provide abstractions of the Clouds notions of objects, actions, and processes as features 
within the language; 

• to provide access to the recoverability and synchronization features of the Clouds system; 
and 

• to serve as a testbed for the study of programming methodologies for action-object systems 
such as Clouds. [LeB185, Wilk86] 

The intended users of Aeolus are systems programmers working on servers for the Clouds 
system. Clouds provides powerful features for the efficient support of resilient objects where 
the semantics of the objects are taken into account; it is assumed that the intended users have the 
necessary skills to make use of these features. Thus, although access to the automatic recovery 
and synchronization features of Clouds is available, we have avoided providing very-high-level 
features for programming resilient objects in the language, with the intention of evolving 
designs for such features out of our experience with programming in Aeolus. These features 
will then be incorporated into an applications language for the Clouds system, which should 
allow programmers unskilled in fault-tolerant programming to write resilient objects. 

Aeolus has its roots in a long line of structured programming languages, including Simula, 
Pascal, Modula-2, and Adalm. Thus, many of its features should be easy to understand for 
those familiar with one of these languages, and little space will be devoted here to discussion of 
such features; a description of the complete language is available in the Reference 
Manual.[wilic85] Syntax and examples will be provided here only for those features of Aeolus 
which differ significantly from those of its predecessors, although the programming example 
discussed in section 6 should provide a feel for the flavor of the language. 

1. Aeolus was the king of the winds in Greek mythology. 
'54  Ma is a registered trademark of the U.S. Government—Ada Joint Program Office. 

Technical Report GIT-ICS-86/12 



-2- 

An overview of the Clouds system from the point of view of Aeolus has been provided in a 
previous paper. [LeB185] Briefly, the main structuring features of Aeolus (as of the Clouds 
system) are objects, actions, and processes. Clouds supports the object concept as a convenient 
structuring principle for facilitating recovery and synchronization. An object encapsulates data 
and provides operations to access that data; the object's data may be manipulated only via its 
operations, thus helping maintain the invariants of the object. Besides supporting the Clouds 
object concept, Aeolus also allows the programmer to use the object features of the language for 
the specification of abstract data types, without necessarily invoking the object and action 
management features of the Clouds system. Thus, Aeolus objects provide a separate 
compilation facility as well as access to the object support of Clouds; the separation of object 
specifications into definition and implementation parts (much as are modules in Modula-2 or 
packages in Ada) provides a safe interface to separately-compiled objects, as well as facilitating 
the design of large systems consisting of many objects (possibly implemented by several people) 
or the use of predefined objects. Aeolus pseudo-objects provide a means of isolating system 
dependencies such as input/output or low-level machine architecture—into object-like modules 
which provide operations facilitating machine-level programming. 

The Clouds notion of actions corresponds roughly to the transaction concept of distributed 
database work, providing an "all-or-nothing" assurance of atomic execution (a property 
sometimes called failure atomicity). Support of actions in Aeolus is fairly low—level. 
Essentially, means are provided for specifying that an operation invocation is to be executed as 
a toplevel or nested action. Also, the status of an action execution may be checked or altered by 
means of calls to a Clouds action manager. In Clouds, we distinguish between operations 
invoked as an action and operations executing in an action environment. We say that an 
operation is executing in an action environment if that operation is invoked as a toplevel or 
nested action, or if the invoker of the operation is executing in an action environment. Thus, it 
is a sufficient, but not a necessary, condition that an operation be invoked as an action to be 
running in an action environment. (Some transaction systems require the creation of one or 
more nested actions to encapsulate every remote operation invocation. In Clouds, such 
encapsulation is not required, but is available at the programmer's option.) 

The process concept in Aeolus is similar to the program construct of Pascal or Modula-2. 
That is, a process ties together the constituent parts (objects) of a programmed system, and the 
invocation of a process provides activity in the Clouds system, since Clouds objects are passive. 

In this paper, the features provided by the language for the support of readable, 
maintainable systems programs are described briefly, as is the rationale underlying their design. 
Considerably more space is devoted to the detailed description of features provided for the 
support of object and action programming. Finally, an example making use of advanced 
features for action programming is presented, and the current status of the language and its use 
in the Clouds project is described. 

2. Support for Systems Programming 

In this section, those features of Aeolus which are provided for the support of readable, 
maintainable systems programs, and which are not directly related to the support of 
action/object programming, are described briefly. These include structured types for access to 
low-level data representation, expression and statement constructs necessary for doing systems 
programming in a concurrent environment, and the typing mechanism. 

2.1 Access to Low-Level Data Representation 

Aeolus provides a wide range of traditional type classes, including enumerations, pointer 
types, structured types, and locks. (Objects are also treated as types in Aeolus, as will be 
described in section 3.) Of interest here are those structured types providing access to the low-
level representation of data, as is often required in systems programming, and those constructs 
providing support for synchronization in a concurrent environment. 
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Aeolus provides the traditional structured types, such as arrays, records, and sets. All types 
in Aeolus may be parameterized (see below); for example, the parameterized record type in 
Aeolus is similar in concept to the discriminated record type of Ada. The extension of 
parameterization to other types allows type constraints to be expressed in terms of parameters, 
and allows parameterized array types to be declared without the necessity of embedding them in 
record types. The parameterized array construct indirectly provides support for arrays with a 
flexible number of elements (so-called "dynamic" arrays); these may be simulated by using 
pointers to parameterized arrays. Two important parameterized array types provided by the 
Aeolus implementation are strings and bitstrings. The string type allows convenient 
manipulation of character sequences. The bitstring, on the other hand, provides the most 
primitive structured abstraction of data, that of simply a sequence of bits: 

type bitstring( length : unsigned ) Is array [ unsigned[ 1..length ] of bit 

The length constraint of the bitstring (in bits) is indicated by the value of the parameter 
"length." For example: 

type nybble Is bitstring( 4 ) 

Each "system" object2  provides declarations of several useful bitstring types. These types 
are referred to collectively as the storage classes, since they define the units of storage 
supported by the hardware of most computer systems: types bit, byte, word, lengword, and 
quadwoni, with lengths BITSIZE, B'YTESIZE, WORDSIZE, LONGWORDSIZE, and 
QUADWORDSIZE, respectively. 

Another important bitstring type, address, is also defined by the "system" object. The 
address type is defined as bitstring(ADDRESSME). The relationship between address types and 
pointer types is discussed below. 

Several operations are provided for manipulation of bitstring data, including bitwise Boolean 
operations and shift operators. Access to individual bits of a bitstring is, of course, through 
array index operations. The provision of a true bitstring type addresses a lack experienced by 
users of both the Ada and C languages.[Evan84] 

Another structured type providing access to low-level data representation is the structure, a 
special case of a record construct somewhat similar to the packed record construct of Pascal or 
the packed pragma as applied to the record construct (with representation specification) in Ada. 
The declaration of a structure type specifies the storage class which the structure will fit. A 
field in a structure typically represents a bitstring or scalar; the fields are packed together 
consecutively within an object of the specified storage class (without implicit padding), with the 
first field specified starting at the most significant bit position in the storage class. The compiler 
checks that the fields declared for the structure together fit into the specified storage class. 

2.2 Constructs Supporting Synchronization 

Features provided by Aeolus for the support of synchronization and mutual exclusion in a 
concurrent environment include the lock construct, the region construct, and the shared type 
attribute. 

A lock type may be used to declare variables which in turn may be used to implement 
locking protocols on particular values in some domain. Note that an Aeolus/Clouds lock is 
obtained for a value of an object, and not on the object itself. Thus, for instance, a lock may be 

2. There exists a "system" pseudo-object for each computer system for which the Aeolus compiler is implemented. 
(At present, the "system" objects include VAX_Systens and PC_System, for the DEC VAX 11/780 and the Intel 
8086-8088-80286 families of computers, respectively.) Each such object defines system-dependent constants, types, 
and operations required for systems programming. The appropriate object (determined by target code generation 
and controllable by compiler option) is imported implicitly by every compiland. 
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obtained on a file name even if that file does not yet exist. (The lock structure is directly 
supported by the Clouds architecture.) A lock declaration includes the specification of a 
compatibility list, which defines, for a given mode of the lock, which other modes are compatible 
with that mode. A lock may be set with a specified mode only if other modes already set, if 
any, are compatible with that mode. (Thus, a process adhering to a protocol using that lock 
may wish to block until the requested mode is available. Operations are provided by object 
.standard for testing, setting, and releasing locks.) The presence of an identifier in a 
compatibility list serves as a, declaration of that identifier as a mode of the lock type; the modes 
of a lock type may together be thought of as an enumeration. An empty compatibility list 
indicates that the given mode is incompatible with all other modes. 

The lock declaration may also specify the domain of values which may be locked. If the 
domain specification is omitted, a simple lock (i.e., one which does not lock over any particular 
domain) is assumed. For example: 

type simpleJock is lock ( busy : a 
type fileJock Is lock ( read : (read] , 

write : fl 	) domain Is string( 20 ) 

The declaration of "simple_lock" above defines a lock type with a single mode "busy" which is 
incompatible with itself; thus, only one client may set a lock variable of type "simplejock" at 
any one time. The declaration of "file_lock," on the other hand, defines a lock type over the 
domain of strings of length 20. Clients may set a lock variable of type "file_lock" on a given 
string with modes "read" or "write." The "read" mode is specified as being compatible with 
other settings of "read" mode; the "write" mode is incompatible with itself and with "read" 
mode. Thus, a client may set the lock with "read" mode on a given string even if several other 
clients have outstanding settings of the lock with "read" mode on that string; however, a client 
wishing to set the lock with "write" mode on a given string must wait for all outstanding settings 
of "read" mode on that string to be released. 

All locks obtained during execution in the environment of a nested action are retained and 
propagated to the immediate ancestor of that action upon committal unless explicitly released by 
the programmer. Locks obtained under an action are automatically released if the action aborts 
or successfully performs a toplevel commit. Thus, a two-phase locking protocol (2PL) is 
maintained, with violations to 2PL allowed (via explicit release of locks) if the programmer 
deems such violations acceptable. A lock is available to be granted under a nested action even if 
conflicting locks are held under one or more of the ancestors of that action, but not if conflicting 
locks are held under an action which is not an ancestor of the nested action. 

The power of the Aeolus/Clouds lock construct in supporting user-defined synchronization 
lies in the specification of arbitrary locking modes, and arbitrary compatibilities between those 
modes, as well as the dissociation of locks from the locked data. To support mutual exclusion, 
Aeolus provides a critical region construct, access to which is controlled by association of the 
region with a designator for a shared variable. The shared variable is associated with a 
semaphore, yielding the familiar semantics of critical regions. In Aeolus, any type may have 
the attribute shared, which is inherited by any types of which the shared type is an element. In 
particular, Aeolus arrays may consist of shared elements; thus, the granularity of mutual 
exclusion may be tailored to achieve higher concurrency. 

2.3 Type Compatibility and Conversion in Aeolus 

The principal goal in the design of the Aeolus typing mechanism was the provision of strong 
typing where possible, but also the provision of escapes from strong typing where the special 
demands of systems programming required. Another concern which affected the design of 
these mechanisms was that programs be readable and maintainable by members of a fairly 
rapidly-changing research group. Thus, the desirability of brevity of notation was felt to be 
subordinate to that of rapid comprehension of code by readers (including the original authors of 
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the code). Thus, we attempted to make the typing mechanism as simple as possible, simplifying 
the tasks both of the compiler and of the reader, who must otherwise remember numerous 
compatibility and implicit conversion rules, increasing the possibility of misunderstanding or 
confusion. 

The type of an operand is said to be compatible with that required by an operation if they 
are the same type, that is, if the types are equivalent. Type equivalence in Aeolus is by name. 

As in Ada, a constraint which is associated with a scalar type (by way of a constraint 
specification in the type's declaration, or via a constraint declaration) is not considered part of 
that type, but rather is an attribute which is given to a member of that type. 3  Thus, a 
constrained member is compatible with a member which has the same type but a different (or 
no) constraint. 

Types may be parameterized, that is, some of the attributes of a type may depend on the 
values of formal type parameters. (Object types may also be parameterized; see section 3.) In 
contrast to constraints, the parameters of a type as specified in the declaration of that type are, 
in general, considered to be a part of that type. The exception is when the specification of these 
parameters is delayed (via an empty actual type parameter option). (A member of a type with 
delayed parameterization is sometimes said to be associated with a delayed constraint.) A type 
with delayed parameterization is compatible with all possible parameterization of that type. 
Types with delayed parameterization, when used as the types of formal procedure parameters, 
make possible generic operations on structured types such as arrays; and when used as pointer 
base types, allow the definition of pointers to arrays with flexible sizes. 

The requirement for strict name equivalence of types is relaxed somewhat in the case of 
array slices, since slices, by their nature, cannot be associated with a named type. Rather, a 
slice is similar to a member of an unconstrained array type, any type parameter values of which 
are derived from the slice bounds, and which takes on as its base type the base type of the 
named type of the array from which the slice was derived. An array slice with n elements is 
compatible with any array or array slice with n elements and a compatible element type. Also, 
a slice of one element is compatible with any variable of a type compatible with the element 
type of the slice. Note that this implies the following correspondences: 

bit < = > bitstringslice[1.. 1] < = > bitstring( 1) 
char < = > 	stringslice[1.. 1] 	< = > string( 1) 

Thus, bit is compatible with array [ integer[ 1..1 ] ] of bit; char is compatible with 
array [ integer( 1..1 ] ] of char; and, in general, type t is compatible with an array of one 
element of element type t. 

In the interest of keeping the implementation effort for Aeolus within reasonable bounds, it 
was decided not to provide facilities for the specification of overloading of user-defined 
operations in the current language. However, certain overloadings are available on predefined 
operators. In keeping with the goal of simplicity in the typing mechanism as stated above, the 
overloading of a binary operator is available only for operands which are compatible according 
to the definitions stated above. As seen from another point of view, this means that Aeolus 
does not perform implicit conversions. However, it is sometimes desirable to perform 
operations on operands of differing types. Thus, Aeolus provides the programmer with 
powerful means of explicit type conversion. Explicit type conversion functions are defined 
between members of closely related types within certain limitations.[Wilk 851 In general, the name 

3. Constraints are used for range checking (if enabled) and for determining the sizes of structures, but not for type 
checking. 
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of a type may be used as the name of a conversion function; this type is the target type of the 
conversion. 

Explicit conversions are allowed between types one of which is derived from the other 
(derived types), between different numeric types, between enumeration and numeric types, 
from an enumeration type to a string type, and between array types each of which meets 
conditions similar to those specified by Ada. Also, conversion is allowed (in both directions) 
between a type which is a bitstring type and any type with the same size (in bits) as the source 
type. In particular, conversions may be made between any array, record, or structure type and 
a bitstring type or array of bitstring type (e.g., array of byte or word) with the same size. 
Thus, access may be obtained to the bit representation of data in an explicit manner. Also, 
conversion is allowed from any pointer type to type address. In the other direction, conversion 
is allowed from type address to any pointer type; however, the result of such a conversion may 
be used only for dereferences, and may not be assigned to a pointer variable. Values may be 
assigned to address variables directly, by conversion from a pointer type, or via the addr 
operation, which yields the storage address of a static or dynamic data item; a value may be 
assigned to a pointer variable only by use of an allocator, or via assignment from another 
variable of the same pointer type. Thus, a safe (although restrictive) pointer mechanism is 
maintained separately from a permissive mechanism permitting address computations when 
necessary. 

Finally, Aeolus provides a less restrictive (and less safe) means of type conversion in 
addition to the explicit (checked) conversion functions described above; the retype function is 
similar in spirit to the unchecked conversion function of Ada. Of course, unchecked conversion 
may be used to convert addresses to any pointer type, thus violating the safety of the pointer 
mechanism. The intent of the retype function is to make such "end runs" around the typing 
mechanism obvious to the reader of the code, and when used with restraint and care it makes 
possible the sort of generic bookkeeping activity necessary in systems programming (e.g., 
memory allocation routines). 

3. Support for Objects 

The object construct provides support for data abstraction in Aeolus. A collection of related 
data items may be encapsulated within an object, which also may provide operations (procedures 
that operate) on the data. The only access to the data of an object is via these operations; thus, 
an object can strictly control manipulation of its encapsulated data, helping guarantee the 
invariants of the abstraction. 

The object concept is supported at the lowest levels of the Clouds kernel; hence, we feel 
justified in using the term "object" to describe the data-abstraction facility of Aeolus, since an 
Aeolus/Clouds object has a real existence in the system. However, Aeolus does not provide a 
sophisticated inheritance mechanism such as that available in Smalltalk, nor does it provide for 
dynamic typing of objects. Aeolus provides a simple class mechanism in the object type 
described below; all instances of an object type inherit all operations (and other definitions) of 
that type. It was felt that, although an inheritance mechanism providing differential sharing of 
object operations would be useful, the support for such a mechanism should be left to higher-
level portions of the system in order to keep the kernel as simple as possible; thus, inheritance 
will be among the features to be included in the language design to be evolved from our 
experience with Aeolus, as mentioned in the Introduction. Also, communication between 
objects in Aeolus is based on direct operation invocation rather than on message-passing, 
reflecting the fact that Clouds is not a message-passing system, but uses remote procedure call 
to support distributed computation. Hence, Aeolus is not strictly an object-oriented language in 
the sense of Rentsch.[Rent82] However, it provides access to an object concept supported 
throughout the Clouds system. The applications language to be based on our experience with 
Aeolus will likely come closer to the concept of "object-oriented language" in the strict sense. 
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An Aeolus object may have parameters indicating, for instance, sizes or element types of the 
abstraction implemented by the object; thus, an object implementing, for instance, a bounded 
stack abstraction may be parameterized by the element type and maximum number of elements 
of the stack. Then, various instances of the bounded stack object may be created (instantiated) 
with differing element types and sizes; the implementation of the object need not be concerned 
with details such as the element representation, and the programmer does not need to create 
new object types for each combination of element type and stack size. Support for such generic 
objects increases the level of abstraction available to the programmer, and makes possible the 
creation of libraries of reusable object types, in a spirit similar to that of the generic package 
construct of Ada. 

The object construct also provides a safe separate compilation mechanism. The separation of 
an object specification into a definition part and an implementation part allows checking across 
the interface to an object, as well as allowing the use of an object definition before the 
corresponding implementation part is finished (thus facilitating top-down design). 

3.1 Object Definition Parts 

The definition part of an object defines the interface of the object with other compilands. It 
specifies the attributes of the object itself as well as the constants, types, and operations which 
the object provides to other objects and to processes. (Note that variables may not be declared 
in object definition parts; it was felt that the sharing of variables between objects was not in 
accord with the principle of data encapsulation embodied by the object construct, which requires 
that all access to object data be through operations on the object. Also, there is no counterpart 
to the class variable construct of Smalltalk, that is, a variable which is shared by all instances of 
an object type; it was felt that this would violate the principle[Ens 178/ that a fully-distributed 
system should have no shared memory.) The declaration of the object name in the header of 
the object definition defines a type, called an object type, with that name, which may be used in 
the declaration of variables to hold capabilities to instances of that object type (see below). An 
example of an object definition part is included in the Appendix. 

Specification of the autasynch keyword in an object definition header causes code to be 
generated for automatic synchronization of object operation invocations based on progranuner-
supplied indications of operation effects (see below). This mechanism provides a simple 
read/write locking protocol; it may be used with any object class (see below). 4  

The object class is also specified in the object definition header. The object classes fall into 
two groups: the non-Clouds object classes (pseudo and local) do not use any of the Clouds 
facilities for action or object management, and are thus similar to modules in Modula-2 (for 
pseudo-objects) or to generic packages in Ada (for local objects), while the so-called Clouds 
object classes (nonrecoverable, recoverable, and autorecoverable) may make use of the object 
management facilities and (for recoverable and autorecoverable types) the action management 
facilities. Thus, the rationale behind the non-Clouds object classes is the same as that 
underlying the design of the corresponding features in Ada or Modula-2, that is, the provision 
of data-abstraction facilities usable "locally" (without resorting to operating system facilities). 
On the other hand, the Clouds object classes provide access to the support for data abstraction 
provided by the Clouds system when the expense of that support is warranted; the separate 
classes of Clouds object allow the programmer to specify the degree of support (and of incurred 
expense) required. The definitions of the object classes are as follows: 

4. For more information on the mechanisms supplied by the Clouds system to support synchronization and recovery, 
see Allzhin's dissertation.[ 	3a) 
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non-Clouds object classes: 
pseudo (or pseudo-local) There may exist only one instance of a given pseudo-object type. 

This class of objects is used mainly for definition of system libraries, for interfacing 
with (separately-compiled) collections of procedures written in another programming 
language, for abstraction of machine and system dependencies, and as a basic 
separate-compilation mechanism. 

local The standard class of non-Clouds object, which may have multiple instances. 
Management of local objects is provided by the Aeolus runtime system. Unlike Clouds 
objects, a local object may have no existence independent of the process or object 
which created it. Local objects simulate Clouds objects without incurring the expense 
of the use of the action and object management facilities. 

Clouds object classes: 

nonrecoverable The basic class of Clouds object. Objects of class nonrecoverable make use 
of the object management facilities, but may not contain features requiring 
action management, such as recoverable areas, permanent and per-action 
variables, or action event handlers (see section 4). 

recoverable 	The "roll-your-own recovery" type of Clouds object, as opposed to the 
autorecoverable class of objects (described below), which provides 
completely automatic recovery. In some cases, the programmer may be able 
to use knowledge of the semantics of the object and its operations to program 
synchronization and recovery mechanisms more efficient than the automatic 
mechanisms supplied by the autorecoverable class of objects. Automatic 
recovery involves checkpointing of the entire object state; automatic 
synchronization is based on a simple read-write model of operation 
interactions on entire operations. As will be discussed in section 4, Aeolus 
provides facilities that allow the programmer to specify which parts of the 
object state are to be checkpointed (recoverable areas), to access information 
about the states of actions and to change these states (via operations on the 
action manager), and to control the recovery process by specification of what 
is to be done during action events (action event handlers); also, the 
programmer may specify finer-grained locking mechanisms for greater 
control of synchronization (via the lock type; see section 2). Only 
recoverable objects may contain recoverable area specifications and action 
event handler specifications. 

autorecoverable As mentioned above, autorecoverable objects provide completely automatic 
recovery. The entire object state (the global variables of the object) is 
recoverable, and the default event handlers are used. 

Operations on objects of class recoverable or autorecoverable may be executed only within an 
action environment; this restriction will be explained further in section 4.4. An instance of an 
object (other than of class pseudo) is created by use of an allocator, a construct also used for 
allocation of pointer values (and similar to that used for allocating "access objects" [pointers] in 
Ada). This underscores the similarity in treatment between object capabilities and pointers, in 
particular, the processes of creation, initialization, and deletion (disposal), as well as their use 
as elements in lists and other structures and as parameters to objects and object operations. The 
values of any object parameters must be specified by using a constructor in the allocator. The 
allocator yields a capability to the newly-created object instance, which may be assigned to a 
variable of that object type. The variable may thereafter be used to qualify operation 
invocations on that object instance. The init object event handler (see below) for the object is 
executed during the instantiation process, as are any variable initializations required by the 
object. 
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The definition part also performs any necessary imports of other object definitions before 
the declarations of the object definition are given. These are called its visible declaraticns since 
the declarations are available to any object which imports the object definition. As stated 
above, the visible declarations of an object may include specifications of constants, types, or 
operations, but not of variables. Finally, specifications of the object's operations are provided. 
An operation specification may optionally be given one of the attributes examines or modfies, 
which indicate that the operation reads from or writes to the object's state, respectively. This 
information is used by the compiler to generate automatic read or write locking for each 
operation if the autosynch attribute is specified for the object. If no operation effect is specified, 
the compiler assumes that the operation neither reads nor modifies the object state, and thus no 
automatic locking would be done for that operation. The autasynch feature thus provides 
automatic synchronization according to a simple multiple readers/single writer protocol. An 
object operation (or other procedure) meeting certain conditions[wilk 851 may also be given the 
inline attribute, indicating that inline code expansion of the operation is desired; thus, the use of 
operations to access portions of encapsulated data can be made more efficient. We have found 
in our experience that when complicated data structures are encapsulated (such as compiler type 
attribute records), the number of operations which exist merely to provide controlled access to 
small portions of the hidden data structure becomes very large; the efficient support of such 
operations thus becomes important to encourage the use of encapsulation. 

3.2 Object Implementation Parts 

The implementation part of an object provides the actual code for the operations of the 
object, as well as the definitions of any private constants, types, variables, or procedures needed 
by the object. (An example of an object implementation part is provided in the Appendix.) 
These definitions are, of course, hidden from other oompilands; only those definitions specified 
in the object definition part are available outside the implementation part. This supports the 
hiding of encapsulated data required by the data-abstraction feature, and is similar in concept to 
Ada package and Modula-2 module implementations. 

The definition part of the object being implemented is implicitly imported by the 
implementation part; also, any objects imported by the definition part are available in the 
implementation part. The implementation part may import other objects as well via its own 
import clauses. All constants, type definitions, and operations declared in the objects made 
available by any of these methods are visible in the implementation part; also, the names of 
these imported object types may be used as the types of variables declared in the 
implementation part. Such variables must be initialized by use of an allocator. 

Variables declared in the outer level of the block of the object implementation part are 
global to the object, and the values of such variables survive between invocations of the object's 
operations. The global variables of an object are called collectively the object's state. In an 
object of class recoverable, part of the object state may be specified to be in a recoverable area; 
also, the programmer may specify an action events part and/or a per-action variables part. 
Recoverable areas, action events, and per-action variables are described in section 4. 

In order to allow the object to participate in its own creation and deletion, an object 
implementation part contains specifications of handlers for the so-called object events. The 
object events include the init or object initialization event, the handler for which is executed 
whenever an instance of the object is created by use of an allocator; the remit or object 
reinitialization event, the handler for which is executed—if the object has registered its desire 
for reinitialization with the action manager—when the system is reinitialized after a crash or 
network partition; and the delete or object deletion event, the handler for which is executed 
when the object instance is destroyed. No default handler for the init object event is assumed; if 
no action is desired for the init event, the programmer must supply a NULL statement as the 
handler body. The intent is to help prevent the accidental omission of object state initialization 
by the programmer. If no handler for the remit object event is specified, the handler is by 
default the same as that specified for the init event. If no handler for the delete object event is 
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specified, it is assumed to be NULL. 

3.3 Object Operation Invocations 

An invocation of an object operation looks much lice a procedure invocation, except that, 
outside the implementation part of the object itself, an operation name must be vnlified by the 
name of a variable representing an instance of that object type (or, for pseudo-objects, by the 
name of the object type itself). Thus, for an instance of a bounded-stack type, we may have 

stack jnstance @ push( eiem ) 

When an object invokes one of its own operations, however, the usual procedure call syntax is 
used. 

Invocations of pseudo-object and local object operations have semantics essentially similar to 
those of (-Ails to procedures local to a compiland. The situation is different for operations 
declared in objects which use the Clouds object-management facilities (i.e., the so-called 
"Clouds objects"). 5  Invocations of operations on Clouds objects are handled by the compiler 
through operations on the Clouds object manager on the machine on which the invoking code is 
running. The Clouds object on which the operation is being invoked need not be located on the 
same machine as the invoking code; the object manager then makes a remote procedure call 
(RPC) to the object manager on the machine on which the called object resides. The 
location--local or remote—of the object being operated upon, however, need not concern the 
programmer, as the RPC process is transparent above the object-management level. 

4. Support for Actions 

The action concept provides an abstraction of the idea of work in the Clouds system; an 
action represents a unit of work. Actions provide failure atomicity, that is, they display "all-or-
nothing" behavior: an action either runs to completion and commits its results, or, if some 
failure prevents completion, it aborts and its effects are cancelled as if the action had never 
executed. The rationale for the action concept  and the mechanisms supporting it in the Clouds 
system are described in Allchin's dissertation;LAild 3a] the design for the implementation of these 
mechanisms is described in Kenley's theSiS.[Ken186] 

Support for actions in the Aeolus language is relatively low-level. The methodology of 
programming with actions is not at present well-understood compared with experience in 
programming with objects; thus, rather than providing high-level syntactical abstractions such as 
those available for object programming, Aeolus allows access to the full power and detail of the 
Clouds system facilities for action management. The major syntactic support provided by 
Aeolus for action programming is in the programming of action events, recoverable areas, 
permanent and per-action variables, and action invocations. 

4.1 Action Events 

At several points during the execution of an action, the action interacts with the action 
manager of the Clouds system to manage the states of objects touched by that action, including 
writing those states to permanent (stable or safe) storage, and recovering previous permanent 
states upon failure of an action. Thus, failure atomicity may be provided by the action 

5. This is because the code for pseudo-objects and for local objects is actually linked into the code of the compiland 
using these objects, whereas the code for Clouds objects is physically separate from the code of the invoking 
compiland. This code is paged in on demand by the object manager; see Allchin's dissertation.[ 11 
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management system. The action events include: 

event name 

BOA 
toplevel_precozmnit 

nested_preconunit 
commit 

abort 

purpose 

beginning of action 
prepare for commit for a toplevel action 
prepare for commit for a nested action 
normal end of action (BOA) 
abnormal end of action 

The interactions with the Clouds action manager necessary when such events take place are done 
by default procedures supplied by the Aeolus compiler and runtime system; these procedures 
are called action event handlers. When an action event occurs for a particular action, the action 
manager(s) involved invoke the event handlers for each object touched by that action. 

As was described in section 3, by use of the autorecoverable class of object, the programmer 
may take advantage of the recovery facilities of the Clouds system by having the compiler 
generate the necessary code automatically. This automatic recovery mechanism requires 
checkpoints of the entire state of the object, and uses the default action event handlers. 
However, it is sometimes possible for the programmer to improve the performance of object 
recovery by providing one or more object-specific event handlers which make use of the 
programmer's knowledge of the object's semantics; these programmer-supplied event handlers 
then replace the respective default event handlers for that object. Thus, if object class keyword 
recoverable is specified in the definition header of the object being implemented, the 
programmer may give an optional action event part in the object's implementation part. 
Following the keywords action events, the programmer lists the name of each action event 
handler provided by the object implementation as well as the name of the action event whose 
default handler the specified handler is to override. Thus, for example, the specification (say, 
in an object implementing a bounded-stack abstraction): 

action events 
stackJ30A overrides BOA, 
stack_nested_precommit overrides nested_precommIt 

indicates that the default handlers for the BOA and nested_precommit action events are to be 
replaced by the procedures named "stack_)30A" and "stack_nested_precommit," respectively, 
for the bounded-stack object type only. 

4.2 Recoverable Areas 

As mentioned in section 3, if an object being implemented is of class recoverable, then some 
of its variables may be declared in a recoverable area. When a nested action first invokes an 
operation on a recoverable object ("touches" that object), the action is given a new version of 
the recoverable area which initially has the same value as the version belonging to the action's 
immediate ancestor. The set of versions belonging to uncommitted actions which have touched 
a recoverable object is maintained on a version stack by a Clouds action manager. When a 
nested action commits, its version replaces that of its immediate ancestor. When a toplevel 
action commits, its version is saved to permanent storage. If an action is aborted, its version is 
popped from the version stack. 6  Thus, recoverable areas (in conjunction with appropriate use of 
synchronization) provide view atomicity, that is, an action does not see the intermediate 
(uncommitted) results of other actions. Also, the use of recoverable areas allows the 

6. For more information on the semantics of recoverable areas and the mechanisms to support them, see Allchin's 
dissertation. [A1593a1 
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programmer to provide finer granularity in the specification of that part of the object state which 
must be checkpointed, since the use of automatic recovery on object (the autorecoverable object 
class) performs checkpoints on the entire state of the object. 

The interaction with the action manager necessary to manage the states of recoverable areas 
is implemented by the action event handlers as described above. Again, the default event 
handlers may be overridden by programmer-supplied event handlers for the entire object to 
achieve better performance. 

4.3 Permanent and Per-Action Variables 

It may sometimes be desirable to make large data structures resilient. In such cases, the 
recoverable area mechanism may be inefficient, since it requires the creation of a new version 
of the entire recoverable area for each action which modifies the area. Often in such cases the 
programmer make take advantage of knowledge of the semantics of the data structure to 
efficiently program the recovery of the data structure. The Aeolus language provides two 
constructs which aid in the custom programming of data recovery, the so-called permanent and 
per-action variables, constructs proposed by McKendry.NcKe 851 

Any type may be given the attribute permanent. This attribute indicates that members of 
that type are to be allocated on the permanent heap, a dynamic storage area in the object storage 
of each object instance. This area receives special treatment by the Clouds storage manager; in 
particular, it is shadow paged during the toplevel preconvnit action event.? Any type which has 
as its base or element type a type with the attribute permanent inherits that attribute. Other 
than during object initiRIi7a  tion, permanent variables may be assigned values only within a 
toplevel precommit event handler. 

Aeolus also provides the per-action variable construct. An object implementation part of 
class recoverable may declare a single per-action variable section. A per-action specification 
resembles a recoverable area specification, and the semantics is also similar, in that each action 
which touches an object with per-action variables gets its own version of the variables; however, 
the programmer may access the per-action variables not only of the current action, but also of 
the parent of the current action. Also, per-action variables are allocated in volatile storage, that 
is, in storage the contents of which may be lost upon node failure. The variables in a per-action 
specification are accessed as if they were fields in a record described by the specification; two 
entities of this "record type" are implicitly declared: Self and Parent, which refer respectively 
to the per-action variables of the current action and its immediate ancestor. 

Permanent and per-action variables may be used together to simulate the effect of 
recoverable areas at a much lower cost in space per action. In general, the per-action variables 
are used to propagate changes to the resilient data structure up the action tree; these changes are 
then applied during the toplevel precommit action event to the actual data structure in permanent 
storage. The use of permanent and per-action variables is shown more fully in the 
programming example shown in the Appendix (and described in section 6). 

4.4 Action Invocations 

The right-hand side of an assignment statement may take the form of an action invocation. 
Here, the right-hand side (which consists of an operation invocation which, if the operation is 
value-returning, is embedded in another assignment statement) is invoked as an action; the 
action ID of this action is assigned to the variable designated by the left-hand side of the action 
invocation. Thus, for example, if the bounded-stack object mentioned in section 3 were defined 
as a recoverable object, we might invoke one of its operations as an action: 

7. More information on the management of permanent heap storage is available in several papers on the Clouds 
system. [Fi5,Ken186,Wilk961 
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atD := action( stackJnstance @ push( elem ) ) 

The action ID may be used as a parameter in operations on the action manager which provide 
information about the status of the action, cause a process to wait on the completion of an 
action, or explicitly cause an action to commit or abort. 8  The programmer may specify that an 
action be created as a "top-level" action, that is, as an action with no ancestors; a top-level 
action cannot be affected by an abort of any other action. Otherwise, the action is created as a 
"nested" action, that is, as a child (in the so-called action tree) of the action which created it; as 
described below, a nested action may be affected by an abort of one of its ancestors. 
Optionally, a timeout value may be specified; if the action has not committed by the expiration 
of this timeout, the action will be aborted. If no timeout value is specified, a system-defined 
default value is used. 

As described in section 1, object operations may possibly execute in an action environment 
or may be invoked as an action. Only an operation or internal procedure of a recoverable or 
autorecoverable object may be invoked as an action; however, all operation invocations on such 
objects must be executing in an action environment. Thus, operations of a non-Clouds object or 
of a nonrecoverable Clouds object may execute in an action environment, but may not be 
invoked as an action. A recoverable or autorecoverable Clouds object is said to be touched by an 
action if one or more of the operations of the object are invoked within the environment of that 
action. 

The semantics of an action invocation is as follows: the action manager operation 
CreateAction is invoked with the name of the operation to be performed as well as the list of 
arguments to be passed to that operation. 9  The action manager then invokes the BOA event 
handler on the object to which the operation belongs. Next, the action manager creates and 
dispatches a process in which the operation code runs. When an object is first touched by the 
action, the BOA handler of that object is invoked. An attempt by an operation invoked as an 
action to return to its caller is considered an implicit attempt to commit the action, and will cause 
control to transfer to the Commit operation of the action manager, which terminates the process 
and invokes the precommit event handler of each object touched by the action. (An explicit 
invocation of the Commit operation has the same effect.) If precommit of all touched objects is 
successful, the action manager then invokes the commit event handler of each touched object; 
otherwise, the objects' abort event handlers are invoked. If the action (or one of its ancestors) 
invokes the Abort operation of the action manager, the action manager terminates the process 
corresponding to the action and invokes the abort event handler of each object touched by that 
action. 

It may sometimes occur that an object operation may be called either as an action invocation, 
or as an ordinary object operation invocation (even in an action environment). In the case that 
an operation is invoked normally (that is, not invoked as an action), an invocation of the action 
manager operation Commit by the operation will cause the action manager to merely return 
control to the point of invocation of the original operation; thus, in this case the Commit call is 
effectively a normal procedure return. On the other hand, an invocation of the Abort operation 
by an operation .  invoked normally will cause the parent action of the invoker of the original 
operation (that is, the action in the environment of which the operation is executing) to abort. 
Aeolus does not provide an explicit exception-handling mechanism. This function is subsumed 
to some extent, for operations executing within an action environment, by the action event 
handling mechanism. However, in the case of operations not invoked as actions, a call to the 
Abort action manager operation—as described above—provides a mechanism similar to an 

8. The interface to the Clouds action manager is described in the Reference Manual.rwilissi 
9. The exact details of the manner in which this information is provided depends on whether the operation is a local 

procedure or a publicly-visible operation of the object to which it belongs. 
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exception-handling mechanism with a single exceptional condition (say, "error"); the abort 
event is effectively propagated to the parent action, and is handled by the action event handlers 
of the objects which the action touched. 

5. Support for Processes 
The final structuring feature of the Aeolus language provides an abstraction of the process 

concept of the Clouds system. (The process is analogous to the program construct of Pascal or 
Modula-2.) The invocation of a process provides activity in the Clouds system; processes may 
be considered the "glue" which binds object operations, and possibly actions, to do useful work. 

A process is introduced by a header which gives the name of the process, as well as clauses 
detailing any imports of object definitions necessary. Following any import clauses, the body 
(process block) of the process is specified; the statement part of this block is the entry point 
when the process is activated, and execution begins there after any necessary variable 
initializations of the process block have been performed. 

6. A Programming Example 
In this section, we discuss an example of systems programming using the constructs which 

Aeolus provides for access to the powerful features of the Clouds system for action and object 
programming. The text of the example object discussed here is provided in the Appendix. 

Since the use of a recoverable data structure requires the creation of a complete copy of the 
data structure on the version stack for each action which modifies the data structure, the 
implementation of a replicated object can become inefficient as the size of the data structure 
increases. Fortunately, we can use semantic knowledge about the object to simulate the effect 
of recoverable variables at a fraction of their cost. Essentially, rather than require that the 
system allocate a new version of a complete data structure for each new action, we make use of 
per-action variables to maintain "change lists" for each action. These may be viewed as 
"intention lists" for operations such as insertion or deletion in a data structure. Since each 
action can access both its own recoverable variables and those of its parent, we may arrange to 
propagate the change lists of an action to its parent, usually by coding an event handler for 
either the nested_precornmit or the commit action event. (We may also wish to arrange to clean 
up after ourselves in an abort action event handler.) The actual modification of the data 
structure itself is delayed until the toplevel_preconvnit action event. In a handler for this event, 
we must arrange to perform the changes maintained in the change lists (say, insertions and 
deletions) on the actual data structure; the actual data structure is maintained in permanent 
storage. Note that the Aeolus/Clouds system enforces the restriction that data in permanent 
storage may be modified only at toplevel precommit; then, the Clouds storage management 
system[Pitt85] assures the stability of permanent storage and the atomicity of changes to it. 

The use of this technique often requires the use of linked lists or similar data structures 
allocated in a heap in the permanent area of per-object storage. This permanent heap requires 
special run-time support for its management, which must maintain the heap's consistency across 
failures. 

In the example shown in the Appendix, we show a proposed design for the permanent heap 
manager. To maintain the consistency of the heap, this PERMHEAP object uses the same 
techniques which the permanent heap mechanism is designed to support, i.e., per-action 
variables and associated action-event handlers. In the implementation shown, the "free list" 
(i.e., the list of available blocks of permanent storage) is itself kept in permanent storage to 
ensure the resilience of the permanent heap structure. (Thus, the PERMHEAP object must 
actually be bootstrapped from a non-resilient version.) For the purposes of this example, we 
have written PERMHEAP as a recoverable object. In practice, the permanent heap support 
would be part of the runtime support code compiled into a recoverable object, rather than a 
separate object. 
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The PERMHEAP object maintains lists of those blocks of the heap allocated and freed by 
each action, in per-action variables. Also, each action which allocates a block of storage obtains 
a lock on the value of the address of that block. (Blocks of storage are uniquely identified by 
their starting addresses.) The presence of a lock on a block of storage indicates that it has been 
allocated by some action which has not yet committed; since changes to the actual "free list" are 
not made until toplevel precommit of the action allocating storage, this lock is necessary to 
inform other actions that the block is probably unavailable. A call to the ALLOCATE 
operation of PERMHEAP will return the address of a block of memory in the permanent heap 
area of the object; the address of the block is also added to the ALLOCATED per-action list 
and is locked. If a block of memory was allocated by the action which is trying to free it, a call 
to PERMHEAP's FREE operation will remove that block from the ALLOCATED list and 
release the lock on its address, effectively causing the block to never have been allocated. If, on 
the other hand, the block was not allocated by the invoking action, the address of the block to be 
disposed is merely added to the FREED per-action list; actual disposal is performed at toplevel 
precommit. 

No special processing is required if an action allocating or freeing storage aborts, since its 
locks are released and no alteration to the permanent "free list" has taken place. Thus, 
effectively no allocations or frees have taken place. (Note that the contents of permanent 
storage blocks on the "free list" are considered dispensible; nevertheless, these contents may be 
modified only at toplevel precommit.) When a nested action enters its commit phase, its 
ALLOCATED and FREED per-action lists are propagated to its parent. Memory blocks on the 
permanent heap allocated by an action are actually removed from the "free list" when the 
action's toplevel ancestor (to which the nested action's per-action lists have been propagated) 
enters its precommit phase; also, blocks freed by the action are added to the "free list" at this 
time. 

In Clouds, locks (as well as all portions of the object state which are not specified to be 
permanent or recoverable, including per-action variables) are maintained in volatile storage. 
Thus, information concerning uncommitted allocations and frees. of an object using permanent 
heap support may be lost due to node failure. However, this will not cause a problem, since 
uncommitted actions running at a node at the time of its failure will be aborted. Recall that 
locks belonging to an action are released if that action is aborted; thus, the effect is the same as 
if the actions had been aborted in a non-failure case, i.e., as if the allocations and frees had 
never been performed. 

Note that this implementation of the PERMHEAP object does not provide strict 
serializability. To see this, consider some action, A, which exhausts (or nearly exhausts) the 
permanent heap, causing other actions B and C trying to allocate permanent memory to' fail. 
Action A may well be aborted itself. Actions B and C which failed because of A might not have 
failed had they been executed serially. However, such breaches of strict serializability do not 
affect the consistency of the permanent heap mechanism, and thus are of little concern in this 
context. 

7. Status of the Aeolus Implementation 

In the Clouds systems programming language effort, work is currently continuing in two 
major areas as of summer 1986: the implementation of the Aeolus compiler as well as its 
integration with the Clouds kernel services, and the use of the Aeolus language system as a 
testbed for studying the problems of programming in action-object systems. 

Work on the compiler is in progress on one of the DEC VAX 11/750s of the Clouds system, 
under the BRL version of Berkeley UNIX 4.2. The Amsterdam Compiler Kit[Tane'83] is being 
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used for code generation. The basic portion of the compiler implementation has been finished, 
including support for non-Clouds objects. Current work on the Aeolus implementation is being 
concentrated on those areas of functionality needed for interfacing with the kernel to provide 
support for object and action management. We anticipate that support for Clouds objects will 
be available in summer 1986, and that the functionality needed for a prototype implementation 
in Aeolus of the recently-completed action management design ricen1861 will be available in fall 
1986. (The interfaces to action management are described in the Reference Manual[winc 85] for 
Aeolus.) The actual implementation of action management is being done in C, as it will be 
merged with the kernel code (which is also in C). Concurrently, work is progressing on the 
development of structured editing tools for Aeolus using the ALOEGEN structured-editor 
generator system developed under the GANDALF project. LNotkSSl 

Our plans to use the Aeolus/Clouds system as a testbed for studying programming 
methodologies in action-object systems have been described in a previous paper.[Le 13485] As one 
of these ongoing studies, we are working towards the development of a distributed object filing 
system for Clouds; alternate implementations of the file system will compare the efficiency of 
different schemes for achieving consistency and availability. Of special interest are the trade-
offs available among different schemes between consistency and availability, particularly when 
semantic knowledge of an object may be brought to bear. This research will be described in a 
forthcoming dissertation.(wilk 86] 

1M  UNIX is a registered trademark of AT&T. 
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Appendix 

The following example is discussed in section 6 of this paper. Reserved words of Aeolus are 
indicated by boldface. 

definition of recoverable object permheap is 
I Gives the publically-visible definitions provided by the PERMHEAP object. 

operations 

procedure allocate ( size : unsigned ) returns address modifies 
I Return a pointer to a block of memory of the given "size" (in words) in 
I permanent memory. 

procedure free ( block : address ) modifies 
Dispose the block of memory indicated by "block". 

end definition. I permheap I 

Implementation of I recoverable I object permheap is 
I Support for the permanent heap, using per-action variables for recovery management. 

import list 
The definition part of the LIST object is shown here for clarity. 

definition of local object list ( elem_type : type ) is 
-- This object Implements a linked list abstraction. The object Is parameterized 
-- by the element type of the list; if the element type is specified to be permanent 
— by a (recoverable) importing object, then the linked list Itself will be allocated 
-- in permanent storage (only recoverable objects may declare permanent variables). 
-- The list Is Initially empty. Mutual exclusion Is provided on MODIFY operations. 

operations 
procedure add (elem : elem_type) modifies 

-- Adds ELEM to the list. 
procedure append ( I : list ) modifies 

-- Appends all elements In list L to this list. Use of the object type "list" 
-- here with no parameters implies that list L must have the same element type 
-- as this list. 

procedure remove ( elem : elem_type ) modifies 
-- If ELEM Is on the list, removes it. 

procedure find ( elem : elem_type) returns boolean examines 
-- If ELEM is on the list, returns TRUE, otherwise FALSE. 

procedure nth ( n : unsigned, notthere : out boolean ) 
returns elem type modifies 

-- If the Nth element exists, returns it and sets NOTTHERE to FALSE, 
-- otherwise sets NOTTHERE to TRUE. 

end definition. 

Technical Rer 11T-ICS-86/12 



-19- 

I The local declarations of the PERMHEAP object. 

Here, we give the names of alternate handlers for some of the action events. 
I Note that no alternate handler is given for the ABORT event (see section 6). 

action events 
commit Is permheap_commit, 

toplevel_precommit is permheap_top_precommit 

Militalm•••• 

I The PERM_ BLOCKENTRY type is used for the maintenance in the permanent heap of the 
I list of free storage blocks. Each block is uniquely identified by its address. 

type perrn_blockentry is permanent new address 

The list of free storage blocks. Since the base type of this list is permanent, 
the list itself Is allocated in permanent storage. 
This list may be modified only during the toplevel_precommit action event. 
The size of each entry is stored in the first word of that entry. 

freelist : list( perm_blockentry ) := new list 

The BLOCKENTRY type is used in the declaration of the per-action variables 
below. Pointers to this type are allocated on the normal (not the 
permanent) heap, and may be modified outside of the toplevel_precommit 
event handler. 

type blockentry Is new address 

The per-action variables for permanent-heap recovery management. 
We will maintain lists of memory blocks allocated and freed by each action. 

per action 
allocated : list( blockentry ) := new list 
freed : list( blockentry ) := new list 

end per action 

When an action allocates a block of permanent storage, it must obtain a lock on that 
block until it commits to prevent other actions from attempting to allocate that block. 
Rather than associate a lock with the actual storage block, we lock the block's address 
(of type BLOCKENTRY). Recall that locks obtained by an action are propagated to its 
parent upon nested commit, and released upon abort or toplevel commit. 

entryJock : lock ( busy : a ) domain Is blockentry 
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procedure firstjit ( size : unsigned ) returns blockentry Is 
A private operation of the PERMHEAP object. Given a size In words, FIRST_FIT finds 
the first entry on the FREELIST for a block of storage of size at least as large as 
SIZE and returns a pointer to that entry. (For the purposes of this example, we 
will assume that such a block exists.) Of course, another strategy could also be 
used here (such as best fit, or fragmentation and compaction). We'll assume that 
repeated invocations of FIRST_FIT by the same action return different addresses. 

begin 
I The details of this operation are omitted here. Even if an appropriate block of 
! storage is found on the FREELIST, FIRST_FIT must also test the ENTRY_LOCK to check 
whether this block has not already been allocated by some as yet uncommitted action. 

end procedure I firstjit I 

I ALLOCATE and FREE are public operations of the PERMHEAP object. 
1 

procedure allocate (I size : unsigned 1) returns address! is 
Return the address of a block of memory of the given SIZE in permanent storage. 

! Since the block Is from the FREELIST, its former contents are expendable. 
The SetJ.ock operation used here is non-blocking, i.e., It returns immediately with 

I value FALSE if the requested lock is not available. 

entry : blockentry 

begin 
loop keep going until we find an available block 

entry := firstjit( size ) 
if SetJ..ock( entryJock, busy, entry ) then 

Self.allocated @ add( entry ) I add the entry to the ALLOCATED list for this action 
return address( entry ) 

end it 
end loop ' 

end procedure I allocate ! 

procedure free (I block : address !) is 
I Add a BLOCK of memory to the FREED list for freeing during toplevel precommit. 

entry : blockentry 
notthere : boolean 
i : unsigned := 1 

begin 
First, scan the ALLOCATED list to see If BLOCK was allocated by the current action 

loop 
entry := Self.allocated @ nth( I, notthere ) 
if notthere then 

exit . 
elsif entry = blockentry( block ) then 1 Yes, 

Self.allocated @ remove( entry ) 	I so remove It from ALLOCATED list 
ReleaseLock( entryJock, busy, entry ) 
return . 	 ! we're done 

end if 
+= 1 

end loop 

I If we get here, BLOCK wasn't allocated by the current action, so put it on the FREED list 
Self.freed @ add( entry ) 

end procedure I free ! 
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I The following are the alternate action event handlers for this object. 

procedure permheap_commit () Is 
I The alternate handler for the COMMIT action event. Well propagate the items on 
I the ALLOCATED and FREED lists of this action to the corresponding lists of Its parent action. 

aID : actionJD 
status : action_status 
level : actionJevel 

begin 
aID := ActionManager @ TeIIJD( status, level ) I see if we're in a nested action 
If level = nested_action then 

Parente''located @ append( Self.allocated ) 
Parent.freed @ append( Self.freed ) 

end If 
end procedure I permheap commit I 

procedure permheap_top_precommit 0 Is 
I The alternate handler for the TOPLEVEL_PRECOMMIT action event. We'll traverse the FREED 
I list, adding each entry there to the actual FREELIST in permanent storage; then, we'll 
!traverse the ALLOCATED list, removing each entry there from the FREELIST. 

entry : blockentry 
notthere : boolean 
I : unsigned 1 

begin 
I Add each entry on the FREED list to the FREELIST In permanent storage 
loop 

entry := Self.freed @ nth( I, notthere ) 
if notthere then 

exit . 
end if 
I Convert the entry to the permanent type before adding to FREELIST. 
freelist @ add( perm_blockentry( entry ) ) 

end loop 

I Remove each entry on the ALLOCATED Ilst from the FREELIST; the locks on these 
! entries will be released automatically. 
loop 

entry := Self.allocated @ nth( I, notthere ) 
If notthere then 

exit . 
end If 
freelist @ remove( perm_blockentry( entry ) ) 

end loop 
end procedure I permheap top_precommit 

Inithandler is I handier for the INIT (initialization) object event 
begin 

I Perform initialization (not shown) of FREELIST to indicate that all 
I of the permanent heap is available. 

end inithandler 
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relnithandler Is I handier for the REINIT (reinitialization) object event 
begin 

NULL ! This handler would by default be the same as the INIT handler 
end relnithandler 

! The DELETE object event handler for this object Is by default NULL. 

end implementation. I permheap I 
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1. Project Status 

During the first quarter of this project, work has continued on each of the two tasks carried 
over from our previous project and we have begun work on the new task. These efforts are 
closely related to other work in progress within the Clouds Project, our major research effort in 
the area of reliable distributed computing. 

Under the Language Support for Robust Distributed Programs task, work continues in two 
major areas: the implementation of the Aeolus compiler as well as its integration with the 
Clouds kernel services, and the use of the Aeolus language system as a testbed for studying the 
problems of programming in action-object systems. 

Under the Storage Management for an Action-Based Operating System task, the focus of 
our work has been on implementation, testing and integration with the virtual memory 
management mechanisms of the Clouds kernel. 

Under the Operating System Support for Reliable Distributed Computing Task, our efforts 
have been directed toward specification and functional design of the operating system services 
which will be implemented on top of the object and action management mechanisms provided 
by the Clouds kernel. 

The work on the tasks of this project is proceeding on schedule. Working in combination 
with other efforts in progress within the Clouds project, we are now in the process of debugging 
our initial prototype system. 

2. Language Support for Robust distributed Programs 

In the Clouds systems programming language effort, work continues in two major areas: the 
• implementation of the Aeolus compiler as well as its integration with the Clouds kernel services, 
and the use of the Aeolus language system as a testbed for studying the problems of 
programming in action-object systems. 

The major changes made to the Aeolus design over the summer quarter were described in 
our last report. Work on the language implementation is proceeding well, with many of the 
changes to the language made over the summer now incorporated into the compiler. Current 
work is being concentrated on those areas of functionality needed for interfacing with the 
kernel. In addition, we are working towards the functionality required for an implementation in 
Aeolus of the recently-completed action management design. 

The design of the interfaces of the runtime system with the Clouds action and object 
managers is essentially complete. As was mentioned in our last report, members of the Aeolus 
group have been assisting members of the kernel group in the design of these interfaces as well 
as in strategies for efficient action management. The detailed designs of the action and object 
managers are now complete, and are described in [Ken186]. Our basic designs for the 
Aeolus/Clouds interfaces (from the kernel side) are also described in this document; the Aeolus 
interfaces with these kernel routines are being codified as appendices to [Wilk85b]. The action 
management routines themselves are now being programmed from Kenley's detailed pseudo-
code; implementations are being done both in the C language and in Aeolus. The Aeolus 
implementation is being done principally to pinpoint weaknesses which the language may have 
as a systems programming language, before the design of the language is finalized; since the 
rest of the kernel is written in C, and since the pseudo-code design is based on C, it was felt that 
the first production implementation of the action management routines should be done in C. 
Because Aeolus was designed to allow easy interfacing with other languages (through use of the 
pseudo-local object construct [Wilk851:1]), addition of action management support to Aeolus will 
be relatively trivial once the kernel routines are available; most of the interaction with action 
management will take place through kernel calls, implemented as operations on an action 
management pseudo-object. Other support for actions required from the Aeolus compiler 
includes the identification of recoverable areas of storage, permanent and per-action variables, 
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and alternate action-event handlers; information about such constructs must be placed by the 
compiler in the header of the compiled object for use by action management at runtime. 

Our plans to use the Aeolus/Clouds system as a testbed for studying programming 
methodologies in action-object systems have been described in previous reports as well as in 
[Wilk85a]. As one of these ongoing studies, we are working towards the development of a 
distributed file system for Clouds; alternate implementations of the file system will compare the 
efficiency of different schemes for achieving consistency and availability. Of special interest are 
the trade-offs available among different schemes between consistency and availability, 
particularly when semantic knowledge of an object may be brought to bear. As an example of 
such a trade-off, there may be applicationssuch as air-traffic controlin which violation of the 
consistency requirement among replicated objects may be tolerable for short periods (for 
instance, during a network partition) in exchange for increased availability; such reduced quality 
of service would be preferable to no service at all in these types of applications. Our work on 
the distributed file system study is concentrating on these issues in relation to two schemes for 
replicated data management: the quorum method, which assigns a weighted number of votes to 
each replicant of a data object, and requires that a quorum of these votes be gathered before a 
read or write operation may take place; and the master/slave method of McKendry (as described 
in (Willc85a1), which uses "probes" to determine the availability of the master replicant to the 
slave replicant (and vice-versa) before operations are executed. The quorum method 
emphasizes consistency over availability, in that consistency among the replicants is guaranteed 
by the requirement that a quorum of objects be gathered before an operation may take place; 
however, an operation may not take place in a partition in which a quorum of objects is not 
available, even if one (or more) of the replicants is present in the partition. An algorithm for 
using the quorum method for distributed directories has been developed by Daniels and Spector 
[Dani83]; we will be modifying this algorithm for use in our comparative study. The 
master/slave method, on the other hand, maintains consistency among replicants in the absence 
of failures by requiring that any operation invoked on a slave be relayed to the master object, 
which in turn invokes that operation on all slaves. (Thus, this scheme partially resembles the 
so-called "primary copy" methods.) However, when a failure (for instance, network partition) 
occurs, any slave replicant may detect its isolation from the master by use of itself the master in 
that partition. Thus, service may continue in a partition containing at least one replicant, at the 
price of possible inconsistency among replicants in different partitions. These inconsistencies 
must be resolved when the failure (partition) is resolved; methods for doing this are 
demonstrated in the examples in [Wilk85a]. Thus, the master/slave method emphasizes 
availability over consistency, at least during failures. In our studies, we are examining 
combining the quorum method with the master/slave method to improve efficiency during the 
non-failure case. 

3. Storage Management for an Action -Based Operating System 

The storage manager is almost completely implemented and is currently undergoing testing. 
There currently exists a working driver for the RLO2 removable pack disk, which is being used 
for interim testing while development of a driver for the major storage device (the RA81 fixed 
medium disk) of the Clouds kernel is completed. The completion of the driver for the RA81 is 
expected by April 1986. The recent discovery of some technical information concerning the 
functioning of the disk and its relationship to the UDA50 controller has caused some 
modifications in the design for the driver. 

The partition level software for the Clouds kernel is on-line and working. Some changes in 
the partition interface and design were made during this period as a result of the refinement of 
the segment system design. We now can create complete Clouds partitions and perform several 
functions on the partitions. The functions include a complete set of partition directory 
operations (add an entry to the directory, remove an entry to the directory, and find the location 
of an entry in the directory), a set of directory dump operations (for collecting lists of segment 
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sysnames that reside on a partition, and operations for allocating and deallocating partition 
storage. Two components remain to be implemented for the partition level software: quick 
look-up mechanism (called the Maybe Table), and an activation routine, which will bring certain 
partition structures into memory and create the lock and semaphores necessary to manage the 
partition. These components will be added by the end of January. 

Coding of the segment level software is continuing, with only a few major routines 
remaining uncoded. These routines form the object data recovery mechanism of the Clouds 
kernel. The final of these routines depend on the decisions reached for the rest of the segment 
mechanism. Now that these decisions have been made, implementation of the recovery routines 
can be completed. 

The basic segment mechanism provides a means for performing input/output requests at the 
segment level. All input/output requests at the kernel level occur as part of virtual memory 
management. That is, if object data is needed, it is brought in to virtual memory as part of a 
page fault. Thus, the design of the segment system had to be integrated into the object and 
action management subsystems as part of the virtual memory management subsystem. 

The following portions of the segment system are coded and are being tested: 

A segment activation mechanism: When handling an object operation invocation, object 
management initiates a search to find the object and to insure the object is 
active. Activating the object involves creating an active segment descriptor for 
the disk image of the object and bringing the segment header into memory. A 
mapping for the segment is created. If the segment is already active, the 
current mapping may be modified. 

Segment create and destroy operations: Disk images of objects may be placed on and removed 
from the device. The operations support the creation and destruction of 
recoverable segments under the auspice of an action. 

Segment read and write operations: Data may be transferred to and from the disk, giving a 
segment offset as the source or destination. Memory locations used in the 
transfer are physical addresses. The operations use the current mapping to 
determine where the segment offset reside on disk. 

A page mechanism on top of the segment i/o: Pages faults are handled in tandem by object 
management and storage management. Initially, object management 
determines which object and where in the object, the fault occurred. The 
storage manager allocates a physical page and does a segment read to fill the 
page. 

Testing of the basic segment software will be completed by mid-January. The remaining 
segment operations will be completed by the end of January. 

4. Operating System Support for Reliable Distributed Computing 

4.1 Introduction 

The Clouds Project at Georgia Tech includes research aimed at building a reliable distributed 
operating system. The primary objectives of the Clouds operating system are: 

1. The operating systems will be distributed over several sites. The sites will have a fair 
degree of autonomity. Yet the distributed system should work as an integrated system. 
Thus the system should support location independency for data, users and processes. 

2. Reliability is a key requirement. Large distributed systems use significant number of 
hardware components and communication interfaces, all of which are prone to failures. 
The system should be able to function normally even with several failed components. 
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3. The processing environment should guard against both hardware and software failures. 
The permanent data stored in the system should be consistent. 

4. Distributed systems often have dynamic configurations. That is, newer hardware gets 
added, or faulty hardware is removed. The system function should not be hampered by 
such maintenance chores. Thus the system should be dynamically reconfigurable. 

5. The system should be capable of monitoring itself. This encompasses hardware monitoring 
for keeping track of hardware failures as well as monitoring key software resources (for 
example daemons, network servers, and so on.) On detection of failure the system should 
be able to self-heal (restart daemons) or self-reconfigure (eliminate faulty sites). 

6. The users should be shielded from both the configuration of the system (site 
independence) as well as its failure modes. For example, if the site a user is connected to 
fails, he should be transferred to an active site transparently. 

7. Many of the above functions can be implemented on conventional systems, but would 
make the system extremely slow. Thus efficiency is an important design criteria. 

The above requirements can be handled by a distributed system and are being designed into 
the Clouds operating system. Most of the functions have been designed into the kernel of the 
system. The design philosophies adopted for the Clouds operating system are: 

1. An object-based, passive system, paradigm is used as the basic architecture. All system 
functions, data, user programs and resources are encapsulated as passive objects. The 
objects can be invoked at appropriate entry points by processes. 

2. The objects in Clouds represent nearly everything. the system has to offer. The site 
independence philosophy is implemented by making the object name space (system names) 
flat and site independent. When a process on any machine invokes an object located 
anywhere, no site names are used. Hence the location of any particular object is unknown 
to a process. 

3. Reliability is achieved through two techniques. One of them is the action and recovery 
concept. The action mechanisms are supported at the kernel level. Actions are atomic units 
of work. Any unfinished or failed action is recovered and has no effect until it completes. 
The recovery mechanisms are supported inside every object an action touches. 

4. Reliability is further extended by the self monitoring and self reconfiguration subsystems. 
This is a set of monitoring processes that use "probes" to keep track of all key system 
resources, both hardware and software. On detection of failed or flaky components, the 
monitoring system invokes the reconfiguration system which rectifies or eliminates (if 
possible) the faulty components, and initiates recovery of affected actions. The monitoring 
and reconfiguration subsystems are also monitored by the monitoring system. 

5. The consistency requirements of the data are handled by the recovery mechanisms and by 
concurrency control techniques. The concurrency control is handled by synchronization 
paradigms that are an integral part of the object handling primitives. The synchronization 
of processes executing in an object is handled automatically by semaphores that are a part 
of the object. This gives rise to a two-phase locking algorithm that is supported by the 
kernel as a default. The object programmer has the choice of overriding these controls and 
use custom built concurrency control, depending upon the application. It is also possible to 
turn off the default recovery and commit strategies. 

6. Efficiency has been of concern. The object invocation, recovery and synchronization are 
handled by the kernel. It turns out that these can be done at the kernel level without much 
overhead. Since the entire Clouds design is primarily based on object manipulations, 
invocation and synchronization will be the most used operations. Implementing them at the 
kernel level will result in an efficient system. 
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7. The site independence at the user level is handled in part by using intelligent terminals. 
The user terminals are not hard-wired into any machine or site, but are on an ethernet, 
accessible by any site. Each user session is, of course, handled by one particular site, but 
any failure causing the controlling site to be unaccessible causes the user to be transferred 
to another site. This is handled cooperatively by the user terminal and the other sites. Thus 
the user terminals are actually intelligent microprocesser systems on the Clouds ethernet. 
In addition to cooperation with the Clouds network, the user terminals run "Bubbles", a 
multiwindowing, user-friendly interface to Clouds. 

4.2 Progress Report 

The kernel has been designed and implemented to a large degree. The process dispatcher, 
the virtual memory, object invocation procedures, and some storage and communication 
software has been implemented and tested. We currently do not have software to build Clouds 
objects, and thus have not been able to test the invocation in a multiprocess environment. The 
kernel has been tested in a stand alone system with hand-coded objects. 

The most important communications package in Clouds, the ethernet driver has been 
implemented and tested. The driver in based on a very general design and has the ability to 
support a host of protocols that can be hooked to it. It currently talks to the Clouds machines as 
well as the machines running Unix 4.2bsd (trn). 

The storage management subsystem is partially implemented. Disk drivers for implementing 
the file system (for object storage) is in the test phase. The advanced virtual memory features 
needed by Clouds (partitions, object mapping, segment handling) is being coded and tested. 
Implementation of virtual disks using the ethernet (for intersite paging) is underway as the 
ethernet driver is now available. 

The next phase will integrate the results of the compiler building with the kernel to allow 
building of services and user programs as objects and running them on using multiple processes, 
and multiple sites. 

The action management is an advanced kernel subsystem that ensures the atomicity of the 
distributed actions of the Clouds system. The action management is responsible for creation, 
deletion, proper or improper termination of actions, commitment, and failure containment. The 
design of the action management subsystem is as far complete as can be achieved theoretically 
without availability of implementation experience. The implementation will begin as soon as the 
base kernel is fully tested. 
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1. Project Accomplishments 
During the course of this contract, substantial progress has been made on each of the three 

project tasks. These efforts are closely related to other work in progress within the Clouds 
Project, our major research effort in the area of reliable distributed computing. 

Under the Language Support for Robust Distributed Programs task, the work has proceeded 
in two major areas: the integration of the Aeolus compiler with the Clouds kernel services and 
the use of the Aeolus language system as a testbed for studying the problems of programming in 
action-object systems. A discussion of the design of Aeolus was provided in an appendix to the 
third quarterly progress report delivered under this contract. 

Under the Storage Management for an Action-Based Operating System task, the focus of 
our work has been on the design and implementation of the kernel storage manager and on 
implementation of a device driver to enable us to use our large disk drives on machines running 
the Clouds kernel. The design of the Clouds storage manager is described in a doanent 
attached as Appendix A to this report. 

Under the Operating System Support for Reliable Distributed Computing task, our efforts 
have been directed toward specification and functional design of the operating system services 
which will be implemented on top of the object and action management mechanisms provided 
by the Clouds kernel. Our short term goal has been to obtain a working, robust kernel to 
provide a basis for the implementation of these designs. Recently, that goal has been achieved 
through the integration of a number of separate projects. A description of he Clouds distributed 
operating system with a comparison to other related efforts is attached as Appendix B. 

2. Language Support for Robust Distributed Programs 
Work under this task has included efforts in two major areas: the design and 

implementation of the Aeolus language, and the use of Aeolus for the study of programming 
methodologies for action/object systems. 

2.1 Language Design and Implementation 
As mentioned in the last report, the design of the Aeolus language is now "frozen" (we 

hope permanently), and the implementation effort is proceeding. Our goal of providing support 
for Clouds objects in the compiler is now nearly achieved. This support is realized in two 
different areas. The first is run-time support for Clouds object operation invocations. This 
involves formatting arguments suitably for remote procedure call (since the target object may 
not reside on the machine where the invocation is produced), and handling such things as 
copying return values and "out" parameter values upon return from the invocation. Code for 
this has been produced, and the compiler generates all the necessary data structures and 
invocations. 

The second area is the creation of TypeManager objects. When a Clouds object is compiled, 
a Unix "a.out"-style load file is created; the Unix header is then stripped from this file to yield 
a description for the object in the format expected by Clouds. A TypeManager, once created 
under a system running the Clouds kernel, requests this object description file from the Unix 
system and stores the description as the TypeManager's object data. Subsequently, when the 
"create" operation is invoked on the TypeManager, the object description is used to create an 
instance of that object type. To create TypeManagers, we will "hard-wire" a TypeManager for 
TypeManagers into the kernel. Work on this original TypeManager is proceeding, as well as on 
the supporting code which brings the objects code and data from the Unix system. We are 
currently working with members of the kernel group to integrate these features into the Clouds 
kernel. 

2.2 Programming Methodologies for Action/Object Systems 
During the final quarter, our work on achieving availability of resources in the Clouds 

system has continued with study of the work of Herlihy, presented in his dissertation, 
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"Replication Methods for Abstract Data Types,”[Her 184] and with correspondences between 
Herlihy's techniques and the synchronization mechanisms used in Clouds, which should allow us 
to apply Herlihy's methods to our problem of generating replicated objects. 

Herlihy's work concerns the extension of quorum intersection methods to take advantage of 
the semantic properties of abstract data types. Previously, work on quorum methods mostly in 
the database area—has been limited to a simple read/write model of operations. Herlihy's 
extensions allow the selection of optimal quorums for each operation of an abstract data type 
based on the semantics of that operation and its interaction with the other operations of the data 
type. 

Herlihy's method is based on the analysis of the algebraic structure of abstract data types. 
This entails the construction of a "quorum intersection graph," each node of which represents 
an operation of the data type, and each edge of which is directed from the node representing an 
operation 01 to the node representing operation 02, where each quorum of 02 is required to 
intersect each quorum of 01. From the quorum intersection graph, optimal quorums for each 
operation may be calculated, given the number of replicas of the data, and the desired 
availability of each operation in relation to the other operations of the data type. 

Herlihy shows that his method can enhance the concurrency of operations on replicated data 
over that obtained from a read/write model of operations. He also claims advantages for his 
methods in the support of on-the-fly reconfiguration of replicated data, and in enhancing the 
availability of the data in the presence of network partitions. 

There appears to be a close relationship between Herlihy's quorum intersection graphs and 
the lock compatibility matrices used in Aeolus and the Clouds system; a graph constructed from 
the lock compatibility matrices for an Aeolus/Clouds object is either the complement of the 
quorum intersection graph for the operations of that object, or a subset of the complement. 
This is not really surprising, since the specification of our lock compatibilities is based on the 
programmer's analysis of the compatibilities between the object operations, while Herlihy's 
quorum intersection graph may be viewed as being based on an analysis of the incompatibilities 
between operations. 

Thus, we should be able to apply Herlihy's techniques to our problem of generating 
replicated objects given an unreplicated object version and a specification of the desired 
replication properties. This entails extending the notion of the Aeolus/Clouds lock to include 
the "distributed" lock; that is, the state of the lock is shared logically among all replicas of an 
object. This will, of course, require the transmission of lock state information among all 
replicas. However, the concurrency properties of the unreplicated version of the object will be 
retained by the replicated version generated from it. This is especially significant given the 
power of the Aeolus/Clouds lock mechanism in expressing arbitrary compatibilities and in 
allowing the expression of synchronization at arbitrary levels of granularity. 

We are currently investigating these possibilities in the course of the design of the object 
filing system (OFS) for Clouds. The replication scheme which we are currently considering in 
support of availability will require heavy interaction between the manager for a replicated 
object, the job scheduler, and the OFS. The OFS should: 

• be resilient and highly available (through replication); 

• provide a mapping from object names (strings) to Clouds object capabilities; 

• impose some familiar structure (e.g., a Unix-like hierarchical structure) on the flat, global 
system name space provided by the Clouds object manager; 

• provide efficient forms for the most common types of I/O (such as text I/O) without the 
necessity of the context switches which would be required if such I/0 were modelled with 
Clouds objects. 
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In the OFS, an object name may represent a group of objects (the set of replicas of a 
replicated object), rather than a single instance. We intend that this mechanism should be, in 
general, transparent to the user (although special-purpose applications, such as DBMSs, may 
require that, in addition, finer control of replication be available than that provided by a general 
mechanism). 

We are currently considering two different capability-based naming schemes which may be 
used by the OFS in support of state cloning, as described in a previous report. The first scheme 
requires minimal changes to the kernel, but relies on facets of the Clouds object lookup 
mechanism which may not be applicable to other systems. In Clouds, the search for an object 
begins locally (that is, on the node which invoked the search), and—if the object is not found 
locally—proceeds to a broadcast search. If the internal objects belonging to a replica are 
constrained to reside on the same node as their parent object, then the local search will locate 
the local instance of the internal object. (We do not consider this constraint to be onerous, since 
the internal objects of each replica need to be highly available to that replica in any case, and 
thus should logically reside on the same node as the parent replica. This constraint may be 
enforced by the OFS.) Thus, each replica of an object (each of which resides on a separate 
node) may maintain its set of internal objects using the same capabilities as each other replica. 
Although we will thus have multiple instances (on separate nodes) of internal objects referenced 
by the same capability, there should be no problems caused by this, since—by the definition of 
internal object—only the parent object or its internal objects may possess the capability to an 
internal object, and the object search will always locate the correct (local) instance. Thus, state 
cloning may be used to copy the state of a replica to the other replicas without causing the 
problems with respect to internal objects mentioned in the previous report (concerning 
references to internal objects contained in the replica's state), since under this scheme all 
replicas may use the same capabilities for referencing internal objects. This scheme is an 
extension of a facility already supported by the Clouds kernel for cloning read-only objects such 
as code. We call this scheme vertical replication, since it maintains the grouping of internal 
objects with their parent object. 

The other naming scheme makes fewer assumptions about the lookup mechanism than 
vertical replication, but requires more kernel modifications. In the second scheme, each 
instance of the replicas' internal objects is again named by the same capability, at least as far as 
the user is concerned; however, the kernel maintains several additional bits associated with each 
capability identifying a unique instance. (These additional bits may be derived from, for 
instance, the birth node of the instance.) When a (parent) replica invokes an operation on an 
internal object, the kernel selects one of the replicas of the internal object according to some 
scheme (e.g., iteration through the list of nodes containing such objects until an available copy is 
located). Thus, a set of replicas of internal objects is maintained in a "pool" for access by all 
parent replicas. Again, each parent appears to use the same (user) capability to reference a 
given internal object, so the problems of state cloning disappear. Since this scheme maintains a 
logical grouping of the copies of an internal object, rather than grouping internal objects with 
their parent object, we refer to the scheme as horizontal replication. 

Our initial design of the OFS is concerned with an unreplicated version; when completed, the 
design will be extended to a replicated version by use of the "distributed lock" mechanism and 
an analysis of the desired replication properties of the OFS. 

3. Storage Management for an Action-Based Operating System 

During the final quarter of the contract, final testing and documentation of the storage 
management system for the Clouds kernel was completed. A copy of the documentation can be 
found in Appendix A. During the previous quarter, a ciissertation[Pitt 86] based on the storage 
manager development effort was completed and defended by David Pitts. The dissertation 
describes the three major subsystems of the storage manager: the device system, the partition 
system, and the segment system. For each subsystem, the structures and operations that 
comprise the subsystem are defined. The dissertation describes the basic services provided by 



the storage manager: object memory support, recovery management, and directory 
management. The dissertation highlights the integration of virtual memory management with 
object memory support and recovery management. One of the claims of the dissertation is that 
this integration provides a efficient system. 

The dissertation describes three algorithms that support the two-phase commit of actions in a 
Clouds system. It is shown how these algorithms support action management and also crash 
recovery. A chapter in the dissertation is devoted proving the correctness of these algorithms, 
based on the assumptions made for the Clouds system. 

4. Operating System Support for Reliable Distributed Computing 

The Clouds Operating System kernel provides the systems support for objects and actions. 
Two primary attributes supported at the kernel level are persistent object memory and atomic 
actions. 

The Clouds object memory consists of a virtual address space per object. This virtual space 
is also persistent or permanent. That is, any modifications to the virtual state of the object 
remain forever (unless explicitly deleted). Thus, the objects are longer lived than the processes 
that create, access, and modify them. 

The atomic action paradigm allow processes (executing on behalf of the actions) to update 
the objects atomically. That is, either all objects touched by the action get updated, or none of 
the objects are updated. 

The object memory in Clouds is supported by the object management system, which supports 
distributed object invocations and demand paged object virtual memory. Two recent Ph.D. 
graduates have completed most of the kernel support for the reliable object 
memory. Spaf 86] The details are as follows. 

The object management system has been tested to handle object invocations, both local and 
remote. This uses the communication system which uses Ethernet routines to communicate with 
other Clouds sites as well as Unix machines. The object management system uses a search and 
invoke strategy for locating objects in a uniform, location independent manner, that works even 
if some of the sites are non functional. The global searches occur efficiently, as they use a hash 
table based decision function based on the Bloom filter (we call this the "Maybe Table"). 

The storage management system provide the functions of basic virtual memory, object 
memory, shadowing, flushing, and commit. It also provides directory services for object lookup 
(using capabilities), and interfaces with the Maybe Table handling routines. This system has 
also been implemented and tested. 

The communication system has been developed to be compatible with the Unix conventions 
(Berkeley 4.2 bsd and 4.3 bsd). This provides us with the ability to access the Clouds system 
from Unix, and to allow the use of Unix system calls from Clouds applications. Work in this 
aspect is under progress. As of present, we generate Clouds objects on Unix and transmit them 
to Clouds. We also have the capability to create object instances from Unix machines and 
perform object invocations to these objects from Unix programs. We also have integrated the 
object management and storage management systems to work together, allowing us to use a 
usable integrated kernel that is capable of distributed object handling. 

All of these subsystems have been integrated and tested to achieve a working Clouds kernel. 
We now have the capability to run distributed programs on our Clouds testbed. This capability 
enables us to begin implementing some of our designs for operating system services, such as 
those described below. 

Work on the action management system Nen1861  is underway. This system uses the reliable 
storage management system to provide atomic nested actions. Atomic nested actions are the 
first step towards fault tolerance. 
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On the design side, research has resulted in the design of several subsystems, notably a 
monitoring system and a distributed database system. The monitoring system fits into the 
Clouds reconfiguration strategies and uses a new mechanism called probes to monitor the health 
of the distributed system. The database is a conventional distributed database in a novel 
implementation environment. The object and action support provided by Clouds lend themselves 
effectively to implement a database system (modified to the object based structure), and provide 
concurrency control and recovery mechanisms in an environment that is simple to use. 

The monitoring system design makes use of probes. Probes are high priority messages in 
Clouds that can be sent to processes, actions, or objects. If sent to processes or actions, a probe 
causes a jump to a probe handler (similar to software signals). The probe handler generates a 
reply to the sender of the probe containing status information about the process or the action. 
The object probes work along similar lines, except that the probe causes the invocation of the 
probe handler in the object. The monitoring system uses probes to monitor the health of critical 
system components. The monitors are replicated at each site and they keep status information in 
fully replicated databases. Each monitoring process has a backup monitor that monitors it from 
another site. Using this scheme, we can keep good records of the global system state, and can 
handle failures by tying into the reconfiguration system and restarting failed actions at healthy 
sites. The design is reported in detail in [Dasg86]. 

The relational database system is an application environment under design to function in the 
object oriented environment supported by Clouds. Conventional database design suffers from 
two deficiencies. The data models proposed by database designers do not match the components 
supported by the operating system, and thus the implementors have to contrive mechanisms to 
support the database. Also, the services (concurrency control, recovery) needed by databases 
are often not available and have to be built on top of a conventional operating system, giving 
rise to inefficient and often incorrect implementations. The object oriented approach provided 
by Clouds allows relational databases to be encapsulated in objects, and the implementation 
matches both the environment as well as the data model, giving rise to better performance, 
clean elegant systems interfaces, and a modular implementation. The synchronization and 
recovery support provided by Clouds also effectively provides database services, giving rise to 
database management functions which are easier to implement. Fine granularities of locking 
structures can be attained by relation fragmentation, that gives rise to more efficient access 
strategies. But as the objects hide the fragmentation details, the interfaces are just as clean and 
transparent. Further details can be found in [Dasg86a]. 

Research toward the design of fault tolerant systems management for Clouds has led to the 
design of an object replication system that is capable of providing non-stop systems services and 
processing capabilities. This system uses two basic mechanisms and a novel processing scheme. 
Replicated objects are named by a modified version of the present capability mechanism which 
allows Clouds to name a replicated object without referring to any particular replica. The 
invocation scheme for replicated objects causes the invocation of any one replica. We use these 
basic mechanisms to set up multiple processing threads which produce the effect of only one 
execution thread, but with far superior reliability characteristics. Unlike most systems which 
provide replicated data for reliability purposes, our scheme allows processing to continue even 
in case of transient failures which abort parts of the computation, thus providing non-stop 
processing capabilities. 
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Storage Management in the Clouds Kernel 
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ABSTRACT 

The Clouds storage management system supports the object and action primitives 
provided by the Clouds kernel. Particularly, the storage manager is concerned with 
mapping object data into virtual memory and providing action and crash recovery for 
recoverable objects. This document presents some of the technical details in the testbed 
implementation of the storage manager. The storage manager's general strategy is 
presented first. Then, the major routines which implement the segment, partition, and 
device subcomponents of the storage manager are described. The document includes a 
description of the functional relationship of these routines. The interface between the 
Clouds kernel and the storage manager is described also. 
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1. AN OVERVIEW OF STORAGE MANAGEMENT 

This section presents an overview of the storage manager. The major structures used by the 
storage manager and the major services provided by the storage manager are discussed. This 
section is concerned primarily with the functionality and the interrelationships of the 
components. The implemenation details of the components is described in the following 
sections of this dcannent. 
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Figure 1. Storage management services and responsibilities 
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Figure 1 gives an overall view of the types of services provided by the storage manager. These 
services fall into three categories: object memory management, recovery management, and 
directory management. As implied in the diagram, these facilities are provided by three 
storage management subsystems: the device system, the partition system, and the segment 
system. Each of the subsystems is modelled as a collection of objects. The device objects 
making up the device subsystem represent the lowest level in a hierarchy formed by these three 
object classes. These objects provide the kernel with a direct interface to the hardware (the 
secondary storage devices). These objects are very device dependent; the device object type is a 
class of objects, one for each type of secondary storage device provided to the system. They 
perform the functions that device drivers handle in conventional systems, in addition to 
providing recovery and virtual memory support. 

Partition objects enable a Clouds system to divide physical storage devices (media) into logical 
units for administrative/policy purposes. An important function of the partition system is the 
management of directories, which indicate where the permanent state of objects reside. This is 
important to the object invocation mechanism Storage allocation is also done at the partition 
level. Typical uses for partitions might be to divide a physical device into a paging partition, an 
object storage partition, and a kernel storage partition. It might also be useful for a Clouds 
system to provide separate partitions for recoverable and non-recoverable objects. 

At the highest level of the storage manager hierarchy is the segment system. The segment 
system manages segment objects. The segment system of the storage manager will provide the 
storage manager's main interface to the rest of the kernel. Paging, mapping, and other 
manipulations of secondary storage are performed by calls to segment objects. There are four 
classes of segments supported by the storage manager. There are uninterpreted segments called 
datafiles; the information in these files is simply a stream of bytes as far as the storage manager 
is concerned. The other three segment classes represent object data and code. Non-recoverable 
segments are simply segments which cannot be used to perform recoverable computations. 
Auto-recoverable segments can be used effectively by actions when recovery is required. The 
entire data state of auto-recoverable objects is recoverable on site failures. Recoverable 
segments support the customized recovery of objects. The programmer of the object may 
provide alternate definitions for the precommit, commit, and abort routines, and specifies 
exactly what data maintained by the object is recoverable and what is not. 

The segment object type provides the interface between the permanent representation of the 
data maintained for reliability and the volatile representation used to access the data. 

1.1 Device Objects 

The device object provides the mechanism for sending requests to the device. The device object 
zi  provides a uniform interface to secondary storage devices. The type of devices initially 

considered are disks, but other device types may also be considered. The Clouds secondary 
storage model is very simple: it is simply a sequence of secondary storage blocks, which are 
labeled by a per-device offset, called a device block number (DBN). Translation of the DBN to 
the corresponding physical address on the device (for instance, a cylinder/track/sector 
specification for a disk device) is performed by the device object. Generally, the block size on 
secondary storage and the virtual memory page size are related; i.e., one is a multiple of the 
other. In the case of the prototype implementation of the kernel, the block size and page size 
are equal. 

1.1.1 Device Media The storage manager views devices as two parts: the device itself and the 
medium currently being used by the device. This viewpoint is not important for fixed media 
disks, but for other forms of secondary storage, such as tape and removable disk storage, it 
provides additional flexibility in the configuration of a system. One of the goals of the Clouds 
system is to allow machines (which support a Clouds kernel and operating system) to 
dynamically join the multicomputer on-the-fly simply by making them part of the physical 
network. Similarly, the Clouds system allows objects, partitions, media, and even devices to 
migrate through the system. When one site in the Clouds system fails, it is possible to take a 
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disk pack to another system or make the disk device accessible through an alternate port. 
Therefore, a sysname exists not only for each device in use on a system, but also for each 
medium. However, in many cases the distinction between amessing specific media and accessing 
devices is not important, so the storage manager hides this separation by providing a mechanism 
for binding a medium to a device. 

Bindings between media and devices are generally performed at the initialization of the system 
and involve the association of device and medium. Binding a medium to a device may also 
involve the formatting of the medium. In this latter case, a new sysname is generated for the 
medium. This formatting or initialization of a medium will destroy any previous information 
that existed on the medium. The old sysname will no longer give access to any medium. The 
formatting of a blank or obsolete medium includes initializing the tables and structures that the 
storage manager requires. A header is written on the medium which contains the device and 
medium sysnames, the allocation table is cleared so that partitions may be created, and the in-
memory structures that the storage manager requires to activate a device are created. 

In other cases, an existing medium is bound to a device. An existing medium is one which has a 
sysname and is formatted. The binding will involve the reading of the sysname from the 
medium and comparing it with the sysname passed to the storage manager. The binding will 
take place only if a match occurs. This design does not attempt to address security issues; the 
intent is to provide flexibility, while maintaining some control over what is accessible. The use 
of sysnames to access media provides this control. 

Once a medium has been bound to a device, any reference to the device refers to the bound 
medium. The usual sort of device calls then need only refer to the device. This device-medium 
binding stays in effect until it is explicitly broken by the storage manager. 

1.1.2 Device Object Structures Each storage medium contains basic information about the 
medium and the device using it as part of the medium header. This information includes the 
medium and device sysnames, the amount of available storage on the medium, and 
specifications for the device to which the medium is bound. The medium header also contains 
the index table, which describes the partitions that exist on this device. This includes 
information such as location, extent, and type. 

In addition, the device objects maintains a structure in memory called a flush table. The flush 
table allows a device to associate an action sysname with a set of requests to a device. This 
supports the commit operation performed on recoverable objects, which is discussed later in this 
section. 

The device object uses one other structure, the active device table (ADT). Each entry in the 
ADT is an active device descriptor (ADD). The ADT is not a part of the device object proper, 
but is actually the mechanism for managing the various instances of the device objects. Each 
ADD contains the volatile state of a device object which is active at the local site. Included in 
the ADD are device and medium sysnames, status variables for the device, device registers, and 
entry points into the operations for the device object. By necessity, the code for each device 
object is heavily dependent on the particular device for which it is written. The ADT provides a 
means not only to identify the active devices on a site, but also provides a uniform interface to 
the more hardware independent portions of the storage manager. 

Some of the devices that are to be used for secondary storage on the Clouds system may be 
dual-ported; i.e., they may be physically connected to two sites. At any given time, however, 
the device is logically connected to only one of the sites. All requests to the device for I/O 
transfer are handled by the logically connected site. The device may be switched between the 
two sites via the panel switches on the device or via software. This mechanism provides a 
convenient way of migrating a device to another site because of a failure at the site controlling 
the device. Logically, it does not matter from which site the device is available because it is 
referenced by its sysname. Similarly, the objects and partitions residing on the disk can also be 
accessed independently of their location. To perform the transfer of control after a site failure, 



the device must be switched to the alternate site and then mounted on the new site. Because the 
previous site failed, the objects and partitions residing on the device may be in an inconsistent 
state, so the activation of the device at the new site may need to complete some of the action 
processing that had been begun on the old site. Once again, this processing can be performed in 
a location independent manner. 

There is also the possibility of sharing the device between two running sites if the device 
supports software transfer of control. There are many coordination and policy issues to be 
address in this situation. There must be some protocol for performing the transfer of control 
and some mechanism for synchronizing access by the two sites to the same storage blocks. 
These issues are beyond the scope of this dissertation. 

1.1.3 Functionality To simplify interactions with the device-level operations, each device object 
implementation provides the same set of operations, each of which provides the same interface 
to the higher level objects. The operations are of three general types. The first group of 
operations deals with device management and controls the availability of devices. The device 
management set includes an operation for formatting device media; an operation for binding a 
device-medium pair, making the device available to the system; and an operation which breaks 
bindings, making the device unavailable. The operations control availability of the devices by 
the creation and initialization of ADDs. Availability of devices at a site is dynamic. Devices 
may be stopped for maintenance or moved to a new system for availability of the resources on 
the device. The above operations provide the mechanism for the reconfiguration of secondary 
storage at sites. 

Allocation of secondary storage is done primarily at the partition level, where space allocated is 
to be used for segment data. However, the device objects also have some limited allocation 
duties. Device storage management is intended to provide storage for newly created partitions. 
Information about the newly created partitions is stored in the medium header. Operations also 
exist for removing partition information from the header and providing information about the 
currently existing partitions on a device. The latter operation is useful for activating partitions 
on system restart. Storage allocation at the device is a rare operation, occurring only when 
partitions are created or destroyed. 

Three operations are concerned with data transfers. The device read operation transfers data 
from the device to memory. This operation blocks until the request completes. The device 
write operation provides two options: writes may block as is the case for reads, or the write 
may be done asynchronously. In either case, the operation takes a block of data from memory 
and copies it onto the device. In the synchronous case, the caller is sure when the write actually 
is completed. This is an important concern to action management and to the recovery 
management portions of the storage manager. In the asynchronous case, the caller is allowed 
to flag write requests as "belonging" to an action. At a later time, the action may use the 
device flush operation to determine when the action's requests are complete. The flush 
operation uses the flush table discussed earlier. This operation is particularly important to the 
storage manager in the performance of its recovery management duties, as it allows the actions 
to perform asynchronous writes to secondary storage, while still maintaining control as to when 
these writes complete. 

1.2 The Partition Object 

Each partition object resides completely on one physical device. A Clouds partition does not 
enforce any logical organization of the data which resides on the partition, at least not in the 
sense of a UNIX partition. A UNIX partition represents a separate file system and all the files 
on the partition have a hierarchical relationship. The objects residing in a Clouds partition may 
possibly bear no relationship to each other. The partition concept is simply an administrative 
organization imposed by the storage management system indicating how storage in a particular 
partition is managed. For example, some partitions might be used for the storage of object data 
while others are used simply as backing storage. Different partitions may manage and allocate 
storage differently. Partitions may be defined that provide some specific recovery support, for 
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example a log partition. Partitions may simply be used to categorize objects to such classes as 
recoverable, non-recoverable, or temporary. In summary, partitions provide additional 
flexibility to the Clouds design. Because all partitions will provide essentially the same 
interface, new storage management features can be added in a transparent manner. 

The blocks are addressed by a partition blodc number (PBN) which is an offset from the 
beginning of the partition. All partitions are a multiple of this block size. 

1.2.1 Partition Data Structures A partition is described by a partition healer containing most of 
the information found in the medium index table entry for this partition, plus information about 
the partition's state and type. The type information specifies what the partition is used for: 
storage of object data; storage for paging; and any other special purpose storage required by the 
kernel. The partition object uses this information to decide what structures are required to 
support the object. For example, paging partitions do not need directories. 

Storage allocation for the partition is done using the allocation map. The allocation map is not 
permanent. Instead, it is reconstructed whenever the partition is activated. Handling storage 
allocation in this manner made support for action event handling more straightforward and 
more efficient, since the shadowing technique used requires allocation of partition storage for 
the block copies created. Since the allocation map is volatile, no special overhead is required to 
make the allocations and deallocations recoverable. Reconstruction does produce significant 
overhead at the time of system restart. Generally, however, this overhead is necessary in any 
event because the secondary storage system, which contains the permanent states of objects, 
must be examined on restart to ensure the consistency of the data residing on secondary storage. 
This is particularly true after a site failure in which action events may have been interrupted. If 
it could be ensured that the storage system was in a consistent state when the site is halted, then 
this overhead is unnecessary. The overhead could be avoided in these cases by simply writing 
the allocation map to secondary storage when a site is halted gracefully. 

Another structure used by the partition object is the active partition table (AFT), which contains 
active partition descriptors (APD) for partitions currently available to the system. Each APD in 
the table associates a partition sysname with the data structures and information for that 
partition. The structures and information include the starting block number for the partition, 
pointers to in-memory structures and buffers used by the partition object, and a reference to the 
device object on which the partition resides. 

Another task of the partition object is to maintain the location of segments and make this 
information available upon request. As mentioned earlier, access to an object involves a search. 
For objects which have not been accessed recently, the search generally involves querying the 
active partitions on the various sites to determine where the object resides on secondary storage. 
Each partition therefore maintains a partition directory, which contains a sysname/PBN pair for 
each segment residing on the partition. At this time there is no restriction on the format of the 
partition directory other than the requirement that any entry in the directory must reside 
completely within one secondary storage block. 

1.2.2 The Maybe Table As can be imagined, such searches can be time-consuming. The 
partition system maintains another structure, called the maybe table, which it uses to avoid 
unnecessary secondary storage accesses altogether (or at least make such accesses rare). The 
maybe table is an approximate membership checker. It indicates either that the object in 
question definitely does not reside on the partition being checked, or that it possibly does. 
Thus, the maybe table gives a method of short-circuiting secondary storage accesses in cases 
where it gives a negative response. However, a positive response may still lead to unnecessary 
accesses to secondary storage. The key to success is to reduce the ratio of non-resident positive 
responses to all positive responses to as small a value as possible. 

Figure 2 illustrates the use of the maybe table. It is the first stage of a search for both a local 
request from the site's object manager and a remote request from the RPC mechanism. A good 
deal of overhead and time is saved when the maybe table indicates that the object is not at the 
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Figure 2. The maybe table 

local site because the maybe table query is cheap (it is an in-memory query) and no slave 
process is created. Even in the case of a positive response, indicating that the object may be 
local, the maybe table query overhead is much less than the overhead incurred by partition 
directory queries. If the object resides locally, the directory queries are necessary to locate and 
activate the object (bring it into memory for use) and the maybe table query is a small part of 
this procedure. If the object is not local, then the additional work was done to uncover this fact, 
but this additional effort is small and with good performance on the part of the maybe table it is 
not frequent. The maybe table mechanism provides an excellent means of short circuiting local 
searches. 

The maybe table for a site is reconstructed from the partition directories upon site re' 
other occasions during which a partition is mounted. In a running Clouds -
population of segments at a site is dynamic. Segments may be created and dest- 
may migrate to and from other sites. When a new segment arrives at a - 
creation or migration, an entry for the new segment is added to the r 
entering the segment's sysname into a partition directory. This alle- 
represent the segment population at a site. Deletions of segments sh. 
the maybe table. 
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1.2.3 Functionality The functions provided by the partition object include partition 
management, directory management, storage allocation, and data transfers. Partition 
management consists of three operations, the first of which is the creation of partitions. 
Creation of a new partition automatically activates the partition in addition to allocating its 
storage. Partition creations also initialize the structures associated with the partition, such as the 
APD, the directory, and the allocation map. Partitions are destroyed by deallocating the 
secondary storage on which they reside. Only partitions which are not active may be destroyed. 
Activation and deactivation are two other partition management functions. Activation makes an 
existing partition available for use by the Clouds system. It involves not only the creation of an 
APD for the partition, but also the examination of the partition for consistency. Deactivation 
makes a partition unavailable. 

Directory management is concerned with registering and searching for segments which may 
reside on the partition. Generally, names are entered for newly created segments, and removed 
for destroyed segments, but similar management takes place for segments being moved from 
one partition to another. Two other operations are available which provide a means to list the 
segment names stored in the directory. These operations are typically used to construct the 
maybe table at system restart, or to reconstruct the table in order to remedy degradation of the 
table's performance. The partition is also responsible for the allocation and freeing of blocks of 
storage for use by segments or the virtual memory system. The two operations responsible 
allow callers to allocate storage in multiples of blocks. The blocks allocated or deallocated 
might not be contiguous; this is not a concern since segment storage is not extent-based. 1  

Lastly, three operations for data transfers are provided. They are similar in functionality to 
those provided by the device objects. The partition read request blocks until the request 
completes. The partition write operation provides both blocking and non-blocking transfers. 
Support for recovery is provided both in the write operation, which allows requests to be 
flagged by an action in the same manner as device requests, and by the flush operation, which 
provides the same function as the device flush operation. 

1.3 The Segment Object 
The segment object type provides the final level of abstraction for secondary storage. The 
abstraction provided by the segment object is that of a sequence of bytes (kernel segment type). 
Segment objects provide a standard abstraction for the kernel to manipulate and process all 
Clouds objects; indeed, in some cases, a segment object is just an alternate type description for a 
Clouds object. However, the mechanism is more general, in that an object may be represented 
by several segments. For instance, an object may have a code segment and data segment which 
reside on secondary storage. In cases such as these, the sysname of the object's data segment is 
equivalent to the object's sysname. The object implementation provides mechanisms for 
mapping segment data into and out of virtual memory, creating and destroying segments, and 
modifying segments. Thus, segments have two different representations: one on secondary 
storage, and the other in virtual memory. The necessary algorithms for maintaining the 
reliability of the segment data exist at this level. 

The segment object is unconcerned with the internal organization of the objects it is managing. 
The storage management system treats segments as uninterpreted sequences of bytes. Structural 
interpretation of segments is performed by other parts of the kernel, such as the object 
manager. The storage manager is aware of and can recognize the administrative portions of an 
object's data, specifically the object descriptor. This allows the storage manager to provide low 
level support for the creation and initialization of objects. 

1. Extent-based file systems allocate storage for files in very large chunks, such as a cylinder at a time. Since large 
portions of the file are contiguous on the device, sequential arxess to the files is enhanced. 
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1.3.1 Segment Object Representation Recall that a partition directory has a set of entries which 
contain the partition block numbers for the segments residing on the partition. The partition 
block addressed by any of these entries contains a segment header which identifies the segment. 
The segment header consists of the segment descriptor, which contains the information which 
describes the segment, such as the size, type, and state of the segment. The header also 
contains the segment map through which the segment data can be accessed. Each entry in the 
segment map contains a PBN of some other part of the segment. The remainder of the segment 
is constructed of mapping blocks and data blocks. Mapping blocks are internal nodes of a tree 
formed by the segment and contain the PBNs of other mapping blocks or to the data blocks of 
the segments. The data blocks contain the segment data. 

Figure 3. A segment object on secondary storage 

Figure 3 shows the relationship of the described structures in a segment as it exists on secondary 
storage. The author will frequently refer to the data blocks of the segment as the segment 
pages. 2  Data blocks are always found at the leaves of the segments' mapping block trees. A 
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segment may require zero, one, or more levels of mapping blocks to access its data, depending 
upon the size of the segment. All of this structure is invisible outside the storage manager. 
Other parts of the kernel see only the data blocks of the segment. 

1.3.2 Virtual Memory Support Any segment object may have two instantiations: one on 
secondary storage and the other in virtual memory. The representations of these two instances 
are quite different, as are their functions. The instance on secondary storage is intended to 
represent the permanent state of the segment data; that is, this instance remains available after 
recovery from system failures. The virtual memory instance exists for manipulation. 

Segment objects are used by the Clouds kernel to represent Clouds objects or portions of Clouds 
objects. For example, an object may be represented by a single segment which contains all of 
the code and data necessary to perform operations on the object. On the other hand, an object 
may be partitioned for policy reasons into several segments. One segment may contain the 
data, another segment the operation code, and yet another may provide the object with dynamic 
heap storage. 3  The segments necessary to provide access to an object and to allow operations to 
be performed on the object are mapped into virtual memory through the cooperation of the 
object management and storage management. The storage manager maintains the active 
segment table (AST), which contains an entry for each segment mapped into virtual memory. 
These entries are called active segment descriptors (ASD). Any segment with a descriptor in the 
AST is said to be an active segment. Object management maintains a similar table, called the 
active object table (A0T).(sPaf861 Similarly, objects referenced by the AOT are active. 
Segments are referenced by the AOT to provide a complete virtual memory image of an 
activated object. Note that some of the entries in both the AST and the AOT may represent 
remote segments and objects, respectively. In these cases, the descriptors are not complete 
specifications of the segments or object, but simply refer the object manager to remote 
instances. 

Each object refers to the various segments that comprise its virtual memory image through 
entities called windows. A window is simply a consecutive block of bytes in virtual memory. 
Each window in the system is described by a window descriptor, which specifies where the 
window is mapped, how large it is, and protection information. The window descriptors 
provide the primary interface between the active object system and the active segment system. 
Windows may describe whole segments or only portions of segments. In the case of a large file 
object, for example; it may be convenient to have only a portion of the data segment actually 
mapped into virtual memory. The window describes which portion of the segment is mapped. 
A segment may be described by several windows, allowing segments to be shared by several 
objects. As an example, the code segment for an object may be mapped into several object 
instances. Windows into segments may be mapped on demand. For example, a process with a 
window into a large object may cause the window to be modified or a new window to be created 
by referencing a part of the object that is not mapped by the current window. 

The storage manager is responsible for specifying how the secondary storage image of a 
segment is mapped into virtual memory. The ASD refers to the APT to indicate the partition 
on which the segment resides. The ASD also refers to mapping tables which are maintained by 
the storage manager. These tables map the virtual memory image of the segment to the 
secondary storage image. Figure 4 illustrates the structures used in the mapping of segments. 

2. This is rather imprecise terminology in that it gives the impression that virtual memory pages and secondary storage 
blocks are equivalent. This is not a restriction in the design of the storage manager, but the initial implementation 
makes this assumption and the equivalence will make some of the following discuasiom simpler. 

3. Not all of these segments may have permanent states. Segments used to map volatile heap space for objects have no 
image on secondary storage except for backing storage for page-fault handling. 



-10- 

Figure 4. Mapping structures used in the storage manager 

1.3 .3 Segment Object Functionality The operations provided by the segment object type may be 
classed into four types: segment management, virtual memory management, data transfer, and 
recovery management. Segment management includes operations to create and destroy 
segments. When a segment is created, it is automatically activated by the system so that it may 
be operated upon. The initial segment descriptor is allocated and the segment is registered with 
the partition directory (and also the maybe table). The destruction of a segment can occur only 
when all activity on the segment has ceased. The segment remains hi the AST, but no windows 
are mapped into the segment. No activity can occur on the segment in this case, and the 
segment storage may be deallocated and the directory entry removed. Both creation and 
destruction of segments can be recoverable if done by an action. Segment objects also provide 
operations that can change the size of the segment and determine the status of the segment. 

The second type of operation, dealing with virtual memory management, provide the bridge 
between the virtual memory instance of a segment and the image on secondary storage. Part of 
the functionality of this group is simply to activate the segment. This includes locating the 
segment,' creating an ASD, and partially initializing the ASD. Other operations then allow 
windows to be mapped into the active segment and supply the information which maps the 
segment data into virtual memory. Later, these window mappings may be modified or 
destroyed by other operations. 

4. In some cases, remote segments are activated by local storage managers. This situation generally arises when the 
segment containing the object data is local, while the segment containing the code resides on another site. The data 
segment is activated locally as usual and the code segment is activated remotely; virtual memory management for the 
segment is shared between the sites. Backing storage is provided at the local site if a local cache is desired, but all 
pages are initially fetdied from the remote site on demand. This facility is available only for read-only segments, 
such as code segments. 



The operations that perform data transfer provide the means to move segment data between the 
image on secondary storage and the virtual memory image. Principally, these operations are 
used for page-fault handling, reclaiming physical pages, and to support action management. 
They use the information set up by the mapping operations. The pages containing the data to be 
transferred must be mapped into virtual memory by the ASD. 

2. The Segment Module 

2.1 The Storage Manager Prototype 

This section describes the prototype segment system, examining the structures used by the 
system and the interface provided to the rest of the storage management system. The 
definitions in this section (and the succeeding ones) are written in the C programming language 
and are taken from the source code for the storage manager. The storage management code is 
found in several C source files. The following list presents a synopsis of the contents of these 
files: 

segment.h 	Segment.h contains most of the type definitions used by the segment 
system. In addition, the file defines a set of named masks and constant 
codes used by the routines in the segment module. 

obj.h 	This file provides definitions for structures used for object manipulations. 
Because of the close relationship between objects and segments, a couple 
of the definitions used by the segment system are located in obj.h. 

segment.c 	Segment.c contains the operations that implement the segment system. 
The file also declares global variables and structures needed by the 
segment system. The routines found this file fall into two broad 
categories: interface routine, and utility routines. Utility routines are 
defined as static, meaning that they cannot be seen outside the file. The 
interface routines are visible and may be used anywhere in the kernel. 

parttab.h 	This file defines the active partition descriptors and table. 

parttab.c 	Parttab.c defines a set of routines which manipulate the active partition 
table. The routines provide a simple interface for creating and destroying 
active partition descriptors. The routines also enter, locate, and remove 
the descriptors. Otherwise, descriptors are manipulated directly. 
Parttab.c also declares a set of partition lists which facilitate the 
implementation of several partition system services. 

partition.h 	Most of the data structure definitions used by the partition system reside 
in this file. The formulas for determining the size of partition structures 
such as the directory and allocation map are defined here. 

parddon.c 	The interface to the partition system is defined in this file. The partition 
system defines no local utility routines. 

devtab.h 	Devtab.h defines the active device descriptors and table. 

devtab.c 	A set of routines analogous to those defined in parttab.c are found in 
devtab.c. 

buffer.h 	The request packet structure for the RLO2 device is defined in this file 

buffer.c 	Buffer.c contains the routines used to allocate request packets for the 
RLO2 device. A pool of such packets is maintained by the device. 

ri_dev.h 	RI dev.h defines a series of mnemonic codes used by the RLO2 device 
module. 
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ri dev.c 	This file contains the routines used to implement the RLO2 device object. 
The routines consist of a set of interface operations available to other 
parts of the storage manager and private utility routines visible only 
inside rl_dev.c. 

storeman.h 	This file defines constants important to the storage management system 
as a whole. 

Descriptions of other files malting up the Clouds kernel prototype may be found in [Spaf86]. 
The remaining sections in this document do not attempt to describe the contents of these files in 
total detail. Only the major structures presented earlier in the first section, interface routines, 
and a few important utility routines are discussed. There also many mnemonics and macros 
defined to facilitate the maintenance, readability, and the implementation of the storage 
manager. These are important to a complete understanding of the prototype. The reader is 
referred to the above files for these definitions. 

2.2 Some General Definitions and Notes 

The remaining sections refer to structures and definitions not described in this document. In 
addition to the standard C types, many typedefs are defined in the prototype for convenience 
and necessity. A summary of the some of the important definitions is presented in this section. 
The major attributes presented will be the size of the structure and it purpose. In many cases 
the internal format will not be specified. 

u—Int 	This is an unsigned integer. On the VAX integers are by default long 
integers (32 bits). There is a corresponding definition for u_short, an 
unsigned short integer (16 bits long). 

address 	This type definition represents a generic address. It is actually a typedef 
of ujnt. On the VAX, pointers and addresses happen to be the same 
length (32 bits) and have the same format. 

QH 	QH is a type definition for a VAX hardware queue header. QH is 64 
bits long and consist simply of two ujnts, one a pointer to the head of the 
queue and one a pointer to the tail. 

QE 	This type definition represents the linkage fields needed for an element 
on a VAX hardware queue. Like QH, this structure is 64 bits long and 
must be aligned on a quadword (multiple of 8 bytes) boundary. It is also 
two ujnts, one a forward pointer, and the other a backward pointer. 

SYSNAME 	This type represents a Clouds sysname. Sysnames are 48 bits long and 
contain a site id, a site unique id, and a type. 

PMAP 	This is a typedef for a page table entry. It is nothing more than a long 
unsigned integer (32 bits). 

The sections present the definition used for each of the major sub-components of the storage 
manager. This section presents the segment module. The next section discusses the partition 
system implementation. The third section describes the RLO2 device module. For each 
structure and routine, the C definition and the file in which the definition is contained is 
provided. It is hoped that through these sections, it is possible for an interested reader to 
quickly gain a familiarity with the storage management prototype. 

2.3 Segment Module Structures 

This section presents the major structures used by the segment system. The source files for 
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these definitions are segment.h and obj.h. 

2.3.1 Segment Descriptors 

typedef struct { 
SYSNAME 	 segname; 
SYSNAME 	 actname; 
uJnt 	size, 

raoffset, 
phoffset; 

uJnt 	header; 
uJnt 	shadow; 
uJnt 	state; 
uJnt 	unused[551; 
uJnt 	indices(64]; 

} SegHdr; 

typedef struct 
{ 

OE 	links; 
OH 	windows; 
SYSNAME 	segname; 
address offset; 
uJnt 	length; 
address hdroff; 
address segpart; 
address backpart; 
uJnt usecount; 
uJnt state; 
address hdr; 
PMAP "vdrnap, 

"vPrnal); 
} ASD; 

These two definitions provide the secondary storage and virtual memory descriptors for a 
segment. SegHdr is the segment descriptor that resides on disk and which is the root of the 
segment tree. SegHdr is 512 bytes long and so fits into a secondary storage block. Because .  of 
alignment restrictions imposed by the C compiler, the structure is not compact; there are unused 
holes not represented by the definition. The fields have been discussed previously and there is 
not much more to add, except to note the units used by some of the fields. Size, for example, is 
the segment size in bytes. The header field indicates the number of storage blocks used by the 
object header. Raoffset and phoffset are both block offsets. Shadow is used during recovery 
processing and is the PBN of the shadow segment descriptor. 

The active segment descriptor is also presented in this section. The active segment table is 
organized as a hashing table using the VAX queue mechanism. The ASDs are allocated 
dynamically from the system heap. Usecount is always the number of window descriptor 
referenced by the windows field. However, windows is also used to hold the commit record 
used by recovery management, so that usecount does not always represent the length of the 
queue of descriptors. 

Offset and length are both in block units. Offset is the base of the mapped version of the 
segment; it indicates the lowest segment page mapped into virtual memory. Length indicates 
the extent of the mapped region of the segment. In general, length may not specify a 
contiguously mapped region of the segment. In an extreme case, only the first and last blocks 
of a segment might be mapped. Offset would contain the offset of the first page and length 
would be the size of the segment in blocks. 

Hdraff is the PBN of the segment descriptor on disk. The correct partition can be found 
through either the segpart field or the backpart field. These both refer to APDs. Only one 
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such field is necessary for any given segment, but the ASD retains two fields for historical 
reasons. 

The state field represents a combination of status information, primarily dealing with recovery 
management events, and segment type information. The field is a bit field. Masks are defined 
in segment.h for querying the field to determine the segment status and type. 

The vpmap and vdmap fields represent the virtual page table and disk block table, respectively. 
Both are dynamically allocation arrays of PMAP-typed entries. The entries of both tables are 
bit strings with various fields defined. The reader is referred to the VAX Hardware Manual 
[DEC32] for the definitions of the fields in these entries, as they are identical to the page table 
entries described there. Also, see [Ken186] and [Spaf86] for some of the software defined bits 
in these entries. The format of the vcimap entries is defined here. Recall that any entry may 
be in one of two formats, one representing an unshadowed page and the other representing a 
shadowed page. Both formats are presented below: 

Alt bit (bit 0) - 	 The Alt bit controls the format of the rest of the entry. 
If the bit is clear, the page is unshadowed; otherwise, the 
entry represents a shadowed page. 

Type field (bits 1-2) - 	The type field is present in both formats and indicates 
the page type (recoverable, non-recoverable, volatile, or 
read-only). 

AltListlidrPtr (bits 3-31) - 	This field is present only when the Alt bit is set, 
indicating a shadowed page. In this case, the field points 
to an AltListHdr structure which represents the page 
and its shadows. Since all system heap memory is 
allocation of quadword (8 byte) boundaries, . the lower 
three bits of the heap address are zero. This fact is used 
to retain the type and alt bits in the entry. These bits 
are masked off when referenced the AltListHdr. 

Mapped bit (bit 3) - 	This field is present only when the Alt bit is clear. The 
bit indicates that the Dbn field of the entry is valid. 

Cow bit (bit 4) - 	 The Cow bit is the copy-on-write bit. It indicates that 
the page is part of an action version. 

Dbn (bits 11-31) - 	 This field contains a PBN for the segment page. 

Bits five through 10 are unused in the Alt bit clear format. 

2.3.2 A Structure for Defining Windows into Segments 

typedef struct 
{ 

QE ASDlinks; 
ASD 'segmnt; 
SYSNAME segname; 
address begin; 
ujnt length; 
ujnt offset; 
ujnt mask; 

} WindowDesc; 

The WindowDesc structures are used to map portions of the segment into virtual memory. The 
begin field is the base virtual address of the window described by this descriptor. Offset is the 
base segment page. Length is the length of the window in bytes. The mask field provides two 
types of information. The first is the window type: read-only, volatile, remote, or non-
pageable. The second type of information is the virtual memory protection bits used in the page 
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tables. These bits are defined in the kernel source file vm.h. 

2.3.3 Alternate List Headers 

typedef struct { 
OH 	links; 
u_short count; 
address offset; 
PMAP original; 

} ShadowPmap; 

When a vdmap entry refers to a shadowed page (the Alt bit is set), the AltLlstHdrPtr field 
refers to a structure of this type. Count is the number of versions represented by this entry (not 
including the base version of the page). The links field contains a queue of descriptors of these 
versions. Offset is the segment offset of the page being described. Original is the base version 
of the page. It uses the Alt bit clear format of a vdmap entry. These structures are created 
dynamically as needed. 

2.3.4 Shadow Entries for Virtual Memory Support 

typedef struct 
OE 	links; 
SYSNAME name; 
PMAP shadow; 
ShadowPmap *shadowentry; 

} ActionPmap; 

ActionPmap represents the action versions of segment pages. Structures of this type are the 
queue elements found in from the link field of the alternate list header. Name is the sysname 
of the action the page of which this structure describes. Shadow describes the pages using the 
format of a vdmap entry (with the Alt bit clear). Shadowentry is a reference back to the 
alternate list header maintained for convenience. 

2.3.5 Recovery Structures 

typedef struct { 
OE ASDlinks; 
ujnt shdr; 
SYSNAME actname; 
address *old; 
address *new; 
ujnt ocount, ncount; 
address *Indexshad; 
ujnt nindexshad; 
OH 	*chglist; 

} ActionDesc; 

typedef union { 
WlndowDesc *w; 
ActionDesc *a; 

CommitOesc; 

typedef struct 
OE links; 
address new, old; 

} CRLIST; 

These structures are used only during recovery management. ActionDesc describes a 
precommitted segment, both in memory and on disk. Shdr is an in-memory cache of the 
shadowed segment header. Old is an array containing the PBN of partition blocks to be 
deallocated on a successful commit. New is an array containing the PBN of the shadow blocks, 
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which replace the blocks in the old field on a successful commit. Ocount and ncount indicate 
the number of blocks on each of these lists. Indenhad is an array containing the address of 
mapping block buffers. The buffers are being written to disk asynchronously, and as the 
buffers are dynamically allocated, the storage manager must maintain a record of their existence 
until the writes are completed. NIndexshad is the number of such buffers. Chglist is a queue 
of elements of type ActionPmap. Each element represents the virtual memory-secondary 
storage mapping for the action version of a segment page. These elements are taken either 
from the vdmap, or are created by S_Preconmit. The CommitDesc structure simply maps an 
ActionDesc structure onto a WindowDesc structure. This is because the two structures both 
reside on the windows field of the active segment descriptor. 

CRUST is used during crash recovery to collect blocks allocated for the permanent and shadow 
versions of a precommitted segment. 

2.4 Segment System Interface 

2.4.1 Locating Segments 

int Sind (segname) 
SYSNAME segname; 

S_ Find determines whether the segment is local or not. The operation queries the AST, the 
maybe table, and the partition directories at this site. A successful query of the AST means that 
the segment is already activated. Otherwise, the segment is either dormant, remote, or 
unavailable. The maybe table and directories are used in the manner described previously. 
S_Find returns success for local segments and failure for remote segments or unavailable 
segments. 

2.4.2 Activation of Dormant Segments 

int S_ActIvate (segname, header, number) 
SYSNAME segname; 
address * header; 
ujnt * number; 

This operation activates a local segment by creating an active segment descriptor. S_Activate is 
used only for data segment and object segments. Remote segments and volatile segments use 
S_MapWindow. If an object header exists, it is read into a buffer, which is returned in the 
parameter header. &Activate passes the size of the object header in blocks through the 
parameter number. The ASD for the segment is initialized with the segment attributes (name, 
header location on disk, type, etc.). The offset field of the ASD is given the number of data 
pages in the segment, and the length field is assigned to zero. This sets the ASD for the 
addition of the first window to the segment. See the section on S_MapWindow for more 
details. The segment header on disk is read into a buffer the address of which is placed in the 
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ASD. The operation returns an indication of the success or failure of S_Activate. 

2.4.3 Operations for Mapping Segments into Virtual Memory 

Int S_MociWindow (wptr, vpmap) 
WIndowDesc • wptr; 
PMAP vpmap; 

Int S_MapWindow (wptr, vpmap) 
WindowDesc • wptr; 
PMAP • vpmap; 

S_MapWindow maps a new window into a segment. In the case of remote and volatile 
segments, a new segment may be created. Data and object segments are assumed to have been 
activated by S_Activate. Remote activation is done for remote windows. A object header 
block may be returned for remote windows in the argument header. 

The window descriptor is passed to SYlapWindow with some information already supplied. 
This includes the base segment page of the window, the base virtual address of the window, and 
the length of the window in bytes. The mask field is also set. The storage for the vpmap 
parameter must be allocated prior to the call. The vpmap parameter points into a page table for 
an object using the segment and S_MapVVindow initialfres this page table from the virtual page 
table maintained in the ASD. For object and datafile segments, S_MapWindow first 
determines whether the mapped range of the segment must be modified; i.e., whether the lower 
or upper bound or both bounds must be extended to accomodate the new window. This will 
always be the case for the first window mapped into a segment due to the way in which 
S_ActIvate initializes the ASD. The extension of the segment requires that new storage for the 
descriptor's virtual page table and disk block table be allocated and the new area initialized from 
the old tables. The areas for the newly mapped portion of the segment must be initialized to the 
default values for the segment. The usecount is incremented and the window descriptor is 
added to the windows field of the ASD. 

For volatile and remote windows, S_MapWindow also creates the ASD. Note that these 
segments do not have a permanent image at this site. For a volatile window, the call to 
S_MapWindow performs both an activate and a window map. For remote segments, 
S_MapWindow in addition must perform the remote mapping protocol discussed in Chapter IV. 
Remote mapping is not currently implemented in the prototype. 

S_ModWindow modifies an existing window allowing the caller to extend or shorten a window. 
The return value of the operation indicates its success or failure. 

2.4.4 Removing Segment Data from Virtual Memory 

int S_UnMapWindow (wptr, vpmap) 
WindowDesc • wptr; 
PMAP vpmap; 

S_UnMapWindow is the complement to SiMapWindow. The specified window is unmapped 
from the segment. An examination of all windows in the segment is necessary to support 
overlapping windows. If the window being unmapped does not overlap with another window in 
the segment, then all of the physical pages which map the window may be freed. The 
parameter vpmap supplies a record of these pages. If the window does overlap some other 
window, then none or only part of the physical page may be released. The removal of the 
window may also cause the size of the mapped segment area to decrease. In this case, as in 
S_MapWindow, new virtual page and disk block tables must be allocated (smaller than the 
previous ones) and the new tables must be initialized for the old ones. The window descriptor 
must be removed from the windows field and the usecount is decremented. S UnMapWindow 
is not implemented in the prototype. The return value of the operation indicates its success or 



-18- 

failure. 

2.4.5 Initializing Segments 
Int SJ.oadS(source, soff, dest, doff, len) 
SYSNAME source, dest; 
address soff, doff; 
ujnt len; 

Int SJ.oadM(addr, dest, doff, len) 
SYSNAME dest; 
address addr, doff; 
uJnt len; 

These operations provide the means by which a newly created segment can be initialized with 
the appropriate data or code. S_LoadS initiolinks a segment from another segment. Source 
and dest are the sysnames of the initializing segment and the initialized segment, respectively. 
Scff and dal are the offsets into these segment at which the initialization takes place. Len 
indicates how much data is initialized (in bytes). 

SJ..oadM performs the same function except that the newly created segment is initialized from 
virtual memory. Addr contains the base address of the area from which the new segment is 
initialized. Doff, len, and dest are as in S_LoadS. Both operations return a value indicating the 
success or failure of the operation. 

2.4.6 Segment Creation 
int S_Create (partname, segname, size, hbsize, hblock, type, raoffset, phoffset) 
SYSNAME • partname, *segname; 
uJnt size; 
uJnt hbsize; 
address hblock; 
uJnt type; 
address raoffset, phoffset; 

S_Create creates a new permanent segment. (Volatile segments are created by 
S_MapWindow). Recoverable segments are labelled "CREATED" to facilitate recovery 
processing. The following structures are created and initialized: 

1. An active segment descriptor is created for the segment. The size and length of the 
segment are initialized as in S_Activate. The attributes for the segment are initialized. 

2. A block for the segment descriptor on disk is allocated, along with a virtual memory 
buffer for the descriptor. The descriptor is initialized from the parameters and the 
locations of both the volatile and permanent version of the descriptor is placed in the 
appropriate ASD fields. 

3. Storage blocks for the object header are allocated. The parameter hbsize gives the size of 
the header in blocks, while the hblock parameter is a pointer to the buffer containing the 
object header. The header is written to disk and the PBNs of the blocks containing the 
header are stored in the segment index. 

4. Any mapping blocks required by the segment are allocated at this time. These blocks are 
initialized to zero indicating that no data blocks currently exist for the segment. The PBNs 
for the mapping blocks are stored in the index field of the disk segment descriptor. It is 
only at this time that the segment descriptor is actually written to disk. 

For non-recoverable segments, an entry is made in the partition directory for the segment. 
Recoverable segments have no entry made during creation; this is done only at commit. The 



-19- 

S_Create operation returns a value indicating success or failure. 

2.4.7 Destroying Segments 

int S_Destroy (partname, segname) 
SYSNAME partname, segname; 

This operation removes a segment from the partition. &Destroy is only applicable for data 
segments and object segments. Generally, &Destroy removes the permanent segment state and 
the active segment descriptor (deallocates them), while recoverable segments simply are labelled 
as 'DELETED" for future recovery processing. 

The segment must be activated before the destroy operation can be perform. Any windows 
mapped into the segment must be unmapped prior to the call. The return value of the call 
indicates success or failure. 

2.4.8 Segment Reads 

int S_Read (sptr, offset, addr) 
ASD * sptr; 
ujnt offset; 
address addr; 

&Read reads a segment block from disk to a physical page frame. As discussed in Chapter IV, 
&Read is a case analysis on the type of page and the state of that page's mapping. S_Read 
potentially modifies the vdmap field of the ASD for the segment. For example, the first time a 
segment page is read, there is no entry in the appropriate vdmap entry. Sitead locates the 
appropriate partition block and places the PBN in the entry. If the segment page has never been 
written, a new partition may be allocated. Thus the side effects of S_Read include not only the 
virtual memory page receiving the data, but potentially the vdmap, the segment descriptor on 
disk, and mapping blocks used by the segment. &Read returns a value indicating that the 
operation succeeding or failed. 

2.4.9 Segment Writes 

int S_Write (sptr, offset, addr) 
ASD * sptr; 
uJnt offset; 
address addr; 

This operation performs a write to a segment block from a physical page frame to a segment 
block on disk. As with S_Read, this operation performs a case analysis to determine the 
appropriate measures to apply to the page in question. The side effects are similar to those of 
&Read. In addition, entries in the vdmap of the ASD may have their formats changed to 
alternate list pointers, in the case of writes to recoverable pages. The return value of this 
routine is either success or failure. 

2.4.10 Phase 1 Recovery Support 

Int S_Precommit (actname, touchlist, number) 
SYSNAME actname; 
SYSNAME * touchlist; 
uJnt number; 

S_Precommit shadows the number of segments indicated by its second and third parameters. 
The caller passes the names of objects touched by a committing action through the touchlist 
parameter, but by convention these sysnames are equivalent (agree in all but the type) to the 
names of the data segments for the object. Several major functions are performed. 

1. The first step taken is to determine which data pages have been modified. For a newly 
created segment or a deleted segment, all data pages are considered modified. For 
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modified segments, the object page table (found through the object descriptor [Spaf861) and 
the disk block table are examined. The object page table will indicate which pages have 
been modified. These must be moved into shadow blocks on secondary storage. The disk 
block table will show which pages have already been written to disk. Shadow blocks for 
such pages effectively have been allocated; however, it may still be necessary to write the 
pages if the object page table indicates the page has been modified since it was moved to 
disk. Note that this is information which is available through the normal operations of 
virtual memory. A list of changed pages must be kept, along with enough information to 
update the disk block tables during commit. The information contained in the 
ActionPmap structure is satisfactory for this purpose. The entries are either created and 
initialized by S_Precomrait, or they are found already in the disk block table. 

2. Next, S_Preconmit must determine which, if any, mapping blocks must be shadowed. 
For each mapping block that is shadowed, a page-sized buffer is allocated to do the 
necessary modifications. The memory for the buffers must be contiguous because the 
buffers must be held till the end of S_Eoa. The contents of the modified buffers are 
written to disk. 

3. A commit record is created if any modified pages exist. Pointers to the entries for the 
modified data pages and the buffers for the modified mapping blocks are placed in the 
chglist and indetshad fields of the commit record, respectively. From the information 
contained in the entries on the chglist, the new and old fields are set to contain the PBNs 
of the shadowed blocks and the modified blocks of the segment, respectively. The new 
field is empty for a deleted segment, while the old field is empty for a newly created 
segment. 

4. The last update is to the segment descriptor. A storage block on disk and a buffer page in 
memory are allocated to hold the modified descriptor. Their locations are placed in the 
commit record. The buffer is modified so that the segment index refers to the shadow 
blocks, and is written to the shadow block for the descriptor. The segment descriptor 
itself is updated so that the state of the segment is either PRECOMMITTTED, 
CREATED, or DELETED. The record is placed in the windows field of the segment 
ASD. 

5. After all segments have been processed, the operation flushes all remaining write requests 
using a call to P_Flush. 

The steps are taken for each segment listed in touchlist. The return value of the operation is an 
indication of the success or failure of the operation. 

2.4.11 Phase 11 Recovery Support 
int S_Eoa (actname, touchlist, number, flag) 
SYSNAME actname; 
SYSNAME touchlist; 
uJnt number; 
char flag; 

S_Eoa performs either a commit or abort on the segments indicating in the second parameter. 
The desired procedure is specified by the flag parameter. S_Eoa locates the commit record 
created by S_Precommit and does the following: 

1. The operation uses the entries in chglist to modify the vdmap. If the flag indicates a 
commit, the chglist entries replace the vdmap entries. If the flag indicates an abort, the 
entries are simply destroyed. 

2. Any buffers for mapping blocks are deallocated. 

3. If the operation is performing a commit the partition blocks in old are deallocated. If an 
abort is being done, the partition blocks in the new field of the commit record are 
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deallocated. 

4. The directory entry for the segment is modified to reference the shadow segment 
descriptor if a commit is being done. Otherwise, the entry is left unmodified. However, 
if the segment is being deleted by the action, the directory entry must be clear on a 
commit. For a created segment, the directory entry was modified by SJrecommlt. In 
this latter case, S_Eoa must restore the directory entry when the operation is performing 
an abort. 

The operation returns success or failure. 

2.4.12 Crash Recovery Support 

Int S_Check (pptr, segname, hdroff, goes) 
address pptr; 
SYSNAME segname; 
address hdroff; 
address Woos; 

S_Check   is called by P_Restore as part of system restart. The sysname indicates which segment 
is to be examined. P_Restore calls S_Check   once for each segment found in the partition 
directory. Hdraff contains the location of the segment descriptor on the partition. Allocs is a 
large array through which a set of PBNs is passed to the caller, P_Restore. P_Restore uses 
these PBNs in the reconstruction of the partition allocation map. The purpose of S _Check   is 
two-fold: 

1. The basic purpose is to determine the allocation for the segment. This requires a traversal 
of the segment blocks. For small segments (less than 64 kilobytes), the allocation of 
storage for the segment can be determine solely through the segment index in the segment 
descriptor. For large segments, the mapping blocks must also be examined. This requires 
a buffer to read each mapping block to collect the PBNs in the block entries. 

2. S Check also examines the segment to determine whether or not there was an unfinished 
action event for the segment. This is determine by looking at the segment state field. If 
the state is PRECOMMITTED, CREATED, or DELETED, then the segment is 
shadowed and recovery processing must be performed. 

For recovery processing, storage allocation information is collected as normal except that first, 
the shadow segment descriptor is located and brought into memory. Also, an ASD for the 
segment is created and placed in the active segment table. Then the two versions are examined 
in tandem. When the operation discovers a difference in the allocation for a segment page, 
both PBNs are kept. The one from the shadow version is placed in the new field of a CRUST 
structure. The PBN from the permanent version is placed in the old field of the same structure. 
All of the PBNs collected are placed in the allots parameter. The CRUST structure is used to 
create a commit record for the segment which is placed in the windows field of the ASD for the 
segment. The commit record is not complete; for example, no virtual memory information is 
included. SEoa recognizes these sorts of commit records and processes them accordingly. 
P_Restore calls S_Eoa with the appropriate flag (commit or abort) based on a query to the 
kernel database. The operation returns number of blocks allocated for the segment. 

2.4.13 Changing a Segment's Size 

int S_Chgsize (sptr, delta) 
ASD •sptr; 
ujnt delta; 

S Chgsize appends delta extra bytes to the end of the segment. This changes the permanent 
segment on disk as well as the mapped in segment. Any new data blocks necessary are not 
allocated until data is actually written to them by a S Write operation. However, the size 
change may require new mapping blocks, and these are allocated immediately and integrated 
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into the structure. New mapping blocks are initialized with null entries. A size change may 
cause a reorganization of the segment structure. For example, an increase in the segment size 
may require the allocation of mapping blocks, whereas before only the segment index was 
necessary. The operation returns success or failure. 

2.4.14 Segment Status 

Int S_Statue (segname) 
SYSNAME * segname; 

The S_Status operation returns the status of a segment with respect to any action management 
processing taking place on the segment. This information is pulled from the state fields of the 
segment header or active segment descriptor. The return value of the operation is the status of 
the segment. 

3. The Partition Module 

This section describes the partition module of the kernel prototype. The major structures used 
by the module are described and the interface to the partition system is defined. The structures 
described in this section can be found in the files partition.c, partition.h, and parttab.h. 

3.1 Partition Module Structures 

The structure definitions described below are found for the most part in partition.h. However, 
definition of structures used by the partition system in general, such as the APT, are found in 
parttab.h. 

3.1.1 The Partition Header 

typedef struct { 
SYSNAME 	partname, devname; 
uJnt 	start, extent; 
u_.,short 	parttype; 
uJnt 	pagemap, pd, sd, phdr, shdr; 

} partition_hdr; 

The partition header is duplicated at either end of the partition. Both copies must be updates. 
The sysname contained in devname is that of the device on which the partition resides. All 
locations and sizes are in terms of blocks (512 byte). Start is a DBN, as it indicates the base 
location on the device for the partition. Extent is the size of the partition. Pd and sd are the 
locations of the partition header copies. Pd is set to zero and sd is set to the PBN of the last 
block on the partition. Phdr and shdr are the base locations of the directory copies. Phdr is set 
to one, and the PBN in shdr is determined by the partition size. Pagemap is currently unused, 
but is available for an implements of the allocation map which uses a permanent map version. 

3.1.2 Partition Directories 

typedef struct 
int 	count; 

struct 
SYSNAME 	segname; 
ujnt pbn; 
Ilst[MaxBuckEnt]; 

pdbucket; 

The above structure is the definition for a directory bucket. Count is the number of free entries 
in the bucket. Initially, count is set to MaxBuckEnt, the maximum number of entries that will 
fit in the bucket. This number is less than the size of the entries would seem to indicate because 
of alignment restrictions imposed by the C compiler. MaxBuckEnt is 41 for the prototype. 
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The remainder of the bucket is an array of entries. Empty buckets have a pbn field set to zero, 
as that partition block is not available for segment storage. 

3.1.3 A Locking Structure for the Allocation Map 

typedef struct 
char 	'map; 
char 	inuse; 

} mientry; 

There is a structure of this type for each page (512 bytes) in the allocation map. Map contains 
the address of the page and is use as the semaphore BD for that page's semaphore. The muse 
field is set after the semaphore for the page has been taken. The field is clear when the page is 
not being referenced. 

3.1.4 A Partition Recovery Support 

typedef struct { 
GE 	links; 
SYSNAME 	name; 
int 	count; 
address list[8]; 

} PActDesc; 

These structures provide recovery support at the partition level. Name is the sysname for the 
action that caused this entry to be created. Each entry contains a list of APDs for partitions to 
which the action has written. Count is the number of such partitions. Using the device field of 
the APD, Plush can call the necessary device flush operations. 

3.1.5 Global Partition Support 

typedef struct 
GE 	links; 
SYSNAME 	partname; 
uJnt 	start, size, active; 
uJnt 	phdr, shdr; 
ADD 'device; 
uJnt pdsize, pmsize, pmbsize, pdbsize; 
ujnt 	pd, sd, pm, partattr, fspace; 
char 	'pmbuf; 
mientry 'pmassgn; 

} APD; 

OH 	APT[PTSIZE]; 
OH 	pactior[PActDescSize]; 
address partitions[32]; 
SYSNAME partitionsysnames[32]; 
address paging[4]; 
OH pdbuf; 

The first structure is the definition of an active partition descriptor. The links field supports 
the hardware queue mechanism used to link the descriptor to the APT. Partname is the 
sysname of the partition. Start, size, and parttype describe the base location of the partition (it 
is a DBN), the length of the partition in blocks (512 bytes), and the type of the partition (paging 
or object). Phdr and shdr indicate the location of the partition header, but unlike the partition 
header, these field contain DBNs. The pd and sd fields, containing the base locations of the 
directory copies, are also DBNs. This reduces the overhead in accessing these structures. 
Device is a pointer to the active device descriptor of the partition's device. The sizes of the 
directory and allocation map are stored in pdsize and pmsize, respectively. Pmbsize and 
pdbsize are the sizes (in 512 byte pages) of the buffer areas for the directory and allocation 



map, respectively. Pmbsiza is always one, since there is a shared pool of buffers for all 
partition directories. Pdbsize is simply the size of the allocation map, since it is contained 
entirely in memory. Fspace is the amount of free space on the partition. Pm is unused, but is 
intended for a permanent allocation map version. Pmbuf points to the allocation map. The 
map is allocated from the system heap. Pmassgn points to an array of lock structures for the 
allocation map. The array is pdbsize long. 

The active partition table is declared as an array of hardware queue headers. The APDs are 
placed in the table using the VAX queue instructions. 

Partitions, partitionsysnames, and paging are all arrays kept by the storage manager for 
convenience. Partitions contains pointers to APDs for all active partitions. Partitionsysnames 
contains the sysnames of all active partitions. Paging contains the APDs of only paging 
partitions. 

Paction is a hash table used to manage the PactDesc entries described earlier. It is managed 
similarly to the active partition table. 

Pdbuf is the communal buffer pool for the partition directories. A single semaphore (with the 
address of pdbuf as its ID) is used to manage the buffers. 

3.2 The Partition System Interface 

3.2.1 Partition Creation 

void P_Create (devname, size, partattr, partname) 
SYSNAME • devname, *partname; 
uJnt size, partattr; 

P Create creates a new partition on the device specified by the parameter devname. In 
addition, P_Create   activates the partition by creating an active partition descriptor and entering 
this descriptor into the active partition table. The parameter size specifies the size of the new 
partition in terms of blocks (512 bytes long in the prototype). Partattr is the type of partition 
created. Currently, the prototype provides support for only paging and object partitions. 
Partname is used to return the sysname generated by P Create. The major tasks that P_Create   
performs are: 

1. the generation of the partition header. The partition header contains the information 
passed as parameters to the operation, the newly generated sysname for the partition, and 
the starting address on disk for the partition. The later piece of information is obtained 
with a call to RL_Enter. The partition header is written to the beginning and end of the 
partition; 

2. the creation of the (in-memory) allocation map for partition storage allocation. For each 
page in the allocation map, P_Create   also generates a semaphore used to provide mutual 
exclusion on that page; 

3. the allocation of buffer space for the partition directory, along with the generation of the 
read/write lock for partition directory itself and a semaphore to control access to these 
buffers; 

4. the initialization of the partition directory on the partition. This requires a determination 
of the size of the directory (based on the partition size) and the initialization of each 
directory bucket to be empty; 

5. the allocation map must be initialized so that the partition blocks containing the partition 
header (two copies) and the partition directory (also two copies) are shown as allocated. 
Also, since the allocation map is an integral number of pages, excess bits at the end of the 
last block are also set; and 



6. an APD is created and entered into the APT. The descriptor is initialized with the 
partition sysname, its size and location on the device, the location of per partition 
structures. The per partition structures include the partition header, the directories, the 
allocation, etc. The partition descriptor also contains a pointer to the device on which the 
partition resides, giving access to the entry points for the partition; 

Currently the partition system maintains one set of buffers for the partition directories for all 
the partitions. Each partition created adds an additional buffer to the set. The system keeps the 
allocation map in memory for performance and because partitions are not large in this first 
coding. Later implementations may add a buffer scheme for the allocation map. 
Synchronization is done at a page granularity for the allocation map and as a whole for the 
directory. However, the system maintains a read/write lock for the directory, unlike the simple 
semaphore locks for the allocation map. The return value of P _Create   is either success or 
failure. 

3.2.2 Removing Partitions 

void PJDestroy (partname) 
SYSNAME * partname; 

This call removes a partition from the device on which it resides. The operation assumes that 
the partition is active and it has an entry in the partition table. The active flag in the APD is 
cleared so that no further operations are performed on the partition. P_Destroy is the 
complement of P Create. Everything that was allocated in P_Create   is deallocated in 
P_Destroy. Locks and semaphores are taken before they are removed. The return value of the 
call indicates success or failure. 

3.2.3 Directory Management—Entering Data 

int P_Enter (pptr, segname, pbn) 
address pptr; 

SYSNAME * segname; 
address pbn; 

This call enters a sysname/partition block number pair into the partition directory. Pptr is a 
pointer into the partition table identifying the partition. A buffer is selected, the sysnami is 
hashed, and the appropriate bucket from the directory is read into the buffer. P_Enter attempts 
to place the entry in this bucket. Collision handling is a simple sequential scheme that first 
searches for an empty entry in this bucket and then, if no entry is found, P_Enter examines the 
next bucket. This requires another partition read to the buffer. Once the buffer has been 
updated correctly, the buffer contents are written to both copies of the directory bucket. Because 
of the C structure used, there is a good bit of wasted space due to alignment restrictions. Later 
implementations may make changes to the structure to eliminate this waste. The return value of 
the operation indicates the index of the directory bucket into which the entry was placed if the 
operation was successful; otherwise, the operation returns failure. 

3.2.4 Directory Management—Removing Entries 

ird P_Remove (pptr, segname) 
address pptr; 

SYSNAME * segname; 

P_Remove is the complement of P_Enter. It uses the same hashing and collision scheme to 
remove an entry in the partition directory. The return value of the function indicates success or 



failure. 
3.2.5 Directory Management--Modrying Entries 

int P_Mod (pptr, segname, hdroffset) 
address pptr; 

SYSNAME • segname; 
address hdroffset; 

Pjfod allows the modification of an existing directory entry. The same hashing and collision 
strategies used in Pinter and P_Remove are also used in this operation. The return value of 
P_Mod is the same as that for PEnter. 
3.2.6 Directory Management--Locating Entries 

int Pjind (pptr, segname) 
address pptr; 

SYSNAME • segname; 

P_,FInd locates the entry in the directory for the segname passed. The same hashing and 
collision scheme is used as in P_Enter and P_Rernave. The return value of the function is the 
partition offset of the segment, if it resides on this partition, and is failure otherwise. 
3.2.7 Directory Management—Examining Entries 

Int P_GetFirst (pptr, number, segarray) 
address pptr; 

Int number; 
SYSNAME • segarray; 

The first number segment sysnames found in the directory are returned in the array pointed to 
by segarray. The array is provided by the caller. A global variable DIrIndex is set to zero and 
then the operation P_GetNext is called to perform the actual work. Pptr determines the 
partition to use. The return value indicates the number of sysnames actually returned. 
3.2.8 Directory Management--Examining Entries, Part II 

int P_GetNext (pptr, number, segarray) 
address pptr; 

Int number; 
SYSNAME • segarray; 

The next number segnames in the directory are placed in the array pointed to by segarray. The 
array is provided by the caller. As in P_GetFIrst, pptr determines the partition to use. 
Dirindex determines where in the partition directory to start collecting names. Directory is 
processed bucket by bucket until the required number of sysnames are collected Less than 
number names may be collected if the operation runs out of directory entries. A read lock on 
the directory is required. One of the directory buffers is used to read the directory buckets for 
processing. The return value indicates the number of sysname actually collected. 
3.2.9 Available Partition Storage 

u_int P_AvailableSpace (pptr) 
address pptr; 
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The amount of free space on the partition is returned. This value may not be entirely accurate. 

3.2.10 Partition Reads 
P_Reacl (pptr, pbn, addr) 
address pptr; 
address pbn, addr; 

A block of the partition referred to by pptr is copied into memory at addr. Pbn is the block to 
be read. Addr should contain a physical address. P_Read calls its device read operation to 
perform the request. Prior to this call, the value in pbn must be converted from a PBN to a 
DBN for the device, using the partition base address found in the APD for the partition. 
Success or failure is return as the value of the function. 

3.2.11 Partition Writes 
P_Write (pptr, pbn, addr, Id, flag) 
address pptr; 
address pbn, addr; 
SYSNAME 'Id; 
u_short force; 

A page from memory is written to the partition referred to by pptr. Pbn is the PBN of the 
destination and addr is the physical address of the source. As in P_Read, the value in pbn is 
converted from a PBN to a DBN for the device before calling the device write operation. Id 
and flag are parameters that the device write uses to control the type of write performed, and 
are simply passed =interpreted to the device write operation. The flag indicates whether the 
write is asynchronous or synchronous and whether the write is performed by an action. The 
return value for the operation is either success or failure. 

3.2.12 Storage Allocation 
uJnt P GetBlk (pptr, number, parray) 
address pptr; 
u_Int number, 'parray; 

P_GetBlkO allocate blocks of storage from the partition pptr. Number specifies how many 
blocks are required. Parray is a pointer to an array where the block numbers of the 
allocated blocks are place to pass to the caller. Parray is provided by the caller. The blocks 
contained in parray at the end of the operation are not necessarily contiguous. The 
operation uses the allocation map semaphores to ensure mutual exclusion on the map, but 
also uses an home flag to avoid waiting if possible. The return value is the number of blocks 
allocated. 

3.2.13 Deallocation of Storage 

ujnt P_FleturnBlk (pptr, number, parray) 
address pptr; 
ujnt number, 'parray; 

This call deallocates storage blocks to the partition. Parray contains the PBNs of the blocks to 
be released. Number indicates the length of the array. The operation takes the semaphore of 
each allocation that contains an entry it must reset. This list should be sorted in ascending order 
for efficiency, but this is not required. The return value of P_ReturnBlk indicates the success or 
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failure of the operation. 

3 .2.14 Partition Recovery Support 
int PJIush (actname) 

SYSNAME actname; 

The P_flush operation allows recovery management to ensure that action write requests are 
completed on time. The actname parameter specifies the action causing the flush. A partition 
flush table is maintained for all partitions at the site. P_Flush locates the entry for the given 
action and calls the appropriate device flush operation for each partition referenced in the entry. 
The value returned by P_Flush indicates the success or failure of the operation. 

3 .2.15 Partition Reconstruction 
uJnt P_Ftestore (pptr) 
address pptr; 

The partition refered to by pptr is activated. This includes: 

1. a readtvvrite lock for the directory is created, along with a set of semaphores for the 
allocation map. A buffer for the directory is also created; 

2. the operation performs a consistency check on the partition header and directory. The two 
copies of the partition header are read and compared. The primary copy is used to update 
the secondary if there is a disagreement. If neither copy can be read, the operation 
returns a value indicating failure. The same procedure is followed for each bucket of the 
partition directory; 

3. the reconstruction of the partition allocation map. As in P Create, the storage for the 
partition headers and directories is preallocated. Also, any excess bits at the end of the 
allocation map are set to prevent their allocation. The other phase of reconstruction 
involves the examination of each segment on the partition to determine which blocks are 
allocated for the segments. P_Restore reads the directory and for each sysname 
encountered, it makes a call to S_Check (described in the previous section dealing with the 
segment module). S_Check   returns a list of the partition blocks in use. P_Restore 
allocates these blocks; and 

4. any action processing remaining to be performed is done. This is actually done through 
the call to S_Check   for each segment. S_Check   determines whether or not further action 
processing is required. If S_Check   indicates that a segment is shadowed, then the segment 
sysname is placed in a table for further processing. For each sysname in this table, 
P_Restore determines which action caused the shadowed by examining the shadow field of 
the in-memory version of the segment descriptor. The kernel database is then queried to 
find the final result of this action (whether it committed or aborted). If the action is found 
to have committed, P_Restore calls S_Eoa with the flag parameter set for a commit. If 
the database indicates that the action aborted, 5_,Eaa is called with its flag set for an abort. 
If the database contains to information for the action, the segment sysname is saved for 
further processing by the action management system, which has more complete 
information concerning action events. 
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The return value for the operation indicates the success or failure of the operation. 

3 .2.16 Maybe Table Manipulations 
uJnt P_MayEnter(segname) 
SYSNAME segname 

ujnt P_MayTest(segname) 
SYSNAME segname 

These two operations provide the interface to the maybe table. PivLayEnter enters the 
sysname specified into the maybe table. P_MayTest queries the maybe table to determine 
whether the specified sysname is in the maybe table. The implementation is based on the 
hashing technique discussed in this dissertation. The sysname is hashed to a compact format and 
enter into the maybe table using a second hashing function. The return value for both 
operations indicates success or failure. A successful return value from PiVlayTest indicates 
only that the sysname is probably contained in the maybe table. A return value of "failure" 
indicates that the sysname is definitely not in the maybe table. 

4. The Clouds Device System 

This section presents the interface and structures in the device module for the RLO2 disk The 
structures and operations defined are found mainly in the files rl_dev.c and rl_dev.c. The 
definition for RLO2 requests is found in buffer.h. 

4.1 Device Module Structures 

This section describes the major structures used by the 121.02 device module. For the most part 
these structures are defined in rl_dev.c. However, the request packet definition can be found in 
buffer.h and the active device descriptor definition can be found in devtab.h. 

4.1.1 The Medium Header 

typedef struct ri_header 
{ 

uJnt signature; 
SYSNAME medname, devname; 
ujnt storage; 
u_short npart; 

struct riJndex 
SYSNAME partname; 
ujnt start; 
ujnt extent; 
u_short type; 

index[MAX_PART]; 

char filler[406]; 
} Header; 

This structure definition is found is the file rl_dev.c. It defines the medium header for a RLO2 
device. The structure is zero padded to a block size. Most of the information has been 
described previously. Start, storage, and extent are in terms of device blocks (512 bytes). The 
signature field is currently unused. 
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4.1.2 RLO2 Control Registers 
static struct rLregs 

u_short cs; 
u_short ba; 
union { 

u short seek; 
u_short rw; 
u_short get_st; 

} da; 
union { 

u_short get_st; 
u_short rhead; 
u_short rw; 

} rnP; 
} *ri_regs; 

Rl_regs is a pointer to the control and status registers used by the RL02. The location of the 
register set for the RLO2 is determined by the RLJnit and RL_Mount operations using the 
offset specified by the device documentation [DEC82J31 and the base address for the device control 
and register area passed to these operations. Rl_regs contains an address inside the device 
control and status area of the kernel memory. The registers are all 16 bit words. Cs is the 
control register and is used to specify the type of device operation to perform, and also allows 
the specification of options. Return codes and error codes are passed from the controller and 
device through this register. The ba register indicates the base address in memory for a data 
transfer. The address is actually a Unibus address. The address is obtained as described in the 
description of the rwstart operation. The da register has several functions and format 
depending on the device operation being performed. For a "get-device-status" operation, the 
register controls whether a reset is performed. For seek operations, the da register indicates the 
distance and direction in which to seek. For data transfer operations, the base of the area 
involved in the transfer is specified in the da register in cylinder/sector format. The mp register 
is a multipurpose register used for counting the amount of data transferred in read and write 
operations and as a fault status register during the "get-device-status" operation. The union of 
various formats for the da and nip registers was taken from the Unix RLO2 driver. 

4.1.3 Request Packets 

typed& struct 
QE 	links; 
QE 	thread; 
SYSNAME id; 
address vma, da; 
u_,short reqtype, errcnt; 

} buffer; 

This type defines the structure of a request packet. The structure has linkage fields for two 
hardware queues. One is for the request queue. The other is there in the event the request is 
started by an action and the packet is placed in a flush table entry. Vma contains a physical 
address to or from which the data is to be transferred. Reqtype is used to encode the operation 
and write options. Errcnt is the number of errors caused by the request. 
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4.1.4 Bad Sector Table Definition 

typedef struct badsct 
ujnt csn, filler1; 

struct fields { 
ujnt cyl: 9; 
ujnt filled: 7; 
uJnt sect: 6; 
ujnt filler2: 2; 
uJnt hd: 1; 
uJnt filler3: 7; 

} bds[125]; 

ujnt filler2; 
} BstEntry; 

BstEntry is a type for an in-memory version of the bad sector tables residing on the last track of 
the RL02. Each element of the bds array indicates a bad sector. The backup sector is found on 
the last cylinder of the RL02. The index into the bds array is also the index of the backup 
sector. The format of the structure matches the format of the bad sector file on the RLO2 
media, so filler fields are used in the structure. 

4.1.5 RL02 Flush Table Structures 

typedef struct flush 
{ 

OE 	links; 
OH 	flush_set; 
SYSNAME 	id; 
u_short complete, outstanding, errcnt, fishflag; 

1 flentry; 

static OH flush[FLSHTBSZ]; 

These are the definitions of the flush table for the RLO2 device. Entries for the table are 
allocated from the system heap. Flush is the flush table itself. As mentioned previously, it is a 
hash table. The declaration is static to prevent the table's use outside the module. 

4.1.6 The Ready Queue 

static OH request; 

The request queue for the RLO2 is implemented using the VAX hardware queue facility. 
Again, the static declaration hides the structure. 
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4.1.7 The Active Device Table 
typedef struct 

OE 	links; 
SYSNAME 	devname, medname; 
u_short active, errcnt, available; 
u_short nintr, nreads, nwrites, nerrs; 
GENERIC 	'rags; 
void 	('ivector) 0; 
uJnt 	('enter) (); 
uJnt ('remove) 0; 
uJnt 	('partitions) 0; 
ujnt 	('read) 0; 
ujnt 	(*write) 0; 
void 	('dispatch) 0; 
uJnt 	('flush) 0; 
uJnt 	('init) (); 
uJnt ('mount) 0; 
uJnt ('unmount) 0; 

}ADD 

The active device descriptor format is defined above. The GENERIC type is a 32 bit structure 
which is a union of various types. 

4.2 The Device Module Interface 

The following functions are the operations available through the device module for the RL02. 

4.2.1 Device Initialization 

uJnt RL_Init (devname, medname, csroffset) 
SYSNAME 'devname, 'medname; 
address csroffset; 

The third parameter, csroffset, contains the base address of the device control and status 
register area for the kernel. RLt uses this address to locate the control/status registers for 
the RL02. These registers are used to initiate device commands. The operation then issues the 
first device operation to test whether the device is present and ready. If this is so, the operation 
may continue. The RL_Init operation is basically a formatting operation. The call creates the 
medium header and initializes this structure. It then mounts the device by creating an active 
device descriptor in the active device table. See RLMount for more details on device 
mounting. The sysnames for the device and its medium are created by the operation and 
returned to the caller. The function value indicates the success or failure of the call. 

4.2.2 Device Storage Allocation 

ujnt RL_Enter(partname, size, type) 
SYSNAME 	partname; 
uJnt 	size; 
u_short type; 

RL_Enter provides a mechanism for allocating device storage for partitions. The structures and 
strategies used are very simplistic. Neither the call nor any other part of the device module 
attempts to perform block coalescing. A simple allocate at the end strategy is used to allocate 
storage for a partition. The index field of the medium header is used to manage this simple 
form of allocation. The parameters passed into the call describe a partition being created. The 
second parameter, size, is used to allocate the correct amount of the storage. All three 
parameters are placed into the next free index field entry, along with the base address for the 
new partition. The medium header is then written to disk. The return value of the function 
indicates the success or failure of the operation. In the case of a successful allocation, the 
starting address is returned. Failure is indicated by a zero return value. 
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4.2.3 Device Storage Deallocation 

ujnt RL_Ftemove(partriame) 
SYSNAME 	partnarne; 

RL_Remove is the complement of RL..Enter The entry in the medium table for the referenced 
partition is cleared. No storage compaction is attempted. Currently, there is no facility for the 
free storage to be reallocated. The return value indicates success or failure. 

4.2.4 Device Allocation Query 

uJnt 	RL_Partitions(partarray, offset, size) 
SYSNAME 	'partarray; 
address 'offset; 
ujnt 'size; 

This operation allows the caller to determine what partitions reside on an RLO2 device. Each of 
the parameters is an array. This call is generally used during system startup as part of storage 
management reconstruction. The return value indicates the number of partitions that reside on 
the device. 

4.2.5 Device Activation 

uJnt RL_Mount (devname, medname, csroffset) 
SYSNAME 'devname, 'medname; 
uJnt csroffset; 

RL_Mount activates an RLO2 device. The third parameter, csroffset, contains the base address 
of the device control and status register area for the kernel. RL_Mount uses this address to 
locate the control/status registers for the RL02. The operation then issues the first device 
operation to test whether the device is present and ready. If this is so, the operation may 
continue. The call creates an active device descriptor for the RL02, places it in the ADT, and 
then proceeds to initialin- the descriptor from the medium header found on the device. The 
sysnames found in this header must match those passed as parameters to the call. RL_Mount 
also examines the bad sector file (this resides on the last sector of RLO2 media) and places this 
information into the appropriate tables. The call also initialims the request queue and flush 
table to an empty state. The addresses for the operations described in this section are placed in 
the device descriptor, and most subsequent references to the operations are made through the 
device descriptor fields. One of the last acts of RL_Mount is to set the available flag in the 
ADD, so the device is available to the kernel. The value of the function indicates the success or 
failure of the operation. 

4.2.6 Device Deactivation 

uJnt RL_UnMount (devname, medname) 
SYSNAME devname, 'medname; 

The sysnames passed into the operation are compared with those contained in the medium 
header, and if they match, the device is unmounted. First, the availability flag in the ADD is 
cleared so that no further requests are accepted. Pending device requests are flushed from the 
device request queue. The ADD for the RLO2 is destroyed. The return value indicates success 
or failure of the operation. 



4.2.7 Device Read Requests 
uJnt RL_Ftead (addr, Ibn) 
address addr; 
address Ibn; 

RL_Read allows the caller to create a read request on the RLO2 device. The call takes a 
request packet from the pool and fills the fields with the appropriate values. Note that the 
memory address into which the data is to be transferred is a physical address. A semaphore is 
created for the call using the request packet address as the semaphore ID. If the device is 
currently processing the request, the new packet is placed onto the request queue. If the request 
queue is empty, however, RL_Read initiates the read operation itself. In either case, the 
operation waits on the semaphore it created. When the semaphore is notified, RLjtead 
returns the request packet and destroys the semaphore. The packet returns the result of the 
read operation (a zero in the errcnt field indicates a successful transfer; any positive value 
means the read failed) and the appropriate value is returned as the function value. 

4.2.8 Device Write Requests 
uJnt RL Write (addr, Ibn, id, flags) 
address addr; 
address Ibn; 
SYSNAME *Id; 
short flags; 

RL Write initiates a write request to the RI..02 device. As with RL_Read the operation takes a 
request packet from the pool of packets and fills the packet fields with the necessary 
information. The flags parameter is used to control whether a write operation is synchronous 
or asynchronous. It also indicates whether an action is performing this request. The bits in 
flags are ORed with the operation code for a write request and placed in the reqtype field of 
the request packet. The id parameter is placed in the Id field of the packet if flags indicates the 
write is for an action; the id is the action's sysname. A semaphore is created for a synchronous 
write. If the write is for an action, the request packet is queued on an entry in the RLO2 flush 
table. If no entry exists for the action, one is created. As with RL_Read the request either is 
placed in the request queue if it is non-empty, or started by RL_Write if the request is empty. 
For asynchronous writes, the operation returns immediately. For synchronous writes, 
RL Write waits on the semaphore as does RL_Read and, on the semaphore notify, performs 
the same cleanup as RL_Read The return value for the function is either success or failure. 

4.2.9 Flushing Action Writes 

uint RL_Flush (id) 
SYSNAME *id; 

Through the RLJIush operation, the caller can tell the RL02 device to notify the caller when 
all write request performed by an action are complete. The operation first determines if there is 
a flush table entry for the action. If so, the outstanding and completed field of the table entry 
are compared and if the two fields are not equal (indicating that some pending requests started 
by the action have not completed), the flshflag field is set, and the call waits on the semaphore 
created for the table entry. When this semaphore is notified, RLJlush destroys the 
semaphore, the flush table entry, and returns the number of requests that were completed. 

4.2.10 The Device Interrupt Handler 

void RL_Dispatch 0 

This operation is not available as a callable operation. It is the interrupt handler for the RLO2 
device. An RLO2 interrupt indicates that the request completed or that there was a device error. 
In the latter case, RLJ)ispatch logs the error and restarts the request. A count is kept for the 



-35- 

request and when 15 retries have been made, the operation terminates the request. If the status 
registers indicate that the errors may be due to a bad sector, bad sector forwarding is attempted 
and the request is restarted with the new device address. 

After a successful request, the operation performs the appropriate cleanup procedures for the 
request. For device writes, the operation must check whether the write is synchronous or 
asynchronous, and whether the write was started by an action. For writes started by an action 
there are several possibilities. After the flush table entry for the action is found, RL_Dispatch 
increments the completed field of the table entry. If the flshflag field of the entry is set and if 
the outstanding and completed fields are equal, the operation notifies the flush table entry 
semaphore. For asynchronous writes, the operation returns the request packet used for the 
request. For asynchronous write requests and for read requests, RI, Dispatch notifies the 
semaphore associated with the request packet. 

After processing the just completed request, RL_Dispatch selects a new request to start. This is 
done in a first-come-first-serve manner. If the request queue is empty, the active flag found in 
the ADD for the RLO2 is cleared, indicating that there are no pending requests. Otherwise, the 
next packet is dequeued from the request queue and started by the operation. 

4.2.11 Debugging Support 
void RL_Debugo 

This routine prints the values of the RLO2 registers and structures on the console. 

4.3 Important Service Utilities 

This section describes several routines which, while not part of the device interface, perform 
important functions. 

4.3.1 Initiating Device Requests 

static u.jhort rwstart (bf, interrupt) 
buffer * bf; 
u_short interrupt; 

Rwstart is used to start requests. The parameters are a pointer to a request packet and a flag 
indicating whether the request should post an interrupt when it completes. The first step 
rwstart takes is to determine whether a seek to a new cylinder is necessary. If it is, rwstart 
starts the seek and waits (using a tight loop) until the seek completes. Rwstart then begins 
setting the control and status registers to the values indicated in the request packet. The 
memory address to or from which data is transferred is not given directly to the device. 
Instead, the address in the request packet is mapped into a Unibus address. This mapping may 
be done in two ways. If the device is not active (the device has no pending requests), a new 
Unibus page mapping must be allocated. If the device is active, the Unibus page mapping from 
the previous request may be reused. The latter alternative is slightly faster. The disk address 
for the transfer must be converted from a DBN based on 512 byte blocks to a cylinder/sector 
format based on 256 byte blocks. The command register is set last and this initiates the request. 
If the interrupt parameter is clear (the request should not cause an interrupt), the operation 
waits on the completion of the request before returning. This option is seldom used and only 
for requests generated by the device itself for administrative purposes. If the interrupt 
parameter is set, the operation returns immediately after starting the request. The device 
interrupt handled by RLJ)Ispatch will take care of the request. The return value of the 
operation indicates success or failure. 
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4.3.2 Flush Table Manipulations 
static void 	tenter (id, bf) 
SYSNAME Id; 
buffer bf; 

This operation enters the request packet into an existing flush table entry (identified by the 
parameter id), or creates such an entry for the action with sysname id, and places the request 
packet to which the parameter hi points into the new entry. In the case that a new flush table 
entry is created, fenter also creates a semaphore using the entry address as the semaphore ID. 
This semaphore is used by RLJElush to wait for the completion of action requests. The 
operation increments the field outstanding (there is a new request) and enqueues the request 
packet onto fluslx,set. There is no return value. 

5. Glossary 

ADD This is an active device descriptor. It contains the information about a device which are 
in-use by the kernel. 

ADT The ADT (active device table) is a structure used to manage descriptors for devices which 
are in-use by the kernel. 

APD The APD (active partition descriptor) is analogous to the device descriptor. Each APD 
contains a pointer to the descriptor for the device on which it resides. 

An This is the active partition table. Each entry in this table is an APD for a partition being 
used by the kernel. 

ASD ASD stands for active segment descriptor. An ASD is created for each segment which is 
mapped into virtual memory. The descriptor contains references to virtual memory and 
permanent storage mapping tables for the segment, in addition to descriptive information about 
the segment. 

AST The AST (active segment table) contains the ASDs for segment which are being used 
(through an operation call on an object), or which were recently used. 

Block The smallest allocatable unit of secondary storage. In the current kernel implementation 
the block size is 512 bytes. This is also the virtual memory page size, and the terms page and 
block are frequently interchanged. 

DBN A DBN is a device block number. DBNs are offests from the beginning of a device. 
They provide a way to provide an abstract addressing scheme for all devices no matter what the 
underlying geometry of the device is. The device objects are responsible for performing the 
translation of a DBN to address format (sector/cylinder/head, for example) used by the device 
hardware. 

Flush table A structure used at by device objects to associate writes requests being performed 
during an action commit to the committing action. The table allows device objects to ensure that 
all writes for an action are complete before the action commits. 

Maybe table The maybe table is an approximate membership tester. It provides an efficient 
means to short circuit object searches initiated by a remote procedure call. When queried, a 
positive response from the maybe table indicates that the object may be at a site in the system; a 
more thorough search is required. A negative indicates that the object is definitely not at the 
site. 

Page allocation map This also referred to as simply a page map. The page map is a bit map 
used to allocate partition storage. 
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Partition Partitions in the Clouds kernel are logical devices. They are composed of a 
contiguous collection of secondary storage blocks. Partitions must reside completely on one 
device. Clouds partitions are used solely to administer secondary; segment membership in a 
particular partition provides no logical relationship of that segment to others residing on the 
partition. 

Partition directory Each partition maintains a directory of the segments residing on that 
partition. Each entry is a segment sysname and a PBN for the segment header. 

PBN PBN stands for partition block number. PBNs are offsets from the beginning of a 
partition and are used for addressing purposes by the segment system. 

Segment A Clouds segment is a a sequence of bytes which may be manipulated using the set of 
operations provided by the storage manager and described earlier. Segments are used by the 
kernel to facilitate the manipulation of Clouds objects. 

Segment tree This refers to the lay out of Clouds segments on secondary storage. Each segment 
has a header which in addition to containing descriptive information about the segment, contains 
a list of refers to other blocks of storage. Each of these blocks may be a data block ( a leaf in 
the segment tree), or a mapping block (an internal node in the segment tree) which contains 
references to data blocks or other mapping blocks. 

Shadow pages Copies of modified pages in the permanent segment state used for recovery 
purposes. On commit of an action, the shadow pages are become part of the permanent state of 
the segment, replacing the old pages. 

Shadowing This is the recovery technique used by the storage manager. Updates to recoverable 
segments are not made to the permanent version of the segment, but to copies of the permanent 
version. On commit, these copies become part of a new, modified permanent version. 
Shadowing in the Clouds kernel is done on at a page level. 

Window Windows are used in the mapping of segments into virtual memory. They are 
contiguous chunk of the segment. A segment may have several windows mapped into it, each 
having different attributes (code windows, permanent data windows, heap storage windows, 
etc). Windows facilitate sharing of segments (particularly code segments) in the kernel. 

6. Storage Management Functional Flow 

This section contains a series of diagrams illustrating the functional flow of the storage 
management system of Clouds. The goals of the author is to provide information as to how and 
by whom storage management routines are used. 

Each routine described in the earlier sections as a diagram in this section. Segment system 
routines appear first, followed by the partition system routines, and last, the device system 
routines. Within each group, the illustrations are in alphabetical order. The routine being 
described appears in the center of each diagram. 

Solid arrowed lines are used to represent a caller/callee relationship. The called routine is at the 
arrow head and the calling routine is at the arrow tail. 

Dotted lines are used to indicate the relationship of the routine to important data structures. 
Each such relationship is labelled "Read" and/or "Modify", indicating whether the routine 
simply references the structures, updates, creates, or deletes the structure, or some combination 
of the above. 

Some of the routines are part of the storage manager/kernel interface. That is, the kernel uses 
these routines to perform necessary manipulations on secondary storage (usually at the segment 
level). In these diagrams the boundary is indicated by a dashed line. 
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The Clouds Distributed Operating System. 
Functional Description, 
Implementation Details 

and 
Related Work. 

William Appelbe,Partha Dasgupta & Rich LeBlanc 

Abstract 

Clouds is a distributed operating system supporting objects, actions, location independence, 
reliability and integration. We present a functional description of the system attributes and 
the impact this has on the users of distributed systems. We describe the various design and 
implementation decisions and how they were affected by the goals of the Clouds project. 
We also compare and contrast several well known operating systems project and their 
approaches. 



	  1 

The Clouds Distributed Operating System. 
Functional Description, 
Implementation Details 

and 
Related Work. 

William Appelbe, Partha Dasgupta & Richard LeBlanc. 

1. Introduction 

Clouds is an operating system designed to be the forerunner of a novel class of distri-
buted operating systems that provide the integration, reliability and structure that makes a dis-
tributed system generally usable. 

Clouds is designed to run on a set of general purpose computers (uniprocessors or mul-
tiprocessors) that are connected via a medium-to-high speed local area network. The structure 
of Clouds promotes transparency, support for advanced programming paradigms, and decen- 
tralized yet integrated control. The major design objectives for Clouds are: 

• Integration of resources through cooperations and location transparency. 

• Support for robust transaction processing, and the ability to achieve fault tolerance. 

• Efficient design and implementation. 

• Simple and uniform interfaces for distributed processing. 

The system structuring paradigm chosen after substantial research for the Clouds operat-
ing system is an object/process/action model. All instances of services, programs and data in 
Clouds are objects. Processing is done by atomic actions. Provision is made for processing 
that must execute outside the constraints of atomicity [A183, DaLe85, McA183]. In the next 
few pages we provide a functional description of the system, and some implementational 
details. 

2. Objects 

All data, programs, devices and resources on Clouds are objects. The only entities that 
are not objects are processes and actions. A Clouds object at the lowest level of conception is 
a virtual address space. Unlike conventional virtual address spaces, a Clouds object is neither 
tied to any process nor is volatile. A Clouds object exists forever (like files) unless if it is 
explicitly deleted. 

Every Clouds object is named. The name of an object, also known as the capability, is 
unique over the entire distributed system and does not include the location of the object. That 
is, the capability based naming scheme in Clouds creates a uniform, flat system name space 
for objects. The capabilities not only provide the naming mechanism, they can also be used 
for access control and protection. 

Georgia Tech 
	

Clouds Project 	 Functions & Implementation 



	  2 

Since an object consists of a named address space (and its contents), it is completely pas-
sive. Unlike those in some object based systems, a Clouds object is not associated with any 
server process. Processes are allowed to execute within the context of objects. A process exe-
cutes in an object by entering it through one of several defined entry points, and after the exe-
cution is complete the process leaves the object. Several processes can simultaneously enter an 
object and execute in parallel. 

Objects have structure. They contain, minimally, a code segment, a data segment and a 
heap for local storage allocation. Processes that enter an object execute in the code segment. 
The data segment is accessible to the code in the code segment, but not to any other object. 
Thus the object has a wall around it which has some well defined gateways, through which 
activity can come in. Data cannot be transmitted in or out of the object freely, but can be 

moved as parameters to the code segment entry points (see discussion on processes). 

Clouds objects are user-defined or system-defined. Most objects are user-defined. Some 
examples of system defined objects are device drivers, name-service handlers, and the Clouds 

kernelt  itself. 

A complete Clouds object can contain user-defined code and data, system-defined code and 
data that handle synchronization, recovery and commit, a volatile heap for temporary 
memory allocation, a permanent heap for allocating memory that will remain permanent as a 
part of the data structures in the object, locks and capabilities to other objects. 

3. Processes 

The only form of activity in the Clouds system is the process. Clouds processes are light-
weight workers. A process is composed of a process control block (PCB) and and a virtual 
space containing the stack. Thus, a process can be viewed as a program counter, stack 
pointer and stack. Upon creation a process starts up at an entry point of an object. As the pro-
cess executes, it executes code inside an object and manipulates the data inside this object. 
The code in the object can contain a procedure call to an operation of another object. When a 
process executes this, it temporarily leaves the caller object and enters the called object, and 
commences execution there. The process returns to the caller object after the execution in the 
called object terminates. The calls to the entry point of objects are called object invocation. 

Object invocations can be nested. The code that is accessible by each entry point is known as 
an operation of the object. 

Thus a process executes by processing operations defined inside many objects. Unlike 
processes in conventional operating systems, the process thus often cross boundaries of virtual 
address spaces. Addressing in an address space is however limited to that address space, and 
thus the process cannot access any data outside an address space. Control transfer between 
address spaces occurs though object invocation, and data transfer between address spaces 

tAlthough the specification define the kernel to be an object, the implementation treats it as a special case (or pseudo-object) for 
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occurs through parameters to object invocation (which may be capabilities for other objects). 

When a process executing in an object (or address space) executes a call to another 
object, it can provide the called operation with arguments. When the called operation ter-
minates, it can send back result arguments. Since the address spaces of the two objects are 
disjoint, all arguments are passed by value. This argument passing mechanism is identical to 
copy-in copy-out semantics of parameter passing supported by many programming languages. 

4. The Object/Process Paradigm 

The structure created by a system composed of objects and processes has several 
interesting properties. First, all interfaces are procedural. Object invocations are equivalent 
to procedure calls on modules not sharing global data. The modules are permanent. The pro-
cedure calls work across machine boundaries. Since the objects exists in a global name space, 
there is no concept of machine boundaries. At the system level local invocations and remote 
invocations (RPC) are differentiated, however this is transparent to the user and the pro-
grammer. 

Since every entity is an object and objects are permanent, there is no need for a file sys-
tem. A conventional file is a special case of an object, an object with a read, a write, a seek 
and some other file operations defined in it to transport data in and out of the object through 
parameters provided to the calls. 

Though we can simulate files by using objects of type file, the need for files disappear in 
most situations. Programs, do not need to store data in files, they can keep the data in the 
data space, since the data space does not disappear when the controlling process terminates. 
The need for user-level naming of files transforms to the need for user-level naming for 
objects. 

The Clouds operating system does not provide any support for I/O operations, except for 
terminal I/O. (Terminal I/O is achieved by invoking the read and write operations on a termi-
nal object, dispensing most concepts about I/O streams). 

Just as I/O is eliminated, so is the need for messages. Processes do not communicate 
through messages. There are no ports. This allows a simplified system management strategy 
as the system does not have to maintain linkage information between processes and ports. 
Just as files can be simulated for those in need for them, messages and ports can be easily 
simulated by an object consisting of a bounded buffer that implements the send and receive 
operations on the buffer. However, we feel that the need for files and messages are the pro-
duct of the programming paradigms designed for systems supporting these features, and these 
are not necessary structuring tools for programming environments. 

The view of the computing environment created by Clouds is apparent. It is a simple 
world of named address spaces (or objects). These object live in computing systems on a 

efficiency reasons. 
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LAN, but the machine boundaries are made transparent, creating a unified object space. 
Activity is provided by processes moving around amongst the population of objects through 
invocation; and data flow is implemented by parameter passing. 

This view of a distributed system, does have some pitfalls. Processes aborting due to 
errors will leave permanent faulty data in objects they modified. Failure of computers will 
result in similar mishaps. Multiple processes invoking the same object will cause errors due to 
race conditions and conflicts. More involved consistency violations may be the results of non-
serializable executions. In a large distributed system, having thousands of objects and dozens 
of machines, corruption due to failure cannot be tolerated or easily repaired. The prevention 
of such situations is achieved through the use of the atomic actions paradigm, discussed 
below. 

5. Actions 
Actions are units of work that are defined by the programmer to be atomic. The work 

done by an action either gets done in its entirety or does not happen at all. Failures, errors, 
and aborts thus do not leave a trace on the data stored in the objects [Ke86, Mc85]. 

An action is an abstraction. It is neither an object nor a process. It is a high level concept 
that exists as information in the action management system. An action starts as one process. 
Anything this process does, until the action commits or aborts, is in the context of the action. 
If the process creates more processes, these too are part of the same action. 

All the activity of the set of processes (or one process) in the context of an action, con-
sists of touching objects. A object is considered touched by an action if a process executing on 
behalf of the action executes one or more object invocations on the object. A touched object is 
not necessarily modified. All objects modified by an action exist in a volatile form that may 
be different from their permanent representations. 

When an action terminates, all the objects touched by the action are committed. Commit-
ment of an object is achieved by updating its permanent representation by replacing any data 
that have been modified by this action. Since the updates by an uncommitted action are never 
made permanent, an aborted action is rolled back by default. 

Though the updates by an uncommitted action are not written on permanent (secondary) 
storage, the updates of an uncommitted action may be seen by another uncommitted action 
accessing the same object, depending upon the synchronization method used by the object. 
We distinguish between two kinds of atomicities of actions, namely failure atomicity and view 

atomicity. Failure atomicity dictates that either the updates performed by an action are made 
permanent after the action runs to completion, or nothing occurs. View atomicity dictates that 
the action is insulated from seeing any results from other concurrently executing actions. 
Clouds can provides failure atomicity and, if needed, view atomicity. Note that not providing 
view atomicity can lead to errors (an action A makes updates based on some results of an 
uncommitted B action and A commits while B aborts). The differences between the atomicity 
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requirements and the rationale for providing failure atomicity will be clearer after the discus-
sion of synchronization methods. 

5.1. Nested Actions 

Actions, as units of work, are too large grained for many applications, especially in an 
large distributed environment where failures are relatively common. Any error or failure 
during the execution of an action requires that the entire action be aborted. An action often 
needs the ability to recover from errors or failures. Finer grained atomicity and failure 
recovery capabilities are provided by nested actions. 

A top-level action is the conventional action. The-top level action can delegate sub-tasks 
to subordinated actions or sub-actions, which in turn can spawn sub-actions, giving rise to a 
tree of nested actions. A child action executes in the context of its parent, but the failure of 
the child does not imply the failure of the parent, the parent may choose to retry the sub-task 
or respond to the failure in some other way. The commit of a sub-action is conditional upon 
the commit of the parent, and by transition, the commit of all nested actions are conditional 
upon the commit of the top-level action. Thus a top-level action makes the final commit deci-
sion, based on the commit and abort status of all the nested action it gave rise to. 

The nested action semantics of Clouds is identical to the semantics defined by Moss in 
[Mo81). Nested actions thus provide a action programmer with failure containment firewalls 
and the ability to try alternate methods to make progress. 

6. Synchronization 

The synchronization scheme decides how (if at all) concurrent processes execute in the 
same object. The synchronization scheme used also dictates whether action using the object 
are view atomic or not. Both the synchronization techniques used and the recovery techniques 
used affect the semantics of action atomicity. We discuss synchronization in this section. 
Recovery will be discussed in the next section and the effects of both on actions will be briefly 
considered [McAlMc82]. 

Clouds offers two basic types of synchronization: custom and automatic. Custom syn-
chronization allows the programmer of an object to define and implement the synchronization 
rules. For this purpose, the programmer has access to locks and semaphores that can be 
defined and used inside the object. For example, setting a lock on a variable when entering an 
operation and releasing it upon exit causes processes that execute this operation to run in 
mutual exclusion. The object programmer can thus customize the synchronization scheme to 
the needs of the object. 

Though custom synchronization can be correct and useful for many applications, it is 
possible to allow non-serializable execution in custom synchronization schemes. Allowing 
various unconventional schemes is the power of custom synchronization. However in cases 
where serializability is necessary, the programmer need not implement any synchronization; 
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automatic synchronization is available for this purpose. 

With automatic synchronization, each entry point in an object is marked as a read entry 
or a write entry. When an action touches an object for the first time, a read or write lock is 
obtained on the entire object (as appropriate). Conversions from a read lock to a write lock is 
allowed. Locks are held until the action commits, implementing a two-phase locking protocol 
and guaranteeing serializable execution of the action with respect to all data touched by the 
action (provided all objects it touched were using automatic synchronization). This scheme 
also provides view atomicity of actions. 

7. Recovery 

Recovery is managed by shadowing, providing failure atomicity for actions. Objects are 
classified as recoverable or non-recoverable. Non-recoverable objects are somewhat cheaper 
to handle and can be used by non-critical system tasks, but usage of non-recoverable objects 
by actions can lead to lapse of consistency. Note that all Unix files are a special case of non-
recoverable objects in Clouds. 

When an action invokes an operation in a recoverable object, a shadow version and a 
core version of the object is created. The shadow version is the original permanent version, 
and the core version is the possibly updated version. If several actions invoke an object in 
parallel, there is still only ONE shadow and ONE core version. If the synchronization is not 
automatic, there are possibilities that one uncommitted action will see updates from another 
uncommitted action, violating the view atomicity requirements (if any). But this is left to the 
programmer who chose the synchronization strategy. 

Every recoverable object has two default entry points called pre-commit and commit. 
When the pre-commit entry point is invoked, the object flushes all the updated data in the 
core version to stable storage, and the commit operation copies the updates to the shadow 
version and makes the shadow version the permanent version. These entry points can be used 
by any 2-phase commit protocol. 

Like synchronization, recovery comes in two flavors, namely custom and automatic. 
When an action is run with automatic synchronization, the action management keeps track of 
all the objects the action touched. When the action terminates successfully, the action manage-
ment system creates a commit co-ordinator process, that uses the pre-commit and commit 
entry points of all the objects touched by the action to perform an atomic commit, using the 
two-phase commit protocol. 

Custom recovery is nearly identical, except that the programmer has the ability to rede-
fine the default pre-commit and commit routines in the objects; the user defined routines will 
be used by the action manager at commit time. The user also has access to the commit rou-
tines during normal execution and thus can perform intermediate check points, partial com-
mits and customized features like flushing only certain pages of the object. 
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Automatic recovery and automatic synchronization guarantee serializability, failure 
atomicity and view atomicity. Automatic recovery and custom synchronization guarantees 
failure atomicity and allows the user to use some concurrency control semantically consistent 
with the application. Custom recovery and synchronization allows the programmed full con-
trol of the execution strategy, and the system does not guarantee anything. 

8. Programming Support 

Systems and application programming for Clouds involves programming objects that 
implement the desired functionality. These object can be expressed in any programming 
language. The compiler for the language, however, must be modified to generate the stubs 
for the various entry points, invocation handler, system call interfaces and the inclusion of 
default systems function handling code (such as synchronization and recovery.) 

The language Aeolus has been designed to provide programmers with the full set of 
powerful features that the Clouds kernel supports. Aeolus provides linguistic support for pro-
gramming Clouds objects and allow the composition of objects from sub-objects. Aeolus pro-
vides access to the synchronization features (both custom and automatic) and the recovery 
features of Clouds. Though the Clouds programmer is not tied to Aeolus, the language is 
most suited for systems programming as it has been tailored to match the kernel features 
[LeWi85, Wi85, WiLe86]. 

Aeolus is the first generation language for Clouds. It does not support some of the 
features found in object-oriented programming systems such as extensive inheritance and sub-
classing. Providing support for these features at the language level is currently under con-
sideration. 

9. Enhancements and Planned Features 

The above description of Clouds documents the basic features of the distributed kernel 
for Clouds. Presently the following enhancement, applications and features are at various 
stages of design, implementation and planning. 

• An object naming scheme is being developed that creates a hierarchical user naming 
strategy (like Unix) that is also highly available and robust (through replicated direc-
tories). 

• Unix and Clouds will be inter-operable providing Unix programmers and user with 
access to Clouds features and Clouds programmers to use Unix services. Unix machines 
will be able to execute remote procedure calls to Clouds object thus gaining access to all 
the functionality that Clouds provides. In fact the user interface to Clouds will be through 
Unix shells and tools. Similarly Clouds applications will make use of the wide variety of 
programming support tools that are supported by Unix through a mechanisms that pro-
vides Unix service for Clouds computations. In addition, Clouds services will be directly 
accessible through Clouds libraries for other programming languages, such as C++ and 
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ADA. 

• As mentioned earlier, mechanisms for providing object-oriented programming metho-

dology will be provided at the linguistic level, with enhancements in the kernel that will 

provide performance advantages (such as sharing of code in the classes with its 

instances) . 

• Debugging support at the object level, process level and the invocation level will be pro-

vided. Techniques that allow the programmer to get a comprehensive view of the distri-

buted and concurrent execution environment are under development. 

• A probe system that can track object and process status in the system can provide infor-

mation about failures, loading, deadlocks and software problems is being developed. 

This will be used to develop a distributed system monitoring system that will help in 

reconfiguration of failure and aid in providing fault tolerance. The probe system will 

also be useful in distributed object level debugging [Da86]. 

• A distributed database that utilizes the object structure of Clouds for elegance and the 

synchronization and recovery support for concurrency control and reliability is being 

developed [DaMo86]. 

• Clouds has been designed as a base layer for fault tolerance computing. The systems that 

will provide fault tolerance and guarantee progress of computation and system response 

in face of partial system failures are being developed. The techniques include replicated 

objects, multi-threaded actions, the coupling of the reconfiguration systems and monitor-

ing systems, and usage of dual-ported hardware. 

M. Implementation Notes 

The implementation of the Clouds operating systems has been based on the following 

guidelines: 

• The implementation of the system should be suitable for general purpose computers, 

connected through widely used networking. Non-homogeneous machines, though not 

crucial, should be allowed. 

• Since the Clouds functionality is largely based on object invocation, support for objects 

should be efficient in order to make the system usable. Also, the synchronization and 

recovery systems should be efficient. 

• Since one of the primary aims of Clouds is to provide the substrate for reliable, fault 

tolerant computing, the base system design should be tolerant to failures and provide 

adequate support for implementing fault tolerance. 

• The system design should be simple to comprehend and implement. 
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10.1. Hardware Configuration 

The hardware chosen for the prototype is commonplace: three VAX-11/750's connected 
by an Ethernet. The disk units are dual ported, allowing access to the units from two 
machines, which provides the ability to remount the data from one machine to the other in 
case of site failures thus increasing availability. 

The user interface is not through terminals, but over the Ethernet from Unix main-
frames or workstations. This allows easy (software based) reassignment of users in case of 
site failures. 

10.2. Software Configuration 

The kernel is implemented in C for portability, and because the availability of C source 
for the UNIX kernel simplified the task of developing hardware interfaces such as device 
drivers. Aeolus has been used as the implementation language for Clouds utilities. 

10.3. Kernel Structure 

The kernel is a replicated resident kernel, replicated at all the sites. Logically, the ker-
nel is distributed over several sites and the machine boundaries are invisible. This is achieved 
by the communication system that provides the low level messaging interface between the 
replicated kernels. The system control however is completely decentralized, so that failure of 
individual kernels do not affect the rest of the system [Sp86). 

For efficiency considerations, the kernel runs on the native machine and not on top of 
any conventional operating system. As Clouds does not use most of the functionality of con-
ventional operating systems (such as Unix), building Clouds on top of a Unix like kernel 
would have several unacceptable deficiencies, mainly leading to bad performance. Some of 
the negative aspects of using Unix as the base layer would be: 

• Unix processes are heavyweight processes: thus process creation and RPC would be 
expensive. 

• An Unix process is tied to one address space. Making a process cross address spaces 
would involve simulating it through multiple processes and the Unix IPC mechanism, 
which would involve multiple context switches and other message layer overheads. 

• Only one process can execute in an address space, providing serious limitations to intra 
object concurrency. There are methods that get around this problem, but they are gen-
erally complex to implement, unreliable and require substantial overhead. 

To avoid these problems the Clouds kernel is designed to support the Clouds functions on 
the native VAX and all the performance critical support is implemented at the lowest level in 
the kernel. 
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10.4. Object Naming and Invocation 

The two basic activities inside the Clouds kernel are system call handling and object invo-

cations System call handling is done locally, as in any operating system. Object invocation is a 

service provided by the kernel for user processes. The attributes that object invocation must 

satisfy are: 

• Location independence. 

• Fast, for both local and remote invocations. 

• Failed machines should not hamper availability of objects on working sites, from work-

ing sites. Also, moving objects between sites, reassigning disk units and so on should be 

simple. 

Location independence is achieved through a capability based naming system. Availabil-

ity is obtained through decentralization of directory information and a unique search-and-

invoke strategy. Speed is achieved by implementing the invocation handlers at the lowest level 
of the kernel, on the native machine. 

When a process invokes an object, it first places the arguments on the stack and executes 

an invoke system call, with the called object capability as the parameter. The capability of the 

object is unique systemwide, but has no site information. The kernel searches the local object 

directory to determine if the object is available locally. If it is, then the process address space 

is switched and the process starts executing in the object that it invoked. (This is achieved by 

changing the PO region of the VAX address space by updating the PO page table registers. 

The stack of the process is in P1 region, and this space remains the same.) 

If the object does not exist locally, the kernel broadcasts a search-and-invoke request. 

All participating kernels then attempt to locate the object. The successful kernel dispatches a 

slave process, which copies the arguments from the invoke request to its stack and performs a 

local invocation on the object. Upon termination, the arguments are send back to the invoca-

tion requester, which causes the invocation request to return. 

Hash tables, caches, and hint databases are used to add speed both the local searches for 

objects as well as avoiding the need for all sites to search for objects at each broadcast 

search-and-invoke request. 

10.5. Storage Mangement 

The storage management system handles the function required to provide the reliable, 

permanent object address spaces. As mentioned earlier, unlike conventional systems, where 

virtual address spaces are volatile and short lived, Clouds virtual spaces contain objects and 

are permanent and long lived [Pi86]. 

The storage management system stores the object representations on disk, as an image 

of the object space. When an object is invoked, the object is demand paged into its virtual 

space as and when necessary. As the invocation updates the object, the updated pages do not 
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replace the original copy, but have shadow copies on the disk. The permanent copy is updated 

only when a commit operation is performed on the object. The storage manager provides the 

support to commit an object using the two-phase commit protocol. 

10.6. Action Management 

The storage management implements the virtual memory system and the commit proto-

cols, providing the mechanisms for handling the object storage needs. The policies of the 

action management are not implemented in the storage manager, but rather in the action 

management system. The action management system implements nested actions for the 

Clouds system by keeping track of the objects touched by an action as well as the success and 

failure of each action and its subactions [Ke86]. 

The action manager primarily keeps track of information regarding actions. The action 

manager is distributed, with the manager at each site keeping information about each action 

that was started as a top level action at that site. Although an action can span several sites, the 

action commit is coordinated through the action manager at the site where the action started. 

As is apparent if the site starting the action fails, the action is doomed to abort, and hence the 

failure of the coordinating action manager does not hamper the progress of this action. 

As discussed previously, when an action terminates, the coordinating manager invokes 

commit operations on all touched objects, in order to make all updates by the action per-

manent in an atomic step. 

11. Comparisons with Related Systems 

Clouds is one of the several research projects that are actively building distributed object 

based environments. There are similarities and differences between all the approaches, and 

the area of distributed operating systems are in general not mature enough to conclusively 

argue the superiority of one approach over the other. In the following paragraphs we docu-

ment some of the major differences between Clouds and some of the better know projects in 

distributed systems. 

One of the major difference between Clouds and most of the systems mentioned below 

is in the implementation of the kernel. Most of the systems implement the kernel as a Unix 

processt , while Clouds is implemented as a native operating system. In addition, no attempt 

has been made to build a UNIX interface (e.g., SVID) 'on top of Clouds. Clouds is not 

intended to be an enhancement, or replacement of, the UNIX kernel. Instead, Clouds pro-

vides a different paradigm from that supported by UNIX (e.g., the UNIX paradigms of 'dev-

ices as files', unstructured files, etc,) 

the term kernel has been used quite frequently to describe the core service center of a system. However when this service is 
provided by a Unix process rather than a resident, interrupt driven monitor, the usage of the term is somewhat counter-intuitive. 
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11.1. Argus 

Argus is a system developed at MIT, that supports the Argus programming language. 
The language defines a distributed system to be a set of guardians, each containing a set of 
handlers. Guardians are logical sites, and each guardian is located at one site, though a site 
may contain several guardians. The handlers are operations that can access data stored in the 
guardian. The data types in Argus can be defined to be atomic, and any operation on atomic 
data types by actions are updated atomically when the action terminates [WeLi83, LiSc83]. 

Some of the similarities between Argus and Clouds are the semantics of nested actions. 
Both use the nested action semantics and locking semantics described by Moss. This includes 
conditional commit by subactions and lock inheritance by subactions from the parents as well 
as lock inheritance by the parents from a committed child. Also the guardians and handlers in 
Argus have somewhat more than cosmetic similarities to objects in Clouds. 

The differences include the implementation strategies, programming support and relia-
bility. As mentioned earlier, Argus is implemented on top of a modified Unix environment. 
This is one of the reasons for the somewhat marginal performance of the Argus system. The 
programming support provided by Argus is for the Argus language. Clouds on the other hand 
is a general purpose operating system, not tied to any language. Though Aeolus is the pre-
ferred language at present, we have used C extensibly for object programming. Any language 
can be used to program object, after some modifications and patches to the procedures to 
make them invokable. We have plans to implement more object-oriented languages for the 
the Clouds system. Unlike Argus, Clouds is designed to form the base layer for fault tolerant 
computing, and hence the design decisions of transaction support, search and invoke strategies 
and so on. 

11.2. Eden 

Eden is a object based distributed operating system, implemented on the Unix operating 
system at the University of Washington. Eden objects (called Ejects) use the active object 
paradigm, that is each object consists of a process and an address space. An invocation of the 
object consists of sending a message to the (server) process in the object, which executes the 
requested routine, and returns the results in a reply. The messages use the Berkeley Unix 
IPC mechanism [A1m83, A1B183, NoPr85]. 

Since every object in the system needs to have a process servicing it, this could lead to 
too many processes. Thus Eden has an active and a passive representation of objects. The 
passive representation is the core image of the object stored on the disk. When an object is 
invoked, it must be active, thus invoking a passive object involves activating it. A process is 
created and it reads in the passive representation into its virtual space and then performs the 
required operation. The activation of passive objects is an expensive operation. Also con-
current invocations of objects are difficult and is handled through multithreaded processes or 
coroutines. 
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The active object paradigm and the Unix based implementation are the major differ-

ences between Eden and Clouds. This is also the reason for the performance problems in 

Eden. Eden also provides support for transaction and replication objects (called Replects). 

The transaction support and replication was added after the basic Eden system was designed 

and have some misgivings especially due to manner Unix handles disk I/O. Eden was not 

designed for fault tolerant applications. 

11.3. Cronus 

Cronus is an operating system designed and implemented at BBN Laboratories. Some of 

the salient points of Cronus is the intergration of Cronus functions with Unix functions, the 

ability of Cronus to handle a wide variety of hardware and the coexistence of Cronus on a 

distributed set of machines running Unix [BeRe85, GuDe86, ScTh86]. 

Like Eden, Cronus uses the active objects. This is necessary to be able to make Cronus 

run on top of Unix, and be an added function to Unix programs. Cronus objects are handled 

by managers. Often a single manager can handle several objects, by mapping the objects into 

its address space. The managers are servers and receive invocation requests through catalo-

gued ports. Any Unix process on any machine on the network can avail of Cronus services 

from any manager, by sending a message to the appropriate manager. By use of canonical 

data forms, the machine dependencies of data representations are made transparent. Irrespec-

tive of the machine types, any unix machine can invoke Cronus objects in a location indepen-

dent fashion. 

11.4. ISIS 

ISIS is a distributed operating system, developed at Cornell University, to support fault 

tolerant computing. ISIS has been implemented on top of Unix. It uses replication and check-

pointing to achieve failure resilience. If data object is declared to be k-resilient the system 

creates k+ 1 copies of the object. The replicated object invocation is handled by invoking one 

replica and transmitting the state updates to all replicas. Checkpointing at each invocation is 

used to recover from failures [Bi85A, Bi85B]. 

11.5. ArchOS and Alpha 

Alpha is the kernel for the ArchOS operating system developed by the Archons project 

at Carnegie Mellon University. Like Clouds, the Alpha kernel is a native operating system 

kernel designed to run on the Sun-3 computers, networked over Ethernets. The Alpha kernel 

uses passive objects residing in their own virtual spaces, similar to Clouds. ArchOS is 

designed for real time applications supporting specialized defense related systems and applica-

tions [Je85]. 

The key design criteria for ArchOS and Alpha are time critical computations and not 

reliability. Fault tolerance is not an issue, as the operating conditions are more susceptible to 

total failure rather than partial failure. Although the basic system structure resembles Clouds, 
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the different goals have led to significant difference in the implementation techniques and 
algorithms used in ArchOS. 

11.6. V-System 

The V operating system has been developed at Stanford University. V is a compromise 
between message based systems and object based systems. The basic core of V provides light-
weight processes and a fast communications (message) system. V messages are similar to 
object in the sense that the messages are synchronous. The relationship between processes 
confirm to the client server paradigm. A client sends a request to the server, and the client 
blocks untill the server replies. In a sense this is similar to a object invocation, as the invoca-
tion remains outstanding until the reply is received [ChZw83]. 

V allows multiple processes to reside in the same address space. Data sharing is through 
message passing, though shared memory can be implemented through servers managing 
bounded buffers. The design goals of V are primarily speed and simplicity. V does not pro-
vide transaction and replication support, these can be implemented, if necessary at the appli-
cation level. 

11.7. Mach 

Mach has been developed at Carnegie Mellon, and looks like a Unix extension. Though 
Mach is not implemented "on top of Unix" it is implemented to look like distributed Unix. 
Mach is compatible with Unix at the object code level, that is Mach support all system calls 
supported by Unix, and hence compiled Unix code can run on Mach. Mach uses the Accent 
message operating system as its base layer, and Accent provides the communication support. 
In addition Mach provides support for multiprocessors and distributed systems, memory 
mapped files, processing abstractions called tasks and threads [Ac86]. 

The activity in Mach is carried by tasks and threads. A task is similar to a unix process. 
It is an address space and an execution environment. A task may be composed of several 
threads. A thread is a thread of control that can concurrently execute with other threads as a 
part of the same task, in the tasks address space. Messages are typed data that can be used by 
threads to communicate, and messages are routed through ports. Ports are addressable 
through capabilities. 

The approaches used by Mach and Clouds are conceptually different and it is hard to 
draw conclusions about the differences in capabilities and usabilities at this stage. Mach how-
ever does not provide transaction support. 

11.8. LOCUS 

LOCUS is a Unix compatible, distributed operating system, operating on SUNs and 
VAX, connected via an Ethernet. The system supports a high degree of network tran-
sparency, permits automatic replication of storage, supports transparent distributed process 
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execution, and supports nested transactions. LOCUS's primary design goals are tran-
sparency, Unix compatability, and high reliability. By contrast, Clouds provides Unix intero-
perability only, and mechanisms for high reliability (rather than integrating high reliability 
into the kernel). LOCUS's two primary disadvantages are its size, and the performance 
penalty of an ultra-high reliability kernel. While the overhead for replicated files is relatively 
low, the overhead caused by system reconfiguration (e.g., when a host is 'powered down') is 
high [WaPo83, MuMo83]. 

12. Concluding Remarks 

Clouds provides an ideal environment for research in distributed applications. By focus-
ing on support for advanced programming paradigms, and decentralized, yet integrated, con-
trol, Clouds offers more than 'yet another Unix extension/look-alike'. By providing mechan-
isms, rather than policies, for advanced programming paradigms, Clouds provides systems 
researchers a adaptable, high-performance, 'workbench' for experimentation in areas such as 
distributed databases, distributed computation, and network applications. By adopting 'off the 
shelf' hardware, the portability and robustness of Clouds are enhanced. By providing a 'Unix 
gateway', users can make use of established tools, without the performance penalty of run-
ning Clouds 'on top of Unix (or conversely). The gateway also relieves Clouds from the 
necessity of providing emulating services such as provided by Unix mail and text processing. 
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