
REVISION NO. 	

DATE 10 / 31 / 85

C Ic-s.

Sponsor Amount:

Award Period: From 10/01/85 	To'

Funded: $ 	83.388

Estimated: $

IThis Change'Ca ji t
Ty 	

Total to Date

$ 	

$ 	83,388

(Performance) 10/30/86 	(Reports)

Title: 	Fault Tolerant Distributed Computing.

ADMINISTRATIVE DATA 	 OCA Contact Ralph Grede X 4820

1) Sponsor Technical Contact: 	 2) Sponsor Admin/Contrac-tual Matters:

L. G. Tarlell

Ms. Ann Witt If 33

Maryland Procurement Office 	Maryland Procurement Office

9800 Savage Rd.

Ft. Geo. Meade, MD 20755-6000

(301) 859-6695

9800 Savage Rd.

Ft. Geo. Meade, MD 20755-6000

(301) 859-6943

VI nIIrL. I.:re c.ViY Ili a... 	 • 1.-s

FROJ1- CT ADMINISTRATION DATA SHEET

ORIGINAL

Project No._ C-36-636 	(R-6062-0A0) 	GTRC

Project Director: 	 f? . 3-.11)ARrt 	(--r)(00-Schooldsta

Sponsor:

	

	Maryland Procurement Office

Ft. Geor. Meade, MD 20755-6000

Type Agreement: 	Contract MDA904-86-C-5002

X

:ost Sharing Amount: $ 	N/A 	Cost Sharing No: 	N/A

Defense Priority Rating: DO:A7 Military Security Classification: Unclassified

(or) Company/Industrial Proprietary: 	N/A

RESTRICTIONS

mentrn See Attached Gov e 	 Supplemental Information Sheet for Additional Requirements.

Travel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor

approval where total will exceed greater of $500 or 125% of approved proposal budget category
1,7

Equipment: Title vests with 	Cnonanr _ 	 a • - 	

c \0-•
••••7`

COMMENTS:

When deemed necessary, the hours of effort in anv classification may 66 used - in any__

other direct labor classification. See Sec. B — Labor Classification.

COPIES TO: SPONSOR'S I. D. NO. 02.123.001.86.002

Project Director 	 PI OCIII ellleflt" GT RI Supply Services 	 GTRC

Research Administrative lk: etAN ark 	 Research S e curity Services 	 Library

Research Property ro3,,,,,,ent 	 1''.--,,,,,1 (':...,:.:!:-.3..., ,r oCA) 	 Project File

Accoun:ng 	 Re:i.e.och Commuitions (2) 	 Other 	A. Jones

FORM 	:L., 65 l'S.5

GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Date 2/3/87

Project No. C-36-636 SchoolAK ICS

Includes Subproject No.(s) 	N/A

Project Directorfs)
R. Le Blanc

	 GTRC Niff

Sponsor Maryland Procurement Office , Ft. Geor. Meade, MD 20755-6000

Title
	Fault Tolerant Distributed Computing

Effective Completion Date: 9/30/S6 (Performance) 10/30/86 (Reports)

Grant/Contract Closeout Actions Remaining:

None

Final Invoice or Final Fiscal Report

Closing Documents

Final Report of Inventions Questionnaire To P. I.

Govt. Property Inventory & Related Certificate

Classified Material Certificate

Other

I
Ix

x I

x I

I x
I 	I

1

Continues Project No.

Continued by Project No.

COPIES TO:

Project Director

Research Administrative Net).‘ork

Research Property Management

Accounting

ProcurementIGTRI Supply Services

Research Security Services

EA0444W

Library

GTRC

Roctxtc20..mx.YANxIoxixt0
Pr oject File

Other Ina Lashley
Angela Jones
Russ Embry

FORM OCR 69 .'S5

Summary/Work Package Title
Fault-Tolerant Distributed Computing

Report Month 10/1/85 - 12/31/85

Date Prepared February 10, 1986
Contract No. MDA 904-86-C-5002
ContractorGeorgia Tech Research Corp.

FUNDS EXPENDITURE REPORT

Column A Column B 	Column C Column D 	 Column E Column F

ORIGINAL PROPOSAL
Cumulative Expenditures to Date Cost to

Complete
Pct. Dollar Estimate

Value

Latest
Cost
Estimate

Latest 	Reporting
Accepted 	Quarter
Revised 	Expendi- 	Total 	Dollar

Proposal 	tures 	Man Hours 	Value

1. Direct Labor
Number 	Hourly Dollar

Type 	Of Hours 	Rate Total

PI 	 525 	$26.98 $14,164.50 $795.91 29.5 $795.91 5.6% $13,368.59 $14,164.50
GRA 	 1950 	$12.38 $24,142.85 $8,183.81 661 $8,183.81 33.9% $15,959.04 $24,142.85
Clerical 	260 	$8.33 $2,166.67 $325.00 39 $325.00 15.0% $1,841.67 $2,166.67

Total 	Direct Labor $40,474.02 $9,304.72 $9,304.72 23.0% $31,169,30 $40,474.02
Burden @ 21.0% $3,429.54 $235.39 $235.39 6.9% $3,194.15 $3,429.54
(Excluding GRA Labor)

Total Direct Labor and Burden $43,903.56 $9,540.11 $9,540.11 21.7% $34,363.45 $43,903.56

2.TRAVEL EXPENSE $3,200.00 $633.81 $633.81 19.8% $2,566.19 $3,200.00

3.GENERAL & ADMINISTRATIVE EXPENSE $1,500.00 $300.00 $300.00 20.0% $1,200.00 $1,500.00

4. COMPUTING CHARGES $2,300.00 $575.00 $575.00 25.0% $1,725.00 $2,300.00

TOTAL DIRECT COSTS $50,903.56 $11,048.92 $11,048.92 21.7% $39,854.64 $50,903.56

5. INDIRECT COSTS @ 63.5 $32,323.76 $7,016.06 $7,016.06 21.7% $25,307.70 $32,323.76

TOTAL CONTRACT PRICE $83,227.33 $83,227,33

TOTAL COMMITMENTS AND $18,064.98 $18,064.98 21.7%

EXPENDITURES

FUNDS EXPENDITURE GRAPH

o w
IX
3
1-
0,-,
Z0)
W -o
do
x 0
w 0

3
W o
›L

1-
3
3
2
3
0

$90

$80 -

$70 -

$60 -

Estimated --4
$50 -

$40 -

$30 -

$20 -

(-- Actual
$10 -

$0 I 	 I 	 i

01 02 03 Q4

QUARTER

Date Prepared 	April 18, 1986
Contract No. 	MDA904-86-C-5002
Contractor 	Georgia TechgEsearch Cow.

a
Summary/Work Package Title
Fault Tolerant Distributed Computing

Report Month 1/1/86 - 3/31/86

FUNDS EXPENDITURE REPORT

Column A

Column 8 	Column C

Column 0 	 Column E 	Column F

Latest 	Reporting 	Cumulative Expenditures to Date Cast to
	

Latest
ORIGINAL PROPOSAL
	

Accepted 	Quarter 	 Complete
	

Cost
Revised 	Expendi- 	Total 	Dollar 	Pct. Dollar Estimate

	
Estimate

Proposal 	tures 	Man Hours 	Value 	Value

1. Direct Labor
Number 	Hourly

Type 	Of Hours 	Rate
Dollar
Total

PI 	 525 	$26.98 $14,164.50 $1,200.61 74 $1,996.52 14.17. $12,167.98 $14,164.50
GRA 	1950 	$12.38 $24,142.85 $7,577.14 1273 $15,760.95 65.31 $8,381.90 $24,142.85
Clerical 	260 	$8.33 $2,166.67 $1,116.67 173 $1,441.67 66.5% $725.00 $2,166.67

Total Direct Labor $40,474.02 $9,894.42 $19,199.14 47.4% $21,274.88 $40,474.02
Burden 	21.0% $3,429.54 $486.63 $722.02 21.1% $2,707.53 $3,429.54
(Excluding GRA Labor)

Total Direct Labor and Burden $43,903.56 $10,381.05 $19,921.15 45.4% $23,982.41 $43,903.56

2.TRAVEL EXPENSE $3,200.00 $0.00 $633.81 19.8% $2,566.19 $3,200.00

3.GENERAL & ADMINISTRATIVE EXPENSE $1,500.00 $1,200.00 $1,500.00 100.0% $0.00 $1,500.00

4.COMPUTING CHARGES $2,300.00 $575.00 $1,150.00 50.0% $1,150.00 $2,300.00

TOTAL DIRECT COSTS $50,903.56 $12,156.05 $23,204.96 45.6% $27,698.60 $50,903.56

5.INDIRECT COSTS E 63.5 $32,323.76 $7,719.09 $14,735.15 45.6% $17,588.61 $32,323.76

TOTAL CONTRACT PRICE $83,227.33 $83,227.33

TOTAL COMMITMENTS AND $19,875.13 $37,940.12 45.67.
EXPENDITURES

FUNDS EXPENDITURE GRAPH

190

180
/

/
$70 	 /

/
/

Li 	 /
(I

VC 	 $60 	 /
D r
I-- 	 /

o , 	
/

z '0 	
/

Iii v
LLc 	 /

W
3

	 /
Li

3
W

•

L 0
	 / $40

/if-
< /
J /
D 	

$30 	
/ /

2 	 / /
D / / (..) 	 //

//

120

$10

$0

01 	 02
	

03

QUARTER

04

Date Prepared
	

July 21, 1986
	

Summary/Work Package Title
Contract No. 	 MDA904-86—C-5002
	

Fault Tolerant Distributed Com:111dt
Contractor
	

Georgia Tech Research Corp.
	

Report Month 4/1/86 — 6/30/86

FUNDS EXPENDITURE REPORT

Column A Column B 	Column C Column D Column E 	Column F

Latest 	Reporting
	

Cumulative Expenditures to Date Cost to
	

Latest

ORIGINAL PROPOSAL
	

Accepted 	Quarter
	

Complete Cost
Revised 	Expendi-
	

Total 	Dollar 	Pct. Dollar Estimate
	

Estimate
Proposal 	tures
	

Man Hours 	Value 	Value

1. Direct Labor
Number 	Hourly

Type 	Of Hours 	Rate
Dollar
Total

PI 	 525 	$26.98 $14,164.50 $2,576.59 169.5 $4,573.11 32.3% $9,591.39 $14,164.50
GRA 	 1950 	$12.38 $24,142.85 $3,033.33 1518 $18,794.28 77.8% $5,348.57 $24,142.85
Clerical 	260 	$8.33 $2,166.67 $425.00 224 $1,866.67 86.2% $300.00 $2,166.67

Total Direct Labor $40,474.02 $6,034.92 $25,234.06 62.3% $15,239.96 $40,474.02
Burden @ 21.07. $3,429.54 $630.33 $1,352.35 39.4% $2,077.19 $3,429.54
(Excluding GRA Labor)

Total 	Direct Labor and Burden $43,903.56 $6,665.26 $26,586.41 60.6% $17,317.15 $43,903.56

2.TRAVEL EXPENSE $3,200.00 $2,452.70 $3,086.51 96.5% $113.49 $3,200.00

3.GENERAL & ADMINISTRATIVE EXPENSE $1,500.00 $0.00 $1,500.00 100.0% $0.00 $1,500.00

4.COMPUTING CHARGES $2,300.00 $575.00 $1,725.00 75.07. $575.00 $2,300.00

TOTAL DIRECT COSTS $50,903.56 $9,692.96 $32,897.92 64.6% $18,005.64 $50,903.56

5. INDIRECT COSTS @ 63.5 $32,323.76 $6,155,03 $20,890.18 64.6% $11,433.58 $32,323.76

TOTAL CONTRACT PRICE $83,227.33 $83,227.33

TOTAL COMMITMENTS AND $15,847.98 $53,788.10 64.6%
EXPENDITURES

FUNDS EXPENDITURE GRAPH

$90 	

ik80

470

160

$50

140

130

120

110

10 	

W

J
l-
a
z
Id 7j
• c
X a
W J
W 0 >c
Fi

3
2
3
()

(Estimated) (Actual)

01
	

Q2 	 03
	

04

QUARTER

Summary/Work Package Title
Fault-Tolerant Distributed Computing

Report Month 7/1/-86 - 9/30/86

Data Prepared November 26, 1986
Contract No. MDA 904-86-C-5002
Contractor Georgia Tech Research Corp.

Column A Column B 	Column C

Column D

ORIGINAL PROPOSAL
Latest 	Reporting
Accepted 	Quarter
Revised 	Expendi-
Proposal 	tures

Cumulative Expenditures to Date

Total 	Dollar 	Pct. Dollar
Man Hours 	Value 	Value

1. Direct Labor
Number 	Hourly

Type 	Of Hours 	Rate
Dollar
Total

Dollar
Total

PI 	 525 	$26.98 $14,164.50 $14,164.50 $7,905.14 462.5 $12,478.25 88.1%
GRA 	1950 	$12.38 $24,142.85 $25,164.85 $8,431.43 2198 $27,213.33 108.1%
Clerical 	270 	$8.33 $2,247.65 $2,247.65 $408.33 268 $2,233.32 99.4%

Total Direct Labor $40,555.00 $41,577.00 $16,744.90 $41,924.90 100.8%
Burden 4 21.0% $3,446.55 $3,446.55 $1,961.98 $3,305.58 95.9%
(23.5% after 	1 JUL 86)
(Excluding GRA Labor)

Total Direct Labor and Burden $44,001.55 $45,023.55 $18,706.88 $45,230.48 100.5X

2.TRAVEL EXPENSE $3,200.00 $2,178.00 $0. 00 $2,130.43 97.8%

3.GENERAL & ADMINISTRATIVE EXPENSE $1,500.00 $1,500.00 $503.80 $2,003.80 133.6%

4.COMPUTING CHARGES $2,300.00 $2,300.00 $0.00 $1,583.80 68.9X

TOTAL DIRECT COSTS $51,001.55 $51,001.55 $19,210.68 $50,948.51 99.9X

5.INDIRECT COSTS @ 63.5 $32,385.99 $32,385.99 $12,198.78 $32,352.31 99.9%

TOTAL CONTRACT PRICE $83,387.54 $83,387.54

TOTAL COMMITMENTS AND $31,409.46 $83,300.82 99.9%
EXPENDITURES

FUNDS EXPENDITURE GRAPH

id
E
3
I-
5 ,
Z e
w r
at x a
w0

3
lil 0 >.c
i : i I -
3
D
2
3
U

01
	

Q2
	

Q3
	

Q4

QUARTER

QUARTERLY PROGRESS REPORT
FAULT TOLERANT DISTRIBUTED COMPUTING
CONTRACT #MDA 904-86-C-5002
REPORTING PERIOD: 1 JAN 86 - 31 MAR 86

- 1-

1. Project Status
During the past quarter, work has continued on each of the three project tasks. These

efforts are closely related to other work in progress within the Clouds Project, our major
research effort in the area of reliable distributed computing.

Under the Language Support for Robust Distributed Programs task, work continues in two
major areas: the integration of the Aeolus compiler with the Clouds kernel services and the use
of the Aeolus language system as a testbed for studying the problems of programming in
action-object systems.

Under the Storage Management for an Action-Based Operating System task, the 'focus of
our work has been on implementation, testing and integration with the virtual memory
management mechanisms of the Clouds kernel.

Under the Operating System Support for Reliable Distributed Computing task, our efforts
are directed toward specification and functional design of the operating system services which
will be implemented on top of the object and action management mechanisms provided by the
Clouds kernel. Our current focus is on a fault-tolerant job scheduler and an applications-level
distributed database system.

The work on the tasks of this project is proceeding on schedule. Working in combination
with other efforts in progress within the Clouds project, we are now in the process of debugging
our initial prototype system.

2. Language Support for Robust Distributed Programs
As described in the last report, work in the systems programming language effort continues

in two major areas: the design and implementation of the Aeolus language itself, as well as the
use of the language as a testbed for the study of programming methodologies to achieve
resilience and availability in action/object systems such as Clouds.

2.1 Language Design and Implementation
A new and substantially complete version of the reference manual for Aeolus[wilk 85] has

been distributed locally for comment during the preceding quarter. This manual contains not
only the description of the complete language (which, as we have mentioned in previous
reports, has been considerably revised over the past year), but also provides definitions of the
interfaces of Aeolus with its runtime libraries as well as with the object and action management
features of the Clouds kernel. The most important portions of this manual have been
summarized, along with commentary on the rationale underlying the major new features of the
language, in a recent paper submitted to the IEEE Computer Society 1986 International
Conference on Programming LarigUageS.[Wilk86] (This paper is attached as Appendix A.)

The implementation of the Aeolus compiler has advanced considerably during the preceding
quarter, taking into account the revisions mandated by the new version of the reference manual.
The kernel routines for remote procedure call and primitive object management have recently
been tested; runtime support for the interface with these kernel routines has been defined, and
the testing of Aeolus code making use of the Clouds object management facilities awaits the
implementation (now in progress) of a transport/linking mechanism to move compiled objects
from our compiler development environment under Unix to machines running the Clouds
kernel. As mentioned in our last report, use of the Clouds action management facilities from
Aeolus code awaits the implementation of the action management portion of the kernel from
Kenley's design[Ken186] and pseudo-code implementation; this work is now in progress.

2.2 Programming Methodologies for Action/Object Systems
Our current work on the study of programming methodologies appropriate to distributed

systems was described in our last report. This work involves the study of various methods of
achieving resilient, available objects through the use of replication. Similar work[Birm85 ,Birm85a]

-2-

has recently been reported by researchers on the ISIS system at Cornell; however, that work
(unlike ours) does not consider the problems introduced by network partitions, assuming rather
that all failures are of the so-called fail-stop variety. In our work, we take into account the
problems involved in reconciling the states of replicated objects which have run in independent
partitions during a network failure. Thus, we may achieve higher availability in situations in
which temporary violations to consistency are tolerable. Our work, as well as recent
work[Dasg861 by other researchers in the Clouds project, has also suggested some of the
functionality which will be required of the fault-tolerant job scheduler for the support of
availability in Clouds. It is in the job scheduler that we envision most, if not all, of the
knowledge about individual machines in the system will be concentrated, such as whether a
certain machine is available or what the current loads are on the individual machines. Thus, the
job scheduler is the natural portion of the system to support functionality such as the creation of
distributed replicants of an object class, the selection of the most appropriate individual replicant
from a class of such replicants to perform work requested of the class, or the support of forward
progress (that is, moving work started on an object running on a system which subsequently
failed to another system on which another replicant of the object exists). We anticipate that our
work in the coming months will provide a firmer design for the interface needed with the job
scheduler.

3. Storage Management for an Action-Based Operating System

The major components of the storage management system have been implemented and
tested. The major effort this last quarter has been the completion of the partition and segment
systems. Work has also continued on the device driver for the RA81 disk. We have
demonstrated the support of page fault handling and object operation invocations[Spaf86] this
quarter. More information on the features described in this report will be contained in a
forthcoming paper•[Pitt86]

The primary work on the partition system was the implementation of the partition mounting
routines. These routines examine the storage devices attached to the system in order to locate
partitions. Then the routines make those partitions available to the system. The mounting of
partitions includes the creation of the in-memory structures for the partitions and the addition
of these structures to the system tables. Also, the mounting routines examine all segments
which reside on the partition, if any, in order to initialize the allocation maps and to check the
integrity of the segments. At this time, however, there is no support for the repair of the
damaged segments; such segments would simply be flagged to the system. Data recovery is
attempted during these checks for segments involved in action events. That is, the storage
manager will try to complete commits that were in progress at the time of the crash and perform
aborts on those segments on which actions were operating, but had not yet started to commit.
The implementation of these routines were deferred until the routines that support action events
were in a stable state.

The work in the segment system has been in two areas (with much overlap between them):
virtual memory support and action event support. In addition, the routines for creating and
removing segments were tested. The collection of the routines described below form the high
level interface of the storage management system. to the rest of the kernel.

Virtual memory support is provided in two set of operations. First there are the read and
write segment block routines. These operations provide for the transfer of page-sized blocks of
data between the physical memory on the VAXen and disk storage. These routines provide the
page-in and page-out facilities for the virtual memory page-fault mechanism. Mappings
between the virtual memory pages of a segment and the disk images of the segment are
maintained by these routines. We have also placed some support for the action action
management system in these routines, as the write routine will maintain several versions of
recoverable pages on disk.

-3-

Support for providing mappings of segment data into virtual memory is found in the map
window routines and the segment activate routines. A segment on disk is activated by creating
an entry for it in the active segment table and initializing the entry with some basic data about
the segment such as its size and type. After the segment is activated, portions of the segment
can be mapped into virtual memory by creating the appropriate window descriptors. Each
window descriptor describes the location, size, and characteristics of the segment portion
(window) that is being mapped. The active segment table entry maintains the physical page
mappings and disk mappings for the segment.

The segment system supports both segments which have permanent disk images (objects)
and volatile segments (heap storage for object operation mils), which do not. Both types are
handled by the same mechanisms, although volatile segments are never activated by the segment
activate routine; they are created on the fly by the map window routine. Routines also exist for
the removal of windows and the modification of windows.

Recovery of segment data is provided by two routines: a precommit routine and an end-of-
action routine. The end-of-action routine is responsible for performing both commits and aborts
depending upon the flag passed to the routine. The precommit is responsible for phase one
support of the two phase commit protocol. This routine is called by the action management
system[icen1861 to examine recoverable segments touched by an action and to create shadow
versions of the segments which were modified by the action. Precommit basically examines the
page tables that map each segment to discover which pages are modified and then forms a
minimal shadow on disk for that segment. The information used to create the shadow is stored
in a descriptor in the active segment table entry for the segment. The end-of-action takes the
information in the descriptor and uses the information to either commit the changes (the shadow
becomes the new permanent version) or to abort the changes (the shadow is ignored and return
to free storage). Both routines require special cases for objects which were created or deleted
by the action. The code is present for the end-of-action routine, but the corresponding code
must still be implemented in the precommit routine.

The storage currently supports a working device driver for RLO2 removable pack device,
which provides conventional i/o services plus support for flushing action requests to disk.
Partition support is complete, providing partition creation and activation operations, i/o
operations, directory lookup facilities, and a storage allocation mechanism. Currently, object
and paging partitions are supported. Segment objects support is almost complete. Segments can
be created and destroyed. Virtual memory mapping of segments is complete and integrated
with mapping of objects. Work still needs to be done in aging segments from active status.
Segment page fault handling on local segments is complete. Page fault handling for remote
segments remains to be completed. Support for multiple virtual memory versions for action
management is provided. The operations supporting the commit of action are as described
above.

4. Operating System Support for Reliable Distributed Computing

The design of the Clouds kernel and the action management systems have been completed.
The design work is progressing on some enhancements and application of the Clouds system.

The two notable design projects are the fault tolerance enhancer and the distributed database
system. A probe based monitoring system is being developed that will tie into the
reconfiguration system and also incorporate duplicated actions to allow the Clouds system to
have forward progress in case of failures and allow intelligent, automatic system health
maintenance.

4.1 Probes, Monitoring and Fault Tolerance

The basic fault tolerance mechanism supported by Clouds is the action paradigm
implemented by the action management system. The action paradigm ensures consistency of the
computing environment in the face of failures. It is a backward recovery scheme. A failed

-4-

action causes an implicit rollback, and the action may not be able to execute until the fault has
been rectified. This degree of fault tolerance can be improved by the usage of better techniques
that allow the action to continue using alternate paths of execution.

The key to improved fault tolerance lies in the implementation of a mechanism for the
system to monitor itself. The monitoring can be at several levels, discussed later, but the basic
components of the monitoring system are probes.

Probes in Clouds are a form of emergency status enquiries, that can be sent from a process
to an object or to another process. When a probe is sent to an object, the probe causes the
invocation of a probe-procedure defined by default in the object. The probe procedure returns to
the caller a status report of the object. This includes the status of the synchronization
mechanisms, the actions currently executing in the object and other relevant information.

The system monitoring subsystem consists of a process (daemon) that runs at each site
(monitor). The monitor has a list of components that it needs to keep track of. The list is has a
static part and a dynamic part. The static part contains capabilities to various critical system
components (network drivers, disk drivers, schedulers, action management system and so on).
The dynamic part consists of capabilities to user defined objects and actions that the user
expressly records with the monitor, for tasks that require a high degree of fault tolerance.

The monitor at one site has a logical backup, that is a monitor at another site. The various
monitors act as primaries for the site it runs on and doubles as a backup for a remote monitor.
This allows the distributed system to detect site failures and network partitions.

The monitor periodically probes all the components in its list. The status of these
components are stored in a fully replicated database. This database has the same structure and
properties as the database used to locate Clouds objects, i.e. it is highly available, but may not
be consistent at all sites, or may contain out of date data. The inconsistency of the database does
not cause major disruptions in service. The data in the database are used by various system
services and the reconfiguration system.

4.2 Object Based Distributed Database

A distributed database system, under design as of present is using the object paradigm built
into the Clouds system, to build a sophisticated, flexible distributed database that supports
consistency, availability, failure tolerance and replication.

One of the notable differences in structure between conventional database systems and a
system supported by Clouds is the storage mechanism. Instead of files, we have a more
powerful construct namely objects. In the following sections we describe how to implement a
database system, using the object paradigm. Subsequently we discuss approaches to implement
concurrency control and transaction commit for the database objects and transactions under the
Clouds environment. We also provide insights into the effective management of the distributed
database and how to provide support for data replication (the Clouds kernel does not support
replication).

Virtually any kind of database system can be supported in the object based architecture.
However to avoid getting into all the design approaches for various data modeling paradigms,
we choose to discuss the most popular database model, the relational database model. The
approaches for implementing other models would be different, but can be derived from the
basic ideas in our design.

The basic building blocks in a relational database are relations and the relational operators
that access the relations. At a slightly lower level are the access mechanisms used for fast access
to individual or groups of tuples in the relational tables using key searching, indexing or hashing
techniques.

The obvious way to implement an object-based relational database system is to use a relation
per object scheme. An object holds all the data of the relation and contains the access

-5-

mechanisms to access the data. Thus the object defines operators that do key lookups,
projections, tuple insertions, tuple deletions range queries and other such operations on the
objects. A good feature of this approach is that the object can be encapsulated and be
independent of any systemwide definition of structure or storage mechanisms. The internal
structure of the object, that is the data organization (binary tree, B-tree, table unsorted), is not
visible to the database system from outside and thus different relations can be organized in
different ways and yet look functionally identical. The organization of each object could be
tailored to the method that suites the data contained and the size of the object. The scheme of
building a relational database by using relational objects, fragment handlers, access objects and
multi-operator objects using Clouds has an interesting and important payoff. Distribution,
concurrency control, recovery and transaction commit is automatic.

All the objects used by our system uses the Clouds default synchronization and recovery
services. This implies, all accesses to data in any object uses the 2-phase locking protocol. The
locking granularity is an object. For this reason we chose to use the fragmentation scheme. As
described above, the handlers, shared objects and relational operators, do not update local
permanent data and hence are never exclusively locked, permitting uninhibited concurrent
access.

Clouds keeps track of each object touched by every transaction. The updates on these objects
are made on shadow versions, and the permanent versions are not updated. When a transaction
commits, all the object it touched are committed, that is the shadows are written to permanent
storage and all locks are released. The commit uses a 2-phase commit strategy to ensure that
site failures and network partitions do not give rise to inconsistent versions.

If a transaction aborts all updates are also cleaned up, by discarding the shadow versions. It
is interesting to note that Clouds keeps only one shadow version for every object in use, that is,
if several transactions are in the process of updating the same object, they would work on the
same in-core version of the object. In this case if one transaction commits, it will cause the
uncommitted updates of another transaction to be flushed to permanent storage. This scheme
causes errors if the objects are recoverable but not synchronized. In our design, this situation
cannot arise, as we use synchronized objects, and more than one transaction cannot update the
same object concurrently.

The distributed database also support fragmentation of relations for efficient access as well
as finer lock granularities. Replication is supported for higher availability. Fault tolerance is
supported by the Clouds system and the monitoring scheme outlined above. The design is
conceptually simple and yet quite general and powerful.

6

REFERENCES

[Birm85] 	Birman, K. P., and others. "An Overview of the ISIS Project." DISTRIBUTED
PROCESSING TECHNICAL COMMITTEE NEWSLETTER (IEEE Computer Society) 7, no.
2 (October 1985). (Special issue on Reliable Distributed Systems.)

[Birm85a] Birman, K. P. "Replication and Fault-Tolerance in the ISIS System."
PROCEEDINGS OF THE TENTH ACM SYMPOSIUM ON OPERATING SYSTEM
PRINCIPLES (ACM SIGOPS), Orcas Island, Washington (December 1985).

[Dasg86] 	Dasgupta, P., and M. Morsi. "An Object-Based Distributed Database System
Supported on the Clouds Operating System." TECHNICAL REPORT Grr-Ics-86/07,
School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1986.

[Ken186] 	Kenley, G. G. "An Action Management System for a Distributed Operating
System." M.S. THEsis, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (Also released as technical report
GIT-ICS-86/01.)

[Pitt86] 	Pitts, D. V. "Storage Management for a Reliable Decentralized Operating
System." PH.D. Diss., School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (In progress.)

[Spaf86] 	Spafford, E. H. "Kernel Structures for a Distributed Operating System." PHD
ass., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1986. (In progress.)

[WiIk85] 	Wilkes, C. T. "Preliminary Aeolus Reference Manual." TECHNICAL REPORT
Grr-Ics-85/07, Schcol of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1985. (Last Revision: 17 March 1986.)

[Wilk86] 	Wilkes, C. T., and R. J. LeBlanc. "Rationale for the Design of Aeolus: A
Systems Programming Language for an Action/Object System." TECHNICAL
REPORT Grr-Ics-86/12, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (Submitted to the 1986 International
Conference on Programming Languages.)

Appendix A

Rationale for the Design of Aeolus:
A Systems Programming Language

for an Action/Object System

Technical Report GIT-ICS-86/12
C. Thomas Wilkes

Richard J. LeBlanc

The Clouds Project

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332-0280
(404) 894-3152

ABSTRACT

The goal of the Clouds project at Georgia Tech is the implementation of a fault-
tolerant distributed operating system based on the notions of objects, actions., and
processes, which will provide an environment for the construction of reliable
applications. The Aeolus programming language developed from the need for an
implementation language for those portions of the Clouds system above the kernel
level. Aeolus has evolved with these purposes:

• to provide the power needed for systems programming without sacrificing
readability or maintainability;

• to provide abstractions of the Clouds notions of objects, actions, and processes as
features within the language;

• to provide access to the recoverability and synchronization features of the Clouds
system; and

• to serve as a testbed for the study of programming methodologies for action-
object systems such as Clouds.

In this paper, the features provided by the language for the support of readability
and maintainability in systems programming are described briefly, as is the rationale
underlying their design. Considerably more detail is devoted to features provided
for support of object and action programming. Finally, an example making use of
advanced features for action programming is presented, and the current status of the
language and its use in the Clouds project is described.

April 17, 1986

DRAFT—Submitted to the IEEE Computer Society 1986 International Conference on Computer Languages.

Rationale for the Design of Aeolus:
A Systems Programming Language

for an Action/Object System

Technical Report GIT-ICS-86/12
C. Thomas Wilkes
Richard I. LeBlanc

The Clouds Project
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332-0280

(404) 8943152

1. Introduction
The goal of the Clouds project at Georgia TeCh[Alla2, Allc83 , Allc83a] is the implementation of

a fault-tolerant distributed operating system based on the notions of objects, actions, and
processes, which will provide an environment for the construction of reliable applications. The
Aeolus'. programming language developed from the need for an implementation language for
those portions of the Clouds system above the kernel level. Aeolus has evolved with these
purposes:

• to provide the power needed for systems programming without sacrificing readability or
maintainability;

• to provide abstractions of the Clouds notions of objects, actions, and processes as features
within the language;

• to provide access to the recoverability and synchronization features of the Clouds system;
and

• to serve as a testbed for the study of programming methodologies for action-object systems
such as Clouds. [LeB185, Wilk86]

The intended users of Aeolus are systems programmers working on servers for the Clouds
system. Clouds provides powerful features for the efficient support of resilient objects where
the semantics of the object are taken into account; it is assumed that the intended users have the
necessary skills to make use of these features. Thus, although support for the automatic
recovery and synchronization features of Clouds is available, we have avoided providing very-
high-level features for programming resilient objects in the language, with the intention of
evolving designs for such features out of our experience with programming in Aeolus. These
features will then be incorporated into an applications language for the Clouds system, which
should allow programmers unskilled in fault-tolerant programming to write resilient objects.

Aeolus has its roots in a long line of structured programming languages, including Simula,
Pascal, Modula-2, and Adams. Thus, many of its features should be easy to understand for
those familiar with one of these languages, and little space will be devoted here to discussion of
such features; a description of the complete language is available in the Reference
Manual.[wilk85] Syntax and examples will be provided here only for those features of Aeolus
which differ significantly from those of its predecessors, although the programming example
discussed in section 6 should provide a feel for the flavor of the language.

1. Aeolus was the king of the winds in Greek mythology.
Ma is a registered trademark of the U.S. Government—Ma Joint Program Office.

April 17, 1986
1IR AFT

-2-

An overview of the Clouds system from the point of view of Aeolus has been provided in a
previous paper.[Le13185] Briefly, the main structuring features of Aeolus (as of the Clouds
system) are objects, actions, and processes. Clouds supports the object concept as a convenient
structuring principle for facilitating recovery and synchronization. Besides supporting the
Clouds object concept, Aeolus also allows the programmer to use the object features of the
language for the specification of abstract data types, without necessarily invoking the object and
action management features of the Clouds system. Thus, Aeolus objects provide a separate
compilation facility as well as access to the object support of Clouds; the separation of object
specifications into definition and implementation parts (much as are modules in Modula-2 or
packages in Ada) provides a safe interface to separately-compiled objects, as well as facilitating
the design of large systems consisting of many objects (possibly implemented by several people)
or the use of predefined objects. Aeolus pseudo-objects provide a means of isolating system
dependencies such as input/output or low-level machine architecture—into object-lice modules
which provide operations facilitating machine-level programming.

The Clouds notion of actions corresponds roughly to the transaction concept of distributed
database work, providing an "all-or-nothing" assurance of atomic execution. Support of actions
in Aeolus is fairly low-level. Essentially, means are provided for specifying that an operation
(procedure) of an object may be invoked as an action, or that an operation invocation is to be
executed as a (toplevel or nested) action. Also, the status of action executions may be checked
by means of calls to a Clouds action manager.

The process concept in Aeolus corresponds roughly to the program construct of Pascal or
Modula-2. That is, a process ties together the constituent parts (objects) of a programmed
system, and the invocation of a process provides activity in the Clouds system, since Clouds
objects are passive.

In this paper, the features provided by the language for the support of readable,
maintainable systems programs are described briefly, as is the rationale underlying their design.
Considerably more space is devoted to the detailed description of features provided for the
support of object and action programming. Finally, an example making use of advanced
features for action programming is presented, and the current status of the language and its use
in the Clouds project is described.

2. Support for Systems Programming

In this section, those features of Aeolus which are provided for the support of readable,
maintainable systems programs, and which are not directly related to the support of
action/object programming, are described briefly. These include structured types for access to
low-level data representation, expression and statement constructs necessary for doing systems
programming in a concurrent environment, and the typing mechanism.

2.1 Access to Law-Level Data Representation

Aeolus provides a wide range of traditional type classes. These include type names (the
names of previously-declared types, including object types), and anonymous types (including
enumerations, pointer types, structured types, and locks). Of interest here are those structured
types providing access to the low-level representation of data, as is often required in systems
programming, and those constructs providing support for synchronization in a concurrent
environment.

Aeolus provides the traditional structured types, such as arrays, records, and sets. All types
in Aeolus may be parameterized (see below); for example, the parameterized record type in
Aeolus is similar in concept to the discriminated record type of Ada. The extension of
parameterization to other types allows type constraints to be expressed in terms of parameters,
and allows parameterized array types to be declared without the necessity of embedding them in
record types. The parameterized array construct indirectly provides support for arrays with a
flexible number of elements (so-called "dynamic" arrays); these may be simulated by using

April 17, 1986
DR A FT

-3-

pointers to parameterized arrays. Two important parameterized array types provided by the
Aeolus implementation are strings and bitstrings. The string type allows convenient
manipulation of character sequences. The bitstring, on the other hand, provides the most
primitive structured abstraction of data, that of simply a sequence of bits:

type bitstring(length : unsigned) Is array [unsigned[1..length]] of bit

The length constraint of the bitstring (in bits) is indicated by the value of the parameter
"length." For example:

type nybble is bitstring(4)

Each "system" object2 provides declarations of several useful bitstring types. These types
are referred to collectively as the storage classes, since they define the units of storage
supported by the hardware of most computer systems: types bit, byte, word, longwoni, and
quadword, with lengths BITS1ZE, BYTESIZE, WORDSIZE, LONGWORDSIZE, and
QUADWORDSIZE, respectively.

Another important bitstring type, address, is also defined by the "system" object. The
address type is defined as bitstring(ADDRESSSIZE). The relationship between address types and
pointer types is discussed below.

Several operations are provided for manipulation of bitstring data, including bitwise Boolean
operations and shift operators. Access to individual bits of a bitstring is, of course, through
array index operations. The provision of a true bitstring type addresses a lack experienced by
users of both the Ada and C languages.[Evan 841

Another structured type providing access to low-level data representation is the structure, a
special case of a record construct somewhat similar to the packed record construct of Pascal or
the packed pragma as applied to the record construct (with representation specification) in Ada.
The declaration of a structure type specifies the storage class which the structure will fit. A
field in a structure typically represents a bitstring or scalar; the fields are packed together
consecutively within an object of the specified storage class (without implicit padding), with the
first field specified starting at the most significant bit position in the storage class. The compiler
checks that the fields declared for the structure together fit into the specified storage class.

2.2 Constructs Supporting Synchronization

Features provided by Aeolus for the support of synchronization and mutual exclusion in a
concurrent environment include the lock construct, the region construct, and the shared type
attribute.

A lock type may be used to declare variables which in turn may be used to implement
locking protocols on particular values in some domain. 3 A lock declaration includes the
specification of a compatibility list, which defines, for a given made of the lock, which other
modes are compatible with that mode. 4 The presence of an identifier in a compatibility list
serves as a declaration of that identifier as a mode of the lock type; the modes of a lock type

2. There exists a "system" pseudo-object for each computer system for which the Aeolus compiler is implemented.
(At present, the "system" objects include VAX_System and PC_System, for the DEC VAX 11/780 and the Intel
8086-8088-80286 families of computers, respectively.) Each such object defines system-dependent constants, types,
and operations required for systems programming The appropriate object (determined by target code generation
and controllable by compiler option) is imported implicitly by every cotnpiland.

3. Note that a lock is obtained for a value of an object, and not on the object itself. Thus, for instance, a lock may be
obtained on a file name even if that file does not yet exist. The lock structure is directly supported by the Clouds
architecture.

4. A lock may be set with a specified mode only if other modes already set, if any, are compatible with that mode.
Thus, a process adhering to a protocol using that lock may wish to block until the requested mode is available.
Operations are provided by object standard for testing, setting, and releasing locks.

April 17, 1986
1A AFT

-4-

may together be thought of as an enumeration. An empty compatibility list indicates that the
given mode is incompatible with all other modes.

The lock declaration may also specify the domain of values which may be locked. If the
domain specification is omitted, a simple lock (i.e., one which does not lock over any particular
domain) is assumed. For example:

type simpleJock Is lock (busy : a

typo fileJock Is lock (read : [read] ,
write : p) domain Is string(20)

The declaration of "simplejock" above defines a lock type with a single mode "busy" which is
incompatible with itself; thus, only one client may set a lock variable of type "simplejock" at
any one time. The declaration of "filejock," on the other hand, defines a lock type over the
domain of strings of length 20. Clients may set a lock variable of type "file_lock" on a given
string with modes "read" or "write." The "read" mode is specified as being compatible with
other settings of "read" mode; the "write" mode is incompatible with itself and with "read"
mode. Thus, a client may set the lock with "read" mode on a given string even if several other
clients have outstanding settings of the lock with "read" mode on that string; however, a client
wishing to set the lock with "write" mode on a given string must wait for all outstanding settings
of "read" mode on that string to be released.

All locks obtained during execution in the environment of an action (see section 4) are
retained and propagated to the ancestor of that action upon committal unless explicitly released.
Locks obtained under an action are released if the action aborts or successfully performs a
toplevel commit. A lock is available to be granted under an action even if conflicting locks are

. held under one or more of the ancestors of that action, but not if conflicting locks are held under
an action which is not an ancestor of that action.

The * power of the Aeolus/Clouds lock construct in supporting user-defined synchronization
lies in the specification of arbitrary locking modes, and arbitrary compatibilities between those
modes, as well as the dissociation of locks from the locked data. To support mutual exclusion,
Aeolus provides a critical region construct, access to which is controlled by association of the
region with a designator for a shared variable. The shared variable is associated with a
semaphore, yielding the familiar semantics of critical regions. In Aeolus, any type may have
the attribute shared, which is inherited by any types of which the shared type is an element. In
particular, Aeolus arrays may consist of shared elements; thus, the granularity of mutual
exclusion may be tailored to achieve higher concurrency.

2.3 Type Compatibility and Conversion in Aeolus
The principal goal in the design of the Aeolus typing mechanism was the provision of strong

typing where possible, but also the provision of escapes from strong typing where the special
demands of systems programming required. Another concern which affected the design of
these mechanisms was that programs be readable and maintainable by members of a fairly
rapidly-changing research group. Thus, the desirability of brevity of notation was felt to be
subordinate to that of rapid comprehension of code by readers (including the original authors of
the code). Code must be entered only once; it must be read and understood possibly many
times. Thus, we attempted to make the typing mechanism as simple as possible, simplifying the
tasks both of the compiler and of the reader, who must otherwise remember numerous
compatibility and implicit conversion rules, increasing the possibility of misunderstanding or
confusion.

The operands of a binary operation in Aeolus are said to be compatible if they are of the
same type, that is, if the types of the operand are equivalent. Type equivalence in Aeolus is by
name.

April 17, 1986
DR AFT

-5-

As in Ada, a constraint which is associated with a scalar type (by way of a constraint
specification in the type's declaration, or via a constraint declaration) is not considered part of
that type, but rather is an attribute which is given to a member of that type. 5 Thus, a
constrained member is compatible with a member -which has the same type but a different (or
no) constraint.

Types may be parameterized, that is, some of the attributes of a type may depend on the
values of formal type parameters. (Object types may also be parameterized; see section 3.) In
contrast to constraints, the parameters of a type as specified in the declaration of that type are,
in general, considered to be a part of that type. The exception is when the specification of these
parameters is delayed (via an empty actual type parameter option). (A member of a type with
delayed parameterization is sometimes said to be associated with a delayed constraint.) A type
with delayed parameterization is compatible with all possible parameterizations of that type.
Types with delayed parameterization, when used as the types of formal procedure parameters,
make possible generic operations on structured types such as arrays; and when used as pointer
base types, allow the definition of pointers to arrays with flexible sizes.

The requirement for strict name equivalence of types is relaxed somewhat in the case of
array slices, since slices, by their nature, cannot be associated with a named type. Rather, a
slice is similar to a member of an unconstrained array type, any type parameter values of which
are derived from the slice bounds, and which takes on as its base type the base type of the
named type of the array from which the slice was derived. An array slice with n elements is
compatible with any array or array slice with n elements and a compatible element type. Also,
a slice of one element is compatible with any variable of a type compatible with the element
type of the slice. Note that this implies the following correspondences:

bit < = > bitstringslice[1..1] < = > bitstring(1)
char < = > 	stringslice[1.. 1] 	< = > string(1)

Thus, bit is compatible with array [integer[1..1]] of bit; char is compatible with
array [integer[1..1]] of char; and, in general, type t is compatible with an array of one
element of element type t.

In the interest of keeping the implementation effort for Aeolus within reasonable bounds, it
was decided not to provide facilities for the specification of overloading of user-defined
operations in the current language. However, certain overloadings are available on predefined
operators. In keeping with the goal of simplicity in the typing mechanism as stated above, the
overloading of a binary operator is available only for operands which are compatible according
to the definitions stated above. As seen from another point of view, this means that Aeolus
does not perform implicit conversions. However, it is sometimes desirable to perform
operations on operands of differing types. Thus, Aeolus provides the programmer with
powerful means of explicit type conversion. Explicit type conversion functions are defined
between members of closely related types within certain limitations.[Wilk 85] In general, the name
of a type may be used as the name of a conversion function; this type is the target type of the
conversion.

Explicit conversions are allowed between types one of which is derived from the other
(derived types), between different numeric types, between enumeration and numeric types,
from an enumeration type to a string type, and between array types each of which meets
conditions similar to those sperified by Ada. Also, conversion is allowed (in both directions)
between a type which is a bitstring type and any type with the same size (in bits) as the source

5. Constraints are used for range checking (if enabled) and for determining the sizes of structures, not for type
checking.

April 17, 1986
DR AFT

-6-

type. In particular, conversions may be made between any array, record, or structure type and
a bitstring type or array of bitstring type (e.g., array of byte or word) with the same size.
Thus, access may be obtained to the bit representation of data in an explicit manner. Also,
conversion is allowed from any pointer type to type address. In the other direction, conversion
is allowed from type address to any pointer type; however, the result of such a conversion may
be used only for dereferences, and may not be assigned to a pointer variable. Values may be
assigned to address variables directly, by conversion from a pointer type, or via the addr
operation, which yields the storage address of a static or dynamic data item; a value may be
assigned to a pointer variable only by use of an allocator, or via assignment from another
variable of the same pointer type. Thus, a safe (although restrictive) pointer mechanism is
maintained separately from a permissive mechanism permitting address computations when
necessary.

Finally, Aeolus provides a less restrictive (and less safe) means of type conversion in
addition to the explicit (checked) conversion functions described above; the retype function is
similar in spirit to the unchecked conversicrt function of Ada. Of course, unchecked conversion
may be used to convert addresses to any pointer type, thus violating the safety of the pointer
mechanism. The intent of the retype function is to make such "end runs" around the typing
mechanism obvious to the reader of the code, and when used with restraint and care it makes
possible the sort of generic bookkeeping activity necessary in systems programming (e.g.,
memory allocation routines).

3. Support for Objects

The object construct provides support for data abstraction in Aeolus. A collection of related
data items may be encapsulated within an object, which also may provide operations (procedures
that operate) on the data. The only access to the data of an object is via these operations; thus,
an object can strictly control manipulation of its encapsulated data, helping guarantee the
invariants of the abstraction.

The object concept is supported at the lowest levels of the Clouds kernel; hence, we feel
justified in using the term "object" to describe the data-abstraction facility of Aeolus, since an
Aeolus/Clouds object has a real existence in the system. However, Aeolus does not provide a
sophisticated inheritance mechanism such as that available in Smalltalk, nor does it provide for
dynamic typing of objects. Aeolus provides a simple class mechanism in the object type
described below; all instances of an object type inherit all operations (and other definitions) of
that type. It was felt that, although an inheritance mechanism providing differential sharing of
object operations would be useful, the support for such a mechanism should be left to higher-
level portions of the system in order to keep the kernel as simple as possible; thus, inheritance
will be among the features to be included in the language design to be evolved from our
experience with Aeolus, as mentioned in the Introduction. Also, communication between
objects in Aeolus is based on direct operation invocation rather than on message-passing,
reflecting the fact that Clouds is not a message-passing system, but uses remote procedure call
to support distributed computation. Hence, Aeolus is not strictly an object-oriented language in
the sense of Rentsch.[Rent82] However, it provides access to an object concept supported
throughout the Clouds system. The applications language to be based on our experience with
Aeolus will likely come closer to the concept of "object-oriented language" in the strict sense.

An Aeolus object may have parameters indicating, for instance, sizes or element types of the
abstraction implemented by the object; thus, an object implementing, for instance, a bounded
stack abstraction may be parameterized by the element type and maximum number of elements
of the stack. Then, various instances of the bounded stack object may be created (instantiated)
with differing element types and sizes; the implementation of the object need not be concerned
with details such as the element representation, and the programmer does not need to create
new object types for each combination of element type and stack size. Support for such generic
objects increases the level of abstraction available to the programmer, and makes possible the
creation of libraries of reusable object types, in a spirit similar to that of the generic package

April 17, 1986
1)12 AFT

-7

construct of Ada.

The object construct also provides a safe separate compilation mechanism. The separation of
an object specification into a definition part and an implementation part allows checking across
the interface to an object, as well as allowing the use of an object definition before the
corresponding implementation part is finished (thus facilitating top-down design).

3.1 Object Definition Parts

The definition part of an object defines the interface of the object with other compilands. It
specifies the attributes of the object itself as well as the constants, types, and operations which
the object provides to other objects and to processes. (Note that variables may not be declared
in object definition parts; it was felt that the sharing of variables between objects was not in
accord with the principle of data encapsulation embodied by the object construct, which requires
that all access to object data be through operations on the object.) The declaration of the object
name in the header of the object definition defines a type, called an object type, with that name,
which may be used in the declaration of variables to hold capabilities to instances of that object
type (see below). An example of an object definition part is included in the Appendix.

Specification of the autosynch keyword in an object definition header causes code to be
generated for automatic synchronization of object operation invocations based on programmer-
supplied indications of operation effects (see below). This mechanism provides a simple
read/write locking protocol; it may be used with any object class (see below). 6

The object class is also specified in the object definition header. The object classes fall into
two groups: the non-Clouds object classes (pseudo and local) do not use any of the Clouds
facilities for action or object management, and are thus similar to modules in Modula-2 (for
pseudo-objects) or to generic packages in Ada (for local objects), while the so-called Clouds
object classes (nonrecoverable, recoverable, and autorecoverable) may make use of the object
management facilities and (for recoverable and autorecoverable types) the action management
facilities. Thus, the rationale behind the non-Clouds object classes is the same as that
underlying the design of the corresponding features in Ada or Modula-2, that is, the provision
of data-abstraction facilities usable "locally" (without resorting to operating system facilities).
On the other hand, the Clouds object classes provide access to the support for data abstraction
provided by the Clouds system when the expense of that support is warranted; the separate
classes of Clouds object allow the programmer to specify the degree of support (and of incurred
expense) required. The definitions of the object classes are as follows:

non-Clouds object classes:

pseudo (or pseudo-local) There may exist only one instance of a given pseudo-object type.
This class of objects is used mainly for definition of system libraries, for interfacing
with (separately-compiled) collections of procedures written in another programming
language, for abstraction of machine and system dependencies, and as a basic
separate-compilation mechanism.

local The standard class of non-Clouds object, which may have multiple instances.
Management of local objects is provided by the Aeolus runtime system. Unlike Clouds
objects, a local object - may have no existence independent of the process or object
which created it. Local objects simulate Clouds objects without incurring the expense
of the use of the action and object management facilities.

6. For more information on the mechanisms supplied by the Clouds system to support synchronization and recovery,
see Allchin's dissertation.[11]

April 17, 1986
DR AFT

-8-

Clouds object classes:

nonrecoverable The basic class of Clouds object. Objects of class nonrecoverable make use
of the object management facilities, but may not contain features requiring
action management, such as recoverable areas, permanent and per-action
variables, or action event handlers (see section 4).

recoverable 	The "roll-your-own recovery" type of Clouds object, as opposed to the
autorecoverable class of objects (described below), which provides
completely automatic recovery. In some cases, the programmer may be able
to use knowledge of the semantics of the object and its operations to program
synchronization and recovery mechanisms more efficient than the automatic
mechanisms supplied by the autorecoverable class of objects. Automatic
recovery involves checkpointing of the entire object state; automatic
synchronization is based on a simple read-write model of operation
interactions on entire operations. As will be discussed in section 4, Aeolus
provides facilities that allow the programmer to specify which parts of the
object state are to be checkpointed (recoverable areas), to access information
about the states of actions and to change these states (via operations on the
action manager), and to control the recovery process by specification of what
is to be done during action events (action event handlers); also, the
programmer may specify finer-grained locking mechanisms for greater
control of synchronization (via the lock type; see section 2). Only
recoverable objects may contain recoverable area specifications and action
event handler specifications.

autorecoverable As mentioned above, autorecoverable objects provide completely automatic
recovery. The entire object state (the global variables of the object) is
recoverable, and the default event handlers are used.

Operations on objects of class recoverable or autorecoverable may be executed only within an
action environment (see section 4). An instance of an object (other than of class pseudo) is
created by use of an allocator, a construct also used for allocation of pointer values (and similar
to that used for allocating "access objects" [pointers] in Ada). This underscores the similarity in
treatment between object capabilities and pointers, in particular, the processes of creation,
initialization, and deletion (disposal), as well as their use as elements in lists and other
structures and as parameters to objects and object operations. The values of any object
parameters must be specified by using a constructor in the allocator. The allocator yields a
capability to the newly-created object instance, which may be assigned to a variable of that
object type. The variable may thereafter be used to qualify operation invocations on that object
instance. The init object event handler (see below) for the object is executed during the
instantiation process, as are any variable initializations required by the object.

The definition part also performs any necessary imports of other object definitions before
the declarations of the object definition are given. These are called its visible declarations since
the declarations are available to any object which imports the object definition. As stated
above, the visible declarations of an object may include specifications of constants, types, or
operations, but not of variables. Finally, specifications of the object's operations are provided.
An operation specification may optionally be given one of the attributes examines or modifies,
which indicate that the operation reads from or writes to the object's state, respectively. This
information is used by the compiler to generate automatic read or write locking for each
operation if the autosynch attribute is specified for the object. If no operation effect is specified,
the compiler assumes that the operation neither reads nor modifies the object state, and thus no
automatic locking would be done for that operation. The autosynch feature thus provides
automatic synchronization according to a simple multiple read.ers/single writer protocol. An
object operation (or other procedure) meeting certain conditions[wilk 851 may also be given the
inline attribute, indicating that inline code expansion of the operation is desired; thus, the use of

April 17, 1986
DR A FT

-9-

operations to access portions of encapsulated data is made more efficient. We have found in
our experience that when complicated data structures are encapsulated (such as compiler type
attribute records), the number of operations which exist merely to provide controlled access to
small portions of the hidden data structure becomes very large; the efficient support of such
operations thus becomes important to encourage the use of encapsulation.

3.2 Object Implementation Parts

The implementation part of an object provides the actual code for the operations of the
object, as well as the definitions of any private constants, types, variables, or procedures needed
by the object. (An example of an object implementation part is provided in the Appendix.)
These definitions are, of course, hidden from other compilands; only those definitions specified
in the object definition part are available outside the implementation part. This supports the
hiding of encapsulated data required by the data-abstraction feature, and is similar in concept to
Ada package and Modula-2 module implementations.

The definition part of the object being implemented is implicitly imported by the
implementation part; also, any objects imported by the definition part are available in the
implementation part. The implementation part may import other objects as well via its own
import clauses. All constants, type definitions, and operations declared in the objects made
available by any of these methods are visible in the implementation part; also, the names of
these imported object types may be used as the types of variables declared in the
implementation part. Such variables must be initialized by use of an allocator.

Variables declared in the outer level of the block of the object implementation part are
global to the object, and are static ("own") variables; that is, the values of such variables
survive between calls to the object's operations. The global variables of an object are called
collectively the object's state. In an object of class recoverable, part of the object state may be
specified to be in a recoverable area; also, the programmer may specify an action events part
and/or a per-action variables part. Recoverable areas, action events, and per-action variables
are described in section 4.

In order to allow the object to participate in its own creation and deletion, an object
implementation part contains specifications of handlers for the 'so-called abject events. The
object events include the init or object initialization event, the handler for which is executed
whenever an instance of the object is created by use of an allocator; the remit or object
reinitialization event, the handler for which is executed—if the object has registered its desire
for reinitialization with the action manager—when the system is reinitialized after a crash or
network partition; and the delete or object deletion event, the handler for which is executed
when the object instance is destroyed. No default handler for the init object event is assumed; if
no action is desired for the ink event, the programmer must supply a NULL statement as the
handler body. The intent is to help prevent the accidental omission of object state initialization
by the programmer. If no handler for the remit object event is specified, the handler is by
default the same as that specified for the init event. If no handler for the delete object event is
specified, it is assumed to be NULL.

3.3 Object Operation Invocations

An invocation of an object operation looks much lice a procedure invocation, except that,
outside the implementation part of the object itself, an operation name must be qualified by the
name of a variable representing an instance of that object type (or, for pseudo-objects, by the
name of the object type itself). Thus, for an instance of a bounded-stack type, we may have

stackjnstance@push(elem)

When an object invokes one of its own operations, however, the usual procedure call syntax is
used.

Invocations of pseudo-object and local object operations have semantics essentially similar to
those of calls to procedures local to a compiland. The situation is different for operations

April 17, 1986
DR A FT

- 10 -

declared in objects which use the Clouds object-management facilities (i.e., the so-called
"Clouds objects"). 7 Invocations of operations on Clouds objects are handled by the compiler
through operations on the Clouds object manager on the machine on which the invoking code is
running. The Clouds object on which the operation is being invoked need not be located on the
same machine as the invoking code; the object manager then makes a remote procedure call
(RPC) to the object manager on the machine on which the called object resides. The
location—local or remote—of the object being operated upon, however, need not concern the
programmer, as the RPC process is transparent above the object-management level.

4. Support for Actions

The action concept provides an abstraction of the idea of work in the Clouds system; an
action represents a unit of work. Actions provide failure atomicity, that is, they display "all-or-
nothing" behavior: an action either runs to completion and commits its results, or, if some
failure prevents completion, it aborts and its effects are cancelled as if the action had never
executed. The rationale for the action concept and the mechanisms supporting it in the Clouds
system are described in Allchin's dissertation;[83a] the design for the implementation of these
mechanisms is described in Kenley's theSiS.Xe1861

Support for actions in the Aeolus language is relatively low-level. The methodology of
programming with actions is not at present well-understood compared with experience in
programming with objects; thus, rather than providing high-level syntactical abstractions such as
those available for object programming, Aeolus allows access to the full power and detail of the
Clouds system facilities for action management. The major syntactic support provided by
Aeolus for action programming is in the programming of action events, recoverable areas,
permanent and per-action variables, and action invocations.

4.1 Action Events

At several points during the execution of an action, the action interacts with the action
manager of the Clouds system to manage the states of objects touched by that action, including
writing those states to permanent (stable or safe) storage, and recovering previous permanent
states upon failure of an action. Thus, failure atomicity may be provided by the action
management system. The action events include:

event name

BOA
toplevel_precommit

nested_precommit
commit

abort

purpose

beginning of action
prepare for commit for a toplevel action
prepare for commit for a nested action
normal end of action (EOA)
abnormal end of action

The interactions with the Clouds action manager necessary when such events take place are done
by default procedures supplied by the Aeolus compiler and runtime system; these procedures
are called action event handlers. When an action event occurs for a particular action, the action
manager(s) involved invoke the event handlers for each object touched by that action.

As was described in section 3, by use of the autorecoverable class of object, the programmer
may take advantage of the recovery facilities of the Clouds system by having the compiler
generate the necessary code automatically. This automatic recovery mechanism requires

7. This is because the code for pseudo-objects and for local objects is actually linked into the code of the compiling
using these objects, whereas the axle for Clouds objects is physically separate from the code of the invoking
compiland This code is paged in on demand by the object manager; see Allchin's dissertation.[Alla 3al

April 17, 1986
DR AFT

checkpoints of the entire state of the object, and uses the default action event handlers.
However, it is sometimes possible for the programmer to improve the performance of object
recovery by providing one or more object-specific event handlers which make use of the
programmer's knowledge of the object's semantics; these programmer-supplied event handlers
then replace the respective default event handlers for that object. Thus, if object class keyword
recoverable is specified in the definition header of the object being implemented, the
programmer may give an optional action event part in the object's implementation part.
Following the keywords action events, the programmer lists the name of each action event
handler provided by the object implementation as well as the name of the action event whose
default handler the specified handler is to override. Thus, for example, the specification (say,
in an object implementing a bounded-stack abstraction):

action events
stack_BOA overrides BOA,
stack_nested_precommit overrides nested_precommit

indicates that the default handlers for the BOA and nested_preco ► mit action events are to be
replaced by the procedures named "stack_BOA" and "stack_nested_preconunit," respectively,
for the bounded-stack object type only.

4.2 Recoverable Areas

As mentioned in section 3, if an object being implemented is of class recoverable, then some
of its variables may be declared in a recoverable area. The state of a recoverable area which
has been touched by an action is maintained on a version stack by a Clouds action manager, and
is saved to permanent storage upon commit of the action which touched it. If an action which
touched a recoverable area is aborted, the version of that area which existed before the action
touched it is restored. 8 Thus, the use of recoverable areas allows the programmer to provide
finer granularity in the specification of that part of the object state which must be checkpointed,
since the use of automatic recovery on object (the autorecoverable object class) performs
checkpoints on the entire state of the object.

The interaction with the action manager necessary to manage the states of recoverable areas
is implemented by the action event handlers as described above. Again, the default event
handlers may be overridden by programmer-supplied event handlers for the entire object to
achieve better performance.

4.3 Permanent and Per-Action Variables

It may sometimes be desirable to make large data structures resilient. In such cases, the
recoverable area mechanism may be inefficient, since it requires the creation of a new version
of the entire recoverable area for each action which modifies the area. Often in such cases the
programmer make take advantage of knowledge of the semantics of the data structure to
efficiently program the recovery of the data structure. The Aeolus language provides two
constructs which aid in the custom programming of data recovery, the so-called permanent and
per-action variables, constructs proposed by McKendry.[McKe 85]

Any type may be given the attribute permanent. This attribute indicates that members of
that type are to be allocated on the permanent heap, a dynamic storage area in the object storage
of each object instance. This area receives special treatment by the Clouds storage manager; in
particular, it is shadow paged during the toplevel preconvnit action event. 9 Any type which has

8. For more information on the semantics of recoverable areas and the mechanisms to support them, see Allchin's
dissertation.[Ak83a1

9. More information on the management of permanent heap storage is available in several papers on the Clouds system.[pitt85,Ken186.wi1166]

April 17, 1986
DR AFT

- 12 -

as its base or element type a type with the attribute permanent inherits that attribute.
Permanent variables may be assigned values only within a toplevel preconvnit event handler.

Aeolus also provides the per-action variable construct. An object implementation part of
class recoverable may declare a single per-action variable section. A per-action specification
resembles a recoverable area specification, and the semantics is also similar, in that each action
which touches an object with per-action variables gets its own version of the variables; however,
the programmer may access the per-action variables not only of the current action, but also of
the parent of the current action. Also, per-action variables are allocated in volatile storage, that
is, in storage the contents of which may be lost upon node failure. The variables in a per-action
specification are accessed as if they were fields in a record described by the specification; two
entities of this "record type" are implicitly declared: Self and Parent, which refer respectively
to the per-action variables of the current action and its immediate ancestor.

Permanent and per-action variables may be used together to simulate the effect of
recoverable areas at a much lower cost in space per action. In general, the per-action variables
are used to propagate changes to the resilient data structure up the action tree; these changes are
then applied during the toplevel precanmit action event to the actual data structure in permanent
storage. The use of permanent and per-action variables is shown more fully in the
programming example shown in the Appendix (and described in section 6).

4.4 Action Invocations

The right-hand side of an assignment statement may take the form of an action invocation.
Here, the right-hand side (which consists of an operation invocation which, if the operation is
value-returning, is embedded in another assignment statement) is invoked as an action; the
action ID of this action is assigned to the variable designated by the left-hand side of the action
invocation. Thus, for example, if the bounded-stack object mentioned in section 3 were defined
as a recoverable object, we might invoke one of its operations as an action:

al D := action(stack_instance@push())

The action ID may be used as a parameter in operations on the action manager which provide
information about the status of the action, cause a process to wait on the completion of an
action, or explicitly cause an action to commit or abort.° The programmer may specify that an
action be created as a "top-level" action, that is, as an action with no ancestors; a top-level
action cannot be affected by an abort of any other action. Otherwise, the action is created as a
"nested" action, that is, as a child (in the so-called action tree) of the action which created it; as
described below, a nested action may be affected by an abort of one of its ancestors.
Optionally, a timeout value may be specified; if the action has not committed by the expiration
of this timeout, the action will be aborted. If no timeout value is specified, a system-defined
default value is used.

In Clouds, we distinguish between operations invoked as an action and operations executing
in an action environment . 11 We say that an operation is executing in an action environment if that
operation is invoked as a toplevel or nested action, or if the invoker of the operation is
executing in an action environment. Thus, it is a sufficient, but not a necessary, condition that
an operation be invoked as an action to be running in an action environment. Only an operation
or internal procedure of a recoverable or autorecoverable object may be invoked as an action;
however, all operation invocations on such objects must be executing in an action environment.
Thus, operations of a non-Clouds object or of a nonrecoverable Clouds object may execute in an
action environment, but may not be invoked as an action. All recoverable or autorecoverable

10. The interface to the Clouds action manager is described in the Reference Manual. [will'251
11. Some transaction systems require the creation of one or more nested actions to encapsulate every remote operation

invocation. In Clouds, such encapsulation is not required, but is available at the programmer's option.

April 17, 1986
DR A FT

- 13 -

Clouds objects operations of which are invoked within the environment of an action are said to
be touched by that action.

The semantics of an action invocation is as follows: the action manager operation
CreateActicn is invoked with the name of the operation'to be performed as well as the list of
arguments to be passed to that operation.' 2 The action manager then invokes the BOA event
handler on the object to which the operation belongs. Next, the action manager creates and
dispatches a process in which the operation code runs. When an object is first touched by the
action, the BOA handler of that object is invoked. An attempt by an operation invoked as an
action to return to its caller is considered an implicit attempt to commit the action, and will cause
control to transfer to the Commit operation of the action manager, which terminates the process
and invokes the precommit event handler of each object touched by the action. (An explicit
invocation of the Commit operation has the same effect.) If precommit of the object is
successful, the action manager then invokes the commit event handler of each touched object. If
the action (or one of its ancestors) invokes the Abort operation of the action manager, the action
manager terminates the process corresponding to the action and invokes the abort event handler
of each object touched by that action.

It may sometimes occur that an object operation may be called either as an action invocation,
or as an ordinary object operation invocation (even in an action environment). In the case that
an operation is invoked normally (that is, not invoked as an action), an invocation of the action
manager operation Commit by the operation will cause the action manager to merely return
control to the point of invocation of the original operation; thus, in this case the Commit call is
effectively a normal procedure return. On the other hand, an invocation of the Abort operation
by an operation invoked normally will cause the parent action of the invoker of the original
operation to abort. Aeolus does not provide an explicit exception-handling mechanism. This
function is subsumed, for operations executing within an action environment, by the action
event handling mechanism. However, in the case of operations not invoked as actions, a call to
the Abort action manager operation—as described above—provides a mechanism similar to an
exception-handling mechanism with a single exceptional condition (say, "error").

5. Support for Processes

The final structuring feature of the Aeolus language provides an abstraction of the process
concept of the Clouds system. (The process is analogous to the program construct of Pascal or
Modula-2.) The invocation of a process provides activity in the Clouds system; processes may
be considered the "glue" which binds object operations, and possibly actions, to do useful work.

A process is introduced by a header which gives the name of the process, as well as clauses
detailing any imports of object definitions necessary. Following any import clauses, the body
(process block) of the process is specified; the statement part of this block is the entry point
when the process is activated, and execution begins there after any necessary variable
initializations of the process block have been performed.

6. A Programming Example

In this section, we discuss an example of systems programming using the constructs which
Aeolus provides for access to the powerful features of the Clouds system for action and object
programming. The text of the example object discussed here is provided in the Appendix.

Since the use of a recoverable data structure requires the creation of a complete copy of the
data structure on the version stack for each action which modifies the data structure, the

12. The exact details of the manner in which this information is provided depends on whether the operation is a local
procedure or a publicly-visible operation of the object to which it belongs.

April 17, 1986
DR A FT

- 14 -

implementation of a replicated object can become inefficient as the size of the data structure
increases. Fortunately, we can use semantic knowledge about the object to simulate the effect
of recoverable variables at a fraction of their cost. The technique which we use was proposed
by McKendryimcice85] Essentially, rather than require that the system allocate a new version of
a complete data structure for each new action, we make use of per-action variables (described in
section 4) to maintain "change lists" for each action. These may be viewed as "intention lists"
for operations such as insertion or deletion in a data structure. Since each action can access both
its own recoverable variables and those of its parent, we may arrange to propagate the change
lists of an action to its parent, usually by coding an event handler for the nested_precommit
action event. (We may also wish to arrange to clean up after ourselves in an abort action event
handler.) The actual modification of the data structure itself is delayed until the
toplevel_precommit action event. In a handler for this event, we must arrange to perform the
changes maintained in the change lists (say, insertions and deletions) on the actual data
structure; the actual data structure is maintained in permanent storage. Note that the
Aeolus/Clouds system enforces the restriction that data in permanent storage may only be
modified at toplevel precommit; then, the Clouds storage management systengitts 51 assures the
stability of permanent storage and the atomicity of changes to it.

The use of this technique often requires the use of linked lists or similar data structures
allocated in a heap in the permanent area of per-object storage. This permanent heap requires
special run-time support for its management, which must maintain the heap's consistency across
failures.

In the example shown in the Appendix, we show a proposed design for the permanent heap
manager. To maintain the consistency of the heap, this PERMHEAP object uses the same
techniques which the permanent heap mechanism is designed to support, i.e., per-action
variables and associated action-event handlers. In the implementation shown, the "free list"
(i.e., the list of available blocks of permanent storage) is itself kept in permanent storage to
ensure the resilience of the permanent heap structure. (Thus, the PERMHEAP object must
actually be bootstrapped from a non-resilient version.) For the purposes of this example, we
have written PERMHEAP as a recoverable object. In practice, the permanent heap support
would be part of the runtime support code compiled into a recoverable object, rather than a
separate object.

The PERMHEAP object maintains lists of those blocks of the heap allocated and freed by
each action, in per-action variables. Also, each action which allocates a block of storage obtains
a lock on the value of the address of that block. (Blocks of storage are uniquely identified by
their starting addresses.) The presence of a lock on a block of storage indicates that it has been
allocated by some action which has not yet committed; since changes to the actual "free list" are
not made until toplevel precommit of the action allocating storage, this lock is necessary to
inform other actions that the block is probably unavailable. A call to the ALLOCATE
operation of PERMHEAP will return the address of a block of memory in the permanent heap
area of the object; the address of the block is also added to the ALLOCATED per-action list
and is locked. If a block of memory was allocated by the action which is trying to free it, a call
to PERMHEAP's FREE operation will remove that block from the ALLOCATED list and
release the lock on its address, effectively causing the block to never have been allocated. If, on
the other hand, the block was not allocated by the invoking action, the address of the block to be
disposed is merely added to the FREED per-action list; actual disposal is performed at toplevel
precommit.

No special processing is required if an action allocating or freeing storage aborts, since its
locks are released and no alteration to the permanent "free list" has taken place. Thus,
effectively no allocations or frees have taken place. (Note that the contents of permanent
storage blocks on the "free list" are considered dispensible; nevertheless, these contents may be
modified only at toplevel precommit.) When a nested action enters its commit phase, its
ALLOCATED and FREED per-action lists are propagated to its parent. Memory blocks on the
permanent heap allocated by an action are actually removed from the "free list" when the

April 17, 1986
DR A FT

- 15 -

action's toplevel ancestor (to which the nested action's per-action lists have been propagated)
enters its precommit phase; also, blocks freed by the action are added to the "free list" at this
time.

In Clouds, locks (as well as all portions of the object state which are not specified to be
permanent or recoverable, including per-action variables) are maintained in volatile storage.
Thus, information concerning uncommitted allocations and frees of an object using permanent
heap support may be lost due to node failure. However, this will not cause a problem, since
uncommitted actions running at a node at the time of its failure will be aborted. Recall that
locks belonging to an action are released if that action is aborted; thus, the effect is the same as
if the actions had been aborted in a non-failure case, i.e., as if the allocations and frees had
never been performed.

Note that this implementation of the PERMHEAP object does not provide strict
serializability. To see this, consider some action, A, which exhausts (or nearly exhausts) the
permanent heap, causing other actions B and C trying to allocate permanent memory to fail.
Action A may well be aborted itself. Actions B and C which failed because of A might not have
failed had they been executed serially. However, such breaches of strict serializability do not
affect the consistency of the permanent heap mechanism, and thus are of little concern in this
context.

7. Status of the Aeolus Implementation

In the Clouds systems programming language effort, work is currently continuing in two
major areas as of winter 1986: the implementation of the Aeolus compiler as well as its
integration with the Clouds kernel services, and the use of the Aeolus language system as a
testbed for studying the problems of programming in action-object systems.

Work on the compiler is in progress on one of the DEC VAX 11/750s of the Clouds system,
under the BRL version of Berkeley UNIX 4.2. The Amsterdam Compiler Kit[T 3] is being
used for code generation for both the VAXen and the IBM PC AT workstations of the Clouds
project. The basic portion of the compiler implementation has been finished, including support
for non-Clouds objects. Current work on the Aeolus implementation is being concentrated on
those areas of functionality needed for interfacing with the kernel to provide support for object
and action management. We anticipate that the functionality required for a prototype
implementation in Aeolus of the recently-completed action management design[n 186] will be
available in summer 1986. (The interfaces to action management are described in the
Reference Manual[wilk85] for Aeolus.) The actual implementation of action management is
being done in C, as it will be merged with the kernel code (which is also in C). Concurrently,
work is progressing on the development of structured editing tools for Aeolus using the
GANDALF structured-editor generator system.Nc 3/165 1

Our plans to use the Aeolus/Clouds system as a testbed for studying programming
methodologies in action-object systems have been described in a previous paper.[LeB185] As one
of these ongoing studies, we are working towards the development of a distributed object filing
system for Clouds; alternate implementations of the file system will compare the efficiency of
different schemes for achieving consistency and availability. Of special interest are the trade-
offs available among different schemes between consistency and availability, particularly when
semantic knowledge of an object may be brought to bear. This research will be described in a
forthcoming paper.[Wilk86]

IM UNIX is a registered trademark of AT&T. PC AT is a registered trademark of IBM.

April 17, 1986
TYR A FT

- 16-

REFERENCES

[A11c82] 	Allchin, J. E., and M. S. McKendry. "Object-Based Synchronization and
Recovery." TECHNICAL REPORT Grr-Ics-82115, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA, 1982.

[A11c83] 	Allchin, J. E., and M. S. McKendry. "Synchronization and Recovery of
Actions." PROCEEDINGS OF THE SECOND SYMPOSIUM ON PRINCIPLES OF
DISTRIBUTED COMPUTING (ACM SEGACT/SEGOPS), Montreal (August 1983).

[Allc83a] 	Allchin, J. E. "An Architecture for Reliable Decentralized Systems." PH.D.
ass., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1983. (Also released as technical report GIT-ICS-
83/23.)

[EvanFA] Evans, A. Jr. "A Comparison of Programming Languages: Ada, Pascal, C." In
Comparing & Assessing Programming Languages, ed. A. Feuer and N. Gehani,
66-94. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[Ken186] 	Kenley, G. G. "An Action Management System for a Distributed Operating
System." M.S. THESIS, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (Also released as technical report
GIT-ICS-86/01.)

[LeB185] 	LeBlanc, R. J., and C. T. Wilkes. "Systems Programming with Objects and
Actions." PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON
DISTRIBUTED COMPUTING SYSTEMS, Denver (July 1985). (Also released, in
expanded form, as technical report GIT-ICS-85/03.)

[McKe85] McKendry, M. S. "Ordering Actions for Visibility." TRANSACTIONS ON SOFTWARE
ENGINEERING (IEEE) 11, no. 6 (June 1985). (Also released as technical report
GIT-ICS-84/05.)

[Notk85) Notkin, D. "The GANDALF Project." THE JOURNAL OF SYSTEMS AND
SOFTWARE 5, no. 2 (May 1985).

[Pitt85] 	Pitts, D. V., and E. H. Spafford. "Notes on a Storage Manager for the Clouds
Kernel." TECHNICAL REPORT Grr-Ics-85/02, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA, 1985.

[Rent82] 	Rentsch, T. "Object Oriented Programming." SIGPLAN NoncEs (ACM) 17, no.
9 (September 1982): 51-57.

[Tane83] 	Tanenbaum, A. S., H. van Staveren, E. G. Keizer, and J. W. Stevenson. "A
Practical Tool Kit for Making Portable Compilers." COMMUNICATIONS OF THE
ACM 26, no. 9 (September 1983).

[V■rilk85] 	Wilkes, C. T. "Preliminary Aeolus Reference Manual." TECHNICAL REPORT
Grr-Ics-85/07, School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1985. (Last Revision: 17 March 1986.)

[Willc86] 	Wilkes, C. T. "Programming Methodologies for Resilience and Availability."
PH.D. Das., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1986. (In progress.)

April 17, 1986
11R A FT

- 17 -

Appendix

The following example is discussed in section 6 of this paper. Reserved words of Aeolus are
indicated by boldface.

definition of recoverable object permheap is
Gives the publically-visible definitions provided by the PERMHEAP object.

operations

procedure allocate (size : unsigned) returns address modifies
Return a pointer to a block of memory of the given "size" (in words) in

I permanent memory.

procedure free (block : address) modifies
Dispose the block of memory indicated by "block".

end definition. I permheap

Implementation of I recoverable I object permheap Is
I Support for the permanent heap, using per-action variables for recovery management.

import list
The definition part of the LIST object is shown here for clarity.

definition of local object list (elem_type : type) is
-- This object implements a linked list abstraction. The object is parameterized
-- by the element type of the list; if the element type Is specified to be permanent
-- by a (recoverable) importing object, then the linked list itself will be allocated
-- in permanent storage (only recoverable objects may declare permanent variables).
-- The list is initially empty. Mutual exclusion Is provided on MODIFY operations.

type compatibleJist is list(elem type)

operations
procedure add (elem : elem type) modifies

-- Adds ELEM to the list.
procedure append (I : compatibleJist) modifies

-- Appends all elements in list L to this list.
procedure remove (elem : elem type) modifies

-- If ELEM is on the list, removes it.
procedure find (slam : elem type) returns boolean examines

-- If ELEM is on the list, returns TRUE, otherwise FALSE.
procedure nth (n : unsigned, notthere : out boolean)

returns elem type modifies
-- If the Nth element exists, returns it and sets NOTTHERE to FALSE,
-- otherwise sets NOTTHERE to TRUE.

end definition.

The local declarations of the PERMHEAP object.

I Here, we give the names of alternate handlers for some of the action events.
I Note that no alternate handler is given for the ABORT event (see section 6).

action events
nested commit is permheap_nested_commit,

toplevel_precommit is permheap top_precommit

April 17, 1986
DRAFT

- 18 -

The PERM_BLOCKENTRY type Is used for the maintenance in the permanent heap of the
list of free storage blocks. Each block Is uniquely identified by its address.

type permJalockentry Is permanent new address

I The list of free storage blocks. Since the base type of this list is permanent,
I the list itself is allocated in permanent storage.
I This list may be modified only during the toplevel_precommit action event.
I The size of each entry is stored in the first word of that entry.

freelist : list(permJlockentry) := new list

I The BLOCKENTRY type is used in the declaration of the per-action variables
below. Pointers to this type are allocated on the normal (not the

I permanent) heap, and may be modified outside of the toplevel_precommit
I event handler.

type blockentry is new address

I The per-action variables for permanent-heap recovery management.
We will maintain lists of memory blocks allocated and freed by each action.

per action
allocated : list(blockentry) := new list
freed : list(blockentry) := new list

end per action

I When an action allocates a block of permanent storage, it must obtain a lock on that
I block until it commits to prevent other actions from attempting to allocate that block.
I Rather than associate a lock with the actual storage block, we lock the block's address
(of type BLOCKENTRY). Recall that locks obtained by an action are propagated to its

I parent upon nested commit, and released upon abort or toplevel commit.

entryJock : lock (busy : [1) domain Is blockentry

procedure first_fit (size : unsigned) returns blockentry Is
A private operation of the PERMHEAP object. Given a size in words, FIRST.YIT finds
the first entry on the FREELIST for a block of storage of size at least as large as
SIZE and returns a pointer to that entry. (For the purposes of this example, we
will assume that such a block exists.) Of course, another strategy could also be
used here (such as best fit, or fragmentation and compaction). We'll assume that
repeated invocations of FIRST_FIT by the same action return different addresses.

begin
I The details of this operation are omitted here. Even if an appropriate block of
I storage is found on the FREELIST, FIRST_FIT must also test the ENTRY_LOCK to check
whether this block has not already been allocated by some as yet uncommitted action.

end procedure I firstjit I

April 17, 1986
DRAFT

-19-

! ALLOCATE and FREE are public operations of the PERMHEAP object.

procedure allocate (I size : unsigned I) 1 returns address 1 is
I Return the address of a block of memory of the given SIZE in permanent storage.
Since the block is from the FREELIST, its former contents are expendable.
The Set_Lock operation used here is non-blocking, i.e., it returns immediately with

1 value FALSE if the requested lock is not available.

entry : blockentry

begin
loop I keep going until we find an available block

entry := first_fit(size)
if Set_Lock(entryjock, busy, entry) then

Self.allocated@add(entry) add the entry to the ALLOCATED list for this action
return address(entry)

end If
end loop

end procedure I allocate I

procedure free (I block : address I) Is
! Add a BLOCK of memory to the FREED list for freeing during toplevel precommit.

entry : blockentry
notthere : boolean

: unsigned := 1

begin
I First, scan the ALLOCATED list to see if BLOCK was allocated by the current action
loop

entry := Self.allocated@nth(i, notthere)
if notthere then

exit .
elsif entry = blockentry(block) then I Yes,

Self.allocated@remove(entry) 	I so remove it from ALLOCATED list
ReleaseLock(entryJock, busy, entry)
return . 	 ! we're done

end if
I += 1

end loop

I If we get here, BLOCK wasn't allocated by the current action, so put it on the FREED list
Self.freed@add(entry)

end procedure I free !

! The following are the alternate action event handlers for this object.

procedure permheap_nested_commit 0 Is
I The alternate handler for the NESTED COMMIT action event. We'll propagate the items on
I the ALLOCATED and FREED lists of this action to the corresponding lists of its parent action.

begin
Parent.allocated@append(Self.allocated)
Parent.freed@append(Self.freed)

end procedure 1permheap_riested commit I

April 17, 1986
DRAFT

• 20 -

procedure permheap_top_precommit 0 Is
I The alternate handler for the TOPLEVEL_PRECOMMIT action event. We'll traverse the FREED
I list, adding each entry there to the actual FREELIST in permanent storage; then, we'll 	-
! traverse the ALLOCATED list, removing each entry there from the FREELIST.

entry : blockentry
notthere : boolean

: unsigned := 1

begin
Add each entry on the FREED list to the FREELIST in permanent storage

loop
entry := Self.freed@nth(i, notthere
If notthere then

exit .
end if

Convert the entry to the permanent type before adding to FREELIST.
freelist@add(perm_blockentry(entry))

end loop

Remove each entry on the ALLOCATED list from the FREELIST; the locks on these
I entries will be released automatically.
loop

entry := Self.allocated@nth(I, notthere)
If notthere then

exit .
end if
freelist@remove(perm_blockentry(entry))

end loop
end procedure 1 permheap top_precommit

InIthandier is I handler for the INIT (Initialization) object event
begin

Perform Initialization (not shown) of FREELIST to indicate that all
1 of the permanent heap is available.

end inithandier

I The REINIT object event handler is by default the same as the INIT handier.
The DELETE object event handler for this object is by default NULL.

end Implementation. permheap I

April 17, 1986
17 R AFT

QUARTERLY PROGRESS REPORT
FAULT TOLERANT DISTRIBUTED COMPUTING
CONTRACT #MDA 904-86-C-5002
REPORTING PERIOD: 1 APR 86 - 30 JUNE 86

-1-

1. Project Status
During the past quarter, work has continued on each of the three project tasks. These

efforts are closely related to other work in progress within the Clouds Project, our major
research effort in the area of reliable distributed computing.

Under the Language Support for Robust Distributed Programs task, work continues in two
major areas: the integration of the Aeolus compiler with the Clouds kernel services and the use
of the Aeolus language system as a testbed for studying the problems of programming in
action-object systems.

Under the Storage Management for an Action-Based Operating System task, the focus of
our work has been on documentation of the design and implementation of the kernel storage
manager and on implementation of a device driver to enable us to use our large disk drives on
machines running the Clouds kernel.

Under the Operating System Support for Reliable Distributed Computing task, our efforts
are directed toward specification and functional design of the operating system services which
will be implemented on top of the object and action management mechanisms provided by the
Clouds kernel. Our immediate focus is to obtain a working, robust kernel to provide a basis for
the implementation of these designs.

The work on the tasks of this project is proceeding on schedule. Working in combination
with other efforts in progress within the Clouds project, we are expect to have a working system
by the end of the next quarter.

2. Language Support for Robust Distributed Programs
Work continues in the two major areas of the systems programming language effort: the

design and implementation of the Aeolus language itself, as well as the use of the language as a
testbed for the study of programming methodologies to achieve resilience and availability in
action/object systems such as Clouds.

2.1 Language Design and Implementation
We consider the design of the Aeolus language to be essentially complete, and thus (barring

the discovery of significant flaws) have frozen the design at its present stage. Therefore, we
will be concentrating our efforts on the implementation portion of this task in the current
quarter.

In our last report, we mentioned our recent paper[Wilk861 describing the rationale underlying
the design of the Aeolus language. This paper has been accepted for presentation at the IEEE
Computer Society 1986 International Conference on Computer Languages, and for publication
in the conference proceedings. (A copy of the latest revision—based on the referees'
comments—of this paper is attached as Appendix A.)

During the last quarter, the Clouds team member responsible for the Aeolus implementation
was working on structure-editor generating systems at Siemens Research and Technology
Laboratory in Princeton, NJ, under a cooperative arrangement between Siemens and the School
of Information and Computer Science. Since his return to Georgia Tech at the beginning of
July, progress has resumed on the implementation effort. We are now proceeding rapidly
towards our goal of providing support for Clouds objects in the compiler by the end of the
summer. We have developed a scheme for treating the Clouds object type information
generated by the Aeolus as objects—called TypeManagers—under the Clouds kernel. The
Aeolus compiler currently runs under Unix. Thus, when a Clouds object is compiled, a Unix
"a.out"-style load file is created; the Unix header is then stripped from this file to yield a
description for the object in the format expected by Clouds. A TypeManager, once created
under a system running the Clouds kernel, requests this object description file from the Unix
system and stores the description as the TypeManager's object data. Subsequently, when the
"create" operation is invoked on the TypeManager, the object description is used to create an

-2-

instance of that object type. To create TypeManagers, we will "hard-wire" a TypeManager for
TypeManagers into the kernel. A similar scheme will be used to create ProcessManagers,
which will accept the code of Aeolus processes from the Unix system, and will also provide
operations to activate and kill these processes. A TypeManager for ProcessManagers will also
be "hard-wired" into the kernel. We are currently working with members of the kernel group
to integrate these features into the Clouds kernel; other work proceeding concurrently includes
adding runtime support for interfacing with object management, and the generation by the
compiler of the data structures (such as tables of operation descriptors and entry points) needed
by this runtime support.

2.2 Programming Methodologies for Action/Object Systems

In our last report, we described how our work on programming methodologies for
action/object systems such as Clouds had led to some preliminary work on the design of a fault-
tolerant job scheduler for the support of availability. During the last quarter, the scope of this
investigation has expanded to include work on an object filing system for Clouds. This came
about as we grew to realize that the replication scheme which we are currently considering in
support of availability would require heavy interaction between the manager for a replicated
object, the job scheduler, and the object filing system. The object filing system (OFS) should:

• be resilient and highly available (through replication);

• provide a mapping from object names (strings) to Clouds object capabilities;

• impose some familiar structure (e.g., a Unix-like hierarchical structure) on the flat, global
system name space provided by the Clouds object manager;

• provide efficient forms for the most common types of I/O (such as text I/O) without the
necessity of the context switches which would be required if such I/O were modelled with
Clouds objects.

In the OFS, an object name may represent a group of objects (the set of replicas of a
replicated object), rather than a single instance. We intend that this mechanism should be, in
general, transparent to the user (although special-purpose applications, such as DBMSs, may
require that, in addition, finer control of replication be available than that provided by a general
mechanism).

We have found that the generality of the abstract object structure supported by Clouds poses
problems for replication methods which are not presented by a less general, flat object structure
(for instance, files or queues). The problem lies in the possibility of the arbitrarily complex
logical nesting of Clouds objects. Although Clouds objects may not be physically nested (that is,
one object may not physically contain another object), an object may contain a capability to
another object. If an object A creates another object B, and retains sole access to B's capability
(by refraining from passing the capability to other objects and from registering the capability
with the OFS), we say that object B is internal to object A. The internal object B may be
regarded as being logically nested in object A. If, on the other hand, object A passes B's
capability to some object not internal to A, or if A registers B's capability with the OFS, we say
that B is an external object; an external object is potentially accessible by objects not internal to
the object which created the external object.

Problems arise with replication schemes when internal and external objects are mixed
together in the same structure, i.e., when an object may contain capabilities to both internal and
external objects. These problems are associated with the method which is used to propagate the
state of a replicated object among its replicas. One such method is to execute the computation
from which the desired state results on each replica; we refer to this scheme as idemexecution.
Another method is to execute the computation at one replica, and then copy the state of that
replica to the other replicas; we refer to this scheme as cloning. Note that the scheme which is
used to ensure that the replicas maintain consistent states (e.g., quorum consensus) is not
involved in these problems, and is considered separately in our investigation.

3

External objects cause problems when idemexecution is used to propagate state among
replicas. If the replicated object performs some operation on an external object (e.g., a print
queue server), then—under idemexecution—that operation will be repeated by each replica. If
the operation being performed on the external object is not idempotent, this can cause serious
problems (e.g., multiple submissions of a job to the print queue). Also, trouble may arise due
to idemexecution if the operation on the external object is non-deterministic (for instance,
random number generation, or disk block allocation among multiple concurrent processes).

On the other hand, internal objects cause problems when cloning is used to propagate state.
For example, assume that each replica of an object creates a set of internal objects. Then, when
an operation is performed on one of the replicas, its state—under cloning—is copied to each of
the other replicas. However, the capabilities to the internal objects of the replicas are contained
in their states; thus, each replica now contains capabilities to the internal objects of that replica
on which the operation was actually performed, and the information about the internal objects
of the other replicas are lost.

Our current research includes an investigation of a "taxonomy" of object structures on which
the corresponding state-propagation methods may be safely used, as well as of how these state-
propagation methods—or the Clouds object-naming mechanism—may be altered to safely
handle more general cases. Our current feeling is that the latter may be achieved with minimal
alterations to the kernel, via having the kernel interact with the OFS and the job scheduler.

3. Storage Management for an Action-Based Operating System

The preceeding quarter saw the additional testing of the storage management system and the
writing of a dissertation[Pi] which describes the storage manager.

Some additional functions remain to be implemented in the storage manager, primarily at
the segment system level. These functions are for the most part cleanup routines. The core
functionality of the storage manager, including recovery management, object memory
management, and directory management have been implemented and tested.

Work is still proceeding on the RA81 device driver. A prototype driver is expected during
summer quarter of 1986. The primary problems in developing the driver have been due to the
sophistication of the interface to the drive, as well as to the complexity of the device itself. For
the prototype, we have decided to postpone development of some functions, such as the bad-
block-forwarding supported by the RA81. The addition of this facility to the RA81 device
driver turned out to be much more complex than we had expected.

The dissertation "Storage Management for a Reliable Distributed Operating System"[Pitt 86]
was defended at the end of June. The dissertation describes the three major subsystems of the
storage manager: the device system, the partition system, and the segment system. For each
subsystem, the structures and operations that comprise the subsystem are defined. The
dissertation describes the basic services provided by the storage manager: object memory
support, recovery management, and directory management. The dissertation highlights the
.integration of virtual memory management with object memory support and recovery
management. One of the claims of the dissertation is that this integration provides a efficient
system.

The dissertation describes three algorithms that support the two-phase commit of actions in a
Clouds system. It is shown how these algorithms support action management and also crash
recovery. A chapter in the dissertation is devoted proving the correctness of these algorithms,
based on the assumptions made for the Clouds system.

4. Operating System Support for Reliable Distributed Computing

The efforts under this task are aimed toward building operating system services on top of the
Clouds kernel. Therefore the availability of the kernel is a crucial factor in the progress of this
work.

-4-

The implementation of the Clouds kernel is nearing completion. The current status is as
follows. The object management system has been tested to handle object invocations, both local
and remote. This uses the communication system which uses Ethernet routines to communicate
to other Clouds sites as well as Unix machines. The object management system uses a search
and invoke strategy for locating objects in a uniform, location independent manner, that works
even if some of the sites are non functional. The global searches occur efficiently as they use a
hash table based decision function based on the Bloom filter (we call this the "Maybe Table").

The storage management system (Task 2) provides the functions of basic virtual memory,
object memory, shadowing, flushing and commit. It also provides directory services for object
lookup (using capabilities), and interfaces with the Maybe Table handling routines. This system
has also been implemented and tested.

The current thrust is directed at integrating the object management system, the storage
management system, and the communication system effectively to get an operational general
purpose distributed operating system. With all the components tested individually, we expect the
integration phase to last about two to three months. Currently we are using Unix machines to
provide terminal access to the Clouds system over an Ethernet. The Unix systems are also
providing developmental support for compilation of objects which are transferred to Clouds on
demand over the network using some communication utilities that have been developed.

After the integration, we will start implementation of the Action Management system. The
action management policies have been designed, but the implementation is not complete.

On the design side, the research has resulted in the design of several subsystems, notably a
monitoring system and a distributed database system. The monitoring system fits into the
Clouds reconfiguration strategies and uses a new mechanism called probes to monitor the health
of the distributed system. The database is a conventional distributed database in a novel
implementation environment. The object and action support provided by Clouds lend themselves
effectively to implement a database system (modified to the object based structure) and provide
concurrency control and recovery mechanisms in an environment that is simple to use.

The monitoring system designed makes use of probes. Probes are high priority messages in
Clouds that can be sent to processes, action or objects. If sent to processes or actions, a probe
causes a jump to a probe handler (similar to software signals). The probe handler generates a
reply to the sender of the probe containing status information about the process or the action.
The object probes work along similar lines, except that the probe causes the invocation of the
probe handler in the object.

The monitoring system uses probes to monitor the health of critical system components. The
monitors are replicated at each site and they keep status information in fully replicated
databases. Each monitoring process has a backup monitor that monitors it from another site.
Using this scheme we can keep good records of the global system state, and can handle failures
by tying into the reconfiguration system and restarting failed actions at healthy sites. The design
is reported in detail in [Dasg861

The relational database system is an application environment under design to function in the
object oriented environment supported by Clouds. Conventional database design suffers from
two deficiencies. The data models proposed by database designers do not match the components
supported by the operating system, and thus the implementors have to contrive mechanisms to
support the database. Also the services (concurrency control, recovery) needed by databases are
often not available and have to be built on top of a conventional operating system, giving rise to
inefficient and often incorrect implementations.

The object oriented approach provided by Clouds allows relational databases to be
encapsulated in objects and the implementation matches both the environment as well as the
data model, giving rise to better performance, clean elegant systems interfaces and a modular
implementation. The synchronization and recovery support provided by Clouds also effectively
provides database services giving rise to easier to implement database management functions.

5

Fine granularities of locking structures can be attained by relation fragmentation, that gives rise
to more efficient access strategies. But as the objects hide the fragmentation details, the
interfaces are just as clean and transparent. Further details can be found in [Dasg86a]

REFERENCES

[Dasg86] 	Dasgupta, P. "A Probe-Based Fault Tolerant Scheme for the Clouds Operating
System." TECHNICAL REPORT Grr-Ics-86/05, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA, 1986.

[Dasg86a] Dasgupta, P., and M. Morsi. "An Object-Based Distributed Database System
Supported on the Clouds Operating System." TECHNICAL REPORT Grr-Ics-86/07,
School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1986.

[Pitt86] 	Pitts, D. V. "Storage Management for a Reliable Decentralized Operating
System." PH.D. DIss., School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (Also released as Technical Report
GIT-ICS-86/21.)

[WiIk86] 	Wilkes, C. T., and R. J. LeBlanc. "Rationale for the Design of Aeolus: A
Systems Programming Language for an Action/Object System." TECHNICAL
REPORT Grr-Ics-86/12, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (To be presented at the IEEE
Computer Society 1986 International Conference on Computer Languages.)

APPENDIX A

Rationale for the Design of Aeolus:
A Systems Programming Language

for an Action/Object System

Technical Report GIT-ICS-86/12
C. Thomas Wilkes

Richard J. LeBlanc

The Clouds Project
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332-0280

(404) 894-3152

ABSTRACT

The goal of the Clouds project at Georgia Tech is the implementation of a fault-
tolerant distributed operating system based on the notions of objects, actions, and
processes, to provide an environment for the construction of reliable applications.
The Aeolus programming language developed from the need for an implementation
language for those portions of the Clouds system above the kernel level. Aeolus has
evolved with these purposes:

• to provide the power needed for systems programming without sacrificing
readability or maintainability;

• to provide abstractions of the Clouds notions of objects, actions, and processes as
features within the language;

• to provide access to the recoverability and synchronization features of the Clouds
system; and

• to serve as a testbed for the study of programming methodologies for action-
ob ject systems such as Clouds.

In this paper, the features provided by the language for the support of readability
and maintainability in systems programming are described briefly, as is the rationale
underlying their design. Considerably more detail is devoted to features provided
for support of object and action programming. Finally, an example making use of
advanced features for action programming is presented, and the current status of the
language and its use in the Clouds project is described.

July 21, 1986

This report is a preprint of a paper to be presented at the IEEE Computer Society 1986 International Conference on
Computer Languages, Miami Beach, FL, October 1986.

Rationale for the Design of Aeolus:
A Systems Programming Language

for an Action/Object System

Technical Report GIT-ICS-86/12
C. Thomas Wilkes

Richard J. LeBlanc

The Clouds Project
School of Information and Computer Science

. 	Georgia Institute of Technology
Atlanta, GA 30332-0280

(404) 894-3152

1. Introduction
The goal of the Clouds project at Georgia TeCh[A1162, Allc83, A1163a] is the implementation of

a fault-tolerant distributed operating system based on the notions of objects, actions, and
processes, to provide an environment for the construction of reliable applications. The Aeolus'
programming language developed from the need for an implementation language for those
portions of the Clouds system above the kernel level. Aeolus has evolved with these purposes:

• to provide the power needed for systems programming without sacrificing readability or
maintainability;

• to provide abstractions of the Clouds notions of objects, actions, and processes as features
within the language;

• to provide access to the recoverability and synchronization features of the Clouds system;
and

• to serve as a testbed for the study of programming methodologies for action-object systems
such as Clouds. [LeB185, Wilk86]

The intended users of Aeolus are systems programmers working on servers for the Clouds
system. Clouds provides powerful features for the efficient support of resilient objects where
the semantics of the objects are taken into account; it is assumed that the intended users have the
necessary skills to make use of these features. Thus, although access to the automatic recovery
and synchronization features of Clouds is available, we have avoided providing very-high-level
features for programming resilient objects in the language, with the intention of evolving
designs for such features out of our experience with programming in Aeolus. These features
will then be incorporated into an applications language for the Clouds system, which should
allow programmers unskilled in fault-tolerant programming to write resilient objects.

Aeolus has its roots in a long line of structured programming languages, including Simula,
Pascal, Modula-2, and Adalm. Thus, many of its features should be easy to understand for
those familiar with one of these languages, and little space will be devoted here to discussion of
such features; a description of the complete language is available in the Reference
Manual.[wilic85] Syntax and examples will be provided here only for those features of Aeolus
which differ significantly from those of its predecessors, although the programming example
discussed in section 6 should provide a feel for the flavor of the language.

1. Aeolus was the king of the winds in Greek mythology.
'54 Ma is a registered trademark of the U.S. Government—Ada Joint Program Office.

Technical Report GIT-ICS-86/12

-2-

An overview of the Clouds system from the point of view of Aeolus has been provided in a
previous paper. [LeB185] Briefly, the main structuring features of Aeolus (as of the Clouds
system) are objects, actions, and processes. Clouds supports the object concept as a convenient
structuring principle for facilitating recovery and synchronization. An object encapsulates data
and provides operations to access that data; the object's data may be manipulated only via its
operations, thus helping maintain the invariants of the object. Besides supporting the Clouds
object concept, Aeolus also allows the programmer to use the object features of the language for
the specification of abstract data types, without necessarily invoking the object and action
management features of the Clouds system. Thus, Aeolus objects provide a separate
compilation facility as well as access to the object support of Clouds; the separation of object
specifications into definition and implementation parts (much as are modules in Modula-2 or
packages in Ada) provides a safe interface to separately-compiled objects, as well as facilitating
the design of large systems consisting of many objects (possibly implemented by several people)
or the use of predefined objects. Aeolus pseudo-objects provide a means of isolating system
dependencies such as input/output or low-level machine architecture—into object-like modules
which provide operations facilitating machine-level programming.

The Clouds notion of actions corresponds roughly to the transaction concept of distributed
database work, providing an "all-or-nothing" assurance of atomic execution (a property
sometimes called failure atomicity). Support of actions in Aeolus is fairly low—level.
Essentially, means are provided for specifying that an operation invocation is to be executed as
a toplevel or nested action. Also, the status of an action execution may be checked or altered by
means of calls to a Clouds action manager. In Clouds, we distinguish between operations
invoked as an action and operations executing in an action environment. We say that an
operation is executing in an action environment if that operation is invoked as a toplevel or
nested action, or if the invoker of the operation is executing in an action environment. Thus, it
is a sufficient, but not a necessary, condition that an operation be invoked as an action to be
running in an action environment. (Some transaction systems require the creation of one or
more nested actions to encapsulate every remote operation invocation. In Clouds, such
encapsulation is not required, but is available at the programmer's option.)

The process concept in Aeolus is similar to the program construct of Pascal or Modula-2.
That is, a process ties together the constituent parts (objects) of a programmed system, and the
invocation of a process provides activity in the Clouds system, since Clouds objects are passive.

In this paper, the features provided by the language for the support of readable,
maintainable systems programs are described briefly, as is the rationale underlying their design.
Considerably more space is devoted to the detailed description of features provided for the
support of object and action programming. Finally, an example making use of advanced
features for action programming is presented, and the current status of the language and its use
in the Clouds project is described.

2. Support for Systems Programming

In this section, those features of Aeolus which are provided for the support of readable,
maintainable systems programs, and which are not directly related to the support of
action/object programming, are described briefly. These include structured types for access to
low-level data representation, expression and statement constructs necessary for doing systems
programming in a concurrent environment, and the typing mechanism.

2.1 Access to Low-Level Data Representation

Aeolus provides a wide range of traditional type classes, including enumerations, pointer
types, structured types, and locks. (Objects are also treated as types in Aeolus, as will be
described in section 3.) Of interest here are those structured types providing access to the low-
level representation of data, as is often required in systems programming, and those constructs
providing support for synchronization in a concurrent environment.

Technical Report GIT-ICS-86/12

-3-

Aeolus provides the traditional structured types, such as arrays, records, and sets. All types
in Aeolus may be parameterized (see below); for example, the parameterized record type in
Aeolus is similar in concept to the discriminated record type of Ada. The extension of
parameterization to other types allows type constraints to be expressed in terms of parameters,
and allows parameterized array types to be declared without the necessity of embedding them in
record types. The parameterized array construct indirectly provides support for arrays with a
flexible number of elements (so-called "dynamic" arrays); these may be simulated by using
pointers to parameterized arrays. Two important parameterized array types provided by the
Aeolus implementation are strings and bitstrings. The string type allows convenient
manipulation of character sequences. The bitstring, on the other hand, provides the most
primitive structured abstraction of data, that of simply a sequence of bits:

type bitstring(length : unsigned) Is array [unsigned[1..length] of bit

The length constraint of the bitstring (in bits) is indicated by the value of the parameter
"length." For example:

type nybble Is bitstring(4)

Each "system" object2 provides declarations of several useful bitstring types. These types
are referred to collectively as the storage classes, since they define the units of storage
supported by the hardware of most computer systems: types bit, byte, word, lengword, and
quadwoni, with lengths BITSIZE, B'YTESIZE, WORDSIZE, LONGWORDSIZE, and
QUADWORDSIZE, respectively.

Another important bitstring type, address, is also defined by the "system" object. The
address type is defined as bitstring(ADDRESSME). The relationship between address types and
pointer types is discussed below.

Several operations are provided for manipulation of bitstring data, including bitwise Boolean
operations and shift operators. Access to individual bits of a bitstring is, of course, through
array index operations. The provision of a true bitstring type addresses a lack experienced by
users of both the Ada and C languages.[Evan84]

Another structured type providing access to low-level data representation is the structure, a
special case of a record construct somewhat similar to the packed record construct of Pascal or
the packed pragma as applied to the record construct (with representation specification) in Ada.
The declaration of a structure type specifies the storage class which the structure will fit. A
field in a structure typically represents a bitstring or scalar; the fields are packed together
consecutively within an object of the specified storage class (without implicit padding), with the
first field specified starting at the most significant bit position in the storage class. The compiler
checks that the fields declared for the structure together fit into the specified storage class.

2.2 Constructs Supporting Synchronization

Features provided by Aeolus for the support of synchronization and mutual exclusion in a
concurrent environment include the lock construct, the region construct, and the shared type
attribute.

A lock type may be used to declare variables which in turn may be used to implement
locking protocols on particular values in some domain. Note that an Aeolus/Clouds lock is
obtained for a value of an object, and not on the object itself. Thus, for instance, a lock may be

2. There exists a "system" pseudo-object for each computer system for which the Aeolus compiler is implemented.
(At present, the "system" objects include VAX_Systens and PC_System, for the DEC VAX 11/780 and the Intel
8086-8088-80286 families of computers, respectively.) Each such object defines system-dependent constants, types,
and operations required for systems programming. The appropriate object (determined by target code generation
and controllable by compiler option) is imported implicitly by every compiland.

Technical Report GIT-ICS-86/12

-4-

obtained on a file name even if that file does not yet exist. (The lock structure is directly
supported by the Clouds architecture.) A lock declaration includes the specification of a
compatibility list, which defines, for a given mode of the lock, which other modes are compatible
with that mode. A lock may be set with a specified mode only if other modes already set, if
any, are compatible with that mode. (Thus, a process adhering to a protocol using that lock
may wish to block until the requested mode is available. Operations are provided by object
.standard for testing, setting, and releasing locks.) The presence of an identifier in a
compatibility list serves as a, declaration of that identifier as a mode of the lock type; the modes
of a lock type may together be thought of as an enumeration. An empty compatibility list
indicates that the given mode is incompatible with all other modes.

The lock declaration may also specify the domain of values which may be locked. If the
domain specification is omitted, a simple lock (i.e., one which does not lock over any particular
domain) is assumed. For example:

type simpleJock is lock (busy : a
type fileJock Is lock (read : (read] ,

write : fl) domain Is string(20)

The declaration of "simple_lock" above defines a lock type with a single mode "busy" which is
incompatible with itself; thus, only one client may set a lock variable of type "simplejock" at
any one time. The declaration of "file_lock," on the other hand, defines a lock type over the
domain of strings of length 20. Clients may set a lock variable of type "file_lock" on a given
string with modes "read" or "write." The "read" mode is specified as being compatible with
other settings of "read" mode; the "write" mode is incompatible with itself and with "read"
mode. Thus, a client may set the lock with "read" mode on a given string even if several other
clients have outstanding settings of the lock with "read" mode on that string; however, a client
wishing to set the lock with "write" mode on a given string must wait for all outstanding settings
of "read" mode on that string to be released.

All locks obtained during execution in the environment of a nested action are retained and
propagated to the immediate ancestor of that action upon committal unless explicitly released by
the programmer. Locks obtained under an action are automatically released if the action aborts
or successfully performs a toplevel commit. Thus, a two-phase locking protocol (2PL) is
maintained, with violations to 2PL allowed (via explicit release of locks) if the programmer
deems such violations acceptable. A lock is available to be granted under a nested action even if
conflicting locks are held under one or more of the ancestors of that action, but not if conflicting
locks are held under an action which is not an ancestor of the nested action.

The power of the Aeolus/Clouds lock construct in supporting user-defined synchronization
lies in the specification of arbitrary locking modes, and arbitrary compatibilities between those
modes, as well as the dissociation of locks from the locked data. To support mutual exclusion,
Aeolus provides a critical region construct, access to which is controlled by association of the
region with a designator for a shared variable. The shared variable is associated with a
semaphore, yielding the familiar semantics of critical regions. In Aeolus, any type may have
the attribute shared, which is inherited by any types of which the shared type is an element. In
particular, Aeolus arrays may consist of shared elements; thus, the granularity of mutual
exclusion may be tailored to achieve higher concurrency.

2.3 Type Compatibility and Conversion in Aeolus

The principal goal in the design of the Aeolus typing mechanism was the provision of strong
typing where possible, but also the provision of escapes from strong typing where the special
demands of systems programming required. Another concern which affected the design of
these mechanisms was that programs be readable and maintainable by members of a fairly
rapidly-changing research group. Thus, the desirability of brevity of notation was felt to be
subordinate to that of rapid comprehension of code by readers (including the original authors of

-f...chnical Report GIT-ICS-86/12

-5-

the code). Thus, we attempted to make the typing mechanism as simple as possible, simplifying
the tasks both of the compiler and of the reader, who must otherwise remember numerous
compatibility and implicit conversion rules, increasing the possibility of misunderstanding or
confusion.

The type of an operand is said to be compatible with that required by an operation if they
are the same type, that is, if the types are equivalent. Type equivalence in Aeolus is by name.

As in Ada, a constraint which is associated with a scalar type (by way of a constraint
specification in the type's declaration, or via a constraint declaration) is not considered part of
that type, but rather is an attribute which is given to a member of that type. 3 Thus, a
constrained member is compatible with a member which has the same type but a different (or
no) constraint.

Types may be parameterized, that is, some of the attributes of a type may depend on the
values of formal type parameters. (Object types may also be parameterized; see section 3.) In
contrast to constraints, the parameters of a type as specified in the declaration of that type are,
in general, considered to be a part of that type. The exception is when the specification of these
parameters is delayed (via an empty actual type parameter option). (A member of a type with
delayed parameterization is sometimes said to be associated with a delayed constraint.) A type
with delayed parameterization is compatible with all possible parameterization of that type.
Types with delayed parameterization, when used as the types of formal procedure parameters,
make possible generic operations on structured types such as arrays; and when used as pointer
base types, allow the definition of pointers to arrays with flexible sizes.

The requirement for strict name equivalence of types is relaxed somewhat in the case of
array slices, since slices, by their nature, cannot be associated with a named type. Rather, a
slice is similar to a member of an unconstrained array type, any type parameter values of which
are derived from the slice bounds, and which takes on as its base type the base type of the
named type of the array from which the slice was derived. An array slice with n elements is
compatible with any array or array slice with n elements and a compatible element type. Also,
a slice of one element is compatible with any variable of a type compatible with the element
type of the slice. Note that this implies the following correspondences:

bit < = > bitstringslice[1.. 1] < = > bitstring(1)
char < = > 	stringslice[1.. 1] 	< = > string(1)

Thus, bit is compatible with array [integer[1..1]] of bit; char is compatible with
array [integer(1..1]] of char; and, in general, type t is compatible with an array of one
element of element type t.

In the interest of keeping the implementation effort for Aeolus within reasonable bounds, it
was decided not to provide facilities for the specification of overloading of user-defined
operations in the current language. However, certain overloadings are available on predefined
operators. In keeping with the goal of simplicity in the typing mechanism as stated above, the
overloading of a binary operator is available only for operands which are compatible according
to the definitions stated above. As seen from another point of view, this means that Aeolus
does not perform implicit conversions. However, it is sometimes desirable to perform
operations on operands of differing types. Thus, Aeolus provides the programmer with
powerful means of explicit type conversion. Explicit type conversion functions are defined
between members of closely related types within certain limitations.[Wilk 851 In general, the name

3. Constraints are used for range checking (if enabled) and for determining the sizes of structures, but not for type
checking.

Technical Report GIT-ICS-86/12

-6-

of a type may be used as the name of a conversion function; this type is the target type of the
conversion.

Explicit conversions are allowed between types one of which is derived from the other
(derived types), between different numeric types, between enumeration and numeric types,
from an enumeration type to a string type, and between array types each of which meets
conditions similar to those specified by Ada. Also, conversion is allowed (in both directions)
between a type which is a bitstring type and any type with the same size (in bits) as the source
type. In particular, conversions may be made between any array, record, or structure type and
a bitstring type or array of bitstring type (e.g., array of byte or word) with the same size.
Thus, access may be obtained to the bit representation of data in an explicit manner. Also,
conversion is allowed from any pointer type to type address. In the other direction, conversion
is allowed from type address to any pointer type; however, the result of such a conversion may
be used only for dereferences, and may not be assigned to a pointer variable. Values may be
assigned to address variables directly, by conversion from a pointer type, or via the addr
operation, which yields the storage address of a static or dynamic data item; a value may be
assigned to a pointer variable only by use of an allocator, or via assignment from another
variable of the same pointer type. Thus, a safe (although restrictive) pointer mechanism is
maintained separately from a permissive mechanism permitting address computations when
necessary.

Finally, Aeolus provides a less restrictive (and less safe) means of type conversion in
addition to the explicit (checked) conversion functions described above; the retype function is
similar in spirit to the unchecked conversion function of Ada. Of course, unchecked conversion
may be used to convert addresses to any pointer type, thus violating the safety of the pointer
mechanism. The intent of the retype function is to make such "end runs" around the typing
mechanism obvious to the reader of the code, and when used with restraint and care it makes
possible the sort of generic bookkeeping activity necessary in systems programming (e.g.,
memory allocation routines).

3. Support for Objects

The object construct provides support for data abstraction in Aeolus. A collection of related
data items may be encapsulated within an object, which also may provide operations (procedures
that operate) on the data. The only access to the data of an object is via these operations; thus,
an object can strictly control manipulation of its encapsulated data, helping guarantee the
invariants of the abstraction.

The object concept is supported at the lowest levels of the Clouds kernel; hence, we feel
justified in using the term "object" to describe the data-abstraction facility of Aeolus, since an
Aeolus/Clouds object has a real existence in the system. However, Aeolus does not provide a
sophisticated inheritance mechanism such as that available in Smalltalk, nor does it provide for
dynamic typing of objects. Aeolus provides a simple class mechanism in the object type
described below; all instances of an object type inherit all operations (and other definitions) of
that type. It was felt that, although an inheritance mechanism providing differential sharing of
object operations would be useful, the support for such a mechanism should be left to higher-
level portions of the system in order to keep the kernel as simple as possible; thus, inheritance
will be among the features to be included in the language design to be evolved from our
experience with Aeolus, as mentioned in the Introduction. Also, communication between
objects in Aeolus is based on direct operation invocation rather than on message-passing,
reflecting the fact that Clouds is not a message-passing system, but uses remote procedure call
to support distributed computation. Hence, Aeolus is not strictly an object-oriented language in
the sense of Rentsch.[Rent82] However, it provides access to an object concept supported
throughout the Clouds system. The applications language to be based on our experience with
Aeolus will likely come closer to the concept of "object-oriented language" in the strict sense.

Technical Report GIT-ICS-86/12

-7-

An Aeolus object may have parameters indicating, for instance, sizes or element types of the
abstraction implemented by the object; thus, an object implementing, for instance, a bounded
stack abstraction may be parameterized by the element type and maximum number of elements
of the stack. Then, various instances of the bounded stack object may be created (instantiated)
with differing element types and sizes; the implementation of the object need not be concerned
with details such as the element representation, and the programmer does not need to create
new object types for each combination of element type and stack size. Support for such generic
objects increases the level of abstraction available to the programmer, and makes possible the
creation of libraries of reusable object types, in a spirit similar to that of the generic package
construct of Ada.

The object construct also provides a safe separate compilation mechanism. The separation of
an object specification into a definition part and an implementation part allows checking across
the interface to an object, as well as allowing the use of an object definition before the
corresponding implementation part is finished (thus facilitating top-down design).

3.1 Object Definition Parts

The definition part of an object defines the interface of the object with other compilands. It
specifies the attributes of the object itself as well as the constants, types, and operations which
the object provides to other objects and to processes. (Note that variables may not be declared
in object definition parts; it was felt that the sharing of variables between objects was not in
accord with the principle of data encapsulation embodied by the object construct, which requires
that all access to object data be through operations on the object. Also, there is no counterpart
to the class variable construct of Smalltalk, that is, a variable which is shared by all instances of
an object type; it was felt that this would violate the principle[Ens 178/ that a fully-distributed
system should have no shared memory.) The declaration of the object name in the header of
the object definition defines a type, called an object type, with that name, which may be used in
the declaration of variables to hold capabilities to instances of that object type (see below). An
example of an object definition part is included in the Appendix.

Specification of the autasynch keyword in an object definition header causes code to be
generated for automatic synchronization of object operation invocations based on progranuner-
supplied indications of operation effects (see below). This mechanism provides a simple
read/write locking protocol; it may be used with any object class (see below). 4

The object class is also specified in the object definition header. The object classes fall into
two groups: the non-Clouds object classes (pseudo and local) do not use any of the Clouds
facilities for action or object management, and are thus similar to modules in Modula-2 (for
pseudo-objects) or to generic packages in Ada (for local objects), while the so-called Clouds
object classes (nonrecoverable, recoverable, and autorecoverable) may make use of the object
management facilities and (for recoverable and autorecoverable types) the action management
facilities. Thus, the rationale behind the non-Clouds object classes is the same as that
underlying the design of the corresponding features in Ada or Modula-2, that is, the provision
of data-abstraction facilities usable "locally" (without resorting to operating system facilities).
On the other hand, the Clouds object classes provide access to the support for data abstraction
provided by the Clouds system when the expense of that support is warranted; the separate
classes of Clouds object allow the programmer to specify the degree of support (and of incurred
expense) required. The definitions of the object classes are as follows:

4. For more information on the mechanisms supplied by the Clouds system to support synchronization and recovery,
see Allzhin's dissertation.[3a)

Technical Report GIT-ICS-86/12

-8-

non-Clouds object classes:
pseudo (or pseudo-local) There may exist only one instance of a given pseudo-object type.

This class of objects is used mainly for definition of system libraries, for interfacing
with (separately-compiled) collections of procedures written in another programming
language, for abstraction of machine and system dependencies, and as a basic
separate-compilation mechanism.

local The standard class of non-Clouds object, which may have multiple instances.
Management of local objects is provided by the Aeolus runtime system. Unlike Clouds
objects, a local object may have no existence independent of the process or object
which created it. Local objects simulate Clouds objects without incurring the expense
of the use of the action and object management facilities.

Clouds object classes:

nonrecoverable The basic class of Clouds object. Objects of class nonrecoverable make use
of the object management facilities, but may not contain features requiring
action management, such as recoverable areas, permanent and per-action
variables, or action event handlers (see section 4).

recoverable 	The "roll-your-own recovery" type of Clouds object, as opposed to the
autorecoverable class of objects (described below), which provides
completely automatic recovery. In some cases, the programmer may be able
to use knowledge of the semantics of the object and its operations to program
synchronization and recovery mechanisms more efficient than the automatic
mechanisms supplied by the autorecoverable class of objects. Automatic
recovery involves checkpointing of the entire object state; automatic
synchronization is based on a simple read-write model of operation
interactions on entire operations. As will be discussed in section 4, Aeolus
provides facilities that allow the programmer to specify which parts of the
object state are to be checkpointed (recoverable areas), to access information
about the states of actions and to change these states (via operations on the
action manager), and to control the recovery process by specification of what
is to be done during action events (action event handlers); also, the
programmer may specify finer-grained locking mechanisms for greater
control of synchronization (via the lock type; see section 2). Only
recoverable objects may contain recoverable area specifications and action
event handler specifications.

autorecoverable As mentioned above, autorecoverable objects provide completely automatic
recovery. The entire object state (the global variables of the object) is
recoverable, and the default event handlers are used.

Operations on objects of class recoverable or autorecoverable may be executed only within an
action environment; this restriction will be explained further in section 4.4. An instance of an
object (other than of class pseudo) is created by use of an allocator, a construct also used for
allocation of pointer values (and similar to that used for allocating "access objects" [pointers] in
Ada). This underscores the similarity in treatment between object capabilities and pointers, in
particular, the processes of creation, initialization, and deletion (disposal), as well as their use
as elements in lists and other structures and as parameters to objects and object operations. The
values of any object parameters must be specified by using a constructor in the allocator. The
allocator yields a capability to the newly-created object instance, which may be assigned to a
variable of that object type. The variable may thereafter be used to qualify operation
invocations on that object instance. The init object event handler (see below) for the object is
executed during the instantiation process, as are any variable initializations required by the
object.

Technical Report GIT-ICS-86/12

-9-

The definition part also performs any necessary imports of other object definitions before
the declarations of the object definition are given. These are called its visible declaraticns since
the declarations are available to any object which imports the object definition. As stated
above, the visible declarations of an object may include specifications of constants, types, or
operations, but not of variables. Finally, specifications of the object's operations are provided.
An operation specification may optionally be given one of the attributes examines or modfies,
which indicate that the operation reads from or writes to the object's state, respectively. This
information is used by the compiler to generate automatic read or write locking for each
operation if the autosynch attribute is specified for the object. If no operation effect is specified,
the compiler assumes that the operation neither reads nor modifies the object state, and thus no
automatic locking would be done for that operation. The autasynch feature thus provides
automatic synchronization according to a simple multiple readers/single writer protocol. An
object operation (or other procedure) meeting certain conditions[wilk 851 may also be given the
inline attribute, indicating that inline code expansion of the operation is desired; thus, the use of
operations to access portions of encapsulated data can be made more efficient. We have found
in our experience that when complicated data structures are encapsulated (such as compiler type
attribute records), the number of operations which exist merely to provide controlled access to
small portions of the hidden data structure becomes very large; the efficient support of such
operations thus becomes important to encourage the use of encapsulation.

3.2 Object Implementation Parts

The implementation part of an object provides the actual code for the operations of the
object, as well as the definitions of any private constants, types, variables, or procedures needed
by the object. (An example of an object implementation part is provided in the Appendix.)
These definitions are, of course, hidden from other oompilands; only those definitions specified
in the object definition part are available outside the implementation part. This supports the
hiding of encapsulated data required by the data-abstraction feature, and is similar in concept to
Ada package and Modula-2 module implementations.

The definition part of the object being implemented is implicitly imported by the
implementation part; also, any objects imported by the definition part are available in the
implementation part. The implementation part may import other objects as well via its own
import clauses. All constants, type definitions, and operations declared in the objects made
available by any of these methods are visible in the implementation part; also, the names of
these imported object types may be used as the types of variables declared in the
implementation part. Such variables must be initialized by use of an allocator.

Variables declared in the outer level of the block of the object implementation part are
global to the object, and the values of such variables survive between invocations of the object's
operations. The global variables of an object are called collectively the object's state. In an
object of class recoverable, part of the object state may be specified to be in a recoverable area;
also, the programmer may specify an action events part and/or a per-action variables part.
Recoverable areas, action events, and per-action variables are described in section 4.

In order to allow the object to participate in its own creation and deletion, an object
implementation part contains specifications of handlers for the so-called object events. The
object events include the init or object initialization event, the handler for which is executed
whenever an instance of the object is created by use of an allocator; the remit or object
reinitialization event, the handler for which is executed—if the object has registered its desire
for reinitialization with the action manager—when the system is reinitialized after a crash or
network partition; and the delete or object deletion event, the handler for which is executed
when the object instance is destroyed. No default handler for the init object event is assumed; if
no action is desired for the init event, the programmer must supply a NULL statement as the
handler body. The intent is to help prevent the accidental omission of object state initialization
by the programmer. If no handler for the remit object event is specified, the handler is by
default the same as that specified for the init event. If no handler for the delete object event is

,finical Report GIT-ICS-86/12

- 10 -

specified, it is assumed to be NULL.

3.3 Object Operation Invocations

An invocation of an object operation looks much lice a procedure invocation, except that,
outside the implementation part of the object itself, an operation name must be vnlified by the
name of a variable representing an instance of that object type (or, for pseudo-objects, by the
name of the object type itself). Thus, for an instance of a bounded-stack type, we may have

stack jnstance @ push(eiem)

When an object invokes one of its own operations, however, the usual procedure call syntax is
used.

Invocations of pseudo-object and local object operations have semantics essentially similar to
those of (-Ails to procedures local to a compiland. The situation is different for operations
declared in objects which use the Clouds object-management facilities (i.e., the so-called
"Clouds objects"). 5 Invocations of operations on Clouds objects are handled by the compiler
through operations on the Clouds object manager on the machine on which the invoking code is
running. The Clouds object on which the operation is being invoked need not be located on the
same machine as the invoking code; the object manager then makes a remote procedure call
(RPC) to the object manager on the machine on which the called object resides. The
location--local or remote—of the object being operated upon, however, need not concern the
programmer, as the RPC process is transparent above the object-management level.

4. Support for Actions

The action concept provides an abstraction of the idea of work in the Clouds system; an
action represents a unit of work. Actions provide failure atomicity, that is, they display "all-or-
nothing" behavior: an action either runs to completion and commits its results, or, if some
failure prevents completion, it aborts and its effects are cancelled as if the action had never
executed. The rationale for the action concept and the mechanisms supporting it in the Clouds
system are described in Allchin's dissertation;LAild 3a] the design for the implementation of these
mechanisms is described in Kenley's theSiS.[Ken186]

Support for actions in the Aeolus language is relatively low-level. The methodology of
programming with actions is not at present well-understood compared with experience in
programming with objects; thus, rather than providing high-level syntactical abstractions such as
those available for object programming, Aeolus allows access to the full power and detail of the
Clouds system facilities for action management. The major syntactic support provided by
Aeolus for action programming is in the programming of action events, recoverable areas,
permanent and per-action variables, and action invocations.

4.1 Action Events

At several points during the execution of an action, the action interacts with the action
manager of the Clouds system to manage the states of objects touched by that action, including
writing those states to permanent (stable or safe) storage, and recovering previous permanent
states upon failure of an action. Thus, failure atomicity may be provided by the action

5. This is because the code for pseudo-objects and for local objects is actually linked into the code of the compiland
using these objects, whereas the code for Clouds objects is physically separate from the code of the invoking
compiland. This code is paged in on demand by the object manager; see Allchin's dissertation.[11

--dmical Repot, 	CS-86/12

management system. The action events include:

event name

BOA
toplevel_precozmnit

nested_preconunit
commit

abort

purpose

beginning of action
prepare for commit for a toplevel action
prepare for commit for a nested action
normal end of action (BOA)
abnormal end of action

The interactions with the Clouds action manager necessary when such events take place are done
by default procedures supplied by the Aeolus compiler and runtime system; these procedures
are called action event handlers. When an action event occurs for a particular action, the action
manager(s) involved invoke the event handlers for each object touched by that action.

As was described in section 3, by use of the autorecoverable class of object, the programmer
may take advantage of the recovery facilities of the Clouds system by having the compiler
generate the necessary code automatically. This automatic recovery mechanism requires
checkpoints of the entire state of the object, and uses the default action event handlers.
However, it is sometimes possible for the programmer to improve the performance of object
recovery by providing one or more object-specific event handlers which make use of the
programmer's knowledge of the object's semantics; these programmer-supplied event handlers
then replace the respective default event handlers for that object. Thus, if object class keyword
recoverable is specified in the definition header of the object being implemented, the
programmer may give an optional action event part in the object's implementation part.
Following the keywords action events, the programmer lists the name of each action event
handler provided by the object implementation as well as the name of the action event whose
default handler the specified handler is to override. Thus, for example, the specification (say,
in an object implementing a bounded-stack abstraction):

action events
stackJ30A overrides BOA,
stack_nested_precommit overrides nested_precommIt

indicates that the default handlers for the BOA and nested_precommit action events are to be
replaced by the procedures named "stack_)30A" and "stack_nested_precommit," respectively,
for the bounded-stack object type only.

4.2 Recoverable Areas

As mentioned in section 3, if an object being implemented is of class recoverable, then some
of its variables may be declared in a recoverable area. When a nested action first invokes an
operation on a recoverable object ("touches" that object), the action is given a new version of
the recoverable area which initially has the same value as the version belonging to the action's
immediate ancestor. The set of versions belonging to uncommitted actions which have touched
a recoverable object is maintained on a version stack by a Clouds action manager. When a
nested action commits, its version replaces that of its immediate ancestor. When a toplevel
action commits, its version is saved to permanent storage. If an action is aborted, its version is
popped from the version stack. 6 Thus, recoverable areas (in conjunction with appropriate use of
synchronization) provide view atomicity, that is, an action does not see the intermediate
(uncommitted) results of other actions. Also, the use of recoverable areas allows the

6. For more information on the semantics of recoverable areas and the mechanisms to support them, see Allchin's
dissertation. [A1593a1

Technical Repor' -r-ICS-86/12

- 12-

programmer to provide finer granularity in the specification of that part of the object state which
must be checkpointed, since the use of automatic recovery on object (the autorecoverable object
class) performs checkpoints on the entire state of the object.

The interaction with the action manager necessary to manage the states of recoverable areas
is implemented by the action event handlers as described above. Again, the default event
handlers may be overridden by programmer-supplied event handlers for the entire object to
achieve better performance.

4.3 Permanent and Per-Action Variables

It may sometimes be desirable to make large data structures resilient. In such cases, the
recoverable area mechanism may be inefficient, since it requires the creation of a new version
of the entire recoverable area for each action which modifies the area. Often in such cases the
programmer make take advantage of knowledge of the semantics of the data structure to
efficiently program the recovery of the data structure. The Aeolus language provides two
constructs which aid in the custom programming of data recovery, the so-called permanent and
per-action variables, constructs proposed by McKendry.NcKe 851

Any type may be given the attribute permanent. This attribute indicates that members of
that type are to be allocated on the permanent heap, a dynamic storage area in the object storage
of each object instance. This area receives special treatment by the Clouds storage manager; in
particular, it is shadow paged during the toplevel preconvnit action event.? Any type which has
as its base or element type a type with the attribute permanent inherits that attribute. Other
than during object initiRIi7a tion, permanent variables may be assigned values only within a
toplevel precommit event handler.

Aeolus also provides the per-action variable construct. An object implementation part of
class recoverable may declare a single per-action variable section. A per-action specification
resembles a recoverable area specification, and the semantics is also similar, in that each action
which touches an object with per-action variables gets its own version of the variables; however,
the programmer may access the per-action variables not only of the current action, but also of
the parent of the current action. Also, per-action variables are allocated in volatile storage, that
is, in storage the contents of which may be lost upon node failure. The variables in a per-action
specification are accessed as if they were fields in a record described by the specification; two
entities of this "record type" are implicitly declared: Self and Parent, which refer respectively
to the per-action variables of the current action and its immediate ancestor.

Permanent and per-action variables may be used together to simulate the effect of
recoverable areas at a much lower cost in space per action. In general, the per-action variables
are used to propagate changes to the resilient data structure up the action tree; these changes are
then applied during the toplevel precommit action event to the actual data structure in permanent
storage. The use of permanent and per-action variables is shown more fully in the
programming example shown in the Appendix (and described in section 6).

4.4 Action Invocations

The right-hand side of an assignment statement may take the form of an action invocation.
Here, the right-hand side (which consists of an operation invocation which, if the operation is
value-returning, is embedded in another assignment statement) is invoked as an action; the
action ID of this action is assigned to the variable designated by the left-hand side of the action
invocation. Thus, for example, if the bounded-stack object mentioned in section 3 were defined
as a recoverable object, we might invoke one of its operations as an action:

7. More information on the management of permanent heap storage is available in several papers on the Clouds
system. [Fi5,Ken186,Wilk961

Technical Report CTIT-ICS-86/12

- 13 -

atD := action(stackJnstance @ push(elem))

The action ID may be used as a parameter in operations on the action manager which provide
information about the status of the action, cause a process to wait on the completion of an
action, or explicitly cause an action to commit or abort. 8 The programmer may specify that an
action be created as a "top-level" action, that is, as an action with no ancestors; a top-level
action cannot be affected by an abort of any other action. Otherwise, the action is created as a
"nested" action, that is, as a child (in the so-called action tree) of the action which created it; as
described below, a nested action may be affected by an abort of one of its ancestors.
Optionally, a timeout value may be specified; if the action has not committed by the expiration
of this timeout, the action will be aborted. If no timeout value is specified, a system-defined
default value is used.

As described in section 1, object operations may possibly execute in an action environment
or may be invoked as an action. Only an operation or internal procedure of a recoverable or
autorecoverable object may be invoked as an action; however, all operation invocations on such
objects must be executing in an action environment. Thus, operations of a non-Clouds object or
of a nonrecoverable Clouds object may execute in an action environment, but may not be
invoked as an action. A recoverable or autorecoverable Clouds object is said to be touched by an
action if one or more of the operations of the object are invoked within the environment of that
action.

The semantics of an action invocation is as follows: the action manager operation
CreateAction is invoked with the name of the operation to be performed as well as the list of
arguments to be passed to that operation. 9 The action manager then invokes the BOA event
handler on the object to which the operation belongs. Next, the action manager creates and
dispatches a process in which the operation code runs. When an object is first touched by the
action, the BOA handler of that object is invoked. An attempt by an operation invoked as an
action to return to its caller is considered an implicit attempt to commit the action, and will cause
control to transfer to the Commit operation of the action manager, which terminates the process
and invokes the precommit event handler of each object touched by the action. (An explicit
invocation of the Commit operation has the same effect.) If precommit of all touched objects is
successful, the action manager then invokes the commit event handler of each touched object;
otherwise, the objects' abort event handlers are invoked. If the action (or one of its ancestors)
invokes the Abort operation of the action manager, the action manager terminates the process
corresponding to the action and invokes the abort event handler of each object touched by that
action.

It may sometimes occur that an object operation may be called either as an action invocation,
or as an ordinary object operation invocation (even in an action environment). In the case that
an operation is invoked normally (that is, not invoked as an action), an invocation of the action
manager operation Commit by the operation will cause the action manager to merely return
control to the point of invocation of the original operation; thus, in this case the Commit call is
effectively a normal procedure return. On the other hand, an invocation of the Abort operation
by an operation . invoked normally will cause the parent action of the invoker of the original
operation (that is, the action in the environment of which the operation is executing) to abort.
Aeolus does not provide an explicit exception-handling mechanism. This function is subsumed
to some extent, for operations executing within an action environment, by the action event
handling mechanism. However, in the case of operations not invoked as actions, a call to the
Abort action manager operation—as described above—provides a mechanism similar to an

8. The interface to the Clouds action manager is described in the Reference Manual.rwilissi
9. The exact details of the manner in which this information is provided depends on whether the operation is a local

procedure or a publicly-visible operation of the object to which it belongs.

'echnical Report GIT-ICS-86/12

- 14 -

exception-handling mechanism with a single exceptional condition (say, "error"); the abort
event is effectively propagated to the parent action, and is handled by the action event handlers
of the objects which the action touched.

5. Support for Processes
The final structuring feature of the Aeolus language provides an abstraction of the process

concept of the Clouds system. (The process is analogous to the program construct of Pascal or
Modula-2.) The invocation of a process provides activity in the Clouds system; processes may
be considered the "glue" which binds object operations, and possibly actions, to do useful work.

A process is introduced by a header which gives the name of the process, as well as clauses
detailing any imports of object definitions necessary. Following any import clauses, the body
(process block) of the process is specified; the statement part of this block is the entry point
when the process is activated, and execution begins there after any necessary variable
initializations of the process block have been performed.

6. A Programming Example
In this section, we discuss an example of systems programming using the constructs which

Aeolus provides for access to the powerful features of the Clouds system for action and object
programming. The text of the example object discussed here is provided in the Appendix.

Since the use of a recoverable data structure requires the creation of a complete copy of the
data structure on the version stack for each action which modifies the data structure, the
implementation of a replicated object can become inefficient as the size of the data structure
increases. Fortunately, we can use semantic knowledge about the object to simulate the effect
of recoverable variables at a fraction of their cost. Essentially, rather than require that the
system allocate a new version of a complete data structure for each new action, we make use of
per-action variables to maintain "change lists" for each action. These may be viewed as
"intention lists" for operations such as insertion or deletion in a data structure. Since each
action can access both its own recoverable variables and those of its parent, we may arrange to
propagate the change lists of an action to its parent, usually by coding an event handler for
either the nested_precornmit or the commit action event. (We may also wish to arrange to clean
up after ourselves in an abort action event handler.) The actual modification of the data
structure itself is delayed until the toplevel_preconvnit action event. In a handler for this event,
we must arrange to perform the changes maintained in the change lists (say, insertions and
deletions) on the actual data structure; the actual data structure is maintained in permanent
storage. Note that the Aeolus/Clouds system enforces the restriction that data in permanent
storage may be modified only at toplevel precommit; then, the Clouds storage management
system[Pitt85] assures the stability of permanent storage and the atomicity of changes to it.

The use of this technique often requires the use of linked lists or similar data structures
allocated in a heap in the permanent area of per-object storage. This permanent heap requires
special run-time support for its management, which must maintain the heap's consistency across
failures.

In the example shown in the Appendix, we show a proposed design for the permanent heap
manager. To maintain the consistency of the heap, this PERMHEAP object uses the same
techniques which the permanent heap mechanism is designed to support, i.e., per-action
variables and associated action-event handlers. In the implementation shown, the "free list"
(i.e., the list of available blocks of permanent storage) is itself kept in permanent storage to
ensure the resilience of the permanent heap structure. (Thus, the PERMHEAP object must
actually be bootstrapped from a non-resilient version.) For the purposes of this example, we
have written PERMHEAP as a recoverable object. In practice, the permanent heap support
would be part of the runtime support code compiled into a recoverable object, rather than a
separate object.

Technical Report GIT-ICS-86/12

- 15 -

The PERMHEAP object maintains lists of those blocks of the heap allocated and freed by
each action, in per-action variables. Also, each action which allocates a block of storage obtains
a lock on the value of the address of that block. (Blocks of storage are uniquely identified by
their starting addresses.) The presence of a lock on a block of storage indicates that it has been
allocated by some action which has not yet committed; since changes to the actual "free list" are
not made until toplevel precommit of the action allocating storage, this lock is necessary to
inform other actions that the block is probably unavailable. A call to the ALLOCATE
operation of PERMHEAP will return the address of a block of memory in the permanent heap
area of the object; the address of the block is also added to the ALLOCATED per-action list
and is locked. If a block of memory was allocated by the action which is trying to free it, a call
to PERMHEAP's FREE operation will remove that block from the ALLOCATED list and
release the lock on its address, effectively causing the block to never have been allocated. If, on
the other hand, the block was not allocated by the invoking action, the address of the block to be
disposed is merely added to the FREED per-action list; actual disposal is performed at toplevel
precommit.

No special processing is required if an action allocating or freeing storage aborts, since its
locks are released and no alteration to the permanent "free list" has taken place. Thus,
effectively no allocations or frees have taken place. (Note that the contents of permanent
storage blocks on the "free list" are considered dispensible; nevertheless, these contents may be
modified only at toplevel precommit.) When a nested action enters its commit phase, its
ALLOCATED and FREED per-action lists are propagated to its parent. Memory blocks on the
permanent heap allocated by an action are actually removed from the "free list" when the
action's toplevel ancestor (to which the nested action's per-action lists have been propagated)
enters its precommit phase; also, blocks freed by the action are added to the "free list" at this
time.

In Clouds, locks (as well as all portions of the object state which are not specified to be
permanent or recoverable, including per-action variables) are maintained in volatile storage.
Thus, information concerning uncommitted allocations and frees. of an object using permanent
heap support may be lost due to node failure. However, this will not cause a problem, since
uncommitted actions running at a node at the time of its failure will be aborted. Recall that
locks belonging to an action are released if that action is aborted; thus, the effect is the same as
if the actions had been aborted in a non-failure case, i.e., as if the allocations and frees had
never been performed.

Note that this implementation of the PERMHEAP object does not provide strict
serializability. To see this, consider some action, A, which exhausts (or nearly exhausts) the
permanent heap, causing other actions B and C trying to allocate permanent memory to' fail.
Action A may well be aborted itself. Actions B and C which failed because of A might not have
failed had they been executed serially. However, such breaches of strict serializability do not
affect the consistency of the permanent heap mechanism, and thus are of little concern in this
context.

7. Status of the Aeolus Implementation

In the Clouds systems programming language effort, work is currently continuing in two
major areas as of summer 1986: the implementation of the Aeolus compiler as well as its
integration with the Clouds kernel services, and the use of the Aeolus language system as a
testbed for studying the problems of programming in action-object systems.

Work on the compiler is in progress on one of the DEC VAX 11/750s of the Clouds system,
under the BRL version of Berkeley UNIX 4.2. The Amsterdam Compiler Kit[Tane'83] is being

Technical Report GIT-ICS-86/12

- 16 -

used for code generation. The basic portion of the compiler implementation has been finished,
including support for non-Clouds objects. Current work on the Aeolus implementation is being
concentrated on those areas of functionality needed for interfacing with the kernel to provide
support for object and action management. We anticipate that support for Clouds objects will
be available in summer 1986, and that the functionality needed for a prototype implementation
in Aeolus of the recently-completed action management design ricen1861 will be available in fall
1986. (The interfaces to action management are described in the Reference Manual[winc 85] for
Aeolus.) The actual implementation of action management is being done in C, as it will be
merged with the kernel code (which is also in C). Concurrently, work is progressing on the
development of structured editing tools for Aeolus using the ALOEGEN structured-editor
generator system developed under the GANDALF project. LNotkSSl

Our plans to use the Aeolus/Clouds system as a testbed for studying programming
methodologies in action-object systems have been described in a previous paper.[Le 13485] As one
of these ongoing studies, we are working towards the development of a distributed object filing
system for Clouds; alternate implementations of the file system will compare the efficiency of
different schemes for achieving consistency and availability. Of special interest are the trade-
offs available among different schemes between consistency and availability, particularly when
semantic knowledge of an object may be brought to bear. This research will be described in a
forthcoming dissertation.(wilk 86]

1M UNIX is a registered trademark of AT&T.

Technical Report 	'C86/12

- 17 -

REFERENCES

[A11c82] 	Allchin, J. E., and M. S. McKendry. "Object-Based Synchronization and
Recovery." TECHNICAL REPORT GIT-ICS-82115, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA, 1982.

[Allc83] 	Allchin, J. E., and M. S. McKendry. "Synchronization and Recovery of
Actions." PROCEEDINGS OF THE SECOND SYMPOSIUM ON PRINCIPLES OF
DISTRIBUTED COMPUTING (ACM SIGACT/SIGOPS), Montreal (August 1983).

[Allc83a) 	Allchin, J. E. "An Architecture for Reliable Decentralized Systems." PH.D.
Dm., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1983. (Also released as technical report GIT-ICS-
83/23.)

[Ens178] 	Enslow, P. H. "What is a 'Distributed" Processing System?."
COMPUTER (IEEE) 11, no. 1 (January 1978): 13-21.

[Evan84] Evans, A. Jr. "A Comparison of Programming Languages: Ada, Pascal, C." In
Comparing & Assessing Programming Languages, ed. A. Feuer and N. Gehani,
66-94. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[Ken186] 	Kenley, G. G. "An Action Management System for a Distributed Operating
System." M.S. THESIS, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (Also released as technical report
GIT-ICS-86/01.)

[LeB185] 	LeBlanc, R. J., and C. T. Wilkes. "Systems Programming with Objects and
Actions." PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON
DISTRIBUTED COMPUTING SYSTEMS, Denver (July 1985). (Also released, in
expanded form, as technical report GIT-ICS-85/03.)

[McKe85] McKendry, M. S. "Ordering Actions for Visibility." TRANSACTIONS ON SOFTWARE
ENGINEERING (IEEE) 11, no. 6 (June 1985). (Also released as technical report
GIT-ICS-84/05.)

[Notk85] Notkin, D. 'The GANDALF Project." THE JOURNAL OF SYSTEMS AND
SOFTWARE 5, no. 2 (May 1985).

[Pitt85] 	Pitts, D. V., and E. H. Spafford. "Notes on a Storage Manager for the Clouds
Kernel." TECHNICAL REPORT Grr-Ics-85/02, School of Information ' and
Computer Science, Georgia Institute of Technology, Atlanta, GA, 1985.

[Rent82] 	Rentsch, T. "Object Oriented Programming." SIGPLAN NOTICES (ACM) 17, no.
9 (September 1982): 51-57.

[Tane83] 	Tanenbaum, A. S., H. van Staveren, E. G. Keizer, and J. W. Stevenson. "A
Practical Tool Kit for Making Portable Compilers." COMMUNICATIONS OF THE
ACM 26, no. 9 (September 1983).

[Wilk85} 	Wilkes, C. T. "Preliminary Aeolus Reference Manual." TECHNICAL REPORT
Gu-Ics-85/07, School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1985. (Last Revision: 17 March 1986.)

[Willc86} 	Wilkes, C. T. "Programming Methodologies for Resilience and Availability."
PH.D. Diss., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1986. (In progress.)

Technical Report el 	"S-86/12

- 18 -

Appendix

The following example is discussed in section 6 of this paper. Reserved words of Aeolus are
indicated by boldface.

definition of recoverable object permheap is
I Gives the publically-visible definitions provided by the PERMHEAP object.

operations

procedure allocate (size : unsigned) returns address modifies
I Return a pointer to a block of memory of the given "size" (in words) in
I permanent memory.

procedure free (block : address) modifies
Dispose the block of memory indicated by "block".

end definition. I permheap I

Implementation of I recoverable I object permheap is
I Support for the permanent heap, using per-action variables for recovery management.

import list
The definition part of the LIST object is shown here for clarity.

definition of local object list (elem_type : type) is
-- This object Implements a linked list abstraction. The object Is parameterized
-- by the element type of the list; if the element type is specified to be permanent
— by a (recoverable) importing object, then the linked list Itself will be allocated
-- in permanent storage (only recoverable objects may declare permanent variables).
-- The list Is Initially empty. Mutual exclusion Is provided on MODIFY operations.

operations
procedure add (elem : elem_type) modifies

-- Adds ELEM to the list.
procedure append (I : list) modifies

-- Appends all elements In list L to this list. Use of the object type "list"
-- here with no parameters implies that list L must have the same element type
-- as this list.

procedure remove (elem : elem_type) modifies
-- If ELEM Is on the list, removes it.

procedure find (elem : elem_type) returns boolean examines
-- If ELEM is on the list, returns TRUE, otherwise FALSE.

procedure nth (n : unsigned, notthere : out boolean)
returns elem type modifies

-- If the Nth element exists, returns it and sets NOTTHERE to FALSE,
-- otherwise sets NOTTHERE to TRUE.

end definition.

Technical Rer 11T-ICS-86/12

-19-

I The local declarations of the PERMHEAP object.

Here, we give the names of alternate handlers for some of the action events.
I Note that no alternate handler is given for the ABORT event (see section 6).

action events
commit Is permheap_commit,

toplevel_precommit is permheap_top_precommit

Militalm••••

I The PERM_ BLOCKENTRY type is used for the maintenance in the permanent heap of the
I list of free storage blocks. Each block is uniquely identified by its address.

type perrn_blockentry is permanent new address

The list of free storage blocks. Since the base type of this list is permanent,
the list itself Is allocated in permanent storage.
This list may be modified only during the toplevel_precommit action event.
The size of each entry is stored in the first word of that entry.

freelist : list(perm_blockentry) := new list

The BLOCKENTRY type is used in the declaration of the per-action variables
below. Pointers to this type are allocated on the normal (not the
permanent) heap, and may be modified outside of the toplevel_precommit
event handler.

type blockentry Is new address

The per-action variables for permanent-heap recovery management.
We will maintain lists of memory blocks allocated and freed by each action.

per action
allocated : list(blockentry) := new list
freed : list(blockentry) := new list

end per action

When an action allocates a block of permanent storage, it must obtain a lock on that
block until it commits to prevent other actions from attempting to allocate that block.
Rather than associate a lock with the actual storage block, we lock the block's address
(of type BLOCKENTRY). Recall that locks obtained by an action are propagated to its
parent upon nested commit, and released upon abort or toplevel commit.

entryJock : lock (busy : a) domain Is blockentry

Technical Report GiT-ICS-86/12

-20-

procedure firstjit (size : unsigned) returns blockentry Is
A private operation of the PERMHEAP object. Given a size In words, FIRST_FIT finds
the first entry on the FREELIST for a block of storage of size at least as large as
SIZE and returns a pointer to that entry. (For the purposes of this example, we
will assume that such a block exists.) Of course, another strategy could also be
used here (such as best fit, or fragmentation and compaction). We'll assume that
repeated invocations of FIRST_FIT by the same action return different addresses.

begin
I The details of this operation are omitted here. Even if an appropriate block of
! storage is found on the FREELIST, FIRST_FIT must also test the ENTRY_LOCK to check
whether this block has not already been allocated by some as yet uncommitted action.

end procedure I firstjit I

I ALLOCATE and FREE are public operations of the PERMHEAP object.
1

procedure allocate (I size : unsigned 1) returns address! is
Return the address of a block of memory of the given SIZE in permanent storage.

! Since the block Is from the FREELIST, its former contents are expendable.
The SetJ.ock operation used here is non-blocking, i.e., It returns immediately with

I value FALSE if the requested lock is not available.

entry : blockentry

begin
loop keep going until we find an available block

entry := firstjit(size)
if SetJ..ock(entryJock, busy, entry) then

Self.allocated @ add(entry) I add the entry to the ALLOCATED list for this action
return address(entry)

end it
end loop '

end procedure I allocate !

procedure free (I block : address !) is
I Add a BLOCK of memory to the FREED list for freeing during toplevel precommit.

entry : blockentry
notthere : boolean
i : unsigned := 1

begin
First, scan the ALLOCATED list to see If BLOCK was allocated by the current action

loop
entry := Self.allocated @ nth(I, notthere)
if notthere then

exit .
elsif entry = blockentry(block) then 1 Yes,

Self.allocated @ remove(entry) 	I so remove It from ALLOCATED list
ReleaseLock(entryJock, busy, entry)
return . 	 ! we're done

end if
+= 1

end loop

I If we get here, BLOCK wasn't allocated by the current action, so put it on the FREED list
Self.freed @ add(entry)

end procedure I free !

	

Technical Report G 	_,6-86/12

- 21 -

I The following are the alternate action event handlers for this object.

procedure permheap_commit () Is
I The alternate handler for the COMMIT action event. Well propagate the items on
I the ALLOCATED and FREED lists of this action to the corresponding lists of Its parent action.

aID : actionJD
status : action_status
level : actionJevel

begin
aID := ActionManager @ TeIIJD(status, level) I see if we're in a nested action
If level = nested_action then

Parente''located @ append(Self.allocated)
Parent.freed @ append(Self.freed)

end If
end procedure I permheap commit I

procedure permheap_top_precommit 0 Is
I The alternate handler for the TOPLEVEL_PRECOMMIT action event. We'll traverse the FREED
I list, adding each entry there to the actual FREELIST in permanent storage; then, we'll
!traverse the ALLOCATED list, removing each entry there from the FREELIST.

entry : blockentry
notthere : boolean
I : unsigned 1

begin
I Add each entry on the FREED list to the FREELIST In permanent storage
loop

entry := Self.freed @ nth(I, notthere)
if notthere then

exit .
end if
I Convert the entry to the permanent type before adding to FREELIST.
freelist @ add(perm_blockentry(entry))

end loop

I Remove each entry on the ALLOCATED Ilst from the FREELIST; the locks on these
! entries will be released automatically.
loop

entry := Self.allocated @ nth(I, notthere)
If notthere then

exit .
end If
freelist @ remove(perm_blockentry(entry))

end loop
end procedure I permheap top_precommit

Inithandler is I handier for the INIT (initialization) object event
begin

I Perform initialization (not shown) of FREELIST to indicate that all
I of the permanent heap is available.

end inithandler

Technical Report GIT 	36/12

-22-

relnithandler Is I handier for the REINIT (reinitialization) object event
begin

NULL ! This handler would by default be the same as the INIT handler
end relnithandler

! The DELETE object event handler for this object Is by default NULL.

end implementation. I permheap I

Technical Report ("T-ICS-86/12

QUARTERLY PROGRESS REPORT
RESEARCH ON RELIABLE DISTRIBUTED

COMPUTING
CONTRACT #MDA 904-86-C-5002
REPORTING PERIOD: 1 OCT 85 - 31 DEC 85

-1-

1. Project Status

During the first quarter of this project, work has continued on each of the two tasks carried
over from our previous project and we have begun work on the new task. These efforts are
closely related to other work in progress within the Clouds Project, our major research effort in
the area of reliable distributed computing.

Under the Language Support for Robust Distributed Programs task, work continues in two
major areas: the implementation of the Aeolus compiler as well as its integration with the
Clouds kernel services, and the use of the Aeolus language system as a testbed for studying the
problems of programming in action-object systems.

Under the Storage Management for an Action-Based Operating System task, the focus of
our work has been on implementation, testing and integration with the virtual memory
management mechanisms of the Clouds kernel.

Under the Operating System Support for Reliable Distributed Computing Task, our efforts
have been directed toward specification and functional design of the operating system services
which will be implemented on top of the object and action management mechanisms provided
by the Clouds kernel.

The work on the tasks of this project is proceeding on schedule. Working in combination
with other efforts in progress within the Clouds project, we are now in the process of debugging
our initial prototype system.

2. Language Support for Robust distributed Programs

In the Clouds systems programming language effort, work continues in two major areas: the
• implementation of the Aeolus compiler as well as its integration with the Clouds kernel services,
and the use of the Aeolus language system as a testbed for studying the problems of
programming in action-object systems.

The major changes made to the Aeolus design over the summer quarter were described in
our last report. Work on the language implementation is proceeding well, with many of the
changes to the language made over the summer now incorporated into the compiler. Current
work is being concentrated on those areas of functionality needed for interfacing with the
kernel. In addition, we are working towards the functionality required for an implementation in
Aeolus of the recently-completed action management design.

The design of the interfaces of the runtime system with the Clouds action and object
managers is essentially complete. As was mentioned in our last report, members of the Aeolus
group have been assisting members of the kernel group in the design of these interfaces as well
as in strategies for efficient action management. The detailed designs of the action and object
managers are now complete, and are described in [Ken186]. Our basic designs for the
Aeolus/Clouds interfaces (from the kernel side) are also described in this document; the Aeolus
interfaces with these kernel routines are being codified as appendices to [Wilk85b]. The action
management routines themselves are now being programmed from Kenley's detailed pseudo-
code; implementations are being done both in the C language and in Aeolus. The Aeolus
implementation is being done principally to pinpoint weaknesses which the language may have
as a systems programming language, before the design of the language is finalized; since the
rest of the kernel is written in C, and since the pseudo-code design is based on C, it was felt that
the first production implementation of the action management routines should be done in C.
Because Aeolus was designed to allow easy interfacing with other languages (through use of the
pseudo-local object construct [Wilk851:1]), addition of action management support to Aeolus will
be relatively trivial once the kernel routines are available; most of the interaction with action
management will take place through kernel calls, implemented as operations on an action
management pseudo-object. Other support for actions required from the Aeolus compiler
includes the identification of recoverable areas of storage, permanent and per-action variables,

-2-

and alternate action-event handlers; information about such constructs must be placed by the
compiler in the header of the compiled object for use by action management at runtime.

Our plans to use the Aeolus/Clouds system as a testbed for studying programming
methodologies in action-object systems have been described in previous reports as well as in
[Wilk85a]. As one of these ongoing studies, we are working towards the development of a
distributed file system for Clouds; alternate implementations of the file system will compare the
efficiency of different schemes for achieving consistency and availability. Of special interest are
the trade-offs available among different schemes between consistency and availability,
particularly when semantic knowledge of an object may be brought to bear. As an example of
such a trade-off, there may be applicationssuch as air-traffic controlin which violation of the
consistency requirement among replicated objects may be tolerable for short periods (for
instance, during a network partition) in exchange for increased availability; such reduced quality
of service would be preferable to no service at all in these types of applications. Our work on
the distributed file system study is concentrating on these issues in relation to two schemes for
replicated data management: the quorum method, which assigns a weighted number of votes to
each replicant of a data object, and requires that a quorum of these votes be gathered before a
read or write operation may take place; and the master/slave method of McKendry (as described
in (Willc85a1), which uses "probes" to determine the availability of the master replicant to the
slave replicant (and vice-versa) before operations are executed. The quorum method
emphasizes consistency over availability, in that consistency among the replicants is guaranteed
by the requirement that a quorum of objects be gathered before an operation may take place;
however, an operation may not take place in a partition in which a quorum of objects is not
available, even if one (or more) of the replicants is present in the partition. An algorithm for
using the quorum method for distributed directories has been developed by Daniels and Spector
[Dani83]; we will be modifying this algorithm for use in our comparative study. The
master/slave method, on the other hand, maintains consistency among replicants in the absence
of failures by requiring that any operation invoked on a slave be relayed to the master object,
which in turn invokes that operation on all slaves. (Thus, this scheme partially resembles the
so-called "primary copy" methods.) However, when a failure (for instance, network partition)
occurs, any slave replicant may detect its isolation from the master by use of itself the master in
that partition. Thus, service may continue in a partition containing at least one replicant, at the
price of possible inconsistency among replicants in different partitions. These inconsistencies
must be resolved when the failure (partition) is resolved; methods for doing this are
demonstrated in the examples in [Wilk85a]. Thus, the master/slave method emphasizes
availability over consistency, at least during failures. In our studies, we are examining
combining the quorum method with the master/slave method to improve efficiency during the
non-failure case.

3. Storage Management for an Action -Based Operating System

The storage manager is almost completely implemented and is currently undergoing testing.
There currently exists a working driver for the RLO2 removable pack disk, which is being used
for interim testing while development of a driver for the major storage device (the RA81 fixed
medium disk) of the Clouds kernel is completed. The completion of the driver for the RA81 is
expected by April 1986. The recent discovery of some technical information concerning the
functioning of the disk and its relationship to the UDA50 controller has caused some
modifications in the design for the driver.

The partition level software for the Clouds kernel is on-line and working. Some changes in
the partition interface and design were made during this period as a result of the refinement of
the segment system design. We now can create complete Clouds partitions and perform several
functions on the partitions. The functions include a complete set of partition directory
operations (add an entry to the directory, remove an entry to the directory, and find the location
of an entry in the directory), a set of directory dump operations (for collecting lists of segment

-3-

sysnames that reside on a partition, and operations for allocating and deallocating partition
storage. Two components remain to be implemented for the partition level software: quick
look-up mechanism (called the Maybe Table), and an activation routine, which will bring certain
partition structures into memory and create the lock and semaphores necessary to manage the
partition. These components will be added by the end of January.

Coding of the segment level software is continuing, with only a few major routines
remaining uncoded. These routines form the object data recovery mechanism of the Clouds
kernel. The final of these routines depend on the decisions reached for the rest of the segment
mechanism. Now that these decisions have been made, implementation of the recovery routines
can be completed.

The basic segment mechanism provides a means for performing input/output requests at the
segment level. All input/output requests at the kernel level occur as part of virtual memory
management. That is, if object data is needed, it is brought in to virtual memory as part of a
page fault. Thus, the design of the segment system had to be integrated into the object and
action management subsystems as part of the virtual memory management subsystem.

The following portions of the segment system are coded and are being tested:

A segment activation mechanism: When handling an object operation invocation, object
management initiates a search to find the object and to insure the object is
active. Activating the object involves creating an active segment descriptor for
the disk image of the object and bringing the segment header into memory. A
mapping for the segment is created. If the segment is already active, the
current mapping may be modified.

Segment create and destroy operations: Disk images of objects may be placed on and removed
from the device. The operations support the creation and destruction of
recoverable segments under the auspice of an action.

Segment read and write operations: Data may be transferred to and from the disk, giving a
segment offset as the source or destination. Memory locations used in the
transfer are physical addresses. The operations use the current mapping to
determine where the segment offset reside on disk.

A page mechanism on top of the segment i/o: Pages faults are handled in tandem by object
management and storage management. Initially, object management
determines which object and where in the object, the fault occurred. The
storage manager allocates a physical page and does a segment read to fill the
page.

Testing of the basic segment software will be completed by mid-January. The remaining
segment operations will be completed by the end of January.

4. Operating System Support for Reliable Distributed Computing

4.1 Introduction

The Clouds Project at Georgia Tech includes research aimed at building a reliable distributed
operating system. The primary objectives of the Clouds operating system are:

1. The operating systems will be distributed over several sites. The sites will have a fair
degree of autonomity. Yet the distributed system should work as an integrated system.
Thus the system should support location independency for data, users and processes.

2. Reliability is a key requirement. Large distributed systems use significant number of
hardware components and communication interfaces, all of which are prone to failures.
The system should be able to function normally even with several failed components.

-4-

3. The processing environment should guard against both hardware and software failures.
The permanent data stored in the system should be consistent.

4. Distributed systems often have dynamic configurations. That is, newer hardware gets
added, or faulty hardware is removed. The system function should not be hampered by
such maintenance chores. Thus the system should be dynamically reconfigurable.

5. The system should be capable of monitoring itself. This encompasses hardware monitoring
for keeping track of hardware failures as well as monitoring key software resources (for
example daemons, network servers, and so on.) On detection of failure the system should
be able to self-heal (restart daemons) or self-reconfigure (eliminate faulty sites).

6. The users should be shielded from both the configuration of the system (site
independence) as well as its failure modes. For example, if the site a user is connected to
fails, he should be transferred to an active site transparently.

7. Many of the above functions can be implemented on conventional systems, but would
make the system extremely slow. Thus efficiency is an important design criteria.

The above requirements can be handled by a distributed system and are being designed into
the Clouds operating system. Most of the functions have been designed into the kernel of the
system. The design philosophies adopted for the Clouds operating system are:

1. An object-based, passive system, paradigm is used as the basic architecture. All system
functions, data, user programs and resources are encapsulated as passive objects. The
objects can be invoked at appropriate entry points by processes.

2. The objects in Clouds represent nearly everything. the system has to offer. The site
independence philosophy is implemented by making the object name space (system names)
flat and site independent. When a process on any machine invokes an object located
anywhere, no site names are used. Hence the location of any particular object is unknown
to a process.

3. Reliability is achieved through two techniques. One of them is the action and recovery
concept. The action mechanisms are supported at the kernel level. Actions are atomic units
of work. Any unfinished or failed action is recovered and has no effect until it completes.
The recovery mechanisms are supported inside every object an action touches.

4. Reliability is further extended by the self monitoring and self reconfiguration subsystems.
This is a set of monitoring processes that use "probes" to keep track of all key system
resources, both hardware and software. On detection of failed or flaky components, the
monitoring system invokes the reconfiguration system which rectifies or eliminates (if
possible) the faulty components, and initiates recovery of affected actions. The monitoring
and reconfiguration subsystems are also monitored by the monitoring system.

5. The consistency requirements of the data are handled by the recovery mechanisms and by
concurrency control techniques. The concurrency control is handled by synchronization
paradigms that are an integral part of the object handling primitives. The synchronization
of processes executing in an object is handled automatically by semaphores that are a part
of the object. This gives rise to a two-phase locking algorithm that is supported by the
kernel as a default. The object programmer has the choice of overriding these controls and
use custom built concurrency control, depending upon the application. It is also possible to
turn off the default recovery and commit strategies.

6. Efficiency has been of concern. The object invocation, recovery and synchronization are
handled by the kernel. It turns out that these can be done at the kernel level without much
overhead. Since the entire Clouds design is primarily based on object manipulations,
invocation and synchronization will be the most used operations. Implementing them at the
kernel level will result in an efficient system.

5-

7. The site independence at the user level is handled in part by using intelligent terminals.
The user terminals are not hard-wired into any machine or site, but are on an ethernet,
accessible by any site. Each user session is, of course, handled by one particular site, but
any failure causing the controlling site to be unaccessible causes the user to be transferred
to another site. This is handled cooperatively by the user terminal and the other sites. Thus
the user terminals are actually intelligent microprocesser systems on the Clouds ethernet.
In addition to cooperation with the Clouds network, the user terminals run "Bubbles", a
multiwindowing, user-friendly interface to Clouds.

4.2 Progress Report

The kernel has been designed and implemented to a large degree. The process dispatcher,
the virtual memory, object invocation procedures, and some storage and communication
software has been implemented and tested. We currently do not have software to build Clouds
objects, and thus have not been able to test the invocation in a multiprocess environment. The
kernel has been tested in a stand alone system with hand-coded objects.

The most important communications package in Clouds, the ethernet driver has been
implemented and tested. The driver in based on a very general design and has the ability to
support a host of protocols that can be hooked to it. It currently talks to the Clouds machines as
well as the machines running Unix 4.2bsd (trn).

The storage management subsystem is partially implemented. Disk drivers for implementing
the file system (for object storage) is in the test phase. The advanced virtual memory features
needed by Clouds (partitions, object mapping, segment handling) is being coded and tested.
Implementation of virtual disks using the ethernet (for intersite paging) is underway as the
ethernet driver is now available.

The next phase will integrate the results of the compiler building with the kernel to allow
building of services and user programs as objects and running them on using multiple processes,
and multiple sites.

The action management is an advanced kernel subsystem that ensures the atomicity of the
distributed actions of the Clouds system. The action management is responsible for creation,
deletion, proper or improper termination of actions, commitment, and failure containment. The
design of the action management subsystem is as far complete as can be achieved theoretically
without availability of implementation experience. The implementation will begin as soon as the
base kernel is fully tested.

5. References

[Dani83] 	Daniels, D., and A. Z. Spector, "An Algorithm for Replicated Directories,"
Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, Montreal, August 1983

[Ken186] 	Kenley, G. G., "An Action Management System for a Decentralized Operating
System," M.S. Thesis, School of Information and Computer Science, Georgia
Institute of Technology, January 1986 (also available as Technical Report GIT-
ICS-86/01)

[Wilk85a] Wilkes, C. T., "Programming Methodologies for Resilience and Availability,"
Ph.D. Thesis Proposal, School of Information and Computer Science, Georgia
Institute of Technology, January 1985

[Wilk85b] Wilkes, C. T., "Preliminary Aeolus Reference Manual," Technical Report GIT-
ICS-85/07, School of Information and Computer Science, Georgia Institute of
Technology, July 1985

r

FINAL REPORT
GIT Project No. G36-636

FAULT TOLERANT DISTRIBUTED COMPUTING

Richard J. LeBlanc

Prepared for

Maryland Procurement Office
Ft. George G. Meade, MD 20755

Under

Contract Number MDA904-86-C-5002

GEORGIA INSTITUTE OF TECHNOLOGY
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
SCHOOL OF INFORMATION AND COMPUTER SCIENCE
ATLANTA, GEORGIA 30332

1. Project Accomplishments
During the course of this contract, substantial progress has been made on each of the three

project tasks. These efforts are closely related to other work in progress within the Clouds
Project, our major research effort in the area of reliable distributed computing.

Under the Language Support for Robust Distributed Programs task, the work has proceeded
in two major areas: the integration of the Aeolus compiler with the Clouds kernel services and
the use of the Aeolus language system as a testbed for studying the problems of programming in
action-object systems. A discussion of the design of Aeolus was provided in an appendix to the
third quarterly progress report delivered under this contract.

Under the Storage Management for an Action-Based Operating System task, the focus of
our work has been on the design and implementation of the kernel storage manager and on
implementation of a device driver to enable us to use our large disk drives on machines running
the Clouds kernel. The design of the Clouds storage manager is described in a doanent
attached as Appendix A to this report.

Under the Operating System Support for Reliable Distributed Computing task, our efforts
have been directed toward specification and functional design of the operating system services
which will be implemented on top of the object and action management mechanisms provided
by the Clouds kernel. Our short term goal has been to obtain a working, robust kernel to
provide a basis for the implementation of these designs. Recently, that goal has been achieved
through the integration of a number of separate projects. A description of he Clouds distributed
operating system with a comparison to other related efforts is attached as Appendix B.

2. Language Support for Robust Distributed Programs
Work under this task has included efforts in two major areas: the design and

implementation of the Aeolus language, and the use of Aeolus for the study of programming
methodologies for action/object systems.

2.1 Language Design and Implementation
As mentioned in the last report, the design of the Aeolus language is now "frozen" (we

hope permanently), and the implementation effort is proceeding. Our goal of providing support
for Clouds objects in the compiler is now nearly achieved. This support is realized in two
different areas. The first is run-time support for Clouds object operation invocations. This
involves formatting arguments suitably for remote procedure call (since the target object may
not reside on the machine where the invocation is produced), and handling such things as
copying return values and "out" parameter values upon return from the invocation. Code for
this has been produced, and the compiler generates all the necessary data structures and
invocations.

The second area is the creation of TypeManager objects. When a Clouds object is compiled,
a Unix "a.out"-style load file is created; the Unix header is then stripped from this file to yield
a description for the object in the format expected by Clouds. A TypeManager, once created
under a system running the Clouds kernel, requests this object description file from the Unix
system and stores the description as the TypeManager's object data. Subsequently, when the
"create" operation is invoked on the TypeManager, the object description is used to create an
instance of that object type. To create TypeManagers, we will "hard-wire" a TypeManager for
TypeManagers into the kernel. Work on this original TypeManager is proceeding, as well as on
the supporting code which brings the objects code and data from the Unix system. We are
currently working with members of the kernel group to integrate these features into the Clouds
kernel.

2.2 Programming Methodologies for Action/Object Systems
During the final quarter, our work on achieving availability of resources in the Clouds

system has continued with study of the work of Herlihy, presented in his dissertation,

-2-

"Replication Methods for Abstract Data Types,”[Her 184] and with correspondences between
Herlihy's techniques and the synchronization mechanisms used in Clouds, which should allow us
to apply Herlihy's methods to our problem of generating replicated objects.

Herlihy's work concerns the extension of quorum intersection methods to take advantage of
the semantic properties of abstract data types. Previously, work on quorum methods mostly in
the database area—has been limited to a simple read/write model of operations. Herlihy's
extensions allow the selection of optimal quorums for each operation of an abstract data type
based on the semantics of that operation and its interaction with the other operations of the data
type.

Herlihy's method is based on the analysis of the algebraic structure of abstract data types.
This entails the construction of a "quorum intersection graph," each node of which represents
an operation of the data type, and each edge of which is directed from the node representing an
operation 01 to the node representing operation 02, where each quorum of 02 is required to
intersect each quorum of 01. From the quorum intersection graph, optimal quorums for each
operation may be calculated, given the number of replicas of the data, and the desired
availability of each operation in relation to the other operations of the data type.

Herlihy shows that his method can enhance the concurrency of operations on replicated data
over that obtained from a read/write model of operations. He also claims advantages for his
methods in the support of on-the-fly reconfiguration of replicated data, and in enhancing the
availability of the data in the presence of network partitions.

There appears to be a close relationship between Herlihy's quorum intersection graphs and
the lock compatibility matrices used in Aeolus and the Clouds system; a graph constructed from
the lock compatibility matrices for an Aeolus/Clouds object is either the complement of the
quorum intersection graph for the operations of that object, or a subset of the complement.
This is not really surprising, since the specification of our lock compatibilities is based on the
programmer's analysis of the compatibilities between the object operations, while Herlihy's
quorum intersection graph may be viewed as being based on an analysis of the incompatibilities
between operations.

Thus, we should be able to apply Herlihy's techniques to our problem of generating
replicated objects given an unreplicated object version and a specification of the desired
replication properties. This entails extending the notion of the Aeolus/Clouds lock to include
the "distributed" lock; that is, the state of the lock is shared logically among all replicas of an
object. This will, of course, require the transmission of lock state information among all
replicas. However, the concurrency properties of the unreplicated version of the object will be
retained by the replicated version generated from it. This is especially significant given the
power of the Aeolus/Clouds lock mechanism in expressing arbitrary compatibilities and in
allowing the expression of synchronization at arbitrary levels of granularity.

We are currently investigating these possibilities in the course of the design of the object
filing system (OFS) for Clouds. The replication scheme which we are currently considering in
support of availability will require heavy interaction between the manager for a replicated
object, the job scheduler, and the OFS. The OFS should:

• be resilient and highly available (through replication);

• provide a mapping from object names (strings) to Clouds object capabilities;

• impose some familiar structure (e.g., a Unix-like hierarchical structure) on the flat, global
system name space provided by the Clouds object manager;

• provide efficient forms for the most common types of I/O (such as text I/O) without the
necessity of the context switches which would be required if such I/0 were modelled with
Clouds objects.

-3-

In the OFS, an object name may represent a group of objects (the set of replicas of a
replicated object), rather than a single instance. We intend that this mechanism should be, in
general, transparent to the user (although special-purpose applications, such as DBMSs, may
require that, in addition, finer control of replication be available than that provided by a general
mechanism).

We are currently considering two different capability-based naming schemes which may be
used by the OFS in support of state cloning, as described in a previous report. The first scheme
requires minimal changes to the kernel, but relies on facets of the Clouds object lookup
mechanism which may not be applicable to other systems. In Clouds, the search for an object
begins locally (that is, on the node which invoked the search), and—if the object is not found
locally—proceeds to a broadcast search. If the internal objects belonging to a replica are
constrained to reside on the same node as their parent object, then the local search will locate
the local instance of the internal object. (We do not consider this constraint to be onerous, since
the internal objects of each replica need to be highly available to that replica in any case, and
thus should logically reside on the same node as the parent replica. This constraint may be
enforced by the OFS.) Thus, each replica of an object (each of which resides on a separate
node) may maintain its set of internal objects using the same capabilities as each other replica.
Although we will thus have multiple instances (on separate nodes) of internal objects referenced
by the same capability, there should be no problems caused by this, since—by the definition of
internal object—only the parent object or its internal objects may possess the capability to an
internal object, and the object search will always locate the correct (local) instance. Thus, state
cloning may be used to copy the state of a replica to the other replicas without causing the
problems with respect to internal objects mentioned in the previous report (concerning
references to internal objects contained in the replica's state), since under this scheme all
replicas may use the same capabilities for referencing internal objects. This scheme is an
extension of a facility already supported by the Clouds kernel for cloning read-only objects such
as code. We call this scheme vertical replication, since it maintains the grouping of internal
objects with their parent object.

The other naming scheme makes fewer assumptions about the lookup mechanism than
vertical replication, but requires more kernel modifications. In the second scheme, each
instance of the replicas' internal objects is again named by the same capability, at least as far as
the user is concerned; however, the kernel maintains several additional bits associated with each
capability identifying a unique instance. (These additional bits may be derived from, for
instance, the birth node of the instance.) When a (parent) replica invokes an operation on an
internal object, the kernel selects one of the replicas of the internal object according to some
scheme (e.g., iteration through the list of nodes containing such objects until an available copy is
located). Thus, a set of replicas of internal objects is maintained in a "pool" for access by all
parent replicas. Again, each parent appears to use the same (user) capability to reference a
given internal object, so the problems of state cloning disappear. Since this scheme maintains a
logical grouping of the copies of an internal object, rather than grouping internal objects with
their parent object, we refer to the scheme as horizontal replication.

Our initial design of the OFS is concerned with an unreplicated version; when completed, the
design will be extended to a replicated version by use of the "distributed lock" mechanism and
an analysis of the desired replication properties of the OFS.

3. Storage Management for an Action-Based Operating System

During the final quarter of the contract, final testing and documentation of the storage
management system for the Clouds kernel was completed. A copy of the documentation can be
found in Appendix A. During the previous quarter, a ciissertation[Pitt 86] based on the storage
manager development effort was completed and defended by David Pitts. The dissertation
describes the three major subsystems of the storage manager: the device system, the partition
system, and the segment system. For each subsystem, the structures and operations that
comprise the subsystem are defined. The dissertation describes the basic services provided by

the storage manager: object memory support, recovery management, and directory
management. The dissertation highlights the integration of virtual memory management with
object memory support and recovery management. One of the claims of the dissertation is that
this integration provides a efficient system.

The dissertation describes three algorithms that support the two-phase commit of actions in a
Clouds system. It is shown how these algorithms support action management and also crash
recovery. A chapter in the dissertation is devoted proving the correctness of these algorithms,
based on the assumptions made for the Clouds system.

4. Operating System Support for Reliable Distributed Computing

The Clouds Operating System kernel provides the systems support for objects and actions.
Two primary attributes supported at the kernel level are persistent object memory and atomic
actions.

The Clouds object memory consists of a virtual address space per object. This virtual space
is also persistent or permanent. That is, any modifications to the virtual state of the object
remain forever (unless explicitly deleted). Thus, the objects are longer lived than the processes
that create, access, and modify them.

The atomic action paradigm allow processes (executing on behalf of the actions) to update
the objects atomically. That is, either all objects touched by the action get updated, or none of
the objects are updated.

The object memory in Clouds is supported by the object management system, which supports
distributed object invocations and demand paged object virtual memory. Two recent Ph.D.
graduates have completed most of the kernel support for the reliable object
memory. Spaf 86] The details are as follows.

The object management system has been tested to handle object invocations, both local and
remote. This uses the communication system which uses Ethernet routines to communicate with
other Clouds sites as well as Unix machines. The object management system uses a search and
invoke strategy for locating objects in a uniform, location independent manner, that works even
if some of the sites are non functional. The global searches occur efficiently, as they use a hash
table based decision function based on the Bloom filter (we call this the "Maybe Table").

The storage management system provide the functions of basic virtual memory, object
memory, shadowing, flushing, and commit. It also provides directory services for object lookup
(using capabilities), and interfaces with the Maybe Table handling routines. This system has
also been implemented and tested.

The communication system has been developed to be compatible with the Unix conventions
(Berkeley 4.2 bsd and 4.3 bsd). This provides us with the ability to access the Clouds system
from Unix, and to allow the use of Unix system calls from Clouds applications. Work in this
aspect is under progress. As of present, we generate Clouds objects on Unix and transmit them
to Clouds. We also have the capability to create object instances from Unix machines and
perform object invocations to these objects from Unix programs. We also have integrated the
object management and storage management systems to work together, allowing us to use a
usable integrated kernel that is capable of distributed object handling.

All of these subsystems have been integrated and tested to achieve a working Clouds kernel.
We now have the capability to run distributed programs on our Clouds testbed. This capability
enables us to begin implementing some of our designs for operating system services, such as
those described below.

Work on the action management system Nen1861 is underway. This system uses the reliable
storage management system to provide atomic nested actions. Atomic nested actions are the
first step towards fault tolerance.

-5-

On the design side, research has resulted in the design of several subsystems, notably a
monitoring system and a distributed database system. The monitoring system fits into the
Clouds reconfiguration strategies and uses a new mechanism called probes to monitor the health
of the distributed system. The database is a conventional distributed database in a novel
implementation environment. The object and action support provided by Clouds lend themselves
effectively to implement a database system (modified to the object based structure), and provide
concurrency control and recovery mechanisms in an environment that is simple to use.

The monitoring system design makes use of probes. Probes are high priority messages in
Clouds that can be sent to processes, actions, or objects. If sent to processes or actions, a probe
causes a jump to a probe handler (similar to software signals). The probe handler generates a
reply to the sender of the probe containing status information about the process or the action.
The object probes work along similar lines, except that the probe causes the invocation of the
probe handler in the object. The monitoring system uses probes to monitor the health of critical
system components. The monitors are replicated at each site and they keep status information in
fully replicated databases. Each monitoring process has a backup monitor that monitors it from
another site. Using this scheme, we can keep good records of the global system state, and can
handle failures by tying into the reconfiguration system and restarting failed actions at healthy
sites. The design is reported in detail in [Dasg86].

The relational database system is an application environment under design to function in the
object oriented environment supported by Clouds. Conventional database design suffers from
two deficiencies. The data models proposed by database designers do not match the components
supported by the operating system, and thus the implementors have to contrive mechanisms to
support the database. Also, the services (concurrency control, recovery) needed by databases
are often not available and have to be built on top of a conventional operating system, giving
rise to inefficient and often incorrect implementations. The object oriented approach provided
by Clouds allows relational databases to be encapsulated in objects, and the implementation
matches both the environment as well as the data model, giving rise to better performance,
clean elegant systems interfaces, and a modular implementation. The synchronization and
recovery support provided by Clouds also effectively provides database services, giving rise to
database management functions which are easier to implement. Fine granularities of locking
structures can be attained by relation fragmentation, that gives rise to more efficient access
strategies. But as the objects hide the fragmentation details, the interfaces are just as clean and
transparent. Further details can be found in [Dasg86a].

Research toward the design of fault tolerant systems management for Clouds has led to the
design of an object replication system that is capable of providing non-stop systems services and
processing capabilities. This system uses two basic mechanisms and a novel processing scheme.
Replicated objects are named by a modified version of the present capability mechanism which
allows Clouds to name a replicated object without referring to any particular replica. The
invocation scheme for replicated objects causes the invocation of any one replica. We use these
basic mechanisms to set up multiple processing threads which produce the effect of only one
execution thread, but with far superior reliability characteristics. Unlike most systems which
provide replicated data for reliability purposes, our scheme allows processing to continue even
in case of transient failures which abort parts of the computation, thus providing non-stop
processing capabilities.

REFERENCES

[Dasg86] 	Dasgupta, P. "A Probe-Based Fault Tolerant Scheme for the Clouds Operating
System." TECHNICAL REPORT Grr-Ics-86/05, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA, 1986.

[Dasg86a] Dasgupta, P., and M. Morsi. "An Object-Based Distributed Database System

-6-

Supported on the Clouds Operating System." TECHNICAL REPORT Grr-Ics-86/07,
School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1986.

[Her184] 	Herlihy, M. "Replication Methods for Abstract Data Types." PH.D. ass.,
Laboratory for Computer Science, Massachussetts Institute of Technology,
Cambridge, MA, May 1984. (Also released as Technical Report MIT/LCS/IR-
319.)

[Ken186] 	Kenley, G. G. "An Action Management System for a Distributed Operating
System." M.S. THESIS, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (Also released as technical report
GIT-ICS-86/01.)

[Pitt86] 	Pitts, D. V. "Storage Management for a Reliable Decentralized Operating
System." PH.D. Diss., School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (Also released as Technical Report
GIT-ICS-86/21.)

[Spaf86] 	Spafford, E. H. "Kernel Structures for a Distributed Operating System." PH.D.
Diss., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1986. (Also released as technical report GIT-ICS-
86/16.)

APPENDIX A

Storage Management in the Clouds Kernel

David V. Pitts

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332-0280

ABSTRACT

The Clouds storage management system supports the object and action primitives
provided by the Clouds kernel. Particularly, the storage manager is concerned with
mapping object data into virtual memory and providing action and crash recovery for
recoverable objects. This document presents some of the technical details in the testbed
implementation of the storage manager. The storage manager's general strategy is
presented first. Then, the major routines which implement the segment, partition, and
device subcomponents of the storage manager are described. The document includes a
description of the functional relationship of these routines. The interface between the
Clouds kernel and the storage manager is described also.

November 12, 1986

1. AN OVERVIEW OF STORAGE MANAGEMENT

This section presents an overview of the storage manager. The major structures used by the
storage manager and the major services provided by the storage manager are discussed. This
section is concerned primarily with the functionality and the interrelationships of the
components. The implemenation details of the components is described in the following
sections of this dcannent.

RPC
Local

	

I / 	/ / / /
N N.....\\\\\•.\\N

	

/ 	 / 	 /

	

\ • \ 	\ • • • ♦ N. \

Invoke

,„ partition system

directory
management

PS
.". 	0\

" 	 PS -S
IN " 0\ ." 	 ".

" "
— "

PS .
	 " es%

—S " es, "
PS " " "

" es, —

PS n" "

N'N'N's disk system ,
/ 	 / 	/

• \ 	 • • N.
• / I .0 / ./ 	/ /

♦ \ 	 N. N. N. • \
/ / 	 / 	/ / / /

• / 	.0 / 	/ I .0 do .0 I 	 / / 	0 .1 / / /
\ \ 	\ • N. 	

•

\ N. N. N. 	 \
/ I / 	 / 	 / 	 / / / I I / 	 / 	 / .1 	 /
\ • \ • 	 \ \ • 	 \ • 	\ • \

/ I / 	 / / 	/ 	 / / 	 /
• \ • N. \ • \ 	 \ 	\ 	•

/ / / / / / / 	 /
\ \ • 	 S. • \ \ N. N. \ 	 •

\ \ • • • \ 	 \ N. • \
/ / / / / /

• \ 	 \ N. • • N. \

•

• N. \ \
• / 	 / / / 	 / 	 /

• \ 	 \
/ ///////// /

• \ • 	N. • 	 • N. •
/ / 	/ / / / 	/ 	/

'N ♦ \ • \ ♦• \
/ / / 	/ 	/

\ • N. \ • • • •
/

• • N. •
/

♦ N. • • 	 objects 	
/ / /.0 I I /- .0 / / / /

\ \ \ \ • \ \ \ \ \ N. N. • 	 \ N.\ \ 	 \ \ N. \ \ N. • \ •
I / / / / / / / / / .0 / / / / / / / / / / / .0 I' / / / / / / / /
'N N. N. `.. \ ... \ • \ • N. \ \ \ \ \ N \ N, ..., \ \ \ \ N. \ \ \ N
I I e e e e e e e ... e x do 	 reeeeeeeeeeee

\ ♦ \ \ N. \ \ \ \ `.. N. • 	 V \ \ \ \ \ ... \ \ • \ N.

	

/ / / / / / / .0 / / 	 / / / / / / / / / / / ./
\ N. • \ N. \ N. N. N \ \ \ 	 \ y,""7""'"Nit, \ \ N • N. •

	

/ / .0 / / / / I / I / / 	 / / 	. 1/ / / / / / /
\ \ • \ • • • • \ • • 	 \ N. \ N. \ \

/ / / .0 / / / / / I' .0 	 / A 	 .1 / / / / , /

	

\ • \ • \ N. 1 \ N. • \ • 	 \ •
/ / / ... / / / / / / / 	 I d 	 / / / / / / /

iN\, \ / 	\\ 	 S. N. S. S. S. S. • N. S. S. N. N.

	

/ / / / / / / / 0. / / 	 / , 	 ../ / / / / / /

	

N. \ \ N \ N. \ \ N \ \ • 	 \ \ 	 \ \ \ \ \ \

• • 	 N. \ S. N. ... •

	

// , , 	 / / / / / / / I / 	/ 	 / / A 	j/ / / / / / /

I / 	

I 	 .0
. . N. N. . • N. ■ . . N. . ■ . S. . . . ■ • c.--....--..-. . S. ■ N. .. N.

N's.', /■ '■ ', ..„' ,... 1‘','.' ,/,'■ '...' ,..', 1.',',/,',' ,... ;,'%'■',','. /' / ''.',',',..'‘'‘','.',' ,../ 1

Figure 1. Storage management services and responsibilities

-2-

Figure 1 gives an overall view of the types of services provided by the storage manager. These
services fall into three categories: object memory management, recovery management, and
directory management. As implied in the diagram, these facilities are provided by three
storage management subsystems: the device system, the partition system, and the segment
system. Each of the subsystems is modelled as a collection of objects. The device objects
making up the device subsystem represent the lowest level in a hierarchy formed by these three
object classes. These objects provide the kernel with a direct interface to the hardware (the
secondary storage devices). These objects are very device dependent; the device object type is a
class of objects, one for each type of secondary storage device provided to the system. They
perform the functions that device drivers handle in conventional systems, in addition to
providing recovery and virtual memory support.

Partition objects enable a Clouds system to divide physical storage devices (media) into logical
units for administrative/policy purposes. An important function of the partition system is the
management of directories, which indicate where the permanent state of objects reside. This is
important to the object invocation mechanism Storage allocation is also done at the partition
level. Typical uses for partitions might be to divide a physical device into a paging partition, an
object storage partition, and a kernel storage partition. It might also be useful for a Clouds
system to provide separate partitions for recoverable and non-recoverable objects.

At the highest level of the storage manager hierarchy is the segment system. The segment
system manages segment objects. The segment system of the storage manager will provide the
storage manager's main interface to the rest of the kernel. Paging, mapping, and other
manipulations of secondary storage are performed by calls to segment objects. There are four
classes of segments supported by the storage manager. There are uninterpreted segments called
datafiles; the information in these files is simply a stream of bytes as far as the storage manager
is concerned. The other three segment classes represent object data and code. Non-recoverable
segments are simply segments which cannot be used to perform recoverable computations.
Auto-recoverable segments can be used effectively by actions when recovery is required. The
entire data state of auto-recoverable objects is recoverable on site failures. Recoverable
segments support the customized recovery of objects. The programmer of the object may
provide alternate definitions for the precommit, commit, and abort routines, and specifies
exactly what data maintained by the object is recoverable and what is not.

The segment object type provides the interface between the permanent representation of the
data maintained for reliability and the volatile representation used to access the data.

1.1 Device Objects

The device object provides the mechanism for sending requests to the device. The device object
zi provides a uniform interface to secondary storage devices. The type of devices initially

considered are disks, but other device types may also be considered. The Clouds secondary
storage model is very simple: it is simply a sequence of secondary storage blocks, which are
labeled by a per-device offset, called a device block number (DBN). Translation of the DBN to
the corresponding physical address on the device (for instance, a cylinder/track/sector
specification for a disk device) is performed by the device object. Generally, the block size on
secondary storage and the virtual memory page size are related; i.e., one is a multiple of the
other. In the case of the prototype implementation of the kernel, the block size and page size
are equal.

1.1.1 Device Media The storage manager views devices as two parts: the device itself and the
medium currently being used by the device. This viewpoint is not important for fixed media
disks, but for other forms of secondary storage, such as tape and removable disk storage, it
provides additional flexibility in the configuration of a system. One of the goals of the Clouds
system is to allow machines (which support a Clouds kernel and operating system) to
dynamically join the multicomputer on-the-fly simply by making them part of the physical
network. Similarly, the Clouds system allows objects, partitions, media, and even devices to
migrate through the system. When one site in the Clouds system fails, it is possible to take a

-3-

disk pack to another system or make the disk device accessible through an alternate port.
Therefore, a sysname exists not only for each device in use on a system, but also for each
medium. However, in many cases the distinction between amessing specific media and accessing
devices is not important, so the storage manager hides this separation by providing a mechanism
for binding a medium to a device.

Bindings between media and devices are generally performed at the initialization of the system
and involve the association of device and medium. Binding a medium to a device may also
involve the formatting of the medium. In this latter case, a new sysname is generated for the
medium. This formatting or initialization of a medium will destroy any previous information
that existed on the medium. The old sysname will no longer give access to any medium. The
formatting of a blank or obsolete medium includes initializing the tables and structures that the
storage manager requires. A header is written on the medium which contains the device and
medium sysnames, the allocation table is cleared so that partitions may be created, and the in-
memory structures that the storage manager requires to activate a device are created.

In other cases, an existing medium is bound to a device. An existing medium is one which has a
sysname and is formatted. The binding will involve the reading of the sysname from the
medium and comparing it with the sysname passed to the storage manager. The binding will
take place only if a match occurs. This design does not attempt to address security issues; the
intent is to provide flexibility, while maintaining some control over what is accessible. The use
of sysnames to access media provides this control.

Once a medium has been bound to a device, any reference to the device refers to the bound
medium. The usual sort of device calls then need only refer to the device. This device-medium
binding stays in effect until it is explicitly broken by the storage manager.

1.1.2 Device Object Structures Each storage medium contains basic information about the
medium and the device using it as part of the medium header. This information includes the
medium and device sysnames, the amount of available storage on the medium, and
specifications for the device to which the medium is bound. The medium header also contains
the index table, which describes the partitions that exist on this device. This includes
information such as location, extent, and type.

In addition, the device objects maintains a structure in memory called a flush table. The flush
table allows a device to associate an action sysname with a set of requests to a device. This
supports the commit operation performed on recoverable objects, which is discussed later in this
section.

The device object uses one other structure, the active device table (ADT). Each entry in the
ADT is an active device descriptor (ADD). The ADT is not a part of the device object proper,
but is actually the mechanism for managing the various instances of the device objects. Each
ADD contains the volatile state of a device object which is active at the local site. Included in
the ADD are device and medium sysnames, status variables for the device, device registers, and
entry points into the operations for the device object. By necessity, the code for each device
object is heavily dependent on the particular device for which it is written. The ADT provides a
means not only to identify the active devices on a site, but also provides a uniform interface to
the more hardware independent portions of the storage manager.

Some of the devices that are to be used for secondary storage on the Clouds system may be
dual-ported; i.e., they may be physically connected to two sites. At any given time, however,
the device is logically connected to only one of the sites. All requests to the device for I/O
transfer are handled by the logically connected site. The device may be switched between the
two sites via the panel switches on the device or via software. This mechanism provides a
convenient way of migrating a device to another site because of a failure at the site controlling
the device. Logically, it does not matter from which site the device is available because it is
referenced by its sysname. Similarly, the objects and partitions residing on the disk can also be
accessed independently of their location. To perform the transfer of control after a site failure,

the device must be switched to the alternate site and then mounted on the new site. Because the
previous site failed, the objects and partitions residing on the device may be in an inconsistent
state, so the activation of the device at the new site may need to complete some of the action
processing that had been begun on the old site. Once again, this processing can be performed in
a location independent manner.

There is also the possibility of sharing the device between two running sites if the device
supports software transfer of control. There are many coordination and policy issues to be
address in this situation. There must be some protocol for performing the transfer of control
and some mechanism for synchronizing access by the two sites to the same storage blocks.
These issues are beyond the scope of this dissertation.

1.1.3 Functionality To simplify interactions with the device-level operations, each device object
implementation provides the same set of operations, each of which provides the same interface
to the higher level objects. The operations are of three general types. The first group of
operations deals with device management and controls the availability of devices. The device
management set includes an operation for formatting device media; an operation for binding a
device-medium pair, making the device available to the system; and an operation which breaks
bindings, making the device unavailable. The operations control availability of the devices by
the creation and initialization of ADDs. Availability of devices at a site is dynamic. Devices
may be stopped for maintenance or moved to a new system for availability of the resources on
the device. The above operations provide the mechanism for the reconfiguration of secondary
storage at sites.

Allocation of secondary storage is done primarily at the partition level, where space allocated is
to be used for segment data. However, the device objects also have some limited allocation
duties. Device storage management is intended to provide storage for newly created partitions.
Information about the newly created partitions is stored in the medium header. Operations also
exist for removing partition information from the header and providing information about the
currently existing partitions on a device. The latter operation is useful for activating partitions
on system restart. Storage allocation at the device is a rare operation, occurring only when
partitions are created or destroyed.

Three operations are concerned with data transfers. The device read operation transfers data
from the device to memory. This operation blocks until the request completes. The device
write operation provides two options: writes may block as is the case for reads, or the write
may be done asynchronously. In either case, the operation takes a block of data from memory
and copies it onto the device. In the synchronous case, the caller is sure when the write actually
is completed. This is an important concern to action management and to the recovery
management portions of the storage manager. In the asynchronous case, the caller is allowed
to flag write requests as "belonging" to an action. At a later time, the action may use the
device flush operation to determine when the action's requests are complete. The flush
operation uses the flush table discussed earlier. This operation is particularly important to the
storage manager in the performance of its recovery management duties, as it allows the actions
to perform asynchronous writes to secondary storage, while still maintaining control as to when
these writes complete.

1.2 The Partition Object

Each partition object resides completely on one physical device. A Clouds partition does not
enforce any logical organization of the data which resides on the partition, at least not in the
sense of a UNIX partition. A UNIX partition represents a separate file system and all the files
on the partition have a hierarchical relationship. The objects residing in a Clouds partition may
possibly bear no relationship to each other. The partition concept is simply an administrative
organization imposed by the storage management system indicating how storage in a particular
partition is managed. For example, some partitions might be used for the storage of object data
while others are used simply as backing storage. Different partitions may manage and allocate
storage differently. Partitions may be defined that provide some specific recovery support, for

-5-

example a log partition. Partitions may simply be used to categorize objects to such classes as
recoverable, non-recoverable, or temporary. In summary, partitions provide additional
flexibility to the Clouds design. Because all partitions will provide essentially the same
interface, new storage management features can be added in a transparent manner.

The blocks are addressed by a partition blodc number (PBN) which is an offset from the
beginning of the partition. All partitions are a multiple of this block size.

1.2.1 Partition Data Structures A partition is described by a partition healer containing most of
the information found in the medium index table entry for this partition, plus information about
the partition's state and type. The type information specifies what the partition is used for:
storage of object data; storage for paging; and any other special purpose storage required by the
kernel. The partition object uses this information to decide what structures are required to
support the object. For example, paging partitions do not need directories.

Storage allocation for the partition is done using the allocation map. The allocation map is not
permanent. Instead, it is reconstructed whenever the partition is activated. Handling storage
allocation in this manner made support for action event handling more straightforward and
more efficient, since the shadowing technique used requires allocation of partition storage for
the block copies created. Since the allocation map is volatile, no special overhead is required to
make the allocations and deallocations recoverable. Reconstruction does produce significant
overhead at the time of system restart. Generally, however, this overhead is necessary in any
event because the secondary storage system, which contains the permanent states of objects,
must be examined on restart to ensure the consistency of the data residing on secondary storage.
This is particularly true after a site failure in which action events may have been interrupted. If
it could be ensured that the storage system was in a consistent state when the site is halted, then
this overhead is unnecessary. The overhead could be avoided in these cases by simply writing
the allocation map to secondary storage when a site is halted gracefully.

Another structure used by the partition object is the active partition table (AFT), which contains
active partition descriptors (APD) for partitions currently available to the system. Each APD in
the table associates a partition sysname with the data structures and information for that
partition. The structures and information include the starting block number for the partition,
pointers to in-memory structures and buffers used by the partition object, and a reference to the
device object on which the partition resides.

Another task of the partition object is to maintain the location of segments and make this
information available upon request. As mentioned earlier, access to an object involves a search.
For objects which have not been accessed recently, the search generally involves querying the
active partitions on the various sites to determine where the object resides on secondary storage.
Each partition therefore maintains a partition directory, which contains a sysname/PBN pair for
each segment residing on the partition. At this time there is no restriction on the format of the
partition directory other than the requirement that any entry in the directory must reside
completely within one secondary storage block.

1.2.2 The Maybe Table As can be imagined, such searches can be time-consuming. The
partition system maintains another structure, called the maybe table, which it uses to avoid
unnecessary secondary storage accesses altogether (or at least make such accesses rare). The
maybe table is an approximate membership checker. It indicates either that the object in
question definitely does not reside on the partition being checked, or that it possibly does.
Thus, the maybe table gives a method of short-circuiting secondary storage accesses in cases
where it gives a negative response. However, a positive response may still lead to unnecessary
accesses to secondary storage. The key to success is to reduce the ratio of non-resident positive
responses to all positive responses to as small a value as possible.

Figure 2 illustrates the use of the maybe table. It is the first stage of a search for both a local
request from the site's object manager and a remote request from the RPC mechanism. A good
deal of overhead and time is saved when the maybe table indicates that the object is not at the

no

no
Yes

expensive
query

-6-

cheap query

invoke operation

Figure 2. The maybe table

local site because the maybe table query is cheap (it is an in-memory query) and no slave
process is created. Even in the case of a positive response, indicating that the object may be
local, the maybe table query overhead is much less than the overhead incurred by partition
directory queries. If the object resides locally, the directory queries are necessary to locate and
activate the object (bring it into memory for use) and the maybe table query is a small part of
this procedure. If the object is not local, then the additional work was done to uncover this fact,
but this additional effort is small and with good performance on the part of the maybe table it is
not frequent. The maybe table mechanism provides an excellent means of short circuiting local
searches.

The maybe table for a site is reconstructed from the partition directories upon site re'
other occasions during which a partition is mounted. In a running Clouds -
population of segments at a site is dynamic. Segments may be created and dest-
may migrate to and from other sites. When a new segment arrives at a -
creation or migration, an entry for the new segment is added to the r
entering the segment's sysname into a partition directory. This alle-
represent the segment population at a site. Deletions of segments sh.
the maybe table.

-7-

1.2.3 Functionality The functions provided by the partition object include partition
management, directory management, storage allocation, and data transfers. Partition
management consists of three operations, the first of which is the creation of partitions.
Creation of a new partition automatically activates the partition in addition to allocating its
storage. Partition creations also initialize the structures associated with the partition, such as the
APD, the directory, and the allocation map. Partitions are destroyed by deallocating the
secondary storage on which they reside. Only partitions which are not active may be destroyed.
Activation and deactivation are two other partition management functions. Activation makes an
existing partition available for use by the Clouds system. It involves not only the creation of an
APD for the partition, but also the examination of the partition for consistency. Deactivation
makes a partition unavailable.

Directory management is concerned with registering and searching for segments which may
reside on the partition. Generally, names are entered for newly created segments, and removed
for destroyed segments, but similar management takes place for segments being moved from
one partition to another. Two other operations are available which provide a means to list the
segment names stored in the directory. These operations are typically used to construct the
maybe table at system restart, or to reconstruct the table in order to remedy degradation of the
table's performance. The partition is also responsible for the allocation and freeing of blocks of
storage for use by segments or the virtual memory system. The two operations responsible
allow callers to allocate storage in multiples of blocks. The blocks allocated or deallocated
might not be contiguous; this is not a concern since segment storage is not extent-based. 1

Lastly, three operations for data transfers are provided. They are similar in functionality to
those provided by the device objects. The partition read request blocks until the request
completes. The partition write operation provides both blocking and non-blocking transfers.
Support for recovery is provided both in the write operation, which allows requests to be
flagged by an action in the same manner as device requests, and by the flush operation, which
provides the same function as the device flush operation.

1.3 The Segment Object
The segment object type provides the final level of abstraction for secondary storage. The
abstraction provided by the segment object is that of a sequence of bytes (kernel segment type).
Segment objects provide a standard abstraction for the kernel to manipulate and process all
Clouds objects; indeed, in some cases, a segment object is just an alternate type description for a
Clouds object. However, the mechanism is more general, in that an object may be represented
by several segments. For instance, an object may have a code segment and data segment which
reside on secondary storage. In cases such as these, the sysname of the object's data segment is
equivalent to the object's sysname. The object implementation provides mechanisms for
mapping segment data into and out of virtual memory, creating and destroying segments, and
modifying segments. Thus, segments have two different representations: one on secondary
storage, and the other in virtual memory. The necessary algorithms for maintaining the
reliability of the segment data exist at this level.

The segment object is unconcerned with the internal organization of the objects it is managing.
The storage management system treats segments as uninterpreted sequences of bytes. Structural
interpretation of segments is performed by other parts of the kernel, such as the object
manager. The storage manager is aware of and can recognize the administrative portions of an
object's data, specifically the object descriptor. This allows the storage manager to provide low
level support for the creation and initialization of objects.

1. Extent-based file systems allocate storage for files in very large chunks, such as a cylinder at a time. Since large
portions of the file are contiguous on the device, sequential arxess to the files is enhanced.

-8-

1.3.1 Segment Object Representation Recall that a partition directory has a set of entries which
contain the partition block numbers for the segments residing on the partition. The partition
block addressed by any of these entries contains a segment header which identifies the segment.
The segment header consists of the segment descriptor, which contains the information which
describes the segment, such as the size, type, and state of the segment. The header also
contains the segment map through which the segment data can be accessed. Each entry in the
segment map contains a PBN of some other part of the segment. The remainder of the segment
is constructed of mapping blocks and data blocks. Mapping blocks are internal nodes of a tree
formed by the segment and contain the PBNs of other mapping blocks or to the data blocks of
the segments. The data blocks contain the segment data.

Figure 3. A segment object on secondary storage

Figure 3 shows the relationship of the described structures in a segment as it exists on secondary
storage. The author will frequently refer to the data blocks of the segment as the segment
pages. 2 Data blocks are always found at the leaves of the segments' mapping block trees. A

-9-

segment may require zero, one, or more levels of mapping blocks to access its data, depending
upon the size of the segment. All of this structure is invisible outside the storage manager.
Other parts of the kernel see only the data blocks of the segment.

1.3.2 Virtual Memory Support Any segment object may have two instantiations: one on
secondary storage and the other in virtual memory. The representations of these two instances
are quite different, as are their functions. The instance on secondary storage is intended to
represent the permanent state of the segment data; that is, this instance remains available after
recovery from system failures. The virtual memory instance exists for manipulation.

Segment objects are used by the Clouds kernel to represent Clouds objects or portions of Clouds
objects. For example, an object may be represented by a single segment which contains all of
the code and data necessary to perform operations on the object. On the other hand, an object
may be partitioned for policy reasons into several segments. One segment may contain the
data, another segment the operation code, and yet another may provide the object with dynamic
heap storage. 3 The segments necessary to provide access to an object and to allow operations to
be performed on the object are mapped into virtual memory through the cooperation of the
object management and storage management. The storage manager maintains the active
segment table (AST), which contains an entry for each segment mapped into virtual memory.
These entries are called active segment descriptors (ASD). Any segment with a descriptor in the
AST is said to be an active segment. Object management maintains a similar table, called the
active object table (A0T).(sPaf861 Similarly, objects referenced by the AOT are active.
Segments are referenced by the AOT to provide a complete virtual memory image of an
activated object. Note that some of the entries in both the AST and the AOT may represent
remote segments and objects, respectively. In these cases, the descriptors are not complete
specifications of the segments or object, but simply refer the object manager to remote
instances.

Each object refers to the various segments that comprise its virtual memory image through
entities called windows. A window is simply a consecutive block of bytes in virtual memory.
Each window in the system is described by a window descriptor, which specifies where the
window is mapped, how large it is, and protection information. The window descriptors
provide the primary interface between the active object system and the active segment system.
Windows may describe whole segments or only portions of segments. In the case of a large file
object, for example; it may be convenient to have only a portion of the data segment actually
mapped into virtual memory. The window describes which portion of the segment is mapped.
A segment may be described by several windows, allowing segments to be shared by several
objects. As an example, the code segment for an object may be mapped into several object
instances. Windows into segments may be mapped on demand. For example, a process with a
window into a large object may cause the window to be modified or a new window to be created
by referencing a part of the object that is not mapped by the current window.

The storage manager is responsible for specifying how the secondary storage image of a
segment is mapped into virtual memory. The ASD refers to the APT to indicate the partition
on which the segment resides. The ASD also refers to mapping tables which are maintained by
the storage manager. These tables map the virtual memory image of the segment to the
secondary storage image. Figure 4 illustrates the structures used in the mapping of segments.

2. This is rather imprecise terminology in that it gives the impression that virtual memory pages and secondary storage
blocks are equivalent. This is not a restriction in the design of the storage manager, but the initial implementation
makes this assumption and the equivalence will make some of the following discuasiom simpler.

3. Not all of these segments may have permanent states. Segments used to map volatile heap space for objects have no
image on secondary storage except for backing storage for page-fault handling.

-10-

Figure 4. Mapping structures used in the storage manager

1.3 .3 Segment Object Functionality The operations provided by the segment object type may be
classed into four types: segment management, virtual memory management, data transfer, and
recovery management. Segment management includes operations to create and destroy
segments. When a segment is created, it is automatically activated by the system so that it may
be operated upon. The initial segment descriptor is allocated and the segment is registered with
the partition directory (and also the maybe table). The destruction of a segment can occur only
when all activity on the segment has ceased. The segment remains hi the AST, but no windows
are mapped into the segment. No activity can occur on the segment in this case, and the
segment storage may be deallocated and the directory entry removed. Both creation and
destruction of segments can be recoverable if done by an action. Segment objects also provide
operations that can change the size of the segment and determine the status of the segment.

The second type of operation, dealing with virtual memory management, provide the bridge
between the virtual memory instance of a segment and the image on secondary storage. Part of
the functionality of this group is simply to activate the segment. This includes locating the
segment,' creating an ASD, and partially initializing the ASD. Other operations then allow
windows to be mapped into the active segment and supply the information which maps the
segment data into virtual memory. Later, these window mappings may be modified or
destroyed by other operations.

4. In some cases, remote segments are activated by local storage managers. This situation generally arises when the
segment containing the object data is local, while the segment containing the code resides on another site. The data
segment is activated locally as usual and the code segment is activated remotely; virtual memory management for the
segment is shared between the sites. Backing storage is provided at the local site if a local cache is desired, but all
pages are initially fetdied from the remote site on demand. This facility is available only for read-only segments,
such as code segments.

The operations that perform data transfer provide the means to move segment data between the
image on secondary storage and the virtual memory image. Principally, these operations are
used for page-fault handling, reclaiming physical pages, and to support action management.
They use the information set up by the mapping operations. The pages containing the data to be
transferred must be mapped into virtual memory by the ASD.

2. The Segment Module

2.1 The Storage Manager Prototype

This section describes the prototype segment system, examining the structures used by the
system and the interface provided to the rest of the storage management system. The
definitions in this section (and the succeeding ones) are written in the C programming language
and are taken from the source code for the storage manager. The storage management code is
found in several C source files. The following list presents a synopsis of the contents of these
files:

segment.h 	Segment.h contains most of the type definitions used by the segment
system. In addition, the file defines a set of named masks and constant
codes used by the routines in the segment module.

obj.h 	This file provides definitions for structures used for object manipulations.
Because of the close relationship between objects and segments, a couple
of the definitions used by the segment system are located in obj.h.

segment.c 	Segment.c contains the operations that implement the segment system.
The file also declares global variables and structures needed by the
segment system. The routines found this file fall into two broad
categories: interface routine, and utility routines. Utility routines are
defined as static, meaning that they cannot be seen outside the file. The
interface routines are visible and may be used anywhere in the kernel.

parttab.h 	This file defines the active partition descriptors and table.

parttab.c 	Parttab.c defines a set of routines which manipulate the active partition
table. The routines provide a simple interface for creating and destroying
active partition descriptors. The routines also enter, locate, and remove
the descriptors. Otherwise, descriptors are manipulated directly.
Parttab.c also declares a set of partition lists which facilitate the
implementation of several partition system services.

partition.h 	Most of the data structure definitions used by the partition system reside
in this file. The formulas for determining the size of partition structures
such as the directory and allocation map are defined here.

parddon.c 	The interface to the partition system is defined in this file. The partition
system defines no local utility routines.

devtab.h 	Devtab.h defines the active device descriptors and table.

devtab.c 	A set of routines analogous to those defined in parttab.c are found in
devtab.c.

buffer.h 	The request packet structure for the RLO2 device is defined in this file

buffer.c 	Buffer.c contains the routines used to allocate request packets for the
RLO2 device. A pool of such packets is maintained by the device.

ri_dev.h 	RI dev.h defines a series of mnemonic codes used by the RLO2 device
module.

-12-

ri dev.c 	This file contains the routines used to implement the RLO2 device object.
The routines consist of a set of interface operations available to other
parts of the storage manager and private utility routines visible only
inside rl_dev.c.

storeman.h 	This file defines constants important to the storage management system
as a whole.

Descriptions of other files malting up the Clouds kernel prototype may be found in [Spaf86].
The remaining sections in this document do not attempt to describe the contents of these files in
total detail. Only the major structures presented earlier in the first section, interface routines,
and a few important utility routines are discussed. There also many mnemonics and macros
defined to facilitate the maintenance, readability, and the implementation of the storage
manager. These are important to a complete understanding of the prototype. The reader is
referred to the above files for these definitions.

2.2 Some General Definitions and Notes

The remaining sections refer to structures and definitions not described in this document. In
addition to the standard C types, many typedefs are defined in the prototype for convenience
and necessity. A summary of the some of the important definitions is presented in this section.
The major attributes presented will be the size of the structure and it purpose. In many cases
the internal format will not be specified.

u—Int 	This is an unsigned integer. On the VAX integers are by default long
integers (32 bits). There is a corresponding definition for u_short, an
unsigned short integer (16 bits long).

address 	This type definition represents a generic address. It is actually a typedef
of ujnt. On the VAX, pointers and addresses happen to be the same
length (32 bits) and have the same format.

QH 	QH is a type definition for a VAX hardware queue header. QH is 64
bits long and consist simply of two ujnts, one a pointer to the head of the
queue and one a pointer to the tail.

QE 	This type definition represents the linkage fields needed for an element
on a VAX hardware queue. Like QH, this structure is 64 bits long and
must be aligned on a quadword (multiple of 8 bytes) boundary. It is also
two ujnts, one a forward pointer, and the other a backward pointer.

SYSNAME 	This type represents a Clouds sysname. Sysnames are 48 bits long and
contain a site id, a site unique id, and a type.

PMAP 	This is a typedef for a page table entry. It is nothing more than a long
unsigned integer (32 bits).

The sections present the definition used for each of the major sub-components of the storage
manager. This section presents the segment module. The next section discusses the partition
system implementation. The third section describes the RLO2 device module. For each
structure and routine, the C definition and the file in which the definition is contained is
provided. It is hoped that through these sections, it is possible for an interested reader to
quickly gain a familiarity with the storage management prototype.

2.3 Segment Module Structures

This section presents the major structures used by the segment system. The source files for

- 13-

these definitions are segment.h and obj.h.

2.3.1 Segment Descriptors

typedef struct {
SYSNAME 	 segname;
SYSNAME 	 actname;
uJnt 	size,

raoffset,
phoffset;

uJnt 	header;
uJnt 	shadow;
uJnt 	state;
uJnt 	unused[551;
uJnt 	indices(64];

} SegHdr;

typedef struct
{

OE 	links;
OH 	windows;
SYSNAME 	segname;
address offset;
uJnt 	length;
address hdroff;
address segpart;
address backpart;
uJnt usecount;
uJnt state;
address hdr;
PMAP "vdrnap,

"vPrnal);
} ASD;

These two definitions provide the secondary storage and virtual memory descriptors for a
segment. SegHdr is the segment descriptor that resides on disk and which is the root of the
segment tree. SegHdr is 512 bytes long and so fits into a secondary storage block. Because . of
alignment restrictions imposed by the C compiler, the structure is not compact; there are unused
holes not represented by the definition. The fields have been discussed previously and there is
not much more to add, except to note the units used by some of the fields. Size, for example, is
the segment size in bytes. The header field indicates the number of storage blocks used by the
object header. Raoffset and phoffset are both block offsets. Shadow is used during recovery
processing and is the PBN of the shadow segment descriptor.

The active segment descriptor is also presented in this section. The active segment table is
organized as a hashing table using the VAX queue mechanism. The ASDs are allocated
dynamically from the system heap. Usecount is always the number of window descriptor
referenced by the windows field. However, windows is also used to hold the commit record
used by recovery management, so that usecount does not always represent the length of the
queue of descriptors.

Offset and length are both in block units. Offset is the base of the mapped version of the
segment; it indicates the lowest segment page mapped into virtual memory. Length indicates
the extent of the mapped region of the segment. In general, length may not specify a
contiguously mapped region of the segment. In an extreme case, only the first and last blocks
of a segment might be mapped. Offset would contain the offset of the first page and length
would be the size of the segment in blocks.

Hdraff is the PBN of the segment descriptor on disk. The correct partition can be found
through either the segpart field or the backpart field. These both refer to APDs. Only one

-14-

such field is necessary for any given segment, but the ASD retains two fields for historical
reasons.

The state field represents a combination of status information, primarily dealing with recovery
management events, and segment type information. The field is a bit field. Masks are defined
in segment.h for querying the field to determine the segment status and type.

The vpmap and vdmap fields represent the virtual page table and disk block table, respectively.
Both are dynamically allocation arrays of PMAP-typed entries. The entries of both tables are
bit strings with various fields defined. The reader is referred to the VAX Hardware Manual
[DEC32] for the definitions of the fields in these entries, as they are identical to the page table
entries described there. Also, see [Ken186] and [Spaf86] for some of the software defined bits
in these entries. The format of the vcimap entries is defined here. Recall that any entry may
be in one of two formats, one representing an unshadowed page and the other representing a
shadowed page. Both formats are presented below:

Alt bit (bit 0) - 	 The Alt bit controls the format of the rest of the entry.
If the bit is clear, the page is unshadowed; otherwise, the
entry represents a shadowed page.

Type field (bits 1-2) - 	The type field is present in both formats and indicates
the page type (recoverable, non-recoverable, volatile, or
read-only).

AltListlidrPtr (bits 3-31) - 	This field is present only when the Alt bit is set,
indicating a shadowed page. In this case, the field points
to an AltListHdr structure which represents the page
and its shadows. Since all system heap memory is
allocation of quadword (8 byte) boundaries, . the lower
three bits of the heap address are zero. This fact is used
to retain the type and alt bits in the entry. These bits
are masked off when referenced the AltListHdr.

Mapped bit (bit 3) - 	This field is present only when the Alt bit is clear. The
bit indicates that the Dbn field of the entry is valid.

Cow bit (bit 4) - 	 The Cow bit is the copy-on-write bit. It indicates that
the page is part of an action version.

Dbn (bits 11-31) - 	 This field contains a PBN for the segment page.

Bits five through 10 are unused in the Alt bit clear format.

2.3.2 A Structure for Defining Windows into Segments

typedef struct
{

QE ASDlinks;
ASD 'segmnt;
SYSNAME segname;
address begin;
ujnt length;
ujnt offset;
ujnt mask;

} WindowDesc;

The WindowDesc structures are used to map portions of the segment into virtual memory. The
begin field is the base virtual address of the window described by this descriptor. Offset is the
base segment page. Length is the length of the window in bytes. The mask field provides two
types of information. The first is the window type: read-only, volatile, remote, or non-
pageable. The second type of information is the virtual memory protection bits used in the page

-15-

tables. These bits are defined in the kernel source file vm.h.

2.3.3 Alternate List Headers

typedef struct {
OH 	links;
u_short count;
address offset;
PMAP original;

} ShadowPmap;

When a vdmap entry refers to a shadowed page (the Alt bit is set), the AltLlstHdrPtr field
refers to a structure of this type. Count is the number of versions represented by this entry (not
including the base version of the page). The links field contains a queue of descriptors of these
versions. Offset is the segment offset of the page being described. Original is the base version
of the page. It uses the Alt bit clear format of a vdmap entry. These structures are created
dynamically as needed.

2.3.4 Shadow Entries for Virtual Memory Support

typedef struct
OE 	links;
SYSNAME name;
PMAP shadow;
ShadowPmap *shadowentry;

} ActionPmap;

ActionPmap represents the action versions of segment pages. Structures of this type are the
queue elements found in from the link field of the alternate list header. Name is the sysname
of the action the page of which this structure describes. Shadow describes the pages using the
format of a vdmap entry (with the Alt bit clear). Shadowentry is a reference back to the
alternate list header maintained for convenience.

2.3.5 Recovery Structures

typedef struct {
OE ASDlinks;
ujnt shdr;
SYSNAME actname;
address *old;
address *new;
ujnt ocount, ncount;
address *Indexshad;
ujnt nindexshad;
OH 	*chglist;

} ActionDesc;

typedef union {
WlndowDesc *w;
ActionDesc *a;

CommitOesc;

typedef struct
OE links;
address new, old;

} CRLIST;

These structures are used only during recovery management. ActionDesc describes a
precommitted segment, both in memory and on disk. Shdr is an in-memory cache of the
shadowed segment header. Old is an array containing the PBN of partition blocks to be
deallocated on a successful commit. New is an array containing the PBN of the shadow blocks,

-16-

which replace the blocks in the old field on a successful commit. Ocount and ncount indicate
the number of blocks on each of these lists. Indenhad is an array containing the address of
mapping block buffers. The buffers are being written to disk asynchronously, and as the
buffers are dynamically allocated, the storage manager must maintain a record of their existence
until the writes are completed. NIndexshad is the number of such buffers. Chglist is a queue
of elements of type ActionPmap. Each element represents the virtual memory-secondary
storage mapping for the action version of a segment page. These elements are taken either
from the vdmap, or are created by S_Preconmit. The CommitDesc structure simply maps an
ActionDesc structure onto a WindowDesc structure. This is because the two structures both
reside on the windows field of the active segment descriptor.

CRUST is used during crash recovery to collect blocks allocated for the permanent and shadow
versions of a precommitted segment.

2.4 Segment System Interface

2.4.1 Locating Segments

int Sind (segname)
SYSNAME segname;

S_ Find determines whether the segment is local or not. The operation queries the AST, the
maybe table, and the partition directories at this site. A successful query of the AST means that
the segment is already activated. Otherwise, the segment is either dormant, remote, or
unavailable. The maybe table and directories are used in the manner described previously.
S_Find returns success for local segments and failure for remote segments or unavailable
segments.

2.4.2 Activation of Dormant Segments

int S_ActIvate (segname, header, number)
SYSNAME segname;
address * header;
ujnt * number;

This operation activates a local segment by creating an active segment descriptor. S_Activate is
used only for data segment and object segments. Remote segments and volatile segments use
S_MapWindow. If an object header exists, it is read into a buffer, which is returned in the
parameter header. &Activate passes the size of the object header in blocks through the
parameter number. The ASD for the segment is initialized with the segment attributes (name,
header location on disk, type, etc.). The offset field of the ASD is given the number of data
pages in the segment, and the length field is assigned to zero. This sets the ASD for the
addition of the first window to the segment. See the section on S_MapWindow for more
details. The segment header on disk is read into a buffer the address of which is placed in the

-17-

ASD. The operation returns an indication of the success or failure of S_Activate.

2.4.3 Operations for Mapping Segments into Virtual Memory

Int S_MociWindow (wptr, vpmap)
WIndowDesc • wptr;
PMAP vpmap;

Int S_MapWindow (wptr, vpmap)
WindowDesc • wptr;
PMAP • vpmap;

S_MapWindow maps a new window into a segment. In the case of remote and volatile
segments, a new segment may be created. Data and object segments are assumed to have been
activated by S_Activate. Remote activation is done for remote windows. A object header
block may be returned for remote windows in the argument header.

The window descriptor is passed to SYlapWindow with some information already supplied.
This includes the base segment page of the window, the base virtual address of the window, and
the length of the window in bytes. The mask field is also set. The storage for the vpmap
parameter must be allocated prior to the call. The vpmap parameter points into a page table for
an object using the segment and S_MapVVindow initialfres this page table from the virtual page
table maintained in the ASD. For object and datafile segments, S_MapWindow first
determines whether the mapped range of the segment must be modified; i.e., whether the lower
or upper bound or both bounds must be extended to accomodate the new window. This will
always be the case for the first window mapped into a segment due to the way in which
S_ActIvate initializes the ASD. The extension of the segment requires that new storage for the
descriptor's virtual page table and disk block table be allocated and the new area initialized from
the old tables. The areas for the newly mapped portion of the segment must be initialized to the
default values for the segment. The usecount is incremented and the window descriptor is
added to the windows field of the ASD.

For volatile and remote windows, S_MapWindow also creates the ASD. Note that these
segments do not have a permanent image at this site. For a volatile window, the call to
S_MapWindow performs both an activate and a window map. For remote segments,
S_MapWindow in addition must perform the remote mapping protocol discussed in Chapter IV.
Remote mapping is not currently implemented in the prototype.

S_ModWindow modifies an existing window allowing the caller to extend or shorten a window.
The return value of the operation indicates its success or failure.

2.4.4 Removing Segment Data from Virtual Memory

int S_UnMapWindow (wptr, vpmap)
WindowDesc • wptr;
PMAP vpmap;

S_UnMapWindow is the complement to SiMapWindow. The specified window is unmapped
from the segment. An examination of all windows in the segment is necessary to support
overlapping windows. If the window being unmapped does not overlap with another window in
the segment, then all of the physical pages which map the window may be freed. The
parameter vpmap supplies a record of these pages. If the window does overlap some other
window, then none or only part of the physical page may be released. The removal of the
window may also cause the size of the mapped segment area to decrease. In this case, as in
S_MapWindow, new virtual page and disk block tables must be allocated (smaller than the
previous ones) and the new tables must be initialized for the old ones. The window descriptor
must be removed from the windows field and the usecount is decremented. S UnMapWindow
is not implemented in the prototype. The return value of the operation indicates its success or

-18-

failure.

2.4.5 Initializing Segments
Int SJ.oadS(source, soff, dest, doff, len)
SYSNAME source, dest;
address soff, doff;
ujnt len;

Int SJ.oadM(addr, dest, doff, len)
SYSNAME dest;
address addr, doff;
uJnt len;

These operations provide the means by which a newly created segment can be initialized with
the appropriate data or code. S_LoadS initiolinks a segment from another segment. Source
and dest are the sysnames of the initializing segment and the initialized segment, respectively.
Scff and dal are the offsets into these segment at which the initialization takes place. Len
indicates how much data is initialized (in bytes).

SJ..oadM performs the same function except that the newly created segment is initialized from
virtual memory. Addr contains the base address of the area from which the new segment is
initialized. Doff, len, and dest are as in S_LoadS. Both operations return a value indicating the
success or failure of the operation.

2.4.6 Segment Creation
int S_Create (partname, segname, size, hbsize, hblock, type, raoffset, phoffset)
SYSNAME • partname, *segname;
uJnt size;
uJnt hbsize;
address hblock;
uJnt type;
address raoffset, phoffset;

S_Create creates a new permanent segment. (Volatile segments are created by
S_MapWindow). Recoverable segments are labelled "CREATED" to facilitate recovery
processing. The following structures are created and initialized:

1. An active segment descriptor is created for the segment. The size and length of the
segment are initialized as in S_Activate. The attributes for the segment are initialized.

2. A block for the segment descriptor on disk is allocated, along with a virtual memory
buffer for the descriptor. The descriptor is initialized from the parameters and the
locations of both the volatile and permanent version of the descriptor is placed in the
appropriate ASD fields.

3. Storage blocks for the object header are allocated. The parameter hbsize gives the size of
the header in blocks, while the hblock parameter is a pointer to the buffer containing the
object header. The header is written to disk and the PBNs of the blocks containing the
header are stored in the segment index.

4. Any mapping blocks required by the segment are allocated at this time. These blocks are
initialized to zero indicating that no data blocks currently exist for the segment. The PBNs
for the mapping blocks are stored in the index field of the disk segment descriptor. It is
only at this time that the segment descriptor is actually written to disk.

For non-recoverable segments, an entry is made in the partition directory for the segment.
Recoverable segments have no entry made during creation; this is done only at commit. The

-19-

S_Create operation returns a value indicating success or failure.

2.4.7 Destroying Segments

int S_Destroy (partname, segname)
SYSNAME partname, segname;

This operation removes a segment from the partition. &Destroy is only applicable for data
segments and object segments. Generally, &Destroy removes the permanent segment state and
the active segment descriptor (deallocates them), while recoverable segments simply are labelled
as 'DELETED" for future recovery processing.

The segment must be activated before the destroy operation can be perform. Any windows
mapped into the segment must be unmapped prior to the call. The return value of the call
indicates success or failure.

2.4.8 Segment Reads

int S_Read (sptr, offset, addr)
ASD * sptr;
ujnt offset;
address addr;

&Read reads a segment block from disk to a physical page frame. As discussed in Chapter IV,
&Read is a case analysis on the type of page and the state of that page's mapping. S_Read
potentially modifies the vdmap field of the ASD for the segment. For example, the first time a
segment page is read, there is no entry in the appropriate vdmap entry. Sitead locates the
appropriate partition block and places the PBN in the entry. If the segment page has never been
written, a new partition may be allocated. Thus the side effects of S_Read include not only the
virtual memory page receiving the data, but potentially the vdmap, the segment descriptor on
disk, and mapping blocks used by the segment. &Read returns a value indicating that the
operation succeeding or failed.

2.4.9 Segment Writes

int S_Write (sptr, offset, addr)
ASD * sptr;
uJnt offset;
address addr;

This operation performs a write to a segment block from a physical page frame to a segment
block on disk. As with S_Read, this operation performs a case analysis to determine the
appropriate measures to apply to the page in question. The side effects are similar to those of
&Read. In addition, entries in the vdmap of the ASD may have their formats changed to
alternate list pointers, in the case of writes to recoverable pages. The return value of this
routine is either success or failure.

2.4.10 Phase 1 Recovery Support

Int S_Precommit (actname, touchlist, number)
SYSNAME actname;
SYSNAME * touchlist;
uJnt number;

S_Precommit shadows the number of segments indicated by its second and third parameters.
The caller passes the names of objects touched by a committing action through the touchlist
parameter, but by convention these sysnames are equivalent (agree in all but the type) to the
names of the data segments for the object. Several major functions are performed.

1. The first step taken is to determine which data pages have been modified. For a newly
created segment or a deleted segment, all data pages are considered modified. For

-2U-

modified segments, the object page table (found through the object descriptor [Spaf861) and
the disk block table are examined. The object page table will indicate which pages have
been modified. These must be moved into shadow blocks on secondary storage. The disk
block table will show which pages have already been written to disk. Shadow blocks for
such pages effectively have been allocated; however, it may still be necessary to write the
pages if the object page table indicates the page has been modified since it was moved to
disk. Note that this is information which is available through the normal operations of
virtual memory. A list of changed pages must be kept, along with enough information to
update the disk block tables during commit. The information contained in the
ActionPmap structure is satisfactory for this purpose. The entries are either created and
initialized by S_Precomrait, or they are found already in the disk block table.

2. Next, S_Preconmit must determine which, if any, mapping blocks must be shadowed.
For each mapping block that is shadowed, a page-sized buffer is allocated to do the
necessary modifications. The memory for the buffers must be contiguous because the
buffers must be held till the end of S_Eoa. The contents of the modified buffers are
written to disk.

3. A commit record is created if any modified pages exist. Pointers to the entries for the
modified data pages and the buffers for the modified mapping blocks are placed in the
chglist and indetshad fields of the commit record, respectively. From the information
contained in the entries on the chglist, the new and old fields are set to contain the PBNs
of the shadowed blocks and the modified blocks of the segment, respectively. The new
field is empty for a deleted segment, while the old field is empty for a newly created
segment.

4. The last update is to the segment descriptor. A storage block on disk and a buffer page in
memory are allocated to hold the modified descriptor. Their locations are placed in the
commit record. The buffer is modified so that the segment index refers to the shadow
blocks, and is written to the shadow block for the descriptor. The segment descriptor
itself is updated so that the state of the segment is either PRECOMMITTTED,
CREATED, or DELETED. The record is placed in the windows field of the segment
ASD.

5. After all segments have been processed, the operation flushes all remaining write requests
using a call to P_Flush.

The steps are taken for each segment listed in touchlist. The return value of the operation is an
indication of the success or failure of the operation.

2.4.11 Phase 11 Recovery Support
int S_Eoa (actname, touchlist, number, flag)
SYSNAME actname;
SYSNAME touchlist;
uJnt number;
char flag;

S_Eoa performs either a commit or abort on the segments indicating in the second parameter.
The desired procedure is specified by the flag parameter. S_Eoa locates the commit record
created by S_Precommit and does the following:

1. The operation uses the entries in chglist to modify the vdmap. If the flag indicates a
commit, the chglist entries replace the vdmap entries. If the flag indicates an abort, the
entries are simply destroyed.

2. Any buffers for mapping blocks are deallocated.

3. If the operation is performing a commit the partition blocks in old are deallocated. If an
abort is being done, the partition blocks in the new field of the commit record are

-21-

deallocated.

4. The directory entry for the segment is modified to reference the shadow segment
descriptor if a commit is being done. Otherwise, the entry is left unmodified. However,
if the segment is being deleted by the action, the directory entry must be clear on a
commit. For a created segment, the directory entry was modified by SJrecommlt. In
this latter case, S_Eoa must restore the directory entry when the operation is performing
an abort.

The operation returns success or failure.

2.4.12 Crash Recovery Support

Int S_Check (pptr, segname, hdroff, goes)
address pptr;
SYSNAME segname;
address hdroff;
address Woos;

S_Check is called by P_Restore as part of system restart. The sysname indicates which segment
is to be examined. P_Restore calls S_Check once for each segment found in the partition
directory. Hdraff contains the location of the segment descriptor on the partition. Allocs is a
large array through which a set of PBNs is passed to the caller, P_Restore. P_Restore uses
these PBNs in the reconstruction of the partition allocation map. The purpose of S _Check is
two-fold:

1. The basic purpose is to determine the allocation for the segment. This requires a traversal
of the segment blocks. For small segments (less than 64 kilobytes), the allocation of
storage for the segment can be determine solely through the segment index in the segment
descriptor. For large segments, the mapping blocks must also be examined. This requires
a buffer to read each mapping block to collect the PBNs in the block entries.

2. S Check also examines the segment to determine whether or not there was an unfinished
action event for the segment. This is determine by looking at the segment state field. If
the state is PRECOMMITTED, CREATED, or DELETED, then the segment is
shadowed and recovery processing must be performed.

For recovery processing, storage allocation information is collected as normal except that first,
the shadow segment descriptor is located and brought into memory. Also, an ASD for the
segment is created and placed in the active segment table. Then the two versions are examined
in tandem. When the operation discovers a difference in the allocation for a segment page,
both PBNs are kept. The one from the shadow version is placed in the new field of a CRUST
structure. The PBN from the permanent version is placed in the old field of the same structure.
All of the PBNs collected are placed in the allots parameter. The CRUST structure is used to
create a commit record for the segment which is placed in the windows field of the ASD for the
segment. The commit record is not complete; for example, no virtual memory information is
included. SEoa recognizes these sorts of commit records and processes them accordingly.
P_Restore calls S_Eoa with the appropriate flag (commit or abort) based on a query to the
kernel database. The operation returns number of blocks allocated for the segment.

2.4.13 Changing a Segment's Size

int S_Chgsize (sptr, delta)
ASD •sptr;
ujnt delta;

S Chgsize appends delta extra bytes to the end of the segment. This changes the permanent
segment on disk as well as the mapped in segment. Any new data blocks necessary are not
allocated until data is actually written to them by a S Write operation. However, the size
change may require new mapping blocks, and these are allocated immediately and integrated

-22-

into the structure. New mapping blocks are initialized with null entries. A size change may
cause a reorganization of the segment structure. For example, an increase in the segment size
may require the allocation of mapping blocks, whereas before only the segment index was
necessary. The operation returns success or failure.

2.4.14 Segment Status

Int S_Statue (segname)
SYSNAME * segname;

The S_Status operation returns the status of a segment with respect to any action management
processing taking place on the segment. This information is pulled from the state fields of the
segment header or active segment descriptor. The return value of the operation is the status of
the segment.

3. The Partition Module

This section describes the partition module of the kernel prototype. The major structures used
by the module are described and the interface to the partition system is defined. The structures
described in this section can be found in the files partition.c, partition.h, and parttab.h.

3.1 Partition Module Structures

The structure definitions described below are found for the most part in partition.h. However,
definition of structures used by the partition system in general, such as the APT, are found in
parttab.h.

3.1.1 The Partition Header

typedef struct {
SYSNAME 	partname, devname;
uJnt 	start, extent;
u_.,short 	parttype;
uJnt 	pagemap, pd, sd, phdr, shdr;

} partition_hdr;

The partition header is duplicated at either end of the partition. Both copies must be updates.
The sysname contained in devname is that of the device on which the partition resides. All
locations and sizes are in terms of blocks (512 byte). Start is a DBN, as it indicates the base
location on the device for the partition. Extent is the size of the partition. Pd and sd are the
locations of the partition header copies. Pd is set to zero and sd is set to the PBN of the last
block on the partition. Phdr and shdr are the base locations of the directory copies. Phdr is set
to one, and the PBN in shdr is determined by the partition size. Pagemap is currently unused,
but is available for an implements of the allocation map which uses a permanent map version.

3.1.2 Partition Directories

typedef struct
int 	count;

struct
SYSNAME 	segname;
ujnt pbn;
Ilst[MaxBuckEnt];

pdbucket;

The above structure is the definition for a directory bucket. Count is the number of free entries
in the bucket. Initially, count is set to MaxBuckEnt, the maximum number of entries that will
fit in the bucket. This number is less than the size of the entries would seem to indicate because
of alignment restrictions imposed by the C compiler. MaxBuckEnt is 41 for the prototype.

-23-

The remainder of the bucket is an array of entries. Empty buckets have a pbn field set to zero,
as that partition block is not available for segment storage.

3.1.3 A Locking Structure for the Allocation Map

typedef struct
char 	'map;
char 	inuse;

} mientry;

There is a structure of this type for each page (512 bytes) in the allocation map. Map contains
the address of the page and is use as the semaphore BD for that page's semaphore. The muse
field is set after the semaphore for the page has been taken. The field is clear when the page is
not being referenced.

3.1.4 A Partition Recovery Support

typedef struct {
GE 	links;
SYSNAME 	name;
int 	count;
address list[8];

} PActDesc;

These structures provide recovery support at the partition level. Name is the sysname for the
action that caused this entry to be created. Each entry contains a list of APDs for partitions to
which the action has written. Count is the number of such partitions. Using the device field of
the APD, Plush can call the necessary device flush operations.

3.1.5 Global Partition Support

typedef struct
GE 	links;
SYSNAME 	partname;
uJnt 	start, size, active;
uJnt 	phdr, shdr;
ADD 'device;
uJnt pdsize, pmsize, pmbsize, pdbsize;
ujnt 	pd, sd, pm, partattr, fspace;
char 	'pmbuf;
mientry 'pmassgn;

} APD;

OH 	APT[PTSIZE];
OH 	pactior[PActDescSize];
address partitions[32];
SYSNAME partitionsysnames[32];
address paging[4];
OH pdbuf;

The first structure is the definition of an active partition descriptor. The links field supports
the hardware queue mechanism used to link the descriptor to the APT. Partname is the
sysname of the partition. Start, size, and parttype describe the base location of the partition (it
is a DBN), the length of the partition in blocks (512 bytes), and the type of the partition (paging
or object). Phdr and shdr indicate the location of the partition header, but unlike the partition
header, these field contain DBNs. The pd and sd fields, containing the base locations of the
directory copies, are also DBNs. This reduces the overhead in accessing these structures.
Device is a pointer to the active device descriptor of the partition's device. The sizes of the
directory and allocation map are stored in pdsize and pmsize, respectively. Pmbsize and
pdbsize are the sizes (in 512 byte pages) of the buffer areas for the directory and allocation

map, respectively. Pmbsiza is always one, since there is a shared pool of buffers for all
partition directories. Pdbsize is simply the size of the allocation map, since it is contained
entirely in memory. Fspace is the amount of free space on the partition. Pm is unused, but is
intended for a permanent allocation map version. Pmbuf points to the allocation map. The
map is allocated from the system heap. Pmassgn points to an array of lock structures for the
allocation map. The array is pdbsize long.

The active partition table is declared as an array of hardware queue headers. The APDs are
placed in the table using the VAX queue instructions.

Partitions, partitionsysnames, and paging are all arrays kept by the storage manager for
convenience. Partitions contains pointers to APDs for all active partitions. Partitionsysnames
contains the sysnames of all active partitions. Paging contains the APDs of only paging
partitions.

Paction is a hash table used to manage the PactDesc entries described earlier. It is managed
similarly to the active partition table.

Pdbuf is the communal buffer pool for the partition directories. A single semaphore (with the
address of pdbuf as its ID) is used to manage the buffers.

3.2 The Partition System Interface

3.2.1 Partition Creation

void P_Create (devname, size, partattr, partname)
SYSNAME • devname, *partname;
uJnt size, partattr;

P Create creates a new partition on the device specified by the parameter devname. In
addition, P_Create activates the partition by creating an active partition descriptor and entering
this descriptor into the active partition table. The parameter size specifies the size of the new
partition in terms of blocks (512 bytes long in the prototype). Partattr is the type of partition
created. Currently, the prototype provides support for only paging and object partitions.
Partname is used to return the sysname generated by P Create. The major tasks that P_Create
performs are:

1. the generation of the partition header. The partition header contains the information
passed as parameters to the operation, the newly generated sysname for the partition, and
the starting address on disk for the partition. The later piece of information is obtained
with a call to RL_Enter. The partition header is written to the beginning and end of the
partition;

2. the creation of the (in-memory) allocation map for partition storage allocation. For each
page in the allocation map, P_Create also generates a semaphore used to provide mutual
exclusion on that page;

3. the allocation of buffer space for the partition directory, along with the generation of the
read/write lock for partition directory itself and a semaphore to control access to these
buffers;

4. the initialization of the partition directory on the partition. This requires a determination
of the size of the directory (based on the partition size) and the initialization of each
directory bucket to be empty;

5. the allocation map must be initialized so that the partition blocks containing the partition
header (two copies) and the partition directory (also two copies) are shown as allocated.
Also, since the allocation map is an integral number of pages, excess bits at the end of the
last block are also set; and

6. an APD is created and entered into the APT. The descriptor is initialized with the
partition sysname, its size and location on the device, the location of per partition
structures. The per partition structures include the partition header, the directories, the
allocation, etc. The partition descriptor also contains a pointer to the device on which the
partition resides, giving access to the entry points for the partition;

Currently the partition system maintains one set of buffers for the partition directories for all
the partitions. Each partition created adds an additional buffer to the set. The system keeps the
allocation map in memory for performance and because partitions are not large in this first
coding. Later implementations may add a buffer scheme for the allocation map.
Synchronization is done at a page granularity for the allocation map and as a whole for the
directory. However, the system maintains a read/write lock for the directory, unlike the simple
semaphore locks for the allocation map. The return value of P _Create is either success or
failure.

3.2.2 Removing Partitions

void PJDestroy (partname)
SYSNAME * partname;

This call removes a partition from the device on which it resides. The operation assumes that
the partition is active and it has an entry in the partition table. The active flag in the APD is
cleared so that no further operations are performed on the partition. P_Destroy is the
complement of P Create. Everything that was allocated in P_Create is deallocated in
P_Destroy. Locks and semaphores are taken before they are removed. The return value of the
call indicates success or failure.

3.2.3 Directory Management—Entering Data

int P_Enter (pptr, segname, pbn)
address pptr;

SYSNAME * segname;
address pbn;

This call enters a sysname/partition block number pair into the partition directory. Pptr is a
pointer into the partition table identifying the partition. A buffer is selected, the sysnami is
hashed, and the appropriate bucket from the directory is read into the buffer. P_Enter attempts
to place the entry in this bucket. Collision handling is a simple sequential scheme that first
searches for an empty entry in this bucket and then, if no entry is found, P_Enter examines the
next bucket. This requires another partition read to the buffer. Once the buffer has been
updated correctly, the buffer contents are written to both copies of the directory bucket. Because
of the C structure used, there is a good bit of wasted space due to alignment restrictions. Later
implementations may make changes to the structure to eliminate this waste. The return value of
the operation indicates the index of the directory bucket into which the entry was placed if the
operation was successful; otherwise, the operation returns failure.

3.2.4 Directory Management—Removing Entries

ird P_Remove (pptr, segname)
address pptr;

SYSNAME * segname;

P_Remove is the complement of P_Enter. It uses the same hashing and collision scheme to
remove an entry in the partition directory. The return value of the function indicates success or

failure.
3.2.5 Directory Management--Modrying Entries

int P_Mod (pptr, segname, hdroffset)
address pptr;

SYSNAME • segname;
address hdroffset;

Pjfod allows the modification of an existing directory entry. The same hashing and collision
strategies used in Pinter and P_Remove are also used in this operation. The return value of
P_Mod is the same as that for PEnter.
3.2.6 Directory Management--Locating Entries

int Pjind (pptr, segname)
address pptr;

SYSNAME • segname;

P_,FInd locates the entry in the directory for the segname passed. The same hashing and
collision scheme is used as in P_Enter and P_Rernave. The return value of the function is the
partition offset of the segment, if it resides on this partition, and is failure otherwise.
3.2.7 Directory Management—Examining Entries

Int P_GetFirst (pptr, number, segarray)
address pptr;

Int number;
SYSNAME • segarray;

The first number segment sysnames found in the directory are returned in the array pointed to
by segarray. The array is provided by the caller. A global variable DIrIndex is set to zero and
then the operation P_GetNext is called to perform the actual work. Pptr determines the
partition to use. The return value indicates the number of sysnames actually returned.
3.2.8 Directory Management--Examining Entries, Part II

int P_GetNext (pptr, number, segarray)
address pptr;

Int number;
SYSNAME • segarray;

The next number segnames in the directory are placed in the array pointed to by segarray. The
array is provided by the caller. As in P_GetFIrst, pptr determines the partition to use.
Dirindex determines where in the partition directory to start collecting names. Directory is
processed bucket by bucket until the required number of sysnames are collected Less than
number names may be collected if the operation runs out of directory entries. A read lock on
the directory is required. One of the directory buffers is used to read the directory buckets for
processing. The return value indicates the number of sysname actually collected.
3.2.9 Available Partition Storage

u_int P_AvailableSpace (pptr)
address pptr;

-27-

The amount of free space on the partition is returned. This value may not be entirely accurate.

3.2.10 Partition Reads
P_Reacl (pptr, pbn, addr)
address pptr;
address pbn, addr;

A block of the partition referred to by pptr is copied into memory at addr. Pbn is the block to
be read. Addr should contain a physical address. P_Read calls its device read operation to
perform the request. Prior to this call, the value in pbn must be converted from a PBN to a
DBN for the device, using the partition base address found in the APD for the partition.
Success or failure is return as the value of the function.

3.2.11 Partition Writes
P_Write (pptr, pbn, addr, Id, flag)
address pptr;
address pbn, addr;
SYSNAME 'Id;
u_short force;

A page from memory is written to the partition referred to by pptr. Pbn is the PBN of the
destination and addr is the physical address of the source. As in P_Read, the value in pbn is
converted from a PBN to a DBN for the device before calling the device write operation. Id
and flag are parameters that the device write uses to control the type of write performed, and
are simply passed =interpreted to the device write operation. The flag indicates whether the
write is asynchronous or synchronous and whether the write is performed by an action. The
return value for the operation is either success or failure.

3.2.12 Storage Allocation
uJnt P GetBlk (pptr, number, parray)
address pptr;
u_Int number, 'parray;

P_GetBlkO allocate blocks of storage from the partition pptr. Number specifies how many
blocks are required. Parray is a pointer to an array where the block numbers of the
allocated blocks are place to pass to the caller. Parray is provided by the caller. The blocks
contained in parray at the end of the operation are not necessarily contiguous. The
operation uses the allocation map semaphores to ensure mutual exclusion on the map, but
also uses an home flag to avoid waiting if possible. The return value is the number of blocks
allocated.

3.2.13 Deallocation of Storage

ujnt P_FleturnBlk (pptr, number, parray)
address pptr;
ujnt number, 'parray;

This call deallocates storage blocks to the partition. Parray contains the PBNs of the blocks to
be released. Number indicates the length of the array. The operation takes the semaphore of
each allocation that contains an entry it must reset. This list should be sorted in ascending order
for efficiency, but this is not required. The return value of P_ReturnBlk indicates the success or

-28-

failure of the operation.

3 .2.14 Partition Recovery Support
int PJIush (actname)

SYSNAME actname;

The P_flush operation allows recovery management to ensure that action write requests are
completed on time. The actname parameter specifies the action causing the flush. A partition
flush table is maintained for all partitions at the site. P_Flush locates the entry for the given
action and calls the appropriate device flush operation for each partition referenced in the entry.
The value returned by P_Flush indicates the success or failure of the operation.

3 .2.15 Partition Reconstruction
uJnt P_Ftestore (pptr)
address pptr;

The partition refered to by pptr is activated. This includes:

1. a readtvvrite lock for the directory is created, along with a set of semaphores for the
allocation map. A buffer for the directory is also created;

2. the operation performs a consistency check on the partition header and directory. The two
copies of the partition header are read and compared. The primary copy is used to update
the secondary if there is a disagreement. If neither copy can be read, the operation
returns a value indicating failure. The same procedure is followed for each bucket of the
partition directory;

3. the reconstruction of the partition allocation map. As in P Create, the storage for the
partition headers and directories is preallocated. Also, any excess bits at the end of the
allocation map are set to prevent their allocation. The other phase of reconstruction
involves the examination of each segment on the partition to determine which blocks are
allocated for the segments. P_Restore reads the directory and for each sysname
encountered, it makes a call to S_Check (described in the previous section dealing with the
segment module). S_Check returns a list of the partition blocks in use. P_Restore
allocates these blocks; and

4. any action processing remaining to be performed is done. This is actually done through
the call to S_Check for each segment. S_Check determines whether or not further action
processing is required. If S_Check indicates that a segment is shadowed, then the segment
sysname is placed in a table for further processing. For each sysname in this table,
P_Restore determines which action caused the shadowed by examining the shadow field of
the in-memory version of the segment descriptor. The kernel database is then queried to
find the final result of this action (whether it committed or aborted). If the action is found
to have committed, P_Restore calls S_Eoa with the flag parameter set for a commit. If
the database indicates that the action aborted, 5_,Eaa is called with its flag set for an abort.
If the database contains to information for the action, the segment sysname is saved for
further processing by the action management system, which has more complete
information concerning action events.

-29-

The return value for the operation indicates the success or failure of the operation.

3 .2.16 Maybe Table Manipulations
uJnt P_MayEnter(segname)
SYSNAME segname

ujnt P_MayTest(segname)
SYSNAME segname

These two operations provide the interface to the maybe table. PivLayEnter enters the
sysname specified into the maybe table. P_MayTest queries the maybe table to determine
whether the specified sysname is in the maybe table. The implementation is based on the
hashing technique discussed in this dissertation. The sysname is hashed to a compact format and
enter into the maybe table using a second hashing function. The return value for both
operations indicates success or failure. A successful return value from PiVlayTest indicates
only that the sysname is probably contained in the maybe table. A return value of "failure"
indicates that the sysname is definitely not in the maybe table.

4. The Clouds Device System

This section presents the interface and structures in the device module for the RLO2 disk The
structures and operations defined are found mainly in the files rl_dev.c and rl_dev.c. The
definition for RLO2 requests is found in buffer.h.

4.1 Device Module Structures

This section describes the major structures used by the 121.02 device module. For the most part
these structures are defined in rl_dev.c. However, the request packet definition can be found in
buffer.h and the active device descriptor definition can be found in devtab.h.

4.1.1 The Medium Header

typedef struct ri_header
{

uJnt signature;
SYSNAME medname, devname;
ujnt storage;
u_short npart;

struct riJndex
SYSNAME partname;
ujnt start;
ujnt extent;
u_short type;

index[MAX_PART];

char filler[406];
} Header;

This structure definition is found is the file rl_dev.c. It defines the medium header for a RLO2
device. The structure is zero padded to a block size. Most of the information has been
described previously. Start, storage, and extent are in terms of device blocks (512 bytes). The
signature field is currently unused.

-30-

4.1.2 RLO2 Control Registers
static struct rLregs

u_short cs;
u_short ba;
union {

u short seek;
u_short rw;
u_short get_st;

} da;
union {

u_short get_st;
u_short rhead;
u_short rw;

} rnP;
} *ri_regs;

Rl_regs is a pointer to the control and status registers used by the RL02. The location of the
register set for the RLO2 is determined by the RLJnit and RL_Mount operations using the
offset specified by the device documentation [DEC82J31 and the base address for the device control
and register area passed to these operations. Rl_regs contains an address inside the device
control and status area of the kernel memory. The registers are all 16 bit words. Cs is the
control register and is used to specify the type of device operation to perform, and also allows
the specification of options. Return codes and error codes are passed from the controller and
device through this register. The ba register indicates the base address in memory for a data
transfer. The address is actually a Unibus address. The address is obtained as described in the
description of the rwstart operation. The da register has several functions and format
depending on the device operation being performed. For a "get-device-status" operation, the
register controls whether a reset is performed. For seek operations, the da register indicates the
distance and direction in which to seek. For data transfer operations, the base of the area
involved in the transfer is specified in the da register in cylinder/sector format. The mp register
is a multipurpose register used for counting the amount of data transferred in read and write
operations and as a fault status register during the "get-device-status" operation. The union of
various formats for the da and nip registers was taken from the Unix RLO2 driver.

4.1.3 Request Packets

typed& struct
QE 	links;
QE 	thread;
SYSNAME id;
address vma, da;
u_,short reqtype, errcnt;

} buffer;

This type defines the structure of a request packet. The structure has linkage fields for two
hardware queues. One is for the request queue. The other is there in the event the request is
started by an action and the packet is placed in a flush table entry. Vma contains a physical
address to or from which the data is to be transferred. Reqtype is used to encode the operation
and write options. Errcnt is the number of errors caused by the request.

-31-

4.1.4 Bad Sector Table Definition

typedef struct badsct
ujnt csn, filler1;

struct fields {
ujnt cyl: 9;
ujnt filled: 7;
uJnt sect: 6;
ujnt filler2: 2;
uJnt hd: 1;
uJnt filler3: 7;

} bds[125];

ujnt filler2;
} BstEntry;

BstEntry is a type for an in-memory version of the bad sector tables residing on the last track of
the RL02. Each element of the bds array indicates a bad sector. The backup sector is found on
the last cylinder of the RL02. The index into the bds array is also the index of the backup
sector. The format of the structure matches the format of the bad sector file on the RLO2
media, so filler fields are used in the structure.

4.1.5 RL02 Flush Table Structures

typedef struct flush
{

OE 	links;
OH 	flush_set;
SYSNAME 	id;
u_short complete, outstanding, errcnt, fishflag;

1 flentry;

static OH flush[FLSHTBSZ];

These are the definitions of the flush table for the RLO2 device. Entries for the table are
allocated from the system heap. Flush is the flush table itself. As mentioned previously, it is a
hash table. The declaration is static to prevent the table's use outside the module.

4.1.6 The Ready Queue

static OH request;

The request queue for the RLO2 is implemented using the VAX hardware queue facility.
Again, the static declaration hides the structure.

-32-

4.1.7 The Active Device Table
typedef struct

OE 	links;
SYSNAME 	devname, medname;
u_short active, errcnt, available;
u_short nintr, nreads, nwrites, nerrs;
GENERIC 	'rags;
void 	('ivector) 0;
uJnt 	('enter) ();
uJnt ('remove) 0;
uJnt 	('partitions) 0;
ujnt 	('read) 0;
ujnt 	(*write) 0;
void 	('dispatch) 0;
uJnt 	('flush) 0;
uJnt 	('init) ();
uJnt ('mount) 0;
uJnt ('unmount) 0;

}ADD

The active device descriptor format is defined above. The GENERIC type is a 32 bit structure
which is a union of various types.

4.2 The Device Module Interface

The following functions are the operations available through the device module for the RL02.

4.2.1 Device Initialization

uJnt RL_Init (devname, medname, csroffset)
SYSNAME 'devname, 'medname;
address csroffset;

The third parameter, csroffset, contains the base address of the device control and status
register area for the kernel. RLt uses this address to locate the control/status registers for
the RL02. These registers are used to initiate device commands. The operation then issues the
first device operation to test whether the device is present and ready. If this is so, the operation
may continue. The RL_Init operation is basically a formatting operation. The call creates the
medium header and initializes this structure. It then mounts the device by creating an active
device descriptor in the active device table. See RLMount for more details on device
mounting. The sysnames for the device and its medium are created by the operation and
returned to the caller. The function value indicates the success or failure of the call.

4.2.2 Device Storage Allocation

ujnt RL_Enter(partname, size, type)
SYSNAME 	partname;
uJnt 	size;
u_short type;

RL_Enter provides a mechanism for allocating device storage for partitions. The structures and
strategies used are very simplistic. Neither the call nor any other part of the device module
attempts to perform block coalescing. A simple allocate at the end strategy is used to allocate
storage for a partition. The index field of the medium header is used to manage this simple
form of allocation. The parameters passed into the call describe a partition being created. The
second parameter, size, is used to allocate the correct amount of the storage. All three
parameters are placed into the next free index field entry, along with the base address for the
new partition. The medium header is then written to disk. The return value of the function
indicates the success or failure of the operation. In the case of a successful allocation, the
starting address is returned. Failure is indicated by a zero return value.

-33-

4.2.3 Device Storage Deallocation

ujnt RL_Ftemove(partriame)
SYSNAME 	partnarne;

RL_Remove is the complement of RL..Enter The entry in the medium table for the referenced
partition is cleared. No storage compaction is attempted. Currently, there is no facility for the
free storage to be reallocated. The return value indicates success or failure.

4.2.4 Device Allocation Query

uJnt 	RL_Partitions(partarray, offset, size)
SYSNAME 	'partarray;
address 'offset;
ujnt 'size;

This operation allows the caller to determine what partitions reside on an RLO2 device. Each of
the parameters is an array. This call is generally used during system startup as part of storage
management reconstruction. The return value indicates the number of partitions that reside on
the device.

4.2.5 Device Activation

uJnt RL_Mount (devname, medname, csroffset)
SYSNAME 'devname, 'medname;
uJnt csroffset;

RL_Mount activates an RLO2 device. The third parameter, csroffset, contains the base address
of the device control and status register area for the kernel. RL_Mount uses this address to
locate the control/status registers for the RL02. The operation then issues the first device
operation to test whether the device is present and ready. If this is so, the operation may
continue. The call creates an active device descriptor for the RL02, places it in the ADT, and
then proceeds to initialin- the descriptor from the medium header found on the device. The
sysnames found in this header must match those passed as parameters to the call. RL_Mount
also examines the bad sector file (this resides on the last sector of RLO2 media) and places this
information into the appropriate tables. The call also initialims the request queue and flush
table to an empty state. The addresses for the operations described in this section are placed in
the device descriptor, and most subsequent references to the operations are made through the
device descriptor fields. One of the last acts of RL_Mount is to set the available flag in the
ADD, so the device is available to the kernel. The value of the function indicates the success or
failure of the operation.

4.2.6 Device Deactivation

uJnt RL_UnMount (devname, medname)
SYSNAME devname, 'medname;

The sysnames passed into the operation are compared with those contained in the medium
header, and if they match, the device is unmounted. First, the availability flag in the ADD is
cleared so that no further requests are accepted. Pending device requests are flushed from the
device request queue. The ADD for the RLO2 is destroyed. The return value indicates success
or failure of the operation.

4.2.7 Device Read Requests
uJnt RL_Ftead (addr, Ibn)
address addr;
address Ibn;

RL_Read allows the caller to create a read request on the RLO2 device. The call takes a
request packet from the pool and fills the fields with the appropriate values. Note that the
memory address into which the data is to be transferred is a physical address. A semaphore is
created for the call using the request packet address as the semaphore ID. If the device is
currently processing the request, the new packet is placed onto the request queue. If the request
queue is empty, however, RL_Read initiates the read operation itself. In either case, the
operation waits on the semaphore it created. When the semaphore is notified, RLjtead
returns the request packet and destroys the semaphore. The packet returns the result of the
read operation (a zero in the errcnt field indicates a successful transfer; any positive value
means the read failed) and the appropriate value is returned as the function value.

4.2.8 Device Write Requests
uJnt RL Write (addr, Ibn, id, flags)
address addr;
address Ibn;
SYSNAME *Id;
short flags;

RL Write initiates a write request to the RI..02 device. As with RL_Read the operation takes a
request packet from the pool of packets and fills the packet fields with the necessary
information. The flags parameter is used to control whether a write operation is synchronous
or asynchronous. It also indicates whether an action is performing this request. The bits in
flags are ORed with the operation code for a write request and placed in the reqtype field of
the request packet. The id parameter is placed in the Id field of the packet if flags indicates the
write is for an action; the id is the action's sysname. A semaphore is created for a synchronous
write. If the write is for an action, the request packet is queued on an entry in the RLO2 flush
table. If no entry exists for the action, one is created. As with RL_Read the request either is
placed in the request queue if it is non-empty, or started by RL_Write if the request is empty.
For asynchronous writes, the operation returns immediately. For synchronous writes,
RL Write waits on the semaphore as does RL_Read and, on the semaphore notify, performs
the same cleanup as RL_Read The return value for the function is either success or failure.

4.2.9 Flushing Action Writes

uint RL_Flush (id)
SYSNAME *id;

Through the RLJIush operation, the caller can tell the RL02 device to notify the caller when
all write request performed by an action are complete. The operation first determines if there is
a flush table entry for the action. If so, the outstanding and completed field of the table entry
are compared and if the two fields are not equal (indicating that some pending requests started
by the action have not completed), the flshflag field is set, and the call waits on the semaphore
created for the table entry. When this semaphore is notified, RLJlush destroys the
semaphore, the flush table entry, and returns the number of requests that were completed.

4.2.10 The Device Interrupt Handler

void RL_Dispatch 0

This operation is not available as a callable operation. It is the interrupt handler for the RLO2
device. An RLO2 interrupt indicates that the request completed or that there was a device error.
In the latter case, RLJ)ispatch logs the error and restarts the request. A count is kept for the

-35-

request and when 15 retries have been made, the operation terminates the request. If the status
registers indicate that the errors may be due to a bad sector, bad sector forwarding is attempted
and the request is restarted with the new device address.

After a successful request, the operation performs the appropriate cleanup procedures for the
request. For device writes, the operation must check whether the write is synchronous or
asynchronous, and whether the write was started by an action. For writes started by an action
there are several possibilities. After the flush table entry for the action is found, RL_Dispatch
increments the completed field of the table entry. If the flshflag field of the entry is set and if
the outstanding and completed fields are equal, the operation notifies the flush table entry
semaphore. For asynchronous writes, the operation returns the request packet used for the
request. For asynchronous write requests and for read requests, RI, Dispatch notifies the
semaphore associated with the request packet.

After processing the just completed request, RL_Dispatch selects a new request to start. This is
done in a first-come-first-serve manner. If the request queue is empty, the active flag found in
the ADD for the RLO2 is cleared, indicating that there are no pending requests. Otherwise, the
next packet is dequeued from the request queue and started by the operation.

4.2.11 Debugging Support
void RL_Debugo

This routine prints the values of the RLO2 registers and structures on the console.

4.3 Important Service Utilities

This section describes several routines which, while not part of the device interface, perform
important functions.

4.3.1 Initiating Device Requests

static u.jhort rwstart (bf, interrupt)
buffer * bf;
u_short interrupt;

Rwstart is used to start requests. The parameters are a pointer to a request packet and a flag
indicating whether the request should post an interrupt when it completes. The first step
rwstart takes is to determine whether a seek to a new cylinder is necessary. If it is, rwstart
starts the seek and waits (using a tight loop) until the seek completes. Rwstart then begins
setting the control and status registers to the values indicated in the request packet. The
memory address to or from which data is transferred is not given directly to the device.
Instead, the address in the request packet is mapped into a Unibus address. This mapping may
be done in two ways. If the device is not active (the device has no pending requests), a new
Unibus page mapping must be allocated. If the device is active, the Unibus page mapping from
the previous request may be reused. The latter alternative is slightly faster. The disk address
for the transfer must be converted from a DBN based on 512 byte blocks to a cylinder/sector
format based on 256 byte blocks. The command register is set last and this initiates the request.
If the interrupt parameter is clear (the request should not cause an interrupt), the operation
waits on the completion of the request before returning. This option is seldom used and only
for requests generated by the device itself for administrative purposes. If the interrupt
parameter is set, the operation returns immediately after starting the request. The device
interrupt handled by RLJ)Ispatch will take care of the request. The return value of the
operation indicates success or failure.

-36-

4.3.2 Flush Table Manipulations
static void 	tenter (id, bf)
SYSNAME Id;
buffer bf;

This operation enters the request packet into an existing flush table entry (identified by the
parameter id), or creates such an entry for the action with sysname id, and places the request
packet to which the parameter hi points into the new entry. In the case that a new flush table
entry is created, fenter also creates a semaphore using the entry address as the semaphore ID.
This semaphore is used by RLJElush to wait for the completion of action requests. The
operation increments the field outstanding (there is a new request) and enqueues the request
packet onto fluslx,set. There is no return value.

5. Glossary

ADD This is an active device descriptor. It contains the information about a device which are
in-use by the kernel.

ADT The ADT (active device table) is a structure used to manage descriptors for devices which
are in-use by the kernel.

APD The APD (active partition descriptor) is analogous to the device descriptor. Each APD
contains a pointer to the descriptor for the device on which it resides.

An This is the active partition table. Each entry in this table is an APD for a partition being
used by the kernel.

ASD ASD stands for active segment descriptor. An ASD is created for each segment which is
mapped into virtual memory. The descriptor contains references to virtual memory and
permanent storage mapping tables for the segment, in addition to descriptive information about
the segment.

AST The AST (active segment table) contains the ASDs for segment which are being used
(through an operation call on an object), or which were recently used.

Block The smallest allocatable unit of secondary storage. In the current kernel implementation
the block size is 512 bytes. This is also the virtual memory page size, and the terms page and
block are frequently interchanged.

DBN A DBN is a device block number. DBNs are offests from the beginning of a device.
They provide a way to provide an abstract addressing scheme for all devices no matter what the
underlying geometry of the device is. The device objects are responsible for performing the
translation of a DBN to address format (sector/cylinder/head, for example) used by the device
hardware.

Flush table A structure used at by device objects to associate writes requests being performed
during an action commit to the committing action. The table allows device objects to ensure that
all writes for an action are complete before the action commits.

Maybe table The maybe table is an approximate membership tester. It provides an efficient
means to short circuit object searches initiated by a remote procedure call. When queried, a
positive response from the maybe table indicates that the object may be at a site in the system; a
more thorough search is required. A negative indicates that the object is definitely not at the
site.

Page allocation map This also referred to as simply a page map. The page map is a bit map
used to allocate partition storage.

-37-

Partition Partitions in the Clouds kernel are logical devices. They are composed of a
contiguous collection of secondary storage blocks. Partitions must reside completely on one
device. Clouds partitions are used solely to administer secondary; segment membership in a
particular partition provides no logical relationship of that segment to others residing on the
partition.

Partition directory Each partition maintains a directory of the segments residing on that
partition. Each entry is a segment sysname and a PBN for the segment header.

PBN PBN stands for partition block number. PBNs are offsets from the beginning of a
partition and are used for addressing purposes by the segment system.

Segment A Clouds segment is a a sequence of bytes which may be manipulated using the set of
operations provided by the storage manager and described earlier. Segments are used by the
kernel to facilitate the manipulation of Clouds objects.

Segment tree This refers to the lay out of Clouds segments on secondary storage. Each segment
has a header which in addition to containing descriptive information about the segment, contains
a list of refers to other blocks of storage. Each of these blocks may be a data block (a leaf in
the segment tree), or a mapping block (an internal node in the segment tree) which contains
references to data blocks or other mapping blocks.

Shadow pages Copies of modified pages in the permanent segment state used for recovery
purposes. On commit of an action, the shadow pages are become part of the permanent state of
the segment, replacing the old pages.

Shadowing This is the recovery technique used by the storage manager. Updates to recoverable
segments are not made to the permanent version of the segment, but to copies of the permanent
version. On commit, these copies become part of a new, modified permanent version.
Shadowing in the Clouds kernel is done on at a page level.

Window Windows are used in the mapping of segments into virtual memory. They are
contiguous chunk of the segment. A segment may have several windows mapped into it, each
having different attributes (code windows, permanent data windows, heap storage windows,
etc). Windows facilitate sharing of segments (particularly code segments) in the kernel.

6. Storage Management Functional Flow

This section contains a series of diagrams illustrating the functional flow of the storage
management system of Clouds. The goals of the author is to provide information as to how and
by whom storage management routines are used.

Each routine described in the earlier sections as a diagram in this section. Segment system
routines appear first, followed by the partition system routines, and last, the device system
routines. Within each group, the illustrations are in alphabetical order. The routine being
described appears in the center of each diagram.

Solid arrowed lines are used to represent a caller/callee relationship. The called routine is at the
arrow head and the calling routine is at the arrow tail.

Dotted lines are used to indicate the relationship of the routine to important data structures.
Each such relationship is labelled "Read" and/or "Modify", indicating whether the routine
simply references the structures, updates, creates, or deletes the structure, or some combination
of the above.

Some of the routines are part of the storage manager/kernel interface. That is, the kernel uses
these routines to perform necessary manipulations on secondary storage (usually at the segment
level). In these diagrams the boundary is indicated by a dashed line.

Active
Segment Table

Storage Manager /
Kernel Interface Read

	 .Modify

Segment Header

Read .

. 	'Read.
Modify 	• Partition Directory

Virtual r:Age & Disk
Ma p

Active
Segment Table

ect Management

Storage Manager I Kernel Interface

Read
.• Modify

Segment Header

Read
Modify

* . Modify
Read..

_ gsiz

Storage Manager I Kernel Interface
Modify

Active
Segment Table

Segment
Header

Egnimstx
Virtual Page & Disk

Maps

Storage Manager / Kernel interface
Modify

Active
Segment Table

Segment
Header

,Modify

Virtual Page & Disk
Maps

Active
Segment Table

Storage Manager /
Kernel interface

Reid
Modify

Segment Header

Read - •
Modify

Modify
Read,

Virtual Page & Disk
M

a .

Action Managment

Storage Manager I
Kernel Interface

Read

Read.

Read
Partition Directory

Active
Segment Table

Maybe Table

Modify

Virtual Rage & Disk
map

Segment Header

ect Migration

Read

Read

Active
Segment Table

Active
Segment Table

Segment Header

Modify

Virtual ilA 4 & Disk

Active
Segment Table

Read
Modify

Segment Header

Read

Modify

Virtual P'_toe & Disk

Active
Segment Table

Read
„Modify

Segment Header

Read

Modify

Virtualtoe & Disk
TI)

Active
Segment Table

Read
Modify

Segment Header

Read.- --------
Modify

Virtual Page & Disk
M ap

ction Managmen

Active
Segment Table

Read
•

Segment Header

Re
_rteaa

Modify
Read...

Virtual pAge & Disk
Map

Active
Segment Table

Read ------ . 	-

Active
Segment Table

Modify

-Modify 	- -

Modify.,

Segment
Header

Virtual Page & Disk
Maps

Active
Segment Table

Segment Header

1:e & Disk Virtual

Storage Manager / Kernel Interface

Active Partition Table

,Read - .4)

Active
Partition Table

Partition Header

Partition Directory

Storage Manage / Kernel Interface
Modify

Modify --

Modify.

Modify

Active
Partition Table

Partition Header

Partition Directory

Page Map

Storage Manager / Kernel Interface
Modify

■

Partition
Directory

ti

Partition
Directory

ti

PACtDesc

Partition Table

Precommi

Partition Directory

Read

Partition Directory

Read

Maybe Table

.Modify

Maybe Table

Read-

Partition
Directory

ti

rr eaa
Active

Partition Table

Partition
Directory

%,

4

Modify
Storage Manager / Kernel Interface

Active
Partition Table

Partition Header

Partition Directory

1.118t,
Page Map

• 	

Page Map

.Modify

Precommi

Active
Read .. 	Partition Table

a.

•

Modify. 	 PActDesc
4

Create

Partition
Directory

•%.

R equest Queue
• ap.

Read
Modify. 	Flush Table

Active
Device Table

Medium Header

Storage Manager / Kernel Interface

Modify

Modify
s..

Modify .

Flush Table

Active
Device Table

Storage Manager / Kernel Interface

111113161,

Medium Header

ti

Modify 	1 iparrina„
Flush Table

Storage Manager / Kernel Interface

Medium Header

Read

ti

P Mod

Request Queue

Read

Activg
Device I able

Partition
Directory

Destroy

emove

Active
Device Table Storage Manager / Kernel Interface

Modify

Modify

Flush Table

Request Queue
•

•

Read 	Modify. 	Flush Table
4

De‘,iiccetivfable

- 79

References
[DEC82] DEC, VAX Hardware Handbook. Maynard, MA: Digital Equipment Corporation,

1982.
[DEC82b] DEC, RLO1IRL02 User Guide. Maynard, MA: Digital Equipment Corporation,

1982.
[Ken186] 	Kenley, G. G. "An Action Management System for a Distributed Operating

System." M.S. Thesis, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (Also released as technical report
GIT-ICS-86/01.)

[SPaf86]
	

Spafford, E. H. "Kernel Structures for a Distributed Operating System." Ph.D.
Diss., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1986. (Also released as techniml report o1r-Ics-
86/16.)

APPENDIX B

The Clouds Distributed Operating System.
Functional Description,
Implementation Details

and
Related Work.

William Appelbe,Partha Dasgupta & Rich LeBlanc

Abstract

Clouds is a distributed operating system supporting objects, actions, location independence,
reliability and integration. We present a functional description of the system attributes and
the impact this has on the users of distributed systems. We describe the various design and
implementation decisions and how they were affected by the goals of the Clouds project.
We also compare and contrast several well known operating systems project and their
approaches.

	 1

The Clouds Distributed Operating System.
Functional Description,
Implementation Details

and
Related Work.

William Appelbe, Partha Dasgupta & Richard LeBlanc.

1. Introduction

Clouds is an operating system designed to be the forerunner of a novel class of distri-
buted operating systems that provide the integration, reliability and structure that makes a dis-
tributed system generally usable.

Clouds is designed to run on a set of general purpose computers (uniprocessors or mul-
tiprocessors) that are connected via a medium-to-high speed local area network. The structure
of Clouds promotes transparency, support for advanced programming paradigms, and decen-
tralized yet integrated control. The major design objectives for Clouds are:

• Integration of resources through cooperations and location transparency.

• Support for robust transaction processing, and the ability to achieve fault tolerance.

• Efficient design and implementation.

• Simple and uniform interfaces for distributed processing.

The system structuring paradigm chosen after substantial research for the Clouds operat-
ing system is an object/process/action model. All instances of services, programs and data in
Clouds are objects. Processing is done by atomic actions. Provision is made for processing
that must execute outside the constraints of atomicity [A183, DaLe85, McA183]. In the next
few pages we provide a functional description of the system, and some implementational
details.

2. Objects

All data, programs, devices and resources on Clouds are objects. The only entities that
are not objects are processes and actions. A Clouds object at the lowest level of conception is
a virtual address space. Unlike conventional virtual address spaces, a Clouds object is neither
tied to any process nor is volatile. A Clouds object exists forever (like files) unless if it is
explicitly deleted.

Every Clouds object is named. The name of an object, also known as the capability, is
unique over the entire distributed system and does not include the location of the object. That
is, the capability based naming scheme in Clouds creates a uniform, flat system name space
for objects. The capabilities not only provide the naming mechanism, they can also be used
for access control and protection.

Georgia Tech
	

Clouds Project 	 Functions & Implementation

	 2

Since an object consists of a named address space (and its contents), it is completely pas-
sive. Unlike those in some object based systems, a Clouds object is not associated with any
server process. Processes are allowed to execute within the context of objects. A process exe-
cutes in an object by entering it through one of several defined entry points, and after the exe-
cution is complete the process leaves the object. Several processes can simultaneously enter an
object and execute in parallel.

Objects have structure. They contain, minimally, a code segment, a data segment and a
heap for local storage allocation. Processes that enter an object execute in the code segment.
The data segment is accessible to the code in the code segment, but not to any other object.
Thus the object has a wall around it which has some well defined gateways, through which
activity can come in. Data cannot be transmitted in or out of the object freely, but can be

moved as parameters to the code segment entry points (see discussion on processes).

Clouds objects are user-defined or system-defined. Most objects are user-defined. Some
examples of system defined objects are device drivers, name-service handlers, and the Clouds

kernelt itself.

A complete Clouds object can contain user-defined code and data, system-defined code and
data that handle synchronization, recovery and commit, a volatile heap for temporary
memory allocation, a permanent heap for allocating memory that will remain permanent as a
part of the data structures in the object, locks and capabilities to other objects.

3. Processes

The only form of activity in the Clouds system is the process. Clouds processes are light-
weight workers. A process is composed of a process control block (PCB) and and a virtual
space containing the stack. Thus, a process can be viewed as a program counter, stack
pointer and stack. Upon creation a process starts up at an entry point of an object. As the pro-
cess executes, it executes code inside an object and manipulates the data inside this object.
The code in the object can contain a procedure call to an operation of another object. When a
process executes this, it temporarily leaves the caller object and enters the called object, and
commences execution there. The process returns to the caller object after the execution in the
called object terminates. The calls to the entry point of objects are called object invocation.

Object invocations can be nested. The code that is accessible by each entry point is known as
an operation of the object.

Thus a process executes by processing operations defined inside many objects. Unlike
processes in conventional operating systems, the process thus often cross boundaries of virtual
address spaces. Addressing in an address space is however limited to that address space, and
thus the process cannot access any data outside an address space. Control transfer between
address spaces occurs though object invocation, and data transfer between address spaces

tAlthough the specification define the kernel to be an object, the implementation treats it as a special case (or pseudo-object) for

Georgia Tech
	

Clouds Project 	 Functions & Impiernentation

	 3

occurs through parameters to object invocation (which may be capabilities for other objects).

When a process executing in an object (or address space) executes a call to another
object, it can provide the called operation with arguments. When the called operation ter-
minates, it can send back result arguments. Since the address spaces of the two objects are
disjoint, all arguments are passed by value. This argument passing mechanism is identical to
copy-in copy-out semantics of parameter passing supported by many programming languages.

4. The Object/Process Paradigm

The structure created by a system composed of objects and processes has several
interesting properties. First, all interfaces are procedural. Object invocations are equivalent
to procedure calls on modules not sharing global data. The modules are permanent. The pro-
cedure calls work across machine boundaries. Since the objects exists in a global name space,
there is no concept of machine boundaries. At the system level local invocations and remote
invocations (RPC) are differentiated, however this is transparent to the user and the pro-
grammer.

Since every entity is an object and objects are permanent, there is no need for a file sys-
tem. A conventional file is a special case of an object, an object with a read, a write, a seek
and some other file operations defined in it to transport data in and out of the object through
parameters provided to the calls.

Though we can simulate files by using objects of type file, the need for files disappear in
most situations. Programs, do not need to store data in files, they can keep the data in the
data space, since the data space does not disappear when the controlling process terminates.
The need for user-level naming of files transforms to the need for user-level naming for
objects.

The Clouds operating system does not provide any support for I/O operations, except for
terminal I/O. (Terminal I/O is achieved by invoking the read and write operations on a termi-
nal object, dispensing most concepts about I/O streams).

Just as I/O is eliminated, so is the need for messages. Processes do not communicate
through messages. There are no ports. This allows a simplified system management strategy
as the system does not have to maintain linkage information between processes and ports.
Just as files can be simulated for those in need for them, messages and ports can be easily
simulated by an object consisting of a bounded buffer that implements the send and receive
operations on the buffer. However, we feel that the need for files and messages are the pro-
duct of the programming paradigms designed for systems supporting these features, and these
are not necessary structuring tools for programming environments.

The view of the computing environment created by Clouds is apparent. It is a simple
world of named address spaces (or objects). These object live in computing systems on a

efficiency reasons.

Georgia Tech
	

Clouds Project 	 Functions & Implementation

	 4

LAN, but the machine boundaries are made transparent, creating a unified object space.
Activity is provided by processes moving around amongst the population of objects through
invocation; and data flow is implemented by parameter passing.

This view of a distributed system, does have some pitfalls. Processes aborting due to
errors will leave permanent faulty data in objects they modified. Failure of computers will
result in similar mishaps. Multiple processes invoking the same object will cause errors due to
race conditions and conflicts. More involved consistency violations may be the results of non-
serializable executions. In a large distributed system, having thousands of objects and dozens
of machines, corruption due to failure cannot be tolerated or easily repaired. The prevention
of such situations is achieved through the use of the atomic actions paradigm, discussed
below.

5. Actions
Actions are units of work that are defined by the programmer to be atomic. The work

done by an action either gets done in its entirety or does not happen at all. Failures, errors,
and aborts thus do not leave a trace on the data stored in the objects [Ke86, Mc85].

An action is an abstraction. It is neither an object nor a process. It is a high level concept
that exists as information in the action management system. An action starts as one process.
Anything this process does, until the action commits or aborts, is in the context of the action.
If the process creates more processes, these too are part of the same action.

All the activity of the set of processes (or one process) in the context of an action, con-
sists of touching objects. A object is considered touched by an action if a process executing on
behalf of the action executes one or more object invocations on the object. A touched object is
not necessarily modified. All objects modified by an action exist in a volatile form that may
be different from their permanent representations.

When an action terminates, all the objects touched by the action are committed. Commit-
ment of an object is achieved by updating its permanent representation by replacing any data
that have been modified by this action. Since the updates by an uncommitted action are never
made permanent, an aborted action is rolled back by default.

Though the updates by an uncommitted action are not written on permanent (secondary)
storage, the updates of an uncommitted action may be seen by another uncommitted action
accessing the same object, depending upon the synchronization method used by the object.
We distinguish between two kinds of atomicities of actions, namely failure atomicity and view

atomicity. Failure atomicity dictates that either the updates performed by an action are made
permanent after the action runs to completion, or nothing occurs. View atomicity dictates that
the action is insulated from seeing any results from other concurrently executing actions.
Clouds can provides failure atomicity and, if needed, view atomicity. Note that not providing
view atomicity can lead to errors (an action A makes updates based on some results of an
uncommitted B action and A commits while B aborts). The differences between the atomicity

Georgia Tech
	

Qouds Project 	 Functions & Implementation

	 5

requirements and the rationale for providing failure atomicity will be clearer after the discus-
sion of synchronization methods.

5.1. Nested Actions

Actions, as units of work, are too large grained for many applications, especially in an
large distributed environment where failures are relatively common. Any error or failure
during the execution of an action requires that the entire action be aborted. An action often
needs the ability to recover from errors or failures. Finer grained atomicity and failure
recovery capabilities are provided by nested actions.

A top-level action is the conventional action. The-top level action can delegate sub-tasks
to subordinated actions or sub-actions, which in turn can spawn sub-actions, giving rise to a
tree of nested actions. A child action executes in the context of its parent, but the failure of
the child does not imply the failure of the parent, the parent may choose to retry the sub-task
or respond to the failure in some other way. The commit of a sub-action is conditional upon
the commit of the parent, and by transition, the commit of all nested actions are conditional
upon the commit of the top-level action. Thus a top-level action makes the final commit deci-
sion, based on the commit and abort status of all the nested action it gave rise to.

The nested action semantics of Clouds is identical to the semantics defined by Moss in
[Mo81). Nested actions thus provide a action programmer with failure containment firewalls
and the ability to try alternate methods to make progress.

6. Synchronization

The synchronization scheme decides how (if at all) concurrent processes execute in the
same object. The synchronization scheme used also dictates whether action using the object
are view atomic or not. Both the synchronization techniques used and the recovery techniques
used affect the semantics of action atomicity. We discuss synchronization in this section.
Recovery will be discussed in the next section and the effects of both on actions will be briefly
considered [McAlMc82].

Clouds offers two basic types of synchronization: custom and automatic. Custom syn-
chronization allows the programmer of an object to define and implement the synchronization
rules. For this purpose, the programmer has access to locks and semaphores that can be
defined and used inside the object. For example, setting a lock on a variable when entering an
operation and releasing it upon exit causes processes that execute this operation to run in
mutual exclusion. The object programmer can thus customize the synchronization scheme to
the needs of the object.

Though custom synchronization can be correct and useful for many applications, it is
possible to allow non-serializable execution in custom synchronization schemes. Allowing
various unconventional schemes is the power of custom synchronization. However in cases
where serializability is necessary, the programmer need not implement any synchronization;

Georgia Tech
	

Clouds Project 	 Functiors & Implementation

	 6

automatic synchronization is available for this purpose.

With automatic synchronization, each entry point in an object is marked as a read entry
or a write entry. When an action touches an object for the first time, a read or write lock is
obtained on the entire object (as appropriate). Conversions from a read lock to a write lock is
allowed. Locks are held until the action commits, implementing a two-phase locking protocol
and guaranteeing serializable execution of the action with respect to all data touched by the
action (provided all objects it touched were using automatic synchronization). This scheme
also provides view atomicity of actions.

7. Recovery

Recovery is managed by shadowing, providing failure atomicity for actions. Objects are
classified as recoverable or non-recoverable. Non-recoverable objects are somewhat cheaper
to handle and can be used by non-critical system tasks, but usage of non-recoverable objects
by actions can lead to lapse of consistency. Note that all Unix files are a special case of non-
recoverable objects in Clouds.

When an action invokes an operation in a recoverable object, a shadow version and a
core version of the object is created. The shadow version is the original permanent version,
and the core version is the possibly updated version. If several actions invoke an object in
parallel, there is still only ONE shadow and ONE core version. If the synchronization is not
automatic, there are possibilities that one uncommitted action will see updates from another
uncommitted action, violating the view atomicity requirements (if any). But this is left to the
programmer who chose the synchronization strategy.

Every recoverable object has two default entry points called pre-commit and commit.
When the pre-commit entry point is invoked, the object flushes all the updated data in the
core version to stable storage, and the commit operation copies the updates to the shadow
version and makes the shadow version the permanent version. These entry points can be used
by any 2-phase commit protocol.

Like synchronization, recovery comes in two flavors, namely custom and automatic.
When an action is run with automatic synchronization, the action management keeps track of
all the objects the action touched. When the action terminates successfully, the action manage-
ment system creates a commit co-ordinator process, that uses the pre-commit and commit
entry points of all the objects touched by the action to perform an atomic commit, using the
two-phase commit protocol.

Custom recovery is nearly identical, except that the programmer has the ability to rede-
fine the default pre-commit and commit routines in the objects; the user defined routines will
be used by the action manager at commit time. The user also has access to the commit rou-
tines during normal execution and thus can perform intermediate check points, partial com-
mits and customized features like flushing only certain pages of the object.

	 7

Automatic recovery and automatic synchronization guarantee serializability, failure
atomicity and view atomicity. Automatic recovery and custom synchronization guarantees
failure atomicity and allows the user to use some concurrency control semantically consistent
with the application. Custom recovery and synchronization allows the programmed full con-
trol of the execution strategy, and the system does not guarantee anything.

8. Programming Support

Systems and application programming for Clouds involves programming objects that
implement the desired functionality. These object can be expressed in any programming
language. The compiler for the language, however, must be modified to generate the stubs
for the various entry points, invocation handler, system call interfaces and the inclusion of
default systems function handling code (such as synchronization and recovery.)

The language Aeolus has been designed to provide programmers with the full set of
powerful features that the Clouds kernel supports. Aeolus provides linguistic support for pro-
gramming Clouds objects and allow the composition of objects from sub-objects. Aeolus pro-
vides access to the synchronization features (both custom and automatic) and the recovery
features of Clouds. Though the Clouds programmer is not tied to Aeolus, the language is
most suited for systems programming as it has been tailored to match the kernel features
[LeWi85, Wi85, WiLe86].

Aeolus is the first generation language for Clouds. It does not support some of the
features found in object-oriented programming systems such as extensive inheritance and sub-
classing. Providing support for these features at the language level is currently under con-
sideration.

9. Enhancements and Planned Features

The above description of Clouds documents the basic features of the distributed kernel
for Clouds. Presently the following enhancement, applications and features are at various
stages of design, implementation and planning.

• An object naming scheme is being developed that creates a hierarchical user naming
strategy (like Unix) that is also highly available and robust (through replicated direc-
tories).

• Unix and Clouds will be inter-operable providing Unix programmers and user with
access to Clouds features and Clouds programmers to use Unix services. Unix machines
will be able to execute remote procedure calls to Clouds object thus gaining access to all
the functionality that Clouds provides. In fact the user interface to Clouds will be through
Unix shells and tools. Similarly Clouds applications will make use of the wide variety of
programming support tools that are supported by Unix through a mechanisms that pro-
vides Unix service for Clouds computations. In addition, Clouds services will be directly
accessible through Clouds libraries for other programming languages, such as C++ and

Georgia Tech
	

aouds Project 	 Functions & Invierrentation

	 8

ADA.

• As mentioned earlier, mechanisms for providing object-oriented programming metho-

dology will be provided at the linguistic level, with enhancements in the kernel that will

provide performance advantages (such as sharing of code in the classes with its

instances) .

• Debugging support at the object level, process level and the invocation level will be pro-

vided. Techniques that allow the programmer to get a comprehensive view of the distri-

buted and concurrent execution environment are under development.

• A probe system that can track object and process status in the system can provide infor-

mation about failures, loading, deadlocks and software problems is being developed.

This will be used to develop a distributed system monitoring system that will help in

reconfiguration of failure and aid in providing fault tolerance. The probe system will

also be useful in distributed object level debugging [Da86].

• A distributed database that utilizes the object structure of Clouds for elegance and the

synchronization and recovery support for concurrency control and reliability is being

developed [DaMo86].

• Clouds has been designed as a base layer for fault tolerance computing. The systems that

will provide fault tolerance and guarantee progress of computation and system response

in face of partial system failures are being developed. The techniques include replicated

objects, multi-threaded actions, the coupling of the reconfiguration systems and monitor-

ing systems, and usage of dual-ported hardware.

M. Implementation Notes

The implementation of the Clouds operating systems has been based on the following

guidelines:

• The implementation of the system should be suitable for general purpose computers,

connected through widely used networking. Non-homogeneous machines, though not

crucial, should be allowed.

• Since the Clouds functionality is largely based on object invocation, support for objects

should be efficient in order to make the system usable. Also, the synchronization and

recovery systems should be efficient.

• Since one of the primary aims of Clouds is to provide the substrate for reliable, fault

tolerant computing, the base system design should be tolerant to failures and provide

adequate support for implementing fault tolerance.

• The system design should be simple to comprehend and implement.

Georgia Tech
	

Clouds Project 	 Fusions & Implementation

	 9

10.1. Hardware Configuration

The hardware chosen for the prototype is commonplace: three VAX-11/750's connected
by an Ethernet. The disk units are dual ported, allowing access to the units from two
machines, which provides the ability to remount the data from one machine to the other in
case of site failures thus increasing availability.

The user interface is not through terminals, but over the Ethernet from Unix main-
frames or workstations. This allows easy (software based) reassignment of users in case of
site failures.

10.2. Software Configuration

The kernel is implemented in C for portability, and because the availability of C source
for the UNIX kernel simplified the task of developing hardware interfaces such as device
drivers. Aeolus has been used as the implementation language for Clouds utilities.

10.3. Kernel Structure

The kernel is a replicated resident kernel, replicated at all the sites. Logically, the ker-
nel is distributed over several sites and the machine boundaries are invisible. This is achieved
by the communication system that provides the low level messaging interface between the
replicated kernels. The system control however is completely decentralized, so that failure of
individual kernels do not affect the rest of the system [Sp86).

For efficiency considerations, the kernel runs on the native machine and not on top of
any conventional operating system. As Clouds does not use most of the functionality of con-
ventional operating systems (such as Unix), building Clouds on top of a Unix like kernel
would have several unacceptable deficiencies, mainly leading to bad performance. Some of
the negative aspects of using Unix as the base layer would be:

• Unix processes are heavyweight processes: thus process creation and RPC would be
expensive.

• An Unix process is tied to one address space. Making a process cross address spaces
would involve simulating it through multiple processes and the Unix IPC mechanism,
which would involve multiple context switches and other message layer overheads.

• Only one process can execute in an address space, providing serious limitations to intra
object concurrency. There are methods that get around this problem, but they are gen-
erally complex to implement, unreliable and require substantial overhead.

To avoid these problems the Clouds kernel is designed to support the Clouds functions on
the native VAX and all the performance critical support is implemented at the lowest level in
the kernel.

	 10

10.4. Object Naming and Invocation

The two basic activities inside the Clouds kernel are system call handling and object invo-

cations System call handling is done locally, as in any operating system. Object invocation is a

service provided by the kernel for user processes. The attributes that object invocation must

satisfy are:

• Location independence.

• Fast, for both local and remote invocations.

• Failed machines should not hamper availability of objects on working sites, from work-

ing sites. Also, moving objects between sites, reassigning disk units and so on should be

simple.

Location independence is achieved through a capability based naming system. Availabil-

ity is obtained through decentralization of directory information and a unique search-and-

invoke strategy. Speed is achieved by implementing the invocation handlers at the lowest level
of the kernel, on the native machine.

When a process invokes an object, it first places the arguments on the stack and executes

an invoke system call, with the called object capability as the parameter. The capability of the

object is unique systemwide, but has no site information. The kernel searches the local object

directory to determine if the object is available locally. If it is, then the process address space

is switched and the process starts executing in the object that it invoked. (This is achieved by

changing the PO region of the VAX address space by updating the PO page table registers.

The stack of the process is in P1 region, and this space remains the same.)

If the object does not exist locally, the kernel broadcasts a search-and-invoke request.

All participating kernels then attempt to locate the object. The successful kernel dispatches a

slave process, which copies the arguments from the invoke request to its stack and performs a

local invocation on the object. Upon termination, the arguments are send back to the invoca-

tion requester, which causes the invocation request to return.

Hash tables, caches, and hint databases are used to add speed both the local searches for

objects as well as avoiding the need for all sites to search for objects at each broadcast

search-and-invoke request.

10.5. Storage Mangement

The storage management system handles the function required to provide the reliable,

permanent object address spaces. As mentioned earlier, unlike conventional systems, where

virtual address spaces are volatile and short lived, Clouds virtual spaces contain objects and

are permanent and long lived [Pi86].

The storage management system stores the object representations on disk, as an image

of the object space. When an object is invoked, the object is demand paged into its virtual

space as and when necessary. As the invocation updates the object, the updated pages do not

Georgia Tech
	

Clouds Project 	 Futrtions & Iroptenxreation

replace the original copy, but have shadow copies on the disk. The permanent copy is updated

only when a commit operation is performed on the object. The storage manager provides the

support to commit an object using the two-phase commit protocol.

10.6. Action Management

The storage management implements the virtual memory system and the commit proto-

cols, providing the mechanisms for handling the object storage needs. The policies of the

action management are not implemented in the storage manager, but rather in the action

management system. The action management system implements nested actions for the

Clouds system by keeping track of the objects touched by an action as well as the success and

failure of each action and its subactions [Ke86].

The action manager primarily keeps track of information regarding actions. The action

manager is distributed, with the manager at each site keeping information about each action

that was started as a top level action at that site. Although an action can span several sites, the

action commit is coordinated through the action manager at the site where the action started.

As is apparent if the site starting the action fails, the action is doomed to abort, and hence the

failure of the coordinating action manager does not hamper the progress of this action.

As discussed previously, when an action terminates, the coordinating manager invokes

commit operations on all touched objects, in order to make all updates by the action per-

manent in an atomic step.

11. Comparisons with Related Systems

Clouds is one of the several research projects that are actively building distributed object

based environments. There are similarities and differences between all the approaches, and

the area of distributed operating systems are in general not mature enough to conclusively

argue the superiority of one approach over the other. In the following paragraphs we docu-

ment some of the major differences between Clouds and some of the better know projects in

distributed systems.

One of the major difference between Clouds and most of the systems mentioned below

is in the implementation of the kernel. Most of the systems implement the kernel as a Unix

processt , while Clouds is implemented as a native operating system. In addition, no attempt

has been made to build a UNIX interface (e.g., SVID) 'on top of Clouds. Clouds is not

intended to be an enhancement, or replacement of, the UNIX kernel. Instead, Clouds pro-

vides a different paradigm from that supported by UNIX (e.g., the UNIX paradigms of 'dev-

ices as files', unstructured files, etc,)

the term kernel has been used quite frequently to describe the core service center of a system. However when this service is
provided by a Unix process rather than a resident, interrupt driven monitor, the usage of the term is somewhat counter-intuitive.

Georgia Tech
	

Clouds Project 	 Functiors & Irrciemencarion

	 12

11.1. Argus

Argus is a system developed at MIT, that supports the Argus programming language.
The language defines a distributed system to be a set of guardians, each containing a set of
handlers. Guardians are logical sites, and each guardian is located at one site, though a site
may contain several guardians. The handlers are operations that can access data stored in the
guardian. The data types in Argus can be defined to be atomic, and any operation on atomic
data types by actions are updated atomically when the action terminates [WeLi83, LiSc83].

Some of the similarities between Argus and Clouds are the semantics of nested actions.
Both use the nested action semantics and locking semantics described by Moss. This includes
conditional commit by subactions and lock inheritance by subactions from the parents as well
as lock inheritance by the parents from a committed child. Also the guardians and handlers in
Argus have somewhat more than cosmetic similarities to objects in Clouds.

The differences include the implementation strategies, programming support and relia-
bility. As mentioned earlier, Argus is implemented on top of a modified Unix environment.
This is one of the reasons for the somewhat marginal performance of the Argus system. The
programming support provided by Argus is for the Argus language. Clouds on the other hand
is a general purpose operating system, not tied to any language. Though Aeolus is the pre-
ferred language at present, we have used C extensibly for object programming. Any language
can be used to program object, after some modifications and patches to the procedures to
make them invokable. We have plans to implement more object-oriented languages for the
the Clouds system. Unlike Argus, Clouds is designed to form the base layer for fault tolerant
computing, and hence the design decisions of transaction support, search and invoke strategies
and so on.

11.2. Eden

Eden is a object based distributed operating system, implemented on the Unix operating
system at the University of Washington. Eden objects (called Ejects) use the active object
paradigm, that is each object consists of a process and an address space. An invocation of the
object consists of sending a message to the (server) process in the object, which executes the
requested routine, and returns the results in a reply. The messages use the Berkeley Unix
IPC mechanism [A1m83, A1B183, NoPr85].

Since every object in the system needs to have a process servicing it, this could lead to
too many processes. Thus Eden has an active and a passive representation of objects. The
passive representation is the core image of the object stored on the disk. When an object is
invoked, it must be active, thus invoking a passive object involves activating it. A process is
created and it reads in the passive representation into its virtual space and then performs the
required operation. The activation of passive objects is an expensive operation. Also con-
current invocations of objects are difficult and is handled through multithreaded processes or
coroutines.

Georgia Tech
	

Clouds Project 	 Fun:dons & Implementation

	 13

The active object paradigm and the Unix based implementation are the major differ-

ences between Eden and Clouds. This is also the reason for the performance problems in

Eden. Eden also provides support for transaction and replication objects (called Replects).

The transaction support and replication was added after the basic Eden system was designed

and have some misgivings especially due to manner Unix handles disk I/O. Eden was not

designed for fault tolerant applications.

11.3. Cronus

Cronus is an operating system designed and implemented at BBN Laboratories. Some of

the salient points of Cronus is the intergration of Cronus functions with Unix functions, the

ability of Cronus to handle a wide variety of hardware and the coexistence of Cronus on a

distributed set of machines running Unix [BeRe85, GuDe86, ScTh86].

Like Eden, Cronus uses the active objects. This is necessary to be able to make Cronus

run on top of Unix, and be an added function to Unix programs. Cronus objects are handled

by managers. Often a single manager can handle several objects, by mapping the objects into

its address space. The managers are servers and receive invocation requests through catalo-

gued ports. Any Unix process on any machine on the network can avail of Cronus services

from any manager, by sending a message to the appropriate manager. By use of canonical

data forms, the machine dependencies of data representations are made transparent. Irrespec-

tive of the machine types, any unix machine can invoke Cronus objects in a location indepen-

dent fashion.

11.4. ISIS

ISIS is a distributed operating system, developed at Cornell University, to support fault

tolerant computing. ISIS has been implemented on top of Unix. It uses replication and check-

pointing to achieve failure resilience. If data object is declared to be k-resilient the system

creates k+ 1 copies of the object. The replicated object invocation is handled by invoking one

replica and transmitting the state updates to all replicas. Checkpointing at each invocation is

used to recover from failures [Bi85A, Bi85B].

11.5. ArchOS and Alpha

Alpha is the kernel for the ArchOS operating system developed by the Archons project

at Carnegie Mellon University. Like Clouds, the Alpha kernel is a native operating system

kernel designed to run on the Sun-3 computers, networked over Ethernets. The Alpha kernel

uses passive objects residing in their own virtual spaces, similar to Clouds. ArchOS is

designed for real time applications supporting specialized defense related systems and applica-

tions [Je85].

The key design criteria for ArchOS and Alpha are time critical computations and not

reliability. Fault tolerance is not an issue, as the operating conditions are more susceptible to

total failure rather than partial failure. Although the basic system structure resembles Clouds,

Georgia Tech
	

Clouds Project 	 Functions & Iropterrentation

	 14

the different goals have led to significant difference in the implementation techniques and
algorithms used in ArchOS.

11.6. V-System

The V operating system has been developed at Stanford University. V is a compromise
between message based systems and object based systems. The basic core of V provides light-
weight processes and a fast communications (message) system. V messages are similar to
object in the sense that the messages are synchronous. The relationship between processes
confirm to the client server paradigm. A client sends a request to the server, and the client
blocks untill the server replies. In a sense this is similar to a object invocation, as the invoca-
tion remains outstanding until the reply is received [ChZw83].

V allows multiple processes to reside in the same address space. Data sharing is through
message passing, though shared memory can be implemented through servers managing
bounded buffers. The design goals of V are primarily speed and simplicity. V does not pro-
vide transaction and replication support, these can be implemented, if necessary at the appli-
cation level.

11.7. Mach

Mach has been developed at Carnegie Mellon, and looks like a Unix extension. Though
Mach is not implemented "on top of Unix" it is implemented to look like distributed Unix.
Mach is compatible with Unix at the object code level, that is Mach support all system calls
supported by Unix, and hence compiled Unix code can run on Mach. Mach uses the Accent
message operating system as its base layer, and Accent provides the communication support.
In addition Mach provides support for multiprocessors and distributed systems, memory
mapped files, processing abstractions called tasks and threads [Ac86].

The activity in Mach is carried by tasks and threads. A task is similar to a unix process.
It is an address space and an execution environment. A task may be composed of several
threads. A thread is a thread of control that can concurrently execute with other threads as a
part of the same task, in the tasks address space. Messages are typed data that can be used by
threads to communicate, and messages are routed through ports. Ports are addressable
through capabilities.

The approaches used by Mach and Clouds are conceptually different and it is hard to
draw conclusions about the differences in capabilities and usabilities at this stage. Mach how-
ever does not provide transaction support.

11.8. LOCUS

LOCUS is a Unix compatible, distributed operating system, operating on SUNs and
VAX, connected via an Ethernet. The system supports a high degree of network tran-
sparency, permits automatic replication of storage, supports transparent distributed process

	 15

execution, and supports nested transactions. LOCUS's primary design goals are tran-
sparency, Unix compatability, and high reliability. By contrast, Clouds provides Unix intero-
perability only, and mechanisms for high reliability (rather than integrating high reliability
into the kernel). LOCUS's two primary disadvantages are its size, and the performance
penalty of an ultra-high reliability kernel. While the overhead for replicated files is relatively
low, the overhead caused by system reconfiguration (e.g., when a host is 'powered down') is
high [WaPo83, MuMo83].

12. Concluding Remarks

Clouds provides an ideal environment for research in distributed applications. By focus-
ing on support for advanced programming paradigms, and decentralized, yet integrated, con-
trol, Clouds offers more than 'yet another Unix extension/look-alike'. By providing mechan-
isms, rather than policies, for advanced programming paradigms, Clouds provides systems
researchers a adaptable, high-performance, 'workbench' for experimentation in areas such as
distributed databases, distributed computation, and network applications. By adopting 'off the
shelf' hardware, the portability and robustness of Clouds are enhanced. By providing a 'Unix
gateway', users can make use of established tools, without the performance penalty of run-
ning Clouds 'on top of Unix (or conversely). The gateway also relieves Clouds from the
necessity of providing emulating services such as provided by Unix mail and text processing.

13. References

[Ac86] 	Accetta M, et. al. Mach: A New Kernel Foundation for Unix Development, Techni-
cal Report, Carnegie Mellon University.

[A1m83] G. T. Almes, The Evolution of the Eden Invocation Mechanism, Technical Report
83-01-03, Department of Computer Science, University of Washington, 1983.

[A183] 	J. E. Allchin, An Architecture for Reliable Decentralized Systems, Ph.D. Diss.,
SchOol of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, (Also released as technical report GIT-ICS-83/23,) 1983.

[A1B183] G. T. Almes, A. P. Black and E. D. Lazowska and J. D. Noe, The Eden System:

A Technical Review, University of Washington Department of Computer Science,
Technical Report 83- 10-05 October 1983.

[AlMc82] J. E. Allchin and M. S. McKendry, Object-Based Synchronization and Recovery,

Technical Report GIT-ICS-82/15 School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, GA, 1982.

[BeRe85] J. C. Berets, R. A. Mucci and R. E. Schantz, Cronus: A Testbed for Developing

Distributed Systems, October 1985 IEEE Communications Society, IEEE Military
Communications Conference.

[Bi85A] K. P. Birman and others, An Overview of the ISIS Project, Distributed Processing
Technical Committee Newsletter, IEEE Computer Society (7,2) October 1985

Georgia Tech
	

Clouds Project 	 Functions & Irrgiernernation

	 16

(Special issue on Reliable Distributed Systems).

[Bi85B] K. P. Birman, Replication and Fault-Tolerance in the ISIS System, ACM SIGOPS,
Proceedings of the Tenth Symposium on Operating Systems Principles, December
1985 Orcas Island, Washington, (Also released as technical report TR 85-668).

[ChZw83] D. R. Cheriton and W. Zwaenepoel, The Distributed V Kernel and its Performance
for Diskless Workstations, Proceedings of the Ninth Symposium on Operating Sys-
tems Principles, ACM SIGOPS, Bretton Woods, NH, October 1983.

[Da86] 	P. Dasgupta, A Probe-Based Fault Tolerant Scheme for the Clouds Operating Sys-
tem, Technical Report GIT-ICS-86/05 School of Information and Computer Sci-
ence, Georgia Institute of Technology, Atlanta, GA, 1986.

[DaLe85] P. Dasgupta, R. LeBlanc and E. Spafford, The Clouds Project: Design and Imple-
mentation of a Fault-Tolerant Distributed Operating System, Technical Report
GIT-ICS-85/29, 1985 School of Information and Computer Science, Georgia Insti-
tute of Technology, Atlanta, GA.

[DaMo86] P. Dasgupta and M. Morsi, An Object-Based Distributed Database System Sup-
ported on the Clouds Operating System, Technical Report GIT-ICS-86/07, School
of Information and Computer Science, Georgia Institute of Technology, Atlanta,
GA, 1986.

[GuDe86] R. F. Gurwitz, M. A. Dean and R. E. Schantz, Programming Support in the
Cronus Distributed Operating System, May 1986, Proceedings of the Sixth Interna-
tional Conference on Distributed Computer Systems, IEEE Computer Society.

[Je85] 	E. D. Jensen et. al. Decentralized System Control, Technical Report RADC-TR-
85-199, Carnegie Mellon University and Rome Air Development Center, April
1985.

[Ke86] 	G. G. Kenley, An Action Management System for a Distributed Operating System,
M.S. Thesis, School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1986. (Also released as technical report GIT-ICS-
86/01).

[LeWi85] R. J. LeBlanc and C. T. Wilkes, Systems Programming with Objects and Actions,
Proceedings of the Fifth International Conference on Distributed Computing Sys-
tems, Denver, July 1985. (Also released, in expanded form, as technical report
GIT-ICS-85/03)

[LiSc83] B. Liskov and R. Scheifler, Guardians and Actions: Linguistic Support for Robust
Distributed Programs, ACM, Transactions on Programming Languages and Sys-
tems (53) July 1983.

[Mc84A] M. S. McKendry, Clouds: A Fault-Tolerant Distributed Operating System, Distri-
buted Processing Technical Committee Newsletter, IEEE, 1984, (Also issued as

Georgia Tech
	

Clouds Project 	 Fuirtions & Implementation

	 17

Clouds Technical Memo No:42).

[Mc84B] M. S. McKendry, Fault-Tolerant Scheduling Mechanisms, (Unpublished Technical
Report), School of Information and Computer Science, Georgia Institute of Tech-
nology, Atlanta, GA, May 1984, (Draft only).

[Mc85] 	M. S. McKendry, Ordering Actions for Visibility, Transactions on Software
Engineering, IEEE (11,6) June 1985 (Also released as technical report GIT-ICS-
84/05).

[McA183] M. S. McKendry, J. E. Allchin and W. C. Thibault, Architecture for a Global

Operating System, IEEE Infocom, April 1983.

[Mo81] 	J. Moss, Nested Transactions: An Approach to Reliable Distributed Computing,

Technical Report MIT/LCS/TR-260, MIT Laboratory for Computer Science,
1981

[MuMo83] E. T. Mueller, J. D. Moore and G. J. Popek, A Nested Transaction Mechanism for
LOCUS, Proceedings of the Ninth Symposium on Operating Systems Principles,
ACM SIGOPS, Bretton Woods, NH, October 1983.

[NoPr85] J. D. Noe, A. B. Proudfoot and C. Pu, Replication in Distributed Systems: The

Eden Experience, Department of Computer Science, University of Washington,
Seattle, WA, September 1985 Technical Report TR-85-08-06.

[Pi86] 	D. V. Pitts, Storage Management for a Reliable Decentralized Operating System,

Ph.D. Diss., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1986, (Also released as Technical Report GIT-ICS-
86/21).

[ScTh86] R. E. Schantz, R. H. Thomas and G. Bono, The Architecture of the Cronus Distri-

buted Operating System, May 1986, Proceedings of the Sixth International Confer-
ence on Distributed Computer Systems, IEEE Computer Society.

[Sp86] 	E. H. Spafford, Kernel Structures for a Distributed Operating System, Ph.D. Diss.,
School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1986, (Also released as technical report GIT-ICS-86/16).

[SpBu84] A. Z. Spector, J. Butcher, D. S. Daniels and others, Support for Distributed Tran-

sactions in the TABS Prototype, July 1984, Technical Report CMU-CS-84-132,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA.

[WaPo83] B. Walker, G. Popek, R. English, C. Kline and G. Thiel, The LOCUS Distributed

Operating System, Proceedings of the Ninth Symposium on Operating Systems
Principles, Bretton Woods, NH, ACM SIGOPS, pp. 49-70, October 1983. (Avail-
able as Operating Systems Review 17, no. 5)

[WeLi83] W. Weihl and B. Liskov, Specification and Implementation of Resilient Atomic Data

Types, Symposium on Programming Language Issues in Software Systems, June

Georgia Tech
	

Clouds Project 	 Functions & Implementation

	 18

1983.

[Wi85] 	C. T. Wilkes, Preliminary Aeolus Reference Manual, Technical Report GIT-ICS-
85/07, School of Information and Computer Science, Georgia Institute of Technol-
ogy, Atlanta, GA, 1985. (Last Revision: 17 March 1986)

[WiLe86] C. T. Wilkes and R. J. LeBlanc, Rationale for the Design of Aeolus: A Systems Pro-

gramming Language for an Action/Object System, Technical Report GIT-ICS-86/12,
School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1986. (To be presented at the IEEE Computer Society 1986 Inter-
national Conference on Computer Languages).

[Wu74] W. A. Wulf and others, HYDRA: The Kernel of a Multiprocessor Operating Sys-

tem, Communications of the ACM, (17,6) June 1974.

[WuLe81] W. A. Wulf, R. Levin and S. P. Harbison, HYDRAIC .mmp, An Experimental

Computer System, McGraw-Hill, Inc., 1981.

Georgia Tech
	

Qouds Project 	 Functions & Implementation

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179

