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I. INTRODUCTION 

Consider the two-center problem of an electron in the field of two fixed point 
charges ZA , Z, at a distance R apart. In non-relativistic quantum mechanics its 
Hamiltonian is 

H(R, ZA , Zs) = 	 - ZnIx - Rel 
	

( 1 . 1 ) 

in atomic units, with .v e [V, t;= (1, 0, 0). If ZA  = Z 5 =1 this describes the hydrogen 
molecular ion H z  in the clamped nuclei approximation, which is an important 

double-well problem having the virtue of being separable. In the normalization of 

(1.1) the formal limit as R co is the Hamiltonian of hydrogen. 

The scrics in negative powers of R obtained  by expandinILLv - Rci 	and apply- 
ing RayiCigh-Schroclinger perturbation 'theory exists, is called the I/R expansion, 

and is a classic textbook example [1 ]. However, (1.1) also furnishes a classic exam- 

ple of unstable perturbation: although the 1-1; eigenvalues approach those of 

hydrogen as R-■ co (first proved by Aventini and Seiler [2]), and the rate of con- 

vergence is correctly described by the asymptotic I/R expansion (Morgan and 

Simon [3]), they are doubly asymptotically degenerate as R ,x). That is, near any 

given bound state of H, for I/R small enough there are two bound states of Hz 
with an energy gap of order R 25 + exp( -Rio), where n and k are the usual prin- 
cipal and parabolic quantum numbers [I]. 

The instability is a double-well phenomenon. (1.1) being somewhat analogous to 

the one-dimensional double-well anharmonic oscillator p 2 +x 2 (I+ gx) 2. It is 
similarly clear that the 1/R expansion cannot be Borel summablc to an eigenvalue. 

How could the series decide which eigenvalue to sum to? Numerically. the series 

has been found [3] to be factorially divergent with coefficients of one sign, in 

analogy to the double-well oscillator [4], 

In addition, it has been discovered by Brezin and Zinn-Justin [5], also 

numerically, that the square of the gap between the eigenvalue doublet converging 

to the hydrogen ground state is related to the asymptotics of the 1/R expansion. 

This typical non-perturbativc tunneling quantity, 0( R 2 e" 2n ) for the ground state, is 

reminiscent of the resonance width in the Lo Surdo• Stark effect, for which a one- 

to-one relationship with the perturbation series has been proved and exploited 

[6, 31]. That proof was based on the Borel summability of the perturbation series 

to the resonance [7]. More specifically, the imaginary part of the Borel sum deter- 

mines the asymptotics of the perturbation series and, conversely, the asymptotic 

behavior of the series determines the leading behavior of the imaginary part of the 

sum. In the case of the Lo Surdo-Stark effect the Borel sum is a resonance in the 

standard sense of dilatation analyticity [7-10]. Although the imaginary part of the 

double-well oscillator eigenvalue does not seem to have a physical interpetation as 
a resonance, it determines the eigcnvalue gap asymptotically [ I I ]. 

The purpose of this paper is to show these phenomena rigorously in the case of 

the 1/R expansion of Hj . We will prove that the Borcl sum of the I 'R expansion 

exists as the complex eigcnvalue of a non-sclf-adjoint problem that has the same  

1/R expansion as 	but is stable as R-P cc. The imaginary part of the Borel sum 

determines the asymptotics of the perturbation coefficients and conversely. (For a 

general overview of this kind of result for the anharmonic oscillator and the Lo 

Surdo-Stark effect, see Simon [12].) Furthermore, we derive rigorously the 

asymptotic form of the imaginary part of the Borel sum, which verifies the 

approximate formula of Brezin and Zinn stin. Notice that the I/R expansion not 

1-1 only determines the position of the 	- 	asymptotically, but also the gap to 

leading order. 

Although this result is closely analogous to the ones for the double-well oscillator 

and the Lo Surdo-Stark effect mentioned above, it requires a more subtle analysis, 

looking into the relationship between H 2  and the system of an electron in the field 

of a stationary proton  and a stationary anti-proton, 

H'(R,Z,,, -Z „,)= 	- Z 	+ Z,,Ix Rej -1 	 (1.2) 

(in [14] H' was denoted K) the I/R expansion of which is identical to that of H..; 

but with R replaced by -R, so that the signs alternate. A plausible starting point of 

the analysis would he to prove Borcl summability of cigcnvalues of (1.2) and then 

analytically continue from -R to + R, where they should develop a branch cut and 

thus an imaginary part. However, we shall sec that although (1.2) is a stable, single-

well problem, its alternating-sign 1/R expansion is not Borel summable to its eigcn-

values, thus answering in the negative a question raised by Morgan and Simon [3]. 

lncidentically, we remark that this is, to our knowledge, the only example of this 

type which has a direct physical interest. 

The identification of the Borel sum will involve relating (1.1) and (1.2) in a more 

subtle way, using the separability in elliptic coordinates to be implemented in Sec-

tion 11, which also contains a detailed description of the generation of the 1/R 

expansion from the separated equations. In Section III we shall describe the 

stability, analyticity, and implicit funtion arguments which, together with the 

remainder estimates, allow the Borel sum to be identified as a function holomorphic 

in some half-disk 1/RI < M, Im R > 0, which admits analytic continuation across 

the branch cut along the real axis (Theorem 111.2). In Section IV we shall determine 

the leading exponential order of the imaginary part of the Borel sum 

(Theorem IV.1) and establish the dispersion relation connecting it to the 

asymptotics of the I/R expansion. The proof of the Brezin-Zinn-Justin formula 

(Corollary 1V.2) will then be a simple consequence of this and the known estimates 

of the eigenvalue gap [13]. Finally, we collect some technical lemmas on Borel 

summability of composed and implicit function in Appendix A and the JWKB 

estimates of the tunneling factors needed to estimate imaginary parts in Appen-

dix B. 

We conclude this Introduction by mentioning that this work represents the first 

of the two papers announced in Ref. [14], in which part of the above results are 

briefly described together with a semiclassical procedure for generating all exponen-

tially small corrections to the 1/R expansion for the bound states of 1-1 1-  . 
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II. SEPARATED EQUATIONS AND PERTURBATION THEORY 

Let us begin by collecting some well-known relevant facts about the family of 
Schrodinger operators describing the general two-center problem. Since, as will 
become evident, the natural variable is p =1IR rather than R, the operator (1.1) 
will henceforth be denoted H(p, Z,,, Z „). Unless otherwise specified, the operator-
theoretic notation used throughout this paper is that of Reed and Simon [15]. 

PROPOSITION 11.1. Let 	R> 0, and Z„,Z„e B. Let H(p, Z,, Z„) denote 
the family of operators on OW) defined as the action of --IA — ZAN — 
Z8 1x— Rej -1  on the domain of definition H 2 (R 3 ) (Sobolev space), and let 11 0 (Z 
denote the hydrogen operator, Le., the action of —1.4 —Z,Ix1 -1  on the same domain:— 

 Then: 

(1) H(p, Z,, 5 ) is self-adjoin! and bounded below. 

(2) anJ 11(p,Z4tZB))=Ciu,( 1-1 (P•ZA,Z11))=E0, + CO ) . 

(3) Let E(p,Z 4 ,ZE ) be an eigenvalue of 11(p,Z A ,ZR ). Then p ■—■ E(p, .) is 

continuous, and lim p _.,,„E(p,.) exists and is an eigenvalue of 11 0(Z,) if Z4>0. 

(4) If ZA>0, Zu<0, the eigenvalues of 11,,(Z,) are stable (in the sense of 

Kato [16, Sect. V111.1.4]) for p> 0 small. 

(5) Fix ZA=Z5>0, and recall that the eigenvalues of H,,(Z„) are —Z 2,12n 2 , 
n = 1, 2,..., with multiplicities n 2 . For each such unperturbed eigenvalue and any open 
interval i containing only that unperturbed eigenvalue, there exists 	> 0 such that 
for p < M there are precisely 2,1 2  eigenvalue.s. in I. The cluster of eigenvalues in I is 

organized in exponentially close pairs, and the two eigenvalues E, near —Z 2,12 in 
particular satisfy 

4E(p,Z,)=E ± (p,Z,)—E_(p,Z,)=0(Re -R ). 

(6) The Rayleigh-Schrodinger perturbation expansion in powers of p near 
Ec (Z,) in (5) exists and represents an asymptotic expansion for both eigenvalues 

E i (p,•) as p 

Remarks. (1) For the general analysis of the operator family 	Z„) and 
in particular for the proof of (1)-(3), see Aventini and Seiler [2], Combes, Duclos, 
and Seiler [17], and Morgan and Simon [3]. The proof of (4) is briefly sketched in 
Proposition MA (2) as an easy application of the Hunziker-Vock [18] stability 
theorem. A proof of (5) has been given by Harrell [14] with some explicit 
estimates, and (6) has been proved by Morgan and Simon [3]. 

(2) The perturbation expansion is generated as follows (see, e.g., Morgan and 
Simon [3]): for 1.v, <R, we have ix— Rel=1:,7, 0 •111,,(x)R - " -  M„(v)= 
lxj"P „(cos 0), cos 0 = <x,>lixi, where P,(•) is the nth Legendre polynomial. Then 
the unperturbed operator is H o (Z...,), and the perturbation is by definition 
— M„(x) p"+ jxj < 0, p 1 . The expansion obtained through  

ordinary Rayleigh-Schrodinger perturbation theory in p= 1/R near E(Z,) is by 

definition the 1/R expansion. 

(3) The Hamiltonian for Hz is completely decomposed by the magnetic and 
parabolic quantum numbers, conventionally denoted respectively by integers m, 

n,= j?..0 and n 2 -=k_?-0. The separability in elliptic coordinates detailed below 
implies that in any subspace of given n1114 k the eigenvalues of H(p, Z A ) come in 
asymptotically degenerate doublets for p sufficiently small, and gap estimates and 
asymptotic expansions analogous to those of (5) and (6) hold. The precise 
statements will be formulated below. 

The well-known separability of H(p,Z,,Z,) in elliptic (more precisely, prolate 
spheroidal) coordinates goes back to Jacobi [19], who discovered its classical 
analogue to prove the complete integrability of the corresponding Hamilton-Jacobi 
equation. A thorough discussion . of this problem and of its application to the 
Bohr-Sommerfeld quantization can be. found in Born [20] (see also Strand and 
Reinhardt [21] for a modern analysis of the Bohr-Sommerfeld theory of H.; -  ). Let 
us now review the formulation of the Schrodinger cigenvalue problem 
11(p, Z 4 , Z „) = EV/ in elliptic coordinates. Standard references for this are Lan-
dau and Lifshitz [1] and Komarov et al. [22]. Set 

=p(lx1+1x-N1), 

0= arctan(x- 3/x 2 ), 

inverted as 

x ,= Req, 

x 2 = R ‘,/(1 — r1 2 )((•; 2  —Ijcos0, 	 (2.2) 

x,= R 	(1 — q 2  )(V — I) sin 0. 

Since the Laplace operator in the variables 	q, 0) has the form 

= 4p 2(V _,1 2) I r c7 	

Di; oil 	aii 

	

,1 2 	(-)2 

	

1)(1 	, ) 2) 

(see, e.g., Magnus Oberhettinger and Soni [23]). setting 

1P(x)=e''''°(.1),(c')(1) 2 (11), 	±n r=0, 1, 2,..., 	 (2.3) 

(2.1) 



we formally see 	 50  that '1' satisfies H(p, Z 4 , Z B)= 	iff 

[ I d 	2 	d 	1 
-1)-

cg
--

4 
R 2E(0 - ) --2

1 
R(ZA +Z») 

/112 (V - 1 ) -1
] 

0 1(0= -achi(5), 

[

-I1 (1-11 2 )
chi  4
1 - 1 

 2 dri 	
R 2E(1- 11 2 )+R(Z 4 - Z9 )4 

+ -
2 m 2 ( 1 -1-12 ) - l j 02( 11) =90,7(n) 

(2.4) 
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p, rn 2  -1 

	

I= - du 2+  4 u 	4u 2  

	

(I3 1+ ii2)Z4 1 (ZA+Z8) - fil  ni 2  - 1 	1 	 1 	)1 

u+2r 	 + 4 (u+ 20 2  u(u +20ft 

0...u< +oo, 	11, 	 (2.11) 

d2 	I 	i3 2 ni  2 _ I 

	

S.( ' ) = -
dv2 

+ 
4 v 	4v2  

r 11 2 -Z;'(7. 4 -4)(#,  +fl 2 ) ni 2 - 1 ( 	2 	1 

	

_ . 	2r - v 	
+ 	 

4 	t/(2r- v)
+ 

(2r- v) 2)
i
t + 	
l 

........... 
(2 12) 

(u and u were called x, and x 2  in [14]). We then have 

	

PaorosmoN 11.2. For ±m =0, 1, 2,..., let T„,(1i1. P2, Z Z 	S.(fi 13 2% 
Z A , Z 	(11 1,1i2, ZII)E 68, (Z A , r) e l 	he the operator ,familie.s• in L 2 (0, co), 

L 2 (0, 2r), respectively, defined as the action of 1„,(• ) on D(T„,(•))= { H 2 (0, co) 

(2.5) 	 14[0, co  ), HI > 0; 11 2 (0, + co) with the boundary condition f (u)= 0(14 1 / 2 ) as u j 0 for 

in= 01, D(S„,(• ))= 111 2 (0, 2r)c)14[0, 2r], In, > 0; /1 2 (0, 2r) with boundary con- 

ditions f(v)= 0(v 1 /2 ), u1 0, f(v)= 0((2r - v) 1 / 2 ). v 2r, for m=0), respectively. 

Then: 

(1) T„,(• ), S„,(• ) are self-adjoin! and bounded below. 

(2.6) 	 (2) a o„IT,„(•)) = ",,c(T ni(• )1= 	+rz); a„,(Sml•))=0. 
(3) For any fixed (in, j, k) the eigenvalues ;.(m, j, k; 	#2, Z A , ZB, t) of 

T„,(-) and p(m,k; If l , 112; ZA, Z r) of S„,(•) are jointly continuously locally dif-

ferentiable functions of the variables 	11 2 , 	Zil , r). 

(2.7) 	 (4) Assume that the equation 11(m, k; 	2, ZA, Z11. T )= 0 can he solved near 

any given i >0 to _yield a family of locally Cl implicit functions r 1-• 

k; 	 r), 	(m, k; 1 , Z A, ZB) fixed, 	and that 	the equation 

A(m, j; 	k; 	Z4 , Z» ; r); 	Z» , -0= 0 can he similarly solved to yield a 

(2.8) 	 family of locally C' implicit functions 	 j, k; ZA , Zs; r), (rn, j, k), (Z4 , Z» ) 

•fixed. Set 

E 	-2, 	r = 	 r = r ' ' , 

= y(Z4 +ZB )-ar, 	P 2 = 	Z„)+ ar 

and note the relations 

/I, +/ 2 =yZA ; 	+ Z,)+ 	= 7(2: 4 + Z„)- 11,; 

y(Z A  - 	ar = y(Z, - 	p 2 . 

Then, upon first rescaling the unknown functions 

(15 g) ,-•((> 2- 1 ) -I/20 g), 	0 2( 11 ) ,-• (I -,1 2 ) -  '02(0 

and then translating and resealing the variables and q. 

u=r( - I ), 	v= r(r! +1), 

+[ 

for some separation constant a(m, R) e R. The rest of this section is devoted to 
implementing this formal procedure so as to make transparent at the same time 
how the 1/R expansion is generated within the context of the separated equations. 
Set 

Eqs. (2.1) become 

where 

1 1,101,11 2, LA, Z Bs T )./( 11 ) = 0, 

s„,(111, 112, ZA, 	T) g(v)=0, 

f(u)= [(to + 1) 2  -- 1] v2 (12,(tu + 

g(v)= [1 - (Tv -1) 2 ] 12 0 2 (ry -1), 

(2.9) 

(2.10) 

7(m, j, k; Z Z 8, = 

and assume that r ■-•-,p(• ,t) - I T is locally invertible near an given T > 0, 	j, k), 

(ZA , Z» ) fixed. Let pi-• 1(m, j, k; ZA, Z p) he the inverse function of t 

,r) - 'r. Then the function 

E(m, j, k; ZA, Z.  p)= Z, [7(m, j, k; A, ZB; 	j, k; ZA,  Z 8; p))] -2 	(2.14) 
2 

is an eigenvalue of H(p, Z A, Z8). 
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(5) Conversely, let•E(p, Z a ,  Z8 ) be an eigenvalue of 11(p, Z ,r ,  Z,,). Then 
for one and only one triple (nt, j, k), ±nt, j, k = 0, I ,..., the equations ).(m, j, k; 

13it 1 2 , ZA,  Z8,1- )= 0, p(tn, j, k; Ji,, 11 2 , ZA , Z,,; r)= 0 can he solved near any given 
i> 0 to yield the pair of locally C 1  implicit functions r p 2 (m, k; f1,, ZA , „, r), 
ti-+M(m, j, k; Z4, ZB ;  r) such that ty(rn, j, k; 	„, 	y defined by (2.13), is 
invertible and E(p, ZA,ZB) admits the representation (2,14). 

Remarks. (1) Assertion (4) holds unchanged if the implicit functions are 
unraveled in the opposite order. 

(2) The numbers (in, j, k) have the meaning of magnetic and parabolic quan-
tum numbers, respectively. In fact, letting R 	cc in (2.1) we have 

R4-11= ix,- x,+0(#4,---14-44-4-4  

which means that ‘ ,̀ and q  become the usual parabolic coordinates (sec, e.g., Lan- 
dau and Lifshitz [1, Sect. 37]) up to resealing and translation. Therefore, the 
natural number n = Intl + j + k+ I has the meaning of principal quantum number. 

(3) For t = 0 we recover the unperturbed operator 110 (Z,,) in the following 
way: denote by t2, the differential expression obtained by setting formally r = 0 in 
(2.11) or, equivalently, (2.12): 

Proof Assertions (1) and (2) are well known (scc, e.g., Kato [16] for m 00 or 

Dunford and Schwartz [25] for in = 0). Statement (3) follows by standard 

arguments of regular perturbation theory (worked out in detail for the case of the 
non-separated operator in Combcs, Duclos and Seiler [17]). We prove (4) and (5). 

Denote by f(u, m, j; 13 2 ; ZA, Z,,, t) and g(v, m, k; 1, Q2; Z4, Z B; r) the eigen- 

vectors corresponding respectively to A(m, j; • ; .t) and p(m, k; • ;r). Then the function 
et, 

(x; m, j, k; Z Z B; P) 1-■ flx; In, j, k; Z Al Z R. P) 

= e"'""man"'"Inf 	k; ZA, Z B; 0[P(IXI 	Rel 

[F(.)Cp(Ixl-lx-Re1)+1]] - '''Ar(•)[p(Ixl+lx - Rel) -1 ]; 

r", i, 	fi1(,)), 2(' T( )), TH) .  g(1-(• )[pCx, - Ix  - Rep+ 1]; 

k, 11 ,(', F(• 	Q2(', 	)), • , 	)) 	 (2.17) 

belongs to 11 2 (0;4 3 ) and satisfies 

	

[1(1), Z A, Z B) W = EVI 	 (2.18) 

d2 	I 	ni 2  - 
12,(11)== t„,(fl, 0)-a-  s,,,(//, 0) = -

du' 
+4 flu -  + 

4,, 2  

O^ tr < 

with E given by (2.14) by direct inspection by virtue of (2.1 )-(2.12). Conversely, to 

scc (5), let (x, p; Z Z 8 ) 	Vi(x, p; Z A , Z,,) be an cigenvector of H(p, Z,, Z8); 

H(p, 4 , Z,,) 'P= E'l'. The change of variables (2.1)-(2.2) induces the direct sum 
(2.15) 	 decomposition 

Then the operator family r;,(11)-= T„,(fl, 0) in L 2(0, op) defined as the action of 
(2.15) on D(T„,(•)) enjoys properties (1)-(3) above. Denote by 	j, /1), 	j= 

	

0, I,... the cig,envalues of 11,;,(f1). Then it is well known that 	j, /1) = 0 iff /1= 
/3(in, j)= j+ (in6 +1)/2, because the confluent hypergeornetrie equation 

+ 14/ + ((m 2  - I )14u2 )11/ = 0 admits solutions regular at 0 and 1. 2  at + co if 
13 = fl(nz, j) (scc, e.g., Buchholz [24]). The corresponding (normalized) cigen-
functions arc 

(i+ Intl )! 3 (Inil + I + 2i) 

11/2 
u l"‘I 	I/2 e  "2 L  P„ ' 	 u),  

where L1(• ) are the Laguerre polynomials. Then we see at once that /1(tii, + 
fi(m, k) = Y(m, j, k) = i + k + Iml + 1, and 

a d(Ho(Z ,,))= U - 
0 
-- Z2  Ant i k) 

2 "1 	" 	' 
	 (2.16) 

which is equivalent to assertions (4) and (5) because in this case y(•, r) is t-
independent. 

Now L„, reduces 11(p, 

with 

I "  

L 2 (R 3 ) = 

Q = 

Z4 , 

tp 

	

C) 	L„„ 	L„,= L 2 (1-2; clu))0e4, 

	

,71 	 - 

	

ii): 1 < 	< co, -1 <,, <11; 

tko = 	- n 2 ) II.; dn. 

Z 8 ) for all in. Hence we can write 

4 7, 

	

= 	ern„ 
 40(m; 	E(1,1)) 

	

"11 	 -  oD 

a 
- 1) -i,"1" =vii  (I -11 2 ) 41  

2  
< 

	

E(m):::,2“2.oi 
	GO  

	

( t211--26r)(-  	,h 

(2.19) 

(2.20) 

(2.21) 
1 -m1 /)1 2 )1 	PI:  
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and 

	

a 	a a 	a 
-4P 2 (0 - +/ 2 ) -1 [-a (V -1 ) -a - T,;( 1-- q 2 )Til  

Th 2 (e -1 2 )  

2 (P(ni; 11; E(m)) --21g Z, + nr '43(m: n; E(m)) 

	

_ 	) 

-2pZ,R - ry) -1 0(m;, q; E(m)) = E(n1)0(in;,11; E(m)) 	(2.22) 

for some me 7L, i.e., we have 

ZA, Z8) = 	H„,(p, ZA, ZB), 	 (2.23) 
- CO  

	

(1) For any fixed in, j, 	> 0, # 2 > 0, ZA > 0, and ZB e a, the junctions i,.(•,t) 

and µ(•, r) admit asymptotic expansions near 2(•) to all orders in t/2 > 0 as T J, 0: 

	

r),-,(•)+ E A„(•)(7/2)", 	 (2.25) 

	

u(• 	A(• ) 	B„(•)(r/2)". 
	 (2.26) 

The coefficients A „(m, 	1,11 2 ,  Z4 , Z21), B„(1, k; 	132, ZA Z 	are given by 

Rayleigh-Schriidinger perturbation theory 

unperturbed operator is no,), n,(/12), respectively, and the perturbation is the 
in L 2 (0, + co) in the following way: the 

r) in case (2.25), G(v,• , t) in case (2.26), maximal multiplication operator by F(u,•, 

respectively. Here 

where H,,(P, ZA, Z 8 ) is the self-adjoint operator on L 2 (Q, dw ) defined as the action 
of the left side of (2.22) on all functions in L 2 ( -2; du)) satisfying (2.21). Therefore, 
there is an m€1 such that E= E(m)e ad(II„,). On the other hand the map 
(QI")(, ,1)= 	- , 1 2 )"!f(';, 11) is unitary from L 2 (Q; dw) to L 2 (12; ds chi) and 
therefore E(m) is an cigenvalue of H„, if and only if 0 is cigenvalue of QII„,Q 
defined as the action of 

F(u, • , r) = 	F„(u, • )(r12)", 

F„(zi, • ).= 0, 	it > 2r, 

= [(/3 + 112 )zA 1 (zA+z5)-1i,]( - I) „ un - 

(2.27) 

2  ni 

4 

 I 
	 ( 	1)"(n+l)un -2, 

u <2r, 	(2.28) 

1 0 	0 	10 	P 	I 
-2 k 

(V - 1)- 
2 On a --- (I - - ,1 2 1,5-II --4 

R 2  EC(V - 1 ) + ( 1  - 11 2 )] c:  

1 	 1 	 1 
-- R(Z, + Z 8 ) + -

2 	 2 
(Z 4  +Z 5 )//+-mq(V 

2
- 1) -- ' + (I -21 2 ) I ] 

on QD(11,,,(•)). In turn, we have 

QH„,(.)Q -  = UT„,(•)U 	1 1 .2 (0.2 ,,+ I 	VS „,(• ) V ', 	(2.24) 

where T,,,(• ) and S„,(• ) arc defined above, and (Uf)(S)=--  (4' 2 - I) f(r(e; - 1)), 
(Vg)(q)=- (1 -1/ 2 ) -112g(r(ri + I)). Therefore (2.24) and the theorem on the spectrum 
of tensor products (sec, e.g., Reed and Simon [15, Theorem V111.33]) precisely 
characterize the union of the sets of values of E(m) such that Q11„,(•)Q has the 
cigenvalue 0, in the form (2.14). 

We can now formulate the 1/R expansion via the separated equations. 

PROPOSITION 11.3. Consider the cigenvalues ;.(m, j; f1,, 13 2 ; Z A , Z B ; r) = A(• t) of 
T„,(• ), and the eigenvulues p(nz, k; 11 1 , fi 2; ZA, Z B ; r) = p(•, r) of S,,,(• ). Denote once 
again by ,t(m, j, fl) -z• A(•) the eigenvalues of r,„(11). Then: 

G(v, • , r) = 11; G,,(v, • )(r/2) „ ; 
n=i 

G,,(v,•)=0, 	v 

= 	Z;; CZ 4 -  4)0 + 2)] v" + /n2
4- 

I  (// + 1) 

v <2r. 	(2.30) 

(2) 	The liatctions A(tn, j, 	11 2 , • , r), p(m, k; ,, 11 2 , • , t) are C' in (Th e  11 2 , t) 

	

in a neighborhood of 11(m, j)x11(tn, k) x 1, 	j, k) = 0, 1,...,f >0. The functions 

11 2 (m, k, • , t) and 	 j, k, • , 	are 	near any given r>0, and admit an 

asymptotic expansion to all orders us t 

k, • , T)-11(1n, k)+ E L„(112, k,- )(r/2)", 	 (2.31) 

	

3 1 (m, j, •, 	fi(j, k)+ E Wm, j, • )(T/2)". 	 (2.32) 

■■ -• 1  

The functions pH 1-(m, j, k; p) and oi-• E(m, j, k, o) (given by (2.14)) are C" near 

ant' given p > 0 and admit un asymptotic expansion to all orders as p 0. The 

asymptotic expansion for E(m, j, k; p) coincides with the 1IR expansion near the 

(2.29) 
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eigenvalue of H o (Z A ) of magnetic quantum number m and parabolic quantum num-
bers (j, k) written as 

E(m, j, k; 	E(m, j, k)+ E E„(m, j, k) p. 	 (2.33) 

Remarks. (1) Remark (3) after Proposition ILI can now be more precisely for-
mulated as follows: for any eigenvalue E(m, j, k) - -1Z 2„(Ind + j + k +1)-2  of 
Ho (Z„,), 1m1, j, k = 0, I,... fixed, and any open interval 1 containing only E(m, j, k), 
there is M(m, j, k) such that for p <M there are precisely two cigenvalues 
E (m, j, k; p) of H(p, Z 4 ) in I. Furthermore, we have [13] 

AE(m, j, k; 	E + (in, j, k; p)- E(mj,  k;p) 

= 0(m, j, k; p --125 	"exp(- 	+ k+Ini l +1))), (2.34) 

where, here and elsewhere, O(m, j, k; x) stands for order x with constant depending 
on (m, j, k). 

(2) Completely analogous statements hold for S„,(/1,, /1 2 , Z 4  = 
S„,(132, ZA, r): given any eigenvalue p(m, k; /1 2 , Z,) of 5„,(11 2 , 0) (defined by ( 2.15)) 
and any open interval I as above, there is a constant M(m, k) such that for r < M, 

ZA, r) has exactly two eigenvalues tt ± (m, k, 	ZA, r) in 1, such that 

4 11 (m, k; 2 , ZA; r)= / 1 +(' )mu (•)- 0(nz, k; r 	,"Dv  L) 	(2.35) 

uniformly on compacts in (/1 2 , „)e iii . Hence, upon putting the implicit relation 
in explicit form for each fixed +m, k = 0, I,... there arc if, (m, k; Z,,r)-, 

 g(m, k; ZA) as r 0 such that 

413 2 (nd, k; Z „).= j3;- (•)- 	 (•)-- 0(m, k; r 12k 	4- I le, 	
) 	 (2.36) 

uniformly on compacts in Z,,,e +. For the proof of (2.35), (2.36), sec Harrell [13]. 

Proof. Assertion (1) can be proved by well-known arguments of singular pertur-
bation theory (we omit the details because they have been worked out in the 
present case by Morgan and Simon in the more general context of the non-
separated formalism). A statement stronger than (2), namely, local analyticity in 

fi2, t) can be proved by exactly the same argument as in Proposition 111.3(1) 
for the function Z(•, /1,,/1 2 , r). If we now observe that by the unitary resealing, 
(V(r) f )(v)= r"f(rv) mapping L 2 (0, 2r) onto L 2 (0, 2) one-to-one, p(•, 11,, 13 2 , r) is 
an eigenvalue of V(r) S„,(• ) V(r) - ', which is the action 

dz 	1 02  m 2  - I 	

r 

	' (Z  „ - 5 )(li + 112 )1 
clv2 4

r2 	 + r 
v 	4v 2 	 2 - v 

11 2 - 1 ( 	2 
4 	i, (2 - 0

+ 
(2- v) 2  -  

on V(r)D(S„,(•)), we get by the same argument also the local analyticity of 

(Pi, 132, 01--p(•, fJ,,  fl2, T) because it is immediately seen that V(r)D(S,„(•)) is 
independent of (fi,, /1 2 , t). The implicitly defined functions ,(m, j, k; r), t 
f3 2 (m, k; r) exist by Proposition 11.2(4) and are thus locally C`". Hence the validity 
of the asymptotic expansions (2.31), (2.32) is a consequence of (1) and of the 
implicit-function theorem. The functions11-. -y(m, j, k;r) -- I T are invertible again by 
11.2(4), and r(rn, j, k; p) and E(m, j, k;) are locally C' and admit asymptotic 
expansions to all orders once again by the implicit-function and local-invertibility 
theorems, given (2.13), (2.14), (2.31), and (2.32). Finally, we note that the expan-
sion for E(• , p) generated via (2.31), (2.32), (2.13), and (2.14) coincides with the 
I/R expansion because a function can have at most one asymptotic expansion. 

III. STABILITY, ANALYTICITY, AND SUMMABILITY 

The main purpose of this section is to identify the Borel sum of the 1/R expan-
sion for H/ near any eigenvalue E(m, j, k; „) of Ho (Z A ) of magnetic quantum 
number m and parabolic quantum numbers (j, k). 

To this end, we consider two distinct cases in the two-center operator family 
H(p,Z„,Z,), which we now describe in order also to establish some further 
notation used throughout the rest of this paper. 

Case A (the 	problem): p > 0, Z A =Z„=1. 

Case B: p=  -p', p' > 0, Z, =1, Z 5 = -I. 

We denote fl(p, I, I) F.-  H(p), fl(p', I, 	I I' (p'). The physical interpretation of 
H'(p') was mentioned in Section 1, and its relevant mathematical properties are 
summarized as follows: 

PROPOSITION 111.1. Let H'(p') he the operator in OW) defined as the action of 
-1x1 	+ J.r + p'! -1  on 112 (R 3 ). Then fr(p') enjoys properties (I), (2) of 

Proposition 11.1, and, furthermore: 

(1) Each eigenvalue E of 11„(Z,, = 1) is stable (in the sense of Kato [16, 
Sect. VIII. I .5 ] ) as an eigenvalue E'(p') of H'(p') as p' j 0. 

(2) Let E'(p') he the ground stale of H'(p'), and E'(p')•-• • E +LT., 	(p')" be 
its p' expansion near E, the ground state of 11o (Z 4  = 1). Then E'„= (-1)"E,„ where 
E,, are the coefficients of the 1/R expansion for H 21-  near E. 

Remark. We will see below that actually E;,(m, j, k) = (-I)" E,,(m, j, k) for each 
triple of quantum numbers (HI, j, k)= 0, 1, 2,.... 

Proof. Assertion (I) is an immediate application of the Hunziker-Vock stability 
theorem [18]: in fact, 

illx +P'61 -  '11-jo,1W)-*° 
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as p' 	0, and this implies (see again Ref. [8, Lemma 1.2]) that H'(p') converges in 

strong-resolvent sense to 110 (Z,, ) as p' -.0. Furthermore, given xi-0 7(x) E 

X(x)= 1 , lx1 	1 ; X(x) = 0 , lx1 > 2, and setting /11,,(x)= I - x(x/n), we have 

dist(E, W„(p'))> 0 uniformly with respect to p' for all E < 0. Here 

14/,,( 9 ')= {z: z = </11„u, H'(p') M „a); u e CDOV); 1411 =1}. 

In fact, < -1 d 	M „a> + <x + 	-1  „a, f „u> 0 independently of n, and 

< - Ix! -1 114",,u, „u> > -1/n. Since all eigenvalucs of H o  are negative, the con-

ditions of [18, Theorem 1.1] arc satisfied and (1) is proved. Assertion (2) is trivial 

given Remark (2) after Proposition 11.1. I 

Let us now specialize the general formalism of Propositions 11.2, 11.3 to the 

Lases A and B. We use the convention of denotii each quantity l-Zlative to H'(p') 
with a prime on the corresponding quantity relative to H(p). More specifically, con-

sidering the operators T„,(•) and S„,(• ) defined in Proposition 11.2, we set for 

Case A (the H 2' system Z,, =Z„= I) 

T„,(13 1 , /1 2 ; I, I, r)=7-„,(p,, /1 2 , r); 

S„,(i3 1,/-3 2, 1, 1, r)=S„,(/1 2 , r), 

because the differential expressions r„,(•) and s„,( • ) simplify to 

	

d2 	I 	/1, 	nr 2  - I 	2/3 2 +/1, 

	

T)= -
du e + 4 u + 4u 2 	a + 2r 

2  +m 

4 

 1 
	((u + 2r) 2 -2u 1 (u + 2r) -1 ) 

and 

d2 	I 	/12 	ni 2 	I 	fl2
-+ S III(/3  2 	du  2 ± 4 	,,, 	4 1 , 2 	2r - v 

ni2- 

4 
I 

 
(2v -1 (2r 	+ (2r - 11) - 2 ). 

For Case B, i.c., the operator H'(p') with Z A  =- -Z„-= 1, p' 	-p, the separated 

operators are, respectively, 

T„,(fri, 132; 	- 

i.e., the action on D(T„,) of the differential expression 

d2 	1 	/I' m 2 - I 	13', 

e'n(tr ' T')= 
 

du e  + 4 u 	4u2 
	

+ 2r' + u 

m2 

4 
I 

 
((2r' + u) -2  - 2u 1 (2r' + u) 1 ), 

and 

S„,(fli '13 '2; I, - I, 	S;n(fri, /1'2; -11, 

i.e., the action on D(S„,) of the differential expression 

d2 	I 	)3'2 	in 2-  1 	2/1', + 

51" (iji X2; T')= 4v 2  + 2r' - v 

m 2  - 1 

4 
	 ((2r' - V) -  2  ± 2v -1 (2r' - v) - 1 ). 

The functions :1.(ni, j, /1,, P2, r) -= A(rn, 1, 13,, 11 2 , 1, 1, 7), 1.(01, k, /3 2 , r) -=_ u(m, k; 

13 2, 1, 1,; r), /3 2 (m, k; 1,;r).-_ 11 2 (m, k; 13,, 1, 1, try. 13,(m, j, k; 	/3,(m, j, k; 1, 1, r), 
y(m, j, k; 	y(m, j, k; 1, 	r), 1-(m, j, k; p) L=_ F(m, j, k; 1, I, p), and their primed 

counterparts have the same meaning as in Section II. We denote again by 	1, /I) 
the cigenvalues of 71 1,0). The functions 

	

E(m, j, k; p) = 	[y(rn, j, k; F(rn, j, k; p))] -2 , 	 (3.8) 

(1 11 11, 	k)=0, 

	

E'(rn, j, k; p') = 	[y'(ni, j, k; F'(n,, j, 	p'))] - 2 , 	 (3.9) 

yield respectively the discrete spectra of 11(p) and H'(p'). Furthermore, formulae 
(2.27)-(2.30) together with their primed counterparts simplify to 

F,,(u, 13 1 , # 2 ) =  0,  u?.- 2r, 

2  
= (2/i, +13,)( 	

m _ ± 	- I 

4 

F;Ju, 11'1)=0, 	 u?.- 2r, 

(m 2  - 1) 
= 13',(-1)" -  la" 	

+ 4 l) ( 	I)"(n+ 1)0 -2 , 	u <2r, 

(3.11) 

G „(v, 13 2 )=0, 	 v> 2r, 

m 2  - 
= -13,0" '+ 	

4 	
(n + 1) 0 -2 	V< 2r, 	(3.12) 

G;,(v, 	11'2 )=0, 	2r, 

= (2/1'2 + 13',) v" 	+ 012 	4  1  (n + 1) v" -2 , 	 (3.13) 

so that the expansions (2.25) and (2.26) for p(m, k; 13 2 , r) and ;.(m, j, 	13 2 , rl 
hold, together with their primed counterparts for if(m, k; 	T') and 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

( 	1)"(n + 1) u" -  2 , u < 2r, 

(3.10) 

and 
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j, fl',, r'). We denote their coefficients by B„(m, k; 132). A j/li, j; 13,, 13 2 ), 
B;,(m, k; 	fi2), and A:Pit, j;13',), respectively. Analogously, we denote by L;,(m, k) 
and Al 	j, k) the coefficients of the primed counterparts of the asymptotic expan- 

sions (2.31) and (2.32), specialized in this way. Obviously, the r-dependence implicit 

in Eq. (3.10)-(3.13) does not affect the computations of the perturbation coef-

ficients; because of the exponential decay of the unperturbed cigenfunction, it 

introduces only exponentially small corrections. 

To get the above-mentioned result on the identification of the Bore' sum of the 

1/R expansion as a complex eigenvalue obtained by interconnecting 11(p) and 

ll'(p'), the "double-well" operator S„,(/1 2 , t) in the finite interval (0, 2r) has to he 

replaced by the analytic continuation up to 	= ei th r, r > 0, of the "single-well" 

operator T„,(1r,, 	> 0, in the infinite interval (0, + co). This mechanism, which 

identifies the Borel sum for T' > 0, is basically the same as that which gives rise to 

existence and Borel summability of resonances out of the separability in squared 

parabolic coordinates in the Lo Surdo-Stark effect [7]. A major difference is that 

here the "single-well" equation is that of Case B. Of course, the non-self-adjoint, 

stable problem having the same 1/R expansion as H. can be immediately defined 

(see the subsequent proposition) within the separated formalism out the operators 

7",„(P'„ e'r), T„,(13,, t) realized below. The result, whose proof is to be 

obtained in the course of this section, reads as follows: 

THEOREM 111.2. Let Om I, j, k) = 0, I,... be fixed. Then for any au= u(ni, j, k) > 0 
there are 0 < M = M(m, j, k) < co and 0 < M ,(tn, k) < co such that: 

(1) The implicitly defined flimflam T' ■-.13;(in, k; r') exist as holomorphic 
functions of r' for 0 < ,1 1 . larg r'l < IT, admit analytic. continuation to the Rienumn-
surface sector C6(tn, k)= {r': 0 <VI < M 1 1; jarg.r'j< n -u; across the negative 
real axis, and lim 	k; r')= 	k)= k +(Imf+ I) as r' 0, T' E 

(2) The implicitly defined functions r k--• fi,(tn, j;11',(m. k: re 	r), which will 
be denoted for convenience as 13,(m, j, k; T), exists as holommphic jimetions of t for 
0 < IT1 < M , 0 <arg r < 7r, admit analytic continuation to the Rienrann-sm'face sector 
2(m, j, k)=- {I: 0 < T < Al; -42+ p < arg 	n -µ} across the real axis, and 
lim /1 1 (m, j, k; t)= 11(ni, j)= + 	+ I) as r > 0, r e :;(m, j, k). 

(3) The Jimctions 	ti-•y,(m, j, k; T ) = 01, k; 	jr,(m, k; re '") 	are 
holonnorphic for 0 <1.0 < 	0 < arg r < IT, and admit analytic continuation to 
2(m, j, k) as above. The functions r;,(//1, j, k; r) - ' are invertible in 2(m, j, k); the 
inverse functions 	E,(tn, j, k; p) of Ty ,(in, j, k; r)"' are holomorphic for 
 < IpI < 	0 < arg p < rr, and admit analytic continuation to f:/(m, j, k) as above. 

(4) The functions 

p'-■ E l (m, j, k; p)= 	[y,(tn, j, k; E i (m, j, k; p))] - 

and holomorphic for 0 <arg p <rt, admit analytic continuation to 2(m, j, k) as above, 
and have the same p =11R expansion as E(m, j, k; p). 

(5) The I/R expansion near any eigenvalue E(m, j, k) of H o  is Borel summable 

not to E.,.(m, j, k; p) or w E_(m, j, k; p), but to E,(m, j, k; p) for 0 < IVI <M, 
-rc/2 +p <arg p 	u. 

Remarks. (I) The definition of p' as e -1"p makes Im E 1 (•, p).-c. 0. The opposite 

choice of phase would have made Im F.‘ • , 0. 

(2) In terms of the Borel summability in the standard sense (see, e.g., Reed 

and Simon [15, Sect. X11.4]) statement (5) means that the I/R expansion is Borel 

summable to E,(11,, j, k; p) for 0 < arg p <It, I pj < M. Thus, for p real E, (m, j, k; p) 

is determined from the Borel sum ((4)) and analytic continuation to the real axis. 

On the other hand, under the present conditions, the analytic continuation can be 

explicitly written in terms of the Nevanlinna modified representation of the Borel 

integral (for details see, e.g., Sokal [26]), namely, 

E l (m, j, k; e'p)= R 	e -1 ' F(1)cli, 
Jo 

+ 	+ arg p < 3 it- a, 

where F,(t) is the Borel transform of the I/R expansion computed at p=te'. 

Therefore statement (5) can be considered equivalent to (3.15). 

(3) Statement (5), and hence also Remark (2) above, applies to the 

separation-constant cigcnvalucs as well. That is, the perturbation series (2.32) coin-

cides with the perturbation series for p',(•, Te -4 ) and is Borel summable to that 

function and not to lq(-, r); the perturbation series (2.31) is Borel summable to 

/I,(•; t) and not to J3,(•;/ (•, r), r); and the series for 7 is summable not to 7(•, r) 

but to y 1 (•; r). 

(4) Interchanging the roles of p and p', a statement equivalent to (5) is that 

the p' expansion for each eigenvalue 	j, k; p') of 11'(p') is Borel summable 

to E2 (,n, j, k; p') Ph(Pn, h k; k;1)'))] 2. Here 7 2 (M, j, k; T') = 

M(m, j; r') + 132(m; k; Th(in, .1; T'), e mr'), and p'i-• E 2 (m, j, k; p') is the inverse 

function of r'/7 2 (•; r'). Of course the remarks above apply also to this case. 

(5) We will see in Proposition IV.1 that Im E,(-, p) is non-zero for p real and 
small. Since the 1/R expansion has real coefficients, the Borel summability implies 

its divergence. 

The first step in proving Theorem 111.2 is represented by the analysis of the 

operator families T„',(0'„ Pk, t) for suitable complex values of the 

parameters, For DE C, IEm0I <n/2, set 

in- 

4 

 1 
	((eu

„ 
 + 2.r) - 2e -0u -  '(e'u +20 -1 ) 	(3.16) 

(3.15) 

/I, 

(3.14) 	
p(ii, in, 11,, 13 2 , r, 0)- 	

e
a

u + 2r 
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and 

2r' + e"u 

in 2  -1 

4 
	 ((e l'u+2r') --2  - 2e -°u -  (eu + 2r' 

Hence, if we define the differential expressions 

t„,(/3,, /3 2 , r, 0)= - 

(4) Each eigenvalue A'(•, 	r') is' holomorphic in (r', /1;) jointly for 0< 

<M,, iarg 	< rr - , locally in Ir„ and admits analytic continuation with 

respect to r' to the Riernann-surface sector .52,(tn, k)= {r': < le) < M ,(m, k); 
larg r'l <itc-p1 across the negative real axis. 

(5) lim ;C(m, k; 11;,r')= 2(m, k; 13;) 4,V; -■ 0 within 	(m, k), uniformly with 
(3.17) 	 respect to fi; EQ. 

Proof It is well known that the quadratic form 

(l 2 	tn ?  - 1\ 	,\ 

I 'L(f4):  (")' (( --17, 2c 	4„2 f j'? 

q(u, m;11;, 	0)- 

du g  

- I 

4u 2  
Co. ,* 

4" Mil, ttt, fl,, 112, T, (1)+4 

and 

	

(.(13 '1,r', 0) = -e - 2 's 22_ 	- 	
e 

'12  	-„ 

	

C/I/ 2 	4u 2   

+q(u, in; Jli,  r', 0 )+
4 

by (3.4) and (3.6), we have 

t„,(13 	11 2, T. 0 ) = 	f1 2, r): 

/:„(fri, 	0 ) = 1 ,(// ■ 
and 

it,'„(fit. 0 ) = i„,(fit. /12. 0,  0) 

,-  

C1// 2  + t 	4t/ 2 	t 	u + a' 

	

PROPOSITION 111.3. Let (1i;, r' )E 52 x C\(R u 	). Q open, bounded, and 
simply connected in the half-plane Re /I; > 0. Then, for imi= 0, 

(1) T;„(11;, r'), nuro  are type-A, real-holomorphi• families (in the sense of 
Kato [16, Sect. V11.1]) of m-sectorial operators in (11;, r') jointly and in 13;, respec-
tively, and thus self-adjoin! for (e, WU' xR*. 

(2) (7.(7' „,(' )) cr.( 	)) = N, + co) for 	(11 ■ • 
(3) Given 	k) > 0 there is 0 < M 	k)< cr: such Mat each eigenvalue 
k; (1;) of T?„(#',), Uml, k) = 0, I,..., is stable as an eigenvalue 	(m, k; XL , r') of 

r') for 	<,11„ larg rri  

g)E ila0, + CO 

if in> I, (.1, g)611'(0, oo) and (f(u)„g(u))= 0(1‘ 112 ) as u -• 0 for nn-= 0, is sym-

metric, closed, and positive. The associated self-adjoint operator on L 2 (0, co) is 

defined as the action of -ti'ldit 2 + (m 2 - I )/4u 2  on DE.--  {14[0, oo)n 112 (0, x), 
in> 0; 11 2 (0. +c4 , ) with boundary condition flu) = 0(a'') as u 0, in = }. By the 
SObolev inequality, the maximal multiplication operator by a"' on L 2 (0, co) is 
compact from D to L 2 (0, cc ), and the same is true for the maximal multiplication 
operator by q(u, in; /I'„ r', 0) in L 2 (0, oo) as long as larg r') < n. Hence by standard 

results of perturbation theory T2,(/1;) and T',„(ll',, r') are closed and w-sectorial, and 
thus self-adjoint for 	, r')e W x R'. Furthermore, clearly cr e„(r,:,)= 	+ cc), 

and thus by Wcyl's theorem, a„,(7 1, 1„(#11)= (r„„(T,„(I), r')1=e( 7-,,,„)= [4-, +x) 
for all (Th, r') c(2 x {r': larg 	< it 	Moreover, /)(71;,(/1; ))= D(T„,(11',, r')) is 

r')-independent, and the L 2 -valued functions fri i--0 r,;,(m) f, (Th, 

T;„(11;, r') ./ arc holomorphie in Q and Q x r': ;arg 	<n}, respectively, for any 

f e D. Therefore, the operator families 'T`,L(/I', ) and T'„,(/f„ t) are type-A 
holomorphic by definition, with the property (r,:0,)).=-.r, ,,,(fr,), 	r'))*= 
-r,„(p;, 1'). This verifies (1) and (2). To see (3), it is enough, by standard arguments 
of perturbation theory (see, e.g., Simon [27]). to prove that r;„(fi'„ t') converges in 
norm-resolvent sense to T',„(r;) as ITV 	0, uniformly with respect to (11,, larg r'))e 
S2 x [0, cc -µ]. By the uniform in-sectoriality, 11(T„,(/1',, r')- 	C for 
negative and 	suitably large and some C> 0 independent of (11;, r') e 12 x {t': 
ir'l < 	iarg 	< It - p, }. Since D(T„,(.)) is independent of r', we can write 

( 7-;„(Th, 

= (T,„(11'„ r')-z) -1 q(u, in; 	r', 0)(71'„(fr,)-z) - 	(3.22) 

Now the norm 	of the 	right side of (3.22) 	is 	majorized 	by 
Oki(' ) 	)- 	I II 4 C6q(u. • )1 	io.. ,Ii(71,;,(li" ) - z) I II 4 C 2  sup,„ lq(u, m; 

t', Oil -40 as lei 0 with the stated uniformity in (/I'„ iarg el). This proves 
assertion (3). The holomorphy statement of assertion (4) is a well-known con-
sequence of the stability and of the holomorphy of the operator family r„(/l;, r'). 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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To see the existence of the analytic continuation we use the complex-scaling techni-

que of Aguilar, Balslev, and Combes (see, e.g., Reed and Simon [15, XIII.10]). The 

dilatation map 

(U(0) f )(u)= e °12f(eu), 	OE R, 	 (3.23) 

is unitary on L 2 (0, + cc) and leaves D invariant. The unitary images of 7,'„(ff',) and 

s') are the operators r(fV, , 0) and T,„(fr,, r', 0) defined as the action on D 
of the differential expressions (3.21) and (3.19). Proceeding as in the verification of 

assertions (I) and (2), we see that T;;,(Th , 0) extends to a type-A, real-holomorphic 

family of in-sectorial operators in ((1;, 0) e S2 x {0: ilm 01 < a/21, and that 

r„,(fl;, 	0) extends to a type-A,reiii-Ti -oTorlcrjr-nrrIMily of ni-sectorial opera- 

tors in (fi',, r', 0) E S2 x {(T', 0): I arg(r'e)1 < Tr). 	Furthermore, a„„(7,),(• )) = 
o-„„(T,„(•))= [e -20  + 	El, and the eigenvalucs of both families are indepen- 

dent of 0. The norm-resolvent convergence of assertion (3) holds unchanged also in 

the present situation provided larg(fel <7r - p,. Therefore, the eigenvalues 

A(m, Th) are stable as cigenvalucs ),'(m, /3;, t') of T',„(fr,, t', 0) for 11. '1 < M, , 

arg(r'e ° )I < -p,. Since ilm 01 < rz/2, we see that A'(•, it',, r') admits analytic con-

tinuation to Ir'l < M,, larg(r')1< 71- p, a priori many-valued because 

A'(•, e'r') A A'(., e 	> 0, The R. In fact, A') e'"r') is by definition an eigen- 

value of T',„(•, 0) for -n/2 < Int 0 < 0, while A'(•, e '"T') is an eigenvalue of T',„( •, 0) 
for 0 < Im 0 < a/2. Since T'„,(., 0)* = T;,,(• , 0), 	A'(•, e 	-Im A'(•, 
r' > 0. This proves (4) and (5). 

PROPOSITION 111.4. Let (m, k) he fixed, 0', E Q, larg(Te " )1< 7r. Let A'(•, r'), 

r' 	,( • ) be the eigenvalue of T„,(•, t', 0) near the eigenvalue 4.) of 71,:(", 0). Then: 

(1 ) The Rayleigh-Schrodinger perturbation expansion f,„'',„ 4;,(- , 0', )(r'/2)", 

,r1;) = ).(• ), exists and represents a strongly asymptotic expansion (sec, e.g., Reed and 
Simon [15, Sect. X11.4]) for A'(• , r') as 17- '1 --■ 0, uniformly in (fl'„ 1arg ) e S2 x 

[0, rz - p,], i.e., given p, > 0 there is B(p,)> 0 :such that 

N 
r')- E A;,(•)(02)" 

(3.24) 

B(p 1) 	I2V , 

(T', 	0,(. )x 	N 	I, 2,-. 

(2) The perturbation expansion given above is Borel summable to AV, /1',, r') 
for T'E 	), uniformly in IT, E 

(3) A'„(m, k; 11;) 	(- 1 )"B „(m, k; Th), n e N.  

Proof By the Watson-Nevanlinna theorem (for details sec Reed and Simon 

[15, Sect. XII.5] and Sokal [27]), given Proposition 111.3(4), (5), assertion (2) is a 

consequence of (1). We prove (1 ) by standard arguments of perturbation theory  

(see, e.g., Reed and Simon [15, Sects. XII.2-4]). Let d= d(m, k; If',) be the isolation 

distance of the eigenvalue A(, /3', ), 0 < v < i d, and let F,- {z EC: Iz - 0:1( • )! = 

Denote by R'„,(z, 	0), 122,(z, 	0) the resolvents of T',„(•), r,„(•), respec- 

tively. By the norm-resolvent convergence of Proposition 111.3 there is a constant 

C> 0 independent of (r', II', 0) as long as fl', E S2 , 	larg(er')I 
such that 

sup 	11R'„,(z, Th,, r', 0)i, 	c, 
ze r. 

IT') < 

(3.25) 

and furthermore 

iP;„(fri; r', 0)- P;;Jfi'1, 0 )II 	0  as 	1r'l -00 (3.26) 

uniformly in Q and 	(1arg r'1, 0), 	larg(f'e ° )i .•< p ,. Here the strong Riemann 

integrals 

t', 	(2ai) -  ' 
r. 

r', 0) dz (3.27) 

and 

P;;,(Th, 0)= 	 k,;,(z, 0) dz (3.28) 

are the projection operators on the one-dimensional eigenspaees of A.'(•, 	r') and 
).(•, 	). If 94,.= 	•, 	0) denotes the eigenvector corresponding to A( •, f3', ), we have 

<P',„(Th ,  t',  0) 0, T;„(0',, T', 0) P;„(0',, r', 0) 0)  

	

;C(• 	T')= . 	(3.29) 

	

<P;„(0'1, T% 0 ) 	P;„(g), 7 % 0 )0> 

Recall now that the Rayleigh-Schrodinger expansion is generated by inserting the 

geometric expansion of the resolvent in powers of the perturbation, as represented 

by formulae (2.28), (3.11) with e llu in place of u, collecting all the terms having the 

same power of T', and performing the integration by the residue method. We also 

recall that by standard complex-scaling arguments the resulting coefficients Al:,(•) 
are independent of 0. Now, by standard arguments of singular perturbation theory 

(see, e.g., Reed and Simon [15, Sects. XII.3, 4] and in particular Morgan and 

Simon [3] for a specific application to the present case in the non-separated for-

malism), to see (3.24) it is enough to prove that there are a(v)> 0, C(v)> 0 
independent of (f),, r', 0), e Q, larg (fe())1< n - µ , such that 

y, 	sup i; R;;,(z, 	0) 	Th) 	)• • ' 
kip ... 	N 

Ft„(•)0(11 ;, 0 )i:cu'v,v! 
	

(3.30) 

IRN(•, T) I 
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and since the number of terms in this sum is dominated by 4" we need only prove 
the bound for each term separately. To this end, we first recall that under the 
present conditions it is well known that there are 6, > 0 and C, > 0 independent of 
((l, 0)e 	x {0: 01,..c. n/2 -E, c> 01 such that 11e 6 '''ch(•, Th, 0)1,1 	Further- 
more, there is C2>0 independent of (Th, 0) as above such that 

Sup 	;le"R"(z, 	0) c 6";1 < C2. 	 (3.31) 

To sec this, we apply a well-known argument (see,.e.g., Hunziker and Pine( [28]): 
for f e D, we compute 

cl  
e b'T;„(13;, 0)e -6"f = r„([1',, 0) f - 6 2u + 2e 'Of, 	P= - n - • du 

Now p is obviously 	)-bounded with relative bound zero, uniformly in (Th, 0)e 
x {0: I Irn 01err/2- r, E>0. Hence (3.13) follows by a standard argument, 

described, e.g., in Morgan and Simon [3], for o , and hence (j, small enough. Now 
the rest of the argument goes exactly as in Morgan and Simon [3]. We write 

	

R;;,(z, 	0 ) Fk,(e (114, Irl) .  • • FA( • ) 1?2,( - )0(• ; M.0) 

QoPIQ1• • • Q e"O(' 	0 ) 	 (3.32) 

and 

	

P,= 	""/N 	 v  R2(•)eQi 
(3.33) 

j,= E k,. 

Now 	4 C2, and 	= :Fj(•) e' - '°"/n,‘ < N k • --  'C, for some C,> 0 indepen- 
dent of (f3',, 0) as above. Thus each term of (3.30) is majorized by C'C" -f-   
Ca" N! for some 0- (v) > 0, whence (3.30). Therefore (1), and hence (2), is proved. To 
sec (3), it is enough to remark that F'(u, Th, re '')= G(11, Jr, r), r > 0, while the 
unperturbed operator is the same in both cases and the perturbation expansion is 
independent of 0. 

As an immediate consequence of this proposition we have: 

COROLLARY 111.5. The 	Ruyleigh-Schrodinger 	perturbation 	expansion 
Ex: o B,,(m,  k; /3 2 )(t/2)" for the eigem•alue µ(m, k; 0 2 , r) of S,„(/1 2 , r) is Borel sum-
mable not to 12,01, k; (1 2 , r) but to A'(m, k; 11 2 , e 	r > 0. 

The second step in proving Theorem 111.2 is represented by the unraveling of the 
first separation-constant eigenvalues. 

PROPOSITION 111.6. Let 	1mi = 0, 1,..., ,11; eQ, 	larg(r'el < 7E. 	Denote 	by 
a'(m, r', 0) and rr„(m, 0) the charge spectra of T,„( • ) and r(•), respectively, i.e., the 
sets {/t ED: , 0) has the eigenvalue 01 and {X, e r,),,((3', 0) has the eigen-
value 01. Then: 

(1) a'(m, r', 0)= a'(m,r', 0) 	r'); o- dm, 0) = o dm, 0) -=1 o(m), i.e., the 

charge spectra are independent of 0. 

(2) For any fixed (lin!, k) = 0, 1,..., and any 1.1 2 (in, k) > 0, there is 
0 < M 2 (m, k) < +cc such that the condition A'(nr, k; , t) = 0 implicitly defines one 
and only one isolated eigenvalue in o'(nz, r') as a /unction t' 	Th(m, k, r'), 
holomorphic for 0 < 	< 1v1 2 , jarg r'l <n, which admits analytic continuation to the 
Riemann-surface sector 2 (m, k) = {r': 0 < j < 31 2 ; larg 	< 	- p,} across the 
negative real axis, and is such that /1 ,, (m, k; r')- ■ [3(m, k) = k + 	+ 1) as if 	0, 

E f72 (m, k). 

(3 ) The function r's-i.13', (m, k; r') admits an asymptotic expansion to all orders, 

Th(m, k; 	E 	k)(r'/2)'', 	L'o (rrz, 	0(m, k) 
	

(3.34) 

as r' •- ■ 0 within ..g2 (m. k). The coefficients L;„(m, k) can he directly computed 
through Rayleigh-Schrodinger perturbation theory. 

(4) The asymptotic expansion (3.34) is Bore' surnmable to fl',(m, k; t') in 

92(10, k). 

Proof. Assertion (1) is an immediate consequence of dilatation analyticity. To 
see the subsequent ones, first recall that iani, k; 0 if and only if 0(m, k), 
i.e., a o (m) = Uk o p(m, k). The corresponding eigenfunctions 0(P(ni, k), 0) = 
0(tn, k, e'u) are the Laguerrc functions of argument Al. Consider the eigenvalue 
A'(rn, k; t') existing near A(m, k, /3)) for /3', e Q and t' E 9,(m, k). By 
Proposition 111.4, uniformly with respect to /3', ED, 

A'(m, k; 	r' ) = A(m, k; Th) + 0(m, k; r'/2) 	 (3.35) 

within .9,(m, k). Furthermore (see Buchholz [24]), A(m, k; /3)) = 
- (Th) 2/4[k (irni + 1)] 2  and thus 14rn,.k) e k; Th)! _ O. 

Hence (3.35) implies, by continuity, that 

cry 

0[3; 

for !/3', - 	k)( suitably small and r'e,(ni, k), It'; suitably small. Since 
A'(m, k; (3(nt, k), r') - ■• A(trz, k; 13(m, k))== 0 as r' 	0 within 1,(m, k), assertion (2) is 
a direct consequence of the analytic implicit-function theorem (sec, e.g., Gallavotti 
[29, Appendix G]). Furthermore, the analytic implicit-function theorem also 
implies that fl',(rn, k; t') has finite derivatives of all orders as r'El22 (m, k)•-■. 0. To 
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compute these derivatives, viz., the coefficients L;,(1,t, k), notice that 11(in, k) satisfies 
the ordinary differential equation e" ut°„,(0, 0) 0(,,,, k; e"u)= Mtn, k )1)(m, k; 
Hence if we consider the ODE cigenvalue problem 

(e °ut`;„(0, 0) + uF (m, 	, r')] 0'(rn, k; 	t') 

= 11;q3'(rn, k; e"u, t') 	 (3.36) 

on Oil +; dg), dx= u'da, with boundary boundary condition IV(m,- )= 
0(14 1 /2"112 ) as ul 0, we generate the coefficients L'„(m, k) recursively through 
Rayleigh-Schrodinger perturbation theory. Note that this formal procedure is 
justified because 14'(m, k;e -,(1)11 - '11 is - bounded independently T.I1° --- ttl, and 
[e"u(r,,(0, 0)- z)] u F„ (m, 13',)= [n, ( 0, z] - -  F„(m, e"a, 11',). Finally, 
assertion (4) follows by Proposition A.1. I 

COROLLARY 111.7. Let (gym 1, k) = 0, I,... be fixed, and let r > 0. Then the 
separation-constant eigenvalue doublet .  k, t) iinlicilly defined by 

± (rn, k, 11 2 , r) = 0 admits an asymptotic Rayleigh-Schriidinger perturbation expan-
sion 

tip (m, k; r)- E L„(m, k)(r/2)", 	L o  = 11(nt, k), 	 (3.37) 

which is Borel summable not to fip (In, k) but to 11',(m, k, e -  "r). 

Proof The expansion (3.37) can be generated as in Proposition 111.6(3) con-
sidering this time the ODE eigenvalue problem [v.0„ 1,(0)+ vG(// 2 , t, 
(b(rn, k; t, v)= 13 2 (m, k; r, v) 	(see 	Proposition 11.3, 	(2.29)-(2.30), 	(3.11)) 	on 
L 2 (R+, dx) with boundary condition ip(m, v)=0(01/2+1,,,w2) as vj.0. Here, as 
usual, 

(I' 	/1 2 	111 2  - I 	I 
4(112)  = 	+ 41,2 + 4. 

By Corollary 111.5, we have L„(m, k) = (-1)"L',,(nt, k), with 14,(nz, k) as in (3.34). 
Therefore the assertion is implied by (4) of Proposition 111.6. 

The analysis of the operator family T,„(13,, /1 2 . t) is now straightforward. By 
exactly the same arguments as in Propositions 111.3 and 111.4. we obtain: 

PEO1'OSITiON 111.8. Let 	(11,, 11 2 , T)EQX.(2X IT: 	hag ; < 7C 	Q 	as 	in 
Proposition 111.3. Let T„,(11,, /1 2 , t) he the operator family on L 2 (0, + x.) defined 
the differential expression t„,(/1„ 11 2 , r)' on D, D as in Proposition 111.3. Then: 

(1) 	(/3 1, 18 2, T)'-' 4' T„,(111, 112,   r), 	m = 0, 1 	is a type-A. real-holomorphic 
family of m-sectorial operators in (11,, 11 2 ,r) e S2 x x ;r: largr; < it and thus self-
adjoint for (# 1 , fl 2 , r)e 

(2) o.„(T„,(•))=-- 	+ co) for any (P H  /1 2 , r)e52 x Q 	iargrj <10. 

(3) Given u,(rn, j)> 0 there is M :,(m, j)> 0 such that each eigenvalue 

2(m, 4 1 ) of r„ ( f1,) is stable as an eigenvalue A(nt, j; (1,, /1 2 , t) for ill < 111 3 , 

larg rl < it; the function(11,, 11 2 , T)-4  A(m, j, 	11 2 , T) is holomorphic in (11„ 11 2 , T), 

jointly for 0 < Iri < M 3 , I arg tj <7t, a* locally in ((1 „ 11 2 )e x Q, and admits 

analytic continuation with respect to r to the Rieman/I-surface sector .93 (m, j) = { r: 
0 < j ti < M 3 (nt, j); larg < 3 rr - p 3  } across the negative real axis. Furthermore, 

lim A(rn, j,# 1 , 13 2  T) =  2(m, j, /3,) as t 	0 Within r.63(ttli j) uniformly in (/3,, i32) 6  

S2 x Q.  

(4) The Rayleigh-Schrodinger perturbation expansion 

E A „(rn, j; 11 1,11 2)(x/2 )", 
	A °  = 	/3 , ), 

exists, represents a strong asymptotic expansion for 2(rn, j; 	11 2 , r) as t -, 0, 
j), uniformly with respect to (1.1,, /1 2 )ES2 x ‘2, and is Borel summable to 

A(ni, i; 	, )6 2 , t)  in g3(m, 	uniformly in (11,, (1 2 ) as above. 

These 	results, 	together 	with 	Proposition 111.6, 	Proposition A.1, 	and 
Corollary A.2, immediately imply: 

COROLLARY 111.9. Fort e 93 (m, j), consider the eigenvalue 2(m, j; 	r) and 

the (3',-separation-constant eigenvalue 	--■ ((m, k; t') of Proposition 111.6, 
e (.22 (m, k), 	j, k)= 0, 1,,... Then: 

(1) The Junction t A(m, j; 	, (m, k, re 	t) is holomorphic in (Th,r)for 

0 < < M 4 (m, j, k)= min(M2 ( • ), M3( • )), 0<argt<it, locally in 11, EQ. Further-

more, A(•, jr,(• , to "), t) admits analytic continuation to the Riemann-surface sector 

94(m. j. A)= {T: < <A14(•), --/r/2 + /14( • ) < arg < 3 - p,d• )), /14(in, j, k)= 

ma x(ii ,( ), ,a 2 ( • 	across the real axis, with lim 	j; 	fi',(m, k, re - "), t) 

j, 	) as t 0 within g4 (m, j, k), uniformly with respect to 	 eQ.  

(2) The Rayleigh-Schrodinger perturbation expansion for A(m, j; 

11;(nz, k, re -  "), t), viz., 

2(trz, j; /3,,  111(m, k, re - '), 	E A „(nt, j, k; 11, )(TR)", 	(3.38) 

exists, is strongly asymptotic to 2(•, r) as r -■ 0 within 14( • ), uniform in fi l en, and 

is Bore! summable to 2(m, j, #1, k, to r) in i,4  (,n, j, k), uniformly with 

respect to fi l  E Q. 

Remark. Equation (3.38) is also the perturbation expansion of 
/1,, /1 2t (m, k; t), r), because /12 (m, k, r) and /r,(tri, k, e - '"t) have the same pertur-
bation expansion. 

The /3, spectrum is now determined as follows: 
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PROPOSITION 111.10. For (itn,, j, k)=-- 0, I,..., consider the eigenvalue (m, j; 
fri(m, k; re - 	r) of T,,(/11, ITI(e - "c), r). Then: 

(1) The condition that 

A(m, j; fi 	k; re'"), t)=0 	 (3.39) 

implicitly defines a function ti- ■ ,(m, j, k), which is holomorphic for 0 < IT' < 
Jl14 (m, j, k), 0 < arg t < n , admits analytic continuation to the Riemonn-surface sector 
fah, j, k), and is such that lirn 11 2 (m, j, k; t) = Mtn, i) = i + 	+ 1) as r 0 
within 	j, k). 

(2) The implicit function I-. ft ,(in, j, k; t) admits the Rayleigh-Schrodinger 
perturbation expansion 

i (m, j, k)- E L„(tn, j, k)(r/2)'', 
n.o 

Lo = 11(tn, i) 	 (3.40) 

as a strongly asymptotic expansion as t 0, t e 6:14 (m, j, k). The expansion (3.40) is 
Borel summable to 11 1 (m, j, k; r) for i E 	j, k). 

Proof (1) Since A(m, j, fi(m, j))= 0, proceeding as in Proposition 111.6 we have 
to prove only that 

0), 
— (m, j; „ p;(tn, k, 	'n, T)) 0 

for # 1  in a neighborhood of li(m, j) and r E 9 4 (,1, j, k) with 1194  suitably small. In 
turn, by Proposition 111.8(4) it is enough to check that 

0 
— Aunt, j, k; 11 
Ofi 

which is true because .1„(m, j; k,11,)= ).(tn, j, fl,)= 	11;14[j + 	+ I )] Asser- 
tion (2) is again proved as in Proposition 111.6(3) and Proposition A.1, given 
Proposition 3.9(1) and (2). We note that by the remark after Proposition 111.9 the 
functions j, k; ) and ri--• 13,(m, j; /1 2 (m, k; t), -r) have the same pertur-
bation oxpansion (3,40). 

	

Proof of Theorem 111.2. Setting 111(ni, j, k)-= min A/, (• 	M4 (• (, Mtn, j, k) = 
max {p i ( • ) ..... /1 4 ( • )1, assertion (1) is proved in Proposition 111.6, and assertion (21 
in Proposition 111.10. Assertion (3) follows from (1 ), (2), and the analytic local-
invertibility theorem, because 

within f.(rit, j, k). Finally, note that by Proposition 111.4(3), Corollaries 111.5, 111.7, 
and 111.9, and Proposition 111.10, and the analytic local-invertibility theorem, the 
function p 	i[y,(tn, j, k; F,(m, j, k; p))] -2  admits an asymptotic expansion to 
all orders as p 	0 within g(tn, j, k). Hence assertions (4) and (5) arc direct con- 
sequences of Corollary 111.7, Propositio4,11.10(2), Propositions A.1 and A.2, and 
Reed and Simon [15, Problem X11.26]. 1 

IV. IMAGINARY PARTS, ASYMPTOTIGS, 
AND THE FORMULA OF BRIIZIN AND ZINN-JUSTIN 

As stated in the first section, our program now is to relate the Borel sum 
E,(m, i, k; p) of the 1/R expansion to the fundamental quantities of the problem, 
viz., the eigenvalue gap and the asymptotics of the coefficients of the 1/R series 
itself. In this section, the quantum numbers In, j, and k are fixed and may have any 
allowed value. Although eigenvalues, expansion coefficients, wavefunctions, error 
estimates, etc., all depend on these numbers, to avoid notational complexity that 
dependence will be indicated only where necessary. Since the coefficients of the 1/R 
expansion are real, fm E, must have zero asymptotic expansion as p -40. In fact, 
the asymptotic behavior of 1m E, is determined to leading exponential order by the 
following statement. 

THEOREM IVA. Let E(ni, j, k; p) he the Bore( sum of the 112 expansion near the 

eigenvalue E(in, j, k)= (in; + j+ k) - 2  of - d - of magnetic quantum 

number ,n and parabolic quantum numbers (j, k), (;ntl, j, k) = 0, 1,..., and let n = 

Imi + j + k + I he the principal quantum number. Then, as jpj 10, p e 

45,2 
lm E,(nt, j, k; p)= -IrC(nt, j, k)( 2  ) 21'1+  

np 

x e -2/ 1 " 1 "(1 +0(n, j, k; p")) 	 (4.1) 

w ith 

C(m, j, k)= n -3 [1(1(k + Intl)!] - 2e " 2". 	 (4.2) 

Here, and everywhere else, 0(m, j, k, p ut)  means order p" as p 0 with coefficients 

depending; on (in, j, k). This theorem will he proved in this section by adapting the 
ODE techniques of Harrell and Simon [6], which are in essence rigorously justified 

JWK B estimates. Before turning to that analvs4s, ■ ty note that the asypnitotics of the 
11R expansion and the formula of Brezin and Zinn-Justin are simple consequences -  of 
Theorems IV .1 and 111.2 along with the rigorously known gap estimates of Harrell 
[13]. 

dt 	
j, k; 	I  = (j+ k + 	+ 1) -  + 0(m, j, k; p) as 	0 	 COROLLARY 1V.2. Let ENO', j, k) he the Nth coefficient of the 11R expansion -. 

near the eigenvalue E(m, j, k) of H o . Then: 
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(1) As N co, 

EN(m, j, k)= C(m, j, k) n"2 - "(N + 4k +2rn+ 1)!(I + 0(m, j, k; N - "2 )) 

= -e -2'n" -3 [k!(Intl + k)1] -22 -N(N + 4k + 2m + I)! 

• (1 + 0(m, j, k; ls1 - ' 12 )). 	 (4.3) 

Remark. Equation (4.4) is the formula of Brozin and Zinn-Justin, rewritten in 
the language of the Borel sum. Formula (4.6) below shows that the asymptotic 
behavior of E , is controlled by the cigenvaluc gap as well, which was the numerical 
discovery of Br&in and Zinn-Justin [5]. 

Proof (1) We use a standard approximate dispersion relation argument which 
goes back to Simon's paper on the anharmonic oscillator [27], By 
Theorem 111.2(4), the function pi-• E,(m, j, k: p) is holomorphic for 0 < M, 
0 < arg p <tc, and analytic up to the real boundary of this half-circle. If r, denotes 
the half-circle Ill = c < M, 0 < arg z tr, by Cauchy's theorem, 

1 	E,(m, j, k;.7.)  
E,(tn, j, k; p)= 27ri r, 	p 	

,,z. 	
(4.5) 

Therefore, by Taylor's theorem and the reality of the perturbation coefficients, 

	

I 	c 
EN(tn, j, k)=— 1 z -  - I lm E,(m, j, k; z) dz + 0(1: -  "), 

2n 

and hence (4.1) yields (4.3). Furthermore, assertion (2) is an immediate con-
sequence of (4.1), (4.2), and the known estimate [13] 

	

1E(m, j, k; p)-= 	 + 

( 2 \ 	+2k +1 

•
I/1"V +19('. p' 1 / 2 ))• 

To prove Theorem IV.1 it is necessary to estimate the imaginary parts first of 
/1;(•,te - ') and then of /3,(•, 11;(•,e - "r), t), r e. R. As already mentioned, we will 
make use of the JWKB technique of Harrell [30] and Harrell and Simon [6]. We 
note in passing that 'a more sophisticated (hut so far not rigorously justified ) 
approach based on the Langer-Cherry refinement of the JWK it method [31] 
makes the computation of all exponential corrections possible. This is the content 
of the second paper announced in [14]. 

The first preliminary result is as follows: 

PROPOSITION 1V.3. For r > 0, Im 0 > 0, let 

e °u)= -
4

- e -°  u -  - (2r- eu)-- I If II 

m2

4 

 - I 
+ 	[(2r- eu) -2  + 2e (i ti - 1 (2r- 6,9:4) -1 ] 	(4.8) 

and 

k;re - ')= ft,(nt, k; r)- r,(• , r). 

Let 1 2  = t 2 (m, k, t) he the greatest solution in 0 u 42r of Otn, k fi(tn, k), t, u) = 0, 

and let•, T, Ai) denote once again the eigenvector corresponding to Th(•, t) in 

o'(ni, t). Then: 

(1) , T, e uu)= Oi( . . r, u) exists, uniformly in 0 	1 2• 

(2) For 0 <a 4 1 2 ,  

0 '1( •,  r , 11 ) —  O 'i( • ■ t. 14 )1 	 T, 11 ) — 	u ) 
do 	 lu_ 	 di( 	 lu ■ al 

2i $810',(•, r, u)1 2 (u 	+ (2r -0 -1 ) du 

Proof. By Propositions 111.5 and 111.6, 0, is the solution in L 2 (0, + co) of the 

ODE 

(

-20 (12 „ _ e  _2U  T). 7,e"ii))0'(• , e"t4) =0 

for 0 < Im 0 < n/2. It is well known from standard techniques of asymptotic 

integration (sec, e.g., Hille [32], Olver [33]) that the subdominant solution of 

(4.11) as Jul u e C, is unique up to constants as long as jarg(A)I <n/2. 

Therefore, we can replace the condition 01(•, 11 ) e L 2 (0, + cc,) by the condition 

u) E L 2 (C, dlui), where C is any contour in the complex half-plane u EC, 

Re u 0, lying above the singularity at u = 2re • ". For example, C= C I  s-)C2; C, = 

lmu=0, 0 Re u..<, 2(r- /7 ), Reu?.... 2(r+i)]; C2= fi t/EC: lu-2r1= 2F: 

Im u> 0) for some fixed k)> O. Since the regular, subdominant solution of 

(4.11) is continuous at 1m 0 = 0 uniformly with respect to u e C, and the eigenvalues 

arc independent of 0, we may henceforth assume lm 0 = 0. The point 2(r - can be 

taken as the greatest solution t 2 (m, k) in (0, 2r) of Om, /J;(•, t, u) = 0 (the "large 

(2) Let p> 0, and AE(m, j, k; p) he the gap between the two eigemalues in 11w 
doublet near E(m, j, k) as p j 0. Then, as p j 0, 

- Im 	j, k; p) = tat 3 (AE(m, j, k); p) 2 (1 +0(m, j. k; p)). 	(4.4) 

(4.6) 

(4.7) 

1m 13;(• , r)- (4.10) 

(4.11) 
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turning 	point"). 	Formula 	(4.10) 	then 
argument. In particular 

)'1(', 1 2)— 0'(• 	u !  du 
lin 13; ( 

	

, 	 — 

ET AL. 

follows 	by 	a 	standard 	partial 	integration 

45 ■ (• 	1 2) —  Oi(' 	u) 
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11//11”,5,,,,12(u) 	is 	an 	equivalent 	way 	of writing 	the 	unperturbed 	eigenvectors 	of 

Remark 	(3) 	after 	Proposition 11.2, 	denoted 	by 	cb(nt, k, u) 	in 	Proposition 111.6: 

0(in, k, u) = W m „,.". „,p(u)• 

(3) 	Let Q 1 (r) = 	C: 	Re u 	r'12 , lm 	0, 	i 	— 2r1 	r'12 ). Then /1)',(•, t, u) 

is uniformly approximated in ‘2,(r) by tlie JWKB-type function 

_ c. , t, 	= K(•,r)ti'(• , t, u) cxp (—j 	u')' 12du'), 	(4.15) 

where 	1 (m, k; T ) 	is the zero 	of a'(• , r, u) 	near 	) + (Th 	1 2  + (rn 2  — 1 )74 ] 112 , 
and 

2i f,':;10 ■ (•, u)1 2 (u1-1 + 

Equation (4.12) is the standard formula 
order to 	evaluate 	it 	we shall 	exhibit 
x(m, k, t, 	= x( •, r, u) such that 

0j(•, t, 

(2r —u) -  ') du 	
1 	(4.12) 

for estimating imaginary parts, and in 
a patched-together comparison function 

u)( 1 + c(•, r, u)), 	  

where je(• , r, u)1+ j(elcIdu)(• , r, u)1= O(r') for some a= a(m, k)> 0, 0 u / 2 . 
Since the subsequent arguments are essentially adaptations to the present case of 

those of Harrell [30] and Harrell and Simon [6], we shall be somewhat sketchy. 
We begin by stating the following: 

DEFINITION IV.4. Let 0( .0c C be the closure of an open, bounded, simply con-
nected set for r 0. Let (14, r)i—•f (14, r), (14, r)1—. g(u, r) be the functions from 
S'2(r)x 	+ co) to C, 0<f < co. Leif, g C 2 (Q(r) x 1,), where /, is any compact 
subinterval of [I, + oo), and let f, 	be analytic in u a 52(r). Then we say that f is 
uniformly approximated by g in OM as t 0 if there exist a> 0, y> 0, r 0 

 independent of (u, r) such that for all u (2(r) and r < T o , 

where 

If 	0 1 ,..., QJ 	arc 

f(u,r)= g(u, 

T)1 

several 	such 	domains, 

r)(1 + c(u, r)), 

— (u, T) <yr°. 
du 

then 	we 	say that 	f 	is 

(4.14) 

uniformly 
approximated by g 	g, on their union, provided (4.14) holds on each domain 
separately, and if C is a contour in such a domain or set of domains, we say that 
is uniformly approximated on C by g,,..., gj . 

Remarks. (1) It is easily seen that this is an equivalence relation: in particular 
we shall make use of the observation that if f is uniformly approximated by g and g 
is uniformly approximated by h, then f is uniformly approximated by h. 

(2) Since Eq. (4.11) for r = 0, 0 = 0 is the confluent hypergeometric equation 
in Whittaker's form (see, e.g., Buchholz [24]1, the standard Picard approximation 
procedure yielding existence and uniqueness for the ODE Cauchy problem shows 
that with a suitable choice of normalization ib;(•, r,14) is uniformly approximated 
for ue [0, 1] by the Whittaker function 1V,„„„). „, 2 (u). We remark that 

K(., r)= 	 u)112clu'). 

The branch of the square root here and elsewhere is taken such that Re(//) 1/2 > 0 

as u oo. Formulae (4.15) and (4.16) arc immediate conseqences of a theorem of 
Olver [33] and the estimate of the error control function given in Appendix B. 

(4) When there are several domains of uniform approximation they may 
either touch at isolated points or overlap, and the overall approximating function 

may have jump discontinuities. 

The foregoing remarks show that a uniform approximation has to be constructed 

only for 1 vi; and 0 <a....clu— 1 -4:. To this end we apply the variation-

of-parameters technique of Harrell and Simon [6]. The result is as follows: 

LEMMA IV.5. Let 0 2(r)=C n {u: Re te 2r — 1;}, where C is as in 

Proposition IV.3, and .(23 (t)= {u: 1 	„Ir }. Then: 

(I) For u a 0 3(T). (Ai( •, r, u) is uniformly approximated by Wi1m,k),.12(u) with 

a= 1/2. 

(2) For u E 0 2 (r), cb;e , r, u) is uniformly approximated by _(-, r, u) with a= 

1/2, where 

0_ ( • , T, 	T( • ,r) W_ i„.,„,,2(u— 2r) 

Wrii•i.„,/2(e(u —  20), 

T(• ,r)= 2K(•, r) 2exp ( 	
o

-1 o'(m, ll'(•), T, u) 
4, 

x (1 + 0(- , T 112 )) 	as 	0; 

with K(•, r) as in (4.16), and 

T(• , r) -I h(• , r)=- 0(r" . •"e -  s''; ) 

(4.16) 

as r 	0. 

(4.17) 

(4.18) 

(4.19) 
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Proof. We first sketch the proof of (2). Following the variation-of-parameters 
technique of Harrell and Simon [6] (the reader is referred to that reference for a 
fully detailed dcscription), for u 3 2r +1;, set 

T, U)= K(•, r,  U)et(m, fl 

 

(m, k), r, u) - 114  

	

•exp (L" q'(In, fl(m, k), r, u . ) 1 / 2du), 	(4.20) 

-01(•, u)+A(•, u) _(• ,u)= 0, 	2r+ it:, 	(4.21) 

for some function (r, u)r-4 /1(• , t, u) analytic in u and C' in r. Let 0 (., u) be C I  at 
u= 2r + 	and solve 

d2 11(trz, k)

+ 

 tr(2  - 1 

L - du 2  4 +  u - 2r 4(2r - u) 2  

ni 2
4 

 - 1 
+- [(2r-u) -2 + 214 -1 (2r - 	il0 -(',11)= 0, 	(4.22) 

where u belongs to C, 2r -.1;..Rc u 2r 	 Simple matching at 
u = 2r +1; with the use of the asymptotic formulae for Whittaker's functions (sec, 
e.g., Abramowitz and Stegun [34], Buchholz [24]) shows that, on C n {u: 
2r - Re u), 

0_(., r, u) = T(- r  ) W_fi(„00 . „02(// .-- 2r) 

+ 61( / ot „,.,, ). „„2 (e'''(u - 2r)), 	 (4.23) 

where T(•, r) is given by (4.18) and b(- , r)17-(• , r) satisfies (4.19). Furthermore, let 
(u, r) -4 0 „(•, u, r) be defined as the unique function which satisfies (4.21) and is a 
simple multiple of W im „,,,,,,,2 (e l'(rr -2r)) on C. It is straightforward to check that 
W(0 _, 0 +_)= 1, where W(•) denotes the Wronskian of (0_, 0,.), and that 

13(• , 1, 11)=r et( •, T, u)- A(., 	u) = 0(., r), 	 u C, 

=0(-, (u-2r) -2 ), u ?- 2r+ f. 

Furthermore, with the aid of the estimates on Whittaker's functions (see Buchholz 
[24] or Abramowitz and Stegun [34]) it is also easy to check that 

B(• t, 1.4') 	(•, 1, u') 	_ (•, r, u') du' = 0(', 1 112 ), 

Im B(•, u', r) 0_(•, ii' , r)2du'=-- 0(•,1- '2 ), 

Therefore it follows, as in Harrell and Simon [6], that on 0 2 (r) 

4Y1(•, r, 	 00_(•, r, u)+a,(•, t, u)cb,(•, r, u), 

d 
- 01(• ,r, u)= a _(• , r, u) 

dpi_ 

( Al,
4) + a +  (•,T,U) -

d 
(•, r, u), 

du 	 du l  

(4.26) 

and 4v,(•)=const W., fi ,„,.,,.„,,2 (eu) on [I, /'], extended to be a linear com-
bination of 0._(-) and (dominantly) of o'(•) -1/4exp(jr; g'(- , u')"du'). Then a 
straightforward verification of (4.25) and the asymptotic formulae of Whittaker's 
functions show that 0' 1 (•, r, u) is uniformly approximated by ,p_(•, r, u), which is in 
turn uniformly approximated by Wm„, k) ,„0(u) on [I, .1;]. Since we already know 
that t;(•, r, u) is uniformly approximated by Wflo..k),,a(u) on [0, 1], the lemma is 
proved. I 

The estimate of the imaginary part is now easy to obtain: 

PROPOSITION IV.6. Let (tn, k) he fixed. Then, as r j 0, 

1111 111(m, k; r)- 
T(m, k; T)2 
	 (1 + 0(1 112 )) 

+k)!] 2  

- 
-ir(2r)21"'1 +4k 2 

e -2R(1+ 0(1 02 )). 
+k)!] 2  

Remark. In the notation of Section II, by (4.8) formula (4.27) yields the 
behavior of 1m m(m, k; e - ''r) as r -+ 0. Furthermore, by the approximate disper-
sion-relation argument recalled in the proof of Corollary IV,2, integrating this time 

over the boundary of the circle A,= Iii =e, 0 <E < ,(m, k)} cut along the 
negative real axis, (4.27) yields the asymptotics of the coefficients L N (m, k), 

k)= [k!(Unl + k)!] -2 (N + 4k + 2)inj + I)!(1 	Ojiii, k',Pic--"a )). 	(4.28) 

By the estimate of Harrell [13], it also yields the formula analogous to that of 
Brezin and Zinn-Justin (formula (4.4)) for the separation constant fi2, 

-IM 11;(1n, k; re ')= rzA11 2 (m, k, 1) 2 (1 + 0(m, k; 1' 1 /2 )), 	(4.29) 

so that 

(2.24) 

where a _(• , T, El) 	+ 0(• , I /2 ), a +(., r, u)= 0(• , r 	The same technique also 

proves that 0',(•) is uniformly approximated by W m „,.„ ).„,,,(u) on [0, 17.]. This 
time use as comparison functions 0_.(•) from (4.15). uniquely extended in a C I - 
fashion to a linear combination of W111,,k).12(u),  W fi ,„,.k ,„,,,(em uj on [I, i;:], 

(4.27) 

B(• , u' , r), +(' u' , T) 2 	B(• , v, T) 0 2_.(• , v, 	du' 	0(•, r"). 
where 4/12 (•)=. 	(•)- 	(•), [1 	being of course implicitly defined by 

(4.25) 	 µ t (•, 13 2 , -r)= 0 (see Corollary 111.7). 



and (see Buchholz [24, p. 27]) 

W  { W - O(m.k).m/2( 4 ) ,  W - fi(ort.k),”112(e 2m14 )1 

e 	)))111))).A.) 

[

Ti+ Mtn, k))1[1-  (13(m, k) — If
2
)] 

2  

kl/{ W_/10,ki.,,q2(//), 1,V/ion.ki.m/2(r , u)= —27r1[k!(1m1+ k)!]. 	(4.33) 

Inserting (4.30)-(4.33) into (4.12), we get (4.27). I 

COROLLARY IV.7. 
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Proof Im Th(ni, k; r) is given by (4.12). By definition of t 2 (m, k) and Lem-
ma IV.5(1) we have 

J 1(06'1(1)1, k; r, u)I 2 (11 -  + (2r — 11) --  ') o   

[ jr'x'  'dui = 	• (I + 0 	'• " ) h, r 	) 
L 0 

=[(k!) 2  J 	e -""u". (14" )(u)) 2 i11,1 (I + 01m, k; 1 112 0 
-- 	  

=10.(k + !nil)! [I + 0(m, k; t'/ 2 )], 

where the well-known formulae on integrals of Whittaker and Laguerre functions 
(see (Buchholz [24, pp. 23, HS]) have been used. Furthermore, by Lemma IV.5(2) 

rl 
(m, k; r, 	 k; r) 	—c5;(m, k; t, r 2 )—

el 
0 .,(m, k, tit)

du  w=r z 	 (1u

= T(m, k; r ) 2  1,17  {W 	 2 "u);(1 + 0(- r"2 )). 

Now, as proved in Appendix B, 

T(m, k; T)= (2r) 21 "' 1+ ' 	' /l ( 4- 0(• r 312 ))  

fl ,(m, k;r) simply as 0 1 (• ), taking the imaginary part of the ODE t,(/3,(•, r), 

, r), r) 0,(- )= 0, multiplying by 0,(•), and integrating, we get 

Im 	j, k; r)— 	2
1m 11;(1,1, k, 	S,f 10,(• )1 2 (14+ 2r) - 'do 

+ 	10 1 (. )1 2 (u +20 -  'du' 

whence (4.34) easily follows in the limit r 0. 

PROPOSITION IV.8. As T10, 

1m -1? 	 j, k; r)= Im (i;(m, j, k; 	+0(., r)), 	 (4.35) 

while for t T 0, 

1m y,(rn, j, k; r)= it( —1)"' 
(j +2k + 	+ 1)1(j  +  2k + 21m1+ I )!  

j1(k + imp! 

• I6(j+k + 1mi  + 1) 4 (26 -2mi-2- 414e- 211'1 (1 + 0(• , 1 .11 1/2 )). 	(4.36) 

(4.30) 

	

(4.31) 	 Proof For r j 0, i.e., T >0, (4.35) is an immediate consequence of (4.32) by the 

definition of y, (sec Theorem 111.2). For t <0, i.e., r = jtj e+ 	once more by 

Theorem 111.2 we can write 

	

(4.32) 
	

71(';T)L.,0=filk MCre 	 re 

Im 11,(nn, J, fr,(m, k; re -4"), r) = Im 11,(m4 j; 11;(m, k; r), r) 

lm fi l (nr, j, k; r)= —2r Im 11;(iti, k; r)(1 + 01. , )) 	as r j O. 

Now /3;(.; re - "r)1,,,,=/1;(-; ITO 	is 	real, 	and 	therefore 	1m 7,(•; 

1m /3 1 (.; /3;(!r!), r)1,, o , where the right side is defined in Corollary 111.10. The 
argument leading to (4.36) is, up to the obvious modifications, identical to that of 

IV.5 and Proposition 1V.6 applied this time to the limit as lm 0 1 0 of the equation 

(see (3.18)) 

terr(Yl, NI( • ; 1 7 1 ), 1 , 001 =0,  

and can therefore be omitted. I 

Proof of Theorem 1V.I. By (4.35), (4.36), and (4.27), as 11110, TER, 

( 2r  )21mi 2 + 41 e  2/1 , 1 

irri ,(m, j, k; T)— n 	  

	

[k!(Inill-k)!]2 	
(I 4.0( . , 	 (4.37) 

Now the inverse function p 	r,(m, j, k; p) of 11—, ty,(m, j, k, r)' -  exists and enjoys 
(4.34) 	 the properties stated in Theorem 111.2(5). To see (4.1), it is enough to observe that 

with n=1m1+ j +k + 1, by Propositions 111.6(3) and 111.10(2), we can write 

Proof Denoting the eigcnvcctor 	j; /1;(-, r), r) corresponding to j, k;t) - ' = tic + r 2  + 0(- , r 3 ) 	as 1111 0, 	(4.381 



iwi-r.r.m.rri, A 

2 

ZikX k) = y, 
.k 	„.. 

(A.5) 

ixj -40 in D, A independent of xe D, F(f(x))--. 	 E ak x*) E b,x' E 	c„x", 

t- I 	1-.0 

(A.2) 

Now, 

E ul 

,-0 

F(Y)--E bolc 

N I 

IQN(Y)! = F(Y) -  E 
i-o 	I 
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and Simon [15, Sect. XII. 4]. We recall that by the Watson-Nevanlinna theorem 
(for further details see Sokal [26]) the stated analyticity bounds of the type (A.1), 
(A.2), (A.3) imply Borel summability for 0 x y 4/1 -1 , 0 4x 4C -I , 

respectively. 

(2) The functions pi-, F, (m, j, k; p) .nd 	,(m, j, k; t) of Section II fulfill 

the conditions off and F, respectively. 

Proof. In the sense of formal power series, 

For the sake of completeness, in this appendix we prove some results about Borel 
summability of composed and implicit functions, because we do not know of any 
study where they may have been worked out before. We first prove that under cer-
tain circumstances Borel summability is stable under composition of functions. 

PROPOSITION A.I. Let D= fzeC: 0 <lzl< M, jag; <rr/21; let x1-+f(x), 
y1-+F(y) he analytic in D, continuous in D, and let f, F admit strongly asymptotic 
expansions as x y 0, in D, respectively, of the form 

f(x)^'x E akxk , 
ro..0 

If x ) 	
1, 114,(x)1 al-- 	ak x*! A' I N!lxi N, 

x k 

(A.1) 

yl —4  0 in D, A 1  indepet dent of ye D. 
Then F. f = F(f(x)) admits a strongly asymptotic expansion as .v 	in D: 

F(/lx))- 
two 

	

A 	I 

	

IPN(x)I IF(f(x))- 	 N= 
t. 0 

as ixl -.0 in 15, with C independent of xe D. 

Remarks. (1) Our definition of strongly asymptotic expansion is that of Reed 

11 

E lb 	a l 4 A i 	n! + E A' + (3A 	A^ + ' (n - 	(A.6) 

by (A.4), and hence 

Ic„I A"+ 2n! + A" 1-2 (3A)" - '2(n!)4(3A)"A"'n!. 	 (A.7) 

Therefore (A.3) is implied by (A.2) if we insert (A.4) and (A.7) in (A.2) itself. ; 

COROLLARY A.2. Let 	f(x) be as in Proposition A.1, with strong asymptotic 

expansion Er_ , ak x* , and let (z, y, 	F(z, y, x) be analytic in (z, y, x) e 

1z1,..1}x{y: 1)/1 < 1 } x D, continuous in D uniformly in (z, y), and let F(z, y, x) 

( A .3) 
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and thus ri(•,P)=--np-tdp 2 +0(•, r 3 ) as Ir)10. Furthermore, 

Im[H. 71(',03 -2  

[Re Y 	t) Im yi(•, T)]/[(Re•'0) 2 + ( Im -y,(•, T)) 2 ] 2  

=ft -3 1M y,(•, r)(1 +0(•,r)) 

by (4.37) and (4.36). Therefore (3.14) and (4.37) immediately yield (4.1). fl 

SO 

-I
" 
	i!(n - i)! 	„÷, 

la (,,2) ! 412a„ao l+ E ja,a„..,14,2A" +2n!+ 	ni 	A 
t- 

‘. 3A •A'n! 

by (A.1), since /1(n- i)!/n 41/n. Iterating, we get 

, 
E ak x k) = E a;!  ) .x", 

10;,i) 1 	3/1 ( ' 	"A"' I n!, 

Therefore F(f(x)) has the asymptotic expansion 

(A.4) 
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admit a strongly asymptotic expansion as x 0 in D uniformly with respect to (z, y). 
Then the function (z,.v)— ■ F(z, f(x), .x) is analytic in {z: Izl <1{ x D, continuous in 
D uniformly with respect to z, and admits a strongly asymptotic expansions as x 0 
in D uniformly with respect to z. 

Remark. The functions (fi t  . 132, r 	111, /1 2, r) and r 	k, e .i"r)— 
13(m, k) fulfill the conditions of F and f, respectively. 

PROPOSITION A.3. Let (y„v)1-0F(y, x) he as in Proposition A.2, and let 
.V1-.6(x) = xf(.v), where f(x) is analytic in D. continuous in D, and admits the 
asymptotic expansion 

f(x)-- E c„.v" 	as x —00 in D. 	 (A.8)  

We now prove that (A.9) and the equation F(6(x), x)= 0 imply the existence of 

constants D > 0, C> 0 such that 

lc,,j A DC"n!. 	 (A.12) 

Let us proceed by induction. We have I c ai.< D for some D > O. Assuming (A.12) 

true for k n —2, let us prove it for k = n — 1. Notice that if (A.12) is true up to 

k = n — 2, then 

ic;;'221 	(3D) k  'DC" ' 2 (n — 2)!. 	 (A.13) 

We now comput 

c„_.,= —(ci,„)- , E 1 ikC,kj k _,± E a 	+ 	aacc„k2.k) 
1=lk=1 	 = 0 	 k =0 

Then, if F(6(x), x) = 0, x E D, the expansion (A.8) represents a strongly asymptotic 
expansion for xi---■ f(x) in D. 

	

Remarks. (1) The Bocci suminability statement for the inverse function is a par- 	 = — ( a05) 	E a ikc1,k2 k_ z+ „o + 

ticular case of this statement: it is enough to take (y,x)i—,.F(y,x)==-  F(y) —.v. 

	

(2) The functions (Xi , 	 k; 	r') and r'1—./1',(in, k; r') satisfy the 
conditions of F and f, respectively, so that ei--• 6(nr, k; r') = JP, (in, k; r') — g(m, k) 
satisfies the conditions of xl--.6(x). In fact, it suffices to rewrite the operator 
T;„(fi'„ r') as the action on D(T,„(-)) of the differential expression 

	

d 2 	d 	6 	Mtn, k) 141n, k) 
t „ 	 - 	 

	

du' u u +2r' 	u 	u +2r' 

4 	
 ((2r'+//) -2 — 211 - '(2r' + u) - 	 A Bia 0 ,1 - 	E A j i! E (3DB) k 	k 	I  ( ;:_k  7) /1 P  nz 2 — 

and to note that all its cigenvalues 	k, 6, r') are such that (cf. Proposition 111.6) 	 A "-- 	 /I 

(01.106)(tzt, k; (5, r')I,5 .r . _ 0  O. 	 +() 	(AID) —+ 	(3BD) k 	(k 	")  DC" '(n — 1)! 
B 	2 	 (11 — I )! 

A 	DC" -  (n — 1)! 	
(A  \ 	(311Dy 1 

CI 	i _ o 	C 	j! 

laikl 	 i! 	 (A.9) 
j!(n — 1— i—j)! (n 	1)!  ( 	( 	n 

	

for some B > 0, A > 0. Write 	 (1, — i —1)!(n-1)! 	D)C) 	B 

f(x)^ = 	crxk , 	= 6", 	.e',"= e k , 	k =0, I,..., 	(A.10) 	
"v-  ( 31..1D (3BDi 1 j!(n —2 — j)! 	I 

k 	 C 	C 	j! 	—2)! 	(n-1)) /- 

F(6(x), 	a,x'+ k  E ("i".‘ E.-  E 
i,k 	 I- 

d„= E 
0 

(A.il j 

i!(ri — i — 1)! 
-<„ABler oi l -  'DC" -  '( — 1)! (E (AIC)' 	

(n-1)! 	
(3e)(3"Ici 

,= 

+ (2:16) (_cil

)_

r 

B

" n 

+(n 

 3  ( 

C 

 38D) e,38D/c.,) 

k = 2 

Hence 

E 	A'• "i1(3D)k - 	'(11— k — i)! 

+A I n! + E A Bk (3D) k  DC" - k  (n — k)!) 
k 

Proof. By assumption, F(6, x) admits the strongly asymptotic expansion 
F(6, x)=E;;,_ 0  a,x'o k , with 
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< A Blu o ,j -  'DC" -  (n - 1)! 
J.s  Eo 

 CJJ+  0+1) 	  7!(n - 1 - j)! 

(n - 1)! 

A ( AV" - ' n 	3 	(313.1) 
(30'

DIC) 
(15)z.) 	b +  - 1) c 

< A Bla ol l - l (n - 1)! (9 (Al  (3e)(3801c)  +O  ( 4E,y --i?" 

9BD 
e (3BD Ic) )., DC" -  (n - 1)!, + 	

- 1)C  

PROPOSITION B.1. 

T(rn, k; T)= 2T (1m1+ + 1) e - UT (I +0( , r°2)) 	as r10. 

Proof. Because of the uniformity of the approximations, it suffices to determine 

T by asymptotic matching. The quantity K(• ) of (4.16) is determined to leading 

order by the condition that 

K(m, k; r) 	, (i',(• r), r, u) -1 /4exp 	q' (•, u') du') 

= W lio..k),,12(u)• (1 + 0(•, T U2 )) 

e mintc)) 

if we choose 1 <A, B< D C, since by assumption 	 at u = .17-  (say). Thus we may set 

N - 1 

F(b, x)- 	a, x'bk  

 

,, T -1 2 

K(m, k ;  t)= r -1-11"" )/2 e -1 / 2,1/2  ex p ( .1 „, 	q'(•, T, 	 (B.2) B NA" 1 1(51"IxI NN! 

   

as x-00, x D, (A.11) and (A.12) imply that 	 with the aid of an expansion of Buchholz [24]. 

n - 1 

	 Then T(•) is determined by 

f(x)- E C nX"  

-0 

which proves the assertion. Q • 

< DC"N!lxl" 	as x 0 in D, 
T(m, k; 	2[K(m, k; r)] 2 exp 	[cf (• , T, 	U2dli) 

•(1+0(•, t °2
))  

Since 

we get 

APPENDIX 

In this appendix we compute the tunneling factor T(• ) used in (4.17), (4.18) and 
bound the error-control function needed to justify formulae (4.15) and (4.16). 

We begin with the error-control function, which is the total variation of 

4 d2 	 1 d2  

g'( 	lu72( 	(1(. u)- 1/4  = -4;W 41(.  ' 11) ) 11(. u) 3/2  

5 

16 du 

( d 
(• , u)) (/' (• , u) 512  

2 

for r 	1./ < 2r- r 112 . It has to be shown that this quantity tends to 0 as r 	cr.), i.e., 
T •••• 0. Now, from the definition of q'(•, u) in (4.7) with 0=0, it is easy to sec that, 
uniformly in u, r 1 /2 < u< 2r- r", q'( , u) = 0(1), (dIdu) q' ( • , u) = 0(r). 
(d2/du 3 )//(•, u) = 0(r 3/2 ) as t1 O. Thus 

u) -1/4 du2 	
u) 1/4 = O(r") 

Since (c(-, u) is a rational function of u and r, the total variation of this quantity is 
also the integral of a function 0(t" 2 ), and is thus 0(r 1 ' 2 ). 

Next we estimate K(•) and T( • ), defined in (4.16) and (4.18). We claim:  

„.112 
((• ), r, 	) U2  = J

2r 	
(- , T, u') 112du', 

2r 
T(m, k; r)r /4"'' )e - ' - ' aexp (-i 	uT/ 2dil) (I + 0(', r' f2 )) 

= r - fi ( "1."e -  T-111  exp (-2 1' 
";

4- /1(. ) u 	11(• )(2r - 

ni 2_ 

	

4 
	 (u -1 + (2r -u) -2 ) du) (1 + 19( 	1 ' 2 )) 

	

r - /11 	exp 	(1- 2/1(•) u 2/3( • )(2r - u ) 	du) 

• (1 + o(., T 2/2 )) 

-- -r - f"exp( —1 - U2 ) exp(r -1 + r - "+21(•)In(r") 

+ 2/4• ) In(2r -1 /2  - I )) (1 + 0(- ,r")) 

I( f\  -217(rn.k) = 	e_ 
' (1 

 + 0(. _r„))• 

 2) 

(B.1) 

us 	r).0. 



a 	rq. 
Eq. (2.15) 

/1, 	1'4.12.5) 
Thm. 111.2 
Eqs. (2.5). (3.8) 

TM-n. 111.2 

F 	Props. 11.2,111.1 

F, 	 Thm.111.2 
Eq. / 4.13 ) 

Eq. (2.1) 

i. 	Props. 11.2, 11.3, 111.1 

l'rop. 111.3 
Props. 11.3, 111.1 

Prop. (11.3 
p t 	Eq. (2.35) 

E.q. (2.1) 
Prop. 11.1 
Prop. 111.1 
Prop. 1(1.6 

(T o 	Prop. 111.6 
Eq. (2.5); l'rop. 11.3 

below Eq. (3.13) 

Prop. 11.2 
Eq. (2.1) 
Prop. (V.3 

- 	Eq. (4.17) 

Eq. (4.25) 

'P 	Eqs. (2.3), (2.20) 

Eq. (4.151 
Prop. III. ; Eq. (4.13) 

Eq. (2.19) 
Eq. (2.19); Prop. 111.3 
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Eq. (2.9) 
Eq. /2.15) 

T Lq. (4.18) 
Prop. 11.2 

Prop. 11.2 

Tm Thrn. 111.2 

Eq. (2.8) 
Eq. (2.24) 

e 	Eq. (2.8) 

V 	Eq. 2.24) 
Prop. 111.1 
below Def. IV.4 

Eqs. 	1 ), (2.2) 

0.„ 	Eq. (1.11 
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—dz We  

consider the Sturm-Liouville operator By .* —on certain subsets of the real 
df 2 1-\. 

line with various selfadjoint boundary conditions. 'We find the optimal upper and 
lower bounds for the eigenvelues of H, when the potential V obeys a constraint of 
the form 111.7, s U, IVe characterize the extremizing potentials In these cases 
where they exist. Analysis cf this one-dimensional problem is facilitated by inter-
preting it in terms of a classical oscillator. 
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POTENTIALS HAVING =EMAL El GENVALUF,S SUBJECT TO p -NORM CONSTRAINTS 

M. S. Ashbaugh• 
E. M. Harrell II" 

1. Introduction 
In this paper we address the problem of finding optimal bounds for the 

elgenvalues of the operator 
—d2  Hy = dt2 + V(t) 

on certain subsets of the real line (finite interval, half-line, line) with a variety of 
boundary conditions subject to p-norm constraints on the potential function V. 
To be more precise, having fixed an interval, a set of boundary conditions, and 
en index 1: 0, we find optimal upper and lower bounds for if; ( V) where V Is 
allowed to range over the set S = f YELP (MI s M. Here LI (V) denotes the 
(:e +1)th eigenvalue of Hy  as defined by the min-max principle [Reed and Simon, 
1972-79]. These bounds depend on S only through the constant if and, as will 
be made clear shortly, give upper and lower bounds for EE(V) in terms of 111/,. 

Our interest in such problems was first stimulated by a problem list of A. G. 
Parnm 1982] in which the problem of maximizing E 5 (1/), where Hy acts on a 
Bite interval, has Dirichlet boundary conditions, and V is subjected to a 1-norm 
constraint, was posed. In particular. In an earlier paper [Harrell, 1984], the 
maximization problem was analyzed for EE (V) on a finite interval with various 

- relfadjoint boundary conditions, while laying the foundations for a solution to 
the problem with general lo—norm constraints and also for multidimensional 
problems. i.e., for Hy = + V(x) acting, on a set (kW, d s 2, with suitable 
boundary conditions. Much of the groundwork for the present study was laid in 
that paper, and henceforth we shall refer to it as article 1. In a paper currently 
in preparation, we shall give the results of our Investigations into the multidi-
mensional case, as well as further material and some of the proofs dealing with 
the one-dimensional case. The multidimensional case turns out to be closely 
related to the problem of best constants In Sobolev's Inequality and certain non-
linear elliptic partial differential equations which have been the subject of much 
current interest [Brezis and Nirenberg, 1993; Lions, 1982]. 

•Depe.rtrnent of Metherr.atics, University of nissou.-1, ColuMbla, 	85211. work supported 
by a Surnmer Reseei-ch Fellowship granted by the Research Council of the University of Missouri - 
Colurrb . ,.. 

••Schco! of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30%32 - 0180.11ork par-
tially r..7ported by 1.2,SNSF Arent l.lCS 9300551 and en kifred 	Sloan Fellowship. 

Following the publication of Pamm's problem list, several other authors 
solved the problem posed above and, in some cases, pursued generalizations. 
restrictions, or related problems of their own. Solutions of which we are aware 
are those by Es.s•ri [1903], Farris [1952], and Talentl [1933]. Talentl, in particu-
lar, solved not only the problem posed by Hamm but also the prob l em of minim-
izing 50(V) under the same hypotheses and of minimizing Ec( V) under the con-
ditions V a 0, = M, and = 3. The extremizing potentials that Talentl 
finds have more than a passing resemblance to those found by G. I:rein [1955] 
In his investigation of a similar problem for the equation of the vibrating striae, 

Xp(x)y = 0 on [0,1] subject to y(0) = y(1) = 0. 
Independently of this, there accumulated over the last 15 years or so a 

body of literature among workers in ordinary differential equations giving lower 
bounds for the operator /fa In terms of a given p-norm of V. The relevant 
papers are those by Everitt [1972], Eastham [1972-72], Evans [1931], and Veiling 
[1932 and 1903]. Each of these authors obtained a lower bound [or Hy acting on 
L 2 (0,..) of the form —cii11 1 °` where c and a are constants depending on p. Each 
had the correct exponent a = 2p/ (2p-1), but Veling was the first to find the 
optimal value of the constant c. All of these authors dealt with a Dirichlet boun-
dary condition at t = 0 and, to varying extents, certain other standard boundary 
conditions. In particular, Veling [19321 gives the optimal lower bound of the 
form —c;! V11 for Hy on L2 (0..0) with either a Dirichlet or Neumann boundary con-
dition at t = 0. Also, Veling [1983] states the optimal bound for Be on L' 7 (1'1). 
Not surprisingly, there is a close connection between the three bounds dis-
cussed by Veling. 

There Is yet another line of work that is closely related to our current Inves-
tigation. This work has been pursued in the mathematical physics community in 
an effort to get accurate bounds on the number of bound states of a SchrOdinger 
operator and the slightly more restricted problem of obtaining optimal condi- 

5)
,,, [tons for absence of bound states. The work most closely bearing on our own Is 

that of Glasser, Martin. Grosse, and "Ileirring [1076], Glasser, Grosse, and Martin 
[1070], and Leh and Thirring [1976]. These papers treat problems by methods 
that are similar in many respects to our own, though since they have somewhat 
different objectives, our results are largely disjoint from theirs. 

Finally, in a forthcoming book by Traborrltz [1984] the problem of extremiz-
ing EE(V) for Hy acting on 00,1) with Dirichlet boundary conditions and with V 
subjected to a 2-norm constraint is posed and its solution Is .outlined in hints. 
One finds in this case that the extremizing potentials have explicit representet-
tion,in terms of elliptic functions. We shall see shortly that the case p = 3 also 
lead's to elliptic functions and, moreover, that qualitatively the solutions In the 
case of general p are very much the same. This situation is brought out most 
clearly by discussing the general problem in the context of classical mechanics. 
(At the end of this paper we discuss a few examples and present some remarks 
about special cases where elliptic functions arise.) It is also worthy of note that 
elliptic functions arise in the problem of mUlirnizing resonance widths within a 
suitable class of potentials [Harrell and Svirsky, 1284] and that the potentials 
for which equation has been precisely one nonvanishing finite instability 
Interval are elliptic functions [Hochstadt, 1976]. 

2. General Remarks 
Since many of our arguments are not special to one dimension, we find It 

appropriate to include them in our longer paper [Ashbaugh and Harrell, 1984] 
and only to summarize them here. In addition we present those results of Har-
rell [1904] on which we base our current analysis. 

(1.1) 
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In any problem involving maximizing or minimizing a functional, one is 
immediately confronted with the following questions: 

1. (Semiboundedness) Does the appropriate supremum or Inflmum exist? 

2. Can we find (or estimate) this value? 

3. (Existence) Is there an optimizing function, i.e., a function at which the 
functional attains its sup (inf)? 

4. (Characterization) What are the optimizing functions? 

5. (Uniqueness) Is there a unique optimizing function? 

General results [Ashbaugh and Harrell, 19841 give affirmative answers to ques-
tions 1. 3, and 5 in most cases of interest. Exceptions for questions 3 and 5 do 
arise and will be discussed at the appropriate point. Our main thrust in this 
paper will be toward answering question 4 and, to a lesser extent, 2. It will 
transpire that our answer to question 4 will often answer question 5 as a 
byproduct. This is because our approach to characterization is to study the 
equation 

— ,
8..n ( yo. d u refiv(p-i) = ELL  

which, together with appropriate boundary conclitibns, was shown In article I 
(with the + sign only) to be a necessary condition for ±U2/  CP 1)  to be an optimiz-
ing potential fo? p > 1. (For additional comments od tie sense in which this 
equation holds and on the domain on which it holds, see AshbaughJ19841.) Thus, 
for instance, if we already have existence and can show that equation (2.1) has 
only one solution of the required type, then uniqueness follows immediately. 

One further remark about the formulation of our problem seems appropri-
ate here. While the requirement that the potential function V be locally II is 
often regarded as the weakest reasonable cendltion (see, for example, the com-
ments In Eastham and Kali [1982: p. 4]), we have occasion to consider the opera-
tor where ,u represents a Borel measure. As pointed out to us by Barry 
Simon. this provides a reasonable operator since one can show that g is a rela-
tively form-compact perturbation of Ho —c1 2/cit 2  using Fourier transforms. In 
fact, for H, acting on L 2 (R) in Fourier transform space, the kernel of 
(He+1)'75/1(H0+1) - , 

K(k,k 2) = (kr 41)-Hp..(k t-k 2)(ki4-1.)-N, 	 (2.2) 

is easily shown to be Hilbert-Schmidt since /2 is a bounded continuous function. 
(Essentially we are defining the operator 11,, by means of quadratic forms in 
Fourier transform space.) The cases where //,, has other domains are handled 
similarly by suitable choice of "Fourier transform." Allowing V to be a measure 
is crucial to the elgenvalue minimization problem when p = 1 since the ball of 
radius M > 0 in L' has no extreme points, but it is easy to see that an eigenvalue 
minimizer must be an extreme point usine, the Rayleigh-Sitz inequality. Thus 
when p = 1. minimizing potentials do not exist. However, if we allow V to lie in 
the larger class of all finite Borel measures, then we can obtain an existence 
result. For example, as exhibited by Talentl [1983], the minimizing potential for 
a finite interval with Dirichlet boundary conditions Is a centered 6-function, With 
slight modifications the above relative compactness argument also applies to 
VELA, 1 s p e 2. This observation is useful in the one-dimensional case since 
our general methods and results handle only p z 2. 

Even after restricting attention to the one-dimensional case, there are 
quite a variety of problems to be considered. First, one can consider the prcb-
lam either of maximization • or of minimization over a set 

= IVELP(0) 11V,", s 11 f. Since by the min-r, ,x principle It is easy to show that 
a maximizing (minimizing) potential satisfies V z 0 (V s 0) and l! V;!, = ,if, it is a 
small step to consider what we shall call the misere problem of minimizing 
within the class V a 0 = 1.1 (maximizing within the class Vs 0, lilri lp  = 
We will see, In fact, that the misfire problems do not have extremizers and that 
the optimal bounds are the appropriate V = 0 eigenvalues. Second, one has the 
three choices of domain to consider: finite interval, half-line, and line. Third, 
one can Impose a variety of boundary conditions at the finite endpoints of the 
domain. Those with which we shall deal are Dirichlet, Neumann, separated (l.e., 
au(t i ) + flui(t i ) = 0 where t i  is an endpoint), and "compact-support" boundary 
conditions. Since this last terminology is not standard, we explain: These are 
the boundary conditions one gets at ±1 if one requires V to have support in the 
interval [a-1,11. In particular, they take the foriff ' 

u'(±!) = ±Nr—Tu(t!). 

Lastly, one can concentrate on any elgenvalue Ee(V) for k = 0,1,2 	 The 
ground state ED (V) is perhaps the most interesting, and In fact we can get morn 
detailed results about it (partly because more tools are available for studying 
It). The ground state is also unique compared to higher states in that for a given 
problem certain results will hold. for the ground state but for no excited states. 
For example, the finite-interval p = 1 maximization problem has a unique max-
imizer for Eo (V) but not for L.( V), k zt 1 [Harrell, 19841. As a second example, 
on 12 with p > 1 there exists a ground-state minimizer (unique up to transla-
tions), but minimizers for the higher states do not exist. However, the general 
method and viewpoint presented here lend a degree of unity to the various cases 
and problems outlined above. In particular, the method applies to a large 
extent equally to the ground and excited states. 

3. The Classical Oscillator Viewpoint 
While we chose time en-independent variale with the classical oscillation 

interpretation In mind, we find it convenient here to set forth other standard 
notations from the classical mechanics, perspectiveePor a modern and more 
comprehensive clisciiSion Or classical mechanics, we refer the reader to the 
recent book by Thlrring [1978]. By viewing equation (2.1) as Newton's equation 
for motion In one dimension (u represents position), we can Identify the classi-
cal potential energy as 

111 (11:E) = 	For? (2  )u2P  (v - I) 	 (3.1) 

	

2 	2p 
Note that the quantum energy E appears as a coefficient In this classical poten-
tial. A first integral for this system is given by 

1 du 2 
7 	 1Y (tt;E) = 

	

 fit 	 (3.2) 

where we have let It denote the classical (total) energy of our oscillator. Our 
convention for the ambiguous sign in all equations —(2.1) and (3.1) thus far —Le 
that we take upper signs when considering maximization problems and lower 
elens when , considering minimization problems. 

Though we will refer to the above equations as describing an oscillation 
for certain choices of the sign referred to above and the sign of 

E one Will not have oscillations or will have oscillations only for suitable initial 
values. For the most common boundary conditions (Dirichlet, Neumann) only 

(2.1) 



the truly oscillatory solutions will enter, but with more complicated conditions 
other solutions can sometimes come into play. 

We will refer to the curves given parametrically by (u(t), u'(t)), where u 
solves equation (2.1) as trajectories in phase space. Of course, the oscillatory 
solutions referred to above are 'ust the closed orbits in phase space. In phase 
space, separated boundary conditions (Dirichlet and Neumann included) can be 
viewed. geometrically as the condition that a trajectory start on a given line 
through the origin and end on a second line through the origin (possibly the 
same) at a specified later time. When the interval is finite, we choose it as 
[0,1], 1 > 0, or sometimes [-1,1]; for the half-line we choose [0..0), 

4. s,  i n)rn) zation on the Line and the Half-Line 
We begin our detailed discussion with these cases since from the classical 

oscillator ■.:iewpoint the constant A must be 0, which simplifies the analysis. Also 
theSe are the cases that have drawn attention previously. Now since u is an L 2 

 solution to Hieu. = Eu, where V = -u2/ (P -1 )ELP, we can be sure from the theory 
of Schrodinaer operators [Reed and Simon, 1972-79; Richtm.eyer, 19713) that u 
and u' go to 0 as t goes to ce. Thus on infinite Intervals our only concern Is with 
classical oscillator solutions having total energy A = 0, and we need only solve 
the equation 

( filL. 2  4_ 1 	 . ou2  /7) - 1 )72 2p / 	= 0 .  
2 cif 	2 	\ 2p 	 • 

This equation is readily integrated, with the result that 

u(t) = (Z-PE ) (P -1)/ sechP - I r V77".  (f  

	

p - 1 	 p -1 
and hence 

V(t) = 	-secti2 [ V=E (t  p -1 	p-1 
Here c is the constant of integration. For the•mintrnizatIon problem on the line, 
it represents the expected fact that a mInlmizieg potential cannot be unique 
beca‘lse of translation invariance. For half-line problems, the constant would 
have to be chosen so that u satisfies the boundary condition at the origin. We 
shall see shortly that this has the interesting consequence that no minimizers 
exist for certain choices of the boundary condition. But first let us finish our 
discussion of the standard cases. 

For the full Line minimization problem one can compute 
= p p 	-I)/ 2 1.3(p.n  

•• (7) -)P -1  
or, solving for E 

17 - [-(p-1)P-1 ]2/(2p-orvupqr2p-1). 
rPE(F.34) 

Here B(p,}9 represents a beta function in standard notation. This formula Is 
that given by Veling [1930] except for a misprint of (1-0)1.7 1/(1-11  as (1-19)" (1-3) . 

For the half-line problem with Neumann boundary condition one must take 
c = 0 in equation (4.3). The computation can be carried out as before, yielding 

E = -22/(2P -0  r f" -11P-1 	7/(2P -0  loWP/(2P --0. 
PPB(p.Y,) 

again-agreeing with a result of Veling [1962].  

We now consider the general boundary condition 
u'(D) = mu(0) 	 (4.7) 

From equation (4.2) this reduces to 
m = Nr7-7:7tanh(e.(-7-re / -1)) 	 (4.8) -c 

_._ 	- 
which has a solution for c if and only It 'J 	> 771 	Holding E fixed, we see I 
that Ets•m.-fs/-7Z` from below,c -..,and that as en-6J-E' from abov 	Thus 
as --r-T our sech 2-potential well translates off to the left, "leaving" the 
positive halt-axis, and as m-oeRT. it translates to the right into the positive 
half-axis. We can better understand what Is happening here it we note that the 
potential V = 0 with boundary condition (4.7) has a negative eigenvalue at 
E = -Tn.2  if rn < 0. Thus a fixed E < 0 will not be minimal for the operator He on 
1,2 (0,w) with boundary condition (4.7) for m < 0 until m increases to 	At 
that value of m, E will be minimal for 111%, = 	= 0. For Int I < 	E Ncill be 
minimal for illiip  fixed as required by equations (4:3) and (4.6). One could write 
the relation betwen E and 	for this range o' n. in terms of the Incomplete 
beta function, but we refrain from doing so here. when rn, exceeds 	one no 
longer has a minimizing potential. but a minimizing sequence of potentials is 
easily constructed by tatting a sequence of Ts given by equation (4.5) with c's 
going to and suitably Modified on [0.1], say, to meet the boundary condition at 
t = 0: This latter situation also Includes the case of Dirichlet boundary condi-
tions.• In these cases the value E in equation (4.5) is a strict lower bound for the 
ground state and hence also for the operator By. 

We close this section with some cursory remarks about higher elgenvalues. 
To obtain a minimizing sequence of potentials for a higher eigenvalue. one 
"pastes on" more sech2-potential wells out near infinity. The modifications 
required in the pasting can be shown to have vanishing•eflect as the spacing 
between consecutive wells is sent to Infinity. We note that the potentials in the 
minimizing sequence for the k-th elgenvalue approach k-fold degeneracy, 
the first k eigenvalues come together in the limit. The appropriate elgenfunc- 
Mon in this case is much like the potential (to the power (p -1)/ 2) except that 
we flip its sign each time we paste on a new piece; on [0,..) we also must rescale 
the left-most bump so that its L 2  norm is the same as all the others. As an illus-
tration one obtains

/

the   bound 

El 	> _2-2/ (2p-1) [ (73 —1 )P -1   12/(2p-1) livi 
IIP 
l2p/ (2p-1) 

II P P (P,}10 
in the. case of the second elgenvalue of /11, acting on L 2(I2). 

To.those familiar with high-energy physics, there Is more than a passing 
similarity between the above construction of minimizing sequences and the con-
struction of a multiple instanton configuration_ We aiso remark that the seek ° 

 torrn of our potential is preciseiy a so:iton solution to the Korteweg do Vries 
'ICdV) equation. There is an extensive literature detailing the intimate connee-
Lions between the KtIV equation and the Schrbdinger equation: we content our-
selves with noting that the article [Lieb and Thirdly,. 1976] presents some par-
ticularly pertinent observations of P. Lax. 

5. Minimization on a Finite Interval 
When one seeks to find elgenvalue minimizers on a finite interval, one must 

consider equation (3.2) with all allowed values of the classical energy h. We 
adopt the following strategy in this discussion: with flxedp > 1 and interval 10,1], 
we pick a possible optimal eigenvalue E and choose suitable boundary condi-
tions: then we look for those values of h that allow u to meet the boundary 

(4.1) 

(4.1) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 



conditions at t = 0 and t = 1; and finally we determine the value M =11V1!0 for 
which V = --1L 2/(P -1)  is a possible minimizer. 1! at the end of this process we have• 
only one candidate, then, having already proved existence of a minimizer [Ash-
hangh and Harrell, 1.934], we can conclude that we have found the unique minim-
izer. Even if we find several candidates, the existence result guarantees that at 
least one of them will be a minimizer. Existence of minimizers on a finite Inter-
val when V is allowed to range over the class of fore' measures it satisfying 

J dilit.! 5 1f is shown In our longer paper. This result handles the minimization 
question whenp = 1. 

We begin our discussion by considering Dirichlet boundary conditions and 
taking E < 0. Then the only h's for which Dirichlet conditions can be met are 
r. > 0, and the time required for one excursion (half the period of the orbit) is 

T(h,E)/ 2 = 	[h 

where u t  represents the positive turning point of the motion, I.e., 
W(v i ;E) = h, u 1  > 0. To see.how T(h,E) varies with h we eliminate h in favor of 

.12 1  while noting that the mapping, h -■ -t.t 1  is an increasing function from (0,-i) onto 
(-d. jnu,, ,o) where v. 1.rnin  satisfies 0 = W( 1-4  One has 

vt 

T = 2N/71 ETY(u i ;E) - 17(tt:E)] 41du 
	 (5.2a) 

ti t  
' = z.r2ftE(u7—u2)/ 2 + (p-1)1.i f-P -13  - 1.4 21' (P -1) j/ 2p1 -Yzdu 

= 	[(p -1)u Fl (P -1)  (1-s 2P [P -0)/ 2p + E(1-s 2 rMds 	 (5.2b) 
a 

Thus one sees that T decreases from m  to 0 as h increases from 0 to Ps. Since to 
accommodate the (k+1)th eigenvalue El we need 

(7: +1)T(h,Et )/ 2 = ' 	 (5.3) 

to be satisfied, we see that any E < 0 can be a minimal (k +1)-th elgenvalue for 
any k z 0. A similar analysis leads to the same conclusion when E = 0. When 
E > 0, one finds that the period T decreases from 2r/VE to 0 as h increases 
from 0 to Thus if E > +1)2 72  / 1 2, then P. cannot be a minimal Et, whereas if 
E (1.:+1)2 772/I 2, it will be attainable as a minimal E. If one notes that 
Eh (0) = +1) 2 77 2/1 2, the reasonableness of these conditons is apparent. Actu-
ally, to complete this discussion, we must look at the equilibrium solutions, i.e., 
the civilized points in the phase plane. These solutions are exceptional in that 
there Is not a fixed period associated with them. For the above, the only critical 
point solution of relevance Is u = 0, which is trivial to analyze. 

With Neumann boundary conditions the same considerations apply for the 
orbits and their periods as discussed above. However, there are additional 
orbits having h < 0 to be considered in the case of E < 0, including another 
equilibrium solution corresponding to the minimum of 1Y(u;E). This compli-
cates the indexing of the eirienvalues somewhat, but Sturm's theorem on nodes 
of eigenfunctions suffices to sort things out. The orbits considered previously 
lead to candidates for minimal Et , k z 1, under the condition 

kT(h,Et )/2= 1, 	 (5.4) 

and the newly considered orbits lead to candidates for E0 since they give  

nodeless solutions. Again any E s 0 can be a minimal Neumann E., k z 0, but 
for E > 0, E >1: 2 n 2// 2  precludes E from being a minimal EA. and Es 1.: 2 ni2/1• 
allows it. That all allowed E's are actually assumed as minimal Al's for some 
choice of 1,f = follows from continuity considerations which are taken up by 
Ashbaugh and Harrell L19041. . 

Other choices of separated boundary conditions at t = 0 and t = I will force 
us to consider more complicated conditions than (5.3) or (5.4) for meeting the 
boundary conditions, in fact, trajectories that are not closed orbits will even 
enter: the appropriate point of view Is that we need to find those trajectories 
that take time 1 to pass from one line through the origin to a second One 
through the origin in phase space. Periodic or antipertodic boundary conditions 
lead back to the same orbits as were discussed in the Neumann case, as do 
separated boundary conditions of "periodic type": u'(0) 

mu(0), ul(i) = mu(L), melt. 

C. Maximization on a Finite Interval 
The analysis of the maximization problem differs only in detail from that of 

the minimization problem. The most signincant difference is that the potential 
/Y(u:E)is now upside down: in particular, 17-• b as This has the effect 
that for all standard boundary conditions only E r  0 need be considered. Sy 
analyzing T(h,E), 'one finds In this case that 2rr/ ,/.7 5 T(L,E) <ro for the per-
missible values of h. Thus E < (k +1) 2 n2/1 2  Implies that El cannot be an 
extrema! ('c +1)-th eigenvalue for the Dirichlet problem whereas 
E a (k+1) 2rii/1 2  can be. . As should be clear, the discussion of this problem 
parallels almost exactly that of the previous section, so we conclude it here. 

7. Misere Problems 
We turn now to a brief discussion of the misdre problem, that of minimizing 

(respectively, maximizing) a given elgenvalue when V is constrained to the class 
S = (VI V e 0, Pl/lp  = Mi (resp., S = V! Vs 0, ;IVIIP  = MD. We shall confine the 
majority of our remarks to the case of the ground state for Dirichlet. boundary 
conditions which we shall denote by E (V). 

We begin by considering, the minimization problem with V 0 where OcI is 
bounded and has smooth boundaries. The case of .unbounded domains for this 
minimization problem is of no Interest since E( V) (as defined by the min-max 
principle) Is then always 0 = E(0). We shall show that (1) E(V) > E(C) for all 
VcS and (2) infE( = E(0). Thus there is no V that is a minimizer for this 
Entsdre problem. To obtain (1), we simply use the Rayleigh-Ritz Inequality for -A 
with v, the normalized ground-state eigenfunction of Hy, as trial function: 

(011.( -A -!' 11)(/)v) = (l;11. -A4')v) + Lvlov:2> E(0). To prove' (2); note that 
since the ground state, ci o , of -A on 0 with Dirichlet boundary conditions goes to 
0 on 60 and since no Is smooth, we can find a sequence of sets B„cfl satisfying 
(I) 7317 .0 1 5 1/n and (11) 0 < ;En  < K, K a constant independent of rt.. Then 

with Vn  = M B„ I -vP  :CB., and again using Rayleigh-Ritz, we compute 

E(Vn ) < (N.( -A+ Vn)cia) = E(0) + I 5 6 o I 2M !Bn t -1/P  5 E(0) + 	-I /P/ n2, 

which goes to E. 	with Increasing n. 
The problem of maximizing over S = !VI V5 0, tlVlia = f.f!, p a 1. Is more 

difficult to analyze, but leads to much the same result. That E( 1i) s E(0) is 
again a consequence of Rayleigh-Ritz or, more precisely, the min-max principle. 
When E(0) is in the discrete spectrum, this Inequality is strict: Ln any event, 

(5.1) 



fl 
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there is no -VES for which -6 + V(z) has E(0) as an isolated elgenvalue of finite 
multiplicity. This, together with the fact that supE(V) = E(0) (to be shown 

shortly) shows that this mts6re problem also lacks an optimizer (in all cases In 
one and two dimensions, and. hi all "honest" cases in three or more dimensions). 
If Ills unbounded, one can construct a sequence of potentials in S having, 

 E(11„>40 = E(0) by using l it = 1,11/3„ ; -1 / 1; X/7,‘  where the sets En cil satisfy 
F, ■ -b.... Then we have used wide but shallow square wells to our constructton. 

For bolonded domains this avenue is not open to us, so we shall use narrow and 
deep square wells. We pick a sequence of balls L' crl with I B„ I e 0 for all n and 
!Brt•d Then for p > 1 and V, = 1-1 /P2CA.  we have 

II !'t = /JIB, 1 "-L/1' -40 as re -b..; and using the fact that our lower bound for E( 
in terms of HVII T  goes to E(0) as IIVIIt  e0 :Ashbaugh and Harrell, 10841, we see 
that E( 1,1,)-.E(0). We remark that this sequence works equally well for 0 
unbounded but has the drawback that it does not cover the case p =1. The 
essential observations in the above discussion are that for 0 unbounded there Is 
a. sequence V, j in 5 also lying in /7 with 1 !7„ 	and that for p >I and .arbi- 
trary 2 there Is a sequence 	In S also lying in L! with :1Vrillt -* 0 . These obser- 
yellers would also have sufficed in dealing with the misOre minimization problem 
exce?t fcr the case p =1. Indeed, except for this case, the argument given above 
cculd have been concluded :ust by choosing the 13„'s so that .B7,1 -'0. 

To complete the discussion, we need to treat the case of a bounded domain 
when p = 1. Just as in the mis6re minimization problem, our argument now 
rests on our choice of Dirichlet boundary conditions. The idea is .to take a 
sequence 17 7, approximating a 6-function located on 00 and argue that for 
7= -.7.17„, we have (c`,„.74)-, 0 where ci,„ represents the normalized 
ground state for + However, here we shall give a proof only to the case of 
din-ter...sten d = 1. In this case we may take El= [0,t), 1 > 0, and we define a 
sequence of potentials = -,tfaX10 1/ ,.t. By standard methods sound In Any ele-
mentary cuantum mechanics toxtboot, one could give an explicit argument 
showing that E(7,)-.E(0) = rr2/1 2. Instead, we note that E( ✓„) is the first 
el;;ii\envelue of the three-dimensional problem for -A + Vn (r); we remark that 
this Is where we make use of the Dirichlet boundary condition. As a innetion in 
three-space, we have Mil l  = Idn3 (1/n)'-  = 4n-M/3n2 -■ 0 as n-4.0 and thus,- e.s 
proved above, E(V„)-•E(0), where the 0 represents the 0 potential on the ball of 
radius / in But, passing back to one dimension, we have E(0) = Tr2// 2, which 
completes the proof. Finally, we remark that except whenp = 1, Dirichlet boun-
dary conditions were not needed; in particular, the last argument works for arbi-
trary boundary conditions imposed at t =1. 
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The energy of any bound state of the hydrogen molecule ion H2 +  has an expansion in inverse 
powers of the internuclear distance R of the form 

E(R)— ME (N)(2R) -N -1-e -RI'MA (N)(2R) -Pi  

e -2"" 1111 (N)(2R) -N  +1n(R) terms tie -2Ri'MC (N)(2R) -N  • • • 

Rayleigh-Schrodinger perturbation theory (RSPT) gives the coefficients E (N)  but is otherwise unable 
to treat the exponentially small series, which in part are characteristic of the double-well aspect of 
H2 + . (Here n denotes the hydrogenic principal quantum number.) We develop a quasisemiclassical 
method for solving the Schrodinger equation that gives all the exponentially small subseries. The 
RSPT series diverges: for the ground state .E (N) -- —(N -1-1)!/e 2  for large N. The E (N)  asymptotics 
are governed via a dispersion relation by the imaginary e -2"" series, which itself is given by the 
square of the e -RIR series times a "normalization integral." That the expansion itself contains 
imaginary terms might seem inconsistent with the reality of the H 2 + eigenvalues. In fact, the RSPT 
series is Borel summable for R complex. The Borel sum has a cut on the real R axis, and its limit 
from above or below the positive R axis is complex. The imaginary e -21" (and higher) series con-
sist of just the counterterms to cancel the imaginary part of the Borel sum. Extensive numerical ex-
amples are given. Of interest is a weak (down by a factor N") alternating-sign contribution to 
E(N) , which is uncovered both theoretically and numerically. Also of interest is the identification of 
the Borel sum of the RSPT series with nonphysical boundary conditions. This too is illustrated both 
theoretically and numerically. 

I. INTRODUCTION 

This paper is about the expansion of the energy of the 
hydrogen molecule ion H2+  in powers of (2R) —t, R being 
the internuclear distance. Of course, H2+  has special im-
portance as a prototype for molecular binding and for  

double wells, but it is generally regarded as simple, well 
understood, I-4  and perhaps not very interesting. Exactly 
the opposite is true: the study of H2 +  at large R has re-
vealed several unexpected features. 5' 6  

We list in this introduction seven main results. The 
first is that (i) the energy of any bound state is given for- 
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mally by an explicitly computable complex expansion that 
is discontinuous across the positive R axis, 

E(R)— ME(N)(2R)-N +e-R/n-, 2, A (N) (2R) -N  
N 	 N 

I 
N 	

lL.K) 	 I ±e -2R/" 2B(N),--- N +1n(R) terms  

+k  -2R/n1c(N)(2R)-N ± ... 

N 

Here the ± is the sign of ImR, and n is the hydrogenic 
principal quantum number. When R is real, then the sign 
indicates whether it has become real from above or below 
the real axis. 

More surprising is that (ii) the "sum" of the explicitly 
complex series (1) is both real and continuous across the 
positive R axis. The explicit imaginary series is canceled 
by an implicit imaginary contribution from the sum of 
the ordinary, real, divergent Rayleigh-Schrodinger 
perturbation-theory (RSPT) expansion, I N  E (N)(2R) -N. 
This remarkable subtlety involves taking the sum of the 
divergent RSPT series to be the analytic continuation 
back to the real axis of the Borel sum, which exists for R 
complex;6  this is equivalent, as we shall see, 7  to recogniz-
ing that R> 0 is a Stokes line of the expansion. (A simi-
lar cancellation in part has been noticed by Zinn-Justin 
for the double-well oscillator. 8-1° ) 

This paper is also about the method used to generate 
the solution of the eigenvalue problem by asymptotic 
expansion—the quasisemiclassical (QSC) method. 
Through the separability of the H2 +  eigenvalue equation 
in prolate spheroidal coordinates," which here involves 
two separation constants /3 1  and 82, a systematic pro-
cedure is developed to generate the RSPT series, the  

e -Rhi  double-well gap series, the e -2" real and imagi-
nary series, and so forth. Of course ordinary RSPT gets 
only the first of these series. 

The third specific result concerns the relationship be-
tween the imaginary ie -2" series and the e -R/ n "gap" 
series. These two series arise primarily from the separa-
tion constant fl2  for which (iii) the corresponding imagi-
nary series as ri times the square of the corresponding 
gap series times a normalization constant. 

Other main points include the following. (iv) The H2 +  
eigenvalue equation has complex eigenvalues closely asso-
ciated with the real eigenvalues in the sense that they have 
the same RSPT, but involve different boundary condi-
tions. 5 ' 6  The "different boundary conditions" can be un-
derstood in a simple way by considering the analytic con-
tinuation of one of the separated equations of a related, 
physically interpretable problem: 5 ' 6  an electron moving in 
the field of a fixed proton and a fixed antiproton. (v) 
RSPT for fl2  is Borel summable to the complex eigen-
values. 5 ' 6  (vi) The imaginary series determine the large-
order behavior of the RSPT coefficients via dispersion re-
lations. (vii) The imaginary series associated with the 
discontinuity of the separation constant 13 1  across the neg-
ative real axis has logarithmic terms in — R, which lead 
to In( N) terms in the asymptotics of the j3'/  and E (N) . 

Two empirical facts have been our main motivation. 
The first is the same-sign factorial divergence of the 
RSPT series for the ground state: 3 ' 12-14  

_ (N± He -2 [ 1+  2 	18 	± 	I 
N +1 (N 

(2) 

Such behavior is consistent with the asymptotic expansion 
of a complex function that is discontinuous across the 
R> 0 axis, whose Borel sum would be like 

(1) 

— 	(N +1)!e -2(2R) -N  —e —2 fo  12e-r(t —2R) -1dt [0< arg(R) <27r] 
N=o 

(3) 

=Pe -2  f t ee - `(t —2R) -Idt +ir4R 2e -2R —2  (ImR = +0) . 	 (4) 

where P denotes the principal value of the integral. The 
second empirical fact is an approximate relationship I2  be-
tween the double-well energy gap Epp , which for the pair 
consisting of the ground and first excited state is 
—4Re -R -1 , and the asymptotics of the RSPT coeffi-
cients [Eq. (2)], which by a dispersion relation involves the 
"±" discontinuity in Eq. (1). The relationship is 

discontinuity in Eq. (1) —27ri ( +E pp  )2  . 	(5) 

Our initial goal was to explain both facts, but in the 
process we have obtained many more results, which have 
been summarized in Ref. 5. Further, in Ref. 6, the first of 
two papers announced in Ref. 5, we have collected the 
mathematically rigorous results: proof of the analyticity 
of 02, and E; proof of Borel summability of the RSPT 
series for /32 , and E to eigenvalues of non-self-adjoint 
versions of the H2+  problem; proof of the approximate  

formula (5); justification of the dispersion relations; and 
justification of the leading asymptotic behavior of the 
RSPT coefficients. This paper is the second paper an-
nounced in Ref. 5 in which we develop the QSC tech-
nique, derive the multiply-exponentially-small series, and 
obtain the full high-order asymptotics of the RSPT quan-
tities, i.e., all the corrections in formula (2) for the ground 
state and for excited states as well. 

The organization of the paper is briefly as follows. In 
Sec. II, the Schroclinger equation is separated, and the 
RSPT solution is sketched. Section III is a long section 
devoted to the separation constant 13 2, which comes from 
the separated equation that contains the double-well char-
acter of H2 + . In Sec. III A, the quasisemiclassical method 
is introduced through the form of the wave function, and 
the separated Schrodinger equation is turned into a Ricca-
ti equation. In Sec. III B, the recursive, perturbative solu-
tion of the Riccati equation is sketched, and the usual 
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RSPT is shown to fall out. In Sec. III C, it is shown how 
the second boundary condition, ignored by RSPT for 
H2 + , leads to the double-well gap and to exponentially 
small (e -R ) terms. Sections III D and III E give alterna-
tive formulas for quantities that appear first in Sec. III C. 
How imaginary terms occur in the expansion for /3 2  is 
first introduced in Sec. III F and further developed in Sec. 
III G, where the "gap-squared" formula is discussed. The 
doubly-exponentially-small series contributing to /3 2  is ob-
tained in Sec. III H. The final subsection, III I, is a 
mathematical diversion from the physical H2 +  problem: 
the /32  equation is solved not on the finite physical inter-
val, but on a semiinfinite interval. As mentioned in (v) 
above, the resulting eigenvalue turns out to be the Borel 
sum of the RSPT series, and the series for the discontinui-
ty in the Borel sum across its cut is given by the imagi-
nary series obtained in Sec. III G. Section IV contains the 
details for the solution of the separation constant /3 1 . In 
Sec. V the two separation constants are put back together 
to get the energy E(R). The details are mostly algebraic, 
but nontrivial. In Sec. V C the (appropriate) approximate, 
gap-squared formula of Brezin and Zinn-Justin is shown 
to be true for exactly two terms for all states, not just the 
ground state. In Sec. V E the discontinuity in E (R) for R 
negative is discussed in preparation for the development 
of the asymptotics of the RSPT coefficients via dispersion 
relations in Sec. VI. Section VII contains a JWKB-like 
reformulation of the method that is easier to use for nu-
merical calculations of the various series, which calcula-
tions are discussed and illustrated in Secs. VIII—X. Sum-
mation of the expansions and comparison with direct nu-
merical solution of the eigenvalue equations are discussed 
in Sec. XI. All of the quantities discussed are illustrated 
numerically in extensive tables, and the paper is summa-
rized in Sec. XII. 

II. PRELIMINARIES: SEPARATION 
OF VARIABLES; RSPT RESULTS 

The aims of this preliminary section are to give the 
separated equations for H2 +  in prolate spheroidal coordi-
nates," to indicate how to carry out RSPT on them, to 
state the asymptotic RSPT results, and to set out the nota-
tion. The RSPT results serve both as part of the motiva-
tion and as a point of departure for the QSC treatment 
that follows in Sec. III. (For the implementation of the 
separability in terms of operator theory in Hilbert space, 
see Ref. 6.) 

A. Separated equations in prolate spheroidal coordinates 

Prolate spheroidal coordinates, with a translation to 
make the left endpoints for the 	and q  both be 0, are 
given by" 

--=--(r„-I-rb)/R —1 

n-=-(r.—rb)/R +1 

cl,..arctan(y /x) . 

(0 <4 "< co) , 

(0<n <2) , 

(6) 

(7) 

(8) 

The dependence of the wave function on ti) is the familiar 
and simple e"n# (m an integer). The dependence on and 

n is what needs to be determined. 
The Schrodinger equation, 

— 2 V2 - 1 /r,, — 1 /rb  ± 1 /R)tli 	+1/R , 

(9)

 yields two equations for the separation constants 131  and 
132, 

1 2 	/3 I 	131 ± 2fl2 	/71 2  - 1  +4 r —r —r 4) 1 =0 , 
4"-f-2 

+ 
e(+2)2 

(10) 

d2 1 
r 

2 	/5: 
—r — r— 

4 	

72 1 020  02722i:1)2  , 
2  dn 

2 /3-2n  

(11) 

with the energy E being obtained from 13 1  and /32  by the 
formula 

E = —+(ifli+192)-2 	 (12) 

Equation (12) and the familiar expression for the 
hydrogen-atom energy eigenvalue, — Fri -2, show that 
/3 1 -032  may be regarded as a "perturbed principal quan-
tum number n." The r in Eqs. (10) and (11) is a scaled 
version of the internuclear distance R: 

rmR /(131±f32)—R /n . 	 (13) 

B. Manipulation of the separated equations 
into standard RSPT form 

Despite the nonstandard form of Eqs. (10)—(13), it is 
straightforward to develop solutions by RSPT. We begin 
with a scale transformation that makes the unperturbed 
problem hydrogenic: 

u •=r, 	v =rq , (14) 

[—u +÷(m 2 -1)/u101 

+uVi(n,f31+2132,r) (1)1=0101 , (15) 

[—v d 2 /dv 2 +; v ±-41-(m 2 -1)/002  

+0(2(v,/32,r)(132=13202 (16) 

The expression that occurs in square brackets in Eqs. (15) 
and (16) is identical with the separated "Hamiltonians" 
for the hydrogen atom in parabolic coordinates: 15 ' 16  we 
take it as the unperturbed Hamiltonian for both problems. 
Notice also that the factors u and v in u d 2 /du 2  and 
v d 2 /dv 2  imply that the volume elements are u -ldu and 
ti-Idu. Thus the unperturbed eigenfunctions are identical 
with the parabolic hydrogenic eigenfunctions, and the un-
perturbed separation constants are 

Q1 =/
3(i o) =n 1 ++(lm 1+1) (1=1,2, r.+00), 	(17) 

where n 1  and n 2  are the usual parabolic quantum num-
bers. 

We continue by expanding the perturbing potentials V1  
in power series in (2r) -1  (the perturbation expansions for 

d2 
de 

- 
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(18) 

(19) 

the N)  /31 are defined below): 
Pi + 202  4. 1(m 2_ 1 ) (11,01 -1- 2P2,r)— — 
u +2r 

2 	1  
u (u +2r) + 

(u +2r) 2  

VI  ) 2 r N , 
N =1  

— j AN )(2r ) — N 
	

(26) 
N =0 

=0.5—(20 -1 —(20 -2 -4(20-3 -23(20 -4 + • • 

(27) 

What is especially significant is that at high order the A N) 
 for the ground state behave asymptotically as 

X H 
V(IN) = -1- (M 2 — 1 )(N +1)( —u) N —2 

N -1 

	

- 	(13411"  + 202 
10)( _oN -k -1 , 

k 

V2(v,132,r) 

2 

	

_ — 	 
2

/32

r —v 
-1-1(m2-1) I 	

v(2r —v) + 
(2r —

1
v) 2  

(20) 
6 	2  

/32--(N+1)1 [1— 
N +1 +

(N +1)N 

16  
(N +1)N (N — 1) 

6 	8  /3 1 — 	I2N! 1 — — 

N N(N — 1) (21) 

= 	V (2N) (2r) —N  
N 

(22) 	 48  
+ N(N —1)(N — 2) + (29) 

N -1 
.110

— 4 ‘rn 
_1)(Ar ± i)v N -2 _ 	13(k1v N -k -1 

• 	(23) V(2  
k 

Given the expansions (18)—(23), it is straightforward to 
solve Eqs. (15) and (16) by textbook RSPT. The first step 
is to obtain 192  as a power series in (2r) —I  by solving Eq. 
(16). The second step is to obtain the series for /3 1  from 
Eq. (15) and the /32  series. The third step is to obtain r —I 

 as a series in R —1  from Eq. (13), which then permits E to 
be expressed as a series in R -1 , the fourth and final step. 
Note that Eqs. (20) and (23) are strictly valid only when u 
and v are both less than 2r. However, the RSPT solution 
is an asymptotic power series in 1/2r, and the order-by-
order equations, which are obtained for large 2r, of course 
hold formally for all values of u and v. To look at it 
another way, if a nonperturbative solution were to be ob-
tained, then by ignoring the corresponding expansions for 
u and v greater than 2r, an error that is exponentially 
small in r would be introduced into the solution, which 
would again therefore be of no consequence for the 1/2r 
RSPT. 

Note that /3 1  and 192  depend on m only through the 
magnitude m I and not on the sign. To simplify the ap-
pearance of the formulas, we assume from now on, 
without loss of generality, that m > 0. 

C. RSPT results for the separation constants 

The RSPT series for the separation constants have been 
calculated as outlined above. We shall not go into the rel-
atively uninteresting details. At low order the series ap-
pear unremarkable. One finds for the ground state 
( n l = n 2 =M = 0), for example, that 

ce 
— 	AN)(20 -11  

N =0 

=0.5—(20 -1 +3(20 -2 +4(20-3 -15(20 -4 + • • • 

(25) 

The same-sign factorial divergence of the separation-
constant coefficients, Eqs. (28) and (29), is the same 
phenomenon as the factorial divergence 3 • I3  of E (N) , Eq. 
(2), discovered by Morgan and Simon. 3  This phenomenon 
is a main motivating fact for this study. In explaining the 
detailed relationships among the RSPT quantities and the 
exponentially small quantities associated with the double-
well phenomena, we shall focus on the separation con-
stants. It is easier to deal with the separation constants 
than with E directly, because the separation constants are 
eigenvalues of ordinary differential equations. 

We conclude this section with a remark about the end-
points of the (12  equation (16), which have been treated 
rather unequally in RSPT. By this we mean that since the 
unperturbed problem is defined on the semi-infinite inter-
val, the influence of the second boundary condition is not 
seen by the perturbation theory. As a consequence typical 
of double-well problems, the characteristic splitting does 
not show up: both the symmetric and antisymmetric 
partners of a double-well pair have the same 1/2r RSPT 
expansion. The quasisemiclassical method developed in 
the next section deals explicitly with both boundary points 
and consequently gets the double-well splitting. 

III. SOLUTION OF THE /32 EQUATION 
BY THE QUASISEMICLASSICAL METHOD 

Rayleigh-Schrodinger perturbation theory is unable to 
calculate the double-well gap. In this section we develop a 
method for solving the /32  equation (11) that gives not 
only the gap, but also smaller more subtle effects, while 
still yielding within the same formalism the RSPT expan-
sion. The exact relationship between the RSPT asymptot-
ics and the square of the gap is found. The final formula 
we are led to for /32  is a complex expansion whose explicit 
imaginary terms for real r are discontinuous across the 

(24) 
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positive axis. The explanation of this apparently paradox-
ical representation of a real, continuous function is that 
the Borel sum of the real RSPT expansion exists and has a 
cut on the positive r axis,6  so that the value of the Borel 
sum continued to the real axis is complex, and the expli-
citly imaginary terms in the expansion are the counter-
terms that cancel the imaginary part of the Borel sum. 
This behavior turns out to be widespread: for examples in 
familiar functions, such as the Airy Bi function, see Ref. 
7. 

The Borel sum of the RSPT expansion for /32  turns 
out" not to be the eigenvalue associated with Eq. (16), 
but to be the eigenvalue of a related problem. Consider 
Eq. (16) both at —r and with a semi-infinite domain. 
That is, set r'= —r in V2 of Eq. (21): 

/32  
V2(v,132(—r'),—r1= 

2r'+v
+4(m 2  — 1 ) 

2 	 1  

v(2r'+v) + (2r' +02  

boundary condition perturbatively, 132  must be represented 
by its RSPT series. To satisfy both boundary conditions, 
/32  must have an additional, exponentially small (e - ') 
series that represents half the double-well gap between the 
symmetric and antisymmetric states of an associated pair. 
In fact there are additional series that are 0 (e -2'), 
0 (e -3'), etc., that are found by satisfying both boundary 
conditions to higher exponentially small orders. (We stop 
at the e —2r  series.) 

A. The quasisemiclassical wave function 

The most direct way to characterize the QSC method is 
through the form of the wave function. The characteris-
tic of the semiclassical Jeffreys-Wentzel-Kramers-
Brillouin (JWKB) method' is that the logarithm of the 
wave function is expanded in a power series in A. More 
precisely, the wave function is put in the form 

(30) 	tliAVKB= (dS /dx)- 1 /2e  iS/I1 (31) 

(32) 
On the semi-infinite interval, 0 < v < co, Eq. (16), with V2 
given by Eq. (30), represents a stable, single-well eigen-
value problem whose RSPT expansion is Borel summ-
able" to the eigenvalue of that problem. That RSPT ex-
pansion is the same as for /3 2(r) with r replaced by — r'. 
This modified problem [Eq. (16) where V is defined by 
Eq. (30) on 0 < v < co arises naturally from the separa-
tion of the Schrodinger equation for an electron moving 
in the field of a proton and an antiproton." 

To bring out the connection of the Borel sum with the 
imaginary series for /3 2  mentioned in the first paragraph 
of this section, we also solve here by the QSC method the 
/32  eigenvalue problem on the semi-infinite interval 
0 < v < co, but without changing the sign of r. To avoid 
the singularity that would occur at v =2r, we make r 
complex. Then the QSC method yields an expansion for 
the discontinuity in the Borel sum at the r> 0 axis that is 
exactly —2 times the imaginary series that occurs in the 
finite, 0 < v <2r /32  problem, thus clinching the cancella-
tion. (To leading exponential order only, the calculation 
of the discontinuity has been made completely rigorous. 
See Sec. IV of Ref. 6.) 

The method we develop here is semiclassical. It is 
closest to the methods of Langer °  and Cherry." It 
differs from standard semiclassical practice in that a 
singular point of the differential equation, rather than a 
classical turning point, is the "anchor point" for the ex-
pansion, and exponentially small, subdominant terms can 
enter the actionlike function. To emphasize the similari-
ties and differences, and for lack of a better term, we refer 
to the approach as the quasisemiclassical (QSC) method. 

The basic idea of the QSC method is to make the per-
turbation expansion on the "natural variable" on which 
depends a function that represents the solution of the dif-
ferential equation near one boundary or singular point. 
One converts the linear Schrodinger equation into a non-
linear, fourth-order Riccati equation for the natural vari-
able that is solved perturbatively. To satisfy one  

00 

S = 	S M (X),2 28  
N =0 

where S 10)  is the classical action, and where the correc-
tions S(N)  (N > 1) are determined recursively. 

The JWKB method fails at the classical turning points, 
where the S'nx) may have singularities. Langer" gen-
eralized the JWKB method to include the classical turn-
ing points in part by solving the differential equation it-
self at the turning point in terms of Airy functions. 
Away from a turning point the Airy functions can be ex-
panded asymptotically, and Langer's method goes over 
into the JWKB method. 

The points of special interest in the )3 2  equation (11) are 
0 and 2—which are singular points rather than turn-

ing points. (The JWKB method fails even more strongly 
at singularities.) Near n=0, Eq. (11) is 

d 2 	
1 

r 2  —r —r + 	 (132 -0 , 
dn4  4 	 477` 

(33) 

which up to rescaling is Whittaker's confluent hyper- 
geometric equation, whose solution 19 . 2°  regular at 0 is 
denoted by MO2,„, /2 (rn). In the spirit of Langer's gen- 
eralization, we take the solution of Eq. (11) near n =0 to 
have the form 

(I)2 = 	
! 

( dO/cl ) 1/2Mbon /2 (  r4 )  
M  

The Whittaker M function here plays the role of the Airy 
function in Langer's method, while 1/r is like h. The 
value of the index b will be clarified later. The problem 
of determining the solution 40 2 of Eq. (11) then becomes 
the problem of determining the function 0 ,-0(71,r), which 
by Eqs. (11), (33), and (34) satisfies the Riccati equation 

(34) 
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— I  At 1 2  1 1 b 	m 2
-1  1_ 1_ i_d.t 1/2  d 2 	1 -1/2  ± 14  /32 1 	2  1 +  1 ri  1 	4  +  rn 2-2 	2—  1 1 +  1 n  1 2_  0 • 

do 	4 r4 	4r 2¢2 	r 2  C17 1  dri  dn 

(3 5) 

Cherry' s  extended Langer's approach by expanding the 
function corresponding here to 0 as a power series in a pa-
rameter that here is (2r) —I : 

4,(71,r).--. 	0(N)(71)(2r) —N 	 (36) 
N 

Thus the problem of determining 4) 2  becomes the problem 
of determining the O ( N ) . 

The parameter b in the Whittaker function is ultimate-
ly determined by making 4)2 satisfy both boundary condi-
tions. We anticipate that it is equal to the unperturbed 
value of $2  to zeroth exponential order: 

b --43(Z )  +0 (rke — r) (for some k > 0) . 	(37) 

Then M O20) .n(r7J) is simply the usual RSPT unperturbed 

wave function, 1 • 16  i.e., a polynomial in n times 
.7m/2+1/2e —r//2. This value of b turns out to simplify 
both the analytic form of the 0 (N)  and also the asymptotic 
analysis of Mb on  /2 that is needed to match the boundary 
condition at n=2. (Later it will also be necessary to add 
exponentially small terms to b, to 0, and to $2  when the 
process of satisfying both boundary conditions is extended 
to higher exponential order.) 

B. Equations satisfied by the 0( N); explicit solution 
for #(0), #( I ), and 0 2); RSPT for A" 

To provide a concrete example and to illustrate how 
RSPT "falls out," we calculate 0 °, 0(1) , 0 (2) , and 021)  ex- 

0(1) C10± 
ip20) (o(0))2 

(2) 1  I 411 1 2 +4020)7e dn 
1 	— 	d — 2 d'q 	4 	n 

plicitly. 
Put the expansions (36) for 0, (26) for /3 2, and (37) for b 

into the Riccati equation (35), which can then be solved 
recursively. To lowest order in (2r) —I , one finds 

— +(d0 (°) /dn) 2 + +.0 , 	 (38) 

d4,(0 ) //d 77 =  1 ,  4,(0) :=n 	 (39) 

Note that the unperturbed value of 0 is 71, consistent with 
the discussion above [between Eqs. (33) and (34)] of 4 12 

 near n=0. Moreover, since 4)2  at 71=0 behaves like 

4,2 _,ri mr2+1/2 	 (40) 

the equivalent condition for 4,  is 

4,(N)=0(77) as .77--0 , 	 (41) 

which also explains the choice of "integration constant" 
in Eq. (39). 

To first order in (2r) —I , Eqs. (35)—(41) yield 

d0( 
— —

1 

2/3(2°)  —1 
—202°)  1  

77 
1  —0 , 

2 do 
+ 

2-1  1 

0(0 .4#2°)In(1--}n) • 	 (43) 

To second order in (2r) —I , Eqs. (35)—(43) yield 

(42) 

—(m2- 1) 	 (0(0)2 —2021) 1  + 

2 
1 	

+(rn 2  — 1) 11" +
2-n  1 

 1=0 , 	(44) 
2—n I 	n  

d4,( 2 )/ci 77 = —16(1542° ) )271 -2in( 1 — +77)-16(020) ) 277 -1 (2—n) -  

+2[_ 4(02) ) 2 +m  2 _ 	 2[ 20211 + m  2 _ _ 403(20))2] 1 	I 

(2— 
1 
 n )2 

	2 
 

0( 2).16(02° ) )2[n - iin(1-4-n)+2]+2[-4(e) 2 +m 2 -1][(2-n) -1 -+] 

+2( —2021) +m 2 — I —4(02°)9111[77/(2—n)] . 

(45) 

(46) 

1 

Equation (46) would display a singularity in 0 12)  at n=0 
unless 

P21)= _ 200) 1 2 +  + (m 2 _ i) 	 (47) 

which is precisely the RSPT result. Then instead of Eq. 
(46), 0 121  is given by 

0 121 =16(fir)2[n—'in(1--h)++] 

-1-4/3? 1(2-77) - '-+] • 	 (48) 

The equations for 0 (3),014',... get progressively more 
tedious. However, each 0 (N)  can be found in closed form; 
each 0(N)  is analytic and has a zero at ri=0, provided only 
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that /342N-11  is chosen correctly. In fact it is not hard to 
show inductively from Eqs. (35), (39), (43), and (48) that 

" 
can be chosen to make 0 (1v)  analytic and zero at 

n=0. By the uniqueness of power series, the fi t2N)— 
 determined so that the QSC 4)2  satisfy the bounda con- 

dition at n=0—must be identical with the RSPT A
ry 

 N) . In 
this way the QSC method contains RSPT. 

C. Boundary condition at n =2 and the double-well gap 

A major advantage of the QSC method over RSPT is 
that the wave function can be made to vanish at n=2, as 
will now be demonstrated. The basic idea is to generate 
QSC wave functions from both n=0 and 2 and to match 
them in the middle where the asymptotic expansion for 
the Whittaker function is valid. A most crucial detail, 
however, is that the exponentially small shift [Eq. (37)] in 
the b index of the Whittaker function of Eq. (34) must 
now be determined. To find this shift, we reexamine the 
perturbation hypothesis—namely, that (3 2  and 0 can be ex-
panded in power series in (2r) -1 . 

As is well known, the RSPT expansion for /3 2  is incom-
plete in the sense that there is an exponentially small 
correction of the form 2 • 4  

splitting [through 0 (e - ')] that separates the symmetric 
and antisymmetric states of a double-well pair, both of 
which have the same RSPT expansion. To make it possi-
ble to calculate the exponentially small terms, it is neces-
sary to add them to the perturbation expansions (24) and 
(26) for /31 and /32, and to permit them to enter the expan-
sions (37) for b and (36) for 0. This generalization is a 
natural but marked departure from the usual semiclassical 
practice. We put 

Qt — 	te)(2r) -N  +4643,111 +0(rke -2r) (i =1,2) , (51) 
N =0 

b —02°)  + Ab E l)  + (rke -2r) , 	 (52) 

0(n,r)— j 0 1N) (71)(2r) -N +A.0 111 +0(r ke -2r ) . 	(53) 
N =0 

[In Eqs. (51)—(53) and in all subsequent equations, we 
omit the generic "for some k> 0," which without danger 
of confusion may be taken as understood.] It will be seen 
later that the leading terms of A/31 . 11  and AbI l l are equal: 

/32 	02N)( 2r ) 	boil 1 4 0 ( r ke  -2r) 

N =0 

(for some k >0) , (49) 

=,6■ 6 111 [1+0(r-1 )] 

(211
2020) 

e'  —+ 	 [1+0(r-1 )] 
n 2 !(n 2 +m)! 

(54) 

(2r)
202°)

e  (50) 
n2!(n 2 + m )! 

•  

The notation API is to signify thatpart of f that is pro- 
portional to e - qr. The quantity 2A/31 11  is the double-well 

The crucial role played by the shift in the b index is im-
mediately apparent when, in preparation for matching the 
wave function (34) with one satisfying the boundary con-
dition at n =2, the Whittaker M function is expanded 
asymptotically: 2°  

e  -T ara 

	

/— Af
b' 

m 2(z)— 	1 	1 	
Wb"/2(z)± 	

1 	W-b,mn(ze :F16 ) (0 < ±argz <Tr) 
m! 	 r( -2-  In + T -FM 	 r('m + T — b ) 

e ±irtonc2+1/2-b) 

	

,.- 	 z be .-./2 2F0( J2_ 4_1 m  _b; _i_ _ +pn  _b ;; _ z -1) 
r(÷m ++ +b) 

+ 	 z -be+z/2 2F0 (+++m +bp+ --Fm +b;;+z-I ) (0 < ±argz 

	

r(÷ 
1 	

+÷m —b) 

...4_1)„2  e -T-riabill 
	z be -zi2 +0b 111 (-1)112+I n 2 lz -be+z /2  (0 < +argz <Tr) , 
(n2+m)! 

1 	e  ±vi(n /2+ I /2 -b) 
(55) 

<7) 	 (56) 

(5 7) 

where we have used the r-function reflection formula 19 
 and that b ++— +m —n 2 + 1+ tib 111  to get 

Uri+ ++m —b) 

=r(b ++—+m)r-Isin[r(b + 2 — +m)] 	(58) 

=(-1)n2+1 n 2 !Abi l i[1+0(Ab 111 )] . 	(59) 

Note the introduction in Eq. (55) of the Whittaker W 
functions, primarily for later use, and in Eq. (56) the usual 
generalized hypergeometric series, 19  

Z 2 
2F0(a,b ; ;4=l+ab—

z
+a (a +1)b(b +1)T

! 
+ • • • . 

(60) 

When Ab 111  there is a positive exponential term in (1)2. 
Consider for the moment how 4) 2  appears near the point 
n=2. The positive exponential in Eqs. (56) and (57) 
(where z =r0—rn) is the term that is decaying away 
from n=2 (in the direction of n=0) and near n=2 
should be the most important term. In fact, because of 
the symmetry of Eq. (11), 4) 2  should be either symmetric 
or antisymmetric under the transformation r)—.2—r1 , so 
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that both expo 
111

nentials should be equally weighted. It will 
turn out that Ab has exactly the right value to achieve 
this symmetry. 

It is now straightforward to obtain the leading terms in 
the asymptotic expansion of 4) 2 . Take 0 (°)  and Ow  from 
Eqs. (39) and (43), and use Eqs. (34) and (57) to obtain, for 
412 anchored at n.o (denoted here by 412[0, 

4)210i— ( —1) g(2r)  nOP(2—n)
_ 

— e "1"[1 	(r- ')] 

	

Rim 	„ 

(n 2 +m)1 

+Ab 111 (-1)" I n 2 R2r) -PV)(2—n)filln  

Xo -421e +r '1/2[1+0 (r 	. 	 (61) 

(Here and in the following, we use "anchored at n=a" to 
mean a QSC wave function generated by expansion from 
the point a.) If instead of starting the expansion at the 
boundary point n=0 we had started at n=2, exactly the 
same expression would have been obtained for 43 2  an- 
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chored at n=2 (02121), except that n  would be replaced 
by 2—n: 

( — 1 )n2 (201112°)  
4:1'2[2]-- 	(n2+m )! 

 

X (2 — 	n -41°)  e ' 4'112[1 +0 (r- ')] 

+ 	1 ' 1  ( — 1 )112+ i n 2 !(20 - 440)  77 $(0)  
_o) 

x(2—n) — e'- '7112[1+0(r- ')] . 	(62) 

These two equations represent the same wave function 
only if 

(2r)4/4°)e 
(A6 (11 ) 2 — 	 [14-0(r —) )1 	(63) 

[n 2 I(n 2 +m)!]2  

which gives the formula (54) for Ab 1)1 . 
The complete series for Ab 111  is obtained by carrying 

out the above process to all powers of (2r)-  I . The formal 
result is 

(2r)213‘2"e 02() ) 	Or —r(0[0]+ 0[2) —2)/2  
n2!(n2-1-m)!

(TO[od ( TOP] )  e 

2F0( — n2,  —n2 — m  ; ;  —(r0[2))-)) l ln 

X 
2F0(n2+M +1,n2+ 1; ; ±(r0[2])-) ) 

I(

2Fo( —n2, —n2 —m ; ;—(0101)-)) 	1/2 

2F0(n 2 -1-m -1-1,n 2 + 1; ; ±(r0[01)-) ) 

(64) 

By 010 1 is meant the 4  for the QSC eigenfunction an-
chored at n=0, while 0 [2 ] corresponds to the QSC eigen-
function anchored at n=2. In fact here 
012](n,r)=0[01(2—n,r). The right-hand side of Eq. (64) is 

(2r)
2/3V

e -r  times a series in (20 -1  that is independent of 
7. 

The index shift Ab 111  and RSPT can now be put to-
gether to give the 0 (e -') contribution AA" to /32. Re-
call that in the preceding subsection (III B) the index b 
was set equal to 02°)  and then the higher AN ' (N > 1) were 
obtained as functions of 02°)  by requiring that O (N  4-  I)  van-
ish as .77—.0. That process did not depend on the value of 
02 ). If now 02°) —./312°) +Ab I I I, then one can expand out 
from the RSPT series the part linear in Ab 111 , 

d02N)  
A/11 11 =Ab 111 nto) (2r) -N  

0 d P2 

=Ab 111 [1-402°)(2r) -1 + • • ' 

where Eq. (47) has been used to calculate d0 211 /d0°1. In 
a similar way it follows that 

A0 111 =Ab 111 Chfr(N)(71)  (2r) -N 	 (67) 
N 	df3(2°)  

r -I  Ab 111 [21n(1— -11n)+ • • • ] , 	(68) 

where Eq. (43) has been used to calculate c/0 11) /di3(2°) . 

[Note that O (0) , Eq. (39), is independent of /312°) .] 
To use Eqs. (65) and (67) relating Afl1 11  and 4 111  to 

Ab 111 , it is necessary to calculate the RSPT or and the 
QSC r )  as explicit functions of 02°1 . This is easy for low 
orders but tedious for high orders. An alternative pro-
cedure is given in the next subsection. 

D. Solution of the Riccati equation directly to 0 (e -') 

To avoid solving for 02N)  and 16(N)  as explicit functions 
of 02°)  to high order, which would be required to use Eqs. 
(65) and (67) for A/4 11  and A0 111 , we give an alternative 
procedure, which is to solve the Riccati equation (35) 
directly to 0 (e -'). 

Let q(r) denote the ratio 

007,0= 	/r Abi l l . 

Let 0 in the remainder of this section denote only the 
zeroth-exponential-order part of 4—i.e., the 1/r power- 
series part. In place of 0, put (A 	JO into the Ric- 
cati equation (35), and put 02°) +Ab 	for b and 

02N) (2r) -N  bib (  I  Iq (r) for /32 . Expand the equation in 
powers of Ab 111 , and keep only the terms first order in 
Ab 111 . The result, divided by r ' Ab 111 , is an equation for 
0(n,r) and q (r), given 10(71,r): 

d/342N)  
(65) 4(r)=A/411 /Ab 111 = A .40 (2r)- N . 

0 "P2 

We anticipate that r -IAb 111  is a natural factor 
(66) and we accordingly define the ratio 

• 	 • 	, 
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i c 1 IS  1 2  I 	02°1 e 	(M 2 -1)0 	_ 2 dO dB 	13(2°) + m 2  1  I 
— q(r) 	+ 	 _ 

dn 	re ± 2r2 g6 3 	dn dn 4 	rck 	4r 20 2 	77 2 - 

1 	de 	 d 2 	 1 dq5 112  d 2  de dO l -3/2 1 =0 . 	(71) 
[dq5 1 -1  id0 1 -112  ± 

2r 2 	 dri2 	dn 	2r 2  dn d77 2  dn d r7 

20(3 11 +0(e -2')- (V+1,1(d(1)(-)/d n )-(13(-)(d(V±Ild71)  
r f 0  4)(+)(1)(- 177 -1 ±(2-n)-1 ]dn 

(72) (79) 

The numerator is a Wronskian of two functions that 
(73) solve the same differential equation if terms 0(rke - r) are 

neglected. From the form of (1) (±)  [in terms of the Whit-
taker M function, Eq. (34)], from Eqs. (55) and (56) [or 
more simply Eq. (57)] for the asymptotics of the M func-
tion, from the Wronksian of the Whittaker functions, 20  

( 	-Tribuf
—b,m/2kze Wb,m/2 , Z , e 	r• dz 

To solve Eq. (71), first expand q(r) and e(n,r) in power 
series in (2r) - 1 : 

q(r)= 	q (v) (2r) -^1  , 
N 

9(71,1')= 	e(N) (7))(2r) -141  • 
N =o 

From Eq. (71) and 0 10)  [Eq. (39)], one obtains the zeroth-
order equation, 

÷d0(°1 /d77.77 -1 -q l° 177 -1 ±(2 -77) - 1 . 	(74) 

Since de ) /dn must be finite at n —o, 
e 1 =1, 01°) =21n(1-+77) . 	 (75) 

Similarly, one obtains the equation 

de" ) /dn=(d /dn)[1602°)n -i ln(1- ÷n)] 

—8/3(2°'(2—n) -2  

—2(43(2°1 ±q (11 )[71 -1 ±(2—n) -1 ] . 

From the regularity condition at 77=0 it follows that 

q (11 =- 4132 1 
	

(77) 

em =i6)5'2° 171 --  ' in( — +n)+ +1 
—8024(2-77) -1 —i] 
	

(78) 

Thus the ratios q(r) and e(n,r) can be calculated by a 
recursive, perturbative technique directly, rather 
through the j3(2°)  derivatives of the 0 ( n )  and the 02N). It is 
interesting that there is yet another alternative method for 
calculating q(r)—a "normalization-integral" method—
that will be given in the next subsection. 

E. Normalization-integral formula for q(r) 

The two methods given previously for q(r) are general-
izable to higher exponential orders. A third formula is 
developed in this section that is less generalizable but 
simpler in the respect that it uses only the zeroth-
exponential-order wave function in the practical evalua-
tion of q(r). The argument starts out with a "current-
density" formula and ends up with an expression that 
looks like a normalization integral. 

Let (V + 1  and (1-) 1-1  denote the paired solutions of Eq. 
(11) that differ only in the choice of sign for Abl 1  in Eq. 
(64). To 0(e') the difference in the two eigenvalues-- 
i.e., the double-well gap for these two states—is 2A01 11 . 
From Eq. (11) one sees by a standard current-density ar-
gument that 

- d 

e

Trib

W  

dz  

and from standard error estimates for formulas of this 
type,4  it -followst-  " (ze

+m) 	Wb m /2(Z) 	, 	(80) 

that so long as 0 <<n «2, i.e., for 
n =1 +c (6-0), the numerator is to first exponential or-
der, 

(81) 

Similarly, also for 0 << n <<2, the denominator is to terms 
0(rke - ') independent of n  and dominated by the ex-
ponentially decreasing component, the /2 in Eq. (55). 
Since for b =-0(Z )  this W is just an unperturbed wave 
function, there is no difficulty and insignificant error in 
replacing the M by the unperturbed W, expanding the in-
tegrand as e - 'n times a power series in (2r) -1  and in 77, 
and then taking the upper limit of the integral to be co. 
That is, the denominator is again up to 0(rke - r) 

r[(n2 +m)!]-2  _cc  (dO/dn) -1 [WI3,20), . /2 (r01] 2  

(82) 

We emphasize that (82) is not meant literally, but instead 
as an asymptotic power series in (20 -1 . Also, ¢ is meant 
to be the zeroth-exponential-order solution of the Riccati 
equation (35). Thus one obtains for q(r)=--Afq i)  /Ab 111 , 

q(r)=n 2 l(n 2 -1-rn)! r(dO/dn) -1[wtit20),m/2(roi2 

X [71 -1 +(2 - 77) -- Idn 1 	. 

(83) 

Equation (83), being only an integral to be evaluated, is 
perhaps the most useful practical expression for comput-
ing q(r). 

F. Imaginary contribution to the index b 

As mentioned in the Introduction and in Sec. II C, 
same-sign factorial divergence suggests a complex, discon- 

(76) 	2rn 2 !Ab 111 /(n 2 +m)! . 
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tinuous Borel stun [cf. Eqs. (3) and (4)]. For the RSPT 
for 132, we infer from Eq. (28) that for the ground state, 
with r >0, 

IAN) (2r) —N  — 	(N +1)!(2r)—N 	(84) 
N=0 	 N=0 

, 
— P fo  t ee — t(t —2r) -1dt 

+iir4r2e 	(Imr = +0) . 	(85) 

This motivates us to look for an explicit contribution to 132 
 that is 0 (e -2') and that is imaginary, to cancel the imagi-

nary term in Eq. (85). 
Since the Riccati equation (35) is formally real, explicit 

imaginary terms in /32  can only originate in the index b. 
The value of b through 0 (e - ') was obtained in Sec. MC 
by matching two QSC wave functions that separately sa-
tisfied the boundary conditions at either n=0 or 2, and 
that value was real (for real r and n). The imaginary 
0 (e -2') contribution has its computational origin in the 
complex phase factor multiplying the subdominant contri-
bution to the ordinary asymptotic expansion for the Whit-
taker M function, Eqs. (55) and (56). 

The reader is well aware that the Whittaker M function 
is real on the real axis, and that the complex expansion 
(56) is not usually considered valid21  on the real axis, 
which is a Stokes line of the expansion 21  However, there 
is a sense in which the complex expansion (56) is valid 
also on the real axis. In fact, the two power-series expan-
sions represented by the 2F0  functions in Eq. (56) are 
Borel summable, 7  and the overall result is the Whittaker 

M function in each appropriate half-plane. The positive 
real axis is a cut of the Borel sum of the power series mul-
tiplying e+'/2, the dominant expansion. In the limit as 
Imz -0.0 from above or below, the imaginary part of the 
Borel sum times e+gn cancels the explicit imaginary con-
tribution coming from the phase factor multiplying the 
subdominant expansion. This is the sense in which the 
sum of the explicitly complex, discontinuous expansion 
mentioned in the Introduction is real and continuous. 
The same phenomenon that holds for the Whittaker M 
function appears to apply to /32. (See Ref. 6 for a proof 
that the Borel sum of the RSPT series for /3 2  is complex.) 

Let us now get on with the details of extending the 
matching process of Sec. III C to 0 (e -2'). First we ex-
tend the notation to include second exponential order [cf. 
Eqs. (51)--(53)]: 

/31- 
Lr /3r)(2r)-N 

N =0 

+AM I LE0/31 21 +0(r ke -3') (1=1,2) , 	(86) 

b —fir 	+ Abi 21 +0(rke -39 , 	 (87) 

40 (N)(n)(20 —N  +110111 + A4) 12}  +0(rke —3 ') . 
N=0 

(88) 
Next we keep the phase factor in Eqs. (55)-(57) and get 
as a requirement for the matching of the two QSC func-
tions, instead of Eqs. (64) and (63), 

(AbI11 + Ab121)2 =e -mriabl i l X [right-hand side of Eq. (64)] 2 X [1+0 (Ab 
y  of 

.=e-T2riAbill  (2r) 	e  
[1+0(r—I )] (±Imr?_0) 

Ert 2 !(n 2 +m)!? 

(The 0 (Ab 111  ) error in Eq. (89) comes from replacing the Fs( 	+ ÷±b) [cf. Eq. (55)] by 
no contribution from this term to ImAb 121  (this section), but there is a contribution to ReAb 
in Sec. III H.) 

The imaginary contribution to a 121  comes from the expansion of the phase factor. Take 
of Eq. (89), then expand the factor e ': 

AbI l i+Ab 121 .(1-ThrAbi l l)x[right-hand side of Eq. (64)]X[1+0(Abi 11 )]  

(89) 

(90) 

( n2+ m )! and n 2 1. There is 
121  that will be taken care of 

the square root of both sides 

(91) 

Ab x [1+ 0(Ab I) )] 

Let A,b 121  and Al b 121  denote the real and imaginary parts 
of Ab 121  when r is real and positive, and their analytic 
continuations otherwise: 

Ab121.00121+iAib(21 	 (93) 

Then it is immediately seen from Eq. (92) that the 
second-exponential-order imaginary contribution to b is 

(92) 

the ground state, 

A i b 121  - -Tir4r 2e -2r  (1111r = +0) , 
	 (95) 

so that itli b 121  to leading order is exactly the counterterm 
to cancel the imaginary part of Eq. (85). 

(+Imr >0) . 	 (94) 	G. Imaginary contribution to /32. The gap-squared formula 

This relationship between the asymptotic expansions is ex- 
act. It is the key to the Brezin-Zinn-Justin conjecture 12 

 discussed in the next subsection. Note, moreover, that for 

The imaginary series (94) contributing to the index b 
leads directly to an imaginary series in 132  that is 0 (e —21 ). 
Denote by A,./3121  and Ai /3121  the real and imaginary series 



WAni 
P2- '+Ab,m /2 0.0[01 ) 

[r(n 2  m -1-1-1-Ab)f(n 2 +1+Ab)12  e-T-ff1(02°)+")w 	(r(f) e -T-174 ) [0] 

7r -2sin2(rAb)— 
e  +21r eb 

1r2 

contributing to A/4 21  when r is real and positive: 

By exactly the same argument that led to Eq. (65) 
OP, one finds that the imaginary series to second 
ponential order is obtained from A 1 b 121  via 

A/3121 Art312) +iAif421 

dp(") Ad3121 _ A.

1

b121 	2

0) 
	(2r)—N 

Nt0 do(2 

= Ai b 121 q (r) 

(2,94/3120)  e -2r 
	 [1+0(r -I )] — + 
[ n 2 !( n 2  m )1] 2  

(±Imr >0) . 	(99) 

The importance of Aj3i2)  is the role it plays, via a 
dispersion relation 6  to be discussed later in Sec. VI, in the 
asymptotics of the RSPT coefficients Of: 

Ann_ IT-1-N 
co - if 

2  rN  Aj131 21  dr . 	 (100) fo  
The 00 +ie is to indicate that the "Imr > 0 sign" is to be 
used for A i  b 121  in Eq. (94). Since the same ratio q(r) 
occurs here that occurred for the first-exponential-order 
quantity A/31 11  [Eqs. (66)—(69)1, it is possible to express 
Ai f31 21  directly in terms of and q (r) via Eq. (94): 

which, because of Eq. (83), can be written as the product 
of -TV, the "half gap" squared, and a normalization in-
tegral, taken in the sense of an asymptotic power series as 
explained in Sec. III E, 

(96) 

for 
ex- 

(97) 
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(98) 
Ai/31 21 =-Tr(Ai3i )1 ) 2 /q(r) (±Imr > 0) , 	(101) 

Ai.13121 = ir( Aflp i 	
(dO/dii)-1[Ws(20).„,a(r0)]2[7/-1+(2-71)—Idn 

(+Imr> 0) . 
n2qn2+m)! 

(102) 

Recall that the expansion for q (r) starts out with 1 [cf. 
Eqs. (66) and (75)]. Equations (101) and (102) express the 
exact relationship between the asymptotics of the A N)  [via 
Eq. (100)] and the square of the gap whose leading term 
was found numerically by Brezin and Zinn-Justin. 9  In 
fact, that relationship did not involve /3 2  but the energy 
E (R). It will be seen in Sec. VI, however, that the asymp-
totics of the E (N)  are dominated by A i /31 21 , so that the 
crux of the explanation of the E (N)  asymptotics has al-
ready been given. 

H. Doubly-exponentially-small real series 

The matching process described in Sec. III C was car-
ried out there to 0 (e — ') for the index shift Libl i  I and in 

Sec. HIP for the 0(e -2') imaginary shift A i  bI 21 . In this 
section the calculation of the shift in b to any exponential 
order is sketched, and results are given for the real 
0(e -2') shift A,6 121  and the real second-exponential-
order A,,13121 . 

The formulas in this section involve the logarithmic 
derivative of the gamma function, I9  usually defined by 

1'(z)= —
d

z 
 lrir(z) . 	 (103) 

The exact form of the matching equation that results 
from equating the two QSC functions, one anchored at 
ri=0, the other at n=2, the 0 (e — ') version of which is 
Eq. (64), is [cf. Eqs. (34) and (55)—(59)] 

b =e+Ab , 	 (104) 

02°) +Ab,m/2 (r0E 2]) 

X 	 (±Imr> 0) . 
e

-4-- vgfip+Abl  
0 _0(20)_Ab, m  a(r  [2]e 

(105) 

As with Eq. (64), the ij  dependence of the right-hand side of Eq. (105) cancels, leaving only a function of r. Now expand 
Ab in exponentially ordered terms Ab [ ql, 

Ab= 	AO )  . 	 (106) 
q 

The asymptotic equation for Ab, which is the general version of Eq. (64) valid to all exponential orders, is obtained by us-
ing the asymptotic expansions [cf. Eqs. (55)—(57)] for the Whittaker functions and taking the square root of both sides of 
Eq. (105). To put the result in a form that can be solved recursively for the Ablq 1  after expansion, we add 
7r —I sin(irAb)—Ab to both sides (after taking the square root). Then for Imr > 0 (the complex conjugate holds for the re- 

, 	verse) we obtain 



33 	 1/R EXPANSION FOR H2 + : CALCULATION OF ... 	 23 

Ab =—Dr—Isin(irtib)—Ab]± 	
e — vi"(2r) 2°12°42'11'e 	/60)+Ab 	p 	

e 

p-f-ab —.( 44101 +,$[21 -2)/2 

c(n 2 +nt +1+Ab)c(n2+1+Lib) (T°101) 	(7°(21)  

2F0 ( — n 2  — 	— n 2  —m — ; ; — (r0101) -1 )  l ia  

2Fo(n2+m +1+ Ab,n2+1+11b;;+(r0[01) -1 ) 

2F0 ( —n 2 —Ab,—n 2 —r?? —Al,; ; —(rif,[2]) -1 )  1 in  

2F0 (n 2 +m +1+Ab,n2+1+Ab;;+(r(A[2]) -1 ) 

The leading term of the second-exponential-order real series comes from the expansion of the r functions and of 
(2r)2", the latter of which leads to In(2r) terms. Subsequent terms are down by 1/2r and require (1) through 0(e 
Like Ai b (2) , the real D,b 121  is proportional to the square of the first-exponential-order series. The first few terms of 
41,6 (2)  are 

A,b 12) =-(Ab 11 )2[21n(2r)-0(n 2 +1)-0(n 2 +m +1)-121342°) (2r) -1 +0(r -2 )] . 	 (108) 

The real second-exponential-order contribution A,.01 21  to /32  can be found from the index shift as in Sec. III C, Eq. (65), 
except that now second derivatives with respect to 02)  are required: 

	

dAN) 	 „ 	2 A 
(2r)—N . 

N) „,012, =Ab  (2) 

	

nio) 	(2r) —N 	(Ab '2 '" )2 	 (109) 
N d P2 	 N d(e) 2  

As for the first-exponential-order case in Sec. III D, it is also possible to avoid the second derivatives of the AN) by solv- 
ing the Riccati equation directly to second exponential order, but we omit the details here. The leading terms in the ex-
pansion for A431 21  are 

Ar13(2) — 
(2r) e

21n(2r)--ixn 2 + 1 ) —0(n 2 m + 1 ) 
(n 2 !)2[(n 2 -1-1)9 2  

+- - ([21n(2r)-0(n2+1)--47(n2+m +1)] 
Zr 

X [-402°) -12(02°) ) 2 +m 2  — 1] — 120?-2 1+0(r -21n(2r))1 . 	 (110) 

X (107) 

I. The /32 equation on a semi-infinite interval 
and the discontinuity in the Borel sum 

In this section we treat a different problem: we solve 
the 02  eigenvalue equation not on the original finite inter-
val, but on a semi-infinite interval. There are two reasons 
for considering this modified problem. (i) It has the same 
RSPT expansion as the original problem, but the Borel 
sum of the common RSPT expansion is the eigenvalue of 
this modified problem." (ii) The positive r axis is a cut 
of the eigenvalue of the modified problem, and calculation 
of the discontinuity across the cut gives an immediate, 
unambiguous meaning to the imaginary second- 
exponential-order series A i022)  calculated already in Sec. 
III G, but which comes up again here: it is the discon-
tinuity that determines the dispersion relation and that 
gives the asymptotics of the RSPT coefficients [cf. Eq. 
(100) and Sec. VI]. 

The problem is to solve Eq. (11) with the boundary con-
ditions 

.2(77)-00 as .77—'0 and as Re(nr)--.+ 00, Im(nr)> 0 

(111) 

or equivalently Eq. (16) with the boundary conditions 

'2(v)— ' 0 as --00 and as Rev—. + 00, Imr > 0 . 	(112) 

The nonstandard aspect of this modified problem is to 
avoid the singularity on the positive real axis at n=2 for 
Eq. (11) or at t) =2r for Eq. (16), as indicated by the 
Imr> 0 in Eq. (112). The modified eigenvalue problem is 
related to a standard eigenvalue problem: the (or u) 
equation when the Schrodinger equation for an electron 
moving in the field of a proton and an antiproton [change 
the sign of the 1/ rb  term in Eq. (9)] is separated in prolate 
spheroidal coordinates. The u equation is 

[—u d 2 /du 2 ++u ++(m 2  1 )/04)1 

V; ( u,/31,r')<DI 	4)1 , 	(113) 

fil  
11(u,131,r 1 )— + 

2r -}-Ai 

2 	1 	•   ++ (m 2_ 1)  I_ 
u(2r'+u) (2r'+u)2 1  

(0<u < 00), (114) 

where the primes are to distinguish the mixed-charge 
problem from H2 + . The modified /32  problem is the ana-
lytic continuation up to r'=e ±'ir of the stable, single-well 
0; problem. (See Sec. IV of Ref. 6 for the use of this ap-
proach in estimating rigorously the leading term in the 
discontinuity.) 
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Before giving the details of the QSC solution, one can 
anticipate certain of its characteristics, which depend on 
how the singularity on the positive v or n  axis is avoided. 
The v case is easier to state but completely equivalent to 
the ' case. By making r complex, the singularity at 
v =2r [see Eq. (21)] is moved off the positive axis. 
Note5 ' 6  that the positive r axis is a cut for /31(r), where 
e=e1 Tr`r. If Imr> 0, then the direct Borel sum [for 
which larg( r') <r] of the RSPT series will be /3.1 (e'r), 
while if Imr <0, the direct Borel sum will be f31(e+inr). 
Now here is the subtlety: suppose one requires the com-
plete asymptotic expansion for 131(e 'r) both for Imr > 0, 
where the answer has to be exactly RSPT, and for its ana-
lytic continuation to Imr <0, where the answer cannot be 
exactly RSPT, because for Imr <0 the Borel sum of the 
RSPT series is /3; (e "r). In the fourth quadrant, the 
asymptotic expansion for (e - "'r) necessarily must have, 
besides the RSPT terms, additional terms that represent 
the difference, 13'1 (e — 'r)—fil(e '1r), below the positive 
real r axis. In other words, these additional terms 
represent the discontinuity in the eigenvalue of the modi-
fied problem across the cut on the positive r axis. 

The major difference in the details for the modified 
problem versus the original 02 problem is the choice of 
Whittaker function for the solution anchored at 7j=2.  In 
the original case the choice was an M function to be regu-
lar at 71=2. In the present case the solution does not have 
to be regular at 7j=2: instead it must vanish as 77—•0, 
For Imr > 0, the correct choice for 11)2 anchored at 77=2 
[(132[2] ] which .  vanishes at infinity [cf. Eqs. (55)—(57)] is 
W-b,m/2(e'z): 

1)2[2]=( —47[ 2 ]/d71) -1/2e - lraW _k m /2(e -1nlr012 1) 

(Imr >0) . 	(115) 

The details of the calculation of both Om and 012]  are 
exactly the same as before. Only the value of the index b 
needs clarification. 

The index b must be chosen to make the two QSC wave 
functions the same. The asymptotic behavior for the QSC 
function anchored at 7j-=0 is given by Eq. (61). It always 
has a term with a negative exponential factor e — '11/2 . If 
the index shift Ab*O, it will also have a term with a posi-
tive exponential factor e+"1/2 . The QSC wave function 
anchored at n=2 in the present case has only a negative 
exponential factor: 

(1)212)—(-61012vdr1)-la(ro[2])-be +r4[21/2 

X 2F0( 22- m ++ -I-b,+ —Im -1-b;;+(rtk[2 ]) -( ) 

(116) 

—(2r)- bnb( 2 _ n) -be r -r71/ 2[1±0(r -1 )] • 	(117) 

Comparison of Eq. (117) with Eq. (61) shows that the two 
solutions can be identical (except for normalization) only 
if Ab 0, in which case the solution anchored at 0=0 has 
no positive exponential factor, and b =OP ). Thus when 
linr > 0, there is no additional, exponentially small contri-
bution to the expansion for /3 2  for the modified problem, 
i.e., /3;(e'r), as has been shown rigorously. 5 . 6  

Now consider the analytic continuation of the QSC 
function based on the Whittaker W_b . „, /2, across the pos-
itive real axis to Imr <O. Since arg(e "r) < —Tr when 
arg( r) is negative, the asymptotic expansion (116) is no 
longer valid. To get the correct expansion for the Whit-
taker function the argument of the r4i[2]  must first be 
brought within the range ( —7r,r) by the circuital rela-
tion20  

277iWb ,,, i2(r0[2] ) e 	/2(e  -viroul) =e  +rib w_ b,ma ( e  +Irir012] )_ 	  
nb +m)f(b ++ — +m) 

—(2r) -b b  n-(2 	
2ri  _77)-be•-ron_ 

 (n2 ± m)!n2! 
(2r)bn-b(2_71)be -r +rn/2 

Since both exponentials now appear, they must also appear in the M-based QSC function anchored at q=0. 
quently Ab cannot vanish. The exact matching equation to determine Ab, the analog of Eq. (105), is 

'sin(rAb)— 
[r(n 2 +m +1+Ab)r(n2+1+Ab)]2 e +iri(02°)+Ab)w_A0)_Abmu2(r0[0]e+Tr1) 

W „
trf

rn 
X 	

)-1-ab,m (rf:p121 ) 
	  (Imr <0) . 	 (120) 

-I-17i1 e
+vi(02°)+116) 

W 

[Note that even though Eq. (120) appears to be 7j dependent, as before the 7] dependence cancels out, and Ab depends 
only on r.] 

Compare the matching formula here [Eq. (120)] with Eq. (105). It is easily seen that the lowest nonvanishing exponen-
tial order of the right-hand side of Eq. (120) is the second, that it is purely imaginary, and that it is 27ri times the square 
of the previously determined half-gap index shift Ab of Eqs. (63) and (64): 

A b (modified fit  equation)= +2ri (Ab I )2 +0  rke  —4r) (Imr <0, argr' < —7r) 	 (121) 

2rie+17i" W 3,0) 	(rcb[o]) +Ab,rn /2 

-=2iA; b 121 +0(r ke -4r) (Imr <0, argr'< —r) . 	 (122) 
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Thus the index shift on analytic continuation from the 
first to the fourth quadrant is nonvanishing in second ex-
ponential order and is exactly 2 times the second-
exponential-order imaginary index shift already calculated 
for the original ✓32  problem. Since the mechanism by 
which the lowest-order nonvanishing imaginary index 
shift induces an imaginary contribution to /3 2  is exactly 
the same for both the original and modified problems, 
Eqs. (97)-(102), a second-exponential-order contribution 
completely analogous to Eq. (122) holds for the modified 
02: 

M(e -rir)- j /3(2°) (2r) -N +2L0i /3121 + 0 (r ke -4 ) 
N 

(Imr <0, argr' < -r) . 	(123) 

As anticipated, by analytic continuation directly across 
the positive r axis, one finds a purely imaginary 0(e -2') 
series in addition to the RSPT series. At the real axis, 
this series represents to lowest exponential order the 
discontinuity at the cut of the Borel sum of the RSPT 
series, 

fl'i (e -'ir)-(3'1 (e+tr ir)-27ri(Abl I I)2q(r) , 	(124) 

and as such is the dominating factor in the dispersion re-
lation that gives the asymptotic behavior of the RSPT 
coefficients, to be discussed further in Sec. VI. Since the 
RSPT series coefficients are real and the discontinuity is 
purely imaginary, the imaginary parts of the Borel sums 
just above and below the positive real axis are equal in 
magnitude and opposite in sign: 

Im lim [Borel sum of I /3 12n2r) -N  
lmr 

- -Ir(Ab 111 ) 2q(r) . 

The explicit imaginary series found for the original /3 2 
 problem [Eqs. (94)-(102)] is exactly this result (125), but 

with opposite sign. This clearly demonstrates the cancel-
lation of the explicit imaginary second-exponential-order 
series with the implicit imaginary part of the Borel sum 
of the double-well problem, the phenomenon of a complex 
expansion with a real sum, mentioned in the Introduction. 

IV. THE EQUATION 

Although most of the interesting results for H2 +  come 
from the /32  equation, yet the fl1  equation adds its own 
distinctive twist in the form of a branch cut in the nega-
tive r direction and in the form of logarithmic terms. 22 

 Both A N ' and E(N)  get asymptotic contributions with al-
ternating signs and with a 1nN dependence, but the rela-
tive magnitudes with respect to the dominant, same-sign 
behavior are down by several powers of N. 

Before discussing these unique contributions, we 
dispense first with the terms in /3 1  that are 
"induced': i , by i2)  the exponentially small terms 
A/32 =A/31 +A/31 + • • already in /32. Consider 0fl2  to 
be a shift of /3(2°1 . Then the induced effect on Aff i  is ex-
pressed by the Taylor series 

k  ( A132  ) ( 	)ind = Mc°  a  k  
N 

p 4̀11.1) (2r) —N  . (126)  Afit 
k-1 	k! a02°) 

i 
The dependence of /3 1IN)  on /3(20)  is determined through Eqs. 
(15) and (18)-(20). The use of Apartial derivatives in Eq. 
(126) is to indicate that the /3 12 ) (N > 1) are to be held 
constant. An alternative method to obtain (A 180 Ind is to 
regard the terms -2u (u +2r) -1 (0/31 1( +A/42  + • • ) in 
Eq. (18) as a second, independent perturbation. The effect 
on 0/3 1  can then be calculated by double RSPT. In partic-
ular, the leading real first-exponential-order series and the 
leading imaginary second-exponential-order series, 
and ihi i /31 21 , can be obtained by the standard perturbation 
formula first order in the exponentially small perturbation 
but infinite order in the lir perturbation. That is, with 
the ordinary RSPT wave function for c1) 1  in powers of 
(2r) -1 , cl)Rspi-, the induced exponentially small contribu-
tions to 13 1  in leading exponential order are 

(A/31 11 +iAifil 21 )ind  
„ 

-2( A/3 12 1 1  +iA1  /3' 21 ) fn SPT  (u + 2r) -1du 

f: 	+(u +2r) - I ]du 

AN) and d to E(N) , both proportional to 
(N -4n 2  - 3m - 5 )! [which is ( n 2 +4m +6) powers of N 
down from the asymptotics of the 02 N) ]. 

One obtains an explicit formula for the discontinuity in 
fl u  across the cut by connecting a QSC wave function an-
chored at the origin, which we denote by 4:1 0] , with one 
with the correct behavior at infinity, but that is anchored 
at u = -2r, which we denote by (I) [ - 2] . As in the semi-
infinite treatment of the /3 2  equation in Sec. III I, the role 
of the QSC function anchored at a singularity that is not 
an endpoint is to provide control of analytic continuation 
around that singularity. As in Sec. III I, where /32  is 
analytically continued across r> 0, here when /3 1  is analyt-
ically continued across r <0, the Borel sum of the RSPT 
series switches branches and is discontinuous across the 
cut. A doubly-exponentially-small imaginary series ap-
pears that explicitly cancels the implicit discontinuity in 
the sum of the RSPT series. Unlike the semi-infinite i32 
case, there is here a new technical feature—the first index 
of the W Whittaker function is necessarily a power series 
in (2r) -I . This feature leads to logarithmic terms in the 
expansion for A/31 21 . 

A. QSC wave function at g=0 

Near g=0, Eq. (10) is Whittaker's equation [cf. Eq 
(33)], 

(127) 
Here (1)RSPT  refers to the solution of Eq. (15) by RSPT in 
powers of (2r) -1 . Both integrals are to be evaluated order 
by order in powers of (2r) -I . In short, the induced ex-
ponentially small contributions to /3 1  are straightforward 
to obtain but are otherwise unremarkable. 

The more interesting exponentially small contributions 
to /3 1  come from a cut in the negative r direction, which is 
suggested by the singularity in Eq. (15) [cf. also Eq. (18)] 
at u = -2r. Associated with this cut is a dispersion rela-
tion that implies alternating-sign asymptotic contributions 
to 
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[ —(d /4)2 + +r 2 — r fl1/g. -1-+ ( m 2 -1) / 2 ]c13[0]- 0  , 

(128) 

and the QSC wave function regular at the origin has the 
form 

The function 0 [0], which plays the "action" role, depends 
on both 4- and r: 0[01 =4)(0](4,r). The boundary condition 
at =0 is 

0101( 0,r)=0 . 	 (130) 

1 	/..z p ■ -1/2 
(13[0]= m!

kEi,P1(:)]/ LAS 	b [0p m /2 ( r0[0])  • 

2 
d4[0]  1 	b[0] 	tn 2 - 1 	1 

d 	4 r0[0] 
+ 

4r 240] 	r2  

(129) 	OM satisfies the Riccati equation [cf. Eq. (35)], 

d4[o] 
I/2 

d 2  d(t)101 
I -1/2 

1 
4 

/31 
- 	- 

rg' 
+2f32 	m 2 - 1 

-0 
d 42  c/4" r(g. +2)

+ 
r 2g.2(+2)2  

Expanding 13 1  and 	in in powers of (2r) - ' and solving 
recursively, one finds that 

Om= 	0i 10v]) ()(2r) -N , 
N =0 

(132) 

	

131= 	5((" )(2r) - N , 
N =0 

(0) = 

0q101= -4(/51°) +202°) )1n( + +g.)  

1341°) =biol , 
/3411)= -2b[0](010)±2/3t201)_ ÷( pri  2_ 1) , 

and so forth. The value of b [0] is to be obtained by 
matching 0[0]  with the QSC function that behaves 
correctly at co . The AN) are determined so that the 
A (N-1-1) are analytic and zero at 	0, just as was the case 
for the AN)  in Sec. III B. The 5(IN )  will turn out to be the 
RSPT coefficients. 

B. QSC wave function at 	—2 

	

Near 	—2, Eq. (10) is again a Whittaker equation, 

[—(d/4)2 ++r 2 —r(/31+2/32)/(g"+2) 

(131) 

is taken by the index 1) 1 _ 21  on the Whittaker W function. 
The index b [ _ 2]  is given by an expansion in (2r) -1 , 

b [ _ 2] .birf2 1(2r) -N  . (141)  
N =0 

One finds that 
oi01 2]= g- ± 2 (142) 

0 1) 2]= —45(1°)1n( — +g") , 

br2) =0,0 )+202°) , 
bii)2,----20)+02") 

(143) 

(144) 

(145) 

—4(5(i)+$°))2= _ 4n  2 (146) 

and so forth. 

C. Determination of 6[ 0] by matching (1)[0]  and 4.1-21 

The index b[0]  is evaluated by the condition that the 
two QSC functions be the same. Two cases are con-
sidered: r large, but with small phase; and r large, but 
with phase more negative than — Tr. In the former case 
one gets RSPT, while in the latter there is in addition an 
imaginary second-exponential-order series. 

The logic is by now familiar. When r0[0]  and r0[ _ 21 , 
viz., r4 and r(+2), are large, the asymptotic expansions 

(133) 

(134) 

(135) 

(136) 

+ +(m 2 -1)/(-1-2) 2 1(13 [ 0]-0 . 	(137) 

The QSC wave function that is exponentially small as 
co (but singular at 4- = -2) is [cf. Eq. (115)] 

(1)[--2]=(d0[-2]/4) -1/2wbi_2],,n/2(r0[_2]) 	(138) 

with boundary condition 

0[-2](-2,r)=0 . 	 (139) 

The Riccati equation for 0[_ 2 ] is nominally the same as 
for 0[ 0], Eq. (131), and is not repeated here. One solves 
for 0[_ 2i  as an expansion, 

4(-2]= 	44T2g)(2r) -N 	 (140) 

for the Whittaker functions give 

rts 	„, • b i —2 44' +2)b 1 — 2 1l 	-  "*"1-2] 	 2 1 	e  -r(g+2)/2 

e
±inim/2+1/2-6101 ) 

b [0] 

(147) 

(148) 

CI) [0] -  (r 	) 
r(Tm 	+b101) 

X [ (4- 1-  2)/2]$'1°)+202°)e -/e2 

1 	 -61°1  (r) 
r(IM ++ -bp:0 

	

-9 1°)  -2112°) 	+ ,1/2 
X.[(4. -1- 2)/2] 	e  

N =0 

In contrast with the method of solution for 0 [0], however, 
both 5(1" )  and 0 .")  are already fixed and cannot be adjust- 
ed to make 0r:21-] I)  vanish at 	—2. Here that role 

[The ± corresponds to the sign of arg(r0[ 0]).] The elim-
ination of the positive exponential a +11/2  series from Om  
requires that +m + —b [0]  be zero or a negative integer. 
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bioi =n i ++m ++ ( n 1  =0, 1, 2, . . . ) . 	(149) 

Thus b101  is the unperturbed eigenvalue of Eq. (15). [Cf. 
also Eq. (17).] 

To get at the cut in 13 1 (r) on the negative r axis, we now 
consider the possibility that r becomes negative. It turns 
out that b101  has a different expansion when argr < 
Notice from Eq. (18) that the singularity at u = —2r, 
which originally occurs at an unphysical value of the 
physical variable u, moves into the physical domain when 
r is negative. Note also that to keep the physical variable 
u approximately positive as r is made negative, 4 will also 
have to be made negative, but in the opposite sense of r, 
since u =r g. Further, it will be convenient to match the 
two QSC 1's in the region between their "anchor" points, 
g=0 and —2. Consequently the primary region of in-
terest for g is near —1, and for 2 + 4" near + 1. The 
dominant term rg in r0[0]  will be large and stay approxi-
mately positive, while the dominant term r(g+2) in r4[2] 
will become large and approximately negative. The nega-
tive z axis, however, is a branch cut for the Borel sum of 
the asymptotic series for Wb,„, /2 (z). The asymptotic ex-
pansion for Wb,„, /2 (z) above the negative z axis and its 
analytic continuation across the negative z axis will differ 
by an exponentially small expansion that cancels the 
discontinuity in the Borel sum. 

To make this last point more precise, let z =e - "'z', and 
let z' be approximately real and positive. When 
argz = (e> 0), the standard asymptotic expansion 
for Wb,„,,2 (z) is not applicable. The correct expansion  

may be obtained by first applying the circuital relation m 
 (here argz'= —e <0), 

Wboniz(fe-iri)=e- ir2 	/2(z e tri) 

e —fribW—b,m/2(Z' 

ni-+ +rn —tor(÷—iin —b) 

(150) 

and then by using the asymptotic expansions for the stan-
dard domains. As a consequence, (D i  _2) will now have a 
positive exponential series, and b 103  will be different from 
n i ++m + +. Let 

bpi = fr)  Ab [01  . 	 (151) 

Also define 86 (  _ 2]  by 

bbt_ 2 ]=b[_ 214°221 ,---- c±c  b1N 12 1(2r) -N  +0 (Ab iol ) . 
N =1 

(152) 

Note that A has been used exclusively to denote exponen-
tially small quantities. In this case bb [  _ 2)  is not exponen-
tially small, and S has been used instead of A. 

To determine A6 10 1, one obtains the following matching 
equation, which is the analog of Eqs. (105) and (120), and 
which is a simple consequence of Eqs. (55), (58), and 
(150): 

ni 	ri Ab [01 
2Tri ( —1) e  

IT —  'sin( rAb iol ) 
+m +1+Ab 101 inn 1 +1+Ab[0 ]) 

Xn--2sin 2 07-8b[_ 2} )rin i  +2n 2  +2m +2+Eib [ _ 2 01- (n 1  +2n2+m + 2-1- M[
- z]) 

H7/341°'-i-Ab[0],m /2 (rtb ; ) 	e -rib(-2)717,7 — b [--2)' m /2 (r0[-21e7I ) 
X    	

2iri) ±iri) e - 2rib [ 2 1 Tzi   e +rec,°'+a[01 , 
(rqS [cle 	 rr b[_ 2) ,m/2 ( r45(-2je —R,01 —Abiopm /2 

(153) 

Since r is essentially negative, set r = —r': 

r'=eaTir (argr'=e<O) . 

The right-hand side of Eq. (153) is 0(r'ke -2r) and is also to this order purely imaginary. 

Abi o i =iAi bi,?1I +0 (r'ke-4r,) 

where 

) 29,0)--2b102 2) -28bi _ 2je  _ 
(2r' =2/71 — yn  sin2(78bi -2] )  

r(n1+2n2+2m +2+M(_ 2 1)1-(n1 +2n2+m + 2-1- 45b1-2))  
X 

(154) 

Consequently we can write 

(155) 

0[0] ) 21-34?) 	o(-2]) -2b[_2 e rlitloi— 
X(4 - e —n1  

2Fo(ni-i-- 2n2+m +2+86 [ _ 21 ,n 1 + 
X 

2F0 ( —n i -2n 2 —m —1—bb [ _ 2] , —n i  

ek[_21-1-2) 2Fo(—n1,  —n1—m;;+(r'0[0]) -1 ) 

2F0(n1+m +1,n1-1-1;;—(r'0101) -1 ) 

2n 2 +2m +2+15b1_21;; — (r'01_21) -1 ) 

— 2n 2 - 2m — 1 - 8bi_21;;+(r'¢q_2]) -1 ) 
(156) 
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E (v) (2R /n) -N  = 
N =0 

28 	 JIRI CIZEK et a/. 	 33 

(ni +2n 2 +2m +1)!(fli+2n2+rn +1)!
(2r')

-4,54?-2
er

. 
2/7( — 1 )'"16n 4  

n i !(n i +m)! 

X1 i — —1-- I 8n 21n(2r ' ) —4n 2 + 12(0 °) ) 2 —(M 2  — 1 ) —8n + 1213T )  2r' 

—4n 2 [tb(n, +2n 2 +m -1-2)+0(n 1 +2n2 +2m +2)11+0[r' -2(1nr') 2]. I 	 (157) 

The complete evaluation of Eq. (156) is somewhat more 
tedious than the preceding similar cases because of the 
necessity for expanding the 8b [ _ 2]  series out from the two 
F functions, the sin e, the (+0I- 2 ]) -2 t-21 , and the 
(2r')Ed,1-21 , the last of which leads to subseries proportion-
al to powers of (2,•') -1 1n(2r'). It is possible to avoid ex-
panding out the generalized hypergeometrics. Since the 
expression is really independent of 4, it can be evaluated 
at a special value of 4". If = co, then the generalized hy-
pergeometrics are evaluated at 0 where they are unity. 

After evaluating A i b/1,1, the corresponding imaginary 
doubly-exponentially-small contribution to the discon-
tinuity of 13 1  on the negative axis can be obtained via 

, 
643i 21 =tl i bM1 	(o) 	( —2r') -N  . 	(158) 

N=0 dfil 

As for the /32  cases, there are also other methods that 
avoid derivatives of the RSPT series, but we shall not go 
into the details here. 

V. EXPANSION FOR E(R) 
FROM THE EXPANSIONS FOR 13 1 (r) AND 132 (r) 

A. Preliminaries 

The asymptotic expansion for E(R) in terms of (2R ) -1 
 can be obtained from Eq. (12) for E in terms of /3 1  and fl2, 

from Eqs. (24) and (26) for the RSPT expansions, and 
from the various equations of Secs. III and IV for the ex- 
 :  

ponentially small series contributing to /3 1  and /32, but 
only after r has been found explicitly as a function of R 
from the implicit Eq. (13), R(r)=r[131 (r)+132 (r)]. The 
process is mainly algebraic. The main complication is 
that the transformation itself from r to R contains ex-
ponentially small terms. The purpose of this section is to 
clarify the process and to sketch the necessary steps. 

Note that 	and /32  appear in E and R (r) only as the 
sum /3 1 +/32, which we denote by y: 

y(r)=13 1 (r)+/32 (r) , 	 (159) 
r ( N) = tior /2N) 	 (160) 

Aylq ) =A/31 .71 -1-A/3? )  (q =1,2,...) , 	(161) 

and so forth. Further, we denote by y o  the formal power 
series 

Yo(r)= 	y (N) (2r) -N  . 	 (162) 
N=0 

In the expression of r as a function of R, there will be a 
power-series contribution that we denote by r 0 , and that is 
the formal power-series solution of 

1 	Yo(ro(R)) 
(163) 

By means of Lagrange's formula, 19  the solution can in 
fact be immediately written: 

2r0 	2R 

1 = 
2r0  2R Nt 

k 
(1 1 +21 2 + • • • +N1 N =N) 

	

n + 2R 
	n 

± n 	2 ___ 	n 	3 	21 	(y (11 ) 2  
= 2R 

1 
2R 1 	n ± n2 	

+ 	• 
(1) 

+1 n   

2R 
• - • 

[141 + 1— 	ik 	Oi 2 ! • • • i ,v ! 

N y in/oi l ( y ( 2)/0 1 2 , 	NI/n  ) 1 N 

(165) 

(164) 

Here n is the usual principal quantum number. Note that 7/ 10 =n, 7/ 111 = — 2n 2 , and that the "natural" expansion param-
eter is n /2R. In a similar fashion the RSPT expansion for E(R) can be written 

+YO 2(r 

—1 

0) 

/ 
N 2 n  =1 N  I 

n 

(1 1 +212 + 

(166) 

(N —3)!(y (1) /n) 1) (y (2( /n) 12 	• • (y ( 'i) /n)'N  -E 
2 	

n 

_1 + 
2n 2  

I 2R 

+ 

il'i 
M 2,. • 

• ,iN 

• +NiN = N) 

+(r" ) ) 2  

(167) 
[IV —2— 	ik }!1 1 !1 2 ! • • 	iN ! 

(168) 2R n 3  
1 

2R j n 3 	n 4 
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The aim now is to express the exponentially small series in E, namely AE 111 , AE 121 , etc., entirely in terms of y o(r 0 ), 
A yi l l(r0 ), A y 121 (ro ), etc. That is, the AE 141  should be put into a form in which the exponentially small contributions Ar 
to r =r0 +Ar are expanded out explicitly as a function of r o , and the remaining r o  dependence can be replaced by its 
power series in R, Eq. (164). In fact, by two successive expansions of E =- a y-2 [Eq. (12)], the first with respect to 
Ay, the second with respect to A(r -1 ), one obtains 

E=ERsP-r+AE=ERsvr+LIE 	 (169) 

= - +YO 2 (r)+AY(r)YEI-3 (r) - ÷[AY ( r)] 2Y6 4( r ) + • • • 	 (170) 

=-4-yo(r0 ) -2 -+A(r -1 )[(d/driT I  )yo(r0 ) -2 1-1[A(r -1 )] 2 [(d/dro-  ) 2,),0(r0) -9 + 	. 

±Ayo(ro)[Yo(ro) -3 ] - 4[AYo(ro)] 2 [Yo(ro) -4 ]+ • • • +A(r -1 )(d/dro-1 )[4(ro)Yo(ro) -3 ]+ • • ' 

(171) 

The A(r -1 ) can be expressed directly in terms of AE, Eq. 
(169); the LIE can then be obtained recursively, as will be 
shown in the next several paragraphs: 

	

r -1 =R -ly=R -1 (-2E) -1/2 =r0-1 +A(r -1 ) , 	(172) 

A(r -1 )=R -I AE[(-2E Rsp-r ) -3/2 ] 

-1 (AE)2 [( -2ERsp-r) -3/2 ]+ 	• 
	(173) 

=AE[r6 1 yo(r0 ) 2 ] 

2 (AE) 2 [rE, I yo(r0) 4 ]+ • • • 	 (174) 

where E =ERS- AE has been expanded around 
ERspT = — y o (r o ) 2 . 

B. First exponential order 

From Eqs. (171) and (174) the following preliminary 
formula for AE 111  can be obtained: 

py 111 (ro) 
AEI I I- 	(175) 

YO(ro) - ro t Y1(ro)(d/drci I  )Yo(ro) 

The final formula for AE 111  results from inserting Eq. 
(164) for ro  into Eq. (175) and using the appropriate equa-
tions for A y 111 (ro ) developed in previous sections: Eqs. 
(64), (65), (69), (83), (126), (127), and (159)-(161). The 
first few terms are 

200 ) 
AE 111  —± (2R /n) 2  e —R/n—n  

n 3n 2 !(n 2 +m)! 

X El+ I zR
1[2nOT ) -4(11(2°) ) 7  

+13421) +2n 2 ]±0 (R -2 )1 . 
(176) 

C. Imaginary second exponential order; 
more on the approximate formula of Brezin and Zinn-Justin 

In exactly the same way that Eq. (175) was obtained, 
one gets for the imaginary second-exponential-order  

series, i.e., the imaginary part of AE 1 2 1 when R is real and 
positive, 

AE121=ArE121±1.A,E121 	 (177) 
Aiy {21 (ro) 

 Ai E 121 - 	  . 	(178) 
y6(r o ) 	A(r o )(d /dr cT. I  )yo(r0) 

When the series (164) for r c, is substituted into the denom-
inator and into the appropriate expressions for A i y 121 , 
then one gets the desired formula for A 1 (E) 121 . Up to two 
terms (but not to three) the formula is, except for sign, 
rn 3  times the square of AE 111 , Eq. (176): 

AiE 121 =-Trn 3 (AE 111 ) 2[1+0(R -2 )] (+ImR >0). 

(179) 

Apart from the adjustment by the factor n 3 , this result is 
the approximation of Brezin and Zinn-Justin, 12  demon-
strated to be valid to only two terms for the ground state 
by Ciiek, Clay, and Paldus 13  numerically, and by Dam-
burg and Propin analytically. 14  In fact, it is not difficult 
to see that the exact relationship is 

3  Ai E 121  

(AE 111 ) 2  
n 3 (d /d02°) )Ydro)  

yo(r 0 ) 3 -r o-l ydro) 2(d/dro 1 )yo(ro) 

1 - (2r0 ) -24/342wn + 0 ( r -3 ) 

= I -(2R /n) -2402°)n +0(R -3 ) . 

Thus, exactly two terms are given correctly by the gap-
squared formula for every state. 

D. Real second exponential order 

The extraction of the real second-exponential-order 
series for A,.E 121  is more tedious, as can be seen from the 
following equation obtained from Eqs. (171) and (174), 
and in which all quantities are to be evaluated at r =r0 , 
the power series given by Eq. (164): 

'"" 



A rE 121  — 	 -1 [I -4-0(r -2 )]+ 	3 	
2 1(dyo/dr0 -1 ) ro_rci (dro/dro 	 yo- Yoro 

AEMAyln(r0-2/16 ) 	
Ary (2)_ _2_3 1, c7 i (Ay ily -doh 
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Ar Ein =yc-7-3A r ,y 121____i_ y6 4(Ay ii1)2 +y61A r Ep1 r -i 0 (dyo/drO- ' ) 

+41EH[y(7 1 r6 1 (dAy 111 /dr6-1 )-3yc7 2AY IIi rc7-1 (dy0/dro 1 )] 

+()NEI I) ) 2 1 + 1' 61-1 (dr0/drcT 1  ) +70r0-2[d2r0/(drc71 ) 2 ] —1 - rc7 2 (dy0/dr6-'  ) 2 1 . (183) 

The leading term comes from LiEu 1 y6- 'r6-1 (dAyl'I/dr o7 1 ), since r -1 (d /dr -I )e 	re - '. Consequently we obtain for 
the first few terms of A rE 121  

(184) 

-_=R(pEW) 2y0[1-(2r0) -1 (3+202°) )+0(r6.2 )1+n -3A r b 121 [1+0(rc72 )] , 	 (185) 

and finally, 

A,(E) 121 =nR(AE 111 ) 2  1- 2R 
(3+202°)+2n2+20(n2+1)+2n0 	

2R 
(n2+m +1)1+ 	[4n ln(2R/n)]+O(R -2 ) . 

  

(186) 

Note the term ( n /2R )1n( 2R In). 

E. Discontinuity in E(R) for R negative 

The last expression we obtain in this section is for the discontinuity of E across the negative R axis, namely, 

E(e -"R')-E(e +l'iR'), with argR'=0. The contributing expressions are Eqs. (156)-(161), (171), and (174). By the 
same logic that led to Eqs. (175) and (178) for AEI 11  and Ai E 121 , one can see that with ro = -r o , 

E(e -'11?')-E(e +11-iR') 
,f3.12 21 

yg( 	 y6( -r'0 )(d /dre, -1  )y 0( -r.0) 

=in -341,b0[1+0(ro-2 )] 

(n 1 +2n 2 +2m +1)!(n i +2n 2 +m +1)! 
=277-H-1)17'16n 	 (2R ' /n )-41°)-2e -2R'in +2n 

n i !(n l i-m)! 

X [1- 2R n 	[8n 2In(2R1n)+ 
' 	

12q3(2o) )2_ m  2 1 ) 8010 ) 4/3(20) 

-4n 2 [0(n 1 +2n 2 +2,71 +2)+0,11+2,12+m +2)]-12n01°1 -4n -8n02°) ]+0[R -2(1nR . ) 2 ] 

(189) 

(187) 

(188) 

Again, notice the term (n /2R ')In( 2R 'In ). 

VI. DISPERSION RELATIONS AND ASYMPTOTICS 
OF THE RSPT COEFFICIENTS 

Dispersion relations are pertinent to the large-N 
behavior of the RSPT coefficients, whose asymptotic 
behavior they permit to be expressed as moments of the 
discontinuity of the imaginary part of the eigenvalue 
across the real axis. Dispersion relations arise from 
Cauchy's integral formula by enlargement of the contour 
to wrap around a branch cut. (These are standard argu-
ments. See, e.g., Simon. 23 ) 

Consider first the /3 2  RSPT series, whose Borel sum is 
(31(re -') for Imr > 0 (see Sec. III I). One is led to the 
formula (see Sec. IV of Ref. 6 for a rigorous discussion) 

r . ftj(re -1")-13;(re+') 
(31(re -16 )=  	 dz 	(190) 271-i Jo 	z -r  

where again, this integral is meant only in the sense of 
power-series expansion. The discontinuity in 13' 1  is given 
by Eq. (124), which is -T2 times the imaginary series 
entering the expansion for 02 when ±Imr > 0. This fact, 
along with the expansion of the denominator (z -r) in a 
geometric series, gives [cf. Eq. (100)] 

AN) 	(2z)N 	' 1 (z ) 2q (z)d (2z) 	 (191) 

-.7r fo 
w-I-ie

(2Z) N-I AANZW(2Z) (€>0) 	(192) 

(N+4n 2 +2m +1)! 

(n 2 !) 2 [(n2+m)!] 2  

12(02°) ) 2 +4/342°) -m 2 +  
X 11— 	 +0 (N -2 ) 

N+4n 2 +2m +1 

(193) 

. 1.7rnr!.."Pqr- 
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In this way the discontinuity in fr1 (re — '1 ), which is imagi-
nary and of second exponential order, determines the 
asymptotics of the RSPT /3(2" ) . 

Similar considerations apply to the RSPT series for /3 1 , 
which is Borel summable to the eigenvalue of the modi- 

,61(ze-216)+,61(z) 
	 dz 

fli(r) 	f /31(z)—/31(ze 2v1 ) 	1 	r o 	— dz  

2ri 

	

2771 0 	z —r 	

+ 	

z —r  

	

dz+ 1 
	r - 131(z'e -77i )—fl1(z .e +iri )  

dz' . 
1 	r 	fil(z)—fli(Ze 21d ) 

	

t3 	z —r 	 +r 

As for the 	(i.e., /32 ) dispersion relation, the jd0iscontinuity on the positive axis, /3 1 (z)—/3 1 (ze 2'), is imaginary and of 
second exponential order: it is 2i times the (64/31 21 ),„d  of Eou. (126) and (127). The discontinuity on the negative axis is 
given by Eqs. (156)—(158). Just as for /3‘2" ) , one obtains for ,3', )  

fo- +if  (2z )N —1[A,  /".(
i
21 

P (z)], ndd(2z)+(2r) — ' f:( —2z') N— 'Ai/31 21 (z')d (2z') (e> 0) 

(N +4n 2 +2m)! 	48 

n i Rn i +m)! 

4n2 —12((3 (2o) )2 mz _1+12n —1213(2°)  
N —4n 2 —2m —5 

4n 2[20(N-4n 2 -2m —5) —0(n 1  +2n 2 +2m +2)-0(n (  +2n 2 +m +2)] 

N —4n 2 — 2m —5 
	 +0[N —2 (1nN 2 )] 	(197) 

 

Note that the dominant asymptotic behavior coming from the positive cut is a same-sign (N + 4n 2  + 2m )!, but ,hat 
buried a factor of N +

s 
 2+  down is an alternating-sign contribution that also involves a 1nN dependence, since 

i,b(N)-1nN +0 (N —1 ). Because of its relative smallness, the alternating-sign contribution is not immediately apparent 
from a numerical table of the # 1" ) , but careful numerical analysis can detect it. 

Similar considerations apply to the RSPT series for E(R), which is Borel summable 5 ' 6  to 
T[f4 (roe + flitro,M (roe —16 ))] -2 . That is, instead of the real /32  of Eq. (11), one puts into both Eqs. (10) and (12) 

the analytic continuation of the /3', of Eqs. (113) and (114). There are two cuts in this Borel sum, with the key second-
exponential-order quantities given by Eqs. (172), (173), and (182). The resulting asymptotics for the E(N)  are 

E (N) —r — ' f: +if (22/n) N— ',I iE 121 (z)d(2z/n) 

±(270-1 	(2z7n) N-1 [E(R'e')—E(R'e +1")]d(2z .  

e  —2n 
(N+4n 2 +2m +1)341 

/n) 

4n f 1 ) — 8( ° #2  °) ) 2 + 2/342"+ 4n 2  

(198) 

(199) 

±( 

n3(n21)2[(n2+m)12 

(n +2n 2 +2m +1)!(n )ri +N—l e 2ni6n . 

!1+ 
N +4n 2 +2m +1 	

+0(N-2)I 

+2n 2 +m +1)! 
(N-4n 2 -2m —5)! 

n 3 n0(n ( +m)! 

12n 2  — 12(02°) ) 2 + M 2  — I +12n —12/3(2°)-4ni3(2°) 
X1+ 

N —4n 2 — 2m —5 

4n 2[24(N-4n 2 -2m —5)-1,/,(n +2n 2 +2m +2)-0(n 1 +2n 2 +m +2)] 

N —4n 2 — 2m —5 	 + 0(N -2(1nN) 2 ) 

fled Eq. (15) when 13 1 (re — t 1 ) is used for /3 2. (See again 
Ref. 6 for the rigorous details.) Since, however, /3 1 (r) also 
has a cut for negative r, as well as the cut for positive r 
induced by the cut in fil(re '1 ), there are two terms in the 
dispersion relation: 

(194) 

(195) 

(196) 

+(-1)1" + " -1 16n 4(n1 	 (N —4n 2 -2m —5)! 
+2n 2 +2m +1)!(n i +2n 2 +m +1)! 

— 	 +0(N-2 )1 
(n 2 !) 2 [(n 2 +m)!] 2 	 N+4n 2 +2m 

01 1 ( /3420) )2 ± l 2( 	) )2 _ ± 4010) )( m  2 _ 1 ) 

Again, note the aleteratir:g-sign contribution that is down 
by a factor of N +

sn 
 n2+  from the dominant same-sign 

(N +4n 2  + 2m +1)! behavior. The alternating-sign con-
tribution is not readily apparent from a table of the E (N) , 
but careful numerical analysis can detect it. In fact, it 

was this unsuspected alternating-sign contribution that 
was responsible for the prior difficulty in carrying out the 
Bender-Wu analysis of the numerical E(N)  for the ground 
state. 13  This point will be discussed in more detail .  in 
Secs. IX and X. 



where S=S(ri,r) satisfies the Riccati equation, 

1 	dS 
( d 

2 _ 
4 

_/32 

4 
1 
n  4 	x7 

1 	dS  I 1/2  d 2 	c1.3 1 -1/2  

m2— 	1 
+2  

1  1 
4 2  n r 	-77 
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rl 	

dr/2 dn  
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We assume for S(Thr) an expansion of the form 

S(n,r)- 	S (N) (70(2r) -N +0(rke - r) 	(202) 
N=0 

where in fact the S (N)(71) can be obtained directly from 
the QSC wave function by using the asymptotic expansion 
(56) for the Whittaker function and then rearranging 
terms appropriately. For instance, Eqs. (200) and (61) im-
ply that 

A (dS /d77) - 
 1/2e  -rS/2 

( — 1 ) "2 ( 2r ) 13(2°)  
(n2+m)! 

X77 02 (2-77) 13t20)e -"1/2 [1 -1- 0(r)] . 	(203) 

Then, 

S --c +7/ + (2r) -1 4,642mln 2---n- +0(r-2 ) , 	(204) 
71 

A  _( 	1) ^2 e +rci2(2r)2042° ' A  n 2 +172  )! , 	 (205) 

where c is a constant (with respect to n ) related to the 
normalization (see below). 

The main point, however, is not to obtain the S IN)  from 
the OW) , but figuratively the reverse, because the S IN)  are 
much easier to obtain directly from Eq. (201) than the 

(201) 	0iN)  from Eq. (35). For instance, given already that 
dS (m /dn = 1, then for N> 1, S IN)  satisfies 

The purpose of this section is to simplify the practical 
procedure for calculating the 0(e -r) and imaginary 
0(e  -2r) expansions for /3 1  and 732 . The procedure so far 
involves three steps: (i) solution of a Riccati equation for 
0, e.g., Eq. (35); (ii) determination of the index shift, e.g., 
Ab I  i of Eq. (64); (iii) determination of the ratio q(r) by, 
e.g., Eq. (69) or (83). What complicates the procedure is 
the presence of 0 -1  and 0 -2  in the Riccati equation, 
which is the consequence of starting from the Whittaker 
confluent hypergeometric function. The alternative is to 
start from an exponential function—i.e., the JWKB-like 
form—which leads to a much simpler Riccati equation, 
but which then requires a "connection formula" and an 
alternative method to calculate q (r). 

The JWKB-like form for the QSC wave function <13 2 
 [cf. Eqs. (31) and (32)] is 

1/2(A e -rS/2 ±Be +rS/2) 4)2 = (dS/dr1) - 	 (200) 

N -1 
dS (N) /dri= -÷ 	(dS (k) /dn)(dS IN-k) /dn)-402N-1 1n -1 +(2-77)-1 ] 

k 

+28 ,2(rn 2  —1)[77 -1  + (2-77) - 12  -8[(dS / dn) 1 /2 (d 2  / d7/2 )(dS / dn)- I /2iIN -21 	 (206) 

from which it follows that (see also immediately below) 

dS 111 /d7/=-4/3(2°1 [n -1 +(2-n) -1 ] , (207) 

S i 11 = +4/3(2°) ln 2 -1/ ,  (208) Il  71 	I 

dS (2) /d77= -8(0213) ) 2 [77 -1 +(2 

-402171 -1 +(2-7)) -1 ] 

+2( rn2  - 1)[7-1 -1  +(2-71)-1 1 (209) 

I3(21) = -2((312°) ) 2 +÷(17z 2 -1)  , (210) 

5(21 = -4021) [7/ -1 -(2-n) - 1 , (211) 

and so forth. There are two tricky points. The first is 
that the Riccati equation (201) involves only derivatives of 
S, and not S itself. The integration constants implicit in 
Eqs. (208) and (211) are therefore not determined by the 
Riccati equation; they will be explained in the next para-
graph. The second point is that, apart from 5111,  the S(N) 
for N> 2 cannot have a inn dependence. That is, AN-I) 

 has the value that eliminates the r7-1  term from the recur- 

sive Eq. (206) for S IN) . A most important practical conse-
quence turns out to be that for N> 2, dS (N1 /dn is a poly-
nomial PN (77 -1 ) in r/ -1  of degree N, with no constant or 
first-order term, plus a similar polynomial in (2-r7) -1 . 
Moreover, because of the symmetry of Eqs. (201) and 
(206) with respect to 7-1-.2 -77, it follows that 

dS (N) /d7)=-PN (n -1 )+PN [(2-0-1 ]. 	(212) 

Thus, the 5 (N)  for N> 2 have a much simpler structure 
than the 0 ( " )  in that they are polynomials requiring only 
N -1 coefficients, and they have no complicated logarith-
mic terms. 

Now we return to the integration-constant problem, 
which affects both the absolute normalization, which can-
not be determined from the differential equation anyway, 
and the relative weights of the e ±rS/2  components, which 
is a connection-formula problem solved here easily be-
cause the overall Schrodinger equation is symmetric under 
77-).2-n. The solution is to make S IN)  satisfy 

S (N) (2-77)=SIN) (7-1) , 	 (213) 

and to take A/B in Eq. (200) to be ± I. This then fixes 
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also S (0) , 

S (°) =71 — 1 , 	 (214) 

as well as the integration constants for all S (N) . 
However, there are still two major remaining problems: 

how to get A/4 11  and Ai /31 21  from (1) 2 in JWKB form. In 
Sec. III the procedure depended first on calculating the 
Whittaker index shift, which does not occur here, and 
second, the ratio (r). Here we can obtain API.° from the 
two functions 44 ) , 

(DV' = ( dS /d )-1/2(e--rsn±e+rs/2) 	(215) 

via the standard current density formula, Eq. (79), which 
here becomes 

2AA 1 I= —2/ loll  (dS/d77) -1 (e -r.s_e rs) 

x[n- '+(2-n) -- i]do (0« n <<2) . 

(216) 

By the same argument as in Sec. HIE, Eq. (216) can be 
put in the form 

f c°  (dS/dn) -le -r(S+11 

x[n -1 +(2-n) -1 ]dn , 	(217) 

where the integral in Eq. (217) is meant only in the sense 
of a series in (2r) -1 , obtained by appropriate expansion of 

the integrand, followed by integration term by term. 
The determination of the imaginary second-

exponential-order series A i/42 I could also be obtained 
from the JWKB function by a current-density formula, if 
one had the requisite connection formula. Unfortunately, 
we have not found a way to get the right formula without 
going directly through the Whittaker function. However, 
we can get A i  f42)  via Eq. (101) from the square of AK 
and from q(r), the latter of which can be solved for 
directly in the JWKB approach. Note that 
q(r) ---=c1/32,Rsivrid13(20)  is a series in (2r) - I  [Eq. (69)]. Let 

T (N) (77) --dS (N) (77)/df3 (2°) . (218) 

Then T and q (r) satisfy an equation obtained by differen-
tiating the Riccati equation (201) with respect to /32 ) : 

1 dS  dT 

	

—r -1 q (r) 1  + 	1  2 dn dn 	 n 2—n 

dT  dS 1 -1/2  d 2 	dS  1 -1/ 2  

+r-2 1 

(219) 

Further, by taking the Op )  derivative of the recursive Eq. 
(206), one obtains 

2 dr) do 	dn 2  drl 

2 	dn2  dn 	do • 
dS  I -1/2  d 2  dS -3/2  dT 

N-1 
dT (N) /thri=— 	(dT (k) /dn)(dS (N-k) /dn)-4q (N-l In -i +(2 — n) -1 1 

k =0 

—4[(dT/d 77)(dS/d/j) -1/2(d2/d
7/
_2 )(dS/d77) -112  

—(dS Ain )Ia(d2 icin 2 )(ds/dn) -312(dT/d 77 )](N -2 ). 
	 (220) 

One then finds (recall that (4 ,1°1 =1) that 

T(°) =0 

dr 1) /dn=-4[77 -1(2—n) - 1 , 

T")=1-4in 	I , 
dT( 2 )/d n = - 16/3T177 - ' + (2-77) - 12  

—4q (11 [77 -1 +(2—n) - 1 , 

( 1) = 4/31201 
q

T(21 = 16/3(2°1 [77 -1 —(2—n) -1 ] ,  

negative r). The induced terms are needed to high order. 
They can be calculated from Eq. (127) with the RSPT 

(221) wave function, and thus require no further comment. The 
discontinuity for negative r, on the other hand, will not be 

(222) taken further than the few orders given here explicitly, 
and so the JWKB approach will not be sketched. 

(223) This now completes the theoretical discussion of the 
computation of the asymptotic expansions for fi t , /32 , and 
E. In the remaining sections we give numerical illustra-
tions of the various terms in the expansions, their asymp- 

(224) totics, and their interrelations. 

(225) VIII. NUMERICAL CHARACTERIZATION 

(226) OF THE #2  SERIES 

and so forth. As is by now a familiar argument, the value 
of el -1)  is obtained by eliminating the n - ' term in the 
equation [Eq. (220)] for dT (N) /dn for NZ 2. In such a 
way q (r) can be obtained, and consequently Lt i f3121  via Eq. 
(101). 

Finally, we consider the two contributions to /3 1 : 
(A/31 11  +/A1 /31 21  )ind  and iA,/31 21 ( —r) (the discontinuity at 

In this section we tabulate and discuss the asymptotics 
for the various series contributing to the asymptotic ex-
pansion of /3 2 . First we list in Tables I — III the terms of 
the RSPT series, the exponentially small gap series Af3i 1 I, 
and the doubly-exponentially-small imaginary series 
tli t1 21 , all through fifty-first order in (2r) -1 , for the 
ground state (for which n 2 =0 and m=0) and for two ex-
cited states for which n 2  and m are (1,0) and (0,1). We 
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TABLE I. Coefficients for the RSPT series, the AA' )  series, and the A i /3121  series, as defined by Eqs. (26), (227), and (228) of the 
text, for the (n2 -0, M =0) ground state of /32. 

Order 

N 0(N) 
Coefficient 

,(1)(N) c (2)(2,1) 

0 5. 00000 00000 00000 00000 00000 000 x10 -1  1.0000000000 00000 00000 00000000 x 10 1.00000 0000000000 00000 00000 000 110 0  
1 -1. 00000 00000 00000 00000 00000 000 x 10 -4.800000000000000 00000 00000 000 x 10 -6.00000 0000000000 00000 00000 000 x 10 
2 -1. 00000 00000 00000 00000 00000 000 x10 0 -3.000000000000000 00000 00000 000 x 10 2.00000 00000 00000 00000 mow Geo x 10 
3 -4. 00000 00000 00000 00000 00000 000 x 10 -2.00000 00000 00000 00000 00000 000 x 10 1  -1.60000 0000000000 00000 00000 000 x 10 1  
4 -2. 30000 00000 00000 00000 00000 000 x10 1  -1.449000000000000 00000 00000 (0) x 10 2  -1.31000 00000 00000 00000 00000000 x 10 
5 -1. 64000 00000 00000 00000 00000 000 x 10 2  -1.2400000000 00000 00000 00000 000 x 10 3  -1. 18600 030000000000000 00000 000 x10 3  
6 -1. 36200 00000 00000 00000 00000 000 x10 3  -1.183900000000000 00000 moo 000 x 10 4  -1. 18100 00000 00000 00000 00000 000 x10 4  
7 -1. 27440 00000 00000 00000 00000 000 x 10 4  -1.24324 00000 00000 00000 00000 000 x 10 5 -1.27960 00000 00000 00000 00000 000 x 10 5  
8 -1.31707 00000 00000 00000 00000 000 x 10 5  -1. 41649 00000 00000 00000 00000 000 x 10 6  -1.49465 40000 00000 00000 00000 000 x10 6  
9 -1. 48424 40000 00000 00000 00000 000 x 10 6  -1. 73543 12000 00000 00000 00000 000 x 10 7 -1.86934 6800000000 00000 00000 000 x10 7  

10 -1. 80783 02000 00000 00000 00000 000 x 10 7  -2.272320420000000 00000 00000 000 x 10 8  -2.49095 24400 00000 00000 00000 000 x 10 8  
11 -2. 36476 47200 00000 00000 00000 000 x10 8  -3.1657838160 00000 00000 00000 000 x 10 9 -3.5233830400 00000 00000 00000 000 x 10 9  
12 -3.3058716700 00000 00000 00000 000 x 10 9  -4.6772816692 00000 00000 00000 000 x 10 10  -5.2750814163 00000 00000 00000 000 x10 1°  

13 -4. 92007 90504 00000 00000 00000 000 x 10 10  -7.30893 64286 40000 00000 00000 000 x 10 11  -8.3399805415 40000 00000 00000 000 x 10 11  
14 -7. 77049 28925 20000 00000 00000 000 x 10 11  -1.2053061361627000000000000000 x1013  -1.38965 93049 57800 00000 00000 000 ic10 13  
15 -1. 29869 09942 92800 00000 00000 000 x10 13  -2.09349 93948 78760 00000 00000 000 x10 1! -2.4360816100 60240 00000 00000 000 x1014  
16 -2.2911996110 22270 00000 00000 000 x10 14  -3.822976391758058 00000 00000 000 x10 1 ' -4.48542 46645 03802 00000 00000 000 x 10 15  

17 -4.25726 70215 18900 00000 00000 000 x10 15  -7.3273910035 20413 60000 00000 000 x 10 16  -8.66093 78935 33990 80000 00000000 x10 1 ! 
18 -8.31362 93369 26679 00000 00000 000 x10" -1.4716745118 7183330200 00000 0110 x 10 18  -1.7511316654 27886 86800 09000 000 x1016  
19 -1.70286 51859 52650 20000 00000 000 x 1018  -3.0924848922 41491 97040 00000 000 x10 19  -3.70189 81237 24444 08640 00008000 x10 19  
20 -3.65163 71245 95240 29140 00000 000 x 1019  -6.78854 08446 998416498800000 000 x 10 20  -8. 17064 74365 64111 78302 00000919 x 102°  
21 
22 

-8. 18363 62546 55226 91640 00000 000 x 10 20 

 -1.9135206010 34558 15834 84000 000 x 1022  
-1.55445 81687 12466 66800 80000 000 x 1022 

 -3.70764 85296 68338 29993 46200 000 x 1023  
-1.88020 75120 84454 55611 40000 000 x1022  1 
-4.5048643609 1475288996532(11)000 x 10'; 

23 -4.660859986846674 53748 97600 000 x1023  -9.19903089252506964112 14480 000 x1024  -1. 1223129845 29462 33492 30384 000 x10 2' 
24 -1.1808709875 31777 2152818974 000 x1025  -2.371055915259105 74586 84410 000 x 10 26  -2.9037173545 26023 5751080214 000 x1026  
25 -3. 10768 72059 67308 72311 17543 200 x 10 26 -6.3409700820 77188 20855 34988 320 x10 27  -7.7925153228 08283 84083 62822 960 x1027  
26 -8.484010315903761 99466 43713 720 x 10 27  -1.7573883051 43272 09774 64771848 x1029  -2. 1666187672778870915784470735 x 1029  
27 -2.39970 72843 52675 68333 74424 069 x 1029  -5.0418210457 38398 35811 33937 983 x 10 30  -6.23434 8012714026 0028315075 752 x10 38, 
28 -7.02431 79168 22741 72523 31191884 x10 38  -1.4957164288 09167 61657 52989 120 x 10 32  -1.85459 34956 33853 10071 88516 430 x 10 34  
29 -2. 12551 33457 46545 09323 16169 555 x 10 32  -4.5836526145 22014 91608 59148 195 x1033  -5.69801 46494 80673 2640795454 135 x1033  
30 -6.64185 83025 05175 43644 14212 211 x1033  -1.4496262146 16932 19240 75245053 x1035  -1.8063635257232793684149310267 x10 35  
31 -2. 14120 94328 88922 08476 96351560 x10 35  -4.72699 60495 98641 44352 22329 589 x 10 36  -5.9034208831 68021 20850 61900585 x 10 36  
32 -7. 11497 97941 70213 53743 47647 260 x 10 36  -1.5878982879 84635 97550 95887 989 x 10 38  -1.9872343570 83596 13745 71503926 x10 38  
33 -2.43476 01998 75947 84045 16985 059 x10 3e -5.49048 73994 89535 01901 11200 699 x10 39  -6.8847683858 90553 46760 93238 203 x 1039  
34 -8.5733380341 53255 41652 72258 532 x10 39  -1.95258 70796 48423 03941 78559 903 x 1041  -2.45295 71861 49525 5531249654 791 x 1041  
35 
36 

-3. 10396 56319 28989 55910 55864 809 x104, 1, 
-1. 15461 29420 60619 29018 30718129 x10" 

-7. 1367183784 92300 82039 52528 491 x 1042 

 -2.678973569368627 74424 09797 058 x 1044  
-8.9811661087 52749 84174 69544 3-20x 1042 

 -3.3768721026817794582379484 983 x 1044 

37 -4.40964 88093 35437 27416 23730 083 x10 44  -1.0321143799728239238966487 791 x1046  -1.30300 74990 96156 42092 56503 281 x1046  
38 -1.72794 59793 86441 83558 55102 283 x 1046  -4.0784800503491290776085440 066 x1047  -5.15649 19022 80787 89237 58353 474 x1047  
39 -6.942875434160981 32809 73866 808 x1047  -1.6520167304 14025 34334 48890 893 x1049  -2.09157 84455 26994 94656 43290 908 x 10 49  
40 -2.85870 36167 95211 42358 58706 384 x10 49  -6.855240038677524 26835 40750 117 x105°  -8.6907133574 32356 42848 37178 851 x105°  
41 -1.2055051343 76258 72332 02260 750 x 10 51  -2.912600144340255 49058 66339 557 x1052  -3.69707 50313 60110 25599 19234 567 x 10 52  
42 -5.203554910685414 14568 64618 160 x 1052  -1.2663609070 46195 03421 76231 613 x 10 54  -1.6093599125 18770 97479 16088 058 x10 54  
43 -2.2979148686 18532 42916 00762 910 x1054  -5.6315890714 31873 6986152625 228 x1055  -7. 16506 99757 94250 99220 85582 926 x10 55  
44 -1.03765 25193 10435 21015 42299 284 x10 56  -2.5602891040184424265046072008 x1057  -3.2609900973 70612 52788 02117 422 x1057  
45 -4.7890015564 75344 94313 70950 205 x1057  -1.18940070603760889247 32088 544 x1059  -1.5164859630 2624183995 44170311 x 10 59  
46 -2.25794 09433 59019 65094 16354 837 x10 59  -5.64356 23561 95807 13378 84812 863 x 1060  -7.2026680972580680772882973260 x10 6°  
47 -1.0870824854 82559 41046 75467 189 x 1061  -2.733864767607054 08529 73618 875 x 10 62  -3.4924355429 46068 17903 53647 809 x 1062  
48 -5.34207 78495 67110 04754 84898 385 x10 62, -1.3515099684 21553 94756 34420 727 x1064  -1.7280826951 32021 6726969868230 x10 64  
49 -2.67841 8698557226 31974 80156 238 x10 6' -6.81564 4035614582 87447 90262 544 x1065  -8.722274360843794 99073 75183 599 x10 65  
50 -1.36960 98468 21709 74345 22170 539 x 1066 -3.504882132908820 26687 38878 986 x1067  -4.4890920002 24446 57754 83776 332 x 1067  
51 -7.14005 39439 56397 53456 22192 581 x10 67  -1.837208511661938 24749 17709 789 x1069  -2.35500246378777335815 26098324 x10 69  

use the notation c 111(N)  and c 121(N)  for the series coeffi-
cients for the two exponentially small quantities [cf. also 
Eqs. (54) and (99)]: 

(2r)
4020)

e
-2, 

Aii3121=-Tir 
[n2!(n 2 + m )!] 2  

x c±°  c 121(N)(2r ) - N ±Imr > 0) . 	(224) 
/■1.0 

(227) 	Notice that the coefficients (at least those with fewer than 
the maximum number of significant digits) appear to be 
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TABLE II. Coefficients for the RSPT series, the 114 11  series, and the Li,f31 21  series, as defined by Eqs. (26), (227), and (228) of the 
text, for the ( n 2  =1,m =0) excited state of (32. 

Order 
N e ((11) 

Coefficient 
c()(N) c(2)(111 

0 
1 

1,5000000000000000000000000000 x 10 
-5.0000000000000000000000000000 x 10 

1. 00000 00000 00000 00000 00000 0 x10 
-2.00000000000000000000000000 x 10 1  

1.00000000000000000000000000 x 10 
-3.40000 00000 00000 00000 00000 0 x 10 1  

2 -1.5000000000000000000000000000 x10 1  7.900000000000000 00000 00000 0 x 10 1  3.8200000000 00000 00000 00000 0 x 10 2  
3 -1.2400000000000000000000000000 x 10 2  -1.400000000000000 00000 00000 0 x 10 2  -1.00000000000000000000000000 x 1D 3  
4 -1.4010000000000000000000000000 x10 3  -1.44900000000000000900000000 x10 3  2.75900000000000000000000000 x 10 3  
5 -1.8908000000000000000000000000 x 10 4  -2.71800 00000 00000 00000 00000 0 x 10 4  -1.2842000000000000000000000 0 x 10 4  
6 -2.8779000000000000000000000000 x10 5  -5. 29102 00000 00000 00000 00000 0 x 10 5  -2.29554 00000 00000 00000 00000 0 x 10 5  
7 -4.7903280000000000000000000000 x 10 6  -1.0717800000000000000000000 0 x 10 7  -5. 00120 00000 00000 00000 00000 0 x 10 6  
8 -8.55929 01000 00000 00000 00000 000 x 10 7  -2.25598 17700 00000 00000 00000 0 x 10 8  -1.11861 67700 00000 00000 00000 0 x 10 8  

9 -1.6219249080000000000000000000 x 10 9  -4.92147 11960 00000 00000 00000 0 x 10 9  -2.57053158200000000000000000 x 10 9  

10 -3.23250 68706 00000 00000 00000 000 x 10 10  -1. 10988 943574009000000000000 x10 11  -6.06569003500000000000000000 x 10 10  

11 -6.73608 46023 20000 00000 00000 000 x 10 11  -2.58205 23355 44000 00000 00000 0 x 1012  -1.4689276000 40000 00000 00000 0 x10 12  
12 -1.4614279030986000000000000000 x10 13  -6. 18612 91921 55800 00000 00000 0 x1013  -3.64875 11428 09800 00000 00000 0 x10 13  

13 -3.2906069379 17680 00000 00000 000 x10 14  -1.52432 98050 56760 00000 00000 0 x 10 15  -9.2919845888 5028000000000000 x10 14  
14 -7.67143 36414 018200000000000000 x10 15  -3.85941 36242 03950 00000 00000 0 x 1016  -2.4251191536 09848 40000 00000 0 x 10 16  

15 
i6 

-1.848437997080646 24000 00000 000 x10!: 
-4.596996120997360 74900 00000 000 x10 16  

-1.00330 60726 6078913600 00000 0 x 10 18 

 -2.67663 65632 22320 18290 00000 0 x 1019  
-6.48485 69907 24364 80000 00000 0 x10 17 

 -1.77635 67105 06533 32930 00000 0 x 1019  

17 -1.1787908355 26013 11180 00000 000 x 1020  -7.32537 77992 96708 57596 00000 0 x10 213  -4.983939097342652 50038 00000 0 x10?, °  

18 -3. 114216390120289 8692100000 000 x10 21  -2.0561083355 15227 58653 66000 0 x 10 22  -1.432193020207219 22611 42000 0 x10' 2  

19 -8.47114 9248105832 81940 88000 000 x 1022  -5.91784 77055 13196 97774 55200 0 x102, 3  -4.2150826751 34774 24225 84800 0 x1023  

20 -2.3713951306 64353 18768 28460 000 x10 24  -1.74636 02638 88521 58796 86698 0 x10' 5  -1.2705300054 98321 50863 56998 0 x1025  

21 -6.82900 54018 38489 37056 42440000 x 1025  -5.28348 72967 01142 31949 67652 0 x1026  -3.922289482009263 65812 74534 0 x 1026  

22 -2.0223239028 84232 49825 83059 240 x10 27  -1.63868 19398 02560 95274 51599 7 x1028  -1.24013697878503754869 30185 5 x1028  

23 -6. 15665 56058 51913 21565 96472 080 x10 2,8  -5,20985 42615 91068 09353 90167 0 x1029  -4.01576 13158 67891 81492 67074 6 x10 29  
24 -1.92622 25172 07042 01876 03172 146 x 19' 8  -1.69776 42417 31158 08294 82577 0 x10 3! -1.33173 39805 98400 16783 83876 6 x1031  

25 -6, 14158 27043 12407 71637 60630 245 x10 31  -5.67028 20309 90721 47662 47606 1 x10 3' -4.52261 32888 36149 44369 21485 5 x10 32  

26 -2.04405 42323483218480046461406 x1033  -1.94066 31196 26219 37173 29205 7 x10 34  -1.5726835502 1 9543 78418 88854 0 x 10 34  

27 -6.92841 54288 88016 64480 78189 018 x 10 34  -6.80524 07901 98263 84893 67740 8 x10 35  -5,599079587418291 13573 03960 2 x1035  

28 -2.41031 48241 35442 14985 99921 841 x1036  -2.44456 1146458322 27853 54574 2 x1037  -2.04053 92869 53159 10947 16949 2 x10 37  

29 -8.60303 70969 35033 61034 45996 990 x 10 37  -8.9934352514 02760 98447 98358 7 x 10 38  -7.611018696889220 24321 04967 5 x1038  

30 -3.14920 34143 86974 19796 00692 752 x 10 9  -3.38773080775325159474 22324 9 x 10 48  -2.9047893346 26683 11651 43846 8 x1048  

31 -1. 18180 88928 18561 80957 86905 142 x 10 41  -1.30626 55389 85574 10499 99715 9 x 1042  -1. 13410 82383 50151 69426 32699 2 x10 42  

32 -4.54478 68051 15425 64706 98675 558 x 1042  -5. 15424 58570 19095 02936 34729 7 x1043  -4.528427523774185 49325 41237 6 x10 43  

33 -1. 79026 95612 40790 23279 03640 787 x1044  -2.08053 21720 25534 63296 61777 0 x10 45  -1.84871 98441 10222 11599 98361 1 x1045  

34 -7.22069 78473 35164 79148 63644 151 x1045  -8.58852 10932 50696 42439 84301 2 x10 46  -7,71431 74222 19582 71894 45968 7 x 10 46  

35 -2.9806404197448852927922693454 x1047  -3.62453 24148 46241 86913 83649 4 x 1048  -3.28923 03154 46304 15004 74978 2 x 1048  
36 -1.25873953634893392704 37018 582 x1049  -1.56324 71918 70763 86589 89602 0 x 10 50  -1.43260 38556 26793 60235 53027 7 x10' 8  

37 -5.43586 22112 53563 50247 58601 235 x1058  -6.88805 25148 76714 2673314015 2 x 10 51  -6.37170 76617 73232 33429 33518 5 x 10 51  

38 -2.39956 11218 76005 14118 81227 428 x1952  -3.0996246018 18145 40738 35073 6 x10" -2.89298 01806 22921 36021 74676 4 x10 52  

39 -1.08230 75925 96434 51732 05279 466 x111 54  -1.42402 25909 58260 78956 41689 7 x 1055  -1. 34046 94982 60535 48097 75340 5 x10 55  

40 -4.98601 23372 61673 79697 98421501 x1055  -6.6768603852 12598 42070 65582 9 x10 56  -6.33655 04597 44654 11445 74583 0 x 10 56  

41 -2.3451566937 30906 89225 10321 332 x105: -3.19396 11943 63196 89651 27737 i x 1058  -3.05490 11323 29236 55442 10253 5 x10 5! 

42 -1. 12575 13315 75148 07995 20637 080 x19' 9  -1.5582796259 78061 30025 50082 9 x10 68  -1.50160 31266 46630 39406 28205 1 x1,060  

43 -5.51322 35319 95889 34088 37293 762 x 1080  -7.75137 20404 41128 23447 33637 7 x1061  -7.52305 62992 97730 94890 80388 6 x106 1  

44 -2.75363 26072 06983 29451 35466 885 x 10 62  -3.9299857306 41202 55583 30987 1 x10 6! -3.8404685805 09093 46782 66425 9 x1063  

45 -1.40214 42335 29008 28314 25014 531 x106! -2.03023 93933 85626 80333 32386 9 x106' -1,997086562187354 15592 29038 2 x 1065  

46 -7.27644 06986 88205 51053 60561 273 x 10 6' -1.06835 3838914209 33412 91094 4 x10 67  -1.057564526327929 37460 55075 4 x1967  

47 -3.84717 93139 33494 80978 96448 920 x1067  -5.72486 63011 85086 61970 23238 2 x 1068  -5.70152 90109 74236 32455 17242 9 x1068  

48 -2.0716893981 50953 44764 69212 890 x1069  -3. 12299 89365 32400 27393 64589 9 x 10 70  -3. 12845 65088 91508 89186 25437 9 x10 70  

49 -1. 13587 70317 33535 64658 77546 574 x10 71  -1.7338501676 79170 84494 86717 2 x 1072  -1.74664 95254 45916 75763 02557 9 x 10 72  

50 -6.33916 49503 26059 31915 32049 022 x1072  -9.79410 14748 54531 37172 30127 7 x1073  -9.91981 41758 09251 08270 34313 5 x10 73  

51 -3.59998 13761 20306 92394 57989 742 x1074  -5.62748 11044 41740 67063 02348 3 x1075  -5.7294293811 75222 29516 04585 1 x10 75  

integers. The coefficients are estimated to be accurate to 
the precision reported, with uncertainty only in the last 
digit. Notice that for the ( n 2 =-1, m=0) state, only 27 di-
gits have been reported for the coefficients c 11 ")  and 
c 12"), two fewer than the 29 reported for the (0,0) and 

(0,1) states. The numerical error seems to depend on n 2 . 
It is interesting to examine numerically the prediction 

of the asymptotics of the /3 42N)  by the dispersion relation 
[Eqs. (192) and (193)], which in the more general notation 
of Eq. (228) becomes 



MN) 

X [1+ 	  
N+4n 2 +2m +1 

c (21(2) 

(N+4n 2 +2m +1)! 
( n2 !)2[( n2 +rn  

121(1) 

In Table IV, the fit between the numerical and asymptotic 
No ' s is displayed for the same three states for orders ii 

10-150 (by tens). The agreement is similar to that for the 
RSPT of the one-dimensional anharmonic oscillator: 24 

 for large N it is impressive. 

(N+4n 2 +2m +1)(N +4n 2  +2m) 	
• 	asymptotic expansion in that at first the partial sums ap- 

The expansion (229) has some of the character of an 
	 + • • •  

proach the exact result, but then as the number of terms 

	

(229) 	increases the partial sums eventually diverge. The partial 
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TABLE III. Coefficients for the RSPT series, the 0 /31 11  series, and the A i/3121  series, as defined by Eqs. (26), (227), and (228) of the 
text, for the ( n2 =0,M =1) excited state of /32. 

Order 

N („N ) 
Coefficient 

,(1)(N) c  (MN) 

0 1.00000 00000 00000 00000 00000 000 x 10 0 1.0E00000000 0000000000 00000 000 x 10 0  1.00000 00000 00000 00000 00000 000 x10 0  
1 -2. 00000 00000 00000 00000 00000 000 x 10 13  -1. 00000 00000 00000 00000 00000 000 x 10 1  -1. 60000 00000 00000 00000 00000 000 x 10 1  
2 -4,00000 00000 00000 00000 00000 000 x 10 0  8.00000000000000000000 00000000 x 10 0  6.4000000000000000000000000000 x 10 1  
3 -2.4000000000 00000 00000 00000 000 x 10 1  -4.80000 00000 00000 00000 00000 000 x 10 1  -1.04000 00000 WOOD 0000000000 BOO x 10 ?, 
4 -2.000000000000000 00000 00000 000 x 10 2  -5.80000 00000 00000 00000 00000 000 x10 2  -3.28000 00000 00000 00000 00000 000 x 10 ' 
5 -2.016000000000000 00000 00000 000 x 10 3  -7.480000000000000 00000 00000 000 x 10 3  -4.8960000000000000000000000000 x 10 3  
6 -2.3168000000 00000 00000 00000 000 x 10 4  -1.03568 00000 00000 00000 00000 000 x 10 5  -7.28000 00000 00000 0000000000 000 x 10 9 
7 -2.94144 0000000000013000 00000 000 x10 5  -1.529824000000000 00000 00000 000 x 10 6  -1. 13612 80000 00000 00000 00000 000 x 10 6  
8 -4.04886 40000 00000 00000 00000 000 x 10 6  -2.39283520000000000000 00000 000 x 10 7  -1.8572208000000000000000000000 x 10 7  
9 -5.96958 72000 00000 00000 00000 000 x 10 '6  -3.93987264000000000000 00000 000 x 10 8  -3.172450560000000 00000 00000 000 x 10 ! 

10 -9.3503168000 00000 00000 00000 000 x 10 8  -6.79920537600000000000 00000 000 x 10 9  -5.65015 25760 00000 mm000000000 x 10 ' 
11 -1.54693 27872 00000 00000 00000 000 x 10 10  -1.22590 79884 80000 00000 00000 000 x 10 11  -1.04728 20364 80000 00000 00000 000 x 10 11  
12 -2.6919368371 20000 00000 00000 000 x 10 11  -2.30392 03428 48000 00000 00000000 x 10 12  -2.0173233895 68000 0000000000000 x 10 12  
13 -4.912015601664000 00000 00000 000 x 10 12  -4.5054356797 82400 00000 00000 000 x 10 13  -4.0337218125 31200 0000000000000 x 10 13  
14 -9.3762890723 32800 00000 00000 000x10 13  -9. 15592 81229 49120 00000 00000 000 x 10 14  -8. 36514 33929 06240 00000 00000 000 x 10 14  
15 -1.86885 76969 72800 0000000000 000 x 10 15  -1.93165 90899 22713 60000 00000 000 x 1016  -1.79743 93963 46265 60000 00000000 x 10 16  
16 -3.8837071338677760000000000 000 x10 16  -4.2274150482 92408 32000 00000 000 x 10 17  -4.0027777477 65836 moo 00000 000 x10 17  
17 -8,40420 68016 11857 92000 00000 000 x 10 17  -9.590588449380975 61600 00000 000 x 10 18  -9.22605 31364 71498 75200 00000 000 x 10 18  
18 -1.89169 34886 99642 06080 00000 000 x 10 19  -2.2541545617 81600 41984 00000 000 x10 2°  -2.200585891834310 32832 00000 000 x10 211  
19 -4.42462 17665 65281 05472 00000 000 x102°, 

-1.07440 27756 35857 90894 08000 000 x10
, 

 " 
-5.48589885019695028633 60000 000 x1021  -5,429164431367332 99097 60000 000 x 10

,
,', 

20 -1.38165 27991 83060 69919 74400 000 x 1023  -1.38484 30328 17282 12963 321300 000 x 10" 
21 -2.706035104239472 98078 72000 000 x1023  -3.5991063521 10533 96414 05440 000 x 10 24  -3.6503335474 65427 44333 51680 000 x1024  
22 -7.0630714522 84627 41507 27680 000 x10 29  -9.69136 19662 67827 05149 13280 000 x1025  -9.9382269721 12706 01209 77408 MO x1025  
23 -1.90884 86356 42899 25508 43187 200 x 10'

16  
-2.69593635532994141437 42935 040 x 10 27  -2.79316 96996 86573 81493 15215 360 x10

17  

24 -5.33697 33102 8960145846 41454 080 x 10 27  -7.74284 03651 30866 09938 41119 232 x103  -8.09942 37604 10702 89308 06788 096 x103  
25 -1.54239 78463 51307 58563 66488 781 x10 29  -2.29445 91630 54104 45539 96369 592 x 1030  -2.4217323352 8130551231 37515684 x10 313  
26 -4.60376 41702 78633 69811 98374 830 x10 30  -7.01080 26281 52372 76772 64822 010 x1031  -7.46196 25743 21848 53308 91739 333 x1031  
27 -1.41804 17250 31727 51726 10206 309 x 1032  -2.2073820760 34027 12384 02811 521 x1033  -2.3679361646 67898 62205 86112 125 x1033  
28 -4.50376 94527 22540 9597368211 057 x10 33  -7. 15688 43088 83317 05264 56626 571 x1034  -7.7341017795 78155 86706 42297 178 x10 34  
29 -1. 47378 96971 25289 26058 30488 482 x1035  -2,38793 83703 43630 94475 80447 367 x10 36  -2,5983990084 55357 53263 72962 166 x 10 36  
30 -4.9652164280 81112 14342 78197 278 x10 36  -8. 19396 72317 89302 91911 53902 723 x1037  -8.97414 37133 40939 98093 29E011256 x10 37  
31 -1.72094 08950 60214 53338 85764 683 x10 38  -2.8E675 91120 63477 48480 58175 925 x17 39  -3. 18427 23534 76594 72900 43246 414 x10 39  
32 -6. 13213 57385 70984 69034 47651 078 x1039  -1.046780952880914 92932 97202 597 x10 41  -1. 16011 50478 78334 12209 56993 577 x 10 41  
33 -2.24481 12406 67547 79391 73805 946 x 10 41  -3.8923701919 74876 38441 55236 998 x10 4 : -4.33725 58059 49575 09867 31546 774 x 10 42  
34 -8.43695 38955 83334 49409 59536 439 x10 92  -1.48484 64984 86378 34637 92912 871 x10 9' -1.663060474010825 20485 42504 234 x1049  
35 -3.25353 84079 78630 75435 72353 4043 x 10 44  -5.807789764762745 32334 30782 664 x10 95, -6,53646 37574 53146 48971 12917 538 x 10 45  
36 -1.28655 42403 03024 9941124527 804 x 10 46  -2.32789 27592 21978 16503 46432 946 x 104 ' -2.63202 12722 45744 07511 67507 533 x 10 47  
37 -5.21374 94182 38823 50424 48239 120 x10 47  -9.55667 27556 83867 27111 41257 767 x10 48  -1.08523752119437882744 40132 443 x10 49 

38 -2. 16411 43365 49032 40103 03211 461 x10 49  -4.01623 40577 778719309963445474 x105°  -4.5796623345860102414898973144 x105°  
39 -9.19572 63165 28012 99435 46621 835 x105°  -1.72696 91957 80488 63154 53603 438 x105.2  -1.97700108655554007562 14634)475 x 1052  
40 -3.9980176984 58478 85839 30951 055 x10 52  -7.59444 06896 89895 50199 92081 660 x 10' 3  -8.7265727525 64503 71852 92694 454 x1053  
41 -1. 77763 30030 03953 13985 68352 041 x10 54  -3.4139123547 10593 61242 09256 098 x 1055  -3.93685376616557334821 77509 223 x10 55  
42 -8.079276851820944 86792 92822 731 x10 55  -1.56805 46075 39565 68345 33212 958 x1057  -1.8144109847330185873045585 351 x1057  
43 -3.7517866114 84874 93484 01114 947 x 1057  -7.355902747751297 52543 24836 487 x 10 58  -8.5392815714 53621 25202 39539 069 x 105t 
44 -1.7792987191 74216 90990 68731 144 x1059  -3.52287 37604 07422 17599 86641 306 x10 6°  -4. 102333348091543 39763 79749 593 x 10 61/  
45 -8.6143348316 18318 76745 01538 475 x10 6°  -1,72175 41174 38477 02490 31508 341 x 1062  -2.0109215330 98022 79251 37733 026 x 10 62  
46 -4.2557946361 88988 40652 73769 831 x 10 62  -8.58402 1847914235 85944 99103 971 x1063  -1.00142 62179 42892 23922 90764 418 x 10 64  
47 -2. 14464 78462 75634 72822 33920 275 x 1064  -4.36409 90995 97032 46814 62895 880 x 10 65  -5. 1255210656 74151 60586 05945 406 x 1065  
48 -1. 10200 68188 84216 01455 22633 754 x1066  -2.26165 57416 42607 33286 94221006 x10 67. -2.66321 15841 13510 19355 32483 192 x10 67  
49 -5.77175 57651 61523 65614 94220 444 x1067  -1.19436 14723 88742 88435 17899 028 x 101 T -2.409955133822096 7089146864 535 x1069  
50 -3.08017194324763167846 14925 771 x1069  -6.42505 42174 78515 31986 50090 213 x 10 70  -7.6031552960 37439 96066 53109 700 x10 7°  
51 -1.67432 05275 14734 41042 82490 310 x 10 71  -3.51972467506714981233 74327 203 x 1072  -4. 17477405819750634913577375 030 x 10 72  

36 
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TABLE IV. Accuracy of the asymptotic formula forft2 N)  to k terms, 

AN) -- 
(N+4n2+2m +  1  )! 	 c i21(2) 

(n2!)2[(n2+mN2 
1+ 

N +4n 2 +2m +1 
	 + 

(N +4n 2 +2m + 1)(N +4n2+2m) 

3 
8 

12 

1 
6 

11 
14 al 

Ea 14 
16 17 
18 19 
20 2i 
21 23 
23 25 
24 26 
25 27 
26 29 

+ • • + 
(N +4n 2 +2m + 1)- • • (N+4n2+2m +2-k) • 

Number of significant figures e  in sum 
to k terms for k 

- AN) (exact) e  - AN)(asympt. to k.k best)b ic iest ktin 	0 5 	10 15 20 25 

Ground state: n2=0, m..0 

10 1.80783 02000 00000 001100 00000 000 x 10 	7  1.81440000000000000000 00000 000 x 10 	7  1 3 0 0 
20 3.65163 71245 95240 29140 00000 000 x 10 19  3.65181 1245123148 80000 00000 000 x 10 19  9 9 0 3 Fl 2 
30 6.641858302505175 43644 14212 211 x10 33  6.64185 6734140119 51127 36164 741 x 10 33  15 14 0 4 	5 fl 5 3 
40 2.85870 36167 95211 42358 58706 384 x10 49  2.8587036165 32667 95487 87068 898 x10 49 0 5 	7 8 10 7 
50 1.369609846821709 74345 22170 539 x10 66  1.3696098468219376495780688 076 x10 66  2 2 05 295 0 5 	8 10 10 
60 4.5788770826 33415 42505 00263 865 x10 83  4.57887 70826 33417 88966 08031 516 x10 83  30 30 1 6 	9 11 13 13 
70 7.78904 18221 69343 93085 42809 826 x10 1°1  7.78904 1E01 69343 93882 49608 962 x 10 101  35 35 1 6 	10 12 14 15 
80 5.36929 57277 99859 95287 33544 732 x10 12°  5.3692957277 99859 95288 20414 138 x10 12°  40 40 1 7 	11 14 16 17 
90 1.263155964987504 79228 93873 012 x10 14°  1.26315 59649 87504 7922893902 279 x 10 14° 45 45 1 7 	11 14 17 19 

100 8.867692245942392 2581859953 573 x10 159  8.867692245942392 25888 59953 849 x10 159  50 50 1 7 	12 15 18 21 
110 1.6679236392981880274052859 789 x10 18°  1.66792 36392 98188 02740 52859 790 x10 18°  51 51 1 8 	12 16 19 22 
120 7.69396 2673989238 59456 36348 094 x1028°  7.6939626739892385945636348 094 x10 2" 51 51 1 8 	13 17 20 23 
130 8.084498310804571 30079 40173 389 x 10 221  8.08449 83108 04571 30079 40173 390 x 10 221  51 51 1 8 	13 17 21 24 
140 1.81755 22266 85751 87903 37981 498 x 10 243  1.81755 22266 85751 87903 37981 498 x10243  51 51 1 8 	13 18 22 25 
150 8.285125207866554 03910 47333 007 x 10 264  8.28512 52078 66554 03910 47333 008 x 10 264  51 51 1 8 	14 18 22 26 

Excited state: n2=1, m=0 

10 3. 2325068706000000000000000 000 x 10 10  -2,97380 16000 00000 00000 00000 000 x 10 10  4 5 0 0 
20 2.37139 51306 6435318768 28460 000 x 10 24  2.37795 00505 17954 23232 00000 000 x 10 24  5 6 0 Fl 0 
30 3.14920 34143 86974 19796 00692 752 x 10 39  3.1493003360 49735 04774 14300 210 x 10 39  12 11 0 3 3 2 	0 
40 4.98601 23372 61673 79697 98421501 x 10 55  4.98601 72147 12094 77815 03028 937 x10 55  18 17 0 3 	4 5 LI 4 

50 6.3391649503 26059 31915 32049 022 x 10 72  6.3391649515 77497 21832 82665 459 x 10 72  24 23 0 4 	6 6 7 
60 4.63544 74996 34303 41334 53058 537 x 10 90  4.63544 74997 58604 50158 08091 176 x 10 90  29 28 0 5 	7 8 9 9 
70 1.5161827058 2033102030 62578 832 x 10 109  1.516182705820245 49131 12712 302 x10 1°9  35 34 0 5 	7 9 10 11 
80 1.8325728247 25134 20913 17734 045 x 10 128  1.83257 28247 25136 1139845455 552 x 10 128  40 0  39 5 	8 10 12 13 
90 7.0527804064 63979 98969 48126 581 x10 147  7.05278 04064 63979 98983 94935 738 x 10 147  45 44 0 6 	9 11 13 15 

100 7.67353 19779 42229 28064 17139 983 x 10 167  7.67353 19779 42229 28064 35348 65i x10 167  50 49 0 6 	9 12 14 16 
110 2. 14200 70197 90480 90232 50170 281 x10 188  2.14200 70197 90480 90232 50439 819 x 10 188  51 51 0 6 	10 13 15 17 
120 1.41523 16756 71216 58447 27372 888 x 10 209  1.41523 16756 71216 58447 27373 741 x102°9  51 51 0 7 	10 13 16 18 
130 2.06769547204209358405 38628 350 x 10 230  2.06769 54720 42093 58405 38628 356 x10 23°  51 51 0 7 	10 14 17 19 
140 6.30326 18392 06108 17159 58949 926 x10251  6.30326 18392 06108 17159 58949 926 x 10 251  51 51 0 7 	11 14 18 20 
150 3.8129261315 81843 0667195575 820 x 10 273  3.8129261315 81843 06671 95575 820 x 10 273  51 51 0 7 	11 15 18 21 

c  121(k) 

30 35 40 45 50 

4 
9 

13 
17 

Excited state: n2=0. m=1 

10 9.35031 68000 00000 00000 00000 000 x 10 	8  1. 11767 04000 00000 00000 00000 000 x 10 	9  2 4 0 Fll 0 
20 1.07440 27756 35857 90894 08000 000 x 10 22  1.07396 06557 43091 91680 00000 000 x 10 22  8 7 0 2 1 
30 4.9652164280 81112 14342 78197 278 x10 36  4.9652042172 87689 89982 16581 626 x10 36  14 13 0 3 	4 3 1 
40 3.99801 76984 58478 85839 30951 055 x 10 52  3.99801 78619 07896 89409 93296 235 x 10 52  19 19 0 4 	5 6 6 
50 3.0801719432 47631 67846 14925 771 x 10 69  3.08017 19430 76802 71994 53898 548 x 10 69  25 24 0 5 	7 8 9 10 
60 1.51064 73927 65909 09148 07783 624 x10 87  1.51064 73927 65876 63319 01487 744 x10 87  30 29 0 5 	8 9 11 11 
70 3.5434772322 61214 05011 24524 985 x10 1°5  3.54347 7232261214 36283 70471 596 x 10 105  35 34 0 6 	8 11 12 13 
80 3.22126210100535138105 57473 453 x10 124  3.22126 21010 05351 38207 78748772 x10 124  40 39 0 6 	9 12 14 15 
90 9.66249667250354181258 59180 043 x10 143  9.6624966725 03541 81259 28362 982 x 10 143  45 44 0 6 	10 13 15 17 

100 8.42390 54522 94459 04273 21223 249 x10 163  8.423905452294459 06273 21336 172 x 10 163  50 50 0 7 	10 13 16 18 
110 1.9263838811 73624 27229 46010 994 x10 184  1.92638 38811 73624 27229 46011 479 x10 184  51 51 0 7 	11 14 17 19 
120 1.0617384185 01349 98205 76025 413 x 10205  1.06173 84185 01349 98205 76025 414 x102°5  51 51 0 7 	11 15 18 21 
130 1.3137036327 74439 73620 80970 555 x 10 226  1.31370 36327 74439 73620 80970 555 x10 226  51 51 0 7 	12 15 19 22 
140 3.4351170363 7061957753 36932 383 x 10247  3.43511 70363 70619 57753 36932 383 x 10247  51 51 0 7 	12 16 19 22 
150 1.8019907698 85570 23304 01680 424 x10 269  1.801990769885570 23304 01680 424 x 10 269  51 51 0 8 	12 16 20 23 

113 
16 
18 
21 
22 
24 
25 
27 
28 
29 

3 
6 

4 2 

	

8 7 5 	2 

	

11 10 	8 	6 
14 13 12 

17 16 
19 

22 
25 25 
27 27 
29 30 
30 30 
30 30 

110 

191 
FE 

111 
19 
22 
24 
26 
28 
29 
30 

37 
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TABLE IV. ( Continued). 

'Calculated by standard RSPT. Relative accuracy appears to be at least one part in 10 29 . 
°Calculated by the asymptotic formula, truncated at the value of k that gives a result closest to the exact value in the preceding 
column. This value of k is denoted by k 
`See b for definition of ;q.t . Generally, k t„,„ increases with N. The "k =51" is not fundamentally significant in the sense that the 
maximum number of terms c 12  ok )  available for this table was 51. 
The k min  is the value of k for which the term c 121( " ) /(N +4n 2 + 2m +1) • • • (N +4n2 +2m +2—k) is smallest in magnitude, and 

which is a practical index for determining the truncation of the asymptotic formula. 
'The number of significant figures in sum to k terms is operationally defined as the negative of the log 10—truncated to an integer—of 
the magnitude of the relative error between the exact 02N)  and the asymptotic formula. A box surrounds the entry on each line with 
the largest number of significant figures. 

sum that comes closest to the exact result usually occurs 
when the last term is approximately the smallest. Com-
pare the columns k bem  and k min  in Table IV. The pattern 
of convergence followed by divergence is visible in the 11 
rightmost columns of Table IV, in which are listed the ap-
proximate number of digits in the various partial sums 
that are the same as in the exact result. The best result is 
boxed. 

The order at which the RSPT coefficients become 
asymptotic seems strongly dependent on n 2 , more so than 
the corresponding n dependence for the anharmonic oscil-
lator. 24  In particular, notice here that for the 
(n 2 =1,m =0) state, the best asymptotic value for N=10 
does not even have the correct sign, while for the (0,0) and 
(0,1) states, for which n 2  is only 1 less, the errors in the 
best asymptotic values for the tenth-order coefficients are 
smaller than 2%. On the other hand, at the highest or-
ders the accuracy obtained by using the asymptotic for-
mula (229) is greater than the practical accuracy to which 
the RSPT calculation can be carried out. 

IX. NUMERICAL CHARACTERIZATION 
OF THE Si  SERIES 

The asymptotics of the RSPT coefficients /37 )  are more 
complicated than in the /3 2  case because of the presence of 
small alternating-sign contributions, as in Eq. (197). First 
we list in Tables V—VIII the terms of the RSPT series, 
the induced exponentially small gap series (A/3( 11 ),nd, and 
the induced doubly-exponentially-small imaginary series 
(Ai/3121 )ind, all through fifty-first order in (2r) -1 , for the 
ground state ( n 1 =0,n 2 = 0, M =0) and for the three excit-
ed states for which n 1 , n 2 , and in are (1,0,0), (0,1,0), and  

(0,0,1). We use the notation d I i (N)  and PP")  for the 
series coefficients for the two exponentially small quanti-
ties, according to 

( 	I  )inci= T-401°) n21(n2+m)! 

x 2 d(o(N)(2r)-N, 	 (230) 
N=0 

(2r)
402°)— l e —2r 

( Ai/3 1 21 ) ind = +114/341-) 
[n21(n 2 m )!] 2 

X 	d 121(N) (2r)—N  (+Imr >0) . 	(231) 
N =0 

Notice that the coefficients (at least those with fewer than 
the maximum number of significant digits) appear to be 
integers, except in the (1,0,0) case for which multiplication 
of  d 11j(N) and  d12](N) y D 4K ), which had been explicitly 
factored out in Eqs. (230) and (231) to make the leading 
coefficient of each power series equal to 1, is needed to re-
store the integer property of the coefficients. The coeffi-
cients are estimated to be accurate to the precision report-
ed, with uncertainty only in the last digit. Notice that for 
the (0,1,0) state, only 27 digits have been reported for the 
coefficients d 1I1(N)  and d 121(N) , two fewer than the 29 re-
ported for the other states. The lower accuracy comes 
from the lower accuracy of the A/3 2  quantities for n 2 =1, 
as mentioned in Sec. VIII. 

It is especially interesting to examine numerically the 
prediction of the asymptotics of the /37 )  by the dispersion 
relation [Eqs. (196) and (197)], which in the notation of 
Eq. (231) becomes 

,.2020) -1 
(2r) 

IN) 
410)  (N +4n 2  +2m )! 1+ 	d1 2)11) d 12J(2) 

(n2!)2[(n2+m)!] 2  N+4n 2 +2m (N +4n2+2m)(N+4n2+2m —1) 
+ 

(n i +2n2+2m +1)1(n1+2n2+m +I)! 
+(-1)" N-1 16n 4 	 (N —4n 2 -2m —5)1 

4n 2 -
12(02 ) ) 2 ±m 2 _ 1+ 12n —1202°1  

N —4n 2 —2m —5 

,,,r="7="1111111....■==, '" 

XII+ 	  
N —4n 2  —2m —5 

4n 2[24,(N-4n 2 -2m —5)-1/(ni-1-2n2+2m 	+2n2+m +2)]  
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TABLE V. Coefficients for the RSPT series, the induced Afli  I series, and the induced A131 21  series, as defined by Eqs. (24), (230), 
and (231) of the text, for the ( 	 ground state of /3 1 . 

Order 
N 13(N) 

Coefficient, 
d (1)041) d i 21(N) 

0 5.0000000000 00000 00000 00000 000 x10 -1  1. 00000 00000 00000 00000 00000 000 x 10 0 1.00000 00000 00000 00000 00000 000 x 10 
1 -1.0000000000 00000 00000 00000 000 x 10 0  -4,000000000000000 00000 00000 000 x 10 -6.00000 00000 00000 00000 00000 000 x 10 
2 3.000000000000000 00000 00000 000 x10 8  -1.300000000000000 00000 00000 000 x 10 1  -8.0000000000 00000 00000 00000 000 x 10 0  
3 4.00000 00000 00000 MOO 00000 000 x 10 8  2.400000000000000 00000 00000 000 x 10 1  4.300000000000000 00000 00000 000 x10 1  
4 -1.5000000000 00000 00000 00000 000 x 10 1  7.800000000000000 00000 00000 000 x 10 1  3.50000 00000 00000 00000 00000 000 x 10 1  
5 2.0000000000 00000 00000 00000 000 x 10 1  -2.4160000000000000000000000000 x10 3  -2.80200 00000 00000 00000 00000 000 x 10 3  
6 6.7000000000000000000000000 000 x 10 2  -1,4421000000000000000000000000 x 10 4  -1.242800000000000 00000 00000 000 x 10 4  
7 2.08800 00000 00000 00000 00000 000 x 10 3  -6.9640000000000000000000000000 x 10 4  -6.4680000000 00000 00000 00000 000 x 10 4  
8 1.523700000000000 00000 00000000 x 10 4  -1.3518740000000000000000000000 x 10 6  -1.50376 60000 00000 00000 00000 000 x 10 6  
9 2.69124 00000 00000 00000 00000 000 x 10 5 -1.78961 76000 00000 00000 00000 000 x 10 7 -1.920100400000000 00000 00000 000 x 10 7  

10 2.88203 40000 00000 00000 00000 000 x 10 6  -2. 12840 24600 00000 00000 00000 000 x10 8  -2.30908 57600 00000 00000 00000 000 x 10 8  
11 3.296636000000000 00000 00000 000 x 10 7  -3.01974 30720 00000 00000 00000 000 x 10 9 -3.36538880000000000000 00000 000 x 10 9  
12 4.4745956200 00000 00000 00000 000 x 10 8  -4,54483 26068 00000 00000 00000 000 x 10 10  -5.120499248100000 00000 00000 000 x10 1°  
13 6.32327 70640 00000 00000 00000 000 x 10 9  -7.0948744979 20000 00000 00000 000 x10 11  -8.078690136100000 00000 00000 000 x 10 11  
14 9.41615 84444 00000 00000 00000 000 x 10 10  -1.17305 06423 68100 00000 00000 000 x10 13  -1. 35028 57256 35600 00000 00000 000 x 10 13  
15 1.49465 94569 76000 00000 00000 000 x 10 12  -2.04480 2969193520 00000 00000 000 x10 1! -2.37556 62095 05200 00000 00000 000 x 10 14  
16 2.50896 21727 14900 00000 00000 000 x10 13  -3.7433140151 12722 00000 00000 000 x 10 15  -4.38467 93150 69466 00000 00000 000 x 10 15  
17 4.4410776959 07560 00000 00000 000 x 10 14  -7. 19022 18098 94692 80000 00000 000 x 10 16  -8.48500 32208 31374 80000 00000 000 x 10 16  
18 8.27630 22888 56874 00000 00000 000 x10 15  -1.44695 39118 25111 86600 00000 000 x 10 18  -1.7189791414 53706 41600 00000 000 x 10 18  
19 1.6204342820 08490 16000 00000 000 x10 17  -3.04574 24704 37673 96480 00000 000 x10 19  -3.6402770588 19622 76800 00000 000 x10 19  
20 3.32665 42683 11276 86200 00000 000 x 10 18  -6.696005658250457 56508 00000 000 x 1020 

 
-8.04706 76187 70086 51282 00000 000 x10 2°  

21 7. 14803 50018 55492 32880 00000 000 x 10 19  -1.5353078046 6921158653 44000 000 x102,2  -1.85431 01328 54897 47353 80000 000 x10 22  
22 1.6047713847 23674 76739 60000 000 x 1021  -3.6662858198976399789061000000 x10' 3  -4.44824 07790 72045 28938 58400 000 x1023  
23 3. 7582242734 76225 7406128000 000 x 10 22 -9. 10589 61922 53374 11879 54080 000 x 1024  -1. 10941 02254 27301 64289 46896 000 x1025  
24 
25 

9. 16687 40607 24638 96645 79400 000 x10 23 
 2.32541 05776 70704 1109143656 000 x1025 

-2.349230546398923 88120 44786 000 x 10 26 

 -6.28779 53475 23274 79711 73328 960 x 1027  
-2.8731229928 32114 21853 87076 400 x10',6  17 
-7.71710 75070 86905 96202 39138 160 x 10' 

26 6.12658 95311 81374 81240 87256 400 x 10 26  -1.74394 00617 97450 20708 54868 574 x1029  -2.1473266220204070687105123738 x1029  
27 1.67424 38963 83292 13100 20687 472 x102e -5.00654 90356 19520 14511 37306 079 x 1030  -6. 18316 65965 47777 29663 63569 926 x10 3°  
28 4.73988 78827 63629 42618 53595 122 x 10 29  -1.48613 62899 68605 85578 94408 670 x 10 32  -1.84053195993335941159 96180 297 x1032  
29 1.38857 46039 83325 69450 67309 963 x1031  -4.55672 98159 02719 24283 57532 163 x1033  -5.65804 2429163796 53078 73498 596 x1033  
30 4.20484 9598143437 52856 90821 189 x 1032  -1.44180 81565 73968 70724 02003 666 x1035  -1.7946210504 91853 93537 76137 803 x10 35  
31 1.31482 83626 14689 16879 39208 591 x1034  -4.70355 49835 76415 28224 07054 869 x 10 36  -5.867801177006854 85250 09353 278 x 10 36  

32 4,2413603481 22180 14997 27011 495 x10 35  -1.58065 01348 46874 87815 29386 805 x1038  -1.97608 96485 24209 62107 26071 045 x 10 38  

33 1.41014 46206 91339 49621 17275 387 x1037  -5.46739 04626 04654 62131 21114 989 x1039  -6.84882 80023 28656 58282 40344 683 x 10 39  
34 4.82802 38503 08125 29553 31706 145 x lam -1.9450104865 38007 62705 89026 561 x10 41 ' -2.44102 29561 68495 33074 11857 879 x10 41  

35 1.70085 93393 95120 27806 01785 581 x1048  -7. 11114 88069 46235 45580 81940 492 x10 42  -8.94038839807280063585 02213 994 x10 42  

36 6. 16061 45090 627916741763524 285 x 1041  -2.67010 49290 24547 30646 82501 896 x1044  -3.36254 79378 11179 82704 72966 162 x10 44 

37 2.29254 43917 84602 54356 91615 649 x1043  -1.028954723399288 02882 42885 648 x 10 46  -1.2978376181 84014 23550 13409 900 x 10 46  

38 8.75883 13712 37131 11125 90672 419 x1044  -4.06692 79816 39936 66719 31097 761 x1047  -5. 13733 64427 31482 44532 59877 707 x10 47  

39 3.4333761289 94263 40892 50487 074 x 1046  -1.6476845572 54938 84277 56459 764 x10 49  -2.084296011177635 95585 28134 552 x1049  

40 1.37996 71455 77679 10787 76135 778 x1048  -6.838590790654300 79662 87561655 x10" -8.6623276799 B8636 03867 60700 370 x105°  

41 5.68364 56777 76939 56715 93198 012 x 10 49  -2,90604 57004 74733 80153 60140 153 x1052  -3.6857365915 36765 44188 24983 761 x1052  

42 2.39743 27759 27379 99597 60225 684 x1051  -1,2637198945 70728 36639 32144 929 x 10 54  -1.6047218947325935378829146432 x10 54  
43 1.035116012881049 75473 64800 434 x1053  -5.62070 16397 30529 07839 69701 964 x1055  -7. 14565 00217 41842 95198 37721 847 x10 55  
44 4.57221 74033 53607 00487 72182 285 x1054  -2.5557006965 13417 47071 75188 468 x10 57  -3.2526721114 85612 13205 48935 330 x10 57  
45 2.06510 55699 12521 40804 36906 726 x 10 56  -1. 18742 45487 22635 93155 27883 184 x1059  -1.51284 28667 38801 32058 17295 744 x10 59  
46 9.53293 04351 29736 97591 97094 776 x 1057  -5.63487 11230 95230 98226 15587 151 x1068  -7. 18636 22223 28394 26339 10695 832 x10 6°  
47 4.49551 59480 84994 45992 12875 709 x1059  -2.72996 27008 91040 66955 52909 076 x 10 62  -3.48497 99601 97580 60174 00095 153 x10 62  
48 2. 16475 98108 65986 41705 01864 034 x 10 61  -1.34972 28597 4553109158 35676 142 x 1064  -1.7246022071 31291 37859 01445 327 x 10 64  
49 1.06397869189429198777 54647 453 x10 63  -6.80729 73896 4209166017 06788 314 x10 65  -8.70569 08740 69746 26721 82341 450 x10 65  
50 5.335464287148682 10315 34475 375 x1064  -3.5009095278 72955 47800 21045024 x 10 67  -4.48103 14973 89817 73962 23980 551 x1067  
51 2.77871 1357154325 2772707900166 x 1066  -1.83528 22801 78086 38938 40031805 x 10 69  -2.351007004658677 98591 85924 876 x1069  

A(n),n2,m)-4-8/r2n 4 /3+B(n),n2,n7)[4i(N-4n2-2m -6)-t/)(1)] 

(N -4n 2  -2m -5)(N -4n 2  -2m - 6) 

+ 32n4 
[ON -4n 2 -2m -6)-0(1)1 2 +[0 	--1) (N -4n 2  2m -6)-0 1)(1)] 

+ 0(N -3(inN) 3 ) , 	(232) 
N - 4n 2  -2en -5)(N -4n 2  -2m -6) 
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TABLE VI. Coefficients for the RSPT series, the induced A/31 11  series, and the induced AdVI series, as defined by Eqs. (24), (230), 
and (231) of the text, for the ( nl= I, n2 = 0, m =0) excited state of S i . 

Order 

N 0(114) 
Coefficient 

d (1)(21) d(2)(21) 

0 1.5000000000000000000000000 000 x 10 0  1.0000000000000000000000000 000 x10 0  1.00000 00000 00000 00000 00000 000 x 10 0 
1 -7.000000000000000 00000 00000 000 x 10 0  -6.6666666666 66666 66666 66666 667 x 10 0 -8.666666664666666 66464 66666 667 x 10 I)  
2 4. 10430000000000000000000000 000 x 10 1  -3. 16646 66666 66666 66666 66466467 x 10 1  -2. 13333 33333 33333 33333 33333 333 x 10 1  , 
3 -4.4000000000 00000 00000 00000 000 x 10 1  4.9333333333 33333 33333 33333 333 x 10 2  5.62666 66666 6666666466 66666 667 x 10 ., 
4 -1. 19300 00000 00000 00000 00000 000 x 10 3  1.1500000000 00000 00000 00000 000 x 10 3  2,6166666466666646666466664667 x 10 ' 
5 6. 11600 00000 00000 00000 00000 000 x 10 3  -6.2317333333 33333 33333 33333 333 x 10 4  -6.58340 00000 00000 00000 00000 000 x 10 4  
6 7.0562000000001300 00000 00000 000 x 10 4  1. 16248 33333 33333 33333 33333 333 x 10 5 2.31964 00000 00000 00000 00000 000 x 10 5  
7 -8.2936800000 00000 00000 00000 000 x 10 5  7.72722 13333 33333 33333 33333 333 x 10 6  7.62324 26646 66666 66664 66666 667 x 10 6  
8 -3.41667 70000 00000 00000 00000 000 x 10 6  -6.18475 22000 00000 00000 00000 000 x 10 7  -7.72888 00666 66666 66666 66666 667 x 10 7  
9 1.1306888400000000000000000 000 x 10 8  -8.42283 1600000000 00000 00000 000 x 10 8  -7.43142 97733 33333 33333 33333 333 x 10 8  

10 -1.79195 28200 00000 0000000000 000 x 10 8  1.46442 37396 66666 66666 66666 667 x 10 10  1.63754 50149 33333 33333 33333 333 x 10 10  
11 -1.34513 82472 00000 00000 00000 000 x 10 10  3.43071419360000000000 00000 000 x 10 10  7. 18175 56746 66666 66666 66666 667 x10 9  
12 1,09344 37922 20000 00000 00000 000 x 10 11  -2.73967 41295 98666 66666 66666 667 x 1012  -2.84917 31128 25000 00000 00000 000 x 10 12  
13 1.21222 07307 28000 00000 00000 000 x10 12  1.27609490478773333333 33333 333 x 10 13  1.78532 3407204E0000000 00000000 x 10 13  
14 -2.34834 55342 78000 00000 00000 000 x10 13  3.50924 53122 81990 00000 00000 000 x10 14  3.79713 35833 86813 33333 33333 333 x10 14  
15 -6.64147 48099 68000 00000 00000 000 x 10 12  -5.2104131435 67269 33333 33333 333 x1015  -5.968729561882021 33333 33333 333 x 10 15  
16 3.68198 03876 95443 00000 00000 000 x 10 15  -2.53405 07211 42271 66666 66666 667 x1016  -1.68740 75926 99814 8464666666 667 x 10 16  
17 -2.42694 33864 25159 60000 00000000 x 10 16  9.8859133706 46110 80000 00000 000 x1017  1.0324905058 03139 08400 00000 000 x 10 19  
18 -3.4056199793 92368 74000 00000 000 x1017  -5.9110162495 79187 25800 00000 000 x 10 18  -8. 12990 79387 30036 64000 00000 000 x10 18  
19 7.095019736050132 44000 00000 000 x 1018  -1.6699841800 96913 91504 00000000 x10 2°  -1.652519788079554 23269 33333 333 x102°  , 
20 1. 16925 00241 71507 44340 00000 000 x 10 19  1.41744 91463 50752 99518 26666 667 x 10 21  1.58760397568213742742 20000 000 x10' 1  
21 -8.812659645072444 92872 00000 000 x10 2°  -5,5650187521 77884 73026 66666 666 x1021  -1.1858244364 69751 65837 48000 000 x10 22  
22 1.2075160057 96617 85615 00000 000 x10 22  -7. 16663 11501 81188 25418 28466 667 x1023  -8.03525 14474 24689 17412 33866 667 x10'

13 
 

23 1.9794989310 65092 63420 91200 000 x1023  -5.780427553353166 32533 74840 000 x10 24  -6.74806 16793 35118 93178 77333 333 x 10 24  
24 3.26013 25212 39662 02953 56599 999 x1023  -1.54293 83915 45296 33570 65315 067 x 1026  -2.03365 30320 00410 5657] 75020 933 x1026  
25 6. 15097 96937 35826 99326 82760 000 x 102 5  -6.28071 67981 19877 21247 12644 960 x10 27  -7.64122 21966 67400 09200 60580 293 x10 27  
26 1.92118 08535 14465 11744 90460 920 x 1027  -1.55442 04421 44982 18418 25633 240 x10 29  -1.89718 52844 56940 23490 18679 820 x1029  
27 4.154732934215424 88507 72395 568 x 10 28  -4.28157 92804 15504 43335 75287 735 x1030 -5.3212219424 87547 24371 08386 214 x10 36  
28 1.22975 30198 68885 90077 25825 155 x1030 -1.3293923829 17679 54615 36481 879 x 10 32  -1.64832 21478 16887 52799 75278 894 x 10 32  
29 3.76389 92476 17554 97550 20396 163 x 10 31  -4.083412103398877 37883 71430 426 x10 33  -5.06825 60499 48340 72030 31922 927 x 1033  
30 1. 12470 40077 84147 09191 26189 480 x10 33  -1.28888584719781983522 99974 850 x 10 35  -1.60565 88891 13306 34501 41482 892 x10 35  
31 3.524262280336178 07278 53762 966 x10 34  -4.22967 71850 19734 28452 66515 917 x 1036  -5.28036474816847156190 48245 781 x 106  
32 1. 14509 25465 07593 34240 09922 211 x 10 36  -1.4271505169 04092 29520 13118 295 x 10 38  -1.7850374027 81790 89105 75054 942 x 1038  
33 3,818705228755575 04208 17372 653 x10 37  -4.95079 02261 69961 98770 02705 393 x10 39  -6.2047976531 90347 86246 40312 857 x10 39  
34 1.31138 31610 02830 25514 44561 739 x1039  -1.7668555955 97570 54904 12681 767 x1041  -2.21848 93047 47486 84579 77978 139 x 10 41  
35 4.63527 95548 81703 42107 57979 025 x 10 40  -6.47936 62869 79387 92773 32935 212 x 1042  -8. 14960 30888 19988 79134 49715 844 x10 42  
36 1.683971814995061 54438 41790 695 x1042  -2.4396853680 85297 45434 43318 711 x10 44  -3.07361 22533 12747 37997 19045 305 x1044  
37 6.2841368274 68655 29873 69117 033 x 1043  -9.42659 54737 00890 76943 68986 191 x10 45  -1. 18944 11294 93893 42292 68364 024 x10 46  
38 2.4073262624 95121 58317 30959 517 x10 45  -3.73524 32862 92268 32303 64578 464 x10 47  -4.720018800945974 02065 18571 093 x10 47  
39 9.4603767189 73453 98270 12646 060 x 1046  -1.5169202235 85775 30525 33352 513 x1049  -1.919515908015736 62417 05578 442 x1049  
40 3.81149 49519 09701 02495 76615 853 x 10 48  -6.3101344694 47637 47524 37046 491 x 10 50  -7.99542 40832 01651 23761 28846 358 x10 5°  
41 1.573404423991749 11825 05650 717 x10 50  -2.68725 67307 04044 83977 64280 558 x 1052  -3,40924 20085 10290 0893800650007 x 10 52  
42 6.65115 23979 40872 72589 32947 434 x 1051  -1. 17097 17122 10135 02095 14213 719 x1054  -1.48735 55373 75308 0708386056 362 x10 44  
43 2.87760 1631526658 55137 53854 547 x1053  -5.21834 33559 83625 90180 83838 383 x10 55  -6.63584 86522 20168 59775 35831 723 x1055  
44 1.27355 17426 99160 79925 99461 395 x10 55  -2.37716 19273 03823 97663 68418 574 x 1057  -3.0261845821 84015 35826 92686 848 x 1057  
45 5.76288 84684 97828 21323 99269 039 x 1056  -1. 10643 14593 67734 27399 83948 857 x 10 59  -1.40997 97023 30513 80341 05193 571 x1059  
46 2.66498 66877 42796 23929 86432 775 x 1058  -5.25941 35460 63484 80773 24744 773 x 1060  -6.7089976276 90323 31483 78517 771 x103  
47 1.25887 91199 86255 29617 78445 987 x10 60 -2.55218 69946 65667 82546 43291 314 x10 62  -3.7587143206 693750679154046 356 x 1062  
48 6.07179 59383 97913 80942 15037690 x1061  -1.26378 20620 84775 64357 76979 738 x 1064  -1.6151101709 81924 00820 30224 571 x10 64  
49 2.98890 97959 38819 27707 38732 468 x10 63  -6.3833046488 82303 07864 73303 599 x1065  -8. 16498574758,338 04235 55360 497 x 1065  
50 1.50105 1419252281 8821750777 945 x 10 65 -3.2875166731 79286 06794 79285 017 x 10 67  -4.20864 64045 76984 29032 05797 188 x 10 67  
51 7.68771 90349 10869 47644 32034 197 x 1066  -1.72576 20869 67645 27532 23739 782 x 1069  -2.21100592613935183348272601500 x10 69  

where the coefficients A ( n 1 , n 2,/71 ) and B ( n 1 , n 2,M ), 
which are independent of N, are given for the first few 
states in Table IX. The 0(1) (z) denotes the digamma func-
tion, 

ii/ 11(z)=d0(z)/dz =d 2[1nr(z)]/dz 2  . 	(233) 

In Table X we uncover numerically the alternating-sign 

contributions to the asymptotics by subtracting the terms 
in Eq. (233) that come from (A i f31 2) ),nd  (those involving 
the coefficients d (  2)(k) ). We truncate the partial sum after 
including the smallest term. Listed in Table X are the ex-
act ftiN) , the k index of the last correction term included 
in the partial sum and the value of that term, the differ-
ence between the exact and asymptotic values-divided by 
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TABLE VII. Coefficients for the RSPT series, the induced 0/31 11  series, and the induced 6,13i 21  series, as defined by Eqs. (24), 
(230), and (23 1) of the text, for the ( n i  =0,n2 = 1,M =0) excited state of (3i. 

Order 

N o(N) 
Coefficient 

dOHN) d(2101) 

0 5.000000000000000 00000 00000 000 x10 -1  1.0000000000 00000 00000 00000 0 x 10 0 1.00000000000000000000 00000 0 x 10 0 
1 -3.00000 00000 00000 00000 00000 000 x 10 0  -1.60000 00000 00000 00000 00000 0 x 10 1  -3.00000 00000 00000 00000 00000 0 x 10 1  
2 7.000000000000000 00000 00000 000 x 10 8  -1.10000 00000 00000 00000 00000 0 x 10 1  2.3600000000 00000 00000 00000 0 x 10 
3 7.600000000000000 00000 00000 000 x 10 1  3.60000000000000000000000000 x 10 1  -2.72000 00000 00000 00000 00000 0 x 10 2  
4 4.7300000000 00000 00000 00000 000 x 10 2  1.8590000000 00000 00000 00000 0 x 10 3  1.157000000000000 00000 00000 0 x 10 3  
5 2.2040000000000000000000000 000 x10 3  -8.10400 00000 00000 00000 00000 0 x 10 3  -3.336600000000000 00000 00000 0 x 10 4  
6 2.454200000000000 00000 00000 000 x 10 4  -7.32858 00000 00000 00000 00000 0 x 10 5  -6.075520000000000 00000 00000 0 x 10 5  
7 5.88216 00000 00000 00000 00000 000 x 10 5., -1.53358 16000 00000 00000 00000 0 x 10 7  -6. 43637 60000 00000 00000 00000 0 x 10 6  
8 1. 15534 45000 00000 00000 00000 000 x10 ' -2.63817 19300 00000 0000000000 0 x10 8  -9.460108900000000 00000 00000 0 x 10 7  
9 1.99186 09200 00000 00000 00000 000 x 10 8  -5.27898 58240 00000 00000 00000 0 x 10 9  -2.5750607700000000000000000 0 x 10 9  

10 3.58753 16660000000000000000000 x 10 9  -1.22518 92719 40000 00000 00000 0 x 1011  -6.9462838292 00000 00000 00000 0 x 10 10  
11 7.12503 04712 0000000000 00000 000 x10 113  -2.9245845919 28000 00000 00000 0 x 10 12  -1.6928238371 52000 00000 00000 0 x10 12  
12 1.50188 07901 86000 mom 00000 000 x 10 12  -7.00612 38516 15800 00000 00000 0 x 10 13  -4. 10705 37222 23800 00000 00000 0 x10 13  
13 3.2701982442 13600 00000 00000 000 x 10 13  -1.71634 61686 62416 00000 00000 0 x 10 15  -1.03799 71906 87804 00000 00000 0 x 10 15  
14 7.3518387955 9356000000 00000 000 x10 14  -4.33566 00299 36582 80000 00000 0 x10 16  -2.7132151854 76465 60000 00000 0 x 10 16  
15 1.7115782914 6666080(10000000000 x10 16  -1. 12642 04094 27557 07200 00000 0 x 10 18  -7.25861962525218640000 00000 0 x 10 17  
16 4.12157 16112 3192765000 00000 000 x 10 17  -3.00212 07586 55063 15410 00000 0 x10 19  -1.98571 92375 00830 26130 00000 0 x 10 19  
17 1.02434 7019719986 60600 00000 000 x10 1 ' -8.20472 28370 77264 74512 00000 0 x102°  -5.5628669144 26918 07690 00000 0 x10 213  
18 2.62424 97627 20094 94538 00000 000 x10213  -2.29954 72976 55993 55852 90000 0 x 1022  -1.5963790374 37729 53291 32000 0 x 10 22  
19 6.92538 54395 74197 44311 20000 000 x10 21  -6.6087546363 32434 31188 24800 0 x 1023  -4,6919348278 39251 52204 56000 0 x 10 23  
20 1.8815956375 04565 96826 75000 000 x 10 t3 

 
-1.94730332370355856981 86066 0 x1025  -1.4122602958 55028 55237 24914 0 x 10 25  

21 
22 

5.2606916904 992377953628880 000 x 1024  
16 

1.51293 29457 82333 19589 77795 600 x 1(e. 

16 
-5.8822808612 96398 9085160596 8 x10' 
-1.82150 55926 13047 33772855230 x10 28  

-4,35344245600900763297151012 x1026  13 
-1.3743996748 1756134582607235 x10' 

23 4.47414 01342 76342 64495 53986 720 x 1027  -5.78177 82459833234181201689 1 x10 29  -4.44376 84615 7629349221 30142 0 x10 29  
24 1.360125709058448 64003 87781 443 x10 29 -1.88107 2186251768 19988 567124 x10 31  -1.47140 89405 83249 42865 26866 8 x10 31  
25 4.24912 3812688853 45787 73952 599 x 1030  -6.27220 1083194372 8787832447 5 x10 32  -4.989219502883656 84990510929 x10 32  
26 1.3637699128 75067 39407 01023402 x 10 32  -2. 14313 9778929072 87061 188734 x 0 4  -1.73224 4830562366 72198 85388 2 x10 34  
27 4.4954185682 10455 46472 63013 143 x1033  -7.5029031849 57311 7134216249 3 x 1035  -6. 1575699731 63269 51537 6193(12 x10 35  
28 1,52140 71592 38878 9604567931 230 x10 35  -2.690761448047055 8722026024 5x 1037  -2.24060220869618678737 781863 x10 37  
29 5.28467 155123666788595 75075 701 x1036  -9.88310 79544 33969 04507 72181 1 x1038  -8.34437 94041 44198 83888 048520 x1038  
30 1.88334 7984392160 98539 04706 216 x10 38  -3,71687 2269960920 88735 20085 7 x10 40, -3. 17982 74915 14242 2224227842 8 x 10 4D  
31 6.88364 51840 29576 27236 56430660 x1039  -1.4309021471 4064668397 448124 x10 4 ' -1.23962 0917329935 85986917135 x10 42  
32 2.57935 219000276631409 31923 341 x10 41  -5,6372030878 95206 87404 96219 8x 10 43  -4.94238 35747 057479940068339 3 x10 43  
33 9.9044648234 20972 19338 80297117 x1042  -2.2719806644 33492 85026 06632 1 x10 45  -2.01476 8033603267 59953 27464 7 x10 45  
34 3.8958300598592789986166241 170 x 1044  -9.3646756365 68936 33564 11383 7 x 10 46  -8.39513 27726 98622 27360 48169 3 x10 46  
35 1.56904 71125 19523 88830 98567 601 x10 46  -3,946242260040202 03825 69350 8 x 10 48  -3.5744758295 4680380449804186 x10 48  
36 6.4678004383 22177 6098323330043 x1047  -1.6995368815 05508 44788 49297 2 x10 513  -1.5546930023 7769661790 988489 x10 50  
37 2.72759 58567 267696557605805 592 x 10 49  -7.47798 70543 94860 03838 19688 5 x 1051  -6.90538 0675221001 3601840912 1 x10 51  

38 1.176320950368074 33933 05565 329 x10 51  -3.36044 69139 49031 58016 25038 4 x10 53  -3. 13114 7641784381 12689 93059 2 x10 53  
39 5.1858022925 69076 9915289133 741 x1052  -1.5417677215 37580 87487550898 x1055  -1.44895 36974 60787 2175255337 6 x1055  
40 2.3360129632885403468603844 720 x1054  -7.2194304199 76172 71275 61786 6 x1056  -6.84074 12754 02706 37451 18826 4 x10 56  
41 1.0748107355 18888 10286 39238594 x10 56  -3.449079399545493 55225 13672 0 x10 58 -3.293921862644321 64684 199582 xio5. 8  
42 5.04914 98739 45764 19114 11397049 x10 57  -1.68064 52537 516632297395316 2 x1060  -1.61714 970030186359069 865539 x10 6°  
43 2.42086 25611 74634 9347928437 857 x 1059  -8.34988 1682333922 62150 650139 x10 61  -8.09247 19511 97967 5115259699 3 x1061  
44 1. 1842076673 22064 8933655536 184 x10 61  -4.22841 41006 42764 4166288191 1 x1063  -4. 12644 10065 18375 08391 53343 4 x10 63  
45 5.90793 85637 451492475304073134 x1062  -2. 18188 58441 45653 68791 98808 3 x1065  -2. 1434103255 98137 49274 173189 x1065  
46 3.0049912592 94226 08574 01435 798 x10 64  - 1. 14686 22369 21255 27935 70489 3 x10 67  -1.133821073683294 6891078415 7 x10 67  
47 1.5577674229 43548 10705 53484 823 x 10 66  -6.13883 06655 2423974139 48667 7 x1068  -6. 10618 77092 76137 44056 963166 x10 68  
48 8.22756 643075141382854 65427 712 x10 67  -3.34525 1526784437 60764 35124 6 x10 7°  -3.34704 65424 72815 14960 392102 x10 713  
49 4.4259946484 7976208813 37494 638 x10 69  -1.85531 33466 2201711678583377 x1072  -1.866816265981557 41120725479 x10 72  
50 
 51 

2.42430 0391644025 05264 53488 183 x 107,1, 
1.3516595277 1331009839 94743 745 x 10" 

-1.04696 1829231769 77372 32974 1 x1074 
 -6.00969285368876300572 361910 x1075  

-1,0591917211 63757 51686 52725 0 x10 74 
 -6. 11178968560953941313 76803 3 x1075  

■ 

the leading asymptotic term (called the relative asymptot-
ic error in the table), and the relative asymptotic error 
after taking account of one, two, and three terms from the 
alternating-sign asymptotic formula. These quantities are 
listed for various orders, up to order 150. 

Notice that for the ground state the residual remaining 
after subtraction of the same-sign terms is alternating in 
sign after order N= 32, and that it has relative magnitude  

10 -10  at order 150-which is small compared to unity, 
but large compared with the corresponding relative resi-
dual for fe, which at order 110 is already less than 
10 -3°. The first alternating-sign asymptotic contribution 
significantly overcompensates, but by the third 
alternating-sign contribution the relative error has 
dropped by a factor of 10 -3  at N-=-150 (see Table X). 

For the excited states, the threshold for alternation is 
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TABLE VIII. Coefficients for the RSPT series, the induced 0f3i l1  series, and the induced A 1 f3 21  series, as defined by Eqs. (24), 
(230), and (231) of the text, for the ( n 1  =0,n 2  =0,m= 1) excited state of /3 1 . 

Order 

N 0(N) 
Coeff ,.ctent 

d(1)(N) d ( Z)l N) 

0 1. 00000 00000 00000 00000 00000 000 x 10 8  1. 00000 00000 00000 00000 00000 000 x 10 1.00000 00000 00000 00000 00000 000 x 10 
1 -6. 00000 00000 00000 00000 00000 000 x 10 0  -9. 00000 00000 00000 00000 00000 000 x 10 -1.500000000000000 00000 00000 000 x10 
2 2. 00000 00000 00000 00000 00000 000 x 10 1  -3. 60000 00000 00000 00000 00000 000 x 10 1  1. 40000 00000 00000 00000 00000 000 x 10 1  
3 7. 20000 00000 00000 00000 00000 000 x 10 1  1,68000 00000 00000 00000 00000 000 x 10 2  3.72000 00000 00000 00000 00000 000 x 10 2  
4 -2. 96000 00000 00000 00000 00000 000 x 10 2  2.88400000000000000000 00000 000 x10 3  1. 96800 00000 

, 
 00000 00000 MOO 	x 10 

5 -2. 97600 00000 00000 00000 00000 000 x 10 3  -1.67160 00000 00000 00000 00000 000 x 10 4  -3. 41520 00000 00000 00000 00000 000 x 10` 4  
6 2. 46400 00000 00000 00000 00000 000 x 10 4 , -4.65200 00000 00000 00000 00000 000 x 10 5  -3.87488 00000 00000 00000 00000 000 x 10 5  
7 3.71712 00000 00000 00000 00000 000 x 10 ' -8.392800000000000 00000 00000 000 x10 5  1. 66396 80000 00000 00000 00000 000 x 10 6  
8 -2.25760 00000 00000 00000 00000 000 x 10 5  2. 18013 12000 00000 00000 00000 000 x 10 7  2.41559 52000 00000 00000 00000000 x 10 7  
9 -1. 27848 96000 00000 00000 00000 000 x 10 7  -4. 17311 71200 00000 00000 00000 000 x 10 8  -6.01960 36800 00000 00008 00000000 x 10 8  

10 3. 37753 98400 00000 00000 00000 000 x 10 8  -1.2045912192 00000 00000 00000 000 x 10 10  -1. 07949 72000 00000 00000 00000 900 x 10 10  
11 6. 29207 80800 00000 00000 00000 000 x 10 9  -1. 11054 41817 60000 00000 00000 000 x 10 11  -6. 17923 47840 00000 00000 00000 000 x 
12 4. 46035 53024 00000 00000 00000 000 x10 18  -1.49466 42764 16000 00000 00000 000 x 1012  -1. 24621 59482 88000 00000 00000 000 x10 12  
13 7. 15418 32089 60000 00000 00000 000 x 10 11  -4, 48421 16789 69600 00000 00000 000 x 10 13  -4. 45028 21904 00000 00000 00000 000 x10 13  
14 2. 03911 95740 16000 00000 00000 000 x 10 13  -9. 83228 35735 52640 00000 00000 000 x 10 14  -9. 00756 33791 33440 00000 00000 MO x 10 14  
15 3. 91597 65915 64800 00000 00000 000 x 10 14  -1. 85692 24673 25772 80000 00000 000 x 10 16  -1.67195 75006 63654 40000 00000 000 x 10 16  
16 6. 96322 20405 08928 00000 00000 000 x 10 15  -4. 01464 36322 76270 08000 00000 000 x 10 17  -3.80769 86293 01468 1600000000 000 x 10 17 

 

17 1.46605 53194 98629 12000 00000 000 x 10 17  -9.46012 45723 67989 24800 00000 000 x 10 18  -9. 17003 67331 94049 02400 00000 000 x 10 18  
18 3. 29272 11924 03306 49600 00000 000 x 10 18  -2. 23320 58433 09975 36768 00000 000 x 1028  -2. 17689 35595 90026 0864000008 000 x 10 8  
19 7. 40730 32159 32305 40800 00000 000 x 10 19  -5.4035214885 93695 77267 20000 000 x 1021  -5.33572 67800 95879 02668 80090 000 x 1021  
20 1. 72561 16432 82305 15916 80000 000 x 1021  -1.3643779028 23278 43743 74400 ON x 1023  -1. 36710 90561 57953 16219 90400 000 x 10 3  
21 4. 20880 66125 03693 22352 64000 000 x 1022  -3.56771 47632 05346 92466 89280 000 x 1024  -3. 61694 68087 31243 86955 67360 000 x 1024  
22 1.06438 80878 57307 70655 64160 000 x 1024  -9, 62363 70434 66291 72383 66208 000 x 1025  -9.86029 61822 99713 08328 55040 000 x 102, 5  
23 
24 

2.78393 
7. 53852 

13703 
00041 

71200 
68339 

11050 
87337 

02496 
86316 

000 x 1025  , 
800 x 10'

6 
 

-2.68089 
-7. 71195 

98759 
72340 

50788 
42472 

22605 
84314 

89199 
97265 

360 x 1027 
 152 x 1028  

-2. 77518 
-8. 06032 

47502 
84809 

25593 04511 45487 040 x 10' :7 
 48260 83524-83905 536 x 1028  

25 2. 11198 76904 88910 99508 67046 400 x 1028  -2.28861 33721 35542 53994 10402 755 x 1030  -2. 41344 41537 00352 81655 60025 176 x 1038  
16 6. 11464 65877 55323 40683 39523 584 x 1029  -7.00170 66012 65845 26038 53523 976 x 1031  -7. 44555 57545 58028 51011 01329 211 x 10 31  
27 1. 82797 96604 62615 88022 55010 857 x 1031  -2. 20700 93799 04238 39769 51855 376 x 1033  -1.36537 72213 61303 1943205487249 x 1033  
28 5. 63852 03255 91947 05247 64528 640 x 1032  -7. 16299 43060 34201 28929 77653 586 x 1034  -7. 73360 48344 22401 45356 56815 643 x 10 34  
29 1. 79312 47384 82091 52262 65275 347 x 1034  -2. 39217 16874 59205 51969 91700 407 x 10 36  -2. 60061 25445 47291 12371 87170 248 x 1036  
30 5. 87451 48992 96768 23194 89954 723 x 1935  -8. 21525 55000 34653 27540 43155 874 x 1037  -8. 98920 26054 14045 09471 12333 781 x 11337  
31 1. 98119 32373 63998 58121 55427 092 x 1037  -2. 89940 92932 46504 76441 02995 823 x 1039  -3. 19198 92003 63830 27048 95663 515 x 1039  
32 6. 87325 20735 84420 35294 02226 527 x 1038 -1.05097 34607 02630 44992 05085 627 x 1041  -1. 16370 61845 89917 27611 21056 789 x 1041  
33 2. 45118 34082 97553 95324 88815 077 x 1048  -3. 91028 47723 82726 92217 39085 949 x 1042  -4. 35330 85697 95494 62054 68953 708 x 1042  
34 8. 97998 82196 75969 55623 82117 975 x 1041  -1.49247 59671 91028 47855 01526 589 x 1044  -1. 67012 29776 37649 12978 13267 411 x1044  
35 3.37739 10182 51818 55680 08871 467 x 1043  -5. 84042 04860 89666 09999 73313 066 x 1045  -6. 56743 30633 07798 21704 63949 694 x 1045  
36 1. 30323 41503 40617 71793 17227 595 x 1045  -2.34197 33079 60815 58421 88893 972 x 1047  -2. 64565 52721 49439 17631 61585 426 x 1047  
37 5. 15631 55948 30872 56299 21925 933 x 1046  -9. 61815 74995 36974 88794 25465 360 x 1048  -1.09129 06948 01908 92295 09961 828 x 10!,9, 
38 2. 09065 82562 58745 50515 57167 087 x 1048  -4. 04345 64385 16972 65290 03940 175 x 1958  -4.60684 37915 84883 54396 05309 551 x 10" 
39 8. 68187 52142 23307 11183 62797 430 x 1049  -1. 73920 60891 88114 13144 90475 746 x 105, 2  -1. 98936 99758 41439 27652 31344 784 x 1052  
40 3. 69063 26675 18006 00208 60429 351 x 1051  -7. 65033 74882 36403 00791 15754 417 x 10' 3 -8. 78368 46027 07649 53056 63473 097 x10'3  
41 1.60518 01745P 19566 75006 47462 211 x 1053  -3.43487 47287 25057 07624 64147 698 x 1055  -3. 96363 59968 50718 39338 07890 750 x 1055  
42 7. 13953 55081 81224 56795 12009 987 x 1054  -1. 58032 05317 54483 47365 57341 989 x 1057  -1. 82717 40290 18809 47226 51926 710 x 1057  
43 3. 24589 95781 47038 85425 61729 472 x 1056  -7. 41486 32510 73020 13385 05689 433 x 1058  -8. 60111 47974 09253 37993 68754 721 x 1058  
44 1.50772 70549 53703 73005 42506 269 x 10' 8  -3. 55171 28658 38617 24523 02337 713 x 10e0  -4. 13279 53435 36142 71584 33100 534 x1048  
45 7.15227 04422 62387 82302 78905 417 x 1059  -1.73610 83866 30573 56724 54188 635 x 1062  -2. 02618 40080 46676 34647 15110 363 x 1062  
46 3. 46351 27027 92517 52568 83207 133 x 1041  -8.65672 46881 41941 49853 13887 812 x 1063  -1. 01320 38574 82571 76908 11614 640 x 1064  
47 1. 71145 75733 99702 90564 51854 238 x 1063  -4. 40156 74704 32062 42241 23152 691 x1045  -5. 16583 23267 77131 18550 99552 836 x 1065  
48 8.62627 34972 23210 78390 48989 304 x 1044  -2.281301929815868 74203 94559 384 x 1067  -2. 68446 06615 27810 01250 47682 301 x 1067  
49 4. 43328 20579 38699 70577 93143 863 x 1066  -1. 20484 08918 78608 36066 66226 948 x 1069  -1. 42134 58961 00771 32425 47090578 x 10 69  
50 2. 32228 57781 67440 81308 76905 700 x 1068  -6. 48191 04733 54002 05926 80356 188 x 1070, -7.66524 46235 73762 00834 40381 407 x 10 70  
51 1. 23948 91484 14093 91664 14728 722 x 1078  -3. 55109 54034 00731 77995 57258 289 x 107 ' -4. 20918 33669 92515 24030 37021 756 x 1072  

pushed higher to N= 38 for (1,0,0), N=67 for (0,0,1), and 
N= 112 for (0,1,0). For (1,0,0) the alternating-sign contri-
bution is moderately larger than for the ground state-a 
consequence of the increased value of n 1 . For (0,0,1) and 
(0,1,0), the alternating-sign contribution is significantly 
smaller, which is a consequence of the dependence on n 2 

 and m that bring it down from the same-sign contribution 

by a factor of N
-11/1 

2
-t4n -5 

. Thus, for (0,1,0) the 
alternating-sign contribution is - -10 -25  versus 
- -10-1b  for the ground state. 

Comparison of Table X with Table IV reveals clearly 
that the fir becomes asymptotic much more slowly than 
the 02N1. 
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CI I I (N) (2R /n) -N  , 
N =0 

EuvL _ e -211(N +4n 2 +2m +1)!  I 1+  (7 (21(2) 

n 3(n2!) 2[(n2+m)!] 2 	N+4n2+2m +1 + (N +4n 2 +2m +1)(N+4n 2 +2m) 

(n +2n2+2m +1)!(n1+2n2+m +1)! 
+(-1)"N-le 2n 16n 	 (N -4n 2  -2m -5)! 

n 1 !(n i +m)! 

X11+ 	  
N - 4n 2 — 2m -5 

4n 2[20(N-4n 2 -2m -5) -0(n i +2n 2 +2m +2)-1 ,( n +2n2+m +2)] 

12n 2 — 12(2°) ) 2 ±M 2 — 1+ 12n -1202°) -4,202°)  
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TABLE IX. Coefficients A (ni,n2,m), B(n 1 ,n 2 ,m), C(n i ,n 2 ,m), and D(n1,n2,m) for the 
alternating-sign contributions to the asymptotics of /34,`", as in Eq. (232), and to the asymptotics of E lm, 
as in Eq. (236). 

ni n2  m 
	

A(n 1 , n2,m) 
	

B(n i ,n2+m) 
	 n2+m ) 	D(I 	m) 

0 0 0 83 120 243 -184 

1 0 0 2983 -2656 6179 -3680 

0 1 0 7459/9 -4960/3 22039/9 -7264/3 

0 0 1 2060 -6848/3 13492/3 -9536/3 

X. NUMERICAL CHARACTERIZATION 
OF THE ENERGY SERIES 

The asymptotics of the RSPT coefficients E (N)  for the 
energy are similar to those for the PIN):  again there is an 
alternating-sign contribution down several powers of N 
from the dominant same-sign contribution [cf. Eq. (199)]. 
First we list in Tables XI-XIV the terms of the RSPT 
series, the exponentially small gap series AE 111 , and the 
doubly-exponentially-small imaginary series A i El2 J, all 
through fifty-first order in (2R /n) -1 , for the ground state 
(n i =n2 =m =0) and for the three n=2 excited states for 
which n 1 , n 2 , and in are (1,0,0), and (0,1,0) and (0,0,1). 
We use the notation C [11(N)  and C 121(N)  for the series 
coefficients for the two exponentially small quantities, ac-
cording to [cf. Eqs. (176) and (179)] 

A E 111 ±  (2R /n)2
02°)e  _R in - 

n 3n 2 !(n 2 -Fin)! 

(234) 

Ai E 121 -T-ir (2R /n)
40(2°) e —2R in —2„ 

n 3 [n 2 !(n 2 +m)!] 2  

X 	Ci 2")(2R /n) -N  (±IrnR >0) . (235) 
N=0 

As for /3 1  and /32 , the coefficients are estimated to be accu- 
rate to the precision reported [29 digits for 
( n i ,n 2 ,M )= (0,0,0), (1,0,0), and (0,0,1), and 27 digits for 
(0,1,0)]. We call the reader's attention to the sign pattern, 
which settles down quickly to uniform minus signs for the 
ground state and two of the excited states, but which is 
quite irregular until after twenty-seventh order for the 
(1,0,0) state. 

The asymptotics of the E (N)  have two contributions, as 
did the A N) . In the notation of Eq. (235), Eq. (199) be 
comes 

N -4n 2 -2m -5 

C(n 1 ,n2,m)+872n 4  /3+D(n 1 ,n 2 ,m)[0(N -4n 2 -2m -6)-0(1)] 
(N -4n 2 -2m -5)(N -4n 2 -2m -6) 

[11,(N-4n 2 -2m -6)-0(1)] 2 +[0(1)(N-4n 2 -2m -6)-0 )(1)] 
+ 32n 4 	 +0(N -3(1nN) 3 ) 

(N -4n 2 -2m -5)(N -4n 2 -2m -6) 
(236) 

where the coefficients C ( n i , n 2,m ) and D(n 1 , n 2,m ) are 
independent of N. The first few are listed in Table IX. 

In Table XV we uncover numerically the alternating- 
sign contributions to the asymptotics by subtracting the 
terms in Eq. (236) that come from A iE 121  (those involving  

the coefficients C 121(k) ). We truncate the partial sum 
after including the smallest term. Listed in Table XV are 
the exact E (N) , the k index of the last correction term in-
cluded in the partial sum and the value of that term, the 
difference between the exact and asymptotic values- 

1 
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TABLE X. Asymptotic analysis of the RSPT fir. The dominant, same-sign subseries in the asymptotic formula (232) of the text 
is truncated with the inclusion of the smallest term, whose index has been indicated by k t,„„. The relative asymptotic error refers to 
the difference between the exact coefficient fi ir and the asymptotic formula to the indicated number of terms, divided by the leading 
asymptotic term, which is (4n + 2m +2)(N + 4n 2 + 2m)!/(n21)2[(n 2 M)!P. For sufficiently large N, the relative asymptotic error, 
after accounting for the same-sign subseries, is alternating in sign. The effect of the alternating-sign subseries is seen through the in 
clusion of up to three terms. 

same-sign subseries 	 alternating-sign subseries 

N fir(exect) kalin  
smallest 

term 

relative 
asymptotic 

error 

relative asymptotic error after 'nein- 
sloe of terms throeth order (la II -1 ) 

0 	1 	2 

30 
3i 
32 
33 
34 
35 
36 
37 
38 
39 
40 

45 
60 
75 
40 

105 
120 
135 
150 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

60 
75 
90 

105 
120 
135 
150 

110 
111 
112 
113 
114 
115 
116 
ii7 
118 

4.20484 95981 43437 52856 90821 189 x 10 32 
 1.3148283626 14609 16879 39208 591 x 10 34  

4. 24136 03481 22180 14997 27011 495 x 10 35 
 1.41014 46206 91339 49621 17275 387 x10 37  

4. 82802 38503 08125 29553 31706 145 x10 38 
 1.70085 93393 95120 27806 01785 581 x 10 40  

6. 16061 45090 62241 67417 63524 285 x 10 41  
2. 29254 43917 84602 54356 91615 649 x 10 43 

 8. 75883 13712 37131 11125 90672 419 x 10 44  
3. 43337 61289 94263 40892 50487 074 x 10 46  
1. 37996 71455 77679 10787 76135 778 x 10 48  

2.06510 55699 12521 40804 36906 726 x 10 56 
 1.49440 30280 94080 16957 06185 790 x 10 82  

4. 55831 63582 14424 59695 34188 535 x 10 109  
2. 77057 11141 95650 94203 64577 849 x 10 138 

 2.03771 32634 96922 30359 18117 521 x HIM 
1. 27029 42073 70747 46762 41761 449 x 10 199  
5. 13952 02223 01706 16760 56611 113 x 10230 

 1. 09657 73249 78189 64E105 40729 875 x 10263  

4.63527 95548 81703 42107 57979 025 x 10 40 
 1.68397 18149 95061 54938 41790 695 x 10 42 

 6.20413 68274 68655 2987369117033 x10 43 
 2.40732 62624 95121 58317 30959 Si? x 10 45 
 9.46037 67189 73453 98270 12646 060 x 10 46 
 3.81149 49519 0970102495 76415 853 x 10 48 
 1. 57340 44239 91749 11825 05650 717 x 10 50  

6. 65115 23979 40872 72589 32947 434 x 10 51 
 2, 87760 16315 26658 55137 53854 547 x JO 53 

 1. 27355 17426 99160 79925 99461 395 x 10 5 ' 
5,7628884684 97828 21323 99269 039 x 10 56  

4.25469 21649 34195 83172 33508 800 x 10 82 
 1.31285 33314 91568 1717738410795 x10118 

 8.03918 89765 54943 53588 04877 827 x 10138  
5. 94338 14608 72294 73269 41028 217 x 10 168 

 3.71916 15533 21328 05918 28739 902 x 10199 
 1.50912 32797 30865 49194 88339 840 x 10231 

 3.22727 61757 73613 99640 39047 709 x 10263  

3.84044 68154 66344 53494 67272 941 x 10 184 
 4.4283179529 24774 51625 18522 473 x 10188  

5. 15003 51797 28241 91850 55330 994 x 10 198  
6. 04072 59073 33851338876 59420 723 x 10 192 

 7.1456941846 99620 35747 03243307 x10194 
 8. 52403 88989 87193 37750 23460 236 x 10196 

 1.02532 59914 08535 71897 61735 152 x 10199 
 1.24355 32652 55245 94115 13581 471 x 10281 

 1.52062 98594 46173 47677 08109 775 x 0283  

Ground state: n1=0, n2=0, m=0 

14 	1.1 x10 -6 	-3.6 x 10 -7  
14 	5.8 x 10 -7, 	-2.1 x 10 -7  
15 	3.2 x 10 -r 	-2.3 x 10 -7  
15 	1.8 x 10 -7 	7.0 x 10 -9  
16 	9.5 x 10 -8 	-1.5 x 10 -7  
16 	5.2 x 10 -8 	6.3 x 10 -8  
17 	2.8 x 10 -8 	-1.0 x 10 -7  
17 	1.5 x10 -8 	6.7 x 10 -8  
18 	8.0 x 10 -9 	-8 -7.4 x 10 
18 	4.3 x10 -9 	5.9 x 10 -8  
19 	2.3 x 10 -9 	-5.6 x 10 -8  

22 	9.6 x 10-11 	3.1 x 10 -8  
29 	5.6 x 10-15 	-7.9 x 10 -9  
37 	2.7 x 10-19 2.7 x 10 -9  
44 	1.2 x 10-23 	-1.1 x 10 -9  

51 	5.0 x 10-28 	5.2 x 10-10  
51 	6.0 x 10-32 	-2.7 x 10-10  
51 	2.9 x 10-35 	1.5 x 10-10  
51 	3.8 x 10-38 	-4,1 x 10-11  

Excited state: n1=1, n2=0, m=0 

21 	1.0 x 10 ' 7 	6.0 x 10 -6  
21 	4.2 x 10 -8 	1.3 x 10 -5 
21 	1.8 x 10 -8 	-3.3 x 10 
21 	8.1 x 10 -9 	-8.9 x 10 -7  
21 	3.7 x 10 -9 	6.9 x 10 -7  
21 	Le x 10 -9 	-1.7 x 10 -7  
21 	8.6 x10-1° 	9.1 x 10 -8  
21 	4,3 x 10-1° 	-1.2 x 10 -7  
21 	2.2 x 10-10 	1.3 x 10 -7  
21 	1.2 x 10-10 	-1.2 x 10 -2  
21 	6.2 x 10 11 	1.1 x 10 -7  

29 	5.0 x 10-15 	-4.7 x 10 -8  
37 	2.5x10-19 	11 x 10 -8  
44 	1.1 x 10-23 	-1.0 x 10 -8  

4.7 a 10-28 51 	 5.3 x 10 -9  
51 	5.7 x10-32 	-3.0 x 10 -9  
51 	2.7 x 10-35 	1.8 x 10 -9  
51 	3.6 x10-38 	-1.1 x 10 -9  

Excited state: ni=0, n2=1, m=0 

51 	4.8 x10-24 	-2.1 a 10-23  
51 	2.7 x 10-24 	-5.2 x10-24  
51 	1.5 x 10 24 	-1.0 x 1023  _2,  
Si51 	8.4 x 	' 	1.8 x 10-25  
51 	4.8 x10-25 	-5.4 x10-24  
51 	2.7 x 10-25 	1.8 x 10-24  
51 	1.6 x 10-25 	-3.4 x 10-24  
SI 	9.0 x 10- ,26, 	2.0 x 10-24  
51 	5.3 x 10-" 	-1.4 x 10-24  

1.0 x 10 -7 
 -6.1 x 10 -7 
 1.0 x 10 -7 
 -2.7 x 10 -7 

 9.4 x 10 -8 

 -1.4 x 10 -7 
 7.7 x 10 -8 
 -8.6 x10 -8 
 5.9 x10 -8 
 -5.7 x10 -8 
 4.5 x 10 -8 

 -2.3 x 10 -8 
 4.3 x 10 .1 

 - 1.2 x 10 -9 
 4.1 x 10-18  

° -1.7 x 10-10 
 7.4 x 10-11 

 -4.0 x 10-11 
 2.2 x 10-11 

 1.6 x 10 -6 
 1.7 x 10 -5 

 -6.6 x 10 -6 
 1.9 x 10 -6 

 -1.8 x 10 -6 
 2.0 x 10 -6 

 -1.8 x 10 -6 
 1.6 x 10 -6 

 -1.4 x 10 -6 
 1.2 x 10 -6 
 -1.1 x 10 -6 

 2.1 x 10 -7 

 -6.2 x 10 -8 
.2x i10 -0 2.2 x 0 

 -9 
 -9 

4.5 x 10 -9 

 -2.3 x 10 -9 
 1.3 x 10 -9 

 -4.3 x 1024  
-2.0 x 

3.4 x 10
o
-

-
2
23 

4 
 -1.2 x 10-23 

 5.2 x 10-24 
 -7.7 x 10-24 

 5.0 x 10-24 
 -5.5 a  0-24 

4.3 x10-24  

-2.0 x 10 -7 
 -3.6 x 10 7 
 -1.0 x 10 -7 
 -1.0 x 10 -7 

-5.0 x 10 -8 
 -2,1 x 10 -8 

 -2.6 x 10 -8 
 1.6 x 10 -9 

-1.5 x 10 -8 
 6.5 x 10 1 

 -9.7 x 10 -9  

4.2 x10 '9 
 -6.9 x10-1° 

 1.7 x 10-1° 
 -5.2 x 1011 

 1.9 x 10-11 
 -8.2 x 10-12 

 3.8 x 10-12 
 -1.4 x 10-12  

8.7 x 10 -6 
 1.1 x 10 -5 

-1.4 a 10 -6 
-2.5 x 10 -6 

 2.1 x 10 -6 
 -1.3x10 -6 
 1.1 a 10 -6 

 -9.6 x 10 -2 
 8.4 x 10 -7 
 - 7.3 x 10 -7

6.4 x10 -7  

-1.1 x10 -2 
 2.8 x 10 -8 

 -9.1 x10 -9 
 3.5 x10 -9 
 -1.5 x 10 -9 
 7.3 a 10-10 
 -3.8 a t0-10 

-2.3 x 1013  
- 3.5 x10-' 4 

 -LI x10-23 
 1.4 x 10-2,4i 
 -6.4 x ir "  

2.6 x 10-24 
 -4.1 x 10' ,4 
 2.5 x 10-24 

-2.8 x 10-24  

4.1 x 10 -7  

-1.6 x10 -7 
 -3.9 x 10 -7 
 -7.1 x10 -8  , 

-1.3 x10 1 
 -2.8 x10 -8 

 -4.0 x10 -8 
 -9.8 x 10 -. .' 

-1,2 x 10 .
B

-3.3 x10 -9 
 -3.6 x 10 1 

 -1.0 x 10 -9 

 -4.9 x10-11 
 2.9 x 10-11 
 -8.2 x 10-12  

-92:56 xa  1100: 1L; 

3.9)(10-13 
 -1.7 a  7 x : 0  01 43 

 8.5 x 10 -6 
 1.1 x 10 5 

 -1.8 x 10 -6 
 -2.0 x 10 -6 

 1.5 x 10 -6 
 -8.3 x 10 -7 
 5.9 x 10 -7 
 -5.0 x 10 -7 

 -3.3 x 10 -2 
 2.7 x 10 -7 

 -1.4 x 10 -8 
 4.4 x 110: 11 

3.4 
a 
 10 

-2.3 a 10 -10 
 1.2 x 10-18 
 -6.3 x 10-11 

 3.4 a 1011 

 -1.4 x 10-23 
 -1.2 x 10-23 
 -4.3 x 10-24 

 -5.0 x 10-24  
-0.1 a to 25  
-2.3 x 10-24  
2.6 x 10 25 

 „1.3 a jo -24 

5.1 x 10-25  



alternating - sign subseries 

relative asymptotic error after inclu- 
sion of terms through order (in N -1 ) 

0 	1 	2 

-4.2 x10-24 	2.2 x10-24 	-8.1 x10 -25  
-2.1 x 10 24  3.5 x10-24 	 5.0 x 10-25  

-2.1 x 10 -24 	1.1 x 10 24 	-3,2x10 25  
1.2 x 10-24 	-6.3 x 10-25 	1.7 x 10-25  

-7.2 x 1 00-25 	3.7 x 10 -25 	-9.7 x10-26  
4.4x10 	-2.2 x 10-25 	5.6 x 10 -26  

-2.7 x 10- .2,5, 	1.3 x 10 25 	-3.3 x 10 2,6  
1.7 x 10-" 	-7.9 x 10 -26 	2.0 x 10 - ' 6  
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TABLE X. ( Continued). 

14 (N) (exact) 

same-sign subseries 

relative 
smallest 	asymptotic 

t 	error kminerm  

119 
120 

125 
130 

135 
140 
145 
150 

65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

90 
105 
120 

135 
150 

1.874608641642265 
2.32968 62305 67245 

7.77622 45330 15126 
3. 14585 46826 64292 
1.53154 39326 78469 
8.91417 76528 46513 
6.16495 21436 76917 
5.037168961645249 

1. 13885 00590 21654 
7.77531 43019 45827 
5.38584 79493 22852 
3.7843066855 26025 
2.69667 40945 68716 
1.94848 30612 01337 
1.4272801030 14265 
1.05970 92346 33030 
7,97355 05617 87022 
6.07895 46016 11356 
4.69509 80519 05535 

4. 17505 47693 53232 
4.225964219025580 
3.4689663375 28781 
1.7874261945 40356 
4.7314948064 78678 

94460 
00079 

32981 
16242 
42414 
18858 
94321 
73328 

30449 
29475 
74308 
29819 
52063 
28345 
96995 
19251 
18242 
16506 
03298 

78059 
41268 
08724 
87670 
81088 

30816 980 x10285 
 98391 415 x102 ° 7 

 58236 992 x10217 
 59039 798 x10228 
 90862 477 x10239 
 83709 809 x10249 
 95285 938 x1026° 
 18252 223 x 10271  

69843 011 x 10 95 
 89791639 x 10 96 

 15564 229 x 10 98 
 08827 997 x 10100 

 62962 081 x 10102 

 91680 476 x101°4 
 99307 339 x101°6 

 82579 320 x10188 
 21594 741 x10189 
 76649 181 x 10111 

 01084 668 x10113  

13419 611 x 10142 

 06350 781 x10172 
 93612 405 x102°3 
 07584 213 x 10235 

 48155 313 x10267  

51 	3.1 x10-26 	1.8 	i0 24 

51 	1.8 x 10-26 	-1.9x10` 4  

51 	1.4 x 10-27 	1.1 x10 24  
51 	1.2 x10-28 	-6.6x1025  
51 	1.2 x10-29 	

1 
4.2 x 10

5 
 

Si 	1.3 x 10-30  - 2.7x10 " 
51 	1.5 x 10-31 	1.7 x 10 25  
51 	2.0 x 10 -32 	

1c 
-1.1 x 10 

Excited state: n1=0, n2=0. m=1 

31 	3.3 x10-14 	-4.2 x10-14  
32 	1.7 x10-14 	-1.0 x to-15  
32 	9.4 x10-15 	-1.7 x 10-14  
33 	5.0 x10-15 	3.7 x 10 15  
33 	2,7 x10-15 	-8.6 x t0 -15  
34 	1.4 x10 -15 	4.3 x 10 -15  
34 	7.6 x10-16 	-5.5 x10-15  
35 	 3.9 x 10 15  4.0x10 

 :2:1: 	-4,0 x 10-15  35 
36 	1.1 x10 -16 	3.3 x 10-15  
36 	6.1 x 10 17 	-3.1 x10 -15  

44 	4.1x1021 	7.0 x 10 -16  
51 	2.4 x10-25 	-2.0 x 10-16  
51 	3.6 x10-29 	6.5 x 10 17  
51 	2.0 x 10 -32 	-2.4 x 10-17  
51 	3.0 x 10-35 	1.0 x 10-17  

	

. 74:43 x 1 00: 11 : 	-6 .0 x 10 -14 	-3.0 x 10 -14  
-1.2 x 10 -14  

2.0 x 10-14  I:: : 10:144  - 7.3 x 10 -15  

	

-2.9 x 10 -14 	1.4 x10 14 	-4.9 x 10 15  

	

2.0 x 10-14 	-1.7 x 10 -14 	-9,4 x10 l '' 

	

-2,1 x10 -14 	1.2 x 10 -14 	-2.5 x10
. 15 

 

	

1.8 x 10-14 	-1.2 x 10-14 	6.5 x 10-16  

	

-1,5 x 10-14 	9.0 x10-15 	-1.5 x 10 -15  
1.3 x 10-14 9.0 x 10 16  

	

, 	-8.3 x10 -15  

	

-1.2 x 10-1 ' 	6.9x10 -15 	-1.1 x10 15  

	

1.0 x 10 -14 	-6.1 A 10 -15 	8.2 x 10-16  

	

-1.7 x 10 -15 	9.1 x 10-16 	-1.5 x 10 -16  

	

3.9x10 16 	-1,8 x10-16 	3.1 x10 -17  

	

-1.1 x10-16 	4.6 x10-1( 	-7.6x10 -18  

	

3.5x10-17 	-1.3 x10-17 	2.2x10-18  

	

-1.3 x 10-17 	4.5 x 10 -18 	-7.0 x 10 -19  

divided by the leading asymptotic term (called the relative 
asymptotic error in the table), and the relative asymptotic 
error after taking account of one, two, and three terms 
from the alternating-sign asymptotic formula. These 
quantities are listed for various orders, up to order 150. 

Notice that for the ground state the residual remaining 
after subtraction of the same-sign terms is alternating in 
sign after order N=25, and that it has relative magnitude 
7 x 10-  " at order 150-which is small compared to unity, 
but large compared with the corresponding relative resi-
dual for /542N),  which at order 110 is already less than 
10 -30. The first alternating-sign asymptotic contribution 
significantly overcompensates, but by the third 
alternating-sign contribution the relative error has 
dropped by a factor of 10 -4  at N=150 (see Table XV). 

For the excited states, the threshold for alternation is 
pushed higher to N=39 for (1,0,0), N=50 for (0,0,1), and 
N=93 for (0,1,0). For (1,0,0) the alternating-sign contri-
bution is significantly larger than for the ground state-a 
consequence of the increased value of n l . For (0,0,1) and 
(0,1,0), the alternating-sign contribution is significantly 
smaller, which is a consequence of the dependence on n 2 

 and m that brings it down from the same-sign contribu-
tion by a factor of N

-8"2-4m-6. 
 Thus, for (0,1,0) the 

alternating-sign contribution is -5 x 10 -24, versus 
-7x 10 -11  for the ground state. 

Comparison of Table XV with Tables IV and X reveals 
clearly that like the 	the the E IN)  become asymptotic  

much more slowly than the 02N) . 
It is of some interest to turn to an observation made in 

Ref. 13, that the "Neville table" for the ground-state E (N)  
seems to converge in a zigzag fashion, 12  and that much 
better convergence is obtained by treating the even and 
odd terms separately. An aim of that study was to con-
firm the asymptotic behavior, E (N) - - e -2"(N The 
Neville table for the quantities aN  is the matrix, defined 
recursively with aN =aN , 

-(N 	. (237) 

If aN  is given asymptotically by the expression 

 

aN -1+4/N -1-B/[N(N -I)] 

+C /[N(N -1)(N-2)]+ • • • , 	(238) 

then the difference between each entry and unity, ask, -1, 
approaches 0 as N -k  -I . If, however, aN  has add-
itional terms, say of the form 

(-1 ) ND /(N (N -1)(N -2)(N -3)(N-4)(N -5)] , 

as is the case for E (N)  for the ground state, then the entry 
aN  has an alternating-sign contribution proportional to 
N k -6. That is, the difference with unity has an 
alternating-sign contribution that grows with k. This is 
the explanation of alternation phenomenon observed in 
Ref. 13. If the alternating-sign contribution could be 
eliminated, then the Neville table should converge more 
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TABLE XI. Coefficients for the RSPT series, the A.E 111  series, and the .04E 121  series, as defined by Eqs. (166), (234), and (23 5) of 
the text, for the ( n 1  =0, n2 =0, m =0) ground state of H 2+ . 
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Order 

N E(N) 
Coefficient 

c(I)(N) c ( 2)(N) 

0 -5.00000 00000 00000 00000 00000 000 x10 -1  1.00000 00000 00000 00000 00000 000 x 10 0  1.000000000000000 00000 00000 000 x 10 
1 -2.00000000000000000000 00000 000 x10 0  1.00000 00000 00000 00000 00000 000 x 10 0 2.00000 00000 00000 00000 00000 000 x 10 0 
2 0.0000000000000000000000000000 x 10 8  -1,250000000000000 00000 00000 000 x 10 1  - 1.8000000000 00000 00000 00000 000 x 10 1  
3 0.0000000000000000000000000 000 x 10 0  -2.18333333333333333333 33333 333 x 10 1  -6.4666466666666666446644664 647 x 10 1 
4 -3.6000000000000000000000000000x10 1  -1.63458 33333 33333 33333 33333 333 x 10 2  -1.403333333333333 3333333333 333 x 10 2  
5 0. 00000 00000 00000 00000 00000 000 x 10 0  -1.21165 83333 33333 33333 33333 333 x10 3  -1.5244000000 00000 00000 00000 000 x10 3  
6 -4.8000000000000000000000000000 x10 2  -7.24 	736111 11111 11111 11111 111 x10 3  -1. 24825 77777 77777 77777 77777 778 x 10 4 
7 -6.81600 00000 00000 moo owao Imo x10 3  -1.010124831349206 34920 63492 063 x 10 5  -1.24665307936507936507 93650 794 x 10 5  
8 - 3. 10200 00000 00000 00000 00000 000 x 10 4  -9.362485096974204 34920 63492 063 x 10 5 -1.323872704761904 7614047619 048 x 10 6  
9 -4.5388800000 00000 00000 00000 000 x 10 5  -1.03330 47428 96549 82363 31569 645 x 10 7  -1.4806678106 52557 31922 39858907 x 10 7. 

10 -5.42457 60000 00000 00000 00000 000 x 10 6  -1.39652815692385637125 22045 855 x 10 8  -1.906139275870194 00352 73368 607 x10 : 
11 -5.95039 68000 00000 00000 00000 000 x 10 7  -1.788486546799068 53755 81208 915 x 10 . -2.520874429393246 75324 67532 468 x 10 ' 
12 -8.38205 20800 00000 00000 00000 000 x 10 p  -2.56750964492118008687 23611 779 x 101u  -1459704 02597 82538 82742 77163 166 x 10 10  
13 -1.18278 18240000000000000000 000 x 10 10  -3.93101 3362054025 84926 48683 621 x 10 11  -5.4937921993592300012744457 189 x 10 11  
14 1.7841803616000000000000000000 x10 11  -6.30860 30120 96369 94706 69711 865 x10 12. -8.843280560780952 1926398116874 x10 12  
15 -2.89561 862726400000000 00000 000 x1012  - 1.07905 21375 52958 94081 47697 134 x10 1: -1.5103549002 20563 37248 24107 893 x10 14  
16 -4.94927 770004280000000 00000 000 x 10 13  -1.94504 09431 657715719665044 203 x 10 1 ' -2.7213622449 18935 43643 79387 025 x 10 15  
17 -8.95386 41889 94560 00000 00000000 x10 14  -3. 691906942490668 33380 88003 127 x 10 16  -5.16228 40287 16972 74018 42068 987 x 10 16  
18 -1.70775 91118 31129 60000 00000 000 x10 16  -7.36691088669396234950 04035 051 x10 17  -1.02917320108650740966 31176 246 x10 18  
19 -3.4240184054 44785 60000 00000 000 x10 17  -1.54150 20632 41004 58513 97150 697 x10 19  -2.1516026728992556014959473 763 x 10 19  
20 -7.20352 71847 96734 02400 00000 000 x10 18  -3.3764718615 98035 45095 74336 884 xie -4.7083056141 975982482792116495 x 10 28  
21 -1.586633701830904 41984 00000 000 x10 28  -7.7275980864 27204 89987 64471 393 x 10 4 ! 1.0765194098841869119097946024 x1022  
22 -1 6519845724 20448 69676 80000 000 x10 21  -1.8448155054 45854190504 36842 115 x 10 23  -2.56744 52149 71371 40328 15826 700 x1023  
23 -8.76818 18011 54661 4600640000000 x102 2  -4.5866197503 05278 22426 67251 432 x 10 24  -6.3769928377526265617321947 749 x 10 24  
24 -2. 19237 89692 87299 63470 43120000 x10 24  -1. 18581 57747 76732 14364 04939 318 x10 26  -1.6471196320075837211751034 632 x10i 6  
25 -5.699889034732373 98500 94080 000 x 10 25  -3.18355 83644 61635 78147 16748644 x 10 27  -4.417789354993934 370608871324 x10' 7  
26 -1.5386845406 24901 9039124834 560 x1027  -8.86359 51548 82034 55518 28981 017 x 10 28  -1.22885 62062 29670 07480 29362 914 x1029  
27 -4.30701 5942807344 63159 84849 344 x 10 28  -2.55604 56435 44030 79195 81850 995 x10313  -3.54055 42239 6488151860 39522 499 x 10 3 8, 
28 -1.248564638 .7 44255 27154 90329 645 x103°  -7.62581 42566494382635668133888 x 10 31  -1.05538 73385 15058 26984 64609 363 x 103 " 
29 -3.744038731341340 10875 15630 039 x1031  -2.3511832175441129805807830405 x1033  -3.25123 45534 80517 31436 4540e 326 x 103, 
30 -1. 16009 28518 92770 55962 92709 845 x1033  -7.4838374003 70202 63362 29847 182 x10 34  -1.03403 3061800999 71361 63200 561 x10" 
31 -3. 71037 69005 48712 87703 51920 613 x 103 4  -2.45684 57197 25637 52075 09725 748 x1036  -3.39194 73866 39399 86362 25343 054 x 1036  
32 -1.22376 73764 98047 98279 36551 621 x10 36  -8.3109643578 93358 83865 73372 462 x 10 37  -1. 14655 69540 07235 99096 60792 257 x 10 38  
33 
34 

-4. 15850 46386 52791 79250 06421 463 x10 37 
 -1.45466052691626644223 27876 155 x1039  

-2.8944716053 73106 19116675975 367 x10 39 
 -1.03699 81564 05009 79484 75183 657 x 1041  

-3.990236887075134 01710 49666 266 x10]1) 
 -1.42857 74193 90117 87840 82240 525 x10". 

35 -5.2338098909 58899 15495 95876 552 x 1040  -3.8189267651 11900 66517 64777 557 x 10 42  -5.25744 62109 52309 55992 57531415 x10 4 ' 
36 -1.93541 35686 18694 56546 97666 524 x 10 42  -1.4445810606 36116 14398 05282 839 x10 44  -1.98743 80445 14512 8428985592 760 x 1044  
37 -7.350415241821237 8419162047 088 x104! -5.6088961415 57971 74124 95354 039 x10 45  -7.71183 32271 337802442234967 571 x10 45  
38 -2.86505 73217 61526 57741 39553 536 x104 ' -2.2338880962 10866 74370 87630 041 x10 47  -3.06958 62026 56960 89416 43834 872 x104 '

,  

39 -1. 14538 73358 92800 41315 04907 402 x10 47  -9. 12054 35207 82225 47645 27322 087 x10 48. -1.25252 61489 84422 94865 32767 287 x 10 49  
40 -4.6935218341 43224 86001 66161 484 x 1048  -3.815010991040204 37163 01749 417 x 105u  -5.23622 58322 48921 3871629520814 x10 58  
41 -1.97021 7145155716 54651 93292 483 x105°  -1.63394 92914 80080 03879 36472 874 x 10 52  -2.2414356144 80234 39000 70866 983 x 1052  
42 -8.46745 17579 34230 37130 94628 568 x10 51  -7.16164 61078 88398 19543 79712 967 x10 54  -9.81914 64503 04750 45017 14147 510 x 10 53  
43 -3.72374 19906 83640 20995 29606 338 x10 53  -3.21064 65125 22034 10147 66875 402 x10 55  -4.399814901052360 91191 82712 265 x10 55  
44 -1.67483041205623151325 53616 374 x1055  -1.47150 46629 92978 43009 77197 609 x10 57  -2.01554 24510 55075 37912 12031 149x 1057  
45 -7.7003725595 40304 33979 57208 022 x10 5: -6.891493147187806 72268 13012 454 x 105 -9.43494 05210 86612 28038 44183 269 x10 58. 
46 -3.617406902344197 63149 03727 041 x10 56  -3.29647 34909 93636 44250 90128 325 x10 6°  -4.51105 03260 68594 13184 53084 808 x10" 
47 -1.735524798040244 27895 64957 019 x1060 -1.60983 1053242913 94475 07304 622 x 10 62  -2.70199 90440 66198 9315105453 051 x1062  
48 -8.5000957733 00430 30156 86665 842 x1061  -8.02275 0293169226 37180 63385 367 x1063  -1.09692 00611 48050 99681 67460 533 x1064  
49 -4.2481045332 68548 46607 67018 480 x10 63  -4.078526502606111 74618 73019 639 x1065  -5.5741132964 57813 71075 94343 361 x1065  
50 -2. 16556 55778 20181 55845 44248 962 x10 65  -2.1142294904 67728 48102 87477 156 x 10 67  -2.88835 80523229277607266918834 x10 67  
51 -1.125602435367844 96777 46394 055 x1067  -1.117140482830431 70236 36058355 x 1069  -1.52559 23473 1397004827 93441 687 x 1069  

normally. In Table XVI we have calculated the Neville 
table for the quantity -1-  E (N)e 2  /(N + 1)1 with up to 
three alternating-sign contributions removed, as indicated 
by Eq. (236) and by Table XV. The value before any pro- 
cessing differs from 0 by -0.012 for N between 145 and 
150. The subtraction of the alternating-sign terms shows 
up only in the twelfth decimal place. As the Neville itera- 

tion is carried out, the entries without removal of the 
alternating-sign contribution reach -0.000 02 for k= 2, 
but then grow to ±0.024 at k =4. The sign alternation is 
clearly evident. As the leading, 1/N, and 1/N 2 

 alternating-sign terms are incorporated, the growing, 
alternating-sign behavior is pushed to higher values of k, 
and the approach of the entries to zero is closer. The best 
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TABLE XII. Coefficients for the RSPT series, the AEI 'I series, and the .0,,E 121  series, as defined by Eqs. (166), (234), and (235) of 
the text, for the (ni,n2,M )=(1,0,0) excited state of 11 2 -1- • 

Order 

N E(N ) 
Coefficient 

c (I)(N) c(MN) 

0 -1.25000 00000 00000 00000 00000 000 x10-1  1.0000000000000000000000000000 x 10 0  1.0000000000 00000 00000 00000 000 x 10 
1 -1.0000000000000000000000000 000 x 10 0  1.2000000000 00000 00000 00000 000 x 10 1  2,4000000000000000000000000000 x 10 ! 
2 3.0000000000 00000 00000 00000 000 x 10 0  -1.70000 00000 00000 00000 00000 000 x 10 1  1.22000000000000000000 00000 000 x10 
3 -6.0000000000000000000000000000 x 10 0  -2.69333 33333 33333 33333 33333 333 x 10 2  -8.66666666666666666666 66666 667 x 10 2  
4 -7.8000000000000000000000000000 x 10 1  9. 10000 00000 00000 00000 00000 000 x 10 2  -4.47500000000000000000 00000 000 x10 3  
5 1.22400000000000000000 00000 000 x 10 3  -7.45733 33333 33333 33333 33333 333 x 10 3  3,195466666666666 66666 66666 667 x 10 4  
6 -8.81400000000000000000 00000 000 x 10 3, 5.87785 55555 55555 55555 55555 556 x 10 4  -1.28683 77777 77777 77777 77777 778 x 10 5  
7 - 5.2800000000000000000000000000 x 10 2  -7.06415 42857 14285 71428 57142 857 x 10 5  -9.8743885714 2857142857 14285 714 x10 5  
8 8.27436 00000 00000 00000 00000 000 x 10 5  -3.5369035873 01587 30158 73015 873 x 10 6  9.9579005396 82539 68253 96825 397 x 10 6  
9 -9.613968000000000 00000 00000 000 x 10 6  1.88686 32944 62081 12874 77954 145 x 10 8  -8.460730373192239 85890 65255 732 x 10 2  

10 9.9072180000 00000 00000 00000 000 x 10 6  -3. 15201 17618 01058 20105 82010 582 x 10 9  -2.34704 42908 35978 83597 88359 788 x10 8  
11 1.27262 10240 00000 00000 00000 000 x 10 9  1.28815 59385 49584 73625 14029 181 x 10 10  -3.2185107104 84143 01747 63508 097 x 10 9  
12 1.9990100364 00000 00000 00000 000 x 10 10  3.81023 29566 40769 17321 36176581 x 10 11  4.33491 10283 20819 83859 76163 754 x foil 
13 8.53720 25136 00000 00000 00000 000 x 10 18  -1.02389 55657 81621 55671 48900 482 x10 13  -1. 18715 17415 68802 85146 95181 362 x 10 12  
14 2. 15315 3495124000 00000 00000 000 x 10 12  9.35632 83452 95452 46611 11962 699 x1013  -2,39992 56892 79449 59790 35661575 x10 13  
15 -5.08411 869278400000000 00000 000 x 10 13  3.85854 6275817243 37551 53331 873 x 10 14  5. 13239 50387 76683 7474122976 769 x10 14  
16 4.36975 77689 27280 00000 00000 000 x10 14  -3.0293191770 33217 82359 46064 517 x 10 16  -9.76182 13860 45106 44710 13994 823 x10 15  
17 2.27309 65366 68000 00000 00000 000 x 10 15  4.48498 24456 60625 75432 48386 523 x10 17  -2. 	33784590 36878 21022 37981 727 x 10 16  
18 -1.2910899772 26249 42000 00000 000 x1012  -2.45880 27158 17418 87215 87083 116 x10 1 ! 1.49556 21500 83097 01324 88019 635 x 10 18  
19 1,84814 58775 64340 67200 00000 000 x10 18  -6.7930343668 58330 24709 04376 503 x1017  -5.34675 75848 58079 53131 26858 617 x101 9  
20 -8.33084 55869 39679 03600 00000 000 x 10 18  1.6425201268 70773 53086 99674 202 x10 21 1.5463315097 94322 94457 05069 356 x10' 8  
21 -2.4097222867 09166 75664 00000 000 x 1020  -2.30112 63946 06663 17965 20081 224 x102.',' -2.213605202396051 22924 27711 883 Y 
22 6.0910169950 00482 14223 60000 000 x1021, -3.61230 75819 53202 55256 21975 926 x102 ' -2.50584 40664 58102 43373 17750 518 x10' 3  
23 -7.5146851164 92636 15363 51999 999 x102,' 3. 11833 11862 12830 99609 67381 608 x1024  -1.27088 63506 42950 81661 03911 680 x 10 1  
24 4.45799 85403 42591 05397 19999958x 1022  -1.26184 17602 52519 49054 53520 383 x 10 26  -7.86996 73272 15504 21484 38953 706 x1021 
25 1.0863012941 49210 00574 99680 001 x 10"

15  
1.59628 06441 87831 60637 72599 200 x10`

16 
 -1.77906 31207 18445 75737 46227 773 x10` 

26 -3.3211346075 60316 24709 48791 604 x1026  -2. 11549 86193 83311 04688 88562 507 x10 28  -3.41218 37700 54843 32830 92946 730 x10 28  
27 1.72292 23997 49134 89775 87364 494 x10 22  -8.42246 28381 03414 45635 40509 730 x 1029  -1.28293 06078 42347 05692 44169 679 x10 38  
28 -4.47414 20271 47563 05334 34104 099 x 10 28  98641 10446 15623 68850 491 x 10 31  -3.2380609854 04302 80546 18391 779 x10 31  
29 -1.65861 15772 76205 08915 50927 847 x1038  -5.76696 70788 60371 45436 01386 740 x 10 32  -9.75845 26387 98611 17263 25821 676 x10 32  
30 -2.37954 29016 54278 26085 66449 166 x1031, -1.6315267399 37452 08595 28386 649 x1034  -3.05362 99087 36676 43129 29934 883 x103 4  
31 -1.24203 33874 78179 98081 22666 394 x103 ' -5. 13239 85663 09207 13998 97200 639 x10 35  -9.50983 21985 28737 47424 02797 366 x 10 j5 

 

32 -3.54702 67825 83947 44775 29012 452 x1034  -1.7404146349 26595 87684 77324 874 x1032  -3. 13135 11053 71890 51165 18470 806 x10 37 

33 -1.19516 26701 97816 94921 46572 314 x 103,! -5.82804 60599 29608 17651 08755 412 x1038, -1.05487 39712 70658 60728 28247 671 x10 39  
34 -4.2066329269 84478 44058 81886 028 x10"' -2,04721 13913 99884 96056 03412 083 x 10 4 ' -3.66268 39010 04406 38687 52165 380 x10 48  
35 -1,47781 93269 22509 49398 00218 784 x1039  -7.37127 62923 91937 06836 07554 473 x 10 41  -1.31039 00757 92959 77590 48194 142 x10 42  
36 -5.42131 69465 84306 30428 52084 376 x104°  -2.72736 36101 25607 79065 29713 533 x 10 43  -4.81861791880125001683 92780 839 x10 43  
37 -2.03461 96166 09154 99124 05276 702 x 10 42  -1.03759 29809 16116 20193 70873 781 x1045  -1.82134 02107 12747 30857 16204 662 x10 45  
38 -7,84562 8062284487 21909 84822 569 x10 43  -4.05122 30560 32525 69842 30735 332 x 10 46  -7.06944 6858301185 0350325827472 x1046  
39 -3. 10431 97519 61902 94805 38840 486 x10 45  -1.62295 45793 49161 02695 75880 397 x1048  -2.81590125387609604805 21502 918 x 1048  
40 -1.2596887575 41054 10432 57093 241 x'1042  -6.66601 12631 84854 79432 97128 839 x 10 49  -1. 15025 19028 17681 37812 77845 181 x10 58  
41 -5.23747 50130 44393 89530 20851 158 x 10 48  -2.80547 29821 42826 69650 76335 332 x 10 51  -4.81558 78661 67003 15007 25500 657 x 10 51  
42 -2,230794346842744 90353 52610 975 x10 5°  -1.20910 84668 99724 79837 60817 927 x1053  -2.08496 74807 37093 29418 99378 545 x10 53  
43 -9.7241745844 88816 20660 32201 663 x10 51  -5.33344 61157 47437 50139 25217 718 x 10 54  -9.06461 11197 43912 67668 82211 735 x10 54  
44 -4.33750 12238 23479 90153 12750 852 x1053  -2.40656 13515 99441 81091 85731 154 x1056  -4.071078863134689 63643 31718 159 x1056  
45 -1.97804 24293 56898 01864 26422 166 x1055  -1. 11023 50140 03369 15709 91292 612 x 1058  -1.86972 93001 39003 25397 19637 015 x 10 58  
46 -9.22105 32631 10449 88955 27997 887 x 10 56  -5.23417 74637 67647 53852 96920 033 x1059  -8.776715396846893 92419 35444 155 x1059  
47 -4.3906314994 42184 66619 03868 999 x 1058  -2.52055 30064 96779 32327 15978 697 x 10 1  -4.2089276739673234825710893 164 x1061  
48 -2. 13508 23157 37712 97855 05133 847 x10 68  -1.23926 39677 92349 83731 44021570 x 10 63  -2.0610671076 13584 18954 23307 887 x 10 63  
49 -1.05957 13537 85055 12879 30535 346 x 1062  -6.2182066425 33572 78929 57093 596 x1064  -1.03017 64447 06438 25290 30053 796 x1065  
50 -5.36552 3097189024 45500 82759 098 x1063  -3. 18290 60555 79916 74828 40595 168 x10 66  -5.25342 34104 40529 75013 18298 572 x 10 66  
51 -2,7706258304658870970847673808 x1065  -1.66136 75110 70091 61856 23152 256 x 1068  -2.7322208689 54459 04897 04853 559 x 10 68  

example is for N=150 and k=3, for which the entry 
with three alternating-sign terms accounted for is 
0.0000004, and which is an improvement of three orders 
of magnitude over the corresponding entry with no 
alternating-sign correction terms. 

XI. NUMERICAL SOLUTION FOR fii 
AND SUMMATION OF THE EXPANSIONS 

In this section we compare values of /32  obtained by nu-
merical solution of the eigenvalue equation with values 
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TABLE XIII. Coefficients for the RSPT series, the AEI 'I series, and the A iE 121  series, as defined by Eqs. (166), (234), and (235) of 
the text, for the (n1,n2,rn )= (0,1,0) excited state of H2 + . 

Order 
	 Coefficient 

N 
	

Ea11 	 C (1)4N) 	 c ( 2)( N ) 

0 	-1.25000 00000 00000 00000 00000 000 x10 -1  
1 	-1.00000 00000 00000 00000 00000 000 x 10 0  
2 	-3.00000 00000 00000 00000 00000 000 x 10 8  
3 	-6.00000 00000 00000 00000 00000 000 x 10 8  
4 	-9.0000000000 D0000 00000 00000 000 x 10 1  
5 	-1.224000000000000 00000 00000 000 x 10 3  
6 	-1. 19220 00000 00000 00000 00000 000 x 10 4  
7 	-1.48464 00000 00000 00000 00000 000 x 10 5  
8 	-2.45434 80000 00000 00000 00000 000 x 10 6  
9 	-4.0455792000000000000000000 000 x10 2  

10 	-6.76111 840000000000000 00000 000 x10 8  
11 	-1.23090 34464 00000 00000 00000 000 x 10 10  
12 	-2.384129921160000 00000 00000000 x10 11  
13 	-4.7892688827 36000 00000 00000 000 x 10 12  
14 	-1.00299 60764 62920 00000 00000 000 x10 14  
15 	-2. 19391 40584 10784 00000 00000 000 x 10 15  
16 	-4.98913 38393 59109 60000 00000 000 x 10 16  
17 	-1. 17721 33789 78895 71200 00000 000 x10 18  
18 	-2.80058 43388 66001 82580 00000 000 x 10 19  
19 	-7.30209822483998355520 00000 000 x 10 20  
20 	-1.9156448562 67545 21945 00000 000 x 10 22  
21 	-5. 19690 13809 24973 96791 21600 000 x10 23  
22 	-1.4568605280 77824 53021 96252 000 x10 25  
23 	-4.2171912580 22755 91176 19011 200 x 10 26  
24 	-1.2596794654 24442 36755 85922 504 x 10 28  ■ 
25 	-3.08002 45958 54034 72757 66618 730 x10 29  
26 	-1.23156 18914 48207 79510 27323 520 x 10 31  
27 	-4.02566 98806 20394 69138 44635 383 x10 32  
28 	-1.35424 24210 16489 21939 79592 644 x1034  
29 	-4.68544 75442 38667 24995 06874 748 x10 35  
30 	-1.66619 91081 12221 44530 75990 316 x10 32  
31 	-6,0863104372 84698 90199 00511 196 x 10 38  
32 	-2.28228 12507 85834 12798 16822 652 x10 4°  
33 	-8.711042 25977 17384 15037 56947 826 x 10 41  
34 	-3.4637259781 60770 70431 46364 763 x10" 
35 	-1.4002699808 77340 2874033201 661 x1045  
36 	-5,7981075784 61483 13779 28371 024 x 10 46  
37 	-2.45776 83467 34762 55880 01187 252 x10 48  
38 	-1.0660008819 26512 34909 70387 B60 x105°  
34 	-4.72852 35175 23034 41684 75576 411 x1051  
40 	-2. 14408 42507 99885 67706 80474 753 x10 53  
41 	-9.933691201303364 97060 47121705 x10 54  
42 	-4.7004909765 31413 1603329034 337 x 1056  
43 	-2.2706885253 36619 89256 94923 984 x 10 58  
44 	-1. 1193816860 65051 88188 31837 106 x10 60 

45 	-5.62905 98312 32797 88997 01881 543 x10 61  
46 	-2.88647 150787455254081 55714 251 x1063  
47 	-1.50874 14896 77968 88842 09398 943 x10 65  
48 	-8.03574 94933 05403 97340 21811 168 x10 66  
49 	-4.359683794497962 43339 35268 334 x 10 68 

50 	-2.4085665421 69654 47050 34554 238 x10 2°  
51 	-1.3545658158538287403571962 601 x10 22  

1.00000 00000 00000 00000 00000 0 x 10 0 
 -4.00000 oa000 00000 00000 00000 0 x 10 8 
 -6.30000 00000 00000 00000 00000 0 x 10 1 

 -2.77333 33333 33333 33333 33333 3 x 10 2, 
-1.96766 6666666664166666 66666 7 x 10 ' 
-3.08176000(4)0000000800000000 x10 4 

 -4.5755737777 77777 77777 77777 8 x10 5 
-7.45529 11365 07936 50793 65079 4 x 10 6 

 -1.39686 45440 45238 09523 80952 4 x 10 
-2.65014 09796 8395061722 39506 2 x 10 9 

 -5. 10616 90774 20007 05467 37213 4 x101°  
-1.04247 12453 03395 32467 53246 8 x10 1; 
-2.23016 24650 85629 37865 42675 4 x 
-4.91944 72964 29282 58912 11669 0 x10 14 

 -1. 12225 28675 25768 45165 53217 5 x 1016 
 -2.65295 91858 70059 08542 19598 3 x 1012 
 -6.48199 61850 23826 22729 67446 6 x 109 
 -1.63494 60327 61396 18599 43983 0 x102° 

 -4.25659 28284 19743 45424 73387 8 x1021 
 -1. 14334 33867 13204 03393 45887 2 x1023 

 -3. 16673 73813 03954 79804 08780 5 x1024 
 -9.04044 65735 66963 94912 61340 3 x1025 

 -2.6590974088 83205 00554 276614 x1022 
 -8.05487 65908 80379 25062 66439 5 x1028 

 -2.51173 13301 48609 92987 62592 6 x103° 
 -8.0589808749 29748 77315 30964 6 x1031 
 -2.65934 77299 91991 69947 04818 7 x1033 

 -9.02084 1772616145 4231713540 3 x1034 
 -3. 14397 93313 12732 90917 29422 5 x1036 

 -1.1252607148 86044 84077 11133 1 x 1038 

 -4.13376 48554 81829 50663 67925 6 x1039 
 -1.55788 53861 8562891404 25986 4 x1041 

 -6.020064340094138 1586047510 2 x 1042 
 -2.384104275050020 18495 10149 6 x104 ! 

-9.67145 13086 63695 32105 62437 6 x10 4 ' 
-4.01688 83158 69910 15916 67148 4 x10 42 

 -1.7073138981 54727 92312 48876 2 x1049 
 -7.42269 27067 44164 25656 63287 9 x 1050 

 -3.24942 67247 25793 16904 29985 3 x 1052 

 -1.49883 69874 28103 85887 03408 0 x1054 
 -6.9554443277 62059 42755 27395 3 x1055 
 -3.2958786844 69093 03980 22832 9 x 1052 
 -1. 594if 73680 19084 84037 10866 1 x1059 
 -7.86691 49377 51629 50970 48554 9 x106° 

 -3.95969 18532 28589 44223 559919 x1062 
 -2.03204 80899 73028 22339 94284 3 x1064 

 -1.06284 55007 01580 81728 63182 1 x1066 
 -5,66399 19589 73289 66761 01483 5 x1062 
 -3,07431 88224 77668 01154 28549 8 x 1069 

 -1.69906866830843742409 10465 5 x 1071 

 -9.55817 58313 17034 50810 299318 x1022 
 -5.471565892871467 87770 00035 0 x1024  

1.0000000000 00000 00000 00000 0 x10 ° 
-8.00000 00000 00000 00000 00000 0 x10 ° 
-7.40000 00000 00000 0000000000 0 x 10 1 

 -1.62666666666446666466 66666 7 x 10 2 
 3.8833333333 33333 33333 33333 3 x 10 2 
 -6.59786 66666 66666 66664 66666 7 x 10 3  

-3. 18823 51111 11111 11111 11111 1 x10 5 
 -6.61211 50730 15873 01587 30158 7 x 10 6 

 -1.2172602948253968253968254 0 x 10 8 
 -2.3184676311335097 00176 36484 3 x 10 9 
 -4.6662271320 45454 14442 08112 9 x 1010 

 -9.848049717951261 69632 83629 9 x 1011 

 -2.14980 07877 36538 29768 58532 4 x 1013 

 -4.83496 01163 42960 68018 23690 7 x1014 
 -1. 12401 35072 4760194486 12528 0 x 1016 

 -2.7012537563 66712 47262 57043 4 x 1017 
 -6.6977985890 44998 34046 32374 8 x 1018 

 -1.712470987402293 66130 38586 9 x1028 
 -4.51439 22010 11258 8264438086 1 x10'1 

 -1.22655 00201 58564 30832192885 x10 3 
 -3.4332519223 3961005699 64825 4 x 10',4 
 -9.89740 68575 41075 3400379363 9 x1025 
 -2.93755 7877317364 9508414964 8 x10'2 

 -8.973105762632034 4263139732 5 x 1028 

 -2.81984 43774 15905 44331 56212 8 x103° 
 -9. 11294 8992860760 81697 89730 6 x1031 

 -3.02733 18455 21228 75404 058419 x 1033 
 -1.0333227815 45672 51025 31966 2 x1035 
 -3.62232 76612 73675 84487 97258 2 x1036 

 -1.103500147324107 21489 06879 0 x 1038 

 -4.81280 97930 09928 2927875091 9 x1039 
 -1.82239 14592 68416 77682 45153 6 x1041, 

-7.07344 66737 2494937561 84717 2 x 10'4 
 -2,8129324755 22493 31360 81692 0 x1044 
 -1. 14556 85717 78145 62829 08794 2 x 1046 

 -4.775451374607733 01640 60098 4 x1042 
 -2.03676 6398045327 10302 79579 2 x 1049 

-8.88398 42234 76867 67453 97625 6 x10 5° 
 -3.96118 52062 63918 08076 63542 6 x 1052 

 -1.80471 79835 05179 76991 453'199 x1054 
 -8.39111083786 08792 4662911403 1 x1055 

 -3.989952949085868 17879 20812 8 x1052 
 -1.93463 75203 34546 40507 16808 5 x1059 

 -9.570032197708557 924134 2140 9 x106° 
 -4.8278143119 36426 66208 37658 9 x1062 

 -2.482889273725694 54558 34330 0 x1064 
 -1.301322042894060 82772 51424 9 x106 ! 

-6.9484583448 13190 87646 67923 7 x1061  
-3.7785782063 30328 50641 93961 0 x 1069 

 -2.092035268624217 27613 67235 4 x 1071 

 -1. 1784047292 28163 21278 91491 0 x1023, 
-6. 75974 05784 98781 49704 68065 1 x10" 

obtained by summation of the asymptotic series. 
As mentioned in the Introduction, proved in Ref. 6, and 

discussed in Sec. III I, the Borel sum of the RSPT series is 
the eigenvalue of the q equation [(11) or (16)] considered 
on a semi-infinite interval-that is, the equation for the 
proton-antiproton-electron analog of H2 + , analytically 
continued to negative r'=ei nr. We illustrate this fact by 
numerically solving Eq. (11) and comparing the results  

with the Borel sum of the RSPT. Also, as mentioned in 
the Introduction and elaborated in Sec. III I, the imagi-
nary second-exponential-order series cancels in that or-
der) the imaginary part of the Borel sum. This too is il-
lustrated numerically. 

To solve the q equation [Eq. (11)] numerically it 
straightforward. There are two cases: the physical prob-
lem, for which the boundary conditions arc 
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TABLE XIV. Coefficients for the RSPT series, the AE 111  series, and the A,E 121  series, as defined by Eqs. (166), (234), and (235) of 
the text, for the ( ni,n2,m)= (0,0,1) excited state of H2 + . 

Order 

N E(N) 
Coefficient 

O1(N) C(21(N) 

0 -1.2500000000000000000000000 000 x10-1  1.00000000000000000000 00000 000 x 10 0 1.0000000000 00000 00000 00000 000 x 10 
1 -1.0000000000 00000 00000 00000 000 x 10 6.0000000000 00000 00000 00000 000 x10 1.20000 00000 00000 00000 00000 000 x 10 1  
2 0.00000000000000000000 00000 000 x 10 -4.000000000000000 00000 00000 000 x 10 1  -2.00000000000000000000 00000 000 x 10 1  
3 6.0000000000 00000 00000 D0000 000 x 10 -3. 13333 33333 33333 33333 33333 333 x 10 2  -9.306666666666666 66666 66666 667 x 10 2  
4 -7.8000000000000000000000000000 x 10 1  -6.36000 00000 00000 00000 00000 000 x 10 2  -3.88800000000000000000 00000 000 x 10 3  
5 0.0000000000000000000000000000 x 10 -9.74346 66666 66666 66666 66666 667 x10 3  4.25173 33333 33333 33333 33333 333 x 10 3  
6 2.4000000000000000000000000000 x 10 3  -6.6310577777 77777 77777 77777 778 x 10 4  -8.9242311111 11111 11111 11111 111 x10 4  
7 -3.38880 00000 00000 00000 00000 000 x 10 4  -8.7293790476 1904761404 76190 476 x10 5  -2.3810758095 23809 52380 95238 095 x 10 6  
8 -2.01552 00000 00000 00000 00000 000 x 10 5  -2,06407 56317 46031 74603 17460 317 x10 -2.39404 25092 04349 20634 92063 492 x 10 7  
9 1.8359040000000000000000000000 x 10 6  -1.64124 98162 68077 60141 09347 443 x 10 8  -2.9334608305 89065 25573 19223 986 x 10 8  

10 -2.84832000100000000000000000000 x 10 -2.09346287562497354497 35449 735 x 10 9  -4.63594 52763 15767 19576 71957 672 x 10 9  
11 -5,033571840000000 00000 00000 000 x10 8  -5.70273 72832 45704 02437 06910 374 x 10 10  -7.85280 39569 21771 36443 80311 047 x10 18  
12 -3.223918080000000 00000 00000 000 x10 8  -7.52912 16606 84289 66917 85580 674 x 10 11  -1.25763 36191 02109 51846 50740 206 x 10 12  
13 -6.0510789120000000000000000000 x10 18  -1.10073 27081 05853 68409 36840 937 x1013  -2.072499402345520 68612 86861 287 x10 13  
14 -1.55779 98520 32000 00000 00000 000 x10 12  -2.5677625455 98525 52148 33373 564 x10 14, -3.96915 29593 73711 61752 43921 276 x 10 14  
15 -1.55274 77514 24000 00000 00000 000 x10 13  -4.67624 56349 41309 76112 04660 517 x10 1 ' -7.6372981098869790429851802127 x10 15  
16 -3.55602 36364 87680 00000 00000 000 x10 14  -8.698336473146741 38952 49319 757 x 10 16  -1.48433 14650 21301 54467 04211 250 x 10 17  
17 -8.45853 72059 68846 00000 00000 000 x1015  -1.94649 25960 50903 22910 74877 754 x 10 18  -3.14046 57783 86843 13845 77898 246 x 10 18  
18 -1.55030 34534 60357 1200000000000 x1017  -4.23441 34580 44079 75888 46140 692 x10 19  -6.88146 50168 65476 54439 58189 105 x10 19  
19 -3,47435076335600025600 00000 000 x 10 18  -9.47952 69136 31857 74985 45926 974 x1028  -1,5521789615 30295 12284 42711 434 x10 21  
20 -8.26403 64221 95610 41920 00000 000 x 10 19  -2.27912 53793 21052 23534 50175 530 x 10 22  -3.680300440546240 72734 18513 140 x 10 22  
21 -1.93593 62616 33120 65740 80000 000 x1021  -5.62936 66395 36119 66727 47596 637 x1023  -9.06656898375849680487 69325 947 x10 23  
22 -4.83196 36650 94828 52352 00000 000 x 10 22  -1.44079 90980 28800 94926 31215 775 x 10 2 5 

 -2.3148605013 69089 36122 67602 133 x 10 25  
23 -1.2567241823 94826 59550 00320 000 x1024  -3.84388 95512 42687 36148 29820 525 x 10 26  -6. 14236 84542 90483 96293 16621 596 x1026  
24 -3,37013 29576 46065 01404 26240 000 x10 25  -1.0613567327 59470 75379 34351 339 x 1028  -1.68936 34595 43544 26784 87746 187 x10 28  
25 -9.39290 75638 92952 64919 65030 400 x 10 26  -3.03376 12021 30512 42240 06684 588 x1029  -4.81024 54768 03946 65503 88209 722 x10 29  
26 -2.71132 00561 65065 36836 23198 720 x 10 28  -8.9738687029 24775 14417 97191 318 x1038  -1.41714 07609 16723 79689 97157 605 x10 31  
27 -8.09128 32612 42646 01222 90729 779 x10 29  -2, 74271 70573 43868 58021 36429 000 x 10 32  -4.31482 59411 72027 81563 48012 436 x 1032  
28 -2.49548 99420 83753 11255 23605 488 x 10 31  -8.65417 13474 22334 60100 18384 543 x1033  -1.35645 10024 47194 41857 90235 353 x10 34  
29 -7.94489 17212 85325 72940 45133 642 x10 32  -2.81665 70663 08002 65701 39940 827 x10 35  -4.39899 31536 84522 79913 57202 101 x10 35  
30 -2.60850 98915 74160 48759 40746 084 x10 34  -9,4473979326 16179 43050 82872 490 x1036  -1.4703716906 69530 38102 56997 560 x10 37  
31 -8.82462 45508 00721 88099 02514 514 x10 35  -3.26287 92722 86534 06252 05338 037 x 10 38  -5,06130 97420 74784 39418 58599 659 x 1038  
32 -3.07346 14862 62045 86105 09599 824 x1037  -1, 15945 86093 45338 37345 86528 258 x10 48  -1.79272 88486 36957 26310 14564 378 x 1048  
33 -1. 10112 73649 30558 82575 59892 250 x10 39  -4.2358881092 84463 58024 43893 831 x1041, -6,52906459110311741294 04729 508 x 10 41  
34 -4.05503 45195 29661 16680 23721 088 x1048  -1,58984 29830 77319 32496 31244 358 x104 ' -2.44318 29183 87407 82755 20664 104 x10 43  
35 -1.53385 27913 91403 90547 20192 044 x10 4 '., 

 
-6. 12610 64551 10198 67769 01162 691 x10 44  -9.38702 74388 65808 27712 41738 516 x10 44  

36 -5.95532 36273 01744 53409 88975 043 x1043  -2,4218608439 48805 73956 79783 253 x10 46  -3.70066 17534 38737 75273 38728 610 x 1046  
37 -2.371780789928912 95636 13997 205 x1045 -9,81691 53742 78235 87270 35546 216 x1047  -1.49601 18442 71354 Y8293 15059 027 x 1048  

38 -9.68321 71094 63935 57357 24092 937 x 10 46  -4.07756 90855 82929 08603 15521 049 x1049  -6. 19772 73227 03502 30614 23742 777 x10 49  

39 -4.05025 00974 05692 38867 98013 331 x1048  -1.734518170906197 01771 38845 635 x1051  -2.629788279873247 56954 59236 777 x10 51  
40 -1.7346586175 36075 37666 46651 630 x1058  -7.552129034361711 80522 56109 454 x 1052  -1. 14224 71213 20255 94148 37941051 x10 53  

41 -7.60291 70182 24680 08150 85650 852 x1051  -3.36391 53585 79469 67683 86916 436 x 10 54  -5.0759900458 59755 30397 78225 672 x10 54  
42 -3.4084347604 02489 55538 60620 653 x1053  -1.53210 18169 00532 50921 85434 809 x 10 56  -2.30665 71954 95785 04387 82845 898 x 10 56  
43 -1.56214 88856 74643 D9257 31923 393 x1055  -7. 13161 76542 23869 05167 95196 474 x10 57  -1.0713623139 48168 46122 10361 335 x 10 58  
44 -7.3160373911 17733 54980 96019 876 x1056  -3.39114 13767 52748 22306 21643 045 x10 59  -5.083686725982297 59093 05435 433 x10 59  
45 -3.49959 20366 93598 91668 17769 328 x1058 -1.64652 69780 08236 65118 91084 320 x 10 61  -2.46329 58768 55334 29456 33945 448 x10 61  
46 -1,70905 86893 95210 74016 63064 942 x 10 60  -8. 15966 39046 03939 03795 80043 150 x 1062  -1.2183267347467802406344817 110 x 1063  
47 -8.51750 20559 09728 74946 57078 558 x1061  -4. 12552 04419 46326 19565 13532 794 x10 64  -6. 14811 05845 66131 44197 51279 325 x 1064  
48 -4.33020 10973 72823 98193 60749 684 x1063  -2. 12724 58801 31380 60942 97115 307 x 1066  -3. 16430 59699 84058 53906 59799 837 x10 66  
49 -2.24479 16414 87821 85905 65104 858 x 10 65  -1. 1182141806 45854 03997 46226 448 x 10 68  -1.66038 53659 20864 96222 15559 216 x 10 68  
50 -1. 18618 97135 90882 24223 81705 143 x1067  -5.9902182780866202646355509093 x 10 69  -8.8792000375 59267 12556 46813 721 x 10 69  
51 -6.38684 60774 93345 40838 33238 854 x 10 68  -3.2690263820 18303 29932 40091 959 x10 71  -4.83748945487932600323 72842 538 x 1071 

4)207)-nm/2+1a  at 7]=0, and 432(77) - (2 -.77)m/2+1/2  at  
77= 2; and the semi-infinite problem for which the boun- 
dary condition at 77=2 is replaced by 41) 2(n)-e -"/2  as 

In both cases the wave function near the origin 
can be expanded in a convergent power series in 71. For 
the physical case, the power series can be summed at the 
midpoint of the physical interval, n =1, and the eigen- 

value /32  determined to make either 4) 2  or (.-/(1) 2 /dn vanish 
for odd or even states, respectively. For the unphysical 
case, e"1/2(1)2  for large n can be expanded in a divergent 
series in powers of n - i. This series can be summed to 
sufficient accuracy for the ground state for i n  near 4, 
and then integrated numerically by a fourth-order 
Runge-Kutta algorithm 25  to a value of n for which the 



-5.2 x 10 
2.7 x 10 

-2.2 x 10 
8.7 x 10 

-8.7 x 10 
3.5 x10 

-3.7 x 10 
5.7 x10 

-1.7 x 10 
9.5 x 10 

-8.9 x 10 

4.4 x10 
-6.2 x 10 

1.4 x 10 
-4.1 x 10-10  

1.4 x 10-18  
-5.8x 10-11 

 2.6 x 1011 
 -1.3 x10-11  

-4.3 x 10 -5 
 2.1 x 10 -5 

-1.7 x10 -5 
 5.0 x 10 -6  

-5.4x10 -6 
 1.2 x 10 -6 
 -2.0 x 10 -6 
 3.5 x 10 -7 

 -6.7 x to -7 
 1.1 x 10 -7, 

-2.2x10 - 

-1.5x10 -9 
 3.5 x 1018  

-8.6 xio- il 
2.5 x10-11  

'-8.7. x 10-12 
 3.4 x 10-12 

 -1.5 x 10-12 
 7.0 x 10-13  

-3.8x10 
1.8 x 10 

-1.5 x10 
3.9 x 10 

-5.1 x 10 
7.7 x 10 

-1.7 x 10 
1.4 x 10 

-5.3 x 10 
1.4 x 10 

-1.6 x 10 

-4.9 x 10-18 
 3.2 x 10-11 

 -3.2 x 10-12 
 3.8 x 10-13 

-3.4 x10 -14 
 -8.7 x 10-15 
 9.5 x 10 

-1  -6.3 x 10' 

-5 
-5 
-5 
-6 
-6 
-6 
-6 
-6 
-6 
-7 
-7 

-8 
-9 
-9 

-5 
-5 
-5 
-6 
-6 
-7 
-6 
-7 
-7 
-8 
-7 

2.4x10-12 
 1.2 x 1012 
 6.0 x 10-13  

1.3 x 10 16 
 2.0 x 10-28 

 7.6 x 102 
 2
! 

3.0 x 10- ' 
4.0 x 10-33  
2.1 x 1C 36 

 3.0 x 1039  

23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 

23 
38 
45 
51 
51 
51 
51 

2.1 x10 -9 
 8.0 xio- i °  

3.2 x10-1° 
 1.3 x 10-10 

 5.5 x 10-11 
 2.4 x 1011 

 1.1 x 10-11 
 5.1 x10-12  

-2.4 x10-2° 
 3,0 x10-22 
 -4.9 x 10-2 ! 

-1.7x10-2 1  
1.4 x 10'24 

 -1.9 x 10-21 
 1.2 x 10-21 
 -1.6 x 1021  

-3.3 x 10 -3 
 -7.4 x 10 -4 
 1.5 x 10 -3 

 -1.3 x 10 -3 
 1.1 x 10 -3  

-8.6 x10 -4 
 7.2 x 10 -4  

-6.1 x 10 -4 
 5.2 x 10 -4 
 -4.5 x10 -4 
 3.9 x 10 -4  

-5.5 x 10 -5 
 1.2 x 10 -5 
 -3.7x10 -6 

 1.3 x 10 -6 
 -5.4 x 10 -7 
 2.5 x 10 -7 
 -1.2 x 10 -7  

-4.8x10 -! 
5.4 x10 
4.3 x 10 -4 

-3.9 x10 -4  
4 2.4 x10 

-1.6 x 10 -4 
 1.2 x 10 -4 

 -9.5 x 10 -5 
 7.4 x 10 -s 

-5.8 x10 -5 
 4.5 x 10 -5 

 7.5 x 10 -7 
 -9.5 x10 -7 

 4.0 x 10 -7 
 -1.6 x 10 -7  

7.2 x 10 -8 
-3.4 x 10 -8 

1.7 x 10 

50 
	

Raj .ei2EK et al. 	 33 

TABLE XV. Asymptotic analysis of the RSPT E(N) . The dominant, same-sign subseries in the asymptotic formula (236) of the 
text is truncated with the inclusion of the smallest term, whose index has been indicated by k m;„. The relative asymptotic error refers 
to the difference between the exact coefficient E (N)  and the asymptotic formula to the indicated number of terms, divided by the lead-
ing asymptotic term, which is - e -2°(N +4n 2  + 2m + 1 )!/(n2!) 2[(n2 +rn )!] 2 . For sufficiently large N, the relative asymptotic error, 
after accounting for the same-sign subseries, is alternating in sign. The effect of the alternating-sign subseries is seen through the in-
clusion of up to three terms. 

N Ean(ex (exac t) 

20 -7.20352 71847 96734 02400 00000 000 x 10 18 
21 -1.58663 37018 30904 41984 00000 000 x 10 20 
22 -3.6519845724 20448 69676 80000 000 x 10 21 
23 -8.7681818011 54661 46806 40000 000 x 10 22 
24 -2. 19237 89692 87299 63470 43120 000 x 10 24 
25 -5.6998890347 32373 98500 94080 000 x 10 25 
26 -1.53868454062496190391 24834 560 x 10 27 
27 -4.30701 59428 07344 63159 84849 344 x 10 28 
28 -1.24856 46387 44255 27154 90329 645 x 10 30 
29 -3.74403 87313 41340 10875 15630 039 x 10 31 
30 -1. 16009 28518 92770 55962 92709 845 x 10 33 

45 -7.70037 25595 40304 33979 57208 022 x 10 56 
60 -7.05864 0837150714 38838 94260 882 x10 82 
75 -2.61042 76701 03107 25304 91597 603 x 10 110  
90 1.86576 07764 04173 29829 65438 924 x10 139  

105 -1.57799 46924 10063 42268 12311 752 x 10169  
120 -1.11215 08837 06133 49504 42764 523 x1028°  
135 -5.01981 18745 10824 25602 25491 753 x10231  
150 -1. 18207 97343 39949 69605 83966 744 x10264  

35 -1.4778193269 22509 49398 00218 784 x 10 39 
36 -5.4213169465 84306 30428 52084 376 x 10 40 
37 -2.034619616609154 99124 05276 702 x 10 42 
38 -7.84562 80622 84487 21909 84822 569 x 10 43 
39 -3.10431 97519 61902 94805 38840 486 x 10 45 
40 -1.2596887575 41054 10432 57093 241 x 10 47 
41 -5.2374750130 94393 89530 20851 158 x 10 48 
42 -2.2307943468 42744 90353 52610 975 x 10 50 
43 -9.7241745894 88816 20660 32201 663 x 10 51 
44 -4.33750 12238 23479 90153 12750 852 x 10 53 
45 -1.97804 24293 56898 01864 26922 166 x 10 55 

60 -1.65302 36911 22050 21932 71446 744 x 10 81  
75 -5.7628457185 48714 7261215623 042 x10188  
90 -3.9539393851 2774903143 18218325 x 10 137  

105 -3,24525 84385 46167 21188 41955 517 x10161
,  

120 -2.2353244929 47468 07900 46507 163 x 10 198  
135 -9.90814 88516 78231 94553 22580 787 x 10229  
150 -2.2992084344 61569 20265 54610 723 x 10262  

90 -2. 14579 08730 97608 03804 76312 533 x 10145  
91 -2. 06235 64052 64978 98704 71054 615 x 10147  
92 -2. 00275 88289 87262 10407 16448 251 x 10149  
93 -1.9648819052 26077 10849 82754 451 x 10151  
94 -1.94734 22525 53073 90685 34596 759 x 10143  
95 -1.44940 56487 88341 35709 98583 644 x 10155  
96 -1. 97093 89906 90687 68548 88768 214 x10147  
97 -2. 01239 36508 51118 68518 27733 602 x10159  
98 -2.0748183306 40000 98785 56764 834 x 10161  
99 -2. 15990 16249 32295 06419 32336 636 x 10 163  

100 -2. 27004 65857 57870 57892 29967 158 x 10 165  

same-sign subseries 

relative 
smallest 
	

asymptotic 

kmin 	term 	error 

Ground state: n1=0, n2=0, m=0 

9 	1.4 x10 -4  

4.6 x10 	

-3.0 x 10 -5  
10 	8.1 x10 	1.1 x 10 -5  -5 

-9.5 x 10 -6  10 	-5 

11 	2.5 x10 -5 	-2.9 x 10 -7  
11 	1.4 x 10 -5 	-1.9 x 10 -6  

7.8 x 10 -6 12 	 -1.8 x 10 -6  
12 	4.3 x 10 -6 	3.6 x 10 -7  
13 	2.4 x 10 -6 	-1.5 x 10 -6  
13 	1.3 x 10 -6 	8.2 x 10 -7  
14 	7.0 x 10 -7 	-1.1 x10 -6  
14 	3.8 x 10 -7 	7.6 x 10 7  

22 	2,9 x10-11 	-8.6 x 10 -8  
30 	1.7 x 10-15 	1.6 x 10 -8 
37 	8.3 x 10-28 	-4.2 x 10 -9  
45 	3.8x1024 	1.4 x 10 -9  
51 	1.7 x10-28 	-5.7x10-10  
51 	2.3 x 10 -32 	2.6 x 10-10  
Si 	1.2x10-35 	-1.3 x 10 -113  
51 	1.7 x IC 38 	6.8 x 10-11  

Cited state: n1=1, n2=0, m=0 

-5.5x10 -3 
 1.1 x10 -3 

 -9.2 x 10 -6 
 -2.6 x 10 -5 

 -5.5 x 10 -5 
 8.5 x 10 -5 

-8.7 x 10 -5 
 8.2 x 10 -5 

 -7.6 x 10 -5 
 7.2 x 10 -5 

-6.7 x 10 -5  

2.1 x 10 -5 
-7.0 x 10 -6 

 2.7 x 10 -6 
 -1.2 x 10 -6 

 5.6 x 10 -7 
 -2.9 x 10 -7 
 1.6 x 10 -7  

Excited state: n1=0, n2=1, m=0 

44 	7.2x10' 20  
45 	3.9 x10-2°  
45 	2.1x1020  
46 	1.1 x10-2°  
46 	6.0 x10-21  
47 	3.2x10-21  
47 	1.7 x10-21  
48 	9.1x10-22  
48 	4.8 x10-22  
49 	2.6 x10-22  
49 	1.4 x10-22  

alternating-sign subseries 

relative asymptotic error after inclu-
sion of terms Wont!) order (in 14 -1 ) 

0 	1 	2 

-6.8 x10 -3 
 2.0 x10 -3 

 -7.4 x 10 -4 
 5.3 x 10 -4 
 -4.7 x 10 -4 
 4.0 x 10 -4 

 -3.3 x10 -4 
 2.6 x 10-4 

 -2,1 x 10 -4  
- x10  -4 1.(  

-1.4 x 10 -4 

 1.0x10 
:10 5  0 -6  

7 2.5 x10  
-5.1 x 10 -8 

 1.6 x 10 -8 

-5.2 x 10 -9 
 1.8 x 10 -9  

-3.9 x 10-28  -2.3 x 10-28  -2.9 x 10 -28  
1.3 x 10-28  -4.4 x1012  4.8 x 10 -21  

.1 .6 x  10-20 -4.4 x 10- ' 1  -8.8 x 10 21  
7.9 x 10-21  -2.1 x 10 -21  1.6 x 10-21  

-8.2 x 10-21  4.1 x 1022  -2.8 x 10 -21  
5.3 x 10-21  -2.0 x 10-21  6.5 x 10-22  

-4.9 x i0 21  1.3 x 10-21  -9.7 x 10 -22  
3.7 x 10-21  -1.6 x 10 -21  3.3 x 10  

x 10 -21  1.3 x 1021  -4.0 x 10 -22  
2.7 x 10-21  -1.2x10-21  2.0 x10 

-2.4 x 10-21  1.0 x10-21  -2.1 x 1022  

I 



alternating-sign subseries 

relative asymptotic error after inclu- 
sion of terms through order On N -1 ) 

0 	1 	2 

-5.1 x 10 -22 
 2.5 x 10-22 
 -1.2x10-22  

6.4 x10-23  11 
-3.4 x 10 

1 = 
1.9 x 10 1 _1 

-1.0 x 10  

_ 
6.8 x 10 13  _ 

-3.7 x 10 13  1 
1.8 xi°

3  

-9.5 x 10 -24 
 5.0 x 1024  

-2.7 x 18 
1.5 x 10 24  

6.0 x 10 
-3.5 x 101: 
2.1 x 10 

-8.6 x 10 1 
5.0 x 10

5  
1 

-2.9 x10 	
5 

-2.4 x 10-10  -1.7 x 10 -1°  
-2.9 x 10 -11  -7.6 x 10 - " 
-4.4 x 10 11  -1.3 x 10 -11  
-3.1 x 10-11 

 5.4 x 10-12  
-5.1 x 10 -11  
1.8 x 10 -11  

-2.4 x 10 -11 
 1.4 x 10-11  

-3,2 x io - ii 
1.8 x 10-11  

-1.7 x 10-11  -1.9 x 10-11  
1.2 x 10 -11  1.3 x 10 -11  

-1.2 x 10 11  -1.2 x 10 -11  
9.3 x 10 -12  8.5 x 10 -12  

-4.0 x 10 12  -2.7 x 10-12  
3.7 x 10 -13  1.2 x 10 -13  

-5.2 x 10 14  -8.1 x 10 -15  
9.5 x 10-15  7.4 x 10 -16  

-2.2 x 10-15  -7.0 x 10 -17  
5.9 x10 -16  2.3 x 10 -18  
-1.8x10-16  2.6 x 10 -18  

-6.6 x10-1° 
 3.0 x10-1° 
 -3.1 x10-1 ° 

1.8 x 10-1° 
 -1.6 x 10-10 

 1.1 x 10-10 
 -9.6 x 1011 

 7.2 x 1011  

: ° 1011 
 -4.0x10-11  

1.5 x 10 11 
 -1.4 x 1012 

 2.0 x 10-13 
 -3.8 x 1014 

 9.2 x 1015 
 -2.6 x 1015 

 8.5 x 1016  

_ 14 
1.1 x 10  

-5.7 x 10-22 
 3.0 x 10-22 
 -1.6 x 10-22 
 8.7 x 1023  

-4.9 x 10-23 
 2.8 x 10-23 
 -1.6 x 1023 
 9.8 x10-24 

 -6.0 x 10-24  

33 
	

1 /R EXPANSION FOR H2 + : CALCULATION OF . . . 	 51 

TABLE XV. ( Continued). 

N E(N) (exact) 

same-sign subseries 

relative 
smallest 	asymptotic 

kmin 	term 	error 

105 
110 
115 

-3.3488731765 
-6. 19247 66051 
-1.42134 73900 

21245 83788 
35553 60449 
1406105461 

50242 
62734 
23906 

260 x 10 175 
 926 x10185 
 579 x 10196  

51 
51 
51 

5.9 x 10-24 
 2.9 x 10-25  

1.7 x10-26  

-5.9x10 22 

 3.1 x 10  
-1.7x10 22  

120 -4.013504634884955 00256 59932 505 x10286  51 1,2 x 0-27  9.8 x 10-23  
125 -1.38280 24776 68477 37271 74455 133 x10 17  51 9.4 x 10 29  -5.7 x 10 -23  
130 -5.76908 79997 60099 90273 22398 986 x10227  51 8.3 x 10-3°  3.4 x 10-23  
135 -2.89404 47723 41030 70694 09814 842 x10238  51 8.3 x 10 1  -2.0 x ID -23  
140 -1.73425 01258 17999 54002 35382 259 x10249  51 9.1 x 10-32  1.2 x 10 -23  
145 -1.23389 62504 95032 24434 05554 295 x 10260  51 1.1 x 10 32  7.7 x1024  

150 -1.03641 42160 91805 70362 06542 761 x10271  51 1.5 x 10-33  4.9 x 10 24  

Excited state: n1=0, n2=0, m=1 

45 -3.49959 20366 93598 91668 17769 328 x 10 58 22 7.5 x 10 -10  -2.7 x 10 -1°  
46 -1. 70905 86893 95210 74016 63064 942 x 10 60 23 4.1 x -5.7 x10-12  
47 
48 

-8.51750 
-4.33020 

20559 
10973 

09728 
72823 

74946 
98193 

57078 
60749 

558 x 10 61 
684 x 10 63 

23 
24 

2.2 x 10 -1 ' 
1.2 x 10 10  

-6.i xto-ii  
-1.8 x 10 11 

49 -2.24479 16414 87821 85905 65104 858 x 10 65 24 6.4 x 10-11  -3.6 x 10-12  
50 -1. 18618 97135 90882 24223 81705 143 x 10 67 25 3.4 x 10 11  -1,7 x 10 11  
51 -6.38684 60774 93345 40838 33238 854 x 10 68 25  x 10 111.8 9.3 x10-12  
52 -3.50285 91147 92997 96351 76467 618 x 10 70 26 9.9 x10 12  -1.4 x10-11  
53 -1.95622 12316 73804 17530 76068 320 x 10 72 26 5.3 x 10-12, 1.0 x 10-11  
54 -1. 11207 12695 26913 49760 71599 369 x 10 74 27 2.8 x 10-1 ' -1.1 x 10-11  
55 -6.4332698100 20438 74103 15384 765 x 10 75 27 1.5 xi0-12  8.6x 10-12  

60 -5.36148 52495 03114 46697 41902 328 x 10 84  30 6.4 x10 -14 -4.4 x 10 12  
75 
90 

-2.97729 
-2.98060 

96882 
26338 

91636 
04127 

90670 
24387 

94542 
81243 

361 x 10112 

 041 x 10141  
37 
45 

4.4 x 101! 
2.6 x10-" 

6.1 x 10-13  
-1.1 x10-13  

105 -3.36203 13361 38534 15647 21639 506 x10171  51 1.5 x 10 26  2.7 x 10 -14  
120 -3.0469622545 61093 87351 71675 528 x 10202  51 2.4 x 10 -30  -7.7 x 10-15  
135 -1. 71925 10469 39378 61467 12246 696 x10234  51 1.5x10-33  2.5 x10-15  
150 -4.94850 17433 83943 65938 49553 170 x 10266  51 2.3 x 10-36  -9.1 x 10-i6  

series at the origin converges. The value of /3 2  is deter-
mined by matching logarithmic derivatives. The integra-
tion path is kept away from n = 2, at which the potential 
is singular, by keeping 7/ in the lower half-plane. As a 
consequence, 132 (r) for r>0 is continuous with Imr >O. 
The numerical values of /3 2  so obtained are listed in Table 
XVII. 

To calculate the Borel sum is also straightforward. 26 
 For unimportant reasons of convenience, the values re-

ported here were not calculated directly by the Borel 
method, but instead by the sequential Pade approximant 
method of Reinhardt, 21  which for the related problem of 
the LoSurdo-Stark effect in hydrogen26' 22  is known from 
numerical studies to give the same results as the Borel 

method. (The idea of this method is to generate the 
power-series expansion at some point away from the ori-
gin via Pade approximants of the series at the origin. At 
a point near the real axis in the right half-plane, / 2  is an 
analytic function of r, and the power series at that point 
converges on the nearby real axis. The procedure is most 
easily implemented in a continued-fraction representation 
of the RSPT series in which the even and odd approxi-
mants are the [N /N] and [N /N + 1] Pade approxi-
mants, 28  We were able to calculate up to 70 continued- 

fraction coefficients for the function and its first 70 
derivatives- using the RSPT coefficients through order 
140-before completely losing numerical significance.) 
The numerical results are illustrated in Table XVII for the 
ground state at three internuclear distances. The values 
obtained by summing the RSPT series agree within the 
accuracy of the calculations with the values obtained by 
solving the differential equation numerically on the semi-
infinite interval. 

Summation of the imaginary second-exponential-order 
series for A i /31 21  [Eq. (228)] and the real first-exponential-
order series [Eq. (227)] is also reported in Table XVII. 
The sequential Pade-Pade method again was used, since 
these series are even more divergent than the RSPT series. 
Since only 51 power-series coefficients are available for 
these two series, Table I, the accuracy of the approxi-
mants for the higher derivatives is not as great as for the 
RSPT series. For r---12 and 10, the imaginary series can-
cels quite well the imaginary part of the Borel sum. For 
r=6, the cancellation is not so marked: clearly, higher-
exponential-order series are not so small in the r=6 case 
and are needed to cancel the imaginary part of the Borel 
sum. 

It should be noted that for each of the exponentially 

■ 
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TABLE XVI. Neville table for - EI N) /[e -2(N +1)!]- 1 with up to three alternating-sign correction 
terms, for the ground state. 

N 0 

kth Neville iterate for k = 

2 	 3 4 

with no alternating-sign correction term 

145 0. 01282 68094 126 0. 0009 887 -0. 0000 199 -0. 0003 504 -0. 0253 500 
146 0. 01274 56323 515 0. 0009 750 -0. 0000 124 0. 0003 444 0. 0250 107 
147 0.01266 54677 424 0.0009 614 -0.0000 190 -0.0003 365 -0.0246 785 
148 0.01258 62975 623 0. 0009 483 -0.0000119 0.0003 308 0. 0243 527 
149 0.01250 81030 018 0. 0009 353 -0.0000 182 -0.0003 233 -0. 0240 335 
150 0.01243 08668 759 0.0009 227 -0.0000115 0. 0003 179 0.0237 204 

with first alternating-sign correction term 

145 0.01282 68095 127 0. 0009 887 -0.0000156 0.0000 697 0. 0050 078 
146 0. 01274 56322 555 0. 0009 749 -D. 0000 166 -0. 0000 669 -0.0049 134 
147 0. 01266 54678 345 0.0009 615 -0.0000 149 0.0000 662 0,0048 212 
148 0.01258 62974 739 0.0009 483 -0.0000159 -0.0000 635 -0.0047 316 
149 0.01250 81030 867 0.0009 353 -0. 0000 143 0.0000 629 0.0046 440 
150 0.01243 08667 944 0.0009 227 -0. 0000 153 -0. 0000 604 -0.0045 589 

with two alternating-sign correction terms 

145 0. 01282 68094 954 0. 0009 887 -0. 0000 163 -0. 0000 032 -0. 0002 738 
146 0. 01274 56322 719 0. 0009 749 -0.0000 159 0. 0000 042 0.0002 67B 
147 0. 01266 54678 188 0. 0009 615 -0. 0000 156 -0. 0000 031 -0. 0002 621 
148 0. 01258 62974 889 0. 0009 483 -0. 0000 152 0. 0000 039 0. 0002 564 
149 0.01250 81030 724 0.0009 353 -0.0000 150 -0. 0000 029 -0.0002 510 
150 0. 01243 08668 081 0. 0009 227 -0.0000146 0.0000 037 0.0002 456 

with three alternating-sign correction terms 

145 0.01282 68094 963 0. 0009 887 -0. 0000 163 0. 0000 006 0. 0000 021 
146 O. 01274 56322 711 0.0009 749 -0. 0000 159 0. 0000 005 -0.0000 022 
147 0. 01266 54678 196 0. 0009 615 -0.0000 156 0. 0000 005 0. 0000 021 
148 0. 01258 62974 881 0. 0009 483 -0.0000 153 0.0000 005 -0. 0000 022 
149 0. 01250 81030 731 0.0009 353 -0.0000 150 0. 0000 005 0. 0000 021 
150 0. 01243 08668 074 0. 0009 227 -0.0000147 0. 0000 004 -0. 0000 022 

small terms, the sum of each real power-series factor is it-
self also complex. However, here we have only listed the 
contribution that comes from the real part of the sum of 
each power-series factor, since the imaginary part would 
be expected to be canceled by higher-exponential-order 
series. 

The sum of the first-exponential-order series can be ei-
ther added or subtracted to the sum of the RSPT, leading 
to the symmetric or antisymmetric members of the 
double-well pair. Moreover, for quantitative accuracy, it 
is also necessary to include the real second-exponential-
order series, for which we have given two terms in Eqs. 
(227) and (110), and which comes in only with one sign. 
The agreement of the sum of the asymptotic series with 
the numerical eigenvalues for the physical double-well 
pair is nicely illustrated for r=12 and 10, as well as the 
deteriorating convergence at r=6. At this shortest dis-
tance, the two-term truncation of the real second-
exponential-order series is inadequate, and higher 
exponential-order contributions are also significant both 
for the accuracy of the real part and to cancel the imagi-
nary part. 

XII. SUMMARY 

As set out in the Introduction, we have developed the 
quasisemiclassical method to solve the H2 +  eigenvalue 
problem by asymptotic expansion. The bulk of the calcu-
lation has focused on the separation constants /3 1  and 132 , 
which arise from separation in prolate spheroidal coordi-
nates (Sec. II A). The transformation from separation 
constants to energy E(R) is relatively elementary (Sec. V). 

The development of asymptotic expansions for /3 1  (Sec. 
IV) and th (Sec. III) depends first on solving the separated 
Schrodinger equation near the boundary points, which are 
also singular points, in terms of Whittaker confluent hy-
pergeometric functions. These solutions are extended 
away from the boundary points, by expanding the natural 
variable in a series in the reciprocal internuclear distance. 
The Schrndinger equation is thereby turned into a Riccati 
equation that is solved by expansion. A crucial role is 
played by the b index of the Whittaker function. If taken 
equal to the unperturbed separation constant, then RSPT 
is the result of solving the Riccati equation, but the wave 
function satisfies only the boundary condition at n=0. If 



33 	 I /R EXPANSION FOR H2 + : CALCULATION OF . . . 	 53 

TABLE XVII. Comparison of values of 0 2  obtained by summation of the asymptotic expansion and 
by numerical solution of the eigenvalue equation (11) with (physical) boundary conditions at n=0 and 
n=2, and with (nonphysical) boundary conditions at n  =o and n = co, for the ground state. 

Computational Method P2(r)  

r=12 

Numerical solution, boundary conditions at 0 and co -is 0.45620 55605 36 + i 0.51348 x10-7 

Sequential Pacle-Pads [35/35) for RSPT series 0.45620 55605 36 + i 0.51347 x10-7  

Sequential Pea-Fade [25/26) for Al3P )  -0.00012 17975 46 
Sequential Pacle-Pade [25/26) for jag )  - i 0.51348 x10-7 

Two-term formula (110) for A ra?)  0.00000 01152 38 

RSPT + AO)  + 	+ kirOS,2)  0. 45608 38782 28 
Sym. num. solution, boundary conditions at 0 and 2 0. 45608 38789 89 

RSPT - ZAI)  + 	+ Pri35,2)  0. 45632 74733 20 
Antisym. num. solution, boundary conditions at 0 and 2 

r=10 

0.45632 74743 50 

Numerical solution, boundary conditions at 0 and co -ie 0.44675 97795 93 + i 0.18165 34 x10-5  
Sequential Pade-Pade [35/35] for RSPT series 0.44675 97795 92 + i 0.18165 34 x10-5  

Sequential Pade-Pade [25/26) for A14 1)  -0.0007157275 4 
Sequential Pacie-Pacie [25/26] for iAi0ly 2)  - i 0.18166 x10- s 
Two-term formula (110) for A ral)  0.00000 37943 

RSPT + ABSD 	jAi02) 	Ar.42) 0.44604 78463 
Sym. num. solution, boundary conditions at 0 and 2 0.44604 78627 33 

RSPT - AO)  + 	+ Lir021  0.44747 93014 
Antisym. num. solution, boundary conditions at 0 and 2 

r=6 

0.44747 93660 55 

Numerical solution, boundary conditions at 0 and co -ie 0.40438 98390 4 + i 0.13374 2866 x10-2  

Sequential Pade-Pade [35/35] for RSPT series 0. 40438 984 + i 0.13374 3 	x10 2  

Sequential Pade-Pade [25/26] for UP -0.01825 5 
Sequential Pacli-Pade [25/26] for iti i01,23  - i 0.135080 x10-2  

Two-term formula (110) for 	 q)  0. 00211 94 

RSPT + 	 + Arse) 0.38825 4 - i 0.00133 7 x10-2  
Sym. num. solution, boundary conditions at 0 and 2 0. 38805 89412 28 

RSPT - A411 + iAi0  27 + Are? 0.42476 5 - i 0.001337 x10-2  
Antisym. num. solution, boundary conditions at 0 and 2 0.42504 99757 82 

the boundary condition at 77.2 is also to be satisfied, then 
the b index gains a sequence of exponentially small series, 
which in turn imply exponentially small contributions to 
the separation constant. 

The explicit complexness of the expansions, starting in 
second exponential order, is a consequence of the explicit 
complexness of the asymptotic expansions for the Whit-
taker function. That a real function should have a com-
plex asymptotic expansion is not as paradoxical as it 
might seem (Sec. III F): the asymptotic expansion for the 

Whittaker function is summable through the Borel sum-
mability of its associated power series. The real axis is a 
cut of the Borel sum. Thus the Borel sum of the RSPT 
series is complex and discontinuous on the real axis, but 
the explicit second-exponential-order series has the effect 
of canceling the implicit imaginary part and making the 
sum of the entire expansion (including all exponential or-
ders) real and continuous. 

The explicit imaginary series is directly related to the 
discontinuity on the positive real axis (Sec. III I) of the 
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Borel sum of RSPT for the separation constants, which in 
turn determines the asymptotics of the RSPT coefficients 
via a dispersion relation (Sec. VI). In the course of deriv-
ing the imaginary second-exponential-order expansion, the 
relation to the square of the first-exponential-order expan-
sion is obtained, which is the exact version (Secs. III G 
and V C) of the approximate relation discovered by Brezin 
and Zinn-Justin. 12  There is also a second imaginary series 
(Sec. IV) associated with the discontinuity of P I  on the 
negative r axis that leads both to alternating-sign and log-
arithmic contributions to the asymptotics of the RSPT 
coefficients (Sec. VI). These contributions had in fact im-
plicitly been discovered in an earlier Bender-Wu analysis 
of the asymptotics of the RSPT for H 2 +. 13  

Extensive numerical illustration has been provided for 
both the values (Tables I—III, V—VIII, and XI—XIV) and 
the asymptotic behavior (Tables IV, X, XV, and XVI) of 
the coefficients of the various series. In particular, the re-
lation between the imaginary series and the RSPT asymp-
totics is verified in practice (Tables IV, X, XV, and XVI). 
The higher the quantum numbers n 1  and n 2  the more 
slowly the RSPT approaches asymptotic behavior. The 
alternating-sign contributions to both /A N)  and to E (N)  
have been explicitly demonstrated (Tables X, XV, and 
XVI). 

The RSPT series for fl2  has been summed and shown 
(Table XVII) to agree numerically with the numerical 
solution of the differential equation for /3 2  on a semi- 

infinite domain, the analytic continuation to negative r or 
the closely related fri (r') for the electron moving in the 
field of a proton and an antiproton. For instance, at 
r=10 the sum of the RSPT series for /3 2  is 
0.446 759 779 592+10.181 653 4 X 10 -5, while direct nu-
merical integration of the differential equation gives 
0.446 759 779 593 +10.181 653 4 x 10 -5. For the physical 
fit, the sum of all the fI2 subseries together agrees well 
with the numerically solved values for /3 2  for large r 
(> 10), but still more terms and subseries are needed for 
smaller r (r= 6 being the example given in Table XVII). 

Such a richly complex asymptotic expansion for such a 
simple problem was not anticipated. 
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POTENTIALS PRODUCING MAXIMALLY 
SHARP RESONANCES 
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ABSTRACT. We consider quantum-mechanical potentials consisting of a fixed back-
ground plus an additional piece constrained only by having finite height and being 
supported in a given finite region in dimension d u 3. We characterize the potentials 
in this class that produce the sharpest resonances. In the one-dimensional or 
spherically symmetric specialization, a quite detailed description is possible. The 
maximally sharp resonances that we find are, roughly speaking, caused by barrier 
confinement of a metastable state, although in some situations they call for interac-
tions in the interior of the confining barrier as well. 

I. Introduction. One of the standard topics of quantum mechanics is the tunneling 
effect. A large potential barrier blocks a particle imperfectly, and the effect of the 
penetration can show up in scattering as a sharp resonance. In the time-independent 
analysis of the Schrodinger equation, resonances make their appearance in the guise 
of nonreal eigenvalues defined with an outgoing-wave condition or complex scaling. 
Up to physical constants, e, which will denote (minus) the imaginary part of this 
eigenvalue, measures the width of the resonance in units of energy, and a sharp 
resonance is one with small e. The real part, E, roughly locates the physical energy 
at which the resonance is observed. The quantity e may also be inversely propor-
tional to the lifetime of a metastable state, according to the indeterminacy principle. 
We shall consider relatively compact potentials V supported in finite regions in one 
or three dimensions, which are exterior-dilatation analytic in the sense described.b'y 
Simon and by Graffi and Yajima [14, 6]. They also seem to fall within the scope of 
other recent generalizations of the complex scaling method [3, 4, 10, 13], although we 
have not yet seen the definitive versions of all of these generalizations. The simplest 
model of an alpha-emitting nucleus, being a spherical square-well, fits this descrip-
tion, and its sharp resonances are associated with the metastable states caused 
physically by confinement of particles within the nucleus by a potential barrier at its 
periphery. It is not obvious, however, that other mechanisms might not also exist for 
causing resonances. For instance, could some very complicated potential, such as 
arises in studies of random media, cause as sharp a scattering resonance as a 
confining barrier? We will find below that the answer is in essence no. 
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This paper uses and extends ideas in two earlier works by Harrell [7, 8]. In [7] 
Harrell studied the one-dimensional Schrodinger equation 

(1.1) 	— d 24)/dx 2  +(V(x) — k 2 )4) = 0, 	k 2  = E — iE, 

with outgoing boundary conditions at 0 and an arbitrary other fixed point L. 

Positive lower bounds were derived for E depending only on the support c [0, L] 

and magnitude of V and on the real part of the resonance eigenvalue E, which 
therefore apply to random or otherwise imperfectly known potentials. That article 
relied on comparison techniques to generate inequalities, but an alternative ap-
proach, which we follow here, is to attempt actually to find the most highly resonant 
possible potential within some category. This could then be analyzed, if necessary 
numerically, to furnish optimal bounds on E. Harrell's other paper [8] investigated 
the problem of determining the potential that optimizes a different spectral property, 
namely the ground-state eigenvalue of an n-dimensional Schrodinger operator, and 
further progress on related problems was made recently in [2]. This provides both a 
method and a reason for hoping for success in the resonance problem, which is, 
however, in many ways less tractable, especially because it is not selfadjoint. 

In this paper we study equation (1.1) and its higher-dimensional analogue, 

(1.2) 	 + V(x))1 = k 24,. 

In the one-dimensional case we shall pose slightly different boundary conditions 
from those of [7], viz., 

(1.3) 	 (0) = 0 and IP (L ) = 1, %V( L ) = ik, 

i.e., Dirichlet conditions at 0 and the traditional outgoing conditions at L. The lower 
bound derived in [7], which assumed outgoing conditions at both endpoints, carries 
over immediately with only minor changes. Boundary conditions (1.3) are ap- 

. 	
i propnate if one thinks of the one-dimensional problem as coming from separation of 

variables in a spherically symmetric three-dimensional problem, and would describe 
S-wave resonances; it will thus be referred to as the totally spherically symmetric 
case. Resonances for subspaces of nonzero angular momentum would correspond to 
an outgoing condition of the form 

1/./(L )/%p ( L) > ik as L 	oo 

and will be discussed further in [15]. 
Since the boundary conditions (1.3) depend on the eigenvalue parameter k 2 , it 

looks at first as if (1.1) and (1.3) do not constitute an operator eigenvalue problem, 
but in fact it is easy to show that these equations are equivalent to the eigenvalue 
problem for the one-dimensional, exteriorly dilated version of the operator — A + V, 

since any eigensolution reduces to a plane wave C exp(ikx ) in the region exterior to 
the potential but interior to the sphere where exterior dilatation sets in. To sum up, 
for our purposes: 

DEFINITION. A resonance is a triple ( k 2 , V(x),1,1 , (x)) related by (1.2) and the 
auxiliary conditions mentioned above, with Re k 2  0 and Im k 2  < 0. We shall 
frequently refer to k 2  for short as the resonance, and will call ii (either as a local 
solution or as an exteriorly dilated solution) the resonance wave-function. 
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We shall address the following question: Is there a distinguished potential V# 
 within a class such as (V: 0 V M, supp V C x: Ix' L} that minimizes r in 

(1.1) or (1.2), and, if so, what is this maximally resonant 1/ ±,? We shall also address 

the question of existence and characterization of potentials that are maximally 
resonant within a given energy range, and allow a fixed background potential. An 
analysis of similar questions with other natural classes S over which the potential 
can vary will appear in [15]. 

A compactness argument will answer the first question in the affirmative, and to 
characterize V„ we shall begin by analyzing the effect of small perturbations of it, 
following an idea of [8]. This will give a certain amount of information about V* ; in 
particular, it will reveal that for the above-mentioned class, V, can only equal 0 or 
M. To get more detailed information on the nature of its support, however, we have 
to restrict ourselves to the spherically symmetric case and rely on techniques of 
ordinary differential equations. 

H. Preliminaries. The first order of business is to establish the existence of sharp 
resonances for suitable Schrodinger operators. We shall work in the spaces R', R2 , 
or R3 , and always suppose that the potential V is supported within the ball of radius 
L centered at the origin. In one dimension this statement will be interpreted as 
meaning that supp(V) c [0, L]. The exterior-wave condition can be incorporated 
into the eigenvalue problem 

(2.1) 	 —Olp+V4 =k 22tP 

most conveniently when the latter is written as an integral equation, 

(2.2) 	 = — f 	G(x, y; k)V(y)t,b(y)dy, 

where we continue onto the second sheet, i.e., with E = Re(k 2 ) > 0 and r = 
—Im(k 2 )> 0, 

exp( ikx > )sin(kx <)/k, 	d = 1, 

(2.3) 	G(x, y; k) = 	 — yl)/ 4, 	d = 2, 

exp(iklx — y I)/4glx YI, d = 3 

(here H denotes a Hankel function [16]). We observe that any solution of (2.2) 
belongs to W 2 (0) for any bounded domain S2 and solves (2.1). 

What complex scaling provides for us is a consistent interpretation, in the 
language of operators on L 2 , of this traditional method of defining a resonance. The 
only facts needed about the exterior scaling formalism are (i) that the associated 
resonance wave-functions satisfy the Schrodinger equation locally but are modified 
outside some finite region so as to become square-integrable; and (ii) if J is the 
antilinear operator of complex conjugation, Jf = f, then the adjoint of a complex-
scaled Hamiltonian operator Hd is simply 

(2.4) 	 Hd = JHd J. 

This prefatory remark should make it clear that our analysis is not strictly tied to 
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the exterior-scaling formalism, but would apply without change to the other alterna-
tive complex-scaling techniques that have sprung up recently [3, 4, 10, 13]. Since we 
make only fairly minor use of complex scaling (to justify perturbation theory in 
Proposition III.] ), the detailed discussion of the relationship between it and the 
integral equation is deferred to [15]. 

It will be helpful to know that there are very sharp resonances for sufficiently 
large support or potential height, i.e., that E is exponentially small as a function of 
these quantities. Suppose that V is supported in the ball of radius L and that 
suppl VI .4 M. There is a scaling relationship between L and M showing that the 
problem is largely characterized by the combination Lam; if x is replaced by 
x' = ax, one finds that the length L becomes aL, while the potential added to — 
becomes V(x'/a)/a 2 . (The corresponding eigenvalue will also be affected, becoming 
k 2/a 2 .) For convenience, in one dimension we may therefore show the existence of 
sharp resonances by setting V = Y 111,,[1,21, a standard textbook variety square-well. It 
is straightforward to find that the width of the principle resonance is exponentially 
small, i.e., exp( — 267i) as M so. (A rigorous discussion of this sort of limit, 
complete with detailed perturbation theory for large barriers of general shape, can 
be found in [1].) For the square barrier Mx 11. ,1 , there is a resonance whose width is 
asymptotic to A exp( — 2LN). 

Similar analysis of spherically symmetric square-barrier potentials in dimensions 2 
and 3 shows that in all cases there are universal positive constants A and B, such 
that a potential V, 0 4 V M, supported in a ball of radius L, can always be found 
with a resonance width satisfying 

(2.5) 	 e < A exp( — BLN). 

If necessary, estimates of A and B could be derived without much difficulty. In the 
totally spherically symmetric case, for example, for any positive A and any B < 2, 
there is a resonance for which (2.5) will hold for L or M sufficiently large. 

Fix a function W supported within the ball of radius L and a compact subset E2 of 
that ball. The function W will play the role of a background potential and will be 
assumed relatively compact with respect to — (This will be the case if W E L 2 , for 
example.) Let 

S= {V: supp( V) c E2 and 0 4 V( x) — W( x ) M a.e.), 

let E( V) denote any particular resonance width associated with V, and let E(V) be 
the real part of the corresponding eigenvalue k 2 (V)= E(V) — ie(V) of — A + V. 

THEOREM II.1. Let E tt  = inft E(V): V E S( C, D)), where S(C, D) is the subset of 
S such that 0 C D < co. We assume C and D are chosen so that e, is 
defined (i.e., that there is a V with a resonance eigenvalue in this energy interval). 
Then 

(i) There exists a V, E S such that E #  = E(V# ) and C E(V) D. 
(ii) If either W 0 a.e. or C > 0, then E #  > 0. 

REMARK. There is no guarantee of uniqueness for the maximally resonant poten-
tial, and we expect that there are situations where it is not unique. For instance, 
suppose that 12 consists of two widely separated disjoint symmetric pieces. There is 

1 
726 
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no physical reason to think that a resonance that would be sharp if only one piece 
were allowed would necessarily be enhanced if the second piece were equipped with 
a symmetric bit of potential. On the other hand, we conjecture that the typical 
situation is uniqueness. 

PROOF. Let 52 1  be an arbitrary finite closed ball containing 52. Let 1 1,, be a 
minimizing sequence for E, i.e., E(V„) —> . Let k,,2  and O n  be the associated 
eigenvalue and eigenfunction. Without loss of generality, since [C, D] is a compact 
interval, we can pass to a subsequence so that ic„2  converges. If 4,„ is normalized in 
L2 (52 1 ), then (2.1) shows that O n  lies in a bounded set in W 2 (52 1 ). By Rellich's 
theorem this is compactly embedded in C(52 1 ), so by passing to another subsequence 
if necessary, it may be assumed that 4„ converges uniformly on St,. With still 
another subsequence, we may suppose by the Alaoglu theorem that V„ converges 
weakly in L 2 (12 1 ), say to V. The limit clearly remains in the set S (integrate V, by 
the charactistic function of the set on which putatively V, — W < 0 or V„ — W > 
M). 

Now note that lin tp,, tends weakly to V,1/./„. For fixed x E O p  the Green function 
tends to G(x, y; k #) in L2 (52 1 , dy), so it follows that the right side of 

4,„(x) = — 	G(x, y; k, i )V,,(y)1,1,,(y)dy 

from (2.2) converges pointwise to 

	

— G(x, 	k g )V„(y)tp,* (y)dy. 

The left side converges uniformly on 52 1  to 	so 

(2.6) 	 44t(x) = f Gcx,y,k.w.(y)o.(y)dy 

on 
If the minimal value of E were 0, then the corresponding eigenvalue ki would 

either be 0 or a positive embedded real eigenvalue of the selfadjoint realization of 
the problem (L2) by the usual argument of dilatation analyticity (see [12, §XIII.13], 
which extends in a straightforward way to exterior scaling). Embedded positive 
eigenvalues, however, are impossible for bounded, compactly supported potentials 
(see [12, §XIII.13 or 5]). 

It remains to show that if W 0, there can be no eigenvalue or resonance with 
k 2  = 0. We consider the three-dimensional case only. Suppose the contrary. Then we 
would have 

tP, = — (1/47rIx1)*V,0„, 

and because 1/, is compactly supported it would follow that this produces a solution 
of the Schrodinger equation (without exterior scaling) tending to 0 at co. Since (see 
[12, vol. II, p. 183]) in general 

(2.7) 	 Alul 	Re((ii/lul)Au), 

it follows in this case that 

(2.8) 	 V#10#1.>- O. 
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Let f = 14( R )1 cos(Vk(r — R)), so f " = — Ef, while f(R) = I(R)S and f '(R) 
= 14, ( R)1' . The Sturm comparison argument now leads to the conclusion that any 
zero of I tp(r )1 for r < R must lie to the left of the nearest zero of f (r) (see [9, p. 
334]). Since 4, (0) = 0, this means that V R Tr/2, from which (2.10) follows. ❑ 

As for the other regime of high energies, it is known that generally resonance 
eigenvalues are excluded from a sector in the complex plane of the form (0 > 
arg(k 2  - a) > —Q ) for some positive a and The estimates used by Cycon [4], for 
example, to prove this fact hold uniformly for all V E S. (Although Cycon uses a 
distorted scaling rather than exterior scaling, the distinction is unimportant in our 
context.) 

COROLLARY 11.3. In the totally spherically symmetric case, if W 0 a.e. and M or 
L is sufficiently large, then there exists a potential V s, that is maximally resonant for 
the entire range of energies E(V) 0, and E(V,D )> 77 2/41, 2 . 

DEFINITION. The resonance (ki, V„,*,(, „) with the potential asserted by 11.3 to 
exist will be called the sharpest resonance of all. 

III. Characterization of maximally resonant potentials. If a potential is maximally 
resonant on a set S(C, D), then we term the corresponding resonance maximally 
sharp, or simply maximal. Thus a resonance is maximal when E is minimal. It was 
shown in §II that maximally resonant potentials exist under some physically 
important circumstances. Suppose now that V, is a maximally resonant potential. It 
will be characterized by a variational analysis, which would equally well characterize 
minimally resonant potentials or other critical points of the functionals e(V). There 
is no apparent physical significance to other critical points, however. Since the sets S 
and S(C, D) which we consider here ensure that V, is relatively compact with 
respect to the exteriorly complex dilated version of — 6,, the resonances associated 
with V, are all finitely degenerate and can accumulate only at cc or 0. They will 
always be nondegenerate in the totally spherically symmetric case, and for simplicity 
we shall restrict ourselves to the problem of characterizing those maximally resonant 
potentials that have nondegenerate resonance eigenvalues. The functional configura-
tion of V, can be probed with small perturbations by appropriate functions. Since 
this variational analysis is purely local, a convenient definition reads as follows: 

DEFINITION. The potential V, is locally maximally resonant for the set S (or 
S(C, D)) if it has a resonance eigenvalue k 2 (V, t ) such that for sufficiently small 8, 

e(V.) = min{ e(V): V E S, sup1V — 	I < 8 ,1k 2  (V ) — k 2  (V 4,)1 < 8} . 

The standard methods of perturbation theory allow one to write down a formula 
for the first-order change in k 2  when V„ is slightly perturbed, which will be a 
valuable tool: 

PROPOSITION III.1. Let P(x) be a bounded, real function supported in U. If k 2  is a 
discrete, nondegenerate resonance eigenvalue of — A + V, V E S, and NG d  is the 
associated eigenfunction E L 2  in the framework of exterior dilatation, then 

(3.1) 	 dk 2 (V„ + KP)/dK = f PIP2d/ f d. 
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REMARK. With the usual complication of preliminary diagonalization, this formula 
remains valid for a finitely degenerate eigenvalue. 

PROOF. We write k 2 (V + KP) for short as k 2 (K) and let Hd  denote the exteriorly 
scaled version of — A + V for some fixed scaling parameter. From 

(k 2 (k) — k 2 (0))(4d, 1Pd) = (Abd, (H d  + KP — k 2 ( 0)) 4'd) ,  

and the differentiability of k 2  and the eigenfunction guaranteed by perturbation 
theory

( 
 [1

(

1, Chapter VII], 

k 2 '0)(../Ip d , tp d ) = (dAp d/dK, 0) + ( 	+ ( Jtp d , ( Hd  — k 2 (0))clip d/dK) 

   

= 	PIP d) +((H: 	k 2 (0))AP d , dtP dK); 

  

SO 

   

   

(dk 2 (rc )/dk )f 4)3 = 	PIpL. 

 

But note that f 1,I;„ 0 0, as otherwise the right side would be zero for all the functions 
P, implying that ., = 0 throughout 12, which is impossible because of the unique 
continuation property. Therefore we may divide through by the integral, obtaining 
(3.1). ❑ 

THEOREM 111.2. Let V, be a maximally resonant potential in the set S. Then 

(3.2) 	 — W = Mx y a.e. 

except possibly for x on the nodal surface of the corresponding resonance wave function 
(x: 4.„(x)--= 0}. 

REMARK. This fact is at first somewhat misleading about the nature of highly 
resonant potentials, since alternative types of maximally resonant potentials, such as 
are obtained when V varies over a set with LP conditions rather than boundedness, 
turn out to be smooth functions characterized by nonlinear differential equations 
rather than (3.2) [15]. In other words, the discontinuity and two-valuedness of the 
maximally resonant potential are to some extent artifacts of the particular frame-
work we have erected here. One great advantage that (3.2) brings is numerical 
feasibility. If a numerical estimate of the minimal resonance width is desired for a 
potential supported in a given region, the search procedure over this restricted set of 
potentials is easy to implement. In the spherically symmetric case the maximizers 
can be further characterized by analytic methods (see §IV). 

The nodal surface is necessarily of measure 0 if V„ is spherically symmetric, and 
is in any case a nowhere dense set, because of the unique continuation property. 

PROOF. Suppose not, and let F„ = { x: 0 < 1/n < V#(x) — W(x) < M — 1/n) 
for an arbitrary integer n. For uncluttered notation we call the associated wave-func-
tion simply p. Recall that >L and its exteriorly dilated version ' d coincide within the 
undilated region. For almost every z E F,„ we can find a sequence of subsets G, c F,, 
so that p.(G,) 0, and 

(3.3) 	 1P 2  = lim f 4,2dy/A(G,). 
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Now let P,(z) be the characteristic function of G,; for K < 1/n, 0 < V, *  — W + 
KPi (x) < M, so KP,(x) is an admissible perturbation for sufficiently small positive 
or negative K. If V, is maximally resonant, then Im dk 2 ( V, + KP,)/dK = 0. From 
(3.1) and (3.3) this means that 1,G 2/11,1/ 42  is real for a.e. such z (the denomina-
tor must contain the dilated wave-function in order to be finite). Since n is arbitrary, 
we conclude that cap 2  is purely real for a.e. z E F = OF„. 

Consider a point z where, for instance, ic4(z) > 0. We claim that for a.e. such 
z E F we can find subsequences ( z„ } of points of F converging to z from d linearly 
independent directions. (As before, d denotes the dimension of the space and in our 
case d = 1, 2 or 3. However, if d = 1 the statement becomes trivial, so we shall only 
consider higher dimensions.) 

Suppose our claim is false. Let B(z,8) be a ball around z of an arbitrarily small 
radius S. Then B(z,(5) n F is at most a (d — 1)-dimensional subset of Rd, so it has 
measure zero. This, however, contradicts Lebesgue's Theorem on points of density, 
which states that almost all points of any arbitrary linear set are density points of 
that set, i.e. for a.e. z E F 

urn 
g(Fn B(z,S))  

— 1. 
8-•o 	p.(B(z,5)) 

Thus our claim is established. 
The above claim justifies the next assertion, namely that vq., can be determined 

a.e. on F by considering only sequences of points of F. Repeating the same 
argument one more time we find that la-04I  (or -1-  c 1,1) where 42  < 0) is real a.e. 
on F. Then we see that in 

( 	+ V, — E,), _ — 	e,' 

the left side would have to be real and the right side imaginary, which means that 
=0. ❑ 
Equation (3.2) is consistent with the expectation that maximally resonant poten-

tials act by confining a particle inside a barrier, i.e., that the potential lies predomi-
nantly near the periphery of 0, but in principle the set Y at this point need have no 
special position within O. The spherically symmetric analysis will bear out the 
expectation more fully. In one dimension Y will in fact turn out to be (a.e. 
equivalent to) a finite union of closed intervals (Proposition IV.2). 

PROPOSITION 111.3. With a as in the foregoing proof, Im(a4 2 ) 0 on the set Y of 
(3.2), and Im(a1,1) 2 )< 0 on the complement of Y. Moreover, «IP is real on the 
boundary of Y. 

REMARK. It would thus be possible to modify the normalization of (1.3) and (2.11) 
so as to make Im 4 2  respectively 3 0 and < 0. 

PROOF. For Z c Y, we may allow a perturbation of the form V, 	+ Kx z  so 
long as K < 0, so that the potential remains in S. As in the proof of Theorem 111.2, 
we find that for a.e. x E Y, Im(atp 2 ) 3 0. Similarly, for Z c Y' we may allow such 
perturbations so long as K 0, and the argument of the proof of Theorem 111.2 
shows that for a.e. x Y, Im(a1,1/ 2 ) s 0. Therefore, by the continuity of 1,1)„, at,f) 2, is 
real on the boundary of Y. ❑ 
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IV. The spherically symmetric case. Finally, we embark on the detailed description 
of the totally spherically symmetric case via a series of propositions and remarks. We 
will find that the wave-functions of maximal resonances not only suffer from 
confinement, but they also get kicked when they are down. We show below that, at 
least for large L or M, maximally resonant potentials must contain a confining 
barrier stretching to L. We believe that there are locally maximally resonant 
potentials consisting of more than one barrier, although we do not firmly establish 
this fact. In particular, as can be seen from (4.1) and (4.3) below, the potential can 
and will switch on inside the outer barrier if the resonance wave-function has a 
sufficiently small modulus over a given region. This will happen if the resonance 
wave-function resembles an excited state of the associated problem with some 
selfadjoint boundary condition at L, which is ordinarily the case when the resonance 
width is small. The reason for this conjecture is provided, for example, by [l], where 
resonances are localized near, and asymptotically in one-to-one correspondence 
with, bound state energies of a related selfadjoint problem. The sharpest resonance 
of all seems to be generally associated with the ground-state eigenfunction, and its 
potential contains a confining barrier but no other pieces. 

One of the tools for deriving more information about the set Y if there is total 
spherical symmetry is the formula (2.11) relating any resonance width to the 
corresponding resonance function on [0, L]. It leads to the following: 

PROPOSITION IVA . In the spherically symmetric case, the argument of any reso-
nance eigenfunction is monotone increasing and twice differentiable. More exactly, 

(4.1) 	 d arg(1,/, )/dr = €1001 2fr  bP(Y)1 2 dY > °. o   

PROOF. First note that 4)(r) never vanishes except at r = 0, as otherwise it would 
be an eigenfunction of a selfadjoint problem, and E would have to be 0. If 
u = d(arglp)/dr = d(Im In 4))/dr = Im(11//4)), then, after the usual Ricatti trans-
formation, the Schrodinger equation becomes 

u' = E (2 Re( 11//11, )) u. 

Formula (2.11) fixes the limit of integration in the solution of this elementary 
equation, leading to (4.1). ❑ 

PROPOSITION IV.2. In the spherically symmetric case, the support Y of V, — W is a 
finite union of disjoint intervals, i.e., for some integer n 	1, there are points 
0 ‘r1  < r2  < • • • < r2 ,, 	L for which, if we let B(j) = [r 2  

fr r 2 j ,  2 .1  +1I, then  
11 

r2)1,  G(J) = 

(4.2) 	 Y = U B (1)- 
j =1 

In addition, the following estimates hold for the lengths of the intervals B(j) and gaps 
G(j): For all j except (i) j = 1 when r1  = 0, or (ii) j = n when the associated interval 
or gap includes the value L, 

(4.3) 	lb( j) I > Tr min I IP, I 2/2K and 1G 	> .77.  min I tP„ I
2 
 /2K, 

B( J ) 	 Go> 
where, as before, K = Re k. 
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I 
DEFINITION. We call the intervals B(j) the barriers and the intervals G(j) the 

gaps. 
PROOF. From Propositions 111.3 and IV.1 it follows that in one dimension the 

potential switches on or off exactly at the places where the argument of 	increases 
by 77/2 from the first point at which it switches on or off. Since 	satisfies a 
regular Sturm-Liouville equation and vanishes at 0, it is continuously differentiable 
with 47,(0) * 0 (else it would vanish everywhere). It follows that the expression in 
(4.1) is bounded for all r, so there can only be a finite number of switchings. This 
establishes (4.2). 

The estimates (4.3) follow from (4.1). The limiting phase at r = 0 is undetermined, 
so the first switching point is likewise undetermined. Also, the potential is switched 
off by construction at L regardless of phase. For the other switching points, 
however, (4.1) implies that 

/7/2 = g 
	2 tr 	2

dY. 01 	J
o 

141 (Y)1 
B(j) or GO)

drl 
 

Now replace r by L and substitute from (2.11) to get 

—2 
7/2 < Kf 	dril,b(r)1 , 

Bo) or G( j) 

and, finally, estimate the remaining integral by the length of the interval times the 
maximum of the integrand. ❑ 

arg 2 0  

r 1

M  

r 
0  r 2 r 3  

FIGURE 1. Thi relationship between the argument of the resonance function and the on and off intervals 

of the maximally resonant potential. The potential equals M in the shaded intervals and 0 otherwise. 
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FIGURE 2. We fix L= 2 and assume that V = Mx (  L2) . Then we numerically evaluate f( L 1 ) and 
de/dL i  for different values of L 1 . Points on the first graph represent optimal values of L 1  for each fixed 
value of M and points on the second graph represent corresponding values of In E. 

From now on we set W = 0. Once k 2  is determined for a (locally) maximally 
resonant potential, there is a simple algorithm for determining the positions of the 
finite number of "on" and "off intervals. Since 4,# is respectively  either a linear 
combination of exponential functions exp( ± k'r), k' = 'IM — k 2  , or a combination 
of sinusoidal functions sin(kr) and cos(kr) and is continuously differentiable at the 
switch points, it is a matter of algebra to determine the argument at any given point. 
The argument steadily increases from the point r = 0, and the potential switches on 
and off whenever it increases by 17/2. The limiting initial phase at r = 0 is 
determined by the condition that the eigenfunction satisfies the resonance condition 
at r = L. 
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DEFINITION. A resonance will be called typical if LfJ > Tr/2 and its real part 
satisfies 

(4.4) 	 7r 2/4/2 < E < 0.9M 

and 

(4.5) 

max( — Im( k/IFV/ ), Im( k'/VM ), — Im( k/V), Im( k //k )) < exp(— L 1 /2M 1 /4 ), 

where k' = (M — k 2 ) 1 / 2  (conventionally in the first quadrant). 
It is not hard to see from Proposition 11.2 that for large L or M maximally sharp 

resonances in this energy range have to be typical, and tunneling estimates indicate 
that resonances above this energy range are not extremely sharp (some bounds on 
widths will appear in [15]). In particular, the sharpest resonance of all is typical 
when L or M is sufficiently large. Our last claim states that typical maximally sharp 
resonances are due at least in part to barrier confinement: 

PROPOSITION IV.3. If a totally spherically symmetric resonance is typical and locally 

maximal, then r2n  (cf. Proposition IV.2) equals L. 

PROOF. Suppose not. Then the outermost barrier ends at a point z < L. There are 
then two possibilities: either (a) there is only one barrier stretching from 0 to z, or 
(b) the argument of Ili increases by 7r/2 on the barrier [y, z] with y > 0. Possibility 
(a) is easily checked not to be typical (or maximally sharp), so (b) would have to 
prevail. But if z is the outermost edge of the potential, then satisfies an outgoing 
condition at z of the form 47,,,(z)/tp,(z) = ik. We may modify (1.3) by a fixed 
multiplicative constant and assume that Ili (z) = 1, which means that on [y, ::], 
1,1),(0 = cosh( k '( z — r)) — i(k/k')sinh(k'(z — r)). Hence cosh(k'(z — y)) — 

i(k/k') sinh(k'(z — y)) must be purely imaginary. Taking the real part and dividing 
by a real quantity, we find that 

0 = 1 + tanh(Re(k')(z — y))Im(k/k') + tan(Im(k')(z — y))Re(k/k'). 

This is impossible if (4.5) holds, as can be seen by substitution and straightforward 
estimates. ❑ 

We close with the result of a representative numerical study of the maximally 
resonant potentials in the totally spherically symmetric case. We fix L = 2 and 

consider various barrier heights M. Tunneling estimates indicate that the maximal 
resonance for these values arises from a single barrier with V = Y The 

optimal values of L 1  and the corresponding E are depicted in Figure 2. The error 

bars are numerical estimates but are not rigorously established. 
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L2  ESTIMATES FOR GALERKIN METHODS FOR 
SEMILINEAR ELLIPTIC EQUATIONS* 

E. M. HARRELL'," AND W. J. LAYTONt 

Abstract. Optimal L 2  error estimates are derived for the usual Galerkin method for the semilinear 

elliptic problem 

N a 

 

Lu=
au  E 40 (x) 	+ ao(x)u = f(x, u), 	En, 

i.1=t ax, 	axi  

u = 0 on dn. 

When fu  is bounded inside the resolvent set of L it is shown that the Galerkin equations can be reformulated 

as a monotone operator problem. Optimal L 2  error estimates then follow. If` error estimates are also derived 

in the case when f touches o(L). 

Key words. Galerkin method, finite element method, semilinear boundary value problem 

AMS(MOS) subject classifications. Primary 65N30; secondary 35J65 

1. Introduction. Consider the semilinear elliptic equation 

N a  
(1.1) 	 – E —(a o (x)—

au
)+ao(x)u=f(x,u), 	x E SI, 

-- I  OX, 	(9X, 

subject to Dirichlet boundary conditions on an 

(1.2) 	 u = 0, 	x Eaa 

The coefficients of L are assumed to be smooth and L to be uniformly elliptic 

E ay (xgilli  a E a, a> 0, ao(x) O. 
i,1= 1  1= 1 

Also, assume that the nonlinearity f satisfies the Caratheodory conditions and is 
Lipschitz in u. 

Ciarlet, Schultz and Varga [7] have studied the convergence of the Galerkin 
method for this problem when of/au is bounded below the smallest eigenvalue of L. 

Also, Schultz in [14], [15], has considered the convergence of the Galerkin method 
to (1.1), (1.2) in the complementary instance where of/au is bounded between the 
eigenvalues of L, as in: 

Assumption Al. Assume that there is p < q such that for two consecutive eigen-
values of L, Ak < Ak+1 

af 
Ak<V-5 — (x,u) . q < Ak+i, au X E n, U E 
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In particular, in Theorem 3.5 of [14] and Theorem 4.1 of [15], Schultz has shown 
that if f(x, u) is uniformly bounded, (Al) holds and the substitution operator u -0 f(x, u) 
is Frechet differentiable, then the Galerkin method converges to the solution of (1.1) 
in the norm on the space in which G: f(x, u) is Frechet differentiable with the 
same rate as for linear problems. 

The proof consists of showing that the method is equivalent to the Galerkin 
method applied to an integral equation formulation of (1.1), (1.2) 

(1.3) 	 u = T(u), 	T(u) = L- '[ f(x, u)]. 

Specifically, if PE is the elliptic projection operator associated with the bilinear form 
derived from L by integration by parts, the Galerkin approximation can be represented 
as: U E S i' satisfies 

(1.4) 	 PE U = PE T( U). 

Convergence results then follow from the following abstract result (for a proof see, 
e.g., Schultz [14, Thm. 3.2], or Krasnosel'skii [18, Thms. 3.1 or 3.2]). 

THEOREM 1. Suppose T : H -0 H is a Frechet differentiable (nonlinear) compact 
operator, H a Hilbert space, and Sh  a sequence of subspaces such that 

U Sh  
h > 0 

is dense in H. Suppose further that the following two conditions hold: 
(i) 1 is not an eigenvalue of DT(u), 

(ii) Ph : H -0 S h  is a sequence of uniformly bounded projections. Then, 
(a) U E S h  exists for h sufficiently small (h K h 1 ) and converges to u as h -00. 
(b) There is a constant C > 0 such that 

C inf Ilu 
x Esh 

The problem considered is also related to the work of Brezzi, Descloux, Rappaz 
and Raviart in [5], [6], [8], [16], [17] on numerical methods for bifurcation problems 
(in the case where bifurcation does not occur). For example, in Theorems 1 and 2 of 
Rappaz [17] (see also [16]) an analogous result is obtained under the added condition 
that 

G : e(Sl) OW by u -+ f(x, u) 

is C 2 . Specifically, by specializing his abstract result to this setting one obtains that 
the Galerkin method converges to u optimally in the H' norm. 

It is tantalizing to think that L 2 -estimates could be obtained by the techniques of 
Schultz or Rappaz by considering iv-. f(x, u) as a map G: L2 (12)-0 L2 (11). However, 
this works only in the linear case. 

Specifically, it is folklore that if the substitution operator G: L2 -0 L 2  is Frechet 
differentiable then the function f must be affine in u. In this case, the original equation 
is linear. For completeness, we give a proof of this fact. 

PROPOSITION. If G: L 2 (0,1)-0 L 2 (0, 1) by u -0 f(u) is Frichet differentiable at u = 0 
then f is affine: 
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Proof Assume G is Frechet differentiable at u = 0. Without loss, we can assume 
that f(0) = 0 =f (0) by considering instead the function 

7(u) = f(u)–{f(0)+ f (0)u]. 

Assuming this, DG(0)w = f (0) w –0 and 

II G(0 ) G(v) -f (0 ) • v  (1.5) 	 lim 	 – 0. 
19-.0 	 110 -vu 

Choose k so that f(k) = Q 0 0 (if this is not possible then f = f must be 0, i.e., the 
original f is affine). Then, let v„ = kx[0, 1 ,„ 1 (x)-)0 as n co. Formula (1.5) now becomes 

f(vk)2 dx 
– 	– IQI 0 0. 	 ❑ „-'m 	I kin 

-1/2 	
n-.co lkin-1/2 	Iki 

In this paper, it is shown that L 2  estimates along the lines of these results of 
Schultz and Rappaz can be obtained without the Frechet differentiability condition 
on G and without assuming G is uniformly bounded C 2  or even differentiable. We 
weaken (Al) to the following assumption on the function f(x, u). 

Assumption A2. Assume f E C°  is strictly monotone in u. Assume that for some 
two consecutive eigenvalues Ak < Ak+i of L and real numbers p, q, Ak <p = q < Ak+15 
f(x, u) and its inverse are Lipschitz with respect to u with Lipschitz constants bounded 
by q and 1/p, respectively. 

When f E C' in u then (A2) is equivalent to (Al). For general operator equations 
in a Hilbert space (Al) and (A2) can also be restated as a two sided monotonicity 
condition. 

2. Formalism. Associated with L is a bilinear form a(• , • ): 1:1'(fi) x I '(11) -, l by 

a(v, w)= f [ E av (x)—
av 

—
aw

+ ao(x)vwidx. 
n 	=1 	ax, 

From the assumptions on L it follows easily that a• • ) is continuous and coercive 
on H I (Il). The true solution to (1.1), (1.2) satisfies 

a(u, v)= (f(• , u), v) V v E 14 1 (11). 

Let S h  denote a finite dimensional subspace of 1-1 1 (f1). The Galerkin approximation 
U h  E S h  is given by the equations 

a(u h, v)= (f( • , u h  ), v) VVE Sh . 

Define the continuous and discrete solution operators T , and 71,,, k to the associated 
linear problem as follows. For g(x) E L2(11) and –y a( L), TA is the unique function 
in H I (f) satisfying 

a(T,g, v)+ y(7,g, v)= (g, v) Vv E 171 1 (11). 

Similarly, define Ty.k: L20-0-0 sh. n'(.11) by 

v)+ 	v)= (g, v) VV S h . 

Assume S h  satisfies the approximation property standard for finite element spaces. 
For some r> 0 and all u E Hs (fl) n H I (11), 1 •g„ s r. 

(2.1) 	 inf, Ulu – x11+ 	Ch 2 11ull„ 
xEs 

The following convergence result of Schatz [13] for the linear equation will be used. 
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There is an h o  such that for h ho  and g E H5 (11) 

(2.2) 	 II(Ty,h Ty )811 Chs+2 	—1 s r — 2. 

Sometimes it will also be convenient work with the discrete operator Lh = To,hl.sh) -1 • 

3. The convergence theorem. 
THEOREM. Assume (A2) holds and Sh  satisfies (2.1). Then, for h sufficiently small 

u h  exists uniquely and satisfies 

iiu 	Cii[Ty 

for some —y a(L), where v(x) = yu(x)+f(x, u(x)). 
Rates of convergence then follow immediately. 
COROLLARY. (a) Under the hypotheses of the above theorem 

IIu — u h 	Ch5+21Ivils, 	 2, 

holds. 
(b) Suppose t is sufficiently large (t > N /2) that 1- On) c C ° (11),f E CS and u E 

H 5 (12) n /P(SZ). Then, Ilu — u h ll Ch'2,t s r — 2, where C depends on Dull, and f. 
Proof of the theorem. Existence and uniqueness of u h  follow from abstract existence 

results for semilinear equations in, for example, Amann [2, Thm., p. 150] and Mawhin 
[9, Thm. 2] applied to the equations L,,u h  =f( • , u h ), by noting that (2.2) implies 
convergence in the operator norm II To,h — Toll —00. Thus, c•( To),) -0 o•( To ) as h -) 0, so 
that for h sufficiently small p and q in (A2) are between successive eigenvalues of Lh, 
so that (A2) is verified for the discrete equations. Thus, for h sufficiently small u h  
exists uniquely. 

For the error estimate, note that u —14, h  satisfies the equation 

u — u h  = To,h[f( • , u) —f(• u h  )] + To — To,h1f( • , u). 

For —y it cr(L) and h sufficiently small, —y o-( Lh  ). Thus, adding and subtracting terms 
to the above equation is possible, giving 

(3.1) 	u 	= Ty,h[F( • U) -  F( .  , u h 	T,„h]F(• , u) 

where F(x, u)= yu + f(x, u). 
Note that since f satisfies (A2), F satisfies a condition related to (A2) in an obvious 

way: 

(Y 9)ii v w11 2  (F(x, v(x))— F(x, w(x)), v— w) .  (Y P)iiv wir 

for all v, w E L2 (11). This gives an estimate on V F(u)— F(u h )II using the result of Brezis 
and Nirenberg [4, Appendix A] or Mawhin [9, Lemma 1, p. 270], 

(3.2) 	 IIF(u)—F(u h  )11 max {IY+ 41, I IY+PI}IIu —  u h ll- 

Next consider II T,„hII. Since Lh is a self-adjoint operator, the spectral mapping 
theorem applied to the function g(z)= (y+ z) -1  gives 

(3.3) 	II Ty.hll = lig(Lh)11= dist {—y, cr( 1,0} -1  = min {hi 4} -1  

where {A li} are the eigenvalues of Lh. 
Finally, for v= yu+ f(• , u), (3.1), (3.2), and (3.3) yield 

Ilu u h ll 	ah(Y)IIu 	Uh  II+ II[ 	- 

ah(y)= max {1Y+PHY+0 -min{17+41:./}-1, 



h 	P q 
A k+1 

}- 

2 

1. 
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and the result will follow if there is a choice of - y0 o•(L) such that a h (y)<1 for h 
sufficiently small. 

Pick -y (p+ q)120 o-(L). Since To,,, To  in the operator norm, 	cr(Lh ) for 

t 

	

	 h sufficiently small. For the same reason [p, q] is bounded inside o- (Lh  ) for h sufficiently 
small (Fig. 1). 

p+q

2  q 	 At * , 

FIG. 1 

For this choice of y, a h (y) becomes 

nh(y)--
( 9-P) max 	h 

 - 
P {H 

2 

Consider Fig. 1. Since the distance from -y to p(or q) is smaller than the distances 
from - y to A k or A 	it follows that ah(A)<1. ❑ 

Proof of the corollary. The result (b) is a consequence of the Palais lemma (see 
Palais [12]). Specifically, the map u--* f(- , u) is a C' map Hs(11)-> Hs(c1) for every 
s 1. Thus f( • , u)11 5  is a continuous, finite valued function of II u II S . ❑ 

Remarks. It is clear that the proof follows for more general methods than con-
sidered here. Indeed, whenever a can be associated with T.„, so that To is self-adjoint 
positive semidefinite, positive definite on S" and (2.2) holds, then the theorem holds 
as well. This includes, for example, the Lagrange multiplier method of Babu§ka [3] 
and the methods proposed by Nitsche in [10], [11]. 

Further, it is clear that the condition (A2) could be weakened to hold only in a 
neighborhood of the true solution. All the convergence results would then hold for h 
sufficiently small. 

The convergence result is really a statement about nonlinear operators and 
monotonicity. For example, the following abstract convergence theorem follows by 
essentially the same argument. Consider a sequence of approximations in a Hilbert 
space H 

L„,Um = N„,(1T")+ f„„ 	m =1,2,3, • • • , 

to the nonlinear equation for u E H 

Lu = N(u)+ f, 	fE H. 

Suppose L, L„, are self-adjoint, and each N„, is a continuous gradient operator satisfying 

7-5 (N„,(v)- N„,(w), v - w) H  qllv - 	Vv, W E H. 

Furthermore, suppose that the method is consistent: 

L„,u - N„,(u)- f„, -> 0 in H as m -0 cc. 

THEOREM. Suppose that either IlL„,- LV 	0 or II 	- L-'11H  -> 0 as m co. 
Suppose also [p, q] c p(L). Then, for m sufficiently large, there is a unique Um satisfying 

11 14-  Unfi 	 as m -0 co. 	 ❑ 

Of course, the conditions on L„„ N„„ etc. can all be relaxed and the result can 
be extended to a Banach space, etc. 
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4. Problems touching an eigenvalue. In this section we consider the case where 
the nonlinearity just touches a resonance. In this case the approach of Schultz (outlined 
in the Introduction) can be combined with sharper estimates on the linearized problem 
to yield convergence results. For simplicity, we consider only one case when L 
touches A o . 

Let A o  be the smallest eigenvalue of L. Assumption (A2) is then weakened as 
follows to allow fm  to touch A o . 

Assumption A3. Suppose u ->f(x, u) is Frechet differentiable as a map: H' -> 
Suppose f(x, u) is C' in u for a.e. x E 11 and that for a.e. u c 

fu (x, 	a(x) - A 0  a.e. x E S2 

where al v) --> A„ on a set of positive (but possibly very small) measure. 
THEOREM 4.1. Suppose (A3) holds and 	L 2 (,(1)--0 H I M) compactly. Then, for 

h sufficiently small, U exists and satisfies 

inf Ilu 
'Esh 

Proof. Defining T, PE as in (1.3), (1.4) the theorem will then follow provided that 
1 is not an eigenvalue of DT(u). If 1 is an eigenvalue, we have, for some w 0, 

Lw =fu (x, u)w, 	w E ;Om n H2 (11). 

Letting q(x) = -fu (x, u(x)), we have q(x) c L I (S2) and q(x) .- - A 0  for a.e. x E nr, with 
strict inequality holding on a set of positive measure. 

Let A denote the self-adjoint realization of L+ qI, taken as the usual Friedrichs 
extension. Then, A is positive semidefinite and has purely discrete spectrum with the 
lowest eigenvalue nondegenerate (see, for instance, Reed and Simon [19]). We now 
show that the smallest eigenvalue of A is strictly positive by showing it is bounded 
below by a positive eigenvalue, E(0), of an associated problem. This then proves the 
theorem. 

Since g exceeds -A 0  on a set T of positive measure, we have for sufficiently small 
0 

inf (Af,f) 	inf (Lf, f)-A o +µ f Ifr dx -- - E(A.) 
IIIII-i 	 II fll=1 

fe 2(A) 	 fEOt(A) 

where EGO is the smallest eigenvalue of M(ta.)=--- L Ao+ AXT. 
Note that E(0) = inf o- (L) A 0 = 0, and that X T  is a bounded perturbation of the 

principal part L. It follows from standard perturbation theory for linear operators 
(Reed and Simon [19, Chap. XII], Kato [20]), that EGO is nondegenerate and depends 
analytically onµ in a sufficiently small neighborhood ofµ = 0, and that 

E(01„-0 = (fo,x40)> 0 

where fo  is the normalized lowest eigenfunction of L, which does not vanish on T 
Therefore, E(i.t) is strictly increasing and thus becomes positive. ❑ 

One extension of this result would allow appropriate functions to be added to 
the coefficients a, as well as in the potential term q. 
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Abstract 

On the Asymptotic Distribution of 1 igenvalues of Banded Matrices We consider the abstract measures, known as the DINSITT-01-STATES 
measures, associated with the asymptotic distribution of elgenvalues of 
infinite banded Hermitian matrices. Two widely used definitions of these 
measures are shown to be equivalent, even In the unbounded case, and we 
prove that the density of states is invariant under certain, possibly 
unbounded, perturbations. Also considered are measures associated with 
the asymptotic distribution of eigenvalues of rescaled unbounded matrices. 
These measures are associated with the so-called contracted spectrum 
when the matrices are tridiagonal. Finally, we produce several examples 
clarifying the nature of the density of states 

I. Introduction 

The DENSITY Of STATES Is a measure of how thickly the elgenvalues of 

truncated operators fill out the spectrum of the limiting operator as the 
truncation parameter tends to Infinity. It is of physical significance both In 
Scattering theory and In solid-state physics, where it Is, for example, a 
multiplicative factor In the color spectrum of a material. The recent 

interest In the density of states measure for tridlagonal matrices J has two 

main underlying causes: I It characterizes parts of the spectrum while 

being relatively accessible in comparison with the spectral measure; and 2. 
It Is related to the Lyapunov exponent for solutions of the associated 
difference equation by the Thouless formula. The density of states measure 

has been especially useful for understanding discrete solid - state physicS 
with almost-periodic and random potentials (for an overview see the 

articles by Kirsch and Simon (4, I0)) in addition, it shows up as the limiting 

measure In the Chebyshev quadrature (Simon (241) and plays an Important 

role in the asymptotic distribution of the elgenvalues of (modified) ToepiltZ 

matrices (Neval (I S), Mate, Neval and Tot lk (121, van Assche (281. In many 
Cases the density-of-states measure Is the equilibrium measure associated 
with the spectrum of J (Geronimus 18)), and as such figures importantly in 
the approximation of analytic functions by polynomials (Walsh 1311). 

Most earlier work on the density of states has dealt with bounded 
tridlagonal matrices, and much of it has been restricted to the case of 
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constant off-diagonal elements In this article we discuss the density of 

states for unbounded banded matrices, with any band site and with possibly 
variable off - diagonal elements. There are several justifications for this . 

The tridlagonal matrices arising in the theory of orthogonal polynomials 
usually have unbounded off-diagonal elements, so in this context the need 
for their analysis Is obvious The tendency to work principally with bounded 
trldlagonal matrices with constant off -diagonal entries has been strongest 
in mathematical physics, because such matrices arise when one-
dimensional SChrOdinger equations are made discrete by replacing 
derivatives with finite differences The finite-difference method is not, 
however, necessarily the best way to do this, even in one dimension if 
other dlscret izations as used, such as finite-element methods or the 
method of Case and Kac 121, then more general types of banded matrices will 

arise, and higher-dimensional discretizat ions are even more likely to yield 
banded or sparse matrices of other types Potential energies that are 
unbounded above and below also commonly arise In physical models, and 
deserve analysis 

After discussing the equivalence of two possible definitions of the density 
of states, we consider the question of when two matrices may nave the 
same density of states we then consider density of states measures 
associated with resealed unbounded matrices. When J is tridlagonal, these 
measures are associated with the so-called contracted spectrum (ErWs 171, 
Nevai and Dehesa 1171, Ullman 1261) Finally, we give several exampleS, e.g., 
Of unbounded matrices with the same density of states as bounded matrices. 

Let J be an infinite real Hermitian banded matrix, 

3  

JP( • (e1, J ek), 

for an orthonormal basis (ell Of a Hilbert space IC which we will regard as 

either 1 2(Z) or 1 2(2'), corresponding to whether .1 is infinite In both 

directions or only one. We observe that if 

ei • ei. 1, 

thenJ can be written as 

J ■ El* F (Tk Ak• AkT*k), 
k• I 

where B and A44  are real diagonal matrices. There are two plausible ways to 

define the density of states for J by truncation: First, let x(L) denote the 
projection onto the span of lei), Iii  I L, and set L• • dIrn Ran (I (L)) • L or 

21'1, depending on IC. For any infinite matrix W we def ine the lax 1• 
matrix 

z(L) w 1(1), 

which we refer to as the 1 - truncate of W. Any truncate of J has only 
discrete elgenvalues, and for one definition we count them as L ••: 

Definition 1. J has a DIMITY -OF -STATES MEASURE If f the limit 

A(f) ■ Urn (1/1•)tr(f(J( 13 )) 
	

(1.2) 

exists for all f e C01.), the set of bounded, continuous functions. 

Remarks: I. We always define functions of matrices or operators with the 
spectral theorem, using any self -adjoint extension of J. That the result is 
independent of the choice of extension will follow from the results in the 
next section. 
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(1.3) dk(E) • 	
dE 

;717i 

2. Phrased differently, A(f) • J f(i)dk(1), where dk is the we limit of 

(L-riEts(i—x00), where IOU are the elgenvalues of ..$0. We shall refer 
k 

to dk as the DENSITY -OF-STATES MEASURE. 

3. In the case g ■ I2(Z), we could in principle truncate J at J-L and 

J-M, and let L. -. ••• and M -. -••• at different rates. There Is no advantage In 

using this more general definition for our present purposes. 

4. For Js(n,m) • (timA41 • SmA-1)/2, i.e., Je • T/2•PI/2, which can be 

regarded as the FREE li■MILTOIRAN, the eigenvalues are well known. If J. acts 
on 1 2(r), they are: 

Ilk • COML. ,  1-k)n/(1.•1)), 

and the density-of-states measure is supported In 1- 1,11, according to the 
arcsin law, 

The alternative definition truncates functions of J rather than taking 

functions of a truncate of J: 

Definition 2: J has a density -of -States measure iff the limit 

Alf). Ilm (1/1. 8 ) Mel) f(J)) 	 (1 4) 

exists for all f e Ca(R). 

These two definitions are known to be equivalent In the bounded case (Simon 
1221, van Asscne1261). We show that they are equivalent in the unbounded 

Case In the following section 

II. Perturbations that Leave the Density of States invariant. 

Let J be a 2M• I -banded matrix as In (1.1). We first show, In analogy with 

the argument of Simon 1221, section C7), that 

Theorem 11.1. Definitions I and 2 are equivalent . 

Proof. We f irst consider the case when f(x) 1/(z-x), z not In sp(J). Let 

GI fo(i) - 1(0( zi - J)- 1  1 (L) 
(2.1) 

62(0(z) • zoo _ j(L) 

The density of states is the same If Jo is interpreted to act on 1 2(1) . 

We note that both 61(13 and 62(L) are Lir x Le matrices. Both of them 

satisfy the same inhomogeneous difference equation with different 
boundary conditions, viz , 

6j(L)(1,k,z) - z 6i(i)(n,k,2) he, 1k1,1n1 t 1-fi, 

Mlnaml (141 has shown, generalizing earlier work, that the density-of - 
states measure exists when the entries in a tridiagonal matrix are random 
variables generated In certain ways using ergoalc transformations. 

5  

12.2) 

Therefore the difference 0(n,k;z) • GI(L)(n,k;Z) -  62(0 (n.k.z) satisfies the 

related homogeneous difference equation Inn with k fixed, and Is thus 

6 



expressible as a linear combination of any 2M linearly inaependenz 

homogeneous solutions fj(k,z) for Ikl,ini t l -M Because of the symmetry in 
the 6j, a similar fact applies in k with n fixed, so • is of the form 

zii an 
•th,k,z) - F F cot fj(n,z) filk,z) 

k 

for 1k1,1n1 t t. -M. It 	thus a matrix whose rank is finite independently of t., 

in fact at most 412. Since 

116j(Up t  I/IIM 21, j • I, 2, 

by the triangle inequality, 

u61(1.) - G2( 0111 2/1Im zi, 

so 

(ill- i Kr 	- tr 62(0 1 s Oman• lira zI 	0 as 
(2.3) 

Suppose we begin with Definition I by tne Stone - weierstral) theorem, the 
polynomials in (x#1) -1  and (x - 1)-1  are dense in Co(R), the continuous 
functions vanishing at infinity. Equation (2.3) then implies Equation (I 4) 

for I e CA) Since by Def inition 1 the limiting measure is a probability 

measure (set f• I ), and we know the definitions are equivalent for f e C.(11.), 

the limit of the sequence of measures given by Def inition 2 Is a probability 
measure, and trius Equation (1.4) Is true for all f E Ca(R) by a standard 
argument (see Billingsley 111, Page 41, Problem 7) 

The argument deducing Definition I from Definition 2 is analogous 
0 

Remark The proof also shows that the density - of - states measure is 
independent of the choice of seif -aajoint extension, since different choices 
amount to making finite-rank perturbations of the resolvents G 

Let J • Jo • V be Infinite matrices with banded, and denote the 

associated Green (resolvent) matrices 

G.(z) • (J. - 2) -1 	and G(z)•(J - 2)-1 , z c C. 

We assume that for z ranging over some nonempty open set and A,B > 0, 

I Go(t.n.m)I k mini I, In-m1 -1) 	 (2.4) 

for all n,m, with p >2. This Is a very weak assumption, the usual situation 

being an  exponential bound of the form 

Go(Z;n,m)1 	kI exIX-k2In-In1 	 (2.5) 

We observe that a bound of the form (2.5) holds whenever the off-diagonal 

elements of Jo are bounded, by a modification of an argument due to Combos 

and Thomas 13L A similar bound is dealt with by Demko et al. 15,81 for 

bounded banded matrices, using a different argument. 

We recall a fundamental concept of perturbation theory (see Kato 191 or Reed 

and Simon 1201): 

Definition An operator A is bounded relative to B with bound b 

provided that the domain or definition D(A) D 0(8), and there are finite 

constants b' and c, with c depending on and b • inf such that for all f c 

D(B), 

1lArll 	118111 • cl1r11. 



In particular, a bounded operator Is bounded relative to any other operator 

with bound 0 . 

This says that VJk goes to zero on average, but might be arbitrarily large 

for any given 

Example. V diagonal. V22m22m • P. Vkk .• 0, otherwise. Although V goes 

Proposition 11.2 A bound or the form (25) holds for z e sp(J,), and any Jo 
	 to() on average, it Is actually unbounded. 

such that each operator AkTk and TkAk Is bounded relative to Ja . 	 Lemma 11.3 Suppose that V satisfies the basic assumption (2.7) and 

Proof. Let Ec be the operator that multiplies the n-th component of any 
	 mini 1,11- .11 - 0), ) 2, all 

vector v by exp(icn), and observe, with a short calculation, that 
	

Then lim (I /L') I 
	

I rimVmn • 0. 
m n 

Ec*JoEc = J. • E(cos(ck) - I) (TkAk • A.kT *k) • Isin(ckXTkAk - AkT *k), 
k 	k 	 (2.6) 

which Is an analytic family of operators (type A) In the parameter c (see 

Kato (91 or Reed and Simon (201) for Icl sufficiently small, because of the 

relative boundedness. For c real, E c  Is a unitary operator, and the analytic 

family of operators has the same spectrum as Jo If z e sp(J.), It then 

follows that EeiGo(z)Ec (Ec sJoEc -z1• 1  is bounded for ICI  sufficiently 

small, even if c Is complex. Hence, for some k2)0, exp(- 

kr)Go(z,n,m)exp(k2m) Is a bounded operator on H, and similarly for 

exp(k2n)Go(z,n,m)exp(-1(2m) (take c • t ik2). Since the operator norm Is an 

upper bound on any entry of a matrix, (2.5) follows. 
0 

Example. For the tricliaganal matrix J. = T/2 • T'/2 on 1 2 (Z), 

Go(z, n,m) - - (z 2 - I ) 1 / 2  exp(- arccosh(z) I  n-ml ) 

The Basic Assumption. We assume henceforth that 

Proof. Let S • I (I/Lx) I 	I 	rj rn Ymn  I 

Mg. m,n 

(N• I X_ 

( I/L 0 ) I 	I 	I 
	

I I rjroVroo 

I11 (1- 	N'O I rril 
	

n 

2L 
(k/L*) I 	I I Vrool(1• E I 

1mi -0  

(N•1)1 

• (k/Ls) I I 	 1 Vmn 111 -ml -1)  

	

1.111- N-2 Iml-NL 	n 

2L 
(k/L") E 	E I Vnin 11 I • E I WO) 

Im1-0 n 	S•0 

(N•1 )L 
• (k/Li) III 	E IVmn  1(1m1-1.1-P 

MI. N•2 Iml-NL n 

limi__..(1/1. 2 )Z 	I 1Vjki -0. 	 (2.7) 

IJI<L k 	 The first term tends to 0 as L... by the baslc assumption (2.7), while the 
Second Is bounded by a constant times 

I0 



(N• I )4_ 
((N- I )L -PI I v rool 

N•2 m-O 

(N•1)). 
(1. 8 ) 1-P E (N-1) -P(N•11 I (IAN* la. I E 	E I vmnII 

N•2 	 m•O n 

Since the sum in the curly brackets tends to 0 as N-••• by the basic 
assumption (2 7), and I (N- I ) - P(N• I) ( as, this expression Is bounded Dy a 
finite number times (L ) 1 - 1) . 

Theorem 11.4 Let Jo be an N-banded matrix with a we II-ael fined density of 
states, and suppose that (2 4) and (2 7) hold Then J has the same density or 
states as J0 

Proof As shown above, the functions I /(a -z) are a determining set for the 
density-of -states measure, so it suffices to analyze the resolvents of Jo 
and J, I e , to show that 

(kit' I im z 1 ) E 	E mln(1,1J-ml - P)1Vmn1 

1114- om 

by Lemma 11.3. 

We have thus shown that the basic assumption guarantees the invariance of 
the density-Of-states measure dk under perturbation, for reasonable 
Recall that a classic theorem of Weyl states that the essential spectrum, 
which includes the support of dk, is Invariant under compact perturbations. 
Banded compact matrices are precisely the matrices that tend to 0 at 
Infinity. Here we get invariance for perturbations assumed to tend to 0 only 
on average. 

limi (1/L 6 )1 160(z,j,j) - 6(z,j,j)I -0 

From the resolvent formula, 

(1/1. 8 ) I IG0(z.1.1)-6(z.1.P1 	(Ms) I 
	

1 00( z, j,m )vmnGt z,n,1)1 
I11 4. 	 111 (i 	mn 
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The Contracted Density-of-States Measure. 

In this section we shall generalize the definitions given In the Introduction 
so as to extend the notion of tne density of states to operators having 
unbounded essential spectra. The idea here Is to renorrnalize the truncates 

of J so as to make them essentially bounded. This method has had many 

applications recently In the theory of orthogonal polynomials (Neva) 1161. 
Lubinsky, flhaskar, and 5aff 1121, van Assche (28,291). 

Definition 3. Let cL be a sequence of positive numbers We say that J has 
a COirtlicTED otprort -of-sTATEI HUNAN associated with the sequence (cL) iff 
there exists a sequence or positive numbers (CO such that 

A( r )  • urn L-4.• (1 ,1 )-  tr(f(JL/cL)) 

exists for all f E Cb(II.). 

The notation used here 15 that of the Introduction. The alternative to 
Definition 3 is: 

Definition 4 J has a contracted density-of-states measure associated 
with the sequence IcL1 Iff 

Alf) • IlmLo• (L*)- I tr(i(L) f(J/cL)) 

exists for all fE WA). 

Proposition 111. 1 Definitions 3 and 4 are equivalent. 

Proof. The proof is exactly the same as for Theorem 11.1. 	❑ 

Remark. When all the CL are equal to I, this reduces to the case considered 
In sections 1 and 11. 

Examples . Suppose J is a Jacobi matrix acting on 12(24  1, te., (1 I) with 

M- I, Al - A - (ail, with each aj ) 0 and B • lb') real. Furthermore, suppose 

that 
urn aa2/2e • a) 0 and 	Ilrn b„/14 - b, 
11-44 	 11-104, 

where (110 Is a regularly varying sequence with exponent a (I.e , 	rPl(n), 

where L(n) Is a slowly-varying function (Senate 1211) in this case the 
contracted density of states measure Is called an Uliman-Neval measure . 

With assumptions on the weight, including symmetry, It has been found by 
tilaskar and Saff 1131, Rachmanov 1191, and Ullman 1261. Starting from the 

recurrence coefficients (the matrix J) its moments have been found by Neval 
and Dehesa 1171 and they are given explicitly by van Assche 128,301 The 
explicit form of the contracted density-of-states measure is: 

(t)•2a)t 

k(E) ■ —
n 

f d(t 	Jdx q(x) 

0 	(b-ia)t 

t I Is 

(2at12  - (14-Dt)2 ' 

where k is the characteristic function of the Borel set E C lb-2a,b•2a1 For 
Hermite polynomials, b-0, a-1, and a-I/2 Therefore, 

21 

k(E) - —
n 

d(t 2) 1"dx 4(x) 4=  

	

0 	- t 

2 

	

• I 	d(t 2 ) 	dx k(xt) 

	

0 	-2 

Here we have taken the weight function for the Hermite polynomials as 

exp( -x2) For Laguerre polynomials, WI, a-1, and 01-1, and consequently, 

13 
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ME) - or —
n 

 at 

4t 

ofdx le(x) ,77),..2t)2  

Remark. If J Is banded, then it is sufficient to insist, In place of the basic 
assumption (2.7) that 

lim (L 0 )-1 	I 	I 'Vaal • 0, 
I-••• 	ImRL 	II (L 

Theorem Let J, be a 2M• I -banded matrix with a well-defined density - of - 
states measure associated with tne sequence WO Suppose thatIJ. (1) /41 
Is a uniformly bounded sequence of operators and that J • J.* V is a banded 
matrix if 

cir I 10,143.01141Vaal • 0, 

then J nas the same contracted density - of-states measure as Jo 

Proof 

Again it suffices to snow that 

11(n/-••(L)-1 	16,(L)(z, 	- G(L)(z, MA • 0, 

where 6,(t) eml G(t) are the Green matrices associated witn41(t)/ci. and 
J(L)/ct Since Je(t)/cL is a uniformly bounded sequence of operators, 
loo(L)(i, 	exp( -k2)m-n1) for some ki,2 ) 0 by Proposition 112 The 
constants In this estimate are easily seen to be independent of I for Izl 
sufficiently large 

From the resolvent formula, 

(L•r iii •  16,(0(i, Li) - GCL)(z. id)I 

	

- (L 9 ) -1  411•1.ini4 	j,m)(v Iaa /c06( 1)(z, n,p1 

const. (L• - I 	 Ivah/cLI loid.168" ) (z.1.n1 )1 

const (1.•) -1  11.1.0,14 	 0  

whereas If J is not banded, the equivalence of Definitions I and 2 IS 
certainly guaranteed by the stronger assumption (2.7) If one is content with 
Definition 1 for the density of states and does not insist upon the 
equivalence of the two definitions, then (3.1) Is sufficient to ensure that J 
and J. have the same density of states. In this case the proof above shows 
that only absolute summability of the columns of 6 is required 

15 
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IV. Some Instructive Examples. 	
Example IV. I. A bounded operator with a nonconvergent density of states. 

We begin with some curious examples that dO not make use of our main 
results, and then exemplify our results with further examples. 	We 
frequently rely on the property of recurrence: 

Definition. An infinite matrix W is said to be recurrent if for all L,M e r 

and all b ) 0, there exists N > M such that 

II(T*NW TN - W)(01. < 6, 

where IIWIIND is by definition maxsousi <LIWool. 

This means that given any block of W and any >0, It is possible to translate 

it arbitrarily far down the diagonal and find another block that matches the 

original to within A. 

Lemma IV.O. If J, a self-adjoint operator on I 2(Z) (I.e., n, m run from -•• to 

•••), is banded, recurrent, and essentially self -adjolnt on the set C, of 

sequences with finitely many nonzero elements, then sp(J) is a perfect set 

(there are no Isolated eigenvalues). 

This Is a familiar property of bounded ergodic Jacobi matrices on I 2(Z) 

14,10,221, which are recurrent. To sketch the essentially Known proof for 

the minor extension to recurrent operators, we reason as follows: If A e 

sp(J), then there are vectors v E C, I, such that 11(J-1)vil is arbitrarily 

small. Since J Is recurrent, some sequence of disjoint translates of such Vs 

constitutes a Weyl sequence (i.e., a sequence of approximate eigenvectors, 

Cf. Weldmann1321, p. 203), showing that 1 belongs to the essential spectrum 

of J. Essential spectra consist of infinitely degenerate eigenvalues 

together with accumulation points of the spectrum, but since J Is banded, 

sp(J) contains no infinitely degenerate eigenvalues. 

17  

We let Jo -1/2 • Ts/2 act on 12(•), and let V be diagonal, with 

Voo  • 	I, 

(-1)04, N sloglogn<N•1, NeZ 

Now consider J • Jo • V. (The sequence (V(n) ■ V,,,)7 consists of blocks of 

rapidly increasing length each of which contains only •1 or - I 1 The 

operator J does not have a uniquely defined density of states 

Proof. We will let I run through the integer values L(N) such that log 

log(L(N)) Is the greatest possible value less than than N• I. Recall that the 

ordered eigenvalues of Jo(t) are pi(L) • cos[ 	)1I), and observe that If 

ii(t) are the corresponding eigenvalues of J, then by the min-max principle, 

Li i (L) - I < 4(0 	I. If k(L)(1) denotes tne number of elgenvalues of J 

that are i 1 and ko(L)(1) IS the corresponding number for 	then 

) < k(L)(1) < 4(1)(1 • 1) for  all A. 

If N is odd, then we claim that 

L(N) 
0 < LE(N(Aj(L(10)-(u)(1.(N))- I )) - E(V(j)• I) < 2L(N- I) 	(4.11 

J -  I 	 I" 

On the other hand, if N Is even, then we claim that 
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UN) 	 LIN) 

0 < Diii(1.00). I )-Ai(L(N))) • 	I -V(1)) < 21(4- 1) 	(4 2) 	 V(1010n•k) ■ V(k-n) for Iiki 10 10n  • n; 

1 - I 	 1•I 	
V(M)•(-1). (Or 2x10 10n*b(M 10 10' 1 . 

If these claims are granted, then, by dividing by L(N), passing to the limit 

and noting that 2L(N-1)/L(N) -.0, we see that both 4 03(a,1) and 

ae(1)(A•11 are limit points of k(L)(A) as L 

To prove (4.1) and (4.2), we use the linearity of the trace to see that 

Z(V(p• I) • tr(V( 0•1(0) • trum) - tr(-14- 1) 
1- I 

The proof differs from the previous one only In minor ways and will not be 
repeated. The two distinct limit points are the density-of-states measures 
for Vii(n) • 0 for n t 0, Va(n) • e I for n 0. 

Example IV.3. A bounded operator with a density of states, the support of 
which is a proper subset of the essential spectrum. 

L 	I 	 Let R be the set of positive Integers of the form 
• iAi(L) - D igi (L)-11) , 	 N 

1 - I 	1•I 	 Da 10 10m, ' witrice•Oor I. 
m-0 

and Similarly for Di-v( J )) 

0 

Ullman and Wyneken 1271 discuss an analogous situation, beginning with 

If J Is ergodic, then it has a density of states (Minamil 14)), but the same Is 
not necessarily true of recurrent operators 

Example I V.2. A bounded, recurrent operator with a nonconvergent density 
of states . 

As in Example IV I, J - J. • V with V diagonal We construct V(n) ■ Via 
 recursively as follows. 

Let 

V(n) • 0 for -•<nt 10, 

while for n - 0, 1„ 

Let J be an operator on 1 2(Z) of the form TA* AT*, with A diagonal, and 

1/2, n R 
A(n) • 

2, 	n E R. 

This operator has the density of states (1.3) (same whether we use Z or Z.), 
supported In (-1,11 by Theorem 11.4. Since J is easily seen to be recurrent, 
Lemma IV.0 Implies that the spectrum Is purely essential. Since the norm 
of J Is larger than 2, this essential spectrum includes values outside I-1,11. 

Remark. We conjecture that the thin part of the spectrum outside 1-1,11 is 
a Cantor set, and that other examples could be constructed with spectrum 
(-2,21, say, but with the density of states supported In I-1,11 We do not 
know the nature of the spectrum, e.g . , whether there Is a dense set of 
eigenvalues outside 1 - 1,1), or even whether the subset (-1,11 is absolutely 
continuous. Indeed, a theorem of Rakhmaiov 1181 casts doubt on the absolute 
continuity In this example, and also In Example I V.7, below. 



Example IV.4. Another bounded operator with a density of states, the 
support of which is a proper subset, viz. the interval I - 1,• 11, of the 
essential spectrum, which Is certainly the interval I- I ,•21. 

According to Theorem 11.4, If we take J ■ J. • V on la(V), with any V 
satisfying the basic assumption (2.7), dk will be the same as that of J.. We 
take 

V(n) - 0, unless 10k i n < 10k • k, 

V(n) • I, when 10k n c 10k • k. 

Since 	J, • I, In the sense of quadratic forms, It is clear that the 
spectrum of J Iles In the Interval 1 - 1,21. To show that all such values belong 
to the essential spectrum of J, recall that A belongs to the spectrum of J. 
iff for the value x there Is a Weyl sequence, which can be assumed to 

consist of vectors of finite support. Since J. is translation-Invariant, we 
may assume that the support of the vectors vi In the Weyl sequence begin 
wherever we want. By choosing their support away from the Intervals 10k I 
n < 10k • k, we see that II1J 111 vill -• 0, so every I e 1-1,• 11 belongs to 

sp(J) On the other hand, since the Intervals 10k s n < 10k • k are arbitrarily 
long, we may choose vi to be supported in such intervals, and we find that 

IIIJ - (A•I )IIvjlI • 1114 - All yin -• 0, 

so every point of 10,21 also belongs to sp(J) . 

Example IV.5 An unbounded operator with a density of states, which Is 
equal to the distribution (1.3) of J. ■ T/2•Tm/2. 

According to Theorem 11.4, we may take J • J. • V on 1 2(V), with any V 
Satisfying the basic assumption, e.g., 

V(n) • 0, unless n • 4k, 

V(4k) • 3k 

We observe that the moments of the density of states measure fall to 

converge In this example, I.e., If 

p (L ) - ILI. ? TrI(J(L))11 ) 

then as L -• ••, 

p(130 -• I 

0(01 0 

11 (13 m -4 	for rn 

Example IV.6. An unbounded operator with a density of states, which Is 
equal to the distribution (1.3) of J. - T/2 • T"/2, and for which the 
truncated moments converge to the moments of the density of states 

measure. 

J • TA • A T* on 1 2(r), 

where A Is diagonal with 

• 1/2, 	m • 2k, 
Am 

▪ k/2, 	m - 2k 

We calculate the moments: 

L-1 	L- I 
Tr ((J( 13) 1i) • I 	... I 	J(L)10 2j(L)12 1 3....)(010 1  

11.0 	lk-0 

- SI • 52, 	 (4.3) 

where Si contains only terms for which as • 1/2 and 52 contains all the 

other terms. Let t'(11) be the number of k-tuples such that 

a) 	11j - ii+11 - I, 	1„k-1, 
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ti ) 	1 1 1 - Ill 	I 	 (4 4) 

c) 	0 	L - 1, 	j • i„k-i 

L- I 
Then there are precisely INk(I) terms In the sum (43) if a k - tuple 

1-0 

satisfying (44) has first component 11, then can at most be 11 •k/2 and 
will never be smaller than 11-k/2 Therefore, a k-tuple for which 

111-211)k/2 for every 21in-I In the Sum (4 3) will only contain entries 
am-1 /2 This means that there are at most 

L -  I 
NW) L (max 	k loga(L) 

1.0 
11 - 211(k/2 

terms In 52 clearly, No) i 2e, and each term in 52 is bounded by 
(log 2(L)16/211 . Therefore 

1521 i k Ilog 2  (L)Ik• I, 

so 52/L 0 for every k as L •• 

In order to calculate 51, we notice that It is the same as the corresponding 

Sum for 	Since the Sum corresponding to S2 for IS 0(L) by the Same 
argument as for 52, the limit of 	converges to the corresponding 
moment for J., I e 

n J77-72 
dx 

Example IV.7 A bounded operator J with the same density of states (1. 3) 
MA • T/2 • r■/2, and also having the same spectrum I-1,11, but for which 

which the perturbation J-J, Is not compact. Take J as In Example I V.3, but 
with 

1/2, n e R 
MO- 

1/3, 	n e R. 

It Is straightforward to calculate (with Weyl sequences) that sp(J) contains 
so(4). but ILA • I, so sp(J) ■ I-1,1 L Theorem 11.4 shows that the density of 
states Is the same as for 4. 

Example I V.8. The contracted density of states. Let 

(..1, Xn) 'Nir 	yin• I) • (2n• I ),(n) • 4; v(n- I ), n • I, 

This Is the Jacobi matrix associated with the normalized Laguerre 
polynomials whose leading coefficients have been made positive (SzegO 
1251). Let J • A* V, V diagonal with V(4a) ■ bland v(m) • 0 for m • 42. Then 
J has the same contracted density-of-states measure associated with 	L 
as 	(See Section 111.). 

0 
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A SchrOdinger operator is an elliptic differential operator, usually 
self-adjoint, of the form 

H • -62a • V(x) 	 (I) 

acting on a Hilbert space It which I will suppose of the form LI(D), 
QC an, thereby ignoring complications arising from various sources, 
principally spin and the possibility of many particles. The mass has 
been, scaled to h, and Planck's constant is denoted r. It can likewise 
be scaled to I, and I shall do so here except where explicitly noted 
otherwise; but in physics it is a small quantity, about l.054 x 1047 

 erg-sec., so one is frequently interested in the behavior of the 
spectral properties of H as 6.4 0, known as the semiclassical limit. 

Most of the important problems of mathematical quantum 
mechanics revolve about the spectral and inverse spectral problem 
for (1). To get a good mathematical account of the spectral theory of 
SchrOdinger operators, I would recommend looking at the books by 
Thirring (1979], Reed and Simon, especially vol. IV (19713), and Cycon, 
Froese, Kirsch, and Simon I19871. This article will be concerned only 
with discrete eigenvalues of H. The spectrum of H consists only of 
discrete eigenvalues when 0 is bounded or when the potential V(x) 
tends to c• as x-••, but even when V(x) -I 0 as x-, 00, the negative 
part of the spectrum will be discrete (given some fairly general 
assumptions on V), and the bounds to be discussed will apply in that 
situation as well. 

Nature has unfortunately chosen to reveal to physicists what only 
very few of the potentials V that arise look like, leaving physicists 
with the task of determining V from the data available to them -
essentially the inverse spectral problem. The long and interesting 
history of this problem will not be repeated here. Suffice it to say 
that in one dimension, if the spectrum is completely known, along 
with either norming constants or some other information (such as a 



second spectrum with different boundary conditions), then there are 

well-established algorithms for determining the potential (Levitan 
[1984), Marchenko [19861 and Pbschel-Trubowitz [1981), while the 
many-dimensional situation is more complicated, and less completely 

understood (Chadan and Sabatier (1977)). 

In more than one dimension, there are two inverse problems for 

SchrOdinger operators, viz, to suppose that 0 is known and to 
determine V(x), or to attempt to deduce both V and 0. Actually, so 
long as we impose only Dirichlet boundary conditions, the latter 
problem is basically a special case of the former, since ext(0) can at 
least formally be considered as the set (x: V(x) • •co) for a problem 
defined on a domain 0' •Iin (or any domain guaranteed to contain 

the original 0). Thus I shall set aside altogether the problem of 

determining Et and will always assume it as given. 

Even in a situation that can be reduced to one dimension, allowing 

a resolution of the inverse spectral problem by, say, the Gel'fand-

Levitan or Marchenko algorithms, the requirement that one needs to 
know the spectrum completely is more than can reasonably be 

expected. Thus a problem of considerable practical significance is that 
of determining what properties of V are reflected in limited spectral 
information about H. This problem also turns out to be rather nice 
theoretically. 

Suppose that some general relationship, analogous to the Payne-
POlya-Weinberger inequality, is found to hold for -all" potentials V(x). 
Then, at the very least, we learn something useful about the feasible 
set of possible spectra for which the inverse problem is well-posed. I 
would like to argue that what such relationships teach us is more 
quantitative, since, in the Schrddinger context at least, general 
spectral bounds are generally not truly general. 

For instance, recall that the Payne-Polya-Weinberger inequality 
states that, for the Dirichlet problem of - A on a bounded domain 0, 

4 
Ekq - Ek I (a) /Ej, 

independently of the geometry of 0. Now, a glance at the proof of 
this inequality shows that -6 can be replaced with no essential 
change by -a•V(x), provided that V(x) 2 0 a.e., and is sufficiently 

well-behaved that H can be defined as a self-adjoint operator (e.g., 
V e L1(0)). Thus (2) can be replaced by 

4 

	

Ektt Ek I (-n-i) /Ej - 	ess Inf(V). 

In other words, the Payne-Polya -Weinberger inequality results from 

the constraint V(x) k 0 a.e., and can therefore be interpreted as a 

family of pointwise bounds on V(x), given the values of the first Iv! 
eigenvalues: 

1 
ess ire') s (-

k
) IEj- (—

n
) (Elm - Ek) . 

	

4 	
(3) 

An abstract form of this inequality is proved in the appendix. 

Many sorts of general bounds have been studied in the context of 
the Schrodinger equation, notably bounds on individual eigenvalues, 
spectral asymptotics, and bounds on ratios and gaps of eigenvalues, 

especially the fundamental gap, Ek - E1. I shall concentrate on the 

last of these problems. There are two questions about gaps: How 
small can they be, and how large can they be? Both are quite 
interesting. In their talks at this conference M.S. Ashbaugh and 
M.H. Protter have surveyed some of the upper bounds for gaps 
between eigenvalues, and have also spoken about the problem of 
lower bounds for the fundamental gap, but only with some sort of 
convexity imposed on Q or V(x). This article will discuss lower 

(2) 



4 

bounds to the gap without such assumptions, and will relate them to 
the tunneling effect of quantum physics. 

In surveying the literature on general bounds for the fundamental 
gap between eigenvalues, I found that almost all of the techniques 

can be put into only three categories. 

1. One-dimensional estimates 

2. Projection coupled with the Rayleigh-Ritz inequality. 

3. Special cases or variants of the basic gap formula: 

(uk,(H u  
Ek EI • (uk.guo 

In this formula, Eio are eigenvalues of a self -adjoint operator H, and 
um are the corresponding eigenfunctions. The brackets denote the 
commutator, (H,g)• Hg - gH, and g can be any operator such that the 
denominator does not vanish and g ui E D(H) (actually, even this 

condition can be relaxed) The proof of (4) is an elementary 
calculation: 

(uk, 1H,g1 	• (H uk, g ui) - (uk, g Hui) 
• Ek (uk, g 	- El (uk, g ui) 

Note that if H is a SchrOdinger operator and g is a differentiable 
function, then [K& •-2Vg•VO, and (4) becomes. 

-2jukVg-Vuldx 2 juiVg•Vukdx 

Ek - 
(uk,gui) 	• 	(uk,gui)  

pg.(uriuk-ukVui)dx 

• (uk,g ull  

by symmetrization. 

The special choices that have been found useful are 

1. g(x) - xi for some coordinate vector xi. This, with the aid of 

some other clever manipulations, leads to the Payne-Polyar 
Weinberger inequality. 

2. g(x) • x up. This leads to the improvement of the Payne-
POlya-Weinberger inequality by de Vries 11967). 

3. The limiting case as g tends tolia, for a regular region S 
corresponds to the expression for the gap obtained from Green's 
formula: 

V um. V uig,)da 

Ek - El • 	

jukuldx 

(4) 

(5) 

(6) 



Proposition 2. As h... 0, 

- 	• 
jlvelultdx 

(10) 
jug2dx 

 

Eg - E3 	const exp(-const. /h 2 ), 
whereas 
	

(8) 
Es - Eg const 

which is much larger. 

To outline the proof of this proposition, note first that the one-
dimensional version of (6) with S • (OA states 

The ratio ug/ul appears in the work of Ashbaugh and Benguria 
[1987b1 and Singer, Wong, Yau, and Yau [1985) on lower bounds for 
the gap. It is also the key to a recent lower bound due to Kirsch 
and Simon (1987], which makes no convex assumptions, and which is 
roughly of the form expected from the tunneling effect, although 

with nonoptimal constants. Kirsch and Simon estimate (l0) from 
below by applying the Cauchy-Schwarz-Buniakovskii inequality to 

6 	 7 

Equation (6) has been very useful in the study of what is known as 
the double-well problem (cf. Harrell 119801). There is a well-known 
physical mechanism that can make Eg - Ei very small (in 
comparison with other quantities with the same dimensions), 
namely the tunneling effect. If a particle would be classically 

confined by a potential energy V(x), in quantum mechanics it has a 
small probability of escaping through a potential barrier. This 
produces weak coupling effects between the dynamics in regions 

separated by intervals where V(x) is large, and this can show up as 
a small gap between eigenvalues, especially if.V is symmetric about 
a central plane, taking on relatively large values on that plane, and 
lower values elsewhere. 

A toy example of a double-well operator is. 

-ald2/diti • V(x) 

acting on L2(-1,•1), with Dirichlet boundary conditions at tI and 

E4 	
u 	

(9) 

ugx)u2(x)di 
0 

Observe that ul og are explicitly given in terms of kg as hyperbolic 
cosine or sine functions for -a < x < a, and ordinary sine functions for 
-1 s x s -a and asxs I. If t, is small it is fairly easy to find that 

kg (l-a)2h2n2 , and (8) is an easy calculation from (9). 

Essentially any other potential that qualitatively resembles this V(x) 
will produce eigenvalues behaving in this way in the semiclassical 

limit, and analogous things happen in the multidimensional setting 
(Harrell [19801 Helffer and Sjostrand [19841; for the physics connected 
with this see Landau and Lifshitz (19771). 

The final special choice of g(x) that has been found very useful is 

4. g ug/ut. In this case (6) becomes 
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Since one of the terms on the right is the denominator of (10), with 
•ug/ui, they obtain 

( ?el:(iife  u1)4  

Awl jut2 

Then they choose C to be a ball enclosing the set (x: V(x) < E1e 2) for 
some small c and estimate the factors on the right separately. The 
key estimate is the pointwise estimate on ui needed for the 
infimum, the tendency for solutions of elliptic equations to grow or 
decay exponentially is the source of the exponential term 
characteristic of tunneling They obtain: 

Eg - EI a C(R) exp(-2 7/ n AR), 	 (II) 

where n is the dimension, R is the radius of C, C(R) is a polynomial 
expression in R, and A • sup=  sums (V(x)-EPA, S • (El, Eg]. 

Ideally, the exponent in (11) would be kr, where r(R would be the 
radius of a barrier region contained in C. By the way, using 
different, strictly one-dimensional methods (a Priller substitution), 
Kirsch and Simon [1985] had earlier obtained a lower bound of 
tunneling type with more nearly the optimal exponent. 
Are there other physical mechanisms producing small gaps? The 
work of Kirsch and Simon shows that if they exist, they cannot 
produce dramatically smaller gaps than tunneling. A theorem of 
Davies 11984 provides further evidence that only the double-well 
phenomenon can produce extremely small gaps, by showing that the 
existence of a small gap implies a decoupling of 0 into two parts and 
a generalized symmetry transformation relating the eigenfunctions. 
In the abstract setting the operator H can be any generator of a 
positivity-improving semigroup, e.g., if exp(-tH) is an integral 
operator with a positive kernel, which is the case for SchrOdinger 
operators where the potentials V(x) have some very general 
properties (see Reed and Simon [19781 Davies (19801 and Simon 
[1982]). 

Theorem 3 (Davies): Let H generate a positivity preserving 
semigroup on Lkfl, dv), with eigenvalues E1,2 nondegenerate, 
H sit - Elul and H us • Egug with 	- 1. Let d 	- El and 
suppose that o(H)-(Ei,Eg) c [Eg•D,c0), with D/6a R > 3. Then there 
exists a two-valued function called t (for 'two"), t(x) • ci la • cg Zac 
for some set S, such that 

ug(x) • t(x)ui(x) • r(x), 
where 

'C(R) S/D, 

and lung.. C(R) • 31/2 . 

Davies has extensions of the theorem to the situation where Eg has 
degeneracy or approximate degeneracy m. A proof of this theorem 
is given below, but first it is convenient to make an elementary 

I (A1Vg1 2) 	(i1Vglui•-tfi)2 

for a subset C of R. 

j ivgetui2 jui4 - jlv12  ui2  

s ivg1 ul= jui2 /(inf 

Eg-E1a 



transformation to simplify bookkeeping Change the operator and 
Hilbert space L2(0, dv) unitarily so that 

L2(0, dv) • 

I E LI((1, dv) • 

H I -• 

L2(0, do), 
with du • u1 2(x)dv, a probability measure, 

(+I) e 
	chi), 

A (113-1)• 1-  01 - 

This has the effect of making the principal eigenfunction I with 
eigenvalue 0. A I • 0, and A v • 5, where v • ug/ui. It does not 

affect the positivity-improving property The conclusion of the 
theorem is then that v • t(x) up to a small error. 

Lemma 4: Let v e 0(A), the quadratic-form domain of A, and for 

any T 0, define 

vT(x) • min (v(x), 

Then vT(x) e GA), and 

(vT, AvT) s (v, Av). 

This is the Beuling-Deny criterion of Reed and Simon (19781, p. 209 
ff., except that they choose T•0. Since AT • 0, it is clear that one 
can truncate at any value T, since vT • T • (v - 

Lemma 5: Let B • IP on a Hilbert space IC have an eigenvalue 
isolated from the rest of the spectrum by a distance d, and denote 
the spectral projection onto E as P. If w e D(B), lw1-1, then 

El -P)wlsER-E) wild.  

I V 

This is a simple exercise with the spectral theorem. 

Proof of Theorem 3: The idea is to take the exact eigerif unction v 
for Av • 5v and to use its truncate vT as a trial function to estimate 
S. The lemmas will show that vT a v, and the conclusion will follow 

by simple algebra . 

Thus let w • N (vT - (vT,I)) • N (vT - IvTdei), where N is a 

normalization depending on T and use Lemma 1 to see that: 

(w, Aw) s N2  (v, Av) • N2  5. 	 (12) 

At this stage N can be assigned any value from I to 45 by suitable 
choice of T and possibly multiplying v by -I, since either IvOl or 

I( -V)ail a 1i, but at the end of the proof it will be argued that it can 

be taken arbitrarily close to the optimal value 2. 

Now notice that A-6 is a positive operator when restricted to the 

subspace Ili of L2(0, 4) orthogonal to so with B • 11;75, we can 

calculate: 

18 w12 ■ (w, (A-6)w) s (N2  - 

by (12). Then Lemma 2 applied to this B on 1t implies that 

1(1 - P) wl s(1,,•■fiEfi/D. 

This means that 

	

w 	 v +Ts ri xe S 

	

v • 7727710_ _ 	• ri - [4:er _IvT • r i  • xe S 
(13) 

where 9 • (x: v(x) s T), 
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a. • 	N 	and 	trill c 	
(N2-i)6/D  

I-(Ng-1)1/D 	 1-(N2-1)11/D 

Now solve (13) for v to find that: 

v • t(x) • r 

where 

t 	a -I  • 
taT 

and 

ICES 
r • 111-1 

rt 	xeS 

This establishes the theorem except for the numerical value of 
lim C(R), which results from the choice N • 2. A straightforward 
calculation of Its - ftal for t(x) a normalized two-valued function 
orthogonal to I shows that Ita - Act • p(S) or 1-4) depending on 
whether t is positive or negative on S Since one of these numbers 
is s Ma, and since we have seen that v(x) is close to t(x) when the gap 
is small, we can choose N = intT All • 2 for some Tz0. 

D 

Finally, I would like to discuss an approach to bounds on the gap via 
direct optimization. In the last few years M.S. Ashbaugh and I and 
some other people have explored the problem of imposing a 

constraint on the potential V and then maximizing or minimizing a 

given eigenvalue subject to that constraint (Harrell 11984], Ashbaugh 
and Harrell D984,19871, Egnell [19871 and references therein). I shall 
briefly recapitulate the argument and discuss its extension to gaps. 

Most typically, what we have done is to impose a constraint of the 
form 

IV- WIF, s M 

for a reasonable background potential W(x) and some fixed p, I (p (00 

(p•c• is trivial and p•1 is a special case, which is also tractable), and 
searched for the potential within that class that maximizes or 

minimizes a given eigenvalue Ek(V), subject, say, to Dirichlet 

boundary conditions. 

There is a serious existence question for these spectral optimizing 
problems, which I don't wish to discuss here, beyond remarking that, 

for example, if f2 is smooth and bounded and, for the minimizing 
problem, p is sufficiently large to ensure that the usual Sobokv 

embeddings apply, then optimizing potentials exist and satisfy 

IV -Wlip • M c  cc, 
	 (14) 

with V-W nonnegative for the maximizing problem and nonpositive 

for the minimizing problem. 

Granting existence of an optimizer V., we can then try to find it by 
variational analysis, by letting V. -• V. • KP for generic 

perturbations P that are tangential to the ball (14) and 
differentiating with respect to k. 'Tangential' here means that 

IV. - W • rPip • M • o4c) 
	

(15) 

A subtle point here is that even when H • eP is an entire family of 

operators, the function Ek(V• • 0) may fail to be differentiable. (For 

perturbation theory see Kato [19661 or Reed and Simon [19781) U, for 

example, Ek(V•) is isolated and nondegenerate, then differentiability 
is ensured - for instance the lowest eigenvalue EL always has this 

property, and all eigenvalues do if the dimension n • I (with, e.g., 

Dirichlet or Neumann boundary conditions). If these conditions hold, 

then there is a simple formula for the derivative, vit. 

xeS 

xeS 



I 

dik JP(x)us2bildit dr 

where u• is the normalized eigenf unction for r•O. Equation (16) is a 
sort of orthogonality condition between P and u• , . Since P is 
tangential to V•-W but otherwise generic, this means that will must 
be proportional to a power of V•-W. Specifically, a calculation using 
(15) and (16) reveals that 

We) - W(x) • C (u•(x)MP-I) 	 (17) 

Combining this algebraic relationship with the eigenvalue equation 
for Es • En(•), we can characterize the solution of the optimization 
problem as the solution of a semilinear partial differential equation, 

(-a • W(x) = ki•1•-11u• • Eau. 	 (18) 

The constant* • (p•1)/(p-1), and Vs is determined from its sign and 
(17) if u• is found from (18). The analysis of (18) can be fairly 
difficult, but in one dimension or numerically it is not too bad in 
some circumstances. The result is that one can generate functions 

Emaa(M, k,p,Q,W) and Emin(M; 

In terms of these functions, knowledge of even one eigenvalue of H 
implies a whole class of lower bounds on expressions of the form 
IV-V/1p. 

M.S. Ashbaugh, R. Svirsky, and I are currently investigating how 
these ideas apply to gaps. Suppose that f1 is smooth and bounded 
and, for simplicity, set W • 0, constraining the potential V so that 

V * S • (V: rap s M <0), 

for some fixed p > n/2 (p > I when n ■ I). Let r(V) • Eg - Et for -a•V 
on La(n), with Dirichlet boundary conditions. For p < a)  existence and 
uniqueness are guaranteed much as described above, and as before 
we can derive equations characterizing the optimizing potentials, 
except that in place of (18) we obtain complicated systems of coupled 
nonlinear equations. 

If we let p be infinite, the situation becomes more tractable. In this 
case, let us write the constraint as: 

S • (V: 0 s V(x) s M) 	 (19) 

for some finite M. This is tantamount to the restriction !VI. s M/2, 
but is more convenient. 

Proposition 6: The existence of optimizers \me S for r(V) follows as 
before, and we find that if Eg(V•) is nondegenerate, then 

ugd(x) • uid(x) at. on (x: 0 < \•(x) < M). 	(20) 

Actually, for the minimizing problem for V.• (20) does not require 
the assumption of nondegeneracy, but applies when us *  is any 
normalized eigenf unction associated with WV.). 

Proof of (20): Let T • (x: c s V•(x) s M-c) for some c>0. Assume 
that Eg(V•) is nondegenerate. Then, if P(x) is any bounded, 
measurable function supported in T, and we perturb V• to V• • KP, 

formula (16) applies. Taking the difference of formula (16) as applied 
to Eg and Et shows that: 

• 1(u14(x)-uid(x))P(x)dx 	(21) 
cbc 

Since this derivative must be 0 at r•0, it follows that 

(16) 

cu(ve•cP) 



ugo2(x) - ue2(x) - 0 a.e. on T 

Since cis arbitrary, (20) follows. If the eigenvalue is degenerate, 
then the perturbation may split the eigenvalue into a cluster of 
eigenvalues Wm), which are all still analytic in 1:, provided that the 
right choice is made of how to define the functions Eern)(V• • cP) as 
r passes through the value 0. (This choice is certainly different from 
the min-max ordering of the eigenvalues; for example the bottom 
eigenvalue of a cluster will as a rule have a discontinuous slope at 
c•0.) The derivatives at c•O of the functions E_(m) are the 
eigenvalues of the symmetric matrix 

iu241)(x)u20(k)(x)P(x)dx. 

(Kato (19661 p. 407, Eq. (4.50)), and so by (16) the derivatives at e•O 
of the functions E2( 11) - Ei are the eigenvalues of the matrix 

1(u20(x)u241 (x)-u1112(x)kik)P(x)dx. 	(22) 

If even one of these matrix elements differs from 0, then r not at 
minimum. Hence, setting j•lt, Equation (20) must hold at the 
minimum V' for any normalized ug' 

0 

The ramifications of (21)-(22) will be further discussed elsewhere 
(Ashbaugh, Harrell, and Svirsky (1987)) I shall confine myself here 
to some remarks about the simplest case, one dimension, with the 
constraint (19). We normalize so that 0 • [-1,11. In this case, we 
conclude. 

Proposition 7: In one dimension 

M X2, 	 (23) 

where B • B' or respectively BS', with 8' • (x : 	lie) and 

Elb • 	: 11461 (1461). B' consists of a single interval 1-a.,an and Bb 
consists of two intervals, (-1,-allulab,11. 

Proof: There is no question of degeneracy, and Sturrnian 
comparison ensures that (20) can hold at only a finite number of 
discrete points. Indeed, we claim that 	• 1411 at no more than 
two interior points of 0: 

Suppose this is false. Recall that Eg is the lowest eigenvalue for 
H •-d2/dx2  • V with Dirichlet boundary conditions at 0 and p (or 
p and I), where p is the node of ug. U there are more than two 
interior points where WI • 14°1 then at least two of them, s 
and t, must lie to one side of p - suppose that they are to the 
left, 0 < s < t < p, and take ut > ug > 0 on (s,t). Since (s,t1 is a 
subinterval of (0,p1 the eigenvalues of the Dirichlet problem for 
H on (s,t] be above Eg. The Rayleigh-Ritz inequality then gives 

t 	 t 

E21(ui-u2)2dx 1(ui -u2)H(urug)dx 

t 	 t 

• jEgut-uaPdx - (Ea-Et)1(urus)uagi 

t 

f(uru2)2dx, 

which is a contradiction. 

Perturbations P(x) supported where V(x) • M are admissible for 100 
only when P(x) < 0 a.e., else they would violate the constraint (19), 
and likewise perturbations supported where V(x) • 0 must have 
P(x) > 0 a.e. Since for such perturbations, 



1 0 

&Nest P) 	 dr(VbeeP)  
0 and rap 	 0, de 	 do 

Equation (21) leads readily to the conclusion that (23) holds for 

B. • (x : fuel > lug.1) or Bb • (x ILO < lush). That B. and Bb consist 

of no more than two intervals is implied by the statement that kit" 
• WI at precisely two interior points And since the node of ug' lies 
within B' while that of ugb lies in the complement of Bb, we see 
that 	is a single interval, while Bb consists of two disjoint intervals 
extending to *I 

The final fact to prove is that the intervals B are symmetric about 
0 To prove this, shift 0 so that the node of ug• is at 0 and choose 
ugb)0 for x>0 

Case I: Maximizing I% or minimizing r with Et M (arises when M is 

small). The Ricatti equation for ri,g • d(In ui,o/dx, viz., 

ri,2' • 	- r1,01 , 

shows that ri decreases monotonically for all -a' s  x s a', and 
likewise for rg except at x•O Also observe that the greatest value of 
ui on 	a') is attained closer to a' than to -a'. Therefore we find 
that 

-‘121-a9iug( -a9 > ul(a9/ug(e) > ul(a')/uli(e) > -uf(-a')/ui(-a9 (24) 

Next notice that ug(x•a9 and -ug(-x-a') are positive and solve the 
same Schrbdinger equation for 0 < x, and likewise for Ln(x•a)) and 
ug-x-a1 The Wronski identity ensures that the signs of 

rilit•a') • ri(-x-a9 and ri(x•a') 

do not change, except when these quantities diverge ri(z•a') 
diverges negatively at x • &a', while rif-x-a') diverges positively at 

x • c(-a'• Because the sign of ri(x•e) • rI(-x-a') is positive at x•O, the 

latter divergence must occur first, i.e., c'-a' < c'-e. For similar 

reasons, the first zero of -ug(-x-a9 comes after that of ug(x•e), i.e., 

c'-a' > c'-a'. This is a contradiction. 

Case II. Minimizing T with Ei < M. It is straightforward to derive 

the following facts from the observation that are monotonic 
everywhere except possibly at the edges of B and at the node of ug': 

uis(x) > tit'(-x) for 0 < x < a': 	 (25) 

and 

	

ue(a')•ug s(a9 > ue(-al • -ug'(a'), ue"(a9 	 (26) 

It follows from (26) for ui that c"-a' c'a'. Since the functions 
-ug(-x-a') and ug(x•a") are positive and solve the same Schrodinger 
equation for 0 < x < c', and the former function is smaller at x•O and 
x•c', the Sturm separation theorem implies that 

ugs(x-e) > -ug'( -x•e) 	 (27) 

for all 0 < x < c'-a' (otherwise their difference would have two 

nodes). Moreover, from (26), 

ute(x•a9 > -ut'( -x•a') 

for all 0 < x < c'-a'. Together with (25) and (27) this implies that 

0 

jui(x)ug(x)dx 	ful(x)lug(x)idx, 

which contradicts the orthogonality of ut and ug. 
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To summarize, in one dimension, the optimal potential for 
minimizing gaps is in fact just that of the toy model (7), with an 
optimized a! The gap r is determined from a pair of transcendental 
equations, and can easily be optimized numerically or asymptotically 
with respect to a to determine as and ab. For example, 
asymptotically for large M (which corresponds to small ti) 

/12   
as a I - 2m

y/S 
 , and 

r(V') 2 16 IiN exp( -  2 MI/ • 25/5n213 min) 	(28)  

Appendix. An algebraic version of the inequality of Payne, Polya, 
and Weinberger. 

Several years ago I became interested in the inequality of Payne, 
P6Iya, and Weinberger (19561, and reduced it to a series of lemmas 
involving commutator arguments, in particular the basic gap 
formula (4). While I never published this work, I discussed it with 
several people, including E.B. Davies in 1984. He then also got 
interested in the inequality and concocted a completely algebraic 
version of it. He has agreed to let me publish it here for the first 
time. 

Let H a 0 have discrete eigenvalues Et s E2 g ..., and let P be the 
spectral projection for El... E k. Let G • 6' and A • (I-P)GP. Let us 
also assume that the domains and ranges of G and H are such that 
GP, G2P, HG2P, and GHGP exist. Inequalities among operators are 
intended in the sense of quadratic forms, i.e., R a S means that for a 
suitable dense set of 0, 	RO a 4, SO. The trace is denoted tr, and 
the commutator of two operators R and S is denoted [R,S] • RS - SR. 

Theorem AO. If 0, To, and '11 are positive numbers such that 

To s 	[G.Hll s T1 and -IG.HP s 0 H, then 

Ekq - Ek s (411) 1E '
Vfo: 

•i 

The Payne-P61ya-Weinberger inequality results with H • -A, G • xi, 
so IG,H1 • 24/exi. and -IGIG,H11 • 2. We can then take 0 • 4, and 
YO,i • 2. This inequality would, for instance, apply to certain partial 
differential operators with nonconstant coefficients. The proof 
consists of three lemmas: 

(Al) 



zz 

L ern Peut A i 	 Lemma A3: 

tr(H (AA")) • tr(P(G.H1A) - -(14) tr(IGIG,H1P) 
If - (G,IG,hD Yo > 0, and - (G,H! s pH, then 

Proof: 
tr(HAA" - HAsA) • tr(HO-P1CIPG(1-P) - HPG(I-P)GP) 

• tr(GH(I-P)GP - HG(1 -P)GP). 	(A2) 

by the cyclic property of traces and the fact that H commutes with 
P and I-P. The first identity results from writing the right side of 
(A2) as 

traG,H11-11GP) • tr(P(G,H1A), 

and the second results from writing it as 

tr(GHGP - HGGP) • tr((GHG - (HG 2•61H)/2) • -(1+) tr(EGIG,H1113). 
0 

Lemma A2: 

if - (G, [GA s Yi, then 

(Ek4i - Ek) tr (A'A) s 

Proof. First note that tr(HAA') a 44 tr(AA") • Elm tr(A'A) and 
tr(HA'A) s Ek tr(A'A), since Ran(AA') c Ran(I-P) and 
Ran(A'A) c RanP. Hence 

(Elm - Ek) tr(A'A) s tr(HAA• - HA'A) 

s Z tr(te)) • Yip 

by Lemma Al 	 0 

k 
yog kg s 4 p tr(A'A) IEj. 

Proof: Yok s -truG.(G,1111P) - 2 tr (P [GM) A) (by Lemma Al) 

s 2 (tr(-14G,HPP) tr(A'ADV2  

by the Cauchy inequality for traces (the minus sign originates in the 
skew-adjointness of the commutator (G,H), which makes -(G,H1 2  > 0). 
Squaring, 

k 
(Yok)g s 4 tr(j)HP) tr(A'A) - 4 p tr(A'A) IEj. 

The theorem results from concatenating Lemmas A2 and A3. 
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