\qquad
Sponsor Amount:

This Change
Estimated: \$
Funded: \$

ORIGINAL
REVISION NO. at ar date $1,6,84$ ssonowat MATH EM HARRELL MS E Cost Sharing No: \qquad R Rencansh 7 .
\qquad M. Harrell

Title: Grant the, $B P-2347$ vertomene $11-15-85$
\qquad

Mrs Margaret Boost
Tellawhath For Basic Research. aged po slow foundation

\qquad
\qquad
\qquad
\qquad
\qquad
Military Security Classification: \qquad N/A MIA (or) Company/Industrial Proprietary:
RESTRICTIONS
\qquad Supplemental Information Sheet for Additional Requirements.
Travel: Foreign travel must have prior approval - Contact OCA in each case. Domestic travel requires sponsor

if the ardent is over \$100-referace par 3 .
\qquad

itle \qquad

Hective Completion Date: \qquad $9 / 15 / 87$ (Performance) \qquad (Reports)
rant/Contract Closeout Actions Remaining:

None

Final Invoice or Final Fiscal Report

Closing Documents

Final Report of Inventions

Govt. Property Inventory \& Related Certificate
ontinues Project No. \qquad Continued by Projact No. \qquad

JPIES TO:
oject Director
asearch Administrative Network
asearch Property Management
scounting
ocurement/GTRI Supply Serviges
zsearch Security Services
sports Coordinator (OCA)
gal Services
Library
GTRC
Research Communications (2)
Project File

Other \begin{tabular}{l}
Russ Embry \\
\hline

Angela DuBose \\
Duane Hutchison
\end{tabular}

$212-582=0450$
 Alfred P. Sloan foundation
 630 Fifth AVENUE
 New York, N. Y. IOIII

ELLOWSHIPS FOR BASIC RESEARCH
program administrator
May 15, 1985

Professor Evans M. Harrell II School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332

Dear Professor Harrell:
This is a reminder that the scheduled termination date of your Sloan Research Fellowship is September 15, 1985 If you anticipate having unexpended funds as of that date, you may request an extension by writing to me. Please note that extensions are limited to a maximum of two years. After that, unexpended funds greater than $\$ 100$ must be returned to the Foundation. Unused funds amounting to $\$ 100$ or less should be retained and made available for your use or for your institution's general purposes.

I also wish to remind you that the conditions of the grant state, "The Alfred P. Sloan Research Fellow will provide the Foundation with a short annual scientific progress report and a final report which briefly describes the results accom, plished with the aid of the grant. Reprints or preprints of scientific papers will be accepted in lieu of streh-reports." Your reports should reach me no later than (November 15 each year for as long as your fellowship remains active.

Sincerely,

Maureen Gassman
Administrative Assistant

School of Mathematics Georgia Institute of Technology Atlanta GA 30332-0160

4042333381
4048942715
October 10, 1985

The Alfred P. Sloan Foundation
630 Fifth Ave.
New York NY 10111-0242

Dear Sir or Madam:
Please accept the enclosed papers in lieu of a formal report of my progress during the second year of my Sloan fellowship.

Allow me again to express my gratitude for your very valuable assistance, and also for your unburdensome reporting requirements.

The $1 / R$ Expansion for H_{2}^{+}:
Analyticity, Summability, and Asymptotics
S. GkAFF:

Dipartimento di Matacmaticu, Univervità ai Boiogna,
1-40/27 Bologha, hat
V. Grecchi

Diparlimento di Matematica, Uniscrsità di Modena,
1-4 $11(\%)$ Modena, Ltat
E. M. Harrell if*

School of Mathematics. Cicorgia Institute of Technoiogy, Atlanta, Georgia 30332-0160

ANI)
H. J. Silverstoni: ${ }^{+}$

Depariment of Chemistry, The Johns Itopkins Uniuerwits: Baitionare, Maryland 21218

Received January 14. 1985

It is proved that the $1 / R$ expansion for H ' is diverpem and Bere summable to a complex

 asymptotically to all orders, and its maginary part determines the anymptotics of the $1 / R$ expansion coefticients via a dispersion relation. A riporsus chamate of the leading behavior of the imaginary part is obtioned, and as a consequence the approximate formula of Brezin and Zinn-Justin relating the square of the eigenvatue gap to the asymptoties of the $1 / R$ expansion is put on a rigorous basis. aisgks Acalemic Press. Ine
Contents. I. Introduction. il. Scparated equations and perturbation theory. III. Stability, analyticity, and summahility. IV. Imaginary parts, asymptotics, and the formula or Brezin and Zinn-Justin. Appendix A. Appendix B. List of symbols

- Partially supported by USNSF Grani MCS 8300551 and an Alfred P. Sloan Fellowship.

1. Introduction

Consider the two-center problem of an electron in the field of two fixed point charges Z_{A}, Z_{B} at a distance R apart. In non-relativistic quantum mechanics its Hamiltonian is

$$
\begin{equation*}
H\left(R, Z_{A}, Z_{B}\right)=-\frac{1}{2} A-Z_{A}|x|^{-1}-Z_{B}|x-R \hat{e}|^{-1} \tag{1.1}
\end{equation*}
$$

in atomic units, with $x \in \mathbb{R}^{3}, \vec{i}=(1,0,0)$. If $Z_{A}=Z_{H}=1$ this describes the hydrogen molecular ion $\mathrm{H}_{2}{ }^{r}$ in the clamped nuclei approximation, which is an important double-well problem having the virtue of being separable. In the normalization of (1.1) the formal limit as $R \rightarrow \infty$ is the Hamiltonian of hydrogen.

The series in negative powers of R obtamed by expanding $|x-R|^{\prime} \mid$ and applying Rayleigh-Schrödinger perturbation theory exists, is called the $1 / R$ expansion, and is a classic textbook example [1]. However, (1.1) also furnishes a classic example of unstable perturbation: although the H_{2}^{+}eigenvalues approach those of hydrogen as $R \rightarrow \infty$ (first proved by Aventini and Seiler [2]), and the rate of convergence is correctly described by the asymptotic $1 / R$ expansion (Morgan and Simon [3]), they are doubly asymptotically degenerate as $R \rightarrow \infty$. That is, near any given bound state of H , for $1 / R$ small enough there are iwo bound states of H_{2}^{+} with an energy gap of order $R^{2 k+1} \exp (-R / n)$, where n and k are the usual principal and parabolic quantum numbers [1].

The instability is a double-well phemomenon. (1.1) being somewhat almagous to the onedimensional double-well anharmonic uscilator $p^{2}+x^{2}(1+g x)^{2}$. It is similarly clear that the $1 / R$ expansion cannot be Borel summable to an eigenvalue. How could the scries decide which cigenvalue to sum 10 ? Numerically, the series has been found [3] to be factorially divergent with coefficients of one sign, in analogy to the double-well oscillator [4].
In addition, it has been discovered by Brezin and Zinn-Justin [5], also numerically, that the square of the gap between the eigenvalue doublet converging to the hydrogen ground state is related to the asymptoties of the $1 / R$ expansion. This typical non-perturbative tunneling quantity, $O\left(R^{2} c^{2 k}\right)$ for the ground state, is reminiscent of the resonance width in the Lo Surdo Stark effect, for which at one-to-one relationship with the perturbation series has been proved and exploited $[6,31]$. That proor was based on the Borel summability of the perturbation series to the resonance [7]. More specifieally, the imaginary part of the Borel sum determines the asymptotics of the perturbation series and, converscly, the asymplotic behavior of the series determines the leading behavior of the imaginary part of the sum. In the case of the Lo Surdo-Stark effect the Borel sum is a resonance in the standard sense of dilatation analyticity [7-10]. Alhough the imaginary part of the double-well oscillator eigenvalue does not seem to have a physical interpetation as a resonance, it determines the eigenvalue gap asymptotically [11].
The purpose of this paper is to show these phenomena rigorously in the case of the $1 / R$ expansion of H_{2}^{+}. We will prove that the Borel sum of the $1^{\prime} R$ expansion exists as the complex cigenvalue of a non-self-adjoint problem that has the same
$1 / R$ expansion as $H_{2}{ }^{*}$ but is stable as $R \rightarrow \infty$. The imaginary part of the Borel sum determines the asymplotics of the perturbation coefficients and conversely. (For a gencral overview of this kind of result for the anharmonic oscillator and the Lo Surdo-Stark effect, see Simon [12].) Furthermore, we derive rigorously the asymptotic form of the imaginary part of the Borel sum, which verifies the approximate formula of Brezin and Zinn-lustin. Notice that the $1 / R$ expansion not only determines the position of the H_{2}^{+}doublet asymptotically, but also the gap to leading order.
Although this result is closely analogous to the ones for the double-well oscillator and the Lo Surdo Stark effect mentioned above, it requires a more subtle analysis, looking into the relationship between $\mathrm{H}_{2}{ }^{+}$and the system of an electron in the field of a stationary proton and a stationary anti-proton,

$$
\begin{equation*}
\left.H^{\prime}\left(R, Z_{A},-Z_{A}\right)=-\frac{1}{2} \Delta-Z_{A}|x|^{1}+Z_{A} \right\rvert\, x+R \hat{e}^{-1} \tag{1.2}
\end{equation*}
$$

(in [14] H^{\prime} was denoted K) the $1 / R$ expansion of which is identical to that of H_{2}^{+} but with R replaced by $-R$, so that the signs alternate. A plausible starting point of the analysis would be to prove Borel summabiitty of eigenvalues of (1.2) and then analytically continue from $-R$ to $+R$, where they should develop a branch cut and thus an imaginary part. However, we shall see that although (1.2) is a stable, singlewell problem, its alternating-sign $1 / R$ expansion is not Borel summable to its eigenvalues. thus answering in the negative a question raised by Morgan and Simon [3]. Incidentically, we remark that this is, to our knowiedge, the only example of this type which has a direct physical interest.
The identification of the Borel sum will involve relating (1.1) and (1.2) in a more subtle way, using the separability in elliptic coordinates to be implemented in Section 11, which also contains a detailed description of the generation of the $1 / R$ expansion from the separated equations. In Section lll we shall describe the stability, analyticity, and implicit funtion arguments which, logether with the remainder estimates, allow the Borel sum to be identified as a function holomorphic in some half-disk $|1 / R|<M$, Im $R>0$, which admits analytic continuation across the branch cul along the real axis (Theorem 111.2). In Section IV we shall determine the leading exponential order of the imaginary part of the Borel sum (Theorem IV.1) and establish the dispersion relation connecting it to the asymptotics of the $1 / R$ expansion. The proof of the Brezin-Zinn-Justin formula (Corollary IV.2) will then be a simple consequence of this and the known estimates of the eigenvalue gap [13]. Finally, we collect some technical lemmas on Borel summability of composed and implieit function in Appendix A and the JWKB estimates of the tunneling factors needed to estimate imaginary parts in Appendix B.
We conclude this Introduction by mentioning that this work represents the first of the two papers announced in Ref. [14], in which part of the above results are briefly described logether with a semiclassical procedure for generating all exponentially small corrections to the $1 / R$ expansion for the bound states of H_{2}^{+}.

II. Separated Equations and Perturbation Theory

Let us begin by collecting some well-known relevant facts about the family of Schrödinger operators describing the general two-center problem. Since, as will become evident, the natural variable is $\rho=1 / R$ rather than R, the operator (1.1) will henceforth be denoted $H\left(\rho, Z_{A}, Z_{B}\right)$. Unless otherwise specified, the operatortheoretic notation used throughout this paper is that of Reed and Simon [15].

Proposition II.1. Let $\rho^{-1}=R>0$, and $Z_{A}, Z_{n} \in \mathbb{R}$. Let $H\left(\rho, Z_{A}, Z_{B}\right)$ denote the family of operators on $L^{2}\left(\mathbb{P}^{3}\right)$ defined as the action of $-\frac{1}{2} A-Z_{A}|x|^{1}-$ $Z_{B}|x-R \hat{e}|^{-1}$ on the domain of definition $H^{2}\left(\mathbb{R}^{3}\right)$ (Soholev space), and let $H_{0}\left(Z_{A}\right)$ denote the hydrogen operator, i.e., the action of $-\frac{1}{2} \Delta-Z_{A}|x|^{-1}$ on the same domain. Then:
(1) $H\left(\rho, Z_{A}, Z_{B}\right)$ is self-adjoint and bounded below.
(2) $\sigma_{\text {ess }}\left(H\left(\rho, Z_{A}, Z_{B}\right)\right)=\sigma_{\text {Ac }}\left(H\left(\rho, Z_{A}, Z_{R}\right)\right)=[0,+\infty)$.
(3) Let $E\left(\rho, Z_{A}, Z_{B}\right)$ be an cigenvalue of $H\left(\rho, Z_{A}, Z_{H}\right)$. Then $\rho \mapsto E(\rho, \cdot)$ is continuous, and $\lim _{\rho \rightarrow 0} E(\rho, \cdot)$ exists and is an eigensalue of $H_{0}\left(Z_{A}\right)$ if $Z_{A}>0$.
(4) If $Z_{A}>0, Z_{14}<0$, the eigenualues of $H_{0}\left(Z_{A}\right)$ are stable (in the sense of Kato [16, Sect. Vlll.1.4]) for $\rho>0$ small.
(5) Fix $Z_{A}=Z_{B}>0$, and recall that the eigenvahues of $H_{0}\left(Z_{A}\right)$ are $-Z_{A}^{2} / 2 n^{2}$, $n=1,2, \ldots$, with multiplicities n^{2}. For cach such unperturbed eigenvalue and any open interval I containing only that unperturbed eigemalue, there exists $M>0$ such that for $\rho<M$ there are precisely $2 n^{2}$ eigenvalues in 1 . The chuster of eigenvolues in I is organized in exponentially close pairs, and the two eigenowhes $E_{ \pm}$near $-Z_{A}^{2} / 2$ in particular satisfy

$$
\Delta E\left(\rho, Z_{A}\right) \equiv E_{+}\left(\rho, Z_{A}\right)-E_{-}\left(\rho, Z_{A}\right)=O\left(R e^{\cdots R}\right)
$$

(6) The Raylcigh-Schrōdinger perturbation expansion in powers of ρ near $E_{0}\left(Z_{A}\right)$ in (5) exists and represents an asymptotic expansion for both eigenvalues $E_{ \pm}(\rho, \cdot)$ us $\rho \rightarrow 0$.
Remarks. (1) For the general analysis of the operator family $H\left(\rho, Z_{A}, Z_{B}\right)$ and in particular for the proof of (1)-(3), see Aventini and Seiler [2], Combes, Duclos, and Seiler [17], and Morgan and Simon [3]. The proof of (4) is briclly sketched in Proposition IIl.1 (2) as an easy application of the Hunziker-Vock [18] stability theorem. A proof of (5) has been given by Harrell [14] with some explicit estimates, and (6) has been proved by Morgan and Simon [3].
(2) The perturbation expansion is generated as follows (see, e.g., Morgan and Simon [3]): for $|x|<R$, we have $\left|x-R_{\hat{e}}\right|^{-1}=\sum_{n=0}^{\infty} M_{n}(x) R^{-n-1}, M_{n}(x)=$ $|x|^{n} P_{n}(\cos \theta), \cos \theta=\langle x, \hat{e}\rangle| | x \mid$, where $P_{n}(\cdot)$ is the nth Legendre polynomial. Then the unperturbed operator is $H_{0}\left(Z_{A}\right)$, and the perturbation is by definition $-Z_{B} \sum_{n=0}^{\infty} M_{n}(x) \rho^{n+1},|x|<\rho^{-1} ; 0,|x| \geqslant \rho^{-1}$. The expansion obtained through
ordinary Rayleigh-Schrödinger perturbation theory in $\rho=1 / R$ near $E\left(Z_{A}\right)$ is by definition the $1 / R$ expansion.
(3) The Hamiltonian for H_{2}^{+}is completely decomposed by the magnetic and parabolic quantum numbers, conventionally denoted respectively by integers m, $n_{1}=j \geqslant 0$ and $n_{2}=k \geqslant 0$. The separability in elliptic coordinates detailed below implies that in any subspace of given mofg k the eigenvalues of $H\left(\rho, Z_{A}\right)$ come in asymptotically degenerate doublets for ρ sufficiently small, and gap estimates and asymptotic expansions analogous to those of (5) and (6) hold. The precise statements will be formulated below.
The well-known separability of $H\left(\rho, Z_{A}, Z_{B}\right)$ in clliptic (more precisely, prolate spheroidal) coordinates gocs back to Jacobi [19], who discovered its classical analogue to prove the complete integrability of the corresponding Hamilton-Jacobi equation. A thorough discussion of this problem and of its application to the Bohr-Sommerfeld quantization can be found in Born [20] (sce also Strand and Reinhardt [21] for a modern analysis of the Bohr-Sommerfeld theory of H_{2}^{+}). Let us now review the formulation of the Schrödinger cigenvalue probiem $H\left(\rho, Z_{A}, Z_{H}\right) \Psi=E \Psi$ in elliptic coordinates. Standard references for this are Landau and Lifshice [1] and Komarov er al. [22]. Set

$$
\begin{array}{ll}
\xi=\rho(|x|+|x-R \hat{e}|), & 1 \leqslant \xi \leqslant+\infty, \tag{2.1}\\
\eta=\rho(|x|-|x-R \hat{\rho}|), & -1 \leqslant \eta \leqslant 1, \\
\phi=\arctan \left(x_{3} / x_{2}\right), & 0 \leqslant \phi<2 \pi,
\end{array}
$$

inverted as

$$
\begin{align*}
& x_{1}=R \varepsilon \eta_{1}, \\
& x_{2}=R \sqrt{\left(1-\eta^{2}\right)\left(\zeta^{2}-1\right)} \cos \phi, \tag{2.2}\\
& x_{3}=R \sqrt{\left(1-\eta^{2}\right)\left(\xi^{2}-1\right)} \sin \phi .
\end{align*}
$$

Since the Laplace operator in the variables (ξ, μ, ϕ) has the form

$$
\begin{aligned}
\Delta= & 4 \rho^{2}\left(\xi^{2}-\eta^{2}\right)^{-1}\left[\frac{\partial}{\partial \xi}\left(\xi^{2}-1\right) \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\left(1-\eta^{2}\right) \frac{\partial}{\partial \eta}\right. \\
& \left.+\frac{\xi^{2}-\eta^{2}}{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \frac{\partial^{2}}{\partial \phi^{2}}\right)
\end{aligned}
$$

(sec, e.g., Magnus Oberhettinger and Soni [23]). setting

$$
\begin{equation*}
\Psi(x)=e^{i m \phi} \Phi_{1}(\zeta) \Phi_{2}(\eta), \quad \pm m=0,1,2, \ldots \tag{2.3}
\end{equation*}
$$

we formally see that ψ satisfies $H\left(p, Z_{A}, Z_{B}\right) \Psi=E \Psi$ in

$$
\begin{align*}
& {\left[-\frac{1}{2} \frac{d}{d \xi}\left(\xi^{2}-1\right) \frac{d}{d \xi}-\frac{1}{4} R^{2} E\left(\xi^{2}-1\right)-\frac{1}{2} R\left(Z_{A}+Z_{B}\right) \xi\right.} \\
& \left.\quad+\frac{1}{2} m^{2}\left(\xi^{2}-1\right)^{-1}\right] \Phi_{1}(\xi)=-\alpha \Phi_{1}(\xi), \\
& {\left[-\frac{1}{2} \frac{d}{d \eta}\left(1-\eta^{2}\right) \frac{d}{d \eta}-\frac{1}{4} R^{2} E\left(1-\eta^{2}\right)+\frac{1}{2} R\left(Z_{A}-Z_{B}\right) \eta\right.} \tag{2.4}\\
& \left.\quad+\frac{1}{2} m^{2}\left(1-\eta^{2}\right)^{-1}\right] \Phi_{2}(\eta)=\alpha \Phi_{2}(\eta)
\end{align*}
$$

for some separation constant $\alpha(m, R) \in \mathbb{R}$. The rest of this section is devoted to implementing this formal procedure so as to make transparent at the same time how the $1 / R$ expansion is generated within the context of the separated equations. Set

$$
\begin{gather*}
E=\frac{1}{2} \gamma^{-2}, \quad r=R \gamma^{-1}, \quad \tau=r^{-1}, \\
\beta_{1}=\frac{1}{2} \gamma\left(Z_{A}+Z_{B}\right)-\alpha \tau, \quad \beta_{2}=\frac{1}{2} \gamma\left(Z_{A}-Z_{B}\right)+\alpha \tau \tag{2.5}
\end{gather*}
$$

and note the relations

$$
\begin{gather*}
\beta_{1}+\beta_{2}=\gamma Z_{A} ; \quad \frac{1}{2} \gamma\left(Z_{A}+Z_{n}\right)+\alpha \tau=\gamma\left(Z_{A}+Z_{n}\right)-\beta_{1} ; \\
\frac{1}{2} \gamma\left(Z_{A}-Z_{B}\right)-\alpha \tau=\gamma\left(Z_{A}-Z_{n}\right)-\beta_{2} . \tag{2.6}
\end{gather*}
$$

Then, upon first rescaling the unknown functions

$$
\begin{equation*}
\phi_{1}(\xi) \mapsto\left(\xi^{2}-1\right)^{-1 / 2} \phi_{1}(\xi), \quad \phi_{2}(n) \mapsto\left(1-\eta^{2}\right)^{-1 / 2} \phi_{2}(n) \tag{2.7}
\end{equation*}
$$

and then translating and rescaling the variables ζ and η.

$$
\begin{equation*}
u=r(\xi-1), \quad v=r(\eta+1), \tag{2.8}
\end{equation*}
$$

Eqs. (2.1) become

$$
\begin{align*}
& t_{m_{1}\left(\beta_{1}, \beta_{2}, Z_{A} ; Z_{B}, \tau\right) f(u)=0} \\
& s_{m 1}\left(\beta_{1}, \beta_{2}, Z_{A}, Z_{B}, \tau\right) g(v)=0, \tag{2.9}
\end{align*}
$$

where

$$
\begin{align*}
& f(u)=\left[(\tau u+1)^{2}-1\right]^{1 / 2} \phi_{1}(\tau u+1), \\
& g(v)=\left[1-(\tau v-1)^{2}\right]^{1 / 2} \phi_{2}(\tau v-1), \tag{2.10}
\end{align*}
$$

$$
\begin{align*}
t_{m}(\cdot)= & -\frac{d^{2}}{d u^{2}}+\frac{1}{4}-\frac{\beta_{1}}{u}+\frac{m^{2}-1}{4 u^{2}} \\
& \left.+\left[-\frac{\left(\beta_{1}+\beta_{2}\right) Z_{1}^{1}\left(Z_{1}+Z_{B}\right)-\beta_{1}}{u+2 r}+\frac{m^{2}-1}{4} \frac{1}{(u+2 r)^{2}}-\frac{1}{u(u+2 r)}\right)\right], \\
& 0 \leqslant u<+\infty, \tag{2.11}\\
s_{m}(\cdot)= & -\frac{d^{2}}{d v^{2}}+\frac{1}{4}-\frac{\beta_{2}}{v}-\frac{m^{2}-1}{4 v^{2}} \\
& +\left[-\frac{\beta_{2}-Z_{A}^{-1}\left(Z_{1}-Z_{B}\right)\left(\beta_{1}+\beta_{2}\right)}{2 r-v}+\frac{m^{2}-1}{4}\left(\frac{2}{v(2 r-v)}+\frac{1}{(2 r-v)^{2}}\right)\right],
\end{align*}
$$

(u and v were called x_{1} and x_{2} in [14]). We then have
Proposition 1.2. For $\pm m=0,1,2, \ldots$, let $T_{m}\left(\beta_{1}, \beta_{2}, Z_{1}, Z_{B}, \tau\right), S_{m}\left(\beta_{1}, \beta_{2}\right.$, $\left.Z_{A}, Z_{B}, \tau\right), \quad\left(\beta_{1}, \beta_{2}, Z_{B}\right) \in \mathbb{R},\left(Z_{A}, \tau\right) \in \mathbb{Q}^{+}$be the operator families in $L^{2}(0, \infty)$, $L^{2}(0,2 r)$, respectively, defined as the action of $t_{m}(\cdot)$ on $D\left(T_{m}(\cdot)\right)=\left\{H^{2}(0, \infty) \cap\right.$ $H_{0}^{1}[0, \infty),|m|>0 ; H^{2}(0,+\infty)$ with the boundary condition $f(u)=O\left(u^{1 / 2}\right)$ as u $\downarrow 0$ for $m=0\}, D\left(S_{m}(\cdot)\right)=\left\{H^{2}(0,2 r) \cap H_{0}^{1}[0,2 r],|m|>0 ; H^{2}(0,2 r)\right.$ with boundary conditions $f(v)=O\left(v^{1 / 2}\right), v \downarrow 0, f(v)=O\left((2 r-v)^{1 / 2}\right), v \uparrow 2 r$, for $\left.m=0\right\}$, respectively. Then:
(1) $T_{m,}(\cdot), S_{m}(\cdot)$ are self-adjoint and bounded below.
(2) $\sigma_{\text {ess }}\left(T_{\text {m }}(\cdot)\right)=\sigma_{\text {ac }}\left(T_{M}(\cdot)\right)=\left[\frac{1}{4},+\infty\right) ; \sigma_{\mathrm{css}}\left(S_{\text {st }}(\cdot)\right)=\phi$.
(3) For any fixed (m, j, k) the eigenvalues $\lambda\left(m, j, k ; \beta_{1}, \beta_{2}, Z_{A}, Z_{B}, \tau\right)$ of $T_{m}(\cdot)$ and $\mu\left(m, k ; \beta_{1}, \beta_{2} ; Z_{A}, Z_{B} ; \tau\right)$ of $S_{m}(\cdot)$ are jointly continuously locally differentiable functions of the variables ($\left.\beta_{1}, \beta_{2}, Z_{A}, Z_{B}, \tau\right)$.
(4) Assumbe that the equation $\mu\left(m, k ; \beta_{1}, \beta_{2}, Z_{A}, Z_{B}, \tau\right)=0$ can be solved near any given $\tau>0$ to yield a family of locally C^{1} implicit functions $\tau \mapsto$ $\beta_{2}\left(m, k ; \beta_{1}, Z_{A}, Z_{B}, \tau\right), \quad\left(m, k ; \beta_{1}, Z_{A}, Z_{B}\right)$ fixed, and that the equation $\lambda\left(m, j ; \beta_{1}, \beta_{2}\left(m, k ; \beta_{1}, Z_{A}, Z_{B} ; \tau\right) ; Z_{A}, Z_{B}, \tau\right)=0$ can be similarly solved to yield a family of locally, C^{1} implicit functions $\tau \rightarrow \beta_{1}\left(m, j, k ; Z_{A}, Z_{B} ; \tau\right),(m, j, k),\left(Z_{A}, Z_{B}\right)$ fixed. Set

$$
\begin{equation*}
\gamma\left(m, j, k ; Z_{A}, Z_{B}, \tau\right)=Z_{A}\left[\beta_{1}(\cdot, \tau)+\beta_{2}\left(\cdot, \beta_{1}(\cdot, \tau), \cdot \tau\right)\right] \tag{2.13}
\end{equation*}
$$

and assume that $\tau \mapsto \gamma(\cdot, \tau)^{-1} \tau$ is locally invertible near any given $\tau>0,(m, j, k)$, $\left(Z_{A}, Z_{B}\right)$ fixed. Let $\rho \mapsto I\left(m, j, k ; Z_{A}, Z_{B} ; \rho\right)$ be the inverse function of $\tau \mapsto$ $\gamma(\cdot, \tau)^{-1} \tau$. Then the function
$E\left(m, j, k ; Z_{A}, Z_{B}, \rho\right)=-\frac{Z_{A}^{2}}{2}\left[\because\left(m, j, k ; Z_{A}, Z_{B} ; I\left(m, j, k ; Z_{A}, Z_{B} ; \rho\right)\right)\right]^{-2}$
is an eigenvalue of $H\left(\rho, Z_{A}, Z_{B}\right)$.
(5) Conversely, let $\rho \mapsto E\left(\rho, Z_{A}, Z_{B}\right)$ be an eigenvalue of $H\left(\rho, Z_{A}, Z_{H}\right)$. Then for one and only one triple $(m, j, k), \pm m, j, k=0,1, \ldots$, the equations $\lambda(m, j, k$; $\left.\beta_{1}, \beta_{2}, Z_{A}, Z_{B}, \tau\right)=0, \mu\left(m, j, k ; \beta_{1}, \beta_{2}, Z_{A}, Z_{B} ; \tau\right)=0$ can be solved near any given $\tau>0$ to yield the pair of locally C^{1} implicit functions $\tau \mapsto \beta_{2}\left(m, k ; \beta_{1}, Z_{A}, Z_{n}, \tau\right)$, $\tau \mapsto \beta_{1}\left(m, j, k ; Z_{A}, Z_{B}, \tau\right)$ such that $\tau \gamma\left(m, j, k ; Z_{A}, Z_{B}, \tau\right)^{-1}, \gamma$ defined by (2.13), is invertible and $E\left(\rho, Z_{A}, Z_{B}\right)$ admits the representation (2.14).

Remarks. (1) Assertion (4) holds unchanged if the implicit functions are unraveled in the opposite order.
(2) The numbers (m, j, k) have the meaning of magnetic and parabolic quantum numbers, respectively. In fact, letting $R \rightarrow \infty$ in (2.1) we have

$R \xi-R=|x|-x_{1}+O(\rho), \quad K \eta+R=|x|+x_{1}+O(\rho)$

which means that ξ and η become the usual parabolic coordinates (see, c.g., Landau and Lifshitz [1, Sect. 37]) up 10 rescaling and translation. Therefore, the natural number $n=|m|+j+k+1$ has the meaning of principal quantum number.
(3) For $t=0$ we recover the unperturbed operator $H_{0}\left(Z_{.4}\right)$ in the following way: denote by $t_{, \prime \prime}^{0}$ the differential expression obtained by setting formally $\tau=0$ in (2.11) or, equivalently, (2.12):

$$
t_{m}^{0}(\beta) \equiv t_{m}(\beta, 0) \equiv s_{m}(\beta, 0)=-\frac{d^{2}}{d u^{2}}+\frac{1}{4}-\beta u^{-1}+\frac{m^{2}-1}{4 u^{2}}
$$

$$
\begin{equation*}
0 \leqslant u<\infty . \tag{2.15}
\end{equation*}
$$

Then the operator family $T_{m}^{0}(\beta)=T_{m}(\beta, 0)$ in $L^{2}(0, \infty)$ defince ats the action of (2.15) on $D\left(T_{m}(\cdot)\right)$ enjoys propertics (1)-(3) above. Denote by $\lambda(m, j, \beta), i_{i}, j=$ $0,1, \ldots$ the eigenvalues of $T_{m}^{\prime}(\beta)$. Then it is well known that $\lambda(m, j, \beta)=0$ iff $\beta=$ $\beta(m, j)=j+(|m|+1) / 2$, because the confluent hypergeometric equation $-\psi^{\prime \prime}-$ $\beta u^{-1} \psi+\frac{1}{4} \psi+\left(\left(m^{2}-1\right) / 4 u^{2}\right) \psi=0$ admits solutions regular at 0 and L^{2} at $+\infty$ iff $\beta=\beta(m, j)$ (sce, e.g., Buchholz [24]). The corresponding (normalized) cigenfunctions are

$$
\left[\frac{i!}{(i+|m|)!^{3}(|m|+1+2 i)}\right]^{1 / 2} u^{|m|+1 / 2} e^{n} \cdot{ }^{w / 2} L_{|m|+i}^{\mid m ;}(u)
$$

where $L_{i}^{\prime}(\cdot)$ are the Laguerre polynomials. Then we see at once that $\mu(m, j)+$ $\beta(m, k)=\gamma(m, j, k)=i+k+|m|+1$, and

$$
\begin{equation*}
\sigma_{d}\left(H_{0}\left(Z_{A}\right)\right)=\bigcup_{i m, i, k=0}^{\alpha_{i}}-\frac{1}{2} Z_{A}^{2} \gamma(m, i, k)^{-2}, \tag{2.16}
\end{equation*}
$$

which is equivalent to assertions (4) and (5) because in this case $;(\cdot, t)$ is τ independent.

Proof. Assertions (1) and (2) are well known (sce, e.g., Kato [16] [or $m \neq 0$ or Dunford and Schwartz [25] for $m=0$). Statement (3) follows by standard arguments of regular perturbation theory (worked out in detail for the case of the non-separated operator in Combes, Duclos and Seiler [17]). We prove (4) and (5). Denote by $f\left(u, m, j ; \beta_{1}, \beta_{2} ; Z_{A}, Z_{B}, \tau\right)$ and $g\left(v, m, k ; \beta_{1}, \beta_{2} ; Z_{A}, Z_{B} ; \tau\right)$ the eigenvectors corresponding respectively to $\lambda(m, j ; \cdot ; \tau)$ and $\mu(m, k ; \cdot \tau)$. Then the function
$\left(x ; m, j, k ; Z_{A}, Z_{B} ; \rho\right) \mapsto \Psi\left(x ; m, j, k ; Z_{A}, Z_{A} ; \rho\right)$
$=e^{i m \arctan \left(x_{3} / x_{2}\right)}\left[\Gamma\left(n l, j, k ; Z_{A}, Z_{B} ; \rho\right)[\rho(|x|+|x-R \hat{e}|-1]]^{-1 / 2}\right.$

$$
[\Gamma(\cdot)[\rho(|x|-|x-R \hat{e}|)+1]]^{-1 / 2} f(\Gamma(\cdot)[\rho(|x|+|x-R \hat{e}|)-1]
$$

$$
\left.m, j, \beta_{1}(\cdot, \Gamma(\cdot)), \beta_{2}(\cdot, \Gamma(\cdot)), \cdot, \Gamma(\cdot)\right) \cdot g(\Gamma(\cdot)[\rho(|x|-|x-\operatorname{Re}|)+1]
$$

$$
\left.m, k, \beta_{1}(\cdot, \Gamma(\cdot)), \beta_{2}(\cdot, \Gamma(\cdot)), \cdot, \Gamma(\cdot)\right)
$$

belongs to $H^{2}\left(\mathbb{R}^{3}\right)$ and satisfies

$$
\begin{equation*}
H\left(\rho, Z_{A}, Z_{B}\right) \Psi=E \Psi \tag{2.18}
\end{equation*}
$$

with E given by (2.14) by direct inspection by virtue of (2.1)-(2.12). Conversely, to
 $H\left(\rho, Z_{A}, Z_{B}\right) \not \psi^{\prime}=E \psi$. The change of variables (2.1)-(2.2) induces the direct sum decomposition

$$
\begin{gather*}
L^{2}\left(\mathbb{R}^{3}\right)=\bigoplus_{m=-\infty}^{+\infty} L_{m}, \quad L_{m}=L^{2}(\Omega ; d \omega) \otimes e^{i m \phi} \\
\Omega=\{(\xi, \eta): 1<\xi<\infty,-1<\eta<1\} \tag{2.19}\\
d \omega=\left(\xi^{2}-\eta^{2}\right) d \xi d \eta .
\end{gather*}
$$

Now L_{m} reduces $H\left(\rho, Z_{A}, Z_{B}\right)$ for all m. Hence we can write

$$
\begin{equation*}
\Psi=\sum^{+\infty} e^{i m \phi} \Phi(m ; \xi, \eta ; E(m)) \tag{2.20}
\end{equation*}
$$

with

$$
\begin{align*}
& \|\left(\eta^{2}-\xi^{2}\right)^{-1}\left[\frac{\partial}{\partial \xi}\left(\zeta^{2}-1\right) \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\left(1-\eta^{2}\right) \frac{\partial}{\partial \eta}\right. \\
& \left.\quad+\frac{m^{2}\left(\zeta^{2}-\eta^{2}\right)}{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)}\right] \Phi(m ; \xi, \eta ; E(m))_{\delta^{2}(\xi, d(u)}<\infty \tag{2.21}
\end{align*}
$$

and

$$
\begin{align*}
& -4 \rho^{2}\left(\xi^{2}-\eta^{2}\right)^{-1}\left[\frac{\partial}{\partial \xi}\left(\xi^{2}-1\right) \frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta}\left(1-\eta^{2}\right) \frac{\partial}{\partial \eta}\right. \\
& \left.\quad+\frac{m^{2}\left(\xi^{2}-\eta^{2}\right)}{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)}\right] \Phi(m ; \xi, \eta ; E(m))-2 \rho Z_{A}(\xi+\eta)^{-1} \Phi(m ; \xi, \eta ; E(m)) \\
& \quad-2 \rho Z_{B}(\xi-\eta)^{-1} \Phi(m ; \xi, \eta ; E(m))=E(m) \Phi(m ; \xi, \eta ; E(m)) \tag{2.22}
\end{align*}
$$

for some $m \in \mathbb{Z}$, i.e., we have

$$
\begin{equation*}
H\left(\rho, Z_{A}, Z_{B}\right)=\oplus_{m=-\infty}^{+\infty} H_{m}\left(\rho, Z_{A}, Z_{B}\right) \tag{2.23}
\end{equation*}
$$

where $H_{m 1}\left(\rho, Z_{A}, Z_{n}\right)$ is the self-adjoint operator on $L^{2}(\Omega, d \omega)$ defined as the action of the left side of (2.22) on all functions in $L^{2}(\Omega ; d \omega)$ satisfying (2.21). Therefore, there is an $m \in \mathbb{Z}$ such that $E=E(m) \in \sigma_{d f}\left(H_{m}\right)$. On the other hand the map $(Q f)(\xi, \eta)=\left(\xi^{2}-\eta^{2}\right)^{1 / 2} f(\xi, \eta)$ is unitary from $L^{2}\left(\Omega ; d(0)\right.$ to $L^{2}(\Omega ; d \xi d \eta)$ and therefore $E(m)$ is an eigenvalue of H_{m} if and only if 0 is eigenvalue of $Q H_{m} Q^{-1}$, defined as the action of

$$
\begin{aligned}
-\frac{1}{2} & \frac{\partial}{\partial \xi}\left(\xi^{2}-1\right) \frac{\partial}{\partial \xi}-\frac{1}{2} \frac{\partial}{\partial \eta}\left(1-\eta^{2}\right) \frac{\partial}{\partial \eta}-\frac{1}{4} R^{2} E\left[\left(\xi^{2}-1\right)+\left(1-\eta^{2}\right)\right] \\
& -\frac{1}{2} R\left(Z_{A}+Z_{B}\right) \xi+\frac{1}{2}\left(Z_{A}+Z_{B}\right) \eta+\frac{1}{2} m^{2}\left[\left(\xi^{2}-1\right)^{-1}+\left(1-\eta^{2}\right) \quad\right]
\end{aligned}
$$

on $Q D\left(H_{m}(\cdot)\right)$. In turn, we have

$$
\begin{equation*}
Q H_{m}(\cdot) Q^{-1}=U T_{m}(\cdot) U{ }^{\prime} \otimes I_{L_{2}^{2}(0,2 r)}+I_{L^{2}(0, \infty)} \otimes V S_{m}(\cdot) \vee \quad, \tag{2.24}
\end{equation*}
$$

where $T_{m}(\cdot)$ and $S_{m}(\cdot)$ are defined above, and $(U f)(\xi)=\left(\xi^{2}-1\right){ }^{1 / 2} f(r(\xi-1))$, $(V g)(\eta)=\left(1-\eta^{2}\right)^{-1 / 2} g(r(\eta+1))$. Therefore (2.24) and the theorem on the spectrum of tensor products (sce, e.g., Reed and Simon [15, Theorem VIII.33]) precisely characterize the union of the sets of values of $E(m)$ such that $Q H_{m}(\cdot) Q$ 'has the cigenvalue 0 , in the form (2.14).

We can now formulate the $1 / R$ expansion via the separated equations.

Proposition 11.3. Consider the cigenvalues $\lambda\left(m, j ; \beta_{1}, \beta_{2} ; Z_{A}, Z_{B} ; \tau\right) \equiv \lambda(\cdot, \tau)$ of $X_{m}(\cdot)$, and the eigenwatues $\mu\left(m, k ; \beta_{1}, \beta_{2} ; Z_{A}, Z_{n} ; \tau\right) \equiv \mu(\cdot, \tau)$ of $S_{m}(\cdot)$. Denote once again by $\lambda(m, j, \beta) \equiv \lambda(\cdot)$ the eigenvalues of $T_{m}^{\prime}(\beta)$. Then:
(1) For any fixed $m, j, \beta_{1}>0, \beta_{2}>0, Z_{A}>0$, and $Z_{B} \in \mathcal{R}$, the functions $A(\cdot, \tau)$ and $\mu(\cdot, \tau)$ admit asymptotic expansions near $\dot{\lambda}(\cdot)$ to all orders in $\tau / 2>0$ as $\tau \downarrow 0$:

$$
\begin{align*}
& \lambda(\cdot, \tau) \sim \hat{\lambda}(\cdot)+\sum_{n=1}^{\infty} A_{n}(\cdot)(\tau / 2)^{n}, \tag{2.25}\\
& \mu(\cdot, \tau) \sim \lambda(\cdot)+\sum_{n=1}^{\infty} B_{n}(\cdot)(\tau / 2)^{n} . \tag{2.26}
\end{align*}
$$

The coefficients $A_{n}\left(m, j, \beta_{1}, \beta_{2}, Z_{A}, Z_{13}\right), B_{n}\left(m, k ; \beta_{1}, \beta_{2}, Z_{A}, Z_{B}\right)$ are given by Rayleigh-Schrödinger perturbation theory in $L^{2}(0,+\infty)$ in the following way: the unperturbed operator is $\Gamma_{m}^{\prime}\left(\beta_{1}\right), T_{m}^{1}\left(\beta_{2}\right)$, respectivel!, and the perturbation is the maximal multiplication operator by $F(u, \cdot, \tau)$ in case $(2.25), G(v, \cdot, \tau)$ in case (2.26), respectively. Here

$$
\begin{equation*}
F(u, \cdot, \tau)=\sum_{n=1}^{\varepsilon} F_{n}(u, \cdot)(\tau / 2)^{n} \tag{2.27}
\end{equation*}
$$

$F_{n}(u, \cdot)=0, \quad u>2 r$,

$$
=\left[\left(\beta_{1}+\beta_{2}\right) Z_{A}^{-1}\left(Z_{A}+Z_{B}\right)-\beta_{1}\right](-1)^{n} u^{n-1}+\frac{m^{2}-1}{4}(-1)^{n}(n+1) u^{n-2}
$$

$$
\begin{equation*}
u<2 r \tag{2.28}
\end{equation*}
$$

$G(v, \cdot, \tau)=\sum_{n=1}^{r} G_{n}(u, \cdot)(\tau / 2)^{n} ;$
$G_{n}(v, \cdot)=0, \quad v \geqslant 2 r$,

$$
=-\left[\beta_{2}-Z_{A}^{-1}\left(Z_{A}-Z_{B}\right)\left(\beta_{1}+\beta_{2}\right)\right] v^{n} \cdot \frac{m^{2}-1}{4}(n+1) v^{n-2},
$$

$$
\begin{equation*}
v<2 r \tag{2.30}
\end{equation*}
$$

(2) The finctions $\dot{\lambda}\left(m, j, \beta_{1}, \beta_{2}, \cdot, \tau\right), \mu\left(m, k ; \beta_{1}, \beta_{2}, \cdot, \tau\right)$ are C^{∞} in $\left(\beta_{1}, \beta_{2}, \tau\right)$ in a neighborhood of $\beta(m, j) \times \beta(m, k) \times \tau,(|m|, j, k)=0, i, \ldots, \bar{\tau}>0$. The functions $\tau \mapsto \beta_{2}(m, k, \cdot, \tau)$ and $\tau \mapsto \beta_{1}(m, j, k, \cdot, \tau)$ are C^{∞} near any given $\tau>0$, and admit an asymptotic expansion 10 all orders as $\tau \downarrow 0$:

$$
\begin{align*}
& \beta_{2}(m, k, \cdot \tau) \sim \beta(m, k)+\sum_{n=1}^{s} L_{n}(m, k, \cdot)(\tau / 2)^{n} \tag{2.31}\\
& \beta_{1}(m, j, \cdot, \tau) \sim \beta(j, k)+\sum_{n=1}^{\prime} M_{n}(m, j, \cdot)(\tau / 2)^{n} \tag{2.32}
\end{align*}
$$

The functions $\rho \mapsto \Gamma(m, j, k ; \rho)$ and $\rho \mapsto E(m, j, k, \rho)\left(\right.$ given by (2.14)) are C^{∞} near any given $\bar{\rho}>0$ and admit an aswmptotic expansion to all orders as $\rho \rightarrow 0$. The asjmptotic expansion for $E(m, j, k ; \rho)$ coincidies with the $1 / R$ expansion near the
eigenvalue of $H_{0}\left(Z_{A}\right)$ of magnetic quantum number m and parabolic quantum numbers (j, k) written as

$$
\begin{equation*}
E(m, j, k ; \rho) \sim E(m, j, k)+\sum_{n=1}^{n} E_{n}(m, j, k) \rho^{n} . \tag{2.33}
\end{equation*}
$$

Remarks. (1) Remark (3) after Proposition II. 1 can now be more precisely formulated as follows: for any eigenvalue $E(m . j, k)=-\frac{1}{2} Z_{A}^{2}(|m|+j+k+1)^{-2}$ of $H_{0}\left(Z_{A}\right),|m|, j, k=0,1, \ldots$ fixed, and any open interval I containing only $E(m, j, k)$, there is $M(m, j, k)$ such that for $\rho<M$ there are precisely two cigenvalues $E_{ \pm}(m, j, k ; \rho)$ of $H\left(\rho, Z_{A}\right)$ in I. Furthermore, we have [13]
$\Delta E(m, j, k ; \rho) \equiv E_{+}(m, j, k ; \rho)-E_{-}(m, j, k ; \rho)$

$$
=O\left(m, j, k ; \rho^{-(2 k+|m|+1)} \exp (-1 / \rho(j+k+|m|+1))\right), \quad \text { (2.34) }
$$

where, here and elsewhere,.$O(m, j, k ; x)$ stands for order x with constant depending on (m, j, k).
(2) Completely analogous statements hold for $S_{m}\left(\beta_{1}, \beta_{2}, Z_{A}=Z_{\beta} ; \tau\right) \equiv$ $S_{m}\left(\beta_{2}, Z_{A}, \tau\right)$: given any eigenvalue $\mu\left(m, k ; \beta_{2}, Z_{1}\right)$ of $S_{m,}\left(\beta_{2}, 0\right)$ (delined by (2.15)) and any open interval $/$ as above, there is a constant $M(m, k)$ such that for $\tau<M$, $S_{m}\left(\beta_{2}, Z_{A}, \tau\right)$ has exactly two cigenvalues $\mu_{ \pm}\left(m, k, \beta_{2}, Z_{A}, \tau\right)$ in l, such that

$$
\begin{equation*}
\Delta \mu\left(m, k ; \beta_{2}, Z_{A} ; \tau\right)=\mu_{+}(\cdot)-\mu(\cdot)=O\left(m, k ; \tau \quad(2 k+\mid m)^{\prime \prime}\right), \quad(/ \tau) \tag{2.35}
\end{equation*}
$$

uniformly on compacts in $\left(\beta_{2}, Z_{1}\right) \in \mathbb{B e}^{-1}$. Hence, upon puting the implicit relation in explicit form for each fixed $\pm m, k=0,1, \ldots$ there are $\beta_{2}^{\prime}\left(m, k ; Z_{A}, \tau\right) \rightarrow$ $\beta\left(m, k ; Z_{A}\right)$ as $\tau \rightarrow 0$ such that

$$
\begin{equation*}
\Delta \beta_{2}\left(m, k ; Z_{A}\right)=\beta_{2}^{+}(\cdot)-\beta_{2}(\cdot)=O\left(m, k ; \tau \cdot{ }^{(12 k+1 m 1+11} c^{\cdot 1 / \tau}\right) \tag{2.36}
\end{equation*}
$$

uniformly on compacts in $Z_{1} \in \mathbb{R}^{+}$. For the proof of (2.35), (2.36), see Harrell [13].
Proof. Assertion (1) can be proved by well-known arguinents of singular perturbation theory (we omit the details because they have been worked out in the present case by Morgan and Simon in the more general context of the nonseparated formalism). A statement stronger than (2), namely, local analyticity in $\left(\beta_{1}, \beta_{2}, \tau\right)$ can be proved by exactly the same argument as in Proposition III.3(1) for the function $i\left(\cdot, \beta_{1}, \beta_{2}, \tau\right)$. If we now observe that by the unitary rescaling, $(V(r) f)(v)=r^{1 / 2} f(\tau v)$ mapping $L^{2}(0,2 r)$ onto $L^{2}(0,2)$ onc-to-one, $\mu\left(\cdot, \beta_{1}, \beta_{2}, \tau\right)$ is an eigenvalue of $V(r) S_{m}(\cdot) V(r)^{-1}$, which is the action

$$
\begin{aligned}
r^{-2}\left[-\frac{d^{2}}{d v^{2}}+\frac{1}{4} r^{2}-\frac{r \beta_{2}}{v}+\frac{m^{2}-1}{4 v^{2}}\right. & +r\left[-\frac{\beta_{3}-Z_{A}^{\prime}\left(Z_{A}-Z_{B}\right)\left(\beta_{1}+\beta_{2}\right)}{2-v}\right] \\
& \left.+\frac{m^{2}-1}{4}\left(\frac{2}{v(2-v)}+\frac{1}{(2-v)^{2}}\right)\right]
\end{aligned}
$$

on $V(r) D\left(S_{m}(\cdot)\right)$, we get by the same argument also the local analyticity of $\left(\beta_{1}, \beta_{2}, \tau\right) \mapsto \mu\left(\cdot, \beta_{1}, \beta_{2}, \tau\right)$ because it is immediately seen that $V(r) D\left(S_{m}(\cdot)\right)$ is independent of ($\left.\beta_{1}, \beta_{2}, \tau\right)$. The implicitly defined functions $\tau \mapsto \beta_{1}(m, j, k ; \tau), \tau \mapsto$ $\beta_{2}(m, k ; \tau)$ exist by Proposition II.2(4) and are thus locally \mathcal{C}^{∞}. Hence the validity of the asymptotic expansions (2.31), (2.32) is a consequence of (1) and of the implicit-function theorem. The functions $\tau \mapsto \gamma(m, j, k ; \tau)^{-1} \tau$ are invertible again by II.2(4), and $\Gamma(m, j, k ; \rho)$ and $E(m, j, k ; p)$ are locally C^{∞} and admit asymptotic expansions to all orders once again by the implicit-function and local-invertibility theorems, given (2.13), (2.14), (2.31), and (2.32). Finally, we note that the expansion for $E(\cdot, \rho)$ generated via (2.31), (2.32), (2.13), and (2.14) coincides with the $1 / R$ expansion because a function can have at most one asymptotic expansion.

III. Stablity, Analyticity, and Summability

The main purpose of this section is to identify the Borel sum of the $1 / R$ expansion for H_{2}^{+}near any eigenvaluc $E\left(m, j, k ; Z_{A}\right)$ of $H_{0}\left(Z_{A}\right)$ of magnetic quantum number m and parabolic quantum numbers (j, k).
To this end, we consider two distinct cases in the two-center operator family $H\left(\rho, Z_{A}, Z_{t}\right)$, which we now describe in order also to establish some further notation used throughout the rest of this paper.
Case A (the H_{2}^{+}problem): $\rho>0, Z_{A}=Z_{B}=1$.
Case B: $\rho=-\rho^{\prime}, \rho^{\prime}>0, Z_{A}=1, Z_{B}=-1$.
We denote $H(\rho, 1,1) \equiv H(\rho), H\left(\rho^{\prime}, 1,-1\right) \equiv H^{\prime}\left(\rho^{\prime}\right)$. The physical interpretation of $H^{\prime}\left(\rho^{\prime}\right)$ was mentioned in Section I, and its relevant mathematical properties are summarized as follows

Proposition III.1. Let $H^{\prime}\left(\rho^{\prime}\right)$ he the operator in $L^{2}\left(\mathbb{R}^{3}\right)$ defined as the action of $-\frac{1}{2} A-|x|^{\prime}+\left|x+\dot{c} / \rho^{\prime}\right|^{-1}$ on $H^{2}\left(\mathbb{R}^{3}\right)$. Then $H^{\prime}\left(\rho^{\prime}\right)$ enjoys properties (1), (2) of Proposition 11.1, and, furthermore:
(1) Each eigenoalue E of $H_{0}\left(Z_{1}=1\right.$) is stable (in the sense of Karo [16, Sect. VIIL.1.5]) as an cigenvalue $E^{\prime}\left(\rho^{\prime}\right)$ of $H^{\prime}\left(\mu^{\prime}\right)$ as $\mu^{\prime} \downarrow 0$.
(2) Let $E^{\prime}\left(\rho^{\prime}\right)$ be the ground state of $H^{\prime}\left(\rho^{\prime}\right)$, and $E^{\prime}\left(\rho^{\prime}\right) \sim E+\sum_{n=1}^{\infty}, E_{n}^{\prime} .\left(\rho^{\prime}\right)^{n}$ be its ρ^{\prime} expansion near E, the ground state of $H_{0}\left(Z_{1}=1\right)$. Then $E_{n}^{\prime}=(-1)^{n} E_{n}$, where E_{n} are the coefficients of the $1 / R$ expansion for H_{2}^{+}near E.
Remark. We will sce below that actually $E_{n}^{\prime}(m, j, k)=(-1)^{n} E_{n}(m, j, k)$ for each triple of quantum numbers $(|m|, j, k)=0,1,2, \ldots$.
Proof. Assertion (1) is an immediate application of the Hunziker-Vock stability theorem [18]: in fact,
as $\rho^{\prime} \rightarrow 0$, and this implies (see again Re. [8, Lemma 1.2]) that $\|^{\prime}\left(\rho^{\prime}\right)$ converges in strong-resolvent sense to $\|_{0}\left(Z_{A}\right)$ as $\mu^{\prime} \rightarrow 0$. Furthermore, given $x \mapsto \nvdash(x) \in C_{0}^{\prime}\left(\mathbb{R}^{3}\right)$, $\chi(x)=1, \quad|x| \leqslant 1 ; \quad \chi(x)=0, \quad|x| \geqslant 2$, and setting $M_{n}(x)=1-\chi(x / m)$, we have $\lim _{n \rightarrow \infty} \operatorname{dist}\left(E, W_{n}\left(\rho^{\prime}\right)\right)>0$ uniformly with respect to ρ^{\prime} for all $E<0$. Here

$$
W_{n}\left(\rho^{\prime}\right)=\left\{z: z=\left\langle M_{n} u, H^{\prime}\left(\rho^{\prime}\right) M_{n} u\right\rangle ; u \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right) ;\|u\|=1\right\}
$$

In fact, $\left\langle-\frac{1}{2} \Delta M_{n} u, M_{n} u\right\rangle+\left\langle\mid x+\rho^{\prime} e^{-1} M_{n} u, M_{n} u\right\rangle \geqslant 0$ independently of n, and $\left.\left.\langle-| x\right|^{-1} M_{n} u, M_{n} u\right\rangle \geqslant-1 / n$. Since all eigenvalues of H_{0} are negative, the conditions of [18, Theorem 1.1] are satisfied and (1) is proved. Assertion (2) is trivial given Remark (2) after Proposition II.I. I

Let us now specialize the general formalism of Propositions 11.2, 11.3 to the Cases A and B . We use the convention of denoting each quantity relative to $H^{\prime}\left(f^{\prime}\right)$ with a prime on the corresponding quantity relative to $H(\rho)$. More specifically, considering the operators $T_{m}(\cdot)$ and $S_{m}(\cdot)$ delined in Proposition 11.2, we set for Case A (the H_{2}^{+}system $\left.Z_{A}=Z_{B}=1\right)$

$$
\begin{align*}
& T_{m}\left(\beta_{1}, \beta_{2} ; 1,1, \tau\right)=T_{m}\left(\beta_{1}, \beta_{2}, \tau\right) \tag{3.1}\\
& S_{m}\left(\beta_{1}, \beta_{2}, 1,1, \tau\right)=S_{m}\left(\beta_{2}, \tau\right)
\end{align*}
$$

because the differential expressions $t_{m}(\cdot)$ and $s_{m}(\cdot)$ simplify to

$$
\begin{align*}
t_{m}\left(\beta_{1}, \beta_{2}, \tau\right)= & -\frac{d^{2}}{d u^{2}}+\frac{1}{4}-\frac{\beta_{1}}{u}+\frac{m^{2}-1}{4 u^{2}}-\frac{2 \beta_{2}+\beta_{1}}{u+2 r} \\
& +\frac{m^{2}-1}{4}\left((u+2 r)^{2}-2 u^{-1}(u+2 r)^{-1}\right) \tag{3.2}
\end{align*}
$$

and

$$
\begin{align*}
s_{m}\left(\beta_{2}, \tau\right)= & -\frac{d^{2}}{d u^{2}}+\frac{1}{4}-\frac{\beta_{2}}{v}+\frac{m^{2}-1}{4 v^{2}}-\frac{\beta_{2}}{2 r-v} \tag{3.3}\\
& +\frac{m^{2}-1}{4}\left(2 v^{-1}(2 r-v)^{1}+(2 r-v)^{-2}\right)
\end{align*}
$$

For Case B, i.c., the operator $H^{\prime}\left(\rho^{\prime}\right)$ with $Z_{A}=-Z_{B}=1$, $\rho^{\prime}=-\rho$, the scparated operators are, respectively,

$$
\begin{equation*}
\Gamma_{m}\left(\beta_{1}^{\prime}, \beta_{2}^{\prime} ; 1,-1, \tau^{\prime}\right) \equiv T_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right), \tag{3.4}
\end{equation*}
$$

i.e., the action on $D\left(T_{m}\right)$ of the differential expression

$$
\begin{align*}
t_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right)= & -\frac{d^{2}}{d u^{2}}+\frac{1}{4}-\frac{\beta^{\prime}}{u}+\frac{m^{2}-1}{4 u^{2}}+\frac{\beta_{1}^{\prime}}{2 r^{\prime}+u} \\
& +\frac{m^{2}-1}{4}\left(\left(2 r^{\prime}+u\right)^{-2}-2 u^{\prime}\left(2 r^{\prime}+u\right)^{\prime}\right) \tag{3.5}
\end{align*}
$$

and

$$
\begin{equation*}
S_{m}\left(\beta_{1}^{\prime}, \beta_{2}^{\prime} ; 1,-1, \tau^{\prime}\right) \equiv S_{m}^{\prime}\left(\beta_{1}^{\prime}, \beta_{2}^{\prime} ; \tau^{\prime}\right) \tag{3.6}
\end{equation*}
$$

i.e., the action on $D\left(S_{m}\right)$ of the differential expression

$$
\begin{align*}
S_{n \prime}^{\prime}\left(\beta_{1}^{\prime}, \beta_{2}^{\prime} ; \tau^{\prime}\right)= & -\frac{d^{2}}{d v^{2}}+\frac{1}{4} \frac{\beta_{2}^{\prime}}{v}+\frac{m^{2}-1}{4 v^{2}}+\frac{2 \beta_{1}^{\prime}+\beta_{2}^{\prime}}{2 r^{\prime}-v} \\
& +\frac{m^{2}-1}{4}\left(\left(2 r^{\prime}-v\right)^{-2}+2 v^{-1}\left(2 r^{\prime}-v\right)^{-1}\right) \tag{3.7}
\end{align*}
$$

The functions $\lambda\left(m, j, \beta_{1}, \beta_{2}, \tau\right) \equiv \lambda\left(m, j, \beta_{1}, \beta_{2}, 1,1, \tau\right), \mu\left(m, k, \beta_{2}, \tau\right) \equiv \mu\left(m, k ; \beta_{1}\right.$, $\left.\beta_{2}, 1,1, \tau \tau\right), \quad \beta_{2}\left(m, k ; \beta_{1} ; \tau\right) \equiv \beta_{2}\left(m, k ; \beta_{1}, 1,1, \tau\right), \quad \beta_{1}(m, j, k ; \tau) \equiv \beta_{1}(m, j, k ; 1,1, \tau)$, $\gamma(m, j, k ; \tau) \equiv \gamma(m, j, k ; 1,1, \tau), \quad \Gamma(m, j, k ; \rho) \equiv \Gamma(m, j, k ; 1,1, p)$, and their primed counterparts have the same meaning as in Scction II. We denote again by $\dot{\lambda}(m, j, \beta)$ the cigenvalues of $\Gamma_{m}^{0}(\beta)$. The functions

$$
\begin{equation*}
E(m, j, k ; \rho)=-\frac{1}{2}[\gamma(m, j, k ; \Gamma(m, j, k ; \rho))]^{-2} \tag{3.8}
\end{equation*}
$$

$(|m|, j, k)=0,1, \ldots$,

$$
\begin{equation*}
E^{\prime}\left(m, j, k ; \rho^{\prime}\right)=-\frac{1}{2}\left[\gamma^{\prime}\left(m, j, k ; \Gamma^{\prime}\left(m, j, k ; \rho^{\prime}\right)\right)\right]^{-2} \tag{3.9}
\end{equation*}
$$

yield respectively the discrete spectra of $H(\rho)$ and $H^{\prime}\left(\rho^{\prime}\right)$. Furthermore, formulae (2.27)-(2.30) together with their primed counterparts simplify to
$F_{n}\left(u, \beta_{1}, \beta_{2}\right)=0$,
$u \geqslant 2 r$,

$$
\begin{equation*}
=\left(2 \beta_{2}+\beta_{1}\right)(-1)^{n} u^{n-1}+\frac{m^{2}-1}{4}(-1)^{n}(n+1) u^{n-2}, \quad u<2 r, \tag{3.10}
\end{equation*}
$$

$$
\begin{align*}
F_{n}^{\prime}\left(u, \beta_{1}^{\prime}\right) & =0, & u \geqslant 2 r \\
& =\beta_{1}^{\prime}(-1)^{n-1} u^{n-1}+\frac{\left(m^{2}-1\right)}{4}(-1)^{n}(n+1) u^{n-2}, & u<2 r
\end{align*}
$$

and

$$
\begin{array}{rlr}
G_{n}\left(v, \beta_{2}\right) & =0, & v \geqslant 2 r, \\
& =-\beta_{2} v^{n} \quad 1+\frac{m^{2}-1}{4}(n+1) v^{n-2}, & v<2 r, \tag{3.12}\\
G_{n}^{\prime}\left(v, \beta_{1}^{\prime}, \beta_{2}^{\prime}\right)=0, \quad v \geqslant 2 r, &
\end{array}
$$

$$
\begin{equation*}
=\left(2 \beta \beta_{2}^{\prime}+\beta_{1}^{\prime}\right) v^{n-1}+\frac{m^{2}-1}{4}(n+1) v^{n-2} \tag{3.13}
\end{equation*}
$$

so that the expansions (2.25) and (2.26) for $\mu\left(m, k ; \beta_{2}, \tau\right)$ and $\lambda\left(m, j, \beta_{1}, \beta_{2}, \tau\right)$ hold, together with their primed counterparts for $\mu^{\prime}\left(m, k ; \beta_{1}^{\prime}, \beta_{2}^{\prime}, \tau^{\prime}\right)$ and
$\lambda\left(m, j, \beta_{1}^{\prime}, \tau^{\prime}\right)$. We denote their cocflicients by $B_{n}\left(m, k ; \beta_{2}\right)$. $A_{n}\left(m, j ; \beta_{1}, \beta_{2}\right)$, $B_{n}^{\prime}\left(m, k ; \beta_{1}^{\prime}, \beta_{2}^{\prime}\right)$, and $A_{n}^{\prime}\left(m, j ; \beta_{1}^{\prime}\right)$, respectively. Analogously, we denote by $L_{n}^{\prime}(m, k)$ and $M_{n}^{\prime}(m, j, k)$ the coefficients of the primed counterparts of the asymplotic expansions (2.31) and (2.32), specialized in this way. Obviously, the r-dependence implicit in Eq. (3.10)-(3.13) does not affect the computations of the perturbation coefficients; because of the exponential decay of the unperturbed cigenfunction, it introduces only exponentially small corrections.
To get the above-mentioned result on the identification of the Borel sum of the $1 / R$ expansion as a complex eigenvalue obtained by interconnecting $H(\rho)$ and $H^{\prime}\left(\rho^{\prime}\right)$, the "double-well" operator $S_{m}\left(\beta_{2}, \tau\right)$ in the finite interval $(0,2 r)$ has to be replaced by the analytic continuation up to $\tau^{\prime}=e^{ \pm i \pi} \tau, \tau>0$, of the "single-well" operator $T_{m}\left(\beta_{1}^{\prime}, \tau^{\prime}\right), \tau^{\prime}>0$, in the infinite interval $(0,+\infty)$. This mechanism, which identifies the Borel sum for $\tau^{\prime}>0$, is basically the same as that which gives rise to existence and Borel summability of resonances out of the separability in squared parabolic coordinates in the Lo Surdo-Stark effect [7]. A major difference is that here the "single-well" equation is that of Case B. Of course, the non-self-adjoint, stabic problem having the same $1 / R$ expansion as H_{2}^{+}can be immediately defined (see the subsequent proposition) within the separated formalism out the operators $T_{m}\left(\beta_{1}^{\prime}, e^{-i \pi} \tau\right), T_{m}\left(\beta_{1}, \beta_{1}^{\prime}\left(\tau e^{-\pi}\right), \tau\right)$ realized below. The result, whose proof is to be obtained in the course of this section, reads as follows:

Theorem III.2. Let $(|m|, j, k)=0,1$,... be fixed. Then for uny $\mu=\mu(m, j, k)>0$ there are $0<M=M(m, j, k)<\infty$ and $0<M_{1}(m, k)<\infty$ such that:
(1) The implicitly defined functions $\tau^{\prime} \mapsto \beta \beta_{1}^{\prime}\left(m, k: \tau^{\prime}\right)$ exist as holomorphic functions of τ^{\prime} for $0<M_{1},\left|\arg \tau^{\prime}\right|<\pi$, admit analytic comtinuation to the Ricmannsurface sector $\wp(m, k)=\left\{\tau^{\prime}: 0<\left|\tau^{\prime}\right|<M_{1}\left|:\left|\arg \tau^{\prime}\right|<\frac{1}{2} \pi-\mu\right\}\right.$ across the negutive real axis, and $\lim \beta_{1}^{\prime}\left(m, k ; \tau^{\prime}\right)=\beta(m, k)=k+\frac{1}{2}(|m|+1)$ as $\tau^{\prime} \rightarrow 0, \tau^{\prime} \in \tau$.
(2) The implicitly defined functions $\tau \mapsto \beta,\left(m, j ; \beta_{1}\left(m, k: \tau{ }^{\prime}{ }^{i}\right)\right.$. $\left.\tau\right)$, which will be denoted for comvenience as $\beta,(m, j, k ; \tau)$, exists as hribomerphic finn tions of τ for $0<|\tau|<M, 0<\arg \tau<\pi$, admit analyzic continuation to the Ricmumn-surface sector $\partial(m, j, k)=\{\tau: 0<|\tau|<M ;-\pi / 2+\mu<a r g \tau<\pi-\mu\}$ ucross the real axis. and $\lim \beta_{1}(m, j, k ; \tau)=\beta(m, j)=j+\frac{1}{2}(|m|+1)$ as $\tau>0, \tau \in \bar{J}(m, j, k)$.
(3) The functions $\tau \mapsto \gamma_{1}(m, j, k ; \tau)=\beta_{1}(m, j, k ; \tau)+\beta_{1}^{\prime}\left(m, k ; \tau r^{\text {in }}\right)$ are holomorptic for $0<|\tau|<M, 0<\arg \tau<\pi$, and admit anatryic continuation to $\partial(m, j, k)$ as ahove. The functions $\tau_{i} ;(m, j, k ; \tau)^{-1}$ are invertible in $\delta(m, j, k)$, the inverse functions $\rho \mapsto \Gamma_{1}(m, j, k ; \rho)$ of $\tau_{1}(m, j, k ; \tau)^{-1}$ are holomorphic for $0<|\rho|<M, 0<a r g \rho<\pi$, and admit analytic contimation $10 \leq(m, j, k)$ as above.
(4) The functions

$$
\begin{equation*}
\rho \mapsto E_{1}(m, j, k ; \rho)=-\frac{1}{2}\left[\eta_{1}\left(m, j, k ; \Gamma_{1}(m, j, k ; \rho)\right)\right]^{-2} \tag{3.14}
\end{equation*}
$$

and holomorphic for $0<\arg \rho<\pi$, admit analytic continuation to $\int(m, j, k)$ as above, and have the same $\rho=1 / R$ expansion as $E(m, j, k ; \rho)$.
(5) The $1 / R$ expansion near any eigenvalue $E(m, j, k)$ of H_{0} is Borel summable not to $E_{+}(m, j, k ; \rho)$ or to $E_{-}(m, j, k ; \rho)$, but to $E_{1}(m, j, k ; \rho)$ for $0<|\rho|<M$, $-\pi / 2+\mu<\arg \rho<\frac{3}{2} \pi-\mu$.
Remarks. (1) The definition of ρ^{\prime} as $e^{-i \pi} \rho$ makes $\operatorname{Im} E_{1}(\cdot, \rho) \leqslant 0$. The opposite choice of phase would have made $\operatorname{Im} F_{5}(, \tau) \geqslant 0$.
(2) In terms of the Borel summability in the standard sense (see, e.g., Reed and Simon [15, Sect. XII.4]) statement (5) means that the $1 / R$ expansion is Borel summable to $E_{1}(m, j, k ; \rho)$ for $0<\arg \rho<\pi,|\rho|<M$. Thus, for ρ real $E_{1}(m, j, k ; \rho)$ is determined from the Borel sum ((4)) and analytic continuation to the real axis. On the other hand, under the present conditions, the analytic continuation can be explicitly written in terms of the Nevanlinna modified representation of the Borel integral (for details see, e.g., Sokal [26]), namely,

$$
\begin{gather*}
E_{1}\left(m, j, k ; e^{i x} \rho\right)=R \int_{0}^{\infty} e^{-R e^{m}} F_{x}(t) d t, \tag{3.15}\\
-\pi / 2+\mu<\alpha+\arg \rho<\frac{3}{2} \pi-\mu,
\end{gather*}
$$

where $F_{x}(t)$ is the Borel transform of the $1 / R$ expansion computed at $\rho=t e^{i x}$ Thercfore statement (5) can be considered equivaient to (3.15).
(3) Statement (5), and hence also Remark (2) above, applies to the separation-constant eigenvalues as well. That is, the perturbation serics (2.32) coincides with the perturbation series for $\beta_{1}^{\prime}\left(\cdot, \tau e^{-i \pi}\right)$ and is Borel summable to that function and not to $\beta_{2}^{ \pm}(\cdot, \tau)$; the perturbation series (2.31) is Borel summable to $\beta_{1}(\because \tau)$ and not to $\beta_{1}\left(\cdot ; \beta_{2}^{ \pm}(\cdot, \tau), \tau\right)$; and the series for γ is summable not to $\gamma(\cdot, \tau)$ but to $\gamma_{1}(\because \tau)$.
(4) Interchanging the roles of ρ and ρ^{\prime}, a statement equivalent to (5) is that the ρ^{\prime} expansion for each eigenvalue $E^{\prime}\left(m, j, k ; \rho^{\prime}\right)$ of $H^{\prime}\left(\rho^{\prime}\right)$ is Borel summable to $E_{2}\left(m, j, k ; \rho^{\prime}\right) \equiv-\frac{1}{2}\left[\gamma_{2}\left(m, j, k ; \Gamma_{2}\left(m, j, k ; \rho^{\prime}\right)\right)\right]^{-2}$. Herc $\tau^{\prime} \mapsto \gamma_{2}\left(m, j, k ; \tau^{\prime}\right)=$ $\beta_{1}^{\prime}\left(m, j ; \tau^{\prime}\right)+\beta_{2}\left(m, k ; \beta_{1}^{\prime}\left(m, j ; \tau^{\prime}\right)\right.$, $\left.e^{-i \tau^{\prime}}\right)$, and $\beta^{\prime} \mapsto \Gamma_{2}\left(m, j, k ; \rho^{\prime}\right)$ is the inverse function of $\tau^{\prime} / /_{2}\left(\cdot ; \tau^{\prime}\right)$. Of course the remarks above apply also to this case.
(5) We will sce in Proposition IV. 1 that Im $E_{1}(\cdot, \rho)$ is non-zero for ρ real and small. Since the $1 / R$ expansion has real coefficients, the Borel summability implies its divergence.
The first step in proving Theorem HIL 2 is represented by the analysis of the operator families $T_{m 1}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right), T_{m}\left(\beta_{1}, \beta_{2}, \tau\right)$ for suitable complex values of the parameters. For $\theta \in \mathbb{C},|\operatorname{lm} \theta|<\pi / 2$, set

$$
\begin{align*}
\rho\left(u, m, \beta_{1}, \beta_{2}, \tau, \theta\right)= & -\frac{2 \beta_{1}+\beta_{1}}{e^{u} u+2 r} \\
& +\frac{m^{2}-1}{4}\left(\left(e^{\theta} u+2 r\right)^{-2}-2 e^{-v} u^{-1}\left(e^{u} u+2 r\right)^{-1}\right)
\end{align*}
$$

$$
\begin{align*}
q\left(u, m ; \beta_{1}^{\prime}, \tau^{\prime}, \theta\right)= & \frac{\beta_{1}^{\prime}}{2 r^{\prime}+e^{0} u} \\
& +\frac{m^{2}-1}{4}\left(\left(e^{\theta} u+2 r^{\prime}\right)^{-2}-2 e^{-\theta} u^{-1}\left(e^{\theta} u+2 r^{\prime}\right)^{-1}\right. \tag{3.17}
\end{align*}
$$

Hence, if we define the differential expressions

$$
t_{m}\left(\beta_{1}, \beta_{2}, \tau, \theta\right)=-e^{-2 u} \frac{d^{2}}{d u^{2}}+e^{-2 u \frac{m^{2}-1}{4 u^{2}}-e^{-0} \frac{\beta_{1}}{u}}
$$

$$
\begin{equation*}
+p\left(u, m, \beta_{1}, \beta_{2}, \tau, 0\right)+\frac{1}{4} \tag{3.18}
\end{equation*}
$$

and

$$
\begin{align*}
t_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}, \theta\right)= & -e^{-2 \prime \prime} \frac{d^{2}}{d u^{2}}+e^{-2 \prime \prime} \frac{m^{2}-1}{4 u^{2}}-e^{-u} \frac{\beta_{1}^{\prime}}{u} \\
& +q\left(u, m ; \beta_{1}^{\prime}, \tau^{\prime}, \theta\right)+\frac{1}{4} \tag{3.19}
\end{align*}
$$

by (3.4) and (3.6), we have

$$
\begin{align*}
t_{m}\left(\beta_{1}, \beta_{2}, \tau, 0\right) & =t_{m}\left(\beta_{1}, \beta_{2}, \tau\right) \tag{3.20}\\
t_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}, 0\right) & =t_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right)
\end{align*}
$$

and

$$
\begin{align*}
t_{m}^{0}\left(\beta_{1}, 0\right) & =t_{m}\left(\beta_{1}, \beta_{2}, 0,0\right) \\
& =c^{-2 \prime \prime} \frac{d^{2}}{d u^{2}}+c^{-20} \frac{m^{2}-1}{4 u^{2}}-c^{-\prime} \frac{\beta_{1}}{u}+\frac{1}{4} \tag{3.21}
\end{align*}
$$

Proposition 111.3. Lét $\left(\beta_{1}^{\prime}, \tau^{\prime}\right) \in \Omega \times C \backslash\left(\mathbb{R}^{+} \cup\{0\}\right) . \Omega$ open, bormded, and simply connected in the half-plane Re $\beta_{1}^{\prime}>0$. Then, for $\{m\}=0,1, \ldots$:
(1) $\Gamma_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right), \Gamma_{m}^{0}\left(\beta_{1}^{\prime}\right)$ are type-A, reat-holomorphic fanilies (in the sense of Kato [16, Scct. VII.1]) of m-sectorial operators in $\left(\beta_{1}^{\prime}, \tau^{\prime}\right)$ jointl) and in β_{1}^{\prime}, respectively, and thus self-adjoint for $\left(\tau^{\prime}, \beta_{1}\right) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$.
(2) $\sigma_{\text {ess }}\left(T_{m}(\cdot)\right)=\sigma_{\text {ess }}\left(T_{m}^{0}(\cdot)\right)=[\dot{1},+\infty)$ for all $\left(\beta_{1}^{\prime}, \tau^{\prime}\right)$.
(3) Given $\mu_{1}(m, k)>0$ there is $0<M_{1}(m, k)<\infty$ such that cach eigenvalue $\dot{\lambda}\left(m, k ; \beta_{i}^{\prime}\right)$ of $T_{m}^{0}\left(\beta_{i}^{\prime}\right),(|m|, k)=0,1, \ldots$, is stable as an eigenvalue $\dot{\lambda}^{\prime}\left(m, k ; \beta_{i}^{\prime}, \tau^{\prime}\right)$ of $T_{m}\left(\beta_{1}^{\prime}, \tau^{\prime}\right)$ for $\left|\tau^{\prime}\right|<M_{1},\left|\arg \tau^{\prime}\right| \leqslant \pi-\mu_{1}$.
(4) Each eigenvalue $\lambda^{\prime}\left(\cdot, \beta_{1}^{\prime}, \tau^{\prime}\right)$ is holomorphic in $\left(\tau^{\prime}, \beta_{1}^{\prime}\right)$ jointly for $0<$ $\left|\tau^{\prime}\right|<M_{1}$, |arg $\tau^{\prime} \mid<\pi-\mu_{1}$, locally in β_{1}^{\prime}, and admits analytic continuation with respect to τ^{\prime} to the Riemam-surface sector $D_{1}(m, k)=\left\{\tau^{\prime}: 0<\left|\tau^{\prime}\right|<M_{1}(m, k)\right.$; |arg $\left.\tau^{\prime}!<\frac{3}{2} \pi-\mu\right\}$ across the negative real axis.
(5) $\lim \lambda^{\prime}\left(m, k ; \beta_{1}^{\prime}, \tau^{\prime}\right)=\lambda\left(m, k ; \beta_{i}^{\prime}\right)$ g| $\tau^{\prime} \mid \rightarrow 0$ within $\bar{S}_{1}(m, k)$, uniformly with respect to $\beta_{i}^{\prime} \in \Omega$.

Proof. It is well known that the quadratic form
$t_{m}^{(1)}(f, g):(f, g) \mapsto\left\langle\left(-\frac{d^{2}}{d u^{2}}+\frac{m^{2}-1}{4 u^{2}}\right) f, g\right\rangle_{L^{2}(0, \infty)}$,

$$
(f, g) \in H_{0}^{1}[0,+\infty)
$$

if $m>1,(f, g) \in I^{\prime}(0, \infty)$ and $(f(u), g(u))=O\left(u^{1 / 2}\right)$ as $u \rightarrow 0$ for $m=0$, is symmetric, closed, and positive. The associated self-adjoint operator on $L^{2}(0, \infty)$ is T_{m}^{0}, delined as the action of $-d^{2} / d u^{2}+\left(m^{2}-1\right) / 4 u^{2}$ on $D \equiv\left\{H_{0}^{1}[0, \infty) \cap H^{2}(0, \infty)\right.$, $m>0 ; H^{2}(0 .+\infty)$ with boundary condition $f(u)=O\left(u^{1 / 2}\right)$ as $\|\{0, m=0\}$. By the Sobolev inequatity, the maximal multiplication operator by u^{-1} on $L^{2}(0, \infty)$ is compace from D to $L^{2}(0, \infty)$, and the same is true for the maximal multiplication operator by $q\left(u, m ; \beta_{1}^{\prime}, \tau^{\prime}, 0\right)$ in $L^{2}(0, \infty)$ as long as $\left|a r g \tau^{\prime}\right|<\pi$. Hence by standard results of perturbation theory $T_{m}^{\prime}\left(\beta_{1}^{\prime}\right)$ and $T_{, \ldots}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right)$ are closed and m-sectorial, and thus self-adjoint for $\left(\beta_{1}^{\prime}, \tau^{\prime}\right) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$. Furthermore, clearly $\sigma_{\text {ess }}\left(T_{m}^{\prime}\right)=\left[\frac{1}{4},+\infty\right)$, and thus by Wcyl's theorem, $\sigma_{\text {ess }}\left(\Gamma_{m}^{\prime}\left(\beta_{1}^{\prime}\right)\right)=\sigma_{\text {ess }}\left(T_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right)\right)=\sigma_{\text {ess }}\left(\Gamma_{m}^{\prime}\right)=\left[\frac{1}{4},+\infty\right)$ for all $\left(\beta_{1}^{\prime}, \tau^{\prime}\right) \in \Omega \times\left\{\tau^{\prime}\right.$: |arg $\tau^{\prime} \ll \pi_{i}^{\prime}$. Moreover, $D\left(T_{m}^{\prime}\left(\beta_{1}^{\prime}\right)\right\}=D\left(T_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right)\right\}$ is $\left(\beta_{1}^{\prime}, \tau^{\prime}\right)$-independent, and the L^{2}-valued lunctions $\beta_{1}^{\prime \prime} \mapsto \Gamma_{m}^{\prime}\left(\beta_{1}^{\prime}\right) f, \quad\left(\beta_{1}^{\prime}, \tau^{\prime}\right) \mapsto$ $\Gamma_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right) f$ are holomorphic in Ω and $\Omega \times\left\{\tau^{\prime}:\left|a r g \tau^{\prime}\right|<\pi\right\}$, respectively, for any $f \in D$. Therefore, the operator families $T_{m}^{\prime}\left(\beta_{1}^{\prime}\right)$ and $T_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau\right)$ are type-A holomorphic by delinition, with the property $\left(\Gamma_{m}^{\prime}\left(\beta_{1}^{\prime}\right)\right)^{*}=T_{m}^{\prime}\left(\beta_{1}^{\prime}\right),\left(\Gamma_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right)\right)^{*}=$ $T_{n}^{\prime},\left(\beta_{1}^{\prime}, \bar{\tau}^{\prime}\right)$. This verifies (1) and (2). To see (3), it is enough, by standard arguments of perturbation theory (sce, c.g., Simon [27]). to prove that $\Gamma_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right)$ converges in norm-resolvent sense to $\Gamma_{m}^{\prime}\left(\tau_{1}^{\prime}\right)$ as $|\tau|^{\prime} \rightarrow 0$, uniformly with respect to $\left(\beta_{1}^{\prime},\left|\operatorname{larg} \tau^{\prime}\right|\right) \in$ $\Omega \times[0, \pi-\mu]$. By the uniform m-sectoriality, $\left\|\left(T_{m}^{\prime}\left(\beta_{i}^{\prime}, \tau^{\prime}\right)-z\right)^{-1}\right\| \leqslant C$ for z negative and $|z|$ suitably large and some $C>0$ independent of ($\left.\beta_{1}^{\prime}, \tau^{\prime}\right) \in \Omega \times\left\{\tau^{\prime}\right.$: $\left|\tau^{\prime}\right|<M$; $\left.\left|\arg \tau^{\prime}\right| \leqslant \pi-\mu_{1}\right\}$. Since $D\left(\Gamma_{m}^{*}(\cdot)\right)$ is independent of τ^{\prime}, we can write

$$
\begin{align*}
& \left(T_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right)-z\right)^{-1}-\left(T_{m}^{\prime}\left(\beta_{1}^{\prime}\right)-z\right)^{-1} \\
& \quad=\left(T_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right)-z\right)^{-1} q\left(u, m_{;} \beta_{1}^{\prime}, \tau^{\prime}, 0\right)\left(T_{m}^{0}\left(\beta_{1}^{\prime}\right)-z\right)^{-1} \tag{3.22}
\end{align*}
$$

Now the norm of the right side of (3.22) is majorized by
 $\left.\beta_{1}^{\prime}, \tau^{\prime}, 0\right) \mid \rightarrow 0$ as $\left|\tau^{\prime}\right| \rightarrow 0$ with the stated uniformity in $\left(\beta_{1}^{\prime},\left|\arg \tau^{\prime}\right|\right)$. This proves assertion (3). The holomorphy statement of assertion (4) is a well-known consequence of the stability and of the holomorphy of the operator family $\Gamma_{m}\left(B_{1}^{\prime}, \tau^{\prime}\right)$.

To see the existence of the analytic continuation we use the complex-scaling technique of Aguilar, Balslev, and Combes (see, e.g., Reed and Simon [15, Xllt.10]). The dilatation map

$$
\begin{equation*}
(U(0) f)(u)=e^{\theta i 2} f\left(e^{\theta} u\right), \quad 0 \in \mathbb{R} \tag{3.23}
\end{equation*}
$$

is unitary on $L^{2}(0,+\infty)$ and leaves D invariant. The unitary images of $T_{m}^{\prime}\left(\beta_{1}^{\prime}\right)$ and $T_{m}\left(\beta_{1}^{\prime}, \tau^{\prime}\right)$ are the operators $T_{m}^{\prime}\left(\beta_{1}^{\prime}, \theta\right)$ and $T_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}, \theta\right)$ delined as the action on D of the differential expressions (3.21) and (3.19). Proceeding as in the verification of assertions (1) and (2), we see that $T_{m}^{\prime \prime}\left(\beta_{1}^{\prime}, \theta\right)$ extends to a type- \wedge, reat-holomorphic family of m-sectorial operators in $\left(\beta_{1}, 0\right) \in \Omega \times\left\{\theta ; \mid \operatorname{ma} \theta_{1}<\pi / 2\right\}$, and that $T_{m}^{\prime}\left(\beta_{1}^{\prime}, r^{\prime}, 0\right)$ extends to a type-A, real-holomorphic family of m-sectorial operators in $\left(\beta_{1}^{\prime}, \tau^{\prime}, 0\right) \in \Omega \times\left\{\left(\tau^{\prime}, 0\right):\left|\arg \left(\tau^{\prime} \mathcal{e}^{\prime}\right)\right|<\pi\right\}$. Furthermore, $\sigma_{\text {ess }}\left(T_{m}^{\prime}(\cdot)\right)=$ $\sigma_{\text {ess }}\left(T_{m m}(\cdot)\right)=\left[e^{-2 \theta_{\xi} 2}+\frac{1}{4}\right), \xi \in \mathbb{R}$, and the cigenvalues of both familics are independent of 0 . The norm-resolvent convergence of assertion (3) holds unchanged also in the present situation provided $\left|\arg \left(\tau^{\prime} e^{\theta}\right)\right| \leqslant \pi-\mu_{1}$. Therefore, the eigenvalues $\lambda\left(m, \beta_{1}^{\prime}\right)$ are stable as eigenvalues $\lambda^{\prime}\left(m, \beta_{1}^{\prime}, \tau^{\prime}\right)$ of $T_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}, \theta\right)$ for $\left|\tau^{\prime}\right|<M_{1}$, $\left|\arg \left(\tau^{\prime} c^{0}\right)\right| \leqslant \pi-\mu_{1}$. Since $|\operatorname{Im} 0|<\pi / 2$, we see that $\lambda^{\prime}\left(\cdot, \mid \beta_{1}^{\prime}, \tau^{\prime}\right)$ admits analytic continuation to $\left|\tau^{\prime}\right|<M_{1},\left|\arg \left(\tau^{\prime}\right)\right|<\frac{1}{2} \pi-\mu$, a priori many-valued because $\lambda^{\prime}\left(\cdot, e^{i n} \tau^{\prime}\right) \neq \lambda^{\prime}\left(\cdot, e^{-\pi} \tau^{\prime}\right), \tau^{\prime}>0, \beta_{1}^{\prime} \in \mathbb{R}$. In fact, $\lambda^{\prime}\left(\cdot, e^{j \pi} \tau^{\prime}\right)$ is by defintion an cigenvalue of $T_{m}^{\prime}(\cdot, 0)$ for $-\pi / 2<\operatorname{Im}\left(0<0\right.$, while $\lambda^{\prime}\left(\cdot, e^{\prime \prime \pi} \tau^{\prime}\right)$ is an cigenvalue of $T_{m(}^{\prime}(\cdot, 0)$ for $0<\operatorname{Im} 0<\pi / 2$. Since $T_{m}^{\prime}(\cdot, 0)^{*}=T_{m}^{\prime}(\cdot, 0)$, $\operatorname{Im} \lambda^{\prime}\left(\cdot, e^{-i \pi} \tau^{\prime}\right)=-\operatorname{Im} \lambda^{\prime}\left(\cdot, e^{i \pi} \tau^{\prime}\right)$, $\tau^{\prime}>0$. This proves (4) and (5).

Proposition 111.4. Let (m, k) be fixed, $\beta_{1}^{\prime} \in \Omega,\left|\operatorname{larg}\left(\tau e^{\prime \prime}\right)\right|<\pi$, Let $\lambda^{\prime}\left(\cdot, t^{\prime}\right)$. $\tau^{\prime} \in \mathscr{D}_{1}(\cdot)$ be the eigenvalue of $\Gamma_{m}^{\prime}\left(\cdot, \tau^{\prime}, 0\right)$ near the eigenvalue $\lambda(\cdot)$ of $T_{m}^{\prime}(\cdot, 0)$. Then:
(1) The Rayceigh-Schrödinger perturbation expansion $\sum_{n=11}^{\prime \prime} \mathcal{A}_{n}^{\prime}\left(\cdot \beta_{i}^{\prime}\right)\left(\tau^{\prime} / 2\right)^{\prime \prime}$, $A_{y}^{\prime}=\lambda(\cdot)$, exists and represents a strongly asymptotic expansion (see', e.g., Reed and Simon [15, Sect. XII.4]) for $\lambda^{\prime}\left(\cdot, \beta_{1}^{\prime}, \tau^{\prime}\right)$ as $\left|\tau^{\prime}\right| \rightarrow 0$, uniformly in $\left(\beta_{1}^{\prime},\left|a r g \tau^{\prime}\right|\right) \in \bar{\Omega} \times$ $\left[0, \frac{3}{2} \pi-\mu_{1}\right]$, i.e., given $\mu_{1}>0$ there is $B\left(\mu_{1}\right)>0$ such that

$$
\begin{equation*}
\left|R_{N}\left(\cdot, \tau^{\prime}\right)\right| \equiv\left|\lambda^{\prime}\left(\cdot, \tau^{\prime}\right)-\sum_{n=0}^{N} A_{n}^{\prime}(\cdot)\left(\tau^{\prime} / 2\right)^{n}\right| \tag{3.24}
\end{equation*}
$$

$$
\leqslant B\left(\mu_{1}\right) N!\left|\tau^{\prime} / 2\right|^{N},
$$

$\left(\tau^{*}, \beta_{i}\right) \in Q_{1}(1) \times \Omega, N=1,2, \ldots$.
(2) The perturbation expansion given above is Borel summable of $\lambda^{\prime}\left(\cdot, \beta_{1}^{\prime}, \mathrm{r}^{\prime}\right)$ for $\tau^{\prime} \in \mathscr{D}_{1}(\cdot)$, uniformly in $\beta_{1}^{\prime} \in \Omega$.
(3) $A_{n}^{\prime}\left(m, k ; \beta_{1}^{\prime}\right)=(-1)^{n} B_{n}\left(m, k ; \beta_{i}^{\prime}\right), n \in \mathbb{N}$.

Proof. By the Watson-Nevanlinna theorem (for details see Reed and Simon [15, Sect. XIL.5] and Sokal [27]), given Proposition III.3(4), (5), asscrtion (2) is a consequence of (1). We prove (1) by standard arguments of perturbation theory
(sce, e.g., Reed and Simon [15, Sects. XII.2-4]). Let $d=d\left(m, k ; \beta_{1}^{\prime}\right)$ be the isolation distance of the eigenvaluc $\lambda\left(\cdot, \beta_{1}^{\prime}\right), 0<v<\frac{1}{2} d$, and let $\Gamma_{\nu}=\{z \in \mathbb{C}: \mid z-\lambda(\cdot))_{1}^{\prime}=v_{j}^{\prime}$.

Denote by $R_{m}^{\prime}\left(z, \beta_{1}^{\prime}, \tau^{\prime}, 0\right), R_{m}^{0}\left(z, \beta_{1}^{\prime}, 0\right)$ the resolvents of $T_{m}^{\prime}(\cdot), T_{m}^{(}(\cdot)$, respectively. By the norm-resolvent convergence of Proposition III. 3 there is a constant $C>0$ independent of $\left(\tau^{\prime}, \beta_{1}^{\prime}, \theta\right)$ as long as $\beta_{1}^{\prime} \in \bar{\Omega},\left|\arg \left(e^{{ }^{*}} \tau^{\prime}\right)\right| \leqslant \pi-\mu_{1},\left|\tau^{\prime}\right|<M_{1}$, such that

整

$$
\begin{equation*}
\left.\sup _{z \in I_{v}} \| R_{m}^{\prime}\left(z, \beta_{1}^{\prime}, \tau^{\prime}, \theta\right)\right)_{1} \leqslant C_{1} \tag{3.25}
\end{equation*}
$$

and furthermore
$\left\|P_{m}^{\prime}\left(\beta_{i}^{\prime} ; \tau^{\prime}, 0\right)-P_{m}^{\prime \prime}\left(\beta_{1}^{\prime}, u\right)\right\| \rightarrow 0$ as $\left|\tau^{\prime}\right| \rightarrow 0$
uniformly in $\beta_{1}^{\prime} \in \bar{\Omega}$ and $\left(\left|\arg \tau^{\prime}\right|, 0\right),\left|\arg \left(\tau^{\prime} e^{\theta}\right)\right| \leqslant \pi-\mu_{1}$. Here the strong Ricmann integrals

$$
\begin{equation*}
P_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}, \theta\right)=(2 \pi i)^{-1} \int_{r_{i}} R_{m}^{\prime}\left(z, \beta_{1}^{\prime}, \tau^{\prime}, \theta\right) d z \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{m}^{0}\left(\beta_{1}^{\prime}, \theta\right)=(2 \pi i)^{-1} \int_{r_{i}} K_{m}^{0}\left(z, \beta_{i}^{\prime}, 0\right) d z \tag{3.28}
\end{equation*}
$$

are the projection operators on the one-dimensional eigenspaces of $\lambda^{\prime}\left(\cdot, \beta_{1}^{\prime}, \tau^{\prime}\right)$ and $\lambda\left(\cdot, \beta_{i}^{\prime}\right)$. If $\phi=\phi\left(\cdot, \beta_{1}^{\prime}, \theta\right)$ denotes the eigenvectur corresponding to $\lambda\left(\cdot, \beta_{1}^{\prime}\right)$, we have

$$
\begin{equation*}
\lambda^{\prime}\left(\cdot, \beta_{1}^{\prime}, \tau^{\prime}\right)=\frac{\left\langle P_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}, \theta\right) \phi, \Gamma_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}, \theta\right) P_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}, \theta\right) \phi\right\rangle}{\left\langle P_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}, \theta\right) \phi, P_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}, \theta\right) \phi\right\rangle} . \tag{3.29}
\end{equation*}
$$

Recall now that the Rayleigh-Schrödinger expansion is generated by inserting the geometric expansion of the resolvent in powers of the perturbation, as represented by formulac (2.28), (3.11) with $e^{\prime \prime} u$ in place of u, collecting all the terms having the same power of τ^{\prime}, and performing the integration by the residue method. We also recall that by standard complex-scaling arguments the resulting coefficients $A_{n}^{\prime}(\cdot)$ are independent of θ. Now, by standard arguinents of singular perturbation theory (sec, e.g., Reed and Simon [15, Sects. XII.3,4] and in particular Morgan and Simon [3] for a specific application to the present case in the non-separated formalism), to see (3.24) it is enough to prove that there are $\sigma(v)>0, C(v)>0$ independent of $\left(\beta_{1}^{\prime}, \tau^{\prime}, 0\right), \beta_{1}^{\prime} \in \Omega,\left|\arg \left(\tau^{\prime} e^{\prime \prime}\right)\right| \leqslant \pi-\mu_{1}$, such that

$$
\begin{align*}
& \sum_{k_{1}+\cdots+k_{1}-N^{\prime}} \sup _{i=1} R_{m}^{(\prime}\left(z, \beta_{1}^{\prime}, 0\right) F_{k_{1}}\left(e^{\prime \prime} u, \beta_{1}^{\prime}\right) R_{m}^{0}(\cdot) \cdots \\
& F_{k_{1}}(\cdot) \phi\left(\beta_{1}^{\prime}, 0\right) \|_{1} \leqslant C \sigma^{N} N! \tag{3.30}
\end{align*}
$$

and since the number of terms in this sum is dominated by 4^{N} we need only prove the bound for each term separately. To this end, we first recall that under the present conditions it is well known that there are $\delta_{1}>0$ and $C_{1}>0$ independent of $\left(\beta_{1}^{\prime}, \theta\right) \in \bar{\Omega} \times\{\theta:|\operatorname{lm} 0| \leqslant \pi / 2-\varepsilon, \varepsilon>0\}$ such that $\left\|e^{\delta_{1} u} \phi\left(\cdot, \beta_{1}^{\prime}, 0\right)\right\|_{i} \leqslant G_{1}^{\prime}$. Furthermore, there is $C_{2}>0$ independent of $\left(\beta_{1}^{\prime}, \theta\right)$ as above such that

To see this, we apply a well-known argument (see, e.g., Hunziker and Pillet [28]): for $\int \in D$, we compute

$$
e^{\delta u} T_{m}^{0}\left(\beta_{1}^{\prime}, 0\right) e^{-\delta u} f=T_{m}^{0}\left(\beta_{1}^{\prime}, 0\right) f-\delta^{2} u+2 e^{-\theta} \delta p f, \quad p=-i \frac{d}{d u}
$$

Now p is obviously $T_{m}^{\circ}(\cdot)$-bounded with relative bound zero, uniformily in $\left(\beta_{1}^{\prime}, 0\right) \in$ $\Omega \times\{0:|\operatorname{Im} 0| \leqslant \pi / 2-\varepsilon, \varepsilon>0\}$. Hence (3.13) follows by a standard argument, described, e.g., in Morgan and Simon [3], for δ_{1}, and hence δ, small enough. Now the rest of the argument gocs exactly as in Morgan and Simon [3]. We write

$$
\begin{align*}
& R_{m}^{0}\left(z, \beta_{1}^{\prime}, \theta\right) F_{k_{1}}^{\prime}\left(e^{\prime \prime} u, \beta_{1}^{\prime}\right) \cdots F_{\alpha_{1}}^{\prime}(\cdot) R_{m}^{0}(\cdot) \phi\left(\cdot, \beta_{1}^{\prime}, 0\right) \\
& \quad=\bar{Q}_{0} \bar{P}_{1} \bar{Q}_{1} \cdots \bar{Q} e^{\delta u} \phi\left(\cdot, \beta_{1}^{\prime}, 0\right) \tag{3.32}
\end{align*}
$$

and

$$
\begin{gather*}
\bar{P}_{i}=F_{x_{1}}^{\prime}(\cdot) e^{-k_{i} \delta_{u} / \mathcal{N}}, \quad \bar{Q}_{i}=e^{j_{i} \delta_{u} / N} K_{m}^{0}(\cdot) e^{-j_{i} \delta_{u} / N}, \\
j_{i}=\sum_{s=1}^{j} k_{s} . \tag{3.33}
\end{gather*}
$$

 dent of $\left(\beta_{1}^{\prime}, 0\right)$ as above. Thus each term of (3.30) is majorized by $C_{3}^{N} C^{N+1} N^{N} \leqslant$ $C \sigma^{N} N$! for some $\sigma(v)>0$, whence (3.30). Therefore (1), and hence (2), is proved. To $\sec (3)$, it is enough to remark that $F^{\prime}\left(u, \beta_{1}^{\prime}, \tau e^{-u \pi}\right)=G\left(u, \beta_{1}^{\prime}, \tau\right), \tau>0$, while the unperturbed operator is the same in both cases and the perturbation expansion is independent of 0 .

As an immediate consequence of this proposition we have:

Corollary III.5. The Rayleigh-Sclrödinger perturhation expansion $\sum_{n=0}^{\infty} B_{n}\left(m, k ; \beta_{2}\right)(\tau / 2)^{n}$ for the eigenvalue $\mu\left(m, k ; \beta_{2}, \tau\right)$ of $S_{m}\left(\beta_{2}, \tau\right)$ is Burel summable not to $\mu_{ \pm}\left(m, k ; \beta_{2}, \tau\right)$ but to $\lambda^{\prime}\left(m, k ; \beta_{2}, e^{\prime \pi} \tau\right), \tau>0$.

The second step in proving Theorem III. 2 is represented by the unraveling of the first separation-constant eigenvalues.

Proposition III.6. Let $|m|=0,1, \ldots, \beta_{1}^{\prime} \in \Omega, \quad\left|\arg \left(\tau^{\prime} e^{\prime \prime}\right)\right|<\pi$. Denote by $\sigma^{\prime}\left(m, \tau^{\prime}, \theta\right)$ and $\sigma_{0}(m, \theta)$ the charge spectra of $T_{m}^{\prime}(\cdot)$ and $T_{m}^{0}(\cdot)$, respectively, i.e., the sets $\left\{\beta_{1}^{\prime} \in \Omega: T_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}, \theta\right)\right.$ has the eigenvalue 0$\}$ and $\left\{\beta_{1}^{\prime} \in \Omega: T_{m}\left(\beta^{\prime}, \theta\right)\right.$ has the eigenvatue 0\}. Then:
(1) $\sigma^{\prime}\left(m, \tau^{\prime}, 0\right)=\sigma^{\prime}\left(m, \tau^{\prime}, 0\right) \equiv \sigma^{\prime}\left(m, \tau^{\prime}\right) ; \sigma_{0}(m, 0)=\sigma_{0}(m, 0) \equiv \sigma_{0}(m)$, i.e, the charge spectra ure independent of θ.
(2) For uny fixed $(|m|, k)=0,1, \ldots$, and any $\mu_{2}(m, k)>0$, there is $0<M_{2}(m, k)<+\infty$ such that the condition $\lambda^{\prime}\left(m, k ; \beta_{1}^{*}, \tau\right)=0$ implicitly defines one and only one isolated eigenvalue in $\sigma^{\prime}\left(m, \tau^{\prime}\right)$ as a function $\tau^{\prime} \mapsto \beta_{1}^{\prime}\left(m, k, \tau^{\prime}\right)$, holomorphic for $0<\left|\tau^{\prime}\right|<M_{2},\left|\arg \tau^{\prime}\right|<\pi$, which admits analytic continuation to the Riemann-surface sector $\mathscr{D}_{2}(m, k)=\left\{\tau^{\prime}: 0<\left|\tau^{\prime}\right|<M_{2} ;\left|\arg \tau^{\prime}\right|<\frac{3}{2} \pi-\mu_{1}\right\}$ across the negative real axis, and is such that $\beta_{1}^{\prime}\left(m, k ; \tau^{\prime}\right) \rightarrow \beta(m, k)=k+\frac{1}{2}(|m|+1)$ as $\left|\tau^{\prime}\right| \rightarrow 0$, $\tau^{\prime} \in \overline{\mathscr{D}}_{2}(m, k)$.
(3) The function $\tau^{\prime} \mapsto \beta_{1}^{\prime}\left(m, k ; \tau^{\prime}\right)$ admits an asymptotic expansion to all orders,

$$
\begin{equation*}
\beta_{1}^{\prime}\left(m, k ; \tau^{\prime}\right) \sim \sum_{n=0}^{\infty} L_{m}^{\prime}(m, k)\left(\tau^{\prime} / 2\right)^{n}, \quad L_{0}^{\prime}(m, k)=\beta(m, k) \tag{3.34}
\end{equation*}
$$

as $\tau^{\prime} \rightarrow 0$ within $\bar{D}_{2}(m, k)$. The cocfficients $L_{\prime, \ldots}^{\prime}(m, k)$ can be directly computed through Rayleigh-Schrödinger perturbation theory'.
(4) The asymptotic expansion (3.34) is Bord summable to $\beta_{1}^{\prime}\left(m, k ; \tau^{\prime}\right)$ in $\mathscr{I}_{2}(m, k)$.
Proof. Assertion (1) is an immediate consequence of dihatation analyticity. To sce the subsequent ones, first recall that $\lambda\left(m, k ; \beta_{1}\right)=0$ if and only if $\beta_{1}^{\prime}=\beta(m, k)$, i.c., $\quad \sigma_{0}(m)=\bigcup_{k=0}^{\infty} \beta(m, k)$. The corresponding eigenfunctions $\phi(\beta(m, k), \theta)=$ $\phi\left(m, k, e^{\prime \prime} u\right)$ are the Laguerre functions of argument $e^{\theta} u$. Consider the cigenvalue $\lambda^{\prime}\left(m, k ; \beta_{1}^{\prime}, \tau^{\prime}\right)$ existing near $\lambda\left(m, k, \beta_{1}^{\prime}\right)$ for $\beta_{1}^{\prime} \in \Omega$ and $\tau^{\prime} \in \mathscr{D}_{1}(m, k)$. By Proposition III.4, uniformly with respect to $\beta_{1}^{\prime} \in \bar{\Omega}$,

$$
\begin{equation*}
\lambda^{\prime}\left(m, k ; \beta_{1}^{\prime}, \tau^{\prime}\right)=\lambda\left(m, k ; \beta_{1}^{\prime}\right)+O\left(m, k ; \tau^{\prime} / 2\right) \tag{3.35}
\end{equation*}
$$

as $\left|\tau^{\prime}\right| \rightarrow 0$ within $\overline{\mathcal{D}}_{1}(m, k)$. Furthermore (sce Buchholz [24]), $i\left(m, k ; \beta_{1}\right)=$ $\frac{1}{4}-\left(\beta_{1}^{\prime}\right)^{2} / 4\left[k+\frac{1}{2}(|m|+1)\right]^{2}$ and thus $\beta(m, k) \in \Omega,\left.\left(\partial \lambda / \partial \beta_{1}^{\prime}\right)\left(m, k ; \beta_{1}^{\prime}\right)\right|_{\beta_{1}-\beta(m, k)} \neq 0$. Hence (3.35) implies, by continuity, that

$$
\frac{\partial y}{\partial \beta_{1}^{\prime}}\left(m, k ; \beta_{1}^{\prime}, \tau^{\prime}\right) \neq 0
$$

for $\left|\beta_{1}^{\prime}-\beta(m, k)\right|$ suitably small and $\tau^{\prime} \in \mathscr{C}_{1}(m, k),\left|\tau^{\prime}\right|$ suitably small. Since $\lambda^{\prime}\left(m, k ; \beta(m, k), \tau^{\prime}\right) \rightarrow \lambda(m, k ; \beta(m, k))=0$ as $\tau^{\prime} \rightarrow 0$ within $\bar{Z}_{1}(m, k)$, assertion (2) is a direct consequence of the analytic implicit-function theorem (see, e.g., Gallavolti [29, Appendix G]). Furthermore, the analylic implicit-function theorem also implies that $\beta_{1}^{\prime}\left(m, k ; \tau^{\prime}\right)$ has finite derivatives of all orders as $\tau^{\prime} \in \overline{\mathscr{D}}_{2}(m, k) \rightarrow 0$. To
compute these derivatives, viz., the coefficients $L_{m}^{\prime}(m, k)$, notice that $\beta(m, k)$ satisfies the ordinary differential equation $e^{\prime \prime} u t_{m}^{0}(0,0) \phi\left(m, k ; e^{0} u\right)=\beta(m, k) \phi\left(m, k ; e^{\prime \prime} u\right)$. Hence if we consider the ODE eigenvalue problem

$$
\begin{align*}
& {\left[e^{\theta} u f_{m_{1}^{\prime \prime}}^{\prime \prime}(0, \theta)+e^{\theta} u F^{\prime}\left(m, e^{\theta} u, \beta_{1}^{\prime}, \tau^{\prime}\right)\right] \phi^{\prime}\left(m, k ; e^{\theta} u, \tau^{\prime}\right)} \\
& \quad=\beta_{1}^{x} \phi^{\prime}\left(m, k ; e^{\prime \prime} u, \tau^{\prime}\right) \tag{3.36}
\end{align*}
$$

on $L^{2}\left(\mathbb{R}^{+} ; d \chi\right), \quad d_{\chi}=u^{-1} d u$, with boundary boundary condition $\phi^{\prime}(m, \cdot)=$ $O\left(u^{1 / 2+i m i / 2}\right)$ as $u \downarrow 0$, we generate the coefficients $L_{n}^{\prime}(m, k)$ recursively through Rayleigh-Schrödinger perturbation theory. Note that this formal procedure is justified because $\left\|\phi^{\prime}\left(m, k ; \tau^{\prime}, \theta\right) u^{-1}\right\|$ is bounded independently of $\left|\tau^{\prime}\right|$, and $\left[e^{\theta} u\left(T_{m}^{0}(0,0)-z\right)\right]^{-1} e^{\theta} u F_{n}^{\prime}\left(m, e^{\theta} u, \beta_{1}^{\prime}\right)=\left[T_{m}^{0}(0, \theta)-z\right]^{-1} F_{n}\left(m, c^{\theta} u, \beta_{1}^{\prime}\right)$. Finally, assertion (4) follows by Proposition A.I. I

Corollary III.7. Let $(|m|, k)=0,1, \ldots$ be fixed, and let $\tau>0$. Then the separation-constant eigenvalue doublet. $\beta_{2}^{\prime}(m, k, \tau)$ imlicilly defined by $\mu_{ \pm}\left(m, k, \beta_{2}, \tau\right)=0$ admits an asymptotic Rayleigh-Schrödinger perturbation expansion

$$
\begin{equation*}
\beta_{2}^{ \pm}(m, k ; \tau) \sim \sum_{n=0}^{\infty} L_{n}(m, k)(\tau / 2)^{n}, \quad L_{0}=\beta(m, k), \tag{3.37}
\end{equation*}
$$

which is Borel summable not to $\beta_{2} \mathrm{t}(m, k)$ but to $\beta_{1}\left(m, k, e^{-i n} \tau\right)$.
Proof. The expansion (3.37) can be generated as in Proposition III.6(3) considering this time the ODE cigenvalue problem $\left[v_{{ }_{m}^{\prime \prime}}^{\prime}(0)+v G\left(\beta_{2}, \tau, v\right)\right]$ $\psi(m, k ; \tau, v)=\beta_{2}(m, k ; \tau, v) \quad$ (sec Proposition II.3, (2.29)-(2.30), (3.11)) on $L^{2}\left(\mathbb{R}^{+}, d \chi\right)$ with boundary condition $\psi(m, \cdot v)=O\left(v^{1 / 2+i m i / 2}\right)$ as $v \downarrow 0$. Here, as usual,

$$
s_{m}^{0}\left(\beta_{2}\right)=-\frac{d^{2}}{d v^{2}}-\frac{\beta_{2}}{v}+\frac{m^{2}-1}{4 v^{2}}+\frac{1}{4}
$$

By Corollary III.5, we have $L_{n}(m, k)=(-1)^{n} L_{n}^{\prime}(m, k)$, with $L_{n}^{\prime}(m, k)$ as in (3.34). Therefore the assertion is implied by (4) of Proposition Ill.6.
The analysis of the operator family $T_{m}\left(\beta_{1}, \beta_{2}, \tau\right)$ is now straightforward. By exactly the same argumonts as in Propositions 111.3 and 111.4 , we obtain:

Proposition ifl.8. Let $\quad\left(\beta_{1}, \beta_{2}, \tau\right) \in \Omega \Omega \times \Omega 2 \times\{\tau$: |arg $\tau<\pi\}$, Ω as in Proposition III.3. Let $T_{m}\left(\beta_{1}, \beta_{2}, \tau\right)$ be the operator family on $L^{2}(0,+\infty)$ defined by the differential expression $t_{m}\left(\beta_{1}, \beta_{2}, \tau\right)$ on D, D as in Proposition [IS.3. Then:
(1) $\left(\beta_{1}, \beta_{2}, \tau\right) \mapsto \Gamma_{m}\left(\beta_{1}, \beta_{2}, \tau\right), \quad|m|=0,1, \ldots$ is a tpe-A. reat-hotomorphis family of m-sectorial operators in $\left(\beta_{1}, \beta_{2}, \tau\right) \in \Omega \times \Omega \times\left\{\tau\right.$: |arg $\tau_{1}<\pi_{1}$, and thus selfadjoint for $\left(\beta_{1}, \beta_{2}, \tau\right) \in \mathbb{R}$.
(2) $\sigma_{\text {ess }}\left(T_{m}(\cdot)\right)=\left[\frac{1}{4},+\infty\right)$ for $a n y\left(\beta_{1}, \beta_{2}, \tau\right) \in \Omega \times \Omega \times\{\tau:|\arg \tau|<\pi\}$
(3) Given $\mu_{3}(m, j)>0$ there is $M_{3}(m, j)>0$ such that each eigenvalue $\lambda\left(m, j, \beta_{1}\right)$ of $T_{m}^{\circ}\left(\beta_{1}\right)$ is stable as an cigcnvalue $\lambda\left(m, j ; \beta_{1}, \beta_{2}, \tau\right)$ for $|\tau|<M_{3}$, $|\arg \tau|<\pi ;$ the function $\left(\beta_{1}, \beta_{2}, \tau\right) \rightarrow \lambda\left(m, j, \beta_{1}, \beta_{2}, \tau\right)$ is holomorphic in $\left(\beta_{1}, \beta_{2}, \tau\right)$ jointly for $0<|\tau|<M_{3},|\arg \tau|<\pi$, an \propto locally in $\left(\beta_{1}, \beta_{2}\right) \in \Omega \times \Omega$, and admits analytic continuation with respect to τ to the Ricmann-surface sector $\mathscr{D}_{3}(m, j)=\{\tau$ $\left.0<|\tau|<M_{3}(m, j) ;|\arg \tau|<\frac{3}{2} \pi-\mu_{3}\right\}$ across the negative real axis. Furthermore, $\lim \lambda\left(m, j, \beta_{1}, \beta_{2}, \tau\right)=\lambda\left(m, j, \beta_{1}\right)$ as $\tau \rightarrow 0$ within $\overline{\mathcal{D}}_{3}(m, j)$ uniformly in $\left(\beta_{1}, \beta_{2}\right) \in$ $\bar{\Omega} \times \bar{\Omega}$.
(4) The Rayleigh-Schrödinger perturbation expansion

$$
\sum_{n=0}^{\infty} A_{n}\left(m, j ; \beta_{1}, \beta_{2}\right)(\tau / 2)^{n}, \quad A_{0}=i\left(m, j, \beta_{1}\right)
$$

exists, represents a strong asymptotic expathsion for $\lambda\left(m, j ; \beta_{1}, \beta_{2}, \tau\right)$ as $\tau \rightarrow 0$, $\tau \in \bar{\Omega}_{3}(m, j)$, uniformly with respect to $\left(\beta_{1}, \beta_{2}\right) \in \bar{\Omega} \times \bar{\Omega}$, and is Borel summable to $\lambda\left(m, i ; \beta_{1}, \beta_{2}, \tau\right)$ in $\mathscr{D}_{3}(m, j)$, uniformly in $\left(\beta_{1}, \beta_{2}\right)$ as above.

These results, logether with Proposition III.6, Proposition A.1, and Corollary A. 2 , immediately imply:

Coroldary III.9. For $\tau \in \mathscr{D}_{1}(m, j)$, consider the eigenvalue $\lambda\left(m, j ; \beta_{1}, \beta_{2}, \tau\right)$ and the β_{1}^{\prime}-separation-constant eigenoulue $\tau^{\prime} \rightarrow \beta_{1}^{\prime}\left(m, k ; \tau^{\prime}\right)$ of Proposition III.6, $\tau^{\prime} \in \mathscr{D}_{2}(m, k),(|m|, j, k)=0,1, \ldots$. Then:
(1) The function $\tau \rightarrow \lambda\left(m, j ; \beta_{1}, \beta_{1}^{\prime}\left(m, k, \tau e^{-i \pi}\right), \tau\right)$ is holomorphic in $\left(\beta_{1}, \tau\right)$ for $0<|\tau|<M_{4}(m, j, k)=\min \left(M_{2}(\cdot), M_{3}(\cdot)\right), 0<\arg \tau<\pi$, locally in $\beta_{1} \in \Omega$. Furthermore, $\lambda\left(\cdot, \beta_{1}^{\prime}\left(\cdot, \tau e^{-i \pi}\right), \tau\right)$ admits analytic comtinuation to the Riemann-surface sector $\int_{4}(m, j, k)=\left\{\tau: 0<|\tau|<M_{4}(\cdot),-\pi / 2+\mu_{4}(\cdot)<\arg \tau<\frac{3}{2} \pi-\mu_{4}(\cdot)\right\}, \mu_{4}(m, j, k)=$ $\max \left(\mu_{1}(\cdot), \mu_{2}(\cdot)\right)$, arrosis the real axis, with $\lim \lambda\left(m, j, \beta_{1}, \beta_{1}^{\prime}\left(m, k, \tau e^{-i n}\right), \tau\right)=$ $\lambda\left(m, j, \beta_{1}\right)$ as $\tau \rightarrow 0$ within $\bar{S}_{4}(m, j, k)$, uniforml! with respect to $\beta_{1} \in \Omega$.
(2) The Rayleigh-Schrödinger perturhation expartion for $i\left(m, j ; \beta_{1}\right.$, $\left.\beta_{1}^{\prime}\left(m, k, \tau e^{-i \pi}\right), \tau\right)$, viz.,

$$
\begin{equation*}
\lambda\left(m, j ; \beta_{1}, \beta_{1}^{\prime}\left(m, k, \tau e^{-i \pi}\right), \tau\right) \sim \sum_{n=0}^{\prime} A_{n}\left(m, j, k ; \beta_{1}\right)(\tau / 2)^{n}, \tag{3.38}
\end{equation*}
$$

exists, is strongly asymptotic to $\lambda(\cdot, \tau)$ as $\tau \rightarrow 0$ within $\bar{D}_{4}(\cdot)$, uniform in $\beta_{1} \in \Omega$, and is Borel summuhle to $\lambda\left(m, j, \beta_{1}, \beta_{1}\left(m, k, \tau e^{-i \pi}\right), \tau\right)$ in $\mathcal{L}_{4}(m, j, k)$, uniformly with respect to $\beta_{1} \in \bar{\Omega}$.

Remark. Equation (3.38) is also the perturbation expansion of $\lambda(m, j$; $\left.\beta_{1}, \beta_{2}^{t}(m, k ; \tau), \tau\right)$, because $\beta_{2}^{ \pm}(m, k, \tau)$ and $\beta_{1}\left(m, k, e^{-i \pi} \tau\right)$ have the same perturbation expansion.
The β_{1} spectrum is now determined as follows:

Proposition III.10. For $(|m|, j, k)=0,1, \ldots$, consider the eigenualue (m, j; $\left.\beta_{1}, \beta_{1}^{\prime}\left(m, k ; \tau e^{-i \pi}\right), \tau\right)$ of $T_{m}\left(\beta_{1}, \beta_{1}^{\prime}\left(e^{-i \pi} \tau\right), \tau\right)$. Then:
(1) The condition that

$$
\begin{equation*}
\lambda\left(m, j ; \beta_{1}, \beta_{1}^{\prime}\left(m, k ; \tau e^{-i \pi}\right), \tau\right)=0 \tag{3.39}
\end{equation*}
$$

implicitly defines a function $\tau \mapsto \beta_{1}(m, j, k)$, which is holomorphic for $0<|\tau|<$ $M_{4}(m, j, k), 0<\arg \tau<\pi$, admits analytic continuation to the Rieman-surface sector $\mathscr{Q}_{4}(m, j, k)$, and is such that $\lim \beta_{2}(m, j, k ; \tau)=\beta(m, i)=i+\frac{1}{2}(|m|+1)$ as $\tau \rightarrow 0$ within $\overline{\mathscr{D}}_{4}(m, j, k)$.
(2) The implicit function $\tau \mapsto \beta_{1}(m, j, k ; \tau)$ admils the Rayleigh-Schrömger perturbation expansion

$$
\begin{equation*}
\beta_{1}(m, j, k) \sim \sum_{n=0}^{\infty} L_{n}(m, j, k)(\tau / 2)^{\prime \prime}, \quad L_{0}=\beta(m, i) \tag{3.40}
\end{equation*}
$$

as a strongly asymptotic expansion as $\tau \rightarrow 0, \tau \in \overline{\mathscr{A}}_{4}(m, j, k)$. The expansion (3.40) is Borel summable to $\beta_{1}(m, j, k ; \tau)$ for $\tau \in \mathcal{D}_{4}(m, j, k)$.
Proof. (1) Since $\lambda(m, j, \beta(m, j))=0$, proceeding as in Proposition III. 6 we have to prove only that

$$
\frac{\partial \lambda}{\partial \beta_{1}}\left(m, j ; \beta_{1}, \beta_{1}\left(m, k, \tau e^{-i \pi}, \tau\right)\right) \neq 0
$$

for β_{1} in a neighborhood of $\beta(m, j)$ and $\tau \in \mathscr{R}_{4}(m, j, k)$ with M_{4} suitably small. In turn, by Proposition 111.8(4) it is enough to check that

$$
\left.\frac{\partial}{\partial \beta_{1}} A_{0}\left(m, j, k ; \beta_{1}\right)\right|_{\beta-m(m, i)} \neq 0
$$

which is true because $A_{0}\left(m, j ; k, \beta_{1}\right)=\lambda\left(m, j, \beta_{1}\right)=\frac{1}{4}-\beta_{i}^{2} / 4\left[j+\frac{1}{2}(|m|+1)\right]^{2}$. Assertion (2) is again proved as in Proposition IIl.6(3) and Proposition A.1, given Proposition 3.9(1) and (2). We note that by the remark after Proposition 111.9 the functions $\tau \mapsto \beta_{1}(m, j, k ; \tau)$ and $\tau \mapsto \beta_{1}\left(m, j, \beta_{2}(m, k ; \tau), \tau\right)$ have the same perturbution uxpansion (3.40).
Prouf of Theorem $11 / 2.2$ Setting $M(m, j, k)=\min _{\{ } M_{1}(\cdot), \ldots, M_{4}(\cdot):, \mu(m, j, k)=$ $\max \left\{\mu_{1}(\cdot), \ldots, \mu_{4}(\cdot)\right\}$, assertion (1) is proved in Proposition III.6, and atscrtion (2) in Proposition III.10. Assertion (3) follows from (1), (2), and the analytic localinvertibility theorem, because

$$
\frac{\partial}{\partial \tau}\left[\tau \gamma_{1}(m, j, k ; \tau)^{-1}\right]=(j+k+|m|+1)^{-1}+O(m, j, k ; \rho) \quad \text { as } \tau \rightarrow 0
$$

within $\overline{\mathscr{M}}(m, j, k)$. Finally, note that by Proposition III.4(3), Corollaries III.5, III.7, and III.9, and Proposition III.10, and the analytic local-invertibility theorem, the function $\rho \rightarrow-\frac{1}{2}\left[\gamma_{1}\left(m, j, k ; \Gamma_{1}(m, j, k ; \rho)\right)\right]^{-2}$ admuts an asymptotic expansion to all orders as $\beta \rightarrow 0$ within $\overline{\mathscr{D}}(m, j, k)$. Hence assertions (4) and (5) are direct consequences of Corollary III.7, Propositionill.10(2), Propositions A.1 and A.2, and Reed and Simon [15, Problem XII.26].

IV. Imaginary Parts, Asymptotics,

and the Formula of Brezin and Zinn-Justin

As stated in the first section, our program now is to relate the Borel sum $E_{i}(m, i, k ; \rho)$ of the $1 / R$ expansion to the fundamental quantities of the problem, viz., the eigenvalue gap and the asymptotics of the coefficients of the $1 / R$ serics itself. In this section, the quantum numbers m, j, and k are fixed and may have any allowed value. Although eigenvalues, expansion cocfficients, wavefunctions, error estimates, etc., all depend on these numbers, to avoid notational complexity that dependence will be indicated only where necessary. Since the coefficients of the $1 / R$ expansion are real, Im E_{1} must have zero asymptotic expansion as $\rho \rightarrow 0$. In fact, the asymptotic behavior of $\operatorname{Im} E_{1}$ is determined to leading exponential order by the following statement.

Theorem IV.1. Let $E(m, j, k ; \rho)$ be the Borel sum of the $1 / R$ expansion near the eigenvalue $E(m, j, k)=-\frac{1}{2}(i m \mid+j+k)^{-2}$ of $-\frac{1}{2} \Delta-|x|^{-1}$ of magnetic quantum number m and parabolic quantum numbers $(j, k),(i m \mid, j, k)=0,1, \ldots$, and let $n=$ $|m|+j+k+1$ he the principal quantum number. Then, as $|\rho| \perp 0, \rho \in \mathbb{R}$,

$$
\begin{align*}
\operatorname{Im} E_{1}(m, j, k ; \rho)= & -\pi C(m, j, k)\left(\frac{2}{n \rho}\right)^{2|m|+4 k+2} \\
& \times e^{-2 /|\rho| n}\left(1+O\left(n, j, k ; \rho^{1 / 2}\right)\right) \tag{4.1}
\end{align*}
$$

with

$$
\begin{equation*}
C(m, j, k)=n^{-3}[k!(k+|m|)!]^{-2} e^{-2 n} \tag{4.2}
\end{equation*}
$$

Here, and everywhere else, $O\left(m, j, k, \rho^{1 / 2}\right)$ means order $\rho^{1 / 2} \alpha s \rho \rightarrow 0$ with coefficients depending on (m, j, k). This theorem will be prosed in this section by adapting the ODE technipues of Harrell and Simon [6], which are in essence rigorousty justified JWK B estimates. Before turning to that analysis, we note that the asspmtotics of the 1/R expansion and the formula of Brézin and Zinn-Justin are simple consequences of Theorems IV. 1 and III. 2 along with the rigorously known gap estimates of Harrell [13].

Corollary IV.2. Let $E_{N}(m, j, k)$ be the Nth coefficient of the $1 / R$ expansion near the eigenvalue $E(m, j, k)$ of H_{0}. Then:
(1) $A s N \rightarrow \infty$,

$$
\begin{align*}
E_{N}(m, j, k)= & C(m, j, k) n^{N} 2^{-N}(N+4 k+2 m+1)!\left(1+O\left(m, j, k ; N^{-1 / 2}\right)\right) \\
= & -e^{-2 m} n^{N-3}[k!(|m|+k)!]^{-2} 2^{-N}(N+4 k+2 m+1)! \\
& \cdot\left(1+O\left(m, j, k ; N^{-1 / 2}\right)\right) \tag{4.3}
\end{align*}
$$

(2) Let $\rho>0$, and $\Delta E(m, j, k ; \rho)$ be the gap between the two cigenvalues in the doublet near $E(m, j, k)$ as $\rho \downarrow 0$. Then, as $\rho \downarrow 0$,

$$
\begin{equation*}
-\operatorname{Im} E_{1}(m, j, k ; \rho)=\pi n^{3}(A E(m, j, k) ; \rho)^{2}(1+O(m, j, k ; \rho)) \tag{4.4}
\end{equation*}
$$

Remark. Equation (4.4) is the formula of Brezin and Zinn-Justin, rewritten in the language of the Borel sum. Formula (4.6) below shows that the asymptotic behavior of E_{N} is controlled by the eigenvalue gap as well, which was the numerical discovery of Brezin and Zinn-Sustin [5].

Proof. (1) We use a standard approximate dispersion relation argument which gocs back to Simon's paper on the anharmonic oscillator [27], By Theorem III.2(4), the function $\rho \mapsto L_{1}(m, j, k: \rho)$ is hoiomorphic for $0<|\rho|<M$, $0<\arg \rho<\pi$, and analytic up to the real boundary of this half-circle. If Γ_{r} denotes the half-circle $|z|=\varepsilon<M, 0 \leqslant \arg z \leqslant \pi$, by Cauchy's theorem,

$$
\begin{equation*}
E_{1}(m, j, k ; \rho)=\frac{1}{2 \pi i} \int_{\Gamma_{k}} \frac{E_{1}(m, j, k, z)}{z-\beta} d z \tag{4.5}
\end{equation*}
$$

Therefore, by Taylor's theorem and the reality of the perturbation coefficients,

$$
\begin{equation*}
E_{N}(m, j, k)=\frac{1}{2 \pi} \int_{-n}^{c} z^{-N-1} \operatorname{Im} E_{1}(m, j, k ; z) d z+O\left(z^{-N}\right) \tag{4.6}
\end{equation*}
$$

and hence (4.1) yields (4.3). Furthermore, assertion (2) is an immediate consequence of (4.1), (4.2), and the known estimate [13]

$$
\begin{align*}
\Delta E(m, j, k ; \rho)= & e^{-n} n^{-3}[k!(k+|m|)!]^{-1} \\
& \cdot\left(\frac{2}{n \rho}\right)^{|m|+2 k+1} e^{-1 /(m m}\left(1+O\left(\cdot \rho^{+1 / 2}\right)\right) \tag{4.7}
\end{align*}
$$

To prove Theorem IV. 1 it is necessary to estimate the imaginary parss first of $\beta_{1}^{\prime}\left(\cdot, \tau e^{-i n}\right)$ and then of $\beta_{1}\left(\cdot, \beta_{1}^{\prime}\left(\cdot, e^{-i n} \tau\right), \tau\right)$, $\tau \in$ if. As already mentoned, we will make use of the JWKB technique of Harrell [30] and Harrell and Simon [6]. We note in passing that a more sophisticated (but so far not rigorously justified) approach based on the Langer-Cherry refmement of the JWkis method [31] makes the computation of all exponential corrections possible. This is the content of the second paper announced in [14].

The first preliminary result is as follows:

Proposition IV.3. For $\tau>0$, $\operatorname{Im} 0>0$, let

$$
\begin{align*}
q^{\prime}\left(m ; \beta_{1}^{\prime}, \tau, e^{\theta} u\right)= & \frac{1}{4}-e^{-\theta} \beta_{1}^{\prime} u^{-1}-\left(2 r-e^{\prime} u\right)^{-1} \beta_{1}^{\prime} \\
& +\frac{m^{2}-1}{4}\left[\left(2 r-e^{v} u\right)^{-2}+2 e^{-\theta} u^{-1}\left(2 r-e^{\theta} u\right)^{-1}\right] \tag{4.8}
\end{align*}
$$

and

$$
\begin{equation*}
\beta_{1}^{\prime}\left(m, k ; \tau e^{-i \pi}\right)=\beta_{1}^{\prime}(m, k ; \tau)=\beta_{1}(\cdot, \tau) . \tag{4.9}
\end{equation*}
$$

Let $t_{2}=t_{2}(m, k, \tau)$ he the greatest solution in $0 \leqslant u \leqslant 2 r$ of $q^{\prime}(m, k p(m, k), \tau, u)=0$, and let $\phi_{1}^{\prime}\left(\cdot, \tau, e^{\theta} u\right)$ denote once again the eigenvector corresponding to $\beta_{1}^{\prime}(\cdot, \tau)$ in $\sigma^{\prime}(m, \tau)$. Then:
(1) $\lim _{\operatorname{Im}(1010} \phi_{1}^{\prime}\left(\cdot, \tau, e^{\prime \prime} u\right)=\phi_{1}^{\prime}(\cdot, \tau, u)$ exists, uniformly, in $0 \leqslant u \leqslant t_{2}$.
(2) For $0<a \leqslant t_{2}$,

$$
\begin{equation*}
\operatorname{Im} \beta_{1}^{\prime}(\cdot, \tau)=\frac{\left.\phi_{1}^{\prime}(\cdot, \tau, u) \frac{d}{d u} \phi_{1}^{\prime}(\cdot, \tau, u)\right|_{u=a}-\left.\phi_{1}^{\prime}(\cdot, \tau, u) \frac{d}{d u} \phi_{i}^{\prime}(\cdot, \tau, u)\right|_{\mid u-u}}{2 i \int_{0}^{a}\left|\phi_{1}^{\prime}(\cdot, \tau, u)\right|^{2}\left(u^{-1}+(2 r-u)^{-1}\right) d u} . \tag{4.10}
\end{equation*}
$$

Proof. By Propositions III. 5 and III.6, ϕ_{1}^{\prime} is the solution in $L^{2}(0,+\infty)$ of the ODE

$$
\begin{equation*}
\left(-e^{-2 \prime} \frac{d^{2}}{d u^{2}}+q^{\prime}\left(m, \beta_{1}^{\prime}(\cdot, \tau), \tau, e^{\prime \prime} u\right)\right) \phi_{1}^{\prime}\left(\cdot, \tau, e^{\prime \prime} u\right)=0 \tag{4.11}
\end{equation*}
$$

for $0<\operatorname{Im} \theta<\pi / 2$. It is well known from standard techniques of asymptotic integration (see, e.g., Hille [32], Olver [33]) that the subdominant solution of (4.11) as $|u| \rightarrow \infty, u \in \mathbb{C}$, is unique up to constants as long as $\left|\arg \left(e^{\theta} u\right)\right|<\pi / 2$. Therefore, we can replace the condition $\phi_{1}^{\prime}(\cdot, u) \in L^{2}(0,+\infty)$ by the condition $\phi_{1}^{\prime}(\cdot, u) \in L^{2}(C, d|u|)$, where C is any contour in the complex half-plane $u \in \mathbb{C}$, Re $u \geqslant 0$, lying above the singularity at $u=2 r e^{\prime \prime}$. For cxample, $C=C_{1} \cup C_{2} ; C_{1}=$ $\{u \in \mathbb{C}: \operatorname{Im} u=0, \quad 0 \leqslant \operatorname{Re} u \leqslant 2(r-\bar{r}), \quad \operatorname{Re} u \geqslant 2(r+\bar{r})\} ; \quad C_{2}=\{u \in \mathbb{C}:|u-2 r|=2 \bar{r}:$ Im $u>0\}$ for some fixed $\bar{r}(m, k)>0$. Since the regular, subdominant solution of (4.11) is continuous at $\operatorname{Im} \theta=0$ uniformly with respect to $u \in C$, and the eigenvalues are independent of θ, we may henceforth assume $\operatorname{lm} \theta=0$. The point $2(r-\vec{r})$ can be taken as the greatest solution $t_{2}(m, k)$ in $(0,2 r)$ of $q^{\prime}\left(m, \beta_{1}^{\prime}(\cdot, \tau), \tau, u\right)=0$ (the "large
turning point"). Formula (4.10) then follows by a standard partial integration argument. In particular

$$
\begin{equation*}
\operatorname{Im} \beta_{1}^{\prime}(\cdot, \tau)=\frac{\left.\phi_{1}^{\prime}\left(\cdot, t_{2}\right) \frac{d}{d u} \phi_{1}^{\prime}(\cdot, u)\right|_{u=t_{2}}-\left.\phi_{1}^{\prime}\left(\cdot, t_{2}\right) \frac{d}{d u} \phi_{1}^{\prime}(\cdot, u)\right|_{u=t_{2}}}{2 i \int_{0}^{\prime 2}\left|\phi_{1}^{\prime}(\cdot, u)\right|^{2}\left(u^{-1}+(2 r-u)^{-1}\right) d u} . \tag{4.12}
\end{equation*}
$$

Equation (4.12) is the standard formula for estimating imaginary parts, and in order to evaluate it we shall exhibit a patched-together comparison function $\chi(m, k, \tau, u)=\chi(\cdot, \tau, u)$ such that
where $|\varepsilon(\cdot, \tau, u)|+|(d \varepsilon / d u)(\cdot, \tau, w)|=O\left(\tau^{\alpha}\right)$ for some $\alpha=\alpha(m, k)>0,0 \leqslant u \leqslant t_{2}$.
Since the subsequent arguments are essentialiy adaptations to the present case of those of Harrell [30] and Harrell and Simon [6], we shall be sonewhat sketehy. We begin by stating the following:

Definition IV.4. Let $\Omega(\tau) \subset \mathbb{C}$ be the closure of an open, bounded, simply connected set for $\tau \geqslant 0$. Let $(u, \tau) \mapsto f(u, \tau),(u, \tau) \mapsto g(u, \tau)$ be the functions from $\Omega(\tau) \times[\bar{\tau},+\infty)$ to $\mathbb{C}, 0<\bar{\tau}<\infty$. Let $f, g \in C^{2}\left(\Omega(\tau) \times I_{i}\right)$, where S_{1} is any compact subinterval of $[\tilde{\tau},+\infty)$, and let f, y be analytic in $u \in \Omega(\tau)$. Then we say that f is uniformly approximated by g in $\Omega(\tau)$ as $\tau \rightarrow 0$ if there exist $\alpha>0, \gamma>0, \tau_{0}<\tau$ independent of (u, τ) such that for all $u \in \Omega(\tau)$ and $\tau<\tau_{0}$,

$$
\begin{equation*}
f(u, \tau)=g(u, \tau)(1+c(u, \tau)) \tag{4.14}
\end{equation*}
$$

where

$$
|\varepsilon(u, \tau)|+\left|\frac{c d \tau}{d u}(u, \tau)\right|<\gamma \tau^{\alpha} .
$$

If $\Omega_{1}, \ldots, \Omega_{j}$ are several such domains, then we say that f is uniformly approximated by g_{1}, \ldots, g_{j} on their union, provided (4.14) holds on eich domain separately, and if C is a contour in such a domain or set of domains, we say that f is uniformly approximated on C by g_{1}, \ldots, g_{j}.
Remarks. (i) It is easily seen that this is an equivalence relation: in particular we shall make use of the observation that if f is uniformly approximated by g and g is uniformly approximated by h, then f is uniformly approximated by h.
(2) Since Eq. (4.11) for $\tau=0,0=0$ is the confluent hypergeometric equation in Whittaker's form (see, e.g., Buchholz [24]), the standard Picard approximation procedure yielding existence and uniqueness for the ODE Catuchy problem shows that with a suitable choice of normalization $\phi_{1}^{\prime}(\cdot, \tau, u)$ is uniformly approximated for $u \in[0,1]$ by the Whittaker function $W_{b i m, k i, m / 2}(u)$. We remark that
$W_{p(m, k), m / 2}(u)$ is an equivalent way of writing the unperturbed eigenvectors of Remark (3) after Proposition II.2, denoted by $\phi(m, k, u)$ in Proposition III.6: $\phi(m, k, u)=W_{m(m, k), m / 2}(u)$.
(3) Let $\Omega_{1}(\tau)=\left\{u \in \mathbb{C}: \operatorname{Re} u \geqslant r^{1 / 2}\right.$, Im $\left.u \geqslant 0,|u-2 r| \geqslant r^{1 / 2}\right\}$. Then $\phi_{1}(\cdot, \tau, u)$ is uniformly approximated in $\Omega_{1}(\tau)$ by the $J W K B$-type function

$$
\begin{equation*}
\psi_{-}(\cdot, \tau, u)=K(\cdot, \tau) q^{\prime}(\cdot, \tau, u) \operatorname{cxp}\left(-\int_{t_{1}}^{u} q^{\prime}\left(\cdot, u^{\prime}\right)^{1 / 2} d u^{\prime}\right) \tag{4.15}
\end{equation*}
$$

where $t_{1}(m, k ; \tau)$ is the zero of $q^{\prime}(\cdot, \tau, u)$ near $\frac{1}{2}\left[\beta_{1}^{\prime}(\cdot)+\left(\beta_{1}^{\prime}(\cdot)^{2}+\left(m^{2}-1\right) / 4\right]^{1 / 2}\right.$, and

$$
\begin{equation*}
K(\cdot, \tau)=r^{m_{i}(\cdot)} \sqrt{2} e^{-\sqrt{r / 2} \operatorname{cxp}}\left(\int_{H^{\prime}}^{r} q^{\prime}\left(\cdot, u^{\prime}\right)^{1 / 2} d u^{\prime}\right) \tag{4.16}
\end{equation*}
$$

The branch of the square root here and elsewhere is taken such that $\operatorname{Re}\left(q^{\prime}\right)^{1 / 2}>0$ as $u \rightarrow \infty$. Formulae (4.15) and (4.16) are immediate conseqences of a theorem of Olver [33] and the estimate of the error control function given in Appendix B.
(4) When there are several domains of uniform approximation they may either touch at isolated points or overlap, and the overall approximating function may have jump discontinuities.

The foregoing remarks show that a uniform approximation has to be constructed only for $1 \leqslant u \leqslant \sqrt{r}$ and $0<a \leqslant|u-2 r| \leqslant \sqrt{r}$. To this end we apply the variation-of-parameters technique of Harrell and Simon [6]. The result is as follows:

Lemma IV.5. Let $\Omega_{2}(\tau)=C \cap\{u: \quad \operatorname{Rc} u \geqslant 2 r-\sqrt{r}\}$, where C is as in Proposition IV.3, and $\Omega_{3}(\tau)=\{u: 1 \leqslant u \leqslant \sqrt{r}\}$. Then:
(1) For $u \in \Omega_{3}(\tau), \phi_{1}^{\prime}(\cdot, \tau, u)$ is uniformly approximated by $W_{\beta(m, k), m / 2}(u)$ with $\alpha=1 / 2$.
(2) For $u \in \Omega_{2}(\tau), \phi_{1}^{\prime}(\cdot, \tau, u)$ is uniformly approximated by $\phi_{-}(\cdot, \tau, u)$ with $\alpha=$ $1 / 2$, where

$$
\begin{gather*}
\phi_{-}(\cdot, \tau, u)= \\
\quad \Gamma(\cdot, \tau) W_{-\mu \cdot \cdot, m / 2}(u-2 r) \tag{4.17}\\
\\
+b(\cdot, \tau) W_{m \cdot 1, m / 2}\left(e^{i \pi}(u-2 r)\right), \tag{4.18}\\
\Gamma(\cdot, \tau)=2 K(\cdot, \tau)^{2} \operatorname{cxp}\left(-\int_{U_{1}}^{t_{2}} q^{\prime}\left(m, \beta_{1}^{\prime}(\cdot), \tau, u\right) d u\right) \\
\times\left(1+O\left(\cdot, \tau^{1 / 2}\right)\right) \quad \text { as } \tau \rightarrow 0
\end{gather*}
$$

with $K(\cdot, \tau)$ as in (4.16), and

$$
\begin{equation*}
\Gamma(\cdot, \tau)^{-1} b(\cdot, \tau)=O\left(r^{\mu i(\cdot \tau)} e^{-\nu^{r}}\right) \quad \text { as } \quad \tau \rightarrow 0 \tag{4.19}
\end{equation*}
$$

Proof. We first sketch the proof of (2). Following the variation-of-parameters technique of Harreil and Simon [6] (the reader is referred to that reference for a fully detailed description), for $u \geqslant 2 r+\sqrt{r}$, set

$$
\begin{align*}
\phi_{-}(\cdot, \tau, u)= & K(\cdot, \tau, u) q^{\prime}(m, \beta(m, k), \tau, u)^{-1 / 4} \\
& \cdot \operatorname{cxp}\left(\int_{t_{1}}^{u} q^{\prime}\left(m, \beta(m, k), \tau, u^{\prime}\right)^{1 / 2} d u^{\prime}\right), \tag{4.20}
\end{align*}
$$

so that

$$
\begin{equation*}
-\phi_{-}^{\prime \prime}(\cdot, u)+A(\cdot, u) \phi_{-}(\cdot, u)=0, \quad u \geqslant 2 r+\sqrt{r} \tag{4.21}
\end{equation*}
$$

for some function $(\tau, u) \mapsto A(\cdot, \tau, u)$ analytic in u and C^{1} in τ. Let $\phi(, u)$ be C^{\prime} at $u=2 r+\sqrt{r}$ and solve

$$
\begin{align*}
& {\left[-\frac{d^{2}}{d u^{2}}-\frac{1}{4}+\frac{\beta(m, k)}{u-2 r}+\frac{m^{2}-1}{4(2 r-u)^{2}}\right.} \\
& \left.\quad+\frac{m^{2}-1}{4}\left[(2 r-u)^{-2}+2 u^{-1}(2 r-u)^{-1}\right]\right] \phi_{-}(\cdot, u)=0, \tag{4.22}
\end{align*}
$$

where u belongs to $C, 2 r-\sqrt{r} \leqslant \operatorname{Re} u \leqslant 2 r+\sqrt{r}$,ic., $\bar{r}=\sqrt{r}$. Simple matching at $u=2 r+\sqrt{r}$ with the use of the asymptotic formulac for Whittaker's functions (see, c.g., Abramowitz and Stegun [34], Buchholz [24]) shows that, on $C \cap\{u$: $2 r-\sqrt{r} \leqslant \operatorname{Re} u\}$,

$$
\begin{align*}
\phi_{-}(\cdot, \tau, u)= & T(\cdot, \tau) W_{-\beta(m, k), m / 2}(u-2 r) \\
& +b W_{\beta(m, k), m / 2}\left(e^{i \pi}(u-2 r)\right) \tag{4.23}
\end{align*}
$$

where $T(\cdot, \tau)$ is given by (4.18) and $b(\cdot, \tau) / T(\cdot, \tau)$ satisfies (4.19). Furthermore, let $(u, \tau) \rightarrow \phi_{+}(\cdot, u, \tau)$ be defined as the unique function which satisfies (4.21) and is a simple multiple of $W_{m i m, i), m / 2}\left(e^{i \pi}(1,-2 r)\right)$ on C. It is straightforward to check that $W\left(\phi_{-}, \phi_{+}\right)=1$, where $W(\cdot)$ denotes the Wronskian of $\left(\phi_{-}, \phi_{+}\right)$, and that

$$
\begin{align*}
B(\cdot, \tau, u) \equiv q^{\prime}(\cdot, \tau, u)-A(\cdot, \tau, u) & =0(\cdot, \tau), & & u \in C \\
& =0\left(\cdot,(u-2 r)^{-2}\right), & & u \geqslant 2 r+\sqrt{r} \tag{2.24}
\end{align*}
$$

Furthermore, with the aid of the estimates on Whittaker's functions (see Buchholz [24] or Abramowitz and Stegun [34]) it is also casy to check that

$$
\begin{aligned}
\int_{u}^{\infty} B\left(\cdot, \tau, u^{\prime}\right) \phi_{+}\left(\cdot, \tau, u^{\prime}\right) \phi_{-}\left(\cdot, \tau, u^{\prime}\right) d u^{\prime} & =O\left(\cdot, \tau^{1 / 2}\right), \\
\int_{u}^{\infty} B\left(\cdot, u^{\prime}, \tau\right) \phi_{-}\left(\cdot, u^{\prime}, \tau\right)^{2} d u^{\prime} & =O\left(\cdot, \tau^{1 / 2}\right),
\end{aligned}
$$

$\int_{u}^{\infty} B\left(\cdot, u^{\prime}, \tau\right), \phi_{+}\left(\cdot, u^{\prime}, \tau\right)^{2} \int_{0}^{\infty} B(\cdot, v, \tau) \phi_{-}^{2}(\cdot, v, \tau) d v d u^{\prime}=O\left(\cdot, \tau^{1,2}\right)$.

Therefore it follows, as in Harrell and Simon [6], that on $\Omega_{2}(\tau)$

$$
\begin{align*}
\phi_{1}^{\prime}(\cdot, \tau, u) & =a_{-}(\cdot, \tau, u) \phi_{-}(\cdot, \tau, u)+a_{+}(\cdot, \tau, u) \phi_{+}(\cdot, \tau, u), \\
\frac{d}{d u} \phi_{1}^{\prime}(\cdot, \tau, u) & =a_{-}(\cdot, \tau, u) \frac{d \phi_{-}}{d u}(\cdot, \tau, u)+a_{+}(\cdot, \tau, u) \frac{d \phi_{+}}{d u}(\cdot, \tau, u), \tag{4.26}
\end{align*}
$$

where $a_{-}(\cdot, \tau, u)=1+O\left(\cdot, \tau^{1 / 2}\right), a_{+}(\cdot, \tau, u)=O\left(\cdot, \tau^{1 / 2}\right)$. The same technique also proves that $\phi_{1}^{\prime}(\cdot)$ is uniformly approximated by $W_{j,(m, k), m, 2}(u)$ on $[0, \sqrt{r}]$. This time use as comparison functions $\psi_{\text {. }}(\cdot)$ from (4.15), uniquely extended in a C^{\prime} fashion to a linear combination of $W_{f(m, k), m / 2}(u), W_{-\beta 4 m, k), m / 2}\left(e^{i \pi} u\right)$ on $[1, \sqrt{r}]$, and $\psi_{+}(\cdot)=$ const $W_{\beta(m . k), m / 2}\left(e^{i n} u\right)$ on $[1, \sqrt{r}]$, extended to be a linear combination of $\psi(\cdot)$ and (dominantly) of $q^{\prime}(\cdot)^{-1 / 4} \exp \left(\int_{i}^{\prime} q^{\prime}\left(\cdot, u^{\prime}\right)^{1 / 2} d u^{\prime}\right)$. Then a straightforward verification of (4.25) and the asymptotic formulac of Whittaker's functions show that $\phi_{i}^{\prime}(\cdot, \tau, u)$ is uniformly approximated by $\psi(\cdot, \tau, u)$, which is in turn uniformly approximated by $W_{\beta(m, k), m / 2}(u)$ on $[1, \sqrt{r}]$. Since we already know that $\phi_{1}^{\prime}(\cdot, \tau, u)$ is uniformly approximated by $W_{\beta(m, k), m / 2}(u)$ on $[0,1]$, the lemma is proved.

The estimate of the imaginary part is now easy to obtain:

Proposition IV.6. Let (m, k) be fixed. Then, as $\tau \downarrow 0$,

$$
\begin{align*}
\operatorname{Im} \beta_{1}^{\prime}(m, k ; \tau) & =-\pi \frac{T(m, k ; \tau)^{2}}{[k!(|m|+k)!]^{2}}\left(1+O\left(\tau^{1 / 2}\right)\right) \tag{4.27}\\
& =\frac{-\pi(2 r)^{2|m|+4 k+2}}{[k!(|m|+k)!]^{2}} e^{-2 / \tau}\left(1+O\left(\tau^{1 / 2}\right)\right) .
\end{align*}
$$

Remurk. In the notation of Section II, by (4.8) formula (4.27) yiclds the behavior of $\operatorname{Im} \beta_{1}^{\prime}\left(m, k ; e^{-i \pi} \tau\right)$ as $\tau \rightarrow 0$. Furthermore, by the approximate disper-sion-relation argument recalled in the proof of Corollary IV.2, integrating this time over the boundary of the circle $A_{\varepsilon}=\left\{\tau:|\tau|=\varepsilon, 0<\varepsilon<M_{1}(m, k)\right\}$ cut along the negative real axis, (4.27) yields the asymptotics of the cocfficients $L_{N}(m, k)$,
$L_{N}(m, k)=[k!(|m|+k)!]^{-2}(N+4 k+2|m|+1)!\left(1+O\left(m, k ; N^{-1 / 2}\right)\right) . \quad$ (4.28)
By the estimate of Harrell [13], it also yiclds the formula analogous to that of Brézin and Zinn-Justin (formula (4.4)) for the separation constant β_{2},

$$
\begin{equation*}
-\operatorname{Im} \beta_{1}^{\prime}\left(m, k ; \tau e^{-i \pi}\right)=\pi \Delta \beta_{2}(m, k, \tau)^{2}(1+O(m, k ; \tau+1 / 2)) \tag{4.29}
\end{equation*}
$$

where $\Delta \beta_{2}(\cdot)=\beta_{2}^{+}(\cdot)-\beta_{2}^{-}(\cdot), \quad \beta_{2}^{+}$being of course implicitiy defined by $\mu_{ \pm}\left(,, \beta_{2}, \tau\right)=0$ (see Corollary III. 7).

Proof. Im $\beta_{1}^{\prime}(m, k ; \tau)$ is given by (4.12). By definition of $t_{2}(m, k)$ and Lemma IV.S(1) we have

$$
\begin{align*}
\int_{0}^{r_{2}(m, k)} & \left\{\left.\phi_{1}^{\prime}(m, k ; \tau, u)\right|^{2}\left(u^{-1}+(2 r-u)^{-1}\right) d u\right. \\
= & {\left[\int_{0}^{\infty} W_{\beta(m, k), m / 2}^{2}(u) u^{-1} d u\right] \cdot\left(1+0\left(m, k ; \tau^{1 / 2}\right)\right) } \\
= & {\left[(k!)^{2} \int_{0}^{\infty} c^{-u} u^{\prime \prime \prime}\left(L_{k}^{(m)}(u)\right)^{2} d u\right]^{\prime}\left(1+O\left(m, k ; \tau^{1 / 2}\right)\right) } \\
= & k!(k+\mid m!)!\left[1+O\left(m, k ; \tau^{1 / 2}\right)\right], \tag{4.30}
\end{align*}
$$

where the well-known formulae on integrals of Whittaker and Laguerre functions (see (Buchholz [24, pp. 23, 115]) have been used. Furihermore, by Lemma [V.5(2)
$\left.\phi_{1}^{\prime}\left(m, k ; \tau, t_{2}\right) \frac{d}{d u} \phi_{1}^{\prime}(m, k ; \tau)\right|_{u=t_{2}} ^{1}-\phi_{1}^{\prime}\left(m, k ; \tau, t_{2}\right) \frac{d}{d u} \phi_{1}^{\prime}(m, k, \tau u) \sum_{n-t_{2}}$

$$
\begin{equation*}
=T(m, k ; \tau)^{2} W\left\{W_{-\beta(m, k), m / 2}(u), W_{-m(m, k), m / 2}\left(e^{2 \pi i} u\right)\right\}\left(1+O\left(\cdot, \tau^{1 / 2}\right)\right) . \tag{4.31}
\end{equation*}
$$

Now, as proved in Appendix B

$$
\begin{equation*}
T(m, k ; \tau)=(2 r)^{2|m|+1+2 k} c^{-2 / t}\left(1+O\left(\cdot, \tau^{3 / 2}\right)\right) \tag{4.32}
\end{equation*}
$$

and (sce Buchholz [24, p. 27])

$$
\begin{align*}
& W_{\{ }\left\{W_{-\beta(m, k), m / 2}(u), W_{-\beta(m, k), m / 2}\left(e^{-2 \pi i} u\right)\right\} \\
&=-\frac{2 \pi i e^{\left.-\left.\pi i\right|_{1 m, k}\right)}}{\left[\Gamma\left(\frac{m+1}{2}+\beta(m, k)\right)\right]\left[\Gamma\left(\beta(m, k)-\frac{m}{2}\right)\right]} \\
& W\left\{W_{-\mu(m, k), m / 2}(u), W_{M, m, k, m / 2}\left(e^{i \pi} u\right)=-2 \pi i /[k!(\mid m\}+k)!\right] . \tag{4.33}
\end{align*}
$$

Inserting (4.30)-(4.33) into (4.12), we get (4.27).

Corollary IV. 7.

$\operatorname{Im} \beta_{1}\left(m, j, \beta_{1}^{\prime}\left(m, k ; \tau e^{-i n}\right), \tau\right)=\operatorname{Im} \beta_{1}\left(m, j ; \beta_{1}^{\prime}(m, k ; \tau), \tau\right)$

$$
\equiv \operatorname{Im} \beta_{1}(m, j, k ; \tau)=-2 \tau \operatorname{Im} \beta_{1}^{\prime}(m, k ; \tau)(1+O(, \tau)) \quad \text { बs } \quad \tau \downarrow 0 .
$$

Proof. Denoting the eigenvector $\phi_{1}\left(m, j ; \beta_{1}(\cdot, \tau), \tau\right)$ corresponding to
$\beta_{1}(m, j, k ; \tau)$ simply as $\phi_{1}(\cdot)$, taking the imaginary part of the $\operatorname{ODE} t_{m}\left(\beta_{1}(\cdot, \tau)\right.$ $\left.\beta_{1}^{\prime}(\cdot, \tau), \tau\right) \phi_{1}(\cdot)=0$, multiplying by $\phi_{1}(\cdot)$, and integrating, we get
$\operatorname{Im} \beta_{1}(m, j, k ; \tau)=-2 \frac{\operatorname{Im} \beta_{;}^{\prime}(m, k, \tau) \int_{1}^{\infty}\left|\phi_{1}(\cdot)\right|^{2}(u+2 r)^{-1} d u}{\int_{0}^{\infty}\left|\phi_{1}(\cdot)\right|^{2} s^{-1} d u+\int_{0}^{\infty}\left|\phi_{1}(\cdot)\right|^{2}(u+2 r)^{-1} d u}$,
whence (4.34) easily follows in the limit $\tau \rightarrow 0$.

Proposition IV.8. As $\tau \downarrow 0$,

$$
\begin{equation*}
\operatorname{Im} \gamma_{1}(m, j, k ; \tau)=\operatorname{Im} \beta_{1}^{\prime}(m, j, k ; \tau)(1+O(\cdot, \tau)), \tag{4.35}
\end{equation*}
$$

\qquad
while for $\tau \uparrow 0$,

$$
\begin{gather*}
\operatorname{Im} \gamma_{1}(m, j, k ; \tau)=\pi(-1)^{m} \frac{(j+2 k+|m|+1)!(j+2 k+2|m|+1)!}{j!(k+|m|)!} \\
\cdot 16(j+k+|m|+1)^{4}(2 r)^{-2 \mid m i-2-4 k} e^{-2 /|\tau|}\left(1+O\left(\cdot,|\tau|^{1 / 2}\right)\right) \tag{4.36}
\end{gather*}
$$

Proof. For $\tau \downarrow 0$, i.e., $\tau>0$, (4.35) is an immediate consequence of (4.32) by the definition of γ_{1} (sec Thcorem III.2). For $\tau<0$, i.c., $\tau=i \tau \mid e^{+i \pi}$, once more by Theorem III. 2 we can write

$$
\left.\gamma_{1}(\cdot ; \tau)\right|_{\tau<0}=\left.\beta_{1}\left(\cdot ; \beta_{1}^{\prime}\left(\tau e^{-i \pi}\right), \tau\right)\right|_{\tau<0}+\left.\beta \beta_{1}^{\prime}\left(\cdot ; \tau e^{-i \pi}\right)\right|_{5<0}
$$

Now $\left.\beta_{1}^{\prime}\left(\cdot ; \tau e^{-i \pi}\right)\right|_{t<0}=\beta_{1}^{\prime}(\cdot ;|\tau|)$ is reak, and therefore $\left.\operatorname{lm} \gamma_{1}(\cdot ; \tau)\right|_{r<0}=$ $\left.\operatorname{lm} \beta_{1}\left(\cdot ; \beta_{1}^{\prime}(!\tau!), \tau\right)\right|_{r<0}$, where the right side is defined in Corollary 1Il.10. The argument leading to (4.36) is, up to the obvious modifications. identical to that of IV. 5 and Proposition IV. 6 applied this time to the limit as Im $0 \downarrow 0$ of the equation (see (3.18))

$$
t_{m}\left(\beta_{1}, \beta_{1}^{\prime}(\cdot ;|\tau|), \tau, 0\right) \phi_{1}=0
$$

and can therefore be omitted.
Proof of Theorem IV.1. By (4.35), (4.36), and (4.27), as $|\tau| \downarrow 0, \tau \in \mathbb{R}$,

$$
\begin{equation*}
\operatorname{Im} \gamma_{1}(m, j, k ; \tau)=-\pi \frac{(2 r)^{2|m|+2+4 h_{e}} e^{2 /|k|}}{[k!(|m|+k)!]^{2}}\left(1+O\left(\cdot,|\tau|^{1 / 2}\right)\right) . \tag{4.37}
\end{equation*}
$$

Now the inverse function $\rho \rightarrow \Gamma_{1}(m, j, k ; \rho)$ of $\tau \mapsto \tau y_{1}(m, j, k, \tau)^{-1}$ exists and enjoys the properties stated in Theorem III.2(5). To see (4.1), it is enough to observe that with $n=|m|+j+k+1$, by Propositions III.6(3) and III.10(2), we can write

$$
\tau \gamma_{1}(m, j, k ; \tau)^{-1}=\tau n^{-1}+\tau^{2}+O\left(\cdot, \tau^{3}\right) \quad \text { as }|\tau| \downarrow 0
$$

and thus $\Gamma_{1}(\cdot, \rho)=n \rho-n^{3} \rho^{2}+O\left(\cdot, \tau^{3}\right)$ as $|\tau| \downarrow 0$. Furthermore,

$$
\begin{aligned}
\operatorname{Im}[& \left.-\frac{1}{2} \gamma_{1}(\cdot, \tau)\right]^{-2} \\
& =\left[\operatorname{Re} \gamma_{1}(\cdot, \tau) \operatorname{Im} \gamma_{1}(\cdot, \tau)\right] /\left[\left(\operatorname{Re} \gamma_{1}(\cdot, \tau)\right)^{2}+\left(\operatorname{Im} \gamma_{1}(\cdot, \tau)\right)^{2}\right]^{2} \\
& =n^{-3} \operatorname{Im} \gamma_{1}(\cdot, \tau)(1+O(\cdot, \tau))
\end{aligned}
$$

by (4.37) and (4.36). Therefore (3.14) and (4.37) immediately yicld (4.1).
Appendix A
For the sake of completeness, in this appendix we prove some results about Borel summability of composed and implicil functions, because we do not know of any study where they may have been worked out before. We first prove that under certain circumstances Borel summability is stable under composition of functions.

Proposition A.1. Let $D=\{z \in \mathbb{C}: 0<|z|<M, \quad$ |arg $z \mid<\pi / 2\} ;$ let $x \mapsto f(x)$, $y \mapsto F(y)$ be analytic in D, continuous in \bar{D}, and let f, F admit strongly asymptoric expansions as $x \rightarrow 0, y \rightarrow 0$, in \bar{D}, respectively, of the form

$$
\begin{gather*}
f(x) \sim x \sum_{n=0}^{\infty} a_{k} \cdot x^{k}, \\
\left|R_{N}(x)\right| \equiv\left|\frac{f(x)}{x}-\sum_{k=0}^{N=1} a a_{k} x^{k}\right| \leqslant A^{N+1} N!|x|^{N}, \quad N=1, \ldots, \tag{A.i}
\end{gather*}
$$

$|x| \rightarrow 0$ in \bar{D}, A independent of $x \in \bar{D}$,

$$
\begin{gather*}
F(y) \sim \sum_{i=0}^{\infty} b_{i} y^{i} \\
\left|Q_{N}(y)!\equiv\right| F(y)-\left.\sum_{i=0}^{N \cdots} b_{i} y_{i}\left|\leqslant A_{1}^{N+1} N!\right| y\right|^{N}, \quad N=1, \ldots, \tag{A.2}
\end{gather*}
$$

$|y| \rightarrow 0$ in \bar{D}, A_{1} independent of $y \in \bar{D}$.
Then $F \circ f=F(f(x))$ admits a strongly asymptotic expansion as $x \rightarrow 0$ in \bar{D} :

$$
\begin{gather*}
F(f(x)) \sim \sum_{i=0}^{L} c_{1} x^{\prime} \\
\left\{P_{N}(x)|\equiv| F(f(x))-\left.\sum_{i=0}^{N} c_{l} x^{\prime}\right|_{i} \leqslant C^{N+1} N!|x|^{N}, \quad N=1, \ldots,\right. \tag{A.3}
\end{gather*}
$$

as $|x| \rightarrow 0$ in \bar{D}, with C independent of $x \in \bar{D}$.
Remarks. (1) Our definition of strongly asymptotic expansion is that of Reed
and Simon [15, Sect. XII. 4]. We recall that by the Watson-Nevantinna theorem (for further details see Sokal [26]) the stated analyticity bounds of the type (A.1), (A.2), (A.3) imply Borel summability for $0 \leqslant x \leqslant A^{-1}, 0 \leqslant y \leqslant A^{-1}, 0 \leqslant x \leqslant C^{-1}$, respectively.
(2) The functions $\rho \mapsto \Gamma_{1}(m, j, k ; \rho)$ and $\tau \mapsto \gamma_{1}(m, j, k ; \tau)$ of Section II fulfill the conditions of f and F, respectively.

Proof. In the sense of formal power series,

$$
\left(\sum_{k=0}^{0} a_{k} x^{k}\right)^{2}=\sum_{n=0}^{\infty} a_{n}^{(2)} x^{n}, \quad a_{n}^{(2)}=\sum_{i=0}^{n} a_{i} a_{n-i}
$$

so

$$
\begin{aligned}
\left|a_{n}^{(2)}\right| \leqslant\left|2 a_{n} a_{0}\right|+\sum_{i=1}^{n-1}\left|a_{i} a_{n \ldots i}\right| & \leqslant 2 A^{n+2} n!+\sum_{i=1}^{n} \frac{i!(n-i)!}{n!} A^{n+2} \\
& \leqslant 3 A \cdot A^{n+1} n!
\end{aligned}
$$

by (A. 1), since $i!(n-i)!/ n \leqslant 1 / n$. Iterating, we get

$$
\begin{align*}
\left(\sum_{n=0}^{\infty} a_{k} x^{k}\right)^{i} & =\sum_{n=0}^{\infty} a_{n}^{(i)} x^{n}, \quad i=2, \ldots \tag{A.4}\\
\left|a_{n}^{(i)}\right| & \leqslant 3 A^{(i-1)} A^{n+1} n!,
\end{align*}
$$

Therefore $F(f(x))$ has the asymptotic expansion

$$
\begin{gather*}
F(f(x)) \sim \sum_{i=1}^{x} b_{i} x^{i}\left(\sum_{n=0}^{r=} a_{k} x^{k}\right)^{i} \sim \sum_{i=1}^{c} b_{i} x^{i} \sum_{k=0}^{\infty} a_{k}^{(i)} x^{k} \sim \sum_{n=0}^{r} c_{n} x^{n} \tag{A.S}\\
c_{n}=\sum_{i=0}^{n} a_{n-i}^{(i)} b_{i}
\end{gather*}
$$

Now,

$$
\left|c_{n}!\leqslant \sum_{i=0}^{n}\right| b_{i} a_{n-i}^{(i)} \mid \leqslant A^{\prime} A^{n+1} n!+\sum_{i=1}^{n} A^{i+1}(3 A)^{-1} A^{n+1-i}(n-i)!i!
$$

by (A.4), and hence

$$
\begin{equation*}
\left|c_{n}\right| \leqslant A^{n+2} n!+A^{n+2}(3 A)^{n-1} 2(n!) \leqslant(3 A)^{n} A^{n+1} n! \tag{A.7}
\end{equation*}
$$

Therefore (A.3) is implied by (A.2) if we insert (A.4) and (A.7) in (A.2) itself.
Corollary A.2. Let $x \mapsto f(x)$ be as in Proposition A.1, with strong asymptotic expansion $\sum_{k=1}^{\infty} a_{k} x^{k}$, and let $(z, y, x) \mapsto F(z, y, x)$ be analytic in $(z, y, x) \in(z=$: $|z| \leqslant 1\} \times\{y:|y|<1\} \times D$, continuous in \bar{D} uniformly in (z, y), and let $F(z, y, x)$
admit a strongly asymptotic expansion as $x \rightarrow 0$ m \bar{D} untormly with respert to (z, y) Then the function $(z, x) \rightarrow F(z, f(x), x)$ is analytic in $\{z:|z|<1\} \times D$, comtinuous in \bar{D} uniformly with respect to z, and admits a strongly asymptotic expansionss as $x \rightarrow 0$ in \bar{D} uniformly with respect to z.
Remark. The functions $\left(\beta_{1}, \beta_{2}, \tau\right) \mapsto \lambda\left(\cdot, \beta_{1}, \beta_{2}, \tau\right)$ and $\tau \rightarrow \beta_{1}(m, k, e$ in $\tau)$ $\beta(m, k)$ fulfill the conditions of F and f, respectively.

Proposition A.3. Let $(y, x) \mapsto F(y, x)$ be as in Proposition A.2, and let $x \mapsto \delta(x)=x f(x)$, where $f(x)$ is analytic in D. continuous in \bar{D}, and admits the asymptoric expansion

$$
\begin{equation*}
f(x) \sim \sum_{n=0}^{\infty} c_{n} \cdot x^{n} \quad \text { as } \quad x \rightarrow 0 \text { in } \bar{D} . \tag{A. 8}
\end{equation*}
$$

Then, if $F(\delta(x), x)=0, x \in \bar{D}$, the expansion (A.8) represents a strongly asymptotic expansion for $x \mapsto f(x)$ in \bar{D}.

Remarks. (1) The Borel summability statement for the inverse function is a particular case of this statement: it is enough to take $(y, x) \mapsto F(y, x) \equiv F(y)-x$.
(2) The functions $\left(\beta_{1}^{\prime}, \tau^{\prime}\right) \mapsto \lambda^{\prime}\left(m, k ; \beta_{1}^{\prime}, \tau^{\prime}\right)$ and $\tau^{\prime} \mapsto \beta_{1}^{\prime}\left(m, k ; \tau^{\prime}\right)$ satisfy the conditions of F and f_{1} respectively, so that $\tau^{\prime} \mapsto \delta\left(m, k ; \tau^{\prime}\right)=\beta_{1}^{\prime}\left(m, k ; \tau^{\prime}\right)-\beta(m, k)$ satisfies the conditions of $x \mapsto \delta(x)$. In fact, it suffices to rewrite the operator $\Gamma_{m}^{\prime}\left(\beta_{1}^{\prime}, \tau^{\prime}\right)$ as the action on $D\left(\Gamma_{m}^{\prime}(\cdot)\right)$ of the differential expression

$$
\begin{aligned}
\bar{r}_{m}^{\prime}= & -\frac{d^{2}}{d u^{2}}+\frac{\delta}{u}+\frac{\delta}{u+2 r^{\prime}}-\frac{\beta(m, k)}{u}+\frac{\beta(m, k)}{u+2 r^{\prime}} \\
& +\frac{m^{2}-1}{4}\left(\left(2 r^{\prime}+u\right)^{-2}-2 u^{-1}\left(2 r^{\prime}+u\right)^{-1}\right)
\end{aligned}
$$

and to note that all its cigenvalues $\tilde{\lambda}\left(m, k, \delta, \tau^{\prime}\right)$ are such that (cf. Proposition 11I.6) $\left.(\partial \dot{\lambda} / \partial \delta)\left(m, k ; \delta, \tau^{\prime}\right)\right|_{s-0, r^{\prime}=0} \neq 0$.

Proof. By assumption, $F(\delta, x)$ admits the strongly asymptotic expansion $F(\delta, x)=\sum_{i, k=0}^{\infty} a_{i k} x^{i} \delta^{k}$, with

$$
\begin{equation*}
\left|u_{i k}\right| \leqslant B^{k} A^{i+1} i! \tag{A.9}
\end{equation*}
$$

for some $B>0, A>0$. Write

$$
\begin{align*}
& f(x)^{n}=\sum_{k=0}^{n} c_{k}^{(n)} x^{k}, \quad c_{n}^{(1)}=\delta_{0 . k}, \quad c_{k}^{\prime \prime \prime}=c_{k}^{\prime}, \quad k=0,1, \ldots, \tag{A,10}\\
& F(\delta(x), x) \sim \sum_{i, k=0}^{\infty} a_{i, k} x^{i+k} \sum_{j=0}^{x} c_{j}^{(k)} x^{\prime} \equiv \sum_{n=0}^{x} d_{n}, x^{n} . \\
& d_{n}=\sum_{i=0}^{n} \sum_{k=0}^{n-i} a_{i k} c_{n-k-i}^{(k)} .
\end{align*}
$$

We now prove that (A.9) and the equation $F(\delta(x), x)=0$ imply the existence of constants $D>0, C>0$ such that

$$
\begin{equation*}
\left|c_{n}\right| \leqslant D C^{n} n!. \tag{A.12}
\end{equation*}
$$

Let us proceed by induction. We have $16 \leqslant<D$ for some $D>0$. Assuming (A.12) true for $k \leqslant n-2$, let us prove it for $k=n-1$. Notice that if $(A, 12)$ is true up to $k=n-2$, then

$$
\begin{equation*}
\left|c_{n-2}^{\{k}\right| \leqslant(3 D)^{k-1} D C^{n-2}(n-2)! \tag{A.13}
\end{equation*}
$$

We now compute

$$
\begin{aligned}
c_{n-1} & =-\left(a_{01}\right)^{-1}\left(\sum_{i=1}^{n} \sum_{k=1}^{n-i} a_{i k} c_{n-k-1}^{(k)}+\sum_{i=0}^{n} a_{i 0} c_{n-1}^{(0)}+\sum_{k=0}^{n} a_{0 k} c_{n-k}^{(k)}\right) \\
& =-\left(a_{01}\right)^{-1}\left(\sum_{i=1}^{n} \sum_{k=1}^{n-i} a_{i k} c_{n-k-i}^{(k)}+a_{n 0}+\sum_{k=2}^{n} a_{0 k} c_{n-k}^{4 k)}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|c_{n-1}\right| \leqslant & \left|a_{01}\right|^{-1}\left(\sum_{i=1}^{n} \sum_{k=1}^{n-i} B^{k} A^{i+1} i!(3 D)^{k-1} D C^{n-k-i}(n-k-i)!\right. \\
& \left.+A^{n-1} n!+\sum_{k=2}^{n} A B^{k}(3 D)^{k-1} D C^{n-k}(n-k)!\right) \\
\leqslant & A B\left|a_{01}\right|^{-1}\left(\sum_{i=1}^{n} A_{i} i!\sum_{n=1}^{n \cdots i}(3 D B)^{k-1} C^{-k-i+1} \frac{(n-k-i)!}{(n-1)!}\right. \\
& +\left(\frac{A}{C}\right)^{n-1}(A / D) \frac{n}{B}+\sum_{k=2}^{n}(3 B D)^{k-1} C^{\left.\cdots(k-1) \frac{(n-k)!}{(n-1)!}\right) D C^{n-1}(n-1)!} \\
\leqslant & A B\left|a_{01}\right|^{-1} D C^{n-1}(n-1)!\left(\sum_{i=1}^{n}\left(\frac{A}{C}\right)^{i} i!\sum_{i-0}^{n-1}\left(\frac{3 B D}{C}\right)^{\prime} \frac{1}{j!}\right. \\
& \left.\cdot \frac{j!(n-1-i-j)!(n-i-1)!}{(n-i-1)!(n-1)!}+\frac{A}{D}\right)\left(\frac{A}{C}\right)^{n-1} \frac{n}{B} \\
+ & \left.\sum_{i=0}^{n-2}\left(\frac{3 B D}{C}\right)\left(\frac{3 B D}{C}\right)^{\prime} \frac{1}{j!j!(n-2-j)!} \frac{1}{(n-2)!} \frac{(n-1)}{(n-1}\right) \\
\leqslant & A B\left|a_{01}\right|^{-1} D C^{n-1}(n-1)!\left(\sum_{j=1}^{n}(A / C)^{i!(n-i-1)!}(3 e)^{(3 B D / C!}\right. \\
& \left.+\left(\frac{A}{D}\right)\left(\frac{A}{C}\right)^{n-1} \frac{n}{B}+\frac{3}{(n-1)!}\left(\frac{3 B D}{C}\right) e^{13 B D / C)}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leqslant & A B\left|a_{01}\right|^{-1} D C^{n-1}(n-1)!\left(\sum_{j=0}^{n-1}\left(\frac{A}{C}\right)^{j+1}(j+1) \frac{j!(n-1-j)!}{(n-1)!}\right. \\
& \left.\cdot(3 e)^{(3 B D / C)}+\left(\frac{A}{D}\right)\left(\frac{A}{C}\right)^{n-1} \frac{n}{b}+\frac{3}{(n-1)}\left(\frac{3 B D}{C}\right) e^{(3 B D / C)}\right) \\
\leqslant & A B\left|a_{01}\right|^{-1}(n-1)!\left(9\left(\frac{A}{C}\right)(3 e)^{(3 B D / C)}+\left(\frac{A}{D}\right)\left(\frac{A}{C}\right)^{n-1} \frac{n}{B}\right. \\
& \left.+\frac{9 B D}{(n-1) C} e^{(3 B D / C)}\right) \leqslant D C^{n-1}(n-1)!
\end{aligned}
$$

Proposition B.l.

$$
T(m, k ; \tau)=2 \tau^{-(|m|+2 k+1)} e^{-1 / \tau}\left(1+O\left(\cdot, \tau^{1 / 2}\right)\right) \quad \text { as } \quad \tau \downarrow 0 .
$$

Proof. Because of the uniformity of the approximations, it suffices to determine T by asymptotic matching. The quantity $K(\cdot)$ of (4.16) is determined to leading order by the condition that

$$
\begin{aligned}
& K(m, k ; \tau) q^{\prime}\left(\cdot, \beta_{1}^{\prime}(\cdot \tau), \tau, u\right)^{-1 / 4} \exp \left(-\int_{t_{4}}^{u} q^{\prime}\left(\cdot, u^{\prime}\right) d u^{\prime}\right) \\
& =W_{\mu(m . k) . m / 2}(u) \cdot\left(1+O\left(\cdot, \tau^{1 / 2}\right)\right)
\end{aligned}
$$

if we choose $1<A, B \ll D<C$, since by assumption

$$
\left|F(\delta, x)-\sum_{i, k=0}^{N-1} a_{i k} x^{i} \delta^{k}\right| \leqslant B^{N} A^{N+1}|\delta|^{N}|x|^{N} N!
$$

as $x \rightarrow 0, x \in \bar{D},(A .11)$ and (A.12) imply that

$$
\left|f(x)-\sum_{k=0}^{n-1} c_{n} x^{n}\right| \leqslant D C^{N} N!|x|^{n} \quad \text { as } \quad x \rightarrow 0 \text { in } \bar{D}
$$

which proves the assertion.

Appendix B

In this appendix we compute the tunneling factor $T(\cdot)$ used in (4.17), (4.18) and bound the crror-control function needed to justify formulac (4.15) and (4.16).

We begin with the error-control function, which is the cotal variation of

$$
\begin{align*}
q^{\prime}(\cdot, u)^{-1 / 4} \frac{d^{2}}{d u^{2}} q^{\prime}(\cdot, u)^{-1 / 4}= & -\frac{1}{4}\left(\frac{d^{2}}{d u^{2}} q^{\prime}(\cdot, u)\right) q^{\prime}(\cdot, u)^{-3 / 2} \\
& +\frac{5}{16}\left(\frac{d}{d u} q^{\prime}(\cdot, u)\right)^{2} q^{\prime}(\cdot, u)^{5 / 2} \tag{B.1}
\end{align*}
$$

for $r^{1 / 2} \leqslant u \leqslant 2 r-r^{1 / 2}$. It has to be shown that this quantity tends to 0 as $r \rightarrow \infty$, i.e., $\tau \rightarrow 0$. Now, from the definition of $q^{\prime}(\cdot, u)$ in (4.7) with $\theta=0$, it is casy to see that, uniformly in $u_{1} \quad r^{1 / 2}<u<2 r-r^{1 / 2}, \quad q^{\prime}(\cdot, u)^{-1}=O(1), \quad(d / d u) q^{\prime}(\cdot, u)=O(r)$, $\left(d^{2} / d u^{2}\right) q^{\prime}(\cdot, u)=O\left(\tau^{3 / 2}\right)$ as $\tau \downarrow 0$. Thus

$$
q^{\prime}(\cdot, u)^{-1 / 4} \frac{d^{2}}{d u^{2}} q^{\prime}(\cdot, u)^{1 / 4}=O\left(\tau^{3 / 2}\right) \quad \text { us } \quad \tau \downarrow 0
$$

Since $q^{\prime}(\cdot, u)$ is a rational function of a and τ, the totai vartation of this yuantity is also the integral of a function $O\left(\tau^{3 / 2}\right)$, and is tinus $O\left(\tau^{1 / 2}\right)$.

Next we estimate $K^{\prime}(\cdot)$ and $T(\cdot)$, defined in (4.16) and (4.18). We claim:
at $u=\sqrt{r}$ (say). Thus we may set

$$
\begin{equation*}
K(m, k ; \tau)=\tau^{-\beta(m, k) / 2} e^{-1 / 2 \mathrm{r}^{1 / 2}} \exp \left(\int_{t_{1}}^{\tau^{-1.2}} q^{\prime}(\cdot, \tau, u ;) d u^{\prime}\right) \tag{B.2}
\end{equation*}
$$

with the aid of an expansion of Buchholz [24]
Then $T(\cdot)$ is determined by

$$
\begin{aligned}
T(m, k ; \tau)= & 2[K(m, k ; \tau)]^{2} \operatorname{cxp}\left(-\int_{1_{1}}^{1_{2}}\left[q^{\prime}\left(\cdot, \tau, u^{\prime}\right)\right]^{1 / 2} d u^{\prime}\right) \\
& \cdot\left(1+O\left(\cdot, \tau^{1 / 2}\right)\right) .
\end{aligned}
$$

Since

$$
\int_{4_{4}}^{r^{+1 / 2}} q^{\prime}\left((\cdot), \tau, u^{\prime}\right)^{1 / 2}=\int_{2 r-\sqrt{r}}^{2 r} q^{\prime}\left(\cdot, \tau, u^{+}\right)^{1 / 2} d u^{\prime}
$$

we get

$$
\begin{aligned}
\Gamma(m, k ; \tau) \tau & \beta(m, k) e^{-\tau^{-1 / 2}} \exp \left(-\int_{\sqrt{r}}^{2 r-\sqrt{r}} q^{\prime}\left(\cdot, u^{\prime}\right)^{1 / 2} d u^{\prime}\right)\left(1+O\left(\cdot, \tau^{1 / 2}\right)\right) \\
= & \tau^{-\beta(m, k)} e^{-\tau^{-1 / 2}} \exp \left(-2 \int_{\sqrt{r}}^{\prime}\left(\frac{1}{4}-\beta(\cdot) u^{-1}-\beta(\cdot)(2 r-u)^{-1}\right.\right. \\
& \left.+\frac{m^{2}-1}{4}\left(u^{-1}+(2 r-u)^{-2}\right) d u\right)\left(1+O\left(\cdot, \tau^{1 / 2}\right)\right) \\
= & \tau^{-\beta \cdot)} e^{-\tau^{-1 / 2}} \exp \left(-\int_{\sqrt{r}}^{r}\left(1-2 \beta(\cdot) u^{-1}-2 \beta(\cdot)(2 r-u)^{-1}\right) d u\right) \\
& \cdot\left(1+O\left(\cdot, \tau^{1 / 2}\right)\right) \\
= & \tau^{-\beta(\cdot)} \exp \left(-\tau^{-1 / 2}\right) \exp \left(\tau^{-1}+\tau^{-1 / 2}+2 \beta(\cdot) \ln \left(\tau^{1 / 2}\right)\right. \\
& \left.+2 \beta(\cdot) \ln \left(2 \tau^{-1 / 2}-1\right)\right) \cdot\left(1+O\left(\cdot, \tau^{1 / 2}\right)\right) \\
= & \left(\frac{\tau}{2}\right)^{-2 \beta(m, k)} e^{-\tau^{-1}}\left(1+O\left(\cdot, \tau^{1 / 2}\right)\right) . \quad 1
\end{aligned}
$$

References

1. L. D. Landsu and E. M. Lashitz, "Quantum Mechanies," Pergamon, New York, 1965. 2. M. Aventini anis R. Sililik, Commum. Math. Phys. 41 (1975), 119-134.
2. J. D. Morgan ill anib B. Simon, Int, J. Quathum Chem. 17 (1980), 1143-1166
3. E. Breizin, G. Parisi, anid J. Zinn-Justin, Phes. Rev. D 16 (1977), 408-415.
4. E. Brezin and J. Zinn-Justin. J. Phys. Left. 40 (1979), L511-512.
f. E. M. Harrial II avi) B. Simon. Duke Math. J. 47 (1980), 845-902.
5. S. Grafi and Y. Griccili, Commen. Math. Phys. 62 (1978). 83-94.
6. I. W. Herbst, Commum. Math. Phys. 64 (1979) 279-301.

7. S. Grafi and V. Griccil. Phys. Leti. B 121 (1983), 910-914.
8. B. Simon, Im. J. Quantum Chem. 21 (1982). 1-25.
9. E. M. IIarkell II. Commun, Maht. Phys 75 (1980), 239-261.
10. R. J. Dammurci, R. Kif. Propin, S. Grabi, V. Greccii, E. M. Marrell II. J. Cihik. J. Pabidus, and h. J. Silviestoni., Phys. Ret, Left. 52 (1984), 1112-1115.
11. M. Reed and B. Simun, "Methods of Modern Mathenatical Physics," Vols. I-IV. Aüdemic Press, New York, 1975-1979.
12. T. Kato, "Perturibation Theory for Linear Operators," Springer-Verlag, New York, 1966.
13. J. M. Commes. P. Ducios, and R. Sellek, in "Rigorous Alomic and Molccular Physics, Procecdings, 4th International Schost of Mathematical Physics, Erice. Italy, 1980," Plenum, New York, 1981
14. W. Hunziker ano I: Vock, Commun. Math. Phes. 83 (1982), 281-302.
15. G. G. T. Jacobi, "Gesammelte Werke," Vol. VIII, "Vorlesungen über Dynamik," aerlin, 1884 (reprinted by Chelseli, New York, 1969).
16. M. Born, "Vorlesungen uber Alommechank," Springer-Verlag. Berlin, 1925
17. M. P. Stranid anid W. P. Reiniakiot, J. Chem. Phys. 70 (1979), 3812-3827.
18. J. N. Komarov. L. J. Ponomakiv. ano S. J. Slavianov, "Coulomb and Spherordal Wave Functions," Nauka, Moscow, 1965. [In Russian]
19. W. Magnus, IF. Ohemhttinger, and R. P. Soni, "Special Functions of Mathenatical Physics," Springer-Verlag. New York, 1966.
20. 11. Bucuholz, "The Conduen Hypergeometric Function," Springer-Verlag. New York. 1969 25. N. Dunford anid J. T. Schwartz., "Limear Operators," Vol. II, Interscience, New York, 1963. 26. A. Sokal. J. Maht Phes. 21 (1980). 261-268.
1. B. Simon, Ann. Phys. (N.Y.) 58 (1970), 76 - 136
2. W. Ilinzikir and C. A. Pillet, Comm. Afah. Phys. 90 (19x3), 219-233.
3. G. Gallavottr, "The Elements of Mechanics," Springer-Verlag, New York, 1982
4. E. M. Harkell II, Im. J. Quantum Chem. 21 (1982), 199-207.
5. 11. J. Silverstone. E. M. Harrell II ani) C. Grot, Phes. Rev. A 24 (1981), 19251934
1. E. Hhle, "Ordinary Differential Equations in the Complex Domain," Wiley. New York. 1976.
2. F. W. J. Olver, "Asymptotics and Special Functions," Academic Press, New York, 1974.
3. M. Abramowitz ani) 1. A. Strgun (Eds.), "Handbook of Mathematical Functions." NBS Appl Math. Serice SS, Natuonal Burcau of Standards, Washinglon, D.C., 1964.

List of Symbols

```
Eq. (4.26)
Eq. (4.21)
below Eq. (3.13)
below Eq. (3.13)
```

B E E (4.24)
$B_{n} \quad$ blow Ey. 13.13)
$\begin{array}{ll}B_{n} & \text { below E4. } 13.13 \text {) } \\ B_{n}^{n} & \text { below Eq. } 3.13 \text {) } \\ C & \text { LermalV. } 5\end{array}$

$\%$	Thm. 111.2	$t m$	E4. (2.9)
分	Thm. 11.2	$t_{\text {m }}^{\prime \prime}$	E.q. (2.15)
E	Prop.II.1; Eqs. (2.5), (2.14)	T	14.4. (4.18)
$E_{ \pm}$	Prop II. 1	Γ_{m}	Prop. 11.2
$\mathrm{E}_{\underline{\prime}}{ }^{ \pm}$	E.q. (2.33)	$T_{m}^{\prime \prime}$	Prop. 11.2
$E^{\prime \prime}$	Prop. IILI	Γ_{m}	Thm. 111.2
E_{n}^{\prime}	Propo. 11.1	4	
n	Eq. (2.10)		Eq. 12.24)
F	Eq. (2.27)	V	[4. (2.8)
\digamma_{n}	E.4. (2.28)	w	Prop ill 1
F_{n}	E4. (3.11)	${ }^{W}{ }^{\prime \prime}$	$\begin{aligned} & \text { Prop ill. } 1 \\ & \text { below De. Iv. } 4 \end{aligned}$
F,	E.4. (3.15)	$x^{1 / m}{ }^{2}$	Fuss. (1.1), (2,2)
\cdots	F. $\mathrm{C} .(2.10)$		「.4. (1.1)
G	Eq. (2.29)	$\chi_{\text {A, }}$	E.4. (1.1)
G_{n}	Eq. (2.29)	$\stackrel{*}{*}$	
G_{n}	Fq. (3.12)	\%	1.4. (2.15)
H	Prop. 11.1	β_{k}	[-4. 22.51 ,
H_{0}	Prop. 11.1	μ_{1}	Thmm 111.2
$1 /^{2}\left(\mathrm{RE}^{3}\right)$	Prop. II. 1	i	Egs. (2.5). (3.5)
H_{m}	F.q. (2.23)	\because	7him. 1 ml .
H^{\prime}	Prop. 11.1	r	Props 11.2. 11.1
j	Prop. 11.2	Γ_{1}	Thm. 111.2
*	Prop. 11.2	$\stackrel{\square}{4}$	1.4. (4.13)
κ	Eq. (4.15)	"	Fu. (2.1)
$L_{\text {n }}$	E4. (2.19)	$\stackrel{ }{2}$	Props. 11.2, 11.3, 1 l
L_{n}^{\prime}	below Eq. (3.15)	1	Prope
m	Prop. 11.2	11	
M	Props. II.I. 11.3	μ_{1}	Prop, ill. 3
M_{n}	Prop. 11.1	${ }_{5}{ }^{\text {t }}$	E4. 2.3 .5$)$
$M_{n}^{\prime \prime}$	bclow [:4. (3.13)	ξ	(4. 42.1)
\#	Props. 1.1.1. 11.2	ρ	Prop. 11.1
$1 /$	Eq. (3.16)	p^{\prime}	Prop. 111.1
r^{n}	Prop. 11.1	σ^{\prime}	Prop. 111.6
P_{m}^{0}	Eq. (3.28)	σ_{0}	Prop. 111.6
P_{m}^{\prime}	Eq. (3.27)	${ }^{\text {T}}$	Eup. (2.5): Prop, 1.3
\bar{F}_{i}	Eq. (3.33)	τ	below F. (3.13)
"	Eq. (3.17)	!	Prop. 1.2
' ${ }^{\prime}$	Г.q. (4.8)	d	Eq. (2.1)
Qi	Eq. (3.33)	$\phi{ }_{1}$	Prop. IV. 3
r	E4. (2.5)	ϕ -	E4. (4.17)
R	Eq. (1.1)	ψ_{4}	F.4. (4.25)
R_{N}	Eq. (3.24)	ψ	E.4s. (2.3), (2.20)
R_{m}^{N}	Eq. (3,28)	ψ -	E4. (4.15)
K_{m}^{\prime}	Eq. (3.25)	,	Prop. lit, [E4. (4.13)
s_{m}	Eq. (2,9)		E.4. (2.19) ${ }^{\text {a }}$ (19) Prop. 111.3
S_{m}	Prop. 11.2	12	E.q. (2.19); Prop. 11.3
t_{2}	Prop. IV. 3		

POTENTIALS HAYNG EXTREMAL EIGENVALUES SUBJECT TO p-NORM CONSTRANTS

M. S. Ashbaugh*
 E. M. Harrell 11**

Mbstract

$+V$
He consider the Sturm-Liouville operator $H y=\frac{-d^{2}}{d t^{2}}$ on certaln subsets of the real line with various selfadjoint boundary conditions. We find the optimal upper and lower bounds for the eigenvalues of H_{α} when the potential V obeys a corstraint of the form $\| V_{p}^{\prime}, ~ \leq H$. Vie characterize the extremizing potentlals in these cases where they exist. Analysis of this one-dimersional problem is faclitated by Interpreting it in terms of a classical oscillator

1. Introduction

In thls paper we address the problem of finding optimal bounds for the e!genvalues of the operator

$$
\begin{equation*}
H_{V}=\frac{-\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+V(t) \tag{1.1}
\end{equation*}
$$

on certain subsets of the real line (finite interval, hall-line, line) with a variety of boundary conditions subject to p-norm constraints on the potentlal function V. To be more procise, having fixed an Interval, a set of boundary conditions, and an index $k \geq 0$, we find optlmal upper and lower bounds for $E_{k}(V)$ where V is ellowed to range over the set $S=\left\{V \in L^{p}(\Omega) \mid\|V\|_{p} \leq M\right\}$. Here $E(V)$ denotes the $(k+1)$ th eigenvalue of H_{y} as defined by the mln-max princlple [Reed and Stmon, 1972-79]. These bounds depend on S only through the constant M and, as will be made clear shortly, glve upper and lower bounds for $E_{k}(V) \operatorname{In}$ terms of $\|V\|_{p}$.

Our interest in such problems was first stimulated by a problem list of A. G. Ramm [1982] In which the problem of maximizing $E_{0}(V)$, where H_{y} acts on a finte interval, has Dirichlet boundary conditions, and V is subjected to a 1-norm constraint, was posed. In particular, In an earller paper [Harrell, 1954], the maximization problem was analyzed for $E_{k}(V)$ on a finite interval with various selfadjoint boundary conditions, while laying the foundations for a solution to the problem with general p-norm constraints and also for multidimensiona! probiems, l.e., for $H_{y}=-\Delta+V(x)$ ecting on a set $\cap \subset R^{d}$, $d \geq 2$, with suitable probems, i.e., for $H=-\Delta x(x)$ ecting on a set hcr, $d \geq 2$, with suitable that paper, and hencelorth we shall reler to It as artlcle I. In a paper currently in preparation, we shall give the results of our investigations into the multidlin preparation, we stall give the results of our investigations into the multidimensional case, as well as lurther materlal and some of the prools dealing with related to the problem of best constants In Sobolev's Inequality and certaln nonIInear elliptic partlal differential equations which have been the subject of much current interest [Brézis and Nirenberg, 1903; Llons, 1982].
-Department of Sethematies, Universty of Mlssou-1, Columbla, Mlssourl 65211. Mork supported by a Sumtrer Reseerch Fellonship gratied by the Research Councl! of the University of !issout Columbia.
"School of Mathematics, Georgia Institute of Technology, Allanta, Georg!a 30532-0180.17ork parUelly supporied by USNSE grent SiCS BJ00551 and en Alyred E. Sloen Fellowsing.

Following the publication of Remm's problem list, several other authors solved the problem posed above and, in some ceses, pursued generalizations, restrictions, or related problems of their own. Solutions of wheh we are aware are those by Essśn [1933], Farris [1922], and Talentl [1933]. Talontl, in partlcular, solved not only the problem posed by Ramm but a!so the probiem of minimizing $E_{0}(V)$ under the same hypothsses and of minimizing $E_{C}(V)$ under the conditions $V \geq 0,\|V\|_{1}=H$, and $\|V\|_{\pi}=B$. The extremizing potentials that Talent finds have more than a passing resemblance to those cound by M. G. Krein [1955] In his Invesigation of a similar problem for the equation of the vibrating strirg, $y^{\prime \prime}+\lambda \rho(x) y=0$ on $[0, l]$ subject to $y(0)=y(l)=0$.

Independently of this, there accumulated over the last 15 years or so a body of literature among workers in ordinary difierentlal equations giving lower bounds for the operator H_{V} in terms of a given p-norm of V. The relevant papers are those by Everitt [1972], Eastham [1972-72]. Evans [1031], and Veling [1962 and 1963]. Each of these authors obtalned a lower bound [or F_{V} acting on $L^{2}(0, \infty)$ of the Iorm $-c\|V\|_{\mu}^{\alpha}$ where c and α are constants depending on p. Each had the correct exponent $\alpha=2 p /(2 p-1)$, but Velling was the first to find the optimal value of the constant c. All of these authors dealt with a Dirlchlat boundary condition at $t=0$ and, to varying extents, certain other standard boundary conditions. In particular, Vellng [1932] glves the optimal lower bound of the form $-c\|V\|_{\mathrm{p}}^{a}$ for H_{V} on $L^{2}(0, \infty)$ with either a Dirichlet or Neumann boundary condition at $t \stackrel{p}{=}$. Aso, Veling [1983] states the optlmal bound for H_{V} on $L^{\prime \prime}(\mathrm{D})$. Not surprisingly, there is a close connection between the thres bounds discussed by Veling.

There is yet another llne of work that is closely related ta our current investigation. Thils work has been pursued in the mathematical physics community in an effort to get accurate bounds on the number of bound states of a Schrōdinger operator and the silghtly more restricted problem of obtaining optlmal condltlons for absence of bound states. The work most closely, bearing on our otm is 4 that of Glas\%er, MartIn, Grosse, and Thirring [1976], Glasser, Grosse, and Martin [1978], and Lleb and Thirring [1976]. These papers treat problems by methods that are slm!lar In many respects to our own, though since they have somewhat different objectloes, our results are largely disjoint Irom theirs.

Finally, In a lorthcoming book by Trábowitz [1984] the problem of extremizIng $E_{s}(V)$ for H_{V} acting on $L^{\prime}(0,1)$ with Dírichlet boundary conditlons and whth V subjected to a 2 -norm constraint is posed and ths solution is outlined in hints. One finds in this case that the extremizing potentlals have explicit representation in terms of elliptic functions. We shall see shortly that the case $p=3$ also lead's to elliptic functions and, moreover, that qualitatively the solutions in the case of general p are very much the same. Thls situation is brought out most clearly by d!scussing the general problem in the context o! classical mechanics. (At the end of this paper we discuss a few examples and present some remarks about special cases where elliptic functlons arise.) It is also worthy of note that elliptle functions arlse in the problem of mbiximizing resonance widths within a sultable class of potentials [Harrell and Svirsky, 1084] and that the potentlals for which Hill's equation has been preclsely one nonvanishing finite instablilty Interval are elliptle functions [Hochstadt, 1976].

2. General Remarks

Since many of our arguments are not special to one dimenslon, we find it approprlate to tnclude them in our longer paper [Ashbaugh and Harrell, 1924] and only to summarize them here. In addition we present those results of Harrell [1984] on which we base our current analysls.

In any problem Involving maximizing or minimizing a functional, one is Immediately confronted with the following questions:

1. (Semiboundedness) Does the appropriate supremum or Infimum exist?
2. Can we find (or estimate) this value?
3. (Existence) Is there an optlmaling function, i.e., a lunction at which the functional attalns its sup (Inf)?
4. (Characterization) What are the optimizing functions?
5. (Uniqueness) Is there a undque optimizing function?

General results [Ashbaugh and Harrell, 1984] glve affirmative answers to questions 1. 3, and 5 In most cases of Interest. Exceptlons for questions 3 and 5 do arise and will be dlscussed at the appropriate polnt. Our maln thrust In this oaper will be toward answerlng question 4 and, to a lesser extent, 2 . It will transpire that our answer to question 4 will often answer question 5 as a byproduct. This is because our approach to characterization is to study the equation

$$
\begin{equation*}
=u^{\prime \prime} \pm \operatorname{ggn}(u) \cdot \mid u(p+1) /(p-1)=E u \tag{2.1}
\end{equation*}
$$

which, together with approprlate boundary conditions, was shown in article 1 (with the $+\operatorname{sign}$ only) to be a necessary condition for $\pm u^{2 /(p 1)}$ to be an optimiz-- ing potéritial lor $\bar{p}>1$. (For additional comments or' the sense In which this equation holds and on the domaln on which it holds, see Ashbaugh [1984].) Thus, for Instance, If we already have existence and can show that equation (2.1) has only one solution of the required type, then unlqueness follows immediately.

One further remark about the formulation of our problem seems approprlate here. While the requirement that the potential function V be locally $L^{\prime \prime}$ is often regarded as the weakest reasonable cpndition (see, for example, the comments !n Eastham and Kall [1922; p. 4]), we have occasion to consider the operator h_{μ} where μ represents a Borel measure. As polnted out to us by Barry Simon, this provides a reasonable operator since one can show that μ is a relatively form-compact perturbation of $H_{0}=-\mathrm{d}^{2} / \mathrm{d} t^{2}$ uslng Fourler transforms. In fact, for H_{μ} acting on $L^{2}(\mathbb{R})$ in Fourler transform space, the kernel of $\left(H_{0}+1\right)^{H} \mu\left(H_{0}^{\mu}+1\right)^{-K}$.

$$
\begin{equation*}
K\left(k_{1} k_{2}\right)=\left(k_{1}^{2}+1\right)^{-1 / 2}\left(k_{1}\left(k_{1}-k_{2}\right)\left(k_{2}^{2}+1\right)^{-n_{1}}\right. \tag{2.2}
\end{equation*}
$$

Is easlly shown to be Hilbert-Schmidt since $\hat{\beta}$ is a bounded continuous function. (Essentially we are defining the operator H_{μ} by means of quadratic forms In Fourler transform space.) The cases where H_{μ} has other domains are handled slmilarly by suitable cholce of "Fourler translorm." Allowing V to be a measure Is cruclal to the elgenvalue minimization problem when $p=1$ since the ball o radius $K>0$ in L^{\prime} has no extreme pointg, but it easy to see that an elgenvalue radus $>$ or minimzer must be an extreme point using the Rayleigh-Patz inequality. Thus when $p=1$, minimbing potentials do not exdst. However, if we allow V to lie in the larger class of all fnite Borel measures, then we can obtain an existence
resu't. For example, as exhibited by Talent! [1983], the minimizing potentlal for a finite Interval with Dirlchlet boundary conditions is a centered of-funct!on. With sllght modifications the above relative compactness argument also applies to $V \in L^{p}, 1 \leq p \leq 2$. This observation ls useful in the one-dimenslonal case since our general methods and results handle only $p \geq 2$.

Even after restricting attention to the one-dimenslonal case, there are quite a variety of problems to be considered. First, one can consider the problem elther of maximization or of minimization oier a set $S=\left\{V \in I^{\prime}(\Omega)\|V\|_{p} \leq K\right\}$. Since by the min-r. x princlple it is easy to show that a maximizing (minimizing) potential satlsfies $V \geq 0(V \leq 0)$ and $\| V_{3}=H$. It is a small step to conslder what ve shall cell the misdre problem of minimizing within the class $V \geq 0 \|_{i v}^{1 / 2}=H$ (maximizing withtn the class $\left.\mathrm{V} \leq 0,\|V\|_{p}=H\right)$. We will see, In fact, that the misere problems do not have extremizers and that the optimal bounds are the appropriate $V=0$ elgenvalues. Second, one has the three cholces of domain to consider: finite Interval, hali-line, and line. Thtrd, one can impose a variety of boundary conditions at the finite endpoints of the domaln. Those with which we shail deal are Dirlchlet, Neumann, separated (1.e., $\alpha u\left(t_{t}\right)+\beta u u^{\prime}\left(t_{t}\right)=0$ where t_{t} is an endpoint), and "compact-support" boundary conditions. Since this last terminology is not standard, we explain: These are the boundary conditions one gets at $\pm l$ if one requires V to have support in the Interval $[-l, l]$. In particular, they take the form

$u^{\prime}(\pm l)= \pm \sqrt{-E} u(\pm l)$.

Lastly, one can concentrate on any elgenvalue $E_{k}(V)$ for $k=0,1,2, \ldots$. The ground state $E_{0}(V)$ Is perhaps the most Interesting, and in lact ve can get morn detalled results about it (partly because more tools are avallable ior studying 1t). The ground state is also unique compared to higher states in that for a given problem certain results will hold for the ground state but for no excited states. For example, the finite-Interval $p=1$ maximization problem has a undque maximizer for $E_{0}(V)$ but not for $E_{k}(V), k \geq 1$ [Harrell, 1984]. As a second example, on R with $p>1$ there exists a ground-state minimizer (unique up to translatlons), but mindmizers for the higher states do not exlst. However, the general method and viewpolnt presented here lend a degree of unity to the varlous cases and problems outlined above. In partlcular, the method applies to a large extent equally to the ground and excited states.

3. The Classical Oscillator Vewpoint

Yhlle we chose time an Independent varlasle with the classical osclilation Interpretation in mind, we find it convenient here to set forth other standard notations from the elassica mechanlos, perspective. For a modern and more comprehenslve discussion of classical mechanics, we reler the reader to the recent book by Thirring [1978]. By vlewing equation (2.1) as Newton's equation for motion In one dimension (4 represents position), we can Idently the classtcal potential energy as

$$
\begin{equation*}
H(u ; E)=\frac{1}{2} E u^{2}-\left(\frac{p-1}{2 p}\right) u^{2 p /(p-1)} . \tag{3.1}
\end{equation*}
$$

Note that the quantum energy E appears as a coefflelent in this classical potenthal. A first Integral for thls system is given by

$$
\begin{equation*}
\frac{1}{2}\left(\frac{\mathrm{~d} u}{\mathrm{~d} t}\right)^{2}+\pi(u ; E)=h, \tag{3.2}
\end{equation*}
$$

where we have let h denote the classical (total) energy of our osclllator. Our convention for the amb!guous sign in all equations - (2.1) and (3.1) thus far -is that we take upper signs when considering maximization problems and lower slgns when cons!dering minlmization problems.

Thourh we will reler to the above equations as describing an oselliation for certaln choices of the sign referred to above and the s!gn of E one will not have oscillations or will have oselllations only for sultable initial values. For the most common boundary conditions (Dlrichlet, Neumann) only
the truly oseillatory solutlons will enter, but with more complicated conditions other solutions can sometimes come !nto play.

We will reter to the curves given parametrically by ($u(t), u^{\prime}(t)$), where u solves equation (2.1) as trajectories in phase spane. Of course, the oscillatory solutions refered to above are fust the closed orbits tn phase space. In phase space, separated boundary condilicns (Dirichlet and Neumann included) can be. veved geometrically as the condition that a trajectory start on a given line through the origin and end on a second line through the origin (possibly the same) at a specified later time. When the interval is finlte, we choose it as $[0, l], l>0$, or sometimes $[-l, l]$; for the hall-llne we choose $[0, \infty)$.
4. Finimization on the Line and the Hall-line

We begin our detalled discussion with these cases slnce from the classical osclllator viewpoint the constant h must be 0 , whlch simplifies the analysis. Also these are the cases that have crawn attention previously. Now since u is an L^{2} solution to $H v^{u}=E u$, where $V=-u^{2 /(p-1)} \in L^{P}$, we can be sure from the theory of Schrödinger operators [Reed and Simon, 1972-79; Richtmeyer, 1978] that u and u 'go to 0 as t goes to ∞. Thus on Infinite intervals our only concern is with classical osclllator solutions having totel energy $h=0$, and we need only solve the equation

$$
\begin{equation*}
\frac{1}{2}\left(\frac{d u}{d t}\right)^{2}+\frac{1}{2} E u^{2}+\left(\frac{p-1}{2 p}\right) u^{2 p /(p-1)}=0 . \tag{4.1}
\end{equation*}
$$

This equation is readily integrated, with the result that

$$
\begin{equation*}
u(t)=\left(\frac{-p E}{p-1}\right)^{(p-1) / 2} \operatorname{sech}^{p-1}\left[\frac{\sqrt{-E}(t-c)}{p-1}\right] \tag{4,1}
\end{equation*}
$$

and hence

$$
\begin{equation*}
V(t)=\frac{p E}{p-1} \operatorname{sech}^{2}\left[\frac{\sqrt{-E}(t-c)}{p-1}\right] . \tag{4.3}
\end{equation*}
$$

Here c is the constant of Integration. For the minimization problem on the IIne, It represents the expected lact that a minimizing potentlel cannot be unique because of translation invarlance. For half-line problems, the constant would have to be chosen so that u satisfles the boundary condition at the origin. Ye shall see shortly that this has the interesting consequence that no minimizers exist for certain cholees of the boundary condition. But first let us finish our dilscussion of the standard cases.

For the full line minimization problem one can compute

$$
\begin{equation*}
\|V\| ;=\frac{p^{p}(-E)^{(2 p-1) / 2}}{(p-1)^{p-1}} B(p, \not / 2) \tag{4.4}
\end{equation*}
$$

or, solving for E.

$$
\begin{equation*}
E=-\left[\frac{(p-1)^{p-1}}{p^{p} B(p, 1 / 2)}\right]^{2 /(2 p-1)}\|V\|_{p}^{2 p /(2 p-1)} \tag{4.5}
\end{equation*}
$$

Here $B\left(p, h^{\prime}\right)$ represents a beta function in standard notation. This formula 13 that given by Veling [1983] except for a misprint of $(1-v) v^{-3 /(1 \rightarrow)}$ as $(1-v)^{v /(1-s)}$.

For the hall-line problem with Neumann boundary condition one must take $c=0 \mathrm{in}$ equation (4.3). The computation can be carried out as belore, ylelding

$$
\begin{equation*}
E=-2^{2 /(2 p-1)}\left[\frac{(p-1)^{p-1}}{p^{p} B(p, 1 / 2)}\right]^{2 /(2 p-1)}\|V\|_{p}^{2 p /(2 p-1)} \tag{4.6}
\end{equation*}
$$

agein agreelng with a result of Veling [1982].

We now consider the general boundary condition

$$
u^{\prime}(0)=m u(0)
$$

From equation (4.2) this reduces to

$$
\begin{equation*}
m=\sqrt{-E} \tanh (\sqrt{-E} c /(p-1)) \tag{4.8}
\end{equation*}
$$

which has a solution for c if and only if $\sqrt{-E}>|m|$. Holding E fixed, we see that as $m \rightarrow \sqrt{-E}$ from below $c \rightarrow \infty$, and that as $m \rightarrow \sqrt{-E}$ from above, $c \rightarrow-\infty$. Thus as $m \rightarrow-\sqrt{-E}$ our sech ${ }^{2}$-potential well translates off to the left, "leaving" the positive hall-axis, and as $m \rightarrow \sqrt{-E}$ it translates to the right into the posltive half-axis. We can better understand what is happening here if we note that the potential $V=0$ with boundary condition (4.7) has a negative eigenvalue at $E=-m^{2}$ if $m<0$. Thus a fixed $E<0$ will not be minimal for the operator H, on $L^{2}(0, \infty)$ with boundary condition (4.7) for $m<0$ until m increases to $-\sqrt{-E}$. At that value of m, E will be minimal for $\|V\|_{p}=H=0$. For $|m|<\sqrt{-E}, E$ vill be minimal lor $\|V\|_{p}$ fixed as required by equations (4:3) and (4.6). One could virite the relation betwen E and $\|V\|_{p}$ for this range of π in terms of the incomplete beta function, but we refraln from doing so here. then m exceeds $\sqrt{-E^{7}}$, one no longer has a minimizing potential, but a minimizing sequence of potentials is easlly constructed by taking a sequence of V 's given by equation (4.5) with c 's going to ∞ and suitably modified on $[0,1]$, say, to meet the boundary condition at $t=0$. Thls latter situation also Includes the case of Dirlchlet boundary condttlons. In these cases the value E in equation (4.5) is a strict lover bound for the ground state and hence also for the operator H_{V}.

We close this sectlon with some cursory remarks about higher eigenvalues. To obtain a minimizing, sequence of potentials for a higher eigenvalue, one "pastes on" more sech^{2}-potential wells out near infinity. The modifleations required in the pasting can be shown to have vanishing efiect as the spacing betiveen consecutive wells is sent to infinty. We note that the potentials in the minimizing sequence for the k-th elgenvalue approach k-fold degeneracy, i.e., the first λ elgenvalues come together in the limit. The approprlate elgenfunction in this case Is much like the potential (to the polver $(p-1) / 2$) except that we filp lts sign each tlme we paste on a new plece; on $(0, \infty)$ we also must rescalo the left-most bump so that its L^{2} norm is the same as all the others. As an illustration one obtalns the bound

$$
E_{1}(V)>-2^{-2 /(2 p-1)}\left[\frac{(p-1)^{p-1}}{p^{p} B\left(p, Y_{2}\right)}\right]^{2 /(2 p-1)}\|V\|_{p}^{p /(2 p-1)}
$$

in the case of the second elgenvalue of H_{V} acting on $L^{2}(\mathrm{R})$.
To. those famillar with high-energy physics, there is more than a passing similarity between the above construction of minimizing sequences and the con struction of a multiple instanton conflguration. We also remark that the sech form of our potential is preclsely a soliton solution to the Korteweg de Vrles (KdV) equation. There is an extensive literature detalling the Intimate connections between the KdV equation and the Schrödinger equation; we content ourselves with noting that the article [Lleb and Thirring, 1976] presents some partleularly pertinent observations of P. Lax.

5. Linimization on a Finite Interval

When one seeks to find eigenvalue minimizers on a finte Interval, one mus conslder equation (3.2) with all allowed values of the classlcal energy h. Wo adopt the following strategy in thas discussion: with fixed $p>1$ and interval $[0,2]$, we pick a possible optimal elgenvalue E and choose suitable boundary conditlons; then we look for those values of h that allow u to meet the boundary
anditions at $t=0$ and $t=l$; and Anally we determine the value $\|=\| V \|_{\text {; }}$ for which $V=-u^{2 /(p-1)}$ is a possible minimizer. If at the end of this process we have only one candidate, then, having already proved existence of a minimizer [Ashbaugl2 and Harrell, 183:1, we can conclude that we have found the unique minim izer. Even if we find several! candidates, the existence result guarantees that at least one of them will be a minimizer. Existence of minimizer on a finite inter val when V is allowed to range over the class of Bored measures μ satisfying $\int \mathrm{d}|\mu| \leq \mu$ is shown in our longer paper. This result handles the minimization question when $p=1$.

We begin our discussion by considering Dirichlet boundary conditions and taking $E<0$. Then the only h 's for which Dirichlet conditions can be met are $i>0$, and the time required for one excursion (hall the period of the orbit) is

$$
\begin{equation*}
T(h, E) / 2=\sqrt{\Sigma} \int_{0}^{u_{1}}[h-T(u ; E)]^{-\frac{1}{2}} d u \tag{5.1}
\end{equation*}
$$

where u_{1} represents the positive turning point of the motion, le., $W\left(u_{1} ; E\right)=h, u_{1}>0$. To see how $T(h, E)$ varies with h we eliminate h in favor of μ_{1} while noting that the mapping $h \rightarrow u_{1}$ is an increasing function from $(0, \infty)$ onto $\left(u_{1, m i n}, \infty\right)$ where $u_{1, \mathrm{~min}}$ satisfies $0=H\left(u_{1, \mathrm{~min}}, E\right)$. One has

$$
\begin{aligned}
T & =2 \sqrt{2} \int_{1}^{u_{1}}\left[H\left(u_{1} ; E\right)-F(u ; E)\right]^{-\mu} \mathrm{d} u \\
& =2 \sqrt{2} \int_{0}^{u_{1}}\left[E\left(u_{1}^{2}-u^{2}\right) / 2+(p-1)\left\{u_{1}^{2 p /(p-1)}-u^{2 p /(p-1)}\right\} / 2 p\right]^{-\frac{1}{2}} \mathrm{~d} u \\
& =2 \sqrt{2} \int_{0}^{1}\left[(p-1) u_{1}^{2 /(p-1)}\left(1-s^{2 p(p-1)}\right) / 2 p+E\left(1-s^{2}\right]^{-\eta} d s\right.
\end{aligned}
$$

$$
(5.2 a)
$$

Thus one sees that T decreases from ∞ to 0 as h Increases from 0 to ∞. Since to accommodate the $(k+1)$ th eigenvalue E_{k} we need

$$
\begin{equation*}
(k+1) T\left(h, E_{\mathrm{k}}\right) / 2=l \tag{5.3}
\end{equation*}
$$

to be satisfied, we see that any $E<0$ can be a minimal $(k+1)$-th eigenvalue for any $k \geq 0$. A similar analysis leads to the same conclusion when $E=0$. When $E>0$, one finds that the period T decreases from $2 \pi / \sqrt{E}$ to 0 as h Increases from 0 to ∞. Thus if $E>(k+1)^{2} \pi^{2} / l^{2}$, then E cannot be a minimal E_{k}, whereas if $E \leq(z+1)^{2} \pi^{2} / l^{2}$, it will be attainable as a minimal E_{x}. If one notes that $E_{z}(0)=(k+1)^{2} \pi^{2} / l^{2}$, the reasonableness of these conditions is apparent. Actually, to complete this discussion, we must look at the equilibrium solutions, le., the cIvilized points In the phase plane. These solutions are exceptional in that there is not a fixed period associated with them. For the above, the only critical polit solution of relevance is $u=0$. which is trivial to analyze.

WIth Neumann boundary conditions the same considerations apply for the orbits and their periods as discussed above. However, there are additional orbits having $h<0$ to be considered in the case of $E<0$, Including another equilibrium solution corresponding to the minimum of $W(u ; E)$. This compllcates the Indexing of the eigenvalues somewhat, but Sturm's theorem on nodes of elgenfunctions suffices to sort things out. The orbits considered previously lead to candidates for minimal $E_{k}, k \geq 1$, under the condition

$$
k T\left(h, E_{k}\right) / Z=t .
$$

nodeless solutions. Again any $E \leq 0$ can be a minimal Newman $E_{z}, k \geq 0$, but for $E>0, E>i^{2} \pi^{2} / l^{2}$ precludes E rom being a minimal \bar{E}_{i} and $E \leq i^{2} \pi^{2} / l^{2}$ allows it. That all allowed E 's are actually assumed as minimal E_{5} 's for some choIce of $H=\|M\|_{p}$ follows from continuity considerations which are taken up by Ashbaugh and Harrell [1984],

Other choices of separated boundary conditions at $t=0$ and $t=l$ will force us to consider more complicated conditions than (5.3) or (5..) for meeting the boundary conditions. In fact, trajectories that are not closed orbits will even enter: the appropriate point of view is that we need to And those trajectories that take time l to pass from one line through the origh to a second line through the origin In phase space. Perlodle or antiperlodic boundary conditions lead back to the same orbits as were discussed in the Newman case, as do separated boundary conditions of "periodic type": u'(0) $=m u(0), u^{\prime}(l)=m u(l), m \in R$.

6. Maximization on a Finite Interval

The analysis of the maximization problem differs only In detail! from that of the minimization problem. The most signincant difference is that the potential $W(u ; E)$ Is now upside down; In particular, $\| \Rightarrow \rightarrow \infty$ as $u \rightarrow \infty$. This has the effect that for all standard boundary conditions only $E \geq 0$ need bs considered. By analyzing $7(h, E)$, one finds In this case that $2 \pi / \sqrt{\Sigma} \leq T(h, E)<\infty$ for the permiscible values of h. Thus $E<(k+1)^{2} \pi^{2} / L^{2}$ Implies that E^{\prime} cannot be an extremal $(k+1)$-th eigenvalue for tho Dirichlet problem whereas $E \geq(k+1)^{2} \pi^{2} / l^{2}$ can be. . As should be clear, the discussion of this problem parallels almost exactly that of the previous section, so we conclude it here.

7. Miscre Problems

We turn now to a brief discussion of the misdre problem, that of minimizing (respectively, maximizing) a given eigenvalue when V is constrained to the class $S=\left\{V \mid V \geq 0 .\|V\|_{p}=M\right\}$ (resp., $S=\left\{V \mid V \leq 0,\|V\|_{p}=M\right\}$). We shall confine the majority of our remarks to the case of the ground state for Dirichlet boundary conditions which we shall denote by $E(V)$.

We begin by considering the minimization problem with $V \geq 0$ where $\cap \subset \mathbb{R}^{d}$ is bounded and has smooth boundaries. The case of unbounded domains for this minimization problem is of no interest since $E(V)$ (as defined by the min-max principle) Is then always $0=E(0)$. We shall show that $(1) E(V)>E(C)$ for all $V \in S$ and (2) $\operatorname{lnf} E(V)=E(0)$. Thus there is no V that is a minimizer for this misdre problem. To obtain (1), we simply use the Rayleigh-Titz Inequality for $-\Delta$ with ϕ_{V}, the normalized ground-state eigenfunction of H_{V}, as trial function: $E(V)=\left(\phi v \cdot\left(-\Delta+V \phi_{v}\right)=\left(\phi_{V}-\Delta \phi_{v}\right)+\int_{0} V\left|\phi_{V}\right|^{2}>E(0)\right.$. To prove (2); note that since the ground state, β_{0} of $-\Delta$ on \cap with Dirichlet boundary conditions goes to 0 on $\partial \cap$ and since $\theta \cap$ is smooth, we can find a sequence of sets $B_{n} \subset \cap$ satisiying (i) $\sup _{B_{0}}\left|\mathcal{F}_{0}\right| \leq 1 / n$ and (Ii) $0<\left|B_{n}\right|<K, K$ a constant Independent of n. Then with $V_{n}=H\left|B_{n}\right|^{-L / p} X_{B_{n}}$ and again using Raylelgh-Ritz, we compute

$$
E\left(V_{n}\right)<\left(\phi_{0}\left(-\Delta+V_{n}\right) \phi_{0}\right)=E(0)+\int_{D_{n}}\left|\phi_{0}\right|^{2} H\left|B_{n}\right|^{-1 / p} \leq E(0)+M K^{1-1 / p} / \pi^{2}
$$

Which goes to $E(0)$ with Increasing n.
The problem of maximizing over $S=\left\{V \mid V \leq 0,\|V\|_{p}=\| H\right\}, p \geq 1$, is more difficult to analyze, but leads to much the same result. That $E(1) \leq E(0)$ Is again a consequence of Rayleigh-Ritz or, more precisely, the min-max principle When $E(0)$ is in the discrete spectrum, thess Inequality is strict; In any event,
and the newly considered orbits lead to candidates for E_{0} since they glue

1

Rolerences

there is no $\forall \in S$ for which $-\Delta+V(x)$ has $E(0)$ as an Isolated elgenvalue of finite multipllelty. Thls, together with the lact that $\sup E(V)=E(0)$ (to be shown shortly) shows that this misdre problem also lacks an optimizer (In all cases in one and two dimenslons, and In all "honest" cases in three or more dimensions). If \cap is unbounded, one can construct a sequence (V_{n}) of potentlals in S having $E\left(V_{n}\right) \rightarrow 0=E(0)$ by using $V_{1}=\| C\left|B_{n}\right|^{-1 / j} X_{B_{n}}$ where the sets $B_{n} C \cap$ satisty $\left|E_{n}\right| \rightarrow \infty$. Then we have used wide but shallow square wells in our construction. For bounded domains this avenue is not open to us, so we shall use narrow and ceep square vells. We plck a sequence of balls $B_{n} \subset \cap$ with $\left|B_{n}\right| \neq 0$ for all n and $\left|B_{n}\right| \rightarrow 0$. Then for $p>1$ and $V_{n}=-M\left|B_{n}\right|^{-1 / P} X_{D_{n}}$ we have $\left\|V_{n}\right\|_{1}=M\left|B_{n}\right|^{1-L / p} \rightarrow 0$ as $n \rightarrow \infty$; and using the fact that our lower bound for $E(V)$ In terms of $\|V\|_{\mathrm{t}}$ goes to $E(0)$ as $\|V\|_{1} \rightarrow 0$ [Ashbaugh and Harrell, 1084], we soe that $E\left(V_{n}\right) \rightarrow E(0)$. We remark that this sequence works equally well for \cap unbounded but has the drawback that it does not cover the case $p=1$. The essential observations in the above discussion are that for Ω unbounded there is essential observations in the above dacussion are that for \cap unbounded there is
e sequence $\left\{V_{n}\right\}$ in S also lying in L^{-}. with $\left\|V_{n}\right\|_{m \rightarrow 0}$ and that for $p>1$ and arbla sequence $\left\{V_{n}\right\}$ In S also $\mathrm{ly} \operatorname{lng} \operatorname{in} L^{-}$. With $\| V_{n} \mid \rightarrow 0$ and that for $p>1$ and arbl-
trary a there is a sequence $\left\{V_{n}\right\} \operatorname{In} S$ also lylng $\ln L^{\prime}$ with $\left\|V_{n}\right\|_{1} \rightarrow 0$. These obser trary a there is a sequence $\left\{V_{n}\right\}$ In S also lylng in $L!$ with $\left\|V_{n}\right\|_{1} \rightarrow 0$. These obser
vallons would also have surliced In deallig with the misere minimization problem except for the case $p=1$. Indeed, except for thls case, the argument given above could have been concluded just by choosing the B_{n} 's so that $\left|B_{n}\right| \rightarrow 0$.

To complete the discussion, we need to treat the case of a bounded domaln when $p=1$. Just as in the misere minlmization problem, our argument now reste on our cholce of Dirlchlat boundary conditions. The ldea la to take a sequence η_{n} approximating a δ-function located on $\theta \cap$ and argue that for $Y=-K \eta_{n}$, we have $\left(\phi_{n}, V_{n} \phi_{n}\right) \rightarrow 0$ os $n \rightarrow \infty$ where ϕ_{n} represents the normalized ground state for $-\Delta+Y_{n}$. However, here we shall glve a proof only In the case of dimenslon $d=1$. In this case we may talce $\Omega=[0, l], l>0$, and we deflne a sequence of potentlals $V_{n}=-M n X_{(0,1 / n)}$. By standard methods cound In any elementary quanturn mechanics textbook, one could glve an expllelt argument showing that $E\left(V_{n}\right) \rightarrow E(0)=\pi^{2} / l^{2}$. Instead, we note that $E\left(V_{n}\right)$ is the Irgt el ही仑nvalue of the three-dimenslonal problem for $-\Delta+V_{n}(r)$; we remark that this is where we make use of the Dirlchlet boundary condition. As a funotion in three-space, we have $\left\|V_{n}\right\|_{1}=M n \frac{4}{3} \pi(1 / n)^{2}=4 \pi M / 3 \pi^{2} \rightarrow 0$ as $n \rightarrow \infty$ and thus; as proved above, $E\left(V_{n}\right) \rightarrow E(0)$, where the 0 represents the 0 potential on the ball of radius l in R^{3}. But, passing back to one dimension, we have $E(0)=\pi^{2} / l^{2}$, which completes the proof. Finally, we remark that except when $p=1$. Dirlchiet boundary conditions rere not needed: In partleular, the last argument works for arbltrary boundary conditions Imposed at $t=l$.

Acknowiedgments

Te Fould like to thank Tonl Zettl, Hens Kaper, Gotskalk Halvorsen, and Angelo Ningarell for helplul remarks, particularly in regard to the existlag Iterature. Me also thank Berry Slmon, John Plepenbrink, Hans Weinberger, and Noe Conlon for uselul discusslons. We are gratelul to Jürgen Gerlach Ior a suggestive numerlcal study of square wells in one dimenslon. Finally, it is a pleasure to thank Hans Kaper for the opportunlty to particlpate in the SturmLouville workshop.

Ashbaugh, M. S., and Harrell, E. M. 19B4, "Maximal and minimal elgenvalues and their assoclated nonlinear equations" (in preparation).

Brézls, H., and Nirenberg. L. 1983. "Positive solutions of nonlinear elliptlc equetlons Involving critical Sobolev exponents." Comm. Pure Appl. Math. $36: 437-477$.

Easthem. M. S. P. 1972-1973. "Semi-bounded second-order differentlal operators." Proc. Roy. Soc. Edinburgh 72A:9-10.

Eastham, M. S. P., and Kalf, H. 1982. Schrddinger-typs Operators with Confinuous Spectra. Pitman Publlshing, Boston.

Essén, M. 1983. "On maximizing the first elgenvalue for a second order linear dllerentlal operator" (preprint).

Evans, W. D. 1089. "On the spectra of Sturm-Llouvill operators with a complex potential." Math. Ann 255:57-76.

Everltt, W. N. 1972. "On the spectrum of a second order linear differentlal equatlon with a p-Integrable coeficlent." Appllcable Analysis 2:143-160.

Farrls, M. 1982. "Sturm-Louville problem wth meadmal first elgenvalue" (preprint).

Claser, V., Grosse, H., and Martln, A. 1878. "Bounds on the number of elgenvalues of the Schrödinger operator." Commun. Math. Phys. 69:197-212.

Glaser, V., Martun, A., Grosse. H., and Thirring, W. 1078. "A Family of Optimal" Condltions for the Absence of Buand States in a Potentlal." Studies in Mathernaitcal Fiysicg. Ed. E. H. W.う, B. Slmon, and A. S. Mghtman. Princeton Unlversity Press, Princeton, pp. 169-194.

Harrell, E. M. 1884. "Hamlitonian operators with maxmal elgenvalues." d, Math. Phys. 25:48-51.
Harrell, E. M., and Sviraky, R. 1984. Hanusertpitn-preparation_Puteutiuls Hochntadt, H. 1970 . "An Inversa problem ion (prepmint
Hochitadt, H. 1970. "An Inversa problem for a Hill'a equation." J. Difi. Equations 20:53-80.

Kreln. M. G. 1951. "On Certain Problems on the Meximum and Minlmum of Characterlstic Values and on the Lyapunov Zones of Stabllity." Amer. Hath. Soc. Transtations, Ser. 2. Vol. 1. American Math. Soc., Providence. pp. 163-187 (trans. of Prikl. Nat. Meh. 15:323-348).

Leb, E. H., and Thirring, W. 1978. "Inequalltles for the Moments of the Elgenvalues of the Sehrödinger Hamiltondan and Their Relation to Sobolev Inequallties." Studies in Hathematial Physics. Ed. E. H. Heb, B. Simon. and A S. Wight Litr Princeton University Press, Princeton, pp, 269-303.

Lions, P. L. 1982. "On the existence of positive solutions of semillinear elliptla
equalions." SIAM Revew 24:441-467.
Ramm, A. G. 1982. Problem Ust In H. Samelson, "Querles." Notices Amer. Math. Soc. 29:326-329.

Reed, M., and Siman. B. 1972-1979. Methods of Modern Mathematical Physies. 4 vols. Academlc Press, New York.

Richtmeyer, R. D. 197B. Principles of Ananced Mathematical Prysics, Vol. 1 Springer-Verlag, New York.
Telentl, G. 1983. "Estimates for elgenvalues of Sturm-Llouville problems" (preprint).

Thlrring, If. 1978. A Course in Hathematival Physiiss, Vol. I: Classical Dymamtcal Systems. Trans. E. M. Harrell. Springer-Verlag, New York.

Truboritz, E. 1984. Book In preparation.
Veling, E. J. M. 1982. "Optimal lower bounds for the spectrum of a second order Inear differential equation with e p-Integrable coefficlent." Proc. Roy. Soc. Edinburgh 92A:95-101.

Veling, E. J. M. 1983. "Stellingen behorende blf het proefschrift Transport by Diffusion" (thesls extract).

$1 / R$ expansion for $\mathbf{H}_{2}{ }^{+}$: Calculation of exponentially small terms and asymptotics

Jiří Čížek

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3 GI
Robert J. Damburg
Institute of Physics, Latvian Academy of Sciences, Riga, Salaspils, Union of Soviet Socialist Republics
Sandro Graffi
Dipartimento di Matematica, Università di Bologna, 40127 Bologna, Italy
Vincenzo Grecchi
Dipartimento di Matematica, Università di Modena, $\mathbf{4 1 1 0 0}$ Modena, Italy
Evans M. Harrell II
Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
Johathan G. Harris and Sachiko Nakai
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218
Josef Paldus
Department of Applied Mathematics, University of Waterloo, Waterloo Ontario, Canada N2L 3G1
Rafail Kh. Propin
Institute of Physics, Latvian Academy of Sciences, Riga, Salaspils, Union of Soviet Socialist Republics
Harris J. Silverstone
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218
(Received 9 May 1985)
The energy of any bound state of the hydrogen molecule ion $\mathrm{H}_{2}{ }^{+}$has an expansion in inverse powers of the internuclear distance R of the form

$$
\begin{aligned}
E(R) & \sim \sum_{N} E^{(N)}(2 R)^{-N}+e^{-R / \pi} \sum_{N} A^{(N)}(2 R)^{-N} \\
& +e^{-2 R / n}\left(\sum_{N} B^{(N)}(2 R)^{-N}+\ln (R) \text { terms }\right) \pm i e^{-2 R / R} \sum_{N} C^{(N)}(2 R)^{-N}+\cdots .
\end{aligned}
$$

Rayleigh-Schrödinger perturbation theory (RSPT) gives the coefficients $E^{(N)}$ but is otherwise unable to treat the exponentially small series, which in part are characteristic of the double-well aspect of $\mathrm{H}_{2}{ }^{+}$. (Here n denotes the hydrogenic principal quantum number.) We develop a quasisemiclassical method for solving the Schrödinger equation that gives all the exponentially small subseries. The RSPT series diverges: for the ground state $E^{(N)} \sim-(N+1)!/ e^{2}$ for large N. The $E^{(N)}$ asymptotics are governed via a dispersion relation by the imaginary $e^{-2 R / n}$ series, which itself is given by the square of the $e^{-R / n}$ series times a "normalization integral." That the expansion itself contains imaginary terms might seem inconsistent with the reality of the $\mathrm{H}_{2}{ }^{+}$eigenvalues. In fact, the RSPT series is Borel summable for R complex. The Borel sum has a cut on the real R axis, and its limit from above or below the positive R axis is complex. The imaginary $e^{-2 R / n}$ (and higher) series consist of just the counterterms to cancel the imaginary part of the Borel sum. Extensive numerical examples are given. Of interest is a weak (down by a factor N^{-6}) alternating-sign contribution to $E^{(N)}$, which is uncovered both theoretically and numerically. Also of interest is the identification of the Borel sum of the RSPT series with nonphysical boundary conditions. This too is illustrated both theoretically and numerically.

I. INTRODUCTION

This paper is about the expansion of the energy of the hydrogen molecule ion $\mathrm{H}_{2}{ }^{+}$in powers of $(2 R)^{-1}, R$ being the internuclear distance. Of course, $\mathrm{H}_{2}{ }^{+}$has special importance as a prototype for molecular binding and for
double wells, but it is generally regarded as simple, well understood, ${ }^{1-4}$ and perhaps not very interesting. Exactly the opposite is true: the study of $\mathrm{H}_{2}{ }^{+}$at large R has revealed several unexpected features. ${ }^{5,6}$

We list in this introduction seven main results. The first is that (\mathbf{i}) the energy of any bound state is given for-
mally by an explicitly computable complex expansion that is discontinuous across the positive R axis,

$$
\begin{align*}
E(R) \sim & \sum_{N} E^{(N)}(2 R)^{-N}+e^{-R / n} \sum_{N} A^{(N)}(2 R)^{-N} \\
& +e^{-2 R / n}\left[\sum_{N} B^{(N)}(2 R)^{-N}+\ln (R) \text { terms }\right] \\
& \pm i e^{-2 R / n} \sum_{N} C^{(N)}(2 R)^{-N}+\cdots \tag{1}
\end{align*}
$$

Here the \pm is the sign of $\operatorname{Im} R$, and n is the hydrogenic principal quantum number. When R is real, then the sign indicates whether it has become real from above or below the real axis.
More surprising is that (ii) the "sum" of the explicitly complex series (1) is both real and continuous across the positive R axis. The explicit imaginary series is canceled by an implicit imaginary contribution from the sum of the ordinary, real, divergent Rayleigh-Schrödinger perturbation-theory (RSPT) expansion, $\sum_{N} E^{(N)}(2 R)^{-N}$. This remarkable subtlety involves taking the sum of the divergent RSPT series to be the analytic continuation back to the real axis of the Borel sum, which exists for R complex; ${ }^{6}$ this is equivalent, as we shall see, ${ }^{7}$ to recognizing that $R>0$ is a Stokes line of the expansion. (A similar cancellation in part has been noticed by Zinn-Justin for the double-well oscillator. ${ }^{8-10}$)

This paper is also about the method used to generate the solution of the eigenvalue problem by asymptotic expansion-the quasisemiclassical (QSC) method. Through the separability of the $\mathrm{H}_{2}{ }^{+}$eigenvalue equation in prolate spheroidal coordinates, ${ }^{11}$ which here involves two separation constants β_{1} and β_{2}, a systematic procedure is developed to generate the RSPT series, the
$e^{-R / n}$ double-well gap series, the $e^{-2 R / n}$ real and imaginary series, and so forth. Of course ordinary RSPT gets only the first of these series.
The third specific result concerns the relationship between the imaginary ie $e^{-2 R / n}$ series and the $e^{-R / n}$ "gap" series. These two series arise primarily from the separation constant β_{2} for which (iii) the corresponding imaginary series as πi times the square of the corresponding gap series times a normalization constant.
Other main points include the following. (iv) The $\mathrm{H}_{2}{ }^{+}$ eigenvalue equation has complex eigenvalues closely associated with the real eigenvalues in the sense that they have the same RSPT, but involve different boundary conditions. ${ }^{5,6}$ The "different boundary conditions" can be understood in a simple way by considering the analytic continuation of one of the separated equations of a related, physically interpretable problem: ${ }^{5,6}$ an electron moving in the field of a fixed proton and a fixed antiproton. (v) RSPT for β_{2} is Borel summable to the complex eigenvalues. ${ }^{5,6}$ (vi) The imaginary series determine the largeorder behavior of the RSPT coefficients via dispersion relations. (vii) The imaginary series associated with the discontinuity of the separation constant β_{1} across the negative real axis has logarithmic terms in $-R$, which lead to $\ln (N)$ terms in the asymptotics of the $\beta_{1}^{(N)}$ and $E^{(N)}$.
Two empirical facts have been our main motivation. The first is the same-sign factorial divergence of the RSPT series for the ground state: ${ }^{3,12-14}$

$$
\begin{equation*}
E^{(N)} \sim-(N+1)!e^{-2}\left(1+\frac{2}{N+1}-\frac{18}{(N+1) N}+\cdots\right) . \tag{2}
\end{equation*}
$$

Such behavior is consistent with the asymptotic expansion of a complex function that is discontinuous across the $R>0$ axis, whose Borel sum would be like

$$
\begin{align*}
& -\sum_{N=0}^{\infty}(N+1) l e^{-2}(2 R)^{-N} \sim e^{-2} \int_{0}^{\infty} t^{2} e^{-t}(t-2 R)^{-1} d t[0<|\arg (R)|<2 \pi] \tag{3}\\
& =\mathrm{Pe}{ }^{-2} \int_{0}^{\infty} t^{2} e^{-t}(t-2 R)^{-1} d t \pm i \pi 4 R^{2} e^{-2 R-2} \quad(\operatorname{Im} R= \pm 0) . \tag{4}
\end{align*}
$$

where P denotes the principal value of the integral. The second empirical fact is an approximate relationship ${ }^{12}$ between the double-well energy gap $E_{\text {gap }}$, which for the pair consisting of the ground and first excited state is $\sim 4 R e^{-R-1}$, and the asymptotics of the RSPT coefficients [Eq. (2)], which by a dispersion relation involves the " \pm " discontinuity in Eq. (1). The relationship is

$$
\begin{equation*}
\text { discontinuity in Eq. (1) } \sim 2 \pi i\left(\frac{1}{2} E_{\text {gqp }}\right)^{2} \text {. } \tag{5}
\end{equation*}
$$

Our initial goal was to explain both facts, but in the process we have obtained many more results, which have been summarized in Ref. 5. Further, in Ref. 6, the first of two papers announced in Ref. 5, we have collected the mathematically rigorous results: proof of the analyticity of β_{1}, β_{2}, and E; proof of Borel summability of the RSPT series for β_{1}, β_{2}, and E to eigenvalues of non-self-adjoint versions of the $\mathrm{H}_{2}{ }^{+}$problem; proof of the approximate
formula (5); justification of the dispersion relations; and justification of the leading asymptotic behavior of the RSPT coefficients. This paper is the second paper announced in Ref. 5 in which we develop the QSC technique, derive the multiply-exponentially-small series, and obtain the full high-order asymptotics of the RSPT quantities, i.e., all the corrections in formula (2) for the ground state and for excited states as well.

The organization of the paper is briefly as follows. In Sec. II, the Schrödinger equation is separated, and the RSPT solution is sketched. Section III is a long section devoted to the separation constant β_{2}, which comes from the separated equation that contains the double-well character of $\mathrm{H}_{2}{ }^{+}$. In Sec. III A, the quasisemiclassical method is introduced through the form of the wave function, and the separated Schrödinger equation is turned into a Riccati equation. In Sec. III B, the recursive, perturbative solution of the Riccati equation is sketched, and the usual

RSPT is shown to fall out. In Sec. III C, it is shown how the second boundary condition, ignored by RSPT for $\mathrm{H}_{2}{ }^{+}$, leads to the double-well gap and to exponentially small (e^{-R}) terms. Sections IIID and III E give alternative formulas for quantities that appear first in Sec. IIIC. How imaginary terms occur in the expansion for β_{2} is first introduced in Sec. III F and further developed in Sec. III G, where the "gap-squared" formula is discussed. The doubly-exponentially-small series contributing to β_{2} is obtained in Sec. IIIH. The final subsection, IIII, is a mathematical diversion from the physical $\mathrm{H}_{2}{ }^{+}$problem: the β_{2} equation is solved not on the finite physical interval, but on a semiinfinite interval. As mentioned in (v) above, the resulting eigenvalue turns out to be the Borel sum of the RSPT series, and the series for the discontinuity in the Borel sum across its cut is given by the imaginary series obtained in Sec. III G. Section IV contains the details for the solution of the separation constant β_{1}. In Sec . V the two separation constants are put back together to get the energy $E(R)$. The details are mostly algebraic, but nontrivial. In Sec. VC the (appropriate) approximate, gap-squared formula of Brézin and Zinn-Justin is shown to be true for exactly two terms for all states, not just the ground state. In Sec. VE the discontinuity in $E(R)$ for R negative is discussed in preparation for the development of the asymptotics of the RSPT coefficients via dispersion relations in Sec. VI. Section VII contains a JWKB-like reformulation of the method that is easier to use for numerical calculations of the various series, which calculations are discussed and illustrated in Secs. VIII-X. Summation of the expansions and comparison with direct numerical solution of the eigenvalue equations are discussed in Sec. XI. All of the quantities discussed are illustrated numerically in extensive tables, and the paper is summarized in Sec . XII.

II. PRELIMINARIES: SEPARATION OF VARIABLES; RSPT RESULTS

The aims of this preliminary section are to give the separated equations for $\mathrm{H}_{2}{ }^{+}$in prolate spheroidal coordinates, ${ }^{11}$ to indicate how to carry out RSPT on them, to state the asymptotic RSPT results, and to set out the notation. The RSPT results serve both as part of the motivation and as a point of departure for the QSC treatment that follows in Sec. III. (For the implementation of the separability in terms of operator theory in Hilbert space, see Ref. 6.)

A. Separated equations in prolate spheroidal coordinates

Prolate spheroidal coordinates, with a translation to make the left endpoints for the ξ and η both be 0 , are given by ${ }^{11}$

$$
\begin{align*}
& \xi \equiv\left(r_{a}+r_{b}\right) / R-1 \quad(0 \leq \xi<\infty), \tag{6}\\
& \eta \equiv\left(r_{a}-r_{b}\right) / R+1 \quad(0 \leq \eta \leq 2), \tag{7}\\
& \phi \equiv \arctan (y / x) . \tag{8}
\end{align*}
$$

The dependence of the wave function on ϕ is the familiar and simple $e^{i m \phi}$ (m an integer). The dependence on ξ and
η is what needs to be determined.
The Schrödinger equation,

$$
\begin{equation*}
H \Psi=\left(-\frac{1}{2} \nabla^{2}-1 / r_{a}-1 / r_{b}+1 / R\right) \Psi=(E+1 / R) \Psi, \tag{9}
\end{equation*}
$$

yields two equations for the separation constants β_{1} and β_{2},
$\left[-\frac{d^{2}}{d \xi^{2}}+\frac{1}{4} r^{2}-r \frac{\beta_{1}}{\xi}-r \frac{\beta_{1}+2 \beta_{2}}{\xi+2}+\frac{m^{2}-1}{\xi^{2}(\xi+2)^{2}}\right] \Phi_{1}=0$,
$\left(-\frac{d^{2}}{d \eta^{2}}+\frac{1}{4} r^{2}-r \frac{\beta_{2}}{\eta}-r \frac{\beta_{2}}{2-\eta}+\frac{m^{2}-1}{\eta^{2}(2-\eta)^{2}}\right) \Phi_{2}=0$,
with the energy E being obtained from β_{1} and β_{2} by the formula

$$
\begin{equation*}
E=-\frac{1}{2}\left(\beta_{1}+\beta_{2}\right)^{-2} \tag{12}
\end{equation*}
$$

Equation (12) and the familiar expression for the hydrogen-atom energy eigenvalue, $-\frac{1}{2} n^{-2}$, show that $\beta_{1}+\beta_{2}$ may be regarded as a "perturbed principal quantum number n." The r in Eqs. (10) and (11) is a scaled version of the internuclear distance R :

$$
\begin{equation*}
r \equiv R /\left(\beta_{1}+\beta_{2}\right) \sim R / n \tag{13}
\end{equation*}
$$

B. Manipulation of the separated equations into standard RSPT form

Despite the nonstandard form of Eqs. (10)-(13), it is straightforward to develop solutions by RSPT. We begin with a scale transformation that makes the unperturbed problem hydrogenic:

$$
\begin{align*}
& u=r \xi, v=r \eta, \tag{14}\\
& \left.\begin{array}{l}
{\left[-u d^{2} / d u^{2}+\frac{1}{4} u\right.}
\end{array}+\frac{1}{4}\left(m^{2}-1\right) / u\right] \Phi_{1} \\
& \quad+u V_{1}\left(u, \beta_{1}+2 \beta_{2}, r\right) \Phi_{1}=\beta_{1} \Phi_{1}, \tag{15}\\
& {\left[-v d^{2} / d v^{2}+\frac{1}{4} v+\frac{1}{4}\left(m^{2}-1\right) / v\right] \Phi_{2}} \\
& \tag{16}\\
& \quad+v V_{2}\left(v, \beta_{2}, r\right) \Phi_{2}=\beta_{2} \Phi_{2} .
\end{align*}
$$

The expression that occurs in square brackets in Eqs. (15) and (16) is identical with the separated "Hamiltonians" for the hydrogen atom in parabolic coordinates: ${ }^{15,16}$ we take it as the unperturbed Hamiltonian for both problems. Notice also that the factors u and v in $u d^{2} / d u^{2}$ and $v d^{2} / d v^{2}$ imply that the volume elements are $u^{-1} d u$ and $v^{-1} d v$. Thus the unperturbed eigenfunctions are identical with the parabolic hydrogenic eigenfunctions, and the unperturbed separation constants are
$\beta_{i}=\beta_{i}^{(0)}=n_{i}+\frac{1}{2}(|m|+1)(i=1,2, r=+\infty)$,
where n_{1} and n_{2} are the usual parabolic quantum numbers.

We continue by expanding the perturbing potentials V_{i} in power series in $(2 r)^{-1}$ (the perturbation expansions for
the $\beta_{i}^{(N)}$ are defined below):

$$
\begin{align*}
& \begin{aligned}
& V_{1}\left(u, \beta_{1}+2 \beta_{2}, r\right)=-\frac{\beta_{1}+2 \beta_{2}}{u+2 r}+\frac{1}{4}\left(m^{2}-1\right) \\
& \times\left[-\frac{2}{u(u+2 r)}+\frac{1}{(u+2 r)^{2}}\right] \\
&= \sum_{N=1}^{\infty} V_{1}^{(N)}(2 r)^{-N}, \\
& V_{1}^{(N)}= \frac{1}{4}\left(m^{2}-1\right)(N+1)(-u)^{N-2} \\
&-\sum_{k=0}^{N-1}\left(\beta_{1}^{(k)}+2 \beta_{2}^{(k)}\right)(-u)^{N-k-1}, \\
& V_{2}\left(v, \beta_{2}, r\right) \\
&=-\frac{\beta_{2}}{2 r-v}+\frac{1}{4}\left(m^{2}-1\right)\left(\frac{2}{v(2 r-v)}+\frac{1}{(2 r-v)^{2}}\right] \\
&= \sum_{N=1}^{\infty} V_{2}^{(N)}(2 r)^{-N}, \\
& V_{2}^{(N)}= \frac{1}{4}\left(m^{2}-1\right)(N+1) v^{N-2}-\sum_{k=0}^{N-1} \beta_{2}^{(k)} v^{N-k-1} .
\end{aligned}
\end{align*}
$$

Given the expansions (18)-(23), it is straightforward to solve Eqs. (15) and (16) by textbook RSPT. The first step is to obtain β_{2} as a power series in $(2 r)^{-1}$ by solving Eq. (16). The second step is to obtain the series for β_{1} from Eq. (15) and the β_{2} series. The third step is to obtain r^{-1} as a series in R^{-1} from Eq. (13), which then permits E to be expressed as a series in R^{-1}, the fourth and final step. Note that Eqs. (20) and (23) are strictly valid only when u and v are both less than $2 r$. However, the RSPT solution is an asymptotic power series in $1 / 2 r$, and the order-byorder equations, which are obtained for large $2 r$, of course hold formally for all values of u and v. To look at it another way, if a nonperturbative solution were to be obtained, then by ignoring the corresponding expansions for u and v greater than $2 r$, an error that is exponentially small in r would be introduced into the solution, which would again therefore be of no consequence for the $1 / 2 r$ RSPT.

Note that β_{1} and β_{2} depend on m only through the magnitude $|m|$ and not on the sign. To simplify the appearance of the formulas, we assume from now on, without loss of generality, that $m \geq 0$.

C. RSPT results for the separation constants

The RSPT series for the separation constants have been calculated as outlined above. We shall not go into the relatively uninteresting details. At low order the series appear unremarkable. One finds for the ground state ($n_{1}=n_{2}=m=0$), for example, that

$$
\begin{align*}
\beta_{1} & \sim \sum_{N=0}^{\infty} \beta_{1}^{(N)}(2 r)^{-N} \tag{24}\\
& =0.5-(2 r)^{-1}+3(2 r)^{-2}+4(2 r)^{-3}-15(2 r)^{-4}+\cdots, \tag{25}
\end{align*}
$$

$$
\begin{align*}
\beta_{2} & \sim \sum_{N=0}^{\infty} \beta_{2}^{(N)}(2 r)^{-N} \tag{26}\\
& =0.5-(2 r)^{-1}-(2 r)^{-2}-4(2 r)^{-3}-23(2 r)^{-4}+\cdots \tag{27}
\end{align*}
$$

What is especially significant is that at high order the $\beta_{i}^{(N)}$ for the ground state behave asymptotically as

$$
\begin{gather*}
\beta_{2} \sim-(N+1)!\left[1-\frac{6}{N+1}+\frac{2}{(N+1) N}\right. \\
\left.-\frac{16}{(N+1) N(N-1)}-\cdots\right), \tag{28}\\
\beta_{1 \sim 2 N!}\left[1-\frac{6}{N}-\frac{8}{N(N-1)}\right. \\
\left.+\frac{48}{N(N-1)(N-2)}+\cdots\right) \tag{29}
\end{gather*}
$$

The same-sign factorial divergence of the separationconstant coefficients, Eqs. (28) and (29), is the same phenomenon as the factorial divergence ${ }^{3,13}$ of $E^{(N)}$, Eq. (2), discovered by Morgan and Simon. ${ }^{3}$ This phenomenon is a main motivating fact for this study. In explaining the detailed relationships among the RSPT quantities and the exponentially small quantities associated with the doublewell phenomena, we shall focus on the separation constants. It is easier to deal with the separation constants than with E directly, because the separation constants are eigenvalues of ordinary differential equations.

We conclude this section with a remark about the endpoints of the β_{2} equation (16), which have been treated rather unequally in RSPT. By this we mean that since the unperturbed problem is defined on the semi-infinite interval, the influence of the second boundary condition is not seen by the perturbation theory. As a consequence typical of double-well problems, the characteristic splitting does not show up: both the symmetric and antisymmetric partners of a double-well pair have the same $1 / 2 r$ RSPT expansion. The quasisemiclassical method developed in the next section deals explicitly with both boundary points and consequently gets the double-well splitting.

III. SOLUTION OF THE β_{2} EQUATION BY THE QUASISEMICLASSICAL METHOD

Rayleigh-Schrödinger perturbation theory is unable to calculate the double-well gap. In this section we develop a method for solving the β_{2} equation (11) that gives not only the gap, but also smaller more subtle effects, while still yielding within the same formalism the RSPT expansion. The exact relationship between the RSPT asymptotics and the square of the gap is found. The final formula we are led to for β_{2} is a complex expansion whose explicit imaginary terms for real r are discontinuous across the
positive axis. The explanation of this apparently paradoxical representation of a real, continuous function is that the Borel sum of the real RSPT expansion exists and has a cut on the positive r axis, ${ }^{6}$ so that the value of the Borel sum continued to the real axis is complex, and the explicitly imaginary terms in the expansion are the counterterms that cancel the imaginary part of the Borel sum. This behavior turns out to be widespread: for examples in familiar functions, such as the Airy Bi function, see Ref. 7.

The Borel sum of the RSPT expansion for β_{2} turns out ${ }^{5,6}$ not to be the eigenvalue associated with Eq. (16), but to be the eigenvalue of a related problem. Consider Eq. (16) both at $-r$ and with a semi-infinite domain. That is, set $r^{\prime}=-r$ in V_{2} of Eq. (21):

$$
\begin{align*}
V_{2}\left(v, \beta_{2}\left(-r^{\prime}\right),-r^{\prime}\right)= & \frac{\beta_{2}}{2 r^{\prime}+v}+\frac{1}{4}\left(m^{2}-1\right) \\
& \times\left[-\frac{2}{v\left(2 r^{\prime}+v\right)}+\frac{1}{\left(2 r^{\prime}+v\right)^{2}}\right] \tag{30}
\end{align*}
$$

On the semi-infinite interval, $0 \leq 0<\infty$, Eq. (16), with V_{2} given by Eq. (30), represents a stable, single-well eigenvalue problem whose RSPT expansion is Borel summable ${ }^{5,6}$ to the eigenvalue of that problem. That RSPT expansion is the same as for $\beta_{2}(r)$ with r replaced by $-r^{\prime}$. This modified problem [Eq. (16) where V is defined by Eq. (30) on $0 \leq v<\infty$] arises naturally from the separation of the Schrödinger equation for an electron moving in the field of a proton and an antiproton ${ }^{5,6}$
To bring out the connection of the Borel sum with the imaginary series for β_{2} mentioned in the first paragraph of this section, we also solve here by the QSC method the β_{2} eigenvalue problem on the semi-infinite interval $0 \leq v<\infty$, but without changing the sign of r. To avoid the singularity that would occur at $v=2 r$, we make r complex. Then the QSC method yields an expansion for the discontinuity in the Borel sum at the $r>0$ axis that is exactly -2 times the imaginary series that occurs in the finite, $0 \leq v \leq 2 r \beta_{2}$ problem, thus clinching the cancellation. (To leading exponential order only, the calculation of the discontinuity has been made completely rigorous. See Sec . IV of Ref. 6.)

The method we develop here is semiclassical. It is closest to the methods of Langer ${ }^{17}$ and Cherry. ${ }^{18}$ It differs from standard semiclassical practice in that a singular point of the differential equation, rather than a classical turning point, is the "anchor point" for the expansion, and exponentially small, subdominant terms can enter the actionlike function. To emphasize the similarities and differences, and for lack of a better term, we refer to the approach as the quasisemiclassical (QSC) method.
The basic idea of the QSC method is to make the perturbation expansion on the "natural variable" on which depends a function that represents the solution of the differential equation near one boundary or singular point. One converts the linear Schrödinger equation into a nonlinear, fourth-order Riccati equation for the natural variable that is solved perturbatively. To satisfy one
boundary condition perturbatively, β_{2} must be represented by its RSPT series. To satisfy both boundary conditions, β_{2} must have an additional, exponentially small (e^{-r}) series that represents half the double-well gap between the symmetric and antisymmetric states of an associated pair. In fact there are additional series that are $O\left(e^{-2 r}\right)$, $O\left(e^{-3 r}\right)$, etc., that are found by satisfying both boundary conditions to higher exponentially small orders. (We stop at the $e^{-2 r}$ series.)

A. The quasisemiclassical wave function

The most direct way to characterize the QSC method is through the form of the wave function. The characteristic of the semiclassical Jeffreys-Wentzel-KramersBrillouin (JWKB) method ${ }^{1}$ is that the logarithm of the wave function is expanded in a power series in t. More precisely, the wave function is put in the form

$$
\begin{align*}
& \Psi_{\mathrm{JWKB}}=(d S / d x)^{-1 / 2} e^{i S / \hbar}, \tag{31}\\
& S=\sum_{N=0}^{\infty} S^{(N)}(x) \pi^{2 N}, \tag{32}
\end{align*}
$$

where $S^{(0)}$ is the classical action, and where the corrections $S^{(N)}(N \geq 1)$ are determined recursively.

The JWKB method fails at the classical turning points, where the $S^{(N)}(x)$ may have singularities. Langer ${ }^{7}$ generalized the JWKB method to include the classical turning points in part by solving the differential equation itself at the turning point in terms of Airy functions. Away from a turning point the Airy functions can be expanded asymptotically, and Langer's method goes over into the JWKB method.
The points of special interest in the β_{2} equation (11) are $\eta=0$ and 2 -which are singular points rather than turning points. (The JWKB method fails even more strongly at singularities.) Near $\eta=0$, Eq. (11) is

$$
\begin{equation*}
\left(-\frac{d^{2}}{d \eta^{2}}+\frac{1}{4} r^{2}-r \frac{\beta_{2}}{\eta}+\frac{m^{2}-1}{4 \eta^{2}}\right)_{\Phi_{2} \sim 0}, \tag{33}
\end{equation*}
$$

which up to rescaling is Whittaker's confluent hypergeometric equation, whose solution ${ }^{19,20}$ regular at 0 is denoted by $M_{\beta_{2}, m / 2}(r \eta)$. In the spirit of Langer's generalization, we take the solution of Eq. (11) near $\eta=0$ to have the form

$$
\begin{equation*}
\Phi_{2}=\frac{1}{m!}(d \phi / d \eta)^{-1 / 2} M_{b, m / 2}(r \phi) . \tag{34}
\end{equation*}
$$

The Whittaker M function here plays the role of the Airy function in Langer's method, while $1 / r$ is like \hbar. The value of the index b will be clarified later. The problem of determining the solution Φ_{2} of Eq. (11) then becomes the problem of determining the function $\phi=\phi(\eta, r)$, which by Eqs. (11), (33), and (34) satisfies the Riccati equation

$$
\begin{equation*}
-\left[\frac{d \phi}{d \eta}\right]^{2}\left(\frac{1}{4}-\frac{b}{r \phi}+\frac{m^{2}-1}{4 r^{2} \phi^{2}}\right)-\frac{1}{r^{2}}\left(\frac{d \phi}{d \eta}\right]^{1 / 2} \frac{d^{2}}{d \eta^{2}}\left(\frac{d \phi}{d \eta}\right]^{-1 / 2}+\frac{1}{4}-\frac{\beta_{2}}{r}\left(\frac{1}{\eta}+\frac{1}{2-\eta}\right)+\frac{m^{2}-1}{4 r^{2}}\left(\frac{1}{\eta}+\frac{1}{2-\eta}\right)^{2}=0 . \tag{35}
\end{equation*}
$$

Cherry ${ }^{18}$ extended Langer's approach by expanding the function corresponding here to ϕ as a power series in a parameter that here is $(2 r)^{-1}$:

$$
\begin{equation*}
\phi(\eta, r) \sim \sum_{N=0}^{\infty} \phi^{(N)}(\eta)(2 r)^{-N} \tag{36}
\end{equation*}
$$

Thus the problem of determining Φ_{2} becomes the problem of determining the $\phi^{(N)}$.

The parameter b in the Whittaker function is ultimately determined by making Φ_{2} satisfy both boundary conditions. We anticipate that it is equal to the unperturbed value of β_{2} to zeroth exponential order:

$$
\begin{equation*}
b=\beta_{2}^{(0)}+O\left(r^{k} e^{-r}\right) \quad(\text { for some } k>0) \tag{37}
\end{equation*}
$$

Then $M_{8_{2}^{(0)}, m / 2}(r \eta)$ is simply the usual RSPT unperturbed wave function, ${ }^{1,16}$ i.e., a polynomial in η times $\eta^{m / 2+1 / 2} e^{-r \eta / 2}$. This value of b turns out to simplify both the analytic form of the $\phi^{(N)}$ and also the asymptotic analysis of $M_{b, m / 2}$ that is needed to match the boundary condition at $\eta=2$. (Later it will also be necessary to add exponentially small terms to b, to ϕ, and to β_{2} when the process of satisfying both boundary conditions is extended to higher exponential order.)

B. Equations satisfied by the $\phi^{(N)}$; explicit solution

for $\phi^{(0)}, \phi^{(1)}$, and $\phi^{(2)}$; RSPT for $\beta_{2}^{(1)}$
plicitly.
Put the expansions (36) for ϕ, (26) for β_{2}, and (37) for b into the Riccati equation (35), which can then be solved recursively. To lowest order in $(2 r)^{-1}$, one finds

$$
\begin{align*}
& -\frac{1}{4}\left(d \phi^{(0)} / d \eta\right)^{2}+\frac{1}{4}=0 \tag{38}\\
& d \phi^{(0)} / d \eta=1, \phi^{(0)}=\eta \tag{39}
\end{align*}
$$

Note that the unperturbed value of ϕ is η, consistent with the discussion above [between Eqs. (33) and (34)] of Φ_{2} near $\eta=0$. Moreover, since Φ_{2} at $\eta=0$ behaves like

$$
\begin{equation*}
\Phi_{2} \sim \eta^{m / 2+1 / 2} \tag{40}
\end{equation*}
$$

the equivalent condition for ϕ is

$$
\begin{equation*}
\phi^{(N)}=O(\eta) \text { as } \eta \rightarrow 0 \tag{41}
\end{equation*}
$$

which also explains the choice of "integration constant" in Eq. (39).

To first order in $(2 r)^{-1}$, Eqs. (35)-(41) yield

$$
\begin{equation*}
-\frac{1}{2} \frac{d \phi^{(1)}}{d \eta}+2 \beta_{2}^{(0)} \frac{1}{\eta}-2 \beta_{2}^{(0)}\left(\frac{1}{\eta}+\frac{1}{2-\eta}\right)=0 \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
\phi^{(1)}=4 \beta_{2}^{(0)} \ln \left(1-\frac{1}{2} \eta\right) \tag{43}
\end{equation*}
$$

To second order in $(2 r)^{-1}$, Eqs. (35)-(43) yield

$$
\begin{align*}
& -\frac{1}{2} \frac{d \phi^{(2)}}{d \eta}-\frac{1}{4}\left[\frac{d \phi^{(1)}}{d \eta}\right]^{2}+4 \beta_{2}^{(0)} \frac{1}{\phi^{(0)}} \frac{d \phi^{(1)}}{d \eta}-2 \beta_{2}^{(0)} \frac{\phi^{(1)}}{\left(\phi^{(0)}\right)^{2}} \\
& -\left(m^{2}-1\right) \frac{1}{\left(\phi^{(0)}\right)^{2}}-2 \beta_{2}^{(1)}\left[\frac{1}{\eta}+\frac{1}{2-\eta}\right]+\left(m^{2}-1\right)\left[\frac{1}{\eta}+\frac{1}{2-\eta}\right]^{2}=0 \tag{44}\\
& d \phi^{(2)} / d \eta=-16\left(\beta_{2}^{(0)}\right)^{2} \eta^{-2} \ln \left(1-\frac{1}{2} \eta\right)-16\left(\beta_{2}^{(0)}\right)^{2} \eta^{-1}(2-\eta)^{-1} \\
& \tag{45}\\
& +2\left[-4\left(\beta_{2}^{(0)}\right)^{2}+m^{2}-1\right] \frac{1}{(2-\eta)^{2}}+2\left[-2 \beta_{2}^{(1)}+m^{2}-1-4\left(\beta_{2}^{(0)}\right)^{2}\right]\left[\frac{1}{\eta}+\frac{1}{2-\eta}\right], \\
& \phi^{(2)}= \tag{46}\\
& \quad 16\left(\beta_{2}^{(0)}\right)^{2}\left[\eta^{-1} \ln \left(1-\frac{1}{2} \eta\right)+\frac{1}{2}\right]+2\left[-4\left(\beta_{2}^{(0)}\right)^{2}+m^{2}-1\right]\left[(2-\eta)^{-1}-\frac{1}{2}\right] \\
& \quad+2\left[-2 \beta_{2}^{(1)}+m^{2}-1-4\left(\beta_{2}^{(0)}\right)^{2}\right] \ln [\eta /(2-\eta)]
\end{align*}
$$

Equation (46) would display a singularity in $\phi^{(2)}$ at $\eta=0$ unless

$$
\begin{equation*}
\beta_{2}^{(1)}=-2\left(\beta_{2}^{(0)}\right)^{2}+\frac{1}{2}\left(m^{2}-1\right), \tag{47}
\end{equation*}
$$

which is precisely the RSPT result. Then instead of Eq. (46), $\phi^{(2)}$ is given by

$$
\begin{align*}
\phi^{(2)}= & 16\left(\beta_{2}^{(0)}\right)^{2}\left[\eta^{-1} \ln \left(1-\frac{1}{2} \eta\right)+\frac{1}{2}\right] \\
& +4 \beta_{2}^{(1)}\left[(2-\eta)^{-1}-\frac{1}{2}\right] . \tag{48}
\end{align*}
$$

The equations for $\phi^{(3)}, \phi^{(4)}, \ldots$ get progressively more tedious. However, each $\phi^{(N)}$ can be found in closed form; each $\phi^{(N)}$ is analytic and has a zero at $\eta=0$, provided only
that $\beta_{2}^{(N-1)}$ is chosen correctly. In fact it is not hard to show inductively from Eqs. (35), (39), (43), and (48) that $\beta_{2}^{(N-1)}$ can be chosen to make $\phi^{(N)}$ analytic and zero at $\eta=0$. By the uniqueness of power series, the $\beta_{2}^{(N)}$ determined so that the QSC Φ_{2} satisfy the boundary condition at $\eta=0$-must be identical with the RSPT $\beta_{2}^{(N)}$. In this way the QSC method contains RSPT.

C. Boundary condition at $\boldsymbol{\eta}=2$ and the double-well gap

A major advantage of the QSC method over RSPT is that the wave function can be made to vanish at $\eta=2$, as will now be demonstrated. The basic idea is to generate QSC wave functions from both $\eta=0$ and 2 and to match them in the middle where the asymptotic expansion for the Whittaker function is valid. A most crucial detail, however, is that the exponentially small shift [Eq. (37)] in the b index of the Whittaker function of Eq. (34) must now be determined. To find this shift, we reexamine the perturbation hypothesis-namely, that β_{2} and ϕ can be expanded in power series in $(2 r)^{-1}$.

As is well known, the RSPT expansion for β_{2} is incomplete in the sense that there is an exponentially small correction of the form ${ }^{2,4}$

$$
\begin{align*}
& \beta_{2} \sim \sum_{N=0}^{\infty} \beta_{2}^{(N)}(2 r)^{-N}+\Delta \beta_{2}^{(1)}+O\left(r^{k} e^{-2 r}\right) \\
& \quad \text { (for some } k>0 \text {), } \tag{49}\\
& \Delta \beta_{2}^{(1)} \sim \pm \frac{(2 r)^{2 \beta_{2}^{(0)}} e^{-r}}{n_{2}!\left(n_{2}+m\right)!} . \tag{50}
\end{align*}
$$

The notation $\Delta f^{[q]}$ is to signify that part of f that is proportional to $e^{-q r}$. The quantity $2 \Delta \beta_{2}^{(1)}$ is the double-well
splitting [through $O\left(e^{-r}\right)$] that separates the symmetric and antisymmetric states of a double-well pair, both of which have the same RSPT expansion. To make it possible to calculate the exponentially small terms, it is necessary to add them to the perturbation expansions (24) and (26) for β_{1} and β_{2}, and to permit them to enter the expansions (37) for b and (36) for ϕ. This generalization is a natural but marked departure from the usual semiclassical practice. We put

$$
\begin{align*}
& \beta_{i} \sim \sum_{N=0}^{\infty} \beta_{i}^{(N)}(2 r)^{-N}+\Delta \beta^{(1]}+O\left(r^{k} e^{-2 r}\right)(i=1,2), \tag{51}\\
& b \sim \beta_{2}^{(0)}+\Delta b^{[1]}+O\left(r^{k} e^{-2 r}\right), \tag{52}\\
& \phi(\eta, r) \sim \sum_{N=0}^{\infty} \phi^{(N)}(\eta)(2 r)^{-N}+\Delta \phi^{(1)}+O\left(r^{k} e^{-2 r}\right) . \tag{53}
\end{align*}
$$

[In Eqs. (51)-(53) and in all subsequent equations, we omit the generic "for some $k>0$," which without danger of confusion may be taken as understood.] It will be seen later that the leading terms of $\Delta \beta_{2}^{[1]}$ and $\Delta b^{[1]}$ are equal:

$$
\begin{align*}
\Delta \beta_{2}^{[1]} & =\Delta b^{[1]}\left[1+O\left(r^{-1}\right)\right] \\
& = \pm \frac{(2 r)^{2 \beta_{2}^{(0)}} e^{-r}}{n_{2}!\left(n_{2}+m\right)!}\left[1+O\left(r^{-1}\right)\right] \tag{54}
\end{align*}
$$

The crucial role played by the shift in the b index is immediately apparent when, in preparation for matching the wave function (34) with one satisfying the boundary condition at $\eta=2$, the Whittaker M function is expanded asymptotically: ${ }^{20}$

$$
\begin{align*}
& \frac{1}{m!} M_{b, m / 2}(z)= \frac{e^{ \pm \pi i(m / 2+1 / 2-b)}}{\Gamma\left(\frac{1}{2} m+\frac{1}{2}+b\right)} W_{b, m / 2}(z)+\frac{e^{\mp \pi i b}}{\Gamma\left(\frac{1}{2} m+\frac{1}{2}-b\right)} W_{-b, m / 2}\left(z e^{\mp \pi i}\right)(0< \pm \arg z<\pi) \tag{55}\\
& \sim \frac{e^{ \pm \pi i(m / 2+1 / 2-b)}}{\Gamma\left(\frac{1}{2} m+\frac{1}{2}+b\right)} z^{b} e^{-z / 2}{ }_{2} F_{0}\left(\frac{1}{2}+\frac{1}{2} m-b, \frac{1}{2}-\frac{1}{2} m-b ; ;-z^{-1}\right) \\
&+\frac{1}{\Gamma\left(\frac{1}{2}+\frac{1}{2} m-b\right)} z^{-b} e^{+z / 2}{ }_{2} F_{0}\left(\frac{1}{2}+\frac{1}{2} m+b, \frac{1}{2}-\frac{1}{2} m+b ; ;+z^{-1}\right)(0< \pm \arg z<\pi) \tag{56}\\
& \sim(-1)^{n_{2}} \frac{e^{\mp \pi i \Delta b(1)}}{\left(n_{2}+m\right)!} z^{b} e^{-z / 2}+\Delta b^{[1]}(-1)^{n_{2}+1} n_{2}!z^{-b} e^{+z / 2} \quad(0< \pm \arg z<\pi) \tag{57}
\end{align*}
$$

where we have used the Γ-function reflection formula ${ }^{19}$ and that $b+\frac{1}{2}-\frac{1}{2} m \sim n_{2}+1+\Delta b^{[1]}$ to get
$1 / \Gamma\left(\frac{1}{2}+\frac{1}{2} m-b\right)$

$$
\begin{equation*}
=\Gamma\left(b+\frac{1}{2}-\frac{1}{2} m\right) \pi^{-1} \sin \left[\pi\left(b+\frac{1}{2}-\frac{1}{2} m\right)\right] \tag{58}
\end{equation*}
$$

$=(-1)^{n_{2}+1} n_{2}!\Delta b^{[1]}\left[1+O\left(\Delta b^{[1]}\right)\right]$.
Note the introduction in Eq. (55) of the Whittaker W functions, primarily for later use, and in Eq. (56) the usual generalized hypergeometric series, ${ }^{19}$

$$
\begin{equation*}
{ }_{2} F_{0}(a, b ; ; z)=1+a b \frac{z}{1!}+a(a+1) b(b+1) \frac{z^{2}}{2!}+\cdots . \tag{60}
\end{equation*}
$$

When $\Delta b^{[1]} \neq 0$, there is a positive exponential term in Φ_{2}. Consider for the moment how Φ_{2} appears near the point $\boldsymbol{\eta}=2$. The positive exponential in Eqs. (56) and (57) (where $z=r \phi \sim r \eta$) is the term that is decaying away from $\eta=2$ (in the direction of $\eta=0$) and near $\eta=2$ should be the most important term. In fact, because of the symmetry of Eq. (11), Φ_{2} should be either symmetric or antisymmetric under the transformation $\eta \rightarrow 2-\eta$, so
that both exponentials should be equally weighted. It will turn out that $\Delta b^{[1]}$ has exactly the right value to achieve this symmetry.

It is now straightforward to obtain the leading terms in the asymptotic expansion of Φ_{2}. Take $\phi^{(0)}$ and $\phi^{(1)}$ from Eqs. (39) and (43), and use Eqs. (34) and (57) to obtain, for Φ_{2} anchored at $\eta=0$ (denoted here by $\Phi_{2[0]}$),

$$
\begin{align*}
\Phi_{2[0]} & \sim \frac{(-1)^{n_{2}}(2 r)^{\left(\beta_{2}^{0)}\right.}}{\left(n_{2}+m\right)!} \eta^{\beta_{2}^{(0)}}(2-\eta)^{-\theta_{2}^{(0)}} e^{-r \eta / 2}\left[1+O\left(r^{-1}\right)\right] \\
+ & \Delta b^{[1]}(-1)^{n_{2}+1} n_{2}(2 r)^{-\alpha_{2}^{(0)}}(2-\eta)^{\beta_{2}^{(0)}} \\
& \times \eta^{-\beta_{2}^{(0)}} e^{+r \eta / 2}\left[1+O\left(r^{-1}\right)\right] . \tag{61}
\end{align*}
$$

(Here and in the following, we use "anchored at $\eta=a$ " to mean a QSC wave function generated by expansion from the point a.) If instead of starting the expansion at the boundary point $\eta=0$ we had started at $\eta=2$, exactly the same expression would have been obtained for Φ_{2} an-
chored at $\eta=2\left(\Phi_{2[2]}\right)$, except that η would be replaced by $2-\eta$:

$$
\begin{align*}
\Phi_{2[2]} \sim & \frac{(-1)^{n_{2}}(2 r)^{\beta_{2}^{(0)}}}{\left(n_{2}+m\right)!} \\
& \times(2-\eta)^{\beta_{2}^{(0)}} \eta^{-\beta_{2}^{(0)}} e^{-r+r \eta / 2}\left[1+O\left(r^{-1}\right)\right] \\
+ & \Delta b^{[1]}(-1)^{n_{2}+1} n_{2}!(2 r)^{-\beta_{2}^{(0)}} \eta^{\beta_{2}^{(0)}} \\
& \times(2-\eta)^{-\beta_{2}^{(0)}} e^{+r-r \eta / 2}\left[1+O\left(r^{-1}\right)\right] . \tag{62}
\end{align*}
$$

These two equations represent the same wave function only if

$$
\begin{equation*}
\left(\Delta b^{(1)}\right)^{2}=\frac{(2 r)^{4 /(0)} e^{-2 r}}{\left[n_{2}!\left(n_{2}+m\right)!\right]^{2}}\left[1+O\left(r^{-1}\right)\right] \tag{63}
\end{equation*}
$$

which gives the formula (54) for $\Delta b^{[1]}$.
The complete series for $\Delta b^{\{1\}}$ is obtained by carrying out the above process to all powers of $(2 r)^{-1}$. The formal result is

$$
\begin{align*}
\Delta b^{[1]}= & \pm \frac{(2 r)^{2 \beta_{2}^{(\nu 1}} e^{-r}}{n_{2}!\left(n_{2}+m\right)!}\left(\frac{1}{2} \phi_{[0]}\right)^{\beta_{2}^{(0)}}\left(\frac{1}{2} \phi_{[2]}\right)^{\beta_{2}^{(0)}} e^{-r\left(\phi_{[0]}+\phi_{[2]}^{-2) / 2}\right.}\left(\frac{{ }_{2} F_{0}\left(-n_{2},-n_{2}-m ; ;-\left(r \phi_{[0]}\right)^{-1}\right)}{{ }_{2} F_{0}\left(n_{2}+m+1, n_{2}+1 ; ;+\left(r \phi_{[0]}\right)^{-1}\right)}\right)^{1 / 2} \\
& \times\left(\frac{{ }_{2} F_{0}\left(-n_{2},-n_{2}-m ; ;-\left(r \phi_{[2]}\right)^{-1}\right)}{{ }_{2} F_{0}\left(n_{2}+m+1, n_{2}+1 ; ;+\left(r \phi_{[2]}\right)^{-1}\right)}\right)^{1 / 2} . \tag{64}
\end{align*}
$$

By $\phi_{[0]}$ is meant the ϕ for the QSC eigenfunction anchored at $\eta=0$, while $\phi_{[2]}$ corresponds to the QSC eigenfunction anchored at $\boldsymbol{\eta}=2$. In fact here $\phi_{[2]}(\eta, r)=\phi_{[0]}(2-\eta, r)$. The right-hand side of Eq. (64) is $(2 r)^{2 A_{2}^{(0)}} e^{-r}$ times a series in $(2 r)^{-1}$ that is independent of η.
The index shift $\Delta b^{[1]}$ and RSPT can now be put together to give the $O\left(e^{-r}\right)$ contribution $\Delta \beta_{2}^{[1]}$ to β_{2}. Recall that in the preceding subsection (III B) the index b was set equal to $\beta_{2}^{(0)}$ and then the higher $\beta_{2}^{(N)}(N \geq 1)$ were obtained as functions of $\beta_{2}^{(0)}$ by requiring that $\phi^{(N+1)}$ vanish as $\eta \rightarrow 0$. That process did not depend on the value of $\beta_{2}^{(0)}$. If now $\beta_{2}^{(0)} \rightarrow \beta_{2}^{(0)}+\Delta b^{(1)}$, then one can expand out from the RSPT series the part linear in $\Delta b^{[1]}$,

$$
\begin{align*}
\Delta \beta_{2}^{(1)} & =\Delta b^{[1]} \sum_{N=0}^{\infty} \frac{d B_{2}^{(N)}}{d \beta_{2}^{(0)}}(2 r)^{-N} \tag{65}\\
& =\Delta b^{[1]}\left[1-4 \beta_{2}^{(0)}(2 r)^{-1}+\cdots\right], \tag{66}
\end{align*}
$$

where Eq. (47) has been used to calculate $d \beta_{2}^{(1)} / d \beta_{2}^{(0)}$. In a similar way it follows that

$$
\begin{align*}
\Delta \phi^{[1]} & =\Delta b^{[1]} \sum_{N=0}^{\infty} \frac{d \phi^{(N)}(\eta)}{d \beta_{2}^{(\eta)}}(2 r)^{-N} \tag{67}\\
& =r^{-1} \Delta b^{[1]}\left[2 \ln \left(1-\frac{1}{2} \eta\right)+\cdots\right] \tag{68}
\end{align*}
$$

where Eq. (43) has been used to calculate $d \phi^{(1)} / d \beta_{2}^{(0)}$.
[Note that $\phi^{(0)}$, Eq. (39), is independent of $\beta_{2}^{(0)}$.]
To use Eqs. (65) and (67) relating $\Delta \beta_{2}^{[1]}$ and $\Delta \phi^{[1]}$ to $\Delta b^{(1)}$, it is necessary to calculate the RSPT $\beta_{2}^{(N)}$ and the QSC $\phi^{(N)}$ as explicit functions of $\beta_{2}^{(0)}$. This is easy for low orders but tedious for high orders. An alternative procedure is given in the next subsection.

D. Solution of the Riccati equation directly to $O\left(e^{-r}\right)$

To avoid solving for $\beta_{2}^{(N)}$ and $\phi^{(N)}$ as explicit functions of $\beta_{2}^{(0)}$ to high order, which would be required to use Eqs. (65) and (67) for $\Delta \boldsymbol{\beta}_{2}^{[1]}$ and $\Delta \phi^{[1]}$, we give an alternative procedure, which is to solve the Riccati equation (35) directly to $O\left(e^{-r}\right)$.

Let $q(r)$ denote the ratio

$$
\begin{equation*}
q(r) \equiv \Delta \beta_{2}^{[1]} / \Delta b^{[1]}=\sum_{N=0}^{\infty} \frac{d \beta_{2}^{(N)}}{d \beta_{2}^{(0)}}(2 r)^{-N} \tag{69}
\end{equation*}
$$

We anticipate that $r^{-1} \Delta b^{[1]}$ is a natural factor in $\Delta \phi^{[1]}$, and we accordingly define the ratio

$$
\begin{equation*}
\theta(\eta, r)=\Delta \phi^{[1]} / r^{-1} \Delta b^{[1]} \tag{70}
\end{equation*}
$$

Let ϕ in the remainder of this section denote only the zeroth-exponential-order part of ϕ-i.e., the $1 / r$ powerseries part. In place of ϕ, put $\phi+r^{-1} \Delta b^{[1]} \theta$ into the Riccati equation (35), and put $\beta_{2}^{(0)}+\Delta b^{[1]}$ for b and $\sum \beta_{2}^{(N)}(2 r)^{-N}+\Delta b^{(1)} q(r)$ for β_{2}. Expand the equation in powers of $\Delta b^{\{1\}}$, and keep only the terms first order in $\Delta b^{[1]}$. The result, divided by $r^{-1} \Delta b^{[1]}$, is an equation for $\theta(\eta, r)$ and $q(r)$, given $\phi(\eta, r)$:

$$
\begin{array}{r}
{\left[\frac{d \phi}{d \eta}\right]^{2}\left(\frac{1}{\phi}-\frac{\beta_{2}^{(0)} \theta}{r \phi^{2}}+\frac{\left(m^{2}-1\right) \theta}{2 r^{2} \phi^{3}}\right]-2 \frac{d \phi}{d \eta} \frac{d \theta}{d \eta}\left[\frac{1}{4}-\frac{\beta_{2}^{(0)}}{r \phi}+\frac{m^{2}-1}{4 r^{2} \phi^{2}}\right]-q(r)\left(\frac{1}{\eta}+\frac{1}{2-\eta}\right]} \\
-\frac{1}{2 r^{2}} \frac{d \theta}{d \eta}\left[\frac{d \phi}{d \eta}\right)^{-1 / 2} \frac{d^{2}}{d \eta^{2}}\left[\frac{d \phi}{d \eta}\right]^{-1 / 2}+\frac{1}{2 r^{2}}\left[\frac{d \phi}{d \eta}\right)^{1 / 2} \frac{d^{2}}{d \eta^{2}}\left[\frac{d \theta}{d \eta}\left[\frac{d \phi}{d \eta}\right]^{-3 / 2}\right]=0 \tag{71}
\end{array}
$$

To solve Eq. (71), first expand $q(r)$ and $\theta(\eta, r)$ in power series in $(2 r)^{-1}$;

$$
\begin{align*}
& q(r)=\sum_{N=0}^{\infty} q^{(N)}(2 r)^{-N} \tag{72}\\
& \theta(\eta, r)=\sum_{N=0}^{\infty} \theta^{(N)}(\eta)(2 r)^{-N} \tag{73}
\end{align*}
$$

From Eq. (71) and $\phi^{(0)}$ [Eq. (39)], one obtains the zerothorder equation,

$$
\begin{equation*}
\frac{1}{2} d \theta^{(0)} / d \eta=\eta^{-1}-q^{(0)}\left[\eta^{-1}+(2-\eta)^{-1}\right] \tag{74}
\end{equation*}
$$

Since $d \theta^{(0)} / d \eta$ must be finite at $\eta=0$,

$$
\begin{equation*}
q^{(0)}=1, \quad \theta^{(0)}=2 \ln \left(1-\frac{1}{2} \eta\right) \tag{75}
\end{equation*}
$$

Similarly, one obtains the equation

$$
\begin{align*}
d \theta^{(1)} / d \eta= & (d / d \eta)\left[16 \beta_{2}^{(0)} \eta^{-1} \ln \left(1-\frac{1}{2} \eta\right)\right] \\
& -8 \beta_{2}^{(0)}(2-\eta)^{-2} \\
& -2\left(4 \beta_{2}^{(0)}+q^{(1)}\right)\left[\eta^{-1}+(2-\eta)^{-1}\right] \tag{76}
\end{align*}
$$

From the regularity condition at $\eta=0$ it follows that

$$
\begin{align*}
q^{(1)}= & -4 \beta_{2}^{(0)} \tag{77}\\
\theta^{(1)}= & 16 \beta_{2}^{(0)}\left[\eta^{-1} \ln \left(1-\frac{1}{2} \eta\right)+\frac{1}{2}\right] \\
& -8 \beta_{2}^{(0)}\left[(2-\eta)^{-1}-\frac{1}{2}\right] . \tag{78}
\end{align*}
$$

Thus the ratios $q(r)$ and $\theta(\eta, r)$ can be calculated by a recursive, perturbative technique directly, rather than through the $\beta_{2}^{(0)}$ derivatives of the $\phi^{(n)}$ and the $\beta_{2}^{(N)}$. It is interesting that there is yet another alternative method for calculating $q(r)$-a "normalization-integral" methodthat will be given in the next subsection.

E. Normalization-integral formula for $q(r)$

The two methods given previously for $q(r)$ are generalizable to higher exponential orders. A third formula is developed in this section that is less generalizable but simpler in the respect that it uses only the zeroth-exponential-order wave function in the practical evaluation of $q(r)$. The argument starts out with a "currentdensity" formula and ends up with an expression that looks like a normalization integral.

Let $\Phi^{(+)}$and $\Phi^{(-)}$denote the paired solutions of Eq. (11) that differ only in the choice of sign for $\Delta b^{[1]}$ in Eq. (64). To $O\left(e^{-r}\right)$ the difference in the two eigenvaluesi.e., the double-well gap for these two states-is $2 \Delta \beta_{2}{ }^{11}$. From Eq. (11) one sees by a standard current-density argument that
$2 \Delta \beta_{2}^{(1)}+O\left(e^{-2 r}\right)=\frac{\Phi^{(+)}\left(d \Phi^{(-)} / d \eta\right)-\Phi^{(-)}\left(d \Phi^{(+)} / d \eta\right)}{r \int_{0}^{\eta} \Phi^{(+)} \Phi^{(-)}\left[\eta^{-1}+(2-\eta)^{-1}\right] d \eta}$.

The numerator is a Wronskian of two functions that solve the same differential equation if terms $O\left(r^{k} e^{-r}\right)$ are neglected. From the form of $\Phi^{(\pm)}$[in terms of the Whittaker M function, Eq. (34)], from Eqs. (55) and (56) [or more simply Eq. (57)] for the asymptotics of the M function, from the Wronksian of the Whittaker functions, ${ }^{20}$

$$
\begin{align*}
W_{b, m / 2}(z) & \frac{d}{d z} e^{\mp \pi i b} W_{-b, m / 2}\left(z e^{\mp \pi i}\right) \\
& -e^{\mp \pi i b} W_{-b, m / 2}\left(z e^{\mp \pi i}\right) \frac{d}{d z} W_{b, m / 2}(z)=1 \tag{80}
\end{align*}
$$

and from standard error estimates for formulas of this type, ${ }^{4}$ it follows that so long as $0 \ll \eta \ll 2$, i.e., for $\eta=1+\epsilon(\epsilon \sim 0)$, the numerator is to first exponential order,

$$
\begin{equation*}
2 r n_{2}!\Delta b^{[1]} /\left(n_{2}+m\right)! \tag{81}
\end{equation*}
$$

Similarly, also for $0 \ll \eta \ll 2$, the denominator is to terms $O\left(r^{k} e^{-r}\right)$ independent of η and dominated by the exponentially decreasing component, the $W_{b, m / 2}$ in Eq. (55). Since for $b=\beta_{2}^{(0)}$ this W is just an unperturbed wave function, there is no difficulty and insignificant error in replacing the M by the unperturbed W, expanding the integrand as $e^{-r \eta}$ times a power series in $(2 r)^{-1}$ and in η, and then taking the upper limit of the integral to be ∞. That is, the denominator is again up to $O\left(r^{k} e^{-r}\right)$

$$
\begin{align*}
r\left[\left(n_{2}+m\right)!\right]^{-2} \int_{0}^{\infty} & (d \phi / d \eta)^{-1}\left[W_{\beta_{2}^{(0)}, m / 2}(r \phi)\right]^{2} \\
& \times\left[\eta^{-1}+(2-\eta)^{-1}\right] d \eta . \tag{82}
\end{align*}
$$

We emphasize that (82) is not meant literally, but instead as an asymptotic power series in $(2 r)^{-1}$. Also, ϕ is meant to be the zeroth-exponential-order solution of the Riccati equation (35). Thus one obtains for $q(r)=\Delta \beta_{2}^{[1]} / \Delta b^{[1]}$,

$$
\begin{array}{r}
q(r)=n_{2}!\left(n_{2}+m\right)!\left[\int_{0}^{\infty}(d \phi / d \eta)^{-1}\left[W_{\beta_{2}^{(0)}, m / 2}(r \phi)\right]^{2}\right. \\
\left.\times\left[\eta^{-1}+(2-\eta)^{-1}\right] d \eta\right]^{-1} \tag{83}
\end{array}
$$

Equation (83), being only an integral to be evaluated, is perhaps the most useful practical expression for computing $q(r)$.

F. Imaginary contribution to the index b

As mentioned in the Introduction and in Sec. II C, same-sign factorial divergence suggests a complex, discon-
tinuous Borel sum [cf. Eqs. (3) and (4)]. For the RSPT for β_{2}, we infer from Eq. (28) that for the ground state, with $r>0$,

$$
\begin{align*}
& \sum_{N=0}^{\infty} \beta_{2}^{N)}(2 r)^{-N} \sim-\sum_{N=0}^{\infty}(N+1)!(2 r)^{-N} \tag{84}\\
& \sim \mathrm{P} \int_{0}^{\infty} t^{2} e^{-t}(t-2 r)^{-1} d t \\
& \pm i \pi 4 r^{2} e^{-2 r}(\operatorname{Im} r= \pm 0) \text {. } \tag{85}
\end{align*}
$$

This motivates us to look for an explicit contribution to β_{2} that is $O\left(e^{-2 r}\right)$ and that is imaginary, to cancel the imaginary term in Eq. (85).

Since the Riccati equation (35) is formally real, explicit imaginary terms in $\boldsymbol{\beta}_{2}$ can only originate in the index b. The value of b through $O\left(e^{-r}\right)$ was obtained in Sec. IIIC by matching two QSC wave functions that separately satisfied the boundary conditions at either $\eta=0$ or 2 , and that value was real (for real r and η). The imaginary $O\left(e^{-2 r}\right)$ contribution has its computational origin in the complex phase factor multiplying the subdominant contribution to the ordinary asymptotic expansion for the Whittaker M function, Eqs. (55) and (56).

The reader is well aware that the Whittaker M function is real on the real axis, and that the complex expansion (56) is not usually considered valid ${ }^{21}$ on the real axis, which is a Stokes line of the expansion. ${ }^{21}$ However, there is a sense ${ }^{7}$ in which the complex expansion (56) is valid also on the real axis. In fact, the two power-series expansions represented by the ${ }_{2} F_{0}$ functions in Eq. (56) are Borel summable,' and the overall result is the Whittaker
M function in each appropriate half-plane. The positive real axis is a cut of the Borel sum of the power series multiplying $e^{+z / 2}$, the dominant expansion. In the limit as $\operatorname{Im} z \rightarrow 0$ from above or below, the imaginary part of the Borel sum times $e^{+x / 2}$ cancels the explicit imaginary contribution coming from the phase factor multiplying the subdominant expansion. This is the sense in which the sum of the explicitly complex, discontinuous expansion mentioned in the Introduction is real and continuous. The same phenomenon that holds for the Whittaker M function appears to apply to β_{2}. (See Ref. 6 for a proof that the Borel sum of the RSPT series for β_{2} is complex.)

Let us now get on with the details of extending the matching process of Sec. IIIC to $O\left(e^{-2 r}\right)$. First we extend the notation to include second exponential order [cf. Eqs. (51)-(53)]:

$$
\begin{align*}
& \beta_{i} \sim \sum_{N=0}^{\infty} \beta_{i}^{(N)}(2 r)^{-N} \\
& \quad+\Delta \beta_{i}^{[1]}+\Delta \beta_{i}^{[2]}+O\left(r^{k} e^{-3 r}\right)(i=1,2), \tag{86}\\
& b \sim \beta_{2}^{(0)}+\Delta b^{[1]}+\Delta b^{[2]}+O\left(r^{k} e^{-3 r}\right), \tag{87}\\
& \phi(\eta, r) \sim \tag{88}
\end{align*}
$$

Next we keep the phase factor in Eqs. (55)-(57) and get as a requirement for the matching of the two QSC functions, instead of Eqs. (64) and (63),

$$
\begin{align*}
\left(\Delta b^{[1]}+\Delta b^{[2]}\right)^{2} & =e^{\mp 2 \pi i \Delta b[1]} \times[\text { right-hand side of Eq. }(64)]^{2} \times\left[1+O\left(\Delta b^{[1]}\right)\right] \tag{89}\\
& =e^{\mp 2 \pi i \Delta b[1]} \frac{(2 r)^{4 b_{2}^{(0)}} e^{-2 r}}{\left[n_{2}!\left(n_{2}+m\right)!\right]^{2}}\left[1+O\left(r^{-1}\right)\right](\pm \operatorname{Im} r \geq 0) \tag{90}
\end{align*}
$$

(The $O\left(\Delta b^{[1]}\right)$ error in Eq. (89) comes from replacing the $\Gamma\left(\frac{1}{2} m+\frac{1}{2} \pm b\right)$ [cf. Eq. (55)] by $\left(n_{2}+m\right) 1$ and n_{2}. There is no contribution from this term to $\operatorname{Im} \Delta b^{[2]}$ (this section), but there is a contribution to Re $\Delta b^{[2]}$ that will be taken care of in Sec. III H.)

The imaginary contribution to $\Delta b^{[2]}$ comes from the expansion of the phase factor. Take the square root of both sides of Eq. (89), then expand the factor $e^{\mp \pi i \Delta b \mid 1]}$:

$$
\begin{align*}
\Delta b^{[1]}+\Delta b^{[2]} & =\left(1 \mp i \pi \Delta b^{[1]}\right) \times[\text { right-hand side of Eq. (64) }] \times\left[1+O\left(\Delta b^{[1]}\right)\right] \tag{91}\\
& =\left(1 \mp i \pi \Delta b^{[1]}\right) \times \Delta b^{[1]} \times\left[1+O\left(\Delta b^{[1]}\right)\right] . \tag{92}
\end{align*}
$$

Let $\Delta_{r} b^{[2]}$ and $\Delta_{i} b^{[2]}$ denote the real and imaginary parts of $\Delta b^{[2]}$ when r is real and positive, and their analytic continuations otherwise:

$$
\begin{equation*}
\Delta b^{[2]}=\Delta_{r} b^{[2]}+i \Delta_{i} b^{[2]} \tag{93}
\end{equation*}
$$

Then it is immediately seen from Eq. (92) that the second-exponential-order imaginary contribution to b is

$$
\begin{equation*}
\Delta_{l} b^{[2]}=\mp \pi\left(\Delta b^{[1]}\right)^{2} \quad(\pm \operatorname{Im} r \geq 0) \tag{94}
\end{equation*}
$$

This relationship between the asymptotic expansions is exact. It is the key to the Brézin-Zinn-Justin conjecture ${ }^{12}$ discussed in the next subsection. Note, moreover, that for
the ground state,

$$
\begin{equation*}
\Delta_{l} b^{[2]} \sim \mp 4 r^{2} e^{-2 r}(\operatorname{Im} r= \pm 0) \tag{95}
\end{equation*}
$$

so that $i \Delta_{i} b^{[2]}$ to leading order is exactly the counterterm to cancel the imaginary part of Eq. (85).

G. Imaginary contribution to $\boldsymbol{\beta}_{\mathbf{2}}$. The gap-squared formula

The imaginary series (94) contributing to the index b leads directly to an imaginary series in β_{2} that is $O\left(e^{-2 r}\right)$. Denote by $\Delta_{r} \beta_{2}^{[2]}$ and $\Delta_{i} \beta_{2}^{(2)}$ the real and imaginary series
contributing to $\Delta \beta_{2}^{[2]}$ when r is real and positive:

$$
\begin{equation*}
\Delta \beta_{2}^{\{2\}}=\Delta_{r} \beta_{2}^{[2]}+i \Delta_{i} \beta_{2}^{\{2]} \tag{96}
\end{equation*}
$$

By exactly the same argument that led to Eq. (65) for $\Delta \beta_{2}{ }^{1\}}$, one finds that the imaginary series to second exponential order is obtained from $\Delta_{i} b^{[2]}$ via

$$
\begin{align*}
\Delta_{i} \beta_{2}^{(2)} & =\Delta_{i} b^{[2]} \sum_{N=0}^{\infty} \frac{d \beta_{2}^{(N)}}{d \beta_{2}^{(0)}}(2 r)^{-N} \tag{97}\\
& =\Delta_{i} b^{[2]} q(r) \tag{98}\\
& =\mp \pi \frac{(2 r)^{4 \beta_{2}^{(0)} e^{-2 r}}}{\left[n_{2}!\left(n_{2}+m\right)!\right]^{2}}\left[1+O\left(r^{-1}\right)\right] \\
& (\pm \operatorname{Im} r \geq 0) \tag{99}
\end{align*}
$$

The importance of $\Delta_{i} B_{2}^{\{2\}}$ is the role it plays, via a dispersion relation ${ }^{6}$ to be discussed later in Sec. VI, in the asymptotics of the RSPT coefficients $\beta_{2}^{(N)}$:

$$
\begin{equation*}
\beta_{2}^{(N)} \sim \pi^{-1} 2^{N} \int_{0}^{\infty+i \epsilon} r^{N-1} \Delta_{i} \beta_{2}^{2]} d r \tag{100}
\end{equation*}
$$

The $\infty+i \epsilon$ is to indicate that the " $\operatorname{Im} r \geq 0$ sign" is to be used for $\Delta_{i} b^{[2]}$ in Eq. (94). Since the same ratio $q(r)$ occurs here that occurred for the first-exponential-order quantity $\Delta \beta_{2}{ }^{[1]}$ [Eqs. (66)-(69)], it is possible to express $\Delta_{i} \beta_{2}^{[2]}$ directly in terms of $\Delta \beta_{2}^{[1]}$ and $q(r)$ via Eq. (94):

$$
\begin{equation*}
\Delta_{i} \beta_{2}^{[2]}=\mp \pi\left(\Delta \beta_{2}^{[1]}\right)^{2} / q(r)(\pm \operatorname{Im} r \geq 0) \tag{101}
\end{equation*}
$$

which, because of Eq. (83), can be written as the product of $\mp \pi$, the "half gap" squared, and a normalization integral, taken in the sense of an asymptotic power series as explained in Sec. III E,

$$
\begin{equation*}
\Delta_{i} \beta_{2}^{(2)}=\mp \pi\left(\Delta \beta_{2}^{(1)}\right)^{2} \frac{\int_{0}^{\infty}(d \phi / d \eta)^{-1}\left[W_{\beta_{2}^{(0)}, m / 2}(r \phi)\right]^{2}\left[\eta^{-1}+(2-\eta)^{-1}\right] d \eta}{n_{2}!\left(n_{2}+m\right)!}(\pm \operatorname{Im} r \geq 0) \tag{102}
\end{equation*}
$$

Recall that the expansion for $q(r)$ starts out with 1 [cf. Eqs. (66) and (75)]. Equations (101) and (102) express the exact relationship between the asymptotics of the $\beta_{2}^{(N)}$ [via Eq. (100)] and the square of the gap whose leading term was found numerically by Brézin and Zinn-Justin. ${ }^{9}$ In fact, that relationship did not involve β_{2} but the energy $E(R)$. It will be seen in Sec. VI, however, that the asymptotics of the $E^{(N)}$ are dominated by $\Delta_{i} \beta_{2}^{[2]}$, so that the crux of the explanation of the $E^{(N)}$ asymptotics has already been given.

H. Doubly-exponentially-small real series

The matching process described in Sec. III C was carried out there to $O\left(e^{-r}\right)$ for the index shift $\Delta b^{[1]}$ and in

Sec. III F for the $O\left(e^{-2 r}\right)$ imaginary shift $\Delta_{i} b^{[2]}$. In this section the calculation of the shift in b to any exponential order is sketched, and results are given for the real $O\left(e^{-2 r}\right)$ shift $\Delta_{r} b^{[2]}$ and the real second-exponentialorder $\Delta_{r} \beta_{2}^{(2)}$.

The formulas in this section involve the logarithmic derivative of the gamma function, ${ }^{19}$ usually defined by ψ :

$$
\begin{equation*}
\psi(z)=\frac{d}{d z} \ln \Gamma(z) \tag{103}
\end{equation*}
$$

The exact form of the matching equation that results from equating the two QSC functions, one anchored at $\eta=0$, the other at $\eta=2$, the $O\left(e^{-r}\right)$ version of which is Eq. (64), is [cf. Eqs. (34) and (55)-(59)]

$$
\begin{align*}
& b=\beta_{2}^{(0)}+\Delta b, \tag{104}\\
& \pi^{-2} \sin ^{2}(\pi \Delta b)= \frac{e^{\mp 2 \pi i \Delta b}}{\left[\Gamma\left(n_{2}+m+1+\Delta b\right) \Gamma\left(n_{2}+1+\Delta b\right)\right]^{2}} \frac{W_{\beta_{2}^{(0)}+\Delta b, m / 2}\left(r \phi_{[0]}\right)}{e^{\mp \pi i\left(\beta_{2}^{(0)}+\Delta b\right)} W_{-\beta_{2}^{(0)}-\Delta b, m / 2}\left(r \phi_{[0]} e^{\mp \pi i}\right)} \\
& \times \frac{W_{\beta_{2}^{(0)}+\Delta b, m / 2}\left(r \phi_{[2]}\right)}{e^{\mp \pi i\left(\beta_{2}^{(0)}+\Delta b\right)} W_{-\beta_{2}^{(0)}-\Delta b, m / 2}\left(r \phi_{[2]} e^{\mp \pi i}\right)}(\pm \operatorname{Im} r \geq 0) . \tag{105}
\end{align*}
$$

As with Eq. (64), the η dependence of the right-hand side of Eq. (105) cancels, leaving only a function of r. Now expand Δb in exponentially ordered terms $\Delta b^{[a]}$,

$$
\begin{equation*}
\Delta b=\sum_{q=1}^{\infty} \Delta b^{\mid q]} \tag{106}
\end{equation*}
$$

The asymptotic equation for Δb, which is the general version of Eq. (64) valid to all exponential orders, is obtained by using the asymptotic expansions [cf. Eqs. (55)-(57)] for the Whittaker functions and taking the square root of both sides of Eq. (105). To put the result in a form that can be solved recursively for the $\Delta b^{[a]}$ after expansion, we add $\pi^{-1} \sin (\pi \Delta b)-\Delta b$ to both sides (after taking the square root). Then for $\operatorname{Im} r \geq 0$ (the complex conjugate holds for the reverse) we obtain

$$
\begin{align*}
\Delta b=-\left[\pi^{-1} \sin (\pi \Delta b)-\Delta b\right] & \pm \frac{e^{-\pi i \Delta b}(2 r)^{2 / \beta_{2}^{(0)}+2 \Delta b} e^{-r}}{\Gamma\left(n_{2}+m+1+\Delta b\right) \Gamma\left(n_{2}+1+\Delta b\right)}\left(\frac{1}{2} \phi_{[0]}\right)^{\alpha_{2}^{(0)}+\Delta b}\left(\frac{1}{2} \phi_{[2]}\right)^{\mu_{2}^{(0)}+\Delta b} e^{-r\left(\phi_{(01}+\phi_{[21}-2\right) / 2} \\
& \times\left[\frac{{ }_{2} F_{0}\left(-n_{2}-\Delta b,-n_{2}-m-\Delta b ; ;-\left(r \phi_{[0]}\right)^{-1}\right)}{{ }_{2} F_{0}\left(n_{2}+m+1+\Delta b, n_{2}+1+\Delta b ; ;+\left(r \phi_{[0]}\right)^{-1}\right)}\right]^{1 / 2} \\
& \times\left[\frac{{ }_{2} F_{0}\left(-n_{2}-\Delta b,-n_{2}-m-\Delta b ; ;-\left(r \phi_{[2]}\right)^{-1}\right)}{{ }_{2} F_{0}\left(n_{2}+m+1+\Delta b, n_{2}+1+\Delta b ; ;+\left(r \phi_{[2]}\right)^{-1}\right)}\right]^{1 / 2} . \tag{107}
\end{align*}
$$

The leading term of the second-exponential-order real series comes from the expansion of the Γ functions and of $(2 r)^{2 \Delta b}$, the latter of which leads to $\ln (2 r)$ terms. Subsequent terms are down by $1 / 2 r$ and require ϕ through $O\left(e^{-r}\right)$. Like $\Delta_{i} b^{[2]}$, the real $\Delta_{r} b^{[2]}$ is proportional to the square of the first-exponential-order series. The first few terms of $\Delta_{r} b^{[2]}$ are

$$
\begin{equation*}
\Delta, b^{[2]}=\left(\Delta b^{[1]}\right)^{2}\left[2 \ln (2 r)-\psi\left(n_{2}+1\right)-\psi\left(n_{2}+m+1\right)-12 \beta_{2}^{(0)}(2 r)^{-1}+O\left(r^{-2}\right)\right] . \tag{108}
\end{equation*}
$$

The real second-exponential-order contribution $\Delta_{r} \beta_{2}^{(2)}$ to β_{2} can be found from the index shift as in Sec. III C, Eq. (65), except that now second derivatives with respect to $\beta_{2}^{(0)}$ are required:

$$
\begin{equation*}
\Delta \beta_{2}^{[2]}=\Delta b^{[2]} \sum_{N=0}^{\infty} \frac{d \beta_{2}^{(N)}}{d \beta_{2}^{(0)}}(2 r)^{-N}+\frac{1}{2}\left(\Delta b^{[1]}\right)^{2} \sum_{N=1}^{\infty} \frac{d^{2} \beta_{2}^{(N)}}{d\left(\beta_{2}^{(0)}\right)^{2}}(2 r)^{-N} \tag{109}
\end{equation*}
$$

As for the first-exponential-order case in Sec. IIID, it is also possible to avoid the second derivatives of the $\beta_{2}^{(N)}$ by solving the Riccati equation directly to second exponential order, but we omit the details here. The leading terms in the expansion for $\Delta_{r} \beta_{2}^{(2)}$ are

$$
\begin{align*}
\Delta_{r} \beta_{2}^{(2)}=\frac{(2 r)^{4 \beta_{2}^{(0)}} e^{-2 r}}{\left(n_{2}!\right)^{2}\left[\left(n_{2}+1\right)!\right]^{2}}[& 2 \ln (2 r)-\psi\left(n_{2}+1\right)-\psi\left(n_{2}+m+1\right) \\
+\frac{1}{2 r} & {\left[\left[2 \ln (2 r)-\psi\left(n_{2}+1\right)-\psi\left(n_{2}+m+1\right)\right]\right.} \\
& \left.\left.\times\left[-4 \beta_{2}^{(0)}-12\left(\beta_{2}^{(0)}\right)^{2}+m^{2}-1\right]-12 \beta_{2}^{(0)}-2\right]+O\left(r^{-2} \ln (2 r)\right)\right] . \tag{110}
\end{align*}
$$

1. The β_{2} equation on a semi-infinite interval and the discontinuity in the Borel sum

In this section we treat a different problem: we solve the β_{2} eigenvalue equation not on the original finite interval, but on a semi-infinite interval. There are two reasons for considering this modified problem. (i) It has the same RSPT expansion as the original problem, but the Borel sum of the common RSPT expansion is the eigenvalue of this modified problem. ${ }^{5,6}$ (ii) The positive r axis is a cut of the eigenvalue of the modified problem, and calculation of the discontinuity across the cut gives an immediate, unambiguous meaning to the imaginary second-exponential-order series $\Delta_{i} \beta_{2}^{(2)}$ calculated already in Sec. III G, but which comes up again here: it is the discontinuity that determines the dispersion relation and that gives the asymptotics of the RSPT coefficients [cf. Eq. (100) and Sec. VI].

The problem is to solve Eq. (11) with the boundary conditions

$$
\begin{equation*}
\Phi_{2}(\eta) \rightarrow 0 \text { as } \eta \rightarrow 0 \text { and as } \operatorname{Re}(\eta r) \rightarrow+\infty, \operatorname{Im}(\eta r)>0 \tag{111}
\end{equation*}
$$

or equivalently Eq. (16) with the boundary conditions

$$
\begin{equation*}
\Phi_{2}(v) \rightarrow 0 \text { as } v \rightarrow 0 \text { and as } \operatorname{Rev} \rightarrow+\infty, \operatorname{Im} r>0 . \tag{112}
\end{equation*}
$$

The nonstandard aspect of this modified problem is to avoid the singularity on the positive real axis at $\eta=2$ for Eq. (11) or at $v=2 r$ for Eq. (16), as indicated by the Im $r>0$ in Eq. (112). The modified eigenvalue problem is related to a standard eigenvalue problem: the $\boldsymbol{\xi}$ (or \boldsymbol{u}) equation when the Schrödinger equation for an electron moving in the field of a proton and an antiproton [change the sign of the $1 / r_{b}$ term in Eq. (9)] is separated in prolate spheroidal coordinates. The u equation is

$$
\begin{align*}
& {\left[-u d^{2} / d u^{2}+\frac{1}{4} u+\frac{1}{4}\left(m^{2}-1\right) / u\right] \Phi_{1}^{\prime}} \\
& +u V_{1}^{\prime}\left(u, \beta_{1}, r^{\prime}\right) \Phi_{1}^{\prime}=\beta_{1} \Phi_{1}^{\prime}, \tag{113}\\
& V_{1}^{\prime}\left(u, \beta_{1}, r^{\prime}\right)=+\frac{\beta_{1}^{\prime}}{2 r^{\prime}+u} \\
& +\frac{1}{4}\left(m^{2}-1\right)\left(-\frac{2}{u\left(2 r^{\prime}+u\right)} \frac{1}{\left(2 r^{\prime}+u\right)^{2}}\right) \\
& (0 \leq u<\infty), \tag{114}
\end{align*}
$$

where the primes are to distinguish the mixed-charge problem from $\mathrm{H}_{2}{ }^{+}$. The modified β_{2} problem is the analytic continuation up to $r^{\prime}=e^{ \pm \pi /} r$ of the stable, single-well $\boldsymbol{\beta}_{1}$ problem. (See Sec. IV of Ref. 6 for the use of this approach in estimating rigorously the leading term in the discontinuity.)

Before giving the details of the QSC solution, one can anticipate certain of its characteristics, which depend on how the singularity on the positive v or η axis is avoided. The v case is easier to state but completely equivalent to the η case. By making r complex, the singularity at $v=2 r$ [see Eq. (21)] is moved off the positive axis. Note ${ }^{5,6}$ that the positive r axis is a cut for $\beta_{1}^{\prime}(r)$, where $r^{\prime}=e^{ \pm \pi i} r$. If $\operatorname{Im} r>0$, then the direct Borel sum [for which $\left.\left|\arg \left(r^{\prime}\right)\right|<\pi\right]$ of the RSPT series will be $\beta_{1}^{\prime}\left(e^{-\pi i} r\right)$, while if $\operatorname{Im} r<0$, the direct Borel sum will be $\beta_{1}\left(e^{+\pi i} r\right)$. Now here is the subtlety: suppose one requires the complete asymptotic expansion for $\beta_{1}^{\prime}\left(e^{-\pi i} r\right)$ both for $\operatorname{Im} r>0$, where the answer has to be exactly RSPT, and for its analytic continuation to $\operatorname{Im} r<0$, where the answer cannot be exactly RSPT, because for $\operatorname{Im} r<0$ the Borel sum of the RSPT series is $\beta_{1}^{\prime}\left(e^{+\pi i} r\right)$. In the fourth quadrant, the asymptotic expansion for $\beta_{1}^{\prime}\left(e^{-\pi i} r\right)$ necessarily must have, besides the RSPT terms, additional terms that represent the difference, $\beta_{1}^{\prime}\left(e^{-\pi i} r\right)-\beta_{1}^{\prime}\left(e^{+\pi i} r\right)$, below the positive real r axis. In other words, these additional terms represent the discontinuity in the eigenvalue of the modified problem across the cut on the positive r axis.
The major difference in the details for the modified problem versus the original β_{2} problem is the choice of Whittaker function for the solution anchored at $\eta=2$. In the original case the choice was an M function to be regular at $\eta=2$. In the present case the solution does not have to be regular at $\eta=2$: instead it must vanish as $\eta \rightarrow \infty$. For $\operatorname{Im} r>0$, the correct choice for Φ_{2} anchored at $\eta=2$ [$\Phi_{2[2]}$] which vanishes at infinity [cf. Eqs. (55)-(57)] is $W_{-b, m / 2}\left(e^{-\pi i} z\right):$ $\Phi_{2[2]}=\left(-d \phi_{[2]} / d \eta\right)^{-1 / 2} e^{-\pi i b} W_{-b, m / 2}\left(e^{-\pi i r} \phi_{[2]}\right)$ $(\operatorname{Im} r>0)$. (115)

$$
\begin{align*}
e^{-\pi i b} W_{-b, m / 2}\left(e^{-\pi i} r \phi_{[2]}\right) & =e^{+\pi i b} W_{-b, m / 2}\left(e^{+\pi i} r \phi_{[2]}\right)-\frac{2 \pi i W_{b, m / 2}\left(r \phi_{[2]}\right)}{\Gamma\left(b+\frac{1}{2}+\frac{1}{2} m\right) \Gamma\left(b+\frac{1}{2}-\frac{1}{2} m\right)} \tag{118}\\
& \sim(2 r)^{-b} \eta^{-b}(2-\eta)^{-b} e^{r-r \eta / 2}-\frac{2 \pi i}{\left(n_{2}+m\right)!n_{2}!}(2 r)^{b} \eta^{-b}(2-\eta)^{b} e^{-r+r \eta / 2} \tag{119}
\end{align*}
$$

Since both exponentials now appear, they must also appear in the M-based QSC function anchored at $\eta=0$. Consequently Δb cannot vanish. The exact matching equation to determine Δb, the analog of Eq. (105), is

$$
\begin{align*}
\pi^{-1} \sin (\pi \Delta b)= & \frac{2 \pi i e^{+\pi i \Delta b}}{\left[\Gamma\left(n_{2}+m+1+\Delta b\right) \Gamma\left(n_{2}+1+\Delta b\right)\right]^{2}} \frac{W_{\beta_{2}^{(0)}+\Delta b, m / 2}\left(r \phi_{[0]}\right)}{e^{+\pi i\left(\beta_{2}^{(0)}+\Delta b\right)} W_{-\theta_{2}^{(0)}-\Delta b, m / 2}\left(r \phi_{[0]} e^{+\pi i}\right)} \\
& \times \frac{W_{\theta_{2}^{(0)}+\Delta b, m / 2}\left(r \phi_{[2]}\right)}{e^{+\pi i\left(\beta_{2}^{(0)}+\Delta b\right)} W_{-\beta_{2}^{(0)}-\Delta b, m / 2}^{\left(r \phi_{[2]} e^{+\pi i}\right)}(\operatorname{Im} r<0)} \tag{120}
\end{align*}
$$

[Note that even though Eq. (120) appears to be η dependent, as before the η dependence cancels out, and Δb depends only on r.]

Compare the matching formula here [Eq. (120)] with Eq. (105). It is easily seen that the lowest nonvanishing exponential order of the right-hand side of Eq. (120) is the second, that it is purely imaginary, and that it is $2 \pi i$ times the square of the previously determined half-gap index shift $\Delta b^{[1]}$ of Eqs. (63) and (64):

$$
\begin{align*}
\Delta b\left(\text { modified } \beta_{2} \text { equation }\right) & =+2 \pi i\left(\Delta b^{[1]}\right)^{2}+O\left(r^{k} e^{-4 r}\right)\left(\operatorname{Im} r<0, \arg r^{\prime}<-\pi\right) \tag{121}\\
& =2 i \Delta_{i} b^{[2]}+O\left(r^{k} e^{-4 r}\right)\left(\operatorname{Im} r<0, \arg r^{\prime}<-\pi\right) \tag{122}
\end{align*}
$$

Thus the index shift on analytic continuation from the first to the fourth quadrant is nonvanishing in second exponential order and is exactly 2 times the second-exponential-order imaginary index shift already calculated for the original β_{2} problem. Since the mechanism by which the lowest-order nonvanishing imaginary index shift induces an imaginary contribution to β_{2} is exactly the same for both the original and modified problems, Eqs. (97)-(102), a second-exponential-order contribution completely analogous to Eq. (122) holds for the modified $\boldsymbol{\beta}_{2}$:

$$
\begin{array}{r}
\beta_{1}^{\prime}\left(e^{-\pi r^{\prime}} r\right) \sim \sum_{N=0}^{\infty} \beta_{2}^{(0)}(2 r)^{-N}+2 i \Delta_{i} \beta_{2}^{(2)}+O\left(r^{k} e^{-4 r}\right) \\
\left(\operatorname{Im} r<0, \text { arg } r^{\prime}<-\pi\right) \tag{123}
\end{array}
$$

As anticipated, by analytic continuation directly across the positive r axis, one finds a purely imaginary $O\left(e^{-2 r}\right)$ series in addition to the RSPT series. At the real axis, this series represents to lowest exponential order the discontinuity at the cut of the Borel sum of the RSPT series,

$$
\begin{equation*}
\beta_{1}^{\prime}\left(e^{-\pi i} r\right)-\beta_{1}^{\prime}\left(e^{+\pi i} r\right) \sim 2 \pi i\left(\Delta b^{[1]}\right)^{2} q(r), \tag{124}
\end{equation*}
$$

and as such is the dominating factor in the dispersion relation that gives the asymptotic behavior of the RSPT coefficients, to be discussed further in Sec. V1. Since the RSPT series coefficients are real and the discontinuity is purely imaginary, the imaginary parts of the Borel sums just above and below the positive real axis are equal in magnitude and opposite in sign:

$$
\begin{array}{r}
\operatorname{Im}\left[\lim _{\operatorname{lm} r \rightarrow \pm 0}\left[\text { Borel sum of } \sum \beta_{2}^{(N)}(2 r)^{-N}\right]\right] \\
\sim \pm \pi\left(\Delta b^{(1)}\right)^{2} q(r) . \tag{125}
\end{array}
$$

The explicit imaginary series found for the original β_{2} problem [Eqs. (94)-(102)] is exactly this result (125), but with opposite sign. This clearly demonstrates the cancellation of the explicit imaginary second-exponential-order series with the implicit imaginary part of the Borel sum of the double-well problem, the phenomenon of a complex expansion with a real sum, mentioned in the Introduction.

IV. THE β_{1} EQUATION

Although most of the interesting results for $\mathrm{H}_{2}{ }^{+}$come from the β_{2} equation, yet the β_{1} equation adds its own distinctive twist in the form of a branch cut in the negative r direction and in the form of logarithmic terms. ${ }^{22}$ Both $\beta_{1}^{(N)}$ and $E^{(N)}$ get asymptotic contributions with alternating signs and with a $\ln N$ dependence, but the relative magnitudes with respect to the dominant, same-sign behavior are down by several powers of N.

Before discussing these unique contributions, we dispense first with the terms in β_{1} that are "induced" by the exponentially small terms $\Delta \beta_{2}=\Delta \beta_{2}^{[1]}+\Delta \beta_{2}^{[2]}+\cdots$ already in β_{2}. Consider $\Delta \beta_{2}$ to be a shift of $\beta_{2}^{(0)}$. Then the induced effect on $\Delta \beta_{1}$ is expressed by the Taylor series
$\left(\Delta \beta_{1}\right)_{\text {ind }}=\sum_{k=1}^{\infty} \frac{\left(\Delta \beta_{2}\right)^{k}}{k!}\left[\frac{\partial}{\partial \beta_{2}^{(0)}}\right]^{k} \sum_{N=0}^{\infty} \beta_{1}^{(N)}(2 r)^{-N}$.
The dependence of $\beta_{1}^{(N)}$ on $\beta_{2}^{(0)}$ is determined through Eqs. (15) and (18)-(20). The use of partial derivatives in Eq. (126) is to indicate that the $\beta_{2}^{(N)}(N \geq 1)$ are to be held constant. An alternative method to obtain $\left(\Delta \beta_{1}\right)_{\text {ind }}$ is to regard the terms $-2 u(u+2 r)^{-1}\left(\Delta \beta_{2}^{[1]}+\Delta \beta_{2}^{[2]}+\cdots\right)$ in Eq. (18) as a second, independent perturbation. The effect on $\Delta \beta_{1}$ can then be calculated by double RSPT. In particular, the leading real first-exponential-order series and the leading imaginary second-exponential-order series, $\Delta \beta_{1}^{1]}$ and $\left.i \Delta_{i} \beta\right|^{2]}$, can be obtained by the standard perturbation formula first order in the exponentially small perturbation but infinite order in the $1 / r$ perturbation. That is, with the ordinary RSPT wave function for Φ_{1} in powers of $(2 r)^{-1}, \Phi_{\mathrm{RSPT}}$, the induced exponentially small contributions to β_{1} in leading exponential order are

$$
\begin{align*}
&\left(\Delta \beta_{1}^{[1]}+i \Delta_{i} \beta_{1}^{(2]}\right)_{\text {ind }} \\
&=\frac{-2\left(\Delta \beta_{2}^{[1]}+i \Delta_{i} \beta_{2}^{[2]}\right) \int_{0}^{\infty} \Phi_{\mathrm{RSPT}}^{2}(u+2 r)^{-1} d u}{\int_{0}^{\infty} \Phi_{\mathrm{RSPT}}^{2}\left[u^{-1}+(u+2 r)^{-1}\right] d u} \tag{127}
\end{align*}
$$

Here $\Phi_{\text {RSPT }}$ refers to the solution of Eq. (15) by RSPT in powers of $(2 r)^{-1}$. Both integrals are to be evaluated order by order in powers of $(2 r)^{-1}$. In short, the induced exponentially small contributions to β_{1} are straightforward to obtain but are otherwise unremarkable.

The more interesting exponentially small contributions to β_{1} come from a cut in the negative r direction, which is suggested by the singularity in Eq. (15) [cf. also Eq. (18)] at $u=-2 r$. Associated with this cut is a dispersion relation that implies alternating-sign asymptotic contributions to $\beta_{1}^{(N)}$ and to $E^{(N)}$ both proportional to $\left(N-4 n_{2}-3 m-5\right)$! [which is $\left(n_{2}+4 m+6\right)$ powers of N down from the asymptotics of the $\beta_{2}^{(N)}$].

One obtains an explicit formula for the discontinuity in β_{1} across the cut by connecting a QSC wave function anchored at the origin, which we denote by $\Phi_{[0]}$, with one with the correct behavior at infinity, but that is anchored at $u=-2 r$, which we denote by $\Phi_{[-2]}$. As in the semiinfinite treatment of the β_{2} equation in Sec. III I, the role of the QSC function anchored at a singularity that is not an endpoint is to provide control of analytic continuation around that singularity. As in Sec. IIII, where β_{2} is analytically continued across $r>0$, here when β_{1} is analytically continued across $r<0$, the Borel sum of the RSPT series switches branches and is discontinuous across the cut. A doubly-exponentially-small imaginary series appears that explicitly cancels the implicit discontinuity in the sum of the RSPT series. Unlike the semi-infinite β_{2} case, there is here a new technical feature-the first index of the W Whittaker function is necessarily a power series in $(2 r)^{-1}$. This feature leads to logarithmic terms in the expansion for $\left.\Delta \beta\right|^{[2]}$.

A. QSC wave function at $\boldsymbol{\xi}=0$

Near $\xi=0$, Eq. (10) is Whittaker's equation [cf. Eq (33)],

$$
\begin{equation*}
\left[-(d / d \xi)^{2}+\frac{1}{4} r^{2}-r \beta_{1} / \xi+\frac{1}{4}\left(m^{2}-1\right) / \xi^{2}\right] \Phi_{[0]} \sim 0 \tag{128}
\end{equation*}
$$

and the QSC wave function regular at the origin has the form

$$
\begin{equation*}
\Phi_{[0]}=\frac{1}{m!}\left(d \phi_{[0]} / d \xi\right)^{-1 / 2} M_{b_{[0]}, m / 2}\left(r \phi_{[0]}\right) \tag{129}
\end{equation*}
$$

$$
-\left(\frac{d \phi_{[0]}}{d \xi}\right)^{2}\left(\frac{1}{4}-\frac{b_{[0]}}{r \phi_{[0]}}+\frac{m^{2}-1}{4 r^{2} \phi_{[0]}^{2}}\right)-\frac{1}{r^{2}}\left(\frac{d \phi_{[0]}}{d \xi}\right)^{1 / 2} \frac{d^{2}}{d \xi^{2}}\left(\frac{d \phi_{[0]}}{d \xi}\right)^{-1 / 2}+\frac{1}{4}-\frac{\beta_{1}}{r \xi}-\frac{\beta_{1}+2 \beta_{2}}{r(\xi+2)}+\frac{m^{2}-1}{r^{2} \xi^{2}(\xi+2)^{2}}=0
$$

Expanding β_{1} and $\phi_{[0]}$ in powers of (2r) ${ }^{-1}$ and solving recursively, one finds that

$$
\begin{align*}
& \phi_{[0]}=\sum_{N=0}^{\infty} \phi_{[0]}^{(N)}(\xi)(2 r)^{-N}, \tag{132}\\
& \beta_{1}=\sum_{N=0}^{\infty} \beta_{1}^{(N)}(2 r)^{-N}, \\
& \phi_{[0]}^{(0)}=\xi, \tag{133}\\
& \phi_{[0]}^{(1)}=-4\left(\beta_{1}^{(0)}+2 \beta_{2}^{(0)}\right) \ln \left(1+\frac{1}{2} \xi\right), \tag{134}\\
& \beta_{1}^{(0)}=b_{[0]}, \tag{135}\\
& \beta_{1}^{(1)}=-2 b_{[0]}\left(\beta_{1}^{(0)}+2 \beta_{2}^{(0)}\right)-\frac{1}{2}\left(m^{2}-1\right), \tag{136}
\end{align*}
$$

and so forth. The value of $b_{[0]}$ is to be obtained by matching $\Phi_{[0]}$ with the QSC function that behaves correctly at ∞. The $\beta_{1}^{(N)}$ are determined so that the $\phi_{[0]}^{(N+1)}$ are analytic and zero at $\xi=0$, just as was the case for the $\beta_{2}^{(N)}$ in Sec. III B. The $\beta_{1}^{(N)}$ will turn out to be the RSPT coefficients.

B. QSC wave function at $\boldsymbol{\xi}=-2$

Near $\xi=-2$, Eq. (10) is again a Whittaker equation,

$$
\begin{align*}
{\left[-(d / d \xi)^{2}+\frac{1}{4} r^{2}\right.} & -r\left(\beta_{1}+2 \beta_{2}\right) /(\xi+2) \\
& \left.+\frac{1}{4}\left(m^{2}-1\right) /(\xi+2)^{2}\right] \Phi_{[0]}-0 \tag{137}
\end{align*}
$$

The QSC wave function that is exponentially small as $r \xi \rightarrow+\infty$ (but singular at $\xi=-2$) is [cf. Eq. (115)]

$$
\begin{equation*}
\Phi_{[-2]}=\left(d \phi_{[-2]} / d \xi\right)^{-1 / 2} W_{b_{[-2]}, m / 2}\left(r \phi_{[-2]}\right) \tag{138}
\end{equation*}
$$

with boundary condition

$$
\begin{equation*}
\phi_{[-2]}(-2, r)=0 \tag{139}
\end{equation*}
$$

The Riccati equation for $\phi_{[-2]}$ is nominally the same as for $\phi_{[0]}$, Eq. (131), and is not repeated here. One solves for $\phi_{[-2]}$ as an expansion,

$$
\begin{equation*}
\phi_{[-2]}=\sum_{N=0}^{\infty} \phi_{[-2]}^{(N)}(\xi)(2 r)^{-N} \tag{140}
\end{equation*}
$$

In contrast with the method of solution for $\phi_{[0]}$, however, both $\beta_{1}^{(N)}$ and $\beta_{2}^{(N)}$ are already fixed and cannot be adjusted to make $\phi_{[-2]}^{(N+1)}$ vanish at $\xi=-2$. Here that role

The function $\phi_{[0]}$, which plays the "action" role, depends on both ξ and $r: \phi_{[0]}=\phi_{[0]}(\xi, r)$. The boundary condition at $\xi=0$ is

$$
\begin{equation*}
\phi_{[0]}(0, r)=0 \tag{130}
\end{equation*}
$$

$\phi_{[0]}$ satisfies the Riccati equation [cf. Eq. (35)],
is taken by the index $b_{[-2]}$ on the Whittaker W function. The index $b_{[-2]}$ is given by an expansion in $(2 r)^{-1}$,

$$
\begin{equation*}
b_{[-2]}=\sum_{N=0}^{\infty} b_{[-2]}^{(N)}(2 r)^{-N} \tag{141}
\end{equation*}
$$

One finds that

$$
\begin{align*}
\phi_{[-2]}^{(0)} & =\xi+2 \tag{142}\\
\phi_{[-2]}^{(1)} & =-4 \beta_{1}^{(0)} \ln \left(-\frac{1}{2} \xi\right), \tag{143}\\
b_{[-2]}^{(0)} & =\beta_{1}^{(0)}+2 \beta_{2}^{(0)}, \tag{144}\\
b_{[-2]}^{(1)} & =2\left(\beta_{1}^{(1)}+\beta_{2}^{(1)}\right) \tag{145}\\
& =-4\left(\beta_{1}^{(0)}+\beta_{2}^{(0)}\right)^{2}=-4 n^{2}, \tag{146}
\end{align*}
$$

and so forth.

C. Determination of $b_{[0]}$ by matching $\Phi_{[0]}$ and $\Phi_{[-2]}$

The index $b_{[0]}$ is evaluated by the condition that the two QSC functions be the same. Two cases are considered: r large, but with small phase; and r large, but with phase more negative than $-\pi$. In the former case one gets RSPT, while in the latter there is in addition an imaginary second-exponential-order series.

The logic is by now familiar. When $r \phi_{[0]}$ and $r \phi_{[-2]}$, viz., $r \xi$ and $r(\xi+2)$, are large, the asymptotic expansions for the Whittaker functions give

$$
\begin{align*}
& \Phi_{[-2]} \sim r^{b_{[-2]}}(\xi+2)^{b}[-2] \tag{147}\\
&\left(-\frac{1}{2} \xi\right)^{\beta_{1}^{(0)}} e^{-r(\xi+2) / 2} \\
& \Phi_{[0]} \sim \frac{e^{ \pm i \pi\left(m / 2+1 / 2-b_{[0]}\right)}}{\Gamma\left(\frac{1}{2} m+\frac{1}{2}+b_{[0]}\right)}(r \xi)^{b_{[0]}} \\
& \times[(\xi+2) / 2]^{\beta_{1}^{(0)}+2 \beta_{2}^{(0)}} e^{-r \xi / 2} \\
&+ \frac{1}{\Gamma\left(\frac{1}{2} m+\frac{1}{2}-b_{[0]}\right)}(r \xi)^{-b}[0] \tag{148}\\
& \times[(\xi+2) / 2]^{-\beta_{1}^{(0)}-2 \beta_{2}^{(0)}} e^{+r \xi / 2}
\end{align*}
$$

[The \pm corresponds to the sign of $\arg \left(r \phi_{[0]}\right)$.] The elimination of the positive exponential $e^{+r \xi / 2}$ series from $\Phi_{[0]}$ requires that $\frac{1}{2} m+\frac{1}{2}-b_{[0]}$ be zero or a negative integer.

$$
\begin{equation*}
b_{[0]}=n_{1}+\frac{1}{2} m+\frac{1}{2} \quad\left(n_{1}=0,1,2, \ldots\right) . \tag{149}
\end{equation*}
$$

Thus $b_{[0]}$ is the unperturbed eigenvalue of Eq. (15). [Cf. also Eq. (17).]

To get at the cut in $\beta_{1}(r)$ on the negative r axis, we now consider the possibility that r becomes negative. It turns out that $b_{[0]}$ has a different expansion when $\arg r<-\pi$. Notice from Eq. (18) that the singularity at $u=-2 r$, which originally occurs at an unphysical value of the physical variable u, moves into the physical domain when r is negative. Note also that to keep the physical variable u approximately positive as r is made negative, ξ will also have to be made negative, but in the opposite sense of r, since $u=r \xi$. Further, it will be convenient to match the two QSC Φ 's in the region between their "anchor" points, $\xi=0$ and -2 . Consequently the primary region of interest for ξ is near -1 , and for $2+\xi$ near +1 . The dominant term $r \xi$ in $r \phi_{[0]}$ will be large and stay approximately positive, while the dominant term $r(\xi+2)$ in $r \phi_{[2]}$ will become large and approximately negative. The negative z axis, however, is a branch cut for the Borel sum of the asymptotic series for $W_{b, m / 2}(z)$. The asymptotic expansion for $W_{b, m / 2}(z)$ above the negative z axis and its analytic continuation across the negative z axis will differ by an exponentially small expansion that cancels the discontinuity in the Borel sum.

To make this last point more precise, let $z=e^{-\pi i} z^{\prime}$, and let z^{\prime} be approximately real and positive. When $\arg z=-\pi-\epsilon(\epsilon>0)$, the standard asymptotic expansion for $W_{b, m / 2}(z)$ is not applicable. The correct expansion

$$
\pi^{-1} \sin \left(\pi \Delta b_{[0]}\right)=\frac{2 \pi i(-1)^{m} e^{+\pi i \Delta b_{[0]}}}{\Gamma\left(n_{1}+m+1+\Delta b_{[0]}\right) \Gamma\left(n_{1}+1+\Delta b_{[0]}\right)}
$$

$$
\times \pi^{-2} \sin ^{2}\left(\pi \delta b_{[-2]}\right) \Gamma\left(n_{1}+2 n_{2}+2 m+2+\delta b_{[-2]}\right) \Gamma\left(n_{1}+2 n_{2}+m+2+\delta b_{[-2]}\right)
$$

$$
\begin{equation*}
\times \frac{W_{\beta_{1}^{(0)}+\Delta b_{[0]}, m / 2}\left(r \phi_{(0)}\right)}{e^{+\pi i\left(\beta_{1}^{(0)}+\Delta b_{[0]}\right)} W_{-\beta_{1}^{(0)}-\Delta b_{[0]}, m / 2}\left(r \phi_{[0]} e^{+\pi i}\right)} \frac{e^{-\pi i b_{[-2]}} W_{-b_{[-2]}, m / 2}\left(r \phi_{[-2]} e^{\pi i}\right)}{e^{-2 \pi i b_{[-2]}} W_{b_{[-2]}, m / 2}\left(r \phi_{[-2]} e^{2 \pi i}\right)}(\operatorname{Im} r<-\pi) \tag{153}
\end{equation*}
$$

Since r is essentially negative, set $r=-r^{\prime}$:

$$
\begin{equation*}
r^{\prime}=e^{\pi i} r \quad\left(\arg r^{\prime}=\epsilon<0\right) . \tag{154}
\end{equation*}
$$

The right-hand side of Eq. (153) is $O\left(r^{\prime k} e^{-2 r^{\prime}}\right)$ and is also to this order purely imaginary. Consequently we can write

$$
\begin{equation*}
\Delta b_{[0]}=i \Delta_{i} b_{[0]}^{(2)}+O\left(r^{\prime k} e^{-4 r \prime}\right), \tag{155}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta_{i} b_{[0]}^{(2)}=2 \pi(-1)^{m} \frac{\sin ^{2}\left(\pi \delta b_{[-2]}\right)}{\pi^{2}}\left(2 r^{\prime}\right)^{2 b_{1}^{(0)}-2 b b_{[-2]}^{(0)}-2 \delta b_{[-2]}} e^{-2 r^{\prime}} \\
& \times \frac{\Gamma\left(n_{1}+2 n_{2}+2 m+2+\delta b_{[-2]}\right) \Gamma\left(n_{1}+2 n_{2}+m+2+\delta b_{[-2]}\right)}{n_{1}!\left(n_{1}+m\right)!} \\
& \times\left(\frac{1}{2} e^{-\pi i} \phi_{[0]}\right)^{2 \beta_{1}^{(0)}}\left(\frac{1}{2} \phi_{[-2]}\right)^{-2 b_{[-2]}} e^{r^{\prime}\left(\phi_{[0]}-\phi_{1-2]}+2\right)} \frac{{ }_{2} F_{0}\left(-n_{1},-n_{1}-m ; ;+\left(r^{\prime} \phi_{[0]}\right)^{-1}\right)}{{ }_{2} F_{0}\left(n_{1}+m+1, n_{1}+1 ; ;-\left(r^{\prime} \phi_{[0]}\right)^{-1}\right)} \\
& \times \frac{{ }_{2} F_{0}\left(n_{1}+2 n_{2}+m+2+\delta b_{[-2]}, n_{1}+2 n_{2}+2 m+2+\delta b_{[-2]} ; ;-\left(r^{\prime} \phi_{[-2]}\right)^{-1}\right)}{{ }_{2} F_{0}\left(-n_{1}-2 n_{2}-m-1-\delta b_{[-2]},-n_{1}-2 n_{2}-2 m-1-\delta b_{[-2]} ;+\left(r^{\prime} \phi_{[-2]}\right)^{-1}\right)} \tag{156}
\end{align*}
$$

$$
\begin{align*}
& \sim 2 \pi(-1)^{m} 16 n^{4} \frac{\left(n_{1}+2 n_{2}+2 m+1\right)!\left(n_{1}+2 n_{2}+m+1\right)!}{n_{1}!\left(n_{1}+m\right)!}\left(2 r^{\prime}\right)^{-4 \beta_{2}^{(0)}-2} e^{-2 r^{\prime}} \\
& \times\left[1-\frac{1}{2 r^{\prime}}\left\{8 n^{2} \ln \left(2 r^{\prime}\right)-4 n^{2}+12\left(\beta_{2}^{(0)}\right)^{2}-\left(m^{2}-1\right)-8 n+12 \beta_{2}^{(0)}\right.\right. \\
& \left.\left.\quad-4 n^{2}\left[\psi\left(n_{1}+2 n_{2}+m+2\right)+\psi\left(n_{1}+2 n_{2}+2 m+2\right)\right]\right\}+O\left[r^{\prime-2}\left(\ln r^{\prime}\right)^{2}\right]\right) . \tag{157}
\end{align*}
$$

The complete evaluation of Eq. (156) is somewhat more tedious than the preceding similar cases because of the necessity for expanding the $\delta b_{[-2]}$ series out from the two Γ functions, the $\sin ^{2}$, the $\left(\frac{1}{2} \phi_{[-2]}\right)^{-2 b}[-2]$, and the $\left(2 r^{\prime}\right)^{8 b}[-2]$, the last of which leads to subseries proportional to powers of $\left(2 r^{\prime}\right)^{-1} \ln \left(2 r^{\prime}\right)$. It is possible to avoid expanding out the generalized hypergeometrics. Since the expression is really independent of ξ, it can be evaluated at a special value of ξ. If $\xi=\infty$, then the generalized hypergeometrics are evaluated at 0 where they are unity.

After evaluating $\left.\left.\Delta_{i} b\right|_{0\}} ^{2}\right\}$, the corresponding imaginary doubly-exponentially-small contribution to the discontinuity of β_{1} on the negative axis can be obtained via

As for the β_{2} cases, there are also other methods that avoid derivatives of the RSPT series, but we shall not go into the details here.

V. EXPANSION FOR $E(R)$

FROM THE EXPANSIONS FOR $\beta_{1}(r)$ AND $\beta_{2}(r)$

A. Preliminaries

The asymptotic expansion for $E(R)$ in terms of $(2 R)^{-1}$ can be obtained from Eq. (12) for E in terms of β_{1} and β_{2}, from Eqs. (24) and (26) for the RSPT expansions, and from the various equations of Secs. III and IV for the ex-
ponentially small series contributing to β_{1} and β_{2}, but only after r has been found explicitly as a function of R from the implicit Eq. (13), $R(r)=r\left[\beta_{1}(r)+\beta_{2}(r)\right]$. The process is mainly algebraic. The main complication is that the transformation itself from r to R contains exponentially small terms. The purpose of this section is to clarify the process and to sketch the necessary steps.

Note that β_{1} and β_{2} appear in E and $R(r)$ only as the sum $\beta_{1}+\beta_{2}$, which we denote by γ :

$$
\begin{align*}
& \gamma(r)=\beta_{1}(r)+\beta_{2}(r) \tag{159}\\
& \gamma^{(N)}=\beta_{1}^{(N)}+\beta_{2}^{(N)} \tag{160}\\
& \Delta \gamma^{[q]}=\Delta \beta^{[q]}+\Delta \beta_{2}^{[q]} \quad(q=1,2, \ldots) \tag{161}
\end{align*}
$$

and so forth. Further, we denote by γ_{0} the formal power series

$$
\begin{equation*}
\gamma_{0}(r)=\sum_{N=0}^{\infty} \gamma^{(N)}(2 r)^{-N} . \tag{162}
\end{equation*}
$$

In the expression of r as a function of R, there will be a power-series contribution that we denote by r_{0}, and that is the formal power-series solution of

$$
\begin{equation*}
\frac{1}{2 r_{0}}=\frac{\gamma_{0}\left(r_{0}(R)\right)}{2 R} \tag{163}
\end{equation*}
$$

By means of Lagrange's formula, ${ }^{19}$ the solution can in fact be immediately written:

$$
\begin{align*}
\frac{1}{2 r_{0}} & =\frac{n}{2 R}+\sum_{N=1}^{\infty}\left[\frac{n}{2 R}\right]^{N+1} \sum_{\substack{i_{1}, i_{2}, \cdots, i_{N} \\
\left(i_{1}+2 i_{2}+\cdots+N i_{N}=N\right)}} \frac{N!\left(\gamma^{(1)} / n\right)^{i_{1}}\left(\gamma^{(2)} / n\right)^{i_{2}} \cdots\left(\gamma^{(N)} / n\right)^{i_{N}}}{\left(N+1-\sum_{k} i_{k}\right) j_{1}!i_{2}!\cdots i_{N}!} \tag{164}\\
& =\frac{n}{2 R}+\left[\frac{n}{2 R}\right]^{2} \frac{\gamma^{(1)}}{n}+\left[\frac{n}{2 R}\right]^{3}\left[\frac{\gamma^{(2)}}{n}+\frac{\left(\gamma^{(1)}\right)^{2}}{n^{2}}\right]+\cdots . \tag{165}
\end{align*}
$$

Here n is the usual principal quantum number. Note that $\gamma^{(0)}=n, \gamma^{(1)}=-2 n^{2}$, and that the "natural" expansion parameter is $n / 2 R$. In a similar fashion the RSPT expansion for $E(R)$ can be written

$$
\begin{align*}
\sum_{N=0}^{\infty} E^{(N)}(2 R / n)^{-N} & =-\frac{1}{2} \gamma_{0}^{-2}\left(r_{0}\right) \tag{166}\\
& =\frac{-1}{2 n^{2}}+n^{-2} \sum_{N=1}^{\infty}\left\lceil\left.\frac{n}{2 R}\right|^{N} \sum_{\substack{i_{1}, i_{2}, \cdots, i_{N} \\
\left(i_{1}+2 i_{2}+\cdots+N i_{N}=N\right)}} \frac{(N-3)!\left(\gamma^{(1)} / n\right)^{i_{1}}\left(\gamma^{(2)} / n\right)^{i_{2}} \cdots\left(\gamma^{(N)} / n\right)^{i_{N}}}{\left.\left(N-2-\sum_{k} i_{k}\right)\right] i_{1} i_{2}!\cdots i_{N}!}\right. \tag{167}\\
& =\frac{-1}{2 n^{2}}+\left(\frac{n}{2 R}\right) \frac{\gamma^{(1)}}{n^{3}}+\left\lceil\left.\frac{n}{2 R}\right|^{2}\left[\frac{\gamma^{(2)}}{n^{3}}-\frac{\frac{1}{2}\left(\gamma^{(1)}\right)^{2}}{n^{4}}\right]+\cdots .\right. \tag{168}
\end{align*}
$$

The aim now is to express the exponentially small series in E, namely $\Delta E^{[1]}, \Delta E^{[2]}$, etc., entirely in terms of $\gamma_{0}\left(r_{0}\right)$, $\Delta \gamma^{(1)}\left(r_{0}\right), \Delta \gamma^{[2]}\left(r_{0}\right)$, etc. That is, the $\Delta E^{[9]}$ should be put into a form in which the exponentially small contributions Δr to $r=r_{0}+\Delta r$ are expanded out explicitly as a function of r_{0}, and the remaining r_{0} dependence can be replaced by its power series in R, Eq. (164). In fact, by two successive expansions of $E=-\frac{1}{2} \gamma^{-2}$ [Eq. (12)], the first with respect to $\Delta \gamma$, the second with respect to $\Delta\left(r^{-1}\right)$, one obtains

$$
\begin{align*}
E=E_{\mathrm{RSPT}}+\Delta E= & E_{\mathrm{RSPT}}+\Delta E^{[1]}+\Delta E^{[2]}+\cdots \tag{169}\\
= & -\frac{1}{2} \gamma_{0}^{-2}(r)+\Delta \gamma(r) \gamma_{0}^{-3}(r)-\frac{3}{2}[\Delta \gamma(r)]^{2} \gamma_{0}^{-4}(r)+\cdots \tag{170}\\
= & -\frac{1}{2} \gamma_{0}\left(r_{0}\right)^{-2}-\frac{1}{2} \Delta\left(r^{-1}\right)\left[\left(d / d r_{0}^{-1}\right) \gamma_{0}\left(r_{0}\right)^{-2}\right]-\frac{1}{4}\left[\Delta\left(r^{-1}\right)\right]^{2}\left[\left(d / d r_{0}^{-1}\right)^{2} \gamma_{0}\left(r_{0}\right)^{-2}\right]+\cdots \\
& +\Delta \gamma_{0}\left(r_{0}\right)\left[\gamma_{0}\left(r_{0}\right)^{-3}\right]-\frac{3}{2}\left[\Delta \gamma_{0}\left(r_{0}\right)\right]^{2}\left[\gamma_{0}\left(r_{0}\right)^{-4}\right]+\cdots+\Delta\left(r^{-1}\right)\left(d / d r_{0}^{-1}\right)\left[\Delta \gamma\left(r_{0}\right) \gamma_{0}\left(r_{0}\right)^{-3}\right]+\cdots \tag{117}
\end{align*}
$$

The $\Delta\left(r^{-1}\right)$ can be expressed directly in terms of ΔE, Eq. (169); the ΔE can then be obtained recursively, as will be shown in the next several paragraphs:

$$
\begin{align*}
& r^{-1}=R^{-1} \gamma=R^{-1}(-2 E)^{-1 / 2}=r_{0}^{-1}+\Delta\left(r^{-1}\right), \tag{172}\\
& \Delta\left(r^{-1}\right)= R^{-1} \Delta E\left[\left(-2 E_{\mathrm{RSPT}}\right)^{-3 / 2}\right] \\
&+\frac{3}{2} R^{-1}(\Delta E)^{2}\left[\left(-2 E_{\mathrm{RSPT}}\right)^{-5 / 2}\right]+\cdots \tag{173}\\
&= \Delta E\left[r_{0}^{-1} \gamma_{0}\left(r_{0}\right)^{2}\right] \\
&+\frac{3}{2}(\Delta E)^{2}\left[r_{0}^{-1} \gamma_{0}\left(r_{0}\right)^{4}\right]+\cdots, \tag{174}
\end{align*}
$$

where $E=E_{\mathrm{RSPT}}+\Delta E$ has been expanded around $E_{\text {RSPT }}=-\frac{1}{2} \gamma_{0}\left(r_{0}\right)^{-2}$.

B. First exponential order

From Eqs. (171) and (174) the following preliminary formula for $\Delta E^{[1]}$ can be obtained:

$$
\begin{equation*}
\Delta E^{[1]}=\frac{\Delta \gamma^{[1]}\left(r_{0}\right)}{\gamma_{0}^{3}\left(r_{0}\right)-r_{0}^{-1} \gamma_{0}^{2}\left(r_{0}\right)\left(d / d r_{0}^{-1}\right) \gamma_{0}\left(r_{0}\right)} . \tag{175}
\end{equation*}
$$

The final formula for $\Delta E^{[1]}$ results from inserting Eq. (164) for r_{0} into Eq. (175) and using the appropriate equations for $\Delta \gamma^{(1)}\left(r_{0}\right)$ developed in previous sections: Eqs. (64), (65), (69), (83), (126), (127), and (159)-(161). The first few terms are

$$
\begin{align*}
\Delta E^{(1)}= \pm & \frac{(2 R / n)^{2 \beta_{2}^{(0)}} e^{-R / n-n}}{n^{3} n_{2}!\left(n_{2}+m\right)!} \\
& \times\left[1+\left[\frac{n}{2 R}\right]\left[2 n \beta_{1}^{(0)}-4\left(\beta_{2}^{(0)}\right)^{2}\right.\right. \\
& \left.\left.+\beta_{2}^{(1)}+2 n^{2}\right]+O\left(R^{-2}\right)\right] . \tag{176}
\end{align*}
$$

C. Imaginary second exponential order;

more on the approximate formula of Brezin and Zinn-Justin
In exactly the same way that Eq. (175) was obtained, one gets for the imaginary second-exponential-order
series, i.e., the imaginary part of $\Delta E^{[2]}$ when R is real and positive,

$$
\begin{align*}
& \Delta E^{[2]}=\Delta_{r} E^{[2]}+i \Delta_{i} E^{\{2]}, \tag{177}\\
& \Delta_{i} E^{[2]}=\frac{\Delta_{i} \gamma^{[2]}\left(r_{0}\right)}{\gamma_{0}^{3}\left(r_{0}\right)-r_{0}^{-1} \gamma_{0}^{2}\left(r_{0}\right)\left(d / d r_{0}^{-1}\right) \gamma_{0}\left(r_{0}\right)} . \tag{178}
\end{align*}
$$

When the series (164) for r_{0} is substituted into the denominator and into the appropriate expressions for $\Delta_{i} \gamma^{[2]}$, then one gets the desired formula for $\Delta_{i}(E)^{[2]}$. Up to two terms (but not to three) the formula is, except for sign, πn^{3} times the square of $\Delta E^{[1]}$, Eq. (176):

$$
\begin{equation*}
\Delta_{i} E^{[2]}=\mp \pi n^{3}\left(\Delta E^{[1]}\right)^{2}\left[1+O\left(R^{-2}\right)\right](\pm \operatorname{Im} R \geq 0) . \tag{179}
\end{equation*}
$$

Apart from the adjustment by the factor n^{3}, this result is the approximation of Brézin and Zinn-Justin, ${ }^{12}$ demonstrated to be valid to only two terms for the ground state by C Cízek, Clay, and Paldus ${ }^{13}$ numerically, and by Damburg and Propin analytically. ${ }^{14}$ In fact, it is not difficult to see that the exact relationship is

$$
\begin{align*}
& \mp \pi n^{3} \frac{\Delta_{i} E^{[2]}}{\left(\Delta E^{[1]}\right)^{2}} \\
&=\frac{n^{3}\left(d / d \beta_{2}^{(0)}\right) \gamma_{0}\left(r_{0}\right)}{\gamma_{0}\left(r_{0}\right)^{3}-r_{0}^{-1} r_{0}\left(r_{0}\right)^{2}\left(d / d r_{0}^{-1}\right) \gamma_{0}\left(r_{0}\right)} \tag{180}\\
& \quad=1-\left(2 r_{0}\right)^{-2} 4 B_{2}^{(0)} n+O\left(r^{-3}\right) \tag{181}\\
&=1-(2 R / n)^{-2} 4 \beta_{2}^{(0)} n+O\left(R^{-3}\right) . \tag{182}
\end{align*}
$$

Thus, exactly two terms are given correctly by the gapsquared formula for every state.

D. Real second exponential order

The extraction of the real second-exponential-order series for $\Delta_{r} E^{[2]}$ is more tedious, as can be seen from the following equation obtained from Eqs. (171) and (174), and in which all quantities are to be evaluated at $r=r_{0}$, the power series given by Eq. (164):

$$
\begin{align*}
\Delta_{r} E^{\{2]}= & \gamma_{0}^{-3} \Delta_{r} \gamma^{[2]}-\frac{3}{2} \gamma_{0}^{-4}\left(\Delta \gamma^{\{1]}\right)^{2}+\gamma_{0}^{-1} \Delta_{r} E^{\{2]} r_{0}^{-1}\left(d \gamma_{0} / d r_{0}^{-1}\right) \\
& +\Delta E^{\{1]}\left[\gamma_{0}^{-1} r_{0}^{-1}\left(d \Delta \gamma^{[1]} / d r_{0}^{-1}\right)-3 \gamma_{0}^{-2} \Delta \gamma^{[1]} r_{0}^{-1}\left(d \gamma_{0} / d r_{0}^{-1}\right)\right] \\
& +\left(\Delta E^{\{1]}\right)^{2}\left\{\frac{3}{2} r_{0}^{-1}\left(d \gamma_{0} / d r_{0}^{-1}\right)+\frac{1}{2} \gamma_{0} r_{0}^{-2}\left[d^{2} \gamma_{0} /\left(d r_{0}^{-1}\right)^{2}\right]-\frac{3}{2} r_{0}^{-2}\left(d \gamma_{0} / d r_{0}^{-1}\right)^{2}\right\} \tag{183}
\end{align*}
$$

The leading term comes from $\Delta E^{[1]} \gamma_{0}^{-1} r_{0}^{-1}\left(d \Delta \gamma^{[1]} / d r_{0}^{-1}\right)$, since $r^{-1}\left(d / d r^{-1}\right) e^{-r}=r e^{-r}$. Consequently we obtain for the first few terms of $\Delta_{r} E^{\{2\}}$

$$
\begin{align*}
\Delta_{r} E^{[2]} & =\frac{\Delta E^{[1]} \Delta \gamma^{[1]}\left(r_{0}-2 \beta_{0}^{(0)}\right)}{\gamma_{0}-r_{0}^{-1}\left(d \gamma_{0} / d r_{0}^{-1}\right)}\left[1+O\left(r^{-2}\right)\right]+\frac{\Delta_{r} \gamma^{(2)}-\frac{3}{2} \gamma_{0}^{-1}\left(\Delta \gamma^{\{1]}\right)^{2}}{\gamma_{0}^{3}-\gamma_{0}^{2} r_{0}^{-1}\left(d \gamma_{0} / d r_{0}^{-1}\right)} \tag{184}\\
& =R\left(\Delta E^{\{1]}\right)^{2} \gamma_{0}\left[1-\left(2 r_{0}\right)^{-1}\left(3+2 \beta_{2}^{(0)}\right)+O\left(r_{0}^{-2}\right)\right]+n^{-3} \Delta_{r} b^{[2]}\left[1+O\left(r_{0}^{-2}\right)\right] \tag{185}
\end{align*}
$$

and finally,

$$
\begin{equation*}
\Delta_{r}(E)^{[2]}=n R\left(\Delta E^{[1]}\right)^{2}\left(1-\frac{n}{2 R}\left[3+2 \beta_{2}^{(0)}+2 n^{2}+2 n \psi\left(n_{2}+1\right)+2 n \psi\left(n_{2}+m+1\right)\right]+\frac{n}{2 R}[4 n \ln (2 R / n)]+O\left(R^{-2}\right)\right) \tag{186}
\end{equation*}
$$

Note the term $(n / 2 R) \ln (2 R / n)$.

E. Discontinuity in $E(R)$ for R negative

The last expression we obtain in this section is for the discontinuity of E across the negative R axis, namely, $E\left(e^{-\pi i} R^{\prime}\right)-E\left(e^{+\pi i} R^{\prime}\right)$, with $\arg R^{\prime}=0$. The contributing expressions are Eqs. (156)-(161), (171), and (174). By the same logic that led to Eqs. (175) and (178) for $\Delta E^{[1]}$ and $\Delta_{i} E^{\{2]}$, one can see that with $r_{0}^{\prime}=-r_{0}$,
$E\left(e^{-\pi i} R^{\prime}\right)-E\left(e^{+\pi i} R^{\prime}\right)$

$$
\begin{align*}
= & \frac{\left.i \Delta_{i} \beta_{2}^{2}\right]}{\gamma_{0}^{3}\left(-r_{0}^{\prime}\right)-r_{0}^{\prime-1} \gamma_{0}^{2}\left(-r_{0}^{\prime}\right)\left(d / d r_{0}^{\prime-1}\right) \gamma_{0}\left(-r_{0}^{\prime}\right)} \tag{187}\\
= & i n^{-3} \Delta_{i} b_{0}^{\{2\}}\left[1+O\left(r_{0}^{\prime-2}\right)\right] \tag{188}\\
= & 2 \pi i(-1)^{m} 16 n \frac{\left(n_{1}+2 n_{2}+2 m+1\right)!\left(n_{1}+2 n_{2}+m+1\right)!}{n_{1}!\left(n_{1}+m\right)!}\left(2 R^{\prime} / n\right)^{-4 \beta_{2}^{(0)}-2} e^{-2 R^{\prime} / n+2 n} \\
& \times\left[1-\frac{n}{2 R^{\prime}}\left[8 n^{2} \ln \left(2 R^{\prime} / n\right)+12\left(\beta_{2}^{(0)}\right)^{2}-\left(m^{2}-1\right)-8 \beta_{1}^{(0)}+4 \beta_{2}^{(0)}\right.\right. \\
& \left.\left.\quad-4 n^{2}\left[\psi\left(n_{1}+2 n_{2}+2 m+2\right)+\psi\left(n_{1}+2 n_{2}+m+2\right)\right]-12 n \beta_{1}^{(0)}-4 n-8 n \beta_{2}^{(0)}\right]+O\left[R^{\prime-2}\left(\ln R^{\prime}\right)^{2}\right]\right) \tag{189}
\end{align*}
$$

Again, notice the term ($\left.n / 2 R^{\prime}\right) \ln \left(2 R^{\prime} / n\right)$.

VI. DISPERSION RELATIONS AND ASYMPTOTICS OF THE RSPT COEFFICIENTS

Dispersion relations are pertinent to the large- N behavior of the RSPT coefficients, whose asymptotic behavior they permit to be expressed as moments of the discontinuity of the imaginary part of the eigenvalue across the real axis. Dispersion relations arise from Cauchy's integral formula by enlargement of the contour to wrap around a branch cut. (These are standard arguments. See, e.g., Simon. ${ }^{23}$)

Consider first the β_{2} RSPT series, whose Borel sum is $\beta_{1}^{\prime}\left(r e^{-i \pi}\right)$ for Im $r \geq 0$ (see Sec. IIII). One is led to the formula (see Sec. IV of Ref. 6 for a rigorous discussion)
$\beta_{1}^{\prime}\left(r e^{-\pi i}\right)=\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{\beta_{1}^{\prime}\left(r e^{-\pi i}\right)-\beta_{1}^{\prime}\left(r e^{+\pi i}\right)}{z-r} d z$,
(190)
where again, this integral is meant only in the sense of power-series expansion. The discontinuity in β_{1}^{\prime} is given by Eq. (124), which is ∓ 2 times the imaginary series entering the expansion for β_{2} when $\pm \operatorname{Im} r \geq 0$. This fact, along with the expansion of the denominator $(z-r)$ in a geometric series, gives [cf. Eq. (100)]

$$
\begin{align*}
\beta_{2}^{(N)} \sim & -\int_{0}^{\infty}(2 z)^{N-1} \Delta b^{[1]}(z)^{2} q(z) d(2 z) \tag{191}\\
\sim & \pi^{-1} \int_{0}^{\infty+i \epsilon}(2 z)^{N-1} \Delta_{i} \beta_{2}^{(2)}(z) d(2 z) \quad(\epsilon>0) \tag{192}\\
\sim & -\frac{\left(N+4 n_{2}+2 m+1\right)!}{\left(n_{2}!\right)^{2}\left[\left(n_{2}+m\right)!\right]^{2}} \\
& \times\left[1-\frac{12\left(\beta_{2}^{(0)}\right)^{2}+4 \beta_{2}^{(0)}-m^{2}+1}{N+4 n_{2}+2 m+1}+O\left(N^{-2}\right)\right] \tag{193}
\end{align*}
$$

In this way the discontinuity in $\beta_{1}^{\prime}\left(r e^{-\pi i}\right)$, which is imaginary and of second exponential order, determines the asymptotics of the RSPT $\beta_{2}^{(N)}$.
Similar considerations apply to the RSPT series for β_{1}, which is Borel summable to the eigenvalue of the modi-
fied Eq. (15) when $\beta_{1}^{\prime}\left(r e^{-\pi i}\right)$ is used for β_{2}. (See again Ref. 6 for the rigorous details.) Since, however, $\beta_{1}(r)$ also has a cut for negative r, as well as the cut for positive r induced by the cut in $\beta_{1}\left(r e^{-\pi i}\right)$, there are two terms in the dispersion relation:

$$
\begin{align*}
\beta_{1}(r) & =\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{\beta_{1}(z)-\beta_{1}\left(z e^{2 \pi i}\right)}{z-r} d z+\frac{1}{2 \pi i} \int_{\infty e^{\pi i}}^{0} \frac{-\beta_{1}\left(z e^{-2 \pi i}\right)+\beta_{1}(z)}{z-r} d z \tag{194}\\
& =\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{\beta_{1}(z)-\beta_{1}\left(z e^{2 \pi i}\right)}{z-r} d z+\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{\beta_{1}\left(z^{\prime} e^{-\pi i}\right)-\beta_{1}\left(z^{\prime} e^{+\pi i}\right)}{z^{\prime}+r} d z^{\prime} \tag{195}
\end{align*}
$$

As for the β_{1}^{\prime} (i.e., β_{2}) dispersion relation, the discontinuity on the positive axis, $\beta_{1}(z)-\beta_{1}\left(z e^{2 \pi i}\right)$, is imaginary and of second exponential order: it is $\mp 2 i$ times the ($\left.\Delta_{i} \beta^{23}\right)_{\text {ind }}$ of Eqs. (126) and (127). The discontinuity on the negative axis is given by Eqs. (156)-(158). Just as for $\beta_{2}^{(N)}$, one obtains for $\beta_{1}^{(N)}$

$$
\begin{align*}
\beta_{1}^{(N)} \sim & \pi^{-1} \int_{0}^{\infty+i \epsilon}(2 z)^{N-1}\left[\left.\Delta_{i} B\right|^{2)}(z)\right]_{\text {ind }} d(2 z)+\left.(2 \pi)^{-1} \int_{0}^{\infty}\left(-2 z^{\prime}\right)^{N-1} \Delta_{i} \beta\right|^{(2)}\left(z^{\prime}\right) d\left(2 z^{\prime}\right)(\epsilon>0) \tag{196}\\
\sim & \sim \frac{\left(N+4 n_{2}+2 m\right)!}{\left(n_{2}!\right)^{2}\left[\left(n_{2}+m\right)!\right]^{2}}\left[4 \beta_{1}^{(0)}-\frac{48 \beta_{1}^{(1)}\left(\beta_{2}^{(0)}\right)^{2}+12\left(\beta_{1}^{(0)}\right)^{2}-\left(1+4 \beta_{1}^{(0)}\right)\left(m^{2}-1\right)}{N+4 n_{2}+2 m}+O\left(N^{-2}\right)\right] \\
& +(-1)^{m+N-1} 16 n^{4} \frac{\left(n_{1}+2 n_{2}+2 m+1\right)!\left(n_{1}+2 n_{2}+m+1\right)!}{n_{1}!\left(n_{1}+m\right)!}\left(N-4 n_{2}-2 m-5\right)! \\
& \quad \times\left[1+\frac{4 n^{2}-12\left(\beta_{2}^{(0)}\right)^{2}+m^{2}-1+12 n-12 \beta_{2}^{(0)}}{N-4 n_{2}-2 m-5}\right. \\
\quad & \left.\quad-\frac{4 n^{2}\left[2 \psi\left(N-4 n_{2}-2 m-5\right)-\psi\left(n_{1}+2 n_{2}+2 m+2\right)-\psi\left(n_{1}+2 n_{2}+m+2\right)\right]}{N-4 n_{2}-2 m-5}+O\left[N^{-2}\left(\ln N^{2}\right)\right]\right] . \tag{197}
\end{align*}
$$

Note that the dominant asymptotic behavior coming from the positive cut is a same-sign ($N+4 n_{2}+2 m$)!, but that buried a factor of $N^{5+8 n_{2}+4 m}$ down is an alternating-sign contribution that also involves a $\ln N$ dependence, since $\psi(N) \sim \ln N+O\left(N^{-1}\right)$. Because of its relative smallness, the alternating-sign contribution is not immediately apparent from a numerical table of the $\beta_{1}^{(N)}$, but careful numerical analysis can detect it.
Similar considerations apply to the RSPT series for $E(R)$, which is Borel summable ${ }^{5,6}$ to $-\frac{1}{2}\left[\beta_{1}\left(r_{0} e^{-i \pi}\right)+\beta_{1}\left(r_{0}, \beta_{1}\left(r_{0} e^{-\pi i}\right)\right)\right]^{-2}$. That is, instead of the real β_{2} of Eq. (11), one puts into both Eqs. (10) and (12) the analytic continuation of the β_{1}^{\prime} of Eqs. (113) and (114). There are two cuts in this Borel sum, with the key second-exponential-order quantities given by Eqs. (172), (173), and (182). The resulting asymptotics for the $E^{(N)}$ are

$$
\begin{align*}
& E^{(N)} \sim \pi^{-1} \int_{0}^{\infty+i \epsilon}(2 z / n)^{N-1} \Delta_{i} E^{[2]}(z) d(2 z / n) \\
& \quad+(2 \pi i)^{-1} \int_{0}^{\infty}\left(2 z^{\prime} / n\right)^{N-1}\left[E\left(R^{\prime} e^{-\pi i}\right)-E\left(R^{\prime} e^{+\pi i}\right)\right] d\left(2 z^{\prime} / n\right) \tag{198}\\
& \sim
\end{aligned} \begin{aligned}
& \left.-\frac{e^{-2 n}}{n^{3}\left(n_{2}\right)^{2}\left[\left(n_{2}+m\right)!\right]^{2}}\left(N+4 n_{2}+2 m+1\right)!\left\lvert\, 1+\frac{4 n \beta_{1}^{(0)}-8\left(\beta_{2}^{(0)}\right)^{2}+2 \beta_{2}^{(1)}+4 n^{2}}{N+4 n_{2}+2 m+1}+O\left(N^{-2}\right)\right.\right) \\
& \quad+(-1)^{m+N-1} e^{2 n} 16 n^{4} \frac{\left(n_{1}+2 n_{2}+2 m+1\right)!\left(n_{1}+2 n_{2}+m+1\right)!}{n^{3} n_{1}!\left(n_{1}+m\right)!}\left(N-4 n_{2}-2 m-5\right)! \\
& \quad \times\left(1+\frac{12 n^{2}-12\left(\beta_{2}^{(0)}\right)^{2}+m^{2}-1+12 n-12 \beta_{2}^{(0)}-4 n \beta_{2}^{(0)}}{N-4 n_{2}-2 m-5}\right. \\
& \left.\quad-\frac{4 n^{2}\left[2 \psi\left(N-4 n_{2}-2 m-5\right)-\psi\left(n_{1}+2 n_{2}+2 m+2\right)-\psi\left(n_{1}+2 n_{2}+m+2\right)\right]}{N-4 n_{2}-2 m-5}+O\left(N^{-2}(\ln N)^{2}\right)\right) . \tag{199}
\end{align*}
$$

Again, note the alternating-sign contribution that is down by a factor of $N^{6+8 n_{2}+4 m}$ from the dominant same-sign ($N+4 n_{2}+2 m+1$)! behavior. The alternating-sign contribution is not readily apparent from a table of the $E^{(N)}$, but careful numerical analysis can detect it. In fact, it
was this unsuspected alternating-sign contribution that was responsible for the prior difficulty in carrying out the Bender-Wu analysis of the numerical $E^{(N)}$ for the ground state. ${ }^{13}$ This point will be discussed in more detair in Secs. IX and X.

VII. JWKB-LIKE FORMULATION

The purpose of this section is to simplify the practical procedure for calculating the $O\left(e^{-r}\right)$ and imaginary $O\left(e^{-2 r}\right)$ expansions for β_{1} and β_{2}. The procedure so far involves three steps: (i) solution of a Riccati equation for ϕ, e.g., Eq, (35); (ii) determination of the index shift, e.g., $\Delta b^{[17}$ of Eq. (64); (iii) determination of the ratio $q(r)$ by, e.g., Eq. (69) or (83). What complicates the procedure is the presence of ϕ^{-1} and ϕ^{-2} in the Riccati equation, which is the consequence of starting from the Whittaker confluent hypergeometric function. The alternative is to start from an exponential function-i.e., the JWKB-like form-which leads to a much simpler Riccati equation, but which then requires a "connection formula" and an alternative method to calculate $q(r)$.
The JWKB-like form for the QSC wave function Φ_{2} [cf. Eqs. (31) and (32)] is

$$
\begin{equation*}
\Phi_{2}=(d S / d \eta)^{-1 / 2}\left(A e^{-r S / 2}+B e^{+r S / 2}\right), \tag{200}
\end{equation*}
$$

where $S=S(\eta, r)$ satisfies the Riccati equation,

$$
\begin{align*}
\frac{1}{4}\left(\frac{d S}{d \eta}\right)^{2}= & \frac{1}{4}-\frac{\beta_{2}}{4}\left(\frac{1}{\eta}+\frac{1}{2-\eta}\right) \\
& +\frac{m^{2}-1}{4 r^{2}}\left[\frac{1}{\eta}+\frac{1}{2-\eta}\right]^{2} \\
& -\frac{1}{r^{2}}\left[\frac{d S}{d \eta}\right]^{1 / 2} \frac{d^{2}}{d \eta^{2}}\left[\frac{d S}{d \eta}\right]^{-1 / 2} \tag{201}
\end{align*}
$$

$$
\begin{align*}
d S^{(N)} / d \eta= & -\frac{1}{2} \sum_{k=1}^{N-1}\left(d S^{(k)} / d \eta\right)\left(d S^{(N-k)} / d \eta\right)-4 \beta_{2}^{(N-1)}\left[\eta^{-1}+(2-\eta)^{-1}\right] \\
& +2 \delta_{N, 2}\left(m^{2}-1\right)\left[\eta^{-1}+(2-\eta)^{-1}\right]^{2}-8\left[(d S / d \eta)^{1 / 2}\left(d^{2} / d \eta^{2}\right)(d S / d \eta)^{-1 / 2}\right]^{(N-2)} \tag{206}
\end{align*}
$$

from which it follows that (see also immediately below)

$$
\begin{align*}
& d S^{(1)} / d \eta=-4 \beta_{2}^{(0)}\left[\eta^{-1}+(2-\eta)^{-1}\right], \tag{207}\\
& S^{(1)}=+4 \beta_{2}^{(0)} \ln \left(\frac{2-\eta}{\eta}\right) \text {, } \tag{208}\\
& d S^{(2)} / d \eta=-8\left(\beta_{2}^{(0)}\right)^{2}\left[\eta^{-1}+(2-\eta)^{-1}\right]^{2} \\
& -4 \beta_{2}^{(1)}\left[\eta^{-1}+(2-\eta)^{-1}\right] \\
& +2\left(m^{2}-1\right)\left[\eta^{-1}+(2-\eta)^{-1}\right]^{2} \tag{209}\\
& \beta_{2}^{(1)}=-2\left(\beta_{2}^{(0)}\right)^{2}+\frac{1}{2}\left(m^{2}-1\right), \tag{210}\\
& S^{(2)}=-4 \beta_{2}^{(1)}\left[\eta^{-1}-(2-\eta)^{-1}\right], \tag{211}
\end{align*}
$$

and so forth. There are two tricky points. The first is that the Riccati equation (201) involves only derivatives of S, and not S itself. The integration constants implicit in Eqs. (208) and (211) are therefore not determined by the Riccati equation; they will be explained in the next paragraph. The second point is that, apart from $S^{(1)}$, the $S^{(N)}$ for $N \geq 2$ cannot have a $\ln \eta$ dependence. That is, $\beta_{2}^{(N-1)}$ has the value that eliminates the η^{-1} term from the recur-

We assume for $S(\eta, r)$ an expansion of the form

$$
\begin{equation*}
S(\eta, r) \sim \sum_{N=0}^{\infty} S^{(N)}(\eta)(2 r)^{-N}+O\left(r^{k} e^{-r}\right) \tag{202}
\end{equation*}
$$

where in fact the $S^{(N)}(\eta)$ can be obtained directly from the QSC wave function by using the asymptotic expansion (56) for the Whittaker function and then rearranging terms appropriately. For instance, Eqs. (200) and (61) imply that
$A(d S / d \eta)^{-1 / 2} e^{-r S / 2}$

$$
\begin{align*}
= & \frac{(-1)^{n_{2}}(2 r)^{\beta_{2}^{(0)}}}{\left(n_{2}+m\right)!} \\
& \times \eta^{\beta_{2}^{(0)}}(2-\eta)^{-\beta_{2}^{(0)}} e^{-r \eta / 2}\left[1+O\left(r^{-1}\right)\right] . \tag{203}
\end{align*}
$$

Then,

$$
\begin{align*}
& S=c+\eta+(2 r)^{-1} 4 \beta_{2}^{(0)} \ln \left(\frac{2-\eta}{\eta}\right)+O\left(r^{-2}\right), \tag{204}\\
& A=(-1)^{n_{2}} e^{+r c / 2}(2 r)^{2 \beta_{2}^{(0)}} /\left(n_{2}+m\right)!, \tag{205}
\end{align*}
$$

where c is a constant (with respect to η) related to the normalization (see below).

The main point, however, is not to obtain the $S^{(N)}$ from the $\phi^{(N)}$, but figuratively the reverse, because the $S^{(N)}$ are much easier to obtain directly from Eq. (201) than the $\phi^{(N)}$ from Eq. (35). For instance, given already that $d S^{(0)} / d \eta=1$, then for $N \geq 1, S^{(N)}$ satisfies
sive Eq. (206) for $S^{(N)}$. A most important practical consequence turns out to be that for $N \geq 2, d S^{(N)} / d \eta$ is a polynomial $P_{N}\left(\eta^{-1}\right)$ in η^{-1} of degree N, with no constant or first-order term, plus a similar polynomial in $(2-\eta)^{-1}$. Moreover, because of the symmetry of Eqs. (201) and (206) with respect to $\eta \rightarrow 2-\eta$, it follows that

$$
\begin{equation*}
d S^{(N)} / d \eta=P_{N}\left(\eta^{-1}\right)+P_{N}\left[(2-\eta)^{-1}\right] \tag{212}
\end{equation*}
$$

Thus, the $S^{(N)}$ for $N \geq 2$ have a much simpler structure than the $\phi^{(N)}$ in that they are polynomials requiring only $N-1$ coefficients, and they have no complicated logarithmic terms.

Now we return to the integration-constant problem, which affects both the absolute normalization, which cannot be determined from the differential equation anyway, and the relative weights of the $e^{ \pm r S / 2}$ components, which is a connection-formula problem solved here easily because the overall Schrödinger equation is symmetric under $\eta \rightarrow 2-\eta$. The solution is to make $S^{(N)}$ satisfy

$$
\begin{equation*}
S^{(N)}(2-\eta)=S^{(N)}(\eta), \tag{213}
\end{equation*}
$$

and to take A / B in Eq. (200) to be ± 1. This then fixes

$$
\begin{align*}
& \text { also } S^{(0)} \\
& \qquad S^{(0)}=\eta-1, \tag{214}
\end{align*}
$$

as well as the integration constants for all $S^{(N)}$.
However, there are still two major remaining problems: how to get $\Delta \beta_{2}^{(1)}$ and $\Delta_{i} \beta_{2}^{(2)}$ from Φ_{2} in JWKB form. In Sec. III the procedure depended first on calculating the Whittaker index shift, which does not occur here, and second, the ratio $g(r)$. Here we can obtain $\Delta \beta_{2}^{[1]}$ from the two functions $\Phi_{2}^{(f)}$,

$$
\begin{equation*}
\Phi_{2}^{(\pm)}=(d S / d \eta)^{-1 / 2}\left(e^{-r S / 2} \pm e^{+r S / 2}\right) \tag{215}
\end{equation*}
$$

via the standard current density formula, Eq. (79), which here becomes

$$
\begin{align*}
2 \Delta \beta_{2}^{(1)}=-2 / \int_{0}^{\eta} & (d S / d \eta)^{-1}\left(e^{-r S}-e^{r S}\right) \\
& \times\left[\eta^{-1}+(2-\eta)^{-1}\right] d \eta \quad(0 \ll \eta \ll 2) \tag{216}
\end{align*}
$$

By the same argument as in Sec. III E, Eq. (216) can be put in the form

$$
\begin{align*}
\Delta \beta_{2}^{(1)}=-e^{-r} / \int_{0}^{\infty} & (d S / d \eta)^{-1} e^{-r(S+1)} \\
& \times\left[\eta^{-1}+(2-\eta)^{-1}\right] d \eta \tag{217}
\end{align*}
$$

where the integral in Eq. (217) is meant only in the sense of a series in $(2 r)^{-1}$, obtained by appropriate expansion of
the integrand, followed by integration term by term.
The determination of the imaginary second-exponential-order series $\Delta_{i} \beta_{2}^{2]}$ could also be obtained from the JWKB function by a current-density formula, if one had the requisite connection formula. Unfortunately, we have not found a way to get the right formula without going directly through the Whittaker function. However, we can get $\Delta_{i} \beta_{2}^{2]}$ via Eq. (101) from the square of $\Delta \beta_{2}^{(1)}$ and from $q(r)$, the latter of which can be solved for directly in the JWKB approach. Note that $q(r)=d \beta_{2, \mathrm{RSPT}} / d \beta_{2}^{(0)}$ is a series in $(2 r)^{-1}$ [Eq. (69)]. Let

$$
\begin{equation*}
T^{(N)}(\eta) \equiv d S^{(N)}(\eta) / d \beta_{2}^{(0)} \tag{218}
\end{equation*}
$$

Then T and $q(r)$ satisfy an equation obtained by differentiating the Riccati equation (201) with respect to $\beta_{2}^{(0)}$:

$$
\begin{align*}
\frac{1}{2} \frac{d S}{d \eta} \frac{d T}{d \eta}= & -r^{-1} q(r)\left(\frac{1}{\eta}+\frac{1}{2-\eta}\right) \\
& -r^{-2} \frac{1}{2} \frac{d T}{d \eta}\left(\frac{d S}{d \eta}\right)^{-1 / 2} \frac{d^{2}}{d \eta^{2}}\left(\frac{d S}{d \eta}\right)^{-1 / 2} \\
& +r^{-2} \frac{1}{2}\left(\frac{d S}{d \eta}\right)^{-1 / 2} \frac{d^{2}}{d \eta^{2}}\left(\frac{d S}{d \eta}\right)^{-3 / 2} \frac{d T}{d \eta} \tag{219}
\end{align*}
$$

Further, by taking the $\beta_{2}^{(0)}$ derivative of the recursive Eq. (206), one obtains

$$
\begin{align*}
d T^{(N)} / d \eta= & -\sum_{k=0}^{N-1}\left(d T^{(k)} / d \eta\right)\left(d S^{(N-k)} / d \eta\right)-4 q^{(N-1)}\left[\eta^{-1}+(2-\eta)^{-1}\right] \\
- & 4\left[(d T / d \eta)(d S / d \eta)^{-1 / 2}\left(d^{2} / d \eta^{2}\right)(d S / d \eta)^{-1 / 2}\right. \\
& \left.-(d S / d \eta)^{1 / 2}\left(d^{2} / d \eta^{2}\right)(d S / d \eta)^{-3 / 2}(d T / d \eta)\right]^{(N-2)} \tag{220}
\end{align*}
$$

One then finds (recall that $q^{(0)}=1$) that

$$
\begin{align*}
& T^{(0)}=0, \tag{221}\\
& d T^{(1)} / d \eta=-4\left[\eta^{-1}(2-\eta)^{-1}\right], \tag{222}\\
& T^{(1)}=+4 \ln \left[\frac{2-\eta}{\eta}\right], \tag{223}\\
& d T^{(2)} / d \eta=-16 \beta_{2}^{(0)}\left[\eta^{-1}+(2-\eta)^{-1}\right]^{2} \\
& \quad-4 q^{(1)}\left[\eta^{-1}+(2-\eta)^{-1}\right], \tag{224}\\
& q^{(1)}=-4 \beta_{2}^{(0)}, \tag{225}\\
& T^{(2)}=16 \beta_{2}^{(0)}\left[\eta^{-1}-(2-\eta)^{-1}\right], \tag{226}
\end{align*}
$$

and so forth. As is by now a familiar argument, the value of $q^{(N-1)}$ is obtained by eliminating the η^{-1} term in the equation [Eq. (220)] for $d T^{(N)} / d \eta$ for $N \geq 2$. In such a way $q(r)$ can be obtained, and consequently $\Delta_{i} \beta_{2}^{[2]}$ via Eq. (101).

Finally, we consider the two contributions to β_{1} : $\left.\left(\left.\Delta \beta\right|^{1]}+i \Delta_{i} \beta\right]^{(2)}\right)_{\text {ind }}$ and $\left.i \Delta_{i} \beta\right|^{23}(-r)$ (the discontinuity at
negative r). The induced terms are needed to high order. They can be calculated from Eq. (127) with the RSPT wave function, and thus require no further comment. The discontinuity for negative r, on the other hand, will not be taken further than the few orders given here explicitly, and so the JWKB approach will not be sketched.

This now completes the theoretical discussion of the computation of the asymptotic expansions for β_{1}, β_{2}, and E. In the remaining sections we give numerical illustrations of the various terms in the expansions, their asymptotics, and their interrelations.

VIII. NUMERICAL CHARACTERIZATION OF THE β_{2} SERIES

In this section we tabulate and discuss the asymptotics for the various series contributing to the asymptotic expansion of β_{2}. First we list in Tables I-III the terms of the RSPT series, the exponentially small gap series $\Delta \beta_{2}{ }^{11}$, and the doubly-exponentially-small imaginary series $\Delta_{i} \beta_{2}^{[2]}$, all through fifty-first order in $(2 r)^{-1}$, for the ground state (for which $n_{2}=0$ and $m=0$) and for two excited states for which n_{2} and m are $(1,0)$ and $(0,1)$. We

TABLE I. Coefficients for the RSPT series, the $\Delta \beta_{2}^{1{ }^{11}}$ series, and the $\Delta_{i} \beta_{2}^{(2]}$ series, as defined by Eqs. (26), (227), and (228) of the text, for the ($n_{2}=0, m=0$) ground state of β_{2}.

Order N	$\theta_{2}^{(N)}$	Coefficient $c^{(1)(N)}$	$c^{(2)(N)}$
0	5. $00000000000000000000000000000 \times 10^{-1}$	1. $0000000000000000000000000000 \times 100$	1. $00000000000000000000000000000 \times 10^{0}$
1	$-1.0000000000000000000000000000 \times 100$	-4. $00000000000000000000000000000 \times 10$	-6. $00000000000000000000000000000 \times 100$
2	$-1.0000000000000000000000000000 \times 100$	$-3.0000000000000000000000000000 \times 10^{0}$	2. $0000000000000000000000000000 \times 100$
3	$-4.0000000000000000000000000000 \times 10$	$-2.0000000000000000000000000000 \times 10$	$-1.6000000000000000000000000000 \times 10$ 1
1	$-2.3000000000000000000000000000 \times 10 \frac{1}{2}$	$-1.4600000000000000000000000000 \times 10^{2}$	$-1.3100000000000000000000000000 \times 10^{2}$
5	$-1,6400000000000000000000000000 \times 10^{2}$	$-1.2400000000000000000000000000 \times 10^{3}$	$-1.1860000000000000000000000000 \times 10^{3}$
6	$-1.3620000000000000000000000000 \times 10^{3}$	$-1.1839000000000000000000000000 \times 10^{4}$	-1. $1810000000000000000000000000 \times 10{ }^{4}$
?	$-1.2744000000000000000000000000 \times 10{ }^{4}$	$-1.2432400000000000000000000000 \times 10^{5}$	$-1.27960000000000000000000000000 \times 10^{5}$
8	$-1.3170700000000000000000000000 \times 10^{5}$	$-1.1164900000000000000000000000 \times 10^{6}$	$-1.4946540000000000000000000000 \times 10^{6}$
9	$-1.4842440000000000000000000000 \times 10{ }^{6}$	$-1.7354312000000000000000000000 \times 10$?	$-1.8693468000000000000000000000 \times 107$
10	$-1.8078302000000000000000000000 \times 10$?	$-2.2723204200000000000000000000 \times 10^{8}$	$-2.4909524400000000000000000800 \times 10^{8}$
11	$-2,3647647200000000000000000000 \times 10^{8}$	$-3.1657838160000000000000000000 \times 10^{9}$	$-3.5233830400000000000000000000 \times 10{ }^{9}$
12	$-3,3058718700000000000000000000 \times 10^{9}$	$-4,6772816692000000000000000000 \times 10^{10}$	$-5.2750814163000000000000000000 \times 10^{10}$
13	$-4.9200790504000000000000000000 \times 10^{10}$	$-7.3089364286400000000000000000 \times 10^{11}$	$-8.3399805415400000000000000000 \times 10^{11}$
14	$-7.7704928925200000005000000000 \times 10^{11}$	$-1.2053061361627000000000000000 \times 10^{13}$	$-1.3896593049578000000000000000 \times 10^{13}$
15	$-1.2986909942928000000000000000 \times 10^{13}$	$-2.0934993948787600000000000000 \times 10^{14}$	$-2.4360816100602400000000000600 \times 10^{14}$
16	$-2.2911996110222700000000000000 \times 10^{14}$	-3.82297 d3917 $580580000000000000 \times 10^{15}$	$-4.4851248645038020000000000000 \times 10^{15}$
17	$-4.2572670215189000000000000000 \times 10^{15}$	$-7.3273910035204136000000000000 \times 10^{16}$	$-8.6609378935339908000000000 .000 \times 10^{16}$
18	$-8.3136293369266790000000000000 \times 10^{16}$	$-1.4716745118758333020000000000 \times 10^{18}$	$-1.7511316654278868680080000000 \times 10^{18}$
19	$-1.7028651859526502000000000000 \times 10^{18}$	$-3.0924848922414919704000000000 \times 10^{19}$	$-3.70189812372444408640000009000 \times 10^{19}$
20	$-3,6516371245952402914000000000 \times 10^{19}$	-6.78854 $08446998416498800000000 \times 10^{20}$	$-8.1705474365641117830200000000 \times 10^{20}$
21	$-8.1836362546552269164000000000 \times 10^{20}$	$-1.5544581687124666680080000000 \times 10^{22}$	$-1.8802075120844545561140000000 \times 10^{22}$
22	$-1.9135206010345581583484000000 \times 10^{22}$	$-3.7076485296683382999346200000 \times 10^{23}$	$-4,5048643609147528899653200000 \times 10^{23}$
23	$-4.6608599868466745374897600000 \times 10^{23}$	-9. $1990308925250696411214480000 \times 10^{24}$	-1. $1223129845294623349230334000 \times 10^{25}$
24	- 1. $1808709875317772152818974000 \times 10^{25}$	$-2.3710559152591057458684410000 \times 10^{26}$	$-2.9037173545260235751080244000 \times 10^{26}$
25	-3. $1076872059873087231117543200 \times 10^{26}$	$-6.3409700820771882085534988320 \times 10^{27}$	-7. $7925153228082838408362822960 \times 10^{27}$
26	-8. $1840103159037619946643713720 \times 10^{27}$	$-1.7573883051432720977464771848 \times 10^{29}$	$-2.1666187672778870915784670735 \times 10^{29}$
27	-2. $3997072843526756833374424069 \times 10^{29}$	$-5.0418210457383983581133937983 \times 10^{30}$	-6. $2343480127140260028315675752 \times 10^{30}$
28	-7. $0243179168227417252331191884 \times 10^{30}$	$-1.1957164288091676165752989120 \times 10^{32}$	$-1.8545934956338531007188516430 \times 10^{32}$
29	$-2.1255133457465450932316169555 \times 10^{32}$	$-4.5836526145220149160859148195 \times 10^{33}$	$-5.6980146494806732640795454135 \times 10^{33}$
	-6. $6418583025051754364414212211 \times 10^{33}$	$-1.4496252146169321924075245053 \times 10^{35}$	$-1.8063635257232793681149310267 \times 10^{35}$
31	-2. $1412094328889220847696351560 \times 10^{35}$	$-4.7269980495988414135222329589 \times 10^{36}$	$-5.9034208831680212085061900585 \times 10^{36}$
32	$-7.1149797941702135374347647260 \times 10^{36}$	$-1.5878982879846359755095887989 \times 10^{38}$	$-1.9872343570835961374521503926 \times 10^{38}$
33	$-2.4347601998759478404516985059 \times 10^{38}$	$-5.4904873994895350190111200699 \times 10^{39}$	-6. $8847683858905531676093238.203 \times 10^{39}$
34	-8. $5733380341532551165272258532 \times 10^{39}$	$-1.952587079684230394178559903 \times 10^{41}$	-2.45295 $71861495255531240654798 \times 10^{41}$
35	-3. $1039656319269895591055884809 \times 10^{41}$	$-7.1367183784923008203952528491 \times 10^{42}$	$-8.9811661087527498417469514329 \times 10^{42}$
36	-1. $1546129420806192901830718129 \times 10^{43}$	$-2.6789735693686277442409797058 \times 10^{44}$	$-3.3768721026817794582379484983 \times 10^{44}$
37	-4. $1096488093354372741623730083 \times 10^{44}$	$-1.0321143799728239238966487791 \times 10^{46}$	$-1.3030074990961564209256503281 \times 10^{46}$
38	$-1.7279459793864418355855102283 \times 10^{46}$	$-4.0784800503491290776085440066 \times 10^{47}$	-5. $1564919022807878923758393424 \times 10^{47}$
39	-6. $9428754341609813280973866808 \times 10^{47}$	$-1.6520167304140253433448890893 \times 10^{49}$	$-2.0915784455269948465643290908 \times 10^{49}$
40	$-2.8587036167952114235858706384 \times 10^{49}$	-6. $8552400386775242683540750117 \times 10^{50}$	-8. $6907133574323564284837178851 \times 10^{50}$
41	$-1.2055051343762587233202260750 \times 10^{51}$	$-2,9126001443402554905886339557 \times 10^{52}$	-3.69707503136015025599 19234567×10^{52}
42	-5. $2035549106854141456864618160 \times 10^{52}$	$-1.2663609070461950342176231613 \times 10^{54}$	$-1.6093599325187709747916088058 \times 10^{54}$
43	$-2.2979148686185324291600762910 \times 10^{54}$	$-5.6315890714318736986152625228 \times 10^{55}$	$-7.1650699757942509922005582926 \times 10^{55}$
44	$-1.0376525193104352101542299284 \times 10^{56}$	$-2.5602891040184424265046072008 \times 10^{57}$	$-3.2609900973705125278802117622 \times 10^{57}$
45	-4. $7890015584753449431370950205 \times 10^{57}$	-1. $1894007060376088924732088544 \times 10^{59}$	$-1,5164859630262418399546170311 \times 10^{59}$
46	$-2.2579409433590196509416354837 \times 10^{59}$	$-5,6435623561958071337884812863 \times 10^{60}$	$-7.2026680972580680772882973260 \times 10^{60}$
47	$-1.0870824854825594104675467189 \times 10^{61}$	$-2.7338647676070540852973618875 \times 10^{62}$	$-3.4924355429460581790353447809 \times 10^{62}$
48	$-5.3420778495671100475484898385 \times 10^{62}$	-1. $3515099684215539475634420727 \times 10^{64}$	$-1.7280926951320216726969868230 \times 10^{64}$
49	$-2,6784186985572263197480156236 \times 10^{64}$	$-6.8156410356145828744790262544 \times 10^{65}$	$-8.7222743608437949907375183599 \times 10^{65}$
50	$-1.3696098468217097434522170539 \times 10^{66}$	$-3.5048821329088202668738878986 \times 10^{67}$	$-4,4890920002244465775483776332 \times 10^{67}$
51	-7. $1400539439563975345622192581 \times 10^{67}$	$-1.8372085116619382474917709789 \times 10^{69}$	$-2.3550024637877733581526898324 \times 10^{69}$

use the notation $c^{[1](N)}$ and $c^{[2](N)}$ for the series coefficients for the two exponentially small quantities [cf. also Eqs. (54) and (99)]:

$$
\begin{equation*}
\Delta \beta_{2}^{[1]}= \pm \frac{(2 r)^{2 \beta_{2}^{(0)}} e^{-r}}{n_{2}\left(\left(n_{2}+m\right)!\right.} \sum_{N=0}^{\infty} c^{[1](N)}(2 r)^{-N}, \tag{227}
\end{equation*}
$$

$$
\begin{align*}
\Delta_{i} \beta_{2}^{[2]}=\mp & \frac{(2 r)^{4 F_{2}^{0)}} e^{-2 r}}{\left[n_{2}!\left(n_{2}+m\right)!\right]^{2}} \\
& \times \sum_{N=0}^{\infty} c^{(2)(N)}(2 r)^{-N}(\pm \operatorname{lm} r \geq 0) . \tag{228}
\end{align*}
$$

Notice that the coefficients (at least those with fewer than the maximum number of significant digits) appear to be

TABLE II. Coefficients for the RSPT series, the $\Delta \beta_{2}^{(1)}$ series, and the $\Delta_{i} \beta_{2}^{(2)}$ series, as defined by Eqs. (26), (227), and (228) of the text, for the ($n_{2}=1, m=0$) excited state of β_{2}.

Order N	$8_{2}^{(N)}$	Coefficient $c^{(1)(N)}$	$c^{(2)(N)}$
0	1. $5000000000000000000000080000 \times 10^{0}$	1.00000 $000000000000000000000 \times 10^{0}$	1. $00000000000000000000000000 \times 10^{9}$
1	$-5.0000000000000000000000000000 \times 10^{0}$	$-2.00000000000000000000000000 \times 10{ }^{1}$	$-3.40000000000000000000000000 \times 10^{\frac{1}{2}}$
2	$-1.5000000000000000000000000000 \times 10 \frac{1}{2}$	7. $90000000000000000000000000 \times 10 \frac{1}{2}$	3. $82000000000000000000000000 \times 10$?
3	$-1.2400000000000000000008000000 \times 10$?	$-1.40000000000000000000000000 \times 10$?	$-1.80000000000050000000000000 \times 10^{3}$
4	$-1.4010000000000000000000000000 \times 10^{3}$	$-1.14900000000000000000000000 \times 10^{3}$	2. $75900000000000000000000000 \times 10^{3}$
5	-1. $8908000000000000000000000000 \times 10$!	$-2.71800000000000000000000000 \times 10$	$-1.28420000000000000000000000 \times 10$
6	$-2.8779000000000000000000000000 \times 10^{5}$	$-5.29102000000000000000000000 \times 105$	$-2.29554000000000000000000000 \times 10^{5}$
7	-4. $7903280000000000000000000000 \times 10{ }^{6}$	$-1.07178000000000000000000000 \times 10$?	$-5.00120000000000000000000000 \times 10^{6}$
8	$-8.5592901000000000000000000000 \times 10$?	$-2.25598177000000000000000000 \times 10^{8}$	$-1.11861577000000000000000000 \times 10^{8}$
	$-1.6219249080000000000000000000 \times 10^{9}$	$-4.92147119600000000000000000 \times 10^{9}$	$-2.57053158200000000000000000 \times 10^{9}$
10	$-3.2325088700000000000000000000 \times 10^{10}$	$-1.10988943574000000000000000 \times 10^{11}$	$-6.06569003500000000000000000 \times 10^{10}$
11	-6. $7360846023200000000000000000 \times 10^{11}$	$-2.5820523355 \times 400000000000000 \times 10^{12}$	$-1.46892760004000000000000000 \times 10^{12}$
12	$-1.4614279030986000000000000000 \times 10^{13}$	$-6.18612999215580000000000000 \times 10^{13}$	$-3.64875114280980000000000000 \times 10^{13}$
13	-3. $2906069379176600000000000000 \times 10^{14}$	$-1.52432980505676000000000000 \times 10^{15}$	$-9.29198158885028000000000000 \times 10^{14}$
14	$-7.6714336414018200000000000000 \times 10^{15}$	$-3.85941362420395000000000000 \times 10^{16}$	$-2.42511915360984840000000000 \times 10^{16}$
15	$-1.8484379970805462400000000000 \times 10^{17}$	$-1.00330607266078913600000000 \times 10^{18}$	$-6.48485699072436480000000000 \times 10^{17}$
16	$-4.5989961209973607490000000000 \times 10^{18}$	$-2.67663656322232018290000000 \times 10^{19}$	$-1.77635671050653332930000000 \times 10^{19}$
17	$-1.1787908355260131118000000000 \times 10^{20}$	$-7.32537779929670857596000000 \times 10^{20}$	$-4.98393909734265250038000000 \times 10^{20}$
18	-3.11421639012028986921 00000000×10^{21}	$-2.05610833551522758653660000 \times 10^{22}$	$-1.43219302020721922611420000 \times 10^{22}$
19	$-8.4711492481058328194088000000 \times 10^{22}$	$-5.91784770551319697774552000 \times 10^{23}$	$-4.21508267513477424225848000 \times 10^{23}$
20	$-2.3713951306643531876828460000 \times 10^{24}$	$-1.74636026388852158796866980 \times 10^{25}$	$-1.27053000549832150863569980 \times 10^{25}$
21	$-6.8290054018384893705642440000 \times 10^{25}$	$-5.28348729670114231949676520 \times 10^{26}$	$-3.92228948200926365812745340 \times 10^{26}$
22	$-2.0223239028842324982583059240 \times 10^{27}$	$-1.63868193980256095274515997 \times 10^{28}$	$-1.24013697878503754869301855 \times 10^{28}$
23	-6. $1566556058519132156596472080 \times 10^{28}$	$-5.20985426159106809353901670 \times 10^{29}$	$-4.01576131586789181492670746 \times 10^{29}$
24	$-1.9262225172070420187603172196 \times 10^{30}$	$-1.69776424173115808294825770 \times 10^{31}$	$-1.33173388059840016783838766 \times 10^{31}$
25	-6. $1915827043124077163760630245 \times 10^{31}$	$-5.67028203099072147662176061 \times 10^{32}$	-4. $52261328883614944369214855 \times 10^{32}$
26	$-2.0440542323483218980046461406 \times 10^{33}$	$-1.94066311962621937173292057 \times 10^{34}$	$-1.57268355021994378418888540 \times 10^{34}$
27	$-6.9284154288880166448078189018 \times 10^{34}$	$-6.80524079019826384893677408 \times 10^{35}$	$-5.59907958791829113573039602 \times 10^{35}$
28	$-2.4103148241354421498599921841 \times 10^{36}$	$-2.44456114695832227853545742 \times 10^{37}$	-2.04053 $928695315910947169492 \times 10^{37}$
29	-8. $6030370969350336103445996990 \times 10^{37}$	$-8.99343525140376098447983587 \times 10^{38}$	$-7.61102869688922024321049675 \times 10^{38}$
30	-3. $1492034143869741979600692752 \times 10^{39}$	$-3.38773080775325159474223249 \times 10^{40}$	$-2.90478933462668311651438468 \times 10^{40}$
31	$-1.1818088928185618095786905142 \times 10^{41}$	$-1.30626553898557410499997159 \times 10^{42}$	$-1.13410823835015169426326992 \times 10^{42}$
32	$-4.5447868051454256470698675558 \times 10^{12}$	$-5.15424585701909502936347297 \times 10^{43}$	-4. $52842752377418549325412376 \times 10^{43}$
33	$-1,7902695612407902327903640787 \times 10^{44}$	$-2.080532177202553463296617770 \times 10^{45}$	$-1.84871984411022211599983611 \times 10^{45}$
34	$-7.2206978673351647914863644151 \times 10^{15}$	$-8.58852109325069642439843012 \times 10^{46}$	$-7.71431742221958271894459687 \times 10^{46}$
	$-2.9806604197448852927922693454 \times 10^{47}$	$-3.6245324148462418691383649 \times 10^{48}$	$-3.28923031544630415004749782 \times 10^{48}$
36	$-1.2587395363489339270437018582 \times 10^{99}$	$-1.56324719187076386589896020 \times 10^{50}$	$-1.43260385562679360235530277 \times 10^{50}$
37	-5.13586 $22112535635024758601235 \times 10^{50}$	-6.88805 $251487671426733140152 \times 10^{51}$	-6.37170 $766177323233429335185 \times 10^{51}$
38	-2. $3995611218760051411881227428 \times 10^{52}$	$-3.09962460181814540738350736 \times 10^{53}$	$-2.89298018062292136021746764 \times 10^{53}$
39	$-1.0823075925964345173205279466 \times 10^{54}$	$-1,42402259095826078956416897 \times 10^{55}$	$-1.34046949826053548097753405 \times 10^{55}$
40	$-4,9860123372616737969798421501 \times 10^{55}$	$-6.67686038521259842070655829 \times 10^{56}$	-6.33655 $045974465411445745830 \times 10^{58}$
41	$-2,3451566937309068922510321332 \times 10^{57}$	$-3.19396119436319689651277371 \times 10^{58}$	$-3.05490113232923655442102535 \times 10^{58}$
42	$-1.1257513315751480799520637080 \times 10^{59}$	$-1.55827962597806130025500829 \times 10^{60}$	$-1.50160312664663039406282051 \times 10^{60}$
43	$-5.5132235319958893408837293762 \times 10^{60}$	-7. $75137204044112823447336377 \times 10^{61}$	$-7.52305629929773094890803886 \times 10^{61}$
44	$-2.7536326072069832945335466885 \times 10^{62}$	$-3.97998573064120255583309871 \times 10^{63}$	$-3.84046858050909346782664259 \times 10^{53}$
45	-1. $4021412335290082831425014531 \times 10^{64}$	$-2.03023939338562680333323869 \times 10^{65}$	$-1.99708656218735415592290382 \times 10^{65}$
46	$-7,2764406986882055105360561273 \times 10^{65}$	$-1.06835383891420933412910944 \times 10^{67}$	$-1.05756452632792937460550754 \times 10^{69}$
47	$-3.8471793139334948097896448920 \times 10^{67}$	-5. $72486630118508661970232382 \times 10^{68}$	$-5.70152901097423632455172429 \times 10^{68}$
48	$-2.07168893981509534476469212890 \times 10^{69}$	$-3.12299893653240027393645899 \times 10^{70}$	$-3.12845650889150889186254379 \times 10^{70}$
19	-1. $1358770317335356465877546574 \times 10^{72}$	$-1.73385016767917084998867172 \times 10^{72}$	$-1.74664952544591675763025579 \times 10^{72}$
50	-6. $3391649503260593191532049022 \times 10^{72}$	-9. $79410147485453137172301277 \times 10^{73}$	$-9.91981417580925108270343135 \times 10^{73}$
51	$-3.5999813761203069239457989712 \times 10^{74}$	$-5.62748110444174087063023483 \times 10^{75}$	$-5.72942938117522229516045851 \times 10^{75}$

integers. The coefficients are estimated to be accurate to the precision reported, with uncertainty only in the last digit. Notice that for the ($n_{2}=1, m=0$) state, only 27 digits have been reported for the coefficients $c^{(1)(N)}$ and $c^{\left.[2)^{(N)}\right)}$, two fewer than the 29 reported for the $(0,0)$ and
$(0,1)$ states. The numerical error seems to depend on n_{2}.
It is interesting to examine numerically the prediction of the asymptotics of the $\beta_{2}^{(N)}$ by the dispersion relation [Eqs. (192) and (193)], which in the more general notation of Eq. (228) becomes

TABLE III. Coefficients for the RSPT series, the $\Delta \beta_{2}^{[1]}$ series, and the $\Delta_{i} \beta_{2}^{[2]}$ series, as defined by Eqs. (26), (227), and (228) of the text, for the ($n_{2}=0, m=1$) excited state of β_{2}.

Order

N

$$
\begin{aligned}
& \text { Coefficient } \\
& c^{(1)(N)}
\end{aligned}
$$

$c^{(2)(N)}$

1. $0000000000000000000000000000 \times 10^{0}$ $-2.0000000000000000000000000000 \times 100$ 4. $0000000000000000000000000000 \times 100$ $-2.1000000000000000000000000000 \times 101$ $-2.0000000000000000000000000000 \times 10^{2}$
$-2.01600000000000000000000000000 \times 10^{3}$
$-2.3168000000000000000000000000 \times 101$
$-2.9414400000000000000000000000 \times 10^{5}$
$-4.0488640000000000000000000000 \times 10^{6}$
$-5.9695872000000000000000000000 \times 10$?
$-9.3503168000000000000000000000 \times 10^{8}$
$-1.5469327872000000000000000000 \times 10^{10}$ $-2.6919368371200000000000000000 \times 10^{11}$ $-4.9120156016640000000000000000 \times 10^{12}$ $-9.3762890723328000000000000000 \times 10^{13}$ $-1.8688576969728000000000000000 \times 10^{15}$ $-3.8837071338677760000000000000 \times 10^{16}$ $-8,4042068016118579200000000000 \times 10^{17}$ $-1.8916934886996420608000000000 \times 10^{19}$ $-4.4246217665652810547200000000 \times 10^{20}$ $-1.0744027758358579089408000000 \times 10^{22}$ $-2.7060351042394729807872000000 \times 10^{23}$ $-7,0630714522846274150727680000 \times 10^{24}$
$-1.9088486356428992550843187200 \times 10^{26}$
$-5.3369733102896014584641454080 \times 10^{27}$
$-1.5423978463513075856366488781 \times 10^{29}$
$-4.6037641702786336981198374830 \times 10^{30}$
$-1.4180417250317275172610206309 \times 10^{32}$
$-4.5037894527225409597368211057 \times 10^{33}$
$-1.4737896971252892605830488482 \times 10^{35}$
$-4.9652164280811121434278197278 \times 10^{36}$
$-1.7209408950602145333885764683 \times 10^{38}$ $-6.1321357385709846903447651078 \times 10^{39}$ $-2.2448112406675477939173805946 \times 10^{41}$ $-8.4369538955833344940959536439 \times 10^{42}$ $-3.2535384079786307543572353408 \times 10^{44}$ $-1.2865512403030249941124527804 \times 10^{46}$ $-5.2137494182388235042448239120 \times 10^{47}$ $-2.1641143365490324010303211461 \times 10^{49}$ $-9.1957263165280129943546621835 \times 10^{50}$ $-3.9980176984584788583930951055 \times 10^{52}$ $-1.7776330030039531398588352041 \times 10^{54}$ $-8.0792788518209448679292822731 \times 10^{55}$ $-3.7517866114848749348401114947 \times 10^{57}$ $-1.7792987191742169099068731144 \times 10^{59}$ $-8.6143348316183187674501538475 \times 10^{60}$ $-4.2557946361889884065273769831 \times 10^{62}$ $-2.1446478468756347282233920275 \times 10^{64}$ $-1.1020068188842160145522633754 \times 10^{66}$ $-5.7717557651615236561494220444 \times 10^{67}$ $-3.0801719432476316784614925771 \times 10^{69}$ $-1.6743205275147344104282490310 \times 10^{71}$
2. $00000000000000000000000000000 \times 100$ - 1. $00000000000000000000000000000 \times 10^{1}$ 8. $0000000000000000000000000000 \times 100$ $-4,8000000000000000000000000000 \times 10 \frac{1}{1}$ $-5.8000000000000000000000000000 \times 10$? $-7.4800000000000000000000000000 \times 10^{3}$ $-1.0356800000000000000000000000 \times 10^{5}$ $-1.5298240000000000000000000000 \times 106$ $-2.3928352000000000000000000000 \times 10$? $-3.9398726400000000000000000000 \times 10^{8}$ $-6.7992053760000000000000000000 \times 10^{9}$?
$-1.2259079884800000000000000000 \times 10^{11}$
$-2.3039203428480000000000000000 \times 10^{12}$
$-4,5054356797824000000000000000 \times 10^{13}$
$-9.1559281229491200000000000000 \times 10^{14}$
$-1.9316590899227136000000000000 \times 10^{16}$
$-4.2274150482924083200000000000 \times 10^{17}$
$-9,5905884493809756160000000000 \times 10^{18}$
$-2.2541545617816004198400000000 \times 10^{20}$
$-5.4858988501969502863360000000 \times 10^{21}$
$-1.3816527991830606991974400000 \times 10^{23}$ $-3.5991063521105339641405440000 \times 10^{24}$ $-9.6913619662678270514913280000 \times 10^{25}$ $-2.6959363553299114143712935040 \times 10^{27}$ $-7.7428403651308660993841119232 \times 10^{28}$ $-2.2944591630541044553998369592 \times 10^{30}$ $-7.0108026281523727677264822010 \times 10^{31}$ $-2.2073820760340271238402811521 \times 10^{33}$ $-7.1568843088833170526456626571 \times 10^{34}$ $-2.3879383703436309447580447367 \times 10^{36}$ $-8.1939672317893029191153902723 \times 10^{37}$ $-2.8897591120634774848058175925 \times 10^{39}$ $-1.0467809528809149293297202597 \times 10^{41}$ $-3.8923701919748763844155236999 \times 10^{42}$ $-1.4848464984863783463792912871 \times 10^{44}$ $-5.8077897647627453233430782664 \times 10^{45}$ $-2.3278927592219781650346432946 \times 10^{47}$ $-9.5566727556838672711141257767 \times 10^{48}$ $-4.0162340577778719399963445474 \times 10^{50}$ $-1.7269691957804886315453603438 \times 10^{52}$ $-7.5944406896898955019992081660 \times 10_{55}^{53}$ $-3.4139123547105936124209256098 \times 10^{55}$ $-1,5680546075395656834533212958 \times 10^{57}$ $-7,3559027477512975254324836487 \times 10^{58}$ $-3.5228737604074221759986641306 \times 10^{60}$ $-1.7217541174384770249031508341 \times 10^{62}$ $-8.5840218479142358594499103971 \times 10^{63}$ $-4.3640990995970324681462895880 \times 10^{65}$ $-2.2616557416426073328694221006 \times 10^{67}$ $-1.1943614723887428843517899028 \times 10^{69}$ $-6.1250542174785153198650090213 \times 10^{70}$ $-3.5197246750671498123374327203 \times 10^{72}$

$$
\begin{aligned}
\beta_{2}^{(N)} \sim- & \frac{\left(N+4 n_{2}+2 m+1\right)!}{\left(n_{2}!\right)^{2}\left[\left(n_{2}+m\right)!\right]^{2}} \\
& \times\left[1+\frac{c^{(2)(1)}}{N+4 n_{2}+2 m+1}\right. \\
& \left.+\frac{c^{(2)(2)}}{\left(N+4 n_{2}+2 m+1\right)\left(N+4 n_{2}+2 m\right)}+\cdots\right]
\end{aligned}
$$

In Table IV, the fit between the numerical and asymptotic $\beta_{2}^{(N)_{s}} s$ is displayed for the same three states for orders $10-150$ (by tens). The agreement is similar to that for the RSPT of the one-dimensional anharmonic oscillator: ${ }^{24}$ for large N it is impressive.

The expansion (229) has some of the character of an asymptotic expansion in that at first the partial sums approach the exact result, but then as the number of terms increases the partial sums eventually diverge. The partial

TABLE IV. Accuracy of the asymptotic formula for $\beta_{2}^{(N)}$ to k terms,

$$
\begin{aligned}
\beta_{2}^{(N)} \sim-\frac{\left(N+4 n_{2}+2 m+1\right)!}{\left(n_{2}!\right)^{2}\left[\left(n_{2}+m\right)!\right]^{2}}\{ & 1+\frac{c^{[2](1)}}{N+4 n_{2}+2 m+1}+\frac{c^{(2] \mid(2)}}{\left(N+4 n_{2}+2 m+1\right)\left(N+4 n_{2}+2 m\right)} \\
& \left.+\cdots+\frac{c^{(2](k)}}{\left(N+4 n_{2}+2 m+1\right) \cdots\left(N+4 n_{2}+2 m+2-k\right)}\right)
\end{aligned}
$$

10
9. $3503168000000000000000000000 \times 10$ $1.0744027756358579089408000000 \times 10^{22}$ $4.9652164280811121434278197278 \times 10^{36}$ $3.9980176984584788583930951055 \times 10^{52}$ $3.0801719432476316784614925771 \times 1069$ $1.5106473927659090914807783624 \times 10^{87}$ $3.5434772322612140501124524985 \times 10105$ 3. $2212621010053513810557473453 \div 10^{124}$ 9. $6624966725035418125859180043 \times 10^{143}$ 8. 123905452291459 ก $227321223249 \times 10^{163}$ 1. $9263838811736242722946010994 \times 10^{184}$ 1. $0617384185013499820576025413 \times 10^{205}$ 1. $3137036327744397362080970555 \times 10^{226}$ $3.4351170363706195775336932383 \times 10^{247}$
$150 \quad 1.8019907698855702330401680424 \times 10^{269}$

	$-\beta_{2}^{(\mathbb{N})}(\text { exact })^{\text {d }}$

$30 \quad 3.6516371245952402914000000000 \times 10^{10}$
1.8144000000000000000000000000 $\times 10$? 3. $6518112451231488000000000000 \times 10{ }^{19}$ $6.6418567341401195112736164741 \times 10^{33}$ $2.8587036165326679548787068898 \times 10^{19}$ 1. $3696098468219376495780688076 \times 10^{66}$ $4.5788770826334178896608031516 \times 10^{83}$ 7. $7890418221693439388249608962 \times 10^{101}$ 5. $3692957277998599528820414138 \times 10^{120}$ 1. $2631559649875047922893902279 \times 10^{140}$ 8. $8676922459423922588859953849 \times 10^{159}$ 1. $6679236392981880274052859790 \times 10^{180}$ $7.6939626739892385945636348094 \times 10^{200}$ 8. $0844983108045713007940173390 \times 10^{221}$ $1.8175522266857518790337981498 \times 10^{243}$ 8. $2851252078665540391047333008 \times 10^{264}$

Excited state: $n_{2}=1, m=0$
$-2,9738016000000000000000000000 \times 10^{10}$ 2.37795 $00505179542323200000000 \times 10^{24}$ 3. $1493003360497350477414300210 \times 10^{39}$ $4,9860172147120947781503028937 \times 10^{55}$ $6.3391649515774972183282665459 \times 10^{72}$ 4. $6354474997586045015808091176 \times 10^{90}$ 1. $5161827058202454913112712302 \times 10^{109}$ 1. $8325728247251361139845455552 \times 10^{128}$ 7. $0527804064639799898394935738 \times 10^{147}$ $7.6735319779422292806435348651 \times 10^{167}$ 2. $1420070197904809023250439819 \times 10^{188}$ 1. $1152316756712165844727373741 \times 10^{209}$ 2. $0676954720420935840538628356 \times 10^{230}$ 6. $3032618392061081715958949926 \times 10^{251}$ 3. $8129261315818430667195575820 \times 10^{273}$

Excited state: $n_{2}=0, m=1$

1. $1176704000000000000000000000 \times 10 \quad 9$ 1. $0739606557430919168000000000 \times 10^{22}$ 4. $9652042172878898998216581626 \times 10^{36}$ 3. $9980178619078968940993296235 \times 10^{52}$ 3. $0801719430768027199453898548 \times 10^{69}$ 1. $5106473927658766331901487744 \times 10^{87}$ $3.5434772322612143628370471596 \times 10^{105}$ 3. $2212621010053513820778748772 \times 10^{124}$ $9.6624966725035418125928362982 \times 10^{143}$ 8. $4239054522944590627321336172 \times 10^{163}$ 1. $9263838811736242722946011479 \times 10^{184}$ 1. $0517384185013499820576025414 \times 10^{205}$ 1. $3137036327744397362080970555 \times 10^{226}$ 3. $1351170363706195775336932383 \times 10^{247}$ 1. $8019907698855702330401680424 \times 10^{269}$

Number of significant figures ${ }^{\text {e }}$ in $5 u m$ to k ters for $k=$
$\begin{array}{lllllllllll}0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50\end{array}$

Ground state: $\mathrm{n}_{2}=0, \mathrm{~m}=0$

$6.6418583025051754364414212211 \times 10^{33}$
2. $8587036167952114235858706384 \times 10^{49}$

1. $3696098468217097434522170539 \times 1066$
$4.5788770826334154250500263865 \times 10^{83}$
$7.7890418221693439308542809826 \times 10^{101}$
2. $3692957277998599528733544732 \times 10^{120}$
3. $2631559649875047922893873012 \times 10^{140}$
4. $8676922459423922588859953573 \times 10^{159}$ $1.6679236392981880274052859789 \times 10^{180}$
$7.6939626739892385945636348094 \times 10^{200}$
$8.0844983108045713007940173389 \times 10^{221}$
1.81755 $22266857518790337981498 \times 10^{243}$
5. $2851252078665540391047333007 \times 10^{264}$

| 1 | 3 | 0 | 1 | 0 | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 9 | 0 | 3 | 3 | 2 | | | | | | | |
| 15 | 14 | 0 | 1 | 5 | 6 | 5 | 3 | | | | | |
| 20 | 19 | 0 | 5 | 7 | 8 | 10 | 7 | 6 | 3 | | | |
| 25 | 25 | 0 | 5 | 8 | 10 | 10 | 12 | 10 | 9 | 7 | 4 | |
| 30 | 30 | 1 | 6 | 9 | 11 | 13 | 13 | 15 | 13 | 12 | 10 | 8 |
| 35 | 35 | 1 | 6 | 10 | 12 | 14 | 15 | 16 | 18 | 16 | 15 | 14 |
| 40 | 40 | 1 | 7 | 11 | 14 | 16 | 17 | 18 | 19 | 20 | 19 | 18 |
| 45 | 45 | 1 | 7 | 11 | 14 | 17 | 19 | 21 | 21 | 22 | 23 | 22 |
| 50 | 50 | 1 | 7 | 12 | 15 | 18 | 21 | 22 | 24 | 24 | 25 | 26 |
| 51 | 51 | 1 | 8 | 12 | 16 | 19 | 22 | 24 | 25 | 27 | 27 | 28 |
| 51 | 51 | 1 | 8 | 13 | 17 | 20 | 23 | 25 | 27 | 29 | 30 | 30 |
| 51 | 51 | 1 | 8 | 13 | 17 | 21 | 24 | 27 | 29 | 30 | 30 | 30 |
| 51 | 51 | 1 | 8 | 13 | 18 | 22 | 25 | 28 | 30 | 30 | 30 | 30 |
| 51 | 51 | 1 | 8 | 14 | 18 | 22 | 26 | 29 | 30 | 30 | 30 | 30 |

TABLE IV. (Continued).
${ }^{2}$ Calculated by standard RSPT. Relative accuracy appears to be at least one part in 10^{29}.
${ }^{\text {b }}$ Calculated by the asymptotic formula, truncated at the value of k that gives a result closest to the exact value in the preceding column. This value of k is denoted by $k_{\text {best }}$.
"See b for definition of $k_{\text {best }}$. Generally, $k_{\text {best }}$ increases with N. The " $k=51$ " is not fundamentally significant in the sense that the maximum number of terms $c^{(2) \mid(k)}$ available for this table was 51.
${ }^{\mathrm{d}}$ The $k_{\min }$ is the value of k for which the term $c^{\{2 \mid(k)} /\left(N+4 n_{2}+2 m+1\right) \cdots\left(N+4 n_{2}+2 m+2-k\right)$ is smallest in magnitude, and which is a practical index for determining the truncation of the asymptotic formula.
The number of significant figures in sum to k terms is operationally defined as the negative of the $\log _{10}$-truncated to an integer-of the magnitude of the relative error between the exact $\beta_{2}^{(N)}$ and the asymptotic formula. A box surrounds the entry on each line with the largest number of significant figures.
sum that comes closest to the exact result usually occurs when the last term is approximately the smallest. Compare the columns $k_{\text {best }}$ and $k_{\min }$ in Table IV. The pattern of convergence followed by divergence is visible in the 11 rightmost columns of Table IV, in which are listed the approximate number of digits in the various partial sums that are the same as in the exact result. The best result is boxed.

The order at which the RSPT coefficients become asymptotic seems strongly dependent on n_{2}, more so than the corresponding n dependence for the anharmonic oscillator. ${ }^{24}$ In particular, notice here that for the ($n_{2}=1, m=0$) state, the best asymptotic value for $N=10$ does not even have the correct sign, while for the $(0,0)$ and $(0,1)$ states, for which n_{2} is only 1 less, the errors in the best asymptotic values for the tenth-order coefficients are smaller than 2%. On the other hand, at the highest orders the accuracy obtained by using the asymptotic formula (229) is greater than the practical accuracy to which the RSPT calculation can be carried out.

IX. NUMERICAL CHARACTERIZATION OF THE β_{1} SERIES

The asymptotics of the RSPT coefficients $\beta_{1}^{(N)}$ are more complicated than in the β_{2} case because of the presence of small alternating-sign contributions, as in Eq. (197). First we list in Tables V-VIII the terms of the RSPT series, the induced exponentially small gap series $\left(\Delta \beta_{1}^{(1)}\right)_{\text {ind }}$, and the induced doubly-exponentially-small imaginary series $\left(\Delta_{i} \beta_{2}^{\langle 2\}}\right)_{\text {ind }}$, all through fifty-first order in $(2 r)^{-1}$, for the ground state ($n_{1}=0, n_{2}=0, m=0$) and for the three excited states for which n_{1}, n_{2}, and m are $(1,0,0),(0,1,0)$, and
$(0,0,1)$. We use the notation $d^{[1](N)}$ and $d^{[2](N)}$ for the series coefficients for the two exponentially small quantities, according to

$$
\begin{align*}
\left.(\Delta \beta)^{(1)}\right)_{\text {ind }}= & \mp 4 \beta_{1}^{(0)} \frac{(2 r)^{2 \beta_{2}^{(0)}-1} e^{-r}}{n_{2}!\left(n_{2}+m\right)!} \\
& \times \sum_{N=0}^{\infty} d^{[1](N)}(2 r)^{-N} \tag{230}\\
\left.\left(\Delta_{i} \beta\right]^{[2]}\right)_{\text {ind }}= & \pm \pi 4 \beta_{1}^{(0)} \frac{(2 r)^{4 \beta R_{2}^{(0)}-1} e^{-2 r}}{\left[n_{2}!\left(n_{2}+m\right)!\right]^{2}} \\
& \times \sum_{N=0}^{\infty} d^{[2](N)}(2 r)^{-N}(\pm \operatorname{Im} r \geq 0) \tag{231}
\end{align*}
$$

Notice that the coefficients (at least those with fewer than the maximum number of significant digits) appear to be integers, except in the $(1,0,0)$ case for which multiplication of $d^{(1](N)}$ and $d^{(2](N)}$ by $4 \beta_{1}^{(0)}$, which had been explicitly factored out in Eqs. (230) and (231) to make the leading coefficient of each power series equal to 1 , is needed to restore the integer property of the coefficients. The coefficients are estimated to be accurate to the precision reported, with uncertainty only in the last digit. Notice that for the ($0,1,0$) state, only 27 digits have been reported for the coefficients $d^{[1](N)}$ and $d^{[2](N)}$, two fewer than the 29 reported for the other states. The lower accuracy comes from the lower accuracy of the $\Delta \beta_{2}$ quantities for $n_{2}=1$, as mentioned in Sec. VIII.

It is especially interesting to examine numerically the prediction of the asymptotics of the $\beta_{1}^{(N)}$ by the dispersion relation [Eqs. (196) and (197)], which in the notation of Eq. (231) becomes

$$
\begin{gathered}
\beta_{1}^{(N)} \sim 4 \beta_{1}^{(0)} \frac{\left(N+4 n_{2}+2 m\right)!}{\left(n_{2}!\right)^{2}\left[\left(n_{2}+m\right)!\right]^{2}}\left[1+\frac{d^{(2](1)}}{N+4 n_{2}+2 m}+\frac{d^{\{2](2)}}{\left(N+4 n_{2}+2 m\right)\left(N+4 n_{2}+2 m-1\right)}+\cdots\right] \\
+(-1)^{m+N-1} 16 n^{4} \frac{\left(n_{1}+2 n_{2}+2 m+1\right)!\left(n_{1}+2 n_{2}+m+1\right)!}{n_{1}!\left(n_{1}+m\right)!}\left(N-4 n_{2}-2 m-5\right)! \\
\\
\times\left[1+\frac{4 n^{2}-12\left(\beta_{2}^{(0)}\right)^{2}+m^{2}-1+12 n-12 \beta_{2}^{(0)}}{N-4 n_{2}-2 m-5}\right. \\
\\
-\frac{4 n^{2}\left[2 \psi\left(N-4 n_{2}-2 m-5\right)-\psi\left(n_{1}+2 n_{2}+2 m+2\right)-\psi\left(n_{1}+2 n_{2}+m+2\right)\right]}{N-4 n_{2}-2 m-5}
\end{gathered}
$$

TABLE V. Coefficients for the RSPT series, the induced $\left.\Delta \beta\right|^{11}$ series, and the induced $\Delta_{i} \beta_{2}^{2)}$ series, as defined by Eqs. (24), (230), and (231) of the text, for the ($n_{1}=0, n_{2}=0, m=0$) ground state of β_{1}.

Order N	$\beta_{1}^{(N)}$	Coefficient $d^{(1)(N)}$	$d^{(2)(N)}$
0	5,0000000000 $000000000000000000 \times 10^{-1}$	1.00000 $00000000000000000000000 \times 100$	1. $0000000000000000000000000000 \times 10^{0}$
1	$-1.0000000000000000000000000000 \times 100$	-4. $00000000000000000000000000000 \times 10^{0}$	$-6,0000000000000000000000000000 \times 100$
2	3. $0000000500000000000000000000 \times 100$	-1.30000 $00000000000000000000000 \times 10^{1}$	$-8.0000000000000000000000000000 \times 10^{0}$
3	4. $0000000000000000000000000000 \times 100$	2. $1000000000000000000000000000 \times 10^{1}$	4. $80000000000000000000000000000 \times 10$:
4	$-1.5000000000000000000000000000 \times 10$	$7.8000000000000000000000000000 \times 10$,	3. $5000000000000000000000000000 \times 101$
5	2. $0000000000000000000000000000 \times 10 \frac{1}{1}$	$-2.1160000000000000000000000000 \times 10^{3}$	-2.80200 $00000000000000000000000 \times 10^{3}$
6	6. $7000000000000000000000000000 \times 102$	$-1,4421000000000000000000000000 \times 10^{4}$	$-1.2428000000000000000000000000 \times 10^{4}$
7	2. $0880000000000000000000000000 \times 10^{3}$	-6.96400 $00000000000000000000000 \times 10^{4}$	-6.46800 $00000000000000000000000 \times 10^{4}$
8	1. $5237000000000000000000000000 \times 10{ }^{4}$	$-1.3518740000000000000000000000 \times 10^{6}$	$-1.5037660000000000000000000000 \times 10^{6}$
9	2. $6992400000000000000000000000 \times 10^{5}$	$-1.7898576000000000000000000000 \times 10$?	-1.92010 $04000000000000000000000 \times 10^{7}$
10	2. $8820340000000000000000000000 \times 10{ }^{6}$	$-2.12840246000000000000000000000 \times 10^{8}$	$-2.3090857500000000000000000000 \times 10^{8}$
11	3.2966360000 $000000000000000000 \times 10$?	$-3.0197430720000000000000000000 \times 10^{9}$	$-3.3653888000000000000000000000 \times 10^{9}$
12	4. $4745956200000000000000000000 \times 10^{8}$	$-4.5448326068000000000000000000 \times 10^{10}$	$-5.1204992481000000000000000000 \times 10^{10}$
13	6. $3232270640000000000000000000 \times 109$	$-7.0948744979200000000000000000 \times 10^{11}$	$-8.0786901361000000000000000000 \times 10^{11}$
14	$9.4161584444000000000000000000 \times 10^{10}$	$-1.1730506423681000000000000000 \times 10^{13}$	$-1.3502857256356000000000000000 \times 10^{13}$
15	1.4946594569 $760000000000000000 \times 10^{12}$	$-2.0448029691935200000000000000 \times 10^{14}$	$-2.3755662095052000000000000000 \times 10^{14}$
16	2.5089\% $21727149000000000000000 \times 10^{13}$	$-3.7433140151127220000000000000 \times 10^{15}$	-4. $3846793150694660000000000000 \times 10^{15}$
17	4. $44100776959075600000000000000 \times 10^{14}$	$-7.1902218098946928000000000000 \times 10^{16}$	$-8,4850032208313748000000000000 \times 10^{16}$
18	8. $2763022888568740000000000000 \times 10^{15}$	$-1.4469539118251118660000000000 \times 10^{18}$	$-1.7189791114537064160000000000 \times 10^{18}$
19	1. $6204312820084901600000000000 \times 10^{17}$	-3. $0457424704376739648000000000 \times 10^{19}$	$-3.6402770588195227780000000000 \times 10^{19}$
20	3. $3266542683112768620000000000 \times 10^{18}$	-6. $6960056582504575650800000000 \times 10^{20}$	$-8.0470676187700865128200000000 \times 10^{20}$
21	7. $1480350018554923288000000000 \times 10^{19}$	$-1.5353078046692115865344000000 \times 10^{22}$	$-1.8543101328548974735380000000 \times 10^{22}$
22	1. $6047713847236747673980000000 \times 10^{21}$	$-3.6662858198976399789061000000 \times 10^{23}$	-4. $4482407790720452893858400000 \times 10^{23}$
23	3.75822 $42734762257406128000000 \times 10^{22}$	$-9.1058961922533741187954080000 \times 10^{24}$	-1. $1094102254273016428946896000 \times 10^{25}$
24	9, $1668740507246389864579400000 \times 10^{23}$	$-2.3492305463989238812044786000 \times 10^{26}$	$-2.8731229928321142185387076400 \times 10^{26}$
25	2. $3254105776707041109143656000 \times 10^{25}$	-6. $2877953475232747971173328980 \times 10^{27}$	$-7.7171075070869059620239138160 \times 10^{27}$
26	6. $1265895311813748124087256400 \times 10^{26}$	$-1.7439400617974502070854868574 \times 10^{29}$	-2.14732 $66220204070687105123738 \times 10^{29}$
27	1. $6742438963832921310020687472 \times 10^{28}$	-5. $0065490356195201451137306079 \times 10^{30}$	-6.1831665965 $477772966363569926 \times 10^{30}$
28	4. $7398878827636294261853595122 \times 10^{29}$	$-1.4861362899686058557894408670 \times 10^{32}$	$-1.8405319599333594115996180297 \times 10^{32}$
29	1. $3885748039833256945067309963 \times 10^{31}$	-4. $5567298159027192428357532163 \times 10^{33}$	-5.65804 $24291637965307873498596 \times 10^{33}$
30	4. $2048495981434375285690821189 \times 10^{32}$	-1.44180 $81565739687072402003686 \times 10^{35}$	-1.79462 105049185393537 76137 803×10^{35}
31	1.3148283626 $146891687939208591 \times 10^{39}$	$-4,7035549835764152822407054869 \times 10^{36}$	$-5.8678011770068548525009353278 \times 10^{36}$
32	4. $2413603481221801499727011495 \times 10^{35}$	$-1.5806501348468748781529386805 \times 10^{38}$	$-1.9760996485242096210726071045 \times 10^{38}$
33	1. $4101446206913394962117275387 \times 10^{37}$	$-5.4673904626046546213121114989 \times 10^{39}$	$-6.8488280023286565828240344683 \times 10^{39}$
34	4. $8280238503081252955331706145 \times 10^{38}$	$-1.9450104865380076270589026561 \times 10^{41 .}$	-2. $4410229561684953307411857879 \times 10^{41}$
35	1. $7008593393951202780601785581 \times 10^{40}$	$-7.1111488069462354588081940492 \times 10^{42}$	$-8.9403883980728006358502213994 \times 10^{42}$
36	6. $1606145090622916741763524285 \times 10^{41}$	$-2.6701049290245473064682501896 \times 10^{44}$	-3. $3625479378111798270472966162 \times 10^{44}$
37	2. $2925443917846025435691615649 \times 10^{43}$	$-1.0289547233992880288242885618 \times 10^{46}$	$-1.2978376181840142355013409900 \times 10^{46}$
38	8. $7588313712371311112590672419 \times 10^{44}$	$-4.0669279816399366671931097761 \times 10^{47}$	-5. $1373364427314824453259877707 \times 10^{47}$
39	3. $4333761289942634089250487074 \times 10^{46}$	$-1.6476845572549388427756459764 \times 10^{49}$	$-2,0842960111776359558528134552 \times 10^{49}$
40	1. $3799671455776791078776135778 \times 10^{48}$	$-6.8385907906543007966287561655 \times 10^{50}$	$-8.6623276799886360386760700370 \times 10^{50}$
	$5.6836456777769395671593198012 \times 10^{99}$	$-2,9060457004747338015360440153 \times 10^{52}$	-3.68573 $65915367654418824983761 \times 10^{52}$
42	2. $3974327759273799959760225684 \times 10^{51}$	$-1.2637198945707283663932141929 \times 10^{54}$	$-1.6047218947325935378829946432 \times 10^{54}$
43	1. $0351160128810497547364800434 \times 10^{53}$	$-5.6207016397305290783969701964 \times 10^{55}$	-7. $1456500217418429519837721847 \times 10^{55}$
44	4. $5722174033536070048772182285 \times 10^{54}$	$-2.5557006965134174707175188468 \times 10^{57}$	$-3.2526721114856121320548935330 \times 10^{57}$
45	$2.0651055699125214080436906726 \times 10^{56}$	$-1.1874245487226359315527883184 \times 10^{59}$	$-1.5128428667388013205817295744 \times 10^{59}$
46	$9.5329304351297369759197094776 \times 10^{57}$	$-5.6348711230952309822615587151 \times 10^{60}$	$-7.1863622223283942633910695832 \times 10^{60}$
47	4. $4955159480849944599212875709 \times 10^{59}$	$-2.7299627008910408695552909076 \times 10^{62}$	$-3.1849799601975806017400095153 \times 10^{62}$
48	2. $1647598108659864170501864034 \times 10^{61}$	$-1.3497228597455310915835676142 \times 10^{64}$	-1. $7246022071312913785901445327 \times 10^{64}$
49	1. $0639786918942919877754647453 \times 10^{63}$	$-6.8072973896420916601706788314 \times 10^{65}$	-8. $7056908740697462672182341450 \times 10^{65}$
50	5. $3354642871486821031534475375 \times 10^{64}$	$-3.5009095278729554780021045029 \times 10^{67}$	-4, $4810314973898177396223980551 \times 10^{67}$
51	$2.7287113571543252772707900166 \times 10^{66}$	$-1,8352822801780863893840031805 \times 10^{69}$	-2. $3510070046586779859185924876 \times 10^{69}$

$$
\begin{align*}
& +\frac{A\left(n_{1}, n_{2}, m\right)+8 \pi^{2} n^{4} / 3+B\left(n_{1}, n_{2}, m\right)\left[\psi\left(N-4 n_{2}-2 m-6\right)-\psi(1)\right]}{\left(N-4 n_{2}-2 m-5\right)\left(N-4 n_{2}-2 m-6\right)} \\
& \left.+32 n^{4} \frac{\left[\psi\left(N-4 n_{2}-2 m-6\right)-\psi(1)\right]^{2}+\left[\psi^{(1)}\left(N-4 n_{2}-2 m-6\right)-\psi^{(1)}(1)\right]}{\left(N-4 n_{2}-2 m-5\right)\left(N-4 n_{2}-2 m-6\right)}+O\left(N^{-3}(\ln N)^{3}\right)\right], \tag{232}
\end{align*}
$$

TABLE VI. Coefficients for the RSPT series, the induced $\left.\Delta \beta\right|^{[1]}$ series, and the induced $\left.\Delta_{i} \beta\right]^{2]}$ series, as defined by Eqs. (24), (230), and (231) of the text, for the ($n_{1}=1, n_{2}=0, m=0$) excited state of β_{1}.

Order N	$\beta_{1}^{(N)}$	Coefficient $d^{(1)(N)}$	$d^{(2)(N)}$
0	1.5000000000 $000000000000000000 \times 10^{0}$	1. $0000000000000000000000000000 \times 10^{0}$	$1.00000000000000000000000000000 \times 10^{0}$
1	$-7.0000000000000000000000000000 \times 100$	$-6.6666666666666666666666666867 \times 10$	$-8.6666666666666666666666666667 \times 10^{0}$
2	4. $1000000000000000000000000000 \times 10^{1}$	-3. $1666666666666586666668666667 \times 10 \frac{1}{2}$	-2. $1333333333333333333333333333 \times 10 \frac{1}{1}$
3	-4. $4000000000000000000000000000 \times 10 \frac{1}{4}$	4. $9333333333333333333333333333 \times 10$?	5. $6266666666666666666666666667 \times 10^{2}$
1	$-1.1930000000000000000000000000 \times 10^{3}$	1. $1500000000000000000000000000 \times 10^{3}$	$2.6166666666666666666666668667 \times 10^{2}$
5	6. $1160000000000000000000000000 \times 10^{3}$	-6. $2397333333333333333333333333 \times 104$	-6, $58340000000000000000000000000 \times 10^{4}$
6	$7.0562000000000000000000000000 \times 10$	1. $16248333333333333333333333333 \times 10^{5}$	2. $3196400000000000000000000000 \times 105$
7	-8.2936800000 $000000000000000000 \times 105$	7.72722 $13333333333333333333333 \times 10^{6}$	$7.6232426666666668668666666867 \times 106$
8	-3. $4166770000000000000000000000 \times 10$ \%	-6. $1847522000000000000000000000 \times 10$?	-7.72888 $00666666666666666666667 \times 10$?
9	1. $1306888400000000000000000000 \times 10^{8}$	$-8.4228316000000000000000000000 \times 10^{8}$	-7. $43142977333333333333333333333 \times 10^{8}$
10	$-1.7919528200000000000000000000 \times 10^{8}$	1. $4644237396666666666666666667 \times 10^{10}$	1. $6375450149333333333333333333 \times 10^{10}$
11	$-1.3451382472000000000000000000 \times 10^{10}$	3,430714193600000 $0000000000000 \times 10^{10}$	$7,1817556746666666666666666667 \times 10^{9}$
12	1. $0934437922200000000000000000 \times 10^{11}$	$-2.7396741295986668666666666667 \times 10^{12}$	$-2.8491731128250000000000000000 \times 10^{12}$
13	1. $2122207307280000000000000000 \times 10^{12}$	1. $2760949047877333333333333333 \times 10^{13}$	1.78532 $34072046000000000000000 \times 10^{13}$
14	$-2.3483455342780000000000000000 \times 10^{13}$	3. $5092453122819900000000000000 \times 10^{14}$	3. $2971335833868133333333333333 \times 10^{14}$
15	$-6.6414748099680000000000000000 \times 10^{12}$	-5. $2104131435672693333333333333 \times 10^{15}$	$-5.9687295618820213333333333333 \times 10^{15}$
16	3. $6819803876954430000000000000 \times 10^{15}$	$-2.5340507211422716666666666667 \times 10^{16}$	$-1.6874075926998148666666666667 \times 10^{16}$
17	$-2,4269433884251596000000000000 \times 10^{16}$	9, $8859133706481108000000000000 \times 10^{17}$	1. $0324905058031390840000000000 \times 10^{18}$
18	$-3.1056199793923687400000000000 \times 10^{17}$	$-5.9110162495791872580000000000 \times 10^{18}$	$-8.1299029387300368400000000000 \times 10^{18}$
19	7. $0950197360501324400000000000 \times 10^{18}$	-1. $6699841800989139150400000000 \times 10^{20}$	$-1.6525197880795542326933333333 \times 10^{20}$
20	1. $1699500241715074434000000000 \times 10^{19}$	1. $4174491463507529951826666667 \times 10^{21}$	1. $5876039756821374274220000000 \times 10^{21}$
21	-8. $8126596450724449287200000000 \times 10^{20}$	-5, $5650187521778847302666686666 \times 10^{21}$	-1. $1858244364697516583748000000 \times 10^{22}$
22	1. $2075160057966178561500000000 \times 10^{22}$	-7. $1666311501811882541828466667 \times 10^{23}$	$-8.0352514474246891741233866567 \times 10^{23}$
23	1. $9794989310650928342091200000 \times 10^{23}$	-5. $7804275533531663253379840000 \times 10^{24}$	-6. $7480616793351189317877333333 \times 10^{24}$
24	3. $2601325212396620295356599999 \times 10^{23}$	$-1.5429383915452963357065315067 \times 10^{26}$	$-2.0336530320004105657775020933 \times 10^{26}$
25	6. $1509796937358269932682760000 \times 10^{25}$	-6. $2807167981198772124712644980 \times 10^{27}$	-7. $6412221986874000920060580293 \times 10^{27}$
26	1. $9211808535144651174490460920 \times 10^{27}$	$-1.5544204421449821841825633240 \times 10^{29}$	$-1.8971852844569402349018679820 \times 10^{29}$
27	4. $1547329342154248850772395568 \times 10^{28}$	-4. $2815792804155044333575287735 \times 10^{30}$	$-5.3212219424875472437108386214 \times 10^{30}$
28	1. $2297530198688859007725825155 \times 10^{30}$	$-1.3293923829176795461536481879 \times 10^{32}$	$-1.6483221478168875279975278894 \times 10^{32}$
29	3. $7638992476175549755020396163 \times 10^{31}$	-4. $0834121033988773788371430426 \times 10^{33}$	-5. $0682560499483407203031972927 \times 10^{33}$
30	1. $1247040077841470919126189480 \times 10^{33}$	-1. $2888858471979198352299974850 \times 10^{35}$	$-1.6056588891133063450141482892 \times 10^{35}$
31	3. $5242622803361780727853762966 \times 10^{34}$	-4. $2296771850197342845266515917 \times 10^{36}$	$-5.2803647481684715619098295781 \times 10^{36}$
32	1. $1450925465075933424009922211 \times 10^{36}$	$-1.4271505169040922952013118295 \times 10^{38}$	$-1.7850374027817908910575054942 \times 10^{38}$
33	$3.8187052287555750420817372653 \times 10^{37}$	-4, $9507902261699619877002705393 \times 10^{39}$	-6. $2047976531903478624640312857 \times 10^{39}$
34	1, $3113831610028302551444561739 \times 10^{39}$	$-1.7668555955975705490412681767 \times 10^{41}$	$-2.2184893047474868457977978139 \times 10^{41}$
35	$4.6352795548817034210757979025 \times 10^{40}$	-6. $4793662869793879277332935212 \times 10^{42}$	-8.14960 $30888199887913449715844 \times 10^{42}$
36	1. $6839718149950615493841790695 \times 10^{42}$	$-2.4396853680852974543443318711 \times 10^{44}$	-3. $0736122533127473799719045305 \times 10^{44}$
37	$6.2841368274686552987369117033 \times 10^{13}$	$-9.4265954737008907694368986191 \times 10^{15}$	$-1.1894411294938934229268364024 \times 10^{46}$
38	2.40732626249512158317 30959517×10^{45}	-3.73524 $32862922683230364578464 \times 10^{47}$	-4. $7200188009459740206518571093 \times 10^{47}$
39	9. $1603767189734539827012648060 \times 10^{46}$	$-1.5169202235857753052533352513 \times 10^{49}$	$-1.9195159080157366241705578412 \times 10^{49}$
40	3. $8114949519097010249576615853 \times 10^{48}$	-6. $3101314694476374752437046491 \times 10^{50}$	$-7.9954240832016512376128846358 \times 10^{50}$
41	1. $5734044239917491182505650717 \times 10^{50}$	$-2.6872567307040448397764280558 \times 10^{52}$	-3.40924 $20885102900893800650007 \times 10^{52}$
42	6. $6541523979408727258932947434 \times 10^{51}$	$-1.1709717122101350209514213719 \times 10^{54}$	-1. $4873555373753080708386056362 \times 10^{54}$
43	2.87760 $16315266585513753854547 \times 10^{53}$	-5. $2183433559836259018083838383 \times 10^{55}$	-6. $6358486522201685977535831723 \times 10^{55}$
44	1. $2735517426991607992599461395 \times 15^{55}$	$-2.3771619273038239766368418574 \times 10^{57}$	$-3.0261845821840153582692686848 \times 10^{57}$
45	5. $76288884684978282132399269039 \times 10^{56}$	-1. $1064314593677342739983948857 \times 10^{59}$	$-1.4099797023305138034105193571 \times 10^{59}$
46	2. $6649866877427962392986432775 \times 10^{58}$	-5. $2594135460634848077324744773 \times 10^{60}$	$-6.7089976276903233148378517771 \times 10^{60}$
47	1. $2588791199862552961778445987 \times 10^{60}$	$-2.5521869946656678254643291314 \times 10^{62}$	-3.25871 $43206693750679154046356 \times 10^{62}$
48	6. $0717959383979438094215037690 \times 10^{61}$	$-1.2637820620847756435776979738 \times 10^{64}$	$-1.6151101709819240092030224571 \times 10^{64}$
49	2. $9889097959388192770738732468 \times 10^{63}$	-6. $3833046488823030784473303599 \times 10^{65}$	$-8.1649857475893380423555360497 \times 10^{65}$
50	1. $5010514192522818821750777945 \times 10^{65}$	-3. $2875166731792860679479285017 \times 10^{67}$	-4. $2086464045769842903205797188 \times 10^{67}$
51	7. $6877190349108694784432034197 \times 10^{66}$	-1. $7257620869676452753223739782 \times 10^{69}$	$-2.2110859788935183348272601500 \times 10^{69}$

where the coefficients $A\left(n_{1}, n_{2}, m\right)$ and $B\left(n_{1}, n_{2}, m\right)$, which are independent of N, are given for the first few states in Table IX. The $\psi^{(1)}(z)$ denotes the digamma function,

$$
\begin{equation*}
\psi^{(1)}(z)=d \psi(z) / d z=d^{2}[\ln \Gamma(z)] / d z^{2} . \tag{233}
\end{equation*}
$$

In Table X we uncover numerically the alternating-sign
contributions to the asymptotics by subtracting the terms in Eq. (233) that come from $\left(\left.\Delta_{i} \beta\right|^{2 〕}\right)_{\text {ind }}$ (those involving the coefficients $\left.d^{(2](k)}\right)$. We truncate the partial sum after including the smallest term. Listed in Table X are the exact $\beta_{1}^{(N)}$, the k index of the last correction term included in the partial sum and the value of that term, the difference between the exact and asymptotic values-divided by

TABLE VII. Coefficients for the RSPT series, the induced $\Delta \beta^{[1]}$ series, and the induced $\Delta_{i} \beta^{(2)}$ series, as defined by Eqs. (24), (230), and (231) of the text, for the ($n_{1}=0, n_{2}=1, m=0$) excited state of β_{1}.

Order N	$\mathrm{B}_{1}^{(N)}$	Coefficient $d^{(1)(N)}$	$d^{(2)(N)}$
0	5. $0000000000000000000000000000 \times 10^{-1}$	1. $000000000000000000000000000 \times 10^{0}$	1. $000000000000000000000000000 \times 10^{0}$
1	-3. $0000000000000000000000000000 \times 100$	-1.60000 $000000000000000000000 \times 10^{1}$	$-3.00000000000000000000000000 \times 10$!
2	7.0000000000 $000000000000000000 \times 100$	-1. $10000000000000000000000000 \times 10{ }^{1}$	2. $36000000000000000000000000 \times 10^{2}$
3	7. $6000000000000000000000000000 \times 10 \frac{1}{2}$	3. $60000000000000000000000000 \times 101$	$-2.72000000000000000000000000 \times 10^{2}$
4	4. $7300000000000000000000000000 \times 10^{2}$	1.85900 $000000000000000000000 \times 10^{3}$	1. $15700000000000000000000000 \times 10^{3}$
5	2. $2040000000000000000000000000 \times 10^{3}$	-8. $10400000000000000000000000 \times 10^{3}$	-3. $33660000000000000000000000 \times 10 \frac{1}{5}$
6	2. $4542000000000000000000000000 \times 10^{4}$	$-7.32858000000000000000000000 \times 10^{5}$	-6. $07552000000000000000000000 \times 10^{5}$
?	5. $8821600000000000000000000000 \times 10^{5}$	-1. $53358160000000000000000000 \times 10$?	-6. $43637600000000000000000000 \times 10^{6}$
8	1. $1553445000000000000000000000 \times 10$?	$-2.63817193000000000000000000 \times 10^{8}$	$-9.46010890000000000000000000 \times 10$?
9	1. $9918609200000000000000000000 \times 10^{8}$	$-5.27898582400000000000000000 \times 10^{9}$	$-2.57506077000000000000000000 \times 10^{9}$
10	3. $5875316660000000000000000000 \times 109$	$-1.22518927194000000000000000 \times 10^{11}$	-6. $94628382920000000000000000 \times 10^{10}$
11	7. $1250304712000000000000000000 \times 10^{10}$	$-2.92458459192800000000000000 \times 10^{12}$	-1. $69282383715200000000000000 \times 10^{12}$
12	1. $5018807901860000000000000000 \times 10^{12}$	-7.0061238516 $1580000000000000 \times 10^{13}$	$-4.10705372222380000000000000 \times 10^{13}$
13	3. $2701982442136000000000000000 \times 10^{13}$	-1. $71634616866241600000000000 \times 10^{15}$	$-1.03799719068780400000000000 \times 10^{15}$
14	7. $3518387955935600000000000000 \times 10^{14}$	$-4.33566002993658280000000000 \times 10^{16}$	$-2.71321518547646560000000000 \times 10^{16}$
15	1. $7115782914666608000000000000 \times 10^{16}$	$-1.12642040942755707200000000 \times 10^{18}$	$-7.25861962525218640000000000 \times 10^{17}$
16	4. $1215716112318276500000000000 \times 10^{17}$	$-3.00212075865506315410000000 \times 10^{19}$	$-1.98571923750083026130000000 \times 10^{19}$
17	1. $0243470197199866060000000000 \times 10^{19}$	$-8.20472283707726474512000000 \times 10^{20}$	$-5.56286691442691807690000000 \times 10^{20}$
18	$2.6242497627200949453800000000 \times 10^{20}$	$-2.29954729765599355852900000 \times 10^{22}$	$-1.59637903743772953291320000 \times 10^{22}$
19	$6.9253854395741974431120000000 \times 10^{21}$	-6.60875 $163633243431188248000 \times 10^{23}$	$-4.69193482783925152204560000 \times 10^{23}$
20	1. $8815956375045659682675000000 \times 10^{23}$	$-1.94730332370355856981860660 \times 10^{25}$	$-1.41226029585502855237249140 \times 10^{25}$
21	5. $2606916904992377953628880000 \times 10^{24}$	$-5.88228086129639890851605968 \times 10^{26}$	$-4.35344245600900763297151012 \times 10^{26}$
22	1. $5129329457823331958977795600 \times 10^{26}$	$-1.82150559261304733772855230 \times 10^{28}$	-1. $37439967481756134582607235 \times 10^{28}$
23	$4.4741401342763426449553988720 \times 10^{27}$	$-5.78177824598332341812016891 \times 10^{29}$	$-4.44376846157629349221301420 \times 10^{29}$
24	1. $3601257090584486400387781443 \times 10^{29}$	$-1.88107218625176819988567124 \times 10^{31}$	$-1.47140894058324942865268668 \times 10^{31}$
25	4. $2491238126888534578773952599 \times 10^{30}$	-6. $27220108319437287878324475 \times 10^{32}$	$-4.98921950288365684990510929 \times 10^{32}$
26	1. $3637699128750673940701023402 \times 10^{32}$	$-2.14313977892907287061188734 \times 10^{34}$	-1. $73224483056236672198853882 \times 10^{34}$
27	4. $4954185682104554647263013143 \times 10^{33}$	-7. $50290318495731171342162493 \times 10^{35}$	-6. $15756997316326951537619302 \times 10^{35}$
28	1. $5214071592388789604567931230 \times 10^{35}$	$-2.69076144804705587220260245 \times 10^{37}$	-2. $24060220869618678737781863 \times 10^{37}$
29	5. $2846715512366678859575075701 \times 10^{36}$	$-9.88310795443396904507721811 \times 10^{38}$	-8. $34437940414419883888048520 \times 10^{38}$
30	1. $8833479843921609853904706216 \times 10^{38}$	$-3.71687226998092088735200857 \times 10^{40}$	$-3.17982749151424222242278428 \times 10^{40}$
31	6. $8836451840295762723656430660 \times 10^{39}$	$-1.43090214714064668397448124 \times 10^{42}$	$-1.23962091732993585986917135 \times 10^{42}$
32	$2.5793521900027663140931923341 \times 10^{41}$	-5. $63720308789520687404962198 \times 10^{43}$	$-4.94238357470574799400683393 \times 10^{43}$
33	9, $9044648234209721933880297117 \times 10^{42}$	$-2.27198066443349285026068321 \times 10^{45}$	$-2.01476803360326759953274647 \times 10^{45}$
34	3. $8958300598592789986166241170 \times 10^{44}$	$-9.36467563856893633564113837 \times 10^{46}$	-8. $39513277269862227360481693 \times 10^{46}$
35	1. $5690471125195238883098567601 \times 10^{46}$	$-3.94624226004020203825693508 \times 10^{48}$	$-3.57447582954680380449804186 \times 10^{48}$
36	6. $4678004383221776098323330043 \times 10^{47}$	$-1.69953688150550844788492972 \times 10^{50}$	$-1.55469300237769661790988489 \times 10^{50}$
37	2. $7275958567267696557605805592 \times 10^{49}$	$-7.17798705439488003838198885 \times 10^{51}$	-6. $90538067522100136018409121 \times 10^{51}$
38	1. $1763209503680743393305565329 \times 10^{51}$	-3. $36044891394903158016250384 \times 10^{53}$	$-3.13114764178438112889930592 \times 10^{53}$
39	5. $1858022925690769915289133741 \times 10^{52}$	$-1.54176772153758087487550898 \times 10^{55}$	$-1.44895369748078721752553376 \times 10^{55}$
40	2. $3360129832885403468603844720 \times 10^{54}$	$-7.21943041997617271275617866 \times 10^{56}$	-6. $84074127540270637451188264 \times 10^{56}$
41	$1.0748107355188881028639238594 \times 10^{56}$	$-3.44907939954549355225136720 \times 10^{58}$	$-3.29392186264432164684199582 \times 10^{58}$
42	$5.0491498739457641911411397049 \times 10^{57}$	$-1.68064525375166322973953162 \times 10^{60}$	$-1.61714970030186359069865539 \times 10^{60}$
43	2. $1208625611746349347928437857 \times 10^{59}$	$-8.34988168233392262150650139 \times 10^{61}$	-8. $09247195119796751152596993 \times 10^{61}$
44	1. $1842076673220648933655536184 \times 10^{61}$	-4. $22841410064276441662881911 \times 10^{63}$	-4. $12644100651837508391533434 \times 10^{63}$
45	5. $9079385637451492475304073134 \times 10^{62}$	$-2.18188584414565368791988083 \times 10^{65}$	-2. $14341032559813749274173189 \times 10^{65}$
46	3. $0049912592942260857401435798 \times 10^{66}$	$-1.14686223692125527935704893 \times 10^{67}$	-1. $13382107368329968910784157 \times 10^{67}$
47	1. $5577674229435481070553484823 \times 10^{66}$	-6. $13883066552423974139486677 \times 10^{68}$	-6. $10618770927613744056963166 \times 10^{88}$
48	8. $2275664307514138285465427712 \times 10^{67}$	$-3.34525152678443760764351246 \times 10^{70}$	-3. $34704654247281514960392102 \times 10^{70}$
49	4. $4259946484797620881337494638 \times 100^{69}$	$-1.85531334662201711678583377 \times 10^{72}$	$-1.86681626598155741120725479 \times 1072$
50	$2.4243003916440250526453488183 \times 10^{71}$	$-1.04696182923176977372329741 \times 10^{74}$	$-1.05919172116375751686527250 \times 10^{74}$
51	1. $3516595277133100983994743745 \times 10^{73}$	$-6.00969285368876300572361910 \times 10^{75}$	-6. $111789685560953941313768033 \times 10^{75}$

the leading asymptotic term (called the relative asymptotic error in the table), and the relative asymptotic error after taking account of one, two, and three terms from the alternating-sign asymptotic formula. These quantities are listed for various orders, up to order 150.

Notice that for the ground state the residual remaining after subtraction of the same-sign terms is alternating in sign after order $N=32$, and that it has relative magnitude
10^{-10} at order 150 -which is small compared to unity, but large compared with the corresponding relative residual for $\beta_{2}^{(N)}$, which at order 110 is already less than 10^{-30}. The first alternating-sign asymptotic contribution significantly overcompensates, but by the third alternating-sign contribution the relative error has dropped by a factor of 10^{-3} at $N=150$ (see Table X).

For the excited states, the threshold for alternation is

TABLE VIII. Coefficients for the RSPT series, the induced $\left.\Delta \beta\right|^{1]}$ series, and the induced $\left.\Delta_{i} \beta\right|^{[2]}$ series, as defined by Eqs. (24), (230), and (231) of the text, for the ($n_{1}=0, n_{2}=0, m=1$) excited state of β_{1}.

Order N	$\theta_{1}^{(N)}$	Coefficient $d^{(1)(N)}$	$d^{(2)(N)}$
0	1.0000000000 $000000000000000000 \times 100$	1. $0000000000000000000000000000 \times 10^{0}$	1. $0000000000000000000000000000 \times 10^{0}$
1	$-6.0000000000000000000000000000 \times 10^{0}$	$-9,0000000000000000000000000000 \times 100$	-1. $50000000000000000009000000000 \times 10^{1}$
2	2. $0000000000000000000000000000 \times 101$	$-3.6000000000000000000000000000 \times 10 \frac{1}{1}$	1.40000 $00000000000000000000000 \times 10!$
3	7.20000 $00000000000000000000000 \times 10 \frac{1}{2}$	1. $6800000000000000000000000000 \times 10{ }^{2}$	3. $72000000000000000000000000000 \times 10$?
4	$-2,9800000000000000000000000000 \times 10^{2}$	2.88400 $00000000000000000000000 \times 10^{3}$	1. $9680000000000000000000000.000 \times 10^{3}$
5	$-2,9760000000000000000000000000 \times 10^{3}$	$-1.6716000000000000000000000000 \times 10{ }^{4}$	$-3.152000000000000000900000900 \times 10^{-4}$
6	2.4640000000 $000000000000000000 \times 10 \frac{1}{1}$	$-4.6520000000000000000000000000 \times 10^{5}$	$-3,87488000000000000000000000000 \times 10^{5}$
7	3. $7171200000000000000000000000 \times 10{ }^{5}$	$-8,3928000000000000000000000000 \times 10$?	1. $6639680000000000000000000000 \times 10^{5}$
8	-2.2576000000 $000000000000000000 \times 10{ }^{5}$	2. $1801312000000000000000000000 \times 10$?	2. $1155952000000000000000000000 \times 10$?
9	$-1.2784896000000000000000000000 \times 10$?	-4, 17311 $71200000000000000000000 \times 10^{8}$	$-6.01960368000000000000000000000 \times 108$
10	3. $3775398400000000000000000000 \times 10^{8}$	-1.20159 $12192000000000000000000 \times 10^{10}$	-1. $07949720000000000000000008000 \times 10^{10}$
11	6. $2920780800000000000000000000 \times 10^{9}$	-1. $1105441817600000000000000000 \times 10^{11}$	$-6.1792347840000000000000060 .000 \times 10^{10}$
12	4. $4503553024000000000000000000 \times 10^{10}$	$-1.1946642764160000000000000000 \times 10^{12}$	-1. $24621594828800000000000000000 \times 10^{12}$
13	7. $1541832089600000000000000000 \times 10^{11}$	$-4.4842116789696000000000000000 \times 10^{13}$	$-4.15028219040000000000000000000 \times 10^{13}$
14	2. $0391195740180000000000000000 \times 10^{13}$	$-9.8322835735528400000000000000 \times 10^{14}$	$-9.0075633791334400000000000000 \times 10^{14}$
15	3. $9159765915648000000000000000 \times 10^{14}$	-1. $8569224673257728000000000000 \times 10^{16}$	$-1.67195750066365440000000000000 \times 10^{16}$
16	6. $9632220405089280000000000000 \times 11^{15}$	-4. $0146436322762700800000000000 \times 10^{17}$	$-3.8076986293014681600000000000 \times 10^{17}$
17	1. $4660553194986291200000000000 \times 10^{17}$	$-9.4601245723679892480000000000 \times 10^{18}$	$-9.1700367331940490240000000000 \times 10^{18}$
18	3. $2927211924033064960000000000 \times 10^{18}$	$-2.2332058433099753676800000000 \times 10^{20}$	$-2.1766935595900260864000009000 \times 10^{20}$
19	7. $1073032159323054080000000000 \times 10^{19}$	-5. $4035214885936957726720000000 \times 10^{21}$	$-5.3357267800958790266880000000 \times 10^{21}$
20	1. $7256116432823051591680000000 \times 10^{21}$	$-1.3643779028232784374374400000 \times 10^{23}$	$-1.3671090561579531629990400000 \times 10^{23}$
21	4. $2088066125036932235284000000 \times 10^{22}$	-3.5677147632 $053469246689280000 \times 10^{24}$	$-3.6169468087312438695567360000 \times 10^{24}$
22	1. $06438880878573077065584160000 \times 10^{24}$	-9. $6236370434662917238366208000 \times 10^{25}$	$-9,8602961822997130832855040000 \times 10^{25}$
23	$2.7839313703712001105002496000 \times 10^{25}$	-2. $8808998759507882260589199360 \times 10^{27}$	-2. $7751847502255930451145687040 \times 10^{27}$
24	$7.5385200041683398733786316800 \times 10^{26}$	$-7.7119572340424728431497265152 \times 10^{28}$	$-8.06032898094826083524 .83905536 \times 10^{28}$
25	2. $1119876904889109950867046400 \times 10^{28}$	-2. $2886133721355425399410402755 \times 10^{30}$	$-2.41344415370035281655600851176 \times 10^{30}$
26	6. $1146465872553234068339523584 \times 10^{29}$	-7. $0017066012658452603853523976 \times 10^{31}$	$-7.4455557545580285101101329211 \times 10^{31}$
27	1. $8279798604626158802255010857 \times 10^{31}$	$-2.2070093799042383976951855376 \times 10^{33}$	$-2.3653772213613031913205487849 \times 10^{33}$
28	5.6385203259 $919470524764528640 \times 10^{32}$	$-7.1629943060342012892977653586 \times 10^{34}$	$-7.7336048341224014535656815643 \times 10^{34}$
29	1. $7931247384820915226265275347 \times 10^{34}$	$-2.3921716874592055196991700407 \times 10^{36}$	$-2,6006125445472911237187170248 \times 10^{36}$
30	5. $8745148992967682319489954723 \times 10^{35}$	$-8.2152555000346532754043155874 \times 10^{37}$	$-8.9892026054140450947112333781 \times 10^{37}$
31	1. $9811932373639985812155427092 \times 10^{37}$	$-2.8994092932465047644102995823 \times 10^{39}$	$-3.1919892003638302704895663 .515 \times 10^{39}$
32	$6.8732520735844203529402226527 \times 10^{38}$	$-1.0509734607026304499205085627 \times 10^{41}$	-1. $1637061845899772761121056789 \times 10^{41}$
33	$2.4511834082975539532488815077 \times 10^{40}$	$-3.9102847723827269221739085849 \times 10^{42}$	-4. $3533085697954948205468953708 \times 10^{42}$
34	8. $9799882196759695562382117975 \times 10^{41}$	$-1.4924759671910284785501526589 \times 10^{44}$	$-1.6701229776376491297813267411 \times 10^{44}$
35	3. $3773910182518185588008871467 \times 10^{43}$	$-5.8404204860896660999973313866 \times 10^{45}$	-6. $5674330633077982770463949694 \times 10^{45}$
36	1. $3032341503406177179317227595 \times 10^{45}$	$-2.3419733079608155842188893972 \times 10^{47}$	$-2.6456552721494391763161585426 \times 10^{47}$
37	5. $1563155948308725629921925933 \times 10^{46}$	$-9.6181574995369748879425465360 \times 10^{48}$	$-1.0912906998019089229509961828 \times 10^{49}$
38	$2.0906582562587455051557167087 \times 10^{48}$	-4. $0434564385169726529003940175 \times 10^{50}$	-4. $6088437915848835439605309551 \times 10^{50}$
39	8. $6818752142233071118362797430 \times 10^{49}$	$-1.7392060891881141314490475746 \times 10^{52}$	$-1.9893699758474392765231344784 \times 10^{52}$
40	3. $6906326675180060020860429351 \times 10^{51}$	$-7,6503379882364030079115754417 \times 10^{53}$	-8. $7836846027076495305663673097 \times 10^{53}$
41	1. $6051805749195667500647462211 \times 10^{53}$	-3. $4398747287250570762464147698 \times 10^{55}$	$-3.9636359968507183933807890250 \times 10^{55}$
42	7. $1395355081812245679512009987 \times 10^{54}$	$-1.5803205317544834736557341989 \times 10^{57}$	$-1.8271740290188094722651926710 \times 10^{57}$
43	3. $2458995781170388542561729472 \times 10^{56}$	$-7.4148632510730201338505689433 \times 10^{58}$	-8. $6011147974092533799368754721 \times 10^{58}$
44	1. $5077270549537037300542506269 \times 10^{58}$	$-3.5517128658386172452302337713 \times 10^{60}$	-4.13279 53435 $361427158433200534 \times 10^{60}$
45	7. $1522704422623878230278905417 \times 10^{59}$	-1.7361083886 $305735672454188635 \times 10^{62}$	$-2.0261840080466763464715810363 \times 10^{62}$
46	3. $4635127027925175256883207133 \times 10^{61}$	-8. $6567248881419914985313887812 \times 10^{63}$	-1. $0132038574825717690811816640 \times 10^{64}$
17	4. $7114575733997029056451859238 \times 10^{63}$	-4. $4015674704320624224123152691 \times 10^{65}$	-5. $1658323267771311855099552836 \times 10^{65}$
48	8. $6262734972232107839048989304 \times 10^{64}$	$-2.2813019298158587420394559384 \times 10^{67}$	$-2.6844606615278100125047682301 \times 10^{67}$
49	4. $4332820579386997057793143863 \times 10^{66}$	-1. $2048408918786083606666226948 \times 10^{69}$	$-1.4213458961007713242547094578 \times 10^{69}$
50	2. $3222857781674408130876905700 \times 10^{688}$	-6. $4819904733540020592680356188 \times 10^{70}$	$-7.6852446235737620083494081407 \times 10^{70}$
51	1. $2394899484140939166414728722 \times 10^{70}$	$-3.5510959039007317799557258289 \times 10^{72}$	-4. $2091833669925152403037021756 \times 10^{72}$

pushed higher to $N=38$ for $(1,0,0), N=67$ for $(0,0,1)$, and $N=112$ for ($0,1,0$). For ($1,0,0$) the alternating-sign contribution is moderately larger than for the ground state-a consequence of the increased value of n_{1}. For $(0,0,1)$ and ($0,1,0$), the alternating-sign contribution is significantly smaller, which is a consequence of the dependence on \boldsymbol{n}_{2} and m that bring it down from the same-sign contribution
by a factor of $N^{-8 n_{2}-4 m-5}$. Thus, for $(0,1,0)$ the alternating-sign contribution is $\sim-10^{-25}$ versus $\sim-10^{-10}$ for the ground state.

Comparison of Table X with Table IV reveals clearly that the $\beta_{1}^{(N)}$ becomes asymptotic much more slowly than the $\beta_{2}^{(N)}$.

TABLE IX. Coefficients $A\left(n_{1}, n_{2}, m\right), B\left(n_{1}, n_{2}, m\right), C\left(n_{1}, n_{2}, m\right)$, and $D\left(n_{1}, n_{2}, m\right)$ for the alternating-sign contributions to the asymptotics of $\beta_{1}^{(N)}$, as in Eq. (232), and to the asymptotics of $E^{(N)}$, as in Eq. (236).

n_{1}	n_{2}	m	$A\left(n_{1}, n_{2}, m\right)$	$B\left(n_{1}, n_{2}, m\right)$	$C\left(n_{1}, n_{2}, m\right)$	$D\left(n_{1}, n_{2}, m\right)$
0	0	0	$B 3$	-120	243	-184
1	0	0	2983	-2656	6179	-3680
0	1	0	$7459 / 9$	$-4960 / 3$	$22039 / 9$	$-7264 / 3$
0	0	1	2060	$-6848 / 3$	$13492 / 3$	$-9536 / 3$

X. NUMERICAL CHARACTERIZATION OF THE ENERGY SERIES

The asymptotics of the RSPT coefficients $E^{(N)}$ for the energy are similar to those for the $\beta_{1}^{(N)}$: again there is an alternating-sign contribution down several powers of N from the dominant same-sign contribution [cf. Eq. (199)]. First we list in Tables XI-XIV the terms of the RSPT series, the exponentially small gap series $\Delta E^{[1]}$, and the doubly-exponentially-small imaginary series $\Delta_{i} E^{\{2\}}$, all through fifty-first order in $(2 R / n)^{-1}$, for the ground state ($n_{1}=n_{2}=m=0$) and for the three $n=2$ excited states for which n_{1}, n_{2}, and m are $(1,0,0)$, and $(0,1,0)$ and $(0,0,1)$. We use the notation $C^{\{1\}(N)}$ and $C^{\{2\}(N)}$ for the series coefficients for the two exponentially small quantities, according to [cf. Eqs. (176) and (179)]
$\Delta E^{[1]}= \pm \frac{(2 R / n)^{2 \beta_{2}^{(0)}} e^{-R / n-n}}{n^{3} n_{2}!\left(n_{2}+m\right)!} \sum_{N=0}^{\infty} C^{(1)(N)}(2 R / n)^{-N}$,

$$
\begin{align*}
& \Delta_{i} E^{[2]}=\mp \pi \frac{(2 R / n)^{4 \theta_{2}^{(0)}} e^{-2 R / n-2 n}}{n^{3}\left[n_{2}!\left(n_{2}+m\right)!\right]^{2}} \\
& \times \sum_{N=0}^{\infty} C^{[2](N)}(2 R / n)^{-N}(\pm \operatorname{Im} R \geq 0) \tag{235}
\end{align*}
$$

As for β_{1} and β_{2}, the coefficients are estimated to be accurate to the precision reported [29 digits for ($\left.n_{1}, n_{2}, m\right)=(0,0,0),(1,0,0)$, and $(0,0,1)$, and 27 digits for $(0,1,0)]$. We call the reader's attention to the sign pattern, which settles down quickly to uniform minus signs for the ground state and two of the excited states, but which is quite irregular until after twenty-seventh order for the $(1,0,0)$ state.

The asymptotics of the $E^{(N)}$ have two contributions, as did the $\beta_{1}^{(N)}$. In the notation of Eq. (235), Eq. (199) becomes

$$
\begin{align*}
E^{(N)} \sim & -\frac{e^{-2 n}\left(N+4 n_{2}+2 m+1\right)!}{n^{3}\left(n_{2}!\right)^{2}\left[\left(n_{2}+m\right)!\right]^{2}}\left[1+\frac{C^{\{2](1)}}{N+4 n_{2}+2 m+1}+\frac{C^{2}}{\left(N+4 n_{2}+2 m+1\right)\left(N+4 n_{2}+2 m\right)}+\cdots\right) \\
& +(-1)^{m+N-1} e^{2 n} 16 n \frac{\left(n_{1}+2 n_{2}+2 m+1\right)!\left(n_{1}+2 n_{2}+m+1\right)!}{n_{1}!\left(n_{1}+m\right)!}\left(N-4 n_{2}-2 m-5\right)! \\
& \times\left(1+\frac{12 n^{2}-12\left(\beta_{2}^{(0)}\right)^{2}+m^{2}-1+12 n-12 \beta_{2}^{(0)}-4 n B_{2}^{(0)}}{N-4 n_{2}-2 m-5}\right. \\
& -\frac{4 n^{2}\left[2 \psi\left(N-4 n_{2}-2 m-5\right)-\psi\left(n_{1}+2 n_{2}+2 m+2\right)-\psi\left(n_{1}+2 n_{2}+m+2\right)\right]}{N-4 n_{2}-2 m-5} \\
& +\frac{C\left(n_{1}, n_{2}, m\right)+8 \pi^{2} n^{4} / 3+D\left(n_{1}, n_{2}, m\right)\left[\psi\left(N-4 n_{2}-2 m-6\right)-\psi(1)\right]}{\left(N-4 n_{2}-2 m-5\right)\left(N-4 n_{2}-2 m-6\right)} \\
& \left.+32 n^{4} \frac{\left[\psi\left(N-4 n_{2}-2 m-6\right)-\psi(1)\right]^{2}+\left[\psi^{(1)}\left(N-4 n_{2}-2 m-6\right)-\psi^{(1)}(1)\right]}{\left(N-4 n_{2}-2 m-5\right)\left(N-4 n_{2}-2 m-6\right)}+O\left(N^{-3}(\ln N)^{3}\right)\right], \tag{236}
\end{align*}
$$

where the coefficients $C\left(n_{1}, n_{2}, m\right)$ and $D\left(n_{1}, n_{2}, m\right)$ are independent of N. The first few are listed in Table IX.

In Table XV we uncover numerically the alternatingsign contributions to the asymptotics by subtracting the terms in Eq. (236) that come from $\Delta_{i} E^{[2]}$ (those involving
the coefficients $C^{[2](k)}$. We truncate the partial sum after including the smallest term. Listed in Table XV are the exact $E^{(N)}$, the k index of the last correction term included in the partial sum and the value of that term, the difference between the exact and asymptotic values-

TABLE X. Asymptotic analysis of the RSPT $\beta_{1}^{(N)}$. The dominant, same-sign subseries in the asymptotic formula (232) of the text is truncated with the inclusion of the smallest term, whose index has been indicated by $k_{\min }$. The relative asymptotic error refers to the difference between the exact coefficient $\beta_{1}^{(N)}$ and the asymptotic formula to the indicated number of terms, divided by the leading asymptotic term, which is $\left(4 n_{1}+2 m+2\right)\left(N+4 n_{2}+2 m\right)!/\left(n_{2}!\right)^{2}\left[\left(n_{2}+m\right)!\right]^{2}$. For sufficiently large N, the relative asymptotic error, after accounting for the same-sign subseries, is alternating in sign. The effect of the alternating-sign subseries is seen through the inclusion of up to three terms.

Ground state: $n_{1}=0, n_{2}=0, m=0$

30	4. $2048495981434375285690821189 \times 1032$
31	1. $3148283626146891687939208591 \times 10^{34}$
32	4. $2413603481221801499727011495 \times 1035$
33	1. $4102446206913394962117275387 \times 10{ }^{37}$
34	4. $8280238503081252955331706145 \times 1038$
35	1. $7008593393951202780601785581 \times 1040$
36	6. $1606145090622916741763524285 \times 1041$
37	2. $2925443917846025435691615649 \times 10^{43}$
38	8. $7588313712371311112590672419 \times 10^{44}$
39	3. $4333761289942634089250487074 \times 1046$
40	1. $3799671455776791078776135778 \times 1048$
45	2. $0651055699125214080436906726 \times 10^{56}$
60	1. $4944030280940801695706185790 \times 10{ }^{82}$
75	4. $5783163582144245969534188535 \times 10^{109}$
90	2. $7705711141956509420364577899 \times 10^{138}$
105	$2.0377132634969223035918117521 \times 10^{168}$
120	1. $2702942073707474676241761449 \times 10^{199}$
135	5. $1395202223017061676056611113 \times 10^{230}$
150	1. $0965773249781896480540729875 \times 10^{263}$

35	4. $6352795548817034210757979025 \times 10^{40}$
36	1. $6839718149950615493841790695 \times 1042$
37	6. $2841368274686552987369117033 \times 10^{43}$
38	2.40732626249512158317 30959517×10^{45}
39	9. $1603767189734539827012648060 \times 10{ }^{46}$
40	3. $8114949519097010249576615853 \times 10^{48}$
41	1. $5734044239917491182505650717 \times 1050$
42	6. $6511523979408727258932947434 \times 10$
43	$2.8776016315266585513753854547 \times 10$
44	1. $2735517426991607992599461395 \times 1055$
45	5. $7628884684978282132399269039 \times 10^{56}$
60	4. $2546921649341958317233508800 \times 10^{82}$
75	1.31285 $333149155881717738410795 \times 10^{110}$
90	8. $039181897655494353588001877827 \times 10^{138}$
105	5. $9433814608722947326941028217 \times 10^{168}$
120	3. $7191615533213280591828739902 \times 10^{199}$
135	1. $5091232797308654919488339840 \times 10^{231}$
150	3. $2272761757736139964039047709 \times 10^{263}$

4. $2048495981434375285690821189 \times 1032$ 1. $3148283626146891687939208591 \times 1034$ 4. $2413603481221801499727011495 \times 1035$ 1. $4101446206913394962117275387 \times 1037$ 1. $7008593393951202780601785581 \times 1040$ 6. $1606145090622916741763524285 \times 1041$ 2. $2925443917846025435691615649 \times 1043$ 8. $7588313712371311112590672419 \times 10^{44}$ 3. $4333761289942634089250487074 \times 1046$
5. $0651055699125214080436906726 \times 10^{56}$ 1. $4944030280940801695706185790 \times 1082$ 2. $7705711141956509420364577899 \times 10^{138}$ $2.0377132634969223035918117521 \times 10^{168}$ 1. $2702942073707474676241761449 \times 10^{299}$ 1. $0965773249781896480540729875 \times 10^{263}$

Excited state: $n_{1}=1, n_{2}=0, m=0$

21	1.0×10^{-7}	6.0×10^{-6}
21	4.2×10^{-8}	1.3×10^{-5}
21	1.8×10^{-8}	-3.3×10^{-6}
21	8.1×10^{-9}	-8.9×10^{-7}
21	3.7×10^{-9}	6.9×10^{-7}
21	1.8×10^{-9}	-1.7×10^{-7}
21	8.6×10^{-10}	9.1×10^{-8}
21	1.3×10^{-10}	-1.2×10^{-7}
21	2.2×10^{-10}	1.3×10^{-7}
21	1.2×10^{-10}	-1.2×10^{-7}
21	6.2×10^{-11}	1.1×10^{-7}
29	5.0×10^{-15}	-4.7×10^{-8}
37	2.5×10^{-19}	2.1×10^{-9}
41	1.1×10^{-23}	-1.0×10^{-8}
51	4.7×10^{-28}	5.3×10^{-9}
51	5.7×10^{-32}	-3.0×10^{-9}
51	2.7×10^{-35}	1.8×10^{-9}
51	3.6×10^{-38}	-1.1×10^{-9}

Excited state: $n_{1}=0, n_{2}=1, m=0$

-4.3×10^{-24}	-2.3×10^{-23}
-2.0×10^{-23}	-3.5×10^{-24}
3.4×10^{-24}	-1.1×10^{-23}
-1.2×10^{-23}	1.4×10^{-24}
5.2×10^{-24}	-6.4×10^{-24}
-7.7×10^{-24}	2.6×10^{-24}
5.0×10^{-24}	-4.1×10^{-24}
-5.5×10^{-24}	2.5×10^{-24}
4.3×10^{-24}	-2.8×10^{-24}

-1.4×10^{-23}
-1.2×10^{-23}
-4.3×10^{-24}
-5.0×10^{-24}
-8.1×10^{-25}
-2.3×10^{-24}
2.6×10^{-25}
-1.3×10^{-24}
5.1×10^{-25}

TABLE X. (Continued).

K	$8_{1}^{(N)}$ (exact)	same-sign subseries			alternating-sign subseries		
			smallest	relative asymptotic	relative as sion of ter	throut	$\begin{aligned} & \text { fter inclu- } \\ & \text { (in } \mathrm{N}^{-1} \end{aligned}$
		$\mathrm{k}_{\text {min }}$	term	error	,	,	,
119	1.87460 $86416422659446030816980 \times 10^{205}$	51	3.1×10^{-26}	1.8×10^{-24}	-4.2×10^{-24}	2.2×10^{-24}	-8.1 $\times 10^{-25}$
120	2. $3298862305672450007998391415 \times 10^{207}$	51	1.8×10^{-26}	-1.9×10^{-24}	3.5×10^{-24}	-2.1×10^{-24}	5.0×10^{-25}
125	7.77622 $45330151263298158236992 \times 10^{217}$	51	1.4×10^{-27}	1.1×10^{-24}	-2.1×10^{-24}	1.1×10^{-24}	-3.2×10^{-25}
130	3. $1458546826642921624259039798 \times 10^{228}$	51	1.2×10^{-28}	-6.6 $\times 10^{-25}$	1.2×10^{-24}	-6.3×10^{-25}	1.7×10^{-25}
135	1. $5315439326784694244490862477 \times 10^{239}$	51	1.2×10^{-29}	4.2×10^{-25}	-7.2×10^{-25}	3.7×10^{-25}	-9.7×10^{-25}
140	$8.9141776528465131885883709809 \times 10^{249}$	51	1.3×10^{-30}	-2.7×10^{-25}	4.4×10^{-25}	-2.2×10^{-25}	5.6×10^{-26}
145	6. $1649521436769179432195285938 \times 10^{260}$	51	1.5×10^{-31}	1.7×10^{-25}	-2.7×10^{-25}	1.3×10^{-25}	-3.3 $\times 10^{-26}$
150	5. $0371689816452497332818252223 \times 10^{271}$	51	2.0×10^{-32}	-1.1×10^{-25}	1.7×10^{-25}	- 7.9×10^{-26}	2.0×10^{-26}
Excited state: $n_{1}=0, n_{2}=0, m=1$							
65	1. $1388500590216543044969843011 \times 10^{95}$	31	3.3×10^{-14}	-4.2×10^{-14}	7.3×10^{-15}	-6.0 $\times 10^{-14}$	-3.0×10^{-14}
66	7. $7753143019458272947589791639 \times 1096$	32	1.7×10^{-14}	-1.0×10^{-15}	-4.4×10^{-14}	1.4×10^{-14}	-1.2×10^{-14}
67	5. $3858479493228527430815564229 \times 10{ }^{98}$	32	9.4×10^{-15}	-1.7×10^{-14}	2.0×10^{-14}	-2.9×10^{-14}	-7.3×10^{-15}
68	3. $7843066855260252981908827997 \times 10^{100}$	33	5.0×10^{-15}	3.7×10^{-15}	-2.9×10^{-14}	1.4×10^{-14}	-4.9 $\times 10^{-15}$
69	$2.6966740945687165206362962081 \times 10^{102}$	33	2.7×10^{-15}	-8.6×10^{-15}	2.0×10^{-14}	-1.7×10^{-14}	-9.4×10^{-15}
70	1.9484830612013372834591680 476×10^{104}	34	1.4×10^{-15}	4.3×10^{-15}	-2.1×10^{-14}	1.2 $\times 10^{-14}$	-2.5×10^{-15}
71	1. $1272801030142659699599307339 \times 10^{106}$	34	7.6×10^{-16}	-5.5×10^{-15}	1.6×10^{-14}	-1.2 $\times 10^{-14}$	6.5×10^{-16}
72	1, $0597092346330301925182579320 \times 10^{108}$	35	4.0×10^{-16}	3.9×10^{-15}	-1.5×10^{-14}	9.0×10^{-15}	-1.5×10^{-15}
73	7,97355 $05617870221824221594741 \times 10^{109}$	35	2.2×10^{-16}	-4.0×10^{-15}	1.3×10^{-14}	-8.3×10^{-15}	9.0×10^{-16}
74	6. $0789546016113561650676649181 \times 10^{111}$	36	1.1 $\times 10^{-16}$	3.3×10^{-15}	-1.2×10^{-14}	6.9×10^{-15}	-1.1×10^{-15}
75	4. $6950980519055350339801084668 \times 10^{113}$	36	6.1×10^{-17}	-3.1×10^{-15}	1.0×10^{-14}	- 0.1×10^{-15}	8.2×10^{-16}
90	4. $1750547693532327805913419611 \times 10^{142}$	41	4.1×10^{-21}	7.0×10^{-16}	-1.7×10^{-15}	9.1×10^{-16}	-1.5×10^{-16}
105	4. $2259642190255801126806350781 \times 10^{172}$	51	2.4×10^{-25}	-2.0×10^{-16}	3.9×10^{-16}	-1.8×10^{-16}	3.1×10^{-17}
120	3. $1689663375287810872493612405 \times 10^{203}$	51	3.6×10^{-29}	6.5×10^{-17}	-1.1×10^{-16}	4.6×10^{-17}	-7.6×10^{-18}
135	1. $7874261945403568767007584213 \times 10^{235}$	51	2.0×10^{-32}	-2.4×10^{-17}		-1.3×10^{-17}	
150	4. $7314948064786788108848155313 \times 10^{267}$	51	3.0×10^{-35}	1.0×10^{-17}	-1.3×10^{-17}	4.5×10^{-18}	-7.0×10^{-19}

divided by the leading asymptotic term (called the relative asymptotic error in the table), and the relative asymptotic error after taking account of one, two, and three terms from the alternating-sign asymptotic formula. These quantities are listed for various orders, up to order 150.

Notice that for the ground state the residual remaining after subtraction of the same-sign terms is alternating in sign after order $N=25$, and that it has relative magnitude 7×10^{-11} at order 150 -which is small compared to unity, but large compared with the corresponding relative residual for $\beta_{2}^{(N)}$, which at order 110 is already less than 10^{-30}. The first alternating-sign asymptotic contribution significantly overcompensates, but by the third alternating-sign contribution the relative error has dropped by a factor of 10^{-4} at $N=150$ (see Table XV).

For the excited states, the threshold for alternation is pushed higher to $N=39$ for ($1,0,0$), $N=50$ for $(0,0,1)$, and $N=93$ for ($0,1,0$). For ($1,0,0$) the alternating-sign contribution is significantly larger than for the ground state-a consequence of the increased value of n_{1}. For $(0,0,1)$ and $(0,1,0)$, the alternating-sign contribution is significantly smaller, which is a consequence of the dependence on n_{2} and m that brings it down from the same-sign contribution by a factor of $N^{-8 n_{2}-4 m-6}$. Thus, for $(0,1,0)$ the alternating-sign contribution is $\sim 5 \times 10^{-24}$, versus $\sim 7 \times 10^{-11}$ for the ground state.

Comparison of Table XV with Tables IV and X reveals clearly that like the $\beta_{1}^{(N)}$, the $E^{(N)}$ become asymptotic
much more slowly than the $\beta_{2}^{(N)}$.
It is of some interest to turn to an observation made in Ref. 13, that the "Neville table" for the ground-state $E^{(N)}$ seems to converge in a zigzag fashion, ${ }^{12}$ and that much better convergence is obtained by treating the even and odd terms separately. An aim of that study was to confirm the asymptotic behavior, $E^{(N)} \sim-e^{-2 n}(N+1)$!. The Neville table for the quantities a_{N} is the matrix, defined recursively with $a_{N}^{0}=a_{N}$,

$$
\begin{equation*}
a_{N}^{k}=\left[N a_{N}^{k-1}-(N-k) a_{N-1}^{k-1}\right] / k \tag{237}
\end{equation*}
$$

If a_{N} is given asymptotically by the expression

$$
\begin{align*}
a_{N} \sim & 1+A / N+B /[N(N-1)] \\
& +C /[N(N-1)(N-2)]+\cdots \tag{238}
\end{align*}
$$

then the difference between each entry and unity, $a_{N}^{k}-1$, approaches 0 as N^{-k-1}. If, however, a_{N} has additional terms, say of the form

$$
(-1)^{N} D /[N(N-1)(N-2)(N-3)(N-4)(N-5)]
$$

as is the case for $E^{(N)}$ for the ground state, then the entry a_{N}^{k} has an alternating-sign contribution proportional to N^{k-6}. That is, the difference with unity has an alternating-sign contribution that grows with k. This is the explanation of alternation phenomenon observed in Ref. 13. If the alternating-sign contribution could be eliminated, then the Neville table should converge more

TABLE XI. Coefficients for the RSPT series, the $\Delta E^{[1]}$ series, and the $\Delta_{i} E^{[2]}$ series, as defined by Eqs. (166), (234), and (235) of the text, for the ($n_{1}=0, n_{2}=0, m=0$) ground state of $\mathrm{H}_{2}{ }^{+}$.

Order N	$E^{(N)}$	Coefficient $C^{(1)(N)}$	$e^{(2)(N)}$
0	$-5.0000000000000000000000000000 \times 10^{-1}$	1. $00000000000000000000000000000 \times 10^{0}$	1. $000000000000000000000000000000 \times 10^{0}$
1	$-2.0090000000000000000000000000 \times 100$	1. $0000000000000000000000000000 \times 10^{0}$	2. $00000000000000000000000000000 \times 100$
2	Q. $000000000000000000000000000000 \times 100$	$-1.2500000000000000000000000000 \times 10^{1}$	$-1.8000000000000000000000000000 \times 10^{1}$
3	0. $0000000000000000000000000000 \times 10$	-2. $18333333333333333333333333333 \times 10{ }^{1}$	-6. $1666666666666666666656666667 \times 10 \frac{1}{2}$
1	$-3.6000000000000000000000000000 \times 10^{2}$	-1. $634583333333333333333333333333 \times 10{ }^{2}$	-1.40333 $33333333333333333333333 \times 10^{2}$
5	0. $0000000000000000000000000000 \times 100$	-1. $21165833333333333333333333333 \times 10^{3}$	$-1.5244000000000000000000000000 \times 10^{3}$
6	-4. $8000000000000000000000000000 \times 10$?	$-7.2488736111111111111111111111 \times 10^{3}$	-1. $2482577777777777777777777778 \times 10^{4}$
?	$-6.8160000000000000000000000000 \times 10{ }^{3}$	$-1.0101248313492083492063492063 \times 10^{5}$	$-1.2466530793650793650793650794 \times 10^{5}$
8	$-3.1020000000000000000000000000 \times 10^{4}$	-9, $3624850969742063492063492063 \times 10^{5}$	$-1,3238727047619047619047619048 \times 10^{6}$
9	$-4.5388800000000000000000000000 \times 10^{5}$	-1. $0333047428965498236331569865 \times 10$?	$-1.4806678106525573192239858907 \times 10$?
10	$-5.4245760000000000000000000000 \times 10^{6}$	-1. $3965281569238563712522045855 \times 10^{88}$	-1.906139275870194 $0035273368607 \times 10^{8}$
11	$-5.9503988000000000000000000000 \times 10$?	-1. $7884865467990685375581208915 \times 10{ }^{9}$	-2, $5208744293932467532467532168 \times 10^{9}$
12	$-8.3820520800000000000000000000 \times 10^{8}$	$-2.5675096449211800868723611779 \times 10^{10}$	$-3.5970402597825388274277163166 \times 10^{10}$
13	$-1.1827818240000000000000000000 \times 10^{10}$	-3. $9310133620540258492648683621 \times 10^{11}$	$-5.1937921993592300012744457189 \times 10^{14}$
14	$-1.7811803616000000000000000000 \times 10^{11}$	-6. $3086030120963699470669711865 \times 10^{12}$	$-8.8432805607809521926398116874 \times 10^{12}$
15	$-2,8956186272640000000000000000 \times 10^{12}$	$-1.0790521375529589408147697134 \times 10^{14}$	$-1.5103549002205633724824107893 \times 10^{14}$
16	$-4.9492777000428000000000000000 \times 10^{13}$	-1. $9150409431657715719665044203 \times 10^{15}$	$-2.7213622449189354364379387025 \times 10^{15}$
17	$-8.9538641889945600000000000000 \times 10^{14}$	-3. $6919069424986683338088003127 \times 10^{16}$	$-5.1622840287169727401842068987 \times 10^{16}$
18	$-1.7077591118311298000000000000 \times 10^{16}$	$-7.3669108866939623495004035051 \times 10^{17}$	$-1.0291732010865074095631176246 \times 10^{28}$
19	$-3.4240184054447856000000000000 \times 10^{17}$	-1. $5415020632410045851397150697 \times 10^{19}$	$-2.1516026728992556014959473763 \times 10^{19}$
20	$-7.2035271847967340240000000000 \times 10^{18}$	-3.37647 $18615980354509574336884 \times 10^{20}$	-4. $7083056141975982482792116495 \times 10^{20}$
21	$-1.5866337018309041198400000000 \times 10^{20}$	$-7.7275980864272048998764471393 \times 10^{21}$	-1. $07651940988418689399097946024 \times 10^{22}$
22	-3. $6519845724204486967680000000 \times 10^{21}$	-1. $8448155054458999050436842145 \times 10^{23}$	$-2.5674452149713714032815826700 \times 10^{23}$
23	-8. $7681818011546614680640000000 \times 10^{22}$	-4. $5866197503052782292667251432 \times 10^{24}$	-6. $3769928377526265617321947749 \times 10^{24}$
24	$-2,1923789692872998347043120000 \times 10^{24}$	-1. $1858157747767321436404939318 \times 10^{26}$	$-1.6470996320075837211751034632 \times 10^{26}$
25	-5. $6998890347323739850094080000 \times 10^{25}$	-3. $1835583644616357814716798844 \times 10^{27}$	$-4.4177893549939343763608871324 \times 10^{27}$
26	$-1.5388845406249019039124834560 \times 10^{27}$	-8, $8635951548820345551828981017 \times 10^{28}$	$-1.2288562062296700748029362914 \times 10^{29}$
27	$-4.3070159428073446315984849344 \times 10^{28}$	-2. $5560456435440307919581850995 \times 10^{30}$	-3.54055 $42239848815186039522499 \times 10^{30}$
28	$-1.2485646387442552715490329645 \times 10^{30}$	-7. $6258142568494382635668133888 \times 10^{31}$	$-1.0553873385150582698464609363 \times 10^{32}$
29	$-3.7440387313113401087515630039 \times 10^{31}$	$-2.3511832175441129805807830405 \times 10^{33}$	-3. $2512345534805173143645408326 \times 10^{33}$
30	-1. $1600928518927705596292709845 \times 10^{33}$	-7. $4838374003702026336229847182 \times 10^{34}$	$-1.0340330618009987136163200561 \times 10^{35}$
31	-3. $7103769005487128770351920613 \times 10^{34}$	$-2.4568457197256375207509725748 \times 10^{36}$	$-3.3919473866393998636225343054 \times 10^{36}$
32	$-1.2237673764980479827936551621 \times 10^{36}$	-8.31096 $43578933588386573372462 \times 10^{37}$	$-1.1465569540072359909660792257 \times 10^{38}$
33	-4. $1585046386527917925006421463 \times 10^{37}$	$-2.8944716053731061986675975367 \times 10^{39}$	$-3.9902368870751340174049666266 \times 10^{39}$
34	-1. $1548605269162664422327876155 \times 10^{39}$	$-1.0369981564050097948475183657 \times 10^{41}$	$-1.4285774193901178784082240525 \times 10^{41}$
35	-5. $2338098909588991549595876552 \times 10^{40}$	-3. $8189267651119006651764777557 \times 10^{42}$	-5. $2574462109523095599257531415 \times 10^{42}$
36	$-1,9354135686186945654687666524 \times 10^{42}$	$-1.4445810606351161439805282839 \times 10^{44}$	$-1.9874380445145128428985592760 \times 10^{44}$
37	$-7.3504152418212378419962047088 \times 10^{43}$	-5. $6088961415579717412495354039 \times 10^{45}$	$-7.7118332271337802442234967571 \times 10^{45}$
38	$-2,8650573217615265774139553536 \times 10^{15}$	$-2.2338880962108667437087630041 \times 10^{47}$	$-3.0695862026569608941643834872 \times 10^{47}$
39	$-1.1453873358928004131504907402 \times 10^{47}$	-9.12054 $35207822254764527322087 \times 10^{48}$	-1. $2525261489844229488592767287 \times 10^{49}$
40	$-4.6935218341432248600166161484 \times 10^{48}$	-3. $8150109910402043716301749417 \times 10^{50}$	-5. $2362258322489213871629520814 \times 10^{50}$
11	-1.97021 $71451557165465193292483 \times 10^{50}$	$-1.6339492914800800387936472874 \times 10^{52}$	-2. $2414356144802343900070866983 \times 10^{52}$
42	$-8.4674517579342303713094628568 \times 10^{51}$	$-7.1616461078883981954379712967 \times 10^{53}$	$-9.8191464503047504501714147510 \times 10^{53}$
43	-3. $7237419906836402099529806338 \times 10^{53}$	-3. $2106465125220341014766875402 \times 10^{55}$	-4. $3998149010523609119182712265 \times 10^{55}$
44	-1. $6748304120562315132553616379 \times 10^{55}$	-1.4715046629929784300977197 609×10^{57}	-2.01554 $24510550753791212031149 \times 10^{57}$
45	$-2.7003725595403043397957208022 \times 10^{56}$	-6. $8914931471878067226813012454 \times 10^{58}$	-9. $1349405210866122803844183269 \times 10^{58}$
46	-3.61740 $69023441976314903727041 \times 10^{58}$	-3. $2984734909936364425090128325 \times 10^{60}$	$-4.5110503260685941318453084808 \times 10^{60}$
47	$-1.7355247980402442789564957019 \times 10^{60}$	$-1.6098310532429139447507304622 \times 10^{62}$	$-2.20199906406619893151 \text { 05453 } 051 \times 10^{62}$
48	$-8.5000957733004303015686665842 \times 10^{61}$	-8. $0227502931692263718063385367 \times 10^{63}$	$-1.0969200611488509968167460533 \times 10^{04}$
49	-4. $2481045332885484660707018480 \times 10^{63}$	$-4,0785265026061117461873019639 \times 10^{65}$	$-5.5741132964578137107594343361 \times 10^{65}$
50	$-2.1655655778201815584544248962 \times 10^{65}$	-2.1442294904 $677284810287477156 \times 10^{67}$	-2. $8883580523229277607266918834 \times 10^{67}$
51	-1. $1256024353678449677746394055 \times 10^{67}$	$-1,1171404828304317023636058355 \times 10^{69}$	$-1.5255923473139700482793441687 \times 10^{69}$

normally. In Table XVI we have calculated the Neville table for the quantity $-1-E^{(N)} e^{2} /(N+1) t$ with up to three alternating-sign contributions removed, as indicated by Eq. (236) and by Table XV. The value before any processing differs from 0 by ~ 0.012 for N between 145 and 150. The subtraction of the alternating-sign terms shows up only in the twelfth decimal place. As the Neville itera-
tion is carried out, the entries without removal of the alternating-sign contribution reach -0.00002 for $k=2$, but then grow to ± 0.024 at $k=4$. The sign alternation is clearly evident. As the leading, $1 / N$, and $1 / N^{2}$ alternating-sign terms are incorporated, the growing, alternating-sign behavior is pushed to higher values of k, and the approach of the entries to zero is closer. The best

TABLE XII. Coefficients for the RSPT series, the $\Delta E^{[1]}$ series, and the $\Delta_{i} E^{[2]}$ series, as defined by Eqs. (166), (234), and (235) of the text, for the $\left(n_{1}, n_{2}, m\right)=(1,0,0)$ excited state of $H_{2}{ }^{+}$.

Order N	$E^{(N)}$	Coefficient $C^{(1)(N)}$	$c^{(2)(N)}$
0	$-1.2500000000000000000000000000 \times 10^{-1}$	1. $0000000000000000000000000000 \times 10^{0}$	1. $0000000000000000000000000000 \times 10^{3}$
1	$-1.0000000000000000000000000000 \times 10^{0}$	1. $2000000000000000000000000000 \times 101$	2, $4000000000000000000000000000 \times 10$:
2	3. $0000000000000000000000000000 \times 100$	-1. $7000000000000000000000000000 \times 10 \frac{1}{1}$	1. $2200000000000008000000000000 \times 10^{\text {? }}$
3	-6. $0000000000000000000000000000 \times 10$	-2.69333 $33333333333333333333333 \times 10^{2}$	$-8.6666666666666666666606666667 \times 10^{2}$
4	-7.800000000000000 0000000000000×10	9. $1000000000000000000000000000 \times 10$?	$-4.4750000000000000000000000000 \times 10^{3}$
5	1. $2240000000000000000000000000 \times 10^{3}$	-7.45733 $33333333333333333333333 \times 10^{3}$	3. $1954666666666666666666666667 \times 10^{4}$
6	$-8.8140000000000000000000000000 \times 10^{3}$	5. $8778555555555555555555555556 \times 10$!	-1. $286837777777777777777777778 \times 10^{5}$
7	$-5.2800000000000000000000000000 \times 10$?	-7.06415 $42857142857142857142857 \times 10^{5}$	$-9,8743885714285714285714285714 \times 10^{5}$
8	8. $2743600000000000000000000000 \times 10^{5}$	$-3.5369035873015873015873015873 \times 10^{6}$	$9.9579005396825396825398825397 \times 10^{6}$
9	$-9.6139680000000000000000000000 \times 10^{6}$	1. $8868632944620811287477954145 \times 10^{8}$	-8. $4607303731922398589065255732 \times 10$?
10	$9.9072180000000000000000000000 \times 10^{6}$	-3. $1520117618010582010582010582 \times 10^{9}$	$-2.3970442908359788359788359788 \times 10^{8}$
11	1. $2726210240000000000000000000 \times 10^{9}$	1. $2881559385495847362514029181 \times 10^{10}$	$-3.2185107104811430174763508097 \times 10^{9}$
12	$-1.9990100364000000000000000000 \times 10^{10}$	$3.8102329586407691732136176581 \times 10^{11}$	4. $3349110283208198385976163754 \times 10^{10}$
13	8. $5372025136000000000000000000 \times 10^{10}$	-1. $0238955657816215567148900482 \times 10^{13}$	-1. $1871517415888028514695181362 \times 10^{12}$
11	2. $1531534951240000000000000000 \times 10^{12}$	9, $3563283452954524861111962699 \times 10^{13}$	$-2,3999256892794495979035661575 \times 10^{13}$
15	$-5.0841186927840000000000000000 \times 10^{13}$	3. $8585462758172433755153331873 \times 10^{14}$	5. $1323950387766837474122976769 \times 10^{14}$
16	4. $3697577689272800000000000000 \times 10^{14}$	$-3.0293191770332178235946064517 \times 10^{16}$	$-9.7618213850451064471013994823 \times 10^{15}$
17	2. $2730965366680000000000000800 \times 10^{15}$	4. $1849824456606257543248386523 \times 10^{17}$	$-2,8833784590368782102237981727 \times 10^{16}$
18	$-1.2910899772262494200000000000 \times 10^{17}$	$-2.4588027158174188721587083116 \times 10^{18}$	1.49556 $21500830970132488019635 \times 10^{18}$
19	1.84814 $587756133406720000000000 \times 10^{18}$	-6.79303 $43668583302470904376503 \times 10^{19}$	-5. $3467575848580795313126858617 \times 10^{19}$
20	-8. $3308455869396790360000000000 \times 10^{18}$	1. $6425201268707735308699674202 \times 10^{21}$	$1.5463315097943229445705069356 \times 10^{20}$
21	$-2.4097222867091687566400000000 \times 10^{20}$	$-2.3011263946066631796520081224 \times 10^{22}$	$-2.2136052023960512292427711883 \times 10^{21}$
22	6. $0910169950004821422360000000 \times 10^{21}$	-3.61230 $75819532025525621975926 \times 10^{22}$	$-2.5058490664581024337317750518 \times 10^{23}$
23	$-7.5146851564926361536351999999 \times 10^{22}$	3. $1183311862128309960967381608 \times 10^{24}$	$-1.2708863506429508166103911680 \times 10^{23}$
24	4. $1579985403425910539719999958 \times 10^{22}$	-1. $2618417602525194905453520383 \times 10^{26}$	$-7.8699873272155042148438953706 \times 10^{25}$
25	1. $0863012941492100057499680001 \times 10^{25}$	1.59628 $06441878316063772599200 \times 10^{26}$	-1. $7790631207184457573746227773 \times 10^{2 ?}$
26	$-3.3211346075603162470948791604 \times 10^{26}$	$-2.1154986193833110468888562507 \times 10^{28}$	$-3.4121837700548433283092946730 \times 10^{28}$
27	1. $7229223997491348977587364194 \times 10^{27}$	-8. $4224628381034144563540509730 \times 10^{29}$	$-1.2829306078423470569244169678 \times 10^{30}$
28	-4. $4741420271475630533434104099 \times 10^{28}$	-1. $3008798641104461562368850191 \times 10^{31}$	$-3.2380609854043028054618391779 \times 10^{31}$
29	-1. $6586115772762050891550927847 \times 10^{30}$	$-5.7669690788603714543601386740 \times 10^{32}$	$-9,7584526387986111726325821676 \times 10^{32}$
30	$-2.3795429016542782608566449166 \times 10^{31}$	$-1.6315267399374520859528386649 \times 10^{34}$	$-3.0536299087366764312929934883 \times 10^{34}$
31	$-1.2420333874781799808122666394 \times 10^{33}$	-5. $1323985663092071399897200639 \times 10^{35}$	$-9.5098321985287374742402797366 \times 10^{35}$
32	$-3.5470267825839474477529012452 \times 10^{34}$	$-1.7404146349265958768477324874 \times 10^{37}$	$-3.1313511053718905116518470806 \times 10^{37}$
33	$-1.1951626701978169492146572314 \times 10^{36}$	-5. $8280460599296081765108755112 \times 10^{38}$	$-1.0548739712706586072828247671 \times 10^{39}$
34	$-4.2066329269844784405881886028 \times 10^{37}$	$-2.0472113913998849605603412083 \times 10^{40}$	$-3.6626839010044063868752165380 \times 10^{40}$
35	$-1.4778193269225094939800218784 \times 10^{39}$	$-7.3712762923919370683607554473 \times 10^{41}$	$-1.3103900757929597759048194142 \times 10^{42}$
36	$-5.4213169465843063042852084376 \times 10^{40}$	$-2.7273636101256077906529713533 \times 10^{43}$	$-4,8186179188012500168392780839 \times 10^{43}$
37	$-2.0346196166091549912405276702 \times 10^{42}$	-1. $0375929809161162019370873781 \times 10^{45}$	-1.82134 $02107127473085716204662 \times 10^{45}$
38	$-7.8456280622844872190984822569 \times 10^{43}$	$-4.0512230560325256984230735332 \times 10^{46}$	$-7.0594468583011650350325827492 \times 10^{46}$
39	-3.10431 $97519619029480538840486 \times 10^{45}$	-1. $6229545793491610269575880397 \times 10^{48}$	$-2.8159012538760960980521502918 \times 10^{48}$
40	$-1.2598887575410541043257093241 \times 10^{47}$	-6. $6860112631848547943297128839 \times 10^{49}$	$-1.1502519028178813781277845181 \times 10^{50}$
41	-5. $2374750130943938953020851158 \times 10^{48}$	$-2.8054729821428266965076335332 \times 10^{51}$	-4,8155878681 $670031500725500657 \times 10^{51}$
42	$-2.2307943468427449035352610975 \times 10^{50}$	-1. $2091084668997247983760817927 \times 10^{53}$	$-2.0649634807370932941899378545 \times 10^{53}$
43	$-9.7241745894888162066032201663 \times 10^{51}$	-5. $3334461157474375013925217718 \times 10^{54}$	$-9.0646111197439126766882211735 \times 10^{54}$
44	-4. $3375012238234799015312750852 \times 10^{53}$	$-2.4065613515994118109185731154 \times 10^{56}$	$-4,0710788631346896364331718159 \times 10^{56}$
45	-1. $9780424293568980186426922186 \times 10^{55}$	$-1,1102350140033691570991292812 \times 10^{58}$	$-1.8697293001390032539719637015 \times 10^{58}$
46	$-9.2210532631104498895527997887 \times 10^{56}$	$-5.2341774637676475385296920033 \times 10^{59}$	-8. $7767153968488939241935444155 \times 10^{59}$
47	-4. $3906314994421846661903868999 \times 10^{58}$	$-2.5205530061987793232715978697 \times 10^{61}$	-4. $2089276739873234825710893164 \times 10^{61}$
48	$-2.1350823157377129785505133847 \times 10^{60}$	$-1.2392639677923498373144021570 \times 10^{63}$	$-2.0610671076135841895423307887 \times 10^{63}$
49	$-1.0595713537850551287930535346 \times 10^{62}$	-6.21820 $66425335727892957093596 \times 10^{64}$	$-1.0301764447064382529030053796 \times 10^{65}$
50	$-5.3655230971890244550082759098 \times 10^{63}$	$-3.1829060555799167482840595168 \times 10^{66}$	-5. $2534234104405297501318298572 \times 10^{66}$
51	$-2.7706258304658870970847673808 \times 10^{65}$	$-1.6813675110700916185623152256 \times 10^{68}$	$-2.7322208689584590489704853559 \times 10^{68}$

example is for $N=150$ and $k=3$, for which the entry with three alternating-sign terms accounted for is 0.0000004 , and which is an improvement of three orders of magnitude over the corresponding entry with no alternating-sign correction terms.

XI. NUMERICAL SOLUTION FOR β_{2} AND SUMMATION OF THE EXPANSIONS

In this section we compare values of β_{2} obtained by numerical solution of the eigenvalue equation with values

TABLE XIII. Coefficients for the RSPT series, the $\Delta E^{[1]}$ series, and the $\Delta_{i} E^{[2]}$ series, as defined by Eqs. (166), (234), and (235) of the text, for the $\left(n_{1}, n_{2}, m\right)=(0,1,0)$ excited state of $\mathrm{H}_{2}{ }^{+}$.

Order N	$E^{(N)}$	Coefficient $c^{(1)(N)}$	$c^{(2)(N)}$
0	$-1.25000000000000000000000000000 \times 10^{-1}$	1.0000000000000000000000000 $\times 10^{0}$	1. $0000000000000000000000000000 \times 10^{0}$
1	$-1.00000000000000000000000000000 \times 100$	-4.00000 $0000000000000000000000 \times 100$	-3. $0000000000000000800000000000 \times 10$
2	$-3.0000000000000000000000000000 \times 100$	-6. $30000000000000000000000000 \times 101$	-7.40000 $0000000000000000000000 \times 10 \frac{1}{1}$
3	-6. $00000000000000000000000000000 \times 100$	-2.77333 $333333333333333333333 \times 10^{2}$	$-1.62666666666666666666666667 \times 10{ }^{2}$
1	$-9.0000000000000000000000000000 \times 10 \frac{1}{1}$	$-1.96766666668666686866666667 \times 10^{3}$	3. $88333333333333333333333333 \times 10^{2}$
5	$-1.2240000000000000000000000000 \times 10^{3}$	$-3.08176000000000000000000000 \times 10^{\frac{1}{5}}$	-6. $59786666666666666866686667 \times 10^{3}$
6	$-1.1922000000000000000000000000 \times 10{ }^{4}$	$-4.57557377777777777777777778 \times 10^{5}$	$-3.18823511111111111111111111 \times 10^{5}$
7	$-1.4846400000000000000000000000 \times 10^{5}$	-7.45529 $11365079365079365079 \times 10^{6}$	-6. $61211507301587301587301587 \times 10^{6}$
8	$-2.4543480000000000000000000000 \times 10^{6}$	$-1.39686454409523809523809524 \times 10^{8}$	-1.21726029482539682539682540 $\times 10^{8}$
9	$-4.0455792000000000000000000000 \times 10$?	-2. $65014097968395061728395062 \times 10^{9}$	$-2.31846763833509700176366843 \times 10^{9}$
10	-6. $7611189000000000000000000000 \times 10^{8}$	-5. $10616907742000705467372134 \times 10^{10}$	-4.66622 $713204595414462081129 \times 10^{10}$
11	$-1.2309034484000000000000000000 \times 10^{10}$	$-1.04247124530339532467532468 \times 10^{12}$	$-9,84809971795126169632836299 \times 10^{11}$
12	$-2.3841299211600000000000000000 \times 10^{11}$	$-2.23016296508562937865426754 \times 10^{13}$	-2. $14980078773653829768585324 \times 10^{13}$
13	$-4.7892688827360000000000000000 \times 10^{12}$	-4,91944 $729642928258912116690 \times 10^{14}$	-4. $83496011634296068018236907 \times 10^{14}$
14	$-1.0029960764629200000000000000 \times 10^{14}$	-1. $12225286752576845165532175 \times 10^{16}$	$-1.12401350724760194481225280 \times 10^{16}$
15	$-2.1939140584107840000000000000 \times 10^{15}$	$-2.65295918587005908542195983 \times 10^{17}$	$-2.70125375636671247262570134 \times 10^{17}$
16	$-4.9891338393591096000000000000 \times 10^{16}$	-6. $18199618502382622729674466 \times 10^{18}$	$-6.69779858904499834046323748 \times 10^{18}$
17	$-1.1772133789788957120000000000 \times 10^{18}$	$-1,63494603276139618599439830 \times 10^{20}$	-1. $71247098790229366130385869 \times 10^{20}$
19	$-2.8805843388660018258000000000 \times 10^{19}$	-4. $25659282891974345424733878 \times 10^{21}$	$-4.5143922010112588266438086 ; \times 10^{21}$
19	$-7.3020982248399835552000000000 \times 10^{20}$	$-1.1433433887132040339345887 ? \times 10^{23}$	$-1.22655002015856438832392385 \times 10^{23}$
20	$-1.9156448562675452194500000000 \times 10^{22}$	-3. $16673738130395479804087805 \times 10^{24}$	$-3.43325192233961005699608254 \times 10^{24}$
21	-5. $1969013809249739679121600000 \times 10^{23}$	$-9,04044657356696394912613403 \times 10^{25}$	-9. $89740685751107534003783639 \times 10^{25}$
22	$-1.4568605280778245302196252000 \times 10^{25}$	$-2.65909740888320500554276614 \times 10^{27}$	$-2.93755787731736495886149648 \times 10^{27}$
23	$-4.2171912580227559117619011200 \times 10^{26}$	-8. $05487659088037925062664395 \times 10^{28}$	-8.9731057626 $3203442631397325 \times 10^{28}$
24	$-1.2596794654244423675585922504 \times 10^{28}$	$-2.51173133014860992987625926 \times 10^{30}$	$-2.81984437741590544331562128 \times 10^{30}$
25	-3. $8800245958540347275786618730 \times 10^{29}$	-8. $05898087492974877315309646 \times 10^{31}$	-9, $11294899286076086697897306 \times 10^{31}$
26	-1. $2315618914482077951027323520 \times 10^{31}$	$-2.65934772999599169947048187 \times 10^{33}$	$-3.02733186552122875404058419 \times 10^{33}$
27	-4. $0256698806203946913844635383 \times 10^{32}$	$-9,02084177261614542317135403 \times 10^{34}$	-1. $03332278154567251825319682 \times 10^{35}$
28	$-1.3542424210164892193979592644 \times 10^{34}$	$-3.14397933131273290917294225 \times 10^{36}$	$-3.62232766127367584487972582 \times 10^{36}$
29	-4. $6854475442386672499506874748 \times 10^{35}$	$-1.12526071488604484077111331 \times 10^{38}$	-1. $30350014732410724489068790 \times 10^{38}$
30	$-1.6661991081122214453075990316 \times 10^{37}$	-4. $13376485548182950663679256 \times 10^{39}$	$-4.81280979300992829278750919 \times 10^{39}$
31.	$-6.0863104372846989019900511198 \times 10^{38}$	$-1.55788538618562898404259864 \times 10^{41}$	$-1.82239145926899677682451536 \times 10^{41}$
32	$-2.2822812507858341279816822652 \times 10^{40}$	-6.0200693400 94138 $15860475902 \times 10^{42}$	$-7.07344667372994937561897172 \times 10^{42}$
33	-8. $7804225977173891503756947826 \times 10^{41}$	-2. $38410427505002018495101496 \times 10^{44}$	$-2.81293247552249331360816920 \times 10^{44}$
34	$-3.4637259781807707043146364763 \times 10^{43}$	$-9.87145130866369532105624376 \times 10^{45}$	$-1.14556857177814562829087942 \times 10^{46}$
35	$-1.4002699808773402879033201661 \times 10^{45}$	$-4.01688831586991015916671484 \times 10^{47}$	$-4.77545137460793301640600984 \times 10^{47}$
36	$-5.7981075784614831377928371024 \times 10^{18}$	$-1.70731389815472792312488762 \times 10^{49}$	$-2.03676639809532710302795792 \times 10^{49}$
37	$-2.4577683467347625588008187252 \times 10^{48}$	-7.122692706744164 $25656632879 \times 10^{50}$	-8.88398 $222347686767453976256 \times 10^{50}$
38	$-1.0660008819265123490970387860 \times 10^{50}$	-3. $29942672972579316904299853 \times 10^{52}$	$-3.96118520626391808076 .635426 \times 10^{52}$
39	$-4.7285235175230394168475576411 \times 10^{51}$	$-1.49883698742810385887034080 \times 10^{54}$	$-1.80471798350517976991453399 \times 10^{54}$
40	-2. $1440842507998856770680474753 \times 10^{53}$	-6. $95544432776205942755273953 \times 10^{55}$	$-8.39810837860879246629114031 \times 10^{55}$
11	$-9,9336912013033649706047121705 \times 10^{54}$	$-3.29587868446909303980228329 \times 10^{57}$	$-3.98995294908588817879208128 \times 10^{57}$
42	-4. $7004909765319131603329034337 \times 10^{56}$	$-1.59411736801908984037108661 \times 10^{59}$	$-1.93463752033454640507160085 \times 10^{59}$
43	$-2.2706885253366198925694923984 \times 10^{58}$	$-7,86691493775162950970485549 \times 10^{60}$	$-9.57003219770855792413421409 \times 10^{60}$
44	$-1.11938188606505188188831837106 \times 10^{60}$	$-3.95969185322858944223559919 \times 10^{62}$	$-4.82781431193692666208376589 \times 10^{62}$
	$-5.6290598312327978899701881543 \times 10^{61}$	$-2.03204808997302822339942843 \times 10^{64}$	$-2,48288927372569454558343300 \times 10^{64}$
46	$-2.8864715078715525408155714251 \times 10^{63}$	$-1.06284550070158081728631821 \times 10^{66}$	$-1.30132209289405082772514249 \times 10^{66}$
47	-1. $5087414896779688884209398943 \times 10^{65}$	$-5.66399195897328966761014835 \times 10^{67}$	$-6.94845834681319087546679237 \times 10^{67}$
48	$-8.0357491933054039734021811168 \times 10^{66}$	$-3.07431882247766801154285498 \times 10^{69}$	-3. $77857820633032850661939610 \times 10^{69}$
49	-4. $3596837949979624333935268334 \times 10^{68}$	$-1.69906868830843742409104655 \times 10^{71}$	$-2.09203526862421727613672354 \times 10^{71}$
50	-2.40856 $65421696544705034554238 \times 10^{70}$	$-9.55817583131703450810299318 \times 10^{72}$	$-1.17890472922816321278914910 \times 10^{73}$
51	$-1.3515658158538287903571962601 \times 10^{72}$	$-5.47156589287146787770000350 \times 10^{74}$	$-6.75974057849878149704680651 \times 10^{74}$

obtained by summation of the asymptotic series.
As mentioned in the Introduction, proved in Ref. 6, and discussed in Sec. III I, the Borel sum of the RSPT series is the eigenvalue of the η equation [(11) or (16)] considered on a semi-infinite interval-that is, the ξ equation for the proton-antiproton-electron analog of $\mathrm{H}_{2}{ }^{+}$, analytically continued to negative $r^{\prime}=e^{ \pm \pi i} r$. We illustrate this fact by numerically solving Eq. (11) and comparing the results
with the Borel sum of the RSPT. Also, as mentioned in the Introduction and elaborated in Sec. III I, the imaginary second-exponential-order series cancels (in that order) the imaginary part of the Borel sum. This too is illustrated numerically.

To solve the η equation [Eq. (11)] numerically is straightforward. There are two cases: the physical problem, for which the boundary conditions are

TABLE XIV. Coefficients for the RSPT series, the $\Delta E^{[1]}$ series, and the $\Delta_{i} E^{[2]}$ series, as defined by Eqs. (166), (234), and (235) of the text, for the ($\left.n_{1}, n_{2}, m\right)=(0,0,1)$ excited state of $\mathrm{H}_{2}{ }^{+}$.

Order N	$E^{(N)}$	Coefficient $c^{(1)(N)}$	$c^{(2)(N)}$
0	$-1.2500000000000000000000000000 \times 10^{-1}$	1. $00000000000000000000000000000 \times 10^{0}$	1. $0000000000000000000000000000 \times 10^{0}$
1	$-1.0000000000000000000000000000 \times 100$	6. $0000000000000000000000000000 \times 10^{0}$	1. $2000000000000000000000000000 \times 10^{1}$
2	0. $0000000000000000000000000000 \times 10^{0}$	$-4.0000000000000000000000000000 \times 101$	$-2.0000000000000000000000000000 \times 10{ }^{1}$
3	$6.0000000000000000000000000000 \times 100$	-3.13333 $33333333333333333333333 \times 10^{2}$	$-9.3066686666666666666668666667 \times 10^{2}$
4	-7. $8000000000000000000000000000 \times 10 \frac{1}{1}$	-6,36000 $00000000000000000000000 \times 10^{2}$	$-3.8880000000000000000000000000 \times 10^{3}$
5	$0.0000000000000000000000000000 \times 100$	$-9.7434686666668666666666866667 \times 10{ }^{3}$	4. $2517333333333333333333333333 \times 10^{3}$
6	2. $4000000000000000000000000000 \times 10^{3}$	-6. $6310577777777777777777777778 \times 10^{4}$	-8, $9242311111111111111111111111 \times 10^{4}$
7	$-3,3888000000000000000000000000 \times 10^{4}$	$-8.7293790476190476190476190476 \times 10^{5}$	$-2.3810758095238095238095238095 \times 10^{6}$
8	$-2.0155200000000000000000000000 \times 10^{5}$	$-2.0640756317460317460317460317 \times 10^{7}$	-2. $3940425092063492063492063192 \times 10^{\text {? }}$
9	1,83590 $40000000000000000000000 \times 10^{6}$	-1. $6412498162680776014109347443 \times 10^{8}$	$-2.9334608305890652557319223986 \times 10^{8}$
10	$-2.8483200000000000000000000000 \times 10$?	$-2.0934628756249735449735449735 \times 10{ }^{9}$	-4. $6359452763157671957671957672 \times 109$
11	$-5.0335718400000000000000000000 \times 10^{8}$	-5. $7027372832457040243706990374 \times 10^{10}$	$-7.8528039569217713641380311047 \times 10^{10}$
12	-3. $2239180800000000000000000000 \times 10^{8}$	$-7.5291216606842896691785580674 \times 10^{11}$	$-1.2576336191021095184650740206 \times 10^{12}$
13	$-6.0510789120000000000000000000 \times 10^{10}$	-1. $1007327081058536840936840937 \times 10^{13}$	$-2.0724994023455208861286861287 \times 10^{13}$
14	$-1.5577998520320000000000000000 \times 10^{12}$	$-2.5677625455985755214833373564 \times 10^{14}$	$-3.9691529593737116175243921276 \times 10^{14}$
15	$-1.5527477514240000000000000000 \times 10^{13}$	$-4.6762456349413097611204660517 \times 10^{15}$	$-7.6372981098869790429851802127 \times 10^{15}$
16	$-3.5560236364876800000000000000 \times 10^{14}$	-8. $6983364731467413895249319757 \times 10^{16}$	-1. $1843314650213015446704211250 \times 10^{17}$
17	$-8.4585372059888960000000000000 \times 10^{15}$	$-1.9464925960509032291074877754 \times 10^{18}$	$-3.1404657783868431384577898246 \times 10^{18}$
18	$-1.5503034534603571200000000000 \times 10^{17}$	$-4.2344134580440797588846140692 \times 10^{19}$	-6.8814650168 $654765413958189105 \times 10^{19}$
19	$-3.4743507633560002560000000000 \times 10^{18}$	$-9.4795269136318577498545926974 \times 10^{20}$	$-1.5521789615302951228442711434 \times 10^{21}$
20	$-8.2640364221956104192000000000 \times 10^{19}$	$-2.2791253793210522353450175530 \times 10^{22}$	-3.68030 $04405462407273418513140 \times 10^{22}$
21	$-1.9359362616331206574080000000 \times 10^{21}$	$-5.6293666395361196672747596637 \times 10^{23}$	-9, $0665689837584968048769325947 \times 10^{23}$
22	$-4.8319636650948285235200000000 \times 10^{22}$	$-1.4107990980288009492631215775 \times 10^{25}$	-2.31486 $05013690893612267802133 \times 10^{25}$
23	$-1.2567241823948265955000320000 \times 10^{24}$	$-3,8438895512126873614829820525 \times 10^{26}$	-6. $1423684542904839629316621596 \times 10^{26}$
24	$-3,3701329576460550140426240000 \times 10^{25}$	$-1.0613567327594707537934351339 \times 10^{28}$	$-1.6893634595435442678487746187 \times 10^{29}$
25	-9. $3929075638929526491965030400 \times 10^{26}$	-3.03376 $12021305124224006684588 \times 10^{29}$	$-4.8102454768039466550388209722 \times 10^{29}$
26	$-2.7113200561650653683623198720 \times 10^{28}$	$-8.9738687029247751441797191318 \times 10^{30}$	$-1.4171407609167237988997157605 \times 10_{0}^{31}$
27	$-8,0912832612426460122290729779 \times 10^{29}$	$-2.7427170573438685802136429000 \times 10^{32}$	$-4.3148259411720278156348012436 \times 10^{32}$
28	$-2,4954899420837531125523605488 \times 10^{31}$	-8. $65419713474223346010018384543 \times 10^{33}$	-1. $3564510024471944185790235353 \times 10^{34}$
29	$-7.9448917212853257294045133642 \times 10^{32}$	$-2.8166570663080026570139940827 \times 10^{35}$	$-4.3989931536845227991357202101 \times 10^{35}$
30	$-2,6085098915741601875940746084 \times 10^{34}$	$-9.4473979326161794305082872490 \times 10^{36}$	$-1.4703716906695303810256997560 \times 10^{37}$
	$-8.8246245508007218809902514514 \times 10^{35}$	$-3.2628792722865340625205338037 \times 10^{38}$	$-5,0613097420747843991858599659 \times 10^{38}$
32	$-3.0734614862620458610509599824 \times 10^{37}$	-1. $1584580093453383734586528258 \times 10^{40}$	$-1.7927288486369572631014564378 \times 10^{48}$
33	$-1,1011273649305588257599892250 \times 10^{39}$	-4. $2358881092844635802443893831 \times 10^{41}$	$-6.5290645911031174129404729508 \times 10^{41}$
34	$-4.0550345195296611668023721088 \times 10^{40}$	$-1.5898429830773193249631244358 \times 10^{43}$	-2.4431829183 $874078275520864104 \times 10^{43}$
35	$-1.5338527913914039054720192044 \times 10^{12}$	-6. $1261064551101986776901162691 \times 10^{44}$	$-9,3870274388658082771241738516 \times 10^{44}$
36	$-5.9553236273017445340988975043 \times 10^{43}$	$-2.4218608439488057395679783253 \times 10^{46}$	$-3.7006617534387377527338728610 \times 10^{46}$
	$-2.3717807899289129563613997205 \times 10^{45}$	$-9,8169153742782358727035546216 \times 10^{47}$	-1.49601 184427135498293 15059027×10^{48}
38	$-9.6832171094639355735724092937 \times 10^{46}$	$-4.0775690855829290860315521049 \times 10^{49}$	$-6.1972273227035023061423742777 \times 10_{5}^{49}$
39	-4. $0502500974056923886798013331 \times 10^{48}$	-1.7345181709 $061970177138845635 \times 10^{51}$	$-2.6297882798732475695459236777 \times 10^{51}$
40	$-1.7346586175360753766646651630 \times 10^{50}$	-7. $5521290343617118052256109454 \times 10^{52}$	$-1.1422471213202559414837941051 \times 10^{53}$
41	-7. $6029170182246800815085650852 \times 10^{51}$	$-3.3639153585794696768386916436 \times 10^{54}$	-5.0759900158 $597553039778225672 \times 10^{54}$
42	-3. $4084347604024895553860620653 \times 10^{53}$	$-1.5321018169005825092185434809 \times 10^{56}$	$-2.3066571954957850438782845898 \times 10^{56}$
43	$-1.5621488856746430925731923393 \times 10^{55}$	$-7.1316176542238690516795196474 \times 10^{57}$	$-1.0713623139481684612210361335 \times 10^{58}$
44	$-7.3160373911177335498096019876 \times 10^{56}$	-3. $3911413767527482230621643045 \times 10^{59}$	$-5.0836867259822975909305435433 \times 10^{59}$
45	-3. $4995920366935989166817769328 \times 10^{58}$	$-1.6465269780082366511891084320 \times 10^{61}$	$-2.4632958768553342945633945448 \times 10^{6!}$
46	$-1.7090586893952107401663064942 \times 10^{60}$	$-8.1596639046039390379580043150 \times 10^{62}$	$-1.2183267347467802406344817110 \times 10^{63}$
47	$-8.5175020559097287494657078558 \times 10^{61}$	-4. $1255204419463261956513532794 \times 10^{64}$	-6. $1481105845661314419751279325 \times 10^{64}$
48	-4. $3302010973728239819360749684 \times 10^{63}$	$-2.1272458801313806094297115307 \times 10^{66}$	$-3.1643059699840585390659799837 \times 10^{66}$
49	-2. $2447916414878218590565104858 \times 10^{65}$	$-1.1182141806458540399746226448 \times 10^{68}$	$-1.6603853659208649622215559216 \times 10^{68}$
50	$-1.1861897135908922422381705143 \times 10^{67}$	$-5.9902182780866202646355509093 \times 10^{69}$	$-8.8792000375592671255646813721 \times 10^{69}$
51	-6.38684 $60774933454083833238854 \times 10^{68}$	-3.26902 $63820183032993240091959 \times 10^{71}$	$-4.8374894548793260032372842538 \times 10^{71}$

$\Phi_{2}(\eta) \sim \eta^{m / 2+1 / 2}$ at $\eta=0$, and $\Phi_{2}(\eta) \sim(2-\eta)^{m / 2+1 / 2}$ at $\eta=2$; and the semi-infinite problem for which the boundary condition at $\eta=2$ is replaced by $\Phi_{2}(\eta) \sim e^{-r \eta / 2}$ as $\eta \rightarrow \infty$. In both cases the wave function near the origin can be expanded in a convergent power series in η. For the physical case, the power series can be summed at the midpoint of the physical interval, $\eta=1$, and the eigen-
value β_{2} determined to make either Φ_{2} or $d \Phi_{2} / d \eta$ vanish for odd or even states, respectively. For the unphysical case, $e^{r \eta / 2} \Phi_{2}$ for large η can be expanded in a divergent series in powers of η^{-1}. This series can be summed to sufficient accuracy for the ground state for $|\eta|$ near 4 , and then integrated numerically by a fourth-order Runge-Kutta algorithm ${ }^{25}$ to a value of η for which the

TABLE XV. Asymptotic analysis of the RSPT $E^{(N)}$. The dominant, same-sign subseries in the asymptotic formula (236) of the text is truncated with the inclusion of the smallest term, whose index has been indicated by $k_{\min }$. The relative asymptotic error refers to the difference between the exact coefficient $E^{(N)}$ and the asymptotic formula to the indicated number of terms, divided by the leading asymptotic term, which is $-e^{-2 n}\left(N+4 n_{2}+2 m+1\right)!/\left(n_{2}!\right)^{2}\left[\left(n_{2}+m\right)!\right]^{2}$. For sufficiently large N, the relative asymptotic error, after accounting for the same-sign subseries, is alternating in sign. The effect of the alternating-sign subseries is seen through the inclusion of up to three terms.

Ground state: $n_{1}=0, n_{2}=0, m=0$

20	-7. $2035271847967340240000000000 \times 10{ }^{18}$
21	-1. $5866337018309044198400000000 \times 10{ }^{20}$
22	$-3.6519845724204486967680000000 \times 10^{21}$
23	$-8.7681818011546614680640000000 \times 10^{22}$
24	$-2.1923789692872996347043120000 \times 10^{24}$
25	-5. $6998890347323739850094080000 \times 10$
26	$-1.5386815406249019039124834560 \times 10$
27	-4. $3070159428073446315984849344 \times 10^{28}$
28	$-1.2485646387442552715490329645 \times 10^{30}$
29	-3. $7440387313413401087515630039 \times 10{ }^{31}$
30	-1.16009 $28518927705596292709845 \times 10^{33}$
45	-7.70037 $25595403043397957208022 \times 10^{56}$
60	-7. $0586408371507143883894260882 \times 10^{82}$
75	-2. $6104276701031072530491597603 \times 10^{110}$
90	$-1.8657607764041732982965438924 \times 10^{139}$
105	-1. $5779946924100634226812311752 \times 10^{169}$
120	-1. $1121508837061334950442764523 \times 10^{200}$
135	$-5.0198118745108242560225491753 \times 10^{231}$
150	$-1.1820797343399496960583966744 \times 10^{264}$

9	1.4×10^{-4}	-3.0×10^{-5}
10	8.1×10^{-5}	1.1×10^{-5}
10	4.6×10^{-5}	-9.5×10^{-6}
11	2.5×10^{-5}	-2.9×10^{-7}
11	1.4×10^{-5}	-1.9×10^{-6}
12	7.8×10^{-6}	-1.8×10^{-6}
12	4.3×10^{-6}	3.6×10^{-7}
13	2.4×10^{-6}	-1.5×10^{-6}
13	1.3×10^{-6}	8.2×10^{-7}
14	7.0×10^{-7}	-1.1×10^{-6}
14	3.8×10^{-7}	7.6×10^{-7}
22	2.9×100^{-11}	-8.6×10^{-8}
30	1.7×10^{-15}	1.6×10^{-8}
37	8.3×10^{-20}	-4.2×10^{-9}
45	3.8×10^{-24}	1.4×10^{-9}
51	1.7×10^{-28}	-5.7×10^{-10}
51	2.3×10^{-32}	2.6×10^{-10}
51	1.2×10^{-35}	-1.3×10^{-10}
51	1.7×10^{-38}	6.8×10^{-11}

-5.2×10^{-5}
2.7×10^{-5}
-2.2×10^{-5}
8.7×10^{-6}
-8.7×10^{-6}
3.5×10^{-6}
-3.7×10^{-6}
1.7×10^{-6}
-1.7×10^{-6}
9.5×10^{-7}
-8.9×10^{-7}
4.4×10^{-8}
-6.2×10^{-9}
1.4×10^{-9}
-4.1×10^{-1}
1.4×10^{-10}
-5.8×10^{-11}
2.6×10^{-11}
-1.3×10^{-11}
-4.3×10^{-5}
2.1×10^{-5}
-1.7×10^{-5}
5.0×10^{-6}
-5.9×10^{-6}
1.2×10^{-6}
-2.0×10^{-6}
3.5×10^{-7}
-6.7×10^{-7}
1.1×10^{-7}
-2.2×10^{-7}
-1.5×10^{-9}
3.5×10^{-1}
-8.6×10^{-11}
2.5×10^{-11}
-8.7×10^{-12}
3.4×10^{-12}
-1.5×10^{-12}
7.0×10^{-13}
-3.8×10^{-5}
1.8×10^{-5}
-1.5×10^{-5}
3.9×10^{-6}
-5.1×10^{-6}
7.7×10^{-7}
-1.7×10^{-6}
1.4×10^{-7}
-5.3×10^{-7}
1.4×10^{-8}
-1.6×10^{-7}
-4.9×10^{-10}
3.2×10^{-11}
-3.2×10^{-12}
3.8×10^{-13}
-3.4×10^{-14}
-8.7×10^{-15}
9.5×10^{-15}
-6.3×10^{-15}

Excited state: $n_{1}=1, n_{2}=0, m=0$

23	2.1×10^{-9}	-5.5×10^{-3}
23	8.0×10^{-10}	1.1×10^{-3}
23	3.2×10^{-10}	-9.2×10^{-6}
23	1.3×10^{-10}	-2.6×10^{-5}
23	5.5×10^{-11}	-5.5×10^{-5}
23	2.4×10^{-11}	8.5×10^{-5}
23	1.1×10^{-11}	-8.7×10^{-5}
23	5.1×10^{-12}	8.2×10^{-5}
23	2.4×10^{-12}	-7.6×10^{-5}
23	1.2×10^{-12}	7.2×10^{-5}
23	6.0×10^{-13}	-6.7×10^{-5}
23	1.3×10^{-18}	2.1×10^{-5}
38	2.0×10^{-20}	-7.0×10^{-6}
15	7.6×10^{-25}	2.7×10^{-6}
51	3.0×10^{-29}	-1.2×10^{-6}
51	4.0×10^{-33}	5.6×10^{-7}
51	2.1×10^{-36}	-2.9×10^{-7}
51	3.0×10^{-39}	1.4×10^{-7}

Excited state: $n_{1}=0, n_{2}=1, m=0$

	7.2×10^{-20}
	3.9×10^{-20}
	2.1×10^{-20}
	1.1×10^{-20}
	6.0×10^{-21}
7	3.2×10^{-21}
7	1.7×10^{-21}
8	9.1×10^{-22}
48	4.8×10^{-22}
19	2.6×10^{-22}

-2.4×10^{-20}
3.0×10^{-22}
-4.9×10^{-21}
-1.7×10^{-21}
1.4×10^{-22}
-1.9×10^{-21}
1.2×10^{-21}
-1.6×10^{-21}
1.3×10^{-21}
-1.2×10^{-21}
1.1×10^{-21}
-3.3×10^{-3}
-7.4×10^{-4}
1.5×10^{-3}
-1.3×10^{-3}
1.1×10^{-3}
-8.6×10^{-4}
7.2×10^{-4}
-6.1×10^{-4}
5.2×10^{-1}
-4.5×10^{-1}
3.9×10^{-4}
-5.5×10^{-5}
$1.2 \times 10^{-}$
$-3.7 \times 10^{-}$
1.3×10^{-6}
$-5.4 \times 10^{-}$
2.5×10^{-7}
-1.2×10^{-7}
-3.9×10^{-20}
1.3×10^{-20}
-1.6×10^{-20}
7.9×10^{-21}
-8.2×10^{-21}
5.3×10^{-221}
-4.9×10^{-22}
3.7×10^{-21}
-3.3×10^{-21}
2.7×10^{-21}
-2.4×10^{-21}

TABLE XV. (Continued).

N	$E^{(N)}$ (exact)	same-sign subseries			alternating-sign subseries		
			Smallest	relative asymptotic	relative asy ston of term	totic erro through or	fler inclu- (in \mathbb{N}^{-1})
		$k_{\text {min }}$	term	error	-		2
105	-3. $3488731765212458378850242260 \times 10^{175}$	51	5.9×10^{-24}	-5.9×10^{-22}	1.1×10^{-21}	-5.1×10^{-22}	6.8×10^{-23}
110	-6. $1924766051355536844962734926 \times 10{ }^{185}$	51	2.9×10^{-25}	3.1×10^{-22}	-5.7×10^{-22}	2.5×10^{-22}	-3.7×10^{-23}
115	-1.42134 $73900140810546123906579 \times 10{ }^{196}$	51	1.7×10^{-26}	-1.7×10^{-22}	3.0×10^{-22}	-1.2×10^{-22}	1.8×10^{-23}
120	$-4.0135046348849550025659932505 \times 10^{206}$	51	1.2×10^{-27}	9.8×10^{-23}	-1.6×10^{-22}	6.4×10^{-23}	-9.5×10^{-24}
125	-1.38280 $24776684773727174455133 \times 10^{217}$	51	9.4×10^{-29}	-5.7×10^{-23}	8.7×10^{-23}	-3.4×10^{-23}	5.0×10^{-24}
130	$-5.7690879997600999027322398986 \times 10^{227}$	51	8.3×10^{-30}	3.4×10^{-23}	-4.9×10^{-23}	1.9×10^{-23}	-2.7×10^{-24}
135	$-2.8940447723410307069409814842 \times 100^{238}$	51	8.3×10^{-31}	-2.0×10^{-23}	2.8×10^{-23}	-1.0 $\times 10^{-23}$	1.5×10^{-24}
140	$-1.7342501258179995400235382259 \times 10^{249}$	51	9.1×10^{-32}	1.2×10^{-23}	-1.6×10^{-23}	6.0×10^{-24}	-8.6×10^{-25}
145	$-1.2338962504950322443405554295 \times 10^{260}$	51	1.1×10^{-32}	-7.7×10^{-24}	9.8×10^{-24}	-3.5×10^{-24}	5.0×10^{-25}
150	-1.036414216091805 $7036206542761 \times 10^{271}$	51	1.5×10^{-33}	4.9×10^{-24}	-6.0×10^{-24}	2.1×10^{-24}	-2.9×10^{-25}
Excited state: $n_{1}=0, n_{2}=0, m=1$							
45	-3.49959 $20366935989166817769328 \times 10^{58}$	22	7.5×10^{-10}	-2.7×10^{-10}	-6.6×10^{-10}	-2.4×10^{-10}	-1.7×10^{-10}
46	$-1.7090586893952107401663064942 \times 10{ }^{60}$	23	4.1×10^{-10}	-5.7×10^{-12}	3.0×10^{-10}	-2.9×10^{-11}	-7.6×10^{-11}
47	$-8.5175020559097287494657078558 \times 10^{61}$	23	2.2×10^{-10}	-6.1×10^{-11}	-3.1×10^{-10}	-4.4 $\times 10^{-11}$	-1.3×10^{-11}
48	-4. $3302010973728239819360749684 \times 1063$	24	1.2×10^{-10}	-1.8×10^{-11}	1.8×10^{-10}	-3.1×10^{-11}	-5.1×10^{-11}
49	$-2.2447916414878218590565104858 \times 1065$	24	6.4×10^{-11}	-3.6×10^{-12}	-1.6×10^{-10}	5.4×10^{-12}	1.8×10^{-11}
50	$-1.1861897135908822422381705143 \times 10^{67}$	25	3.4×10^{-11}	-1.7×10^{-11}	1.1×10^{-10}	-2.4×10^{-11}	-3.2×10^{-11}
51	-6. $3868460774933454083833238854 \times 10^{68}$	25	1.8×10^{-11}	9.3×10^{-12}	-9.6×10^{-11}	1.4×10^{-11}	1.8×10^{-11}
52	$-3.5028591147929979635176467618 \times 1070$	26	$9,9 \times 10^{-12}$	-1.4×10^{-11}	7.2×10^{-11}	-1.7×10^{-11}	-1.9×10^{-11}
53	$-1.9562212316738041753076068320 \times 1072$	26	5.3×10^{-12}	1.0×10^{-11}	-6.1×10^{-11}	1.2×10^{-11}	1.3×10^{-11}
54	-1. $1120712695269134976071599369 \times 1074$	27	2.8×10^{-12}	-1.1×10^{-11}	4.8×10^{-11}	-1.2×10^{-11}	-1.2×10^{-11}
55	-6.4332698100 $204387410315384765 \times 10^{75}$	27	1.5×10^{-12}	8.6×10^{-12}	-4.0×10^{-11}	9.3×10^{-12}	8.5×10^{-12}
60	$-5.3614852495031144669741902328 \times 10^{84}$	30	6.4×10^{-14}	-4.4×10^{-12}	1.5×10^{-11}	-4.0×10^{-12}	-2.7×10^{-12}
75	$-2,9772996882916369067094542361 \times 10^{112}$	37	4.4×10^{-18}	6.1×10^{-13}	-1.4×10^{-12}	3.7×10^{-13}	1.2×10^{-13}
90	$-2.9806026338041272438781243041 \times 10^{141}$	45	2.6×10^{-22}	-1.1×10^{-13}	2.0×10^{-13}	-5.2×10^{-14}	-8.1×10^{-15}
105	-3. $3620313361385341584721639506 \times 10^{171}$	51	1.5×10^{-26}	2.7×10^{-14}	-3.8×10^{-14}	9.5×10^{-15}	7.4×10^{-16}
120	$-3.0469622545610938735171675528 \times 10^{202}$	51	2.4×10^{-30}	-7.7×10^{-15}	9.2×10^{-15}	-2.2×10^{-15}	-7.0×10^{-17}
135	$-1.7192510469393786146712246696 \times 10^{234}$	51	1.5×10^{-33}	2.5×10^{-15}	-2.6×10^{-15}	5.9×10^{-16}	2.3×10^{-18}
450	$-4.9485017433839436593849553170 \times 10^{266}$	51	2.3×10^{-36}	-9.1×10^{-16}	8.5×10^{-16}	-1.8×10^{-16}	2.6×10^{-18}

series at the origin converges. The value of β_{2} is determined by matching logarithmic derivatives. The integration path is kept away from $\eta=2$, at which the potential is singular, by keeping η in the lower half-plane. As a consequence, $\beta_{2}(r)$ for $r>0$ is continuous with $\operatorname{Im} r>0$. The numerical values of β_{2} so obtained are listed in Table XVII.

To calculate the Borel sum is also straightforward. ${ }^{26}$ For unimportant reasons of convenience, the values reported here were not calculated directly by the Borel method, but instead by the sequential Padé approximant method of Reinhardt, ${ }^{27}$ which for the related problem of the LoSurdo-Stark effect in hydrogen ${ }^{26,27}$ is known from numerical studies to give the same results as the Borel method. (The idea of this method is to generate the power-series expansion at some point away from the origin via Padé approximants of the series at the origin. At a point near the real axis in the right half-plane, β_{2} is an analytic function of r, and the power series at that point converges on the nearby real axis. The procedure is most easily implemented in a continued-fraction representation of the RSPT series in which the even and odd approximants are the $[N / N]$ and $[N / N+1]$ Padé approximants, ${ }^{26,28}$ We were able to calculate up to 70 continued-
fraction coefficients for the function and its first 70 derivatives- using the RSPT coefficients through order 140-before completely losing numerical significance.) The numerical results are illustrated in Table XVII for the ground state at three internuclear distances. The values obtained by summing the RSPT series agree within the accuracy of the calculations with the values obtained by solving the differential equation numerically on the semiinfinite interval.

Summation of the imaginary second-exponential-order series for $\Delta_{i} \beta_{2}^{[2]}$ [Eq. (228)] and the real first-exponentialorder series [Eq. (227)] is also reported in Table XVII. The sequential Padé-Padé method again was used, since these series are even more divergent than the RSPT series. Since only 51 power-series coefficients are available for these two series, Table I, the accuracy of the approximants for the higher derivatives is not as great as for the RSPT series. For $r=12$ and 10 , the imaginary series cancels quite well the imaginary part of the Borel sum. For $r=6$, the cancellation is not so marked: clearly, higher-exponential-order series are not so small in the $r=6$ case and are needed to cancel the imaginary part of the Borel sum.

It should be noted that for each of the exponentially

TABLE XVI. Neville table for $-E^{(N)} /\left[e^{-2}(N+1)!\right]-1$ with up to three alternating-sign correction terms, for the ground state.

N		k th Neville iterate for $k=$			
	0	1	2	3	4
With no alternating-sign correction term					
145	0.0128268094126	0. 0009887	-0. 0000199	-0. 0003504	-0.0253500
146	D. 0127456323515	0. 0009750	-0,0000 124	0.0003444	0.0250107
147	0.0126654677424	0. 0009614	-0.0000 190	-0. 0003365	-0.0246 785
148	0.0125862975623	0. 0009483	-0.0000 119	0. 0003308	0. 0243527
149	0.0125081030018	0. 0009353	-0.0000 182	-0.0003 233	-0.0240 335
150	0. 0124308668759	0. 0009227	-0.0000 115	0.0003179	0.0237204
with first alternating-sign correction term					
145	0.0128268095127	0.0009887	-0.0000 156	0.0000697	0.0050078
146	0.0127456322555	0.0009749	-0.0000 166	-0.0000 669	-0.0049 134
147	0.0126654678345	0.0009615	-0.0000 149	0.0000662	0.0048212
148	0. 0125862974739	0.0009483	-0.0000 159	-0.0000 635	-0.0047316
149	0.0125081030867	0.0009353	-0.0000 143	0. 0000629	0. 0046440
150	0. 0124308667944	0. 0009227	-0.0000 153	-0.0000 604	-0.0045 589
with two alternating-sign correction terms					
145	0. 0128268094954	0. 0009887	-0.0000 163	-0.0000 032	-0. 0002738
146	0.0127456322719	0. 0009.749	-0.0000 159	0. 0000042	0.0002678
147	0.0126654678188	0. 0009615	-0. 0000156	-0. 0000031	-0. 0002621
148	0.01258 62974889	0. 0009483	-0.0000 152	0. 0000039	0.0002564
149	0.0125081030724	0.0009353	-0.0000 150	-0. 0000029	-0.0002 510
150	0. 0124308668081	0. 0009227	-0.0000 146	0.0000037	0. 0002456
with three alternating-sign correction terms					
145	0.0128268094963	0. 0009887	-0.0000 163	0.0000006	0. 0000021
146	0. 0127456322711	0.0009749	-0. 0000159	0.0000005	-0.0000 022
147	O. 0126654678196	0.0009615	-0.0000 156	0. 0000005	0. 0000021
148	0. 0125862974881	0.0009 483	-0.0000 153	0.0000005	-0.0000022
149	0.0125081030731	0. 0009353	-0.0000 150	0. 0000005	0.0000021
150	0.0124308668074	0. 0009227	-0.0000 147	0. 0000004	-0.0000 022

small terms, the sum of each real power-series factor is itself also complex. However, here we have only listed the contribution that comes from the real part of the sum of each power-series factor, since the imaginary part would be expected to be canceled by higher-exponential-order series.

The sum of the first-exponential-order series can be either added or subtracted to the sum of the RSPT, leading to the symmetric or antisymmetric members of the double-well pair. Moreover, for quantitative accuracy, it is also necessary to include the real second-exponentialorder series, for which we have given two terms in Eqs. (227) and (110), and which comes in only with one sign. The agreement of the sum of the asymptotic series with the numerical eigenvalues for the physical double-well pair is nicely illustrated for $r=12$ and 10 , as well as the deteriorating convergence at $r=6$. At this shortest distance, the two-term truncation of the real second-exponential-order series is inadequate, and higher exponential-order contributions are also significant both for the accuracy of the real part and to cancel the imaginary part.

XII. SUMMARY

As set out in the Introduction, we have developed the quasisemiclassical method to solve the $\mathrm{H}_{2}{ }^{+}$eigenvalue problem by asymptotic expansion. The bulk of the calculation has focused on the separation constants β_{1} and β_{2}, which arise from separation in prolate spheroidal coordinates (Sec. IIA). The transformation from separation constants to energy $E(R)$ is relatively elementary (Sec. V).

The development of asymptotic expansions for β_{1} (Sec. IV) and β_{2} (Sec. III) depends first on solving the separated Schrödinger equation near the boundary points, which are also singular points, in terms of Whittaker confluent hypergeometric functions. These solutions are extended away from the boundary points, by expanding the natural variable in a series in the reciprocal internuclear distance. The Schrödinger equation is thereby turned into a Riccati equation that is solved by expansion. A crucial role is played by the b index of the Whittaker function. If taken equal to the unperturbed separation constant, then RSPT is the result of solving the Riccati equation, but the wave function satisfies only the boundary condition at $\eta=0$. If

TABLE XVII. Comparison of values of β_{2} obtained by summation of the asymptotic expansion and by numerical solution of the eigenvalue equation (11) with (physical) boundary conditions at $\eta=0$ and $\eta=2$, and with (nonphysical) boundary conditions at $\eta=0$ and $\eta=\infty$, for the ground state.

Computational Method	$\beta_{2}(r)$		
$r=12$			
Numerical solution, boundary conditions at 0 and ∞-ie	0.456205560536	+i 0.51348	$\times 10^{-7}$
Sequential Padé-Padé [35/35] for RSPT series	0. 456205560536	+i0.51347	$\times 10^{-7}$
Sequential Padé-Padé [25/26] for $\Delta \theta_{2}^{[1]}$	-0. 000121797546		
		-i 0.51348	$\times 10^{-7}$
Two-term formula (110) for $\Delta_{\Gamma} \mathrm{B}_{2}^{(2)}$	0.000000115238		
RSPT $+\Delta \beta_{2}^{(1)}+i \Delta_{i} \beta_{2}^{(2)}+\Delta_{r} \beta_{2}^{(2)}$	0. 456083878228		
Sym. num. solution, boundary conditions at 0 and 2	0.456083878989		
RSPT - $\Delta \beta_{2}^{(1)}+i \Delta_{i} \beta_{2}^{(2)}+\Delta_{r} \beta_{2}^{(2)}$	0.456327473320		
Antisym. num. solution, boundary conditions at 0 and 2	0.456327474350		
$r=10$			
Numerical solution, boundary conditions at 0 and ω-ic	0.446759779593	+i0.18165 34	$\times 10^{-5}$
Sequential Padé-Padé [35/35] for RSPT series	0.446759779592	+i 0.1816534	$\times 10^{-5}$
Sequential Padé-Padé [25/26] for $\Delta \beta_{2}^{(1)}$	-0.00071 572754		
Sequential Padé-Padé [25/26] for $\mathrm{i} \Delta_{\mathrm{i}} \mathrm{B}_{2}{ }_{2}^{(2)}$		- i 0.18166	$\times 10^{-5}$
Two-term formula (110) for $\Delta_{\mathrm{r}} \mathrm{B}_{2}^{(2)}$	0.0000037943		
RSPT $+\Delta \beta_{2}^{(1)}+i \Delta_{i} \beta_{2}^{(2)}+\Delta_{\Gamma} \beta_{2}^{(2)}$	0.4460478463		
Sym. num. solution, boundary conditions at 0 and 2	0.446047862733		
RSPT $-\Delta \beta_{2}^{(1)}+i \Delta_{i} \beta_{2}^{(2)}+\Delta_{\Gamma} \beta_{2}^{(2)}$	0.4474793014		
Antisym. num. solution, boundary conditions at 0 and 2	0.447479366055		
$r=6$			
Numerical solution, boundary conditions at 0 and ω-i¢	0.40438983904	$+i 0.133742866 \times 10^{-2}$	
Sequential Padé-Padé [35/35] for RSPT series	0.40438984	+i 0.133743	$\times 10^{-2}$
Sequential Padé-Padé [25/2b] for $\Delta \theta_{2}^{(1)}$	-0.01825 5		
Sequential Padé-Padé [25/26] for $i \Delta_{i} \beta_{2}{ }_{2}^{(2)}$		-i 0.135080	$\times 10^{-2}$
Two-term formula (110) for $\Delta_{\mathrm{r}} \mathrm{B}_{2}^{(2)}$	0.0021194		
RSPT $+\Delta 8_{2}^{(1)}+i \Delta_{2} \theta_{2}^{(2)}+\Delta_{r} \beta_{2}^{(2)}$	0. 388254	-i 0.001337	$\times 10^{-2}$
Sym. num. solution, boundary conditions at 0 and 2	0. 388058941228		
	0.424765	-i 0.001337	$\times 10^{-2}$
Antisym. num. solution, boundary conditions at 0 and 2	0. 425049975782		

the boundary condition at $\eta=2$ is also to be satisfied, then the b index gains a sequence of exponentially small series, which in turn imply exponentially small contributions to the separation constant.

The explicit complexness of the expansions, starting in second exponential order, is a consequence of the explicit complexness of the asymptotic expansions for the Whittaker function. That a real function should have a complex asymptotic expansion is not as paradoxical as it might seem (Sec. III F): the asymptotic expansion for the

Whittaker function is summable through the Borel summability of its associated power series. The real axis is a cut of the Borel sum. Thus the Borel sum of the RSPT series is complex and discontinuous on the real axis, but the explicit second-exponential-order series has the effect of canceling the implicit imaginary part and making the sum of the entire expansion (including all exponential orders) real and continuous.

The explicit imaginary series is directly related to the discontinuity on the positive real axis (Sec. IIII) of the

Borel sum of RSPT for the separation constants, which in turn determines the asymptotics of the RSPT coefficients via a dispersion relation (Sec . VI). In the course of deriving the imaginary second-exponential-order expansion, the relation to the square of the first-exponential-order expansion is obtained, which is the exact version (Secs. III G and VC) of the approximate relation discovered by Brézin and Zinn-Justin. ${ }^{12}$ There is also a second imaginary series (Sec. IV) associated with the discontinuity of β_{1} on the negative r axis that leads both to alternating-sign and logarithmic contributions to the asymptotics of the RSPT coefficients (Sec. VI). These contributions had in fact implicitly been discovered in an earlier Bender-Wu analysis of the asymptotics of the RSPT for $\mathrm{H}_{2}{ }^{+}$. ${ }^{13}$

Extensive numerical illustration has been provided for both the values (Tables I-III, V-VIII, and XI-XIV) and the asymptotic behavior (Tables IV, X, XV, and XVI) of the coefficients of the various series. In particular, the relation between the imaginary series and the RSPT asymptotics is verified in practice (Tables IV, X, XV, and XVI). The higher the quantum numbers n_{1} and n_{2} the more slowly the RSPT approaches asymptotic behavior. The alternating-sign contributions to both $\beta_{1}^{(N)}$ and to $E^{(N)}$ have been explicitly demonstrated (Tables X, XV, and XVI).

The RSPT series for β_{2} has been summed and shown (Table XVII) to agree numerically with the numerical solution of the differential equation for β_{2} on a semi-
infinite domain, the analytic continuation to negative r or the closely related $\beta_{1}^{(}\left(r^{\prime}\right)$ for the electron moving in the field of a proton and an antiproton. For instance, at $r=10$ the sum of the RSPT series for β_{2} is $0.446759779592+i 0.1816534 \times 10^{-5}$, while direct numerical integration of the differential equation gives $0.446759779593+i 0.1816534 \times 10^{-5}$. For the physical β_{2}, the sum of all the β_{2} subseries together agrees well with the numerically solved values for β_{2} for large r (≥ 10), but still more terms and subseries are needed for smaller r ($r=6$ being the example given in Table XVII).
Such a richly complex asymptotic expansion for such a simple problem was not anticipated.

ACKNOWLEDGMENTS

We thank the Alfred P. Sloan Foundation, the Consiglio Nazionale delle Ricerche, and the National Science Foundation under Grants No. MCS-8300551 and No. INT-8300146 for partial support and travel expenses. We thank the computing centers of the Johns Hopkins University, the University of Waterloo, the University of Modena, and the Latvian Academy of Sciences for support of the computer calculations. We thank Dr. S. Guidi and Dr. Zanasi of the University of Modena for their kind assistance. One of us (H.J.S.) also thanks the Universities of Bologna, Modena, and Waterloo for their gracious hospitality.
${ }^{1}$ L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Academic, New York, 1965).
${ }^{2}$ R. J. Damburg and R. Kh, Propin, J. Phys. B 1, 681 (1968).
${ }^{3}$ J. D. Morgan and B. Simon, Int. J. Quantum Chem. 17, 1143 (1980).
${ }^{4}$ E. M. Harrell, Commun. Math. Phys. 75, 239 (1980).
${ }^{5}$ R. J. Damburg, R. Kh. Propin, S. Graffi, V. Grecchi, E. M. Harrell II, J. Čižek, J. Paldus, and H. J. Silverstone, Phys. Rev. Lett. 52, 1112 (1984).
${ }^{6}$ S. Graffi, V. Grecchi, E. Harrell, and H. J. Silverstone, Ann. Phys. (N.Y.) (to be published). See this reference, as well as Refs. 2 and 3, for an extensive bibliography and for references to earlier work.
${ }^{7}$ H. J. Silverstone, S. Nakai, and J. G. Harris, Phys. Rev. A 32, 1341 (1985).
8J, Zinn-Justin, Nucl. Phys. B192, 125 (1981).
9J. Zinn-Justin, Nucl. Phys. B218, 333 (1983).
${ }^{10}$ J. Zinn-Justin, J. Math. Phys. 25, 549 (1984).
${ }^{11}$ C. G. J. Jacobi, Gesammelte Werke, Vol. 8, Vorlesungen über Dynamik (Reimer, Berlin, 1884).
${ }^{12}$ E. Brézin and J. Zinn-Justin, J. Phys. (Paris) Lett. 40, L-511 (1979).

13J. Čížek, M. R. Clay, and J. Paldus, Phys. Rev. A 22, 793 (1980).
${ }^{14}$ R. Damburg and R. Propin, Int. J. Quantum Chem. 21, 191 (1981).
${ }^{15}$ E. Schrödinger, Ann. Phys. (Leipzig) 80, 437 (1926).
${ }^{16}$ H. J. Silverstone, Phys. Rev. A 18, 1853 (1978).
${ }^{17}$ R. E. Langer, Phys. Rev. 51, 669 (1937).
${ }^{18}$ T. M. Cherry, Trans. Am. Math. Soc. 68, 224 (1950).
${ }^{19}$ Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun, NatI. Bur. Stand. (U.S.) Appl. Math. Ser. No. 55 (U.S. GPO, Washington, D.C., 1964).
${ }^{20} \mathrm{H}$. Buchholtz, The Confluent Hypergeometric Function (Springer, New York, 1969).
${ }^{21}$ R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation (Academic, New York, 1973).
${ }^{22}$ Logarithmic terms in the small- R energy expansion have been known for some time. See, for instance, W. Byers-Brown and E. Steiner, J. Chem. Phys. 44, 3934 (1966), and M. Klaus, J. Phys. A 16, 2709 (1983).
${ }^{23}$ B. Simon, Int. J. Quantum. Chem. 21, 3 (1982).
${ }^{24}$ H. J. Silverstone, J. G. Harris, J. Čižek, and J. Paldus, Phys. Rev. A 32, 1965 (1985).
${ }^{25}$ See, e.g., G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 3rd ed. (Wiley, New York, 1978).
${ }^{26}$ V. Franceschini, V. Grecchi, and H. J. Silverstone, Phys. Rev. A 32, 1338 (1985).
${ }^{27}$ W. P. Reinhardt, Int. J. Quantum. Chem. 21, 133 (1982).
${ }^{28}$ G. Graffi, V. Grecchi, and G. Turchetti, Nuovo Cimento B 4, 313 (1971).

POTENTIALS PRODUCING MAXIMALLY SHARP RESONANCES

BY
EVANS M. HARRELL II ${ }^{1}$ AND ROMAN SVIRSKY ${ }^{2}$

AbSTRACT. We consider quantum-mechanical potentials consisting of a fixed background plus an additional piece constrained only by having finite height and being supported in a given finite region in dimension $d \leqslant 3$. We characterize the potentials in this class that produce the sharpest resonances. In the one-dimensional or spherically symmetric specialization, a quite detailed description is possible. The maximally sharp resonances that we find are, roughly speaking, caused by barrier confinement of a metastable state, although in some situations they call for interactions in the interior of the confining barrier as well.
I. Introduction. One of the standard topics of quantum mechanics is the tunneling effect. A large potential barrier blocks a particle imperfectly, and the effect of the penetration can show up in scattering as a sharp resonance. In the time-independent analysis of the Schrödinger equation, resonances make their appearance in the guise of nonreal eigenvalues defined with an outgoing-wave condition or complex scaling. Up to physical constants, ε, which will denote (minus) the imaginary part of this eigenvalue, measures the width of the resonance in units of energy, and a sharp resonance is one with small ε. The real part, E, roughly locates the physical energy at which the resonance is observed. The quantity ε may also be inversely proportional to the lifetime of a metastable state, according to the indeterminacy principle. We shall consider relatively compact potentials V supported in finite regions in one or three dimensions, which are exterior-dilatation analytic in the sense described.by Simon and by Graffi and Yajima [14, 6]. They also seem to fall within the scope of other recent generalizations of the complex scaling method $[3,4,10,13]$, although we have not yet seen the definitive versions of all of these generalizations. The simplest model of an alpha-emitting nucleus, being a spherical square-well, fits this description, and its sharp resonances are associated with the metastable states caused physically by confinement of particles within the nucleus by a potential barrier at its periphery. It is not obvious, however, that other mechanisms might not also exist for causing resonances. For instance, could some very complicated potential, such as arises in studies of random media, cause as sharp a scattering resonance as a confining barrier? We will find below that the answer is in essence no.

[^0]This paper uses and extends ideas in two earlier works by Harrell [7, 8]. In [7] Harrell studied the one-dimensional Schrödinger equation

$$
\begin{equation*}
-d^{2} \psi / d x^{2}+\left(V(x)-k^{2}\right) \psi=0, \quad k^{2}=E-i \varepsilon \tag{1.1}
\end{equation*}
$$

with outgoing boundary conditions at 0 and an arbitrary other fixed point L. Positive lower bounds were derived for ε depending only on the support $\subset[0, L]$ and magnitude of V and on the real part of the resonance eigenvalue E, which therefore apply to random or otherwise imperfectly known potentials. That article relied on comparison techniques to generate inequalities, but an alternative approach, which we follow here, is to attempt actually to find the most highly resonant possible potential within some category. This could then be analyzed, if necessary numerically, to furnish optimal bounds on ε. Harrell's other paper [8] investigated the problem of determining the potential that optimizes a different spectral property, namely the ground-state eigenvalue of an n-dimensional Schrödinger operator, and further progress on related problems was made recently in [2]. This provides both a method and a reason for hoping for success in the resonance problem, which is, however, in many ways less tractable, especially because it is not selfadjoint.
In this paper we study equation (1.1) and its higher-dimensional analogue,

$$
\begin{equation*}
(-\Delta+V(x)) \psi=k^{2} \psi . \tag{1.2}
\end{equation*}
$$

In the one-dimensional case we shall pose slightly different boundary conditions from those of [7], viz.,

$$
\begin{equation*}
\psi(0)=0 \quad \text { and } \quad \psi(L)=1, \quad \psi^{\prime}(L)=i k, \tag{1.3}
\end{equation*}
$$

i.e., Dirichlet conditions at 0 and the traditional outgoing conditions at L. The lower bound derived in [7], which assumed outgoing conditions at both endpoints, carries over immediately with only minor changes. Boundary conditions (1.3) are appropriate if one thinks of the one-dimensional problem as coming from separation of variables in a spherically symmetric three-dimensional problem, and would describe S-wave resonances; it will thus be referred to as the totally spherically symmetric case. Resonances for subspaces of nonzero angular momentum would correspond to an outgoing condition of the form

$$
\psi^{\prime}(L) / \psi(L) \rightarrow i k \quad \text { as } L \rightarrow \infty
$$

and will be discussed further in [15].
Since the boundary conditions (1.3) depend on the eigenvalue parameter k^{2}, it looks at first as if (1.1) and (1.3) do not constitute an operator eigenvalue problem, but in fact it is easy to show that these equations are equivalent to the eigenvalue problem for the one-dimensional, exteriorly dilated version of the operator $-\Delta+V$, since any eigensolution reduces to a plane wave $C \exp (i k x)$ in the region exterior to the potential but interior to the sphere where exterior dilatation sets in. To sum up, for our purposes:
Definition. A resonance is a triple $\left\langle k^{2}, V(x), \psi(x)\right\rangle$ related by (1.2) and the auxiliary conditions mentioned above, with $\operatorname{Re} k^{2} \geqslant 0$ and $\operatorname{Im} k^{2}<0$. We shall frequently refer to k^{2} for short as the resonance, and will call ψ (either as a local solution or as an exteriorly dilated solution) the resonance wave-function.

We shall address the following question: Is there a distinguished potential $V_{\#}$ within a class such as $\{V: 0 \leqslant V \leqslant M, \operatorname{supp} V \subset x:|x| \leqslant L\}$ that minimizes ε in (1.1) or (1.2), and, if so, what is this maximally resonant $V_{\# 7}$? We shall also address the question of existence and characterization of potentials that are maximally resonant within a given energy range, and allow a fixed background potential. An analysis of similar questions with other natural classes S over which the potential can vary will appear in [15].
A compactness argument will answer the first question in the affirmative, and to characterize $V_{\#}$ we shall begin by analyzing the effect of small perturbations of it, following an idea of [8]. This will give a certain amount of information about $V_{\#}$; in particular, it will reveal that for the above-mentioned class, $V_{ \pm}$can only equal 0 or M. To get more detailed information on the nature of its support, however, we have to restrict ourselves to the spherically symmetric case and rely on techniques of ordinary differential equations.
II. Preliminaries. The first order of business is to establish the existence of sharp resonances for suitable Schrödinger operators. We shall work in the spaces $\mathbf{R}^{+}, \mathbf{R}^{2}$, or \mathbf{R}^{3}, and always suppose that the potential V is supported within the ball of radius L centered at the origin. In one dimension this statement will be interpreted as meaning that $\operatorname{supp}(V) \subset[0, L]$. The exterior-wave condition can be incorporated into the eigenvalue problem

$$
\begin{equation*}
-\Delta \psi+V \psi=k^{2} \psi \tag{2.1}
\end{equation*}
$$

most conveniently when the latter is written as an integral equation,

$$
\begin{equation*}
\psi=-\int_{|y| \leqslant L} G(x, y ; k) V(y) \psi(y) d y, \tag{2.2}
\end{equation*}
$$

where we continue onto the second sheet, i.e., with $E=\operatorname{Re}\left(k^{2}\right)>0$ and $\varepsilon=$ $-\operatorname{Im}\left(k^{2}\right)>0$,

$$
G(x, y ; k)= \begin{cases}\exp \left(i k x_{,}\right) \sin \left(k x_{<}\right) / k, & d=1, \tag{2.3}\\ i H_{0}^{(1)}(k|x-y|) / 4, & d=2, \\ \exp (i k|x-y|) / 4 \pi|x-y|, & d=3\end{cases}
$$

(here H denotes a Hankel function [16]). We observe that any solution of (2.2) belongs to $W^{2}(\Omega)$ for any bounded domain Ω and solves (2.1).

What complex scaling provides for us is a consistent interpretation, in the language of operators on L^{2}, of this traditional method of defining a resonance. The only facts needed about the exterior scaling formalism are (i) that the associated resonance wave-functions satisfy the Schrödinger equation locally but are modified outside some finite region so as to become square-integrable; and (ii) if J is the antilinear operator of complex conjugation, $J f=f$, then the adjoint of a complexscaled Hamiltonian operator H_{d} is simply

$$
\begin{equation*}
H_{d}^{*}=J H_{d} J \tag{2.4}
\end{equation*}
$$

This prefatory remark should make it clear that our analysis is not strictly tied to
the exterior-scaling formalism, but would apply without change to the other alternative complex-scaling techniques that have sprung up recently $[\mathbf{3}, \mathbf{4}, \mathbf{1 0}, 13]$. Since we make only fairly minor use of complex scaling (to justify perturbation theory in Proposition III.1), the detailed discussion of the relationship between it and the integral equation is deferred to [15].

It will be helpful to know that there are very sharp resonances for sufficiently large support or potential height, i.e., that ε is exponentially small as a function of these quantities. Suppose that V is supported in the ball of radius L and that $\operatorname{supp}|V| \leqslant M$. There is a scaling relationship between L and M showing that the problem is largely characterized by the combination $L \sqrt{M}$; if x is replaced by $x^{\prime}=a x$, one finds that the length L becomes $a L$, while the potential added to $-\Delta^{\prime}$ becomes $V\left(x^{\prime} / a\right) / a^{2}$. (The corresponding eigenvalue will also be affected, becoming k^{2} / a^{2}.) For convenience, in one dimension we may therefore show the existence of sharp resonances by setting $V=M \chi_{[1,2]}$, a standard textbook variety square-well. It is straightforward to find that the width of the principle resonance is exponentially small, i.e., $\exp (-2 \sqrt{M})$ as $M \rightarrow \infty$. (A rigorous discussion of this sort of limit, complete with detailed perturbation theory for large barriers of general shape, can be found in [1].) For the square barrier $M \chi_{[1, L]}$, there is a resonance whose width is asymptotic to $A \exp (-2 L \sqrt{M})$.

Similar analysis of spherically symmetric square-barrier potentials in dimensions 2 and 3 shows that in all cases there are universal positive constants A and B, such that a potential $V, 0 \leqslant V \leqslant M$, supported in a ball of radius L, can always be found with a resonance width satisfying

$$
\begin{equation*}
\varepsilon<A \exp (-B L \sqrt{M}) \tag{2.5}
\end{equation*}
$$

If necessary, estimates of A and B could be derived without much difficulty. In the totally spherically symmetric case, for example, for any positive A and any $B<2$, there is a resonance for which (2.5) will hold for L or M sufficiently large.

Fix a function W supported within the ball of radius L and a compact subset Ω of that ball. The function W will play the role of a background potential and will be assumed relatively compact with respect to $-\Delta$. (This will be the case if $W \in L^{2}$, for example.) Let

$$
S=\{V: \operatorname{supp}(V) \subset \Omega \text { and } 0 \leqslant V(x)-W(x) \leqslant M \text { a.e. }\}
$$

let $\varepsilon(V)$ denote any particular resonance width associated with V, and let $E(V)$ be the real part of the corresponding eigenvalue $k^{2}(V)=E(V)-i \varepsilon(V)$ of $-\Delta+V$.

Theorem II.1. Let $\varepsilon_{\#}=\inf \{\varepsilon(V): V \in S(C, D)\}$, where $S(C, D)$ is the subset of S such that $0 \leqslant C \leqslant E(V) \leqslant D<\infty$. We assume C and D are chosen so that $\varepsilon_{\#}$ is defined (i.e., that there is a V with a resonance eigenvalue in this energy interval). Then
(i) There exists a $V_{\#} \in S$ such that $\varepsilon_{\#}=\varepsilon\left(V_{\#}\right)$ and $C \leqslant E(V) \leqslant D$.
(ii) If either $W \geqslant 0$ a.e. or $C>0$, then $\varepsilon_{\#}>0$.

Remark. There is no guarantee of uniqueness for the maximally resonant potential, and we expect that there are situations where it is not unique. For instance, suppose that Ω consists of two widely separated disjoint symmetric pieces. There is
no physical reason to think that a resonance that would be sharp if only one piece were allowed would necessarily be enhanced if the second piece were equipped with a symmetric bit of potential. On the other hand, we conjecture that the typical situation is uniqueness.

Proof. Let Ω_{1} be an arbitrary finite closed ball containing Ω. Let V_{n} be a minimizing sequence for ε, i.e., $\varepsilon\left(V_{n}\right) \rightarrow \varepsilon_{\#}$. Let k_{n}^{2} and ψ_{n} be the associated eigenvalue and eigenfunction. Without loss of generality, since $[C, D]$ is a compact interval, we can pass to a subsequence so that k_{n}^{2} converges. If ψ_{n} is normalized in $L^{2}\left(\Omega_{1}\right)$, then (2.1) shows that ψ_{n} lies in a bounded set in $W^{2}\left(\Omega_{1}\right)$. By Rellich's theorem this is compactly embedded in $C\left(\Omega_{1}\right)$, so by passing to another subsequence if necessary, it may be assumed that ψ_{n} converges uniformly on Ω_{1}. With still another subsequence, we may suppose by the Alaoglu theorem that V_{n} converges weakly in $L^{2}\left(\Omega_{1}\right)$, say to $V_{\#}$. The limit clearly remains in the set S (integrate V_{n} by the charactistic function of the set on which putatively $V_{\#}-W<0$ or $\left.V_{\#}-W\right\rangle$ M).

Now note that $V_{n} \psi_{n}$ tends weakly to $V_{ \pm} \psi_{\#}$. For fixed $x \in \Omega_{1}$, the Green function tends to $G\left(x, y ; k_{\#}\right)$ in $L^{2}\left(\Omega_{1}, d y\right)$, so it follows that the right side of

$$
\psi_{n}(x)=-\int_{\Omega_{1}} G\left(x, y ; k_{n}\right) V_{n}(y) \psi_{n}(y) d y
$$

from (2.2) converges pointwise to

$$
-\int G\left(x, y ; k_{\#}\right) V_{\#}(y) \psi_{\#}(y) d y .
$$

The left side converges uniformly on Ω_{1} to $\psi_{\#}$, so

$$
\begin{equation*}
\psi_{\#}(x)=-\int_{\Omega_{1}} G\left(x, y, k_{\#}\right) V_{\#}(y) \psi_{\#}(y) d y \tag{2.6}
\end{equation*}
$$

on Ω_{1}.
If the minimal value of ε were 0 , then the corresponding eigenvalue $k_{\#}^{2}$ would either be 0 or a positive embedded real eigenvalue of the selfadjoint realization of the problem (1.2) by the usual argument of dilatation analyticity (see [12, §XIII.13], which extends in a straightforward way to exterior scaling). Embedded positive eigenvalues, however, are impossible for bounded, compactly supported potentials (see [12, §XIII. 13 or 5]).

It remains to show that if $W \geqslant 0$, there can be no eigenvalue or resonance with $k^{2}=0$. We consider the three-dimensional case only. Suppose the contrary. Then we would have

$$
\psi_{\#}=-(1 / 4 \pi|x|) * V_{\# \#} \psi_{\#},
$$

and because $V_{\#}$ is compactly supported it would follow that this produces a solution of the Schrödinger equation (without exterior scaling) tending to 0 at ∞. Since (see [12, vol. II, p. 183]) in general

$$
\begin{equation*}
\Delta|u| \geqslant \operatorname{Re}((\bar{u} /|u|) \Delta u), \tag{2.7}
\end{equation*}
$$

it follows in this case that

$$
\begin{equation*}
\Delta\left|\psi_{\#}\right| \geqslant V_{\#}\left|\psi_{\#}\right| \geqslant 0 . \tag{2.8}
\end{equation*}
$$

Let $f=|\psi(R)| \cos (\sqrt{E}(r-R))$, so $f^{\prime \prime}=-E f$, while $f(R)=|\psi(R)|$ and $f^{\prime}(R)$ $=|\psi(R)|^{\prime}$. The Sturm comparison argument now leads to the conclusion that any zero of $|\psi(r)|$ for $r<R$ must lie to the left of the nearest zero of $f(r)$ (see [9, p. 334]). Since $\psi(0)=0$, this means that $\sqrt{E} R \geqslant \pi / 2$, from which (2.10) follows.

As for the other regime of high energies, it is known that generally resonance eigenvalues are excluded from a sector in the complex plane of the form $\{0>$ $\left.\arg \left(k^{2}-\alpha\right)>-\beta\right\}$ for some positive α and β. The estimates used by Cycon [4], for example, to prove this fact hold uniformly for all $V \in S$. (Although Cycon uses a distorted scaling rather than exterior scaling, the distinction is unimportant in our context.)

Corollary II.3. In the totally spherically symmetric case, if $W \geqslant 0$ a.e. and M or L is sufficiently large, then there exists a potential $V_{\#}$ that is maximally resonant for the entire range of energies $E(V) \geqslant 0$, and $E\left(V_{\#}\right)>\pi^{2} / 4 L^{2}$.

Definition. The resonance $\left\langle k_{\#}^{2}, V_{\#}, \psi_{\#}\right\rangle$ with the potential asserted by II. 3 to exist will be called the sharpest resonance of all.
III. Characterization of maximally resonant potentials. If a potential is maximally resonant on a set $S(C, D)$, then we term the corresponding resonance maximally sharp, or simply maximal. Thus a resonance is maximal when ε is minimal. It was shown in §II that maximally resonant potentials exist under some physically important circumstances. Suppose now that $V_{ \pm}$is a maximally resonant potential. It will be characterized by a variational analysis, which would equally well characterize minimally resonant potentials or other critical points of the functionals $\varepsilon(V)$. There is no apparent physical significance to other critical points, however. Since the sets S and $S(C, D)$ which we consider here ensure that $V_{\#}$ is relatively compact with respect to the exteriorly complex dilated version of $-\Delta$, the resonances associated with $V_{\#}$ are all finitely degenerate and can accumulate only at ∞ or 0 . They will always be nondegenerate in the totally spherically symmetric case, and for simplicity we shall restrict ourselves to the problem of characterizing those maximally resonant potentials that have nondegenerate resonance eigenvalues. The functional configuration of $V_{\#}$ can be probed with small perturbations by appropriate functions. Since this variational analysis is purely local, a convenient definition reads as follows:

Definition. The potential V_{\neq}is locally maximally resonant for the set S (or $S(C, D)$) if it has a resonance eigenvalue $k^{2}\left(V_{\#}\right)$ such that for sufficiently small δ,

$$
\varepsilon\left(V_{\#}\right)=\min \left\{\varepsilon(V): V \in S, \sup \left|V-V_{\#}\right|<\delta,\left|k^{2}(V)-k^{2}\left(V_{\#}\right)\right|<\delta\right\}
$$

The standard methods of perturbation theory allow one to write down a formula for the first-order change in k^{2} when $V_{\#}$ is slightly perturbed, which will be a valuable tool:

Proposition III.1. Let $P(x)$ be a bounded, real function supported in Ω. If k^{2} is a discrete, nondegenerate resonance eigenvalue of $-\Delta+V, V \in S$, and ψ_{d} is the associated eigenfunction $\in L^{2}$ in the framework of exterior dilatation, then

$$
\begin{equation*}
d k^{2}\left(V_{d}+\kappa P\right) / d \kappa=\int P \psi_{d}^{2} / \int \psi_{d}^{2} \tag{3.1}
\end{equation*}
$$

Remark. With the usual complication of preliminary diagonalization, this formula remains valid for a finitely degenerate eigenvalue.

Proof. We write $k^{2}(V+\kappa P)$ for short as $k^{2}(\kappa)$ and let H_{d} denote the exteriorly scaled version of $-\Delta+V$ for some fixed scaling parameter. From

$$
\left(k^{2}(\kappa)-k^{2}(0)\right)\left(J \psi_{d}, \psi_{d}\right)=\left(J \psi_{d},\left(H_{d}+\kappa P-k^{2}(0)\right) \psi_{d}\right),
$$

and the differentiability of k^{2} and the eigenfunction guaranteed by perturbation theory [11, Chapter VII],

$$
\begin{aligned}
& \qquad \begin{aligned}
& k^{2 \prime}(0)\left(J \psi_{d}, \psi_{d}\right)=\left(d J \psi_{d} / d \kappa, 0\right)+\left(J \psi_{d}, P \psi_{d}\right)+\left(J \psi_{d},\left(H_{d}-k^{2}(0)\right) d \psi_{d} / d \kappa\right) \\
&=\left(J \psi_{d}, P \psi_{d}\right)+\left(\left(H_{d}^{*}-\overline{k^{2}(0)}\right) J \psi_{d}, d \psi_{d} / d \kappa\right) ; \\
& \text { so } \\
&\left(d k^{2}(\kappa) / d \kappa\right) \int \psi_{d}^{2}=\int P \psi_{d}^{2} .
\end{aligned}
\end{aligned}
$$

But note that $\int \psi_{d}^{2} \neq 0$, as otherwise the right side would be zero for all the functions P, implying that $\psi_{d}^{2}=0$ throughout Ω, which is impossible because of the unique continuation property. Therefore we may divide through by the integral, obtaining (3.1).

Theorem III.2. Let $V_{ \pm}$be a maximally resonant potential in the set S. Then

$$
\begin{equation*}
V_{\#}-W=M \chi_{Y} \quad \text { a.e. } \tag{3.2}
\end{equation*}
$$

except possibly for x on the nodal surface of the corresponding resonance wave function $\left\{x: \psi_{\#}(x)=0\right\}$.

Remark. This fact is at first somewhat misleading about the nature of highly resonant potentials, since alternative types of maximally resonant potentials, such as are obtained when V varies over a set with L^{p} conditions rather than boundedness, turn out to be smooth functions characterized by nonlinear differential equations rather than (3.2) [15]. In other words, the discontinuity and two-valuedness of the maximally resonant potential are to some extent artifacts of the particular framework we have erected here. One great advantage that (3.2) brings is numerical feasibility. If a numerical estimate of the minimal resonance width is desired for a potential supported in a given region, the search procedure over this restricted set of potentials is easy to implement. In the spherically symmetric case the maximizers can be further characterized by analytic methods (see §IV).

The nodal surface is necessarily of measure 0 if $V_{\#}$ is spherically symmetric, and is in any case a nowhere dense set, because of the unique continuation property.

Proof. Suppose not, and let $F_{n}=\left\{x: 0<1 / n<V_{\#}(x)-W(x)<M-1 / n\right\}$ for an arbitrary integer n. For uncluttered notation we call the associated wave-function simply ψ. Recall that ψ and its exteriorly dilated version ψ_{d} coincide within the undilated region. For almost every $z \in F_{n}$, we can find a sequence of subsets $G_{i} \subset F_{n}$ so that $\mu\left(G_{i}\right) \rightarrow 0$, and

$$
\begin{equation*}
\psi^{2}=\lim _{i \rightarrow \infty} \int_{G_{i}} \psi^{2} d y / \mu\left(G_{i}\right) . \tag{3.3}
\end{equation*}
$$

Now let $P_{i}(z)$ be the characteristic function of G_{i}; for $\kappa<1 / n, 0<V_{\#}-W+$ $\kappa P_{i}(x)<M$, so $\kappa P_{i}(x)$ is an admissible perturbation for sufficiently small positive or negative κ. If $V_{\#}$ is maximally resonant, then $\operatorname{Im} d k^{2}\left(V_{\#}+\kappa P_{i}\right) / \mathrm{d} \kappa=0$. From (3.1) and (3.3) this means that $\psi^{2} / \int \psi_{d}^{2} \equiv \alpha \psi^{2}$ is real for a.e. such z (the denominator must contain the dilated wave-function in order to be finite). Since n is arbitrary, we conclude that $\alpha \psi^{2}$ is purely real for a.e. $z \in F \equiv U F_{n}$.
Consider a point z where, for instance, $\sqrt{\alpha} \psi(z)>0$. We claim that for a.e. such $z \in F$ we can find subsequences $\left\{z_{n}\right\}$ of points of F converging to z from d linearly independent directions. (As before, d denotes the dimension of the space and in our case $d=1,2$ or 3 . However, if $d=1$ the statement becomes trivial, so we shall only consider higher dimensions.)

Suppose our claim is false. Let $B(z, \delta)$ be a ball around z of an arbitrarily small radius δ. Then $B(z, \delta) \cap F$ is at most a $(d-1)$-dimensional subset of \mathbf{R}^{d}, so it has measure zero. This, however, contradicts Lebesgue's Theorem on points of density, which states that almost all points of any arbitrary linear set are density points of that set, i.e. for a.e. $z \in F$

$$
\lim _{\delta \rightarrow 0} \frac{\mu(F \cap B(z, \delta))}{\mu(B(z, \delta))}=1 .
$$

Thus our claim is established.
The above claim justifies the next assertion, namely that $\nabla \psi$ can be determined a.e. on F by considering only sequences of points of F. Repeating the same argument one more time we find that $\sqrt{\alpha} \Delta \psi$ (or $\sqrt{-\alpha} \psi$ where $\alpha \psi^{2}<0$) is real a.e. on F. Then we see that in

$$
\sqrt{\alpha}\left(-\Delta+V_{\#}-E_{\#}\right) \psi=-i \sqrt{\alpha} \varepsilon_{\#} \psi
$$

the left side would have to be real and the right side imaginary, which means that $\psi=0$.

Equation (3.2) is consistent with the expectation that maximally resonant potentials act by confining a particle inside a barrier, i.e., that the potential lies predominantly near the periphery of Ω, but in principle the set Y at this point need have no special position within Ω. The spherically symmetric analysis will bear out the expectation more fully. In one dimension Y will in fact turn out to be (a.e. equivalent to) a finite union of closed intervals (Proposition IV.2).
Proposition III.3. With α as in the foregoing proof, $\operatorname{Im}\left(\alpha \psi^{2}\right) \geqslant 0$ on the set Y of (3.2), and $\operatorname{Im}\left(\alpha \psi^{2}\right) \leqslant 0$ on the complement of \bar{Y}. Moreover, $\alpha \psi^{2}$ is real on the boundary of Y.

Remark. It would thus be possible to modify the normalization of (1.3) and (2.11) so as to make $\operatorname{Im} \psi^{2}$ respectively $\geqslant 0$ and $\leqslant 0$.
Proof. For $Z \subset Y$, we may allow a perturbation of the form $V_{\#} \rightarrow V_{\#}+\kappa \chi_{Z}$ so long as $\kappa \leqslant 0$, so that the potential remains in S. As in the proof of Theorem III.2, we find that for a.e. $x \in Y, \operatorname{Im}\left(\alpha \psi^{2}\right) \geqslant 0$. Similarly, for $Z \subset \bar{Y}^{\prime}$ we may allow such perturbations so long as $\kappa \geqslant 0$, and the argument of the proof of Theorem III. 2 shows that for a.e. $x \notin Y, \operatorname{Im}\left(\alpha \psi^{2}\right) \leqslant 0$. Therefore, by the continuity of $\psi_{\#}, \alpha \psi_{\#}^{2}$ is real on the boundary of Y.
IV. The spherically symmetric case. Finally, we embark on the detailed description of the totally spherically symmetric case via a series of propositions and remarks. We will find that the wave-functions of maximal resonances not only suffer from confinement, but they also get kicked when they are down. We show below that, at least for large L or M, maximally resonant potentials must contain a confining barrier stretching to L. We believe that there are locally maximally resonant potentials consisting of more than one barrier, although we do not firmly establish this fact. In particular, as can be seen from (4.1) and (4.3) below, the potential can and will switch on inside the outer barrier if the resonance wave-function has a sufficiently small modulus over a given region. This will happen if the resonance wave-function resembles an excited state of the associated problem with some selfadjoint boundary condition at L, which is ordinarily the case when the resonance width is small. The reason for this conjecture is provided, for example, by [1], where resonances are localized near, and asymptotically in one-to-one correspondence with, bound state energies of a related selfadjoint problem. The sharpest resonance of all seems to be generally associated with the ground-state eigenfunction, and its potential contains a confining barrier but no other pieces.

One of the tools for deriving more information about the set Y if there is total spherical symmetry is the formula (2.11) relating any resonance width to the corresponding resonance function on $[0, L]$. It leads to the following:

Proposition IV.1. In the spherically symmetric case, the argument of any resonance eigenfunction is monotone increasing and twice differentiable. More exactly,

$$
\begin{equation*}
d \arg (\psi) / d r=\varepsilon|\psi(r)|^{-2} \int_{0}^{r}|\psi(y)|^{2} d y>0 \tag{4.1}
\end{equation*}
$$

Proof. First note that $\psi(r)$ never vanishes except at $r=0$, as otherwise it would be an eigenfunction of a selfadjoint problem, and ε would have to be 0 . If $u=d(\arg \psi) / d r=d(\operatorname{Im} \ln \psi) / d r=\operatorname{Im}\left(\psi^{\prime} / \psi\right)$, then, after the usual Ricatti transformation, the Schrödinger equation becomes

$$
u^{\prime}=\varepsilon-\left(2 \operatorname{Re}\left(\psi^{\prime} / \psi\right)\right) u
$$

Formula (2.11) fixes the limit of integration in the solution of this elementary equation, leading to (4.1).

Proposition IV.2. In the spherically symmetric case, the support Y of $V_{\#}-W$ is a finite union of disjoint intervals, i.e., for some integer $n \geqslant 1$, there are points $0 \leqslant r_{1}<r_{2}<\cdots<r_{2 n} \leqslant L$ for which, if we let $B(j)=\left[r_{2 j-1}, r_{2 j}\right], \quad G(j)=$ $\left[r_{2 j}, r_{2 j+1}\right]$, then

$$
\begin{equation*}
Y=\bigcup_{j=1}^{n} B(j) \tag{4.2}
\end{equation*}
$$

In addition, the following estimates hold for the lengths of the intervals $B(j)$ and gaps $G(j)$: For all j except (i) $j=1$ when $r_{1}=0$, or (ii) $j=n$ when the associated interval or gap includes the value L,

$$
\begin{equation*}
|B(j)|>\pi \min _{B(j)}\left|\psi_{\#}\right|^{2} / 2 K \quad \text { and } \quad|G(j)|>\pi \min _{G(j)}\left|\psi_{\#}\right|^{2} / 2 K, \tag{4.3}
\end{equation*}
$$

where, as before, $K=\operatorname{Re} k$.

Definition. We call the intervals $B(j)$ the barriers and the intervals $G(j)$ the gaps.

Proof. From Propositions III. 3 and IV. 1 it follows that in one dimension the potential switches on or off exactly at the places where the argument of $\psi_{\#}$ increases by $\pi / 2$ from the first point at which it switches on or off. Since $\psi_{\#}$ satisfies a regular Sturm-Liouville equation and vanishes at 0 , it is continuously differentiable with $\psi_{\#}^{\prime}(0) \neq 0$ (else it would vanish everywhere). It follows that the expression in (4.1) is bounded for all r, so there can only be a finite number of switchings. This establishes (4.2).
The estimates (4.3) follow from (4.1). The limiting phase at $r=0$ is undetermined, so the first switching point is likewise undetermined. Also, the potential is switched off by construction at L regardless of phase. For the other switching points, however, (4.1) implies that

$$
\pi / 2=\varepsilon \int_{B(j) \text { or } G(j)} d r|\psi(r)|^{-2} \int_{0}^{r}|\psi(y)|^{2} d y .
$$

Now replace r by L and substitute from (2.11) to get

$$
\pi / 2<K \int_{B(j) \text { or } G(j)} d r|\psi(r)|^{-2}
$$

and, finally, estimate the remaining integral by the length of the interval times the maximum of the integrand.

Figure 1. The relationship between the argument of the resonance function and the on and off intervals of the maximally resonant potential. The potential equals M in the shaded intervals and 0 otherwise.

Figure 2. We fix $L=2$ and assume that $V=M \chi_{\left(L_{1}, 2\right)}$. Then we numerically evaluate $\varepsilon\left(L_{1}\right)$ and $d \varepsilon / d L_{1}$ for different values of L_{1}. Points on the first graph represent optimal values of L_{1} for each fixed value of M and points on the second graph represent corresponding values of $\ln \varepsilon$.

From now on we set $W=0$. Once k^{2} is determined for a (locally) maximally resonant potential, there is a simple algorithm for determining the positions of the finite number of "on" and "off" intervals. Since $\psi_{\#}$ is respectively either a linear combination of exponential functions $\exp \left(\pm k^{\prime} r\right), k^{\prime}=\sqrt{M-k^{2}}$, or a combination of sinusoidal functions $\sin (k r)$ and $\cos (k r)$ and is continuously differentiable at the switch points, it is a matter of algebra to determine the argument at any given point. The argument steadily increases from the point $r=0$, and the potential switches on and off whenever it increases by $\pi / 2$. The limiting initial phase at $r=0$ is determined by the condition that the eigenfunction satisfies the resonance condition at $r=L$.

Definition. A resonance will be called typical if $L \sqrt{M}>\pi / 2$ and its real part satisfies

$$
\begin{equation*}
\pi^{2} / 4 L^{2}<E<0.9 M \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left(-\operatorname{Im}(k / \sqrt{M}), \operatorname{Im}\left(k^{\prime} / \sqrt{M}\right),-\operatorname{Im}\left(k / k^{\prime}\right), \operatorname{Im}\left(k^{\prime} / k\right)\right)<\exp \left(-L^{1 / 2} M^{1 / 4}\right) \tag{4.5}
\end{equation*}
$$

where $k^{\prime}=\left(M-k^{2}\right)^{1 / 2}$ (conventionally in the first quadrant).
It is not hard to see from Proposition 11.2 that for large L or M maximally sharp resonances in this energy range have to be typical, and tunneling estimates indicate that resonances above this energy range are not extremely sharp (some bounds on widths will appear in [15]). In particular, the sharpest resonance of all is typical when L or M is sufficiently large. Our last claim states that typical maximally sharp resonances are due at least in part to barrier confinement:

Proposition IV.3. If a totally spherically symmetric resonance is typical and locally maximal, then $r_{2 n}$ (cf. Proposition IV.2) equals L.

Proof. Suppose not. Then the outermost barrier ends at a point $z<L$. There are then two possibilities: either (a) there is only one barrier stretching from 0 to z, or (b) the argument of $\psi_{\#}$ increases by $\pi / 2$ on the barrier $[y, z]$ with $y>0$. Possibility (a) is easily checked not to be typical (or maximally sharp), so (b) would have to prevail. But if z is the outermost edge of the potential, then $\psi_{\#}$ satisfies an outgoing condition at z of the form $\psi_{\#}^{\prime}(z) / \psi_{\#}(z)=i k$. We may modify (1.3) by a fixed multiplicative constant and assume that $\psi_{\neq}(z)=1$, which means that on $[y, z]$, $\psi_{\#}(r)=\cosh \left(k^{\prime}(z-r)\right)-i\left(k / k^{\prime}\right) \sinh \left(k^{\prime}(z-r)\right)$. Hence $\cosh \left(k^{\prime}(z-y)\right)-$ $i\left(k / k^{\prime}\right) \sinh \left(k^{\prime}(z-y)\right)$ must be purely imaginary. Taking the real part and dividing by a real quantity, we find that

$$
0=1+\tanh \left(\operatorname{Re}\left(k^{\prime}\right)(z-y)\right) \operatorname{Im}\left(k / k^{\prime}\right)+\tan \left(\operatorname{Im}\left(k^{\prime}\right)(z-y)\right) \operatorname{Re}\left(k / k^{\prime}\right)
$$

This is impossible if (4.5) holds, as can be seen by substitution and straightforward estimates.

We close with the result of a representative numerical study of the maximally resonant potentials in the totally spherically symmetric case. We fix $L=2$ and consider various barrier heights M. Tunneling estimates indicate that the maximal resonance for these values arises from a single barrier with $V=M_{\chi_{\left[L_{1}, 2\right]}}$. The optimal values of L_{1} and the corresponding ε are depicted in Figure 2. The error bars are numerical estimates but are not rigorously established.

References

[^1]4. Hans Cycon, Resonances defined by modified dilations, preprint, 1984.
5. M. S. P. Eastham and H. Kalf, Schrödinger-type operators with continuous spectra, Pitman, Boston. Mass., 1982.
6. S. Graffi and K. Yajima, Exterior complex scaling and the AC-stark effect in a Coulomb field. Comm. Math. Phys. 89 (1983), 277-301. ${ }^{3}$
7. E. M. Harrell II, General lower bounds for resonances in one dimension, Comm. Math. Phys. 86 (1982), 221-225.
8. \qquad . Hamiltonian operators with maximal eigenvalues. J. Math. Phys. 25 (1984). 48-51.
9. P. Hartman, Ordinary differential equations, Wiley, New York, 1964.
10. W. Hunziker, private communication.
11. T. Kato, Periurbation theory for linear operators, Springer, New York, 1966.
12. M. Reed and B. Simon, Methods of modern mathematical physics, four volumes, Academic Press, New York, 1972-1979.
13. I. Sigal, Complex transformation method and resonances in one-body quantum systems, Weizmann Institute, preprint, 1983.
14. B. Simon, The definition of molecular resonance curves by the method of exterior complex scaling, Phys. Lett. A71 (1979), 211-214.
15. R. Svirsky, Johns Hopkins dissertation, 1985.
16. E. C. Titchmarsh, Eigenfunction expansions associated with second order differential equations, Part II, Oxford Univ. Press, 1958.

School of Mathematics, Georgia Institute of Technology, atlanta, Georgia 30332-0160 (Current address of E. M. Harrell II)

Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218
Current address (Roman Svirsky): Department of Mathematics, Tulane University, New Orlcans. Louisiana 70118

[^2]
L^{2} ESTIMATES FOR GALERKIN METHODS FOR SEMILINEAR ELLIPTIC EQUATIONS*

E. M. HARRELL \dagger AND W. J. LAYTON \ddagger

Abstract. Optimal L^{2} error estimates are derived for the usual Galerkin method for the semilinear elliptic problem

$$
\begin{gathered}
L u=-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+a_{0}(x) u=f(x, u), \quad x \in \Omega, \\
u=0 \text { on } \partial \Omega .
\end{gathered}
$$

When f_{u} is bounded inside the resolvent set of L it is shown that the Galerkin equations can be reformulated as a monotone operator problem. Optimal L^{2} error estimates then follow. H^{1} error estimates are also derived in the case when f_{u} touches $\sigma(L)$.

Key words. Galerkin method, finite element method, semilinear boundary value problem
AMS(MOS) subject classifications. Primary 65 N 30 ; secondary 35 J 65

1. Introduction. Consider the semilinear elliptic equation

$$
\begin{equation*}
L u \equiv-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{j}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+a_{0}(x) u=f(x, u), \quad x \in \Omega, \tag{1.1}
\end{equation*}
$$

subject to Dirichlet boundary conditions on $\partial \Omega$

$$
\begin{equation*}
u=0, \quad x \in \partial \Omega \tag{1.2}
\end{equation*}
$$

The coefficients of L are assumed to be smooth and L to be uniformly elliptic

$$
\sum_{i, j=1}^{N} a_{i j}(x) \zeta_{i} \zeta_{j} \geqq a \sum_{i=1}^{N} \zeta_{i}^{2}, \quad a>0, \quad a_{0}(x) \geqq 0 .
$$

Also, assume that the nonlinearity f satisfies the Caratheodory conditions and is Lipschitz in u.

Ciarlet, Schultz and Varga [7] have studied the convergence of the Galerkin method for this problem when $\partial f / \partial u$ is bounded below the smallest eigenvalue of L.

Also, Schultz in [14], [15], has considered the convergence of the Galerkin method to (1.1), (1.2) in the complementary instance where $\partial f / \partial u$ is bounded between the eigenvalues of L, as in:

Assumption A1. Assume that there is $p<q$ such that for two consecutive eigenvalues of $L, \lambda_{k}<\lambda_{k+1}$

$$
\lambda_{k}<p \leqq \frac{\partial f}{\partial u}(x, u) \leqq q<\lambda_{k+1}, \quad x \in \Omega, \quad u \in \mathbb{R} .
$$

[^3]In particular, in Theorem 3.5 of [14] and Theorem 4.1 of [15], Schultz has shown that if $f(x, u)$ is uniformly bounded, (A1) holds and the substitution operator $u \rightarrow f(x, u)$ is Fréchet differentiable, then the Galerkin method converges to the solution of (1.1) in the norm on the space in which $G: u \mapsto f(x, u)$ is Fréchet differentiable with the same rate as for linear problems.

The proof consists of showing that the method is equivalent to the Galerkin method applied to an integral equation formulation of (1.1), (1.2)

$$
\begin{equation*}
u=T(u), \quad T(u)=L^{-1}[f(x, u)] \tag{1.3}
\end{equation*}
$$

Specifically, if P_{E} is the elliptic projection operator associated with the bilinear form derived from L by integration by parts, the Galerkin approximation can be represented as: $U \in S^{h}$ satisfies

$$
\begin{equation*}
P_{E} U=P_{E} T(U) \tag{1.4}
\end{equation*}
$$

Convergence results then follow from the following abstract result (for a proof see, e.g., Schultz [14, Thm. 3.2], or Krasnosel'skii [18, Thms. 3.1 or 3.2]).

Theorem 1. Suppose $T: H \rightarrow H$ is a Fréchet differentiable (nonlinear) compact operator, H a Hilbert space, and S^{h} a sequence of subspaces such that

$$
\bigcup_{h_{0} \geqq h>0} S^{h}
$$

is dense in H. Suppose further that the following two conditions hold:
(i) 1 is not an eigenvalue of $D T(u)$,
(ii) $P_{h}: H \rightarrow S^{h}$ is a sequence of uniformly bounded projections. Then,
(a) $U \in S^{h}$ exists for h sufficiently small $\left(h \leqq h_{1}\right)$ and converges to u as $h \rightarrow 0$.
(b) There is a constant $C>0$ such that

$$
\|u-U\|_{H} \leqq C \inf _{x \in S^{h}}\|u-\chi\|_{H}
$$

The problem considered is also related to the work of Brezzi, Descloux, Rappaz and Raviart in [5], [6], [8], [16], [17] on numerical methods for bifurcation problems (in the case where bifurcation does not occur). For example, in Theorems 1 and 2 of Rappaz [17] (see also [16]) an analogous result is obtained under the added condition that

$$
G: \dot{H}^{1}(\Omega) \rightarrow L^{2}(\Omega) \quad \text { by } u \rightarrow f(x, u)
$$

is C^{2}. Specifically, by specializing his abstract result to this setting one obtains that the Galerkin method converges to u optimally in the H^{1} norm.

It is tantalizing to think that L^{2}-estimates could be obtained by the techniques of Schultz or Rappaz by considering $u \mapsto f(x, u)$ as a map $G: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$. However, this works only in the linear case.

Specifically, it is folklore that if the substitution operator $G: L^{2} \rightarrow L^{2}$ is Fréchet differentiable then the function f must be affine in u. In this case, the original equation is linear. For completeness, we give a proof of this fact.

Proposition. If $G: L^{2}(0,1) \rightarrow L^{2}(0,1)$ by $u \rightarrow f(u)$ is Fréchet differentiable at $u=0$ then f is affine:

Proof. Assume G is Fréchet differentiable at $u=0$. Without loss, we can assume that $f(0)=0=f^{\prime}(0)$ by considering instead the function

$$
\tilde{f}(u)=f(u)-\left[f(0)+f^{\prime}(0) u\right]
$$

Assuming this, $D G(0) w=f^{\prime}(0) w-0$ and

$$
\begin{equation*}
\lim _{v \rightarrow 0} \frac{\left\|G(0)-G(v)-f^{\prime}(0) \cdot v\right\|}{\|0-v\|}=0 . \tag{1.5}
\end{equation*}
$$

Choose k so that $f(k)=Q \neq 0$ (if this is not possible then $f=\tilde{f}$ must be $\equiv 0$, i.e., the original f is affine). Then, let $v_{n}=k \chi_{[0,1 / n]}(x) \rightarrow 0$ as $n \rightarrow \infty$. Formula (1.5) now becomes

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{\int_{0}^{1 / n} f\left(v_{k}\right)^{2} d x}}{|k| n^{-1 / 2}}=\lim _{n \rightarrow \infty} \frac{|Q| n^{-1 / 2}}{|k| n^{-1 / 2}}=\frac{|Q|}{|k|} \neq 0 .
$$

In this paper, it is shown that L^{2} estimates along the lines of these results of Schultz and Rappaz can be obtained without the Fréchet differentiability condition on G and without assuming G is uniformly bounded C^{2} or even differentiable. We weaken (A1) to the following assumption on the function $f(x, u)$.

Assumption A2. Assume $f \in C^{0}$ is strictly monotone in u. Assume that for some two consecutive eigenvalues $\lambda_{k}<\lambda_{k+1}$ of L and real numbers $p, q, \lambda_{k}<p \leqq q<\lambda_{k+1}$, $f(x, u)$ and its inverse are Lipschitz with respect to u with Lipschitz constants bounded by q and $1 / p$, respectively.

When $f \in C^{1}$ in u then (A2) is equivalent to (A1). For general operator equations in a Hilbert space (A1) and (A2) can also be restated as a two sided monotonicity condition.
2. Formalism. Associated with L is a bilinear form $a(\cdot, \cdot): \dot{H}^{1}(\Omega) \times \dot{H}^{1}(\Omega) \rightarrow \mathbb{R}$ by

$$
a(v, w)=\int_{\Omega}\left[\sum_{i, j=1}^{N} a_{i j}(x) \frac{\partial v}{\partial x_{i}} \frac{\partial w}{\partial w_{j}}+a_{0}(x) v w\right] d x .
$$

From the assumptions on L it follows easily that $a(\cdot, \cdot)$ is continuous and coercive on $\stackrel{\circ}{H}^{1}(\Omega)$. The true solution to (1.1), (1.2) satisfies

$$
a(u, v)=(f(\cdot, u), v) \quad \forall v \in \dot{H}^{1}(\Omega)
$$

Let S^{h} denote a finite dimensional subspace of $\dot{H}^{1}(\Omega)$. The Galerkin approximation $u^{h} \in S^{h}$ is given by the equations

$$
a\left(u^{h}, v\right)=\left(f\left(\cdot, u^{h}\right), v\right) \quad \forall v \in S^{h}
$$

Define the continuous and discrete solution operators T_{y} and $T_{\gamma, h}$ to the associated linear problem as follows. For $g(x) \in L^{2}(\Omega)$ and $-\gamma \notin \sigma(L), T_{\gamma} g$ is the unique function in $\dot{H}^{1}(\Omega)$ satisfying

$$
a\left(T_{\gamma} g, v\right)+\gamma\left(T_{\gamma} g, v\right)=(g, v) \quad \forall v \in \dot{H}^{1}(\Omega)
$$

Similarly, define $T_{\gamma, h}: L^{2}(\Omega) \rightarrow S^{h} \subset \stackrel{H}{H}^{1}(\Omega)$ by

$$
a\left(T_{\gamma, h} g, v\right)+\gamma\left(T_{\gamma, h} g, v\right)=(g, v) \quad \forall v \in S^{h}
$$

Assume S^{h} satisfies the approximation property standard for finite element spaces. For some $r>0$ and all $u \in H^{s}(\Omega) \cap \dot{H}^{1}(\Omega), 1 \leqq s \leqq r$.

$$
\begin{equation*}
\inf _{x \in S^{n}}\left\{\|u-\chi\|+h\|u-\chi\|_{1}\right\} \leqq C h^{2}\|u\|_{s}, \quad 1 \leqq s \leqq r \tag{2.1}
\end{equation*}
$$

The following convergence result of Schatz [13] for the linear equation will be used.

There is an h_{0} such that for $h \leqq h_{0}$ and $g \in H^{s}(\Omega)$

$$
\begin{equation*}
\left\|\left(T_{\gamma, h}-T_{\gamma}\right) g\right\| \leqq C h^{s+2}\|g\|_{s}, \quad-1 \leqq s \leqq r-2 \tag{2.2}
\end{equation*}
$$

Sometimes it will also be convenient work with the discrete operator $L_{h}=\left(T_{0, h} \mid s^{h}\right)^{-1}$.

3. The convergence theorem.

Theorem. Assume (A2) holds and S^{h} satisfies (2.1). Then, for h sufficiently small u^{h} exists uniquely and satisfies

$$
\left\|u-u^{h}\right\| \leqq C\left\|\left[T_{\gamma}-T_{\gamma, h}\right] v\right\|
$$

for some $-\gamma \notin \sigma(L)$, where $v(x)=\gamma u(x)+f(x, u(x))$.
Rates of convergence then follow immediately.
Corollary. (a) Under the hypotheses of the above theorem

$$
\left\|u-u^{h}\right\| \leqq C h^{s+2}\|v\|_{s}, \quad-1 \leqq s \leqq r-2
$$

holds.

(b) Suppose t is sufficiently large ($t>N / 2$) that $H^{\prime}(\Omega) \subset C^{0}(\Omega), f \in C^{s}$ and $u \in$ $H^{s}(\Omega) \cap \dot{H}^{1}(\Omega)$. Then, $\left\|u-u^{h}\right\| \leqq C h^{s+2}, t \leqq s \leqq r-2$, where C depends on $\|u\|_{s}$ and f.

Proof of the theorem. Existence and uniqueness of u^{h} follow from abstract existence results for semilinear equations in, for example, Amann [2, Thm., p. 150] and Mawhin [9, Thm. 2] applied to the equations $L_{n} u^{h}=f\left(\cdot, u^{h}\right)$, by noting that (2.2) implies convergence in the operator norm $\left\|T_{0, h}-T_{0}\right\| \rightarrow 0$. Thus, $\sigma\left(T_{0, h}\right) \rightarrow \sigma\left(T_{0}\right)$ as $h \rightarrow 0$, so that for h sufficiently small p and q in (A2) are between successive eigenvalues of L_{h}, so that (A2) is verified for the discrete equations. Thus, for h sufficiently small u^{h} exists uniquely.

For the error estimate, note that $u-u_{,}^{h}$ satisfies the equation

$$
u-u^{h}=T_{0, h}\left[f(\cdot, u)-f\left(\cdot, u^{h}\right)\right]+\left[T_{0}-T_{0, h}\right] f(\cdot, u)
$$

For $-\gamma \notin \sigma(L)$ and h sufficiently small, $-\gamma \notin \sigma\left(L_{h}\right)$. Thus, adding and subtracting terms to the above equation is possible, giving

$$
\begin{equation*}
u-u^{h}=T_{\gamma, h}\left[F(\cdot, u)-F\left(\cdot, u^{h}\right)\right]+\left[T_{\gamma}-T_{\gamma, h}\right] F(\cdot, u) \tag{3.1}
\end{equation*}
$$

where $F(x, u)=\gamma u+f(x, u)$.
Note that since f satisfies (A2), F satisfies a condition related to (A2) in an obvious way:

$$
(\gamma+q)\|v-w\|^{2} \leqq(F(x, v(x))-F(x, w(x)), v-w) \leqq(\gamma+p)\|v-w\|^{2}
$$

for all $v, w \in L^{2}(\Omega)$. This gives an estimate on $\left\|F(u)-F\left(u^{h}\right)\right\|$ using the result of Brézis and Nirenberg [4, Appendix A] or Mawhin [9, Lemma 1, p. 270],

$$
\begin{equation*}
\left\|F(u)-F\left(u^{h}\right)\right\| \leqq \max \left\{|\gamma+q|,||\gamma+p|\}\left\|u-u^{h}\right\|\right. \tag{3.2}
\end{equation*}
$$

Next consider $\left\|T_{\gamma, h}\right\|$. Since L_{h} is a self-adjoint operator, the spectral mapping theorem applied to the function $g(z)=(\gamma+z)^{-1}$ gives

$$
\begin{equation*}
\left\|T_{\gamma, h}\right\|=\left\|g\left(L_{h}\right)\right\|=\operatorname{dist}\left\{-\gamma, \sigma\left(L_{h}\right)\right\}^{-1}=\min _{j}\left\{\left|\gamma+\lambda_{j}^{h}\right|\right\}^{-1} \tag{3.3}
\end{equation*}
$$

where $\left\{\lambda_{j}^{h}\right\}$ are the eigenvalues of L_{h}.
Finally, for $v=\gamma u+f(\cdot, u)$, (3.1), (3.2), and (3.3) yield

$$
\begin{aligned}
& \left\|u-u^{h}\right\| \leqq \alpha_{h}(\gamma)\left\|u-u^{h}\right\|+\left\|\left[T_{\gamma}-T_{\gamma, h}\right] v\right\| \\
& \alpha_{h}(\gamma)=\max \{|\gamma+p|,|\gamma+q|\} \cdot \min \left\{\left|\gamma+\lambda_{j}^{h}\right|: j\right\}^{-1}
\end{aligned}
$$

and the result will follow if there is a choice of $-\gamma \notin \sigma(L)$ such that $\alpha_{h}(\gamma)<1$ for h sufficiently small.

Pick $-\gamma=(p+q) / 2 \notin \sigma(L)$. Since $T_{0, h} \rightarrow T_{0}$ in the operator norm, $-\gamma \notin \sigma\left(L_{h}\right)$ for h sufficiently small. For the same reason [p, q] is bounded inside $\sigma\left(L_{h}\right)$ for h sufficiently small (Fig. 1).

Consider Fig. 1. Since the distance from $-\gamma$ to $p($ or q) is smaller than the distances from $-\gamma$ to λ_{k}^{h} or λ_{k+1}^{h}, it follows that $\alpha_{h}(\lambda)<1$. \square

Proof of the corollary. The result (b) is a consequence of the Palais lemma (see Palais [12]). Specifically, the map $u \rightarrow f(\cdot, u)$ is a C^{1} map $H^{s}(\Omega) \rightarrow H^{s}(\Omega)$ for every $s \geqq t$. Thus $\|f(\cdot, u)\|_{s}$ is a continuous, finite valued function of $\|u\|_{s}$.

Remarks. It is clear that the proof follows for more general methods than considered here. Indeed, whenever a $T_{\gamma, h}$ can be associated with T_{γ} so that $T_{0, h}$ is self-adjoint positive semidefinite, positive definite on S^{h} and (2.2) holds, then the theorem holds as well. This includes, for example, the Lagrange multiplier method of Babuška [3] and the methods proposed by Nitsche in [10], [11].

Further, it is clear that the condition (A2) could be weakened to hold only in a neighborhood of the true solution. All the convergence results would then hold for h sufficiently small.

The convergence result is really a statement about nonlinear operators and monotonicity. For example, the following abstract convergence theorem follows by essentially the same argument. Consider a sequence of approximations in a Hilbert space H

$$
L_{m} U^{m}=N_{m}\left(U^{m}\right)+f_{m}, \quad m=1,2,3, \cdots,
$$

to the nonlinear equation for $u \in H$

$$
L u=N(u)+f, \quad f \in H .
$$

Suppose L, L_{m} are self-adjoint, and each N_{m} is a continuous gradient operator satisfying

$$
p\|v-w\|_{H}^{2} \leqq\left\langle N_{m}(v)-N_{m}(w), v-w\right\rangle_{H} \leqq q\|v-w\|_{H}^{2} \quad \forall v, \quad w \in H .
$$

Furthermore, suppose that the method is consistent:

$$
r_{m} \equiv L_{m} u-N_{m}(u)-f_{m} \rightarrow 0 \quad \text { in } H \text { as } m \rightarrow \infty
$$

Theorem. Suppose that either $\left\|L_{m}-L\right\|_{H} \rightarrow 0$ or $\left\|L_{m}^{-1}-L^{-1}\right\|_{H} \rightarrow 0$ as $m \rightarrow \infty$. Suppose also $[p, q] \subset \rho(L)$. Then, for m sufficiently large, there is a unique U^{m} satisfying

$$
\left\|u-U^{m}\right\|_{H} \leqq C\left\|r_{m}\right\| \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

Of course, the conditions on L_{m}, N_{m}, etc. can all be relaxed and the result can be extended to a Banach space, etc.
4. Problems touching an eigenvalue. In this section we consider the case where the nonlinearity just touches a resonance. In this case the approach of Schultz (outlined in the Introduction) can be combined with sharper estimates on the linearized problem to yield convergence results. For simplicity, we consider only one case when f_{u} touches λ_{0}.

Let λ_{0} be the smallest eigenvalue of L. Assumption (A2) is then weakened as follows to allow f_{u} to touch λ_{0}.

Assumption A3. Suppose $u \rightarrow f(x, u)$ is Fréchet differentiable as a map: $\stackrel{\circ}{H}^{1} \rightarrow H^{-1}$. Suppose $f(x, u)$ is C^{1} in u for a.e. $x \in \Omega$ and that for a.e. $u \in \mathbb{R}$

$$
f_{u}(x, u) \geqq \alpha(x) \geqq-\lambda_{0} \quad \text { a.e. } x \in \Omega
$$

where $\alpha(x)>-\lambda_{1}$ on a set of positive (but possibly very small) measure.
THEOREM 4.1. Suppose (A3) holds and $L^{-1}: L^{2}(\Omega) \rightarrow \dot{H}^{1}(\Omega)$ compactly. Then, for h sufficiently small, U exists and satisfies

$$
\|u-U\|_{1} \leqq C \inf _{x \in S^{k}}\|u-x\|_{1}
$$

Proof. Defining T, P_{E} as in (1.3), (1.4) the theorem will then follow provided that 1 is not an eigenvalue of $D T(u)$. If 1 is an eigenvalue, we have, for some $w \neq 0$,

$$
L w=f_{u}(x, u) w, \quad w \in \mathscr{H}^{1}(\Omega) \cap H^{2}(\Omega)
$$

Letting $q(x)=-f_{u}(x, u(x))$, we have $q(x) \in L^{1}(\Omega)$ and $q(x) \geqq-\lambda_{0}$ for a.e. $x \in \Omega$, with strict inequality holding on a set of positive measure.

Let A denote the self-adjoint realization of $L+q I$, taken as the usual Friedrichs extension. Then, \boldsymbol{A} is positive semidefinite and has purely discrete spectrum with the lowest eigenvalue nondegenerate (see, for instance, Reed and Simon [19]). We now show that the smallest eigenvalue of A is strictly positive by showing it is bounded below by a positive eigenvalue, $E(\theta)$, of an associated problem. This then proves the theorem.

Since q exceeds $-\lambda_{0}$ on a set T of positive measure, we have for sufficiently small $\mu \geqq 0$

$$
\inf _{\substack{\|f\|=1 \\ f \in \mathscr{Q}(\mathbf{A})}}(A f, f) \geqq \inf _{\substack{\|f\|=1 \\ f \in \mathscr{D}(\mathbf{A})}}(L f, f)-\lambda_{0}+\mu \int_{T}|f|^{2} d x \equiv E(\mu)
$$

where $E(\mu)$ is the smallest eigenvalue of $M(\mu) \equiv L-\lambda_{0}+\mu \chi_{T}$.
Note that $E(0)=\inf \sigma(L)-\lambda_{0}=0$, and that χ_{T} is a bounded perturbation of the principal part L. It follows from standard perturbation theory for linear operators (Reed and Simon [19, Chap. XII], Kato [20]), that $E(\mu)$ is nondegenerate and depends analytically on μ in a sufficiently small neighborhood of $\mu=0$, and that

$$
\left.E^{\prime}(\mu)\right|_{\mu=0}=\left(f_{0}, \chi_{ \pm} f_{0}\right)>0
$$

where f_{0} is the normalized lowest eigenfunction of L, which does not vanish on T. Therefore, $E(\mu)$ is strictly increasing and thus becomes positive.

One extension of this result would allow appropriate functions to be added to the coefficients $a_{i j}$ as well as in the potential term q.

Acknowledgments. We thank Professor J. Rappaz for pointing out the connection between this paper and work on numerical methods for bifurcation problems, and Professor G. Reddien for his help in calling W. Layton's attention to the work of Professor Schultz on the problem.

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] H. Amann, On the unique solvability of semilinear operator equations in Hilbert spaces, J. Math. Pures Appl., 61 (1982), pp. 149-175.
[3] I. BABus̄ka, The finite element method with Lagrange multipliers, Numer. Math., 20 (1973), pp. 179-192.
[4] H. Brézis and L. Nirenberg, Characterization of the ranges of some nonlinear operators, and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (1978), pp. 275-326.
[5] F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of nonsingular solutions, Numer. Math., 36 (1980), pp. 1-25; Part II: Limit points, Numer. Math., 37 (1981), pp. 1-28; Part III: Simple bifurcation points, Numer. Math., 38 (1981), pp. 1-30.
[6] , Approximation of nonlinear problems, in Nonlinear Partial Differential Equations and their Applications-Collège de France Seminar, vol. III, H. Brézis and J. L. Lions, eds., Pitman, Boston, MA, 1982, pp. 147-153.
[7] P. G. Ciarlet, M. H. Schultz and R. S. Varga, Numerical methods of high-order accuracy for nonlinear boundary value problems via monotone operator theory, Numer. Math., 13 (1969), pp. 51-77.
[8] J. Descloux and J. Rappaz, Approximation of solution branches of nonlinear equations, RAIRO Anal. Numér., 16 (1982), pp. 319-349.
[9] J. MAWHIN, Semilinear equations of gradient type in Hilbert space and applications to differential equations, in Nonlinear Differential Equations: Invariance Stability and Bifurcation, Academic Press, New York, 1971, pp. 269-282.
[10] J. A. NitsChe, On Dirichlet problems using subspaces with nearly zero boundary conditions, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz, ed., Academic Press, New York, 1972, pp. 603-627.
[11] ——, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36 (1971), pp. 9-15.
[12] R. S. Palais, Foundations of Global Nonlinear Analysis, W. A. Benjamin, New York, 1968.
[13] A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), pp. 959-962.
[14] M. H. Schultz, Error bounds for the Rayleigh-Ritz-Galerkin method, J. Math. Anal. Appl., 27 (1969), pp. 524-533.
[15],L^{2} error bounds for the Rayleigh-Ritz-Galerkin Method, this Journal, 8 (1971), pp. 737-748.
[16] J. RAPPAZ, Estimations d'erreur dans différentes normes pour ['approximation de problèmes de bifurcation, C.R. Acad. Sci. Paris, Tome 296, Série 1 (1983), pp. 179-182.
[17] -_, Numerical Analysis of Bifurcation Problems for Partial Differential Equations, C. P. Bruter, ed., D. Reidel, Boston, to appear.
[18] M. A. Krasnosel'ski, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1964.
[19] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol 2: Fourier Analysis and Self Adjointness (1975), and Vol. 4: Analysis of Operators (1978), New York, Academic Press.
[20] T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1976.
. Jeffrey S. Geronimo
Evans M. Harrell II' School of Mathematics
Georgia Institute of Technology At lanta GA 30332-0160

USA

and

Walter van Assche Dept. Wiskunde
Katholleke Universiteit Leuven Celestijnenlaan 2008

3030 Heverle

Belglum

We consider the abstract measures, known as the duatr-or -staits measures, associated with the asymptotic distribution of eigenvalues of Infinite banded Hermitian matrices. Two widely used definitions of these measures are shown to be equivalent, even in the unbounded case, and we orove that the density of states is Invarlant under certain, possibly undounded, perturbations. Also considered are measures assoclated with the asympiotic distribution of elgenvalues of rescaled unbounded matrices These measures are assoclated with the so-called contracted spectrum when the matrices are iridiagonal. Finally, we produce several examples clarifying the nature of the density of states
I. Introduction

The drimity of staties is a measure of how thickly the elgenvalues of truncated operators fill out the spectrum of the limiting operator as the truncation parameter tenas to infinity. It is of physical significance both in scattering theory and in solid-state physics, where it is, for example, a multiplicative factor in the color spectrum of a material. The recent Interest in the density of states measure for tridiagonal matrices J has two main underlying causes: I. It characterizes parts of the spectrum while being relatively accessible in comparison with the spectral measure; and 2. it is related to the Lyapunov exponent for solutions of the associated difference equation oy the Thouless formula. The density of states measure has been especially useful for understanding discrete solld-state onysics with almost-perlodic and random potentials (for an overview see the articles by Kirsch and Simon $(4,101)$ in addition, it shows up as the IImiting measure In the Chebyshev quadrature (Simon [24]) and plays an Important role in the asymptotic alstribution of the eigenvalues of (modified) Toepiltz matrices (Neval (15), Maté, Neval and Totik |12), van Assche (28). In many cases the densily-of-states measure is the equiliorium measure associated with the specirum of J (Geronimus $\{8 \mid$), and as such figures importantiy in the approximation of analytic punctions by polynomials (waish [3I]).

Most earlier work on the density of states has dealt with dounded tridiagonal matrices, and much of it has been restricted to the case of
constant off-diagonal elements in this article we discuss the density or states for unbounded banded matrices, with any Dand size and with possidly variable off-diagonal elements. There are several justifications for this. The Iridiagonal matrices arising in the theory of orthogonal polynomials usually hive undoundid off-diagonal elements, 50 in this context the need for their analysis is obvious The tendency to work principaliy with bounded tridiagonal matrices with constant off-diagonal entrles has deen strongest in mathematical prysics, because such matrices arise when onedimensional Schrodinger equations are made discrete by replacing derlvatives with finite differences The finite-difference method is not, nowever, necessarily the best way to do this, even in one oimension if other discretizations are used, such as finite-element methods or the method of Case and Kac (2), then more general types of Danded matrices will arise, and higher-dimensional discretizations are even more likely to yleld banded or sparse matrices of other types Potential energles that are unbounded above and below also commonly arise in priysical mode is, and deserve analysis

After discussing the equivalence of two possible definitions of the density of states, we consider the question of when two matrices may nave the same density of states we then consider density of states measures associated with rescaled unbounded matrices. When Jis tridiagonal, these measures are associated with the so-called contracted spectrum (Erdos [7]. Neval and Denesa [17], Uliman (26|) finally, we give several examples, e.g., of unbounded matrices with the same density of states as bounded matrices.

Let J be an infinite real Hermitian danded matrix,

$$
J_{J k}=\left(e_{j}, J e_{k}\right)_{1}
$$

for an orthonormal basis (ej) of a Hilbert space A, which we will regard as
either $1^{2(2)}$ or $1^{2}\left(Z^{*}\right)$, corresponding to whether J is infinite in both
arrections or only one. We observe that if

$$
T_{j}-e_{j}+1
$$

then J can de written as

$$
\begin{equation*}
J=B \cdot \sum_{k=1}^{M}\left(T^{k} A_{k}+A_{k} T^{* k}\right)_{,} \tag{1.1}
\end{equation*}
$$

where B and A_{k} are real dlagonal matrices. There are two plausible ways to def ine the density of states for J oy truncation: first, let $\chi(L)$ denote the projection onto the span of $(e j)$, $|J| \leq L$, and set $L^{*}=\operatorname{dim}$ Ran $(\mathcal{Z}(L))=L$ or $2 L+1$, depending on $\&$. For any infinite matrix w we def ine the $L \times L^{*}$ matrix

$$
w(L)=z(\mathrm{~L}) w z(\mathrm{~L})
$$

which we refer to as the L-truncate of w. Any truncate of J has only discrete eigenvalues, and for one definition we count them as $L \rightarrow \infty$

Definition 1. J has a dCMBity-or-states miasure iff the IImit

```
\Delta(f)= lim}(1/L*)tr(f(JL)))\quad (1.2
L->\infty
```

exists for all $\boldsymbol{\epsilon} \in C_{8}(\Omega)$, the set of bounded, continuous functions.
Remarks: 1. We always define functions of matrices or operators with the spectral theorem, using any self-adjoint extension of J . That the result is independent of the choice of extension will follow from the results in the next section.

2. Phrased differently, $A(f)=\int f(\lambda) d k(\lambda)$, where $d k$ is the weak limit of
$\left(L \ominus-1 \sum_{k} 8\left(\lambda-\lambda_{k}(L)\right)\right.$, where $\lambda_{k}{ }^{(L)}$ are the eigenvalues of $J(L)$. We shall refer to dk as the density-of-states measuar.
3. In the case $x=12(2)$, we could in principle truncate J at $J=L$ and $J-M$, and let $L \rightarrow+\infty$ and $M \rightarrow-\infty$ at different rates. There is no advantage in using this more general definition for our present purposes.
4. For $b_{b}(n, m)=\left(8_{m, n+1}+8_{m,-1}\right) / 2$, I.e., $b_{0}=T / 2+T * / 2$, which can be regarded as the inte Haritomam, the eigenvalues are well known. If b acts on $1^{2}\left(2^{+}\right)$, they are:

$$
\mu_{k}^{L}=\cos ((L+1-k) \pi /(L+1)),
$$

and the density-of-states measure is supported in $[-1,1)$, according to the arcsin law,

$$
\begin{equation*}
a k(E)=\frac{d E}{\pi \sqrt{1-E^{2}}} \tag{1,3}
\end{equation*}
$$

The density of states is the same if d_{b} is interpreted to act on $1^{2}(z)$.

Minami (14) has shown, generalizing earlier work, that the density-ofstates measure exists when the entries in a tridiagonal matrix are random variables generated in certain ways using ergodic transformations.

The alternative definition truncates functions of J rather than taking functions of a truncate of J :

Definition 2: Jhas a density-of-states measure iff the limit

$$
\begin{equation*}
\lambda^{\prime}(f)=\lim \left(1 / L^{*}\right) \operatorname{tr}\left(X^{(L)} f(J)\right) \tag{1.4}
\end{equation*}
$$

exists for all $f \in C_{0}(\mathbb{Q})$.
These two definitions are known to be equivalent in the bounded case (Simon [22], van Assche (28)). We show that they are equivalent in the unbounded case in the following section:

II. Perturbations that Leave the Density of States Invariant.

Let J be a $241+1$-banded matrix as in (I.1). We first show, in analogy with the argument of Simon (22), section (7), that

Theorem II. I. Definitions I and 2 are equivalent

Proof. We first consider the case when $f(x)=1 /(2-x), 2$ not in sp(J). Let

$$
\begin{align*}
& \left.G_{1}(l)(2)=\chi^{(L)}(2)-J\right)^{-1} \chi^{(L)} \tag{2.1}\\
& G_{2}^{(L)}(2)=\left(\left.2\right|^{(L)}-J(L)\right)^{-1}
\end{align*}
$$

We note that both $\mathrm{G}_{1}(\mathrm{~L})$ and $\mathrm{G}_{2}{ }^{(L)}$ are $L^{*} \times L^{*}$ matrices. Both of them sat isfy the same inhomogeneous difference equation with different boundary conditions, viz.,
$\Sigma\left(1-\right.$ al $_{1} H U(n, 1) G_{j}(L)(1, k ; z)-z G_{j}(L)(n, k, z)=$ Sank, $|k|,|n|$ \& $L-M, j=1,2$.

Therefore the difference $\boldsymbol{\sigma}(n, k ; 2)=G_{1}{ }^{(L)}(n, k ; 2)-G_{2}(l)(n, k, z)$ satisf ies the related homogeneous difference equation in n with k fixed, and is thus

6
expressible as a linear combination of any $2 M$ linearly independent nomogeneous solutions $f(j ; z)$ for $|k|,|n|$ \& $L-M$ Because of the symmetry in the Gj, a similar fact applies inkwith n fixed, so is of the form

$$
\omega(n, k, 2)=\sum_{j}^{2 M} \sum_{j k}^{2 m} f_{j}(n, 2) \bar{f}_{k}(k, 2)
$$

for $|x|$ |in| \& $L-M$. It is thus a matrix whose rank is finite independently of L. in fact at most ar2. Since

$$
\left\|G_{j}(1)\right\| \in|/|1 m z|, j=1,2 \text {, }
$$

by the triangle inequality,

$$
\left\|G_{1}(L)-G_{2}(L)\right\| \leq 2 / \| m z 1 .
$$

50

$$
(L=)^{-1}\left|\operatorname{tr} G_{1}(L)-\operatorname{tr} G_{2}(L)\right| s \theta m_{1}^{2} / L=\| m z \mid \rightarrow 0 \text { as } L \rightarrow \infty
$$

Suppose we degin with Definition 1. By the Stone-weierstraß theorem, the polynomials in $(x+1)^{-1}$ and $(x-1)^{-1}$ are dense in $C_{0}(2)$, the continuous functions vanisning at infinity. Equation (2.3) then implies Equation (1 4) for $I \in C_{0}()$ Since by Definition I the limiting measure is a prooability measure (sel $f-1$), ano we know the def initions are equivalent for $f \in C_{0}(\boldsymbol{R})$, the limit of the sequence of measures given by Definition 2 is a prodability measure, and thus Equation (1.4) is true for all $I \in C_{D}(\ell)$ by a standard agument (see Billingstey (I), Page 41, Problem 7)

The argument deoucing Definition I from Definition 2 is analogous

Remark The proot also shows that the density-of-states measure is indepenoent of the chaice of self-adjoint extension, since oifferent choices amount to making finite-rank perlurbations of the resolvents G

7

Let J ~ J_{0} ~ V be infinite matrices with t_{0} banded, and denote the associated Green (resolvent) matrices

$$
G_{0}(2) \cdot(b-2)^{-1} \quad \text { and } G(2)=(\sqrt{1}-2)^{-1}, \quad 2 c C
$$

We assume that for 2 ranging over some nonemply open set and $A, B>0$,
$\left|G_{0}(2 ; n, m)\right| \leqslant k m i n(1,|n-m|-0)$
for all n, m, with p)2. Tnis is a very weak assumption, the usual situation being an exponential bound of the form

$$
\begin{equation*}
\left|G_{0}(z ; n, m)\right|<k_{1} \exp \left(-k_{2}|n-m|\right) . \tag{2.5}
\end{equation*}
$$

We ooserve that a bound of the form (2.5) holds whenever the off-diagonal elements of J_{0} are bounded, by a modification of an argument we to Combes and Thomas (3). A similar Dound is dealt with by Demko et al. [5,6] for bounded banded matrices, using a different argument.
We recall a fundamental concept of perturbation theory (see Kato 19) or Reed and Simon (20]):
Definition An operator A is bounded relative to B with bound b provided that the domain of definition $D(A) \supset D(B)$, and there are finite constants b° and c, with c depending on D°, and $b=$ inf b°, such that for all $f \varepsilon$ $D(B)$,

$$
\|A \subset\|<D^{\prime}\|B I\|+c\|f\| .
$$

Cer

\qquad

In particular, a bounded operator is bounded relative to any other operator

 with bound 0 .Propesition II.2. A bound of the form (25) holds for 2 E $\mathrm{sp}(\mathrm{b})$, and any J_{0} such that each operator $A_{k} T^{k}$ and $T^{k} A_{k}$ is bounded relative to $\mathrm{h}_{\mathbf{b}}$.

Proof. Let E_{C} be the operator that multiplies the n-th component of amy vector v by exp(icn), and observe, with a short calculation, that
$E_{C}{ }^{*} J_{0} E_{C}=山_{6}+\sum_{k}(\cos (C k)-1)\left(T^{k} A_{k}+A_{k} T^{*} k\right)+\sum_{k} \sin (c k)\left(T^{k} A_{k}-A_{k}{ }^{W} k\right)$,
which is an analytic family of operators (type A) in the parameter c (see Kato [9] or Reed and SImon [20]) for $|c|$ sufficiently small, because of the relative boundechess. For C real, E_{C} is a unitary operator, and the analytic family of operators has the same spectrum as J_{0} if 2 \&p(b), it then follows that $E_{C}{ }^{*} G_{0}(z) E_{C}=\left(E_{C}{ }^{*} J_{0} E_{C}-2\right)^{-1}$ is bounded for $|C|$ sufficiently small, even if c is complex. Hence, for some $\left.k{ }^{2}\right) 0$, $\exp (-$ $k 2 n) G_{0}(2 ; n, m) \exp (k 2 m)$ is a bounded operator on H, and similarly for $\exp \left(k_{2} n\right) G_{0}(z ; n, m) \exp \left(-k_{2} m\right)$ (take $\left.c=\geq 1 k_{2}\right)$. Since the operator norm is an upper bound on any entry of a matrix, (2.5) follows.

Example. For the tridiagonal matrix $\mathrm{J}_{0}=T / 2 * T * / 2$ on $1 \mathbf{2}(2)$,
$G_{0}(z ; n, m)=-\left(z^{2}-1\right)^{\mid / 2} \exp (-\arccos n(z)|n-m|)$
The Basic Assumption. We assume nenceforth that

$$
\begin{equation*}
\lim _{L \rightarrow \infty}\left(1 / L^{a}\right) \Sigma \sum_{|j| \ll}^{k} \underset{j k}{ } \sum \mid V_{j k}=0 \tag{2.7}
\end{equation*}
$$

This says that V_{jk} goes to zero on average, but might be artitrarily large for any given J,k.

Example. V dlagonal, $V_{2} m 2^{2 m}=2 m, V_{k k}-0$, otherwise. Although V goes to 0 on average, it is actually unbounded.

Lemma II.3. Suppose that V satisfles the basic assumption (2.7) and

$$
\left|r_{1}\right|<A \min \left(1,|1-j|^{-D},, D\right\rangle 2, a l \mid I, j
$$

```
Then lim(l/L*) \Sigma & \Sigma rjmVmn}=
    L->\infty |J|< m n
Proof. Let S =|(1/Ls) \Sigma \Sigma rjmVmn|
                                    |J|< m,n
            s(I/L)\sum 
\leq(k/LE) \sum 
            |m|=0 n j=m
            -(k/L*) \Sigma \Sigma \Sigma \Sigma|Vmn||-m|
            ||<L N-2 |m|*NL. n
```



```
        *(k/Ls) \Sigma \Sigma \Sigma \Sigma \Sigma N N| N N Nmn|(|m|-L)-D
            |J|< N-2 |m| NML n
```

The first term tends to 0 as $\mathrm{L} \rightarrow \infty$ by the basic assumption (2.7), while the second is bounded by a constant times

```
\(\cdots(N+I)\)
\(\Sigma \Sigma\)
\(N=2 \quad m=0\)
\(\left((N-1 x)-0 \sum \mid V_{m n}\right.\)
```

\cdots N•IX

```
\begin{tabular}{|c|}
\hline \()^{-0} \sum(N-1)^{-P}(N+1)\) ( (1/(N+1K) \(\sum \quad \Sigma \mid V_{m}\) \\
\hline
\end{tabular} \(\mathrm{N}-2\)
\(m=0 \quad n\)
```

Since the sum in the curly brackets tenas 100 as $\mathrm{N} \rightarrow \infty$ by the dasic assumption (27), and $\Sigma(N-1)^{-0}(N+1)<\infty$, this expression is bounded by a (inite number times (L) l-p

Iteerem 11.4 Let J_{0} De an N -danded matrix with a well-del ined density of States, and suppose that (24) and (27) nold Then J has the same density of states as do

Preef As shown above, the functions $1 /(\lambda-z)$ are a determining set for the densily-of-states measure. so it suffices to amalyze the resolvents of J_{0} and J, I e. to show that

```
\(\left|1 m_{L}\left(1 / L^{*}\right) \sum\right| G_{0}(2, J, j)-G(z, J, J) \mid=0\)
```

|J\&
from the resolvent formula,

11
$s\left(k / L^{*}|\operatorname{lmz}|\right) \Sigma \quad \sum \min (1,|j-m|-D) \mid V_{m n}$
$|J|<\mathrm{nm}$
$\rightarrow 0$
Dy Lemma II. 3.

We have thus shown that the basic assumption guarantees the invariance of the densily-of-states measure dk under perturbation, for reasonable do. Recall that a classic theorem of Weyl states that the essential spectrum, which includes the support of ak, is Invariant under compact perturbations. Banded compact matrices are precisely the matrices that tend to 0 at infinity. Here we get invariance for perturbations assumed to tend to 0 only on average.

III. The Contracted Densily-of-States Measure.

In this section we shall generalize the definitions given in the introduction 50 as to exteno the notion of the density of states to operators having unbounded essential spectra. The idea here is to renormalize the truncates of J 50 as to make them essentially bounded. This method has had many applications recently in the theory of orthogonal polynomials (Neval (16], Lubinsky, Maskar, and Saff [12], van Assche [28,29]).

Definition 3. Let cl be a sequence of positive numbers we say that J has a COMTACTED DELENTY-Of-STATES MELSURE assoclated with the sequence (c l) iff there exists a sequence of positive numbers (c_{L}) such that

$$
A(f)=\lim _{L \rightarrow \infty}\left(L^{*}\right)^{-1} \operatorname{tr}\left(f\left(H_{L} / C_{L}\right)\right)
$$

exists for all $f \in C_{0}(\mathbb{R})$.
The notation used here is that of the introduction. The alternative to Definition 3 is:

Definition 4. Jhas a contracted density-of-states measure associated with the sequence (c_{L}) ifr

$$
A^{\prime}(\mathrm{f})=\lim _{\mathrm{L}}\left(\mathrm{~m}(\mathrm{~L}=)^{-1} \operatorname{tr}\left(\mathrm{x}^{(L)} \mathrm{f}\left(\mathrm{~J} / \mathrm{C}_{\mathrm{L}}\right)\right)\right.
$$

exists for all $f \in C_{0}(t)$.
Proposition III. Definitions 3 and 4 are equivalent.
Proof. The proof is exactly the same as for Theorem II.I.
Remark. When all the Cl_{l} are equal to I , this reouces to the case considered in sections I and II.

Examples. Suppose J is a Jacobl matrix acting on $18\left(z^{+}\right)$, 1.e, (1) I) with $M=I, A_{1}=A=\left(a_{j}\right)$, with each $\left.a_{j}\right) 0$ and $B=\left(D_{j}\right)$ real. Furthermore, suppose that

where $\left(\lambda_{n}\right)$ is a regularly varying sequence with exponent α (1.e., λ_{n} - $\mathrm{ma}_{\mathrm{L}}(\mathrm{n})$, where $L(n)$ is a slowly-varying function (Senata [211) in this case the contracted density of states measure is called an Uliman-Neval measure. With assumptions on the weight, including symmetry, it has been found by Maskar and Saff [13), Rachmanov (19), and UlIman (26). Starting from the recurrence coefficients (the matrix J) its moments have been found by Neval and Dehesa [17], and they are given explicitly by van Assche $[28,30 \mathrm{~L}$ The explicit form of the contracted density-of-states measure is:
$k(E)=\frac{1}{\pi} \int_{0}^{1} d(t 1 / a) \int_{(D-2 a) t}^{(b+2 a) t} d x d(x) \frac{11 / a}{\sqrt{(2 a t)^{2}-(x-b t)^{2}}}$
where x_{f} is the characteristic function of the Borel set $\mathrm{Ec}(\mathrm{b}-2 \mathrm{a}, \mathrm{b}+2 \mathrm{al}$ For Hermite polynomials, $b=0, a=1$, and $\alpha=1 / 2$. Therefore,

$$
\begin{aligned}
k(E) & =\frac{1}{\pi} \int_{0}^{1} d\left(t^{2}\right) \int_{-2 t}^{2 t} d x \operatorname{se}(x) \frac{1}{\sqrt{4 t^{2}-x^{2}}} \\
& =\frac{1}{\pi} \int_{0}^{1} d\left(t^{2}\right) \int_{-2}^{2} d x \operatorname{ys}(x t) \frac{1}{\sqrt{4-x^{2}}}
\end{aligned}
$$

Here we have taken the weight function for the Hermite polynomials as $\sqrt{\frac{2}{n}}$ $\exp \left(-x^{2}\right)$. For Laguerre polynomials, $b=2, a=1$, and $a-1$, and consequently.

$$
k(E)=\frac{1}{n} \int_{0}^{1} d t \int_{0}^{4 t} d x \operatorname{At}(x) \frac{d t}{\sqrt{4 t^{2}-(x-2 t)^{2}}}
$$

Theerem. Let th be a 2M•1-danded matrix with a well-defined densily-of states measure associated with the sequence (C_{L}). Suppose that ($\left.\mathrm{f}_{\mathrm{p}}(\mathrm{L}) / \mathrm{CL}_{\mathrm{L}}\right)$ is a uniformly bounded sequence of operators and that $J=b$ * v is a danded matrix. If

$$
\lim _{t \rightarrow \infty}\left(l c_{t}\right)^{-1} \sum_{1} d a \sum_{1 d \mu} \mid V_{m} d=0 \text {. }
$$

then J has the same contracted density-of-states measure as do.

Preof

Again it suffices to show that
where $G_{0}(1) \cdots G_{G}(1)$ are the Green matrices associated with $w_{0}(t) / C_{L}$ and $\mathbb{J L}) / c_{L}$ since $f^{(L)} / C_{L}$ is a uniformly bounded sequence of operators, $\left.\mathrm{k}_{\mathrm{c}}(\mathrm{L})(2, m, n)<k_{1} \operatorname{expl}-k_{2}|m-n|\right)$ for some $k_{1,2} \geqslant 0$ by Proposition II.2. The constants in this estimate are easily seen to be independent of L for $|z|$ sufficiently large.

From the resolvent formula,

$$
\begin{aligned}
& s \text { const }\left(L^{*}\right)^{-1} \sum_{|m|}|m| L L\left|V_{m a} / c l\right| \rightarrow 0
\end{aligned}
$$

15
\qquad

Remark. If J is banded, then it is sufficient to insist, in place of the basic assumption (2.7) that

```
lim(L*)-1 \sum \sum |Vad=0
H->\infty |m|L |n|L
```

whereas if J is not banded, the equivalence of Definitions I and 2 is certainly guaranteed by the stronger assumption (2.7) if one is content with Definition I for the density of atates and does not insist upon the equivalence of the two definitions, then (3.1) is surficient to ensure that J and t have the same density of states. In this case the proof above shows that only absolute summability of the columns of G is required.

IV. Some Instructive Examples.

We begin with some curlous examples that do not make use of our main results, and then exemplify our results with further examples. We frequently rely on the property of recurrence:
Definition. An infinite matrix W is sald to be recurrent if for all $L, M \in \boldsymbol{Z}^{*}$ and all 8 > 0 , there exists $N>M$ such that

$$
\|(T * W W T W-W)(L) l_{\text {lbe }}(\delta,
$$

where liwibe is by definition maximi, , in at $\mid W_{\text {man }}$.
This means that given any Dlock of \mathbf{W} and any $\mathbf{8}>0$, it is possible to translate it arbitrarily far down the diagonal and find another block that matches the original to within \&

Lemma IV.O. If J , a self-adjoint operator on $\mathrm{I}^{\mathbf{2}(z)}$ (i.e., n, m run from $-\infty$ to $+\infty)$, is banded, recurrent, and essentially self-adjoint on the set C, of sequences with finitely many nonzero elements, then $s p(J)$ is a perfect set (there are no Isolated eigenvalues).

This is a famillar property of bounded ergodic Jacobl matrices on $1^{2(2)}$ [4,10,22], which are recurrent. To sketch the essentially known proof for the minor extension to recurrent operators, we reason as follows: If $\lambda \in$ $50(J)$, then there are vectors $v \in \mathbb{C}$, $\|v\|-1$, such that $\|(J-\lambda) w\|$ is arditrarily small. Since J is recurrent, some sequence of disjoint translates of such v's constitutes a weyl sequence (i.e., a sequence of approximate elgenvectors, cf. Weidmann [32], D. 203), showing that λ delongs to the essentlal spectrum of J. Essential spectra consist of infinitely degenerate eigenvalues together with accumulation points of the spectrum, but since J is banded, $s p(J)$ contains no infinitely degenerate eigenvalues.

Example IV.I. A bounded operator with a nonconvergent density of states.

$V_{0}=1$,
$V_{m}=(-1) N, N \leq \log \log n<N+1, N \in Z$

Now consider $J=d_{0} \cdot V$ (The sequence $\left(V(n)=V_{m}\right)$ consists of blocks of rapidiy increasing length each of which contains only +1 or -1 .) The operator J does not have a uniquely defined density of states

Proof. We wIII let L run through the integer values L(N) such that log $\log (L(N))$ is the greatest possible value less than than $N+1$. Recall that the ordered eigenvalues of $\boldsymbol{b}^{(L)}$ are $\mu(L)=\cos \left(\frac{(L-1+1) \pi}{L+1}\right)$, and observe that if $\lambda_{1}(l)$ are the corresponaing eigenvalues of J, then by the min-max principle, $\mu_{1}(L)-1<\lambda_{1}(L)<\mu_{1}(L)+1$. If $k(L)(\lambda)$ denotes the number of elgenvalues of J that are $s \lambda$ and $k_{0}(L)(\lambda)$ is the corresponding number for th. then

$$
k_{0}(1)(\lambda-1)<k^{(L)}(\lambda)<k_{0}(1)(\lambda+1) \text { for all } \lambda .
$$

If N is odd, then we claim that

$$
0<\sum_{j=1}^{L(N)}\left(2 j(L(N))-\left(\mu_{j}(L(N))-1\right)\right)=\sum_{j=1}^{L(N)}(V(j)+1)<2 L(N-1) \quad(41)
$$

On the other hand, If N is even, then we claim that

$$
\begin{equation*}
\left.0 \cdot \sum_{j=1}^{L(N)}((\mu j)(l(n))+1)-\lambda_{j}(L(n))\right) \cdot \sum_{j=1}^{L(N)}(1-v(\jmath))<2 L(N-1) \tag{42}
\end{equation*}
$$

If these claims are granted, then, by dividing by $L(N)$, passing to the limit $N-\infty$. and noting that $2 L(N-1) / L(N) \rightarrow 0$, we see that both $k_{0}(L)(\lambda-1)$ and $k_{0}(1)(\lambda+1)$ are limit points of $k^{(L)}(\lambda)$ as $L \rightarrow \infty$
To prove (4.1) and (4.2), we use the linearity of the trace to see that

$$
\begin{aligned}
\sum_{j=1}^{1}(v(j)+1)=\operatorname{tr}(v(L)+j(L)) & =\operatorname{tr}(J(L))-\operatorname{tr}\left(L_{j}-1\right) \\
& \left.=\sum_{j=1}^{L} \lambda_{j}(L)-\sum_{j=1}^{L}(\mu j(L)-1)\right),
\end{aligned}
$$

ano similariy for $\sum_{j=1}^{L}(1-v(j))$

Uliman and wyneken (27) discuss an analogous situation, beginning with If J is ergoaic, then it nas a density of states (Minami(14)), but the same is not necessarily true of recurrent operators

Example IV.2. A bounded, recurrent operator with a nonconvergent density of states.

As in Example IV I, J=b • V with V diagonal. We construct $V(n)=V_{m}$ recursively as follows.

Let
$V(n)=0$ for $-\infty$ ens 10 :
while for $n=0.1$, .

$$
\begin{aligned}
& V\left(10^{10 n}+k\right)=V(k-n) \text { for I } s k \leq 10^{10 n}+n ; \\
& V(m)=(-1) \text { for } 2 \times 10^{10 n}+n<m \text { s } 10^{10 n+1}
\end{aligned}
$$

The proof differs from the previous one only in minor ways and will not be repeated. The two distinct limit points are the density-of-states measures for $V_{s}(n)=0$ forns $0, V_{s}(n)=s \mid$ for $n>0$.

Example IV.3. A bounded operator with a density of states, the support of which is a proper subset of the essential spectrum.

Let R De the set of positive integers of the form

$$
\sum_{m=0}^{N} c_{m} 1010 m, \text { with } c_{m} \cdot \text { oor } 1 .
$$

Let J be an operator on $I^{2(2)}$ of the form TA + AT* with A diagonal, and

$$
1 / 2, \quad n \in R
$$

$A(n)=$
2. $n \in R$.

This operator has the density of states (1.3) (same whether we use 2 or $\mathbf{2}^{\text {* }}$), supported in $[-1,1]$ by Theorem II.4. Since J is easily seen to be recurrent, Lemma IV. 0 Implies that the spectrum is purely essential. Since the norm of J is larger than 2, this essential spectrum includes values outside $[-1,1]$

Remark. We conjecture that the thin part of the spectrum outside $[-1,1]$ is a Cantor set, and that other examples could de constructed with spectrum $[-2,2]$, say, but with the density of states supported in $[-1,1]$ We do not know the nature of the spectrum, e.g., whether there is a dense set of elgenvalues outside $[-1,1)$, or even whether the suoset $[-1,1]$ is absolutely continuous. Indeed, a theorem of Rakhmanov [18] casts doubt on the absolute continuity in this example, and also in Example IV.7, below.

Example IV.4. Another bounded operator with a density of states, the support of which is a proper subset, viz. the interval $[-1, \cdot 1]$, of the essential spectrum, which is certainly the interval $[-1$, 2)

According to Theorem II.4, if we take $\mathrm{J} \cdot \mathrm{t} \cdot \mathrm{V}$ on $1^{2}\left(Z^{+}\right)$, with any V sat isfying the basic assumption (2.7), dk will be the same as that of t. We take

$$
\begin{aligned}
& V(n)=0 \text {, unless } 10^{k} \leqslant n<10^{k} * k, \\
& V(n)=1 \text {, when } 10^{k} \leqslant n<10^{k}+k .
\end{aligned}
$$

Since b_{b} < $\ll d+1$, in the sense of quadratic forms, it is clear that the spectrum of J lies in the interval $[-1,2)$. To show that all such values belong to the essential spectrum of J, recall that λ delongs to the spectrum of t iff for the value λ there is a Weyl sequence, which can be assumed to consist of vectors of finite support. Since b is transiation-invariant, we may assume that the support of the vectors $v j$ in the weyl sequence begin wherever we want. By choosing their support away from the intervals $10^{\mathrm{k}} \mathrm{s}$ $n<10 k+k$, we see that $\|I J-\lambda\| v_{j} \| \rightarrow 0$, so every $\lambda \in[-1,+1]$ belongs to $\mathrm{sp}(\mathrm{J})$ On the other hand, since the intervals $10^{k} \mathrm{~s} \mathrm{n}<10^{k}+\mathrm{k}$ are arbitrarily long, we may choose vj to be supported in such intervals, and we find that

$$
\left\|(J-(\lambda \cdot 1) \|) v_{\|}\right\|=\| \| \omega_{b}-\lambda\left\|v_{j}\right\| \rightarrow 0 \text {, }
$$

so every point of $[0,2]$ also belongs to $\mathrm{sp}(\mathrm{J})$.

Example iv.5. An unoounded operator with a density of states, which is equal to the alstribution (1.3) of \downarrow - $\mathrm{T} / 2+\mathrm{T}=/ 2$.

Accoroing to Theorem II. 4 , we may take $J=\omega_{0}$, V on $1^{2}\left(Z^{*}\right)$, with any V satisfying the basic assumption, e.g.,

```
V(n)=0, unless n=4k,
V(4k) - 3k
```

We observe that the moments of the density of states measure fall to converge in this example, i.e., if

$$
\left.\mu^{(L)_{m}}=\operatorname{lL}^{-1} \operatorname{In}\left(s^{(L)}\right)_{m}\right)
$$

then as $L \rightarrow \infty$

$$
\mu(L)_{0 \rightarrow 1}
$$

$$
\mu^{(L)}, 0
$$

$$
\mu^{(L)_{m} \rightarrow \infty \text { for } m>1 . ~}
$$

Example IV.6. An unbounded operator with a density of states, which is equal to the distribution (1.3) of $t_{0}=T / 2$. $T w / 2$, and for which the truncated moments converge to the moments of the densily of states measure.

$$
J=T A+A T * \text { on } 1^{2}\left(2^{*}\right) \text {. }
$$

where A is diagonal with

$$
A_{m}=1 / 2, \quad m=2^{k}, ~ \begin{array}{ll}
=k / 2, & m=2^{k}
\end{array}
$$

We calculate the moments

$$
\begin{align*}
\operatorname{Tr}((J(L), k) & =\left.\left.\sum_{1,=0}^{L-1} \cdots \sum_{1_{k}=0}^{L-1} J(L)_{1,12} \sim(L)_{1_{2} / 3} J^{(L)}\right|_{k}\right|_{1} \\
-s_{1} & =s_{2} \tag{4.3}
\end{align*}
$$

where S_{1} contains only terms for whiten a_{n} - $1 / 2$ and S_{2} contains all the other terms. Let $N_{k}\left(I_{1}\right)$ De the number of k-tuples such that
a) $\left|J_{j}-j+1\right|=1, \quad j=1, \quad k-1$;
D) $|I-1| \mid=1$
c) 0 sifsL-I, $J=1, \quad, k-1$

Then there are precisaly $\sum_{i=0}^{L-1} H_{n}(1)$ terms in the sum (43). If a k-tuple $1=0$
satisfying (4.4) has first component II, tien If can at most De $i_{i}+k / 2$ and will never be smaller than $I_{i}-k / 2$ Therefore, a k-tuple for which $\|!-2\| j k / 2$ for every $2 \|_{\mathrm{s} n-1 \text { in }}$ the $\mathrm{sum}(43)$ will only contain entries amo 1/2 This means that there are at most

$$
\sum_{\substack{i=0 \\|1-2| \mid<k / 2}}^{L-1} N(1) \leqslant\left(\max _{i} N(1)\right) k \log _{2}(L)
$$

terms in 5_{2} Clearly, $\mathrm{N}_{2}(1)$ s 2^{2}, and each term in S_{2} is bounded by $(\log 2(L))$ /24. Therefort
$\left|S_{2}\right| \& k\left(\log _{2}(W)\right)+1$.
so $\mathrm{S}_{2} / \mathrm{L} \rightarrow 0$ for every k as $L \rightarrow \infty$
In order to calculate 5_{1}, we notice that it is the same as the corresponding sum for t_{b} Since the sum corresponding to S_{2} for f_{t} is o(L) by the same argument as for S_{2}, the limit of S_{1} / L converges to the corresponaing moment for w. le,

$$
\frac{1}{n} \int_{-1}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x
$$

Example IV. 7 A Dounded operator J with the same density of states (I 3) as $\mathbf{b}^{*} \mathrm{~T} / 2 \cdot \mathrm{~T}=/ 2$, and also having the same spectrum $|-1,1|$. Dut for which
which the perturbation $J-J$ is not compact. Take J as in Example IV.3, but with

1/2, neR
$A(n)=$
$1 / 3, n \in R$.
It is stralghtiorward to calculate (witn weyl sequences) that sp(J) contains $s o(b)$. but ILIII $=1,5050(J)=[-1,11$ theorem 11.4 shows that the density of states is the same as for \downarrow.

Example IV.8. The contracted density of states. Let
$(1+\nabla)(n)=\sqrt{n+1} \nabla(n+1) \cdot(2 n+1) \uparrow(n)+\sqrt{n} \nabla(n-1), n=1,2, \ldots$
This is the Jacool matrix assoclated with the normalized Laguerre polynomials whose leading coefficients have been made positive (Szego [25]). Let $J=\boldsymbol{b}_{+}+V, V$ diagonal with $V(4)=6^{n}$ and $v(m)=0$ for $m=4$. . Then J has the same contracted density-of-states measure assoclated with $C_{L}=L$ as b. (See Section III.).

```
12 cinacusid (ati, 
```


24

Acknow ledgements

We are grateful to John Elton and Yom Spencer for helpful conversations, and to Barry Simon for a lecture series at Georgla Tech in the Spring of 1985.

References

1. P. Biliingsley (1968): Convergence of Probability Measures. New York: wiley.
2. KM Case and M Kac (1973): A discrete version of the inverse scaftering prab/em J. Math. Phys. 14: 594-603.
3. J-M Combes and L. Thomas (1973): Asymptotic Dehavior or elgenfunclians for multiasticle Scriodinger aperators Commun. Math Phys 34:251-270.
4. H.L. Cycon, R G. Froese, W. Kirsch, and B. Simon(1986): SChrodinger Operators, Berlin and New York: Springer
5. S. Demko, W.F. Moss, and P.W. Smith; Decay rates for inverses of band matrices Matn of Computation 43:491-499.
6. S. Demko: Inverses of dand matrices and local convergence of spline projection SIAM J. Numer. Anal. 14:616-6I9.
7. P. Erobs (1972): On the aistribution of roots of orthogonal polynomials pp. 145-150 in: Proc. of the Conf. on Constr. Theory Functions (G. Alexits et al., eos. Budapest: Akademlas Klada.

8. L. Ya Geronimus (1957): On same finite difference equations and corresponding systems of orthogonal Dolynomials Mem. Math Sect. Fac Math. Phys. Kharkov State Univ. and Kharkov Math. Soc 25:87-100 (In Russian).
9. T. Kato(1966): Derturbation Theory for Linear Operators, Grundlehren der mathemat Ischen WIssenschaften 132 . New York: Springer.
10. W. Kirsch (1985): Random Scarooinger operators and the density of states in: Stochastic Aspects of Classical and Ouantum Systems, Lecture

eds. Berlin and New York: Spr Inger

11. D.S. Lubinsky, H.N. Mhaskar, and E.B. Saff (1987): A proof of Freweds

 conjecture for exponential weights Constr. Approx., to.appear12. A. Máte, P.G. Neval, and V. Totik (1984): What is beyand Szegd's theary of orthogonal Dolynamials? pp. 502-510 in: Rational Approximation and Interpolation, Lecture Notes in Mathematics 1105 . New York: Soringer.
13. H.N. Mhaskar and E.B. Salf (1984): Extremal oraolems for polynomials with exponentigl weights. Trans. Amer Math. Soc. 285.203-234
14. N. Minami (1986): An extension of Kotanis ineorem 10 ranoom generalized Sturm-L iouville aperators Commun. Math. Phys. 103 387-402.
15. P.G. Neval (1980): Eigenvalue alstrioufion of Toeplitz matrices Proc Amer. Math. SOC. 00:247-253
16. P.G Neval (1985): Exact Dounds for orthagonsl polynomials associated with exponential weights J Approx. Theory 44:82-85
17. P.G. Neval and J.S. Dehesa (1979) On asymptotic average arapertles of zeros of arthoganal Dolynomials SIAMJ. Math. Anal. 10:1184-1 192.
18. E.A. Rakhmanov (1983): on the asymptotics of ine ratio of arthagonal polynomials /I. Math. USSR Sbornik 46 105-117.
19. EA. Rakimanov (1984): On asymptotic properties of polynomials orinogonal on the real aris Math. USSR Sbornik 47: 155-193
20. M. Reed and B. SImon (1978): Methods of Modern Mathematical Physics, IV: Analysis of Operators. New York: Academic Press
21. E. Senata (1976): Regularly varying functions, Lecture Notes in Mathemalics 508. Berlin Springer.
22. B. SImon (1982): Schroainger semigroups Bull. Amer. Math Soc. 7 447526.
23. B. Simon (1982): Almost periodic Scrobiainger aperators A review Adv. Appl. Math. 3463-490.
 ratrices Commun Math. Phys 29221-2]4

25 G 5 zego (1975) Orthogonal Polyinumials, Amer Math Suc Colloq Publ. 23 (4in e0) Providence Amer Main Soc

26 JL Ullman (1980). Oringgans) Dolynomisls associated with an mininite medrval Mich. Math J. 27.353-363

27 JL Uliman and MF Wrneken (1986) Weat limits of zeros of oringans) potmamials Constr appron 2:339-347

28 W van Asscne (1987) Aspmplotic pruperlies of orinogenal Dolynomials from iner necumnace lommila i/ J Approx Ineory, to appear

29 W van Assche (1987) Eigenvalues of Foephitz matrices associated wiln oringoant Dolymamials I Approx Theory, to appear

30 W van Assche (1907) Asymptolics for Orthogonal Polynomials, Lecture notes in Mathematics 1265 New Vork and Berlin Springer

31 JL. Walsh (1935) interpolation and Approximation by Rational Functions in the Complex Plane, Amer Math Soc. Calloq. Pual. 9. Providence: Amer. Math. Soc

32 J welamann (1980) Linear Operators in Hildert Spaces. New York, Heldeloerg, and Berlin Springer

A Schrödinger operator is an elliptic differential operator, usually self-adjoint, of the form

$$
\begin{equation*}
H=-n^{2} \Delta+V(x) \tag{1}
\end{equation*}
$$

acting on a Hilbert space M which I will suppose of the form L (0), QC ${ }^{\text {an }}$, thereby ignoring complications arising from various sources, principally spin and the possibility of many particles. The mass has been scaled to h, and Planck's constant is denoted n . It can likewise be scaled to I, and I shall do so here except where explicitly noted otherwise; but in physics it is a small quantity, about $1.054 \times 10-87$ erg-sec., so one is frequently interested in the behavior of the spectral properties of H as $\hbar \rightarrow 0$, known as the semiclassical limit.

Most of the important problems of mathematical quantum mechanics revolve about the spectral and inverse spectral problem for (1). To get a good mathematical account of the spectral theory of Schrodinger operators, I would recommend looking at the books by Thirring [1979] Reed and Simon, especially vol. IV (1978], and Cycon, Froese, Kirsch, and Simon [1987]. This article will be concerned only with discrete eigenvalues of H. The spectrum of H consists only of discrete eigenvalues when Q is bounded or when the potential $V(x)$ tends to ∞ as $x \rightarrow \infty$, but even when $V(x) \rightarrow 0$ as $x \rightarrow \infty$, the negative part of the spectrum will be discrete (given some fairly general assumptions on V), and the bounds to be discussed will apply in that situation as well.

Nature has unfortunately chosen to reveal to physicists what only very few of the potentials V that arise look like, leaving physicists with the task of determining V from the data available to them essentially the inverse spectral problem. The long and interesting history of this problem will not be repeated here. Suffice it to say that in one dimension, if the spectrum is completely known, along with either norming constants or some other information (such as a

This is the text of a talk given at the Conference on Maximum Principles and Eigenvalue Problems in Partial Differential Equations, :noxville, Tennesssee, June 15-19, 1987.
second spectrum with different boundary conditions), then there are well-established algorithms for determining the potential (Levitan [1984]. Marchenko [1986] and Puschel-Trubowit2 [1987]). while the many-dimensional situation is more complicated, and less completely understood (Chadan and Sabatier (1977))

In more than one dimension, there are two inverse problems for Schrodinger operators, viz. to suppose that \mathbf{Q} is known and to determine $V(x)$, or to attempt to deduce both V and Q. Actually, so long as we impose only Dirichlet boundary conditions, the latter problem is basically a special case of the former, since ext(§) can at least formally be considered as the set $(x: V(x) \cdots+\infty)$ for a problem defined on a domain Q^{\prime} - \boldsymbol{q}^{n} (or any domain guaranteed to contain the original Ω). Thus I shall set aside altogether the problem of determining Q, and will always assume it as given.

Even in a situation that can be reduced to one dimension, allowing a resolution of the inverse spectral problem by, say, the Gel fandLevitan or Marchenko algorithms, the requirement that one needs to know the spectrum completely is more than can reasonably be expected. Thus a problem of considerable practical significance is that of determining what properties of V are reflected in /imited spectral information about H. This problem also turns out to be rather nice theor etically.

Suppose that some general relationship, analogous to the Payne-Polya-Weinberger inequality, is found to hold for "all" potentials $\mathrm{V}(\mathrm{x})$. Then, at the very least, we learn something useful about the feasible set of possible spectra for which the inverse problem is well-posed. I would like to argue that what such relationships teach us is more quantitative, since, in the Schrbdinger context at least, general spectral bounds are generally not truly general.

For instance, recall that the Payne-Polya-Weinberger inequality states that, for the Dirichlet problem of $-\Delta$ on a bounded domain Q

$$
\begin{equation*}
E_{k+1}-E_{k}=\left(\frac{4}{n k}\right) \sum_{j=1}^{k} E_{j} \tag{2}
\end{equation*}
$$

independently of the geometry of Q. Now, a glance at the proof of this inequality shows that $-\Delta$ can be replaced with no essential change by $-\Delta+V(x)$, provided that $V(x) \geq 0$ a.e., and is sufficiently well-behaved that H can be defined as a self-adjoint operator (e.g., $V \in L(Q)$). Thus (2) can be replaced by

$$
E_{k+1}-E_{k} s\left(\frac{4}{n k}\right) \sum_{j=1}^{k} E_{j}-\left(\frac{4}{n}\right) \text { ess in(} V \text {). }
$$

In other words, the Payne-Polya-Weinberger inequality results from the constraint $V(x) \geq 0$ a.e, and can therefore be interpreted as a family of pointwise bounds on $V(x)$, given the values of the first $k \cdot 1$ eigenvalues:

$$
\begin{equation*}
\text { ess inf(V) } \leq\left(\frac{1}{k}\right) \sum_{j=1}^{k} E_{j}-\left(\frac{n}{4}\right)\left(E_{k+1}-E_{k}\right) \tag{3}
\end{equation*}
$$

An abstract form of this inequality is proved in the appendix.
Many sorts of general bounds have been studied in the context of the Schrödinger equation, notably bounds on individual eigenvalues, spectral asymptotics, and bounds on ratios and gaps of eigenvalues, especially the fundamental gap, $\mathrm{E}_{2}-\mathrm{E}_{1}$. I shall concentrate on the last of these problems. There are two questions about gaps: How small can they be, and how large can they be? Both are quite interesting. In their talks at this conference M.S. Ashbaugh and M.H. Protter have surveyed some of the upper bounds for gaps between eisenvalues, and have also spoken about the problem of lower bounds for the fundamental gap, but only with some sort of convexity imposed on \square or $V(x)$. This article will discuss lower
bounds to the sap without such assumptions, and will relate them to the tunnelins effect of quantum physics.

In surveying the literature on general bounds for the fundamental gap between eigenvalues, I found that almost all of the techniques can be put into only three categories.

1. One-dimensional estimates
2. Projection coupled with the Raylegh-Ritz inequality.
3. Special cases or variants of the basic sap formula:

$$
\begin{equation*}
E_{k}-E_{1}=\frac{\left(u_{k}\left(H_{1} g\right) u_{1}\right)}{\left(u_{k} g u_{\nu}\right)} \tag{4}
\end{equation*}
$$

In this formula, Ek,l are eigenvalues of a self-adjoint operator H, and uk,I are the corresponding eigenfunctions. The brackets denote the commutator, $\left(\mathrm{H}_{\mathrm{g}}\right) \cdot \mathrm{Hg}-\mathrm{gH}$, and g can be any operator such that the denominator does not vanish and $g u_{l} \in D(H)$ (actually, even this condition can be relaxed) The prool of (4) is an elementary calculation:
(uk, $\left.[H, g] u_{y}\right)=\left(H_{k} g u_{1}\right)-\left(u_{k}, g H u p\right)$

$$
\text { - } E_{k}\left(u_{k}, g u_{1}\right)-E_{l}\left(u_{k}, g u_{y}\right)
$$

Note that if H is a Schrödinger operator and g is a differentiable function, then $\left[\mathrm{H}_{\mathrm{s}} \mathrm{g}\right)=-2 \mathrm{Vg} \cdot \mathrm{Ve}_{\mathrm{g}}$, and (4) becomes.

$$
E_{k}-E_{l}=\frac{-2 \int u_{k} \nabla g \cdot \nabla u_{l} d x}{\left(u_{k g} g u_{l}\right)}=\frac{2 \int u_{1} \nabla g \cdot \nabla u_{k} d x}{\left(u_{k} g u_{v}\right)}
$$

$-\frac{\int_{g} \nabla_{g} \cdot\left(u_{1} \nabla u_{k}-u_{k} \nabla u_{\nu}\right) d x}{\left(u_{k} g u_{1}\right)}$

(5)
by symmetrization.
The special choices that have been found useful are

1. $g(x)=x_{1}$ for some coordinate vector x_{1}. This, with the aid of some other clever manipulations, leads to the Payne-PblyaWeinberger inequality.
2. $g(x)=x$ ufe. This leads to the improvement of the Payne-Polya-Weinberger inequality by de Vries (1967).
3. The limiting case as g tends to χ_{g} for a regular region S corresponds to the expression for the gap obtained from Green's formula:
$E_{k}-E_{1}=\frac{\int_{S}\left(u_{k} n \cdot \nabla u_{1}-u_{1} n \cdot \nabla u_{k}\right) d a}{\int^{u_{k} u_{1} d x}}$

Equation (6) has been very useful in the study of what is known as the double-well problem (cl. Harrell (1980). There is a well-known physical mechanism that can make $E_{2}-E_{1}$ very small (in comparison with other quantities with the same dimensions), namely the tunneling effect. If a particle would be classically confined by a potential energy $V(x)$, in quantum mechanics it has a small probability of escaping through a potential barrier. This produces weak coupling effects between the dynamics in regions separated by intervals where $\mathrm{V}(\mathrm{x})$ is large, and this can show up as a small eap between eisenvalues, especially if. V is symmetric about a central plane, taking on relatively large values on that plane, and lower values elsewhere.

A toy example of a double-well operator is
$-n^{2} d^{2} / d x^{2}+V(x)$
acting on $\mathrm{Le}(-1,+1)$, with Dirichlet boundary conditions at ± 1 and

$$
\begin{equation*}
V(x)=x_{-0,01} \tag{7}
\end{equation*}
$$

Properltion 2. As tho 0 ,

$$
\left.E_{\varepsilon} \text { - Es } \text { - const exp(-const. } / \mathrm{h}^{2}\right) \text {. }
$$

whereas

$$
\mathrm{Es}_{\mathrm{s}}-\mathrm{E}_{\mathrm{E}} \text { - const. } \mathrm{n}^{2},
$$

which is much larger.
To outline the proof of this proposition, note first that the onedimensional version of (6) with $S \cdot[0,1]$ states

$\int_{0}^{0} u_{1}(x) u g(x) d x$
8 cosine or sine functions for -a \& x \& a, and ordinary sine functions for $-1 \leq x \leq-a$ and $a s x \leq 1$. If n is small it is fairly easy to find that $E_{1,2} \equiv(1-a)^{2} n^{2} \pi^{2}$, and (8) is an easy calculation from (9).

Essentially any other potential that qualitatively resembles this $V(x)$ will produce eigenvalues behaving in this way in the semiclassical limit, and analogous things happen in the multidimensional setting (Harrell [1980], Helffer and Sjöstrand [1984]; for the physics connected with this see Landau and Lifshitz (1977]).

The final special choice of $g(x)$ that has been found very useful is
4. $g=u_{2} / \mathrm{u}_{1}$. In this case (6) becomes

The ratio ug/ui appears in the work of Ashbaugh and Benguria [1987b] and Singer, Wong, Yau, and Yau [1985] on lower bounds for the gap. It is also the key to a recent lower bound due to kirsch and Simon [19871, which makes no convex assumptions, and which is roughly of the form expected from the tunneling effect, although with nonoptimal constants. Kirsch and Simon estimate (10) from below by applying the Cauchy-Schwarz-Buniakovskii inequality to

$$
1=\left(\int|v g|\right)^{2}=\left(\int|\nabla g| u_{1} \cdot \frac{1}{u_{2}}\right)^{2}
$$

for a subset C of Ω
$1 \leq \int|\nabla g|^{2} u_{l}^{2} \int^{2} u_{l}^{-2} \cdot \int|\nabla g|^{2} u_{l}^{2} \int u_{l}^{2} \cdot u_{l}^{-4}$

$$
=\left.\left.\int|\nabla g|^{\beta} u\right|^{2} \int_{u^{2} /(n n t} c u\right|^{4}
$$

Since one of the terms on the right is the denominator of (10), with suag/u, they obtain

Then they choose C to be a ball enclosing the set $\left(x: V(x)<E_{1}+2^{2}\right)$ for some smalle and estimate the factors on the right separately. The key estimate is the pointwise estimate on u_{l} needed for the infimum; the tendency for solutions of elliptic equations to grow or decay exponentially is the source of the exponential term characteristic of tunneling They obtain:

$$
\begin{equation*}
E_{2}-E_{1} \geq C(R) \exp \left(-2^{7 / 2} n \lambda R\right), \tag{II}
\end{equation*}
$$

where n is the dimension, R is the radius of $C, C(R)$ is a polynomial expression in R, and $\lambda=\operatorname{supa}$ suptes $N(x)-\left[\mathfrak{p l / 2}, g=\left[E_{1}, E_{2}\right]\right.$.

Ideally, the exponent in (11) would be Ar, where r (R would be the radius of a barrier region contained in C . By the way, using different, strictly one-dimensional methods (a Prüfer substitution), Kirsch and Simon [1985] had earlier obtained a lower bound of tunneling type with more nearly the optimal exponent. Are there other physical mechanisms producing small gaps? The work of Kirsch and Simon shows that if they exist, they cannot produce dramatically smaller gaps than tunneling. A theorem of Davies [1982] provides further evidence that only the double-well phenomenon can produce extremely small gaps, by showing that the existence of a small gap implies a decoupling of Q into two parts and a generalized symmetry transformation relating the eigenfunctions. In the abstract setting the operator H can be any generator of a positivity-improving semigroup, e.f., if exp $(-\mathrm{tH})$ is an integral operator with a positive kernel, which is the case for Schrodinger operators where the potentials $V(x)$ have some very general properties (see Reed and Simon [1978] Davies (19801 and Simon [1982]).

Theorem 3 (Davies): Let H generate a positivity preserving semigroup on $L^{2}(Q, d v)$, with eigenvalues $E_{1,2}$ nondegenerate, $H u_{1}=E_{1} u_{1}$ and $H u_{2}=E_{2} u_{2}$ with $l_{1,2}=1$. Let $\delta=E_{2}-E_{1}$ and suppose that $\sigma(H)-\left(E_{1}, E_{2}\right) \subset\left[E_{2}+D_{1} \infty\right)$, with $D / b=R, 3$. Then there exists a two-valued function called t (for "two"), $t(x)=c_{q} x_{8}+c_{8} x_{8 c}$ for some set S , such that
$u_{2}(x)=t(x) u_{1}(x)+r(x)$,
where
lrlet $\operatorname{sC}(R) 8 / D$,
and $\operatorname{limR}_{R} \rightarrow(R)=31 / 2$.
Davies has extensions of the theorem to the situation where Eg has degeneracy or approximate degeneracy m. A proof of this theorem is given below, but first it is convenient to make an elementary
transformation to simplify bookzeeping. Change the operator and Hilbert space $L^{2}(\Omega, d v)$ unitarily so that
$L(2, d v)$

- Le(a, dul,
with $d_{\mu} \cdot u_{1}{ }^{2}(x) d v_{1}$ a probability measure,
$-\in L^{2}(\Omega, d v) \rightarrow\left(\frac{l}{u v}\right) \in L^{2}(\Omega, d u)$,

H

$$
\rightarrow A\left(\frac{p}{u_{1}}\right)=\frac{1}{u l}\left(u-E_{1}\right) u_{1}\left(\frac{p}{u_{1}}\right) .
$$

This has the effect of making the principal eisenfunction I with eigenvalue $0: A \mid=0$, and $A v=\delta$, where $v=u g / u s$. It does not affect the positivity-improving property. The conclusion of the theorem is then that $v=t(x)$ up to a small error.

Lemma 4: Let $v \in Q(A)$, the quadratic-form domain of A, and for any $T=0$, define

$$
v^{T}(x)=\min (v(x), T)
$$

Then $v^{\top}(x) \in(A)$, and

$$
\left(v^{T}, A v^{T}\right) \leq(v, A v) .
$$

This is the Beuling-Deny criterion of Reed and Simon [1978], p. 209 ff., except that they choose $T=0$. Since $A T=0$, it is clear that one can truncate at any value T, since $\mathrm{v}^{\mathrm{T}}=\mathrm{T} \cdot(\mathrm{v}-\mathrm{T})^{\mathrm{T}}$.

Lemma 5: Let B - B^{*} on a Hibert space 3 have an eigenvalue E isolated from the rest of the spectrum by a distance d, and denote the spectral projection onto E as P. If $w \in D(B)$, Iwt-l, then

$$
[1-P) \text { wis }(B-E) w t / d .
$$

This is a simple exercise with the spectral theorem.
Proof of Theorem 3: The idea is to take the exact eigenfunction v for $A v=8 v$ and to use its truncate v^{\top} as a trial function to estimate 8. The lemmas will show that $v^{\boldsymbol{T}} \equiv \mathrm{v}$, and the conclusion will follow by simple algebra.

Thus let $w=N\left(v^{\mathbf{T}}-\left(v^{T}, 1\right)\right)=N\left(v^{\mathbf{T}}-\int v^{\mathbf{T}} \mathrm{d}_{\mathrm{p}}\right)$, where N is a normalization depending on T and use Lemma 1 to see that:

$$
\begin{equation*}
(w, A w) \leq N^{2}(v, A v)=N^{2} 8 . \tag{12}
\end{equation*}
$$

At this stage N can be assigned any value from 1 to $\sqrt{2}$ by suitable choice of T and possibly multiplying v by -1 , since either $1 \mathbf{w}^{\circ 9}$ or $\|(v) M=\%$, but at the end of the prool it will be argued that it can be taken arbitrarily close to the optimal value 2 .

Now notice that $A-b$ is a positive operator when restricted to the subspace M_{1} of $L^{2}(0, \mathrm{~d} \mathrm{\mu})$ or thogonal to I, so with $B=\sqrt{A-b}$, we can calculate:

$$
\text { IB } w{ }^{2}=(w,(A-\delta) w) \leq\left(N^{2}-1 x\right.
$$

by (12). Then Lemma 2 applied to this B on H_{1} implies that

$$
\|(1-P) w l \leq \sqrt{\left(N^{2}-1\right) 6 / D}
$$

This means that

$$
v=\frac{w}{\sqrt{1-\left(N^{2}-1\right) / D}}+r_{1}= \begin{cases}a v-\int v^{T} \cdot r_{1} & x \in S \tag{13}\\ a T-j v T+r_{1} & x \in S\end{cases}
$$

where $S=(x: V(x) \leq T)$,

$a \cdot \frac{N}{\sqrt{1-\left(N^{2}-1\right) / D / D}}$ and $\operatorname{rrl}_{1} \cdot \sqrt{\frac{\left(N^{2}-1\right) 6 / D}{1-\left(N^{2}-1\right) / D}}$

Now solve (13) for v to find that:

$$
v=t(x)+r
$$

where
and

$$
r= \begin{cases}\frac{r_{1}}{a_{-1},} & x \in S \\ r_{1}, & x \in S\end{cases}
$$

This establishes the theorem except for the numerical value of \lim CR), which results from the choice $N=2$. A straightiorward calculation of $\boldsymbol{t}^{0}-\mathrm{ftal}_{\mathrm{t}}$ for $\mathrm{t}(\mathrm{x})$ a normalized $\mathbf{t w o}$-valued function orthogonal to 1 shows that $\mathrm{to}-\int \operatorname{ta} \cdot \mu(S)$ or $1-\mu(S)$ depending on whether t is positive or negative on S. Since one of these numbers is $s h$, and since we have seen that $v(x)$ is close to $t(x)$ when the gap is small, we can choose $\mathrm{N} \equiv 1 / / \mathrm{t}^{\mathrm{T}}-\int \mathrm{t} \mathrm{T}=2$ for some T 20 .

Finally, I would like to discuss an approach to bounds on the gap via direct optimization. In the last lew years M.S. Ashbaugh and I and some other people have explored the problem of imposing a constraint on the potential V and then maximizing or minimizing a given eigenvalue subject to that constraint (Harrell [1984], Ashbaugh and Harrell (1984,19871. Eqnell [1987) and references therein). I shall briefly recapitulate the argument and discuss its extension to gaps. Most typically, what we have done is to impose a constraint of the form

$N-W_{0} \leq M$

for a reasonable background potential $W(x)$ and some fixed $p, 1<p<\infty$ ($p=\infty$ is trivial and $p+1$ is a special case, which is also tractable), and searched for the potential within that class that maximizes or minimizes a given eigenvalue $\mathrm{E}_{\mathrm{k}}(\mathrm{V}$, subject, say, to Dirichlet boundary conditions.

There is a serious existence question for these spectral optimizing problems, which I don't wish to discuss here, beyond remarking that, for example, if Q is smooth and bounded and, for the minimizing problem, p is sufficiently large to ensure that the usual Sobolev embeddings apply, then optimizing potentials exist and satisfy

$$
\begin{equation*}
N-W_{p}=M<\infty . \tag{14}
\end{equation*}
$$

with V-W nonnegative for the maximizing problem and nonpositive for the minimizing problem.

Granting existence of an optimizer V_{m}, we can then try to find it by variational analysis, by letting $V_{t} \rightarrow V_{*} \rightarrow{ }_{c} P$ for generic perturbations P that are tangential to the ball (14) and differentiating with respect to k. "Tangential" here means that

$$
\begin{equation*}
N=-W+\kappa P l_{p}=M+d(x) . \tag{15}
\end{equation*}
$$

A subtle point here is that even when $\mathrm{H}+\mathrm{xP}$ is an entire family of operators, the function $\mathrm{E}_{\mathrm{k}}(\mathrm{V}=+\mathrm{KP})$ may fail to be differentiable. (For perturbation theory see Kato [1966] or Reed and Simon (1978).) If, for example, $\mathrm{E}_{\mathbf{K}}\left(\mathrm{V}_{\boldsymbol{H}}\right)$ is isolated and nondegenerate, then differentiability is ensured - for instance the lowest eigenvalue E_{I} always has this property, and all eigenvalues do if the dimension $n=1$ (with, e.g., Dirichlet or Neumann boundary conditions). If these conditions hold, then there is a simple formula for the derivative, viz..
where $u=$ is the normalized eigenfunction for $\mathbf{x}=0$. Equation (16) is a sort of orthogonality condition between P and u st. Since P is tangential to $\mathrm{V}_{0}-\mathrm{W}$ but otherwise generic, this means that uod must be proportional to a power of Va-W. Specifically, a calculation using (15) and (16) reveals that

$$
\begin{equation*}
V d(x)-W(x)=C(u d x)=(p-1) \tag{17}
\end{equation*}
$$

Combining this algebraic relationship with the eigenvalue equation for $\mathrm{E}_{=}=\mathrm{E}_{n}\left(\mathrm{~V}_{\mathrm{H}}\right)$, we can characterize the solution of the optimization problem as the solution of a semilinear partial differential equation,

$$
\begin{equation*}
[-\Delta \cdot W(x): h u+-1) u==\text { E } \Delta u \tag{18}
\end{equation*}
$$

The constant $a=(p+1) /(p-1)$, and $V=$ is determined from its sign and (17) if u_{0} is found from (18). The analysis of (18) can be fairly difficult, but in one dimension or numerically it is not too bad in some circumstances. The result is that one can generate functions

$$
E_{m n a}(M, k, p, \Omega, W) \text { and } E_{\min }(M ; k, p, Q, W)
$$

In terms of these functions, knowledge of even one eigenvalue of H implies a whole class of lower bounds on expressions of the form N -Wh.
M.S. Ashbaugh, R. Svirsky, and I are currently investigating how these ideas apply to gaps. Suppose that Ω is smooth and bounded and, for simplicity, set $W=0$, constraining the potential V so that

$V \in S \cdot\left(V: \mathbb{N} I_{p} \leqslant M<\infty\right)$,

for some fixed $p>n / 2(p>1$ when $n-1)$. Let $r(V)=E_{q}-E_{1}$ for $-\Delta \cdot V$ on $L^{2}(\Omega)$, with Dirichlet boundary conditions. For $p<\infty$ existence and uniqueness are guaranteed much as described above, and as before we can derive equations characterizing the optimizing potentials, except that in place of (18) we obtain complicated systems of coupled nonlinear equations.

If we let p be infinite, the situation becomes more tractable. In this case, let us write the constraint as:

$$
\begin{equation*}
S=[Y: 0 \leq V(x) \leq M) \tag{19}
\end{equation*}
$$

for some finite M . This is tantamount to the restriction $\mathrm{VL} \leq \mathrm{M} / 2$, but is more convenient.

Proposition 6: The existence of optimizers $V^{\bullet} \in S$ for $\mathrm{r}(\mathrm{V})$ follows as before, and we find that if $E_{2}(V)$ is nondegenerate, then

$$
\begin{equation*}
u_{8} \otimes(x)=u_{1}{ }^{2 d}(x) \text { a.e. on }\left(x: 0<V^{q}(x)<M\right) \text {. } \tag{20}
\end{equation*}
$$

Actually, for the minimizing problem for $V^{\boldsymbol{0}},(20)$ does not require the assumption of nondegeneracy, but applies when uz ${ }^{*}$ is any normalized eigenfunction associated with Es(V).

Proof of (20). Let $T=(x: ~ \& \& V(x) \leq M-t)$ for some $\& 0$. Assume that $E_{g}\left(V^{\bullet}\right)$ is nondegenerate. Then, if $P(x)$ is any bounded, measurable function supported in T, and we perturb V^{\bullet} to $V^{\circ} \cdot \mathrm{kP}$, formula (16) applies. Taking the difference of formula (16) as applied to E_{2} and E_{1} shows that:

$$
\begin{equation*}
\frac{d r\left(V^{a_{4}} x\right)}{d x}=\int\left(u_{g} e^{\infty}(x)-u_{1} e^{e}(x)\right) P(x) d x \tag{21}
\end{equation*}
$$

Since this derivative must be 0 at $\mathrm{r}=0$, it follows that

```
\(u_{2}{ }^{2}(x)-u_{1}=0(x)=0\) a.e. on \(T\)
```

Since c is arbitrary. (20) follows. If the eigenvalue is degenerate, then the perturbation may split the eigenvalue into a cluster of eigenvalues $E_{2}(m)$, which are ail still analytic in $\mathrm{k}_{\text {, provided that the }}$ right choice is made of how to define the functions $\mathrm{E}_{2}(\mathrm{~m})(\mathrm{y} \cdot+\mathrm{KP})$ as x passes through the value 0 . TThis choice is certainly different from the min-max ordering of the eigenvalues; for example the bottom eigenvalue of a cluster will as a rule have a discontinuous slope at $\kappa=0$) The derivatives at $\kappa=0$ of the lunctions $E_{2}(m)$ are the eigenvalues of the symmetric matrix

$\left.\int u_{z} \sigma()_{(x)}\right) u_{g} \sigma(d x(x) P(x) d x$

(Kato (19661, p. 407, Eq. (4.50)), and so by (16) the derivatives at $\mathbf{k = 0}$ of the functions $E_{3}(m)$ - E_{1} are the elgenvalues of the matrix

$$
\int\left(u_{2} d x_{(x)} u_{2} u_{2} \operatorname{dar}(x)-u_{1} \otimes \varepsilon_{(x)}()_{d y}\right) P(x) d x
$$

If even one of these matrix elements differs from 0 , then Γ is not at minimum. Hence, setting jok, Equation (20) must hold at the minimum V for any normalized $u_{2}{ }^{*}$.
-
The ramuifictions of (21)-(22) will be further discussed elsewhere (Ashbaugh, Harrell, and Svirsky [1987]) I shall confine myself here to some remarks about the simplest case, one dimension, with the constraint (19). We normalize so that $\Omega=[-1,1]$. In this case, we conclude.

Proposition 7: In one dimension

$$
\begin{equation*}
v_{0}=M x_{\mathrm{B}} \tag{23}
\end{equation*}
$$

where $B^{-}=B^{*}$ or respectively B^{b}, with $\left.B^{d}=\left(\mathbf{x}: \operatorname{lu}_{1} 9\right), l_{2} 9\right)$ and
 consists of two intervals, $\left[-1,-a^{d}\right] \cup\left[a^{b}, 1\right]$.

Proof: There is no question of degeneracy, and Sturmian comparison ensures that (20) can hold at only a finite number of discrete points. Indeed, we claim that hy 4 - hag at no more than two interior points of a :

Suppose this is false. Recall that E_{8} is the lowest eigenvalue for $\mathrm{H}=-\mathrm{d}^{2} / \mathrm{dx} \mathrm{x}^{2}+\mathrm{V}$ with Dirichlet boundary conditions at 0 and p (or p and 1), where p is the node of u_{2}. If there are more than two interior points where hyl 4 - hasq, then at least two of them, s and t, must lie to one side of p - suppose that they are to the left, 0 \& s < t \& p, and take u_{l}) u_{z}) 0 on ($\left.s, t\right)$. Since (s, t) is a subinterval of $[0, \mathrm{pl}$ the eigenvalues of the Dirichlet problem for H on $[s, t]$ lie above E_{8}. The Rayleigh-Ritz inequality then gives
$E_{q} \int_{s}^{t}\left(u_{1}-u_{2}\right)^{2} d x<\int_{s}^{t}\left(u_{1}-u_{2}\right) H\left(u_{1}-u_{2}\right) d x$
$-\int_{s}^{t} E_{1}\left(u_{1}-u_{g}\right) 8 d x-\left(E_{g}-E_{1}\right) \int_{s}^{t}\left(u_{1}-u_{2}\right) u_{8} d x$ $\left.<E_{1} \int_{S}^{t}\left(u_{1}-u_{2}\right)\right)^{2 d x}$
which is a contradiction.
Perturbations $P(x)$ supported where $V(x)$ - M are admissible for $5>0$ only when $P(x)$ < O a.e., else they would violate the constraint (19), and likewise perturbations supported where $V(x)=0$ must have $P(x)>0$ a.e. Since for such perturbations,

Equation (21) leads readily to the conclusion that (23) holds for
 of no more than two intervals is implied by the statement that hay 4 - has at precisely two interior points And since the node of $u_{2}{ }^{2}$ lies within B° while that of usb lies in the complement of B^{b}, we see that B^{8} is a single interval, while B^{b} consists of two disjoint intervals extending to $: 1$.

The final fact to prove is that the intervals B are symmetric about 0 . To prove this, shift Q so that the node of $u_{2}{ }^{\circ}$ is at 0 and choose ug 90 for xp 0

Case I : Maximizing r, or minimizing r with $E_{t} \geqslant M$ (arises when M is small). The Ricatti equation for $\mathrm{r}_{1,2}=\mathrm{d}\left(\ln \mathrm{u}_{1,2}\right) \mathrm{dx}$, viz.,

$$
r_{1,2}=V-E_{1,2}-r_{1,2^{2}}
$$

shows that r_{1} decreases monotonically for all $-a^{\top} \leq x \leq a^{\text {; }}$, and likewise for r_{2} except at $\mathrm{x}=0$. Also observe that the greatest value of u_{s} on $\left[-a^{c}, a^{\prime}\right]$ is attained closer to a^{\prime} than to $-a^{c}$. Therefore we find that
$-u_{g}^{\prime}\left(-a^{\prime}\right) / u_{g}\left(-a^{4}\right)>u_{g}^{\prime}\left(a^{2}\right) / u_{2}\left(a^{\prime}\right)>u_{1}^{\prime}\left(a^{\prime}\right) / u_{1}\left(a^{\prime}\right)>-u_{1}^{\prime}\left(-a^{\prime}\right) / u_{1}\left(-a^{\prime}\right)(24)$
Next notice that $u_{2}\left(x \cdot a^{\prime}\right)$ and $-u_{g}\left(-x-a^{4}\right)$ are positive and solve the same Schrödinger equation for $0<x$, and likewise for $u_{1}\left(x \cdot a^{\prime}\right)$ and $u_{3}(-x-a)$ The Wronski identity ensures that the signs of

$$
r_{1}\left(x+a^{2}\right)+r_{1}\left(-x-a^{4}\right) \text { and } r_{1}\left(x \cdot a^{2}\right)+r_{1}\left(-x-a^{4}\right)
$$

do not change, except when these quantities diverge $\left.r_{1}(x+a)\right)$ diverges negatively at $x=\left(b-a^{\prime}\right.$, while $r_{1}\left(-x-a^{9}\right)$ diverges positively at $x=c^{-}-a^{4}$. Because the sign of $r_{1}\left(x+a^{2}\right)+r_{1}\left(-x-a^{4}\right)$ is positive at $x=0$, the
latter divergence must occur first, i.e., $c^{-}-a^{\prime}\left\langle c^{2}-a^{\prime}\right.$. For similar reasons, the first zero of $-u{ }_{x}(-x-a)$ comes after that of $u n\left(x+a^{2}\right)$, i.e., $c^{\left(-a^{\prime}\right)} c^{\prime-} a^{*}$. This is a contradiction.

Case II. Minimizing \mathbf{r} with $\mathbf{E}_{1}<\mathbf{M}$. It is straightforward to derive the following facts from the observation that ug, ${ }^{\circ \prime \prime}$ are monotonic everywhere except possibly at the edges of B and at the node of $u z^{*}$:

$$
\begin{equation*}
u_{1}{ }^{*}(x)>u_{1}^{2}(-x) \text { for } 0<x<a ; \tag{25}
\end{equation*}
$$

and
$u_{1}{ }^{*}\left(a^{\prime}\right)-u_{2}{ }^{\Delta}\left(a^{2}\right), u_{1}{ }^{*}\left(-a^{4}\right)=-u_{2}^{*}\left(a^{4}\right), u_{1} \Delta^{\prime \prime}\left(a^{\prime}\right)>-u_{1}{ }^{\prime \prime}\left(-a^{4}\right)$.
It follows from (26) for u_{j} that $c^{2}-a^{\prime}$) $c^{c}-a^{4}$. Since the functions $-u_{3}\left(-x-a^{4}\right)$ and $u_{2}\left(x+a^{2}\right)$ are positive and solve the same Schrödinger equation for $0<x$ \& c, and the former function is smaller at $x=0$ and $x-c$, the Sturm separation theorem implies that

$$
\begin{equation*}
u_{2}{ }^{8}\left(x-a^{\prime}\right)>-u_{2}{ }^{8}\left(-x+a^{4}\right) \tag{27}
\end{equation*}
$$

for all $0<x<c^{2} a^{\text {P }}$ (otherwise their difference would have two nodes). Moreover, from (26),
$u_{1}{ }^{2}\left(x+a^{2}\right)>-u_{1}{ }^{2}\left(-x+a^{4}\right)$
for all $0<x<c^{-} a^{4}$. Together with (25) and (27) this implies that

$$
\int_{0}^{\infty} u_{1}(x) u_{2}(x) d x, \int_{-c^{2}}^{0} u_{1}(x) u_{2}(x) d x,
$$

which contradicts the orthogonality of u_{1} and u_{2}

To summarize, in one dimension, the optumal potential for minimizung gaps is in lact just that of the toy model (7), with an optimized a! The gap r is determined from a pair of transcendental equations, and can easily be optımized numerically or asymptotically with respect to a to determine a^{*} and a. For example, asymptotically for large M (which corresponds to small n)
$a=1-\left(\frac{n^{2}}{2 M}\right)^{1 / 3}$, and
$r\left(V^{*}\right) \equiv 16 \sqrt{M} \exp \left(-2 M^{1 / 2} \cdot 2^{5 / 3} \pi^{2 / 3} \mathrm{M}^{1 / 3}\right)$

Appendiz. An algebraic version of the inequality of Payne, Polya, and Weinberger.

Several years ago I became interested in the inequality of Payne, Polya, and Weinberger (1956), and reduced it to a series of lemmas involving commutator arguments, in particular the basic gap formula (4). While I never published this work, I discussed it with several people, including E.B. Davies in 1984. He then also got interested in the inequality and concocted a completely algebraic version of it. He has agreed to let me publish it here for the first time.

Let $H_{2} O$ have discrete eigenvalues $E_{1} \leqslant E_{2} \leqslant \ldots$, and let P be the spectral projection for $E_{1} \ldots E_{\mathbf{E}}$. Let $G=G^{\circ}$ and $A=(1-P) G P$. Let us also assume that the domains and ranges of G and H are such that GP, G2P, HG2P, and GHGP exist. Inequalities among operators are intended in the sense of quadratic forms, i.e., R a S means that for a suitable dense set of \& $\left(8, \mathrm{R}_{0}\right)$ a $(4, \mathrm{~S})$). The trace is denoted tr_{p}, and the commutator of two operators R and S is denoted $[R, S]=R S-S R$.

Theorem A0. If β, γ_{0}, and γ_{1} are positive numbers such that $Y_{0} \leq-\left[G,[G, H] \leq Y_{1}\right.$ and $-[G, H\}^{*} \leq B H$, then

$$
\begin{equation*}
E_{k+1}-E_{k} \leq\left(\frac{24 Y_{1}}{k Y_{0}}\right) \sum_{j=1}^{k} E_{j} . \tag{w}
\end{equation*}
$$

The Payne-Polya-Weinberger inequality results with $H \cdot-\Delta, G=x_{L}$ so $[G, H]=20 / \partial \mathrm{KL}_{\mathrm{L}}$ and $\left.-[\mathrm{G}, \mathrm{G}, \mathrm{H}]\right]$ - 2 . We can then take $: 4$, and $\mathrm{V}_{0,1} \cdot 2$. This inequality would, for instance, apply to certain partial differential operators with nonconstant coefficients. The proof consists of three lemmas:

Lemma A1:

$\operatorname{tr}(H(A, A \cdot \|) \cdot \operatorname{tr}(P(G, H) A)=\operatorname{tk}) \operatorname{tr}(G G(G, H)] P)$

Prool:

$\left.\operatorname{tr}\left(H A A^{*}-H A^{*} A\right)=\operatorname{tr}(H 1-P) G P G(1-P)-H P G(1-P) G P\right)$ - $\operatorname{tr}(G H(1-P) G P$ - $H G(1-P) G P)$,
by the cyclic property of traces and the fact that H commutes with P and $1-\mathrm{P}$. The first identity results from writing the right side of (A2) as

$$
\operatorname{tr}([G, H)(1-P) G P)=\operatorname{tr}(P|G, H| A),
$$

and the second results from writing it as
$\operatorname{tr}(G H G P-H G G P)=\operatorname{tr}\left(\left(G H G-\left(H G^{2}+G^{2} H\right) / 2\right)=-(K) \operatorname{tr}([G][G, H)] P\right)$.

Lemma A2:

If - $\left[G,[G, H]\right.$ \& Y_{1}, then

$$
\left(E_{k+1}-E_{k}\right) \operatorname{tr}\left(A^{*} A\right) \leq k y_{1} / 2 .
$$

Preof. First note that $\operatorname{tr}\left(H A A^{*}\right) ~ a E_{k+1} \operatorname{tr}\left(A A^{*}\right)=E_{k+1} \operatorname{tr}\left(A^{*} A\right)$ and $\operatorname{tr}\left(H A^{*} A\right) \leq E_{k} \operatorname{tr}\left(A^{*} A\right)$, since $\operatorname{Ran}\left(A A^{*}\right) \subset \operatorname{Ran}(1-P)$ and Ran $\left(A^{-} A\right)$ c RanP. Hence
$\left(E_{k y}-E_{k}\right) \operatorname{tr}\left(A^{*} A\right) \leq \operatorname{tr}\left(H A A^{*}-H A^{*} A\right)$

$$
=\frac{1}{2} \operatorname{tr}(\pi, P)=\frac{r_{1} k}{2}
$$

by Lemma Al.

```
Lemma A3:
If -[G[G,h]] & Y > O, and - [G,H] & PH, then
        Yoz}\mp@subsup{k}{}{2}\leqslant4\beta\operatorname{tr}(\mp@subsup{A}{}{*}A)\mp@subsup{\sum}{j=1}{k}\mp@subsup{E}{j}{
```


s $2\left(\operatorname{tr}(-P(G, H) R P) \operatorname{tr}\left(A^{*} A\right)\right) / / 2$
by the Cauchy inequality for traces (the minus sign originates in the skew-adjointness of the commutator $(\mathrm{G}, \mathrm{H}]$, which makes $\left.-[\mathrm{G}, \mathrm{H})^{2}, \mathrm{O}\right)$. Squaring.

$$
\left.N_{0} k\right)^{2} \leq 4 \operatorname{tr}(\beta H P] \operatorname{tr}\left(A^{*} A\right)=4 \rho \operatorname{tr}\left(A^{*} A\right) \sum_{j=1}^{k} E_{j} .
$$

The theorem results from concatenating Lemmas $\mathbf{A 2}$ and $A 3$.

Acknowledqments

I am grateful to Mark Ashbaugh, Rafael Benguria, and Brian Davies for interesting conversations and references to the literature.

Bibliography

M.S. Ashbaugh and R. Benguria (1987a): Optimal Lower Bound for the Gap Between the First Two Eigenvalues of One-Dimensional Schrodinger Operators with Symmetric Single-Well Potentials preprint.
M.S. Ashbaugh and R. Benguria (1987b): On the Ratio of the First Two Eigenvalues of Schrödinger Operators with Positive Potentials, preprint.
M.S. Ashbaugh and E.M. Harrell II (1984): Potentials having Extremal Eigenvalues Subject to p-Norm Constraints. Argonne Nat. Lab. Technical Report ANL-84-73. (Proceedings of the 1984 Workshop "Spectral Theory of Sturm-Liouville Differential Operators," H.G. Kaper and A. Zettl, eds.)
M.S. Ashbaugh and E.M. Harrell II (1987): Maximal and Minimal Eigenvalues and their Associated Nonlinear Equations. J. Math. Phys., to appear.
M.S. Ashbaugh, E.M. Harrell II, and R. Svirsky (1987), in preparation.
K. Chadan and P.C. Sabatier (1977): Inverse Problems in Quantum Scattering Theory. Berlin, Heidelberg, and New York: Springer.
Isaac Chavel (1984): Eigenvalues in Riemannian Geometry. New York: Academic Press.
G. Chiti (1983): A Bound for the Ratio of the First Two Eigenvalues of a Membrane. SIAM J. Math. Anal. 14, 1163-1167.
H.L. Cycon, R. Froese, W. Kirsch, and B. Simon (1987): Schrödinger Operators. Berlin, Heidelberg, and New York: Springer.
E.B. Davies (1980): One-Parameter Semigroups. London and New York: Academic.
E.B. Davies (1982): Metastable States of Symmetric Markov Semigroups I. Proc. London Math Soc. 45, 13-150, II, J. London Math. Soc. 26, 541-556
H. Egnell (1987): Semilinear Elliptic Equations involving Critical Sobolev Exponents. Ann. Scuola Norm. Sup. Pisa, to appear.
E. M. Harrell II (1984): Hamiltonian Operators with Maximal Eigenvalues. J. Math. Phys. 25, 48-5I, erratum 27, 419.
E.M. Harrell II (1980): Double Wells. Commun Math. Phys. 75, $239-$ 261.
E.M. Harrell II and R. Svirsky (1986): Potentials Producing Maximally Sharp Resonances. Trans. Amer. Math. Soc. 293, 723-736.
B. Helffer and J. Sjöstrand (1984): Multiple Wells in the SemiClassical Limit I. Commun. PDE 9, 337-408.
T. Kato (1966): Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften 132 . New York: Springer.
W. Kirsch and B Simon (1987) Comparison Theorems for the Gap of Schrödinger Operators. J. Functional Analysis, to appear.
W. Kirsch and B. Simon (1985): Universal Lower Bounds on Eigenvalue Splittings for One Dimensional Schrödinger Operators. Commun. Math. Physics 97, 453-460.
L.D. Landau and E.M. Lifshitz (1977) Quantum Mechanics, NonRelativistic Theory. Course of Theoretical Physics 3, Third ed. Oxford and New York: Pergamon. (Translation of n.Д. תernay, E.M. Inquean

V A. Marchento (1986). Sturm-Liouville Operators and Applications. Basel, Boston, and Stuttgart Birkhauser

LE Payne, G. Polya, and H. Weinberger (1956). On the Ratio of Consecutive Eagenvalues. J. Math and Physics 35, 289-298.

Jurgen Poschel and Eugene Trubowitz (1987). Inverse Spectral Theory. New York: Academic

M H. Protter (1987). Can One Hear the Shape of a Drum? Revisited STAM Review 29, 185-197
M. Reed and B Simon (1978). Methods of Modern Mathematical Physics IV. Analysis of Operators New York: Academic
B. Sumon (1992) Schrodinger semıgroups Bull. Amer. Math. Soc. 7 447-526.

IM Singer, B. Wong, S-T Yau, and SS-T Yau (1985) An Estimate of the Gap of the First Two Eigenvalues in the Schrodinger Operator Annali Scuola Norm Sup Pisa, ser IV, XII, 319-333

R Svirsky (1987) Maxımally Resonant Potentials subject to p-Norm Constrants Pac J. Math, to appear.

HL de Vries (1967). On the Upper Bound for the Ratio of the First Two Membrane Egenvalues \mathbf{Z} Naturlorschung A 22, 152-153.

0 Yu and J-O Zhong (1986) Lower Bounds of the Gap Between the First and Second Eitenvalues of the Schrodinger Operator Trans Amer Math. Soc. 294, 341-349

W Thirring (1979) A Course in Mathematical Physics 3 Quantum Mechanics of Atoms and Molecules New York and Vienna. Springer

[^0]: Received by the editors April 10, 1985. This paper was partly presented at the Colloque sur les Méthodes Semi-Classique en Méchanique Quantique, September $10-15,1984$, at C.I.R.M. Luminy, France.

 1980 Mathematics Subject Classification. Primary 81C12; Secondary 34B25.
 ${ }^{1}$ Partially supported by USNSF Grant MCS 8300551 and an Alfred P. Sloan Fellowship.
 ${ }^{2}$ This work is partially based on the second author's Johns Hopkins Ph.D. dissertation, June, 1985.

[^1]: 1. M. S. Ashbaugh and E. M. Harrell II, Perturbation theon for shape resonances and large barrier potentials, Comm. Math. Phys. 83 (1982), 151-170.
 2. \qquad , Maximal and minimal eigenvalues and their associated nonlinear equations, preprint 1985.
 3. E. Balslev, Local spectral deformation techniques for Schrödinger operators, Inst. Mittag-Leffler Report 14, 1982, Resonances, Resonance Functions, and Spectral Deformations. Zentrum für interdisziplinäre Forschung, preprint, 1984.
[^2]: ${ }^{3}$ We are informed by the authors that there are some technical lacunae in this paper. They do not, however, affect the exteriorly complex-scaled resolvent as defined in their equation (2.15).

[^3]: * Received by the editors November 6, 1984; accepted for publication (in revised form) March 17, 1986.
 + School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332. The work of this author was partially supported by National Science Foundation grant MCS-8300551 and an Alfred P. Sloan Fellowship.
 \ddagger School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332. Present address, Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. The work of this author was partially supported by National Science Foundation grant MCS-8202025, and Air Force Office of Scientific Research grant 83-0101.

