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1. Introduction 

This report describes the use of the research equipment purchased with NSF 
equipment grant (DRC-8405020) for use in the Clouds project in the School of Infor-
mation and Computer Science at Georgia Tech. The equipment was purchased in late 
1984 and early 1985. Since then it has been put to significant use in software develop-
ment and general research support relating to that project. 

2. Equipment 

The major equipment purchases under this grant have included three VAX 
11/750 minicomputers, one IBM PC/AT and four IBM PC/XTs. Miscellaneous 
software, terminals and networking hardware were also purchased. 

3. The Clouds Project 

The Clouds project was initiated in 1982 to investigate techniques in building an 
effective reliable distributed operating systems and programming environments. The 
Clouds operating system was designed to consist of a distributed kernel that runs on 
bare hardware. The operating system support persistent objects at the native layer, 
location independence, distribution, and robust atomic transactions. The programming 
environment consists of programming languages, programming paradigms that exploit 
the distribution and reliability offered by the kernel, debuggers and object oriented 
tools. 

The equipment purchased by under the grant has been heavily used in all phases 
of the project. The following is a brief description of the activity supported by the 
grant. 

The Clouds project team currently consists of 4 faculty members and about 10 to 
15 graduate students. They are being supported by the Clouds computing facility of the 
3 VAX-750's, 5 PC's, 10 terminals and several Sun Workstations available as a part of 
the ICS computing facilities. 

Of the 3 VAX-750's, one ("Stratus") is used to run Unix 4.2. This machine pro-
vides our stable work environment. The major usage of Stratus is in the Clouds kernel 
development and Aeolus compiler development. In the last two years the Clouds distri-
buted kernel has been written and compiled on Stratus, and down-loaded to the other 
machines for testing. Other services provided to the users of Stratus include: CSNet 
mail, uucp mail, text formatting/typesetting, stable disk storage and access to all other 
machines on the ICS computing laboratory. 

The other 2 VAX-750's ("Nimbus" and "Cirrus") is the Clouds testbed. Since 
Clouds is a native operating system, we need dedicated machines to test and run the 
kernel. Since Clouds is distributed, we need a minimum of two machines. Nimbus and 
Cirrus have been used for initial testing of Clouds since the middle of 1985, and has 
been running Clouds on a regular basis for the last eight months. 

The IBM-PC's were targeted for use as workstations for Clouds users. A special 
purpose operating system was designed for use on the PC's for this purpose. However, 
this effort was abandoned when the Sun-3 workstations became available. The PC's 
purchased under the grant are being effectively used for graphics needs of the project 
(using the GEM desktop publishing software), spreadsheets for budgeting, local edit-
ing for papers and technical reports, and other purposes connected with program 
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development, research publications and network access. 

4. Progress 

The Clouds project has developed a stable version of a distributed operating sys-
tem kernel. The kernel is composed of a object management system, a storage 
management system and a communications system. In progress is the software 
development for the action management system and the user interfaces. The Clouds 
programming environment development has resulted in the development of the 
Aeolus language and compiler and allied software and paradigms suited for object 
oriented programming. The publication listed in the bibliography section of this report 
contain detailed description of the research and development that has taken place in 
the project. 

Research in progress include development of monitoring techniques in distri-
buted systems, fault tolerant action management, user interfaces, languages that sup-
port distributed object-oriented programming, robust programming paradigms, object 
programmers toolkit (Pandora) and distributed systems management. 

The equipment grant allowed the Clouds project to to reach towards the goals that 
were envisioned in 1983 (and which survived several revisions), and reach a point 
where the project has received recognition and credibility amongst researchers in this 
area. 

The Clouds project has been funded from several sources including NSF, NASA 
and the Dept. of Defence. Most of this support has been towards personnel. The NSF 
equipment grant has been very important in providing the right set of equipment for 
the project to achieve progress. The equipment has also been the key resource that has 
enabled the project to receive personnel funding from various sources. 

The progress of the Clouds project and results obtained by the project has been 
useful in synthesizing the Georgia Tech proposal to the NSF-CER program for 1986. 
(The proposal is pending). The Clouds environment was proposed as a base layer for 
the large general purpose computing environment for computer science research. The 
Clouds project received good reviews in the CER site visit and the major contributing 
factor to the success of the Clouds approach is that we have been able to demonstrate 
the feasibility of a distributed operating system built using our approach through the 
actual building of the system. This would never have been possible without the equip-
ment we have been using for the last few years. 

5. Conclusions 

The equipment purchased under the NSF grant DRC-8405020, has allowed the 
Clouds project to move from a set of ideas to a demonstrated system that has pro-
duced some significant research results in the area of distributed operating systems 
and distributed environments. 

The research environment created by the equipment has stimulated the research-
ers in the project to produce ideas, papers, technical reports, and above all, software 
that works as designed. 
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The Clouds Distributed Operating Systemt. 
Functional Description, 
Implementation Details 

and 
Related Work. 

Partha Dasgupta, Richard LeBlanc & William Appelbe. 
School of Information and Computer Science 

Georgia Institute of Technology 
Atlanta, GA 30332 

1. Introduction 

Clouds is an operating system targeted to be a prototype for a class of distributed 
operating systems providing the integration, reliability and structure that makes a distri-
buted computing system generally usable. 

Clouds is designed to run on a set of general purpose computers (uniprocessors or 
multiprocessors) that are connected via a medium-to-high speed local area network. The 
structure of Clouds promotes transparency, support for advanced programming paradigms, 
and decentralized yet integrated control. The major design objectives for Clouds are: 

• Integration of resources through cooperation and location transparency. 

• Support for robust transaction processing, and the ability to achieve fault tolerance. 

• Efficient design and implementation. 

• Simple and uniform interfaces for distributed processing. 

The system structuring paradigm chosen after substantial research for the Clouds 
operating system is an objectJprocessiaction model. All instances of services, programs and 
data in Clouds are objects. Processing can be done either by atomic actions or by processes 
that execute outside the constraints of atomicity [A183, DaLe85, McA183]. In this paper, 
we provide a functional description of the system (sections 2 to 8), planned enhancements 
(section 10), some implementational details (section 11), and discussion of related work 
(section 12). Currently, an operational distributed prototype of the Clouds kernel has been 
implemented, and is in experimental use by the developers. We plan to put the kernel in 
more widespread use over the next few months (section 9). 

2. Objects 

All data, programs, devices and resources on Clouds are objects. The only entities 
that are not objects are processes and actions. A Clouds object, at the lowest level of 

%his research has been partially funded by NASA (grant NAG-1-430) and NSF (grant DCS-83-16590). 
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conception, is a virtual address space. Unlike conventional virtual address spaces, a Clouds 
object is neither tied to any process nor is volatile. A Clouds object exists forever (like 
files) unless explicitly deleted. As will be obvious in the following description of objects, 
Clouds objects are somewhat 'heavyweight' rather that 'lightweight' objects provided by 
Smalltalk for example. 

Every Clouds object is named. The name of an object, also known as the capability, 
is unique over the entire distributed system and does not include the location of the object. 
That is, the capability based naming scheme in Clouds creates a uniform, flat system name 
space for objects. 

Since an object consists of a named address space (and its contents), it is completely 
passive. Unlilce those in some object based systems, a Clouds object is not associated with 
any server process. Processes are allowed to execute within the context of objects. A pro-
cess executes in an object by entering it through one of several entry points, and after the 
execution is complete the process leaves the object. Several processes can simultaneously 
enter an object and execute concurrently. 

Objects have structure. They contain, minimally, a code segment, a data segment and 
a heap for local storage allocation. Processes that enter an object execute in the code seg-
ment. The data segment is accessible by the code in the code segment, but not by any 
other object. Thus the object has a wall around it which has some well defined gateways, 
through which activity can come in. Data cannot be transmitted in or out of the object 
freely, but can be moved as parameters to the code segment entry points (see discussion 
on processes). 

Clouds objects are user-defined or system-defined. Most objects are user-defined. 
Some examples of system defined objects are device drivers, name-service handlers, and 
the Clouds kernelt  itself. A complete Clouds object can contain user-defined code and 
data, system-defined code and data that handle synchronization, recovery and commit, a 
volatile heap for temporary memory allocation, a permanent heap for allocating memory 
that will remain permanent as a part of the data structures in the object, locks and capabil-
ities to other objects. The Clouds object structure is depicted in Figure 1. Since a conven-
tional file is a special case of a Clouds object, the Clouds object system does away with the 
need for a file system. This is discussed in further detail in section 4. 

Each object in the Clouds system is an instance of its template. An object of a certain 
type is created by invoking a 'create' operation on the template of this type. Each tem-
plate is created by invoking a create operation on a single template-template, which can 
create any template, if provided, as argument, the code and data definitions of the 

tAlthough the spec cation defines the kernel to be an object, the implementation treats it as a .  special case (or pseudo-
object) for efficiency reasons. 
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template. The templates, the template-template and all the instances thereof, are regular 

Clouds objects, and as discussed earlier, they exist when created, and live unless explicitly 

deleted. 

3. Processes 

The only form of activity in the Clouds system is the process. Clouds processes are 
lightweight workers. A process is composed of a process control block (PCB) and and a 
virtual space containing the stack. Thus, a process can be viewed as a program counter, 
stack pointer and stack. Upon creation a process starts up at an entry point of an object. 
As the process executes, it executes code inside an object and manipulates the data inside 
this object. The code in the object can contain a procedure call to an operation of another 
object. When a process executes this, it temporarily leaves the caller object and enters the 
called object, and commences execution there. The process returns to the caller object 
after the execution in the called object terminates. The calls to the entry point of objects 
are called object invocation. Object invocations can be nested. The code that is accessible 
by each entry point is known as an operation of the object. 

A process executes by processing operations defined inside many objects. Unlike 
processes in conventional operating systems, the process often cross boundaries of virtual 
address spaces. Addressing in an address space is however limited to that address space, 
and thus the process cannot access any data outside an address space. Control transfer 
between address spaces occurs though object invocation, and data transfer between 
address spaces occurs through parameters to object invocation (which may be capabilities 
for other objects). . 

When a process executing in an object (or address space) executes a call to another 
object, it can provide the called operation with arguments. When the called operation ter-
minates, it can send back result arguments. Since the address spaces of the two objects 
are disjoint, all arguments are passed by value. This argument passing mechanism is ident-
ical to copy-in copy-out semantics of parameter passing supported by many programming 
languages. 

4. The Object/Process Paradigm 

The structure created by a system composed of objects and processes has several 
interesting properties. First, all interfaces are procedural. Object invocations are 
equivalent to procedure calls on modules not sharing global data. The modules are per-
manent. The procedure calls work across machine boundaries. Since the objects exists in a 
global name space, there is no concept of machine boundaries. At the system level local 
invocations and remote invocations (also known as remote procedure calls or RPC) are 
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differentiated, however this is transparent to the user or systems programmer. 

Since every entity is an object and objects are permanent, there is no need for a file 
system. A conventional file is a special case of an object, an object with a read, a write, a 
seek and some other file operations defined in it to transport data in and out of the object 
through parameters provided to the calls. 

Though we can simulate files by using objects of type file, the , need for files disappear 
in most situations. Programs, do not need to store data in files, they can keep the data in 
the data space in each object. Since the data space does not disappear when the controlling 
process terminates. The need for user-level naming of files transforms to the need for 
user-level naming for objects. 

The Clouds operating system does not provide any support for I/O operations, except 
for terminal I/O. (Terminal I/O is achieved by invoking the read and write operations on a 
terminal object, dispensing with most concepts about I/O'streams). 

Just as I/O is eliminated, so is the need for messages. Processes do not communicate 
through messages. There are no ports. This allows a simplified system management stra-
tegy as the system does not have to maintain linkage information between processes and 
ports. Just as files can be simulated for those in need for them, messages and ports can be 
easily simulated by an object consisting of a bounded buffer that implements the send and 
receive operations on the buffer. However, we feel that the need for files and messages 
are the product of the programming paradigms designed for systems supporting these 
features, and these are not necessary structuring tools for programming environments. 

A programmers view of the computing environment created by Clouds is apparent. It 
is a simple world of named address spaces (or objects). These object live in computing sys-
tems on a LAN, but the machine boundaries are made transparent, creating a unified 
object space. Activity is provided by processes moving around amongst the population of 
objects through invocation; and data flow is implemented by parameter passing. The sys-
tem thus looks like a set of permanent address spaces which support control flow through 
them, constituting what we term object memory and is depicted in Figure 2. 

This view of a distributed system, does have some pitfalls. Processes aborting due to 
errors will leave permanent faulty data in objects they modified. Failure of computers will 
result in similar mishaps. Multiple processes invoking the same object will cause errors 
due to race conditions and conflicts. More involved consistency violations may be the 
results of non-serializable executions. In a large distributed system, having thousands of 

objects and dozens of machines, corruption due to failure cannot be tolerated or easily 
repaired. The prevention of such situations is achieved through the use of the atomic 
actions paradigm, discussed below. 
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S. Actions 

Actions are units of work that are defined by the programmer to be atomic. The 
work done by an action either gets done in its entirety or does not happen at all. Failures, 
errors, and aborts thus do not leave a trace on the data stored in the objects (Ke86, 
Mc85]. 

An action is an abstraction. It is neither an object nor a process. It is a high level con-
cept that exists as information in the action Management system. An action starts as an 
invocation of an entry point in a process. This is a top-level action, and is started by exe-
cuting a 'start-action' system call to the Clouds kernel, with the target object and operation 
as parameters. Then, a process is created, which executes on behalf of this action, and 
invokes the specified object. Anything this process does, until the action commits or 
aborts, is in the context of the action. If the process creates more processes, invokes other 
objects and creates subordinate actions, these too are part of the same top-level action. 

All the activity of the set of processes (or one process) in the context of an action, 
consists of touching objects. A object is considered touched by an action if a process exe-
cuting on behalf of the action executes one or more object invocations on the object. A 
touched object is not necessarily modified. All objects modified by an action exist in a 
volatile form that may be different from their permanent representations. 

When an action terminates, all the objects touched by the action are committed. Com-
mitment of an object is achieved by updating its permanent representation by replacing 
any data that have been modified by this action. Since the updates by an uncommitted 
action are never made permanent, an aborted action is rolled back by default. 

Though the updates by an uncommitted action are not written on permanent (secon-
dary) storage, the updates of an uncommitted action may be seen by another uncommitted 
action accessing the same object, depending upon the synchronization method used by the 
object. We distinguish between two kinds of atomicities of actions, namely failure atomi-

city and view atomicity. Failure atomicity dictates that either the updates performed by an 
action are made permanent after the action runs to completion, or nothing occurs. View 
atomicity dictates that the action is insulated from seeing any results from other con-
currently executing actions. Clouds can provides failure atomicity and, if needed, view 
atomicity. Note that not providing view atomicity can lead to errors (an action A makes 
updates based on some results of an uncommitted B action and A commits while B 
aborts). The differences between the atomicity requirements and the rationale for provid-
ing failure atomicity will be clearer after the discussion of synchronization methods. 
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5.1. Nested Actions 

Actions, as units of work, are too large grained for many applications, especially in 
an large distributed environment where failures are relatively common. Any error or 
failure during the execution of an action requires that the entire action be aborted. An 
action often needs the ability to recover from errors or failures. Finer grained atomicity 
and failure recovery capabilities are provided by nested actions. 

A top-level action is the conventional action. The-top level action can delegate sub-
tasks to subordinated actions or sub-actions, which in turn can spawn sub-actions, giving 
rise to a tree of nested actions. A child action executes in the context of its parent, but the 
failure of the child does not imply the failure of the parent, the parent may choose to retry 
the sub-task or respond to the failure in some other way. The commit of a sub-action is 
conditional upon the commit of the parent, and by transition, the commit of all nested 
actions are conditional upon the commit of the top-level action. Thus a top-level action 
makes the final commit decision, based on the commit and abort status of all the nested 
action it gave rise to. 

The nested action semantics of Clouds is identical to the semantics defined by Moss in 
[Mo81). Nested actions thus provide a action programmer with failure containment 
firewalls and the ability to try alternate methods to make progress. 

6. Synchronization 

The synchronization scheme decides how (if at all) concurrent processes execute in 
the same object. The synchronization scheme used also dictates whether action using the 
object are view atomic or not. Both the synchronization techniques used and the recovery 
techniques used affect the semantics of action atomicity. We discuss synchronization in 
this section. Recovery will be discussed in the next section and the effects of both on 
actions will be briefly considered [McA1Mc82]. 

Clouds provides two types of synchronization: custom and automatic. Custom syn-
chronization allows the programmer of an object to define and implement the synchroniza-
tion rules. For this purpose, the programmer has access to locks and semaphores that can 
be defined and used inside the object. For example, setting a lock on a variable when 
entering an operation and releasing it upon exit causes processes that execute this opera-
tion to run in mutual exclusion. The programmer can thus customize the synchronization 
scheme to the needs of the object. 

Though custom synchronization can be correct and useful for many applications, it is 
possible to cause non-serializable execution in custom synchronization schemes. Allowing 
various unconventional schemes is the power of custom synchronization. However in cases 
where serializability is necessary, the programmer need not - implement any 
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synchronization; automatic synchronization is available for this purpose. 

With automatic synchronization, each entry point in an object is marked as a read 
entry or a write entry. When an action touches an object for the first time, a read or write 
lock is obtained (as appropriate) on the entire object. Conversions from a read lock to a 
write lock is allowed. Locks are held until the action commits, implementing a two-phase 
locking protocol and guaranteeing serializable execution of the action with respect to all 
data touched by the action (provided all objects it touched were using automatic synchron-
ization). This scheme provides view atomicity of actions. 

7. Recovery 

Recovery is managed by shadowing, providing failure atomicity for actions. Objects 
are classified as recoverable or non-recoverable. Non-recoverable objects are somewhat 
cheaper to handle and can be used by non-critical system tasks, but usage of non-
recoverable objects by actions can lead to lapse of consistency. Note that all Unix files are 
identical to a non-recoverable Clouds object of a specific type (unstructured file). 

When an action invokes an operation in a recoverable object, a shadow version and a 
core version of the object is created. The shadow version is the original permanent ver-
sion, and the core version is the possibly updated version. If several actions invoke an 
object in parallel, there is still only ONE shadow and ONE core version. If the synchroni-
zation is not automatic, there are possibilities that one uncommitted action will see updates 
from another uncommitted action, violating the view atomicity requirements (if any). But 
this is left to the programmer who chose the synchronization strategy. 

Every recoverable object has two default entry points called pre -commit and commit. 
When the pre-commit entry point is invoked, the object flushes all the updated data in the 
core version to stable storage, and the commit operation copies the updates to the shadow 
version and makes the shadow version the permanent version. These entry points can be 
used by any 2-phase commit protocol. 

Like synchronization, recovery comes in two flavors, namely custom and automatic. 
When an action is run with automatic synchronization, the action management keeps track 
of all the objects the action touched. When the action terminates successfully, the action 
management system creates a commit co-ordinator process, that uses the pre-commit and 
commit entry points of all the objects touched by the action to perform an atomic commit, 
using the two-phase commit protocol. 

Custom recovery is nearly identical, except that the programmer has the ability to 
redefine the default pre-commit and commit routines in the objects; the user defined rou-
tines will be used by the action manager at commit time. The user also has access to the 
commit routines during normal execution and thus can perform intermediate check points, 
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partial commits and customized features like flushing only certain pages of the object. 

Automatic recovery and automatic synchronization guarantee serializability, failure 
atomicity and view atomicity. Automatic recovery and custom synchronization guarantees 
failure atomicity and allows the user to use some concurrency control semantically con-
sistent with the application. Custom recovery and synchronization allows the programmed 
full control of the execution strategy, and the system does not guarantee anything other 
than the synchronization and recovery support. 

8. Programming Support 

Systems and application programming for Clouds involves programming objects that 
implement the desired functionality. These objects can be expressed in any programming 
language. The compiler (or the linker) for the language, however, must be modified to 
generate the stubs for the various entry points, invocation handler, system call interfaces 
and the inclusion of default systems function handling code (such as synchronization and 
recovery.) 

The language Aeolus has been designed to integrate the full set of powerful features 
that the Clouds kernel supports. Aeolus provides linguistic support for programming 
Clouds objects and allow the composition of objects from sub-objects. Aeolus provides 
access to the synchronization features (both custom and automatic) and the recovery 
features of Clouds. Though the Clouds programmer is not tied to Aeolus, the language is 
most suited for systems programming as it has been tailored to match the kernel features 
[LeWi85, Wi85, WiLe86]. 

Aeolus is the first generation language for Clouds. It does not support some of the 
features found in object-oriented programming systems such as inheritance and subclass-
ing. Providing support for these features at the language level is currently under con-
sideration. 

9. Current Status 

The Clouds distributed kernel is operational. The implementational details are dis-
cussed in section 11. 

Clouds runs on a set of VAX-11 computers. Clouds is a native operating system, that 
is it runs on bare hardware without any support from some other operating system. 
Currently we support the object memory, capability based invocations, location tran-
sparency, custom synchronization and recovery though a locking facility and a shadow 
page recovery scheme. 

Application programs have been tested using C and Aeolus as the source languages. 
The Aeolus compiler and linker runs under Unix and the object code is transferred into 
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Clouds objects though transfer utilities. The Aeolus runtime support system provides 
argument passing between Clouds objects and some terminal I/0 support. 

The user interfaces to Clouds is via Unix. The Clouds utilities and application pro-
grams link to Unix workstations (Sun-3/50's) over the Ethernet, and allows Clouds pro-
grammers access to full Unix user support, and thus the transition from Unix to Clouds is 

made easy for those used to Unix. Unix programs are able to invoke Clouds objects and 
thus use Clouds facilities. 

The action management system is under implementation, and we hope to provide 
automatic recovery support in about three to four months. Clouds is going to be used in 
some graduate courses for distributed computing projects, and we will get additional user 
input when we start widespread use of the Clouds system amongst the local user commun- 

itY• 

10. Enhancements and Planned Features 

The above description of Clouds documents the basic features of the distributed ker-
nel for Clouds. Presently the following enhancement, applications and features are at vari-
ous stages of design, implementation and planning. 

• An object naming scheme is being developed that creates a hierarchical user naming 
strategy (lilce Unix) that is also highly available and robust (through replicated direc-
tories). 

• Unix and Clouds will be inter-operable providing Unix programmers and user with 
access to Clouds features and Clouds programmers to use Unix services. Unix 
machines will be able to execute remote procedure calls to Clouds object thus gaining 
access to all the functionality that Clouds provides..in fact the user interface to Clouds 
will be through Unix shells and tools. Similarly Clouds applications will make use of 
the wide variety of programming support tools that are supported by Unix through a 
mechanisms that provides Unix service for Clouds computations. In addition, Clouds 
services will be directly accessible through Clouds libraries for other programming 
languages, such as C+ + and ADA. 

• As mentioned earlier, mechanisms for providing object-oriented programming metho-
dology will be provided at the linguistic level, with enhancements in the kernel that 
will provide performance advantages (such as sharing of code in the classes with its 
instances). 

• Debugging support at the object level, process level and the invocation level will be 
provided. Techniques that allow the programmer to get a comprehensive view of the 
distributed and concurrent execution environment are under development. 
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• A probe system that can track object and process status in the system can provide 
information about failures, loading, deadlocks and software problems is being 
developed. This will be used to develop a distributed system monitoring system that 
will help in reconfiguration on failure and aid in providing fault tolerance. The probe 
system will also be useful in distributed object level debugging [Da86]. 

• A distributed database that utilizes the object structure of Clouds for elegance and the 
synchronization and recovery support for concurrency control and reliability is being 
developed (DaMo86). 

• Clouds has been designed as a base layer for fault tolerance computing. The systems 
that will provide fault tolerance and guarantee progress of computation and system 
response in face of partial system failures are being developed. The techniques 
include replicated objects, multi-threaded actions, the coupling of the reconfiguration 
systems and monitoring systems, and usage of dual-ported storage devices. 

11. Implementation Notes 
The implementation of the Clouds operating systems has been based on the following 

guidelines: 

• The implementation of the system should be suitable for general purpose computers, 
connected through popular networking hardware. Non-homogeneous machines, 
though not crucial, should be allowed. 

• Since the Clouds functionality is largely based on object invocation, support for 
objects should be efficient in order to make the system usable. Also, the synchroniza-
tion and recovery systems should be efficient. 

• Since one of the primary aims of Clouds is to provide the substrate for reliable, fault 
tolerant computing, the base system design should be tolerant to failures and provide 
adequate support for implementing fault tolerance. 

• The system design should be simple to comprehend and implement. 

11.1. Hardware Configuration 
The hardware being used for implementing the prototype Clouds system is common-

place: three VAX-11/750's connected by an Ethernet. The disk units are dual ported, 
allowing access to the units from two machines, which provides the ability to remount the 
data from one machine to the other in case of site failures thus increasing availability. 

The user interface is not through terminals, but over the Ethernet from Unix main-
frames or workstations. This allows easy (software based) reassignment of users in case of 
site failures. 



11.2. Software Configuration 

The Clouds kernel is a native kernel running on bare hardware. The structure of the 
distributed system and the per site kernels are shown in figures 3 and 4. The kernel is 
implemented in C for portability, and because the availability of C source for the UNIX 
kernel simplified the task of developing hardware interfaces such as device drivers. 
Aeolus has been used as the implementation language for Clouds utilities. 

11.3. Kernel Structure 

The kernel is a replicated resident kernel, replicated at all the sites. Logically, the 
kernel is distributed over several sites and the machine boundaries are invisible. This is 
achieved by the communication system that provides the low level messaging interface 
between the replicated kernels. The system control however is completely decentralized, 
so that failure of individual kernels do not affect the rest of the system [Sp86]. 

The kernel runs on the native machine and not on top of any conventional operating 
system for two reasons. Firstly, this approach is efficient. As Clouds does not use most of 
the functionality of conventional operating systems (such as Unix), building Clouds on top 
of a Unix like kernel would have unacceptable deficiencies such as unwieldy implementa-
tion and poor performance. Secondly, the paradigms and the support used in Clouds is 
considerably different from the functionality provided by conventional operating systems, 
and major changes would be necessary at the kernel level of any operating system in order 
to implement Clouds. Some of the negative aspects of using standard Unix implementa-
tions as the base layer would be: 

• Unix processes are heavyweight processes: thus process creation and RPC would be 
expensive. 

• A Unix process is tied to one address space. Making a process cross address spaces 
would involve simulating it through multiple processes and the Unix IPC mechanism, 
which would involve multiple context switches and other message layer overheads. 

• Only one process can execute in an address space, providing serious limitations to 
intra object concurrency. There are methods that get around this problem, but they 
are generally complex to implement, unreliable and require substantial overhead. 

To avoid these problems the Clouds kernel is designed to support the Clouds functions 
on native hardware and all the performance critical support is implemented at the lowest 
level in the kernel. 

11.4. Object Naming and Invocation 

The two basic activities inside the Clouds kernel are system call handling and object 
invocations. System call handling is done locally, as in any operating system. The system 
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calls supported by the Clouds kernel include object invocation, memory allocation, process 
control and synchronization, and other localized systems functions. Object invocation is a 
service provided by the kernel for user processes. The attributes that object invocation 
must satisfy are: 

• Location independence. 

• Fast, for both local and remote invocations. 

• Failed machines should not hamper availability of objects on working sites, from 
working sites. Also, moving objects between sites, reassigning disk units and so on 
should be simple. 

Location independence is achieved through a capability based naming system. Availa-
bility is obtained through decentralization of directory information and a unique search-
and-invoke .  strategy. Speed is achieved by implementing the invocation handlers at the 
lowest level of the kernel, on the native machine. 

When a process invokes an object, it first places the arguments on the stack and exe-
cutes an invoke system call, with the called object capability as the parameter. The capabil-
ity of the object is unique systemwide, but has no site information. The kernel searches 
the local object directory to determine if the object is available locally. If it is, then the 
process address space is switched and the process starts executing in the object that it 
invoked. (This is achieved by changing the PO region of the VAX address space by updat-
ing the PO page table registers. The stack of the process is in P1 region, and this space 
remains the same.) 

If the object does not exist locally, the kernel broadcasts a search-and-invoke request. 
All participating kernels then attempt to locate the object. The successful kernel - dispatches 
a slave process, which copies the arguments from the invoke request to its stack and per-
forms a local invocation on the object. Upon termination, the arguments are send back to 
the invocation requester, which causes the invocation request to return. 

Hash tables, caches, and hint databases are used to add speed both the local searches 
for objects as well as avoiding the need for all sites to search for objects at each broadcast 
search-and-invoke request. A special hashing scheme that uses multicasting has been 
developed that reduces the search overhead by a large margin (AhAm87]. 

11.5. Storage Mangement 

The storage management system handles the fur.ction required to provide the reli-
able, permanent object address spaces. As mentioned earlier, unlike conventional systems, 
where virtual address spaces are volatile and short lived, Clouds virtual spaces contain 
objects and are permanent and long lived [Pi86]. 
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The storage management system stores the object representations on disk, as an 
image of the object space. When an object is invoked, the object is demand paged into its 
virtual space as and when necefsary. As the invocation updates the object, the updated 
pages do not replace the original copy, but have shadow copies on the disk. The per-
manent copy is updated only when a commit operation is performed on the object. The 
storage manager provides the support to commit an object using the two-phase commit 
protocol. 

11.6. Action Management 

The storage management implements the virtual memory system and the commit pro-
tocols, providing the mechanisms for handling the object storage needs. The policies of 
the action management are not implemented in the storage manager, but rather in the 
action management system. The action management system implements nested actions for 
the Clouds system by keeping track of the objects touched by an action as well as the suc-

cess and failure of each action and its subactions [Ke86]. 

The action manager primarily keeps track of information regarding actions. The 
action manager is distributed, with the manager at each site keeping information about 
each action that was started as a top level action at that site. Although an action can span 
several sites, the action commit is coordinated through the action manager at the site 
where the action started. As is apparent if the site starting the action fails, the action is 
doomed to abort anyway, and hence the failure of the coordinating action manager does 
not matter in this case. 

As discussed previously, when an action terminates, the coordinating manager 
invokes commit operations on all touched objects, in order to make all updates by the 
action permanent in an atomic step. 

12. Comparisons with Related Systems 

Clouds is one of the several research projects that are actively building distributed 
object based environments. There are similarities and differences between all the 
approaches, and the area of distributed operating systems are in general not mature 
enough to conclusively argue the superiority of one approach over the other. In the fol-
lowing paragraphs we document some of the major differences between Clouds and some 
of the better know projects in distributed systems. 

One of the major difference between Clouds and most of the systems mentioned 
below is in the implementation of the kernel. Many systems implement the kernel as a 
Unix process t , while Clouds is implemented as a native operating system. In addition, no 
attempt has been made to build a UNIX interface 'on top of Clouds. Clouds is not 
intended to be an enhancement, or replacement of, the UNIX kernel. Instead, Clouds 
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provides a different paradigm from that supported by UNIX (e.g., the UNIX paradigms 
of 'devices as files', unstructured files, etc.) 

12.1. Argus 

Argus is a system developed at MIT, that supports the Argus programming language. 
The language defines a distributed system to be a set of guardians, each containing a set of 
handlers. Guardians are logical sites, and each guardian is located at one site, though a 
site may contain several guardians. The handlers are operations that can access data stored 
in the guardian. The data types in Argus can be defined to be atomic, and any operation 
on atomic data types by actions are updated atomically when the action terminates 
[WeLi83, LiSc83]. 

Sonic of the similarities between Argus and Clouds are the semantics of nested 
actions. Both use the nested action semantics and locking semantics described by Moss. 
This includes conditional commit by subactions and lock inheritance by subactions from 
the parents as well as lock inheritance by the parents from a committed child. Also the 
guardians and handlers in Argus have somewhat more than cosmetic similarities to objects 
in Clouds. 

The differences include the implementation strategies, programming support and reli-
ability. As mentioned earlier, Argus is implemented on top of a modified Unix environ-
ment. This is one of the reasons for the somewhat marginal performance of the Argus sys-
tem observed in (GrSeWe86). The programming support provided by Argus is for the 
Argus language. Clouds on the other hand is a general purpose operating system, not tied 
to any language. Though Aeolus is the preferred lang .uage at present, we have used C 
extensively for object programming. We have plans to implement more object-oriented 
languages for the the Clouds system. Unlike Argus, Clouds is designed to form the base 
layer for fault tolerant computing. 

12.2. Eden 

Eden is a object based distributed operating system, implemented on the Unix operat-
ing system at the University of Washington. Eden objects (called Ejects) use the active 
object paradigm, that is each object consists of a process and an address space. An invoca-
tion of the object consists of sending a message to the (server) process in the object, which 
executes the requested routine, and returns the results in a reply. The messages use the 
Berkeley Unix IPC mechanism [A1m83, A1B183, NoPr85]. 

tile term kernel has been used quite frequently to describe the core service,center of a system. However when this service 
is provided by a Unix process rather than a resident, interrupt driven monitor, the usage of the term is somewhat counter-
intuitive. 
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Since every object in the system needs to have a process servicing it, this could lead 
to too many processes. Thus Eden has an active and a passive representation of objects. 
The passive representation is the core image of the object stored on the disk. When an 
object is invoked, it must be active, thus invoking a passive object involves activating it. A 
process is created and it reads in the passive representation into its virtual space and then 
performs the required operation. The activation of passive objects is an expensive opera-
tion. Also concurrent invocations of objects are difficult and is handled through mul-
tithreaded processes or coroutines. 

The active object paradigm and the Unix based implementation are the major differ-
ences between Eden and Clouds. This is also the reason for the performance problems in 
Eden. Eden also provides support for transaction and replication objects (called Replects). 
The transaction support and replication was added after the basic Eden system was 
designed and have some limitations due to manner Unix handles disk I/O. Eden was not 
designed for fault tolerant applications. • 

12.3. Cronus 

Cronus is an operating system designed and implemented at BBN Laboratories. Some 
of the salient points of Cronus is the intergration of Cronus functions with Unix functions, 
the ability of Cronus to handle a wide variety of hardware and the coexistence of Cronus 
on a distributed set of machines running Unix [BeRe85, GuDe86, ScTh86). 

Like Eden, Cronus uses the active objects. This is necessary to be able to make 
Cronus run on top of Unix, and be an added function to Unix programs. Cronus objects 
are handled by managers. Often a single manager can handle several objects, by mapping 
the objects into its address space. The managers are servers and receive invocation 
requests through catalogued ports. Any Unix process on any machine on the network can 
avail of Cronus services from any manager, by sending a message to the appropriate 
manager. By use of canonical data forms, the machine dependencies of data representa-
tions are made transparent. Irrespective of the machine types, any Unix machine can 
invoke Cronus objects in a location independent fashion. 

12.4. ISIS 

ISIS is a distributed operating system, developed at Cornell University, to support 
fault tolerant computing. ISIS has been implemented on top of Unix. It uses replication 
and checkpointing to achieve failure resilience. If data object is declared to be k-resilient 
the system creates k+ 1 copies of the object. The replicated object invocation is handled by 
invoking one replica and transmitting the state updates to all replicas. Checkpointing at 
each invocation is used to recover from failures [Bi85A, Bi85B]. 
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12.S. ArchOS and Alpha 

Alpha is the kernel for the ArchOS operating system developed by the Archons pro-
ject at Carnegie Mellon University. Like Clouds, the Alpha kernel is a native operating 
system kernel designed to run on the Sun-3 computers, networked over Ethernets. The 
Alpha kernel uses passive objects residing in their own virtual spaces, similar to Clouds. 
ArchOS is designed for real time applications supporting specialized defense related sys-
tems and applications [Je85]. 

The key design criteria for ArchOS and Alpha are time critical computations and not 
reliability. Fault tolerance is not an issue, as the operating conditions are more susceptible 
to total failure rather than partial failure. 

12.6. V-System 

The V operating system has been developed at Stanford University. V is a comprom-
ise between message based systems and object based systems. The basic core of V pro-
vides lightweight processes and a fast communications (message) system. V message 
semantics are similar to object invocations in the sense that the messages are synchronous 
and use the send/reply paradigm. The relationship between processes confirm to the client 
server paradigm. A client sends a request to the server, and the client blocks until the 
server replies [ChZw83]. 

V allows multiple processes to reside in the same address space. Data sharing is 
through message passing, though shared memory can be implemented through servers 
managing bounded buffers. The design goals of V are primarily speed and simplicity. V 
does not provide transaction and replication support, these can be implemented, if neces-
sary at the application level. 

12.7. Mach 

Mach has been developed at Carnegie Mellon, and looks like a Unix extension. 
Though Mach is not implemented "on top of Unix" it is implemented to look like distri-
buted Unix. Mach is compatible with Unix at the object code level, that is Mach supports 
all system calls supported by Unix, and hence compiled Unix code can run on Mach. 
Mach uses the Accent message operating system as its base layer, and Accent Novides the 
communication support. In addition Mach provides support for multiprocessors and distri-
buted systems, 'memory mapped files, processing abstractions called tasks and threads 
[Ac86]. 

The activity in Mach is carried by tasks and threads. A task is similar to a Unix pro-
cess. It is an address space and an execution environment. A task may be composed of 
several threads. A thread is a thread of control that can concurrently execute with other 
threads as a part of the same task, in the tasks address space. Messages are typed data that 



	  17 

can be used by threads to communicate, and messages are routed through ports. Ports are 
addressable through capabilities. 

The approaches used by Mach and Clouds are conceptually different and it is hard to 
draw conclusions about the differences in capabilities and usabilities at this stage. Mach 
however does not provide transaction support. 

13. Concluding Remarks 

Clouds provides an ideal environment for research in distributed applications. By 
focusing on support for advanced programming paradigms, and decentralized, yet 
integrated, control, Clouds offers more than 'yet another Unix extension/look-alike'. By 
providing mechanisms, rather than policies, for advanced programming paradigms, Clouds 
provides systems researchers a adaptable, high-performance, 'workbench' for experimen-
tation in areas such as distributed databases, distributed computation, and network appli-
cations. By adopting 'off the shelf' hardware, the portability and robustness of Clouds are 
enhanced. By providing a 'Unix gateway', users can make use of established tools, 
without the performance penalty of running Clouds 'on top of' Unix (or conversely). The 
gateway also relieves Clouds from the necessity of providing emulating services such as 
provided by Unix mail and text processing. 

The goal of Clouds has been to build a general purpose distributed computing 
environment, suitable for a wide variety of user communities, both within and outside the 
computer science community. We are striving to achieve this through a simple model of a 
distributed environment with facilities that most users would feel comfortable with. Also 
we are experimenting with increased usage of the system by making it available to gradu-
ate courses, and hope the feedback and the criticism we receive from a large set of users 
will allow us to tailor, enhance and maybe redesign the system to fit the needs for distri-
buted computing, and thus give rise to wider usage of distributed systems. 
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