
Sponsor: National Science Foundation

(ZU1)3/—/J49

Defense Priority Rating: N/A Military Security Classification: N/A

(or) Company/Industrial Proprietary: N/A

costs back to 8/17/84. OPAS approval for pre-award

GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

PROJECT ADMINISTRATION DATA SHEET

Project No. 	G-36-619 (R5815-0A0)

Project Director: Dr. Raymond E. Miller

— OnIGINAL 	REVISION NO.

GTRIlitibbr

School/laib 	ICS

•

Type Agreement: Grant No. DCR-8405020

Award Period: From 9/1/84 	To 2/28/86 	(Performance) 5/31/86* 	(Reports)

Sponsor Amount: 	 This Change 	 Total to Date

Estimated: $ 	207.330 	 207,330

Funded: $ 	 207,330 	 207,330

Cost Sharing Amount: $ 	106,167 ** 	Cost Sharing No: G-36-561 (F5815-0A0)

Title: 	"AcqUisition of Computer Research Equipment"

ADMINISTRATIVE DATA 	 OCA Contact Lynn Boyd X4820

1) Sponsor Technical Contact: 	 2) Sponsor Admin/Contractual Matters:

Dr. John R. Lehmann

National Science Foundation

Computer Research Equipment

Computer Science Section
National Science Foundation
1800 G Street, N.W.
Washington, D.C. -iiiKow

Myra B. Gal inn

Grants Official

National Science Foundation

1800 G Street, N.W.

washington, D.C. -412011:1-- ot(W31,10

(202)357-9630

RESTRICTIONS

See Attached 	NSF

Travel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor

Supplemental Information Sheet for Additional Requirements.

approval where total will exceed greater of $500 or 125% of approved proposal budget category.
1 718

GIT

COMMENTS:

*Includes usual 6 month unfunded flexbility period.

Equipment Grant.

Equipment: Title vests with c N.)"

sctY
C-1 	 AS

r∎
.46
rV

**Cost-sharing may be reduced to actual requirements
(not less than 25% of the costs).

COPIES TO:

Project Director

Research Administrative Network
Research Property Management
Accounting

FORM OCA 4:383

Procurement/EES Supply Services

Research Secur . Services
Reports Co inator (OCA)

Research Communications (2)

GT RI
Library
Project File
Other I. Newton

9 	12 84 DATE 	/ 	/

3EORGI. tai ITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Dote 	7-1-87

'roject No. 0-36-619

School/

ncludes Subproject 	Na
	

f

'roject Directods) Dr. Raymond E. Miller

>ponsor National Science Foundation

Title
	"Acquisition of Computer Research Equipment"

Effective Completion Date: 2/28/86 (Performance) 5/31/86 (Reports)

Grant/Contract Closeout Actions Remaining:

None

Final Invoice or Final Fiscal Report

Closing Documents

Final Report of Inventions

ni Govt. Property Inventory & Related Certificate

r--1 Classified Material Certificate

Other 	

Continued by Project No.

Library
GTRC

IMmutaMmommUmWortV
Project File
Other Duane H.

Angela DuBose
Russ Embry

Continues Project No.

COPIES TO:

Project Director
Research Administrative Network
Research Property Management
Accounting
Procurement/GTRI Supply Services
Research Securi S

ixstacktmoc

FORM OCA 69.285

i-, PENDIX VII

tATIONAL SCIENCE FOUNDATION
Washington, D.C. 20550 	 FINAL PROJECT REPORT

NSF FORM 98A

PLEASE READ INSTRUCTIONS ON REVERSE BEFORE COMPLETING

PART I-PROJECT IDENTIFICATION INFORMATION

. Institution and Address
eorgia Institute of Technology
chool of Information and Computer

Sci
tlanta, GA 	30332-0280

2. NSF Program

Computer Science

3. NSF Award Number

DCR-8405020
4. Award Period

From 9/1/84 	To 2/28/86
5. Cumulative Award Amount

$ 207,330
1. Project Title

PART II-SUMMARY OF COMPLETED PROJECT (FOR PUBLIC USE)

See attached report

PART III-TECHNICAL INFORMATION (FOR PROGRAM MANAGEMENT USES)

1.

ITEM (Check appropriate Hocks) NONE ATTACHED
PREVIOUSLY
FURNISH•D

TO BE FURNISHED
SEPARATELY TO PROGRAM

Cheek (✓) Approx. Date

a. Abstracts of Theses

b. Publication Citations

c. Data on Scientific Collaborators

d. Information on Inventions

e. Technical Description of Project and Results 1

f. Other (specify)

2. Principal Investigator/Project Director Name (Typed)

Raymond E. Miller

3. Principal Investigator/Project Director Signae 4. Date

5./.4747

SF Form 98A f3-83) Supersedes All Previous Editions
	

Form Approved OMB No. 3145-0058

se
	

27

Equipment for Reliable, Integrated,
Distributed Computing.

Final Report

NSF Grant No. DRC-8405020
GIT Project Number G36-619

Principal Investigator:

Raymond E. Miller

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

1

1. Introduction

This report describes the use of the research equipment purchased with NSF
equipment grant (DRC-8405020) for use in the Clouds project in the School of Infor-
mation and Computer Science at Georgia Tech. The equipment was purchased in late
1984 and early 1985. Since then it has been put to significant use in software develop-
ment and general research support relating to that project.

2. Equipment

The major equipment purchases under this grant have included three VAX
11/750 minicomputers, one IBM PC/AT and four IBM PC/XTs. Miscellaneous
software, terminals and networking hardware were also purchased.

3. The Clouds Project

The Clouds project was initiated in 1982 to investigate techniques in building an
effective reliable distributed operating systems and programming environments. The
Clouds operating system was designed to consist of a distributed kernel that runs on
bare hardware. The operating system support persistent objects at the native layer,
location independence, distribution, and robust atomic transactions. The programming
environment consists of programming languages, programming paradigms that exploit
the distribution and reliability offered by the kernel, debuggers and object oriented
tools.

The equipment purchased by under the grant has been heavily used in all phases
of the project. The following is a brief description of the activity supported by the
grant.

The Clouds project team currently consists of 4 faculty members and about 10 to
15 graduate students. They are being supported by the Clouds computing facility of the
3 VAX-750's, 5 PC's, 10 terminals and several Sun Workstations available as a part of
the ICS computing facilities.

Of the 3 VAX-750's, one ("Stratus") is used to run Unix 4.2. This machine pro-
vides our stable work environment. The major usage of Stratus is in the Clouds kernel
development and Aeolus compiler development. In the last two years the Clouds distri-
buted kernel has been written and compiled on Stratus, and down-loaded to the other
machines for testing. Other services provided to the users of Stratus include: CSNet
mail, uucp mail, text formatting/typesetting, stable disk storage and access to all other
machines on the ICS computing laboratory.

The other 2 VAX-750's ("Nimbus" and "Cirrus") is the Clouds testbed. Since
Clouds is a native operating system, we need dedicated machines to test and run the
kernel. Since Clouds is distributed, we need a minimum of two machines. Nimbus and
Cirrus have been used for initial testing of Clouds since the middle of 1985, and has
been running Clouds on a regular basis for the last eight months.

The IBM-PC's were targeted for use as workstations for Clouds users. A special
purpose operating system was designed for use on the PC's for this purpose. However,
this effort was abandoned when the Sun-3 workstations became available. The PC's
purchased under the grant are being effectively used for graphics needs of the project
(using the GEM desktop publishing software), spreadsheets for budgeting, local edit-
ing for papers and technical reports, and other purposes connected with program

2

development, research publications and network access.

4. Progress

The Clouds project has developed a stable version of a distributed operating sys-
tem kernel. The kernel is composed of a object management system, a storage
management system and a communications system. In progress is the software
development for the action management system and the user interfaces. The Clouds
programming environment development has resulted in the development of the
Aeolus language and compiler and allied software and paradigms suited for object
oriented programming. The publication listed in the bibliography section of this report
contain detailed description of the research and development that has taken place in
the project.

Research in progress include development of monitoring techniques in distri-
buted systems, fault tolerant action management, user interfaces, languages that sup-
port distributed object-oriented programming, robust programming paradigms, object
programmers toolkit (Pandora) and distributed systems management.

The equipment grant allowed the Clouds project to to reach towards the goals that
were envisioned in 1983 (and which survived several revisions), and reach a point
where the project has received recognition and credibility amongst researchers in this
area.

The Clouds project has been funded from several sources including NSF, NASA
and the Dept. of Defence. Most of this support has been towards personnel. The NSF
equipment grant has been very important in providing the right set of equipment for
the project to achieve progress. The equipment has also been the key resource that has
enabled the project to receive personnel funding from various sources.

The progress of the Clouds project and results obtained by the project has been
useful in synthesizing the Georgia Tech proposal to the NSF-CER program for 1986.
(The proposal is pending). The Clouds environment was proposed as a base layer for
the large general purpose computing environment for computer science research. The
Clouds project received good reviews in the CER site visit and the major contributing
factor to the success of the Clouds approach is that we have been able to demonstrate
the feasibility of a distributed operating system built using our approach through the
actual building of the system. This would never have been possible without the equip-
ment we have been using for the last few years.

5. Conclusions

The equipment purchased under the NSF grant DRC-8405020, has allowed the
Clouds project to move from a set of ideas to a demonstrated system that has pro-
duced some significant research results in the area of distributed operating systems
and distributed environments.

The research environment created by the equipment has stimulated the research-
ers in the project to produce ideas, papers, technical reports, and above all, software
that works as designed.

Bibliography of Work Supported by this Grant

1. Ahamad, M., M. H. Ammar, J. Bernabeu, and M. Y. A. Khalidi, "A Multicast Scheme for
Locating Objects in a Distributed Operating System," Technical Report GIT-ICS-87/01, School
of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA, January
1987.

2. Ahamad, M., P. Dasgupta, R. J. LeBlanc, and C. T. Wilkes, "Fault-Tolerant Computing in
Object Based Distributed Operating Systems," Proceedings of the Sixth Symposium on Reliability
in Distributed Software and Database Systems, pp. 115-125, IEEE Computer Society,
Williamsburg, VA, March 1987.

3. Ahamad, M. and P. Dasgupta, "Parallel Execution Threads: An Approach to Fault-Tolerant
Actions," Technical Report GIT-ICS-87/16, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, GA, March 1987.

4. Dasgupta, P., R. LeBlanc, and E. Spafford, "The Clouds Project: Design and Implementation
of a Fault-Tolerant Distributed Operating System," Technical Report GIT-ICS-85/29, School of
Information and Computer Science, Georgia Institute of Technology, Atlanta, GA, 1985.

5. Dasgupta, P. and M. Morsi, "An Object-Based Distributed Database System Supported on the
Clouds Operating System," Technical Report GIT-ICS-86/07, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA, 1986.

6. Dasgupta, P., "A Probe-Based Monitoring Scheme for an Object-Oriented Distributed
Operating System," Proceedings of the Conference on Object Oriented Programming Systems,
Languages and Applications, pp. 57-66, ACM SIGPLAN, Portland, OR, Sept. 1986. Also
available as Technical Report GIT-ICS-86/05

7. Kenley, G. G., "An Action Management System for a Distributed Operating System," M.S.
Thesis, School of Information and Computer Science, Georgia Institute of Technology, Atlanta,
GA, 1986. Also released as technical report GIT-ICS-86/01

8. LeBlanc, R. J. and C. T. Wilkes, "Systems Programming with Objects and Actions,"
Proceedings of the Fifth International Conference on Distributed Computing Systems, Denver, July
1985. Also released, in expanded form, as technical report-GIT-ICS-85/03

9. McKendry, M. S., "Ordering Actions for Visibility," Transactions on Software Engineering, vol.
11, no. 6, IEEE, June 1985. Also released as technical report GIT-ICS-84/05

10. Pitts, D. V. and E. H. Spafford, "Notes on a Storage Manager for the Clouds Kernel,"
Technical Report GIT-ICS-85/02, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1985.

11. Pitts, D. V., "Storage Management for a Reliable Decentralized Operating System," Ph.D.
Diss., School of Information and Computer Science, Georgia Institute of Technology, Atlanta,
GA, 1986. Also released as Technical Report GIT-ICS-86/21

12. Pitts, D. V. and P. Dasgupta, "Object Memory and Storage Management in the Clouds
Kernel," Technical Report GIT-ICS-87/15, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, GA, March 1987.

13. Spafford, E. H. and M. S. McKendry, "Kernel Structures for Clouds," Technical Report GIT-
ICS-84/09, School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1984.

14. Spafford, E. H., "Kernel Structures for a Distributed Operating System," Ph.D. Diss., School
of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA, 1986.
Also released as technical report GIT-ICS-86/16

-2-

15. Spafford, Eugene H., "Object Operation Invocation in Clouds," Technical Report GIT-ICS-
87/14, School of Information and Computer Science, Georgia Institute of Technology, Atlanta,'
GA, February 1987.

16. Wilkes, C. T., "Preliminary Aeolus Reference Manual," Technical Report GIT-ICS-85/07,
School of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA,
1985. Last Revision: 17 March 1986

17. Wilkes, C. T. and R. J. LeBlanc, "Rationale for the Design of Aeolus: A Systems
Programming Language for an Action/Object System," Proceedings of the 1986 International
Conference on Computer Languages, pp. 107-122, IEEE Computer Society, Miami, FL, October
1986. Also available as Technical Report GIT-ICS-86/12

The Clouds Distributed Operating System.
Functional Description,
Implementation Details

and
Related Work.

Partha Dasgupta, Richard LeBlanc & William Appelbe.

Submitted to

The 7th International Conference on
Distributed Computing Systems.

(Distributed Operating Systems Group)

Abstract

Clouds is an operating system targeted to be a prototype of a novel class of distributed operating
systems providing the integration, reliability and structure that makes a distributed system generally
usable. Clouds is designed to run on a set of general purpose computers that are connected via a
medium-to-high speed local area network. The structure of Clouds promotes transparency, support
for advanced programming paradigms, and decentralized yet integrated control.

The design criteria for Clouds include integration of resources through location transparency, sup-
port for robust transaction processing as well as advanced support for achieving fault tolerance,
provisions for dynamic reconfiguration and an object based system architecture. The implementa-
tion has been tailored to be simple, efficient and usable.

The system structuring paradigm chosen after substantial research for the Clouds operating system
is an object/process/action model. All instances of services, programs and data in Clouds are
objects. Processing can be done within or outside the atomic action construct. The concept of per-
sistent object does away with the need for file systems, and replaces it with a more powerful object
system. Concurrency control and recovery is handled within the objects. In this paper, we provide a
functional description of the system, planned enhancements, some implementational details, and
discussion of related work.

Contact Address:
Partha Dasgupta
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332

Phone: +1 (404) 894 2572

Electronic Address:
CSNet: partha@GaTech.CSNet
Arpa : partha % GaTech CSN et @ CSNet-Relay.ARPA
UUCP: ... !{akgua,allegra,amd,hplabs,ihnp4 , massc omp ,ut-n gp} ! gatechIparth a

	 1

The Clouds Distributed Operating Systemt.
Functional Description,
Implementation Details

and
Related Work.

Partha Dasgupta, Richard LeBlanc & William Appelbe.
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332

1. Introduction

Clouds is an operating system targeted to be a prototype for a class of distributed
operating systems providing the integration, reliability and structure that makes a distri-
buted computing system generally usable.

Clouds is designed to run on a set of general purpose computers (uniprocessors or
multiprocessors) that are connected via a medium-to-high speed local area network. The
structure of Clouds promotes transparency, support for advanced programming paradigms,
and decentralized yet integrated control. The major design objectives for Clouds are:

• Integration of resources through cooperation and location transparency.

• Support for robust transaction processing, and the ability to achieve fault tolerance.

• Efficient design and implementation.

• Simple and uniform interfaces for distributed processing.

The system structuring paradigm chosen after substantial research for the Clouds
operating system is an objectJprocessiaction model. All instances of services, programs and
data in Clouds are objects. Processing can be done either by atomic actions or by processes
that execute outside the constraints of atomicity [A183, DaLe85, McA183]. In this paper,
we provide a functional description of the system (sections 2 to 8), planned enhancements
(section 10), some implementational details (section 11), and discussion of related work
(section 12). Currently, an operational distributed prototype of the Clouds kernel has been
implemented, and is in experimental use by the developers. We plan to put the kernel in
more widespread use over the next few months (section 9).

2. Objects

All data, programs, devices and resources on Clouds are objects. The only entities
that are not objects are processes and actions. A Clouds object, at the lowest level of

%his research has been partially funded by NASA (grant NAG-1-430) and NSF (grant DCS-83-16590).

	 2

conception, is a virtual address space. Unlike conventional virtual address spaces, a Clouds
object is neither tied to any process nor is volatile. A Clouds object exists forever (like
files) unless explicitly deleted. As will be obvious in the following description of objects,
Clouds objects are somewhat 'heavyweight' rather that 'lightweight' objects provided by
Smalltalk for example.

Every Clouds object is named. The name of an object, also known as the capability,
is unique over the entire distributed system and does not include the location of the object.
That is, the capability based naming scheme in Clouds creates a uniform, flat system name
space for objects.

Since an object consists of a named address space (and its contents), it is completely
passive. Unlilce those in some object based systems, a Clouds object is not associated with
any server process. Processes are allowed to execute within the context of objects. A pro-
cess executes in an object by entering it through one of several entry points, and after the
execution is complete the process leaves the object. Several processes can simultaneously
enter an object and execute concurrently.

Objects have structure. They contain, minimally, a code segment, a data segment and
a heap for local storage allocation. Processes that enter an object execute in the code seg-
ment. The data segment is accessible by the code in the code segment, but not by any
other object. Thus the object has a wall around it which has some well defined gateways,
through which activity can come in. Data cannot be transmitted in or out of the object
freely, but can be moved as parameters to the code segment entry points (see discussion
on processes).

Clouds objects are user-defined or system-defined. Most objects are user-defined.
Some examples of system defined objects are device drivers, name-service handlers, and
the Clouds kernelt itself. A complete Clouds object can contain user-defined code and
data, system-defined code and data that handle synchronization, recovery and commit, a
volatile heap for temporary memory allocation, a permanent heap for allocating memory
that will remain permanent as a part of the data structures in the object, locks and capabil-
ities to other objects. The Clouds object structure is depicted in Figure 1. Since a conven-
tional file is a special case of a Clouds object, the Clouds object system does away with the
need for a file system. This is discussed in further detail in section 4.

Each object in the Clouds system is an instance of its template. An object of a certain
type is created by invoking a 'create' operation on the template of this type. Each tem-
plate is created by invoking a create operation on a single template-template, which can
create any template, if provided, as argument, the code and data definitions of the

tAlthough the spec cation defines the kernel to be an object, the implementation treats it as a . special case (or pseudo-
object) for efficiency reasons.

)

permanent
neap

process
(PCB)

process
thread of
control

stack

permanent
data segment

volatile,

per—process
data segment

entry
points

code segment

dobal Data

(a 	
Links

&
Capabilities 	I --II"

heap (per process)

system services
(synch, commit etc.)

user — defined
operations

Figure 1: Clouds Object Structure.

distIbuted object space (non — volatile, virtual memory)

Figure 2: Object Memory in Clouds.

3

template. The templates, the template-template and all the instances thereof, are regular

Clouds objects, and as discussed earlier, they exist when created, and live unless explicitly

deleted.

3. Processes

The only form of activity in the Clouds system is the process. Clouds processes are
lightweight workers. A process is composed of a process control block (PCB) and and a
virtual space containing the stack. Thus, a process can be viewed as a program counter,
stack pointer and stack. Upon creation a process starts up at an entry point of an object.
As the process executes, it executes code inside an object and manipulates the data inside
this object. The code in the object can contain a procedure call to an operation of another
object. When a process executes this, it temporarily leaves the caller object and enters the
called object, and commences execution there. The process returns to the caller object
after the execution in the called object terminates. The calls to the entry point of objects
are called object invocation. Object invocations can be nested. The code that is accessible
by each entry point is known as an operation of the object.

A process executes by processing operations defined inside many objects. Unlike
processes in conventional operating systems, the process often cross boundaries of virtual
address spaces. Addressing in an address space is however limited to that address space,
and thus the process cannot access any data outside an address space. Control transfer
between address spaces occurs though object invocation, and data transfer between
address spaces occurs through parameters to object invocation (which may be capabilities
for other objects). .

When a process executing in an object (or address space) executes a call to another
object, it can provide the called operation with arguments. When the called operation ter-
minates, it can send back result arguments. Since the address spaces of the two objects
are disjoint, all arguments are passed by value. This argument passing mechanism is ident-
ical to copy-in copy-out semantics of parameter passing supported by many programming
languages.

4. The Object/Process Paradigm

The structure created by a system composed of objects and processes has several
interesting properties. First, all interfaces are procedural. Object invocations are
equivalent to procedure calls on modules not sharing global data. The modules are per-
manent. The procedure calls work across machine boundaries. Since the objects exists in a
global name space, there is no concept of machine boundaries. At the system level local
invocations and remote invocations (also known as remote procedure calls or RPC) are

	 4

differentiated, however this is transparent to the user or systems programmer.

Since every entity is an object and objects are permanent, there is no need for a file
system. A conventional file is a special case of an object, an object with a read, a write, a
seek and some other file operations defined in it to transport data in and out of the object
through parameters provided to the calls.

Though we can simulate files by using objects of type file, the , need for files disappear
in most situations. Programs, do not need to store data in files, they can keep the data in
the data space in each object. Since the data space does not disappear when the controlling
process terminates. The need for user-level naming of files transforms to the need for
user-level naming for objects.

The Clouds operating system does not provide any support for I/O operations, except
for terminal I/O. (Terminal I/O is achieved by invoking the read and write operations on a
terminal object, dispensing with most concepts about I/O'streams).

Just as I/O is eliminated, so is the need for messages. Processes do not communicate
through messages. There are no ports. This allows a simplified system management stra-
tegy as the system does not have to maintain linkage information between processes and
ports. Just as files can be simulated for those in need for them, messages and ports can be
easily simulated by an object consisting of a bounded buffer that implements the send and
receive operations on the buffer. However, we feel that the need for files and messages
are the product of the programming paradigms designed for systems supporting these
features, and these are not necessary structuring tools for programming environments.

A programmers view of the computing environment created by Clouds is apparent. It
is a simple world of named address spaces (or objects). These object live in computing sys-
tems on a LAN, but the machine boundaries are made transparent, creating a unified
object space. Activity is provided by processes moving around amongst the population of
objects through invocation; and data flow is implemented by parameter passing. The sys-
tem thus looks like a set of permanent address spaces which support control flow through
them, constituting what we term object memory and is depicted in Figure 2.

This view of a distributed system, does have some pitfalls. Processes aborting due to
errors will leave permanent faulty data in objects they modified. Failure of computers will
result in similar mishaps. Multiple processes invoking the same object will cause errors
due to race conditions and conflicts. More involved consistency violations may be the
results of non-serializable executions. In a large distributed system, having thousands of

objects and dozens of machines, corruption due to failure cannot be tolerated or easily
repaired. The prevention of such situations is achieved through the use of the atomic
actions paradigm, discussed below.

	 5

S. Actions

Actions are units of work that are defined by the programmer to be atomic. The
work done by an action either gets done in its entirety or does not happen at all. Failures,
errors, and aborts thus do not leave a trace on the data stored in the objects (Ke86,
Mc85].

An action is an abstraction. It is neither an object nor a process. It is a high level con-
cept that exists as information in the action Management system. An action starts as an
invocation of an entry point in a process. This is a top-level action, and is started by exe-
cuting a 'start-action' system call to the Clouds kernel, with the target object and operation
as parameters. Then, a process is created, which executes on behalf of this action, and
invokes the specified object. Anything this process does, until the action commits or
aborts, is in the context of the action. If the process creates more processes, invokes other
objects and creates subordinate actions, these too are part of the same top-level action.

All the activity of the set of processes (or one process) in the context of an action,
consists of touching objects. A object is considered touched by an action if a process exe-
cuting on behalf of the action executes one or more object invocations on the object. A
touched object is not necessarily modified. All objects modified by an action exist in a
volatile form that may be different from their permanent representations.

When an action terminates, all the objects touched by the action are committed. Com-
mitment of an object is achieved by updating its permanent representation by replacing
any data that have been modified by this action. Since the updates by an uncommitted
action are never made permanent, an aborted action is rolled back by default.

Though the updates by an uncommitted action are not written on permanent (secon-
dary) storage, the updates of an uncommitted action may be seen by another uncommitted
action accessing the same object, depending upon the synchronization method used by the
object. We distinguish between two kinds of atomicities of actions, namely failure atomi-

city and view atomicity. Failure atomicity dictates that either the updates performed by an
action are made permanent after the action runs to completion, or nothing occurs. View
atomicity dictates that the action is insulated from seeing any results from other con-
currently executing actions. Clouds can provides failure atomicity and, if needed, view
atomicity. Note that not providing view atomicity can lead to errors (an action A makes
updates based on some results of an uncommitted B action and A commits while B
aborts). The differences between the atomicity requirements and the rationale for provid-
ing failure atomicity will be clearer after the discussion of synchronization methods.

6

5.1. Nested Actions

Actions, as units of work, are too large grained for many applications, especially in
an large distributed environment where failures are relatively common. Any error or
failure during the execution of an action requires that the entire action be aborted. An
action often needs the ability to recover from errors or failures. Finer grained atomicity
and failure recovery capabilities are provided by nested actions.

A top-level action is the conventional action. The-top level action can delegate sub-
tasks to subordinated actions or sub-actions, which in turn can spawn sub-actions, giving
rise to a tree of nested actions. A child action executes in the context of its parent, but the
failure of the child does not imply the failure of the parent, the parent may choose to retry
the sub-task or respond to the failure in some other way. The commit of a sub-action is
conditional upon the commit of the parent, and by transition, the commit of all nested
actions are conditional upon the commit of the top-level action. Thus a top-level action
makes the final commit decision, based on the commit and abort status of all the nested
action it gave rise to.

The nested action semantics of Clouds is identical to the semantics defined by Moss in
[Mo81). Nested actions thus provide a action programmer with failure containment
firewalls and the ability to try alternate methods to make progress.

6. Synchronization

The synchronization scheme decides how (if at all) concurrent processes execute in
the same object. The synchronization scheme used also dictates whether action using the
object are view atomic or not. Both the synchronization techniques used and the recovery
techniques used affect the semantics of action atomicity. We discuss synchronization in
this section. Recovery will be discussed in the next section and the effects of both on
actions will be briefly considered [McA1Mc82].

Clouds provides two types of synchronization: custom and automatic. Custom syn-
chronization allows the programmer of an object to define and implement the synchroniza-
tion rules. For this purpose, the programmer has access to locks and semaphores that can
be defined and used inside the object. For example, setting a lock on a variable when
entering an operation and releasing it upon exit causes processes that execute this opera-
tion to run in mutual exclusion. The programmer can thus customize the synchronization
scheme to the needs of the object.

Though custom synchronization can be correct and useful for many applications, it is
possible to cause non-serializable execution in custom synchronization schemes. Allowing
various unconventional schemes is the power of custom synchronization. However in cases
where serializability is necessary, the programmer need not - implement any

	 7

synchronization; automatic synchronization is available for this purpose.

With automatic synchronization, each entry point in an object is marked as a read
entry or a write entry. When an action touches an object for the first time, a read or write
lock is obtained (as appropriate) on the entire object. Conversions from a read lock to a
write lock is allowed. Locks are held until the action commits, implementing a two-phase
locking protocol and guaranteeing serializable execution of the action with respect to all
data touched by the action (provided all objects it touched were using automatic synchron-
ization). This scheme provides view atomicity of actions.

7. Recovery

Recovery is managed by shadowing, providing failure atomicity for actions. Objects
are classified as recoverable or non-recoverable. Non-recoverable objects are somewhat
cheaper to handle and can be used by non-critical system tasks, but usage of non-
recoverable objects by actions can lead to lapse of consistency. Note that all Unix files are
identical to a non-recoverable Clouds object of a specific type (unstructured file).

When an action invokes an operation in a recoverable object, a shadow version and a
core version of the object is created. The shadow version is the original permanent ver-
sion, and the core version is the possibly updated version. If several actions invoke an
object in parallel, there is still only ONE shadow and ONE core version. If the synchroni-
zation is not automatic, there are possibilities that one uncommitted action will see updates
from another uncommitted action, violating the view atomicity requirements (if any). But
this is left to the programmer who chose the synchronization strategy.

Every recoverable object has two default entry points called pre -commit and commit.
When the pre-commit entry point is invoked, the object flushes all the updated data in the
core version to stable storage, and the commit operation copies the updates to the shadow
version and makes the shadow version the permanent version. These entry points can be
used by any 2-phase commit protocol.

Like synchronization, recovery comes in two flavors, namely custom and automatic.
When an action is run with automatic synchronization, the action management keeps track
of all the objects the action touched. When the action terminates successfully, the action
management system creates a commit co-ordinator process, that uses the pre-commit and
commit entry points of all the objects touched by the action to perform an atomic commit,
using the two-phase commit protocol.

Custom recovery is nearly identical, except that the programmer has the ability to
redefine the default pre-commit and commit routines in the objects; the user defined rou-
tines will be used by the action manager at commit time. The user also has access to the
commit routines during normal execution and thus can perform intermediate check points,

	 8

partial commits and customized features like flushing only certain pages of the object.

Automatic recovery and automatic synchronization guarantee serializability, failure
atomicity and view atomicity. Automatic recovery and custom synchronization guarantees
failure atomicity and allows the user to use some concurrency control semantically con-
sistent with the application. Custom recovery and synchronization allows the programmed
full control of the execution strategy, and the system does not guarantee anything other
than the synchronization and recovery support.

8. Programming Support

Systems and application programming for Clouds involves programming objects that
implement the desired functionality. These objects can be expressed in any programming
language. The compiler (or the linker) for the language, however, must be modified to
generate the stubs for the various entry points, invocation handler, system call interfaces
and the inclusion of default systems function handling code (such as synchronization and
recovery.)

The language Aeolus has been designed to integrate the full set of powerful features
that the Clouds kernel supports. Aeolus provides linguistic support for programming
Clouds objects and allow the composition of objects from sub-objects. Aeolus provides
access to the synchronization features (both custom and automatic) and the recovery
features of Clouds. Though the Clouds programmer is not tied to Aeolus, the language is
most suited for systems programming as it has been tailored to match the kernel features
[LeWi85, Wi85, WiLe86].

Aeolus is the first generation language for Clouds. It does not support some of the
features found in object-oriented programming systems such as inheritance and subclass-
ing. Providing support for these features at the language level is currently under con-
sideration.

9. Current Status

The Clouds distributed kernel is operational. The implementational details are dis-
cussed in section 11.

Clouds runs on a set of VAX-11 computers. Clouds is a native operating system, that
is it runs on bare hardware without any support from some other operating system.
Currently we support the object memory, capability based invocations, location tran-
sparency, custom synchronization and recovery though a locking facility and a shadow
page recovery scheme.

Application programs have been tested using C and Aeolus as the source languages.
The Aeolus compiler and linker runs under Unix and the object code is transferred into

	 9

Clouds objects though transfer utilities. The Aeolus runtime support system provides
argument passing between Clouds objects and some terminal I/0 support.

The user interfaces to Clouds is via Unix. The Clouds utilities and application pro-
grams link to Unix workstations (Sun-3/50's) over the Ethernet, and allows Clouds pro-
grammers access to full Unix user support, and thus the transition from Unix to Clouds is

made easy for those used to Unix. Unix programs are able to invoke Clouds objects and
thus use Clouds facilities.

The action management system is under implementation, and we hope to provide
automatic recovery support in about three to four months. Clouds is going to be used in
some graduate courses for distributed computing projects, and we will get additional user
input when we start widespread use of the Clouds system amongst the local user commun-

itY•

10. Enhancements and Planned Features

The above description of Clouds documents the basic features of the distributed ker-
nel for Clouds. Presently the following enhancement, applications and features are at vari-
ous stages of design, implementation and planning.

• An object naming scheme is being developed that creates a hierarchical user naming
strategy (lilce Unix) that is also highly available and robust (through replicated direc-
tories).

• Unix and Clouds will be inter-operable providing Unix programmers and user with
access to Clouds features and Clouds programmers to use Unix services. Unix
machines will be able to execute remote procedure calls to Clouds object thus gaining
access to all the functionality that Clouds provides..in fact the user interface to Clouds
will be through Unix shells and tools. Similarly Clouds applications will make use of
the wide variety of programming support tools that are supported by Unix through a
mechanisms that provides Unix service for Clouds computations. In addition, Clouds
services will be directly accessible through Clouds libraries for other programming
languages, such as C+ + and ADA.

• As mentioned earlier, mechanisms for providing object-oriented programming metho-
dology will be provided at the linguistic level, with enhancements in the kernel that
will provide performance advantages (such as sharing of code in the classes with its
instances).

• Debugging support at the object level, process level and the invocation level will be
provided. Techniques that allow the programmer to get a comprehensive view of the
distributed and concurrent execution environment are under development.

	 10

• A probe system that can track object and process status in the system can provide
information about failures, loading, deadlocks and software problems is being
developed. This will be used to develop a distributed system monitoring system that
will help in reconfiguration on failure and aid in providing fault tolerance. The probe
system will also be useful in distributed object level debugging [Da86].

• A distributed database that utilizes the object structure of Clouds for elegance and the
synchronization and recovery support for concurrency control and reliability is being
developed (DaMo86).

• Clouds has been designed as a base layer for fault tolerance computing. The systems
that will provide fault tolerance and guarantee progress of computation and system
response in face of partial system failures are being developed. The techniques
include replicated objects, multi-threaded actions, the coupling of the reconfiguration
systems and monitoring systems, and usage of dual-ported storage devices.

11. Implementation Notes
The implementation of the Clouds operating systems has been based on the following

guidelines:

• The implementation of the system should be suitable for general purpose computers,
connected through popular networking hardware. Non-homogeneous machines,
though not crucial, should be allowed.

• Since the Clouds functionality is largely based on object invocation, support for
objects should be efficient in order to make the system usable. Also, the synchroniza-
tion and recovery systems should be efficient.

• Since one of the primary aims of Clouds is to provide the substrate for reliable, fault
tolerant computing, the base system design should be tolerant to failures and provide
adequate support for implementing fault tolerance.

• The system design should be simple to comprehend and implement.

11.1. Hardware Configuration
The hardware being used for implementing the prototype Clouds system is common-

place: three VAX-11/750's connected by an Ethernet. The disk units are dual ported,
allowing access to the units from two machines, which provides the ability to remount the
data from one machine to the other in case of site failures thus increasing availability.

The user interface is not through terminals, but over the Ethernet from Unix main-
frames or workstations. This allows easy (software based) reassignment of users in case of
site failures.

11.2. Software Configuration

The Clouds kernel is a native kernel running on bare hardware. The structure of the
distributed system and the per site kernels are shown in figures 3 and 4. The kernel is
implemented in C for portability, and because the availability of C source for the UNIX
kernel simplified the task of developing hardware interfaces such as device drivers.
Aeolus has been used as the implementation language for Clouds utilities.

11.3. Kernel Structure

The kernel is a replicated resident kernel, replicated at all the sites. Logically, the
kernel is distributed over several sites and the machine boundaries are invisible. This is
achieved by the communication system that provides the low level messaging interface
between the replicated kernels. The system control however is completely decentralized,
so that failure of individual kernels do not affect the rest of the system [Sp86].

The kernel runs on the native machine and not on top of any conventional operating
system for two reasons. Firstly, this approach is efficient. As Clouds does not use most of
the functionality of conventional operating systems (such as Unix), building Clouds on top
of a Unix like kernel would have unacceptable deficiencies such as unwieldy implementa-
tion and poor performance. Secondly, the paradigms and the support used in Clouds is
considerably different from the functionality provided by conventional operating systems,
and major changes would be necessary at the kernel level of any operating system in order
to implement Clouds. Some of the negative aspects of using standard Unix implementa-
tions as the base layer would be:

• Unix processes are heavyweight processes: thus process creation and RPC would be
expensive.

• A Unix process is tied to one address space. Making a process cross address spaces
would involve simulating it through multiple processes and the Unix IPC mechanism,
which would involve multiple context switches and other message layer overheads.

• Only one process can execute in an address space, providing serious limitations to
intra object concurrency. There are methods that get around this problem, but they
are generally complex to implement, unreliable and require substantial overhead.

To avoid these problems the Clouds kernel is designed to support the Clouds functions
on native hardware and all the performance critical support is implemented at the lowest
level in the kernel.

11.4. Object Naming and Invocation

The two basic activities inside the Clouds kernel are system call handling and object
invocations. System call handling is done locally, as in any operating system. The system

Geo* Tech 	 Clouds Project

Communications Support System

Uniform, Global,
Robust Substrate

User Support

Action Management Monitoring System

Sub -
- Kernel

Sub-
- Kernel

[Sub -
-- Kernel

Action
Mgmt Object

Mgmt Comm.
Mgmt

Zass Mr Rpgvriice Scheduler

Distributed State
Database.

Storage
Mgmt

Kernel Interface

User and Systems Applications.

Figure 3: The Software Structure of the Clouds Distributed System.

C 	 Client Requests (Invocations)

Figure 4: The Structure of the Clouds Kttrnel (per site).

	 12

calls supported by the Clouds kernel include object invocation, memory allocation, process
control and synchronization, and other localized systems functions. Object invocation is a
service provided by the kernel for user processes. The attributes that object invocation
must satisfy are:

• Location independence.

• Fast, for both local and remote invocations.

• Failed machines should not hamper availability of objects on working sites, from
working sites. Also, moving objects between sites, reassigning disk units and so on
should be simple.

Location independence is achieved through a capability based naming system. Availa-
bility is obtained through decentralization of directory information and a unique search-
and-invoke . strategy. Speed is achieved by implementing the invocation handlers at the
lowest level of the kernel, on the native machine.

When a process invokes an object, it first places the arguments on the stack and exe-
cutes an invoke system call, with the called object capability as the parameter. The capabil-
ity of the object is unique systemwide, but has no site information. The kernel searches
the local object directory to determine if the object is available locally. If it is, then the
process address space is switched and the process starts executing in the object that it
invoked. (This is achieved by changing the PO region of the VAX address space by updat-
ing the PO page table registers. The stack of the process is in P1 region, and this space
remains the same.)

If the object does not exist locally, the kernel broadcasts a search-and-invoke request.
All participating kernels then attempt to locate the object. The successful kernel - dispatches
a slave process, which copies the arguments from the invoke request to its stack and per-
forms a local invocation on the object. Upon termination, the arguments are send back to
the invocation requester, which causes the invocation request to return.

Hash tables, caches, and hint databases are used to add speed both the local searches
for objects as well as avoiding the need for all sites to search for objects at each broadcast
search-and-invoke request. A special hashing scheme that uses multicasting has been
developed that reduces the search overhead by a large margin (AhAm87].

11.5. Storage Mangement

The storage management system handles the fur.ction required to provide the reli-
able, permanent object address spaces. As mentioned earlier, unlike conventional systems,
where virtual address spaces are volatile and short lived, Clouds virtual spaces contain
objects and are permanent and long lived [Pi86].

	 13

The storage management system stores the object representations on disk, as an
image of the object space. When an object is invoked, the object is demand paged into its
virtual space as and when necefsary. As the invocation updates the object, the updated
pages do not replace the original copy, but have shadow copies on the disk. The per-
manent copy is updated only when a commit operation is performed on the object. The
storage manager provides the support to commit an object using the two-phase commit
protocol.

11.6. Action Management

The storage management implements the virtual memory system and the commit pro-
tocols, providing the mechanisms for handling the object storage needs. The policies of
the action management are not implemented in the storage manager, but rather in the
action management system. The action management system implements nested actions for
the Clouds system by keeping track of the objects touched by an action as well as the suc-

cess and failure of each action and its subactions [Ke86].

The action manager primarily keeps track of information regarding actions. The
action manager is distributed, with the manager at each site keeping information about
each action that was started as a top level action at that site. Although an action can span
several sites, the action commit is coordinated through the action manager at the site
where the action started. As is apparent if the site starting the action fails, the action is
doomed to abort anyway, and hence the failure of the coordinating action manager does
not matter in this case.

As discussed previously, when an action terminates, the coordinating manager
invokes commit operations on all touched objects, in order to make all updates by the
action permanent in an atomic step.

12. Comparisons with Related Systems

Clouds is one of the several research projects that are actively building distributed
object based environments. There are similarities and differences between all the
approaches, and the area of distributed operating systems are in general not mature
enough to conclusively argue the superiority of one approach over the other. In the fol-
lowing paragraphs we document some of the major differences between Clouds and some
of the better know projects in distributed systems.

One of the major difference between Clouds and most of the systems mentioned
below is in the implementation of the kernel. Many systems implement the kernel as a
Unix process t , while Clouds is implemented as a native operating system. In addition, no
attempt has been made to build a UNIX interface 'on top of Clouds. Clouds is not
intended to be an enhancement, or replacement of, the UNIX kernel. Instead, Clouds

14

provides a different paradigm from that supported by UNIX (e.g., the UNIX paradigms
of 'devices as files', unstructured files, etc.)

12.1. Argus

Argus is a system developed at MIT, that supports the Argus programming language.
The language defines a distributed system to be a set of guardians, each containing a set of
handlers. Guardians are logical sites, and each guardian is located at one site, though a
site may contain several guardians. The handlers are operations that can access data stored
in the guardian. The data types in Argus can be defined to be atomic, and any operation
on atomic data types by actions are updated atomically when the action terminates
[WeLi83, LiSc83].

Sonic of the similarities between Argus and Clouds are the semantics of nested
actions. Both use the nested action semantics and locking semantics described by Moss.
This includes conditional commit by subactions and lock inheritance by subactions from
the parents as well as lock inheritance by the parents from a committed child. Also the
guardians and handlers in Argus have somewhat more than cosmetic similarities to objects
in Clouds.

The differences include the implementation strategies, programming support and reli-
ability. As mentioned earlier, Argus is implemented on top of a modified Unix environ-
ment. This is one of the reasons for the somewhat marginal performance of the Argus sys-
tem observed in (GrSeWe86). The programming support provided by Argus is for the
Argus language. Clouds on the other hand is a general purpose operating system, not tied
to any language. Though Aeolus is the preferred lang .uage at present, we have used C
extensively for object programming. We have plans to implement more object-oriented
languages for the the Clouds system. Unlike Argus, Clouds is designed to form the base
layer for fault tolerant computing.

12.2. Eden

Eden is a object based distributed operating system, implemented on the Unix operat-
ing system at the University of Washington. Eden objects (called Ejects) use the active
object paradigm, that is each object consists of a process and an address space. An invoca-
tion of the object consists of sending a message to the (server) process in the object, which
executes the requested routine, and returns the results in a reply. The messages use the
Berkeley Unix IPC mechanism [A1m83, A1B183, NoPr85].

tile term kernel has been used quite frequently to describe the core service,center of a system. However when this service
is provided by a Unix process rather than a resident, interrupt driven monitor, the usage of the term is somewhat counter-
intuitive.

Canis reds 	 Goods Psojcs

	 15

Since every object in the system needs to have a process servicing it, this could lead
to too many processes. Thus Eden has an active and a passive representation of objects.
The passive representation is the core image of the object stored on the disk. When an
object is invoked, it must be active, thus invoking a passive object involves activating it. A
process is created and it reads in the passive representation into its virtual space and then
performs the required operation. The activation of passive objects is an expensive opera-
tion. Also concurrent invocations of objects are difficult and is handled through mul-
tithreaded processes or coroutines.

The active object paradigm and the Unix based implementation are the major differ-
ences between Eden and Clouds. This is also the reason for the performance problems in
Eden. Eden also provides support for transaction and replication objects (called Replects).
The transaction support and replication was added after the basic Eden system was
designed and have some limitations due to manner Unix handles disk I/O. Eden was not
designed for fault tolerant applications. •

12.3. Cronus

Cronus is an operating system designed and implemented at BBN Laboratories. Some
of the salient points of Cronus is the intergration of Cronus functions with Unix functions,
the ability of Cronus to handle a wide variety of hardware and the coexistence of Cronus
on a distributed set of machines running Unix [BeRe85, GuDe86, ScTh86).

Like Eden, Cronus uses the active objects. This is necessary to be able to make
Cronus run on top of Unix, and be an added function to Unix programs. Cronus objects
are handled by managers. Often a single manager can handle several objects, by mapping
the objects into its address space. The managers are servers and receive invocation
requests through catalogued ports. Any Unix process on any machine on the network can
avail of Cronus services from any manager, by sending a message to the appropriate
manager. By use of canonical data forms, the machine dependencies of data representa-
tions are made transparent. Irrespective of the machine types, any Unix machine can
invoke Cronus objects in a location independent fashion.

12.4. ISIS

ISIS is a distributed operating system, developed at Cornell University, to support
fault tolerant computing. ISIS has been implemented on top of Unix. It uses replication
and checkpointing to achieve failure resilience. If data object is declared to be k-resilient
the system creates k+ 1 copies of the object. The replicated object invocation is handled by
invoking one replica and transmitting the state updates to all replicas. Checkpointing at
each invocation is used to recover from failures [Bi85A, Bi85B].

Georgia Tech 	 dais Project

	 16

12.S. ArchOS and Alpha

Alpha is the kernel for the ArchOS operating system developed by the Archons pro-
ject at Carnegie Mellon University. Like Clouds, the Alpha kernel is a native operating
system kernel designed to run on the Sun-3 computers, networked over Ethernets. The
Alpha kernel uses passive objects residing in their own virtual spaces, similar to Clouds.
ArchOS is designed for real time applications supporting specialized defense related sys-
tems and applications [Je85].

The key design criteria for ArchOS and Alpha are time critical computations and not
reliability. Fault tolerance is not an issue, as the operating conditions are more susceptible
to total failure rather than partial failure.

12.6. V-System

The V operating system has been developed at Stanford University. V is a comprom-
ise between message based systems and object based systems. The basic core of V pro-
vides lightweight processes and a fast communications (message) system. V message
semantics are similar to object invocations in the sense that the messages are synchronous
and use the send/reply paradigm. The relationship between processes confirm to the client
server paradigm. A client sends a request to the server, and the client blocks until the
server replies [ChZw83].

V allows multiple processes to reside in the same address space. Data sharing is
through message passing, though shared memory can be implemented through servers
managing bounded buffers. The design goals of V are primarily speed and simplicity. V
does not provide transaction and replication support, these can be implemented, if neces-
sary at the application level.

12.7. Mach

Mach has been developed at Carnegie Mellon, and looks like a Unix extension.
Though Mach is not implemented "on top of Unix" it is implemented to look like distri-
buted Unix. Mach is compatible with Unix at the object code level, that is Mach supports
all system calls supported by Unix, and hence compiled Unix code can run on Mach.
Mach uses the Accent message operating system as its base layer, and Accent Novides the
communication support. In addition Mach provides support for multiprocessors and distri-
buted systems, 'memory mapped files, processing abstractions called tasks and threads
[Ac86].

The activity in Mach is carried by tasks and threads. A task is similar to a Unix pro-
cess. It is an address space and an execution environment. A task may be composed of
several threads. A thread is a thread of control that can concurrently execute with other
threads as a part of the same task, in the tasks address space. Messages are typed data that

	 17

can be used by threads to communicate, and messages are routed through ports. Ports are
addressable through capabilities.

The approaches used by Mach and Clouds are conceptually different and it is hard to
draw conclusions about the differences in capabilities and usabilities at this stage. Mach
however does not provide transaction support.

13. Concluding Remarks

Clouds provides an ideal environment for research in distributed applications. By
focusing on support for advanced programming paradigms, and decentralized, yet
integrated, control, Clouds offers more than 'yet another Unix extension/look-alike'. By
providing mechanisms, rather than policies, for advanced programming paradigms, Clouds
provides systems researchers a adaptable, high-performance, 'workbench' for experimen-
tation in areas such as distributed databases, distributed computation, and network appli-
cations. By adopting 'off the shelf' hardware, the portability and robustness of Clouds are
enhanced. By providing a 'Unix gateway', users can make use of established tools,
without the performance penalty of running Clouds 'on top of' Unix (or conversely). The
gateway also relieves Clouds from the necessity of providing emulating services such as
provided by Unix mail and text processing.

The goal of Clouds has been to build a general purpose distributed computing
environment, suitable for a wide variety of user communities, both within and outside the
computer science community. We are striving to achieve this through a simple model of a
distributed environment with facilities that most users would feel comfortable with. Also
we are experimenting with increased usage of the system by making it available to gradu-
ate courses, and hope the feedback and the criticism we receive from a large set of users
will allow us to tailor, enhance and maybe redesign the system to fit the needs for distri-
buted computing, and thus give rise to wider usage of distributed systems.

14. References
[Ac861 Accetta M, et. al. Mach: A New Kernel Foundation for Unix Development, Technical

Report, Carnegie Mellon University.
[AhAm87]M. Ahamad, M. Ammar, J. Bernabeu and M. Y. Khaldi, A Multicast Scheme for Locat-

ing Objects in a Distributed System. Techical Report GIT-ICS-87/01, School of Informa-
tion and Computer Science, Georgia Tech, January 1987.

[A1m831 G. T. Almes, The Evolution of the Eden Invocation Mechanism, Technical Report 83 -01-
03, Department of Computer Science, University of Washington, 1983.

[A1831 	J. E. Allchin, An Architecture for Reliable Decentralized Systems, Ph.D. Diss., School of
Information and Computer Science, Georgia Institute of Technology, Atlanta, GA, (Also
released as technical report GIT-ICS-83/23,) 1983.

[A1B183] G. T. Almes, A. P. Black and E. D. Lazowska and 3. D. Noe, The Eden System: A
Technical Review, University of Washington Department of Computer Science, Technical

Report 83- 10-05 October 1983.

EAIMc821 J. E. Allchin and M. S. McKendry, Object-Based Synchronization and Recovery, Technical
Report GIT-ICS-82115 School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1982.

PeRe851 J. C. Berets, R. A. Mucci and R. E. Schantz, Cronus: A Testbed for Developing Distri-
buted Systems, October 1985 IEEE Communications Society, IEEE Military Communica-
tions Conference.

Riti85A) K. P. Birman and others, An Overview of the ISIS Project, Distributed Processing Techni-
cal Committee Newsletter, IEEE Computer Society (7,2) October 1985 (Special issue on
Reliable Distributed Systems).

[Bi85B] K. P. Birman, Replication and Fault-Tolerance in the ISIS System, ACM STOOPS,
Proceedings of the Tenth Symposium on Operating Systems Principles, December 1985
Orcas Island, Washington, (Also released as technical report TR 85-668).

[ChZw83] D. R. Cheriton and W. Zwaenepoel, The Distributed V Kernel and its Performance for
Diskless Workstations, Proceedings of the Ninth Symposium on Operating Systems Princi-
ples, ACM STOOPS, Bretton Woods, NH, October 1983.

[Da86] P. Dasgupta, A Probe-Based Fault Tolerant Scheme for the Clouds Operating System,
Technical Report GIT-ICS-86/05 School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986.

[DaLe85] P. Dasgupta, R. LeBlanc and E. Spafford, The Clouds Project: Design and Implementa-
tion of a Fault-Tolerant Distributed Operating System, Technical Report OTT-ICS-85/29,
1985 School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA.

[DaMo86] P. Dasgupta and 'M. Morsi, An Object-Based Distributed Database System Supported on
the Clouds Operating System, Technical Report GU-ICS-86/07, School of information
and Computer Science, Georgia Institute of Technology, Atlanta, GA, 1986.

[GuDe86] R. F. Gurwitz, M. A. Dean and R. E. Schantz, Programming Support in the Cronus Dis-
tributed Operating System, May 1986, Proceedings of the Sixth International Conference
on Distributed Computer Systems, IEEE Computer Society.

[GrSeWe86]
I. Greif, R. Seliger and W. Weihl Atomic Data Abstractions in a Distributed Collaborative
Editing System, (Extended Abstract) Conference Record of the Thirteenth Symposium on
Principles of Programming Languages, ACM SIGACT/SIGPLAN, January 1986, St.
Petersburg Beach, FL.

[Je85] 	E. D. Jensen et. al. Decentralized System Control, Technical Report RADC-TR-85-199,
Carnegie Mellon University and Rome Air Development Center, April 1985.

[Ke86] 	G. G. Kenley, An Action Management System for a Distributed Operating System, M.S.
Thesis, School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1986. (Also released as technical report OTT-ICS-86/01).

[LeWi85] R. J. LeBlanc and C. T. Wilkes, Systems Programming with Objects and Actions, Proceed-
ings of the Fifth International Conference on Distributed Computing Systems, Dznver,
July 1985. (Also released, in expanded form, as technical report OTT-ICS-85/03)

[LiSc83] B. Liskov and R. Scheifler, Guardians and Actions: Linguistic Support for Robust Distri-
buted Programs, ACM, Transactions on Programming Languages and Systems (53) July
1983.

[Mc84A] M. S. McKendry, Clouds: A Fault-Tolerant Distributed Operating System, Distributed Pro-
cessing Technical Committee Newsletter, IEEE, 1984, (Also issued as Clouds Technical
Memo No:42).

	 19

[Mc8411] M. S. McKendry, Fault-Tolerant Scheduling Mechanisms, (Unpublished Technical
Report), School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, May 1984, (Draft only).

[Mc85] M. S. McKendry, Ordering Actions for Visibility, Transactions on Software Engineering,
IEEE (11,6) June 1985 (Also released as technical report GIT-ICS-84/05).

[McA183] M. S. McKendry, J. E. Allchin and W. C. Thibault, Architecture for a Global Operating
System, IEEE Infocom, April 1983.

[Mo81] J. Moss, Nested Transactions: An Approach to Reliable Distributed Computing, Technical
Report MIT/LCS/TR-260, MIT Laboratory for Computer Science, 1981.

[MuMo83]E. T. Mueller, J. D. Moore and G. J. Popek, A Nested Transaction Mechanism for
LOCUS, Proceedings of the Ninth Symposium on Operating Systems Principles, ACM
SIGOPS, Bretton Woods, NH, October 1983.

[NoPr85] J. D. Noe, A. B. Proudfoot and C. Pu, Replication in Distributed Systems: The Eden
Experience, Department of Computer Science, University of Washington, Seattle, WA,
September 1985 Technical Report TR-85-08-06.

[P186] 	D. V. Pitts, Storage Management for a Reliable Decentralized Operating System, Ph.D.
Diss., School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1986, (Also released as Technical Report GIT-ICS-86/21).

[ScTh86] R. E. Schantz, R. H. Thomas and G. Bono, The Architecture of the Cronus Distributed
Operating System, May 1986, Proceedings of the Sixth International Conference on Dis-
tributed Computer Systems, IEEE Computer Society.

[Sp86] 	E. H. Spafford, Kernel Structures for a Distributed Operating System, Ph.D. Dias., School
of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA,
1986, (Also released as technical report GIT-ICS-86/16).

[SpBu84] A. Z. Spector, J. Butcher, D. S. Daniels and others, Support for Distributed Transactions
in the TABS Prototype, July 1984, Technical Report CMU-CS-84-132, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA.

[WaPo83] B. Walker, G. Popek, R. English, C. Kline and G. Thiel, The LOCUS Distributed
Operating System, Proceedings of the Ninth Symposium on Operating Systems Principles,
Bretton Woods, NH, ACM SIGOPS, pp. 49-70, October 1983. (Available as Operating
Systems Review 17, no. 5)

(WeLi83] W. Weihl and B. Liskov, Specification and Implementation of Resilient Atomic Data Types,
Symposium on Programming Language Issues in Software Systems, June 1983.

[W185] 	C. T. Wilkes, Preliminary Aeolus Reference Manual, Technical Report GIT-ICS-85/07,
School of Information and Computer Science, Georgia Institute of Technology, Atlanta,
GA, 1985. (Last Revision: 17 March 1986)

[WiLe86] C. T. Wilkes and R. J. LeBlanc, Rationale for the Design of Aeolus: A Systems Program.
ming Language for an ActionlObfect System, Technical Report GIT-ICS-86/12, School of
Information and Computer Science, Georgia Institute of Technology, Atlanta, GA, 1986.
(To be presented at the IEEE Computer Society 1986 International Conference on Com-
puter Languages).

[Wu74] W. A. Wulf and others, HYDRA: The Kernel of a Multiprocessor Operating System, Com-
munications of the ACM, (17,6) June 1974.

[WuLe81] W. A. Wulf, R. Levin and S. P. Harbison, HYDRA/C.mmp, An Experimental Computer
System, McGraw-Hill, Inc., 1981.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30

