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Abstract 

Social media content is one of the most visible sources of big data and is often used in health 
studies to draw inferences about various behaviors. Though much can be gleaned from social 
media data and mining, the approaches used to collect and analyze data are generally strengthened 
when examined through established theoretical frameworks. Health behavior, a theory driven field, 
encourages interdisciplinary collaboration across fields and theories to help us draw robust 
conclusions about phenomena. This pilot study uses a combined computer informatics and SNA 
approach to analyze information spread about mask-wearing as a personal mitigation effort during 
the COVID-19 pandemic. We analyzed one week’s worth of Twitter data (n = 10,107 tweets across 
4,289 users) by using at least one of four popular mask-support hashtags (e.g., #maskup). We 
calculated network-measures to assess structures and patterns present within the Twitter network, 
and used exponential random graph modeling (ERGM) to test factors related to the presence of 
retweets between users. The pro-mask Twitter network was largely fragmented, with a select few 
nodes occupying the most influential positions in the network. Verified accounts, accounts with 
more followers, and those who generated more tweets were more likely to be retweeted. Contrarily, 
verified accounts and those with more followers were less likely to retweet others. SNA revealed 
patterns and structures theoretically important to how information spreads across Twitter. We 
demonstrated the utility of an interdisciplinary collaboration between computer informatics and 
SNA to draw conclusions from social media data.  

*Corresponding author can be reached at: danvald@iu.edu  

Introduction 

In the big data era, there are abundant 
resources that can be mined to study nuanced 
aspects of human behavior. Social media, 
defined as websites where users post 
shareable, personal content in real-time 
(Wang & Wei, 2012), is one of the most 
visible sources of such information. Indeed, 
the diachronic nature of social media feeds 
afford opportunities to study in-the-moment 
portrayals of emerging social phenomena 
(Valdez et al., 2020). And, as much of social 
media constitute part of the public domain, 
social media also represents a free source of 
abundant data that can be studied and 

analyzed in tandem using quantitative, 
qualitative, or mixed methodologies. 

Historically, we have relied on 
computational informatics methods to collect 
and analyze large quantities of social media 
data to draw inferences about human 
behavior. This family of techniques uses 
computer algorithms to read, and learn from, 
text content to draw conclusions about 
themes (i.e., topic models), opinions (i.e., 
sentiment analysis), and demographic 
characteristics of users (i.e., classifiers) based 
on patterns within social media posts and 
other content (Simms et al., 2017). While the 
processes used to procure data and methods 
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used to analyze them efficiently summarize 
abundant information, they are generally 
strengthened when used alongside 
established theoretical frameworks and 
methodologies that emphasize the 
interconnectedness of social media data 
between posts and users.  

Social Network Analysis (SNA) is both a 
method and a theory used to understand the 
interconnectedness of people, data, and 
systems (Valente, 2010). The premise of 
SNA is to measure how structures, patterns, 
and positions within a network relate to 
various outcomes, including: information 
spread (Bueno, 2015; Hambrick, 2012); 
participation in certain behaviors (e.g., 
smoking, physical activity, contraception 
use, or gaming; Boulay and Valente, 2005; 
Patterson et al., 2019; Prochnow et al., 2020; 
Valente et al., 2013); and disease 
transmission (Emch et al., 2012; Klovdahl, 
1985). Social media websites, which by 
nature connect users to one another in an 
online space, are strong examples of social 
networks in practice. Whereas informatics is 
used to consolidate and explore social media 
data, SNA provides a structure with which to 
better understand it (Patterson et al., 2019). 
Thus, the theoretical structure of SNA can 
add to and inform the robust data collection 
efforts of data mined from social media. 

Herein we discuss the utility of SNA and 
social media mining in practice. Although 
this interdisciplinary collaboration between 
social media mining and SNA is not new, it 
is perhaps less critically studied using 
examples that pertain exclusively to Health 
Behavior and health messaging (see Xu and 
Li, 2013 for insights into social media mining 
and SNA). Throughout 2020, the COVID-19 
pandemic has dominated much health-related 
discourse. This discourse has been played out 
through social media as users share pertinent 
content about the pandemic, such as news 
and personal perspectives, among other 
content. By combining the data collection 

abilities afforded through social media 
mining and calculating network structures 
through SNA, we can glean important 
insights into how pandemic-related 
information (in our example, facemask use) 
spreads within networks.  

 
The COVID-19 pandemic, facemasks, and 
information spread 
 

 The COVID-19 pandemic led to 
unprecedented mitigation efforts to curb the 
spread of SARS- CoV-2. According to the 
Centers for Disease Control and Prevention 
(CDC), one of the most effective personal 
mitigation efforts is the use of personal face 
coverings (i.e. facemasks). When used 
correctly, facemasks can prevent 17-45% of 
COVID-19-related deaths (Eikenberry et al., 
2020). Indeed, at the time of writing, mask 
wearing has proven to be one of the strongest 
and easiest mitigators of COVID-19 
infection, which may have stunted some of 
the recent upticks in COVID-19 cases 
(Peeples, 2020). Multiple companies, private 
businesses, and even state and local 
governments have created facemask-wearing 
guidelines to promote continuous and 
appropriate mask use to reduce COVID-19 
spread.  

The effectiveness and simplicity of 
facemask use has led to much activism 
present on social media lobbying for 
widespread adoption of mask use, including 
at times in which wearing a facemask is not 
required (Sobowale et al., 2020). For 
example, during later months of the COVID-
19 pandemic numerous health professionals, 
celebrities, and other influencers used social 
media to disseminate information about the 
importance of consistent and correct 
facemask use (Ahmed et al., 2020). These 
included specific hashtags about facemask 
wearing, news content related to facemask 
wearing, photos of individuals in facemasks, 
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among dissemination of other mask related 
information. 

Social media is widely known to influence 
health behavior (Centola, 2013; Nelon et al., 
2020). This phenomenon likely transcends 
into public health crises, such as the COVID-
19 pandemic, where individuals are seeking 
pandemic-related news at increased volumes 
(see Bento et al., 2020). With facemask 
wearing constituting one of the more recent 
social media trends emerging during the 
COVID-19 pandemic, facemask use is an 
ideal example to explore and discuss the 
integration of SNA, social media analytics, 
and health behavior— particularly with 
regard to how the sharing of pro-facemask-
wearing information is spread online. This 
can be accomplished by analyzing the 
network structures of data collected through 
social media mining. For many, these two 
fields of study are well known. However, we 
present a brief primer of each to situate our 
study in the theories in which it is grounded. 

 
A Short Primer on Network Theory 

Social network analysis (SNA) represents 
a theoretical framework and a methodology 
that studies the interconnectedness of people 
and systems (Borgatti et al., 2018). Network 
theory posits that the way entities are 
connected and structured within a network 
drives outcomes as much, if not more, than 
individual-level attributes (Borgatti et al., 
2018). There are several structural indices 
computed via network data that, according to 
network theory, have implications on 
individual-, group-, and network-level 
outcomes. For example, at the individual-
level, a person positioned more centrally in a 
network likely receives more social support 
and social capital, and faces greater social 
constraints, as compared to someone more 
peripheral in the network (Valente, 2010). 
Similarly, nodes structurally positioned 
between dense subgroups within networks 

have strong influence due to their control of 
what information moves from one group to 
another (Freeman, 1978). They serve as 
gatekeepers and bridges for information 
spread. At the group-level, clusters or cliques 
(i.e., densely connected subgroups within a 
larger network) can impact information and 
behavior spread. Information is passed, and 
behaviors are adopted, quickly within 
clusters, but may be slower to move outside 
of clusters to other parts of the network 
(Granovetter, 1985). Finally, at the network-
level, densely connected networks will 
spread information quicker than a more 
fragmented network (Valente, 2005). 
Therefore, understanding the various 
properties of a network, and how networks 
are structured, could have implications on 
how public health information is spread 
through social media networks, as well as 
inform future programmatic or intervention 
strategies (Valente, 2012; Valente et al., 
2015).  

 
A Short Primer on Social Media Mining 

Social media mining refers to the 
collection and analysis of data derived from 
social networking websites (e.g., Twitter, 
Instagram, Facebook, and others). Much of 
the data collection is done using computer 
code which elicits data through a website’s 
Application Programming Interface (API). 
The API can generate information such as 
User ID, the text used to comprise a post, 
friend counts, and the number of times a 
social media post was shared with others. 
Data collected through an API are similarly 
analyzed using computer code and 
algorithms that explore and draw inferences 
about the collected data. To date, Twitter 
remains a prominent data source to study 
various population level phenomena (e.g., 
Karami et al., 2020). This is due, in part, to 
Twitter’s user agreement, which makes posts 
written by users part of the public domain 
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(see developer.twitter.com), and the 
platform’s commonplace use for relaying 
current-events information (Moon & Hadley, 
2014). Using social media mining collection 
and analysis, Twitter data has been used 
widely to study various psychosocial 
phenomena including to predict the stock 
market (Bollen et al., 2011), map mood 
during natural disasters (Cho et al., 2013), 
and infer mental health status about the 
COVID-19 pandemic (Valdez et al., 2020). 

 
Present Study 

Social network theory emphasizes the 
importance of accurate and responsible 
public health messaging due to the ways 
networks serve as a mechanism for 
information spread (Valente, 2010). Social 
media mining affords researchers the data 
necessary to draw conclusions about 
networks through an SNA approach. By 
identifying the ways tweets with pro-mask 
rhetoric are structured and patterned, we gain 
insight into how Twitter can be leveraged to 
increase positive messaging, and as a result, 
improve public health behaviors. We seek to 
answer three research questions:  

1. What are the basic network structures 
related to the retweeting of pro-mask 
tweets? 

2. How might these structures be related 
to information spread?  

3. What are the implications and 
applications of an interdisciplinary 
collaboration between social media 
mining and SNA? 

Methods 

Data Collection 

This is a pilot investigation testing a 
combined social media mining and SNA 
approach. As such, we collected one week’s 
worth of tweets pertaining to support for 

protective mask wearing in the United States 
through Twitter’s API (August 7-August 14) 
to create a manageable dataset. To procure 
our data, we began by identifying tweet IDs 
comprised of individual Twitter posts 
containing one, or a combination of, 
popularly used pro mask-related hashtags 
identified by Google Trend data:  
 

1. #maskup*,  
2. #maskssavelives*,  
3. #wearadamnmask*,  
4. #maskitorcasket* 

 
(endpoint: GET statuses/show/id). Note, 
asterisks were added at the end of each 
hashtag during the search query to include 
wildcards—i.e., accidental misspellings of a 
hashtag that likely intend to convey the same 
meaning (e.g., #masksup versus #maskup).  

Using a proprietary Decahose provided by 
the Indiana University Network Science 
Institute (IUNI) that nets users 10% of total 
tweets through Twitter’s API, we 
downloaded each tweet, as well as the 
standard metadata provided by Twitter 
including: the user who posted the content; 
the number of times a tweet was retweeted; 
the total number of followers; the total 
number of tweets per account; and the 
verified status (i.e., Twitter’s process of 
ensuring accounts originate from specific 
people, such as celebrities). See 
https://iuni.iu.edu/projects for more 
information.  

We then removed non-English tweets (n = 
324) and potential bots (n = 74). Our final 
sample was comprised of (n = 4,289) users, 
and (n = 10,107) tweets. Note, we evaluated 
accounts for possibly bot-like behavior using 
a proprietary algorithm Botometer 
(previously Bot or Not), which provides a 
bot-score based on written patterns within a 
specific account. We then used our hashtag 
data to generate an edgelist, which 
reorganized our data by use of one (or a 
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combination) of the included hashtags, the 
associated tweet, and the extent to which a 
source tweet was retweeted by Person A (the 
follower) from Person B (the author).  

 
Network Operationalization 

After collecting the data, we created a 
network using our social media data by 
connecting accounts (nodes) that retweeted 
others using one of the aforementioned pro-
mask hashtags. To operationalize the 
network, a directed connection was defined 
as the action of retweeting another account. 
In other words, the connection would be 
directed from the account which made the 
retweet to the account which made the 
original tweet to understand the action of 
actively spreading or retweeting pro-mask 
sentiments. Further, the nodes in this network 
would then be individual Twitter 
users/accounts, while the connections would 
be the act of retweeting. 

 
Data Analysis 

Descriptive statistics. Sample charac-
teristics, including means, standard 
deviations, and frequencies, were calculated 
for account followers, tweets, and 
verification status (i.e., whether an account 
was deemed “verified” by Twitter) using 
RStudio. Network descriptive statistics 
including centrality measures, group 
measures, and network-level measures were 
computed using the igraph package (Csárdi & 
Nepusz, 2006). Centrality is a property of a 
node’s position within a network (Borgatti et 
al., 2018), and was measured in the form of 
in-degree, out-degree, betweenness, 
closeness, and eigenvector centrality in this 
study. Group measures, which 
mathematically identify groups or 
communities of nodes (Valente, 2010), 
included a k-core analysis and community 
detection using modularity. Finally, network-

level measures included density, 
centralization, and transitivity, and represent 
overall patterns present within the entire 
network (Valente, 2010). See Table 1 for 
definitions of each network measure, as well 
as results from these data.  

Exponential random graph models. We 
used exponential random graph modeling 
(ERGM) to further understand the action of 
retweeting within this network. Through the 
use of iterative Marcov chair Monte Carlo 
algorithms, ERGMs approximate the 
maximum likelihood estimates for the log-
odds of associations between given factors 
(structural and attribute-related factors such 
as density or number of followers) and tie 
presence within networks. To do so, ERGMs 
use the empirical network data combined 
with certain researcher assigned parameters 
to simulate other networks, which are then 
compared to the original empirical network 
and used to determine statistical significance, 
serving as a nonparametric approach to 
handling dependence within data (Lusher, 
Koskinen, & Robins, 2013). ERGMs return 
parameter estimates (PE) and standard errors 
(SE) for each factor entered into the model. A 
factor is deemed significant at a p < .05 level 
if the PE is greater than two times the SE. 
Cleaning and management of network data, 
along with ERGM analyses, were completed 
using the statnet package in R Studio 
(Handcock et al., 2019).  

ERGM model specification. Network 
structure parameters were added to model 
density (edges or connections in the 
network), reciprocated connections 
(connections that are mutually shared 
between two individuals), and transitive 
triads (three individuals connected to each 
other). Sender and receiver covariates were 
added for number of followers and number of 
tweets to determine significant associations 
between those variables and either retweeting 
someone (sending) or being retweeted 
(receiving).  Similarly, factors were added to 
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Table 1 
 
Centrality, Group-level, and Network-level Characteristics 

 
Term Definition Mean or Network 

Score SD 

 
Centrality    

In-degree 
The number of times a node (user) was retweeted 
(connection established by a user retweeting the node’s 
content) 

M = 0.73    3.52 

Out-degree 
The number of times a node retweeted information out in 
their network (connection established by the node 
retweeting another user’s content) 

M = 0.73     0.47 

Betweeness Measures how often a node falls along the shortest path 
between two other nodes.  M = 0.05    1.20 

Closeness 
A reverse measure of distance from the center of the 
network. Nodes with higher closeness scores are more 
reachable. 

M < 0.001* < 0.01* 

Eigenvector 
Centrality 

How connected someone is to the most 
central/popular/powerful people in a network M < 0.001*    0.02 

 
Group-level    

k-cores 
k-cores identify densely connected “cores” of nodes. The 
k-value represents the densest core, with lower k-cores 
representing less connected (and more peripheral) nodes 

           K = 3  

(n = 11 nodes in 3k 
core) 

 

n/a 

Community 
Detection 

Identifies groups of connected/clustered nodes within the 
overall network; modularity reflects how fragmented a 
network is, with higher modularity scores revealing more 
fragmented networks 

1,175 communities  

M = 3.59 nodes 
Modularity = 0.99 

  

   6.62 

 
Network Level 

 
   

Density The proportion of ties that exist in a network compared to 
the total possible number of connections in a network    < 0.001*  

Centralization 
A measure of network structure; higher centralization 
indices indicate a more “hierarchical” structure across the 
network 

       0.03  

Transitivity 
The proportion of all triangles in a network; indicates 
clustering in the network, with higher transitivity scores 
meaning more nodes have connections in common 

   < 0.001*  

Note. *values are less than 0.001 and may be a reflection of the disconnected nature of the network at large.  
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determine whether being a verified account 
increased the odds of retweeting or being 
retweeted. A homophily (sameness) term was 
added to determine whether accounts 
retweeted others who matched their verified 
status more than would be by chance. Lastly, 
an in-degree popularity term was added to 
model the propensity of being retweeted 
because many others have already retweeted 
the account. 

 
Results 

Sample Characteristics 

Overall, 5.2% (n = 221) of users (n = 
4,289) were verified. Number of followers 
per user ranged from 0 to 3,604,035, with a 
mean of 13,937.2 followers (SD = 111,220.6) 
and median of 970 followers. Number of 
tweets per user ranged from 1 to 1,621,861, 
with a mean of 51,057.7 (SD = 106,307.9) 
and median of 14,855 tweets. Users were 
retweeted in this sample 0.73 times on 
average (SD = 3.51), with one user being 
retweeted as many as 108 times. Nearly three 
quarters (70.8%, n = 2,984) of the network’s 
users were never retweeted. Users retweeted 
an average of 0.73 (SD = 0.47) tweets and a 
max of four tweets in this sample, suggesting 
there were not users tweeting large amounts 
of content out, but there were users whose 
content was disseminated more often. Of 
those whose content was retweeted in this 
network (n = 1,243), 15% were verified (n = 
186), their number of followers ranged from 
0 to 3,604,035 (mean = 39,072.3, median = 
3,235, SD = 201,406.1), and they tweeted a 
mean 37,878.90 tweets (median = 11,042, 
range = 1-1,233,437, SD = 85,048.6). Of 
those who retweeted content out (n = 3,046), 
1.1% (n = 35) were verified, number of 
followers ranged from 0 to 582,524 (mean = 
3,680.2, median = 590, SD = 22,604.3), and 
users tweeted an average of 56,435.7 tweets 
(median = 16,682.5, SD = 113,422.0, range = 

1-1,621,861). See Table 2 for all sample 
characteristics. 

 
Network Descriptives 

Centrality. In this network, a user was 
retweeted (in-degree) 0.73 (SD = 3.52, range 
= 0-108) times on average and retweeted 
others in the network (out-degree) an average 
of 0.73 (SD = 0.47, range = 0-4) times. The 
majority of users in this network were never 
retweeted (70.8%, n = 2,983), with 20.6% (n 
= 869) of the network being retweeted once, 
and less than 1% being retweeted more than 
12 times (n = 39). More than a quarter 
(27.5%; n = 1,159) of the network never 
retweeted another user (and therefore only 
provided content to the network), 71.4% (n = 
3,009) retweeted one user, and 1.1% (n = 47) 
of the network retweeted more than one user. 
The average betweenness score for nodes in 
this network was 0.05 (SD = 1.20), and the 
mean scores for both closeness and 
eigenvector centrality were less than 0.00 
(SD = 0.00, 0.02, respectively).  

 
Group-level measures. Group-level 
measures revealed a largely fragmented 
network in this study. A k-core analysis 
revealed three “cores” within the data, with 
11 nodes making up the largest (and densest) 
core (3k-core). Finally, a community 
detection analysis was conducted based on 
edge betweenness scores. This technique 
splits the network into mutually exclusive 
groups of connected nodes, where nodes can 
only belong to a single community (Valente, 
2010). Community detection revealed 1,175 
communities with modularity scores of 0.99. 
The majority of communities were sized at 
two nodes (68.3%, n = 802), with the largest 
community consisting of 111 nodes. The 
average community consisted of 3.59 nodes 
(SD = 6.62). 
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Table 2 
 
Sample Characteristics for 4,289 Twitter Users 

 
 % n Mean Median SD Range 

Verified       
   Overall 5.2 221     
   Source 15 135     
   Retweeter 1.1 35     
Num. of Followers       
   Overall   13,937.2 970 111,220.6 3,604,035 
   Source   39,072.3 3,235 201,406.1 3,604,034 
   Retweeter   3,680.2 590 22,604.3 582,524 
Num. of Tweets       
   Overall   51,057.7 14,855 106,307.9 1,621,860 
   Source   37,878.9 11,042 85,048.56 1,233,436 
   Retweeter   56,435.7 16,682.5 113,422.0 1,621,860 

Note. Source = people whose content was retweeted out (n = 1,243); Retweeter = people who retweeted content out 
(n = 3,046); SD = standard deviation 

Network-level measures. Similar to 
group-level measures, network-level 
measures revealed a largely disconnected 
(and therefore fragmented) network. The 
density of this network was 0.0002 and 
transitivity score was 0.001, suggesting an 
overall sparsely connected network. The 
centralization index for this network was 
0.025. See Table 2 for all network descriptive 
results. 

 
ERGM 

Retweets were significantly more likely to 
occur between accounts of the same 
verification status (PE = 0.28, p < .01) and 
shared a connection to a third account 
(transitivity; PE = 0.65, p < .01). There was 
also a significant in-degree popularity term, 
meaning accounts were more likely to 
retweet other accounts that had been 
retweeted frequently by others (PE=0.45, 
p<.01). Accounts were more likely to retweet 
others if they were not verified (PE = -0.93, p 
< .01) and tweeted more often (PE = 
0.0000009, p < .01); however, accounts were 
less likely to retweet if they had more 
followers (PE = -0.00002, p < .01). On the 

other hand, accounts were more likely to be 
retweeted if they were verified (PE = 0.89, p 
< .01), had more followers (PE = 0.0000004, 
p < .01), and tweeted more often (PE = 
0.0000004, p < .01). Table 3 provides all 
ERGM terms, PE, SE, and p-values for the 
presence of a retweet between accounts.  

 
Discussion 

 
This study explored an interdisciplinary 

collaboration between Computational 
Informatics (the field where social media 
mining is housed) and Social Network 
Analysis. Our intent was to support the 
combined use of both groups of 
methodologies in understanding the spread of 
health information and how that information 
can potentially lead to improved health 
behaviors. Our example, information spread 
about pro-mask wearing during the COVID-
19 pandemic, underlines the need to 
understand the structural and positional 
mechanisms which may promote or constrict 
the sharing of health-related information 
(SNA) within abundantly available Twitter 
data (social media mining). Indeed, our 
results  supply  further  understanding  on the
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Table 3 
 
ERGM Results for Retweeting and Being Retweeted 

   

 PE (SE)   p    

Structural Terms       

 Edges -9.94 (0.005) < .01*   

 Transitivity 0.65 (0.005) < .01*   

 In-degree Popularity 0.45 (0.0008) < .01*   

Verification Homophily 0.28 (0.006) < .01*   

Sender Covariates       

  Verification -0.93 (0.003) < .01*   

  Followers -0.00002 (0.000001) < .01*   

  Tweets 0.0000009 (0.0000001) < .01*   

Receiver Covariates       

  Verification 0.89 (0.009) < .01*   

  Followers 0.0000004 (0.00000005) < .01*   

  Tweets 0.00000004 (0.00000001) < .01*   

     

basic network structures related to the 
retweeting of pro-mask twitter users, 
implicate how these structures may be related 
to information spread, and expand the 
implications and applications of this 
interdisciplinary collaboration of research.  

Overall, this network was sparsely 
connected, decentralized, and disjointed. 
Because mean scores on each of the centrality 
measures were low, we can assume that most 
users’ information is only reaching a small 
number of connected users. This differential 
sharing or disjointed network of sharing has 
previously been noted in social media virality 
(Goel et al., 2015). However, based on k-core 
analyses, as well as the centralization index 
of this network, results suggest a select few 
users had a much higher influence over the 
network, despite being unreachable by most 
nodes. These more popular nodes could serve 

as change agents, or opinion leaders, in the 
network (Valente & Pumpuang, 2007), and 
would be important to include if attempting 
to spread public health information across 
this network.  

Community detection analysis revealed a 
vastly fragmented network, with a near 
maximum modularity score and several 
disconnected communities within the larger 
network. This means that structurally, 
information is likely “locked in” within those 
fragmented communities and is unlikely to 
spread beyond local contacts. Thus, 
programmatic efforts could focus on building 
connections between communities, and 
creating opportunities for information to 
spread across segmented groups 
(Granovetter, 1985; Valente et al., 2015). It is 
important to structurally identify subgroups 
of the network that are more cohesive, 
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understand the key players within them, and 
promote positive messaging and greater 
connection/access to them (Valente et al., 
2015). Thus, understanding what factors 
related to the presence of ties within this 
network is a first step in building more 
connections among users. 

Transitivity and in-degree popularity were 
significant factors related to retweets in this 
sample network. Both factors speak to the 
structural influences which may be at play 
regarding the sharing of information on 
Twitter. A significant transitive factor 
underlines clustering and local community 
findings, which emerge around the sharing of 
polarized hashtag content. Others who 
believe similarly may create an enclosed 
information sharing environment prone to 
echo chambers (Malik & Lee, 2020). 
Similarly, the in-degree popularity term may 
implicate the social influence inherent to 
popular accounts or popular tweets being 
retweeted by many people (Riquelme & 
González-Cantergiani, 2016), hence pro-
viding more impressions and more 
opportunity for others to see pro-mask 
content on their feed and retweet the content. 
Level of popularity is also used by Twitter to 
share more popular content to users. This 
factor may accentuate the impact of these 
posts; however, this effect cannot be 
determined in the analysis used. 
Understanding the impact of these echo 
chambers and proliferation of popular tweets 
and hashtags would provide further 
implications on the dissemination of 
information and misinformation in a 
pandemic setting.  

Further, several characteristics of the 
accounts were significantly associated with 
the odds of retweeting or being retweeted by 
other accounts. While the verification 
process on Twitter is called into question at 
times, it played an important role in 
determining the retweet network seen here. 
Verified accounts were significantly more 

likely to be retweeted by others while 
significantly less likely to retweet others. 
This may show a propensity for verified 
accounts to curate and share original content 
instead of retweeting others’ content. 
Similarly, accounts were less likely to 
retweet pro-mask content if they had more 
followers. These results show that verified 
accounts and accounts with more followers 
may serve an important role in spreading 
these hashtags (and related content) due to 
their status as opinion leaders (Riquelme & 
González-Cantergiani, 2016; Valente & 
Pumpuang, 2007).  

Overall, when identifying key op-
portunities to create connections within this 
network that could enhance the spread of pro-
mask content, identifying central nodes who 
are verified and have many followers could 
be helpful for content generation. Further, 
linking less influential nodes to these central 
players could drive the information being 
sent out, seeing as the influential nodes are 
not likely to retweet content, but be the 
source of retweeted information. Finally, 
finding opportunities to connect smaller, 
disjointed communities together could results 
in a greater spread of information, reducing 
the chance of information starting and 
stopping within isolated groups. 

 
Implications for Health Behavior Theory 

Herein, we used SNA theory and methods 
to identify key constructs related to the 
spread of health information across a Twitter 
network, and suggested opportunities for 
intervention based on our theoretically 
informed results. The insights afforded by the 
analyses further reinforce that when mining 
social media data, regardless of the research 
question, one should consider the additional 
implementation of SNA theories and 
frameworks to understand the underlying 
interconnectedness of the data. Indeed, 
through interdisciplinary approaches, one can 
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draw more-accurate and generalizable 
conclusions than when exploring data from 
only one perspective. For example, without 
SNA, social media mining could be limited 
to exploratory analyses that only analyze the 
data at hand. By contrast, without social 
media mining, SNA may be missing an 
important puzzle piece that adds context to 
the derived network connections. Though 
both SNA and social media mining could 
undoubtedly stand on their own, integrated 
theoretical principles only stand to strengthen 
the merit of findings. 

From a health perspective, this can help 
inform key outcomes intending to promote 
positive health behaviors across a spectrum 
of health issues. We reiterate that while this 
interdisciplinary approach is not new, it has 
been less critically assessed and evaluated 
from a purely health behavior perspective. 
And, in that small gap there remain exciting 
opportunities to further explore the potential 
unity between computational informatics and 
SNA in directions that exclusively pertain to 
health behavior science. Indeed, SNA and 
computational informatics combined can 
help health behaviorists understand nuanced 
aspects of human behavior through the 
effects of social interactions on these 
platforms.  

 
Limitations 

Our work is subject to limitations. First, 
our intentionally restrictive example was 
used to simply illustrate the benefit of 
combining SNA and social media mining 
frameworks. As such, the network displayed 
in our study only comprises retweets from 
one week when a series of pro-mask hashtags 
were particularly popular in social media 
spaces (Heverin & Zach, 2010). Because of 
the limited scope of our study, these results 
do not include anti-mask stances; an equally 
feverous movement on social media 
encouraging people to forgo mask-wearing 

practices. We also note that our study, as with 
any study using Twitter data, is subject to the 
limitations inherent to social media data, 
including a bias within key demographic 
information (Gore et al., 2015), and the 
temporal and spatial patterns that affect how 
information is relayed on social media (Emch 
et al., 2012). However, these limitations do 
not diminish the importance of our work. 
Rather, they create further opportunities to 
conduct more expansive studies using a 
combined informatics and SNA approach 
that expand on our original study and move 
into new domains entirely. Future research 
should consider expanding the parameters of 
our original study by including a broader date 
range, additional hashtags that represent 
counter-mask movements, and other forms of 
gauging interaction on Twitter (e.g., 
mentions, impressions, likes). Additionally, 
future research should continue to push the 
methodological boundaries between these 
new fields by exploring deeper hypothesis-
driven and theory-guided research questions 
about health behaviors expressed on social 
media, including added content analysis 
components such as topic models (Blei et al., 
2003) and sentiment analysis (Hutto & 
Gilbert, 2014). 

 
Discussion Questions 

1. What are the implications for engaging 
in social media research without a pre-
determined theoretical framework to 
guide the study? 

2. How similar/different would an anti-
mask network analysis be? What are the 
underlying reasons for those similarities 
and/or differences? 

3. How can a content analysis of our 
dataset strengthen the findings of the 
study? 
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