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School of Mathematics 
Georgia Institute of Technology 

Atlanta GA 30332-0160 
404 233 3381 
404 894 2715 

February 10, 1986 

Kenneth Gross, Director 
Modern Analysis Program 
National Science Foundation 
Washington DC 20550 

Dear Dr. Gross: 

Enclosed please find a final report for my NSF grant MCS 8300551, 
which expired last December (and has been replaced by DMS 8504354). 
Please let me know if anything further is required, other than copies 
of additional reprints, which will be sent when available. 

For the technical description of the project, the instructions on NSF 
form 98A state "The information supplied in proposals for further 
support, updated as necessary, may be used to fulfill this 
requirement." I thus provide a copy of the proposal for grant DMS 
85043051, submitted in late 1984 and beginning in June 15, 1985, and a 
copy of the progress report for that grant, submitted in December, 
1985. Additional technical information is to be found in the progress 
report of September, 1984. 

Sincerely yours, 

Evans M. Harrell II 
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Quantum physics benefits from rigorous mathematical 
analysis 	in 	two ways: 	1. 	A general 	theorem delineates 
the 	types of 	spectra 	(energy 	levels) 	a given model 	can 
possibly have, 	and 	is 	thus 	the 	starting point 	for 	detailed 
theoretical 	study; 	and 	2. 	Quantitative 	study 	is 
frequently a delicate matter, 	and 	the mathematical 
approach 	is 	then 	the 	only reliable way 	to make 
calculations when 	the 	usual 	perturbative 	expansions 	are 	of 
dubious 	validity. 

The major 	accomplishments of 	this project 	have 	to do with 
tunneling 	effects 	and 	the 	semiclassical 	limit, 	in 	which 
quantum mechanics often manifests 	itself 	through 	effects 
which 	are 	exponentially small 	functions of 	some 	physical 
parameter. 	Notable 	examples are 	the decay of 	atomic 
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quantitative 	analysis of 	the 	spectra 	and waye —Function.. 	in 
these 	and 	similar 	problems. 	In 	addition, 	they 	provide 
some new foundational 	study of 	the nature 	of 	the 
semiclassical 	limit 	in 	one 	dimension. 
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Preface  

This proposal is for a renewal of NSF grant MCS 8300551. 

The research will be undertaken by Professor Harrell probably 

partially with the assistance of one or more graduate students 

at Georgia Tech. (Graduate student support is not being 

requested at this time.) AMS classification numbers that 

apply include 35J10, 35P15, 35J60, 47A55, and related sub-

divisions of areas 34 and 81. 



Progress Report of Supported Research 

July, 1983 - September, 1984 

This report is identical to the progress report already 

mailed to the Foundation. 

The proposal for this grant mentioned a selection of 

problems in mathematical physics, most of which are con-

cerned with the spectral theory of linear operators such as-

SchrOdinger operators. Schrodinger operators arise in 

quantum mechanics, where they are the fundamental mathemati- 

cal objects controlling the time-evolution. Their spectra 

are important both because they help understand and solve 

the Schrodinger equation and because they often have direct 

physical significance. Many of the important problems in 

quantum physics fall under the categories of direct spectral 

theory, inverse spectral theory, and perturbation theory, 

frequently under more than one such category. The grant 

proposal filed about two years described several problems in 

these categories in some detail. 

Once again, I am pleased to report substantial progress 

on most of the topics mentioned in the grant application. 

The funds in the grant, of which little remains, supported 

many professional activities connected with my research, 

especially the preparation and publication of papers and 

travel to conferences and colloquia. Some reprints 

iv 
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are enclosed for your records. 

Travel  

Travel supported by the Foundation included: the 

Congress of the International Association of Mathematical 

Physicists at Boulder, Colorado, in August, 1983; The 

Southeastern Atlantic Conference on Differential Equations in 

Knoxville, Tennessee, November, 1983; The American Mathematical 

Society meeting in Louisville, Kentucky, January, 1984; and 

the Southeastern Atlantic Conference on Differential Equations 

in Winston-Salem, North Carolina, October, 1984. In addition, 

during 1984 I reported on research supported by the Foundation 

at Tulane University, the University of Missouri, King's 

College in London, and at international symposia at Como, 

Italy, and Marseille, France, without requiring travel funds 

from the grant. 

Publications  

The following publications supported by the Foundation 

through this and the preceding grant have appeared in the 

last year and a half: 

On the Double-Well Problem for Dirac Operators, Ann. 
de l'Institut H. Poincare 38 (1983), 151-170, with 
M. Klaus. 

SchrOdinger Operator Methods in the Study of a Certain 
Nonlinear PDE, Proc. Amer. Math. Soc. 88 (1983), 376-

377, with B. Simon. 

The Mathematical Theory of Resonances whose Widths are 
Exponentially Small, II, J. Math. Anal. Appl. 9 (1984), 
447-457, with N. Corngold and B. Simon. 
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Hamiltonian Operators with Maximal Eigenvalues, J. Math. 
Phys. 25 (1984), 48-51. 

Book Review of M. S. P. Eastham and H. Kalf, Schrodinger-
type Operators with Continuous Spectra, Bull. Amer. 
Math. Soc. 10 (1984), 311-315. 

1/R Expansion for H2: Analyticity, Summability, 
Asymptotics, and Calculation of Exponentially Small 
Terms, Phys. Rev. Lett. 52 (1984), 1112-1115, with 
R. J. Damburg, R. Propin, S. Graffi, V. Grecchi, 
J. 6IZ'ek, J. Paldus, and H. J. Silverstone. 

Moreover, the following manuscripts have been written but 

have not yet appeared: 

Coerciveness and Galerkin Methods for Elliptic Equations 
at Resonance, with W. Layton. 

On the Extension of Ambarzumian's Inverse Spectral 
Theorem to Compact Symmetric.Spaces. 

Potentials Producing Maximally Sharp Resonances, 
with R. Svirsky. 

Potentials having Extremal Eigenvalues Subject to 
p-Norm Constraints, with M. S. Ashbaugh. 

Theory of Quantum Resonance. This was the first topic 

mentioned in the grant application, and has been dealt with 

in the context of two different projects. Quantum resonances 

can be interpreted as nonreal eigenvalues of certain com-

plexified, formally symmetric differential operators. A 

graduate student at Johns Hopkins, R. Svirsky, is doing a 

thesis on this subject under my informal guidance. We have 

written one paper together (see above) and he should finish 

his thesis in June. The general idea is to perform a 

variational analysis using the perturbation theory of linear 

operators in order to determine the functional form of 

potentials giving rise to sharp quantum resonances. Resonances 
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are said to be sharp if the eigenvalues lie near the real 

axis. We obtain generic lower bounds on the imaginary parts 

of the eigenvalues in terms of the real parts, bounds on the 

potential V, the size and shape of its support, and Lp 

norms of V. The second project connects a double-well prob-

lem, described below, to the perturbation theory of a resonance 

problem. 

Double-Well Potentials and Their Bender-Wu Theory.  This 

refers to quantum-mechanical Hamiltonians with wells, or 

minima, which are separated by a large distance or a large 

barrier. There is a tendency for the eigenvalues of operators 

of this form to cluster in pairs, and over the last several 

years in a series of papers I have developed perturbation 

theory for the eigenvalues and particularly for the splitting 

between them, which is a delicate "tunneling" phenomenon. 

The eigenvalue gaps can be expressed in terms of the eigen-

functions in a way that allows evaluation by semiclassical 

expansions. It has been gratifying to see these papers 

attract attention recently, particularly from specialists in 

pseudodifferential operators, who have extended them to a 

wide class of operators (see, e.g., B. Helffer and J. Sjostrand, 

Multiple Wells in the Semiclassical Limit, I - V, the first 

of which appeared in Commun. PDE 9 (1984), 337-408). My 

own research in the period covered by the grant has centered 

on a particular model of some importance in quantum chemistry, 

the hydrogen molecular ion. It has been a collaborative, 
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interdisciplinary effort with S. Graffi, V. Grecchi, 

H. J. Silverstone, and others. The Hamiltonian for this 

molecule separates, making detailed calculations possible, 

and we have uncovered an intricate analytic structure. The 

perturbation series for the eigenvalues (as a function of 

the internuclear distance in the Born Oppenheimer approxi-

mation) can be calculated to very high order, and are 

asymptotic but diverge. They can be summed by a generalized 

Borel technique, but the sums of the series are not the 

eigenvalues. Ideas going back to work of Bender and Wu 

lead one to expect that perturbation series at very high 

order often become regular in ways that can be related to 

tunneling calculations. In this case we have discovered 

how to relate the series coefficients at high order to my 

earlier estimates of the gaps between the eigenvalues, by 

first identifying a resonance problem associated with the 

ion and then analyzing the relationship between the resonance 

and the gaps on the one hand and the perturbation series on 

the other. 

Nonlinear Elliptic PDEs and Inequalities for Eigenvalues. 

These two distinct topics have turned out to be related. 

In attempting to create new bounds on eigenvalues by deter-

mining the operator, within a certain class, that maximizes 

or minimizes a given eigenvalue, I found that what is in 

effect the Euler equation for the problem is a semilinear 

partial differential equation (J. Math. Phys. 25 (1984), 
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48-51). Existence of extremal operators follows from linear 

functional analysis, so in the above-listed paper with 

Ashbaugh and another manuscript in preparation, he and I 

obtain not only eigenvalue bounds but also existence theorems 

for solutions of these nonlinear equations. Other sorts 

of eigenvalue bounds, for example lower bounds on the funda-

mental eigenvalue of -A + V on a sphere in terms of the 

spectral asymptotics of that operator, have been obtained 

from inverse methods in my recent manuscript, On the 

Extension of Ambarzumian's Inverse Spectral Theorem to 

Compact Symmetric Spaces. 

The least successful topic of those listed in the grant 

application has been that of inverse problems in nuclear 

magnetic resonance. This was a joint project with Michael 

Silver, a graduate student at Johns Hopkins, when I was on 

the faculty there, and although it is still interesting 

and potentially important, it has not progressed much since 

my departure. I determined that the equations of interest 

can be transformed into a version of the Zakharov-Shabat 

equations, for which an inverse theory already exists, but 

am unaware of whether Mr. Silver has managed to make use of 

that observation. 

In the coming budget period my immediate plans include 

not only rounding out and writing up the projects described 

above, as well as such engrossing activities as making a 

renewal application, but also pursuing some new ideas. 



In particular, I will focus on finding additional general 

inequalities for eigenvalues. I can prove, for example, 

that there are lower bounds to the gap between the first two 

eigenvalues of some types of SchrOdinger operators, in terms 

of information such as the support and norms of the poten-

tial, and will attempt to find the constants in the bounds. 



PROPOSED RESEARCH 

Operator Theory and Mathematical Physics  

The fundamental object in the mathematics of nonrela-

tivistic quantum mechanics is the Schrodinger operator, a 

linear differential operator of the form 

-A + V, 	 (1) 

where A is the Laplace operator on R, a subset of a space 

such as R3 , and V represents multiplication by a real-valued 

potential function V(x). The domain of definition is typi-

cally a Sobolev space. Nonrelativistic quantum physics 

reduces in large measure to the study of the spectrum and 

eigenfunctions, including generalized eigenfunctions, of (1) 

with various types of potentials, sometimes equipped with 

variable parameters. The direct physical relevance of the 

spectrum and eigenfunctions is to specify the allowed values 

of a measurement of the energy and the spatial probability 

distribution of a quantum particle; but, moreover, the 

spectral theorem allows knowledge- of the spectral data to 

completely determine the dynamical semigroup solving the 

time-dependent SchrOdinger equation. The study of such 

operators and their relativistic variants is thus quite 

important in physics. Conversely, they have been a gold mine 

for mathematics, because, although they have been rigorously 

understood only in the last couple of decades [30, 36], a 
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number of imperfectly understood techniques have long been 

used to handle them with fair success in chemical and particle 

physics. This is good evidence of mathematical structure 

to uncover. 

Since his thesis, Professor Harrell has worked on a 

range of topics in the spectral theory of Schrodinger opera-

tors, primarily by augmenting the theory of perturbations of 

linear operators with that of differential and integral 

equations. These topics have included estimates of eigen-

values and eigenfunctions, inverse spectral theory, the 

nature of spectra of non-self-adjoint realizations of the 

operators, and existence and properties of solutions to 

certain semilinear partial differential equations. The 

physical leitmotiv has been the tunneling effect in the 

semiclassical limit of quantum mechanics. 

Crudely speaking perturbation theory means taking small 

terms, usually contained in V in (1), into account by making 

power-series expansions. It can be thought of more abstractly 

as synonymous with the theory of analytic, operator-valued 

functions of one or more complex variables. This is well 

understood when the perturbation is bounded, relatively 

bounded, or satisfies certain other conditions. Unfortunately 

for physical theory many of the more important Schr8dinger 

operators contain potential terms that are not small in any 

very strong sense, and such singular perturbations can cause 

eigenvalues and eigenfunctions to be nonanalytic or even 

discontinuous functions of the parameter even when the form 
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of the dependence of the operator on the parameter is 

apparently quite simple. Although it may not be difficult 

to write down formal power series for quantities such as 

eigenvalues and eigenfunctions, the series will then fail 

to converge or even to have a meaningful, provable relation-

ship to what they putatively represent. In addition, many 

quantitites of physical interest, particularly those asso-

ciated with tunneling effects, tend to be exponentially 

small functions of the perturbation parameter, and as a 

consequence cannot be calculated perturbatively. Schrodinger 

operators, however, have additional structure beyond their 

self-adjointness, which can be exploited to refine the cal-

culation. As a rule of thumb, the crucial properties of 

the spectrum are reflected somehow in the structure of the 

eigenfunctions, particularly, for the problems on which 

Harrell works, in growth properties that can be estimated 

with semiclassical expansions. There are two steps in the 

implementation of this idea. The first is to guess the right 

property of the eigenfunction and to prove a formula showing 

how the spectrum is related to it .. The second is to use 

the extensive lore about solutions of differential or inte-

gral equations to evaluate the functional property. 

A subject that benefits in a different way from pertur-

bation theory is the inverse spectral theory of SchrOdinger 

operators, i.e., the study of the extent to which the poten-

tial V can be determined the spectrum. Since physical 

experiments cannot really be expected to measure the entire 



spectrum of a Hamiltonian operator, Harrell believes in 

investigating the question of what partial knowledge of the 

spectrum implies about the potential. This leads to a 

study of inequalities on eigenvalues in terms of properties 

of the potential, such as p-norms, which can be derived with 

perturbative arguments. Some of the inequalities turn out 

to be connected with the solutions of auxiliary nonlinear 

differential equations. There are also special cases where 

partial information (even a single eigenvalue and an 

asymptotic estimate of the limiting behavior of the eigen-

values) can completely determine the potential. 

Double-Well Potentials  

Schrodinger operators with double-well potentials have 

been a staple of Harrell's research for several years. The 

distinguishing feature of a double-well potential V is that 

it consists of two widely separated parts, whose associated 

Schrodinger operators would have an eigenvalue in common 

if they were completely decoupled. This is typically due 

to a reflection symmetry about a central plane, which 

engenders an approximate, but broken, symmetry in the eigen-

values associated with the symmetric and antisymmetric sub-

spaces. Double-well potentials occur in simplified models 

for Yang-Mills field theory and in realistic models for 

diatomic molecules in molecular chemistry. An example is 

the hydrogen molecular ion H 2 , the SchrOdinger operator for 

which (in the Born-Oppenheimer approximation) is 

4 
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-A - 1/1x1 - 1/1 x- Rel 
	

(2) 

acting on L2 (R3 ), where x is the variable in R 3 
and e is a 

fixed unit vector. When the internuclear distance R is 

large the physical expectation is that H -42-  should roughly 

decouple into two independent, hydrogen-like pieces 

( -A- 1/1x1) except for tunneling effects, which are quite 

small. One of these effects is that the eigenvalues of a 

double-well operator are paired and separated by gaps 

0(exp(-CR)) as R 03, and it is both the most interesting 

physical question and the most subtle mathematical question 

connected with double-wells to understand and estimate the 

gaps between paired eigenvalues of (2) and similar operators. 

The general phenomena and techniques for estimating the gaps 

are fairly well understood as a result of work by Harrell 

and others exploiting the interplay between the theories of 

linear operators and partial or ordinary differential equa-

tions [8,13,15,16,18,20,27,37]. Harrell proposes to continue 

these investigations in three directions: 

1. Recently, the introduction of refined asymptotic 

expansions of double-well eigenfunctions by B. Helffer and 

J. Sjostrand and by B. Simon [27,28,37,38,39], based on a 

construction of Agmon [1], has freed some of the earlier gap 

computations of Harrell from simplifying assumptions, such 

as that the potentials tend to 0. at large distances from the 

wells or that the variables in the eigenvalue problem can be 

separated. While this represents a great technical advance, 



there is still room for improvement in the lower bounds for 

eigenvalue gaps, particularly for excited states. Obtaining 

better lower bounds might shed light on the nature of the 

semiclassical limit in quantum mechanics. 

2. The perturbation series for the eigenvalues of (2), 

in powers of 1/R, has been under study by Harrell in colla-

boration with S. Graffi, V. Grecchi, and H. J. Silverstone, 

because (2) is one of the simplest realistic double-well 

operators. A few years ago there was a conjecture, sup-

ported by numerical evidence, by the French theoretical -- 

physicists E. Brezin and J. Zinn-Justin that the asymptotic 

behavior of the perturbation series coefficients at large 

order was related to the eigenvalue gap by a dispersion for-

mula [7]. The study of this sort of relationship is called 

Bender-Wu theory after the first people to discover a rela-

tionship between perturbation series and tunneling quantities . 

in the context of the anharmonic oscillator [5]. In the past 

the tunneling quantity has always been a resonance width, 

i.e., the imaginary part of a nonreal eigenvalue of a for-

mally symmetric realization of a SchrOdinger operator. 

In [9,13] the formula of Brezin and Zinn-Justin is made 

precise and improved exactly by finding a resonance problem, 

a non-self-adjoint version of (2), which leads to a dis-

persion reaction in the usual way, and which is also con-

nected in leading order to the eigenvalue gap. The operator 

(2) is separable, and the Bender-Wu analysis is as a 
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consequence quite complete. Having succeeded with this model 

in understanding the connection between the tunneling 

effects and the large-order perturbation theory in great 

depth, Harrell and his colleagues would like to see how much 

of this intricate structure is particular to the model and 

how much is more widely applicable. 

3. There is an inverse problem related to the study 

of small gaps in the operators described above: To what 

extent does the presence of a small gap in the spectrum of 

a Schrodinger operator, especially between the fundamental 

eigenvalue and the rest of the spectrum, mean that the 

operator is in some sense of double-well form? This question 

can be addressed either with the aid of general inequalities 

(cf., [31]), or, in keeping with the ideas described below 

in the section on inverse problems and inequalities, by 

attempting to solve for the potential, within a given class, 

that minimizes the gap. Harrell has an unpublished proof 

that if potentials are defined on a finite region and there 

is a bound on one of their p-norms for sufficiently large 

p, then there is a potential that minimizes the fundamental 

eigenvalue gap. The gap-minimizing potential satisfies 

certain differential equations. Harrell plans to address 

the question of uniqueness of the gap-minimizing potential, 

and to determine whether it resembles a double-well potential 

by, for example,. separating the region in which it is sup-

ported into two roughly independent pieces. This program 



will probably be largely a collaboration with Professor 

E. B. Davies, who has some related results [10], and who 

will visit Georgia Tech in 1985. While the two other direc-

tions mentioned above continue earlier trends in Harrell's 

work, this one represents a new development. 

Theory of Quantum Resonance  

In some physical situations where the tunneling effect 

arises, such as when a particle is confined within a nucleus 

by a large potential barrier, the Hamiltonian has a purely 

continuous spectrum but the dynamical group it generates 

acts much as if it had discrete eigenvalues. For such 

resonance problems one can take either a time-dependent or 

time-independent point of view. The latter, on which Harrell 

and collaborators have written a series of articles [2,14, 

17,18,19,22], partially supported by the grant being renewed, 

replaces the study of the self-adjoint Hamiltonian with that 

of a non-self-adjoint operator having discrete but nonreal 

eigenvalues, related by perturbation theory to the discrete, 

real eigenvalueS of a reference problem. The real and 

imaginary parts of the complex eigenvalues have different 

physical interpretations, respectively having to do with 

the energy level and the decay time of the resonance. The 

imaginary part of such an eigenvalue will be referred to as 

the resonance width, and a resonance will be said to be sharp 

if the width is small. The analysis of resonances may be 

important for purely mathematical reasons as well, as a step 

8 



in the construction of a more satisfactory spectral theory 

for nonnormal operators. 

The aspect of resonances that has been predominant in 

Harrell's previous work has been the asymptotic evaluation 

of the widths. In the interesting situations the imaginary 

part is exponentially small in comparison with the real 

part, and is thus invisible in any usual perturbation 

expansion. Nevertheless, Harrell and colleagues have suc-

ceeded in evaluating the imaginary part asymptotically in 

several cases by delicate use of estimates of the growth 

of solutions of differential equations [2,8,13,17,18,19,29]. 

These analyses have been more complete in one-dimensional 

and separable cases than in cases without special symmetry. 

Since a key element is the use of general eigenvalue gap 

formulae that are independent of symmetry and dimension, 

Harrell believes he can extend this work by eliminating the 

reliance on techniques of ordinary differential equations 

in favor of the new eigenfunction estimates that have been 
• 

rather useful recently in the study of other tunneling 

effects mentioned above [27,28,37,38,39]. 

In a different attempt to understand exactly what 

makes a resonance sharp, Harrell has come up with some 

general lower bounds for the imaginary part in terms of pro-

perties of the potential, by using comparison techniques and 

perturbative estimates [22]. More recently, Harrell and a 

graduate student at Johns Hopkins, R. Svirsky, have gone 

9 
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beyond this to attempt to characterize the potentials, sub-

ject to certain bounds on their values and support, that 

produce maximally sharp resonances within a given energy 

range [26,40]. Harrell and Svirsky are trying to determine, 

among other things, whether all very sharp one-body quantum 

resonances are caused by confinement by a large potential 

barrier, rather than some other mechanism. Within certain 

limits, the answer appears to be affirmative. 

Finally, the time-independent and time-dependent 

points of view have not been related in a completely satis-

factory way. Professor Harrell hopes to understand the 

relationship better by comparing his calculations of 

imaginary parts to time-dependent studies of sojourn times 

by Lavine [32,33]. 

Inverse Spectral Theory and Inequalities for Eigenvalues  

Inverse spectral theory, the attempt to recover the 

potential V from the spectrum of a ScrOdinger operator,. has 

had some notable successes, particularly in one-dimension, 

where a complete knowledge of the spectrum (along with 

norming constants) will completely determine the potential 

by the Gel'fand-Levitan-Marchenko procedures or more recent 

alternatives [41]. At least as important, however, are 

higher-dimensional problems and problems where one has to 

make do with imperfect information about the spectrum, but 

much less is known about them. It turns out that the implica-

tions of imperfect information are often less tied to one- 
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dimension than are those of perfect information. 

On occasion even a limited amount of spectral informa-

tion can determine the potential. Consider, for instance, 

a Schrodinger operator -A 	V on an n-sphere (or any com- 

pact symmetric space of rank 1). The eigenvalues cluster 

near the (finitely degenerate) eigenvalues A k  of the Laplace-

Beltrami operator -A as the eigenvalue index k tends to 

infinity. Let n denote the limit of the. difference between 

the average of the k-th cluster for -A + V and A k . It is easy 

to see that this limit exists (for, say, bounded, measurable 

potentials), and it can be shown that the fundamental eigen-

value of -A + V must either lie strictly below n  or else 

V = n a.e. (constant function). [241. This fact curiously 

ties the top of the spectrum to the bottom. In other words, 

spectra have.to satisfy various not always evident consis-

tency conditions, and if they only marginally satisfy them, 

then the inverse spectral problem may be overdetermined. It 

does not appear to be precisely known what sets of real 

numbers could conceivably be spectra of Schrodinger operators 

on a given domain or a given manifold. Harrell proposes 

to study this question on the one hand by investigating other 

overdetermined inverse problems and on the other by exploring 

the consequences, of general and specific eigenvalue inequa-

lities. 

Not only can inequalities contribute to inverse problems, 

they can also be derived from constrained inverse problems. 



In a paper published earlier this year [23], Harrell solved 

the following problem: Let an operator -A + V act on a 

reasonable, bounded domain in an n-dimensional Euclidean 

space, and constrain the potential only by bounding its 

1-norm. Find the maximal possible value of the fundamental 

(or the n-th) eigenvalue and give conditions under which it 

is attained. Characterize the maximizing potential and 

determine when it is unique. Since then.  Harrell and M. S. 

Ashbaugh [3,4] have extended these ideas and combined them 

with ideas of V. Glaser, H. Grosse, E. H. Lieb, A. Martin, 

and W. Thirring [12,34], to incorporate p-norm constraints 

and to characterize potentials which either maximize or 

minimize eigenvalues. The result, from the standpoint of 

inverse theory, is that the value of any one eigenvalue 

produces lower bounds on the p-norms of the potential. The 

techniques are quite general, combining straight-forward 

functional analysis with formulae from perturbation theory, 

and thus also apply to other sorts of operators as well as 

-A + V, e.g., self-adjoint elliptic partial differential 

operators of certain forms. In the near future Harrell 

proposes to pursue analogous optimizing problems for other 

spectral properties, including gaps between eigenvalues as 

mentioned above, and for eigenvalues of non-self-adjoint 

differential operators. 
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Nonlinear Partial Differential Equations  

It has been known for some time that the theory of certain 
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kinds of nonlinear differential equations is connected with 

the spectral theory of linear differential operators (cf. 

[11]). Such connections have shown up in several ways in 

Harrell's work as well, ranging from the usual phenomenon 

of nonlinear evolution equations arising in inverse scat-

tering [14] to the need for eigenvalue estimates to prove 

convergence of numerical schemes [25]. A more unusual con-

nection was the discovery of Harrell and B. Simon [21] that 

eigenvalue counting could be used to produce an efficient 

proof of the nonexistence of positive solutions of certain 

semilinear differential equations of the form 

Au = -h(x)ua . 

In addition, M. S. Ashbaugh and Harrell have work in progress, 

partly described above under "Inequalities fOr Eigenvalues," 

which likewise connects linear spectral theory with certain 

auxiliary nonlinear differential equations. More specifically, 

the maximizing or minimizing potentials for an eigenvalue 

of an operator -A + V, with V constrained by 

II V  p < 

have been found to be characterized by VP-1  = cu2 , where u 

(the associated eigenfunction) satisfies 

- Au ± sgn(u) lul a  = Au 

(with a = (p+1)/(p-1)). Analogous equations hold for 

optimizing potentials with other leading linear elliptic 



k
•  • 
	

14 
k 	• • 

) 	. 

operators. The point is that existence theorems for optimizing 

potentials, which are fairly easy, imply existence theorems 

of solutions of the associated nonlinear equations. (Some 

related ideas have been noted in [6,12,34,35] and elsewhere.) 

The ideas for proving existence or nonexistence of solu-

tions to nonlinear partial differential equations seem to be 

rather efficient tools that have by no means been exploited 

to their fullest. Harrell plans to continue the investiga-

tion of the nonlinear equations that arise in the context 

of inverse problems, and to attempt to discover whether 

similarities among the apparently independent relationships 

between spectral theory and nonlinear equations mentioned 

above are merely accidental or indicative of deeper matters. 
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Foreign-Travel  

Professor Harrell has extensive European contacts (he 

has several foreign coauthors and formerly held a position 

at the University of Vienna), occasioning frequent foreign 

travel. He has specific plans to visit Marseille, France 

for two weeks in 1986 for the Congress of the International 

Association of Mathematical Physicists, ,the major interna-

tional mathematical physics meeting held at various sites 

every two or three years. He will probably combine or 

supplement that trip with a visit to one of the European 

universities at which he has standing offers to visit. 
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PROGRESS REPORT 	 DMS 8504:354 

Although this grant has been in effect for only a few months, there 
has been good progress, especially in the areas of a) semiclassical 
estimates of -..olutions of the Schrodinoer equation, b) 
eioenvalue bounds, and c) connections between Schrodinoer 
operators and the Laplace-Beltrami operators of differential geometry. 
The first two area are essentially described in the grant proposal, 
while the third is a related new development. The third area has also 
used the nonlinear differential equations mentioned in the orant 
proposal. The concrete embodiment of th:s progress has been a joint 
paper with E.B. Davies [1], which was written over the summer and 
recently accepted for publication. 

Travel. Professor Harrell attended two conferences where he spoke 
about grant-supported research. This grant paid the transportation to 
one of them, a meeting of the American Mathematical Society in 
Columbia, Missouri. 

Other articles written during the previous grant progressed towards 
publication, either by getting proofread £2,3) or receiving final 
revision and getting submitted to journals f4,5]. 
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