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Departmenf of Mathematics, Loyola Marymount University, 
Los Angeles, California 90045 

Communicated by Nathan Jacobson 

Received June 10, 1987 

Let n be a positive integer. Anf-ring A is said to satisfy the left nth-con- 
vexity property if for any U, u E A such that v >, 0 and 0 < u < u”, there exists 
a WE A such that u = WV. The right nth-convexity property is defined 
similarly and an f-ring is said to satisfy the nth-convexity property if it 
satisfies both the left and the right &h-convexity property. In this paper we 
study embedding a commutative semiprime f-ring into a commutative 
semiprimef-ring with a convexity property and apply these results to study 
intersections of primary ideals in commutative semiprime f-rings. Except 
where explicitly stated, all rings will be assumed to be commutative and 
semiprime. 

Those f-rings which satisfy one or more of these convexity properties 
have been studied by several authors. In [GJ, lD], L. Gillman and 
M. Jerison note that any C(X), the f-ring of all real-valued continuous 
functions defined on a topological space X, satisfies the nth-convexity 
property for all n z 2, and in [GJ, 14.251, they give several properties that 
in C(X) are equivalent to the lst-convexity property. M. Henriksen proves 
some results about the ideal theory of anf-ring satisfying the and-convexity 
property in [H J, and S. Steinberg studies left quotient rings of f-rings 
satisfying the left lst-convexity property in [S]. In [HP, Sects. 3,4] 
C. Huijsmans and B. de Pagter use the 2nd-convexity property to prove 
some results about the ideal theory of uniformly complete archimedean 
f-algebras, and in [HP, Sect. 6; HP 1; HP 2; P] they give several proper- 
ties that in archimedeanf-algebras with identity element are equivalent to 
the lst-convexity property. The author has looked at f-rings satisfying a 
convexity property in [L], giving several results concerning ideal theory 
and unitability of an f-ring satisfying a convexity property. 
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100 SUZANNE LARSON 

Since f-rings which satisfy one of the convexity conditions have some 
nice properties, we consider how to start with an arbitrary f-ring and “get 
to” an f-ring satisfying a convexity property. Section II studies embedding 
an f-ring in an f-ring satisfying a convexity property, and finding a 
minimal such embedding for a commutative semiprime f-ring. 

Section III gives an application showing how embedding an f-ring in a 
minimalf-ring satisfying a convexity property can be used in problems that 
do not originally mention a convexity property. There it is shown that in a 
commutative semiprime f-ring with identity element, an l-ideal I satisfying 
I = (I fi> or I = I: fi is an intersection of primary l-ideals and a 
pseudoprime I-ideal I satisfying I= (I ,/i) or I= I: fi is primary. 

The problem of identifying I-ideals which are intersections of primary 
ideals in C(X) has been studied by R. D. Williams in [W], and our results 
generalize some of that work. 

I. PRELIMINARIES 

By an ideal we will always mean a ring ideal. Suppose A is a ring and 1 
an ideal of A. We will use the notation I(a) for cosets of I. The ideal I is 
called semiprime (prime) if whenever J (J,, JZ) is an ideal such that 
J, E I( J, J2 c I), Jc I(J, E I or J, c I). The ring A is called semiprime 
(prime) if (0) is a semiprime (prime) ideal. 

Anf-ring is a subdirect product of totally ordered rings. For background 
material onf-rings see [BKW]. A primef-ring is a totally ordered domain 
and a semiprimef-ring is a subdirect product of totally ordered domains. 

An ideal I of an f-ring A is said to be an I-ideal if 1x1 d 1 y(, y E I implies 
x E I Given a subset S c A there is a smallest I-ideal containing S, and we 
will denote this by (S). It is well known that the sum of two l-ideals is 
again an l-ideal. It is also well known that the l-ideals containing a given 
prime l-ideal form a chain. 

Recall that if n is a positive integer, then anf-ring A is said to satisfy the 
left &h-convexity property if for any U, v E A such that v 3 0 and 0 < u ,< vn, 
there exists a WE A such that u = WV. The right nth-convexity property is 
defined similarly and an f-ring satisfies the &h-convexity property if it 
satisfies both the right and the left &h-convexity property. If n>2 and A 
satisfies the (left) &h-convexity property, then we may assume that the 
element w satisfies 0 < w < vn ’ (by replacing the element w, if necessary, 
by (w A vn - ‘) v 0). It is easily seen that 

(1.1) An f-ring satisfying the 1 St-convexity property also satisfies the 
nth-convexity property for all n 2 2. 

Let A be a semiprime .f-ring. The following appears in [L, 2.11: 
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(1.2) If n>,2 and if whenever U,r;EA with u>O and O<u,<u”, there 
is a WEA such that O$wWP’ and u = WV, then the element w  is unique. 

The following is proved in [L, 2.3, 3.91 when n 2 1 and A satisfies the 
&h-convexity property. 

(1.3) Any ~-homomorphic image of A satisfies the ~th-convexity 
property. 

(1.4) If A has an identity element and if 0 <U < u and u -’ E A, then 
V -‘EA. 

In [L, 4.41 the following is shown. 

(1.5) Let A be an f-ring satisfying the 2nd-convexity property. If I, J 
are Z-ideals of A, then ZJ is also an i-ideal in A. 

II 

In this section, we discuss embedding anf-ring into an f-ring satisfying a 
convexity property. 

2.1. DEFINITION. Let A be anf-ring. Anf-ring B is an n-convexity cover 
of A if A is embedded in B and 3 satisfies the nth-convexity property. 

In the next theorem necessary and suffjcient conditions for the existence 
of an n-convexity cover of a semiprime, but not necessarily commutative, 
f-ring are given. Recall that a (noncommutative) domain R is a left Ore 
domain if for a,bER, there exist a,,b,csR\{O} such that bra=a,b. 

THEOREM 2.2. Let n Is 1. If A is a semiprime f-ring, then A has a 
~semi~rime~ n-convexity cover if and only if A can be embedded in a direct 
product of totally ordered division rings. 

Proof: Suppose A has a semiprime n-convexity cover B. By (1.3), B is a 
subdirect product of totally ordered domains which satisfy the left nth-con- 
vexity property. It follows that each of these totally ordered domains is a 
left Ore domain and hence is embeddable in a totally ordered division 
ring. 1 

In [J, II 6.11, D. Johnson gives an example of a totally ordered Z-simple 
domain that cannot be embedded in a totally ordered division ring. So not 
every totally ordered domain has an n-convexity cover. 

However, the last theorem does imply that every semiprime commutative 
f-ring has an n-convexity cover. Next we ask, for a semiprime commutative 
f-ring is there a minimal such cover, and if there is, does it enjoy a univer- 
sal mapping property? To facilitate this discussion we make the following 
definitions. 
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2.3. DEFINITIONS. Let n & 1 and A be an f-ring. 

(1) An n-convexity cover K,A of A with e: A + K,A is a minimal 
n-convexity cover of A if whenever ~5: A -+ B is an embedding into a 
semiprime f-ring B which satisfies the &h-convexity property, there is an 
embedding 4: K,A -+ B such that d=$oe. 

(2) Suppose K,A is a minima1 n-convexity cover of A with 
P: A -+ K,A. Then K,A satisfies the universal mapping property if whenever 
4: A -+ B is a homomorphism of A into a semiprime~-ring B satisfying the 
&h-convexity property, there is a homomorphism 6: K,A -+ B such that 
$J~C?==$iS. 

For a commutative semiprime ,f-ring, we will always be able to find a 
minimal n-convexity cover if n 2 2. If n = 1, the problem is not as easy. 

THEOREM 2.4. Let n 3 2 and A be a commutative semiprimef-ring. Then 
there is a unique (up to isomorphism) commutative semiprime f-ring K,A 
which is a minimal n-convexity cover of A, and which satisfies the universal 
mapping property. Zf A is a subdire~t product qf the totally ordered domains 
A, and ~Q(Ai) denotes the direct product of the quotjent fields Q(A,), then 
K,A is isomorphic to a unique sub-f-ring of ZZQfA;). moreover, #’ A is a 
direct sum (direct product) of the A,, then K, A is a direct sum (direct 
product) of the K,(A,), the minimal convexity covers of the Ai. 

Portions of the proof will be separated out and stated in the following 
lemmas. 

LEMMA 2.5. Let n 3 2 and (A,: iE Z} be a collection of f-rings contained 
in the semiprime f-ring A. Zf each Ai satisfies the nth-convexity property, 
then n (A, : i E Z> satisfies the nth-convexity property. 

Proof: Suppose Odu<v” and c&O in n (A,:iEZ). Then O<u<# 
and D z 0 in A and in each A,. By (1.2), there is a unique element w  E A 
such that O<w<vv”-’ and u = MU Since each A, satisfies the nth-convexity 
property, WE n {Ai: FEZ). 1 

LEMMA 2.6. Let n > 2 and let B be an n-convexity cover of the f-ring A 
with embedding e: A ---t B. Zf B is the convex sub-l-ring of B generated by 
e(A) then the following hold. 

(1) For every I-ideal Z of A, (e(Z)) n e(A) = e(Z). 
(2) For every semiprime i-ideal I of A, dm n e(A) = e(i), where 

Jm denotes the smallest semiprime l-ideal of K,A containing e(Z). 

moreover, if B is a minimal n-convexity cover of A, or if C is a semipr~me 
n-convexity cover of A and B is the inter.~e~tion of alI the sub-.~-r~ngs of C 
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which satisfy the nth-convexity property and which contain e(A), then B 
satisfies the nth-convexity property and B is the convex sub-l-ring of B 
generated by e(A). 

Proof (1) The fact that (e(l)) n e(A) = e(I) follows easily from the 
hypothesis. 

(2) Suppose that aE,/mne(A). Then am~(e(I))ne(A) for 
some m. But by (l), (e(I))i?e(A)=e(I), so a”Ee(I). Hence aEe(I). 

Now suppose either that B is a minimal n-convexity cover of A, or that 
C is a semiprime n-convexity cover of A and B is the intersection of all the 
sub-f-rings of C which satisfy the nth-convexity property and which con- 
tain e(A). Let B’= (bc B: IhI <e(a) for some aE A ’ >. Then B’ is a sub- 
f-ring of B. Suppose v 3 0 and 0 G u < v” in B’. Then v d e(a) for some 
aEA+. Also, there is a w  E B such that u = WV and 0 6 w  G U” - ‘. So 
O<w<uv”-‘<e(a”-’ ), which implies w  E B’. Thus B’ satisfies the nth-con- 
vexity property. By hypothesis, B either is embedded in or is contained 
in B’. 1 

LEMMA 2.7. Let n Z 2 and suppose A is a sub-f-ring of an f-ring B which 
satisfies the nth-conuex~ty property. suppose IC A is a se~ipri~e l-ideal in 
B. Then if A/I satisfies the nth-convexity property, A also satisfies the nth- 
convexity property. 

Proof Suppose 06 u Q vn and v 2 0 in A. Then there is a WEB such 
that u=wu and Obw<vn-‘. Now O<I(u)<I(v”) in A/I. So there is an 
element W’EA such that I(u)=l(w’v) and O<I(w’)<I(v”-‘). Since I is 
semiprime, B/I is semiprime. In B/I, I(u) = I( WV) with 0 < 1(w) < I(v” - ‘) 
and at the same time, I(u)= I(w’v) with O<I(w’)<I(v”--‘). By (1.2), 
I(w) = 1(w’). That is, w  = w’ + b for some b E 1~ A. Therefore w  E A. 1 

We now give the proof of Theorem 2.4. 

Proof Let (I,: i E r) denote the collection of all proper prime Z-ideals 
in A. Then A is a subdirect product of the totally ordered domains A/I,. So 
there is an embedding e: A -+ IIQ(A/Z,) given by [e(a)Ji = I,(a). Note that 
IIQ(A/I,) is a semiprime f-ring satisfying the nth-convexity property. Let 
K,A be the intersection of all sub-f-rings of IIQ(A/I,) which contain e(A) 
and which satisfy the nth-convexity property. By Lemma 2.5, K,A satisfies 
the nth-convexity property. 

Now suppose that q5: A + B embeds A into a semiprime f-ring B satisfy- 
ing the nth-convexity property. Let C be the intersection of ail sub-f-rings 
of B which contain &A) and which satisfy the nth-convexity property. By 
2.6 C satisfies the nth-convexity property, and C is the convex sub-l-ring of 
C generated by #(A). There is no harm in assuming that C= B. Let 
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{.I,: j E C> denote the collection of all proper prime I-ideals in B. There is a 
natural embedding e’: B -+ ~Q(B/Jj) given by fe’(b)li = J,( hf. Define a 
mapping $: IIQ(.4/1,) -+ IIQ(8/J,) by the following. For each Jo C there 
exists k E I” with Jj n &A) = &Zk) since B is the convex sub-l-ring generated 
by #(A). Then 4 induces mappings dj: Q(A/Zk) --+ Q(B/J,), and the 4, 
induce a mapping 4: IIQ(A/I,) -+ nQ(B/J,) such that the following 
diagram commutes. 

We now have embeddings defined so that the following diagram com- 
mutes. 

But e’(B) 1 e’ 0 #(A) = I,& 0 e(A) and satisfies the nth convexity property. 
Therefore ~(~“~)~e’~B). Thus there is an embedding of KRA into B. So 
K,A is a minimal n-convexity cover of A. 

Next, we show that this minimal cover is unique up to isomorphism. 
Suppose that C also is a minimal n-convexity cover of A and let e, : A -+ C 
be an embedding. Then there is an embedding y: C + K,A such that 
y 0 e,(A) = e(A). But K, A is a sub-f-ring of I7Q( A/Z,), so we may consider y 
to map C into IlQ(A/I,). Now y(C) satisfies the &h-convexity property and 
contains e(A)=yoe,(A). So y(C)c:K,Acy(C). 

Next we show that K,A satisfies the universal mapping property. 
Suppose 4: A + B is an ~-homomorphism into a semiprime~-ring satisfying 
the &h-convexity property. Let I= ker 4 and I* = dm be the smallest 
semiprime Z-ideal of K,A containing e(1). By Lemma 2.4, I* n e(A) = e(ff. 

Note that A/I is a semiprime commutative f-ring and so we may 
consider K,(A/I). We will show that K,( A/Z) E (K,A )/I*. Since 
I* ne(A)=e(f), A/I is embedded in (K,A)/Z*. So there are embeddings 
such that A/I -+ K,(A/I) -+ (K, A)/Z*. Thus there is a sub-f-ring C 2 I* of 
K,A such that C/I* E K&A/f) and e(A) z C. By Lemma 2.7, C satisfies the 
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&h-convexity property. We have e(A) c Cc K,A and C satisfies the nth- 
convexity property. By our choice of K,A, C = K,A, and K,(A/Z) 2 C/Z* r 
K A )/I*. 

Since K,(A/Z) is a minimal n-convexity cover of A/I, there is an 
embedding y2 : K,( A/Z) --* B such that the diagram commutes. 

A/Z - K,( A/Z) z (K, A )/I* 

\Ji2’ 

B 

Let y , : K, A + (K, A)/Z* be the natural I-homomorphism and y = y2 0 y , . 
Then y: K,A --) B and the following diagrams commute. 

A - K,A A -K,A 

I 
17’ q/y 

A/z (JLA)lz* B 

r/-G? 
B 

The proofs of the remaining assertions of the theorem are routine and 
omitted. 1 

Remarks. (1) In different terms, Theorem 2.4 states that K, is a 
functor which preserves monies in the category of commutative semiprime 
f-rings and e: Z-r K, is a manic natural transformation. 

(2) Theorem 2.4 is easily generalized to hold under the hypothesis 
that A is a semiprimef-ring for which every prime I-homomorphic image is 
a left Ore domain. 

This argument may not be used to obtain a minimal l-convexity cover 
for arbitrary commutative semiprimef-rings since in that case, we may not 
apply Lemma 2.5. That is, we do not have a result stating that in a 
semiprime f-ring with the 1st~convexity property, the intersection of all 
sub-f-rings satisfying the lst-convexity property also satisfies the lst-con- 
vexity property. The reason we do not have such a result is that (1.2) does 
not hold for the lst-convexity property. When 0 6 u 6 v in an f-ring 
satisfying the lst-convexity property, there is not necessarily a unique 
element w  such that u = wu or even a unique element w  such that 0 Q w  < 1 
and u = WV when an identity element is present. 

The following theorem gives a condition under which a minimal l-con- 
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vexity cover exists and under which the minimal l-convexity cover is the 
same as the minimal n-convexity cover for n 2 2. Recall that given a com- 
mutativef-ring A and a subset S without zero divisors, there is af-ring A,, 
called the localization of A at S, and an embedding 3,: A + A, such that (i) 
for every SE S, 1(s) is invertible in A,, and (ii) for any I-homomorphism 
4: A --* B mapping A into an f-ring B such that every d(s) is invertible, 
there exists an I-homomorphism I$: A ( + B such that $c i = 4. 

THEOREM 2.8. Let A be a commutative f-ring with identity element in 
which every finitely generated ideal of A is principal. If S = {s E A: s > 1 }, 
then A,, the localization of A at S, satisfies the 1 st-convexity property. Thus, 
for n 3 1, A, is a minimal n-convexity cover of A which satisfies the universal 
mapping property. 

Proof: Suppose A, is the localization of A at S, and 2: A + A,, is the 
embedding. Suppose 0 < u < v in A,. There is an x E n(S) such that xu, 
XV E i(A). By hypothesis, (XU, XV)j,(A, =(d),,,, for some dE,I(A). We may 
assume xv # 0, d # 0. So there are p, q, r, s E I(A) such that xu = pd, 
XV = qd, and rxu + sxv = d. Let I= {a E d(A): ad = 0). Then I is a semiprime 
l-ideal of A(A). Now (rp + sq) - 1 E 1, so Z(rp + sq) = Z( 1). Also, Ipl - lpj A 
1q( ~Z,soZ(~p~)~Z((qJ).ThusZ(l)=I(rp+sq)dI((~rJ + Isl)lqj).Thisimplies 
thereisaniEIsuchthat 1 <(lrl + Isj)lq[ +i.Hence(((rJ + lsl)lql +i) ‘EA,. 
So in A,, xu=Ipl ldl=lpl~~lrl+l~l~lql+~~~~‘~~l~l+I~l~lql+~~I~l= 
Ipl((lrl + l.4)lql +iV ’ (Irl + bl)lqdl = Ipl(tlrl + lsl)lql +i) -‘(Id + l.4)~~. 
So there is an element M’ E A, such that xu = UJXV. But x ’ E A,, so u = WV. 
Therefore A, satisfies the lst-convexity property. 

If n 3 I and 4: A + B is a homomorphism into an,f-ring B satisfying the 
nth-convexity property, then for every s E S, b(s) is invertible in B. Hence 
there exists a homomorphism 4: A ~ -+ B such that $0 i = 4. 1 

III 

In this section, we give two results whose proofs use Lemma 2.6 but 
whose statements do not involve any of the convexity properties. This 
application will show how the nth-convexity property can be used in 
problems that do not originally mention it. In this section, we assume that 
A has a identity element (in addition to the assumption that A is com- 
mutative and semiprime). 

An ideal I in a ring A is primary if ab E Z, and a $ I implies b” E I for some 
positive integer n. Primary ideals in C(X) have been studied by L. Gillman 
and C. Kohls in [GK] and by C. Kohls in [K). The problem of identi- 
fying I-ideals which are intersections of primary ideals has been studied by 
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R. D. Williams in [W]. There he investigates necessary and suffkient con- 
ditions for an Z-ideal of C(X) to be an intersection of primary ideals. Recall 
that if Z, J are ideals of a ring then I: J= {a E A: a.Zs Z}. We will generalize 
some of his results to show that in a commutative semiprime f-ring with 
identity element, if an l-ideal Z satisfies Z= (I fi> or Z= I: fi, then Z is 
an intersection of primary l-ideals. As a corollary, we show that if Z is a 
pseudoprime l-ideal satisfying Z= (Ifi> or Z= I: 4, then Z is primary. 

First, we need some facts concerning primary l-ideals in semiprime com- 
mutativef-rings satisfying a convexity property. Anf-ring A with identity 
is said to satisfy the bounded inversion property if a > 1 in A implies a-’ E A. 
By (1.4), an f-ring with identity element satisfying the nth-convexity 
property also satisfies the bounded inversion property. For C(X), the result 
of the next lemma appears in [GK, 4.61. The result holds in the more 
general context given next, and we omit the proof. 

LEMMA 3.1. Let A be a commutative f-ring with identity element which 
satisfies the bounded inversion property. Let P be a prime l-ideal of A. Zf a is 
a positive nonunit of A/P, then 

mPl”= (bEAlP: jbl”‘<a”~‘for all meN) 

and 

mPI,= {bEAlP: jblm<am+’ for some mEN} 

are primary l-ideals of A/P, and a E mP 1’) a 4 mP 1 II. 

Suppose A is anf-ring satisfying the hypotheses of Lemma 3.1 and P is a 
prime Z-ideal of A. For each primary Z-ideal mP I a (respectively mP I .) of 
A/P, we may associate a primary l-ideal of A, namely (b E A: P(b) E mP I “} 
(respectively {b E A: P(b) E mP ( II} ). We will denote these by P ] ’ and P ( ,, 
respectively, where f  E A is an element such that P(f) = a. 

Recall that a pseudoprime ideal Z is an ideal with the property that xy = 0 
implies x E Z or y E I. Part (1) of the next lemma has been shown by 
H. Subramanian in [Su]. The result of Part (2) is shown to hold in a C(X) 
by L. Gillman and C. Kohls in [GK]. However, their proof is valid for any 
semiprime f-ring with identity element. 

LEMMA 3.2. Let A be a commutative semiprime f-ring with identity 
element. 

(1) An l-ideal Z is pseudoprime if and only if it contains a prime I-ideal. 

(2) An l-ideal Z is an intersection of pseudoprime l-ideals. 
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We are now ready to give two results concerning Z& and I: fi in a 
commutative semiprime f-ring A with identity element which satisfies the 
2nd~convexity property. R. D. Williams has shown that Ifi is an intersec- 
tion of primary I-ideals in [W, 2.81, and our first proof will mimic his. 

THEOREM 3.3. Suppose A is a semiprime commutativef-ring with identity 
element satisfying the 2nd-convexity property and I is an I-ideal qf A. Then jf 
I=&/?, ‘t E is an intersection qf primary ~-ideals, 

ProoJ Let f~ A\],/?. We will show there is a primary I-ideal that con- 
tains I fi but not f: By 3.2, there is a pseudoprime Z-ideal Q containing 
I= I ,/rs but not f: Now let P be a prime l-ideal contained in Q (by 3.2), 
and let M be the maximal I-ideal in which P is contained. Lff‘$ M, then M 
is a prime l-ideal containing Q, and hence I &, but not f: Suppose now 
that f~ M. Then P( if/ ) is a nonunit of A/P. Now the f-ideals containing P 
form a chain, and f E PI If’ while f $4 Q. So Q c PI Ifi. Thus Zc PI I.[‘. We 
now show that Ifir PI,,,. Suppose that g E Z, h E fi. Then there is some 
/CEN such that hkEZ. Also, since fcPjifi, P(]gj”)<P(lfl”~~‘) and 
P(Jh~~‘~)<P(l~~~‘~‘) for all mEN. Thus P(~ghjk’L+2’)=P(Iglk’““2’) 
P(~h~~{‘+~~)~P(~~~ ~(~+~))P(l~~~ t’)=P(/f/kcn+21+‘). So ghEP/,,;. 1 

THEOREM 3.4. Let n 3 1, Suppose A is a semiprime co~zmutative f-r&g 
with identity eIement sati:fying the r&h-convexity property, and I is an l-ideal 
of A. Then for any x E A\(I : fi): J? there is a primary l-ideal which 
contains I: JI but not x. 

Proof: Since x $ (I : 4): ,,6, there is a g 3 0 in J’i such that 
xg (f: I : 8. This implies that there is an h 2 0 in fi such that xgh 4 I; Let 
f = g v h. Then f E J? and Tf 2 4: I. By 3.2, there is a pseudoprime l-ideal Q 
containing i: ,/? but not xf: Now let P be a prime i-ideal contained in Q 
and let M be the maximal ideal containing P. If x4 M, then M is a prime 
I-ideal containing Q, and therefore containing I: ,/?, but not containing x. 
Suppose now that XE M. The I-ideals containing P form a chain, and 
xj-EPj’“‘fwhile xf$Q. So QEP[“‘/. ThusZ:&sP/‘“‘! 

Let k be the smallest integer such that fk E I. Since x $ Q, x 4 P + I. Since 
A/P is totally ordered, P(jxl) > P(fk). So P(l~l)~+‘> P(l~1.f)~ and 
therefore, x $ P 1 I”‘< 1 

An i-ideal I of an f-ring A is square dominated if I= (a E A: Ial <x2 for 
some x E A such that x2 E I>, A slight modification of this proof shows that 
if A is a semiprime commutative Jlring satisfying the nth-convexity 
property with identity element, and y/r is a square dominated l-ideal of A, 
then I : fi is an intersection of primary I-ideals. 

We are now ready to prove our main result of this section. 
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THEOREM 3.5. Let A be a commutative semiprime f-ring with identity 
element and suppose I is an l-ideal qf A. Then if I = (I $ > or if I = I : $, 
I is an intersection of primary l-ideals. 

Proof Let B be a commutative semiprime minimal 2-convexity cover of 
A with the identity element 1, and with the embedding e: A -+ B. By 2.6, B 
is the convex sub-l-ring of B generated by e(A). In B, let J be the l-ideal 
generated by e( 1). By 2.6( 1 ), J n e(A) = e(l). 

Suppose first that I= (I fi>. Then J= J fi. By Theorem 3.3, J is an 
intersection of primary I-ideals Qi in B. Now Qi n e(A) are primary I-ideals 
of e(A) and so e(l)=e((Z,/?))=Jne(A)=(n Qi)ne(A)=(Qine(A)). 
Therefore Z is an intersection of primary I-ideals. 

Next, suppose that I= I : fi. Let e(a) E (J : &): ,/rJn e(A). Then for 
any b, CE,/?, e(a)e(b)e(c)EJne(A)=e(l). Thus, e(a)Ee((Z: fi): ,,/?) 

= e(Z : ,/‘7) = e(Z). W e now have (J : &) : fin e(A) c e(Z). Clearly, the 
reverse inclusion also holds, and (J : ,/5) : $ n e(A) = e(Z). 

For any a E B\(J : fi): fi, there is a primary I-ideal Q, of B which 
contains .J : ,/5 but not a by Theorem 3.4. Now Ql n e(A) are primary 
t-ideals of e(A). So e(Z) = ~(1: %fi) = Jne(A) 5 J: ,/s n e(A) c 

(n Qi~ne(A~=n(Qi*e(A))~(J:~):~~ne(A)=e(~). Thus e(1)= 
n (Qi n e(A)) and I is an intersection of primary f-ideals. 1 

COROLLARY 3.6. Let A be a commutative semiprime f-ring with identity 
element. If I is a pseudoprime I-ideal that is an intersection of primary 
l-ideals, then I is itself primary. Thus, if I is a pseudoprime l-ideal satisfying 
I = (I ,/? > or I = I : JI, I is a primary l-ideal. 

ProoJ Suppose Z is a pseudoprime I-ideal that is an intersection of the 
primary I-ideals Qi. Then I contains a prime i-ideal and hence the set of all 
I-ideals containing I form a chain. Now if Qj 2 ,/? for all i, then 
J’? c 0 Qi = I. Hence I is semiprime and pseudoprime and therefore prime. 
We now may assume there is some ty such that Qac a. Suppose that 
abeland a$L There is some j? such that a$Q6cQzi,/?. Since abEQ, 
and a$QB, be&z&. Thus I is primary. 1 

Finally, we give an example showing that an I-ideal I with the property 
I= (I& or I= I : fi is not the only type of ideal that is an intersection 
of primary I-ideals in a commutative semiprime f-ring with identity 
element. Another such example (which is not as simple) is given in [W, 
2.111. The f-ring described in this example was first given in [HP, 4.163. 

EXAMPLE 3.7. In C( [0, l]), denote by i the function ifx) = x, by e the 
function e(x) = 1, and Iet w  = -,i/;‘. Let (i) denote the I-ideal of C([O, 1]) 
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generated by i, and let A={feC([O, l]):f=ae+hw+g; gE(i), 
a, h E R}. Give A the inherited (componentwise) addition, multiplication, 
and ordering. Then it can be shown that A is an f-ring. Also, A is com- 
mutative, semiprime, and possesses an identity element. 

Let I= (ae+bw+gEA: a=6=0}. Then I is an I-ideal of A. Simple 
calculations show that I is primary. Note that ,,6= {ae f hw + gE A: 
a=O}. Then (Z,,/?) & {ae+bw+ gEA: a=b=O, g<ni3’*} cl. Also, 
1w~A and (lw)&cZ. This implies lw~Z:fi and yet lw$Z. So 
Zc I: &. Thus (Ifi) c Zc Z : fi. Note also that Z is pseudoprime and 
so the converse to the corollary is also false. 
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