
GTR(

Library

Project File

Other N ewt on-regal /31-

ProcurementlE ES Supply SrEi . ces

Research Security Services

Reports Coordnator (OCA)

Research Communicatiorls (2)

Sub Contract ing must be approved.

:OPIES TO:

'roject Director

lesearch Administrative Network

lesearch Property Management

hccounting

)' i3 O1r 	1

Project No. 	C-3S- 621

Project DirE-ct,r: 	R. J. LEE .1 an c
-'

Sponsor: 'ziar‘,rland Procurement Office

9800 Savage Road Fort George G. YieLde 1•':(1. 20;55

Type Agreement: 	Contract MDA904-84-C-6035

Award Period; From 9/11/84 	To 9612/85

Sponsor AriOunt: 	 This Change

Estimated: $

Funded: 	$ 	49,960

Cost Sharing Amount: $ 	

Title: Research on Reliable Distributed Computing

(Perfcrrranc:e) 10/ 10 / 85 (Rej-x)rts)

Total to Date

$ 	49,960

Cost Shzring No: 	

OCA Contact Ralph Grede X4820

2) Sponsor Admin/Contractual Matters:

Mr. Lawrence C. Tarbell, Jr.

ADMINISTRATIVE DATA

1) Sponsor Technical Contact:

Director National Security Agency

RESTRICTIONS

see Attached 	Contract

travel: Foreign travel must have

Supplemental Information Sleet for Additional Requirements.

prior approval - Contact OCA in each case. Domestic travel requires sponsor

Section H.1 Disclosure restrictions - See

Chief, Central Security Service

Attn: (See block 14, DD form 1423)

Fort George G. Meade, Md. 20755-6000

M/F Contract MDA904-84-C-6035

)efense Priority Rating: 	D0-A7

Mr. Kurt J. Schmucker

Maryland Procurement Office

9800 Savage Road

Fort George G. Meade, Md. 20755

Military Security Classification: none

(or) Company/Industrial Proprietary: Il ia

approval where total will exceed greater of $500 or 125% of appro6ed proposal budget category.

Equipment: Title vests with 	
GIT - However, none proposed.

•

OMMENTS:

GSA Supply Sources - Incorporated by Reference

Travel cost NTE - $2,500

Surplus cost NTE - $1,500

Cr,
" 	\ep

`z:`

Q 	4f

/ Q.?
kf'5 ,1

c ');

FEVIS!0%

n.ATE 1U f 5

'rc„, ct ti c. 21 	(R-5840-0A0) 1: ICS

%e.(s) 	..:,-111e Indicated

C,._,_ 	 iT 	OF TECFAC!LC:3Y 	 „,E GF C-0',TRACT

SPCP\S!::F:ED F- P‘C'JEC1 	 SHEET

Date
	

7 /3/86

'reject D ■ rectors) R. J. LeBlanc
GTRI /

sponsor 	Maryland Procurement Office

title Research on Reliable Distributed Computing

Effective Completion Date: 	9/30/85
	

(Performance) 11/12/85 	(Reports)

;rant/Contract Closeout Actions Remaining:

I None

L x 	Final Invoice or Final Fiscal Report

Closing Documents

Final Report of Inventions

Govt. Property Inventory & Related Certificate

	I Classified Material Certificate

I 	I Other

Dntinu es Project No. None Indicated 	 Continued by Project No. None Indicated

)PIES TO:

oject Director

?search Administrative Network

?search Property M:: , r. - gement

:counting

ocurement/EES Si:poly Services

!search Securit‘,. Services

C7,
gal Services

Library

GTRI

Research Communications (2)

Project File

Other A—Tones;M.Heyser;R.Embry

rm OCA 60•

QUARTERLY FUNDS EXPENDITURE REPORT
RESEARCH ON RELIABLE DISTRIBUTED

COMPUTING
CONTRACT "DA q04-84-C-6Q35
REPORTING; PERIOD: 11 SEP 84 -- 31 DEC 84

Date Prepared January 14, 1985
	

Summary/Work Package Title__
Contract No.MDA 904-84-C-6035 	FUNDS EXPENDITURE REPORT

	
Research on Reliable

Contractor Georgia Tech Research Corp. 	 Distributed Computing`
Report Month 9/11/84-12/31/84

Column B Column C

Latest 	Reporting
Accepted Duarter
Revised 	Expendi- 	Total

Proposal tures 	Man Hours

Column D 	 Column E 	Column F

Latest
Cost
Estimate

Column A

ORIGINAL PROPOSAL

	

Cumulative Expenditures to Date 	Cost to
Complete

Dollar 	Pct. Dollar Estimate
Value 	Value

1.Direct Labor
Number 	Hourly Dollar

Type 	of Hours 	Rate Total

PI 	 350 	23.77 $8320.00 $2773.32 117 $2773.32 33.3% $5546.68 $8320.00
BRA 	 1300 	11.41 $14833.00 $2971.98 260 $2971.98 20.0% $11861.02 $14833.00

Clerical 	175 	6.74 $1180.00 $0.00 0 $0.00 0.0% $1180.00 $1180.00

Total Direct Labor $24333.00 $5745.30 377 $5745.30 23.6% $18587.70 $24333.00
Burden 	d 	24.6% $2337.00 $682.24 $682.24 29.2% $1654.76 $2337.00
(Excluding BRA Labor)

Total Direct Labor and Burden 126670.03 24.12 $20242.46 $26670.00

2. TRAVEL EXPENSE $2500.00 $0.00 $0.00 0.07. $2500.00 $2500.00

3.6ENERAL & 	ADMINISTRATIVE EXPENSE $1500.00 $57.00 $57.00 3.8% $1443.00 $1500.00

4.COMPUTING CHARGES $1500.00 $375.00 $375.00 25.07. $1125.00 $1500.00

TOTAL DIRECT COSTS $32170.00 $6859.54 $6859.54 21.3% $25310.46 $32170.00

5.INDIRECT COSTS 	; 	55.3% $17790.00 $3793.32 $3793.32 21.3% $13996.68 $17790.00

TOTAL CONTRACT PRICE $49 960.00 $49960.00

TOTAL COMMITMENTS AND $10652.86 $10652.86 21.37.
EXPENDITURES

FIGURE 1

FUNDS EXPENDITURE GRAPH

TH
O
U
S
A
N
D
S

D
OL

L
AR
S
(C
IM
I

TT,
AT

iv
E)

100

90

80

70

60

50

40

30

20

10

0

PE
RC

EN
T
A
G
E
 O
F

F
U
ND
S
 EX
PE

N
D
E
D

Q1 Q2

QUARTER

Figure 2

Q3
	

Q4

Column A 	 Column B Column C Column D 	 Column E 	Column F

Latest 	Reporting Cumulative Expenditures to Date Cost to 	Latest
ORIGINAL PROPOSAL
	

Accepted 8uarter 	 Complete 	Cost
Revised Expendi- 	Total 	Dollar 	Pct. Dollar Estimate 	Estimate
Proposal tures 	Man Hours 	Value 	Value

1.Direct Labor
Number 	Hourly

Type 	of Hours 	Rate

Dollar
Total

PI 	 350 	23.77 $8320.00 $2781.26 234 $5562.51 66.9% $2757.49 $8320.00
GRA 	1300 	11.41 $14833.00 $5066.04 704 $8032.64 54.2% $6800.36 $14833.00
Clerical 	175 	6.74 $1180.00 $0.00 0 $0.00 0.0% $1180.00 $1180.00

Total Direct Labor $24333.00 $7847.30 938 $13595.15 55.9% $10737.85 $24333.00
Burden 	i 	24.6Z $2337.00 $684.19 $1368.38 58.61 $968.62 $2337.00
(Excluding GRA Labor)

Total Direct Labor and Burden $26670.00 $8531.49 $14963.53 56.12 $11706.47 $26670.00

2.TRAVEL EXPENSE $2500.00 $795.00 $795.00 31.8% $1705.00 $2500.00

3.GENERAL & 	ADMINISTRATIVE EXPENSE $1500.00 $65.00 $132.00 8.81 $1368.00 $1500.00

4.COMPUTING CHARGES $1500.00 $375.00 $750.00 50.01 $750.00 $1500.00

TOTAL DIRECT COSTS $32170.00 $9766.49 $16640.53 51.7Z $15529.47 $32170.00

5.INDIRECT COSTS 	55.31 $17790.00 $5400.86 $9202.21 51.7% $8587.79 $17790.00

TOTAL CONTRACT PRICE $49960.00 $49960.00

TOTAL COMMITMENTS AND $15167.35 $25842.74 51.71
EXPENDITURES

FUNDS EXPENDITURE GRAPH

50

100

- 90

- 80

TH
O

U
SA

N
D

S
 D

O
L

L
A

R
S

 (
CU

M
U

L
A

T
IV

E
)

- 70

25

• 60

50

PE
R

C
EN

TA
G

E
 O

F
 FU

N
D
S

 EX
PE

N
D

ED

- 40

30

- 20

10

0

Q1
	

Q2
	

Q3 	Q4

QUARTER

Figure 2

,
Prepared July 16, 1985 	 Summary/Work Package Titles

ract No. MDA 904-84-C-6035 	 Research on Reliable Distributed
ractor Georgia Tech Research Corp. 	 Computing

FUNDS EXPENDITURE REPORT Report Month 4/1/85 - 6/31/85

Column A 	 Column B Column C Column 0 	 Column E 	Column F

Latest 	Reporting 	Cumulative Expenditures to Date 	Cost to 	Latest
ORIGINAL PROPOSAL
	

Accepted Quarter 	 Complete 	Cast
Revised 	Expendi- 	Total 	Dollar 	Pct. Dollar Estimate 	Estimate
Proposal tures 	Man Hours 	Value 	Value

irect labor
Number 	Hourly

rype 	of Hours 	Rate
Dollar
Total

PI 	 350 	23.77 $8320.00 $1759.09 308 $7321.60 8E1.01 $998.40 $8320.00
6RA 	 1300 	11.41 $14833.00 $5066.04 1148 $13098.68 	- 88.3X $1734.32 $14833.00
Clerical 	175 	6.74 $1180.00 $0.00 0 $0.00 0.0% $1180.00 $1180.00

Total Direct Labor $24333.00 $6825.13 938 $20420.28 83.9% $3912.72 $24333.00
Burden 	/ 	24.6% $2337.00 $432.74 $1801.11 77.11 $535.89 $2337.00
(Excluding BRA Labor)

tal Direct Labor and Burden $26670.00 $7257.86 $22221.39 83.32 $4448.61 $26670.00

RAVEL EXPENSE $2500.00 $611.45 $1406.45 56.31 $1093.55 $2500.00

ENERAL & 	ADMINISTRATIVE EXPENSE $1500.00 $146.46 $278.46 18.61 $1221.54 $1500.00

[IMPUTING CHARGES $1500.00 $441.90 $1191.90 79.5% $308.10 $1500.00

TOTAL DIRECT COSTS $32170.00 $8457.67 $25098.20 78.0% $7071.80 $32170.00

4DIRECT COSTS 	1 	55.3% $17790.00 $4677.09 $13879.30 78.0% $3910.70 $17790.00

. CONTRACT PRICE $49960.00 $49960.00

L COMMITMENTS AND $13134.76 $38977.50 78.0%
EXPENDITURES

100

90

80

70

60

50

40

- 30

20

10

0

Q1
	

Q2
	

Q3
	

Q4

QUARTER

Figure 2

TH
OU
SA

ND
S
D
OL
L
AR
S
(
CU

mi
lL
AT
I
vE
)

PE
RC

EN
TA
G
E
 O
P
 FU

ND
S
E
XP

EN
DE

D

FUNDS EXPENDITURE GRAPH

Prepared October 21, 1985
ract No. MDA 904-84-C-6035
ractor Georgia Tech Research Corp.

FUNDS EXPENDITI* REPORT

Dt, 	/
Summary/Work Package Title
Research on Reliable Distributed
Computing

Report Month 7/1/85 - 9/10/85

UGINAL PROPOSAL

Column A Column B

Latest
Accepted
Revised
Proposal

Column C 	Column D
	

Column E 	Column F

Reporting Cumulative Expenditures to Date 	Cost to 	Latest
Quarter 	 Complete 	Cost
Expendi- 	Total 	Dollar 	Pct. Dollar 	Estimate 	Estimate
tures 	Man Hours 	Value 	Value

Kt Labor
Number 	Hourly

)e 	of Hours 	Rate
Dollar
Total

Number
of Hours

Dollar
Total

350 	23.77 $8320.00 430 $10220.96 	$2899.36 430 $10220.96 100.0% $0.00 $10220.96
1300 	11.41 $14833.00 1648 $18802.35 	$5703.67 1648 $18802.35 100.0% $0.00 $18802.35

wical 	175 	6.74 $1180.00 0 $0.00 	$0.00 0 $0.00 100.0% $0.00 $0.00

Total 	Direct Labor $24333.00 $29023.31 	$8603.03 2078 $29023.31 100.0% $0.00 $29023.31
Burden 	@ 	24.6% $2337.00 $2387.93 	$756.40 $2387.93 100.0% $0.00 $2387.93
(21.0% starting 	7/1/85)
(Excluding BRA Labor)

Direct Labor and Burden $26670.00 $31411.24 	$9359.43 $31411.24 100.0% $0.00 $31411.24

'EL EXPENSE $2500.00 $1193.74 	$0.00 $1193.74 100.0% $0.00 $1193.74

RAL & 	ADMINISTRATIVE EXPENSE $1500.00 $413.46 	$135.00 $413.46 100.0% $0.00 $413.46

UTING CHARGES $1500.00 $1565.18 	$373.28 $1565.18 100.0% $0.00 $1565.18

TOTAL DIRECT COSTS $32170.00 $34583.62 	$9867.71 $34583.62 100.0% $0.00 $34583.62

RECT COSTS 	@ 	55.3% $17790.00 $19959.38 	$7276.49 $19959.38 100.0% $0.00 $19959.38
(63.5X starting 7/1/85)

ONTRACT PRICE $49960.00 $54543.00 $54543.00

OMMITTMENTS AND $17144.20 $54543.00 100.0X
PENDITURES

Q1 Q3

100

90

80

70

60

50

40

30

20

10

0

Q4

PE
R

C
EN

TA
G

E
 O

 F
U

N
D
S

 EX
P

EN
D

E
D

FUNDS EXPENDITURE GRAPH

Estimated

Q2

QUARTER

Figure 2

QUARTERLY PROGRESS REPORT
RESEARCH ON RELIABLE DISTRIBUTED

COMPUTING
CONTRACT MDA 004-84-C-6035
REPORTING PERIOD IA SEP 84 -. 31 DEC 84

1. Project Status

During the initial quarter of this project, work has begun on each of the
two tasks called for by the statement of work. As was planned, these efforts
are closely related to work previously in progress within the Clouds Project, a
major research effort in the area of reliable distributed computing. Under the
Distributed File Systems task, a Ph.D. thesis proposal has been developed, enti-
tled "Storage Management for an Action-based Operating System." A summary of
that proposal follows within this report and the entire proposal is attached as
an appendix. Under the Language Support for Robust Distributed Programs task,
work has been done on refining a programming language called Aeolus, which is
intended for programming the Clouds system. A summary of Aeolus appears in a
later section of this report, and a recently written paper on Aeolus is attached
as an appendix.

The work on the tasks of this project is proceeding on schedule. 	Future
plans include a continuation of the two investigation presented here, including
the development of another Ph.D. thesis proposal based on the Aeolus work.

2. Storage Management for an Action-based Operating System

The Clouds Project is an effort to provide support for a distributed com-
puting systems, which achieves performance improvements (over conventional com-
puting systems) through the parallelism possible in a multi-computer environ-
ment, and reliability improvements through the redundancy available in process-
ing resources and data storage. In order to achieve such improvements, the sys-
tem must ensure the proper coordination of processes on various machines in the
system and synchronize the use of shared data. The system as a whole must be
able to deal with failures of one of its component machines, determining what
processes on the failed machine are necessary for the continuation of some
larger task. A distributed system must be able to ensure the consistency of
data in the presence of machine failures, taking into account' that data may be
replicated.

The initial goal of the Clouds project is to produce an. operating system
kernel that supplies the mechanisms needed by a reliable distributed computing
system. In supporting these mechanisms, the Clouds kernel must support other
conventional mechanisms such as virtual memory, process control and secondary
storage management. The action and object support must be integrated with the
conventional kernel functions so that support for a reliable distributed comput-
ing system is available through a well-defined kernel interface, and the imple-
mentation of the kernel is efficient and compact.

One subtask currently in progress is the design and investigation of a por-
tion of the Clouds kernel: the file (storage management) system. An attached
Ph.D. research proposal by David Pitts describes the work on this subtask. In
addition to describing how such a system can be built, it also considers the
interaction of the storage management system with other parts of the kernel,
particularly its interaction with the virtual memory system.

The purpose of the proposed research is to design a kernel-level file sys-
tem that supports a reliable distributed computing system. The file system will
manage the secondary storage available on the system. Specifically, the design
presents the structures and mechanisms necessary to support the file system.
The design will include support for both recoverable and non-recoverable
objects. Mechanisms to create, delete, write and read objects on disks are
defined. For recoverable objects the additional protocols and structures that
will ensure recoverability of objects in the presence of machine failures and
action aborts are detailed. The design also discusses the interaction of the
file system and the virtual memory system. This portion of the design specifies
the structures and mechanisms required for virtual memory. ' The design also
defines the support required for action management and object recovery. Finally
a facility for the location of segments on secondary storage must be provided.

The design of the file system will have two phases. Phase one will be a
design of essential features for the system. The end-result will be en imple-
mentation for the Clouds kernel that will serve as a test-bed for further
research. 	An analysis of the design and implementation will be done to deter-
mine the correctness and effectiveness of the design. 	The results of the

-1-

analysis may have an effect on phase two. This phase of the design will include
modifications and refinements to the original design. In general, phase two
will include features not absolutely necessary for the file system, but which
may be desirable later as the system is put to use as a research device. Feed-
back from the analysis of the original design may suggest some of the Changes
found in phase two. Phase two is not intended for immediate implementation.

The Clouds kernel will provide support for three basic mechanisms which
will be important to later discussion: processes, objects and actions.
Processes are the active agents of the system; to initiate and perform any work
requires a process. The kernel has a process manager which handles all book-
keeping associated with creating, dispatching, and destroying processes.

Objects, on the other hand, are passive entities. Objects are typed col-
lections of data. The type of an object determines what operations may be per-
formed on the data, as well as how the data is organized. Object data can only
be manipulated through these operations, and then only by a process which has a
proper capability for the object. A capability is a unique name for an object
along with a list of operations which are permissible for use by the possessor.
The object manager handles the overhead of verifying capabilities and performing
operation calls.

Objects will be the organizational units of the system. By using objects,
a programmer has a means for abstraction and isolation of data. The kernel also
provides a mechanism for organizing sets of operations into a unit. This
mechanism is the action. Actions are atomic. The set of operations comprising
an action appears to execute completely or not at all. Also, the atomicity of
actions prevents the execution of one action interfering with the execution of
another. Actions provide a mechanism for making the effects of a set of opera-
tions consistent and recoverable.

Actions are also managed by the object manager. Actions require processes
in order to perform any task. An action may have several processes or one pro-
cess executing on its behalf. A single process Could be used by several actions
at various times.

The kernel provides processes, objects, and actions as efficiently as pos-
sible. Particularly, because objects have different types and possible opera-
tions, the kernel needs access to objects in a manner which is consistent and
convenient. For this reason, all objects have a secondary type, called the seg-
ment type. The segment type is a sequence of bytes with primitive operations
such as read a page, copy the object from one place to another, or append some
data onto the end of the object. The segment is accessible only by the kernel.

2.1. Storage Management

The Clouds file system is managed as a set of partitions. 	Each partition
is an autonomous logical device, having its own device driver which manages
requests to the partition. The partition driver passes requests to a physical
device driver. A partition resides completely on one physical device and con-
sists of a contiguous set of bytes on disk. The partition driver requires three
structures to manage partition storage. First is a partition header, which holds
information concerning the partition such as its size, whether it provides sup-
port for recoverability, a list of bad disk records for the partition, and other
such facts. The header should be duplicated to reduce the risk of its destruc-
tion by a media failure or other such disastrous error. The header is placed at
a known location in the partition. Before a partition can be accessed by the
kernel, it must be mounted on the system. This process consists of initiating
the driver for the partition, and giving it the starting location of the parti-
tion.

Each partition also maintains a directory, contains a mapping of sysnames
(for objects) onto partition record addresses. Note that partition directories
contain mappings only for their own segments. Redundancy should also be insured
for this structure. The partition driver also knows the location of the direc-
tory.

The third partition structure is a record map, which is a bit-map showing
allocation of records for the partition. The driver uses the record map to
determine which records are in use by segments and which can be allocated. Once
again, the record map is an important structure which should be duplicated to

-2-

prevent its loss after a media crash. The remainder of the partition is avail-
able for the storage of object data, Or as the file system treats objects, the
storage of segment data.

2.2. Recovery Management and Virtual Memory

Segment recovery is accomplished via a shadowing scheme. That is, segments
on which actions are operating will have shadow versions that the actions will
actually see. The scheme is pessimistic, so that no modications are made to a
permanent version until the action making the modifications commits. The goals
of the recovery scheme are, aside from producing consistent results, to allow
recovery of segments (and partition structures) with as little storage overhead
as possible, and with as few disks accesses as possible. Shadowing, then, will
be minimal. That is, only those parts of the segment actually modified are sha-
dowed.

The file system becomes involved in recovery only when an action precommits
and the shadow version of the segment on which the action is operating is
created. Prior to precommit, all write operations are done in main memory. An
active segment is mapped into virtual memory by the virtual memory system. An
object's address space contains a block of permanent data and a block of vola-
tile data. The permanent data block contains data which will survive a crash.
This is basically the object data. The volatile data block's contents will not
survive a machine crash and generally consists of such structures as locks and
semaphores for the object. Also contained in the volatile data block is much of
the information maintained by the action management system.

When an action operates on a segment, the action management system main-
tains versions of any modified recoverable parts of the segment in the volatile
data block. There may be any number of versions due to the nesting of actions
and actions sharing the segment. When a top-level action precommits, data must
be moved from the volatile data block to the permanent data block, prior to sha-
dowing the segment on secondary storage. To simplify the precommit procedure,
we allow only one action per segment to pass the precommit point. If actions A
and B are both operating on object 0 and A precommits, B is prevented from
precommitting. If B attempts to precommit, the action management system blocks
the action. B still may access the object.

During the time precommit and commit are taking place, the virtual memory
system must insure that modified pages of the permanent data block remain in
memory and undisturbed. The virtual memory system can do this by physically
locking the pages in memory, making them read-only. Then the pages can be
flushed to disk to build the shadow version of the permanent segment.

Because the permanent data block is not modified until precommit, paging of
object data can be performed using the permanent segment on disk. However, pag-
ing surfaces must be provided for the volatile data block. A partition for tem-
porary data can be created on disk for this purpose. Since all the data con-
cerned is volatile, no recovery is necessary for this partition.

3. OVERVIEW OF AEOLUS

The major design goal of Aeolus is to make possible access to the features
of the Clouds system from a powerful systems programming language which supplies
those features -- such as strong typing -- which aid in the quick development of
error-free programs, yet allows those features to be explicitly circumvented
when necessary.

The major structuring features in Aeolus are processes and objects.
Objects have two purposes in Aeolus: to provide support for data abstraction,
and to reflect the recoverability and synchronization capabilities provided by
the Clouds kernel. It has been argued elsewhere [A11c82] that the object con-
struct provides a powerful tool for the organization of programs for recovery,
both from the standpoint of the programmer and of the system. Objects may rely
on the automatic operating system / runtime system support for synchronization
and recovery (recoverable and autosynch objects). Alternatively, using powerful
features provided by the language and the Clouds system, the programmer may take
advantage of semantic knowledge about the application to explicitly code more
appropriate recoverability and synchronization. However, Aeolus objects also

-3-

provide abstraction features even when synchronization and recovery are not
required. These nonrecoverable objects provide a logical framework for the
organization of modules for separate compilation.

3.1. Features for Systems Programming

In keeping with its purpose as a systems programming language, Aeolus
incorporates several features which give the programmer access to the hardware
and the lower levels of the systems software, as well as "convenience" features
which allow more efficient coding, including:

a full range of assignment and bit-manipulation operators similar to
those in the C language;

features for register optimization, such as a special index type for
loop counters and array references;

the option of specifying inline expansion of a procedure;

a facility for specifying arbitrary procedure argument lists of unspeci-
fied length and (predefined) types (similar to the nospread arglists of
Interlisp);

and the ability to specify storage addresses for variables, as well as
some capabilities for setting and doing arithmetic on pointers.

However, most of the power of Aeolus as a systems programming language, aside
from the access it provides to the features of the Clouds system, lies in the
ability it gives the programmer to specify low-level data structures as abstract
data types, and in the treatment of the underlying hardware as an object with
operations on its state available from the language.

In•addition to the usual structured types (records and arrays), Aeolus pro-
vides a structure type, which allows the programmer to specify abstract types
for the manipulation of bitfields. The structure is similar to the packed
record construct of Pascal, except that the programmer indicates that its fields
should fit one of the addressable entities defined by the target computer (byte,
word, doubleword, quadword, etc.), and this correspondence is checked by the
compiler. This provides a secure mechanism allowing bit fields within a low-
level data structure to be referenced by name. Aeolus also provides the byte
and word types as predefined objects. These objects have operations permitting
manipulations similar to those of the bftset type of Modula-2. The programmer
may define similar objects for bit strings of other lengths.

The ability to inspect and change the state of the hardware is also impor-
tant in systems programming. Access to the underlying hardware is provided by
the operations of special Aeolus objects. We call such an object a pseudo-
object since only one instance of it may exist, whereas there may be an arbi-
trary number of instances of a normal object. An example of a pseudo-object is
PC_System. This pseudo-object gives access to the registers and ports of a PC's
microprocessor, and through the ports to the other system components, such as
the interrupt controller, device controllers, and modem registers. For example,
the IN_BYTE and OUT_BYTE operations of PC_System allow values to be input and
output from the byte ports of a PC; other PC_System operations provide such
capabilities as access to the register set, flags, and interrupt mechanism.
These operations typically compile inline to a single machine instruction. For
considerations of efficiency, some operations in hardware pseudo-objects may
give access to special instructions of the target machine, such as the string
instructions of the PC or the polynomial instructions of the VAX.

3.2. Features for Object and Action Programming

The design of Aeolus is intended to support the recovery and synchroniza-
tion capabilities of the Clouds system in a high-level systems programming
language. Objects in Aeolus, besides providing an organizational tool for
secure separate compilation, give access to the recovery properties of Clouds

-4-

objects. Thus, unless an Aeolus object is designated as nonrecoverable, the
Clouds kernel mechanisms are used for invocations of its operations, allowing
the system to control the recoverability properties of the object's state. In
the remainder of this section, the features provided by Aeolus for accessing
these features of Clouds are examined.

The code for an Aeolus object has two parts. The definition part is seen
both by the object itself when it is being compiled, and by all other objects or
programs which use that object. Compilation of a definition part produces a
symbol table file which is used for type checking among these separate compila-
tions. It can contain specifications of public types and constants defined by
the object, and the interface definitions of the object's operations. Defini-
tion parts may not contain variable declarations. The implementation part con-
tains the actual code of the operations, along with any needed local (private)
type, constant, or procedure definitions. Local variables of an object share
the lifetime of the object instance to which they belong, and thus act as "own"
variables. This separation of definition and implementation provides a safe
separate compilation mechanism similar to packages in Ada {TM) or modules in
Modula-2.

The general syntax of object implementation parts in Aeolus is as follows:

implementation of [nonrecoverable 1 recoverable : autosynch : epsilon]
object <object id> is

uses <id list>
import <id list>
action events <override list>
<block>

end implementation.

(Although not shown in this exi, mnle syntax, objects may be specified as being
autosynch and recoverable simultanL:u, y . . ;. 'hp object is specified as being
nonrecoverable, it is treated as being simply a separate compilation module.
That is, operations in nonrecoverable objects are compiled using the standard
preludes and postludes for procedure bodies, without special code or system
calls for recovery.' If the object is specified as being recoverable, the com-
piler provides a standard run-time framework for recovery by generating preludes
and postludes for the object operations using Clouds object and action manager
calls. Thus, the programmer may gain access to the action mechanisms of the
Clouds system with a single keyword. However, the full power of the Clouds
action mechanisms may be unnecessary and inefficient in some cases. For those
cases, the Aeolus/Clouds system provides mechanisms which allow the user to
explicitly program recovery strategies tailored to the individual requirements
of the problem at hand. Therefore, if neither the nonrecoverable nor the recov-
erable keyword is given in an object header, it is assumed that object recovery
is explicitly programmed. In this case, the programmer may provide alternate
recovery procedures for recoverable variables of the object, and may also
specify, in the action events clause, handlers other than the default system
handlers for the precommit, commit, and abort events of the entire object. The
compiler then specifies to the action and object management systems that, when
one of the action events occurs, these alternate handlers are to be invoked
instead of the standard, system-provided procedures.

The Aeolus language also provides access to the synchronization mechanisms
of the Clouds system. When the autosynch object attribute is specified in an
object header, it indicates that the default system synchronization procedures
are to be used on the object's operations to provide concurrency atomicity. If
the autosynch attribute is not specified, synchronization may be explicitly pro-
grammed using operations on the lock type provided by the language. A Clouds
lock [Allc83b] is not associated with a physical object, but rather with values
in the domain of the object. Thus -- for example -- a file name may be locked,
even if a physical file with that name does not yet exist.

The uses clause allows the programmer to specify the use of system pseudo-
objects, while the import clause allows other user-defined or system-defined
object definitions to be accessed. In a <block>, definitions of types, con-
stants, variables, recoverable variables, internal procedures, and operations
may be written in any order (as long as their definitions appear before any
uses); the <statement part> of the block is treated as an initialization routine
to be executed upon creation of an instance of the object.

-5-

Object operations are programmed like procedures. An operation invocation
looks like a procedure invocation with a prefix indicating the object instance
upon which to operate:

<object instance id> P <operation id> (<actual param list>)

An object instance may be created by declaring a variable of that object type,
and then allocating the instance's data storage on the heap using an extended
version of the allocation function, or by associating the variable with a "per-
manent" object, much as a file variable can be associated with a physical file
in Pascal.

Operations or local procedures of (recoverable) Aeolus objects may be
specified to be invocable as an action. The syntax of action implementations is
much like that of procedures:

procedure <proc id> (<formal param list>) is action
<procedure block>

end procedure

(A <procedure block> is the same as a <block> except that it cannot contain
declarations of recoverable variables.) Thus, the invocation of an action is
similar to a procedure invocation; however, a unique action-id is created by a
Clouds action manager for the invocation, which may be assigned to a variable of
the invoking procedure:

<action-id var> := action <proc id> (<actual param list>)

This action-id variable may be used to retrieve infOrmation from the system
about the status of the action, or to abort the action, using calls to a Clouds
action manager. This mechanism allows general control structures to be formu-
lated, e.g., for the concurrent invocation of actions.

Apnendix A

Storage Management for an Action-based Operating System

David Pitts

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

Abstract

As computing systems enter more and more human activities,
providing various sorts of services, it becomes increasingly
important that these systems be reliable. The Clouds project is
research into how reliable computing systems can be built. Such
a system is supported at a low level by the Clouds kernel,
currently under development. The kernel supports user-defined
objects and atomic actions, with which the kernel can provide
recoverability in the presence of mahcine and system failures.

An important component of the kernel is a reliable file system.
This proposal describes a plan for building such a file system.
An overview of the preliminary design is given, discussing the
structure of the system and techniques for insuring
recoverability of the file system. The proposal also discusses
the interaction of the file system with the virtual memory
system. Some tentative ideas are presented for the design of the
virtual memory system. The proposal also suggests some areas for
evaluation of the design.

Introduction

Many potential advantages have been suggested for distributed
computing systems, most notably performance improvements through
the parallelism possible in a multi-computer environment, and
reliability improvements through the redundancy available in
processing resources and data storage. In practice, these
improvements have been hard to achieve. The system must ensure
the proper coordination of processes on various machines in the
system and synchronize the use of shared data. The system as a
whole must be able to deal with failures of one of its component
machines, determining what processes on the failed machine are
necessary for the continuation of some larger task. A
distributed system must be able to ensure the consistency of data
in the presence of machine failures, taking into account that
data may be replicated.

-1-

The Clouds Project is an effort to provide support for such a
system. The initial goal is to produce an operating system
kernel that supplies the mechanisms needed by a reliable
distributed computing system. Among mechanisms supported by the
Clouds kernel are those described in the action-object model of
fAllchin 83] and developed further in (McKendry 84]. In
supporting these mechanisms, the Clouds kernel must support other
conventional mechanisms such as virtual memory, process control
and secondary storage management. The action and object support
must be integrated with the conventional kernel functions so that
support for a reliable distributed computing system is available
through a well defined kernel interface, and the implementation
of the kernel is efficient and compact.

This proposal describes a plan for the design and investigation
of a portion of the Clouds kernel: the file (storage management)
system. In addition to describing how such a system can be
built, we look at the interaction of the storage management
system with other parts of the kernel, particularly its
interaction with the virtual memory system. The system described
in this proposal is a reduced design, in that it provides the
functionality required by the kernel but not much more.
Therefore, we also present some ideas for future expansion and
refinement of the storage system, and examine how such a system
can be used.

The second chapter presents the problem we are addressing, and
also provides some background concerning the environment in which
we are working. The third chapter discusses the design and
implementation of the file system. A set of protocols for
segment recovery is presented along with a discussion of the
structure of the file system. The requirements and structure of
the virtual memory system are also discussed. The fourth chapter
discusses related work. The fifth chapter presents an outline of
the thesis.

Problem Statement and Background

The purpose of the proposed research is to design a kernel level
file system that supports a reliable distributed computing
system. The file system will manage the secondary storage
available on the system. Specifically, the design presents the
structures and mechanisms necessary to support the file system.
The design will include support for both recoverable and
non-recoverable objects. Mechanisms to create, delete, write and
read objects on disks are defined. For recoverable objects the
additional protocols and structures that will ensure
recoverability of objects in the presence of machine failures and
action aborts are detailed. The design also discusses the
interaction of the file system and the virtual memory system.
This portion of the design specifies the structures and
mechanisms required for virtual memory. The design also defines
the support required for action management and object recovery.
Finally a facility for the location of segments on secondary
storage must be provided.

The design of the file system will have two phases. Phase one
will be a design of essential features for the system. The
end-result will be an implementation for the Clouds kernel that
will serve as a test-bed for further research. An analysis of
the design and implementation will be done to determine the
correctness and effectiveness of the design. The results of the
analysis may have an effect on phase two. This phase of the
design will include modifications and refinements to the original
design. In general, phase two will include features not
absolutely necessary for the file system, but which may be
desirable later as the system is put to use as a research device.
Feedback from the analysis of the original design may suggest
some of the changes found in phase two. Phase two is not
intended for immediate implementation.

The next section will present an overview of the first phase
design, plus some tentative ideas for the second phase. The
remainder of this section provides some context for the proposed
file system.

An overview of the Clouds kernel is given in fSpafford 84]. The
report describes the components of the kernel, what services or
mechanisms the components provide, brief overviews as to how the
components provide the services, and how the components interact.
The kernel provides three basic mechanisms which will be
important to later discussion.

The Clouds kernel supports processes. Processes are the active
agents of the system; to initiate and perform any work requires a
process. The kernel has a process manager which handles all
bookkeeping associated with creating, dispatching, and destroying
processes.

-3-

Objects, on the other hand, are passive entities. Objects are
typed collections of data. The type of an object determines what
operations may be performed on the data, as well as how the data
is organized. Object data can only be manipulated through these
operations, and then only by a process which has a proper
capability for the object. A capability is a unique name for an
object along with a list of operations which are permissible for
use by the possessor. The object manager handles the overhead of
verifying capabilities and performing operation calls.

Objects will be the organizational units of the system. By using
objects, a programmer has a means for abstraction and isolation
of data. The kernel also provides a mechanism for organizing
sets of operations into a unit. This mechanism is the action.
Actions are atomic. The set of operations comprising an action
appears to execute completely or not at all. Also, the atomicity
of actions prevents the execution of one action interfering with
the execution of another. Actions provide a mechanism for making
the effects of a set of operations consistent and recoverable.

Actions are also managed by the object manager. Actions require
processes in order to perform any task. An action may have
several processes or one process executing on its behalf. A
single process could be used by several actions at various times.

The 	kernel 	provides 	processes, 	objects, and actions as
efficiently as possible. Particularly, because objects have
different types and possible operations, the kernel needs access
to objects in a manner which is consistent and convenient. For
this reason, all objects have a secondary type, called the
segment type. The segment type is a sequence of bytes with
primitive operations such as read a page, copy the object from
one place to another, or append some data onto the end of the
object. The segment is accessible only by the kernel.

The Proposed Research

In this section we sketch a tentative first phase design of the
file system. Included in this design is a discussion of the
interaction of the virtual memory system with the file system.
Our dicussion starts at a point presented in [Spafford 841. In
this report, an overview of the Clouds kernel design is
presented. In particular, structures and general techniques are
sketched. The purpose of phase one is to refine and expand this
overview into a design which can be implemented.

Storage Management

The Clouds file system is managed as a set of partitions. Each
partition is an autonomous logical device, having its own device
driver which manages requests to the partition. The partition
driver passes requests to a physical device driver. A partition
resides completely on one physical device and consists of a
contiguous set of bytes on disk. The partition driver requires
three structures to manage partition storage. First is a
partition header, which holds information concerning the
partition such as its size, whether it provides support for
recoverability, a list of bad disk records for the partition, and
other such facts. The header should be duplicated to reduce the
risk of its destruction by a media failure or other such
disastrous error. The header is placed at a known location in
the partition. Before a partition can be accessed by the kernel,
it must be mounted on the system. This process consists of
initiating the driver for the partition, and giving it the
starting location of the partition.

Each partition also maintains a directory, contains a mapping of
sysnames (for objects) onto partition record addresses. Note
that partition directories contain mappings only for their own
segments. Redundancy should also be insured for this structure.
The partition driver also knows the location of the directory.

The third partition structure is a record map, which is a bit-map
showing allocation of records for the partition. The driver uses
the record map to determine which records are in use by segments
and which can be allocated. Once again, the record map is an
important structure which should be duplicated to prevent its
loss after a media crash. The record map's use will be discussed
further in the presentation of the recovery protocols.

The remainder of the partition is available for the storage of
object data, or as the file system treats objects, the storage of
segment data. Figure 1. illustrates a 	simple 	partition
consisting of one segment.

Segments are located through the partition directory. The
sysname for the object is mapped to the partition record where

-5-

Partition

Figure 1.
A partition with one segment shown

Index
record 1

Directory 	 Record map

Segment Header

Index
record 2

Data
record 2

Data
record 3

Data
record 4

Data
record 1

the segment resides. This record contains the segment header.
Like the partition header, the segment header contains
information about the segment, such as its size (in bytes), its
(object) type, and partition management information (mainly for
recovery). In addition, the header contains a set of pointers to
other partition records. These records may contain segment data
or may be another set of pointers, called an index record. The
pointers in the index record may point to yet other index
records. The exact structure oE the segment depends upon its
size. The implementation will limit segments to having two
levels of index records. The leaf nodes of the tree of records
for a segment will be data records. Thus access to a segment
requires first locating on which partition the segment resides
and mapping the sysname for the segment in the partition
directory. This gives a pointer to the segment header. Access
of the particular segment record requires a look at the size of
the segment and following the appropriate path of pointers. For
small segment this may take only one access. For larger
segments, up to three accesses may be necessary.

Recovery Management

Segment recovery is accomplished via a shadowing scheme. That
is, segments on which actions are operating will have shadow
versions that the actions will actually see. The scheme is
pessimistic, so that no modications are made to a permanent
version until the action making the modifications commits. The
goals of the recovery scheme are, aside from producing consistent
results, to allow recovery of segments (and partition structures)
with as little storage overhead as possible, and with as few
disks accesses as possible. Shadowing, then, will be minimal.
That is, only those parts of the segment actually modified are
shadowed.

The recovery scheme consists of a set of protocols that dictate
what the file system must do for segment states and action
events. To describe the recovery scheme we will consider these
states and actions one-by-one and present the protocol for each.
For the purpose of the discussion, suppose that an action A is
started which eventually references a recoverable segment S
(Figure 2. illustrates the partition on which S resides).
Initially, nothing need be done as far as the file system is
concerned as long as all references to the disk segment are read
references. It is only when the action makes a modification to
the disk segment that any overhead need be incurred. The time
that A makes such a modification to S is when A precommits. At
this time A flushes all modified pages to disk so that they will
be in permanent storage, allowing the action to commit safely,
even if the commit process is interrupted by a machine crash.
However, the precommit must be carefully performed, because it is
subject to being interrupted as well and we do not want the file
system to be in an inconsistent state as a result.

To insure that precommit is done correctly, the file system will
follow two protocols. The first is a header shadow protocol,

-6-

which performs the following operations:

HS1)Storage must be allocated for a shadow version of the
segment header.

HS2)The segment header on disk must be set to indicate that the
segment is being shadowed. Note that in Figure 2. this
field is initially labelled PERMANENT. When the object is
being shadowed, this field is set to SHADOWED as shown in
Figure 3. The shadow pointer field should be set to point
to the shadow segment. Originally, the field is set to
NULL, as shown in Figure 2.

HS3)The data from the permanent segment header is copied to the
shadow version.

The results of this protocol for segment S can be seen in Figure
3. Once the shadow is established, the modified page can be
shadowed on disk using the following page shadow protocol:

PS1)Allocate storage for a shadow version of the modified record
and a shadow version of any index record needed to access
the modified page.

PS2)The data for the modified page, and any index record are
copied to the shadow versions. Pointers in the segment
header shadow and any other shadowed index record should be
modified at this time.

PS3)The permanent segment header should have its shadow pointer
set to the address of the shadow segment header.

Two notes here. Because our scheme is pessimistic none of action
A's effects are allowed to be permanent until A commits. In
particular, the permanent page map cannot be changed to show that
shadow records have been allocated. Instead, all such
allocations occur on a temporary page map, which could be kept in
volatile memory. Eventually, upon commit of the action, the
allocations will have to be made part of the permanent record
map. A similar set of protocols must be enforce for this update
as well.

Secondly, note that steps PSP, PS3, and HS3 require the writing
of at least three disk records altogether. We are assuming that
these write are atomic. The proposed research will include a
detailed analysis of the protocols with respect to this
assumption. The results will allow conclusions as to the
necessity of atomic writes for the protocols, when the assumption
of having atomic writes can be relaxed, and the costs of not
having atomic writes (the damage to recoverability).

Once this protocol has been carried out, all future references by
A (either read or write references) refer to the shadow version
of segment S. However at this point most of segment S is

-7-

Data
record 3

Index
record 2

Data
record 2

Data
record 4

Index
record 1

Record map

Data
record 1

Directory

Volatile Record map

Partition

Figure 2.
Segment S

Directory

Size„ type, etc si
Shadowed

Shadowed Data
record 1

Record map

Index
record 1

Size„ type, etc

Data
record 2

Index
record 2

Data
record 3

Data
record 4

No change 	

rgure 3.
After shadowing the segment header

Vo ati e Recor•map

Storage allocated for segment header
shadow

Aidadediledhaddihihadhi&Maaliblaalleldihi lh

Partition

unshadowed and read references to pages other than record x will
refer to permanent records. Any modifications to some other
record y will cause steps 2 and 3 to be performed for the
modified record and any index records that are required to access
y

The precommit protocol uses the shadow protocol as follows:

Pl)Perform the header shadow protocol.

P2)Perform the shadow protocol for each page modified by A.

P3)Set the shadow flag of the segment header shadow to
precommitted.

FIgure 4. shows the precommitted segment S. Once this protocol
has completed, all modified pages in the permanent segment are
shadowed and the commit procedure can proceed.

So this brings us to the commit protocol. The protocol consists
of the following:

Cl)Update the permanent page map on disk. This requires that
all addresses for shadow records be allocated in the page
map and all modified records of the segment including the
segment header be deallocated in the page map.

C2)The shadow segment header is set so that it is now the
permanent segment header.

C3)The partition directory is set so that it points to the new
segment header for segment S.

Once this protocol is complete, any references to the segment
will refer to the new version of the segment as can be seen in
Figure 5. The new segment is a merging of old unmodified records
and new records.

Actions can also abort for one reason or another and a file
system protocol is required for this event as well. The protocol
simply rids the file system of any trace of action A's work as
follows:

Al)The volatile page map is updated to removed allocations for
A's shadow records of segment S.

A2)The permanent segment header for S is set to show that S is
unshadowed and the shadow pointer is set to null.

Figure 6. shows the segment after an abort of action A. Note
that this time the permanent record map is unchanged, while the
volatile map is updated.

Shadowed Size„ type, etc Index
record 1

Data
record 4' Data

record 4

Directory

Record map

Size„ type, etc

Data
record 1

Precommit

Data
record 2

Index
record 2 Data

record 3

Index
record 2'

Figure 4.
After precommit

—volatile Kecord map

Storage allocated
for index record 2'

Storage
allocated for
data record 4'

Partition

Permanent
Data
record 1

Record map

Index
Data 	 record 2'
record 3

Data
record 4'

Directory

Index
record 1

Size„ type, etc

Figure 5.
After commit

Note that the white blocks in the record
maps represent deallocations.

Partition

Directory

PERMANENT Index
record 1

Data
record 1

Data
record 2

Size„ type, etc

Index
record 2

Data
record 4

Data 	•
record 3

Record map

f=igure 6.
After abort

	No change 	

Volatile Record map

Note that the white blocks on the record
map represent deallocations.

Partition

One final event must be considered. That is how does the system
recover from a machine crash? The protocol for this event
requires:

CR1)A new volatile page map is created.

CR2)Every segment modified by an action is inspected and
categorized. In our example, S is inspected to determine if
A had precommitted. Depending on the result, one of step 3
or step 4 will take place.

CR3)If A had precommitted, then the commit or abort protocol is
completed as appropriate.

CR4)If A had not completed, the abort protocol is performed.

The above protocols are carried out by sending requests to the
partition driver, which converts the requests to the appropriate
disk operations and queues the operations at the physical device
driver. Note that the driver can reschedule operations. It does
not necessarily perform them in the order received. The
operations are scheduled to optimize access to the physical
device, and in general, we do not wany to interfere with the
scheduling. However, the protocols require that pages be flushed
to disk at precommit to insure that the file system can be
recovered properly. Therefore, we must specify when the
operations can be flushed and when the driver should be left to
handle scheduling.

Virtual Memory

The file system becomes involved in recovery only when an action
precommits and the shadow version of the segment on which the
action is operating is created. Prior to precommit, all write
operations are done in main memory. An active segment is mapped
into virtual memory by the virtual memory system. An object's
address space contains a block of permanent data and a block of
volatile data. The permanent data block contains data which will
survive a crash. This is basically the object data. The
volatile data block's contents will not survive a machine crash
and generally consists of such structures as locks and semaphores
for the object. Also contained in the volatile data block is
much of the information maintained by the action management
system.

When an action operates on a segment, the action management
system maintains versions of any modified recoverable parts of
the segment in the volatile data block. There may be any number
of versions due to the nesting of actions and actions sharing the
segment. When a top-level action precommits, data must be moved
from the volatile data block to the permanent data block, prior
to shadowing the segment on secondary storage. To simplify the
precommit procedure, we allow only one action per segment to pass
the precommit point. If actions A and B are both operating on

-9-

object 0 and A precommits, B is prevented from precommitting. If
B attempts to precommit, the action management system blocks the
action. B still may access the object.

During the time precommit and commit are taking place, the
virtual memory system must insure that modified pages of the
permanent data block remain in memory and undisturbed. The
virtual memory system can do this by physically locking the pages
in memory, making them read-only. Then the pages can be flushed
to disk to build the shadow version of the permanent segment.

Because the permanent data block is not modified until precommit,
paging of object data can be performed using the permanent
segment on disk. However, paging surfaces must be provided for
the volatile data block. A partition for temporary data can be
created on disk for this purpose. Since all the data concerned
is volatile, no recovery is necessary for this partition.

Each object and process in the system has its own address space.
To provide the mapping for the address spaces, the virtual memory
system uses virtual address maps [Spafford 84]. Each virtual
address map maps the contents of a different address space. A
virtual memory map holds a pointer to the page tables for the
address space in addition to a set of entries which specify the
data that is mapped into the address space. This mapping is
provided by segment control blocks. A segment control block
indicates which portion of the segment is being mapped and the
state of the pages making up this mapping. The entries in the
virtual address map have a pointer to the segment control block,
plus an indication of where in the address space the segment can
be found. For instance, a process P's map may have an entry
mapping file F into P's address space. The entry points to a
segment control block for F. Since F could be very large, P
might not want to map the entire file into its address space, so
the segment control block indicates that only byte 64 to 2048 are
being mapped. P's virtual address map entry for F indicates that
this block of data is located at addresses 2000 through 3984 of
P's address space. See Figure 7.

Additionally, there are object control blocks and process control
blocks which point to virtual address maps for the object or
process. Using the virtual memory facilities provided, the
kernel can share and restrict access of address spaces. Recall
that an object's address space contains the volatile data block.
For recoverable objects part of this block is used to maintain
versions of the recoverable data. By proper mapping of address
spaces in virtual memory, the action management system and the
object itself can insure that actions see versions they are using
and prohibit other actions from seeing these versions.

Page Table

Virtual address map

Segment control block

Figure 7:
Virtual Memory .

Related Work

The 	Clouds 	kernel 	file system provides reliable storage
management. Object data is recoverable automatically in the
presence of machine crashes. Most current file systems for
operating systems do not support similar facilities, but instead
rely on a scavenger approaches entailing intervention by an
operator. Database management systems have supported automatic
crash recovery and transactions (similar to our atomic actions)
[Gray 79, Gray 81, Lindsay 84]. [Verhofstad 78] presents a
survey of recovery techniques used by database management
systems. However, those models of computation differ from ours.
A database transaction may consist of reading values, processing
those values, and then rewriting some of the values. Operating
systems tasks are more general than this and involve more complex
data. An operating system running on the Clouds kernel would
work with actions consisting of sets of object operation calls.

[Stonebraker 81] describes imcompatibilities between the services
provided by operating systems and the functionality required by
database management systems. This study interests us because
some database systems support facilities similar to those
required of the Clouds kernel. Database systems which run on top
of operating systems must either adapt the existing services to
their needs or duplicate services, when such services either do
not exist or can not be adapted. Both of these alternatives can
lead to performance degradation. We will examine some of
problems [Stonebraker 81] mentions, explaining how they are
addressed by the Clouds kernel. We also look at some existing
systems.

A weakness of many operating systems is the handling of I/O.
Most current system queue I/O requests at a device driver. The
device driver schedules the requests based on device status and
where the information is on the device. The information is
transfered in and out of a collection of buffers. I/O operations
do not necessarily take place when a task issues them. Suppose a
task requests that a file be written to disk. This request is
broken up into a number of page write requests, which are queued
at the device driver. The task then terminates. If the writes
are all actually preformed there is no problem. However, the
machine could crash before the writes are done, or when some
writes have been performed and some have not. The file data,
then, is either incorrect (no writes are done) or inconsistent
(some writes are done some are not). Pages can be left in
inconsistent states if the machine crashes in the middle of a
page write.

The DMERT operating system [Wallace 83], which uses a basically
UNIX-like file system, addresses some these problems by providing
a protocol for writing files. The protocols preserve the
consistency of the file system as a whole. However, since DMERT
apparently does not force out buffered writes and writes the data

in place (no shadowing), the consistency of data inside files can
be destroyed. The Clouds kernel maintains constistency through
the support of atomic actions at a low level and by supporting
the actions with the set of protocols provided by the file
system.

[Stonebraker 81] also notes that I/O transfers from system
buffers can be expensive. Many database systems prefer to
maintain user buffers for this purpose. Note that since the
Clouds kernel maps objects into the address space of the
processes' referencing the objects, each user effectively has his
own buffer area. Further, requests for data not currently in
memory are handled by the page fault mechanism of virtual memory.
It is expected that this approach will be very efficient. The
Pilot operating system also takes this approach [Redell 80].

A problem with mapping objects into virtual memory arises when
large objects are referenced. The larger the object being mapped
is, the more significant the size of the page tables associated
with this mapping become. With very large objects, the system
may page out the page tables for the object. A page fault for a
missing data page could then generate two faults. Our solution
is to provide partial mappings, as noted earlier. This reduces
the number pages that are mapped, which should reduce page
faults. Stonebraker points out two problems with this solution.
The portions of the object being mapped must be determined, and
any number of mappings may be required of over the duration of
the processing.

As noted, the Clouds kernel supports a mechanism similar to the
transactions found in database management systems such as System
R [Gray 81]. System R supports transactions differently.
Whereas the Clouds kernel relies on pessimistic recovery, System
R uses an optimistic approach. Transaction modifications are
done immediately and must be undone if to transaction aborts.
Part of the rationale for using pessimistic recovery arises from
the fact that undo procedures are not required.

Data recovery in System R is supported by both a logging
technique and shadowing. A log is kept of all transactions. On
abort, this log can be used to undo a transaction. The shadowing
technique used by System R is quite different from that used by
Clouds, since it support optimistic recovery. There is slightly
more 	overhead associated with System R shadowing, because
separate directory entries are maintained for shadows.

Although we support techniques used by other systems, the Clouds
file system is unique in many ways. The involvement of the
virtual memory system in action management and the file system is
different. We expect that this design will increase the
efficiency of the implementation. Our approach to segment and
partition recoverability is a comprehensive one. Recovery of
both is handled at the lowest level of the system. The shadowing
technique used by the file system is minimal as far as storage is
concerned. Furthermore, shadows exist only for the last part of
an action's duration, reducing storage cost still more. Our

-12-

method of handling I/O requests relieves processes from having to
do any special scheduling to insure the I/O operations are
flushed properly.

Outline of Thesis

We present here a tentative outline for the thesis resulting from
the proposed research.

Introduction. This section presents an introduction to the area
of research. Included here will be background and terminology.
An overview of the kernel is given to provide the context in
which the research was done. The goals and general plan of the
research is presented.

Phase One Design. This section details the designs of the file
system and virtual memory system. We will present a detailed
description of the structures and mechanisms employed. We will
also discuss the implementation of the design. The reasoning
behind the decisions reached will be presented as well.

Analysis of Phase One. We provide here an analysis of the design
and implementation. Included here will be the analysis of the
conditions under which atomic writes are required by the recovery
protocols. The correctness and general efficiency of the design
will be discussed.

Phase Two design. The modifications to the phase one design are
presented. We discussed the motives behind such modifications
and examine how the modifications are integrated into the
original design

Related Work. We compare the results of our research with other
similar work.

Further Research. We present other research that might grow from
this work. These may include ideas too ambitious to be included
in phase two.

Conclusion. A summary of the work done is presented along with
some conclusions about the research.

Bibliography

[Allchin83]Allchin, Jim, 	An 	Architecture 	for 	Reliable
Decetralized 	Systems, 	Ph.D. Thesis, Georgia Institute of
Technology, Atlanta, Georgia, 1983.

[Gray79]Gray, J. N., "Notes on Data Base Operating Systems."
Operating Systems: An Advanced Course, Ed. by R. Bayer, R. M.
Graham, and G. Seegmuller, Springer-Verlag, Berlin, Germany,
393-481, 1979.

[Gray81]Gray, J. N., Paul McJones, Mike Blasgen, Bruce
Lindsay, Raymond Lorie, Tim Price, Franco Putzolu, Irving
Traiger, 	"The Recovery Manager of the System R Database
Manager." Computing Surveys, Vol. 13, No. 2, pp. 223-242,
June, 1981.

[Lindsay84]Lindsay, Bruce, Laura Haas, C. Mohen, Paul F.
Wilms, Robert A. Yost, "Computation and Communication in R*:
A Distributed Database Manager." ACM Transactions on Computer
Systems, Vol. 2, No. 1, pp. 24-38, February, 1984.

[McKendry84]McKendry, Martin, Ordering Actions for Visibility,
Technical Report GIT-ICS-84/05, Georgia Institute of Technology,
Atlanta, Georgia, 1984.

[Rede1180]Redell, D., "Pilot: An Operating System for a
Personal Computer." Communications of the ACM, Vol. 23, No. 2,
pp. 81-92, February, 1980.

[Spafford84]Spafford, 	Eugene, 	Martin 	Mckendry, 	Kernel
Structures for Clouds, Technical Report GIT-ICS-84/09, Georgia
Institute of Technology, Atlanta, Georgia, 1984.

[Stonebraker8l]Stonebraker, Michael, "Operating System Support
for Database Management." Communications of the ACM, Vol. 24,
No. 7, pp. 412-417, July, 1981.

[Verhofstad78]Verhofstad, J. S. M., "Recovery Techniques for
Database Systems." Computing Surveys, Vol. 10, No. 2, pp.
167-196, June, 1978.

[Wallace83]Wallace, J., "DMERT: A Crash Resistant 	File
System." Software - Practice and Experience, Vol. 13, No. 4,
pp. 385-387, April, 1983.

Appendix B

Systems Programming with Objects and Actions

Richard J. LeBlanc and C. Thomas Wilkes

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT

The goal of the Clouds project at Georgia Tech is the implementation of a
fault-tolerant distributed operating system based on the notions of objects and
actions, which will provide an environment for the construction of reliable
applications. As part of the Clouds project, we are designing and implementing
a high-level language in which those levels of the Clouds system above the ker-
nel level will be implemented. The Aeolus language provides access to the syn-
chronization and recovery features of Clouds. It also provides a framework with
which to study programming methodologies suitable for action-object systems such
as Clouds.

1. INTRODUCTION

In recent years, numerous research groups have been investigating the
potentials of distributed computing systems. Among the benefits promised by
advocates of distributed computing are improvements in syst em fault tolerance
and reliability, increased availability of data and services, and faster
response through use of distributed programs. Interest in reliability has grown
as distributed systems have come to be used in an ever widening set of appli-
cations, including critical control systems. In the past, fault tolerance has
principally been the concern of hardware designers, who mainly used redun-
dancy as a solution. More recently, it has been realized that maintaining the
integrity of distributed data is a crucial concern in providing the benefits
listed above. Accordingly, there has been a growth in research interest in
techniques for providing the required data integrity in the presence of
hardware failures and concurrently executing processes.

Early attempts to provide tools to develop such systems have taken 	a
variety of approaches. 	The Eden system, developed at the University of Wash-
ington, is an "integrated distributed" computing system which is built on
support for object-based programming [Alme83]. The principal feature of Eden
for supporting fault tolerance is the capability to checkpoint objects. The
Pronet language project, a previous effort at Georgia Tech, reflects a dis-
tinctly different basic approach [Macc82a, Macc82b]. Pronet allows distributed
programs to be constructed of processes which interact via messages transmitted
through ports. Fault tolerance is supported through features which allow
processes to be checkpointed and networks of processes to be reconfigured. It
is interesting to note that even though Eden and Pronet are quite dif-
ferent, they both rely on checkpointing as a crucial feature.

While checkpointing can be used to construct processes or objects with an
acceptable degree of fault tolerance, it has an essential weakness in that it
is oriented toward dealing with a single object or a single process at a
time. Maintaining data integrity in the presence of interactions between
processes or objects is the essential question and checkpointing does not
deal well with such interactions. Thus a number of researchers have recently
proposed that reliability in a distributed system be based on atomic actions, an
extension of the transaction concept used in distributed database work. Work
in this area includes the Argus project at MIT [Weih83, Lisk83], the Clouds
project at Georgia Tech [Allc82, Allc83a, A11c83b], the Archons project
[JensB2] and Spector's work [Schw83, Dani83] at CMU, the Enchere system in
France [Bana83] and the work of Birman and Skeen at Cornell [Birm84], among
others.

2. OVERVIEW OF THE CLOUDS PROJECT

The goal of the Clouds project is to allow the construction of reliable
application 	systems on unreliable hardware. The basic approach is to exploit

-1-

the redundancy available in distributed systems which consist of multiple com-
puters connected by high-speed local area networks. We refer to such a system
as a multicomputer or computer cluster. We use the notion 	of 	an object to
represent 	system components, such as directories or queues. A set of changes
to objects is grouped into an action. The underlying support 	system 	ensures
that, 	even 	if the objects extend across multiple machines, the changes will
occur in totality or not at all. At this level, the support 	system, 	known
as 	the Clouds 	kernel, is maintaining the consistency of the objects. It is
ensuring that objects either reflect the effects of an action totally 	or 	not
at 	all -- no intermediate states are possible. This guarantee of an action's
totality permits us to characterize the effects of 	hardware 	component
failures: they cause actions to fail. Since a failed action is guaranteed
to have had no effects on the objects with which it interacted, we can restart
the action without concern for potential inconsistencies it might have
created.

The actions in Clouds go beyond the related notion of transactions in a
database 	system. 	Rather 	than 	modelling 	all access to objects as simple
reads or writes, the Clouds approach supports arbitrary operations on 	objects
and allows 	a programmer to take advantage of operation semantics to increase
concurrency, and thereby performance. Through appropriate use of 	encapsula-
tion, concurrent 	actions can be allowed to change objects without breaching
serializability. Even breaches to serializability can be allowed, when it is
semantically appropriate and it is necessary to improve performance.

The capabilities of Clouds described thus far comprise an architecture
which will support an operating system for a multicomputer. This structure con-
tains three major components: objects, actions and processes.

Objects
An object consists of data and a set of operations (procedures to operate)
on that data which maintain a set of associated invariants. For example a
queue object might contain the actual queue as data. Operations might be
GET to remove an entry and PUT to add an entry to the queue. A typical
invariant for a queue might be that no more entries will be removed from
the queue than have been added to it. Maintaining such an invariant involves
using synchronization mechanisms to delay processes that attempt to remove
entries before they are entered. Only the operations on an object can mani-
pulate the data of the object. This property of encapsulation assists 	in
maintaining invariants. 	We exploit encapsulation in our system to incor-
porate recovery. By making critical objects recoverable, we can guarantee
the 	consistency of the system after failures. We can restart computations
on other nodes without fear of partially completed computations 	disrupting
consistency.

Actions
An action is a unit of work. During execution, an action evolves as a
partial order of operations on objects. An action appears to be primitive
to its surrounding environment. In particular, an action appears to be
atomic to other actions. Once begun, an action either completes by commit-
ting or fails by aborting. 	If an action aborts, it has no effect on its
environment. 	This is achieved through recovery mechanisms which maintain
the state of the objects in volved in aborted actions. 	Actions fail when
they interact illegally with other actions (e.g., deadlock) or when they
are explicitly aborted. In our implementation, actions can be nested to
improve failure containment characteristics.

Processes
In the Clouds architecture, objects are passive. Thus processes 	are 	used
to provide activity in the system. A process may be used to represent a
single top-level action or a nested action, in which case it will terminate
when the action completes.

Thus objects, actions and processes are fundamental concepts supported
by the architecture. 	To support these concepts, recovery and consistency
are incorporated into the basic virtual memory mechanism. 	Synchronization
mechanisms to control the interactions of actions are also provided. It is
with these capabilities that Clouds is meant to support the data integrity
required for the implementation of reliable, distributed application programs.

-2-

The mechanisms developed for the support of transactions in database sys-
tems, as well as the traditional operating system synchronization mechanisms,
have been found to be insufficient for the support of the action-object approach
in operating systems. In particular, the problems of ordering and atomicity for
nested actions, and several simplifications which apply to many operating sys-
tems problems, are discussed in (McKe84). The expediencies made possible by
these simplifications make the use of the action-object approach in the Clouds
system viable.

In addition to the basic action support, other mechanisms are needed to
help ensure that a system tolerates faults such as component failures. One
requirement is a representation of work. Work is represented in Clouds by
action networks, which are described using a Petri-net notation; transitions in
the Petri-nets correspond to action executions. A state of such a net is called
a job. A second requirement is that continuity of job execution be maintained
through failures. Thus, we use job schedulers to assign actions to machines. A
primary scheduler may be supported by a set of backup schedulers, which may
reside on different machines, to provide backup if a coordinator fails during
action commit.

These mechanisms provided by the Clouds architecture are used to support
the operating system itself and its services. Thus, the system itself is decen-
tralized and resilient. The Clouds system may be considered to consist of a set
of fault-tolerant objects (servers) which in combination provide a reliable
environment for applications.

3. THE NEED FOR AN ACTION-BASED PROGRAMMING METHODOLOGY

Actions are the key feature for guaranteeing data consistency. 	The
"all-or-nothing" nature of actions really solves two problems. When an action
fails, its effects are automatically undone; so, actions which fail due to
machine failures cannot leave objects in an inconsistent state. Addition-
ally, the required serializability of actions provides a coarse-grained syn-
chronization among them. 	(Other features may be used to provide more con-
currency by supporting synchronization at a lower 	level.) Actions which
are aborted for logical reasons (e.g., deadlock) again can have no visible
effects on the state of any object. Thus the action concept successfully
broadens the recovery viewpoint provided by checkpoints, since it encompasses
all the changes to any number of objects made by an arbitrarily complex action.

Actions alone do not provide all of the generally desired capabilities,
since they do not address the question of the resiliency of individual
objects. That is, they do not contribute toward the recovery of objects
located on machines that fail. Rather, they guarantee the integrity of sur-
viving objects. Both Argus and Clouds support resilience through use of stable
storage. (Stable storage has the property that information entrusted to it
is extremely unlikely to be lost.) Various features are provided which cause
the object support system to record sufficient information on stable storage
so that the state of an object (guardian in Argus) may be recovered after a
hardware failure. Note that for a combination of consistency and resili-
ence, the state of an object must be written to stable storage whenever an
action which modified the object commits (presuming that pessimistic recovery is
being used).

Writing the state of an object to stable storage is, of 	course, just
checkpointing. 	Indeed, the concept of stable storage is an implicit or expli-
cit part of any checkpointing scheme (i.e., Eden and 	Pronet). 	It 	is 	the
coupling with the action mechanism which makes checkpointing of objects
effective. That is, part of the implementation of a commit is a checkpoint of
all affected objects. Thus checkpointing is made an effective means for pro-
viding consistent, resilient objects.

The mechanism for specifying just what must be written is 	one 	way 	in
which Argus, 	Clouds and other proposals differ. In Argus, all mutex objects
within a guardian are written. As suggested by the name, mutex objects 	also
have certain synchronization properties, relating to their accessibility to con-
currently executing actions. Clouds, on the other hand, allows an entire
object or any data object within it to be specified as recoverable. As would
be expected, if the entire object is recoverable, then all of its contained
data objects 	are 	written to stable storage when a relevant commit occurs.
Both of these approaches exemplify implicit specifications of what 	must 	be

-3-

saved for recovery purposes. Yet another approach would be to require the pro-
grammer who defines an object to provide an explicit write-to-stable-storage
operation to be invoked by the object management system at appropriate
times. This variety of proposals reflects the need for study of a programming
methodology based on use of objects and actions, so that we can determine just
what kinds of features are most effective.

The Clouds architecture goes beyond others in that it can support actions
that involve objects on more than one machine. In other words, a remote
procedure call can be done without creation of a nested action. Allchin's work
[Allc83b] 	provides a definition of the basic capabilities supported by the
Clouds architecture and a design for their implementation. 	Now that that
implementation is in progress, we are studying how these capabilities may be

. applied. In particular, we wish to study a programming methodology for systeMs
like Clouds.

As part of the Clouds project, we are designing and implementing high-level
systems programming language called Aeolus (after the king of the winds in Greek
mythology). An overview of the Aeolus language is presented in the next sec-
tion. Aeolus gives the programmer access to the features of the Clouds system
discussed above. However, we also intend to use Aeolus as a framework for
studying the sort of programming methodology appropriate to Clouds. This study
should lead to the design of high-level language features to support that metho-
dology.

4. OVERVIEW OF AEOLUS

The major design goal of Aeolus is to make possible access to the features
of the Clouds system from a powerful systems programming language which supplies
those features -- such as strong typing -- which aid in the quick development of
error-free programs, yet allows those features to be explicitly circumvented
when necessary.

The major structuring features in Aeolus are processes and objects.
Objects have two purposes in Aeolus: to provide support for data abstraction,
and to reflect the recoverability and synchronization capabilities provided by
the Clouds kernel. It has been argued elsewhere [A11c82] that the object con-
struct provides a powerful tool for the organization of programs for recovery,
both from the standpoint of the programmer and of the system. Objects may rely
on the automatic operating system / runtime system support for synchronization
and recovery (recoverable and autosynch objects). Alternatively, using powerful
features provided by the language and the Clouds system, the programmer may take
advantage of semantic knowledge about the application to explicitly code more
appropriate recoverability and synchronization. However, Aeolus objects also
provide abstraction features even when synchronization and recovery are not
required. These nonrecoverable objects provide a logical framework for the
organization of modules for separate compilation. Example 1 shows the struc-
tural outline of the COM_Q nonrecoverable object, which provides buffered access
to the asynchronous communications ports of the IBM Personal Computer. (This
example has been elided for reasons of space, especially concerning the text of
its operations. A sample operation is shown in example 3.)

4.1. Features for Systems Programming

In keeping with its purpose as a systems programming language, Aeolus
incorporates several features which give the programmer access to the hardware
and the lower levels of the systems software, as well as "convenience" features
which allow more efficient coding, including:

a full range of assignment and bit-manipulation operators similar to
those in the C language;

features for register optimization, such as a special index type for
loop counters and array references;

the option of specifying inline expansion of a procedure;

a facility for specifying arbitrary procedure argument lists of unspeci-

-4-

fled length and (predefined) types (similar to the nospread arglists of
Interlisp);

and the ability to specify storage addresses for variables, as well as
some capabilities for setting and doing arithmetic on pointers.

However, most of the power of Aeolus as a systems programming language, aside
from the access it provides to the features of the Clouds system, lies in the
ability it gives the programmer to specify low-level data structures as abstract
data types, and in the treatment of the underlying hardware as an object with
operations on its state available from the language.

In addition to the usual structured types (records and arrays), Aeolus pro-
vides a structure type, which allows the programmer to specify abstract types
for the manipulation of bitfields. The structure is similar to the packed
record construct of Pascal, except that the programmer indicates that its fields
should fit one of the addressable entities defined by the target computer (byte,
word, doubleword, quadword, etc.), and this correspondence is checked by the
compiler. This provides a secure mechanism allowing bit fields within a low-
level data structure to be referenced by name. Several examples of abstract
structured byte types are given in example 1. Aeolus also provides the byte and
word types as predefined objects. 	These objects have operations permitting
manipulations similar to those of the bitset type of Modula-2. 	The programmer
may define similar objects for bit strings of other lengths.

The ability to inspect and change the state of the hardware is also impor-
tant in systems programming. Access to the underlying hardware is provided by
the operations of special Aeolus objects. We call. such an object a pseudo-
object since only one instance of it may exist, whereas there may be an arbi-
trary number of instances of a normal object. An example of a pseudo-object is
PC_System, which is used in the implementation of the COM_Q object in example 1.
This pseudo-object gives access to the registers and ports of a PC's micropro-
cessor, and through the ports to the other system components, such as the inter-
rupt controller, device controllers, and modem registers. For example, the
IN_BYTE and OUT_BYTE operations of PC_System allow values to be input and output
from the byte ports of a PC; other PC_System operations provide such Capabili-
ties as access to the register set, flags, and interrupt mechanism. These
operations typically compile inline to a single machine instruction. For con-
siderations of efficiency, some operations in hardware pseudo-objects may give
access to special instructions of the target machine, such as the string
instructions of the PC or the polynomial instructions of the VAX. Example 2
shows how PC_System may be used to program an asynchronous communications inter-
rupt service routine (ISR), a local procedure of the COM_Q object. This inter-
rupt handler is invoked when a character is received over the communications
line, and enqueues the character for later processing by the RECEIVE operation
of tne COM_Q object.

The operations of PC_System are also used in the PUT_BYTE operation of the
COM_Q object, the text of which is given in example 3. This procedure waits for
several conditions concerning the state of the communications line to become
true (unless a timeout occurs first), and then places a data byte on the line.
Tne line state is checked by interrogating the registers of the communications
controller via port input operations, and inspecting bit fields of the
register-type values obtained.

4.2. Features for Object and Action Programming

The design of Aeolus is intended to support the recovery and synchroniza-
tion capabilities of the Clouds system in a high-level systems programming
language. Objects in Aeolus, besides providing an organizational tool for
secure separate compilation, give access to the recovery properties of Clouds
objects. Thus, unless an Aeolus object is designated as nonrecoverable. the
Clouds kernel mechanisms are used for invocations of its operations, allowing
the system to control the recoverability properties of the object's state.
Examples of the implementation of an nonrecoverable object have been shown pre-
viously. In Section IV, we shall present the development of an object which
uses the system mechanisms for recovery and synchronization. In the remainder
of this section, the features provided by Aeolus for accessing these features of
Clouds are examined.

-5-

The code for an Aeolus object has two parts. The definition part is seen
both by the object itself when it is being compiled, and by all other objects or
programs which use that object. Compilation of a definition part produces a
symbol table file which is used for type checking among these separate compila-
tions. It can contain specifications of public types and constants defined by
the object, and the interface definitions of the object's operations. Defini-
tion parts may not contain variable declarations. The implementation part con-
tains the actual code of the operations, along with any needed local (private)
type, constant, or procedure definitions. Local variables of an object share
the lifetime of the object instance to which they belong, and thus act as "own"
variables. This separation of definition and implementation provides a safe
separate compilation mechanism similar to packages in Ada (TM) or modules in
Modula-2.

The general syntax of object implementation parts in Aeolus is shown in
example 4. (Although not shown in this example syntax, objects may be specified
as being autosynch and recoverable simultaneously.) If the object is specified
as being nonrecoverable, it is treated as being simply a separate compilation
module. That is, operations in nonrecoverable objects are compiled using the
standard preludes and postludes for procedure bodies, without special code or
system calls for recovery. If the object is specified as being recoverable, the
compiler provides a standard run-time framework for recovery by generating
preludes and postludes for the object operations using Clouds object and action
manager calls. Thus, the programmer may gain access to the action mechanisms of
the Clouds system with a single keyword. However, the full power of the Clouds
action mechanisms may be unnecessary and inefficient in some cases. For those
cases, the Aeolus/Clouds system provides mechanisms which allow the user to
explicitly program recovery strategies tailored to the individual requirements
of the problem at hand. Therefore, if neither the nonrecoverable nor the recov-
erable keyword is given in an object header, it is assumed that object recovery
is explicitly programmed. In this case, the programmer may provide alternate
recovery procedures for recoverable variables of the object, and may also
specify, in the action events clause, handlers other than the default system
handlers for the precommit, commit, and abort events of the entire object. The
compiler then specifies to the action and object management systems that, when
one of the action events occurs, these alternate handlers are to be invoked
instead of the standard, system-provided procedures.

The Aeolus language also provides access to the synchronization mechanisms
of the Clouds system. When the autosynch object attribute is specified in an
object header, it indicates that the default system synchronization procedures
are to be used on the object's operations to provide concurrency atomicity. If
the autosynch attribute is not specified, synchronization may be explicitly pro-
grammed using operations on the lock type provided by the language. A Clouds
lock [Allc83b] is not associated with a physical object, but rather with values
in the domain of the object. Thus -- for example -- a file name may be locked,
even if a physical file with that name does not yet exist. The examples in the
next section demonstrate the use of locks.

The uses clause allows the programmer to specify the use of system pseudo-
objects, while the import clause allows other user-defined or system-defined
object definitions to be accessed. In a <block>, definitions of types, con-
stants, variables, recoverable variables, internal procedures, and operations
may be written in any order (as long as their definitions appear before any
uses); the <statement part> of the block is treated as an initialization routine
to be executed upon creation of an instance of the object.

Object operations are programmed like procedures. An operation invocation
looks like a procedure invocation with a prefix indicating the object instance
upon which to operate:

<object instance id> @ <operation id> (<actual param list>)

An object instance may be created by declaring a variable of that object type,
and then allocating the instance's data storage on the heap using an extended
version of the allocation function, or by associating the variable with a "per-
manent" object, much as a file variable can be associated with a physical file
in Pascal.

Operations or local procedures of (recoverable) Aeolus objects may be
specified to be invocable as an action. The syntax of action implementations is

-6-

much like that of procedures:

procedure <proc id> (<formal param list>) is action
<procedure block>

end procedure

(A <procedure block> is the same as a <block> except that it cannot contain
declarations of recoverable variables.) Thus, the invocation of an action is
similar to a procedure invocation; however, a unique action-id is created by a
Clouds action manager for the invocation, which may be assigned to a variable of
the invoking procedure:

<action-id var> := action <proc id> (<actual param list>)

This action-id variable may be used to retrieve information from the system
about the status of the action, or to abort the action, using calls to a Clouds
action manager. This mechanism allows general control structures to be formu-
lated, e.g., for the concurrent invocation of actions.

Example 1. Declarations and initialization of the COMO object

definition of object com_q is

! The definition part of the COM_O object, which
! provides buffered read/write access to either of the IBM PC serial
! ports, COM1 or COM2. Reception from the port is interrupt-driven.
! The nomenclature of the PC Technical Reference Manual is used here.
! The definition part specifies the publicly available constants, types,
! and operation interfaces of the object to those objects which import it.

type status_type is
(normal, 	init error, 	receive_error, 	buffer_overflow,

	

DSR_timeout, CTS_timeout, 	THRE_timeout

operations
procedure init (baud_rate : 300 .. 9600, data_bits : 5 .. 8,

stop_bits : 1 .. 2, parity : (odd, even, none),
var error : boolean) is modify

procedure finish () is modify
procedure status () : status_type is examine
procedure get_byte (var in data : byte,

var received : boolean) is examine
procedure put_byte (out_data : byte, var error : boolean) is modify

end definition.

implementation of object com_q (port: word) is

! The implementation part of the COM_O object.
! The operations specified in the definition part are actually implemented
! here, and any other local constants, types, variables, or procedures are
! specified.

uses PC_System
	! The PC CPU pseudo-object.

import queue

! The definition part of the QUEUE object is included here as comments for
! 	clarity.

! definition of object queue (elem_type : private, size : integer) is
operations

procedure enqueue (item : elem_type, var full : boolean) is modify
procedure dequeue (var item : elem_type,

var empty : boolean) is modify
end definition.

asynch_int : const word := 16#???? 	location of the asynch. int. vector
IMR 	: const word := 16#21 	! Interrupt Mask Register n

! Addresses of some important register ports on the IBM Asynch board.

MCR 	: const word := 16#3fc 	! Modem Control Register
LSR 	 : const word := 16#3fd 	! Line Status Register
MSR 	: const word := 16#3fe 	! Modem Status Register

! 	Define the internal 	structures of some of the above registers.
! 	This 	includes both single bits and bit 	fields.
! 	Fields are named from most 	significant 	to 	least 	significant bit.

type LSR_struc is
structured byte

unused, 	 ! 	= 0
TSRE,
THRE,
BI.

!
!
!

Transmitter Shift Register Empty
Transmitter Holding Register Empty
Break Interrupt

FE,
PE,
ORun.

!
!
!

Framing Error
Parity Error
OverRun error

DR 	 :
end structure

type MCR_struc is
structured byte

unused 	:

boolean

0 	7

!

!

Data Ready

3 bits, 	=0
LOOPback,
OUT2,
OUTi,
RTS,
DTR 	 :

end structure

type MSR_struc 	is
structured byte

boolean
!
!
Request To Send
Data Terminal 	Ready

RLSD,
RI,
DSR.

!
!
!

Receive Line Signal 	Detect
Ring Indicator
Data Set Ready

CTS,
DRLSD,
TERI,
DDSR,
DCTS boolean

!
!
!
!

Clear To Send
Delta RLSD
Trailing Edge Ring Indicator
Delta DSR
Delta CTS

end structure

! Queue for buffering of characters (data bytes) input from the srial port.
! Currently allows buffering of up to 128 characters.

in_q 	: queue (byte, 128)

! The current status of the COM_Q object, and variables to save information
! from the serial port registers about what went wrong.

cstatus : status_type := normal
LSR_save : LSR_struc := 0

! Old state of interrupt vectors and modem control register.

old_rs232_isry : doubleword
old MCR 	: MCR strut

begin 	! Initialization section
new (ln_q) 	 ! Create instance of the QUEUE object
old_MCR := in_byte (MCR)
init (1200, 8, 1, none, error) 	! Standard parameters at first
if error then

status := init_error
else

init_isry (asynch_int, rs232_isr, old_rs232_isrv) 	! Set int. vector
out_byte (IMR, 16#ac) 	 ! Enable diskette, comm, keyboard, timer
out_byte (MCR, 2#00001000) 	! Enable OUT2 in modem control register

end if
end implementation.

-9-

Example 2. Interrupt service routine of the COM_Q object

procedure rs232_isr () is

The interrupt service routine handles the Data Ready interrupts
for input from the serial port. The character is placed in
the input queue.

The LSR_errors constant definition provides an example of the use of
constructors. This constant represents error conditions in the
line status register for which we're on the lookout.
This constant could also have been written as

const byte := 2#00011010
depending on the programmer's taste.

Note that, although interrupts are disabled by the hardware when
the ISR is invoked, we must explicitly re-enable interrupts when

. we're done.

LSR_errors : const LSR_struc
:=

LSR_struc"[

FALSE : 3,
TRUE.
TRUE.
FALSE,
TRUE,
FALSE

LSR_val 	: LSR_struc
buffer_full : boolean

! break interrupt
! framing error

! overrun error

begin
LSR_val := in_byte (LSR) 	 ! Get a byte from the LSR port
if LSR_val & LSR_errors then 	! Test line status reg. for errors

cstatus := receive_error
LSR_save := LSR_val

else 	 ! Enqueue byte from the receiver reg.
in_q p enqueue (in_byte (RBR), buffer_full)
if buffer_full then

cstatus := buffer_overflow
end if

end if
enable () 	 ! Re-enable interrupts (PC_System)

end procedure ! rs232_isr !

Example 3. The PUT_BYTE operation of the COMO object

procedure put_byte (! out_data : byte, var error : boolean I) is

! Send a data byte to the serial port. If an error such as timeout
! has occurred, set the boolean variable "error".

MCR_init : const MCR_struc := 2#00001011
	

Set 0UT2, RTS, DTR (as byte)
MSRval 	: MSR strut
timeout 	const integer := 10
count 	: integer := 0

begin
out_byte (MCR, MCR_init)
while count <= timeout loop

MSR_val := in_byte (MSR)
if MSR_val.DSR then

exit .
end if
count += 1

end loop
if count > timeout then

status := DSR_timeout
MSR_save := MSR_val
error := TRUE
return .

end if

count := 0
while count <= timeout loop

MSR_val := in_byte (MSR)
if MSRval.CTS then

exit .
end if
count += 1

end loop
If count > timeout then

status := CTS_timeout
MSR_save := MSR_val
error := TRUE
return .

end if

count := 0
loop

LSR_val := in_byte (LSR)
if LSRval.THRE then

exit .
elsif count > timeout then

status := THRE_timeout
LSR_save := LSR_val
error := TRUE
return .

end if
count +=

end loop

! Initialize the Modem Control Register
! Wait for Data Set Ready

! Wait for Clear To Send

I Wait for Transmit Holding Reg. Empty

out_byte (THR, out_data) 	 ! FINALLY send the data byte
end procedure ! put_byte !

Example 4. Syntax of Aeolus object implementations

implementation of [nonrecoverable 1 recoverable 1 autosynch 1 epsilon]
object <object id> is

uses <id list>
import <id list>
action events <override list>
<block>

end implementation.

5. PROGRAMMING ACTIONS IN AEOLUS

In this section we present an example Aeolus object which illustrates the
use of some of the language features which Aeolus provides for access to the
action management facilities of the Clouds system. The SYMTAB object implements
a simple symbol table, which uses the action mechanism to provide recovery
"firewalls" around its critical operations, and uses the Aeolus/Clouds lock
mechanism to specify customized synchronization rules which allow a high degree
of concurrency in the use of its operations. For simplicity, the version of the
SYMTAB object shown here maintains only a single copy of its state; more
advanced Aeolus programming techniques will allow implementation of multiple-
copy objects for availability purposes, without necessitating changes in the
object interface.

The "definition part" or interface of the SYMTAB object is shown in example
5. An operation definition, as may be seen in this example, may specify (with
the keyword action) that the operation is to be compiled so that its invocation
will automatically result in the creation of an action to encapsulate its execu-
tion. (The newly created action will actually be a subaction of the action
which invokes the operation. Thus the execution of the operation can be aborted
without necessarily terminating the calling action.) All operations of the SYM-
TAB object are invoked as actions, except for the QUICK_LIST operation (more on
this later).

An operation definition may also indicate that the operation might modify
(write to) or examine (read) the object state; this information is used in the
compilation of objects which take advantage of the automatic synchronization
(autosynch) capabilities supported by the Clouds kernel. As would be expected,
multiple concurrently executing actions are allowed to access an autosynch
object via examine operations. On the other hand, an action may not execute a
modify operation on such an object until all other actions which have touched
the object have either committed or aborted, and that action will lock out all
others until it commits or aborts.

SYMTAB does not use the autosynch feature; rather, it uses synchronization
techniques which allow greater concurrency where possible. For example, among
the operations defined in the SYMTAB object are two which provide listings of
the object state. The OUICK_LIST operation provides only an approximate picture
of the symbol table state, since it does not wait for any actions which have
executed INSERT and DELETE operations on the symbol table to complete before it
produces a listing. It thus can always be executed without waiting, but it
effectively assumes that all changes which have been made to the working copy of
the symbol table will eventually be committed. The picture of the symbol table
provided by QUICK_LIST may not be and may never become a committed state. A
precise picture is given by the EXACT_LIST operation, which is executed as an
action. EXACT_LIST uses a lock (described below) to guarantee that all other
actions which have changed the symbol table either commit or abort before the
listing is produced. Thus the picture presented by this operation presents a
valid logical view of the symbol table. Presumably, the user of the QUICK_LIST
operation is willing to risk the possibility of an inconsistent picture in
exchange for the greater speed of this operation.

The implementation of the SYMTAB object is shown in example 6. The object
defines two locks for synchronizing concurrent use of its operations. The

-12-

SYMENTRY lock is used to lock individual hash buckets of the symbol table hash
array, allowing a typical multiple reader / single writer protocol. This proto-
col is used by the INSERT and DELETE operations to exclude multiple writers on a
given hash bucket. However, the granularity of this lock allows multiple writ-
ers concurrent access to disjoint buckets. This granularity of locking was, of
course, selected on the basis of knowledge of the particular data structures
being used to implement the hash table.

The SYMTABLE lock, on the other hand, is used to lock the entire hash
array. 	This lock is unusual in that it allows multiple writers as well as mul-
tiple readers, although writers exclude readers and vice versa. 	The SYMTABLE
lock is used to express the incompatibility between the EXACT_LIST operation and
the INSERT and DELETE operations, since the latter two modify the symbol table
state. Such a lock is a very good example of the tailoring of synchronization
constraints allowed by the Aeolus lock feature.

Example 5. SYMTAB object definition part

definition of object symtab is

! Single-copy symbol table object using the action management
! facilities of Aeolus/Clouds for recovery firewalls and the lock
! mechanisms for synchronization.

! The definition part contains specifications of public constants,
! types, and operations defined by this object.
! When compiled, it produces a symbol table file which may be imported
! by other objects using this object in their implementations.

MAX_VAL_LENGTH : const integer := 80 	! or whatever

type valstring is string (MAX_VAL_LENGTH)

operations

procedure insert (newname 	valstring) is modify action
! The INSERT operation must be invoked as an action.
! It places an entry into the symbol table,
! and locks the NEWNAME entry before the insertion.

procedure delete (oldname : valstring) is modify action
! The DELETE operation must be invoked as an action.
! If it finds an entry with value field = OLDNAME, it locks that
! entry and then removes the entry from the symbol table and frees
! its storage space.

procedure find (name : valstring) : boolean is examine acion
! The FIND operation must be invoked as an action.
! It sets a READ lock on the NAME entry, and then tries to locate
! that entry with value field = NAME and returns TRUE if it succeeds.

procedure quick_list () is examine
! The QUICK_LIST operation provides a quick (dirty) listing of all
! names currently in the symbol table.

procedure exact_list () is examine action
! The EXACT_LIST operation must be invoked as an action.
! It provides a listing of the exact state of the symbol table at a
! given point in time. To do this, it locks the whole symbol table,
! thereby excluding any changes during preparation of the listing.
! Thus, although EXACT_LIST, FIND, and QUICK_LIST operations
! may execute concurrently, and INSERT and DELETE operations
! which access different hash buckets may also execute
! concurrently, INSERT and DELETE operations must block on
! EXACT_LIST operations.

end definition.

Example 6. SYMTAB object implementation part

implementation of object symtab is

! Single-copy symbol table object using the action management
! facilities of Aeolus/Clouds for recovery firewalls and the lock
! mechanisms for synchronization.

MAXBUCKET : const integer := 101 	1 or whatever

type hash_range is 1 .. MAXBUCKET

type ptr_entry is -> symtable_entry

type symtable_entry is
record

name 	: valstring ,
next 	: ptr_entry

end record

! just something for demo purposes

symtable 	: array [hash_range] of ptr_entry

symentry_lock : lock (write : []
read : [read]) domain is hash_range

! The SYMENTRY lock allows locking of individual hash buckets in the
! symbol table. Several READ operations are allowed to proceed
! concurrently, but a WRITE operation blocks all other operations.

symtable_lock : lock (write : [write]
read : [read])

! The SYMTABLE lock allows the entire symbol table to be locked.
! This lock is set in the EXACT_LIST operation for purposes of
! getting an exact listing of the state of the symbol table.
! Operations which change the state of the symbol table must wait for
! completion of any outstanding EXACT_LIST operations.

procedure hash (name : valstring) 	hash_range is
! This HASH function is a local (nonpublic) procedure of
! the SYMTAB object.
begin

! the usual type of stuff
end procedure ! hash !

procedure insert 	newname : valstring I) is action
! The INSERT operation must be invoked as an action.
! It places an entry into the symbol table,
! and locks the NEWNAME entry before the insertion.

entry 	: ptr_entry
bucket_num : hash_range

begin
SetLock (symtable_lock, 0, write)
bucket num := hash (newname)
new (entry)
using ent := entry -> do

ent.name := newname
ent.next := symtable [bucket_num] -> .next

end using
SetLock (symentry_lock, bucket_num, write)
region symtable [bucket_num] do

symtable [bucket_num] := entry
end region

end procedure ! insert !

-15-

procedure delete (! oldname: valstring !) is action
! The DELETE operation must be invoked as an action.
! If it finds an entry with value field s OLDNAME, it locks tht
! entry and then removes the entry from the symbol table and frees
! its storage space.

entry, preventry : ptr_entry
bucket_num 	: hash_range

begin
SetLock (symtable_lock, 0, write)
bucket_num 	:= hash (oldname)
entry, preventry := symtable [bucket_num]
while entry <> NIL loop

if entry -> .name = oldname then
SetLock (symentry_lock, bucket_num, write)
region entry do

preventry -> .next := entry -> .next
dispose (entry)

end region
exit .

else
preventry := entry
entry 	:= entry -> .next

end if
end loop

end procedure ! delete !

procedure find (! name : valstring I) ! : boolean ! is action
! The FIND operation must be invoked as an action.
! It sets a READ lock on the NAME entry, and then tries to locate
! that entry with value field = NAME and returns TRUE if it succeeds.

entry 	: ptr_entry
bucket_num : hash_range

begin
bucket_num := hash (name)
SetLock (symentry_lock, bucket_num, read)
entry := symtable [bucket_num]
while entry <> NIL loop

if entry -> .name = name then
return TRUE

else
entry := entry -> .next

end if
end loop
return FALSE 	 ! if we get here, NAME isn't in the symbol table

end procedure ! find !

procedure quick_list () is
! The OUICK_LIST operation provides a quick (dirty) listing of
! names currently in the symbol table.

entry : ptr_entry
: index hash_range

begin
for i := 1 to MAXBUCKET loop

entry := symtable [i]
while entry <> NIL loop

write (entry -> .name) ! or whatever
entry := entry -> .next

end loop ! while I
end loop ! for !

end procedure ! list !

-16-

procedure exact_list () is action
! The EXACT_LIST operation must be invoked as an action.
! It provides a listing of the exact state of the symbol table at a
! given point in time. To do this, it locks the whole symbol table,
! thereby excluding any changes during preparation of the listing.
! Thus, although EXACT_LIST, FIND, and QUICK_LIST operations
! may execute concurrently, and INSERT and DELETE operations
! which access different hash buckets may also execute
! concurrently, INSERT and DELETE operations must block on
! EXACT_LIST operations.
begin

SetLock (symtable_lock, 0, read)
quick_list ()

end procedure ! exact_list !

: index hash_range

begin ! initialization
for i := i to MAXBUCKET loop

symtable [i] := NIL
end loop

end implementation.

! symbol table is initially empty

6. CONCLUSIONS AND FUTURE WORK

We have found Aeolus to be quite effective as a systems programming
language (as represented by examples 1 through 3). In particular, the clarity
of interface definitions made possible by use of pseudo-objects is extremely
valuable for encapsulation of hardware details. Through our experience with
developing objects like SYMTAB (examples 5 and 6), we have come to understand
techniques for using subactions as "firewalls" to limit the effect of failures.
We have found that Allchin's generalized lock mechanism makes it relatively easy
to specify special-purpose synchronization rules dependent on object semantics
(e.g., the use of the SYMTABLE lock in SYMTAB).

Among the hardest questions which need more study is how replication can
most effectively be used to provide availability. Actions and resilient objects
ensure that failures are not catastrophic, but they are concerned with data
integrity, 	not with how a program reacts to failures. The availability ques-
tion involves use of multiple objects on different nodes to represent a 	sin-
gle 	resource, thus providing continued access to the resource in the presence
of individual node failures. Algorithms for read and write access to 	such
resources must be developed and evaluated. The recent paper by Daniels and
Spector [Dani83] is one example of such an algorithm.

We must also consider possible representations of work so that it may be
restarted; this is an area that has been until recently unexplored [McKe84]. As
has been noted above, most of the work on actions and objects has been
oriented 	toward 	protection 	of data from failures. The fact that processes
are considered to be an important, independent component supported by 	the
Clouds 	architecture gives us a point of departure for this study. McKendry's
work on Petri-nets discussed above lays the groundwork for an attack on this
problem within the framework of Clouds. If we view a program as a collection
of processes interacting through shared objects, some features akin to
the process interconnection specifications of Pronet [Macc82b] may prove to be
useful.

7. REFERENCES

[Allc82] Allchin, J. E., and M. S. McKendry, "Object-Based Synchronization and
Recovery." Technical Report GIT-ICS-82/15, School of Information and
Computer Science, Georgia Institute of Technology, September 1982

[Allc83a] Allchin, J. E., and M. S. McKendry. "Synchronization and Recovery of
Actions," Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing (PODC), Montreal, August 1983

[Allc83b] Allchin. J. E., "An Architecture for Reliable Decentralized Systems.'
Ph.D. Thesis, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, Georgia, 1983 (also available as
technical report GIT-ICS-83/23)

[Alme83] Almes, G. T., A. P. Black, E. D. Lazowska, and J. D. Noe, 	"The Eden
System: A Technical Review," Technical Report 83-10-05, Department of
Computer Science, University of Washington, October 1983

[Bana83] Banatre, J. P., M. Banatre, and F. Ployette, "Construction of a Dis-
tributed System Supporting Atomic Transactions," Proceedings of the
Third Symposium on Reliability in Distributed Software and Database
Systems, Clearwater Beach, Florida, October 1983

[Birm84] Birman, K., et al., "Implementing Fault-Tolerant Distributed Objects,"
Computer Science Technical Report 84-594, Cornell University. March
1984

[Dan183] Daniels, D., and A. Z. Spector, "An Algorithm for Replicated Direc-
tories," Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed . Computing (PODC), Montreal, August 1983

[Jens82] Jensen, E. D., "Decentralized Executive Control of Computers," 3rd
IEEE International Conference on Distributed Computing Systems,
October 1982

[Lisk83] Liskov, B.. and M. Herlihy, 	"Issues in Process and Communications
Structure for Distributed Programs," Proceedings of the Third Sympo-
sium on Reliability in Distributed Software and Database Systems,
Clearwater Beach, Florida, October 1983

[Macc82a] Maccabe, A. B., "Language Features for Fully Distributed Processing
Systems," Ph.D. Thesis, School of Information and Computer Science,
Georgia Institute of Technology, 1982 (also available as Technical
Report GIT-ICS-82/12)

[Macc82b] Maccabe, A. B., and R. J. LeBlanc, 	"The Design of a Programming
Language Based On Connectivity Networks," Proceedings of the Third
International Conference on Distributed Computing Systems, Miami /
Fort Lauderdale, October 1982

[McKe84] McKendry, M. S., "Ordering Actions for Visibility," Technical Report
GIT-ICS-84/05, School of Information and Computer Science, Georgia
Institute of Technology, August 1984

[Schw83] Schwarz, P., and A. Spector, "Synchronizing Shared Abstract Types,"
Carnegie-Mellon University Technical Report CMU-CS-83-163, Revised
November 1983

[Weih83] Weihl, W., and B. Liskov, "Specification and Implementation of Resi-
lient, Atomic Data Types." Symposium on Programming Language Issues in
Software Systems, June 1983

QUARTERLY PROGRESS REPORT
RESEARCH ON RELIABLE DISTRIBUTED

COMPUTING
CONTRACT #MDA 904-84-C-6035
REPORTING PERIOD: 1 JAN 85 - 31 MAR 85

1. Project Status

During the second quarter of this project, work has continued on each of the two

tasks called for by the statement of work. These efforts are closely related to other work

in progress within the Clouds Project, our major research effort in the area of reliable

distributed computing. Under the Distributed File Systems task, work has proceeded on

the design of the Clouds storage manager. The main focus of this work has been the

development of a firm interface specification for the storage manager. This effort is sum-

marized below and will be documented in a forthcoming technical report "A Note on

Storage Management in Clouds". Under the Language Support for Robust Distributed

Programs task, a Ph.D. thesis proposal has been developed, entitled "Programming

Methodologies for Resilience and Availability," This proposal is attached as Appendix A.

Other work in progress under this task, involving language definition and implementa-

tion, is described in section 3.

The work on the tasks of this project is proceeding on schedule. Future plans

include a continuation of the two investigation presented here. These efforts, in combi-

nation with other work in progress within the Clouds project, should lead to a working

prototype system by the end of this year.

2. Storage Management -- Progress Report

This quarter's effort was devoted primarily to refining the design of the storage

manager. This effort is documented in the technical report "A Note on Storage Manage-

ment for Clouds" (GIT-ICS-85/02). We were interested in establishing a firm interface

for the storage manager, so that efforts on other parts of the Clouds kernel that interact

with the storage manager can proceed. The refined design addresses some problems that

with the recovery mechanism that were ignored initially. Some initial coding of data

structures has started.

We are taking an object-oriented approach to the design and have identified three

object types which form the basis of the storage manager. At the lowest level is the dev-

ice object type, which is responsible for the uninterpretted transfer of data to and from

pages on secondary storage. Most of the functionality at this level is similar to that

found in conventional device drivers. The partition object type forms the next level in

the storage manager and represents a logical device. Partitions provide a mechanism for

1

the division of secondary storage according the intended use of the storage (recoverable

object storage, non-recoverable object storage, and paging surfaces, for example). The

segment object type is an alternate type for Clouds objects. This alternate view of an

object allows the storage manager to manipulate object data in a uniform and covenient

manner. A segment object is simply a sequence of bytes that can be manipulated by a

few simple operations, such as get a page of the segment and get the status of the seg-

ment. Most of the storage manager's recovery mechanism is located in objects of this

type.

We have defined operations and the major data structures for each of these object

types, which collectively form the interface to the storage manager. Most accesses to the

storage manager will be through a call on a segment object or some partition object

operation; the device object operations form a low-level interface between the partition

and segment objects and secondary storage. The segment and partition operation pro-

vide a uniform interface to the storage manager for the handling of both recoverable and

non-recoverable object.

Other refinements to the design concern the recovery mechanism, particularly the

recovery of partition structures such as the partition allocation map. Our concern has

been the avoidance of a bottleneck during action commits. To this end, we have

developed a scheme using intention lists to avoid locking out large portions of the parti-

tion map during action commits, permitting as many actions to commit concurrently as

possible. This scheme differs considerably from the recovery mechanism use for object

data.

The device object must be able to flush i/o requests during action commit, so to

ensure that any committed changes are reflected in the permanent object data. We are

in the process of developing a mechanism to allow actions to specify a set of requests

which must be flushed to secondary storage before the commit is complete. Our goal

with this mechanism is to interfere as little as possible with the normal scheduling of

requests by the device object.

The segment level recovery protocols have undergone some polishing to make them

more efficient and remove some bugs.

2

3. Aeolus -- Progress Report

As part of the Clouds project, we are designing and implementing a high-level sys-

tems programming language called Aeolus (after the king of the winds in Greek mythol-

ogy) in which those levels of the Clouds system above the kernel level will be imple-

mented. The Aeolus language, described in [Wilk85b] (in progress), provides access to

the synchronization and recovery features of Clouds. It also provides a framework

within which to study programming methodologies suitable for action-object systems

such as Clouds. This study should lead to the design of high-level language features to

support that methodology. Thus, our interest in Aeolus lies not in the language itself,

but in studying the sort of programming which may be done with it.

We have found Aeolus to be effective as a systems programming language during

our studies of programming systems objects such as communications handlers for the

Clouds workstations. In particular, the clarity of interface definitions made possible by

use of pseudo-objects is extremely valuable for encapsulation of hardware details in such

hardware-dependent programming. Through our experience with developing systems

objects, we have come to understand techniques for using subactions as "firewalls" to

limit the effect of failures. We have found that Allchin's generalized lock mechanism

makes it relatively easy to specify special-purpose synchronization rules dependent on

object semantics.

A compiler for Aeolus is currently under development on one of the DEC VAX

11/750 computers of the Clouds project under Berkeley Unix (TM) Version 4.2. We are

using the Amsterdam Compiler Kit (ACK) [Tane83] to generate code generators for

Aeolus for both the Clouds VAXes and the individual work stations which the Clouds

system will use to interface to the VAXes. Work on the semantic routines for Aeolus is

proceeding in parallel with the development of routines to generate intermediate code for

ACK. This work is being done in Pastel, an extended Pascal dialect developed at the

Lawrence Livermore National Laboratory. Present plans call for the Aeolus compiler to

be capable of interfacing with the action and object managers of the Clouds system by

mid-1985.

As was mentioned above, we intend to use Aeolus as a framework within which to

study programming methodologies for action-object systems. Among the hardest ques-

tions which need more study is how replication can most effectively be used to provide

3

availability. Actions and resilient objects ensure that failures are not catastrophic, but

they are concerned with data integrity, not with how a program reacts to failures.

The availability question involves use of multiple objects on different nodes to represent

a single resource, thus providing continued access to the resource in the presence of

individual node failures. Algorithms for read and write access to such resources must

be developed and evaluated. The recent paper by Daniels and Spector [Dani83J is one

example of such an algorithm.

We must also consider possible representations of work so that it may be restarted;

this is an area that has been until recently unexplored McKe84]. Most of the work on

actions and objects has been oriented toward protection of data from failures. The

fact that processes are considered to be an important, independent component sup-

ported by the Clouds architecture gives us a point of departure for this study.

McKendry's work on Petri nets [McKe84] lays the groundwork for an attack on this

problem within the framework of Clouds. If we view a program as a collection of

processes interacting through shared objects, some features akin to the process

interconnection specifications of Pronet [Macc82] may prove to be useful.

Our initial studies in programming methodologies for resilience and availability are

described in [Wilk85a]; there, a plan is presented for determining such methodologies

appropriate to the design of objects needed in the Clouds system. Examples of a repli-

cated object exhibiting the properties of resilience and availability are given there, as

well as a preliminary design for a permanent heap, part of the run-time support neces-

sary for the Aeolus/Clouds system to provide these properties. The issues with which

we are concerned include the use of semantic knowledge of objects in the programming

of replication; trade-offs between consistency and availability; the appropriateness of

current programming models for replicated data; and the support needed from the

operating system and language runtime system to ensure availability and forward pro-

gress of processes. As we progress with these studies, we will take advantage of our

experience in the implementation of the Aeolus runtime system and its interaction with

the action and object managers of the Clouds system.

[Dani83] Daniels, D., and A. Z. Spector, "An Algorithm for Replicated Directories,"

Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing, Montreal, August 1983

4

[Macc82] Maccabe, A. B., and R. J. LeBlanc, "The Design of a Programming Language

Based On Connectivity Networks," Proceedings of the Third International

Conference on Distributed Computing Systems, Miami / Fort Lauderdale,

October 1982

[McKe84] McKendry, M. S., "Ordering Actions for Visibility," Proceedings of the

Fourth Symposium on Reliability in Distributed Software and Database Sys-

tems, Silver Spring, Maryland, October 1984 (also avilable as Technical

Report GIT-ICS-84/05)

[Tane83] Tanenbaum, A. S., H. van Staveren, E. G. Keizer, and J. W. Stevenson, "A

Practical Tool Kit for Making Portable Compilers," Communications of the

ACM 26, 9, September 1983

[Wilk85a] Wilkes, C. T., "Programming Methodologies for Resilience and Availability,"

Ph.D. Thesis Proposal, School of Information and Computer Science, Georgia

Institute of Technology, January 1985

[Wilk8513] Wilkes, C. T., "Preliminary Aeolus Reference Manual," Technical Report

GIT-ICS-85/07, School of Information and Computer Science, Georgia Insti-

tute of Technology, May 1985

5

QUARTERLY PROGRESS REPORT
RESEARCH ON RELIABLE DISTRIBUTED

COMPUTING
CONTRACT #MDA 904-84-C-6035
REPORTING PERIOD: 1 APR 85 - 31 JUNE 85

1. Project Status

During the third quarter of this project, work has continued on each of the two

tasks called for by the statement of work. These efforts are closely related to other work

in progress within the Clouds Project, our major research effort in the area of reliable

distributed computing. Under the Distributed File Systems task, work has proceeded on

the integration of our storage management system with the Clouds kernel virtual

memory management system. Additionally, implementation work has been done on

several device drivers necessary to test the kernel and storage management system.

Under the Language Support for Robust Distributed Programs task, we have been

refining the definition of our language, Aeolus, and proceeding with the implementation

of the compiler. A copy of the Aeolus definition is attached as Appendix A.

The work on the tasks of this project is proceeding on schedule. Future plans

include a continuation of the two investigation presented here. These efforts, in combi-

nation with other work in progress within the Clouds project, should lead to a working

prototype system by the end of this year.

2. Storage Management -- Progress Report

This quarter's effort has been devoted to low-level implementation of the storage

management system, namely the device drivers that Clouds will use. The Clouds kernel

requires additional support beyond that normally supplied by conventional drivers. Pri-

marily, the drivers must be able to ensure that a committing action's writes are com-

pleted before the actions completes the commit procedure. A uniform interface is

designed that provides access to any device on the Clouds system and successfully hides

the difference between some very different device. There are three efforts in this area.

The first is the implementation of a device driver for the RA81 disk. The RA81 and

UDA50 operate using the Mass Storage Control Protocol developed by DEC, which to

allows the development of classes of device drivers for devices supporting the protocol.

We have been studying the protocol are now working on the implementation of the

driver.

The second effort is the implementation of a device driver for the RLO2 removable disk

device. The RLO2 uses 10 Mb removable cartridges. This code is currently being tested.

The RLO2 is a much simpler device than the RA81 and does not use the MSCP. The

device supports flush of action requests on commit and does bad sector forwarding.

The third effort at this level is the development of a virtual disk for use by the Clouds

kernel. Using a recently completed ethernet driver, a device driver is being implemented

that uses the ethernet perform the disk i/o on another system under Unix, using the

standard raw disk i/o routines. This will provide the Clouds kernel with use of the large

RA81 disks very quickly. Also, it the disk used by the virtual disk device is dual ported,

so that when the RA81 driver is available, it will have a device already using the Clouds

format and the system can switch from the virtual device to an on-system device very

easily.

At higher levels of the storage management system, the integration of the storage

management system with virtual memory management has been examined. Data struc-

tures and routines for support of the page fault mechanism are under development. The

routines will support the mapping of Clouds objects in virtual memory and the location

of the disk page that satisfies a page fault.

The partition system is the next target for implementation, and preparation for that

effort is underway. The major data structures for the partition object are designed and

the major routines have been pseudo-coded. There have been some changes made to the

overall design of the partition system, principally in the nature of the division of respon-

sibility between the three levels of the storage management system: the device objects,

the partition objects, and the segment objects. The storage management system

attempts to make the action commit procedure transparent to the kernel, in that the

segmentation system decides whether recovery is necessary for the segment being writ-

ten. The modified design alters the interfaces between segment system and the kernel so

that the segment system will have the information it needs to make these decisions.

Analysis of the protocol for maintaining the partition free-page maps consistently has

revealed some important simplifications that could be made to that protocol. Normally,

the system uses a volatile version of the partition free-page map. Changes are made to a

permanent version of the free-page map only when actions commit. This would seem

potentially to require multi-page writes for each action commit. However, it is possible

to put off making the allocations part of the permanent free-page map indefinitely, since

it may be reconstructed from information contained in the segment system. The work

of updating the free-page map could be assumed by the system initialization, reducing

2

some of the overhead of normal action commit. Also, a compromise solution is feasible,

in which free-page map updating is done as part of the background work done by the

kernel. These ideas will be explored as part of the development of the storage manage-

ment system.

3. Aeolus - Progress Report

As part of the Clouds project, we are designing and implementing a high-level sys-

tems programming language called Aeolus (after the king of the winds in Greek mythol-

ogy) in which those levels of the Clouds system above the kernel level will be imple-

mented. Aeolus provides access to the synchronization and recovery features of Clouds.

It also provides a framework within which to study programming methodologies suitable

for action-object systems such as Clouds.

The definition of the Aeolus language [Wilk85b] is nearing completion. The design

described in that report has undergone several iterations as the details of the language

design have been filled in and as we have gained experience in the sort of programming

for which the language is intended. VVe believe that these iterations of the design pro-

cess have made the design of the language more coherent. Although we have drawn

greatly on previous language designs in our work, we have tried to keep the design as

simple as possible while fulfilling the design goals of Aeolus; thus, we have not attempted

to provide such all-encompassing collections of features as are provided by some other

language designs. As an example of the streamlined design of the language, the

definition of type compatibility in Aeolus is quite simple; two entities are compatible if

and only if they share the same type (by name equivalence). Thus, Aeolus provides no

implicit type coercions. However, the language does provide powerful means of explicit

type conversion, thus allowing the sort of manipulations necessary in systems program-

ming while maintaining safety through strict typing. Among the benefits which should

accrue from a simple language design are ease of learning and understanding of the

language by programmers as well as ease of implementation of the compiler.

A compiler for Aeolus is currently under development on one of the DEC VAX

11/750 computers of the Clouds project under Berkeley Unix (TM) Version 4.2. We are

using the Amsterdam Compiler Kit (ACK) [Tane83I to generate code generators for

3

Aeolus for both the Clouds VAXen and the individual work stations which the Clouds

system will use to interface to the VAXen. Work on the semantic routines for Aeolus is

proceeding in parallel with the development of routines to generate intermediate code for

ACK. The code-generation work is progressing quite well; during the last quarter, we

have been able to generate and execute code for object invocations which do not involve

the facilities of the Clouds kernel or object managers (that is, code for what we call

"non-Clouds objects").

Work is also progressing on the implementation of facilities for generating actual

"Clouds objects." This entails the definition of the interface to the Clouds object and

action managers, which will serve as an intermediary between user programs and the

kernel facilities. Thus, the members of the compiler group are working with members of

the kernel group on the definition and implementation of the action and object

managers. We expect the Aeolus compiler to be capable of interfacing with the action

and object managers of the Clouds system, and thus to be capable of invocations on

actual Clouds objects, during the coming quarter.

We intend to use Aeolus as a framework within which to study programming

methodologies for action-object systems. Our initial studies in programming methodolo-

gies for resilience and availability are described in [Wilk85a]; there, a plan is presented

for determining such methodologies appropriate to the design of objects needed in the

Clouds system. The issues with which we are concerned include the use of semantic

knowledge of objects in the programming of replication; trade-offs between consistency

and availability; the appropriateness of current programming models for replicated data;

and the support needed from the operating system and language runtime system to

ensure availability and forward progress of processes. We are currently attempting to

identify data structures the study of which will be beneficial both in our work on metho-

dologies and in the Clouds implementation effort; that is, we wish to study structures

needed in the kernel and system code. This effort, and the work toward definition of the

Aeolus/Clouds interface which was described above, is providing feedback in both direc-

tions, aiding both the interface design and our understanding of action-based program-

ming methodologies. As we progress with the methodology studies, we are taking

advantage of our experience in the implementation of the Aeolus runtime system and its

interaction with the action and object managers of the Clouds system.

4

[Tane83] Tanenbaum, A. S., H. van Staveren, E. G. Keizer, and J. W. Stevenson, "A

Practical Tool Kit for Making Portable Compilers," Communications of the

ACM 26, 9, September 1983

[Wilk85a] Wilkes, C. T., "Programming Methodologies for Resilience and Availability,"

Ph.D. Thesis Proposal, School of Information and Computer Science, Georgia

Institute of Technology, January 1985

[Wilk85b] Wilkes, C. T., "Preliminary Aeolus Reference Manual," Technical Report

GIT-ICS-85/07, School of information and Computer Science, Georgia Insti-

tute of Technology, April 1985

5

APPENDIX A

Preliminary Aeolus Reference Manual

Technical Report

GIT-ICS-85/07

July 1985

C. Thomas Wilkes

The Clouds Project

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

Aeolus Reference Manual 	 Preliminary Version

Table of Contents

1. Introduction 	 1

2. Explanation of Notation 	 2

3. Tokens 	3

3.1. Identifiers 	3

3.2. Numbers 	 3

3.2.1. Ints 	3

3.2.2. Floats 	3

3.3. Litchars and Litstrings 	4

3.4. Comments and Compiler Options 	4

3.5. Reserved Words 	4

3.6. Operators and Delimiters 	5

3.7. Other Characters 	5

4. Declarations and Scopes 	5

4.1. Compilation Units and Their Scopes 	5

4.2. Qualified Identifiers 	6

5. Constant Declarations 	7

6. Type Declarations 	8

6.1. Type Identifiers 	8

6.2. Non-ID Types 	9

6.2.1. Enumerations 	9

6.2.2. Index and Pointer Types 	9

6.2.3. Structured Types 	9

6.2.3.1. Bitstrings 	10

6.2.3.2. Strings 	10

Aeolus Reference Manual 	 Preliminary Version

6.2.3.3. Arrays 	11

6.2.3.4. Fle x arrays 	11

6.2.3.5. Records 	12

6.2.3.6. Structures 	12

6.2.3.7. Sets 	12

6.2.3.8. Locks 	13

6.3. Parameterized Object Types 	14

7. Constraint Declarations 	15

8. Variable Declarations 	 15

9. Expressions 	 16

9.1. Operands 	16

9.2. Operators 	18

9.2.1. Arithmetic Operators 	18

9.2.2. Bitwise Operators 	19

9.2.3. Address Operators 	19

9.2.4. Logical Operators 	20

9.2.5. Set Operators 	20

9.2.6. Relational Operators 	20

9.3. Type Compatibility 	21

10. Statements 	23

10.1. Simple Statements 	23

10.1.1. Assignment Statements 	23

10.1.2. Procedure Calls 	24

10.1.3. Object Operation Calls 	24

10.1.4. EXIT Statements 	24

Aeolus Reference Manual 	 Preliminary Version

10.1.5. RETURN Statements 	24

10.1.6. NULL Statements 	25

10.2. Compound Statements 	 25

10.2.1. IF Statements 	25

10.2.2. CASE Statements 	 25

10.2.3. LOOP Statements 	27

10.2.4. USING Statements 	 28

10.2.5. REGION Statements 	29

11. Procedures 	 29

11.1. Procedure Declarations 	29

11.2. Procedure Invocations 	31

12. Objects 	31

12.1. Object Definition Parts 	32

12.2. Object Implementation Parts 	34

12.3. Object Operation Invocations 	35

13. Actions 	36

13.1. Action Events 	36

13.2. Recoverable Variables 	 37

13.3. Action Invocations 	38

14. Processes 	39

15. REFERENCES 	40

Appendix A: Systems Programming Example 	A-1

Appendix B: Example of Action Programming 	B-1

Appendix C: LALR(1) Grammar for Aeolus 	C-1

Appendix D: Definition of the Object standard 	D-1

Aeolus Reference Manual 	 Preliminary Version

Appendix E: Definition of the Clouds Action Manager 	E-1

Aeolus Reference Manual 	 Preliminary Version

1. Introduction

The goal of the Clouds project at Georgia Tech [A11c82, A11c83a, Allc83b] is the imple-
mentation of a fault-tolerant distributed operating system based on the notions of objects,
actions, and processes, which will provide an environment for the construction of reliable appli-

cations. The Aeolus' programming language developed from the need for an implementation
language for those portions of the Clouds system above the kernel level. Aeolus has evolved
with these purposes:

• to provide the power needed for systems programming without sacrificing readability or
maintainability;

• to provide abstractions of the Clouds notions of objects, actions, and processes as
features within the language;

• to provide access to the recoverability and synchronization features of the Clouds sys-
tem; and

• to serve as a testbed for the study of programming methodologies for action-object sys-
tems such as Clouds [LeB185, Wilk861.

Thus, the main interest of Aeolus lies not in the language itself, but in what may be done with
the language. We have avoided providing high-level features for programming actions with the
intention of evolving designs for such features out of our experience with programming in
Aeolus. These features will then be incorporated into an applications language for the Clouds
syste m .

Aeolus has its roots in a long line of structured programming languages, including Simula,
Pascal, Modula-2, and Ada.' Thus, many of its features should be easy to understand for those
familiar with one of these languages; in particular, familiarity with Pascal or Modula-2 is
assumed throughout this report, and features will often be explained in terms of the
corresponding features in those languages.

The main structuring features of Aeolus (as of the Clouds system) are objects, actions,
and processes. Clouds supports the object concept as a convenient structuring principle for
facilitating recovery and synchronization; Aeolus also allows the programmer to use the object
features of the language for the specification of abstract data types, without necessarily invoking
the object and action management features of the Clouds system. Thus, Aeolus objects provide
a separate compilation facility as well as access to the object support of Clouds; the separation
of object specifications into definition and implementation parts (much as are modules in Modula-2
or packages in Ada) provides a safe interface to separately-compiled objects, as well as facilitat-
ing the design of large systems consisting of many objects (possibly implemented by several
people) or the use of predefined objects. Aeolus pseudo-objects provide a means of isolating
system dependencies—such as input/output or low-level machine architecture—into object-like
modules which provide operations facilitating machine-level programming.

Support of the Clouds notion of actions in Aeolus is fairly low-level. Essentially, means
are provided for specifying that an operation (procedure) of an object may be invoked as an
action, or that an operation invocation is to be executed as a (toplevel or nested) action. Also,
the status of action executions may be checked by means of calls to a Clouds action manager.

The process concept in Aeolus corresponds roughly to the program construct of Pascal or
Modula-2. That is, a process ties together the constituent parts (objects) of a programmed sys-
tem, and the invocation of a process provides activity in the Clouds system.

Except for the access Aeolus provides to the action management facilities of Clouds
(which control recovery in the system), nothing in the language is explicitly dependent on the
Clouds system for its implementation. In the Clouds implementation of Aeolus, the details of
synchronization and recovery of objects are hidden by the interface to the Clouds object and

'Aeolus was the king of the winds in Greek mythology.

2Ada is a registered trademark of the U.S. Government—Ada Joint Program Office

-1-

Aeolus Reference Manual 	 Preliminary Version

action managers; thus, for example, it is transparent to the programmer (and to the language
runtime support) whether an operation invocation involves a local or remote object. Therefore,
an implementation of Aeolus—without its features for recovery handling—should be possible
under any operating system; only the object management need be subsumed by the language
runtime support, which should be trivial for a non-distributed system.

This report is not intended to be a tutorial on the Aeolus language; rather, it strives to be
a concise definition of the syntax and semantics of Aeolus, and thus should serve as a reference
for programmers and implementors.

2. Explanation of Notation

The syntax (grammar) of a language consists of rules for arranging sequences of terminal
symbols (also called tokens) in the vocabulary of the language (keywords, numbers, names
(identifiers), and certain other characters used as punctuation to make the language more read-
able) into sentences (or sentential forms) which have meaning in the language. A syntax rule
often specifies that a sequence of terminal symbols be grouped into a nonterminal symbol, an
entity in the language which often has an intuitive meaning, such as an expression or a state-
ment.

To describe the syntax of Aeolus in this manual, we will use a notation known as the
extended Backus-Naur form (EBNF). (A complete grammar for Aeolus in LALR(1) form is
presented in Appendix C.) In this notation, the so-called metasymbols and are used to
enclose an Aeolus sentential form which is optional; the metasymbols { and } are used to
enclose an Aeolus sentential form which may be repeated any number of times (possibly zero
times). Tokens are enclosed in double quotes (""); nonterminal symbols are enclosed in angle
brackets (<>). The left-hand side of a syntax rule specifies the nonterminal which is being
defined, while the right-hand side of the rule gives the sequence of terminal and nonterminal
symbols which are valid for the nonterminal being defined; the two sides of the rule are
separated by the metasymbol (meaning "expands into").

Thus, for example, the syntax rule

<identifier list> --+ <identifier> {"," <identifier>}

specifies that the nonterminal identifier list consists of either a single identifier nonterminal, or a
sequence of two or more identifiers separated by the comma token (","). The following are
valid identifier lists:

foo
foo, bar

foo, bar, baz

Also, the rule

<variable declaration> 	<identifier list> ":" <type> 	<expression >]

indicates that a variable declaration consists of an identifier list followed by the colon token
(":"), a specification of the type of the variable(s), and an optional initialization of the
variable(s) consisting of an assignment operator token (":.---") followed by an expression. The
following are valid variable declarations:

foo : real
foo, bar: integer := baz + 1

Aeolus Reference Manual 	 Preliminary Version

3. Tokens

The tokens, or terminal symbols, of the Aeolus language include identifiers, int and float
numbers, litstrings, and keywords (or reserved words) and other delimiters (such as arithmetic
operators and other types of special characters). In this section, we will discuss rules for the
formation of these tokens.

The following general rules apply: the ASCII character set is assumed; blanks must not
occur within tokens (except litstrings); line breaks may not occur within any token (thus a sin-
gle token may not extend over several lines); and blanks as well as line breaks are ignored
except where they serve to separate consecutive tokens. Arrangement of tokens on lines may
be in free format; in particular, there may be multiple statements on a line. The case of letters
is ignored in keywords and identifiers; however, the case of letters in litstrings is preserved.

3.1. Identifiers

An Aeolus identifier must begin with an upper or lower case letter, which may be fol-
lowed by any number of letters or digits. Also, a separator (the underscore character "2) may
be placed between any two characters within an identifier to improve readability; however, a
separator may not occur at the beginning or end of an identifier.

<identifier> --• <letter> {[<separator>] <letter or digit>

Examples:
I 	am 	an_Aeolus_identifier As_am_I

3.2. Numbers

An Aeolus number is an "int" or "float" number, which may be specified in any base
between 2 and 16 inclusive.

3.2.1. Ints

A decimal "int" starts with a digit ("0" through "9"), which may be followed by any
number of digits, optionally separated by an underscore character ("_") for readability. Ints in
bases other than 10 may be specified by giving the base (a decimal number between 2 and 16
inclusive), followed by the character "#", followed by the based number. A based number in
a base greater than 10 may include the characters "A" through "F", as appropriate to the base
of the number. (Note that case is not significant for these characters.)

Examples:

<num>
<basedit>

<basednum>
<int>
<int>

- <digit> {(<separator>] <digit>)
- <digit>, "A" .. "F"

<basedit> {[<separator >] <basedit>
<num>
<num> "#" <basednum>

1 32767 32_767 2#101010

8#52 16#2A 16#IT 13#42

3.2.2. Floats

A "float" number consists of a whole part followed by either a fractional part or an
exponent or both. 3 The whole part is a (possibly based) number. The fractional part consists of
a fractional point "." followed by a number with the same base as the whole part. The
exponent consists of the letter "E" or "e" followed by a (possibly signed) decimal number,
indicating the power of the base by which the float number should be multiplied. The base of a

3Thus, a float number must always begin with a digit.

-3-

Aeolus Reference Manual 	 Preliminary Version

float number is given as for an int; however, if a float number is based and has an exponent,
the character "#" must appear before the exponent. If no base is given, base 10 (decimal) is
assumed.

<exponent>
<sign>
<float>
<float>
<float>
<float>

Examples:

"E" [<sign>] <num>
--■

<num> "." <num>
<num> 1"." <num>] <exponent>
<num> "#" <basednum> "." <basednum>
<num> "#" <basednum> ["." <basednum>] "#" <exponent>

3.14159 8#7.77 0.1e32 2#1011#E-27 16#7f.a2#e+ 5

3.3. Litchars and Litstrings

A character is any member of the ASCII character set, including both printable characters
(alphanumeric and punctuation) and control characters. Also, some systems may define exten-
sions to the ASCII character set (for instance, graphics characters) which may be considered
character tokens on those systems. A litstring (literal string) token is a sequence of characters
enclosed in single quotes (" 1 "). To include a single quote as a character in a litstring, the sin-
gle quote must be doubled ("'"'). A special case of the litstring token is the litchar (literal
character) token, which is a litstring token consisting of a single character.

	

<litstring>
	

"`" {<character>}""'

	

<litchar> 	" 1 " <character> " 1"
Examples of LITSTRINGs:

'Hello, world' Donnt be sad' This is a "litstring"'

Examples of LITCHARs:
'a' IV 171 WI 171,

3.4. Comments and Compiler Options

A comment is explanatory text inserted into code for the reader's benefit; it is ignored by
the compiler, and does not affect the meaning of the code. In Aeolus, a comment may be
placed anywhere within a line where a blank may be placed. It begins with an exclamation
point ("!") and ends either at the next exclamation point or the end of the line on which the
comment started, whichever comes first. Thus, comments do not extend over multiple lines.

Examples:
! This is an in-line comment. ! 	!As is this.!

! This comment goes to the end of this line.

A compiler option is used to communicate to the compiler the desired settings for various
options which the compiler being used may implement, for example, whether range checks for
valid variable values are to be generated. A compiler option begins with a dollar sign ("$")
and ends either at the next dollar sign or at the end of the line on which the compiler option
started, whichever comes first.

Examples:

	

$r+ 	$ 	$pagelength=84

3.5. Reserved Words

The following is a list of the reserved words (keywords) of Aeolus. These words may not
be used as identifiers! Although the reserved words are shown here in upper case, upper and

-4-

Aeolus Reference Manual
	

Preliminary Version

lower case may be freely mixed

ACTION
ARRAY
AUTOSYNCH
BEGIN
BITSTRING
BY
CASE
CONST
CONSTRAINT
DEFINITION
DO
DOMAIN
D OWNTO
ELSE
ELSIF
END
EVENTS
EXAMINE
EXIT

in these words.

FLEXARRAY
FOR
FORWARD
IF
IMPLEMENTATION
IMPORT
INDEX
INL INE
IS
LOCK
LOOP
MOD WY
NONRECOVERABLE
NOT
NULL
OBJECT
OF
OPERATIONS
OTHERWISE

OVERRIDES
PR OCED URE
PROCESS
PSEUD 0
PURE
RECORD
RECOVERABLE
REGION
RETURN
STRING .
STRUCTURE
STRUCTURED
THEN
TO
TYPE
USES
USING
WHILE

3.8. Operators and Delimiters

The following are characters or groups of characters used as operators or delimiters (punc-
tuation) in Aeolus.

3.7. Other Characters

As mentioned before, blanks (except in litstrings) are ignored wherever they are not
required to separate other tokens; thus, blanks may be used freely to improve the readability of
code. Semicolons (";") are ignored in the same way as blanks; thus, semicolons may be used
to separate or terminate statements if so desired, but are not required. Non-printable (control)
characters are also ignored.

4. Declarations and Scopes

All identifiers in Aeolus code must be introduced by a declaration. In this section, the
rules for ordering and extent of declarations will be presented.

4.1. Compilation Units and Their Scopes

Those sentential forms described by the Aeolus grammar which may be compiled are
called compilation units. Compilation units include object definition parts, object implementation
parts, and processes. As will be clarified in section 12, an object definition part serves to declare

-5-

Aeolus Reference Manual 	 Preliminary Version

those identifiers—constants, types, and operations—which the object makes available to other
objects or processes, while the object implementation part actually provides the code for the
object. Other objects or processes may import an object definition, and use the identifiers
declared by it as if those identifiers had been declared locally.

Every compilation unit implicitly imports the standard object, .which defines various useful
identifiers. (These are listed in Appendix D.) Before any other declarations are given, the com-
pilation unit may import other objects via an import clause (see section 12). Then, declarations
of constants, types, variables (except in object definitions), and procedures (operations) may be
given in any order, as long as the declaration of any identifier used in another declaration textu-
ally precedes this use. There are, however, two exceptions to this general rule. 4 A procedure
may be declared forward; that is, only its header is declared, while the declaration of its body is
delayed until later (see section 11). Also, a pointer may be declared to reference a type whose
declaration is delayed (section 6).

After an identifier has been declared, other declarations and statements may refer to it, as
long as these references occur within the scope of the identifier. The scope of an identifier
extends from the point of its declaration to the end of the block in which it was declared. That
is, if the identifier was declared in the the declaration part of a compilation unit, its scope
extends to the end of that compilation unit; if, however, the identifier was declared in the
declaration part of a procedure, its scope extends to the end of the procedure. The scope of
identifiers introduced in a using statement (section 10) extends to the end of that statement.

The scope defined by a procedure is said to be nested within the scope defined by the sur-
rounding compilation unit. As implied by the rules above, identifiers in a nested scope are not
visible (available for reference) in the surrounding scope.. An identifier in an nested scope may
have the same name as an identifier in an enclosing scope; the identifier in the enclosing scope

is then not visible in the nested scope. Within a scope, however, an identifier must be unique;
that is, an identifier may not be declared with the same name as another identifier already
declared in the same scope (see below). Procedure declarations may not be nested (within
other procedure declarations); thus, the maximum nesting level in Aeolus is 2, where the level
of a compilation unit is 1.

4.2. Qualified Identifiers

As was stated above, an identifier must be unique within the scope in which it is declared
so that the entity which it represents may be correctly identified. However, it often occurs that
different object definitions declare constant or type identifiers with the same name, or that
different enumerated types have members with the same name, 6 or that different objects have
operations with the same name, or that different records have fields with the same name.
Thus, it is sometimes necessary to qualify an identifer with the name of its defining type or
record to ensure that it is unique.

If types or constants with the same name defined by more than one imported object type °
 are visible in a scope, or if similarly-named members of different enumerated types are visible

in a scope, these names must be qualified with the names of their defining types:

<type-qualified id> --e <type id> " "" <identifier>

For example,

1These exceptions allow more general data structures and procedural definitions to be formulated, in particular
recursive structures.

5This problem may also occur in Pascal, which does not provide for qualification of enumerated types; thus, so-
called "holes'' may be left in the types.

5As we shall see in the next section, the names of imported object definitions may be used as the names of types.
Variables declared with an object type are said to be object instances.

-8-

Aeolus Reference Manual 	 Preliminary Version

obj1"foo 	obj2"foo

refer to identifiers named "foo" defined by object types "objl." and "obj2", respectively.
Also, if the enumerated types "signal_colors" and "primary_colors" are defined as follows:

type signal_colors is (red, yellow, green)

type primary_colors is (red, green, blue)

then references to the identifiers "red" and "green" must be qualified:

signal_colors"red primary_colors"red

signal_colors"green primary_colors"green

Different object types may define operations with the same name; however, there may
also be several instances of the same object type visible in a scope. Object operation invocations
must be qualified by the name of the object instance on which we wish to operate:

<obj op invocation> --0 <obj instance id> "©" <op call>

For example, if variable "in_queue" is an instance of an object type (say, "queue") with
operation "enqueue":

in_queue @ enqueue (item)

The situation of record fields is similar to that of object operations. Declarations of record
types may define fields with the same name; also, there may be several variables declared with
the same record type visible in a scope. Thus, field references must be qualified by the name
of the field's parent record. ?

<field ref> 	<parent variable> "." <field id>

For example, if variables "a" and "b" are both of some record type "complex," we may have:

a.realpart b.realpart a.imaginarypart

5. Constant Declarations

An identifier declared as a constant is associated with a value which may not be changed.
Thus, a constant may not be the target of an assignment statement (see section 10). The type
of a constant may be any valid type specification (section 6). The value of a constant may be
specified by an expression (section 9) in which only constant terms appear. Calls to (value-
returning) procedures defined by the object standard are also allowed to appear in such an
expression.

<const decl> 	<const id decl> ":" "const" <type> ":--=" <expr>

This qualification is often called the field dereference operation.

-7-

Aeolus Reference Manual 	 Preliminary Version

Examples:
i : const integer := -10

j : const integer 	i + abs (2*i)

8. Type Declarations

The declaration of a data type specifies the set of values which variables of that type may
assume. In the case of structured types, the type declaration also gives a "blueprint" of the
structure of variables of that type.

The general syntax for declaration of new types is:

<type decl> -e "type" <new type id> "is" <type>

As we shall see in the remainder of this section, types fall into three general classes: type
identifiers (the names of previously-declared types, including non-parameterized object types),
non-ID types (including enumerations and structured types), and parameterized object types.
The compatibilities of types are discussed in section 9.3.

Any type may have an optional indication that variables of that type, or components (of
some variable) with that type may be shared. This attribute is indicated by the use of the key-
word shared before the type indication. The use of shared variables is explained in section
10.2.5.

8.1. Type Identifiers

The simplest sort of type specification is simply the name of a previously-declared type,
optionally followed by a constraint specification:

--.. <type>
<constrained type id>

<constraint spec>
<constraint spec>

<subrange>

["shared"] <constrained type id>
--. 	<type id> [<constraint spec>]
--.. 	CT, 4417)

- I. "[" <subrange> "]"
--.. 	<scalar const> ".." <scalar const>

Constraint specifications are described in section 7. The main utility of type identifiers is in
specifying the types of entities such as variables (section 8).

Several useful predefined types are provided by the object standard, which is automatically
imported by every compiland. The definition part of standard is shown in Appendix D. It
defines the following basic scalar types: 8

• type integer, whose variables assume values between MININT and MAXINT;

• type longint, whose variables assume values between MINLONGINT and MAXLON-
GINT;

• type unsigned, whose variables assume values between MINUNS and MAXUNS;

• type longuns, whose variables assume values between MINLONGUNS and MAX-
LONGUNS;

• type boolean, whose variables assume values FALSE or TRUE;

• type char, whose variables assume values of the character set used by the computer on
which the program is being used (that is, those values representable by litchar tokens);
and

gAs shown in Appendix D, the types integer, !engin!, unsigned, and longune may be considered to be new types

derived from constraints on an underlying int number "type" (which includes all numbers representable by an "int"

token), while type real may be considered to be derived from a constraint on an underlying float number "type"

(which includes all numbers representable by a "float" token). The types derived from "int" tokens are denoted col-

lectively as the "int types" in this document.

-8-

Aeolus Reference Manual 	 Preliminary Version

• 	type real, whose variables assume real numbers as values.

Scalar types provide the basis for the construction of structured types.

8.2. Non-ID Types

The non-ID types include enumerated types, index and pointer types, and structured
types.

<type> 	["shared"] <non id type>

8.2.1. Enumerations

An enumeration (or enumerated type) consists of a list of identifiers which are used as con-
stants in the program. Variables of that enumeration type may assume only those identifers as
values. The sequence of the identifiers in the declaration of the enumeration defines an order-
ing of those identifiers; the ordinal value of the first identifier is 0.

<non id type> 	"(" <enumer id list> ")"
<enumer id list> 	<id decl> {"," <id decl>}

Example:

type days is (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday)

8.2.2. Index and Pointer Types

An index type is a scalar type, variables of which will be used as indices in for loops or as

array indices. ° A variable of an index type must be declared locally to the scope within which it
is used. Structures may not have components of an index type, nor may variables of an index
type be passed as var parameters to procedures or operations. The index variable of a for loop
must be of an index type.

<non id type> 	"index" <constrained type id>

Example:
type loopindex is index integer [1 .. 10]

Variables of a pointer type may assume as values pointers to variables of another type t
specified in the declaration of the pointer type:

<non id type> 	"->" <id use>

Pointer values are generated via calls to the operation new defined by object standard. Also, a
variable of any pointer type may assume the value NIL, which means the variable is not point-
ing to anything.

Example:
type intptr is -> integer

8.2.3. Structured Types

Declarations of structured types provide blueprints for arranging groups of components of
scalar types or of other structured types into a single structure. Structured types provide the
programmer differing levels of abstraction with which to view data, from the most primitive
view—sequences of bits—through high-level abstractions such as records.

<non id type> 	<struct type>

°This declaration provides a hint to the compiler that a variable of this type would be a good candidate to be
placed in a register.

-9-

Aeolus Reference Manual 	 Preliminary Version

The structured types include bitstrings, strings, arrays, flexarrays, records, structures, sets, and
locks.

The declaration of a structured type may be associated with a constraint which gives an
indication of the number of elements in an entity (variable, record field, or parameter) of that
type, so that the size of the entity may be determined at the time of compilation. As explained
in section 7, a constraint thus associated with a type declaration is inherited as an attribute by
entities of that type, although the constraint is not considered a part of the type itself. Such a
constraint may take the form of an explicit length specification (as with strings and bitstrings),
or (as with arrays) may be derived from constraints on the index types. It is sometimes useful,
though, to delay the specification of size constraints of a structured type which is to be used as
the type of a formal parameter. The formal parameter then takes on the size constraints of an
actual parameter substituted for it during a procedure call. To support this, a size constraint
may be specified by a delayed constraint form; delayed constraints may be used only as attributes
of formal parameters.

8.2.3.1. Bitstrings

A bitstring provides the most primitive structured abstraction of data, that of simply a
sequence of bits:

<struct type> 	"bitstring" "(" 1<expr>I ")"

The length constraint of the bitstring (in bits) may be indicated by the value of the constant
expression <expr>. If <expr> is not given, the type declaration is considered to be associ-
ated with a delayed length constraint attribute; the length of a bitstring with such an attribute

may be obtained at runtime by use of the operation bitlength provided by object standard.

Example:
type nybble is bitstring (4)

The "system" object, defined for each computer system on which Aeolus may be com-
piled,' provides declarations of several useful bitstring types. These types are referred to col-
lectively as the storage classes, since they define the units of storage supported by the hardware
of most computer systems: types bit, byte, word, longword, and quadword, with lengths BITSIZE,
BYTESIZE, WORDSIZE, LONGWORDSIZE, and QUADWORDSIZE, respectively.

Another important bitstring type, address, is also defined by the "system" object. The
address type is defined as bitstring (ADDRESSSIZ E). The "system" object defines a constant of
type address called NIL, which was mentioned in section 6.2.2. The relationship between
address types and pointer types is discussed in section 9.3.

8.2.3.2. Strings

A string is a sequence of components of type char (that is, a sequence representable by a
litstring token), terminated by a NUL character (ASCII 0).

<struct type> 	"string" "(" [<expr>] ")"

The maximum length constraint of the string (excluding the NUL terminator") may be
specified by the value of the constant expression <expr>; this value must be a positive
integer. If <expr> is omitted, the type declaration is considered to be associated with a
delayed length constraint attribute; the maximum length of a string with such an attribute may

1°At present, Aeolus is supported on the DEC VAX and IBM PC-XT and -AT families of computers; the system

objects for these families are named VAX System and PC System, respectively.

"The length operation on objects of type string--described later in this report—returns the count of characters in

the string, also excluding the NUL terminator.

-10-

Aeolus Reference Manual 	 Preliminary Version

be obtained at runtime by use of the operation maxstringlen defined by object standard. The
components of the string are stored in consecutive bytes of memory.

Example:
type tokenstring is string (127)

A variable of type "tokenstring" will take up 128 bytes of memory, including room for a termi-
nator character for a string value of the maximum length (127 characters).

8.2.3.3. Arrays

An array is a sequence of a fixed number of components which are all of the same type.
The individual components or elements of an array are specified by the element's indices, which
are values belonging to the index type of the array.

<struct type>
<index type list>

Example:

"array" "[" [<index type list>] 	" "of" < type >
<constrained type id> {"," <constrained type id>)

type smallarray is array [integer [1 .. 10]] of integer

A declaration of the form

array [T1, T2, 	, Tn] of TO

with an index type list of n index types is considered shorthand for the declaration

array [T1] of array [T2] of ... of array [Tn] of TO

The size constraint attribute associated with entities of an array type is derived from constraints
associated with the index types. Should any of the index types be associated with a delayed
constraint, the array type is considered to be associated with a delayed size constraint. The
minimum and maximum values of the index constraints for such an array may be obtained at
runtime by use of the operations low and high provided by object standard.

8.2.3.4. Flexarrays

A flexarray is an array with a flexible size constraint attribute (sometimes called a dynamic
array):

	

<struct type> 	"flexarray" "[" [<index type list>] "]" "of" <type>

	

<index type list> 	<constrained type id> ("," <constrained type id>)

Each index type of a flexarray must be associated with a delayed constraint. A flexarray must
be initialized with a special form of the operation new provided by object standard; the lower
and upper bound constraints for each dimension of the flexarray (from first to last) are given as
parameters to new. The lower and upper bound constraints for the first dimension of a flexar-
ray may be changed by specification of the new bounds in a call to operation resize provided by
object standard. A flexarray type may be used only for the type of a variable, and thus may not
be used as the type of a parameter, record field, or array element.

Example:

type smallflexarray is flexarray [integer []] of integer
f : smallfiexarray
new (f, 1, 10)
resize (f, -10, 20)

Aeolus Reference Manual 	 Preliminary Version

8.2.3.5. Records

A record is a sequence of a fixed number of components which are of possibly differing
types. An individual component or field of a record is specified by its field name, qualified by
the name of the record variable to which the field belongs.

A record type declaration specifies the names and types of each field in a variable of that
record type. A record type may also have variant fields. The first field of a variant field is called
its tagfield. The remainder of the variant field consists of a variant list, each of whose variants is
prefaced by a variant label list, a list of constants whose types match that of the tagfield. The
value of the tagfield selects the variant from the variant list one of whose variant labels matches
that value.

As we shall see in Section 8, tagfields may be assigned only in record constructors; thus, a
tagfield may be changed only if all other fields of the record are specified at the same time.

8.2.3.8. Structures

A structure is a special case of a record somewhat similar to the packed record construct of
Pascal. The declaration of a structure type specifies the storage class which the structure will fit:

<struct type> —+ "structured" <type id>
<field list>
"end" "structure"

(The storage classes were discussed in section 6.2.3.3.) A field in a structure typically represents
a bitstring or scalar; the fields are packed together consecutively within an object of the
specified storage class (without implicit padding), with the first field specified starting at the
most significant bit position in the storage class. The compiler checks that the fields declared
for the structure together fit into the specified storage class.

8.2.3.7. Sets

A set type defines a powerset of sets of values of the specified base type:

<struct type> — "set" "of" <constrained type id>

	

<struct type>
	

"record" <field list> "end" "record"

	

<field list>
	<field> {"," <field>}

	

<field> 	•—• 	<field id list> ":" <type>

	

<field> 	•—• 	<variant field>

	

<field id list> 	•—• 	<id decl> {"," <id decl>}

	

<variant field>
	

"case" <tagfield id> ":" <scalar type id> "of"
<variant list> [<variant otherwise >1
"end" "case"

	

<variant list>
	<variant> {"Ii" <variant>}

	

. <variant>
	<variant label list> ":" <field list>

	

<variant label list> 	<variant la.bel> {"," <variant label>}

	

<variant label> 	<scalar coast>
<variant label>

-

<subrange>

	

<variant otherwise> 	

-

"otherwise" <field list>

Syntax of Record Type Declarations

Aeolus Reference Manual 	 Preliminary Version

type t is
record

case to : days of
Monday .. Friday :

office no,
work_phone : integer

II Saturday, Sunday :
home_phone : integer

end case
last name : string (20)
case tf2 : integer of

3, 5 .. 7 :
weekly rate : integer

118 .. 10 	:
monthly rate : integer
benefits 	: boolean

otherwise
hourly_rate : integer
temporary : boolean

end case
end record

Example of a Record Type Definition

The base type of a set must be scalar. There is no restriction on the number of elements that
the base type may have.

Example (see section 6.2.1):
type dayset is set of days

8.2.3.8. Locks

A lock type may be used to declare variables which in turn may be used to implement

locking protocols on particular values in some domain. 12

	

<struct type>
	

"lock" "(" <compat list> ")" ["domain" "is" <type>]

	

<compat list>
	

<compat> {"," <compat>

	

<compat>
	

<id use> ":" "[" <compat id list> "]"

A lock declaration includes the specification of a compatibility list, which defines, for a given

mode of the lock, which other modes are compatible with that mode. 13 The presence of an
identifier in a compatibility list serves as a declaration of that identifier as a mode of the lock
type; the modes of a lock type may together be thought of as an enumeration. An empty com-
patibility list indicates that the given mode is incompatible with all other modes.

' =Note that a lock is obtained for a value of an object, and not on the object itself. Thus, for instance, a lock
may be obtained on a file name even if that file does not yet exist. The lock structure is directly supported by the
Clouds architecture.

13A lock may be set with a specified mode only if other modes already set, if any, are compatible with that mode.
Thus, a process adhering to a protocol using that lock may wish to block until the requested mode is available. Opera-
tions are provided by object standard for testing, setting, and releasing locks (see Appendix D).

-13-

Aeolus Reference Manual Preliminary Version

type VAX_processor status is
structured longword ! bit

CM,
TP : boolean

1 31:
! 30:

Compatibility Mode
Trace Pending

MBZ1 : bitstring (2) ! 29-28: must be zero
FPD,
IS : boolean

! 27:
! 26:

First Part Done
Interrupt Stack

current_mode : 0 	.. 3 ! 25-24
previous_mode : 0 	.. 3 ! 23-22
MBZ2 : boolean ! 21: must be zero
IPL : 0 .. 16#1f ! 20-16: Interrupt Priority Level
MBZ3 : byte ! 15-8: reserved (must be zero)
DV,
FU,
IV,
T,
N,
Z,
V,
C

end structure
: boolean

! 7:
6:

! 	5:
! 	4:
! 3:
! 	2:
! 	1:

0:

Decimal oVerflow bit
Floating Underflow bit
Integer oVerflow bit
Trace bit
Negative condition code
Zero condition code
oVerflow condition code
Carry condition code

Example of a Structure Type Definition

The lock declaration may also specify the domain of values which may be locked. If the
domain specification is omitted, a simple lock (i.e., one which does not lock over any particular
domain) is assumed.

Examples:

	

type simple_lock is lock (busy : [1

	

type file_lock is lock (read : [read]
write :) domain is string (20)

The declaration of "simple lock" above defines a lock type with a single mode "busy" which is
incompatible with itself; thus, only one client may set a lock variable of type "simple_lock" at
any one time. The declaration of "file_lock," on the other hand, defines a lock type over the
domain of strings of length 20. Clients may set a lock variable of type "file_lock" on a given
string with modes "read" or "write." The "read" mode is specified as being compatible with
other settings of "read" mode; the "write" mode is incompatible with itself and with "read"
mode. Thus, a client may set the lock with "read" mode on a given string even if several
other clients have outstanding settings of the lock with "read" mode on that string; however, a
client wishing to set the lock with "write" mode on a given string must wait for all outstanding
settings of "read" mode on that string to be released.

8.3. Parameterized Object Types

Object types may be defined with one or more object parameters, which allow the user to
instantiate so-called generic objects. These parameters typically specify sizes or element types
to be assumed by abstract data types. The formal parameters of the object definition header are

-14-

Aeolus Reference Manual
	

Preliminary Version

replaced by actual parameters wh en the object type is used in a declaration:

Example:

<type>
<parameterized obj id>
<obj actual param list>

- ["shared"] <parameterized obj id>
- <id use> "(" <obj actual param list> ")"

<expr> {"," <expr>}

queue (integer, 128)

If an object type queue has been defined with formal parameters allowing instantiation of queues
with a given element type and queue size, the above parameterized object id specification will
instantiate a queue of integers with maximum queue size 128.

7. Constraint Declarations

A constraint, which indicates the minimum and maximum values which a variable having
that constraint may assume, may be specified for any scalar type except real. As was described
in section 6, a constraint may be associated with a type declaration; although the constraint is
not considered to be part of that type, entities of that type (variables, parameters, or record
fields) inherit the constraint as an attribute. The type being constrained may have already had a
constraint associated with it; the new constraint replaces any previous constraint. The effect (or
lack thereof) of constraints on type compatibility is described in section 9.3.

A constraint may also be associated with a previously-defined named type, and this associ-
ation may be given a name which may be used as if it were a type identifier. Such an associa-
tion is called a constraint declaration:

	

<constraint decl> 	"constraint" <new constraint id> "is" <constrained type id>

Entities declared with a constraint identifier in place of a type are considered to be of the type
indicated by the named type specified in the constraint declaration, as if the entity had been
declared to be of that named type. Thus, a constraint declaration does not create a new type.
However, the entity also inherits the constraint specified in the constraint declaration as an
attribute. The new constraint replaces—for entities declared with the constraint name as a
type—any constraint previously associated with the named type.

Example (see section 6.2.1):

constraint weekdays is days [Monday .. Friday]

8. Variable Declarations

A variable declaration introduces a variable into a process or object implementation part; it
associates the variable with a unique identifier and with a fixed type. All variables whose
identifiers appear in the same declaration list have the same type. A variable declaration may
have an optional initialization clause, which consists of a constant expression of the same type
as the variable type. This expression is evaluated, and its value assigned to the variable, before
the block is entered in which the variable is declared."

<var decl>

-

<id decl list> ":" <new type> [":=" <expr>]
<new type> 	<type>
<new type>

-

"recoverable" <type> {"," <override>}

	

<override> 	

- 	

<id decl> "overrides" <id use>

A variable may also be declared to be located at a specified address:

	

<var address decl> 	<id decl> "[" <expr> "]" ":" <new type> [":--=" <expr>]

"Variables declared global to a compiland are static, and may be initialized before execution (that is, at compila-
tion or link time).

-15-

Aeolus Reference Manual 	 Preliminary Version

The address expression must be a constant expression of type address.

In the version of Aeolus under the Clouds system, variables may be declared to be recov-
erable. Recoverable variables are discussed in section 13.

Examples:
j : integer [1 .. 10] := 0

a: array [integer [1 .. 10] 	of
record

realpart, imaginarypart : real
end record

string_array : array [integer [1 .. 10], integer [100 .. 200]]
of -> string (80)

KB_flag [16#0017] : PC_keyboard_flag

9. Expressions

The use of expressions allows the programmer to obtain the values of variables and to gen-
erate new values by specifying computations to be performed. An expression is constructed
from operands and operators.

9.1. Operands

An operand is either a literal constant (a number, string, or constructor [see below]), or a
variable. A variable may be designated either by a (possibly qualified) simple identifier, or, if
the variable is of a structured type, by a structured variable, which consists of the variable name
followed by selectors. Selectors serve to designate the desired component of a variable. A call
to a value-returning object operation or procedure (function) may also be used any -where a vari-
able may be used; in particular, the value returned by such a call may be dereferenced with
selectors, if this return value has the appropriate type.

<variable>
<variable>
<variable>
<variable>

<structured var>
<structured var>
<structured var>

<id use>
--+ 	<func call>

<obj op invocation>
<structured var>

—+ <variable> "." <id use>
<variable> "->"
<variable> "[" <expr> {"," <expr>} "]"

If the variable is of a pointer type, the pointer dereference operator ("->") may be used to
obtain the item referenced by the pointer. If the variable is of a record type, an individual field
of the record may be obtained by use of the field dereference operator ("."), followed by the
name of the field. An individual element of a variable of an array type may obtained through
use of an element selector operator, which specifies the index of the array element desired.
Thus, the structured variable al<expr> I designates that element of array a whose index is the
value of the expression <expr>. The list of index expressions in an array element selector,
such as

a [<expr 1> , <expr 2> , 	, <expr n>]

is considered shorthand for the sequence of selectors

a [<expr 1>] [<expr 2>] 	[<expr n>]

for an array a declared with n dimensions. The type of each element selector expression must
be compatible with the type of the corresponding index type of the array (see below).

Aeolus Reference Manual 	 Preliminary Version

An element selector may also be applied to a variable of type bitstring or string; for pur-
poses of element designation, these sequences may be considered to be one-dimensional arrays
with element type bit and char, respectively. The index type of such a sequence is considered
to be unsigned (1 .. LEN!, where LEN is the length of the bitstring or string.

Examples of variable designations (see section 8):

a[5] .realpart

a [i] .imaginarypart

string_array 	110] ->

string_array [10, 150] -:> [80]

As stated above, operands may be literal constants as well as variables. The specification
of a literal constant of an integer or real number is simply a token of that type (see section 3).
A constant of a structured type, however, must be built by specification of its elements in a
constructor. Constructors for constants of structured types are built using the following syntax:

<constructor>
<con elem>
<con elem>

—4. <type id> """ "[" <con elem> {"," <con elem>} "]"
—4. 	<expr> [":" <expr>]

<subrange>

The constructor is prefaced by the name of the type to which the constant being constructed
belongs. The value of each element of the constant is then specified (in the order in which the
elements were declared in the relevant type declaration) by an expression which must have the
same type as the corresponding element in the structured type. If a structure has several ele-
ments of the same type in sequence, the same value may be assigned to each element by speci-
fying an optional repetition factor (a [positive] constant integer expression); thus, the construc-
tor element 0:10 would specify that the value 0 be assigned to the next 10 elements in a struc-
ture.

The constructor for a constant of a set type merely lists those elements of the base type
which are to be included in the set constant. An empty constructor ("[]") for a constant of a
set type implies the so-called null set, which is a set with no members.

Constants of bitstring and string types may also be expressed using more traditional styles
of constructors for these types. The alternative constructor for a constant of a bitstring type is
simply an unsigned binary number (or a number in another base with the equivalent bit pat-
tern) with same number of bits in its representation as the length of the bitstring. We have
already seen (in section 3) the alternative constructor for constants of a string type, that is, a
string token with enclosing quotes. The string constructor may have no more characters than
the maximum length of the string type. When the standard constructor syntax shown above is
used for constants of bitstring or string type, each element need not be individually specified;
rather, (bit)string constants of smaller (maximum) length may appear as constructor elements,
as long as the total (maximum) length of all constructor elements matches the (maximum)
length of the target (bit)string type. The individual (bit)string constants are concatenated into
the resulting constant.

Constants of array, record, or structure types may be built only by using the above con-
structor syntax. Constructors are especially important for record or structure types with variant
fields: the tagfield of a variant field may be assigned a value only in a constructor. Thus, a
tagfield may not be changed without the specification of values for all other fields in the vari-
ant.

IThis restriction simplifies runtime checking of variants considerably.

-17-

Aeolus Reference Manual 	 Preliminary Version

Examples of constructors (see section 6 and below):

smallarray11, 2, 3:5, 4:2, 5]

wordlbyte (2#1000), byte (2#0010)]

tokenstring"['Hello, world! ', 'Bye, now.']

dayset"[Monday, Wednesday, Friday]

daysetl]

9.2. Operators

The syntax of Aeolus expressions defines precedence levels of operators similar to those in
Pascal or Modula-2. There are four levels of precedence: the logical NOT operator and the bit-
wise complement ("-") operator have the highest precedence (level 1), followed by the multi-
plicative operators (level 2), then the additive operators (level 3), and finally the relational opera-
tors (level 4). When a sequence of operators has the same precedence, the sequence is exe-
cuted from left to right in textual order. The order of evaluation in an expression may be
changed by enclosing parts of the expression in parentheses.

The operators provided by the Aeolus language are listed below. Unless otherwise
specified, these are binary operators. In certain cases, the same operator symbol has different
meanings when applied to data objects of different types. The intended operation is then
identified by the types of the operands.

9.2.1. Arithmetic Operators

These operators apply to compatible operands of type integer, longint, unsigned, longuns,

"real"
"integer"
"char"
"string"
<constructor>
<variable>
"not" <factor>
"."" <factor>
"(" <expr> ")''

<factor> {"multop" <factor>}

<simple expr>
["sign"] <term> {"addop" <term>).

<rel expr>
<simple expr> "relop" <simple expr>

Syntax of Expressions

<factor>
<factor>
<factor>
<factor>
<factor>
<factor>
<factor>
<factor>
<factor>

<term>

<expr>
<simple expr>

<expr>
<rel expr>

Aeolus Reference Manual 	 Preliminary Version

and (except for the modulus operator) real:

symbol 	operation precedence

addition 3
subtraction 3
multiplication 2
division 2
modulus 2

The operators "+ " and "-" may also be used as unary operators. They then denote the sign of
a term; the "-" operator implies negation, while the "+ " operator implies the identity opera-
tion. The "%" or modulus operator yields the remainder of an integer division of its (integer)
operands:

x %y gives the remainder of x / y, for y > 0.

The division operator ("/"), when applied to integer operands, yields the truncated quotient of
its operands.

9.2.2. Bitwise Operators

The following operators may be applied to compatible operands of a bitstring type, except
that the right operand of the shift operators is an expression of type integer:

symbol 	 operation 	 precedence

bitwise OR 	 3
bitwise XOR 	 3

< < 	left shift 	 3
> > 	right shift 	 3

bitwise AND 	 2
bitwise complement un. 	1

The left and right shift operators yield the value of their first operand shifted left or right
(respectively) by the number of positions given by the value of their second operand; the
vacated bits are zero-filled. The results of these operators are undefined if the value of the
right operand is greater than the length (in bits) of the left operand. The bitwise complement
operator ("-'") yields the one's complement of its operand.

9.2.3. Address Operators

Arithmetic on pointers is not allowed in Aeolus. However, the bitstring type address
allows the programmer to perform address computations via explicit conversions from pointer
types (see section 9.3). The "system" object for the computer for which a compiland is being
compiled (such as VAX System or PC System) defines three named operations on data of type
address:

addr(v) 	Returns a value of type address representing the storage address of variable v,
which may be a static or dynamic data item.

next(a, t [, <expr>])
Increments the address-type variable a by an amount equal to the product of
the value of <expr> and the size in address units (bytes or words, depending
on the system object being used) of the type represented by type identifier t.
The type of <expr> must be one of the "int types." If <expr> is omitted,
the value 1 (one) is assumed for it.

prev(a, t [, <expr>])
The same as next, but the address-type variable a is decremented rather than
incremented.

-19-

Preliminary Version Aeolus Reference Manual

9.2.4. Logical Operators

The following operators apply to operands of type boolean and yield a boolean result:

symbol

OR
AND
NOT

operation

logical conjunction
logical disjunction
lo ical "le ation

precedence

3
2
1

9.2.5. Set Operators

The following operators apply to compatible operands of a set type and yield a value of
the same type:

symbol operation 	 precedence

set union 	 3
set difference 	 3
set intersection 	 2
symmetric set difference 	2

The following named operations are also provided for sets by object standard:

	

in(elem, s)
	

Returns TRUE if the 	scalar elem is currently a member of set a, FALSE other-
wise. The type of elem must be the same as the base type of a.

out(elem, s)
	

Returns the value of not in(elem, s).

incl(s, elem)
	

The scalar elem is included in (becomes a member of) the set 8. The type of
elem must be the same as the base type of a.

excl(s, elem)
	

The scalar elem is excluded from (is no longer a member of) the set s. The
type of elem must be the same as the base type of s.

The following statements define the (binary) set operations:

	

in(x, s1 + s2) 	iiff
	

in(x, s1) or in(x, s2)

	

in(x, sl - s2) 	if
	

in(x, s1) and out(x, s2)

	

in(x, sl * s2) 	iff
	

in(x, sl) and in(x,s2)

	

in(x, sl / s2) 	iff
	

in(x, s1) <> in(x, s2)

9.2.8. Relational Operators

The relational operators apply to compatible operands of scalar, set,
and yield results of type boolean:

symbol 	 relation

equality
< >
	

inequality
less than <_ 	less than or equal to
greater than

>= 	t reater than or e ual to

and bitstring types,

The relations "<----" and ">=" denote improper inclusion when applied to sets, while the
relations "<" and ">" denote proper inclusion. The relations and "<>" may also be
applied to operands of a pointer type. Operands of a bitstring type are considered to be
unsigned values of the equivalent length for purposes of comparison. The relations "=" and
"<>" are also defined for compatible operands of a pointer, string, record, or array type. All
relational operators have the lowest precedence (level 4).

-20-

Aeolus Reference Manual 	 Preliminary Version

9.3. Type Compatibility

The operands of a binary operation are said to be compatible if they are of the same type,
that is, if the types of the operand are equivalent. The types of operands are equivalent if the
operands were declared with the same named type or with the same anonymous type." (This is
known as name equivalence of types.) Thus, for example, given the declarations

type t is array [integer [1 .. 10] 	of integer
a : t
b : t
c, d : array [integer [1 .. 10]] of integer

the variables a and b have equivalent types (and are hence compatible) since their types both
derive from the named type t. Also, variables c and d are compatible, since they share the
same anonymous type. However, variable a is not compatible with variable c since their types,
although structurally equivalent, are not name equivalent, since the anonymous type of c is not
name equivalent to the named type t.

The Aeolus language does not allow incompatible operands to appear in an expression;
that is, there are no implicit type conversions (coercions). However, it is sometimes desirable
to perform operations on operands of differing types. Thus, Aeolus provides the programmer
with powerful means of explicit type conversion.

Every named scalar type definition also implicitly defines a conversion function of the
same name as the scalar type. This function may accept as a parameter an operand of any other
scalar type, or of a bitstring type of the same storage class. The result of the function invoca-
tion is considered to be a scalar of the named type. Thus, if we have

i : integer := 0
type fruits is (apples, oranges, lemons)

then the result of the expression fruits(i) is of type fruits and has value "apples;" also, the
result of the expression integer(orange3) is of type integer and has value 1.

As mentioned in section 7, a constraint which is associated with a scalar type (by way of a
constraint specification in the type's declaration, or via a constraint declaration) is not con-
sidered part of that type, but rather is an attribute which is given to an entity (variable, parame-
ter, or record field) of that type 17 . Thus, a constrained entity is compatible with an entity which
has the same type but a different (or no) constraint. For example, considering the declaration
of type "days" in section 6.2.1 and the declaration of constraint "weekdays" in section 7, if we
have the following variable declarations:

dl : days 	d2 : weekdays

then dl and d2 are compatible. However, every type declaration creates a new type; thus, if we
had the declarations

type it is integer 	type i2 is integer

then entities of type "il" are incompatible with entities of type "i2," as well as with entities of
type integer. Also, had "weekdays" been declared as a type rather than as a constraint, e.g.,

type weekdays is days [Monday .. Friday]

18The term "anonymous type" refers to a specification of a non-ID type which appears as the type of an entity
(variable, parameter, or field).

I7Constraints are used for range checking (if enabled) and for determining the sizes of structures, not for type
checking.

-21-

Aeolus Reference Manual 	 Preliminary Version

then variables dl and d2 would not be compatible.

The type of a so-called ant token (see section 3.2.1) is determined by the size of the
number it represents. Such a number may be assigned to any of the "int types" integer, longint,
unsigned, or longuns (see section 6.2). Since these types are constrained, however, when range
checking is enabled, the number may not be greater than the maximum (or less than the
minimum) value representable in the target type.I 8

The conversion functions integer and longint may also be applied to real expressions; if the
resulting value is not too large for the given type, the result is an integer (or longint) value
which represents the integral part of the real number (obtained by truncation). The real
representation of an integer expression may be obtained by using the conversion function real.

The declaration of a named bitstring type implicitly defines a conversion function to that
bitstring type from any scalar type representable in that length bitstring. Thus, access may be
obtained to the bit representation of data in an explicit manner. This implicit conversion func-
tion will also accept a data item of another bitstring type as parameter, as long as the
parameter's length (in bits) is no greater than that of the target type. If the length of the
source type is less than that of the target type, the resulting value is padded on the right with
zeroes to the length of the target type. Also, two named operations are defined by object stan-
dard for selecting parts of the word bitstring type. The hibyte and lowbyte functions return (as
values of type byte) the high-order and low-order (respectively) bytes of their word parameter.

The definition of a named pointer type provides a conversion function of the same name
from a variable of type address to that pointer type. However, the result of such a conversion
may be used only for dereferences; it may not be assigned to a pointer variable. Values are
assigned to address variables via the addr operation discussed above; values may be assigned to
pointer variables only with the operation new defined by object standard (see Appendix D), or
via assignment from other variables of the same pointer type. The exception to the above rules
is a special constant of type address, called NIL, defined by each "system" object. The con-
stant NIL, which denotes a null pointer or address reference, may be assigned to a variable of
any pointer or address type.

A definition of a named string type provides a conversion function of the same name to
that type from other string types with maximum lengths no greater than that of the target type.
The resulting value is a null-terminated string with the same value as the source value, but with
the same maximum length as the target type. A number of named operations are provided in
object standard for other string manipulations and conversions, such as substring extraction and
conversions between strings and numbers; these are listed in Appendix D.

The conversion functions discussed above are for the most part somewhat restrictive in
the types of the arguments which they will accept. Also, if the range checking option is
enabled during compilation, most of these functions will generate runtime range checks of their
parameters. However, Aeolus provides a less restrictive (and less safe) means of type conver-
sion. The retype function accepts as parameters a value of any type and a type identifier; the
result is a value of the type specified by the type identifier, left-justified bitwise. For example:

longword value := retype (integer value, longword)

No type checking is performed; the only restriction is that the target type representation be no
smaller (in bitlength) than the type of the source value. Any range checking or filling of
unused space (when the target type is larger than the source type) is the responsibility of the
programmer.

18This implies that negative numbers may not be assigned to unsigned or longuns variables, since the minimum
value representable in those types is 0.

-22-

Aeolus Reference Manual 	 Preliminary Version

10. Statements

A statement allows the programmer to specify activities such as assignment of a value to a
variable, decision branching, or repetitive execution of groups of statements. The so-called sim-
ple statements do not contain other statements, while the compound statements may contain other
statements as parts. One or more statements may grouped into a statement list:

<stmt list> —+ <stmt> f<stmt>)

for use as a part of a compound statement.

10.1. Simple Statements

The simple statements include the assignment statement, procedure call, object operation
call, EXIT statement, RETURN statement, and NULL statement.

<stmt> —+ <simple stmt>

10.1.1. Ass ignment Statements

An assignment statement denotes the replacement of the value of the variable designated
by the left-hand side with some function of the value of the expression on the right-hand side.
The assignment operator used in an assignment statement describes what function of the value
of the right-hand side is to be used. The simplest assignment operator is ":=---" (pronounced
"gets"), which denotes simple replacement. Other assignment operators apply some binary
operator to the value of the variable designated by the left-hand side and the value of the
expression on the right-hand side; the resulting value replaces the value of the designated vari-
able. An example of such an assignment operator is "+ =--" (pronounced "plus-gets"); the
assignment statement "i + = 1" is equivalent to "i i + 1". The other binary operators
(listed throughout section 9) also have corresponding assignment operators.

<simple stmt>
<assign stmt>

<lhs>
<lhs elem>
<lhs elem>

<rhs>
<rhs>

<action invocation>
<action invocation>
<action invocation>

<assign stmt>
<lhs> "assignop" <rhs>
<lhs elem> 1"," <lhs elem>)
<id use>
<structured var>
<expr>
["toplevel"] "action" "("
<proc call>
<obj op call>
<assign stmt>

<action invocation> ")"

Besides a single variable designation, an assignment statement may also take a list of vari-
able designations as its left-hand side; this is called a multiple assignment. Here, the value of the
expression on the right-hand side is assigned to each of the variables designated on the left-
hand side, from the right of the list to the left. For example:

j, lc := rn + 1

is equivalent to the series of assignment statements:

k:=m+1 j:=m+1 i:=m+1

Assignment statements with other assignment operators may also be mutliple assignments. The
variable designation rightmost in the variable list is used as the left operand for the binary
operator. Thus:

1 , j, k + = 1

-23-

Aeolus Reference Manual 	 Preliminary Version

is equivalent to the series of assignment statements: 1°

	

k :=== k -E 1 	j :=== 1c -E 1 	i :=== k -E 1

An assignment statement may also take the form of an action invocation. Action invoca-
tions are described in section 13.

10.1.2. Procedure Calls

A procedure call statement activates a named procedure. The procedure call may have a
list of actual parameters, which are substituted for the corresponding formal parameters defined
by the procedure declaration:

	

<simple stmt> 	<proc call>

	

<proc call> 	<proc id> "(" <parm list> ")"

Procedure calls are more fully described in section 11.2.

10.1.3. Object Operation Calls

Object operation calls are similar to procedure calls. However, an object operation must
in general be invoked on that instance of the object type given by the object ID specified in the
operation call:

<simple stmt>

-

<obj op call>

	

<obj op call> 	

▪

<obj id> "A " <obj op id> "(" <parm list> ")"

	

<obj id> 	<id use>

	

<obj id> 	<structured var>

Operation calls are more fully described in section 12.3.

10.1.4. EXIT Statements

An EXIT statement specifies the termination of one or more enclosing loops (see section
10.2.4). The keyword exit may be followed by either a period ("."), which specifies the termi-
nation of the immediately enclosing loop, or by an identifier, which specifies the termination of
the enclosing loop with the same name:

<simple stmt>

-

<exit stmt>

	

<exit stmt> 	"exit" <name option>

	

<name option> 	44.11

<name option>

-

<id use>

An EXIT statement may not appear outside a loop; however, a loop may contain several exit
statements.

Examples:
exit .

exit outer_loop

10.1.5. RETURN Statements

A RETURN statement specifies the termination (and return from) the enclosing pro-
cedure. The keyword return may be followed either by a period (".") if the enclosing pro-
cedure does not return a value, or by an expression of the same type as the declared return

"'This may be compared to the equivalent C statement:

j = k 	1;

-24i-

Aeolus Reference Manual 	 Preliminary Version

type if the procedure is value-returning:

<simple stmt>
<return stmt>

<value option>
<value option>

••••1,,

 ••••10

<return stmt>
"return" <value option>

, ,

<expr>

A RETURN statement may not appear outside a procedure body; however, a procedure body
may contain several RETURN statements.

Examples:
return .

return 1.0 - cos (2.0*PI)

10.1. B. NULL Statements

A NULL statement indicates that no action is to be taken:

	

<simple stmt> 	<null stmt>

	

<null stmt> 	—+ "null"

The NULL statement is useful in constructs in which a statement or statement list would ordi-
narily appear, but where no action is desired, for instance, in certain cases in a CASE statement
or as the body of a procedure stub which is to be filled in later.

10.2. Compound Statements

The compound statements include the IF statement, CASE statement, LOOP statement,
USING statement, and REGION statement.

<stmt> <compound stmt>

10.2.1. IF Statements

The IF statement allows the programmer to construct decision control structures:

	

<compound stmt> 	<if stmt>

	

<if stmt> 	 <expr> "then"
<stmt list> {<elsif option>1 [<else option>[
"end" "if"

	

<elsif option> 	"elsif" <expr> "then" <stmt list>

	

<else option> 	"else" <stmt list>

The expressions following the keywords if and elsif must be of type boolean. These expressions
are evaluated in order, and the corresponding statement lists skipped, until one of the boolean
expressions yield the value TRUE; the statement list following the keyword then after this
expression is then executed, and control is then transferred to the statement following the key-
words end if. If the optional ELSE clause is present, the statement list following the keyword
else is executed if none of the boolean expressions evaluate to TRUE.

10.2.2. CASE Statements

The CASE statement allows the programmer to specify a multiple-branch decision struc-

Aeolus Reference Manual
	

Preliminary Version

if in (ch, charsetn[V 'z']) then
process_alpha (ch)

elsif in (ch, charsetn[101 .. '9']) then
process_digit (ch)

elsif in (ch, charsetT,', 	1 1) then
process_punctuation (ch)

else
error_message ('Not a valid character')
ch "

end if

Example of an IF Statement

tore based on the value of a single expression:

<compound stmt>
<case stmt>

<case list>
<case elem>

<case stmt label list>
<case stmt label>
<case stmt label>
<otherwise part>

<case stmt>
"case" <expr> "of"
<case list> [<otherwise part>]
"end" "case"
<case elem> {"II" <case elem>}

--+ 	<case stria label list> ":" <stmt list>
<case stmt label> {"," <case stmt label>}
<scalar const>
<subrange>
"otherwise" <stmt list>

First, the expression following the keyword case is evaluated. This expression must be of a
scalar type (excluding type real); also, each of the case statement labels must be a scalar constant
or a scalar constant subrange the type of which is compatible with that of the expression (no
value may occur or be contained in more than one label). Second, if one of the case statement
label lists contains a label which matches or contains the value yielded by the expression, the
statement list following that label list is executed, and control is transferred to the statement
following the keywords end case. If none of the labels matches the value of the expression, and

case ch of
'a' .. 'z' :

process_alpha (ch)
11'0' .. '9' :

process_digit (ch)
II 	11 1.1

• 1 	 1 	 •

process_punctuation (ch)
otherwise

error_message ('Not a valid character')
ch "

end case

Example of a CASE Statement

Aeolus Reference Manual 	 Preliminary Version

the optional OTHERWISE clause is present, the statement list following the keyword otherwise
is executed; if no OTHERWISE clause is present, control is transferred to the end of the CASE
statement.

10.2.3. LOOP Statements

The LOOP statement allows the programmer to specify that a statement list be executed
repeatedly, either for a specified number of iterations, or while some condition is true, or until
the loop is explicitly exited:

	

<compound stmt>
	<loop stmt>

	

<loop stmt> 	--■ 	[<iteration clause option>] <basic loop>

	

<loop stmt> 	

- 	

<loop id dec> ":" [<iteration clause option>]
<basic loop> <loop id use>

	

<basic loop> 	—+ "loop" <stmt list> "end" "loop"

	

<iteration clause option>
	

"while" <expr>
<iteration clause option>

-

"for" <index id> ":=" <expr>
<direction> <expr> [<by clause>]

<direction>
<direction>
<by clause>

f ttc) l)

- "downto"
"by" <expr>

The basic form of the LOOP statement, without the optional iteration clause, is essentially an
infinite loop: the enclosed statement list is executed until the loop is explicitly exited by means
of an EXIT statement (see section 10.1.4).

Two iteration clause options are available for control of the repetitive execution of the
LOOP construct. The simplest of these two options is the WHILE clause, which specifies that
the loop is to be continued as long as some condition is fulfilled. The expression following the
keyword while must be of type boolean. This boolean expression is evaluated before each exe-
cution of the statement list enclosed by the LOOP construct; this repetition continues as long as
the expression yields the value 'TRUE.

The second iteration clause option is the FOR clause, which specifies a that a progression
of values is to be assigned to a variable during the repetitive execution of the loop. The
identifier following the keyword for is called the loop index variable; this identifier must have
been declared as a variable of an index type (see section 6.2.2). The loop index variable may
not be the target of an assignment statement within the statement list enclosed by the LOOP
construct. The direction of the progression of values is specified by the use of one of the
<direction> keywords to or downto; the former specifies an increasing progression (that is, the
loop index is incremented on each iteration), while the latter specifies a decreasing progression
(the loop index is decremented). The ordinal amount by which the loop index is incremented
or decremented on each iteration is specified by the value of the expression following the key-
word by in the optional BY clause; this expression must yield a positive value. If no BY clause
is given, the value 1 is assumed for the increment or decrement. The starting value of the pro-
gression is given by the value of the expression following the token ":=", while the ending
value of the progression is given by the value of the expression following the <direction> key-
word; the types of these two expressions must be compatible with the base type of the loop
index. All three expressions (starting value, ending value, and increment) are evaluated before
the loop is entered. Execution of the statement list enclosed by the LOOP construct continues
until the value of the loop index variable exceeds the ending value, in the sense of the direc-
tion of the progression.

A LOOP statement may optionally be qualified by a loop identifier. The appearance of this
identifier at the start of the construct is considered to be the declaration of the loop identifier; if
a loop identifier is specified, the same identifier must appear after the end loop keywords. The
scope of the loop identifier is the extent of the LOOP statement which declared it. A loop
identifier may be used in the <name option> clause of an EXIT statement (see section 10.1.4)

-27-

Aeolus Reference Manual 	 Preliminary Version

-28-

to specify the termination of an enclosing loop with that nanie. 20

 Examples:
InOut A ReadChar (ch)
while ch <> ' loop

process_char (ch)
InOut @ ReadChar (ch)

end loop

for ch :== 'z' downto 'a' by 2 loop
process_char (ch)
for i :=-- integer (ch) to 10 * integer (ch) loop

InOut @ WriteChar (ch)
end loop

end loop

outer :
loop

loop
InOut @ ReadChar (ch)
if ch = 1 .' then

number of sentences + = 1
exit outer

elsif ch =' then
exit .

end if
process_char (ch)

end loop
number_pf_words + = 1
skip spaces 0

end loop outer

10.2.4. USING Statements

The USING statement allows the programmer to "alias" parts of complicated variable
designators. These "aliases" may then be used in place of those parts of the designators within
the statement list enclosed by the USING construct:

<compound stmt>
<using stmt>

<use spec list>
<use spec>

<using stmt>
"using" <use spec list> "do"
<stmt list>
"end" "using"
<use spec> {"," <use spec>}
<id decl> "for" <variable>

The effect of a USING statement is the creation of a nested scope for the extent of that USING
statement; the identifiers on the left-hand sides of each <use spec> in the <use spec list>
are considered to be declared within this scope. The effective address value yielded by the vari-
able designation on the right-hand side of a <use spec> is assigned to the identifier on the
left-hand side of that <use spec> 21 (that is, the identifier denotes the so-called !value of the
variable designation). That identifier may then be used as shorthand for the variable designa-
tion within the statement list enclosed by the USING statement. An identifier declared in a
<use spec> may also be used in the variable designation of any <use spec> following it tex-
tually.

20This is especially useful when the named loop is not the loop immediately enclosing the EXIT statement.

21 This value is also considered to be a good candidate to be placed in a register.

Aeolus Reference Milani:LI 	 Pitilit ► it ► ot ►► Vt ∎ fooltb ►

2-17S7 iGL:72 :Or 	150 : ->.
inOur. 	,A.:7!..teStzing :Ei 14g

inOuc a WriteChar (s2 [80])
s2 	string801 1 thanks for all the fiche!, ":55 -]
s2 [1] := 'T
aj.imaginarypart 	0.0

end using

al for a 	do

10.2.5. REGION Statements
The REGION statement implements a critical region protocol for mutual exclusion on exe-

cution of a region (list of statements). In the header of the REGION statement, the program-
mer specifies a variable designator on which the statements enclosed by the REGION statement
will operate:

	

<compound stmt> 	< region stmt>

	

<region stmt> 	"region" <variable> "do"
<stmt list>
"end" "region"

The type of the entity designated by <variable> must have the shared attribute (see section
6), which indicates that access to the entity may be safely shared among concurrent processes.
To ensure safe access, a shared entity may be appear as the target of an assignment only within
a REGION statement designating that entity.

The effect of a REGION statement is to associate the enclosed statement list with a sema-
phore which is also associated with all other REGION statements having the same variable
designator. The first process to enter the region when the semaphore is free will then gain
exclusive access to the region; others attempting to enter the region will be forced to wait in a
queue on the semaphore. When a process leaves the region, it signals the semaphore so that
the next process in the queue gains access (in a first in—first out manner).

Example (see section 9.1):

region a [j] do
a [j].realpart := 10.5
a [A .imaginarypart := 0.2

end region

11. Procedures
The procedure construct provides a type of control abstraction known as procedural

abstraction. A statement list may be associated with an identifier by means of a procedure
declaration; then, the use of that identifier in a procedure call statement implies the activation of
that statement list, with the possible substitution of actual parameters for formal parameters.
Also, a procedure may be declared as value-returning, in which case the procedure may be
activated within an expression; the return value of the procedure call may then be used by the
expression for further computation.

11.1. Procedure Declarations
A procedure declaration consists of a procedure header and a list of statements enclosed by

a procedure block. The header contains declarations of the procedure's name and (optionally) its
formal parameters, return type, and procedure attributes; the block may contain, besides the
statement list, any local declarations of constants or variables. The procedure block may be
replaced in the declaration by the keyword forward, which indicates that the procedure block
will appear in a second declaration of the procedure which must appear later within the same

Aeolus Reference Manual
	

Preliminary Version

<proc hdr> "forward"
<proc hdr> <proc block> "procedure"
"procedure" <proc id decl> "(" [<params>] ")"
["returns" <return type>] "is" [<proc attr>]

- <formal parm section> {"," <formal parm section> idion >>)
<id decl list> ":" ["const"] 	 <type

- "action"
- "inline"

"pure"
[<proc decl pt>] <stmt pt>
<proc declaration> {<proc declaration>)

- <const or var decl>
• <type decl>

<constraint decl>
- <var address decl>

"begin" <stmt list> "end"

Syntax of Procedure. Declarations

<proc decl>
<proc decl>
<proc hdr>

<params>
<formal parm section>

<proc attr>
<proc attr>
<proc attr>

<proc block>
<proc decl pt>

<proc declaration>
<proc declaration>
<proc declaration>
<proc declaration>

<stmt pt>

compiland; the specification of parameters, return type, and attributes must appear in the pro

cedure header in the so-called forward declaration, and may not be repeated in the procedure
header of the second declaration.

The visibility of constants and variables declared locally to a procedure, as well as the visi-
bility within a procedure of items declared in a procedure's environment, was discussed in sec-
tion 4.1. The values of locally-declared variables are undefined upon entry to the procedure
unless these variables have an associated initialization clause. Note that a procedure may not
be declared within the declaration of another procedure; that is, a procedure declaration may
not be nested. The use of a procedure's identifier in a procedure call within its procedure block
declaration denotes the recursive activation of the procedure.

The formal parameters declared in a procedure header act as "placeholders" in the pro-
cedure block for the actual parameters to be passed in a procedure call. At the time of a pro-
cedure call, the formal parameters are replaced by the corresponding actual parameters. There
are two kinds of formal parameters, known as constant parameters and variable parameters. A
constant parameter acts as a local constant to the procedure to which it is passed, with the value
of the corresponding actual parameter as its value; a formal constant parameter may not appear
as the target of an assignment statement. A formal variable parameter acts as a renaming of
the corresponding actual parameter; any assignment to a formal variable parameter will be
reflected in the value of the actual parameter. (This mechanism is known as pass by reference.)
Formal parameters declared in a list prefaced by the keyword const in a procedure header are
considered to be constant parameters; those declared without the keyword const are considered
to be variable parameters. The type of a formal parameter may be any named type. The scope
of a formal parameter is the same as that of the local variables of the procedure, that is, its
scope is the extent of the procedure.

A procedure may be specified to have a return type, in which case it is called a value-
returning procedure or function. The type of the return value may be any named type. The
value to be returned must be specified by an expression in a RETURN statement (see section
10.1.5); the type of this expression must be compatible with the return type.

A procedure declaration may also specify certain attributes for the procedure. These
include inline, which specifies that the compiler should insert the procedure code "inline" at the

-30.-

Aeolus Reference Manual 	 Preliminary Version

point of the call to the procedure, rather than to compile an actual call to the procedure; and
pure, which indicates to the compiler that the procedure does not modify any non-local variables

or make any calls to other non-pure procedures. 22 (Do we need the attribute action if we use
the action-invocation semantics described in section 13?)

Example (see Appendices A and B for more examples):

procedure factorial (i : const integer) returns integer is pure
begin

if i <=-- 1 then
return 1

else
return i *factoria1(1-1)

end if
end procedure ! factorial !

11.2. Procedure Invocations

The invocation of a procedure may take place either as a procedure call statement (see sec-
tion 10.1.2), or (if the procedure has been declared as value-returning) within an expression:

<proc call> 	---. 	<proc id> "(" [<parm list>] ")"
<parm list> 	<expr> ("," <expr>}

The values of the actual parameters specified in a procedure call are evaluated before the call,
and these values are substituted for the formal parameters within the called procedure. For

constant formal parameters, the actual parameter may be an expression. An actual parameter
which is substituted for a variable formal parameter must be a variable designator; the selectors
for components of structured variables are evaluated before parameter substitution takes place
(that is, before the procedure call). The type of each actual parameter must be compatible with
that of the corresponding formal parameter, and the number of actual parameters must match
the number of formal parameters for that procedure, unless a parameter has been specified as
arbitrary (more to come on this).

Example:
factorial(2*j)

12. Objects

The object construct provides support for data abstraction in Aeolus. A collection of
related data items may be encapsulated within an object, which also may provide operations (pro-
cedures that operate) on the data. The only access to the data of an object is via these opera-
tions; thus, an object can strictly control manipulation of its encapsulated data, helping guaran-
tee the invariants of the abstraction.

An Aeolus object may also have parameters indicating, for instance, sizes or element
types of the abstraction implemented by the object; thus, an object implementing a bounded
stack abstraction may be parameterized by the element type and maximum number of elements
of the stack. Then, various instances of the bounded stack object may be created (instantiated)
with differing element types and sizes; the implementation of the object need not be concerned
with details such as the element representation, and the programmer does not need to create
new object types for each combination of element type and stack size. Support for such generic
objects increases the level of abstraction available to the programmer, and makes possible the
creation of libraries of reusable object types.

22This attribute gives the compiler a hint that certain optimizations may be possible in this procedure. This attri-
bute is used at the programmer's risk; that is, the compiler does not attempt to verify that the procedure is actually
pure.

-31-

Aeolus Reference Manual 	 Preliminary Version

The object construct also provides a safe separate compilation mechanism. The separation
of an object specification into a definition part and an implementation part allows checking across
the interface to an object, as well as allowing the use of an object definition before the
corresponding implementation part is finished (thus facilitating top-down design).

12.1. Object Definition Parts

The definition part of an object defines the interface of the object with other compilands.
It specifies the attributes of the object itself as well as the constants, types, and operations
which the object provides to other objects and to processes.

The header of an object definition part, besides declaring the name of the object, option-
ally specifies the object attributes and the object formal parameters for a generic object. One pos-
sible object attribute is indicated by the keyword pseudo, which indicates that the object being
defined is a pseudo - object, the simplest form of object. A pseudo-object may not be instantiated,
as a full-fledged object may be; its operation calls are qualified by its object type name rather
than by an instance name. 23 Also, pseudo-objects may not use the action-management

<obj def>
<obj def hdr> <obj visible decls> "end" "definition"
"definition" "of" [<obj attrs>]
"object" <obj id decl> [<generic option>] "is"
"pseudo"
"nonrecoverable"
<auto .attr> [< auto attr>]
"recoverable"
"autosynch"
"(" <obj formal param list> ")"
<obj formal param> {"," <obj formal param>}
<id decl> ":" <generic type>
<type id>
"type''
[<uses option>] [<imports>] <decls&specs>
"uses" <imp list>
"import" <imp list>
<misc id> {"," <misc id>}
[<visible decls>] f<op spec part>]
<visible decl> {<visible decl>)
<const decl>
<type decl>
<constraint decl>
"operations" <op spec list>
<op spec> {<op spec>}
<proc hdr> [<op effect>]
"examine"
"modify"

Syntax of Object Definition Parts

<comp unit>
<obj def>

<obj def hdr>

<obj attrs>
<obj attrs>
<obj attrs>
<auto attr>
<auto attr>

<generic option>
<obj formal param list>

<obj formal param>
<generic type>
<generic type>

<obj visible decls>
<uses option>

<imports>
<imp list>

<decls&specs>
<visible decls>
<visible decl>
<visible decl>
<visible decl>

<op spec part>
<op spec list>

<op spec>
<op effect>
<op effect>

23Pseudo-objects are thus much like modules in Modula-2; the calling mechanism for their operations is simpler
than for the other object types.

-32-

Aeolus Reference Manual 	 Preliminary Version

(recovery) features of the Clouds system (see section 13). A more complex form of object is
given by the attribute keyword nonrecoverable, which indicates that—as with a pseudo-object-
the object being defined does not use the action•management (recovery) features of the Clouds
system; however, unlike pseudo-objects, a nonrecoverable object may have multiple instantia-
tions. An instantiation of a nonrecoverable object is created by a call to the operation new pro-
vided by object standard; a variable of that object type is passed as a variable parameter to new,
and the variable may thereafter be used to qualify operation invocations on that object instance.

If neither of the pseudo or nonrecoverable attribute keywords is specified, the compiler
assumes that the object makes use of the Aeolus/Clouds action and object management facili-
ties (see sections 12.3 and 13). The simplest way in which the programmer may make use of
these facilities is through specification of one or both of the "auto" attributes in the object
definition header. Specification of the recoverable attribute keyword causes the compiler to gen-
erate code in the object's operations for fully automatic handling of object state recovery, while
specification of the autosynch keyword causes code to be generated for automatic synchroniza-
tion of object operation invocations based on programmer-supplied indications of operation
effects (see below). Thus, the programmer may gain access to the action and object manage-

definition of nonrecoverable object bounded_stack
(size : unsigned, elem_type : type) is

! Definition of a generic bounded stack object with size SIZE
! and elements of type ELEM_TYPE.

operations

procedure push (elem : elem_type) is modify
! Places ELEM on the top of the stack,
! if the stack is not full.

procedure pop () : elem_type is modify
! Removes the top element of the stack and returns it.
! The return value is undefined if the stack is empty.

procedure top_elem 	: elem_type is examine
! Returns the top element of the stack without removing it.
! The return value is undefined if the stack is empty.

procedure empty () : boolean is examine
! Returns TRUE if the stack has no elements,
! FALSE otherwise.

procedure full () : boolean is examine
! Returns TRUE if the stack has SIZE elements,
! FALSE otherwise.

end definition. ! bounded_stack !

Example of an Object Definition

Aeolus Reference Manual 	 Preliminary Version

ment facilities of the Clouds system simply by specifying a few keywords. 24 However, in some
cases the programmer may be able to use knowledge of the semantics of the object and its
operations to program synchronization and recovery mechanisms more efficient than the
automatic mechanisms supplied by the "auto" attributes. Automatic recovery involves check-
pointing of the entire object state; automatic synchronization is based on a simple read-write
model of operation interactions on entire operations. As will be discussed in section 13, Aeolus
provides facilities that allow the programmer to specify which parts of the object state are to be
checkpointed (recoverable variables), to access information about the states of actions and to
change these states (via operations on the action manager), and to control the recovery process
by specification of what is to be done during action events (action event handlers); also, the
programmer may specify finer-grained locking mechanisms for greater control of synchroniza-
tion (via the lock type; see section 6.2.3.8).

If an object is to be generic, the programmer must specify the generic formal parameters
in the object definition header. Such a parameter may be of any named type, or it may be an
identifier which is to be used within the object implementation as a type identifier (specified by
the keyword type in place of a type name in the formal parameter specification). As stated
above, these parameters may be replaced by actual parameters (in the form of expressions or
type names) when a variable of that object type is declared; the values of the actual parameters
then determine the sizes, element types, etc. of that instance of the generic object (see section
6.3).

Following the object definition header, the programmer may specify the names of other
object definitions which contain constant or type specifications to be used in this object
definition. The names of these objects are specified in either a uses clause (if the object whose
definition is being imported is a pseudo-object) or in an import clause (for other kinds of
objects). Definitions imported in an object's definition part are also available in that object's
implementation part.

After any necessary imports are specified, the declarations of the object definition are
given. These are called its visible declarations since the declarations are available publically to
any object which imports the object definition. The visible declarations of an object may
include specifications of constants, types, or operations, but not of variables. The specifications
of the object's operations are listed following the keyword operations. Each specification con-
sists of the procedure's header (see section 11.1), optionally followed by one of the operation
effect keywords examine or modify, which indicate that the operation reads from or writes to the
object's state, respectively. This information is used by. the compiler to generate automatic read
or write locking for each operation if the autosynch attribute is specified for the object. If no
operation effect is specified, the compiler assumes that the operation neither reads nor modifies
the object state, and thus no automatic locking is done for that operation.

12.2. Object Implementation Parts

The implementation part of an object provides the actual code for the operations of the
object, as well as the definitions of any private constants, types, variables, or procedures needed
by the object. The definition part of the object being implemented is implicitly imported by the
implementation part; thus, the attributes, formal parameters, and public constant, type, and
operation specifications provided by the definition part may not be repeated in the implementa-
tion part. Also, as mentioned in the previous section, any objects imported by the definition
part are also available in the implementation part. The implementation part may import other
objects as well via its own uses and import clauses. All constants, type definitions, and opera-
tions declared in the objects made available by any of these methods are visible in the imple-
mentation part; also, the names of these imported object types may be used as the types of
variables declared in the implementation part. Such variables must be initialized by use of the
operation new provided by object standard.

21For more information on the mechanisms supplied by the Clouds system to support synchronization and
recovery, see [Allc83bj.

-34-

Aeolus Reference Manual
	

Preliminary Version

<comp unit>
<obj imp hdr>

<event part>
<override list>

<override>
<block>
<decls>
<decl>
<decl>
<decl>

<obj imp tail>

- <obj imp head> <block> <obj imp tail>
- "implementation" "of" "object" <obj id> "is"

"action" "events" <override list>
<override> {"," <override> }

- <id decl> "overrides" <id use>
[<decls>] <stmt pt>

- <decl> {<decl>}
<const or var decl>
<type decl>
<proc decl>
"implementation" "."

Syntax of Object Implementation Parts

•

If none of the attribute keywords pseudo, nonrecoverable, nor recoverable are specified in
the definition header of the object being implemented, the programmer may give an optional
event part in the object's implementation part. Event part specifications are described in section
13.2.

The <block> of an object implementation part must include full declarations of all
operations specified in the object's definition part. As with the full (second) declaration of a
forward-declared procedure, the parameter list of an operation is not given in its full declara-
tion. Constants, types, or procedures declared in the <block> but not specified in the object's
definition part are not visible to other compilands importing the object. Variables declared in
the outer level of the <block> are global to the object, and are static ("own") variables; that
is, the values of such variables survive between calls to the object's operations. The global
variables of an object are called collectively the object's state.

12.3. Object Operation Invocations

An invocation of an object operation looks much like a procedure invocation, except that,
outside the implementation part of the object itself, an operation name must be qualified by the
name of a variable representing an instance of that object type (or, for pseudo-objects, by the
name of the object type itself):

	

<obj op call> 	<obj id> "@ " <obj op id> "(" <parm list> ")"

	

<obj id> 	<id use>

implementation of object bounded stack
! (size : unsigned, elem_type : type) ! is

! More to come.

end implementation. ! bounded_stack !

Example of an Object Implementation

-35-

Aeolus Reference Manual 	 Preliminary Version

<obj id> 	<structured var>

Invocations of pseudo-object and nonrecoverable object operations have semantics essentially
like those of calls to procedures local to a compiland. The situation is different for operations
declared in objects which use the Clouds object-management facilities, that is, all objects which
are not pseudo-objects or nonrecoverable objects (the so-called "Clouds objects"). 25 Invoca-
tions of operations on Clouds objects are handled by the compiler through operations on the
Clouds object manager on the machine on which the invoking code is running. The Clouds
object on which the operation is being invoked need not be located on the same machine as the
invoking code; the object manager then makes a remote procedure call (RPC) to the object
manager on the machine on which the called object resides. The location—local or remote—of
the object being operated upon, however, need not concern the programmer, as the RPC pro-
cess is transparent above the object-management level. (More to come on operation invocation
se m an tics .)

Examples (see previous two sections):

sl : bounded_stack (integer, 10)
s2 : bounded_stack (real, 5)

if not s2 @ full O then
sl @ push (42)

elsif not s2 @ empty () then
r := s2 	pop () + 3.14159

end if

13. Actions

The action concept provides an abstraction of the idea of work in the Clouds system; an
action represents a unit of work. Actions provide failure atomicity, that is, they display "all-or-
nothing" behavior: an action either runs to completion and commits its results, or, if some
failure prevents completion, it aborts and its effects are cancelled as if the action had never exe-
cuted. The rationale for the action concept and the mechanisms supporting it in the Clouds
system are described in [Allc8313].

Support for actions in the Aeolus language is relatively low-level. The methodology of
programming with actions is not at present well-understood compared with experience in pro-
gramming with objects; thus, rather than providing high-level syntactical abstractions such as
those available for object programming, Aeolus allows access to the full power of the Clouds
system facilities for action management. The major syntactic support provided by Aeolus for
action programming is in the programming of action events, recoverable variables, and action invo-
cations.

13.1. Action Events

At several points during the execution of an action, the action interacts with the action
manager of the Clouds system to manage the states of objects touched by that action, including
writing those states to permanent (stable or safe) storage, and recovering previous permanent
states upon failure of an action. Thus, failure atomicity may be provided by the action manage-

This is because the code for pseudo-objects and for nonrecoverable objects is actually linked into the code of
the compiland using these objects, whereas the code for Clouds objects is physically separate from the code of the in-
voking compiland. This code is paged in on demand by the object manager (see lAlle83b1).

-36-

Aeolus Reference Manual
	

Preliminary Version

ment system. The action events include:

event name

BOA
toplevel_precommit

nested_precommit
commit

abort

purpose

beginning of action
prepare for commit for a toplevel action
prepare for commit for a nested action
normal end of action (also called EOA)
abnormal end of action

The interactions with the Clouds action manager necessary when such events take place
are done by default procedures supplied by the Aeolus compiler and runtime system; these pro-
cedures are called event handlers. When an action event occurs for a particular action, the
action manager(s) involved invoke the event handlers for each object touched by that action.

As was described in section 12.1, by specification of the keyword recoverable in the header
of an object definition the programmer may take advantage of the recovery facilities of the
Clouds system by having the compiler generate the necessary code automatically. This
automatic recovery mechanism requires checkpoints of the entire state of the object, and uses
the default action event handlers. However, it is sometimes possible for the programmer to
improve the performance of object recovery by providing one or more object-specific event
handlers which make use of the programmer's knowledge of the object's semantics; these
programmer-supplied event handlers then replace the respective default event handlers for that
object. Thus, if none of the attribute keywords pseudo, nonrecoverable, or recoverable are
specified in the definition header of the object being implemented, the programmer may give an
optional event part in the object's implementation part. Following the keywords action events,
the programmer lists the name of each action event handler provided by the object implementa-
tion as well as the name of the action event whose default handler the specified handler is to
override:

	

<event part>
	

"action" "events" <override list>

	

<override list>
	

<override> {"," <override > }

	

<override>
	

<id decl> "overrides" <id use>

Thus, for example, the specification (say, in an object called "stack"):

action events
stack_BOA overrides BOA, stack_precommit overrides precommit

indicates that the default handlers for the BOA and precommit action events are to be replaced
by the procedures named "stack_BOA" and "stack_precommit," respectively, for the "stack"
object only.

13.2. Recoverable Variables

As mentioned in section 8, if an object being implemented is not a pseudo-object, nonre-
coverable object, or (automatically) recoverable object, then some of its variables may be
declared to have the recoverable attribute:

<new type> — ■ "recoverable" <type> ("," <override>}

	

<override> 	— 	<id decl> "overrides" <id use>

The state of a recoverable variable which has been touched by an action is maintained on a ver-
sion stack by a Clouds action manager, and is saved to permanent storage upon commit of the
action which touched it. If an action which touched a recoverable variable is aborted, the ver-
sion of that variable which existed before the action touched it is restored. 2° Thus, the use of
recoverable variables allows the programmer to provide finer granularity in the specification of
that part of the object state which must be checkpointed, since the use of automatic recovery
on object (the recoverable object attribute) performs checkpoints on the entire state of the

2°For more information on the semantics of recoverable variables and the mechanisms to support them, see

1Allc83b1.

-37-

Aeolus Reference Manual 	 Preliminary Version

object.
The interaction with the action manager necessary to manage the states of recoverable

variables is implemented by the action event handlers as described above. Again, the default
event handlers may be overridden by programmer-supplied event handlers for the entire object
to achieve better performance. However, to achieve better performance in the management of
recovery for specific recoverable variables, the programmer may specify one or more alternate
event handlers on a variable-by-variable basis which take advantage of semantic knowledge
about the variable in question. Thus, the declaration of a recoverable variable may specify the
name of an operation which overrides the default handler for an event. Override specifications
for recoverable variables may coexist with override specifications for the entire object.

Example:
r : recoverable integer, r_precommit overrides nested_precommit

In the declaration of "r" above, the default handler for the neated_precommit action event is
overridden (replaced) by the procedure "r_precommit" for management of the recovery of
variable "r."

13.3. Action Invocations

As mentioned in section 10.1.1, the right-hand side of an assignment statement may also
take the form of an action invocation:

	

<rhs>
	

["toplevell "action" "(" <action invocation> ")"

	

<action invocation> 	

- 	

<proc call>

	

<action invocation> 	<obj op call>

	

<action invocation> 	

- 	

<assign stmt>

Here, the right-hand side (which consists of an operation invocation which, if the operation is
value-returning, is embedded in another assignment statement) is invoked as an action; the
action ID of this action is assigned to the variable designated by the left-hand side of the action
invocation. The action ID may then be used as a parameter in operations on the action
manager which provide information about the status of the action, cause a process to wait on
the completion of an action, or explicitly cause an action to commit or abort. (The interface to
the Clouds action manager is described in Appendix E.) If the keyword toplevel is specified, the
action is created as a "top-level" action; that is, as an action with no ancestors. 27 Otherwise, the
action is created as a "nested" action, that is, as a child (in the so-called action tree) of the
action which created it; as described below, a nested action may be affected by an abort of one
of its ancestors.

The semantics of an action invocation is as follows: the action manager operation
CreateAction is invoked with the name of the operation to be performed as well as the list of
arguments to be passed to that operation. 28 The action manager then invokes the BOA event
handler on the object to which the operation belongs. Next, the action manager creates and
dispatches a process in which the operation code runs. An attempt by the operation to return
to its caller is considered an implicit attempt to commit the action, and will cause control to
transfer to the Commit operation of the action manager, which terminates the process and
invokes the precommit event handler of each object touched by the action. (An explicit invo-
cation of the Commit operation has the same effect.) If precommit of the object is successful,
the action manager then invokes the commit event handler of each touched object. If the
action (or one of its ancestors) invokes the Abort operation of the action manager, the action
manager terminates the process corresponding to the action and invokes the abort event

27Thus, as we shall see, a. top-level action cannot be affected by an abort of any ancestor of the action which
created it.

28The exact details of the manner in which this information is provided depends on whether the operation is a lo-
cal procedure or a publicly-visible operation of the object to which it belongs.

-38-

Aeolus Reference Manual 	 Preliminary Version

handler of each object touched by that action.

It may sometimes occur that an object operation may be called either as an action invoca-
tion or as an ordinary object operation invocation. In the case that an operation is invoked nor-
mally (that is, not as the target of an action invocation), an invocation of the action manager
operation Commit by the operation will cause the action manager to merely return control to the
point of invocation of the original operation; thus, in this case the Commit call is effectively a
normal procedure return. On the other hand, an invocation of the Abort operation by an opera-
tion invoked normally will cause the parent action of the invoker of the original operation to

abort. 29 Thus, in the case of normally-invoked operations, a call to the Abort action manager
operation provides a mechanism similar to an exception-handling mechanism with a single
exceptional condition ("error").

14. Processes

The final structuring feature of the Aeolus language provides an abstraction of the process
concept of the Clouds system. (The process is analogous to the program construct of Pascal or
Modula-2.) The invocation of a process provides activity in the Clouds system; processes may
be considered the "glue" which binds object operations, and possibly actions, to do useful
work.

A process is introduced by a header which gives the name of the process, as well as
clauses detailing any imports of object definitions necessary (see section 12.1):

	

<comp unit>
	

<prog head> <block> <prog tail>

	

<prog head>
	

<prog hdr> <uses option> <imports>

	

<prog hdr>
	

"process" <prog id> "is"

	

<prog tail>
	

"process" "."

Following any import clauses, the body (<block>) of the process is specified; the <block>
has the same form as that of an object implementation part (section 12.2).

29Note that all processes in the Clouds system are descendants of the top-level "universal action," which cannot

be aborted.

-39-

Aeolus Reference Manual 	 Preliminary Version

process test_bounded_stack is

import bounded stack

bsl, bs2 : bounded stack (10, integer)

i : integer := 0

begin
new (bs1) new (bs2)
loop

if bs1 @ full () then
exit .

end if
bsl @ push (i)
if (i %3 = 0) and not (bs2 @ full 0 or bsl @ empty ()) then

bs2 @ push (bs1 @ pop 0)
end if
i + = 1

end loop
end process. ! test_bounded_stack !

Example of a Process (see section 12.1)

15. REFERENCES

[A11c82] Allchin, J. E., and M. S. McKendry, "Object-Based Synchronization and Recovery,"
Technical Report GIT-ICS-82/15, School of Information and Computer Science,
Georgia Institute of Technology, September 1982

[Allc83al Allchin, J. E., and M. S. McKendry, "Synchronization and Recovery of Actions,"
Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, Montreal, August 1983

[A11c83b] Allchin, J. E., "An Architecture for Reliable Decentralized Systems," Ph.D. Thesis,
School of Information and Computer Science, Georgia Institute of Technology, 1983
(also available as technical report GIT-ICS-83/23)

[LeB185] LeBlanc, R. J., and C. T. Wilkes, "Systems Programming with Objects and
Actions," Proceedings of the Fifth International Conference on Distributed Computing
Systems, Denver, Colorado, May 1985 (also available as Technical Report GIT-ICS-
85/03)

[McKe84a]
McKendry, M. S., "Clouds: A. Fault-Tolerant Distributed Operating System,"
School of Information and Computer Science, Georgia Institute of Technology, May
1984

[McKe84b]
McKendry, M. S., "Ordering Actions for Visibility," Proceedings of the Fourth Sym-
posium on Reliability in Distributed Software and Database Systems, Silver Spring,
Maryland, October 1984 (also available as Technical Report GIT-ICS-84/05)

[Pitt84] 	Pitts, D., "Storage Management for an Action-Based Operating System," Ph.D.
Thesis Proposal, School of Information and Computer Science, Georgia Institute of

-40-

Aeolus Reference Manual 	 Preliminary Version

Technology, November 1984 (also available as Technical Report GIT-ICS-85/02)

[Wilk861 Wilkes, C. T., "Programming Methodologies for Resilience and Availability," Ph.D.
Thesis, School of Information and Computer Science, Georgia Institute of Technol-
ogy, in progress

QUARTERLY PROGRESS REPORT
RESEARCH ON RELIABLE DISTRIBUTED

COMPUTING
CONTRACT #MDA 904-84-C-6035
REPORTING PERIOD: 1 JULY 85 - 10 SEPT 85

1. Project Status

During the fourth quarter of this project, work has continued on each of the two

tasks called for by the statement of work. These efforts are closely related to other

work in progress within the Clouds Project, our major research effort in the area of

reliable distributed computing. Under the Distributed File Systems task, work has

proceeded on the integration of our storage management system with the Clouds ker-

nel virtual memory management system. Additionally, implementation work has been

done on several device drivers necessary to test the kernel and storage management

system.

Under the Language Support for Robust Distributed Programs task, we have

been refining the definition of our language, Aeolus, and proceeding with the imple-

mentation of the compiler. We have also been actively working with members of the

Clouds kernel group on the definition of the interface between the Aeolus run-time

system and the Clouds action and object managers.

The work on the tasks of this project has proceeded on schedule. These efforts,

in combination with other work in progress within the Clouds project, have kept us on

target toward our goal of having a working prototype system by the end of 1985.

2. Storage Management - Progress Report

The development of the Clouds storage manager involves the implementation of

three components. These are the device object, the partition object, and the segment

object. These objects are each abstractions of the disk storage available on a Clouds

machine. The device object manipulates device storage as a collection of uninterpret-

ted blocks of data, which it will transfer in and out of virtual memory. The partition

object provides a mechanism for division of device storage for adminstrative purposes

and also is involved in the location of data and the allocation of device storage. The

segment object treats device storage as a collection of bytes rn fact, the segment

object is just an alternate view of any Clouds object. We consider the device object

the lowest level of abstraction and the segment object represents the highest level. In

the paragraphs that follow, we describe the current state of the storage manager.

At the device object level, we are developing two disk objects. Clouds disk

objects include not only the conventional device driver functions, but also provide

necessary support for the recovery mechanisms of the storage manager. Specifically,

the Clouds disk objects provide a mechanism, flush routine, which insures that requests

scheduled by an action are actually completed before the action commits. This

mechanism differs from conventional disk management schemes, where a request may

remain enqueued after the process that issued it terminates. The flush routine relies

on the flush table, a per device structure. The table contains an entry for each action;

the entry contains a list of requests made by the action and a record of the number of

requests pending and completed. The development of a RLO2 disk object has been

straightforward and we now have a working version integrated with the Clouds kernel.

Minor changes in the way the object formats the medium are anticipated. Addition-

ally, the object must be modified to lock physical pages for I/O transfers, because of

the Clouds kernel's use of the virtual memory system as the basic I/O mechanism.

The RLO2 will allow us to go ahead with the devlopment of kernel and partcularly with

the testing of the storage manager. The RL02 will not be the primary disk for the

Clouds system, as it holds only 10 Mb on each cartridge. The primary disk for the ini-

tial Clouds implementation will be the RA81, a disk object for which is under develop-

ment in parallel with the development of the RL02 object. Because the RA81 is a

"smart" device, progress has been slower and the integration of the facilities required

by the Clouds storage manager is more complex. Testing is currently under way on

this device. We have kept the device object interface for the two devices unform and

also have attempted to reduce any side-effects so that upon completion of the RA81

object, this object can be use in the place of or along with the RL02.

The next level of abstraction for the storage manager is the partition level.

Implementation at this level is just being completed. A partition provides all the struc-

tures required to support the creation and management of Clouds objects. Specifically,

the partitions provide support for the location of objects and the allocation of disk

storage for objects. The Clouds kernel provides for the location-independent invoca-

tion of object operations, which requires the kernel to search for the objects t each

operation invocation. Object searches are network-wide and several techniques are

being developed to short-circuit these searches. One concern is the necessity of going

to disk in order to determine if the object is on a partition. Each partition maintains a

structure called a maybe table which is intended to reduce the number of unnecessary

2

disk accesses during object search (an unnecessary access is one which shows the

object is not on the partition in question). The maybe table is a small in-memory

representation of the partition membership. Our maybe table is an example of a

Bloom filter [Bloom70]. The table is a compressed hash table, in which several seg-

ment names may hash to the same entry. In trade-off for the reduced size of the

table, only a negative response to a query is guaranteed to be correct. Responses indi-

cating the object is on the partition may in fact be wrong and may require the partition

object to access the directory on disk. We are really trading accuracy of the responses

for speed since in most cases the query can be answered without an unnecessary

access to disk.

The segment system forms the highest abstraction provided by the storage

manager. Disk storage at this level is managed as a collection of arbitrarily sized seg-

ments, which generally represent some Clouds object. Segments provide a uniform

interface through which the Clouds kernel can manipulate objects. In addition, the

segment system provides a set of protocols which insures the consistency of the per-

manent object data when manipulated by some action. Implementation of the seg-

ment system is currently in progress. Recovery is provided using a pessimistic sha-

dowing scheme, in which modifications are stored in a temporary version of the seg-

ment until the action making the modifications commits, making the temporary ver-

sion the new permanent segment. The segment system, along with the action

management and object management systems are involved in the management of vir-

tual memory with respect to the mapping of objects. We are finalizing the extent of

each system's responsibilities and influence in the virtual memory and the cooperation

needed between the systems. The storage manager shares with the object manager the

responsibility for mapping the on-disk version of the segment to the virtual memory

version. Each segment has one or more windows which represent chunks of the seg-

ments which are actually mapped info virtual memory. This allows the mapping of

portions of large objects into virtual memory, avoiding the cost of mapping the entire

object. The storage manager also makes use of the virtual memory system to assist

the action management system in the committing of actions. The segment system

uses virtual memory structures to determine which segment pages have been modified

and then, based on its own information as to the structure of the segment, decides

which segment pages must be shadowed to provide the necessary recovery.

3

A technical report [Pitts85] which summarized all of the work which has been

done on the storage manager is attached as Appendix A.

[Bloom70] Bloom, B.H., "Space/Time Trade-offs in Hash Coding with Allowable

Errors," Communications of the ACM, No. 13, Vol. 7 (July 1970), pp.422-

426.

[Pitts85] Pitts, D.V. and E.H. Spafford, "Notes on a Storage Manager for the Clouds

Kernel" Technical Report GIT-ICS-85/02, School of Information and Com-

puter Science, Georgia Institute of Technology, October 1985.

3. Aeolus - Progress Report

As part of the Clouds project, we are designing and implementing a high-level

systems programming language called. Aeolus (after the king of the winds in Greek

mythology) in which those levels of the Clouds system above the kernel level will be

implemented. Aeolus provides access to the synchronization and recovery features of

Clouds. It also provides a framework within which to study programming methodolo-

gies suitable for action-object systems such as Clouds.

The work of the Aeolus group during the past quarter has been concentrated on

the completion and rationalization of the language design and—in conjunction with

members of the kernel group on the definition of the interface of the Aeolus run-

time system with the Clouds action and object managers. The design of the language

has undergone a major reworking, especially those parts of the design concerned with

specification of types. In view of one of the Aeolus design goals of providing the

power necessary for systems programming without sacrificing the advantages of strong

type checking, we wished to provide dynamic (flexible) data types; however, we felt

that our previous design for this violated the goals of simplicity and readability. Our

reworked design integrates flexible types into the language in a much cleaner manner,

within the framework of general parameterized types. The changes to the design have

been incorporated into the language description [Wilk85b], which is now essentially

complete; the interfaces with the Clouds system object and action managers remain to

be specified in the language description. The new language definition is attached to

4

this report as Appendix B.

Work on the implementation of a compiler for Aeolus has recently resumed fol-

lowing the absence over the past quarter of the team member responsible for imple-

mentation of the symbol table and code generation routines. The design changes have

now been incorporated into the symbol table, and new semantic routines necessitated

by the changes are being implemented. We have also taken advantage of the redesign

to streamline parts of the semantic routine structure, taking into account our previous

implementation experience. Work on the implementation is accelerating now that

these changes are understood.

The design of the interfaces of the runtime system with the Clouds action and

object managers is essentially complete. Members of the Aeolus group have been

assisting members of the kernel group over the past quarter in the design of these

interfaces as well as in strategies for efficient action management. Of particular impor-

tance were our designs for support of recoverable areas in Clouds objects; these con-

structs enable the Aeolus language (in conjunction with the action management sys-

tem) to provide view atomicity in addition to the failure atomicity provided by the ker-

nel. Each action which touches an object which has a recoverable area gets its own

copy (or version) of that recoverable area on which it may make its changes; when a

nested action commits, it propagates its version of the recoverable area to its parent.

View atomicity ensures that each action in the action tree which accesses an object

sees the correct version of the data in that recoverable area. We have developed a

technique for implementing recoverable areas using partial replacement of the object

page table entries which provides view atomicity without causing a time penalty for

access to the data in the recoverable area. Rather, a small penalty is paid upon process

exchange if a process is associated with an action. The action and object managers

exist now in pseudo-code; the interfaces with these kernel routines will shortly be

codified as appendices to [Wilk85b].

We intend to use Aeolus as a framework within which to study programming

methodologies for action-object systems. Our initial studies in programming metho-

dologies for resilience and availability are described in [Wilk85a]; there, a plan is

presented for determining such methodologies appropriate to the design of objects

needed in the Clouds system. The issues with which we are concerned include the use

of semantic knowledge of objects in the programming of replication; trade-offs

5

between consistency and availability; the appropriateness of current programming

models for replicated data; and the support needed from the operating system and

language runtime system to ensure availability and forward progress of processes.

Now that the language design is complete and our implementation effort is well under-

way, we plan to devote proportionally more effort to these studies in the immediate

future.

[Wilk85a] Wilkes, C. T., "Programming Methodologies for Resilience and Availabil-

ity," Ph.D. Thesis Proposal, School of Information and Computer Science,

Georgia Institute of Technology, January 1985.

[Wilk85b] Wilkes, C. T., "Preliminary Aeolus Reference Manual," Technical Report

GIT-ICS-85/07, School of Information and Computer Science, Georgia

Institute of Technology, July 1985.

8

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

October 22, 1985

To whom it may concern:

The attached paper, Notes on a Storage Manager for the Clouds Kernel,
by David V. Pitts and Eugene H. Spafford which was partially funded
under the contract #MDA 904-84-C-6035 is being submitted for your
information. This paper will be published as a Technical Report in
the School of Information and Computer Science at Georgia Institute
of Technology.

Sincerely,

Richard J. LeBlanc
Associate Professor
RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

'appendix A

Notes on a Storage Manager
for the

Clouds Kernel

Technical Report GIT-ICS-85/02
David V. Pitts

Eugene H. Spafford

The Clouds Project, School of Information and Computer_ Science
Georgia Institute of Technology, Atlanta, Georgia 30332

CONTENTS

1. Background 	2

2. Hardware and Environment 	4

3. The Design Approach 	6

4. Device Objects 	8
4.1 Device Media 	8
4.2 Device Object Structures 	 8
4.3 Device Object rnlls 	 10

5. The Partition Object 	 12
5.1 Partition Data Structures 	13
5.2 Calls on the Partition Object 	 16

6. The Segment Object 	 18
6.1 Segment Object Data Structures 	 18
6.2 Calls on the Segment Object 	 18

7. Reliable Storage Management 	 21
7.1 Segment level recovery 	 22
7.2 Partition level recovery 	 26
7.3 Device support for recovery 	 28
7.4 Summary 	 29

8. Conclusions 	 30

	

REFERENCES 31

LIST OF FIGURES

Figure 1. Architecture of the Clouds kernel 	2

Figure 2. Clouds hardware configuration 	4

Figure 3. The system device table and other device object structures 	9

Figure 4. The system partition table and other partition object structures 	13

Figure 5. Two implementations of a Bloom filter 	 15

Figure 6. Clouds kernel segment structure 	 19

Figure 7. Actions block on competing commits 	 21

Figure 8. Precommitted segment . 23
Figure 9. A committed segment 	 24

Figure 10. An aborted segment 	 25

Notes on a Storage Manager
for the

Clouds Kernel

Technical Report GIT-ICS-85/02
David V. Pitts

Eugene H. Spafford

The Clouds Project, School of Information and Computer' Science
Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract: The Clouds project is research directed towards producing a reliable distributed
computing system. The initial goal of the project is to produce a kernel which provides a reliable
environment with which a distributed operating system can be built. The Clouds kernel consists
of a set of replicated sub-kernels, each of which runs on a machine in the Clouds system. Each
sub-kernel is responsible for the management of resources on its machine; the sub-kernel
components communicate to provide the cooperation necessary to meld the various machines
into one kernel.

This report documents a portion of that research, namely, the implementation of a kernel-level
storage manager that supports reliability. The storage manager is a part of each sub -kernel and
maintains the secondary storage residing at each machine in our distributed system. In addition
to providing the usual data transfer services, the storage manager ensures that data being stored
survives machine and system crashes, and that the secondary storage of a failed machine is
recovered (made consistent) automatically when the machine is restarted. Since the storage
manager is a part of the Clouds kernel, efficiency of operation is also a concern. We wish to
reduce the overhead required to ensure the recoverability of secondary storage as much as
possible, while adhering to the design goals associated with the storage manager.

Technical Report GIT-ICS-85/02

7777. 	r7.01-4",173n7:

Cornm.

Manager

Comm.

Manager

Action/

Object

Manager

Process

Manager

Action/

Object

Manager

Process

Manager

Storage

Manager

Storage

Manager

-2-

1. Background

In this section we present an overview of the Clouds kernel and discuss the philosophy behind
its development. The Clouds approach to providing reliability is through the use of actions and
objects, as discussed in [1], [2], [3], [4]. The Clouds kernel provides higher level applications such
as operating systems with three primitives: processes, actions, and objects. An object is a
typed collection of data which is manipulated by a set of operations. The data structures and the
set of operations for the object define its type. An action is the unit of (fault tolerant) work in
the Clouds system. Actions guarantee failure atomicity of the operations performed by them:
the operation appears to either occur totally or not at all. Processes in Clouds are similar to
processes found in other systems, and represent a thread of execution and control. Actions and
objects are passive, waiting for a process to activate them. The model of computation for the
Clouds system is that of a set of processes making operation calls on objects to perform services
required by the system. In order to make these services reliable, the object operation calls are
performed under the auspices of an action.

Figure 1. Architecture of the Clouds kernel

Clouds actions provide a mechanism that allows the programmer to violate the conventional
notions of correctness and consistency, as defmed by strict serializability, when programming
reliable objects. The programmer can use any semantic knowledge about the intended
activation of an object to program a customized method for providing the recovery of the object.
This is done by the programmer writing new abort and commit operations for the object, which
indicate how the object data must be recovered. By allowing object recovery to be customized
in this way, we hope to provide increased concurrency in the execution of services compared to
using the usual recovery and synchronization rules (i.e., serializability), and so improve the
performance of the Clouds system.

Technical Report GIT-ICS-85/02

-3-

The Clouds kernel has four major components: the object/action manager(s), the process
manager, the communications manager, and the storage manager. Figure 1 depicts the
architecture of the Clouds kernel for a system consisting of two nodes. The kernel is made up
of two sub-kernels, one of which resides on each node that is part of the Clouds system. Each
of the components of the kernel can communicate with its corresponding components on other
nodes through the proper protocols.

The object manager is responsible for providing the object operation invocation mechanism.
Each object is named by a unique capability comprised of a system name (called a sysname) and
a series of rights which indicate which object operations are available to the invoking process.
The object manager checks the capability provided by the operation call, locates the desired
object instance, formats and maps the operation parameters, and activates the object. The
object manager is involved with handling action bookkeeping, as necessary. The object
manager also hides references to objects on other machines by providing a remote procedure
call mechanism (RPC). The object manager makes an RPC look exactly like a local operation
call.

The process manager creates, destroys, and dispatches processes. It manages local processes, as
well as slave processes started to handle RPC's from other machines. The process manager is
not a global scheduler; it simply manages local resources.

The communications manager is responsible for the transmission of information among the
machines in the Clouds , network. It maintains information about the connectivity of the
network, the status of the various lines to which each machine is connected, and queues of
outgoing and incoming data. The data that goes through the communications manager is
uninterpreted — it might be an RPC or a part of a file that is being transmitted across the
network. More detailed descriptions of the object, process, and communications managers can
be found in [5] and [6].

The function of the storage manager was described above. It coordinates with the object
manager to provide the correct commits and aborts of actions on object data residing on
secondary storage. In the remainder of this report, storage will refer to the secondary storage
(disk, tape, etc.) attached to a machine. Memory will refer to the main memory of the
machine.

Technical Report GTT-ICS-85/02

10 Mb/sec1 	I
Ethernet

O

Va. 11/750 A

4

Mb

Disk

ports

Ethernet

• 10
Mb

11-AJLIJALALLJ

Primary port

Secondary port

, 4%. 456 .d
Mb

"...••••--••.„\

456 d 	
% 10 4%.

Mb
Mb

Disk ports

Vax 	2
11/750

Mb

Ethernet

Vax 11/750 C
•

Disk 	2

ports 	Mb

Ethernet

456 0°
Mb

4%, 456
Mb

456
Mb

Workstations Workstations 1
0

-4-

2. Hardware and Environment

The Clouds kernel is currently under implementation on three VAX 11/750's.' The machines
have eight megabytes of main memory altogether and are interconnected via a 10 Mb/sec
Ethernet. Also connected to the Ethernet are a set of IBM-PC's, which will serve as intelligent
work stations. Future versions of the system may be connected by multiple networks of varying
bandwidth.

Figure 2. Clouds hardware configuration
Our prototype will have three types of storage devices available for the kernel. There may be a
tape drive on one machine that will be used to archive data and perform conventional system
backups. Each machine will have a R.L02 removable pack disk drive, in which each pack
provides 10 Mb of storage. We expect that RLO2 media will be used as short term archive
devices and boot devices. Finally, each system will also have up to four RA81 disk drives.
Each such drive has a permanently mounted pack providing 456 megabytes of storage
(unformatted). The RA81 drives are dual-ported; two controllers may be coupled to the drive
simultaneo, T;L:v However, the drive is on-line to only one of the controllers at any time. The
switching of the device between controllers is done primarily by a front panel switch, but
switching can be done under program control. The disks are controlled by UDA50 controllers

1. VAX is a trademark of the Digital Equipment Corporation

Technical Report GIT-ICS-85/02

-5-

which use DEC's Mass Storage Control Protocol (MSCP). These devices are expected to
provide the primary object storage for the Clouds system. Figure 2 shows the Clouds prototype
system.

Technical Report GIT-ICS-85/02

-6-

3. The Design Approach

The Clouds kernel provides user-defined objects 2 as the building blocks (along with atomic
actions) of a reliable distributed system. The arguments for using an object-oriented approach
in general, and as used in the Clouds project in particular, are presented elsewhere [7] and [3]
and we will not repeat those rationales here. We feel that the kernel, in addition to supporting
objects for higher levels of software, should also reflect the use of an object-oriented
methodology in its design and implementation. To this end we have identified basic
components of the kernel and isolated them as modules that are accessible only through a set of
procedures defined for each module. These objects are then used to form the major systems of
the kernel: the object manager, the process manager, the communications manager, and the
storage manager.

We attempt to present kernel objects as typical Clouds objects that provide (restricted) access to
functions and services provided by the kernel. However, there are differences between the
objects that form the kernel and those that are supported by the kernel. The first such
difference is in the implementation. User-defined objects will be created by users with an
object-oriented language, such as Aeolus [8], [9]. This language enforces the use of an object-
oriented methodology. Our kernel objects are currently implemented as C modules and most
of the responsibility for adhering to the philosophy of object-oriented design is the responsibility
of the programmer, not the programming language. Still, we believe the careful use of this
object methodology despite the lack of support in the language provides benefits in the
implementation and later maintenance of the kernel. It also may make the later conversion of
the kernel to some other object-oriented language, such as Aeolus, more convenient.

The other difference reflects our concern for the efficiency of kernel functions and the operation
invocation mechanism for objects. Many of the functions of the kernel are time-critical, or
because of their frequent use require very efficient implementations. The operation invocation
mechanism has overhead that we suspect cannot be afforded in these situations. Therefore,
operation calls on kernel objects are handled differently than operation calls on user-defined
objects. Calls on kernel operations may be performed as ordinary procedure calls or even as
simple transfers to blocks of code. However, the appearance outside the kernel and the overall
philosophy is that of an object-oriented kernel.

Some kernel objects are not generally available outside the kernel. For example, this is the case
with the objects comprising the storage manager. Operating system code may occasionally
require direct access to secondary storage, but it is hoped that for the most part the abstractions
provided by objects will suffice.

The storage manager is based on three sets of objects: device objects, partition objects, and
segment objects. Each of these objects manages the same actual item (secondary storage), but
provides different abstractions. The device objects provide conventional device-level access to
secondary storage. Partition objects allow devices to be sectioned logically according to the
intended use of the storage on a device. Segment objects are the secondary storage extensions
of the segment type provided by the kernel. R ecoverable permanent objects are implemented at
the level of segment objects.

The remainder of this report outlines a design for a storage manager for the Clouds kernel. It
covers the important aspects of the structure and fun^#ion of the storage manager, and discusses
how the storage manager is used by and uses °the•, pats of the kernel. The next three sections
deal with the design and implementation of the device object, the partition object and the
segment object. Those sections specify the data structures required plus the interface to the

2 .. Also referred to as client objects.

Technical Report GIT-ICS-85/02

-7-

objects. Section 7 then covers how these objects are used by the kernel. In that section we
discuss some of the issues related to the reliability of the storage manager and its relationship to
the rest of the kernel. Section 8 contains a summary of this report, and a few conclusions and
reflections on the storage manager.

Technical Report GIT-ICS-85/02

f:otT,IrrifeNSTREIONTWFTL.57AStVEtT---T.,

-8-

4. Device Objects

As with conventional systems, the storage manager for the Clouds kernel provides a device
level interface to secondary storage. This level of interaction with secondary storage is almost
exclusively the province of the Clouds kernel. In fact, even within the kernel, most accesses to
secondary storage are performed at some other (higher) level; only the storage manager makes
frequent use of device objects.

4.1 Device Media
The storage manager views devices as two parts: the device itself and. the medium currently
being used by the device. This viewpoint is moot for fixed media disks, but for other forms of
secondary storage, such as tape and removable disk storage, it provides additional flexibility in
the configuration of a system. This separation is complete; a sysname exists not only for each
device in use on a system, but also for each medium. However, in many cases the distinction
between accessing specific media and accessing devices is not important, so we wish to hide this
separation. Therefore, the storage manager provides a mechanism for binding a medium to a
device.

Bindings between media and devices are generally performed at the initialization of the system
and involve the association of device and medium. Binding a medium to a device may also
involve the formatting of the medium. In this latter case, a new sysname is generated for the
medium. This formatting or initialization of a medium will destroy any previous information
that existed on the medium. The old sysname will no longer give access to any medium. The
formatting of a blank or obsolete medium includes initializing the tables and structures that the
storage manager requires. These structures are discussed in section 2.1.

In other cases, an existing medium is bound to a device. An existing medium is one which has a
sysname and is formatted. The binding will involve the reading of the sysname from the
medium and comparing it with the sysname passed to the storage manager. The binding will
take place only if a match occurs. We are not attempting to address security issues with this
design. Our interest is to provide flexibility, while maintaining some control over what is
accessible. The use of sysnames to access media provides this control.

Once a medium has been bound to a device, any reference to the device refers to the bound
medium. The usual sort of device calls then need only refer to the device. This device-medium
binding stays in effect until it is explicitly broken by the storage manager.

In addition to setting up this correspondence between device and medium, this binding also
initializes an instance of a storage object in memory. In particular, critical tables and other
structures required by the device are brought into system memory. We will now look at the
data requirements of device objects.

4.2 Device Object Structures

The storage on a medium is presented as a sequence of 512-byte blocks that are addressed by
offsets from some fixed block. The offset used to address a block is called a device block
number (DBN). As we shall see in section 5, this storage can be subdivided into partitions,
allowing the storage on a device to be apportioned for policy reasons. At the device level,
though, the storage manager deals only with a contiguous string of blocks; partition boundaries
are not visible.

The device object is responsible for the transfer of data between secondary storage and
memory. The device requires two tables in order to function. The first such structure is the
media header. This table contains basic information about the medium and the device using it.
This information includes the medium and device sysnames, the amount of available storage on
the medium, and specifications for the device to which the medium is bound.

Technical Report GIT-ICS-85/02

•
•
•
•
•

code window
•••••••■•••••••••••••••■•■•••■■■•■•■

•••••■••••• ••••101••••1.1••■••••••1
•

411111 .1.0111111■111Plal•••••■1

■■■•••■•••■••••••

)

request

request queue
links

flush table
links

action ,d

virt
addr

request type

•
requTilt,klueue

flush table
links

action id

virt
addr

disk
addr

request type

disk
addr

flush table
links

action id

virt 	disk
addr 	addr

request type

■•••••■•••••■•••■■■•■■

4•44.1.1.1.

•
8 	

device object

request
queue

flush table
entr

-9-

The other major structure is the index table. The index table describes the partitions that exist
on this device. This will include information such as the location, extent, and type. The
partition table is 16 entries long. Partitions are discussed in section 5.

The medium header and index table must be resistant to failures — in particular, device failures
such as head crashes. If the index table is destroyed by a head crash, for instance, we lose
access to the partitions on that medium. We therefore provide copies of the tables, placing the
copies on different cylinders in order to minimize the risk from multi-sector failures. The
alternate copies will be located in known positions based on some computable function. We do
not anticipate problems as far as maintaining the consistency of the slave-and master versions of
the table is concerned, since the tables are infrequently modified and any such modifications are
generally done during the system initialization.

In addition, the device objects will maintain a structure in memory called a flush table. The use
of this table is discussed in section 7, but briefly, the flush table allows a device to associate an
action sysname with a set of requests. This supports the commit operation performed on
recoverable objects. Some devices may require the device object to provide bad sector
recovery. Objects written for these devices will have to maintain a bad sector table on disk.

system
device
table

device sysname
po i nter

medium
sysname
nnuffpr

count fields
reads, writes

errors , nterrupts

status flags a vsataat
l 	dsive i

device registers
.z .ifer

!nit routine 	—

mount routine --

unmount routine -

read routine

write routine

flush routine

interrupt routine

Figure 3. The system device table and other device object structures

The device object uses one other structure, the system device table. The system device table is
not a part of the device object proper„ but is actually the mechanism for managing the various
instances of the device objects. This table lists all secondary storage devices that are active on
the local machine. The device table entries contain pointers , to device and medium sysnames,
status variables for the device, device registers, and entry points into the operations for the

Techniml Report GIT-ICS-85/02

- 10-

device object. Figure 3 shows a device object pointed to by one entry from the system device
table.

4.3 Device Object Calls

The device object calls deal with the transfer of information to and from the device and with the
relationship of the device to its medium. This allows for devices switching the physical medium
used for storage in a uniform way. Device and media sysnames are generally needed by those
ells setting up a binding between the medium and the device. Calls which perform i/o do not
require a sysname. The proper device object calls are found through the system device tables.

4.3.1 init(devncone) return mednatne
Init generates a sysname for the medium currently on the device specified by devname. This
sysname is written in the medium header. Also written into the medium header is the device
specific information that is required. An area for the medium index table is reserved. The
return value is the medium. This is a format call; any existing structure on the medium is
overwritten. No other formatting is done, however. Any partitions desired are created later by
other calls. Redundant copies of the medium header and index table are created for reliability.

After the medium has been formatted, 'nit mounts the device. See the description of mount for
details.

4.3.2 mount(devname, medname) returns' integer
This call binds the device called devname to the medium called medname. The sysname
presented to the call is compared to that in the medium header. If the two match, the device
and medium are bound. The medium index table and the medium map table are read from the
disk. If the device requires it, a bad sector table is created from the device. The return value
specifies the status of the call (success, failure).

4.3.3 return_meditan cap(devname) returns medname
This call returns the sysname of the medium that is bound to the device named devname. The
return value is this sysname. If the device is unbound, a valid sysname might still be returned if
a formatted medium is present in the device. In this case, the call can be seen as an operation
to read a label. 3 This allows us to use media for which all currently existing copies of the
sysname are deleted or unavailable.

4.3.4 unmount(devname) returns integer
Unmount breaks a device/medium binding. All partitions on the medium are de-activated. The
return value is the status of the call.

4.3 .5 read(Ibn, address) returns integer
This call transfers the contents of a record located at disk address lbn to the page in memory at
address. Read blocks the calling process on a semaphore until the request is complete and
returns an integer indicating success or failure of the request.

4.3.6 write(id, Ibn, address, flag) returns integer
This call transfers the contents of a page in memory at location address to the record located at
address lbn on the device in question. Id is an identification used to associate this request with
a set of requests being issued by an action. If Id is an action sysname, then the device object
looks the action id up in a flush table and if it is not there, creates an entry for the action and
the request; if the action id is in the table, the request is added to that entry. If id is zero, then
there is no action associated with this request. Flag is used to indicate whether this is a forced

3. This kind of operation might seem to present a security hole in the system, in that it allows the system to determine
the name of an unknown medium and then mount it. However, note that this call can only be executed by kernel
code or by a user call with special kernel capabilities, and these are assumed to be trustworthy.

Technical Report GIT-ICS-85/02

write. If flag is non-zero, the device interrupts the normal scheduling of requests by placing this
request at the head of the queue. The new request is performed immediately after the current
request is completed. A forced write blocks the calling process on a semaphore until the request
is complete. Non-forced writes do not normally block the caller.

4.3.7 flush(id) returns integer
Flush uses the flush table maintained by the device object to ensure that all write operations
associated with the action identified by id are actually completed. The return value indicates the
status of the call. A positive return value (the number of requests completed) indicates a
successful flush. A zero or negative return value indicates that the action's sysname was not
found in the flush table or that some error occurred while attempting to flush the specified
requests.

4.3.8 enter(partnarne, size) returns lbn
Enter registers a partition on the device. This involves making an entry for the partition in the
index table for the device, placing the partition sysname, partname, and the partition size, size,
in the entry, and allocating storage on the medium for the partition. The starting logical block
number for the partition is placed in the index table and is returned as the value of the call. A
negative return value indicates that an exceptional condition occurred, such as not enough
storage for the partition on the device. Enter is called as part of creation of a partition.

4.3.9 remove(partntone) returns integer
This operation allows the caller to remove a partition from the device. Partname is the sysname
for the partition. The entry for the partition is removed from the index table on the device and
the storage for the partition is deallocated. The return value indicates success or an exceptional
condition, such as a non-existent partition. Remove is called as part of the removal of a
partition from the device.

4.3.10 partitions(partarray) returns integer
Partitions places the partition entries in the device's index table into the array parameter
partarray. The major use of partitions is expected to be at system initialization, where it
passes partition's sysnames to the boot code so that the partitions may be activated. The return
value is either the number of partitions written into the partarray (a non-negative value) or a
negative value indicating an exceptional condition, such as a bad index table.

Technical Report GPI'-ICS-85/02

- 12 -

5. The Partition Object

The partition object represents an intermediate level of abstraction of secondary storage.
Partitions are consecutive blocks of secondary storage that reside completely on one device.
Each partition is a logical object in that it manages the allocation of its own storage and
maintains the structures used to do so. A Clouds partition does not enforce any logical
organization of the data which resides on the partition, at least not in the sense of a Unix 4

 partition. A Unix partition represents a separate file system and all the files on the partition
have a hierarchical relationship. The objects residing in a Clouds .partition may bear no
relationship to each other. It is simply an administrative organization imposed by the partition
system indicating how storage in a particular partition is managed.

The two important types of partitions are recoverable and non-recoverable. When a partition is
made non-recoverable, it is a declaration that no recovery will be provided for object data
stored on that partition and that recoverable objects should not be placed in it. There is no
similar restriction for recoverable partitions; such partitions may contain a mix of recoverable
and non-recoverable objects. Other partition types include those used for paging surfaces and
those reserved for temporary items.

Partitions manage storage as device independent blocks of storage and these are the smallest
units of allocation that partitions support. The blocks are addressed by a partition block number
(pbn) which is an offset from the beginning of the partition. All partitions are a multiple of this
block size. 5

The partition has as its initial block a header containing partition specifications. The header
repeats most of the information found in the medium index table entry for this partition, plus
information about the partition's state. This structure is generally accessed only when the
partition is activated or some change is made to the partition; at other times the information is in
memory and is referenced there.

Another structure used by the partition object is the system partition table. Like the system
device table, the SPT is not part of any one partition object instance, but is part of the
underlying mechanism. The table contains entries for all partitions which reside on the local
machine. Each entry in the table associates a partition sysname with the data structures and
information for that partition. These structures and information include the starting block
number for the partition, pointers to in-memory structures and buffers used by the partition
object, and a pointer to the device object on which the partition resides. This last pointer is
actually a pointer into the system device table. Figure 4 shows the complete relationship
amongst these structures.

Another function of the partition object is to maintain the location of segments and make
available this information upon request. One of the features supported by the Clouds kernel is
the location independence of objects (and thus segments). We mean by this that an object may
reside on any partition on any node in the Clouds system and may be moved to any other
partition on any other node. This implies that each access to an object requires that a
(potentially) system-wide search be initiated. The sysnames given to objects give no (definite)
information as to the location of the objects. As can be imagined, such searches can be time-
consuming. In particular, searches on the partitions at a node might require one or more disk
access each. WA discuss one method of lessening the impact of these searches shortly.

4. Unix is a trademark of AT&T Bell Laboratories
5. The preliminary implementation will undoubtedly make this size equal to the size of a main memory page frame.

Technical Report GIT-ICS-85/02

partition
page map

partition

header

part. sysname

base address

size

type

system device
table

~MOW41
ONoXe01

■000 00t0
WWIMMM
OM0001**
OMMOI
04~00 t.

POOPOOVXMOWP
000 	■Ndl•

000PANO
P** MMPDX.

000 00N4P

OPMPVP

part. sysname

base address

size

type

directory buffers and
readlwrite locks

page map bufffers
and locks

partition
directory

•I, • • • 1

MCOMOrk
0000XFOONI
400000COX
01:400000X
4???14141V

II geacl/vaite
locks

g::
 buffer queue

••
buffer queue

r

in-memory
header

figure 4. The system partition table and other partition object structures

5.1 Partition Data Structures

Two of the major functions provided by a partition object are the location of objects and the
management of storage. To provide these functions the partition object maintains two
structures: the partition directory and the partition page map. The partition directory is a large
hash table which is composed of page-sized buckets. In our current implementation the bucket
size is 512 bytes, allowing each bucket to hold sixteen entries, each entry consisting of
sysname-pbn pairs. The sysname is the id for a segment and the pbn is the offset of the
segment within the partition. The entries to the directory are hashed to the proper bucket on
the sysname and then to the proper entry in the bucket by a secondary hash function, also on the
sysname.

The page map is simply a bit map representing the storage allocation for the partition. This
structure, along with the directory, (-J.:1.in most of the information that composes the partition
state. As such, they are crucial to maintaining the reliability of the partition and the system as a
whole, and some care must be taken in the modification and access of the partition directory and
page map, as explained in section 7. Additionally, the storage manager must protect these
structures from device failures. The basis for this protection is redundancy of the information.
The partition directory and page map have duplicates at known locations in the partition. We
are not overly concerned with the extra storage required; we calculate that even with duplicate
structures we can keep the storage requirements for these two structures below one per cent of

Technical Report GIT-ICS-85102

-

- 13 -

 in-memory
	 secondary storage

partition structures
	

partition structures

•
•

partition sysname •

pointer •

base address

•

•
•

• size

status flags

•
•

11

buffer pointer

buffer pointer

,n.memory hdr

device object ptr

- 14 -

the total storage. Combined with the protocols we follow for maintaining the reliability of
segments and partitions, we should be able to minimize the access overhead caused by this
redundancy.

The partition directory and page map may be too large to completely reside in memory and, in
fact, we will not have them mapped entirely into virtual memory. Instead, we will maintain
buffer areas for the two structures, bringing in new pages from secondary storage as needed,
and using a least-recently-used discipline for replacement. We suspect that locality for the page
map will be fairly good so that allocations of storage can be done from the memory buffers.
However, we suspect that accesses to the partition directory will typically take one access to
secondary storage. If our hashing functions are chosen properly we may be able to handle
directory requests in (at most) one secondary storage access.

The partition object maintains another structure which it uses to avoid unnecessary secondary
storage accesses altogether (or at least make such accesses rare). The structure in question is a
Bloom filter ['° 1 which we have called the Maybe Table. The Maybe Table is a probabilistic
membership checker. It will indicate either that the object in question definitely does not reside
on the partition being checked, or indicate that it possibly does. Thus, the Maybe Table gives a
method of short-circuiting secondary storage accesses in cases where it gives a negative
response. However, a positive response may still lead to unnecessary accesses to secondary
storage. The key to success is to reduce the ratio of non-resident positive responses to all
positive responses to as small a value as possible.°

As described in [101 , a probabilistic membership checker is a hash table where collisions are
allowed. There are two techniques described in that paper that present methods that could be
used with Clouds object sysnames. In the first technique, the Maybe Table consists of a table of
transformed entries. The transformation is a hashing function which takes a 48 bit sysname and
produces a shorter Maybe Table entry. Several sysnames may hash to the same entry value.
This entry value is then placed in the Maybe Table by the use of another hashing function; this
time collisions are handled in a conventional manner. To query the Maybe Table, the sysname
is once more transformed with the first hashing function, and the proper entry located using the
second. If the retrieved entry matches the transformed sysname, a positive response is
returned. Otherwise, the collision handling mechanism is invoked and another entry is tested.
If a positive response has not been returned upon termination of this procedure, a negative
response is returned.

A second scheme is to treat the Maybe Table as a bit-string and use t different hashing
functions, each of which returns an index into the bit-string. Placing a new entry in the Maybe
Table requires setting the bit whose index is returned by each hashing function. The test for
membership requires that all bits whose indices are returned by the hashing functions be set;
any clear bit causes the return of a negative response. Figure 5 illustrates the use of these two
techniques. In the example, the Maybe Tables are 18 bits in length. In each case, sysnames are
represented by three bits in the Maybe Tables. In the first case, sysnames are represented
straight-forwardly by three bit entries; in the second case, three bits are set for every sysname
belonging to the table.

The benefit drawn from the use of a Bloom filter such as the Maybe Table is that it is a more
compact representation of the universe in which membership is being tested. In the case of the
Clouds kernel, this is the sysname population of a partki. n. This allows more of the table to be
kept in virtual memory (perhaps all of it), and so queries on the Maybe Table can generally be

6. This is an area that is open to further research. We believe that the goal is achievable by careful selection of the
(possibly more than one) filters used, and their manner of implementation. We hope to do some measurement and
research on this once the system is working.

Technical Report GIT-ICS-85/02

7.77.77rT,Zr";V•7;-7.17377,

Maybe table as a series
of 3 bit elements

- 15 -

48 bit
sysname

110110— 0111

first hashing
produces

ismols01.-

3 bit
entry

101 1

hashed into
Maybe table

IIMMIIIMIE•111000- 101

3 hashing functions
48 bit 	 produces an index
sysname 	 vector

■imilimmo■411110-

13

17

Maybe

set the bits at
these locations

rommwoommix..)10-

411111,-
milormism.4110.

bit

0

0

0

0

table
string

as a

110110 	 0111 	limmili■Nr311110.-

Ow

0

0

0

Figure 5. Two implementations of a Bloom filter

answered without going to secondary storage. If the response is negative, an unnecessary access
to secondary storage is avoided, speeding the search for the proper segment. If the response
from the query is positive, then an access to secondary storage is required, to either locate the
segment or to ascertain that it is really not on this partition.

Maintaining the Maybe Table has several costs that must be considered. One, of course, is the
initial creation cost. The storage manager will perform this initialization at system start-up for
each partition and thus the time spent can be ignored. Another cost arises from the dynamic
nature of the Clouds system. Objects are created on a partition, deleted from the partition, and
moved to other partitions. Clearly, these changes must be reflected in the Maybe Table else the
performance will be degraded. Creation of objects and the movemer ce objects onto a
partition pose no problem: the sysname can simply be incorporated into the table via the
methods described above. However, deletions of objects and movement of objects from a
partition are more troublesome. An entry or set of bits in the Maybe Table cannot be cleared to
remove a sysname's presence from the Maybe Table because several sysnames may be
represented by the same entry or set of bits.

f

Technical Report GIT-ICS-85/02

-,57,71",71--.7• 71;.7 7 1,7..;PP;T7WjW57igiggif,AZt

- 16 -

The simplest solution is to simply reconstruct the Maybe Table at intervals during the lifetime of
the system. This reconstruction may be done asynchronously as a background task. The
question of when the Maybe Table should be rebuilt is not yet answered. It would seem best to
base the interval between reconstructions on activity of the partition, particularly the rate of
deletions. This could be be done indirectly by recording the performance of the Maybe Table
and reconstructing the table when the performance falls below a given threshold. Or the
monitoring could be more direct, measuring the number of deletions and movements of objects
from the partition. Both of these methods have advantages and disadvantages. The indirect
method for example, seems to be desirable since it measures the attribute that we want to
optimize (avoiding disk accesses). However, a burst of queries for a sysname not resident on
this partition but which happens to hash to the same entry or set of bits could cause a severe
drop in performance even though the table as a whole is behaving reasonably well.

We are currently incorporating a Maybe Table into the partition object as described in PI. We
wish to get the maximum performance from the Maybe Table with the minimum impact on
virtual memory. Therefore, we may consider other implementations for the Maybe Table,
depending on the performance obtained. It may be, for example, that we are able to take
advantage of the nature of the sysname population to improve the performance of the table.

5.2 Calls on the Partition Object

The storage management system uses the following calls to manipulate the partition data. Most
of the calls require at least one sysname as an input parameter, usually a sysname for the
partition (the exception being create_partition; see below). Occasionally, sysnames for
segments and devices may also be required.

5.2.1 P create(devname, size, partatt) returns partnarne
P_create reserves a sequence of records on a device to form the partition. Size is the size of the
partition in bytes (this parameter is rounded by the call to the record size of the device) and
devname is the sysname of the device on which the partition is to reside. A syoame for the
new partition is generated and returned as the value of the call. The record location of the
initial record of the new partition is stored, along with the size (in device records) and the
partition sysname, in the media index table. The attributes of the partition, specified in the
input parameter partatt are also stored in this new partition entry. P_create makes use of the
enter call on the device object to perform its task. In particular, P_create must be able to
request allocation of storage from the device.

5.2.2 P_destray(devname, partname) returns integer
This call takes the two sysnames given as input parameters and frees the chunk of storage used
by the named partition. partname specifies the particular partition to be destroyed and devname
specifies the device on which it resides. The integer return value indicates the status of the
partition after the call (destroyed or not found on this device). The call removes the partition's
entry in the media index table and releases the storage used by the partition. The device
manipulations are performed with the device object call remove. P_destroy also makes calls on
the device object to perform its task.

5.2.3 P_enter(partname, segname, pbn) returns integer
P_enter places an entry in the partition directory for a segment. Segname and partname
identify the segment and partition, respectively. The entry in the directory includes the segment
sysname and the partition block number, pbn. The call also modifies the Maybe Table. -
return value indicates success or an exceptional condition.

5.2.4 P_remove(partnarne, segname) returns integer
This call removes the entry for a segment from the partition directory. Segname and partname
identify the segment and partition, respectively.

Technical Report GIT-ICS-85/02

- 17 -

5.2.5 P_return(partname, segname, segi(o) returns integer
P_return returns the segment header indicated by segname which resides on the partition
specified by the input parameter partname. The header includes the sysname for the segment,
the size of the segment (in partition records), the record address of the segment header, and
whether the segment is recoverable. The segment header is placed in the parameter seginfo,
which is a pointer to a block of storage reserved for the information. If the segment is present,
the return value of the call is positive; otherwise the return value is negative. The call finds the
information by searching the partition sysname map and examining the segment header found.
The Maybe Table is first queried in an attempt to avoid unnecessary secondary storage accesses.

5.2.6 P_get_Dirst,neal(partname, number, segarray) returns integer
These two calls are similar to P_return, in that they return the attributes of a segment found on
the partition specified by the input parameter partname. The segment is unspecified, however.
P_get_first places the first number of segment sysnames appearing in the partition directory in
the parameter segarray. P_get_next can then be used to retrieve the attributes of the number
subsequent segments. The two calls share a static variable which holds the index of the next
segment about which information will be returned by P_get_next. The variable is reset to zero
after the last entry in the partition directory is accessed and is initially set to zero. which is an
array large enough to hold the requested number of sysnames. The return value is either zero,
indicating no sysnames could be found, or the number of sysnames actually returned by the call.

5.2.7 P_stvailable_space(partnanze) returns integer
This call simply returns the number of free records on the partition indicated by partname. A
negative value may be returned in exception conditions. The call does a bit count on the volatile
record map. Because the volatile free map contains allocations and deallocations for
uncommitted actions and because no synchronization is done on the record map, the value
returned should be considered only an approximation of the "true" number of free records.

5.2.8 P fread,write}(partname, part eget, address) returns integer
P_read causes the transfer of the contents of a partition record, part offset from the partition
specified by partname to the physical page in memory indicated by address. P write reverses
the procedure, transferring the contents from the physical memory page to the partition record.
The calls use their return values to signal exceptional conditions. The virtual memory system
uses this call to handle page faults.

5.2.9 P_getblk(partname) returns pbn
P_getblk simply returns the partition block number of a free page on the partition. The volatile
page map is updated to reflect the allocation. A negative value is returned if there is no
partition storage remaining.

5.2.10 P_returnblk(partname) returns integer
This call deallocates the page at the partition block number passed through pbn. The volatile
page map is updated. A negative value indicates a bad partition block number.

5.2.11 &restore(partname, pbn) returns integer
The P_restore operation is called on system startup to examine the partition. If necessary, the
operation will perform any repairs to the partition structures required to bring it back into a
consistent state. The call will also cleanup any unfinished action processing. This sort of repair
is done on a partition-by-partition basis, since not all partitions have the same attributes and
therefore will not require the same processing. In particular, cleanup of action processing is not
necessary on partitions not supporting recovery and partitions being used as paging surfaces.
P_restore must determine attributes of the partition by examining the partition header and then
proceed accordingly. The details of P_yestore's operation are described in section 7, which is
concerned with the reliability of the storage manager. P_restore also initializes structures used
by the partition object, such as the Maybe Table.

Technical Report GIT-ICS-85/02

- 18 -

6. The Segment Object

The segment object provides the final level of abstraction for secondary storage. With these
objects, we are operating on blocks of storage allocated by the partitions. The abstraction
provided by the segment object is that of a sequence of bytes (kernel segment type). The
implementation is actually a tree of fixed length blocks of storage, as we shall see.

Segment objects provide a standard abstraction for the kernel to manipulate and process all
Clouds objects. The object implementation provides mechanisms for mapping segment data in
and out of virtual memory, creating and destroying segments, and modifying segments. The
necessary algorithms for maintaining the reliability of the segment data exist at this level.

The segment object is unconcerned with the internal organization of the objects it is managing.
The storage management system treats segments as uninterpreted bytes. Any interpretation is
performed by other parts of the kernel, such as the object manager.

6.1 Segment Object Data Structures

Recall that a partition directory has a set of entries which contains the pbn for the segments
residing on the partition. The partition block addressed by one of these entries contains a
segment header that identifies the segment. The complete header is 512 bytes long and contains
the segment (object) sysname, the object type sysname, a segment status field, a segment
shadow pointer (the status field and pointer are used for recovery), and the size of the segment
in bytes. The remainder of the header contains an array of pointers which lead to the segment
data. These pointers address one of two sorts of blocks: index blocks, which are arrays of
pointers to other blocks, and data blocks, which actually contain segment data. If, however, the
storage required for segment data is less than that used for the array of pointers in the segment
header, the segment data can be placed in the segment header itself. This would provide for the
efficient processing of very small segments. Figure 6 shows the segment structure.

A segment is a tree whose depth depends on the amount of data in the segment. Hence, the
smallest segment may have a depth of two (the header and the data blocks addressed by the
header), but trees of arbitrary depth are supported. This also means that occasionally the
segment will be restructured when its size is increased.

The interaction of the segment system and virtual memory is still being designed. It should be
pointed out that much of the manipulations performed by the segment object will involve the
segment's representation in virtual memory and the structures maintained by virtual memory
itself. The segment system also makes some assumptions. One of these is that the location of
the segment is known. That is, the action or process using the segment knows the partition on
which the segment resides. Particularly, most segment calls do not require a partition sysname
as a parameter.

6.2 Calls on the Segment Object

The following calls all require the sysname for the segment being manipulated. Any offsets are
data record offsets, using the logical view of the segment.

6.2.1 S_create(partname, segname, anr) returns integer
S_create allocates storage for a segment and sets up the segment header and index records.
The input parameters are the two sysnames for the partition and segment to be created,' and a
structure holding information about the segment (its size, object type, recoverability). The
storage for the segment can be allocated and structured on the basis of the size field of attr.

7. Note that this call does not return a new sysname for the segment. If that were the case, it would not be possible to
move existing segments into a partition and still reference them by their old names.

Technical Report GIT-ICS-85/02

segment
header

object
sysna me

type
sysname

size

shadow
ptr

status

reserved
for

expansion

index block

unused
index
block

pointers

- 19-

data
blocks index

block

data block

data block
r .

,......-
..........
......... more

,.......—
--

data
block 	—

0--- pointers 	---

data block

index 0

index 127

byte 0

255

256

byte 511

Figure 6. Clouds kernel segment structure

Data records are written in subsequent requests. The return value indicates the call status.

6.2.2 S_destmy(partname, segname) returns integer
This call deallocates storage for a segment. The sysname for the segment, segnazne, is removed
from the partition directory.

6.2.3 S.read(segname, offset, size, addr) returns integer
The Sjead call causes the transfer of size number of pages from storage to memory. Segnarne
identifies both the memory and storage versions of the segment. The source of the pages is at
location offset of the segment named by segname. Addr is the virtual memory address of the

ar fer destination. The return value indicates the status of the call.

6.2.4 S write(segnazne, offset, size, addr) returns integer
S vvrite transfers data from memory to storage: Addr is the source of the transfer, in this case a
virtual memory address. Segname is the sysname for the object (segment) whose data is to be
transferred. Note that this identifies both the memory pages (source) and the secondary storage
pages (destination) that must be transfered. Size number of pages, beginning at offset offset of
the segment, are copied from virtual memory to the storage segment. The return value
indicates the status of the call.

Technical Report GIT-ICS-85/02

...,771",,trEt177.747 7"mt77.177377#1.4*rcrlt*:t 7?".,

20

6.2.5 S_precorninigaid, touchlist) returns integer
S_precommit performs the segment level precommit protocol as described in section 5.
Touchlist is a list of the objects which have been modified by the action. Aid is the sysname of
the action making the precommit call. The call return value indicates the success or failure of
the call.

6.2.6 S_eoa(segnone, flag) returns integer
This operation performs the segment level commit or abort protocol as described in section 5,
depending on the value of flag. The return value indicates the success or failure of the
operation.

6.2.7 S chgsize(segnarne, delta) returns integer
The call allocates or deallocates storage from the end of a segment. Delta is the number of
records to allocate or deallocate (positive or negative value, respectively). The return value is
the status of the call.

6.2.8 S_status(segru ►ne) returns integer
This call determines the state of a secondary storage segment by examining the status field of
the segment header. The return value is this status (permanent, shadowed, precorrunitted).

Technical Report GIT-ICS-85/02

•11-:',.,tr4t,:•%?4 7-47,r.-4-01; ■

- 21 -

7. Reliable Storage Management

In this section we look at the techniques used to ensure the reliability of the storage manager in
the presence of machine failures and action aborts. All the techniques described below require
the information and features provided by the use of atomic actions. This information includes
the knowledge of when it is correct to make the effects of an operation permanent and what
data has been modified. The storage manager provides a set of protocols that use this
information to make the correct updates to secondary storage so as to leave the storage system
in a consistent state. In order to understand these techniques and the motivation behind them,
we need to understand how the Clouds kernel manages actions.

BOA 	 precommit 	 commit 	 EOA

modifies
object 0

BOA

Precomrriit

blocked

precommit commit 	 EOA

B 	II 	modifies
object 0

,,,dy to precommit

but blocked by A

BOA

C

Prt,.11111111it

blocked

precommit

modifies
object 0

ready to precommit

but blocked by 8

Figure 7. Actions block on competing commits

The Clouds system considers actions to be units of work. Many actions may be active in the
same object, with each action updating object data. The only restriction enforced by the kernel 8

 on the synchronization of actions which are operating concurrently on a single object is at action
'recommit. An action that precommits in an object blocks all other actions from precommitting
in that object until the precommitting action is committed. Other actions still update and process
the object's data; the only restriction is on the precommit procedure. Although this restriction
may seem to create potential bottlenecks, the simplifications it provides in the processing of
commits will keep the blocking intervals short enough so as to cause no problems. In particular,
this restriction means that the storage manager must provide reliable updates for only one action
per object per time period.

There are two levels at which the storage manager must supply this sort of reliability: at the
partition level, and at the segment level. The partition has critical data which must be updated
correctly to allow the storage manager to function correctly. As stated previously, this data
includes the partition directory and the partition page map. At the segment level the storage
manager is responsible for the consistent update of object data and the underlying structures that
represent this data. We use two rather distinct approaches to providing the recovery for these
two levels. In both cases the technique ' ovide pessimistic recovery; no changes are actually
made to the "live" data until the responsible action commits.

8. The programmer may define other forms of synchronization within the implementation of the object based upon
semantic knowledge and other design factors. The kernel does not preclude such choices.

Technical Report GIT-ICS-85/02

7.1 Segment level recovery

Segment recovery is accomplished via a shadowing scheme[111 . That is, segments on which
actions are operating will have shadow versions which the actions will actually see. We note
that one of the goals of the recovery scheme is, aside from producing consistent results, to allow
recovery of segments (and partition structures) with as little storage overhead as possible, and
with as few storage accesses as possible. Shadowing, then, will be minimal, with only those
parts of the segment actually modified being shadowed.

The shadowing scheme consists of a set of protocols that indicate what the storage manager
must do for specified segment states and action events. We consider these states and events in
the following paragraphs and develop the protocols that shadow segments. When an action is
started, the storage manager is involved initially in the transfer of the data for the object being
operated upon from storage to memory. Until precommit occurs, the only transfer of
information is from device to system. All modifications to the action data are handled in
memory by the action manager. On the action commit the storage manager starts transferring
information back to storage. These transfers are the result of the action management system
protocols for transfering action updates to the permanent state of the object

7.1.1 The preconzmit protocol
The precommit protocol ensures that updated pages of object data that an action has modified
are recorded on non-volatile storage to prepare for the final commit of the action. The storage
manager performs the shadowing and data transfers as follows:

P I The storage manager determines how many pages are to be shadowed and allocates
storage for shadow versions through calls to the virtual memory system and the partition
object, respectively. The storage manager allocates shadow storage not only for modified
data pages, but also for the segment header, plus any index pages that are required to
reach a modified data page.

P2 The storage manager shadows the segment. The segment header is copied to the shadow
segment header. The modified data pages are copied from memory to the shadow data
pages. Modified versions of index pages are copied to shadow index pages. Some index
pages must be modified and shadowed so that the shadows point to the shadow versions
of data pages. The storage manager places a modified version of the segment header
into the shadow segment header. Modifications made to the segment header data could
include a change in the size, and changes to the array of pointers (some of these pointers
may point to shadow pages, as with the index pages).

P3 The permanent segment header is modified so that the status flag indicates that the
segment is being shadowed. A pointer is also set in the header which indicates the
location of the shadow segment header.

One point to note about the above protocol is that there are a number of reads assumed to get
the segment structure into memory. Also note that the number of pages that must be shadowed
and the identification of which index pages must be shadowed can be determined by knowing
the size of the segment and which data pages must be shadowed. The segment header is
modified last to reduce the work necessary to restore the segment in the event the system
crashes before the precommit is completed. 9

Once the precommit completes, we are left with two ver. on of the segment. The two versions
overlap in spots as illustrated in Figure 8, where blocks within the dashed box are part of the

9. A crash at any point before this final write will recover with the shadow pages still listed in the free space list and
completely unreferenced, and thus they get scavenged automatically.

Technical Report GIT-ICS-8.5/02

object
sysname

•)r

index block
Shadowed

index
block

data block

• data block

—
_

—....
...—. more 	-....

data --..-. ---
— block 	-...- -,....-.
—

pointers --
..........

data block

r

• Shadowed
index
block

index !dock

 = Unshadowed = 	
1

..... 	 i data 	___ _ _
block

Shadow
	 segment

version

Shadow
segment
header

type
sysname

size

shadow
ptr

erecommited

index block

Permanent
segment
version

Unshadowed
index
block

Permanent
segment
header

object
sysname

unshadowed data block type
sysname

unshadowed data block

size

shadow
ptr

more
unshadowed

data
block

_ pointers Precommiterl

index block unshadowed data block

partition
directory

entry

syname

header

•

Unshadowed
• data
• block

L 	

Figure 8. Precommitted segment

permanent version, while blocks inside the dotted box are part of the segment shadow. Read
operations on unshadowed pages refer to permanent pages. The shadow version is visible only
to the action which is performing the commit.

We must point out that the storage manager's precommit protocol is not the same as the action
manager's precomrnit. After the storage manager has completed the shadowing, the action
could still abort and the shadowed version would have to be removed. An example of such a
situation is when the action spans several nodes and uses a two-phase commit protocol. Phase
one is complete only when all nodes have completely shadowed any object data the action
touched on their storage. If one node cannot do this, the action aborts.

7.1.2 The commit protxol
Once the segment is shadowed and the action decides that it can continue the commit, the
storage manager performs its own commit protocol. The storage manager must switch the
shadow version for the old permanent version of the segment. There is some bookkeeping for
the partition as well. The protocol is as follows:

Technical Report .GIT-ICS-8.932

r.17"777317•74,777477.707.4; 	 47:"."t

, 	CrITrZer,Fr" reeNA.'N

object
sysname

type
sysname

size

shadow
ptr

Prerntrunited

.ndex block

Mrlek block

— — —
Deallocated
on commit

Permanent
segment
header

unshadowed data block
type

sysname

unshadowed data block size

shadow
ptr

Unshadowed

Shadowed
index
block

index block

Unshadowed
index
block

Shadow
segment
header

object
sysname

New
permanent
segment
version

index block
unshadowed data block

more
unshadowed

data
block

= pointers

partition
directory

entry

syname

= Unshadowed =
— 	data 	=
_ 	block 	= — 	 — — 	 —

= Unshadowed =
data
block •

-N-

C 1 Update the permanent page map on storage. This requires that all addresses for shadow
records be allocated in the page map and all modified records of the segment including
the segment header be deallocated in the page map.

C2 The partition directory is set so that it points to the new segment header for the segment.

C3 The shadow segment header is set so that it is now the permanent segment header, that
is, it is marked as "permanent."

Shadowed
index
block

data block

data block

more
data
block

pointers

data block

data block

data block

- _
- _ more

data -
block -

pointers =

, 	data block

=

-

Shadowed =
— data 	—
_ 	block 	_

•

•

	 J 	

Figure 9. A committed segment

Once this protocol is complete, any references to the segment will refer to the new version of
the segment. The new segment is a merging of old unmodified records and new records.
Figure 9 shows a committed segment. The blocks in the dashed box were parts of the
permanent segment being shadowed during precomrnit. These blocks are deallocated as part of
the commit during step Cl. During this phase of the protocol, the storage manager updates the
permanent page map on secondary storage. Recall that Clouds uses pessimistic recovery and
any effects of an action, including storage allocation to perform the commit, cannot become
permanent until the action commits. Therefore, all allocations are performed on a volatile page
map. We discuss this and other ideas in the section on partition level recovery.

Technical Report GIT-ICS-85/02

• • •
Deallocated

on abort

Shadow
segment
header

Shadowed
index
block

data block

data block

,........—...—.---..—...,.

.1.1.1.1. more
data
block

pointers

.........
I••••••
•••••••
.......•
.......
.........
•••••••
••14.14,

1•4•14.1.
/••••••••
...4......
•■•14.1.
,........
........
1....1.

data block

-1

•

—

-

Shadowed —
— data 	— __
— block 	—

Unshadowed
index
block

Permanent
segment
version

Permanent
segment
header

=

-

Unshadowed =
data
block 	—

unshadowed data block

unshadowed data block

more
unshadowed

data
block

pointers

unshadowed data block

object
Sysname

type
sysname

size

shadow
ptr

Unshadowed

index block

index block

= Unshadowed =
— data 	—

block 	
_
—

data block

data block

= — 	more
data
block

—

—
pointers =

data block \\

	 J

	_ _J

L

Shadowed
index
block

r - partition
directory

entry

syname

header

••••

-•• shadow ••••

•■•• 	data
block •na•

object
Sysname

type
sysname

size

shadow
ptr

Precommited

index block

index block

Technical Report GIT-ICS-85/02

•• wY 	
v:'..1-MWerf5ctsrrAjZetel'Allatirg'

;+;•-12""

Actions can also abort for one reason or another and the storage manager requires a protocol
7.1.3 The abort protocol

for this event as well. The protocol simply rids the segment of any trace of the action's work as
follows:

A l The volatile page map is updated to remove allocations that the action has made to

A2 The status flag of the permanent segment header is set to show that the segment is
unshadowed and then the shadow pointer is set to null.

shadow the modified pages of the segment.

=
-

25-

Figure 10. An aborted segment
1.

The storage manager uses this protocol only when an action has started to commit and aborts in
the middle. If the action aborts before attempting to commit, the storage manager is not
involved at all. Figure 10 illustrates the results of the abort protocol. In this case, the blocks
inside the dotted line are deallocated upon the abort, as these blocks are only shadows for the
permanent segment.

A•reerssi•l.r..--••;.t. x•:r173•••?••,- -izip7ra•••

26-

7.1.4 System failures
One final event must be considered. That is how does the system recover from a machine
crash? Specifically, we are concerned with restoring the segment and partition to a consistent
state after the system is brought up again. The system may have had a number of actions in
various states at the time of the crash and we want to insure the appearance of indivisibility of
actions. Under the Clouds policy, any action that has not preconunitted when a crash occurs is
aborted when the system is restored. As we have already noted, actions which do not begin
precommit before the system crashes do not concern the storage manager; these actions have no
effect on system storage. For objects which completed preconunit• processing, we must
determine whether their action's effects become permanent or are erased. This depends on the
state of the action. The crash recovery protocol, then, is as follows:

CR1 A new volatile page map is created for the partition.
CR2 The storage manager determines which actions touched segments on this partition and

determines the state of each such action. The storage manager polls a kernel database
and examines the segments on its local storage to identify these segments.

CR3 If a segment was touched by an action that has completed phase one and should be
committed, the storage manager performs the commit protocol on the segment, as above.

CR4 If the action which modified this segment was aborted by the action manager, the
storage manager uses the abort protocol, as given above.

At the end of crash recovery, the partitions are in a consistent state; either the actions occurred
or they did not. The database referred to in step CR2 is a kernel level database shared by the
nodes in the system. The database exchanges information amongst the systems using a suite of
algorithms developed in [1]. The information in the database represents an approximate state of
the network. This database is copied from other nodes by the kernel when a node is added to
the Clouds system. Among the information kept in the database is a list of actions, their status,
and segments touched by the actions. Generally, the storage manager can find here the
information needed for crash recovery. In some cases, though, a local action (one which does
not leave the site on which it is born) may not appear in this list, even though its status at the
crash time was complete and known. In cases such as these, the storage manager can find
shadowed segments only by an exhaustive examination of the partitions.
Another issue is that of a system failure during an action write, so that only part of the write is
actually completed. In the discussion thus far, we are assuming that we have atomic single
record writes. The atomicity we are concerned with is failure atomicity, whereby the write
either takes place or not. In practice, this means that we can detect an incomplete write (the
system failed during a record write) and we are not overwriting the only copy of the data in
question. If a device we are using does not support detection of incomplete writes, we can
simulate the effect using the standard method of stable storage as described by Lampson and
Sturgis in [12]

In [131 the question of when the atomic single record write assumption can be
relaxed, if at all, and under what circumstances, is investigated.
7.2 Partition level recovery

In the last section we outlined the techniques used to provide reliability for the segments on
storage. We now turn to the problem of maintaining the consistency of partition structures,
particularly the page map and the segment directory. These structures were discussed to a small
extent in the last section because they are involved in shadowing segments. We did not discuss
how the structures themselves must be modified to maintain their consistency. Once again, let
us consider the action environment provided by the kernel. Recall that a committing action
blocks all other actions from committing in a segment it has modified. The partitions are
objects, so that any action committing would block all other actions from committing in any
object residing in that partition. For a one partition node, this permits only one action at a time
to commit. We feel that this is too restrictive.

Technical Report GIT-ICS-85/02

'",r -77.V. ,7771'41.7:477

27 -

We allow any number of actions in a partition to commit simultaneously, excluding any segment
conflicts. Given this, we do not feel that shadowing can be used to provide recoverability of the
page map and directories. Maintaining the various shadow versions in itself would be
complicated, but in addition we would need to propagate committed data to as yet uncommitted
shadowed data. We therefore reject our segment level shadowing scheme as an approach for
partition level recovery and we must develop another method for this task.

The partition directory does not have a volatile component. There are two copies of the
directory residing on the partition (for the redundancy necessary to protect against media
failures) and a committing action on a partition object must update both copies in a consistent
manner to indicate that the new object version is to be used. Once again, we assume atomic
single record writes, which will allow us to determine whether the copies are consistent, when
the writes are performed in a determined order. An examination of both permanent copies and
the header of the segment involved, if done in the proper order, will reveal any inconsistencies
and the manner in which they should be resolved.

The partition page map has a volatile component which the storage manager uses to make non-
committed storage allocations and which disappears after a system crash. Note that the volatile
page map provides correct storage allocation information excluding system failures. Now recall
that the commit protocol for storage management entails three steps, the second of which
involves installing the action's storage allocations onto the permanent page map. We have two
approaches we feel will provide consistent updating of the permanent page map. The first
approach simply does away with the permanent page map of the partition, and maintains only
the volatile version. As noted earlier, this provides correct storage allocation until a system
failure occurs and the page map is lost. Clearly, we must be able to recover the page map after
the system is restarted, and the obvious solution is an examination of the partition. Equally
clearly, this will require quite extensive processing upon system startups.

The second approach to maintaining the partition page maps involves the use of intention lists
and does require a permanent copy of the page map. With this approach, the storage manager
during step one of the segment commit protocol does not write directly to the permanent page
map, but instead writes an intention list of storage allocations (deallocations) to disk. Because
the volatile page map reflects the correct storage allocation for a partition, the anal updating of
the permanent page map from the intention list can be performed as background processing by
the storage manager. If the system crashes before some updates are performed, they can
always be done as part of the system startup processing. The steps required by this protocol are
shown below:

1. The creation of the intention list begins at precommit. When the shadow is allocated, the
storage manager places these pages on the allocation intention list. The pages to be
replaced by the shadows are placed on a deallocation intention list.

2. When the signal is given to start the final commit, these lists are written to a list of
pending allocations maintained by the partition.

3. At some later time, these lists are merged into the page map as part of normal partition
bookkeeping.

The only restriction is that the updates from the intention list must be performed in the order in
which the allocations and deallocations were committed.

Our initial implementation of the storage manager will use the first mechanism. We have two
reasons for doing this. First, we are concerned more with the cost of commit processing than
we are with system startup processing simply because we feel that system failures will be
infrequent and because action processing is our model of computation. This approach both
simplies the implementation and makes the commit process more efficient, since no extra disk
writes are required to update a permanent page map.

Technical Report GIT-ICS-85/02

28

Secondly, an extensive examination generally will be made of the partitions at system startup to
clean up any unfinished action commits or aborts. The reconstruction of the page map is
partially subsumed in this processing.

7.3 Device support for recovery

The above protocols have several implicit assumptions on which they rely to operate correctly,
two of which concern the device object. We have already mentioned the assumption that devices
can perform atomic single record writes. The other assumption concerns the transfer of data
from system to storage. The protocols assume that upon completion of a call to any of the
"write" operations the data intended for transfer to storage has, in fact, been transferred.
Under conventional systems, this is not necessarily the case, since requests for writes to storage
may be buffered. Data may or may not actually be transferred before the system crashes. If
the data were not actually transferred, there is no way to recover the segment or partition when
the system is restarted.

At the device level, then, the storage manager requires some way in which to ensure the timely
completion of data transfers. We wish to accomplish this without adversely affecting the other
processing on the system. Also, the action causing the writes to storage must be informed of
the completion of the writes in order to continue its commit processing.

There is a great deal of latitude with the timing of when the action writes are forced to the
device. One discipline is to have a synchronous write operation that immediately forces the
device to schedule requests issued by the operation. By this we mean that any requests currently
being processed are completed and then normal scheduling is pre-empted. Synchronous write
requests are then carried out in order of receipt. Thus, action writes are forced to the device
early in the sequence of action commit processing. The drawback is that requests for
synchronous writes appear in bursts at precommit and commit. Any scheduling that the device
does for efficiency of the device's operation is disrupted.

Another approach is to allow the device to schedule the requests subject to its own constraints
and simply inform the storage manager when the requests are completed. This allows the
devices to schedule requests efficiently, but can delay action commit processing. However, the
storage manager does know when the completion of the precommit and commit protocols can be
safely signalled.

A compromise approach initially allows precommit and commit to be enqueued as usual and
handled as normal requests. It is only when completion of the commit or precommit is
imminent that the write must be forced to storage. To accomplish this, requests must be
identifiable by the storage manager so that the manager can signal which requests must have
priority. The manager can simply place the action id of the committing action in a field of the
request when requesting a write to storage.

When the storage manager determines it is necessary, it can make a call on the device object to
reorder its queue of requests, giving priority to this action's requests. This technique may prove
useful if a significant amount of time can elapse before the storage manager must complete the
precommit and commit procedures. In cases where the action has touched a number of objects
on several systems this may indeed be the case. In such situations, the devices can operate
efficiently (and possibly reduce the number of pending precommit and commit requests,
reducing the disruption when it becomes necessary to force them to storage), and the action is
not delayed, since it :s not ready to complete its commit. To accomplish this as stated, the
storage manager must be able to identify when requests must be forced to storage. This will be
based on the results of any two phase commit that is performed and the storage manager will
rely on the action management system to signal when final commit is to be performed.

Each device object maintains a flush table (as discussed in section 4) to control the forcing of
action writes. When the list of requests for the action entry in the flush table is empty, the
storage manager can inform the action that the commit processing can continue.

Technical Report GIT-ICS-85/02

- 29 -

7.4 Summary

aipport for reliability and recovery is integrated throughout the storage manager from the
lowest level to the highest. The segment system, via the use of segment objects, provides for
recovery of client object data recovery through the use of shadowing of modified data and the
discipline of the shadowing provided by the protocols discussed above. The data that the
storage manager uses to manage Clouds objects is made recoverable by the partition objects. At
this level, our primary concern is how to maintain the data across system failures, and we
present a few approaches for doing this. At the device level, support is provided to ensure that
data is written when necessary, allowing action processing to be performed correctly at a higher
level.

Technical Report GIT-ICS-85/02

30 -

8. Conclusions

The motivation behind the Clouds project is the belief that systems in general and distributed
systems in particular should provide reliable data management and reliable computation. This
report documents part of our efforts towards that goal, namely the storage manager for the
Clouds kernel. The Clouds storage manager, in addition to providing the traditional services of
storage management, also provides support for the object-action methodology presented by the
Clouds kernel.

We have presented an overview of the storage manager for the Clouds kernel. The storage
manager is presented as a collection of objects, each of which provides an abstract view of the
secondary storage. At the lowest level, secondary storage is viewed through the device object,
and the physical storage medium is viewed as a sequence of pages (in the current
implementation, a page is 512 bytes) with very little structure, other than the device header and
index table. One step higher in our hierarchy is the partition object, which manages a portion
of the raw storage provided by the device object. Once again storage is viewed as a sequence of
pages, but that storage has a more defined structure. Each partition maintains a directory and a
page map, so that each partition is responsible for managing its storage and for providing a
location service for the next level of abstraction, the segment object. The segment object
provides a view of storage that is a sequence of bytes and each segment object generally
corresponds to some other kernel or user object. The storage manager views segments as a
tree- like structure of pages.

We have described the data structures associated with each object and presented the operations
with which the data structures can be manipulated. We have also tried to convey the
relationships amongst the three objects and to show how they interact with each other and the
rest of the kernel.

The research that we are conducting is primarily involved with how the storage manager
provides the recoverability of the storage it manages and thus supports the reliability of the
Clouds kernel. To that end the storage manager uses a set of protocols to ensure that object
data is updated in a consistent mariner and that even through system failures, enough
information survives to maintain the consistency of the object. We show how these protocols
are used to support the action/object programming paradigm of the Clouds system.

Each level of storage object discussed provides some support for recoverability. The device
objects maintain flush tables which allow the storage manager to ensure that action writes are
completed before a commit is finalized. The partition object maintains a consistent view of
allocated storage and insures the correct updating of the partition directory. The segment object
provides recovery of object data through the set of protocols described.

Technical Report GIT-ICS-85/02

- 31 -

REFERENCES

1.Allchin, Jim, An Architecture for Reliable Decentralized Systems, Ph.D. Thesis, Georgia
Institute of Technology, Atlanta, Georgia, 1983.

2. McKendry, Martin, Ordering Actions for Visibility, Technical Report GIT-ICS-84/05,
Georgia Institute of Technology, Atlanta, Georgia, 1984.

3. Allchin, Jim and Martin McKendry, Object-Based Synchronization and Recovery, Technical
Report GIT-ICS-82115, Georgia Institute of Technology, Atlanta, Georgia, 1982.

4. Allchin, Jim and Martin McKendry, "Synchronization and Recovery of Actions,"
Proceedings of the Second ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, Montreal, 1983.

5. Spafford, Eugene and Martin McKendry, Kernel Structures for Clouds, Technical Report
GIT-ICS-84/09, Georgia Institute of Technology, Atlanta, Georgia, 1984.

6. Spafford, Eugene, Kernel Structures for a Distributed Operating System, Ph.D. Thesis,
Georgia Institute of Technology, Atlanta, Georgia, in preparation.

7. Jones, A. K., "The Object Model: A Conceptual Tool for Structuring Software," Operating
Systems: An Advanced Course, Springer-Verlag, New York, pp. 7-16, 1979.

8. Wilkes, C. Thomas, Preliminary Aeolus Reference Manual, Technical Report GIT-ICS-
85/07, Georgia Institute of Technology, Atlanta, Georgia, 1985.

9. LeBlanc, Richard J. and C. Thomas Wilkes, "Systems Programming with Objects and
Actions," Proceedings of the Fifth International Conference on Distributed Computing,
Denver, 1984.

10.Bloom, B. H., "Space/Time Trade-offs in Hash Coding with Allowable Errors,"
Communications of the ACM, No. 13, Vol. 7, pp. 422-426, July 1970.

11.Gray, J. N., "Notes on Data Base Operating Systems," Operating Systems: An Advanced
Course, Ed. by R. Bayer, R. M. Graham, and G. Seegmuller, Springer-Verlag, Berlin,
393-481, 1979.

12.Lampson, B. W. and H. E. Sturgis, Crash Recovery in a Distributed Storage System,
unpublished paper, Computer Science Laboratory, Xerox Palo Alto Research Center, Palo
Alto, California, 1979.

13.Pitts, David V., Storage Management for a Reliable Decentralized Operating System, Ph.D.
Thesis, Georgia Institute of Technology, Atlanta, Georgia, in preparation.

Technical Report G1T-ICS-85/02

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

October 22, 1985

To whom it may concer:

The attached paper, Preliminary Aeolus Reference Manual, by
C. Thomas Wilkes which was partially funded under the contract
#MDA 904-84-C-6035 is being submitted for your information.
This paper will be published as a Technical Report in the School
of Information and Computer Science at Georgia Institute of
Technology.

C 4 . 	

Richard J. \ eBlanc
Associate Professor

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

Appendix B

Preliminary AE 01US Reference Manual

Technical Report

GI'F-ICS-85/07

July 1985

Revised 22 October 1985

C. Thomas Wilkes

The Clouds Project

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

Aeolus Reference Manual 	 Preliminary Version

Table of Contents

1. Introduction 	1

2. Explanation of Notation 	2

3. Tokens 	3

3.1. Identifiers 	3

3.2. Numbers 	3

3.2.1. Ints 	3

3.2.2. Floats 	3

3.3. Litchars and Litstrings 	4

3.4. Comments and Compiler Options 	4

3.5. Reserved Words 	4

3.6. Operators and Delimiters 	 5

3.7. Other Characters 	5

4. Declarations and Scopes 	5

4.1. Compilation Units and Their Scopes 	6

4.2. Qualified Identifiers 	6

5. Constant Declarations 	7

6. Type Declarations 	8

6.1. Type Identifiers 	9

6.2. Anonymous Types 	10

6.2.1. Enumerations 	10

6.2.2. Index and Pointer Types 	10

6.2.3. Structured Types 	11

6.2.3.1. Arrays 	11

6.2.3.1.1. Bitstrings 	12

Aeolus Reference Manual 	 Preliminary Version

6.2.3.1.2. Strings 	12

8.2.3.2. Records 	12

6.2.3.3. Structures 	13

6.2.3.4. Sets 	14

6.2.4. Locks 	15

7. Constraint Declarations 	15

8. Variable Declarations 	16

9. Expressions 	16

9.1. Operands 	16

9.1.1. Variables 	16

9.1.2. Constructors 	18

9.1.3. Allocators 	19

9.2. Operators 	19

9.2.1. Arithmetic Operators 	19

9.2.2. Bitwise Operators 	20

9.2.3. Address Operators 	20

9.2.4. Logical Operators 	21

9.2.5. Set Operators 	21

9.2.6. Relational Operators 	21

9.3. Type Compatibility 	 22

10. Statements 	24

10.1. Simple Statements 	24

1" i . Assignment Statements 	24

10.1.2. Procedure Calls 	25

10.1.3. Object Operation Calls 	26

Aeolus Reference Manual 	 Preliminary Version

10.1.4. EXIT Statements 	26

10.1.5. RETURN Statements 	26

10.1.6. NULL Statements 	26

10.2. Compound Statements 	 27

10.2.1. IF Statements 	27

10.2.2. CASE Statements 	 27

10.2.3. LOOP Statements 	28

10.2.4. USING Statements 	30

10.2.5. REGION Statements 	30

11. Procedures 	31

11.1. Procedure Declarations 	31

11.2. Procedure Invocations 	 33

12. Objects 	 33

12.1. Object Definition Parts 	34

12.2. Object Implementation Parts 	37

12.3. Object Operation Invocations 	38

13. Actions 	39

13.1. Action Events 	39

13.2. Recoverable Areas 	40

13.3. Permanent and Per-Action Variables 	 40

13.4. Action Invocations 	41

14. Processes 	42

15. References 	 44

Appendix A: Systems Programming Example 	A-1

Appendix B: Example of Action Programming 	B-1

Aeolus Reference Manual 	 Preliminary Version

Appendix C: LALR(1) Grammar for Aeolus 	C-1

Appendix D: Definition of the Object standard 	D-1

Appendix E: Definition of the Clouds Action Manager Interface 	E-1

Appendix F: Dynamic Arrays 	 F-1

Appendix G: Examples of Permanent and Per-Action Variable Use 	G-1

Aeolus Reference Manual 	 Preliminary Version

1. Introduction

The goal of the Clouds project at Georgia Tech [Allc82, Allc83a, Allc83b] is the imple-
mentation of a fault-tolerant distributed operating system based on the notions of objects,

actions, and processes, which will provide an environment for the construction of reliable appli-

cations. The Aeolus' programming language developed from the need for an implementation
language for those portions of the Clouds system above the kernel level. Aeolus has evolved
with these purposes:

• to provide the power needed for systems programming without sacrificing readability or
maintainability;

• to provide abstractions of the Clouds notions of objects, actions, and processes as
features within the language;

• to provide access to the recoverability and synchronization features of the Clouds sys-
tem; and

• to serve as a testbed for the study of programming methodologies for action-object sys-
tems such as Clouds [LeB185, Wilk861.

Thus, the main interest of Aeolus lies not, in the language itself, but in what may be done with
the language. We have avoided providing high-level features for programming actions with the
intention of evolving designs for such features out of our experience with programming in
Aeolus. These features will then be incorporated into an applications language for the Clouds
system.

Aeolus has its roots in a long line of structured programming languages, including Simula,

Pascal, NIodula-2, and Ada.2 Thus, many of its features should be easy to understand for those
familiar with one of these languages; in particular, familiarity with Pascal or Modula-2 is
assumed throughout this report, and features will often be explained in terms of the
corresponding features in those languages.

The main structuring features of Aeolus (as of the Clouds system) are objects, actions,
and processes. Clouds supports the object concept as a convenient structuring principle for
facilitating recovery and synchronization; Aeolus also allows the programmer to use the object
features of the language for the specification of abstract data types, without necessarily invoking
the object and action management features of the Clouds system. Thus, Aeolus objects provide
a separate compilation facility as well as access to the object support of Clouds; the separation
of object specifications into definition and implementation parts (much as are modules in Modula-2
or packages in Ada) provides a safe interface to separately-compiled objects, as well as facilitat-
ing the design of large systems consisting of many objects (possibly implemented by several
people) or the use of predefined objects. Aeolus pseudo - objects provide a means of isolating
system dependencies—such as input/output or low-level machine architecture—into object-like
modules which provide operations facilitating machine-level programming.

Support of the Clouds notion of actions in Aeolus is fairly low-level. Essentially, means
are provided for specifying that an operation (procedure) of an object may be invoked as an
action, or that an operation invocation is to be executed as a (toplevel or nested) action. Also,
the status of action executions may be checked by means of calls to a Clouds action manager.

The process concept in Aeolus corresponds roughly to the program construct of Pascal or
Modula-2. That is, a process ties together the constituent parts (objects) of a programmed sys-
tem, and the invocation of a process provides activity in the Clouds system.

Except for the access Aeolus provides to the action manav-rient facilities of Clouds
(which control recovery in the system), nothing in the language is c-splicitly dependent on the
Clouds system for its implementation. In the Clouds implementation of Aeolus, the details of
synchronization and recovery of objects are hidden by the interface to the Clouds object and

'Aeolus was the king of the winds in Greek mythology.

2Ada is a registered trademark of the U.S. Government—Ada Joint Program Office

-1-

Aeolus Reference Manual 	 Preliminary Version

action managers; thus, for example, it is transparent to the programmer (and to the language
runtime support) whether an operation invocation involves a local or remote object. Therefore,
an implementation of Aeolus—without its features for recovery handling—should be possible
under any operating system; only the object management need be subsumed by the language
runtime support, which should be trivial for a non-distributed system.

This report is not intended to be a tutorial on the Aeolus language; rather, it strives to be
a concise definition of the syntax and semantics of Aeolus, and thus should serve as a reference
for programmers and implementors.

2. Explanation of Notation

The syntax (grammar) of a language consists of rules for arranging sequences of terminal
symbols (also called tokens) in the vocabulary of the language (keywords, numbers, names
(identifiers), and certain other characters used as punctuation to make the language more read-
able) into sentences (or sentential forms) which have meaning in the language. A syntax rule
often specifies that a sequence of terminal symbols be grouped into a nonterminal symbol, an
entity in the language which often has an intuitive meaning, such as an expression or a state-
ment.

To describe the syntax of Aeolus in this manual, we will use a notation known as the
extended Backus-Naur form (EBNF). (A complete grammar for Aeolus in LALR(1) form is
presented in Appendix C.) In this notation, the so-called metasymbols [and are used to
enclose an Aeolus sentential form which is optional; the metasymbols { and } are used to
enclose an Aeolus sentential form which may be repeated any number of times (possibly zero
times). Tokens are enclosed in double quotes (""); nonterminal symbols are enclosed in angle
brackets (<>). The left-hand side of a syntax rule specifies the nonterminal which is being
defined, while the right-hand side of the rule gives the sequence of terminal and nonterminal
symbols which are valid for the nonterminal being defined; the two sides of the rule are
separated by the metasymbol (meaning "expands into").

Thus, for example, the syntax rule

<identifier list> 	<identifier> {"," <identifier>}

specifies that the nonterminal identifier list consists of either a single identifier nonterminal, or a
sequence of two or more identifiers separated by the comma token (","). The following are
valid identifier lists:

foo
foo, bar

foo, bar, baz

Also, the rule

<variable declaration> 	<identifier list> ":" <type> [":-=" <expression>]

indicates that a variable declaration consists of an identifier list followed by the colon token
(":"), a specification of the type of the variable(s), and an optional initialization of the
variable(s) consisting of an assignment operator token (":=") followed by an expression. The
following are valid variable declarations:

foo : real
foo, bar: integer 	biz +

Aeolus Reference Manual 	 Preliminary Version

3. Tokens

The tokens, or terminal symbols, or the Aeolus language include identifiers, int and float
numbers, litstrings, and keywords (or reserved words) and other delimiters (such as arithmetic
operators and other types of special characters). In this section, we will discuss rules for the
formation of these tokens.

The following general rules apply: the ASCII character set is assumed; blanks must not
occur within tokens (except litstrings); line breaks may not occur within any token (thus a sin-
gle token may not extend over several lines); and blanks as well as line breaks are ignored
except where they serve to separate consecutive tokens. Arrangement of tokens on lines may
be in free format; in particular, there may be multiple statements on a line. The case of letters
is ignored in keywords and identifiers; however, the case of letters in litstrings is preserved.

3.1. Identifiers

An Aeolus identifier must begin with an upper or lower case letter, which may be fol-
lowed by any number of letters or digits. Also, a separator (the underscore character "_") may
be placed between any two characters within an identifier to improve readability; however, a
separator may not occur at the beginning or end of an identifier.

<identifier> —4 <letter> {[<separator>] <letter or digit> }

Examples:
I 	am 	an.Aeolus_identifier 	As am...I

3.2. Numbers

An Aeolus number is an "int" or "float" number, which may be specified in any base
between 2 and 16 inclusive.

3.2.1. Ints

A decimal "int" starts with a digit ("0" through "9"), which may be followed by any
number of digits, optionally separated by an underscore character ("_") for readability. Ints in
bases other than 10 may be specified by giving the base (a decimal number between 2 and 16
inclusive), followed by the character "#", followed by the based number. A based number in
a base greater than 10 may include the characters "A" through "F", as appropriate to the base
of the number. (Note that case is not significant for these characters.)

Examples:

<num>
<basedit>

<basednum>
<int>
<int>

<digit> {[<separator>] <digit>}
<digit>, "A" .. "F"

{[<separator>] <basedit>}
<num>
<num> "#" <basednum>

1 32767 32_767 2#101010

8#52 16#2A 1.6#ff 13#42

3.2.2. Floats

A "float" number consists of a whole part followed by either a fractional part or an
exponent or both. 3 The whole part is a (possibly based) number. The fractional part consists of
a fractional point "." followed by a number with the same base as the whole part. The
exponent consists of the letter "E" or "e" followed by a (possibly signed) decimal number,
indicating the power of the base by which the float number should be multiplied. The base of a

sThus, a float number must always begin with a digit.

-3-

Aeolus Reference Manual 	 Preliminary Version

float number is given as for an int; however, if a float number is based and has an exponent,
the character "#" must appear before the exponent. If no base is given, base 10 (decimal) is
assumed.

<exponent>
<sign>
<float>
<float>
<float>
<float>

Examples:

"E" [<sign>1 <num>
t+ 1) , Ii .. 71

<num> "." <num>
<num> ["." <num>] <exponent>
<num> "#" <basednum> "." <basednum>
<num> "#" <basednum> ["." <basednum>] "#" <exponent>

3.14159 8#7.77 0.1e32 2#1011#E-27 16#7f.a2#e+ 5

3.3. Litchars and Litstrings

A character is any member of the ASCII character set, including both printable characters
(alphanumeric and punctuation) and control characters. Also, some systems may define exten-
sions to the ASCII character set (for instance, graphics characters) which may be considered
character tokens on those systems. A litstring (literal string) token is a sequence of characters
enclosed in single quotes ("`"). To include a single quote as a character in a litstring, the sin-
gle quote must be doubled ("'"'). A special case of the litstring token is the litchar (literal
character) token, which is a litstring token consisting of a single character.

	

<litstring> 	" 1 " {<character>} " 1 "

	

<litchar> 	"'" <character> " 1 "
Examples of LITSTRINGs:

'Hello, world' 'Don"t be sad' 'This is a litstring"

Examples of LITCHARs:

	

1 a1 	'Z' 	1?1 	1111

3.4. Comments and Compiler Options

A comment is explanatory text inserted into code for the reader's benefit; it is ignored by
the compiler, and does not affect the meaning of the code. In Aeolus, a comment may be
placed anywhere within a line where a blank may be placed. It begins with an exclamation
point ("!") and ends either at the next exclamation point or the end of the line on which the
comment started, whichever comes first. Thus, comments do not extend over multiple lines.

Examples:

	

! This is an in-line comment. ! 	!As is this.!

! This comment goes to the end of this line.
A compiler option is used to communicate to the compiler the desired settings for various

options which the compiler being used may implement, for example, whether range checks for
valid variable values are to be generated. A compiler option begins with a dollar sign ("$")
and ends either at the next dollar sign or at the end of the line on which the compiler option
started, whichever comes first.

Examples:

	

$r+ 	$ 	$pagelength=84

3.5. Reserved Words

The following is a list of the reserved words (keywords) of Aeolus. These words may not
be used as identifiers! Although the reserved words are shown here in upper case, upper and

-4-

(

<=

1=
< < =

>
<

Aeolus Reference Manual
	

Preliminary Version

lower case may be freely mixed in these words.

ACTION
ARRAY
AUTORECOVERABLE
AUTOSYNCH
BEGIN
BY
CASE
CONST
CONSTRAINT
DEFINITION
DELETEHANDLER
DO
DOMAIN
DOWNTO
ELSE
ELSIF
END
EVENTS
EXAMINES
EXIT
FOR

FORWARD
IF
IMPLEMENTATION
IMPORT
IN
INDEX
INITHAND LER
INLINE
IS
LOCAL
LOCK
LOOP
MODIFIES
NONRECOVERABLE
NOT
NULL
OBJECT
OF
OPERATIONS .
OTHERWISE
OUT

OVERRIDES
PER
PERMANENT
PROCEDURE
PROCESS
PSEUD 0
PURE
RECORD
RECOVERABLE
REGION
REINITHAND LER
RETURN
RETURNS
SHARED
STRUCTURE
STRUCTURED
THEN
TO
TOPLEVEL
TYPE
USING

3.8. Operators and Delimiters

The following are characters or groups of characters used as operators or delimiters (punc-
tuation) in Aeolus.

3.7. Other Characters

As mentioned before, blanks (except in litstrings) are ignored wherever they are not
required to separate other tokens; thus, blanks may be used freely to improve the readability of
code. Semicolons (";") are ignored in the same way as blanks; thus, semicolons may be used
to separate or terminate statements if so desired, but are not required. Non-printable (control)
characters are also ignored.

4. Declarations and Scopes

All identifiers in Aeolus code must be introduced by a declaration. In this section, the
rules for ordering and extent of declarations will be presented.

-5-

Aeolus Reference Manual 	 Preliminary Version

4.1. Compilation Units and Their Scopes

Those sentential forms described by the Aeolus grammar which may be compiled are
called compilation units. Compilation units include object definition parts, object implementation
parts, and processes. As will be clarifiedin section 12, an object definition part serves to declare
those identifiers—constants, types, and operations—which the object makes available to other

objects or processes, while the object implementation part actually provides the code for the
object. Other objects or processes may import an object definition, and use the identifiers
declared by it as if those identifiers had been declared locally.

Every compilation unit implicitly imports the standard object, which defines various useful
identifiers. (These are listed in Appendix D.) Before any other declarations are given, the com-
pilation unit may import other objects via an import clause (see section 12). Then, declarations
of constants, types, variables (except in object definitions), and procedures (operations) may be
given in any order, as long as the declaration of any identifier used in another declaration textu-
ally precedes this use. There are, however, two exceptions to this general rule. 4 A procedure
may be declared forward; that is, only its header is declared, while the declaration of its body is
delayed until later (see section 11). Also, a type may be declared forward; pointer types may
then be declared with the forward type as base type (section 6.2.2).

After an identifier has been declared, other declarations and statements may refer to it, as
long as these references occur within the scope of the identifier. The scope of an identifier
extends from the point of its declaration to the end of the block in which it was declared. That
is, if the identifier was declared in the the declaration part of a compilation unit, its scope
extends to the end of that compilation unit; if, however, the identifier was declared in the
declaration part of a procedure, its scope extends to the end of the procedure. The scope of
identifiers introduced in a USING statement (section 10.2.4) extends to the end of that state-
ment.

The scope defined by a procedure is said to be nested within the scope defined by the sur-
rounding compilation unit. As implied by the rules above, identifiers in a nested scope are not
visible (available for reference) in the surrounding scope. An identifier in an nested scope may
have the same name as an identifier in an enclosing scope; the identifier in the enclosing scope
is then not visible in the nested scope. Within a scope, however, an identifier must be unique;
that is, an identifier may not be declared with the same name as another identifier already
declared in the same scope (see below). Procedure declarations may not be nested (within
other procedure declarations); thus, the maximum nesting level in Aeolus is 2, where the level
of a compilation unit is 1.

4.2. Qualified Identifiers

As was stated above, an identifier must be unique within the scope in which it is declared
so that the entity which it represents may be correctly identified. However, it often occurs that
different object definitions declare constant or type identifiers with the same name, or that
different enumeration types have members with the same name,' or that different objects have
operations with the same name, or that different records have fields with the same name.
Thus, it is sometimes necessary to qualify an identifer with the name of its defining type or
record to ensure that it is unique.

If types or constants with the same name defined by more than one imported object type °
 are visible in a scope, or if similarly-named members of different enumeration types are visible

in a scope, these names must be qualified with the names of their defining types:

These exceptions allow more general data structures and procedural definitions to be formulated, in particular
recursive structures.

5This problem may also occur in Pascal, which does not provide for qualification of enumeration types; thus, so-
called "holes" may be left in the types.

°As we shall see in section 12, the names of imported object definitions may be used as the names of types.
Variables declared to be of an object type are said to be object instances.

-8-

Aeolus Reference Manual 	 Preliminary Version

<type-qualified id> 	<type id> "n" <identifier>

For example,

objl"foo 	obj2"foo

refer to identifiers named "foo" defined by object types "objl" and "obj2", respectively.
Also, if the enumeration types "signal_colors" and "primary_colors" are defined as follows:

type signal_colors is (red, yellow, green)

type primary_colors is (red, green, blue)

then references to the identifiers "red" and "green" must be qualified:

signal_colors'red primary_colorered

signal_colors"green primary_colors"green

Different object types may define operations with the same name; however, there may
also be several instances of the same object type visible in a scope. Object operation invocations
must be qualified by the name of the object instance on which we wish to operate:

<obj op invocation> -- ■ <obj instance id> "©" <op can>

For example, if variable "in_queue" is an instance of an object type (say, "queue") with
operation "enqueue":

in_queue @ enqueue (item)

The situation of record fields is similar to that of object operations. Declarations of record
types may define fields with the same name; also, there may be several variables declared with
the same record type visible in a scope. Thus, field references must be qualified by the name
of the field's parent record. 7

<field ref> —p <parent variable> "." <field id>

For example, if variables "a" and "b" are both of some record type "complex," we may have:

a.realpart b.realpart a.imaginarypart

5. Constant Declarations

An identifier declared as a constant is associated with a value which may not be changed.
Thus, a constant may not be the target of an assignment statement (see section 10). The type
of a constant may be any valid type specification (section 6). The value of a constant may be
specified by an expression (section 9) in which only constant terms appear. Calls to (value-
returning) procedures defined by the object standard with constant parameters are also allowed
to appear in such an expression.

<const decl> 	—■ 	<const idl decl> ":" "const"
<properly constrained type nan., -> ":=" <expr>

7This qualification is often called the field dereference operation.

-7-

Aeolus Reference Manual 	 Preliminary Version

Examples:
i : const integer 	-10

j : const integer := i + abs (2*i)

B. Type Declarations

The declaration of a data type specifies the set of values which members of that type (i.e.,
variables, record fields, or procedure parameters declared to be of that type) may assume. In
the case of structured types, the type declaration also gives a "blueprint" of the structure of
members of that type.

The general syntax for declaration of new types is:

<type decl>

<formal type param option>

<formal type param decl>

<properly constrained type name>

<complete params or constraint>
<complete params or constraint>

<actual type param spec>

<constraint spec>
<subrange>

<new type indication>
<new type indication>

"type" <new type name>
[<formal type param option>] "is"
<new type indication>
"(" <formal type param decl>
{"," <formal type param decl> ")"
<param id list> ":"
<properly constrained type name>
[":=--" <scalar const>]
<type name>
[<complete params or constraint>]
<actual type param spec>
<constraint spec>
"(" <scalar const>
{"," <scalar const>}")"
"[" <subrange> "]"
<scalar const> ".." <scalar const>
["shared"] ["permanent"] <new type spec>
"forward"

As we shall see in the remainder of this section, types fall into two general classes: (possibly
parameterized) type identifiers (the names of previously-declared types, including object types),
and anonymous types 8 (including enumerations, index and pointer types, structured types, and
locks). The compatibilities of types are discussed in section 9.3.

Types may be parameterized, that is, some of the attributes of a type may depend on the
values of formal type parameters. These parameters are declared in a formal type parameter
option. (Object types may also be parameterized; see section 12.1.) A formal type parameter
may be declared to be of a (possibly constrained) scalar type. The formal type parameters are
associated with the values of actual parameters specified in the declaration of variables of that
type (see section 8). The values of the type parameters of a member of a parameterized type
may be accessed via field dereference operations on that member; for example, if type t were
declared with type parameter p, and variable v were declared to be of type t with a value of i for
parameter p, then the value of the expression v.p would be i. An default value for a type
parameter may be specified in its declaration; the type is then said to be associated with a
delayed constraint (see section 6.1). The value of a type parameter may be specified only in
declarations of members of the type, in allocators for members of pointer types, or (if a default
value for the type parameter has been given) in a constructor for a constant of the type (see
section 9.1); the value of a type parameter may not be otherwise modified. Parameterized types
may be nested within other parameterized types; the parameters of the nested types may
depend only on the parameters of the enclosing types. Examples of parameterized types are
given in section 6.2.3.

8The term anonymous type refers to the fact that such a type is not given a name by the programmer; however,
the effect of an anonymous type is as if that type had been declared with a system-generated name, and that name used

-8-

Aeolus Reference Manual 	 Preliminary Version

Any type may have an optional indication that members of that type may be shared. This
attribute is indicated by the use of the keyword shared before the type indication. The use of
shared variables is explained in section 10.2.5. Similarly, any type declared in a Clouds object
implementation part (see section 12) may have an optional indication that members of that type
are to be allocated in the object's permanent storage; this attribute is indicated by use of the key-
word permanent. The use of permanent variables is explained in section 13.3.

As mentioned in section 4.1, a type may be declared forward, that is, its specification may
be left temporarily incomplete by use of the keyword forward in place of an actual type
specification. Forward-declared types may be used only as the base types of pointer types. A
complete specification for the forward-declared type must eventually be given within the same
scope in which the forward declaration appeared.

8.1. Type Identifiers

The simplest sort of type specification is simply the name of a previously-declared type,
optionally followed by a actual type parameter specification or by a constraint specification:

	

<new type spec> 	"new" <constrained type name>

	

<constrained type name> 	<type name> [<params or constraint>1

	

<params or constraint> 	<complete params or constraint>

	

<params or constraint> 	 4,),,

If a type is declared with a formal type parameter option, a declaration of a member of that type
must supply values for the type parameters in an actual type parameter option; the types and
number of actual type parameters in the actual type parameter option must agree with those in
the formal type parameter option. There are three cases, however, in which an empty actual
type parameter option ("0") may be given in a declaration of a member of a parameterized
type: if the parameterized type is a pointer type, to indicate that specification of the parameters
is being delayed until the member of that type is allocated (the values of the type parameters
must then be specified in the allocator); if the member of the parameterized type is being
declared as a formal procedure parameter, to indicate that the type parameters of the formal
procedure parameter will assume the values of those of the actual procedure parameter; or, if
the parameterized type declaration included default values for the type parameters, to indicate
that the values of the type parameters will be specified in a constructor for a constant value of
that type (see section 9.1). Note that this does not preclude specification of type parameter
values rather than an empty actual type parameter option in the above three cases.

If no formal type parameter option was declared for the previously-declared type, no
actual type parameter option may be given; however, if the previously-declared type was a
scalar type (excepting real), a constraint specification for the scalar type may be provided. The
constraint specification indicates the range of values which may be assumed by members of that
scalar type; the constraint is not considered to be a part of the type, but rather associated with
the type as an attribute. Constraint specifications are further described in section 7.

Several useful predefined types are provided by the object standard, which is automatically
imported by every compiland. The definition part of standard is shown in Appendix D. It
defines the following basic scalar types: °

• type integer, whose variables assume values between MININT and MAXINT;

• type longint, whose variables assume values between MINLONGINT and MAXLON-
GINT;

in place of the anonymous type.

°As shown in Appendix D, the types integer, longMl, unsigned, and longuns may be considered to be new types
derived from constraints on an underlying int number "type" (which includes all numbers representable by an "int"
token), while type real may be considered to be derived from a constraint on an underlying float number "type"
(which includes all numbers representable by a "float" token).. The types derived from "int" tokens are denoted col-
lectively as the "int types" in this document.

-9-

Aeolus Reference Manual 	 Preliminary Version

• type unsigned, whose variables assume values between MINUNS and MAXUNS;

• type longuns, whose variables assume values between MINLONGUNS and MAX-
LONGUNS;

• type boolean, whose variables assume values FALSE or TRUE;

• type bit, whose variables assume values compatible with "int" numbers in the range
0..1;

• type char, whose variables assume values of the character set used by the computer on
which the program is being used (that is, those values representable by litchar tokens);
and

• type real, whose variables assume real numbers as values.

Scalar types provide the basis for the construction of structured types.

8.2. Anonymous Types

The anonymous types include enumeration types, index and pointer types, structured
types, and locks.

<new type spec> 	<anonymous type>

8.2.1. Enumerations

An enumeration (or enumerated type) consists of a list of identifiers which are used as con-
stants in the program. Variables of that enumeration type may assume only those identifers as
values. The sequence of the identifiers in the declaration of the enumeration defines an order-
ing of those identifiers; the ordinal value of the first identifier is 0.

	

<anonymous type> 	"(" <enumer id list> ")"

	

<enumer id list> 	<id decl> {"," <id decl>}

Example:

type days is (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday)

8.2.2. Index and Pointer Types

An index type is a scalar type, variables of which will be used as indices in FOR loops or
as array indices. 10 A variable of an index type must be declared locally to the scope within which
it is used. Structures may not have components of an index type, nor may variables of an index
type be passed as out or in out parameters to procedures or operations. The index variable of a
FOR loop must be of an index type.

<anonymous type> —+ "index" <properly constrained type name>

Example:
type loopindex is index integer[1..10)

Members of a pointer type may assume as values pointers to variables of another type I
specified in the declaration of the pointer type:

<anonymous type> -- ■ "->" <constrained type name>

A pointer value is generated via an allocator (see section 9.1). Also, a member of any pointer
type may assume the value NIL, which means the variable is not pointing to anything.

'This declaration provides a hint, to the compiler that a variable of this type would be a good candidate to be
placed in a register.

-10-

Aeolus Reference Manual 	 Preliminary Version

Example:
type intptr is -> integer

As was mentioned in section 4.1 and above, the base type of a pointer may be a forward-
declared type. This allows recursive data structures to be built with pointers.

8.2.3. Structured Types

Declarations of structured types provide blueprints for arranging groups of components of
scalar types or of other structured types into a single structure. Structured types provide the
programmer differing levels of abstraction with which to view data, from the most primitive
view—sequences of bits—through high-level abstractions such as records.

<anonymous type> 	<struct type>

The structured types include arrays, records, structures, and seta.

8.2.3.1. Arrays

An array is a sequence of a fixed number of components which are all of the same type.
The individual components or elements of an array are specified by the element's indices, which
are values belonging to the (possibly constrained) index type of the array.

<struct type>
<array index type list>

<type>
<type spec>
<type spec>

Example:

• "array" "[" [<array index type list>] "]" "of" <type>
<properly constrained type name>
{"," <properly constrained type name>}

• ["shared"] ["permanent"] <type spec>
• <constrained type name>
• <anonymous type>

type smallarray is array [integer[1..10] of integer

A declaration of the form
array [Ti, T2, ... , Tn] of TO

with an array index type list of n array index types is considered shorthand for the declaration

array [Ti] of array [T2] of ... of array [Tn] of TO
The declaration of an array type is associated with a constraint which gives an indication

of the number of elements in a member of that type, so that the size of the member may be
determined at the time of compilation. As explained in section 7, a constraint thus associated
with a type declaration is inherited as an attribute by members of that type, although the con-
straint is not considered a part of the type itself. This constraint is derived from constraints on
the index types of the array. It is sometimes useful, however, to delay the specification of the
size constraint of an array type, especially in the case of a type which is to be used as the type
of a formal procedure parameter. This is done by use of formal type parameters in the
specification of the index constraints.

Example of a parameterized array type:

type anon(first, last : integer) is array [integer[first..last] of integer
type smallarray is new anon(1, 10)

Although each member of an array type has a fixed number of elements, arrays with a
flexible number of elements (so-called "dynamic" arrays) may be simulated by using pointers
to parameterized arrays. Examples of a method for implementing dynamic arrays are presented
in Appendix F.

Aeolus Reference Manual 	 Preliminary Version

Two important parameterized array types provided by object standard are described in the
following subsections.

8.2.3.1.1. Bitstrings

A bitstring provides the most primitive structured abstraction of data, that of simply a
sequence of bits:

type bitstring(length : unsigned) is array [unsigned[1..lengthj of bit

The length constraint of the bitstring (in bits) is indicated by the value of the parameter
"length."

Example:
type nybble is bitstring(4)

The "system" object, defined for each computer system on which Aeolus may be com-

piled, 11 provides declarations of several useful bitstring types. These types are referred to col-
lectively as the storage classes, since they define the units of storage supported by the hardware
of most computer systems: types bit, byte, word, longword, and quadword, with lengths BITSIZE,
BYTESIZE, WORD SIZE, LONGWORDSIZE, and QUAD WORD SIZE, respectively.

Another important bitstring type, address, is also defined by the "system" object. The
address type is defined as bilstring(ADDRESSSIZE). The "system" object defines a constant of
type address called NIL, which was mentioned in section 6.2.2. The relationship between
address types and pointer types is discussed in section 9.3.

8.2.3.1.2. Strings

A string is a sequence of components of type char (that is, a sequence representable by a
litatring token), terminated by a NUL character (ASCII 0).

type string(length : unsigned) is array [unsigned[1..lengthl] of char

The maximum length constraint of the string (including the NUL terminator) may be specified
by the value of the parameter "length."

Example:
type tokenstring is string(128)

8.2.3.2. Records

A record is a sequence of a fixed number of components which are of possibly differing
types. An individual component or field of a record is specified by its field name, qualified by
the name of the record variable to which the field belongs.

A record type declaration specifies the names and types of each field in a variable of that
record type. A parameterized record type may also have variant fields. A variant field consists of
a variant list, each of whose variants is prefaced by a variant label list, a list of constants whose
types match that of the discriminant. The discriminant of a variant field is one of the formal
type parameters of the enclosing record type; the name of the discriminant is indicated follow-
ing the keyword case in the variant field specification. The value of the discriminant selects the
variant from the variant list one of whose variant labels matches that value.

The rules for modifying type parameters used as record discriminants are the same as for
other type parameters, and are described above and in section 9.1.

11At present, Aeolus is supported on the DEC VAX and IBM PC-XT and -AT families of computers; the system
objects for these families are named VA,Y_Spiem and PC System, respectively.

-12-

<struct type>
<field list>

<field>
<field>

<field name list>
<variant field>

<variant list>
<variant>

<variant label list>
<variant label>
<variant label>

<variant otherwise>

"record" <field list> "end" "record"
<field> {"," <field>}

- <field name list> ":" <type>
<variant field>
<id decl> {"," <id decl>}
"case" <discriminant name> "of"
<variant list> [<variant otherwise>)
"end" "case"
<variant> ("11" <variant>)
<variant label list> ":" <field list>
<variant label> {"," <variant label>}

- <scalar const>
- <subrange>
- "otherwise" <field list>

Syntax of' Record Type Declarations

type t (discrl, discr2 : days) is
record

case discrl of
Monday .. Friday :

office_no,
work_phone : integer

IISaturday, Sunday :
home_phone : integer

end case
last name : string (20)
case discr2 of

3, 5 .. 7 :
weekly_rate : integer

11 8 	10
monthly_rate : integer
benefits 	: boolean

otherwise
hourly_rate : integer
temporary : boolean

end case
end record

Example of' a Record Type Definition

8.2.3.3. Structures

A structure is a special case of a record somewhat similar to the packed record construct of

-13-

Aeolus Reference Manual 	 Preliminary Version

Pascal. The declaration of a structure type specifies the storage class which the structure will fit:

<struct type> 	"structured" <storage class name>
<field list>
"end" "structure"

(The storage classes were discussed in section 6.2.3.1.1.) A field in a structure typically
represents a bitstring or scalar; the fields are packed together consecutively within an object of
the specified storage class (without implicit, padding), with the first field specified starting at the
most significant bit position in the storage class. The compiler checks that the fields declared
for the structure together fit into the specified storage class. A structure may not have variant
fields.

8.2.3.4. Sets
A set type defines a powerset of sets of values of the specified base type:

<struct type> 	"set" "of" <constrained type id>

The base type of a set must be scalar. There is no restriction on the number of elements that
the base type may have.

Example (see section 6.2.1):
type dayset is set of days

type VAX_processor_status is
structured longword
	

bit
CM, 	 31: Compatibility Mode
TP
	

: boolean
	

30: Trace Pending
MBZ1
	

: bitstring (2)
	

29-28: must be zero
FPD, 	 27: First Part Done
IS 	 : boolean

	
26: Interrupt Stack

current_mode 	 : 0 .. 3
	

25-24
previous_mode 	 : 0 .. 3

	
23-22

MBZ2
	

: boolean
	

21: must be zero
IPL 	 : 0 .. 16#lf

	
20-16: Interrupt Priority Level

MBZ 3 	 : byte
	

15-8: reserved (must be zero)
DV, 	 7: 	Decimal oVerflow bit
FU, 	 6: 	Floating Underflow bit
IV, 5: 	Integer oVerflow bit
T, 	 4: 	Trace bit
N , 	 3: 	Negative condition code
Z, 	 2: 	Zero condition code
V, 1: 	oVerflow condition code
C
	

: boolean
	

0: 	Carry condition code
end structure

Example of a Structure Type Definition

Aeolus Reference Manual 	 Preliminary Version

8.2.4. Locks

A lock type may be used to declare variables which in turn may be used to implement
locking protocols on particular values in some domain."

	

<struct type> 	"lock" "(" <compat list> ")" ["domain" "is" <type>]

	

<compat list> 	<compat> {"," <compat>}

	

<compat> 	<id use> ":" "[" <compat id list> "]"

A lock declaration includes the specification of a compatibility list, which defines, for a given
mode of the lock, which other modes are compatible with that mode." The presence of an
identifier in a compatibility list serves as a declaration of that identifier as a mode of the lock
type; the modes of a lock type may together be thought of as an enumeration. An empty com-
patibility list indicates that the given mode is incompatible with all other modes.

The lock declaration may also specify the domain of values which may be locked. If the
domain specification is omitted, a simple lock (i.e., one which does not lock over any particular
domain) is assumed.

Examples:

	

type simple_lock is lock (busy : []

	

type 	file_lock is lock (read : [read] 	,
write :) domain is string (20)

The declaration of "simple lock" above defines a lock type with a single mode "busy" which is
incompatible with itself; thus, only one client may set a lock variable of type "simple_lock" at
any one time. The declaration of "file_lock," on the other hand, defines a lock type over the
domain of strings of length 20. Clients may set a lock variable of type "file_lock" on a given
string with modes "read" or "write." The "read" mode is specified as being compatible with
other settings of "read" mode; the "write" mode is incompatible with itself and with "read"
mode. Thus, a client may set the lock with "read" mode on a given string even if several
other clients have outstanding settings of the lock with "read" mode on that string; however, a
client wishing to set the lock with "write" mode on a given string must wait for all outstanding
settings of "read" mode on that string to be released.

7. Constraint Declarations

A constraint, which indicates the minimum and maximum values of the range of values
which a variable having that constraint may assume, may be specified for any scalar type except
real. As was described in section 6, a constraint may be associated with a type declaration;
although the constraint is not considered to be part of that type, members of that type inherit
the constraint as an attribute. The type being constrained may have already had a constraint
associated with it; the new constraint replaces any previous constraint. The effect (or lack
thereof) of constraints on type compatibility is described in section 9.3.

A constraint may also be associated with a previously-defined named type, and this associ-
ation may be given a name which may be used as if it were a type identifier. Such an associa-
tion is called a constraint declaration:"

<constraint decl> 	"constraint" <new constraint name> "is" <constrained type name>

12Note that a lock is obtained for a value of an object, and not on the object itself. Thus, for instance, a lock

may be obtained on a file name even if that file does not yet exist. The lock s. is directly supported by the

Clouds architecture.

13A lock may be set with a specified mode only if other modes already set, if any, are compatible with that mode.

Thus, a process adhering to a protocol using that lock may wish to block until the requested mode is available. Opera-

tions are provided by object standard for testing, setting, and releasing locks (see Appendix D).

"A constraint declaration is similar to a subtype declaration in Ada.

-15-

Aeolus Reference Manual 	 Preliminary Version

A constraint declaration does not create a new type, but rather acts as a renaming of the named
type, with the new constraint replacing any constraint previously associated with the named
type; the constraint name is thus a synonym for the named type. As explained in section 9.3,
synonyms for a named type are considered to be equivalent to the named type.

Example (see section 6.2.1):

constraint weekdays is days[Monday .. Friday]

8. Variable Declarations

A variable declaration introduces a variable into a process or object implementation part; it
associates the variable with a unique identifier and with a fixed type. All variables whose
identifiers appear in the same declaration list have the same type. A variable declaration may
have an optional initialization clause, which consists of a constant expression of the same type
as the variable type. This expression is evaluated, and its value assigned to the variable, before
the block is entered in which the variable is declared. 15

<var decl>
	<id decl list> ":" <type> [":---=" <expr>]

A variable may also be declared to be located at a specified address:

<var address decl> 	<id decl> "[" <address expr> "]" ":" <type> [":---=" <expr>]

The address expression must be a constant expression of type address.

Examples:
j : integer [1 .. 10] := 0

a : array [integer [1 .. 10]] of
record

realpart, ima.ginarypart : real
end record

string_array : array [integer [1 .. 10], integer [100 .. 200] I
of -> string (80)

KB_flag [16#0017] : PC_keyboard_flag

9. Expressions

The use of expressions allows the programmer to obtain the values of variables and to gen-
erate new values by specifying computations to be performed. An expression is constructed
from operands and operators.

9.1. Operands

An operand is either a literal constant (a number or constructor [see below]), an allocator,
or a variable.

9.1.1. Variables

A variable may be designated either by a (possibly qualified) simple identifier, or, if the
variable is of a structured type, by a structured variable, which consists of the variable name fol-
lowed by selectors. Selectors serve to designate the desired component of a variable. A call to a
value-returning object operation or procedure (function) may also be used anywhere a variable
may be used; in particular, the value returned by such a call may be dereferenced with

15Variables declared global to a compiland are static, and may be initialized before execution (that is, at compila-

tion or link time).

-18-

selectors, if this return value has the
<variable>
<variable>
<variable>
<variable>

<structured var>
<structured var>
<structured var>
<structured var>

Aeolus Reference Manual 	 Preliminary Version

appropriate type.
<id use>
<rvalue proc call>
<rvalue obj op call>
<structured var>
<variable> "." <id use>
<variable> "->"
<variable> "t" <expr> {"," <expr>} "I"
<variable> "[" <subrange> "1"

If the variable is of a pointer type, the pointer dereference operator ("->") may be used to
obtain the item referenced by the pointer. If the variable is of a record type, an individual field
of the record may be obtained by use of the field dereference operator ("."), followed by the
name of the field. An individual element of a variable of an array type may obtained through
use of an element selector operator, which specifies the index of the array element desired.
Thus, the structured variable a(<erpr>J designates that element of array a whose index is the
value of the expression <expr>. The list of array index expressions in an array element selec-
tor, such as

a [<expr 1> , <expr 2> , 	, <expr n>]

is considered shorthand for the sequence of selectors

a [< expr 1>[[<expr 2>[[<expr n>.]

for an array a declared with n dimensions. The type of each element selector expression must
be compatible with the type of the corresponding index type of the array (see below).

Examples of variable designations (see section 8):

a[5].realpart

a [i] .imaginarypart

string_array [1, 110] ->

string_arra3r [10, 150] -> [80]

As well as the ability to index single elements of an array, Aeolus provides the ability to
specify a a/ice (or contiguous group of elements) of an array. A slice is denoted by a subrange
in an array index expression.

Examples of slice designations:

type realarray(first, last) is array [integer[first..last] of real
a : realarray(1, 10)
b : realarray(1, 5)
b := a[1..5]
a[6..10] := b

A slice may be applied only to a one-dimensional array."

'Note, however, that any multidimensional array is equivalent to a one-dimensional array the element type of
which is an array containing the other dimensions; thus, this restriction merely states that slices may only be applied to
the first dimension of an array.

-17-

Aeolus Reference Manual 	 Preliminary Version

9.1.2. Constructors

As stated above, operands may be literal constants as well as variables. The specification
of a literal constant of an integer or real number is simply a token of that type (see section 3).
A constant of a structured type, however, must be built by specification of its elements in a
constructor. Constructors for constants of structured types are built using the following syntax:

	

<constructor> 	<type id> """ "[" <con elem> {"," <con elem>}"]"

	

<con elem> 	<expr> [":'' <expr>]

	

<con elem> 	<subrange>
The constructor is prefaced by the name of the type to which the constant being constructed
belongs. The value of each element of the constant is then specified (in the order in which the
elements were declared in the relevant type declaration) by an expression which must have the
same type as the corresponding element in the structured type. If a structure has several ele-
ments of the same type in sequence, the same value may be assigned to each element by speci-
fying an optional repetition factor (a [positive] constant integer expression); thus, the construc-
tor element 0:10 would specify that the value 0 be assigned to the next 10 elements in a struc-
ture.

The constructor for a constant of a set type merely lists those elements of the base type
which are to be included in the set constant. An empty constructor ("H") for a constant of a
set type implies the so-called null set, which is a set with no members.

Constants of bitstring and string types may also be expressed using more traditional styles
of constructors for these types. The alternative constructor for a constant of a bitstring type is
simply an unsigned binary number (or a number in another base with the equivalent bit pat-
tern) with same number of bits in its representation as the length of the bitstring. We have
already seen (in section 3) the alternative constructor for constants of a string type, that is, a
string token with enclosing quotes. The string constructor may have no more characters than
the maximum length of the string type. When the standard constructor syntax shown above is
used for constants of bitstring or string type, each element need not be individually specified;
rather, (bit)string constants of smaller (maximum) length may appear as constructor elements,
as long as the total (maximum) length of all constructor elements matches the (maximum)
length of the target (bit)string type. The individual (bit)string constants are concatenated into
the resulting constant.

Constants of other array, record, or structure types may be built only by using the above
constructor syntax. Constants of parameterized types may also be specified by means of con-
structors; the values of the type parameters are given as record field values at the outermost
level of the constructor, while the value of the member of the parameterized type is given as a
nested constructor (which must be consistent with the values of the type parameters). If the
constant thus constructed is to be assigned to a member of the parameterized type, then if a
value for a type parameter was given in the declaration of that member, the value for the type
parameter may not differ from that given in the declaration of the member (but must still be
specified in the constructor); if, however, the type parameter was given a default value (thus
associating the parameterized type with a delayed constraint), the value given for it in the con-
structor may differ from the default value. Note, however, that even in this case the value of
the type parameter may not be changed without specifying the complete value of the member at
the same time.

Aeolus Reference Manual 	 Preliminary Version

Examples of constructors (see section 6 and below):

smallarrayll, 2, 3:5, 4:2, 5]

word"[byte (2#1000), byte (2#0010)]

tokenstring"['Hello, world! ', 'Bye, now.']

dayset"[Monday, Wednesday, Friday]

daysetil

9.1.3. Allocators

A value of a pointer type may be generated by an allocator. The allocator consists of the
keyword new followed either by the (completely constrained) name of the type of object to be
allocated (and which the pointer variable will reference), or by a constructor for the object to
be allocated, including any necessary type parameters. (The rules for specification and
modification of type parameter values were described in section 9.1 above.)

	

<allocator>
	

"new" <allocation options>

	

<allocation options>
	

<properly constrained type name>

	

<allocation options>
	

<constructor>

Instances of object types may also be generated using allocators of the first form (i.e., using the
name of the object type with any necessary object actual parameters; see section 12).

9.2. Operators

The syntax of Aeolus expressions defines precedence levels of operators similar to those in
Pascal or Modula-2. There are four levels of precedence: the logical NOT operator and the bit-
wise complement ("-") operator have the highest precedence (level 1), followed by the multi-
plicative operators (level 2), then the additive operators (level 3), and finally the relational opera-
tors (level 4). When a sequence of operators has the same precedence, the sequence is exe-
cuted from left to right in textual order. The order of evaluation in an expression may be
changed by enclosing parts of the expression in parentheses.

The operators provided by the Aeolus language are listed below. Unless otherwise
specified, these are binary operators. In certain cases, the same operator symbol has different
meanings when applied to data objects of different types. The intended operation is then
identified by the types of the operands.

9.2.1. Arithmetic Operators

These operators apply to compatible operands of type integer, longint, unsigned, longuns,
and (except for the modulus operator) real:

symbol 	operation precedence

addition 3
subtraction 3
multiplication 2
division 2
modulus 2

The operators "+" and " - " may also be used as unary operators. They then denote the sign of
a term; the " - " operator implies negation, while the "+ " operator implies the identity opera-
tion. The "%" or modulus operator yields the remainder of an integer division of its (integer)
operands:

x %y gives the remainder of x / y, for y > 0.

-19-

Aeolus Reference Manual
	

Preliminary Version

• "int"
▪ "float"
▪ "litchar"
▪ "Ilitstring"

<constructor>
• <allocator>

<variable>
"not" <factor>

• "-" <factor>
• "(" <expr> '')"

<factor> ("multop" <factor>)

▪ <simple expr>
]"sign"] <term> {"addop" <term>)

<rel expr>
<simple expr> "relop" <simple expr>

Syntax of Expressions

<factor>
<factor>
<factor>
<factor>
<factor>
<factor>
<factor>
<factor>
<factor>
<factor>

<term>

<expr>
<simple expr>

<expr>
<rel expr>

The division operator ("/"), when applied to integer operands, yields the truncated quotient of
its operands.

9.2.2. Bitwise Operators

The following operators may be applied to compatible operands of a bitstring type, except
that the right operand of the shift operators is an expression of type integer:

symbol

< <
> >

operation

bitwise OR.
bitwise X0Ft
left shift
right shift
bitwise AND
bitwise complement (unary)

precedence

3
3
3
3
2
1

The left and right shift operators yield the value of their first operand shifted left or right
(respectively) by the number of positions given by the value of their second operand; the
vacated bits are zero-filled. The results of these operators are undefined if the value of the
right operand is greater than the length (in bits) of the left operand. The bitwise complement
operator ("`") yields the one's complement of its operand.

9.2.3. Address Operators

Arithmetic on pointers is not qllowed in Aeolus. However, the bitstring type address
allows the programmer to perform . -1,:zess computations via explicit conversions from pointer
types (see section 9.3). The "system" object for the computer for which a compiland is being
compiled (such as VAX System or PC System) defines three named operations on data of type
address:

addr(v) 	Returns a value of type address representing the storage address of variable v,
which may be a static or dynamic data item.

-20-

Aeolus Reference Manual 	 Preliminary Version

next(a, t [, <expr>])
Increments the address-type variable a by an amount equal to the product of
the value of <expr> and the size in address units (bytes or words, depending
on the system object being used) of the type represented by type identifier t.
The type of <expr> must be one of the "int types." If <expr> is omitted,
the value 1 (one) is assumed for it.

prev(a, t [, <expr>])
The same as next, but the address-type variable a is decremented rather than
incremented.

9.2.4. Logical Operators

The following operators apply to operands of type boolean and yield a boolean result:

symbol 	 operation 	 precedence

OR 	logical conjunction 	 3
AND 	logical disjunction 	 2
NOT 	logical negation (unary)

9.2.5. Set Operators

The following operators apply to compatible operands of a set type and yield a value of
the same type:

symbol 	 operation 	 precedence

	

set union 	 3
set difference 	 3
set intersection 	 2
symmetric set difference 	2

The following named operations are also provided for sets by object standard:

inset(elem, s) Returns TRUE if the scalar elan is currently a member of.set 8, FALSE other-
wise. The type of elem must be the same as the base type of s.

outset(elem, s) Returns the value of not inset(elem, s).

incl(s, elem) 	The scalar elem is included in (becomes a member of) the set s. The type of
elem must be the same as the base type of s.

excl(s, elem) 	The scalar elem is excluded from (is no longer a member of) the set s. The
type of elem must be the same as the base type of 8.

The following statements define the (binary) set operations:

	

inset(x, sl + s 2) 	iff 	inset(x, sl) or inset(x, s2)

	

inset(x, sl - s2) 	iff 	inset(x, sl) and outset(x, s2)

	

inset(x, sl * s2) 	iff 	inset(x, sl) and inset(x,s2)

	

inset(x, sl / s2) 	iff 	inset(x, sl) <> inset(x, s2)

9.2.0. Relational Operators

The relational operators apply to compatible operands of scalar, set, and bitstring types,

Aeolus Reference Manual 	 Preliminary Version

and yield results of type boolean:

symbol 	 relation

= 	equality
<> 	inequality

less than
<= 	less than or equal to

greater than
>--.- 	;greater than or e ual to

The relations "<=" and ">--=" denote improper inclusion when applied to sets, while the
relations "<" and ">" denote proper inclusion. The relations "=--" and "<>" may also be
applied to operands of a pointer type. Operands of a bitstring type are considered to be
unsigned values of the equivalent length for purposes of comparison. The relations "=" and
"< >" are also defined for compatible operands of a pointer, string, record, or array type. All
relational operators have the lowest precedence (level 4).

9.3. Type Compatibility

The operands of a binary operation are said to be compatible if they are of the same type,
that is, if the types of the operand are equivalent. The types of operands are equivalent if the
operands were declared with the same named type or with the same anonymous type. (This is
known as name equivalence of types.) Thus, for example, given the declarations

type t is array [integer [1 .. 10]] of integer
a : t
b : t
c, d : array [integer [1 .. 10]] of integer

the variables a and b have equivalent types (and are hence compatible) since their types both
derive from the named type t. Also, variables c and d are compatible, since they share the
same anonymous type. However, variable a is not compatible with variable c since their types,
although structurally equivalent, are not name equivalent, since the anonymous type of c is not
name equivalent to the named type t.

The Aeolus language does not allow incompatible operands to appear in an expression;
that is, there are no implicit type conversions (coercions). However, it is sometimes desirable
to perform operations on operands of differing types. Thus, Aeolus provides the programmer
with powerful means of explicit type conversion. An expression takes on the type of its left-
most operand unless modified by explicit use of a conversion function.

Every named scalar type definition also implicitly defines a conversion function of the
same name as the scalar type. This function may accept as a parameter an operand of any other
scalar type, or of a bitstring type of the same storage class. The result of the function invoca-
tion is considered to be a scalar of the named type. Thus, if we have

i : integer := 0
type fruits is (apples, oranges, lemons)

then the result of the expression fruits(1) is of type fruits and has value "apples;" also, the
result of the expression integer(oranges) is of type integer and has value 1.

As mentioned in section 7, a constraint which is associated with a scalar type (by way of a
constraint specification in the type's declaration, or via a constraint declailtion) is not con-
sidered part of that type, but rather is an attribute which is given to an entity (variable, parame-
ter, or record field) of that type. 17 Thus, a constrained entity is compatible with an entity which
has the same type but a different (or no) constraint. For example, considering the declaration

I 7Constraints are used for range checking (if enabled) and for determining the sizes of structures, not for type
checking.

-22-,

Aeolus Reference Manual 	 Preliminary Version

of type "days" in section 6.2.1 and the declaration of constraint "weekdays" in section 7, if we
have the following variable declarations:

dl : days 	d2 : weekdays

then dl and d2 are compatible. However, every type declaration creates a new type; thus, if we
had the declarations

type it is new integer 	type i2 is new integer

then entities of type "il" are incompatible with entities of type "i2," as well as with entities of
type integer. Also, had "weekdays" been declared as a type rather than as a constraint, e.g.,

type weekdays is new days [Monday .. Friday]

then variables dl and d2 would not be compatible.

The type of a so-called int token (see section 3.2.1) is determined by the size of the
number it represents. Such a number may be assigned to any of the "int types" integer, longint,
unsigned, or longuns (see section 6.2). Since these types are constrained, however, when range
checking is enabled, the number may not be greater than the maximum (or less than the
minimum) value representable in the target type. 18 Since the "int types" are declared as types
rather than as constraints, an expression of one of these types is not compatible with an expres-
sion of some other "int type" without explicit use of the appropriate conversion function.

The conversion functions integer and longint may also be applied to real expressions; if the
resulting value is not too large for the given type, the result is an integer (or longint) value
which represents the integral part of the real number (obtained by truncation). The real
representation of an integer expression may be obtained by using the conversion function real.

An array slice with n elements is compatible with any array with n elements and a compa-
tible element type. Also, a slice of one element is compatible with any variable of a type com-
patible with the element type of the slice. Note that this implies the following correspondences:

	

bit 	< = > 	bitstrin gslice [1..1] 	<=> 	bitstring(1)

	

char 	<=> 	stringslice[1..1] 	<=--> 	string(1)

Thus, bit is compatible with array [integer [1..1] of bit; char is compatible with array [integer
[1..1]] of char; and, in general, type t is compatible with an array of one element of element
type 1.

The declaration of a named bitstring type implicitly defines a conversion function to that
bitstring type from any scalar type representable in that length bitstring. Thus, access may be
obtained to the bit representation of data in an explicit manner. This implicit conversion func-
tion will also accept a data item of another bitstring type as parameter, as long as the
parameter's length (in bits) is no greater than that of the target type. If the length of the
source type is less than that of the target type, the resulting value is padded on the right with
zeroes to the length of the target type. Allso, two named operations are defined by object stan-
dard for selecting parts of the word bitstring type. The highbyte and lowbyte functions return (as
values of type byte) the high-order and low-order (respectively) bytes of their word parameter.

The definition of a named pointer type provides a conversion function of the same name
from a variable of type address to that pointer type. However, the result of such a conversion
may be used only for dereferences; it may not be assigned to a pointer variable. Values are
assigned to address variables via the addr operation discussed above; a value may be assigned to
a pointer variable only by use of an allocator (see section 9.1.3), or via assignment from
another variable of the same pointer type. The exception to the above rules is a special con-
stant of type address, called NIL, defined by each "system" object. "11) , constant NIL, which
denotes a null pointer or address reference, may be assigned to a variable of any pointer or
address type.

18This implies that negative numbers may not be assigned to unsigned or longuns variables, since the minimum
value representable in those types is 0.

-23-

Aeolus Reference Manual 	 Preliminary Version

A definition of a named string type provides a conversion function of the same name to
that type from other string types with maximum lengths no greater than that of the target type.
The resulting value is a null-terminated string with the same value as the source value, but with
the same maximum length as the target type. A number of named operations are provided in

object standard for other string manipulations and conversions, such as substring extraction and
conversions between strings and numbers; these are listed in Appendix D.

The conversion functions discussed above are for the most part somewhat restrictive in
the types of the arguments which they will accept. Also, if the range checking option is
enabled during compilation, most of these functions will generate runtime range checks of their
parameters. However, Aeolus provides a less restrictive (and less safe) means of type conver-
sion. The retype function accepts as parameters a value of any type and a type identifier; the
result is a value of the type specified by the type identifier, left-justified bitwise. For example:

longword value := retype (integer_value, longword)

No type checking is performed; the only restriction is that the target type representation be no
smaller (in bitlength) than the type of the source value. Any range checking or filling of
unused space (when the target type is larger than the source type) is the responsibility of the
pro gram m er.

10. Statements

A statement allows the programmer to specify activities such as assignment of a value to a
variable, decision branching, or repetitive execution of groups of statements. The so-called aim-
pie eta Cements do not contain other statements, while the compound statements may contain other
statements as parts. One or more statements may grouped into a statement list:

	

<stmt list> 	<stmt> (<stmt>}

for use as a part of a compound statement.

10.1. Simple Statements

The simple statements include the assignment statement, procedure call, object operation
call, EXIT statement, RETURN statement, and NULL statement.

	

<stmt> 	<simple stmt>

10.1.1. Assignment Statements

An assignment statement denotes the replacement of the value of the variable designated
by the left-hand side with some function of the value of the expression on the right-hand side.
The assignment operator used in an assignment statement describes what function of the value
of the right-hand side is to be used. The simplest assignment operator is ":=" (pronounced
"gets"), which denotes simple replacement. Other assignment operators apply some binary
operator to the value of the variable designated by the left-hand side and the value of the
expression on the right-hand side; the resulting value replaces the value of the designated vari-
able. An example of such an assignment operator is "+=" (pronounced "plus-gets"); the
assignment statement "i + = 1" is equivalent to "i i + I". The other binary operators

Aeolus Reference Manual
	

Preliminary Version

(listed throughout section 9) also have corresponding assignment operators.

<simple stmt>
<assign stmt>

<lhs>
<lhs elem>
<lhs elem>

<rhs>
<rhs>

<action invocation>
<action invocation>
<action invocation>
<rvalue invocation>
<rvalue invocation>

<timeout option>

<assign stint>
<lhs> "assignop" <rhs>
<lhs elem> {"," <lhs elem>}
<id use>
<structured var>
<expr>
["toplevel"["action"
"(" <action invocation> [<timeout option>] ")"
<proc call>
<obj op call>
<lhs> <assign op> <rvalue invocation>
<rvalue proc call>
<rvalue obj op call>
"for" <expr>

Besides a single variable designation, an assignment statement may also take a list of vari-
able designations as its left-hand side; this is called a multiple assignment. Here, the value of the
expression on the right-hand side is assigned to each of the variables designated on the left-
hand side, from the right of the list to the left. For example:

j, k :=-- m + 1

is equivalent to the series of assignment statements:

	

1 	i:=m+ 1

Assignment statements with other assignment operators may also be mutliple assignments. The
variable designation rightmost in the variable list is used as the left operand for the binary
operator. Thus:

j, k + = 1

is equivalent to the series of assignment statements:"

	

k:=k+ 1 j:=k+ 1 	i:=k+ 1
An assignment statement may also take the form of an action invocation. Action invoca-

tions are described in section 13.

10.1.2. Procedure Calls

A procedure call statement activates a named procedure. The procedure call may have a
list of actual parameters, which are substituted for the corresponding formal parameters defined
by the procedure declaration:

	

<simple stint> 	<proc call>

	

<proc call> 	<proc id> "(" <param list> ")"

Procedure calls are more fully described in section 11.2.

ieThis may be compared to the equivalent C statement:

i 	j 	k = 1;

-25-

Aeolus Reference Manual 	 Preliminary Version

10.1.3. Object Operation Calls
Object operation calls are similar to procedure calls. However, an object operation must

in general be invoked on that instance of the object type given by the object ID specified in the
operation call:

	

<simple stmt> 	<obj op call>

	

<obj op call> 	<obj id> "@ " <obj op id> "(" <param list> ")"

	

<obj id> 	<id use>

	

<obj id> 	<structured var>
Operation calls are more fully described in section 12.3.

10.1.4. EXIT Statements
An EXIT statement specifies the termination of one or more enclosing loops (see section

10.2.4). The keyword exit may be followed by either a period ("."), which specifies the termi-
nation of the immediately enclosing loop, or by an identifier, which specifies the termination of
the enclosing loop with the same name:

<simple stmt> 	<exit stmt>
<exit stmt> 	"exit" <name option>

<name option>
	

,,

<name option> 	<id use>
An EXIT statement may not appear outside a loop; however, a loop may contain several exit
statements.

Examples:
exit .

exit outer loop

10.1.5. RETURN Statements
A RETURN statement specifies the termination (and return from) the enclosing pro-

cedure. The keyword return may be followed either by a period (".") if the enclosing pro-
cedure does not return a value, or by an expression of the same type as the declared return
type if the procedure is value-returning:

<simple stmt> 	<return stmt>
<return stmt> 	"return" <value option>

<value option>
<value option> 	<expr>

A RETURN statement may not appear outside a procedure body; however, a procedure body
may contain several RETURN statements.

Examples:
return .

return 1.0 - cos (2.0*PI)

10.1.0. NULL Statements
A NULL statement indicates that no action is to be taken:

<simple stmt> 	<null stmt>
<null stmt> — "null"

The NULL statement is useful in constructs in which a statement or statement list would ordi-
narily appear, but where no action is desired, for instance, in certain cases in a CASE statement
or as the body of a procedure stub which is to be filled in later.

-26-

Aeolus Reference Manual
	

Preliminary Version

10.2. Compound Statements

The compound statements include the IF statement, CASE statement, LOOP statement,
USING statement, and REGION statement.

<stint> 	<compound stint>

10.2.1. IF Statements

The IF statement allows

<compound stmt>
<if stmt>

<elsif option>
<else option> 	---•

<if stmt>
"if" <expr> "then"
<stmt list> {<elsif option>} [<else option>]
"end" "if"
"elsif" <expr> "then" <stmt list>
"else" <stmt list>

the programmer to construct decision control structures:

The expressions following the key-words :land elsif must be of type boolean. These expressions
are evaluated in order, and the corresponding statement lists skipped, until one of the boolean
expressions yield the value TRUE; the statement list following the keyword then after this
expression is then executed, and control is then transferred to the statement following the key-
words end if. If the optional ELSE clause is present, the statement list following the keyword
else is executed if none of the boolean expressions evaluate to TRUE.

10.2.2. CASE Statements

The CASE statement allows the programmer to specify a multiple-branch decision struc-
ture based on the value of a single expression:

-•
-•

<compound stmt>
<case stmt>

<case list>
<case elem>

<case stmt label list>
<case stmt label>
<case stmt label>
<otherwise part>

<case stmt>
"case" <expr> "of"
<case list> [<otherwise part>]
'end" "case"
<case elem> {"II" <case elem>}
<case stmt label list> ":" <stmt list>
<case stmt label> {"," <case stmt label>}
<scalar const>
<subrange>
"otherwise" <stmt list>

if inset (ch, charsetTa' 'z'D then
process_alpha (ch)

elsif inset (ch, charsetl'O' .. '9']) then
process digit (ch)

elsif inset (ch, charset"[',', 1 . 1 , 11) then
process_punctuation (ch)

else
error_message ('Not a valid character')
ch "

end if

Example of an IF Statement

Aeolus Reference Manual 	 Preliminary Version

First, the expression following the keyword case is evaluated. This expression must be of a
scalar type (excluding type real); also, each of the case statement labels must be a scalar constant
or a scalar constant subrange the type of which is compatible with that of the expression (no
value may occur or be contained in more than one label). Second, if one of the case statement

label lists contains a label which matches or contains the value yielded by the expression, the
statement list following that label list is executed, and control is transferred to the statement
following the keywords end case. If none of the labels matches the value of the expression, and
the optional OTHERWISE clause is present, the statement list following the keyword otherwise
is executed; if no OTHERWISE clause is present, control is transferred to the end of the CASE
statement.

10.2.3. LOOP Statements

The LOOP statement allows the programmer to specify that a statement list be executed
repeatedly, either for a specified number of iterations, or while some condition is true, or until
the loop is explicitly exited. The basic form of the LOOP statement, without the optional itera-
tion clause, is essentially an infinite loop: the enclosed statement list is executed until the loop is
explicitly exited by means of an EXIT statement (see section 10.1.4).

case ch of
'a' 	'z' :

process_alpha (ch)
11 ,0' 	'9' :

process digit (ch)
I I 	It 	.

, 	 • 	 , 	 •

process_purtctuation (ch)
otherwise

error message ('Not a valid character')
ch

-

"
end case

Example of a CASE Statement

— 0

— 0

— 0.

— 0

— 0

<compound stmt>
<loop stmt>
<loop stmt>

<basic loop>
<iteration clause option>
<iteration clause option>

<direction>
<direction>
<by clause>

<loop stmt>
[<iteration clause option>] <basic loop>
<loop id dec> ":" [<iteration clause option>]
<basic loop> <loop id use>
"loop" <stmt list> "end" "loop"
"while" <expr>
"for" <index id> ":=" <expr>
<direction> <expr> [<by clause>]

to I

"downto"
`y" <expr>

Syntax of LOOP Statements

Aeolus Reference Manual 	 Preliminary Version

Two iteration clause options are available for control of the repetitive execution of the
LOOP construct. The simplest of these two options is the WHILE clause, which specifies that
the loop is to be continued as long as some condition is fulfilled. The expression following the
keyword while must be of type boolean. This boolean expression is evaluated before each exe-
cution of the statement list enclosed by the LOOP construct; this repetition continues as long as
the expression yields the value TRUE.

The second iteration clause option is the FOR clause, which specifies a that a progression
of values is to be assigned to a variable during the repetitive execution of the loop. The
identifier following the keyword for is called the loop index variable; this identifier must have
been declared as a variable of an index type (see section 6.2.2). The loop index variable may
not be the target of an assignment statement within the statement list enclosed by the LOOP
construct. The direction of the progression of values is specified by the use of one of the
<direction> keywords to or downto; the former specifies an increasing progression (that is, the
loop index is incremented on each iteration), while the latter specifies a decreasing progression
(the loop index is decremented). The ordinal amount by which the loop index is incremented
or decremented on each iteration is specified by the value of the expression following the key-
word by in the optional BY clause; this expression must yield a positive value. If no BY clause
is given, the value 1 is assumed for the increment or decrement. The starting value of the pro-
gression is given by the value of the expression following the token ":=", while the ending
value of the progression is given by the value of the expression following the <direction> key-
word; the types of these two expressions must be compatible with the base type of the loop
index. All three expressions (starting value, ending value, and increment) are evaluated before
the loop is entered. Execution of the statement list enclosed by the LOOP construct continues
until the value of the loop index variable exceeds the ending value, in the sense of the direc-

tion of the progression.

A LOOP statement may optionally be qualified by a loop identifier. The appearance of this
identifier at the start of the construct is considered to be the declaration of the loop identifier; if
a loop identifier is specified, the same identifier must appear after the end loop keywords. The
scope of the loop identifier is the extent of the LOOP statement which declared it. A loop
identifier may be used in the <name option> clause of an EXIT statement (see section 10.1.4)
to specify the termination of an enclosing loop with that name. 20

Examples:

InOut @ ReadChar (ch)
while ch, < > 	loop

process_char (ch)
InOut 4 ReadChar (ch)

end loop

for ch := 'z' downto 'a! by 2 loop
process char (ch)
for i := integer (ch) to 10 * integer (ch) loop

InOut 4. WriteChar (ch)
end loop

end loop

This is especially useful when the named loop is not the loop immediately enclosing the EXIT statement.

-29-

Aeolus Reference Manual 	 Preliminary Version

outer :
loop

loop
InOut @ ReadChar (ch)
if ch 	then

number_of_sentences + = 1
exit outer

elsif ch =' then
exit .

end if
process char (ch)

end loop
number_of_words + = 1
skip spaces ()

end loop outer

10.2.4. USING Statements

The USING statement allows the programmer to "alias" parts of complicated variable
designators. These "aliases" may then be used in place of those parts of the designators within
the statement list enclosed by the USING construct:

<compound stmt>
<using stmt>

<use spec list>
<use spec>

<using stmt>
"using" <use spec list> "do"
<stmt list>
"end" "using"
<use spec> {"," <use spec>}
<id decl> "for" <variable>

The effect of a USING statement is the creation of a nested scope for the extent of that USING
statement; the identifiers on the left-hand sides of each <use spec> in the <use spec list>
are considered to be declared within this scope. The effective address value yielded by the vari-
able designation on the right-hand side of a <use spec> is assigned to the identifier on the
left-hand side of that <use spec> 21 (that is, the identifier denotes the so-called !value of the
variable designation). That identifier may then be used as shorthand for the variable designa-
tion within the statement list enclosed by the USING statement. An identifier declared in a
<use spec> may also be used in the variable designation of any <use spec> following it tex-
tually.

Example (see section 9.1):

using sl for string_array [10], s2 for sl [150] ->, aj for a [j] do
InOut @ WriteString (s1 [149] ->)
InOut @ WriteString (s2)
InOut @ WriteChar (s2]80])
s2 	string80Tthanks for all the fiche.' , ":551
s2 [1] := IT'
aj.imaginarypart := 0.0

end using

10.2.5. REGION Statements

The REGION statement implements a critical region protocol for mutual exclusion on exe-
cution of a region (list of statements). In the header of the REGION statement, the program-
mer specifies a variable designator on which the statements enclosed by the REGION statement

21This value is also considered to be a good candidate to be placed in a register.

-30-

Aeolus Reference Manual 	 Preliminary Version

will operate:

	

<compound stmt> 	<region stmt>

	

<region stmt> 	"region" <variable> "do"
<stmt list>
"end" "region"

The type of the entity designated by <variable> must have the attribute shared (see section
6), which indicates that access to the entity may be safely shared among concurrent processes.
To ensure safe access, a shared entity may be appear as the target of an assignment only within
a REGION statement designating that entity. Note that this entity may be an element of a
structured type such as an array or record.

The effect of the attribute shared is to associate the shared entity with a semaphore.
(Note that if an array is composed of shared elements, this implies that the array is associated
with an array of semaphores.) The semaphore associated with a shared entity is used to control
access to all regions designating that entity by the variable designator <variable>. The first
process to enter such a region when the semaphore is free will then gain exclusive access to
that region; other processes attempting to enter that region, or other regions designating the
same entity, will be forced to wait in a queue on the semaphore. When a process leaves the
region, it signals the semaphore so that the next process in the queue gains access (in a first
in—first out manner).

Example (see section 9.1):

region a [j] do
a 01 .realpart := 10.5
a [j] imaginarypart := 0.2

end region

11. Procedures

The procedure construct provides a type of control abstraction known as procedural
abstraction. A statement list may be associated with an identifier by means of a procedure
declaration; then, the use of that identifier in a procedure call statement implies the activation of
that statement list, with the possible substitution of actual procedure parameters for formal pro-
cedure parameters. Also, a procedure may be declared as value-returning, in which case the pro-
cedure may be activated within an expression; the return value of the procedure call may then
be used by the expression for further computation.

11.1. Procedure Declarations

A procedure declaration consists of a procedure header and a list of statements enclosed by
a procedure block. The header contains declarations of the procedure's name and (optionally) its
formal parameters, return type, and procedure attributes; the block may contain, besides the
statement list, any local declarations of constants or variables. The procedure block may be
replaced in the declaration by the keyword forward, which indicates that the procedure block
will appear in a second declaration of the procedure which must appear later within the same
compiland; the specification of parameters, return type, and attributes must appear in the pro-
cedure header in the so-called forward declaration, and may not be repeated in the procedure
header of the second declaration.

The visibility of constants and variables declared locally to a procedure, as well as the visi-
bility within a procedure of items declared in a procedure's environment On ,3 discussed in sec-
tion 4.1. The values of locally-declared variables are undefined upon entry to the procedure
unless these variables have an associated initialization clause. Note that a procedure may not
be declared within the declaration of another procedure; that is, a procedure declaration may
not be nested. The use of a procedure's identifier in a procedure call within its procedure block
declaration denotes the recursive activation of the procedure.

-31-

Aeolus Reference Manual
	

Preliminary Version

▪ <proc hdr> "forward"
▪ <proc hdr> <proc block> "procedure"

"procedure" <proc name decl> "(" [<formal params>] ")"
["returns" <properly constrained type name>]
"is" [<proc attr>]

- <formal param section>
{"," <formal param section>}
<id decl list> ":"
[<param mode>] <constrained type name>
"in"
"out"
"in" "out"

- "inline"
"pure"

▪ [<proc block decl pt>] <stmt pt>
<proc declaration> {<proc declaration>}
<const or var decl>
<type clecl>
<constraint decl>
<var address decl>
"begin" <strut list> "end"

Syntax of Procedure Declarations

<procedure decl>
<procedure decl>

<proc hdr>

<formal params>

<formal param section>

<param mode>
<param mode>
<param mode>

<proc attr>
<proc attr>

<proc block>
<proc block decl pt>

<proc declaration>
<proc declaration>
<proc declaration>
<proc declaration>

<stmt pt>

The formal parameters declared in a procedure header act as "placeholders" in the pro-
cedure block for the actual parameters to be passed in a procedure call. At the time of a pro-
cedure call, the formal parameters are replaced by the corresponding actual parameters. The
type of a formal parameter may be any (possibly constrained) named type. The scope of a for-
mal parameter is the same as that of the local variables of the procedure, that is, its scope is the
extent of the procedure. There are three possible modes of a procedure parameter:
in 	An in procedure parameter acts as a local constant to the procedure whose value is

provided by the corresponding actual procedure parameter. The actual parameter may
be any expression of a type compatible with the formal parameter. As in the case of
constants, an in parameter may not appear as the target of an assignment statement
nor as an actual parameter corresponding to a formal parameter of mode out or in out

out 	An out procedure parameter acts as a local variable to the procedure; the value of the
parameter is assigned to the corresponding actual procedure parameter no later than
upon return from the procedure. The actual parameter must be a variable of a type
compatible with the formal parameter; the identity of this variable is determined when
the procedure is invoked, and may not change during the invocation. The value of an
out procedure parameter is undefined upon procedure entry.

in out The same as out, except that the initial value of the procedure parameter is provided
by the corresponding actual parameter.

If no mode is specified for an formal procedure parameter, the mode is assumed to be in.
A procedure may be specified to have a return type, in which case it is called a value-

returning procedure or function. The type of the return value may be any (possibly con-
strained) named type. The value to be returned must be specified by an expression in a
RETURN statement (see section 10.1.5); the type of this expression must be compatible with
the return type.

-32-

Aeolus Reference Manual 	 Preliminary Version

A procedure declaration may also specify certain attributes for the procedure. These
include inline, which specifies that the compiler should insert the procedure code "inline" at the
point of the call to the procedure, rather than to compile an actual call to the procedure; and
pure, which indicates to the compiler that the procedure does not modify any non-local variables

or make any calls to non-pure procedures. 22

Example (see Appendices A and B for more examples):

procedure factorial (i : in integer) returns integer is pure
begin

if i <= 1 then
return 1

else
return i* factorial(i-1)

end if
end procedure ! factorial !

11.2. Procedure Invocations

The invocation of a procedure may take place either as a procedure call statement (see sec-
tion 10.1.2), or (if the procedure has been declared as value-returning) within an expression:

	

<proc call>
	

<proc id> "(" [<param list>] ")"

	

<param list>
	

<expr> {"," <expr>}
The values of the actual procedure parameters specified in a procedure call are evaluated before
the call, and these values are substituted for the formal parameters within the called procedure.
For in formal parameters, the actual parameter may be an expression. An actual procedure
parameter which is substituted for a formal parameter of mode out or in out must be a variable
designator; the selectors for components of structured variables are evaluated before parameter
substitution takes place (that is, before the procedure call). The type of each actual parameter
must be compatible with that of the corresponding formal parameter, and the number of actual
parameters must match the number of formal parameters for that procedure, unless a parame-
ter has been specified as arbitrary (more to come on this).

Example:
factorial(2*j)

12. Objects

The object construct provides support for data abstraction in Aeolus. A collection of
related data items may be encapsulated within an object, which also may provide operations (pro-
cedures that operate) on the data. The only access to the data of an object is via these opera-
tions; thus, an object can strictly control manipulation of its encapsulated data, helping guaran-
tee the invariants of the abstraction.

An Aeolus object may also have parameters indicating, for instance, sizes or element
types of the abstraction implemented by the object; thus, an object implementing a bounded
stack abstraction may be parameterized by the element type and maximum number of elements
of the stack. Then, various instances of the bounded stack object may be created (instantiated)
with differing element types and sizes; the implementation of the object need not be concerned
with details such as the element representation, and the programmer does not need to create
new object types for each combination of element type and stack size. Support for such generic
objects increases the level of abstraction available to the programmer, and makes possible the
creation of libraries of reusable object types.

22This attribute gives the compiler a hint that certain optimizations may be possible in this procedure. This attri-
bute is used at the programmer's risk; that is, the compiler does not attempt to verify that the procedure is actually
pure.

-33-

Aeolus Reference Manual 	 Preliminary Version

The object construct also provides a safe separate compilation mechanism. The separation
of an object specification into a definition part and an implementation part allows checking across
the interface to an object, as well as allowing the use of an object definition before the
corresponding implementation part is finished (thus facilitating top-down design).

12.1. Object Definition Parts

The definition part of an object defines the interface of the object with other compilands.
It specifies the attributes of the object itself as well as the constants, types, and operations
which the object provides to other objects and to processes.

Specification of the autosynch keyword in an object definition header causes code to be
generated for automatic synchronization of object operation invocations based on programmer-
supplied indications of operation effects (see below). This mechanism provides a simple
read/write locking protocol; it may be used with any object class (see below) . 23

The object class is also specified in the object definition header. The object classes fall into
two groups: the non-Clouds object classes (pseudo and local) do not use any of the Clouds

<comp unit>
<obj def>

<obj def hdr>

<obj class>
<obj class>
<obj class>
<obj class>
<obj class>

<generic option>
<obj formal param list>

<obj formal paranu>
<generic type>
<generic type>

<obj visible decls>
<imports>

<decls&specs>
<visible decl part>

<visible decl>
<visible decl>
<visible decl>

<op spec part>
<op spec list>

<op spec>

<op effect>
<op effect>

- <obj def>
<obj def hdr> <obj visible decls> "end" "definition" 4 7 7

- "definition" "of" <obj class> ["autosynchl
"object" <obj name decl> [<generic option >] "is"
"pseudo"
"local"
"nonrecoverable"
"recoverable"
"autorecoverable"
"(" <obj formal param list> ")"
<obj formal param> {"," <obj formal param>}
<id decl> ":" <generic type>
<constrained type id>

- "type"
- [<imports>] <decls&specs>

"import" <import name> {"," <import name>}
[<visible decl part>] [<op spec part>]
<visible decl> {<visible decl>}

- <const decl>
- <type decl>

<constraint decl>
- "operations" <op spec list>
- <op spec> {<op spec>}

"procedure" <proc name decl>
"(" <formal params> ")"
["returns" <properly constrained type name >] [<op effect>]

- "examines"
- "modifies"

Syntax of Object Definition Parts

zsFor more information on the mechanisms supplied by the Clouds system to support synchronization and
recovery, see lAllc83b1.

-34-

Aeolus Reference Manual 	 Preliminary Version

facilities for action or object management, and are thus similar to modules in Modula-2 (for
pseudo-objects) or to generic packages in Ada (for local objects), while the so-called Clouds
object classes (nonrecoverable, recoverable, and autorecoverable) may make use of the object
management facilities and (for recoverable and autorecoverable types) the action management
facilities. The definitions of the object classes are as follows:

non-Clouds object classes:

pseudo 	(or pseudo-local) A class of local (non-Clouds) object of which there is only one
instance. This object class is used mainly for definition of system libraries, for inter-
facing with (separately-compiled) collections of procedures written in another pro-
gramming language, for abstraction of machine and system dependencies, and as a
basic separate-compilation mechanism.

local 	The standard class of non-Clouds object, which may have multiple instances. Object
management is provided by the Aeolus runtime system. Unlike Clouds objects, a
local object may have no existence independent of the process or object which
created it. Local objects simulate Clouds objects without incurring the expense of
the use of the action and object management facilities.

Clouds object classes:

nonrecoverable 	The basic class of Clouds object. Objects of class nonrecoverable make use
of the object management facilities, but may not contain recoverable areas
or action event handlers.

recoverable 	The "roll-your-own recovery" type of Clouds object, as opposed to the
autorecoverable class of objects (described below), which provides com-
pletely automatic recovery. In some cases, the programmer may be able to
use knowledge of the semantics of the object and its operations to program
synchronization and recovery mechanisms more efficient than the automatic
mechanisms supplied by the autorecoverable class of objects. Automatic
recovery involves checkpointing of the entire object state; automatic syn-
chronization is based on a simple read-write model of operation interactions
on entire operations. As will be discussed in section 13, Aeolus provides
facilities that allow the programmer to specify which parts of the object
state are to be checkpointed (recoverable areas), to access information
about the states of actions and to change these states (via operations on the
action manager), and to control the recovery process by specification of
what is to be done during action events (action event handlers); also, the
programmer may specify finer-grained locking mechanisms for greater con-
trol of synchronization (via the lock type; see section 6.2.3.8). Only recov-
erable objects may contain recoverable area specifications and action event
handler specifications.

autorecoverable 	As mentioned above, autorecoverable objects provide completely automatic
recovery. The entire object state (the global variables of the object) is
recoverable, and the default event handlers are used.

An instantiation of an object (other than of class pseudo) is created by use of an allocator (see
section 9.1); the allocator yields a capability to the newly-created object instance, which may be
assigned to a variable of that object type. The variable may thereafter be used to qualify opera,
tion invocations on that object instance. The init object event handler (see section 12.2 below)
for the object, if specified, as well as any variable initializations required by the object, is exe-
c-te‘' during the instantiation process.

If an object is to be generic, the programmer must specify the formal object parameters in
the object definition header. Such a parameter may be of any (possibly constrained) named
type, or it may be an identifier which is to be used within the object implementation as a type
identifier (specified by the keyword type in place of a type name in the formal parameter
specification). As stated above, these parameters may be replaced by actual parameters (in the

-35-

Aeolus Reference Manual 	 Preliminary Version

definition of local object bounded_stack (size : unsigned, elem_type : type) is

! Definition of a generic bounded stack object with size SIZE
! and elements of type ELEM_TYPE.

operations

procedure push (elem : elem_type) modifies
! Places ELEM on the top of the stack, if the stack is not full.

procedure pop () returns elern_type modifies
! Removes the top element of the stack and returns it.
! The return value is undefined if the stack is empty.

procedure top elem () returns elem_type examines
! Returns the top element of the stack without removing it.
! The return value is undefined if the stack is empty.

procedure empty () returns boolean examines
! Returns TRUE if the stack has no elements, FALSE otherwise.

procedure full () returns boolean examines
! Returns TRUE if the stack has SIZE elements, FALSE otherwise.

end definition. ! bounded_stack !

Example of an Object Definition

form of expressions or type names) when a variable of that object type is declared; the values
of the actual parameters then determine the sizes, element types, etc. of that instance of the
generic object (see section 6.3).

Following the object definition header, the programmer may specify the names of other
object definitions which contain constant or type specifications to be used in this object
definition. The names of these objects are specified in an import clause. Definitions imported
in an object's definition part are also available in that object's implementation part.

After any necessary imports are specified, the declarations of the object definition are
given. These are called its visible declarations since the declarations are available publically to
any object which imports the object definition. The visible declarations of an object may
include specifications of constants, types, or operations, but not of variables. The specifications
of the object's operations are listed following the keyword operations. Each specification con-
sists of the procedure's header (see section 11.1), optionally followed by one of the operation
effect keywords examines or modifies, which indicate that the operation reads from or writes to
the object's state, respectively. This information is used by the compiler to generate automatic
read or write locking for each operation if the autoaynch attribute is specified for the object. If
no operation effect is specified, the con ;il_r assumes that the operation neither reads nor
modifies the object state, and thus no automatic locking is done for that operation.

Aeolus Reference Manual 	 Preliminary Version

12.2. Object Implementation Parts

The implementation part of an object provides the actual code for the operations of the
object, as well as the definitions of any private constants, types, variables, or procedures needed
by the object. The definition part of the object being implemented is implicitly imported by the
implementation part; thus, the attributes, formal object parameters, and public constant, type,
and operation specifications provided by the definition part may not be repeated in the imple-
mentation part. Also, as mentioned in the previous section, any objects imported by the
definition part are also available in the implementation part. The implementation part may
import other objects as well via its own import clauses. All constants, type definitions, and
operations declared in the objects made available by any of these methods are visible in the
implementation part; also, the names of these imported object types may be used as the types
of variables declared in the implementation part. Such variables must be initialized by use of
an allocator (see section 9.1).

If the recoverable class is specified in the definition header of the object being imple-
mented, the programmer may give an action events part and/or a per-action part in the object's
implementation part. Action events part and per-action part specifications are described in sec-
tions 13.2 and 13.3, respectively.

An object implementation part must include full declarations of all operations specified in
the object's definition part. As with the full (second) declaration of a forward-declared pro-
cedure, the parameter list of an operation is not given in its full declaration. Constants, types,
or procedures declared in the <obj imp block> but not specified in the object's definition part
are not visible to other compilands importing the object. Variables declared in the outer level

• <obj imp head> <obj imp block> <obj imp tail>
<obj imp hdr> <imports> <event part>
"implementation" "of" "object" <obj name> "is"
"action" 'events" <override list>
<override> {"," <override>}

• <id decl> "overrides" <id use>
[<obj block decls pt>] <obj events pt>
<obj block decls> {<obj block decls>1
<const or var decl>
<type decl>
<procedure decl>
<recoverable area spec>
<per-action spec>
<inithandler spec> <reinithandler spec> <deletehandler spec>
"inithandler" "is"
<proc block>
"end" "inithandler"

▪ "reinithandler" "is"
<proc block>
"end" "rein.ithandler"
"deletehandler" "is"
<proc block>
"end" " ..-letehandler"

• "implefilentation" "."

Syntax of Object Implementation Parts

<comp unit>
<obj imp head>
<obj imp hdr>

<event part>
<override list>

<override>
<obj imp block>

<obj block decls pt>
<obj block decls>
<obj block decls>
<obj block decls>
<obj block decls>
<obj block decls>

<obj events pt>
<inithandler spec>

<reinithandler spec>

<deletehandler spec>

<obj imp tail>

Aeolus Reference Manual 	 Preliminary Version

of the <obj imp block> are global to the object, and are static ("own") variables; that is, the
values of such variables survive between calls to the object's operations. The global variables
of an object are called collectively the object's state. In an object of class recoverable, part of the
object state may be specified to be in a recoverable area. Recoverable areas are described in sec-
tion 13.2.

An object implementation part contains specifications of handlers for the so-called object
events. The object events include the Mit or object initialization event, the handler for which is
executed whenever an instance of the object is created by use of an allocator (see section 12.1);
the reinit or object reinitialization event, the handler for which is executedf the object has
registered its desire for reinitialization with the action managerhen the system is reinitialized
after a crash or partition (see Appendix E); and the delete or object deletion event, the handler
for which is executed when the object instance is destroyed. No default handlers for the object
events are supplied; if no action is desired for an event, the programmer must supply a NULL
statement as the handler body.

12.3. Object Operation Invocations

An invocation of an object operation looks much like a procedure invocation, except that,
outside the implementation part of the object itself, an operation name must be qualified by the
name of a variable representing an instance of that object type (or, for pseudo-objects, by the
name of the object type itself):

	

<obj op call> 	<obj spec > "@ " <obj op id> "(" <param list> ")"

	

<obj spec> 	<id use>

	

<obj spec> 	<structured var>

When an object invokes one of its own operations, however, the usual procedure call syntax is
used.

Invocations of pseudo-object and local object operations have semantics essentially like
those of calls to procedures local to a compiland. The situation is different for operations
declared in objects which use the Clouds object-management facilities (i.e., the so-called
"Clouds objects") . 24 Invocations of operations on Clouds objects are handled by the compiler
through operations on the Clouds object manager on the machine on which the invoking code
is running. The Clouds object on which the operation is being invoked need not be located on
the same machine as the invoking code; the object manager then makes a remote procedure call
(RPC) to the object manager on the machine on which the called object resides. The
location—local or remote—of the object being operated upon, however, need not concern the
programmer, as the RPC process is transparent above the object-management level. (More to

implementation of object bounded_stack
! (size : unsigned, elem_type : type) ! is

! More to come.

end implementation. ! bounded_stack !

Example of an Object Implementation

24This is because the code for pseudo-objects and for local objects is actually linked into the code of the compi-
land using these objects, whereas the code for Clouds objects is physically separate from the code of the invoking corn-
piland. This code is paged in on demand by the object manager (see lAllc83b1).

-38-

Aeolus Reference Manual 	 Preliminary Version

come on operation invocation semantics.)

Examples (see previous two sections):

sl : bounded stack (integer, 10)
s2 : bounded_stack (real, 5)

if not s2 CI) full 0 then
s1 @ push (42)

elsif not s2 @ empty () then
r := s2@ pop() + 3.14159

end if

13. Actions

The action concept provides an abstraction of the idea of work in the Clouds system; an
action represents a unit of work. Actions provide failure atomicity, that is, they display "all-or-
nothing" behavior: an action either runs to completion and commits its results, or, if some
failure prevents completion, it aborts and Its effects are cancelled as if the action had never exe-
cuted. The rationale for the action concept and the mechanisms supporting it in the Clouds
system are described in [Allc83b].

Support for actions in the Aeolus language is relatively low-level. The methodology of
programming with actions is not at present well-understood compared with experience in pro-
gramming with objects; thus, rather than providing high-level syntactical abstractions such as
those available for object programming, Aeolus allows access to the full power of the Clouds
system facilities for action management. The major syntactic support provided by Aeolus for
action programming is in the programming of action events, recoverable areas, permanent and
per-action variables, and action invocations.

13.1. Action Events

At several points during the execution of an action, the action interacts with the action
manager of the Clouds system to manage the states of objects touched by that action, including
writing those states to permanent (stable or safe) storage, and recovering previous permanent
states upon failure of an action. Thus, failure atomicity may be provided by the action manage-
ment system. The action events include:

event name

BOA
toplevel_precommit

nested_precommit
commit

abort

purpose

beginning of action
prepare for commit for a toplevel action
prepare for commit for a nested action
normal end of action (BOA)
abnormal end of action

The interactions with the Clouds action manager necessary when such events take place
are done by default procedures supplied by the Aeolus compiler and runtime system; these pro-
cedures are called event handlers. When an action event occurs for a particular action, the
action manager(s) involved invoke the event handlers for each object touched by that action.

As was described in section 12.1, by specification of the keyword autorecoverable in the
header of an object definition the programmer may take advantage of the recovery facilities of
the Clouds system by having the compiler generate the necessary code a".tumatically. This
automatic recovery mechanism requires checkpoints of the entire state of the object, and uses
the default action event handlers. However, it is sometimes possible for the programmer to
improve the performance of object recovery by providing one or more object-specific event
handlers which make use of the programmer's knowledge of the object's semantics; these
programmer-supplied event handlers then replace the respective default event handlers for that
object. Thus, if object class keyword recoverable is specified in the definition header of the

-39-

Aeolus Reference Manual 	 Preliminary Version

object being implemented, the programmer may give an optional action event part in the object's
implementation part. Following the keywords action events, the programmer lists the name of
each action event handler provided by the object implementation as well as the name of the
action event whose default handler the specified handler is to override:

	

<event part>
	

"action" "events" <override list>

	

<override list>
	

<override> 1"," <override> I

	

<override>
	

<id decl> "overrides" <id use>

Thus, for example, the specification (say, in an object called "stack"):

action events
stack_BOA overrides BOA, stack_precommit overrides precommit

indicates that the default handlers for the BOA and precommit action events are to be replaced
by the procedures named "stack_BOA" and "stack_precommit," respectively, for the "stack"
object only.

13.2. Recoverable Areas

As mentioned in section 8, if an object being implemented is specified to be recoverable,
then some of its variables may be declared in a recoverable area:

<recoverable area spec> 	"recoverable"
<var decl> {<var decl>1
"end" "recoverable"

The state of a recoverable area which has been touched by an action is maintained on a version
stack by a Clouds action manager, and is saved to permanent storage upon commit of the action
which touched it. If an action which touched a recoverable area is aborted, the version of that

area which existed before the action touched it is restored. 25 Thus, the use of recoverable areas
allows the programmer to provide finer granularity in the specification of that part of the object
state which must be checkpointed, since the use of automatic recovery on object (the autorecov-
erable object class) performs checkpoints on the entire state of the object.

The interaction with the action manager necessary to manage the states of recoverable
areas is implemented by the action event handlers as described above. Again, the default event
handlers may be overridden by programmer-supplied event handlers for the entire object to
achieve better performance.

Example:

recoverable
j : integer

a : realarray(1,10)
end recoverable

13.3. Permanent and Per-Action Variables

It may sometimes be desirable to make large data structures resilient. In such cases, the
recoverable area mechanism may be inefficient, since it requires the creation of a new version
of the entire recoverable area for each action which modifies the area. Often in such cases the
programmer make take advantage of knowledge of the semantics of the data structure to
efficiently program the recovery of the data structure. The Aeolus language provides two con-
structs which aid in the custom programming of data recovery, the so-called permanent and per-
action variables.

As mentioned in section 6, any type may be given the attribute permanent. This attribute
indicates that members of that type are to be allocated on the permanent heap, a dynamic

26For more information on the semantics of recoverable areas and the mechanisms to support them, see
[A11c83b1.

-40-

Aeolus Reference Manual 	 Preliminary Version

storage area in the object storage of each object instance. This area receives special treatment
by the Clouds storage manager; in particular, it is shadow paged during the toplevel precommit
action event." Any type which has as its base or element type a type with the attribute per-
manent inherits that attribute. Although other permanent types—such as permanent array
types—may be declared, the only permanent types which may be used as the types of variables
are permanent pointer types. In view of the support provided by the Clouds system, it is
strongly recommended that the following discipline be observed in the use of permanent vari-
ables: those variables generated within an action by use of an allocator may be freely assigned
values within that action; however, pre-allocated permanent variables—that is, those allocated
outside the current action (by some other action)—should be assigned values only within a
toplevel precommit event handler. However, this discipline is not enforced by the compiler.

Aeolus also provides the per-action variable construct. An object implementation part of
class recoverable may declare a single per-action variable section:

<per-action spec> 	"per" "action"
<var decl> (<var decl>)
"end" "per" "action"

A per-action specification resembles a recoverable area specification, and the semantics is also
similar, in that each action which touches an object with per-action variables gets its own ver-
sion of the variables; however, the programmer may access the per-action variables not only of
the current action, but also of the parent of the current action. The variables in a per-action
specification are accessed as if they were fields in a record described by the specification; two
entities of this "record type" are implicitly declared: Self and Parent, which refer respectively
to the per-action variables of the current action and its immediate ancestor.

Permanent and per-action variables may be used together to simulate the effect of recov-
erable areas at a much lower cost in space per action. In general, the per-action variables are
used to propagate changes to the resilient data structure up the action tree; these changes are
then applied during the toplevel precommit action event to the actual data structure in permanent
storage. The use of permanent and per-action variables is described more fully in Appendix G.

13.4. Action Invocations
As mentioned in section 10.1.1

take the form of an action invocation:
, the right-hand side of an assignment statement may also

<rhs>

<action invocation>
<action invocation>
<action invocation>
<rvalue invocation>
<rvalue invocation>

<timeout option>

("toplevel"] "action"
"(" <action invocation>
<proc call>
<obj op call>
<lhs> <assign op>
<rvalue proc call>
<rvalue obj op call>
"for" <expr>

(<timeout option>] ")"

<rvalue invocation>

Here, the right-hand side (which consists of an operation invocation which, if the operation is
value-returning, is embedded in another assignment statement) is invoked as an action; the
action ID of this action is assigned to the variable designated by the left-hand side of the action
invocation. The action ID may then be used as a parameter in operations on the action
manager which provide information about the status of the action, cause a process to wait on
the completion of an action, or explicitly cause an action to commit or abort. (The interface to
the Clouds action manager is described in Appendix E.) If the keyword toplevel is specified, the
action is created as a "top-level" action; that is, as an action with no ancestors. 27 Otherwise, the

20For more information on the management of permanent heap storage, see IPitt841 and 1Wilk86i.

27Thus, as we shall see, a top-level action cannot be affected by an abort of any ancestor of the action which
created it.

-41-

Aeolus Reference Manual 	 Preliminary Version

action is created as a "nested" action, that is, as a child (in the so-called action tree) of the
action which created it; as described below, a nested action may be affected by an abort of one
of its ancestors. Optionally, a timeout value (in milliseconds) may be specified; if the action has
not committed by the expiration of this timeout, the action will be aborted. If no timeout value

is specified, a system-defined default value is used. 28 Only an operation or internal procedure of
a recoverable or autorecoverable object may be invoked as an action.

The semantics of an action invocation is as follows: the action manager operation
CreateAction is invoked with the name of the operation to be performed as well as the list of

arguments to be passed to that operation. 29 The action manager then invokes the BOA event
handler on the object to which the operation belongs. Next, the action manager creates and
dispatches a process in which the operation code runs. An attempt by the operation to return
to its caller is considered an implicit attempt to commit the action, and will cause control to
transfer to the Commit operation of the action manager, which terminates the process and
invokes the precommit event handler of each object touched by the action. (An explicit invo-
cation of the Commit operation has the same effect.) If precommit of the object is successful,
the action manager then invokes the commit event handler of each touched object. If the
action (or one of its ancestors) invokes the Abort operation of the action manager, the action
manager terminates the process corresponding to the action and invokes the abort event
handler of each object touched by that action.

It may sometimes occur that an object operation may be called either as an action invoca-
tion or as an ordinary object operation invocation. In the case that an operation is invoked nor-
mally (that is, not as the target of an action invocation), an invocation of the action manager
operation Commit by the operation will cause the action manager to merely return control to the
point of invocation of the original operation; thus, in this case the Commit call is effectively a
normal procedure return. On the other hand, an invocation of the Abort operation by an opera-
tion invoked normally will cause the parent action of the invoker of the original operation to

abort. 8° Thus, in the case of normally-invoked operations, a call to the Abort action manager
operation provides a mechanism similar to an exception-handling mechanism with a single
exceptional condition ("error").

14. Processes

The final structuring feature of the Aeolus language provides an abstraction of the process
concept of the Clouds system. (The process is analogous to the program construct of Pascal or
Modula-2.) The invocation of a process provides activity in the Clouds system; processes may
be considered the "glue" which binds object operations, and possibly actions, to do useful
work.

A process is introduced by a header which gives the name of the process, as well as

23The default timeout value, as well as a(on manager operations to alter the timeout value after an action is in-
voked, are described in Appendix E.

2sThe exact details of the manner in which this information is provided depends on whether the operation is a lo-

cal procedure or a publicly-visible operation of the object to which it belongs.

32Note that all processes in the Clouds system are descendants of the top-level "universal action," which cannot
be aborted.

-42-

Aeolus Reference Manual
	

Preliminary Version

clauses detailing any imports of object definitions necessary (see section 12.1):

<comp unit>
<process head>

<process hdr>
<process block>

<process block decls pt>
<process block decls>
<process block decls>
<process block decls>
<process block decls>
<process block decls>

<process tail>

<process head> <process block> <process tail>
<process hdr> <imports>
"process" <process name> "is"
[<process block decls pt>] <stmt pt>
<process block decls> {<process block decls>}
<const or var decl>
<type decl>
<constraint decl>
<var address decl>

—4 	<procedure decl>
"process" "."

Following any import clauses, the body (<process block>) of the process is specified; the
<stmt pt> of this block is the entry point when the process is activated, and execution begins
there after any necessary variable initializations of the <process block> have been performed.

process test_bounded_stack is

import bounded_stack

bsl, bs2 : bounded_stack 0 	! Delayed object parameter constraint

i : integer := 0

begin
bsl := new bounded_stack (10, integer)
bs2 := new bounded_stack (20, integer)
loop

if bsl @ full () then
exit .

end if
bsl @ push (i)
if (i % 3 = 0) and not (bs2 @ full () or bsl @ empty ()) then

bs2 @ push (bsl @ pop 0)
end if
i + =--- 1

end loop
end process. ! test bo ,, ,.'ed stack !

Example of a Process (see section 12.1)

-43-

Aeolus Reference Manual 	 Preliminary Version

15. References

[A11c82] 	Allchin, J. E., and M. S. McKendry, "Object-Based Synchronization and
Recovery," Technical Report GIT-ICS-82/15, School of Information and Com-
puter Science, Georgia Institute of Technology, September 1982

[Allc83a] 	Allchin, J. E., and M. S. McKendry, "Synchronization and Recovery of Actions,"
Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, Montreal, August 1983

[A11c83b] 	Allchin, J. E., "An Architecture for Reliable Decentralized Systems," Ph.D.
Thesis, School of Information and Computer Science, Georgia Institute of Tech-
nology, 1983 (also available as technical report GIT-ICS-83/23)

[LeB185] 	LeBlanc, R. J., and C. T. Wilkes, "Systems Programming with Objects and
Actions," Proceedings of the Fifth International Conference on Distributed Computing
Systems, Denver, Colorado, May 1985 (also available as Technical Report GIT-
ICS-85/03)

[McKe84a] McKendry, M. S., "Clouds: A Fault-Tolerant Distributed Operating System,"
School of Information and Computer Science, Georgia Institute of Technology,
May 1984

[McKe84b] McKendry, M. S., "Ordering Actions for Visibility," Proceedings of the Fourth
Symposium on Reliability in Distributed Software and Database Systems, Silver Spring,
Maryland, October 1984 (also available as Technical Report GIT-ICS-84/05)

[Pitt84] 	Pitts, D., "Storage Management for an Action-Based Operating System," Ph.D.
Thesis Proposal, School of Information and Computer Science, Georgia Institute
of Technology, November 1984 (also available as Technical Report GIT-ICS-
85/02)

[Wilk86] 	Wilkes, C. T., "Programming Methodologies for Resilience and Availability,"
Ph.D. Thesis, School of Information and Computer Science, Georgia Institute of
Technology, in progress

FINAL REPORT
RESEARCH ON RELIABLE DISTRIBUTED

COMPUTING
CONTRACT #MDA 904-84-C-6035
REPORTING PERIOD: 11 Sept 84 - 30 Sept 85

TABLE OF CONTENTS

Page
1. Summary of Work Done
	

1

2. Distributed File Systems 	 2
2.1. Storage Management Design for an Action-based

Operating System 	 2
2.2. Storage Management 	 5
2.3. Recovery Management and Virtual Memory 	 5
2.4. Storage Management Implementation 	 7

2.4.1. References 	 10

3. Language Support for Robust Distributed Programs 	11
3.1. The Design of Aeolus 	 11

3.1.1. Features for Systems Programming 	 11
3.1.2. Features for Object and Action Programming 13

3.2. Programming Methodology 	 15
3.3. Implementation 	 16
3.4. Design Refinements 	 18
3.5. References 	 18

4. Conclusions 	 19

Funds Expenditure Graph 	 21

Funds Expenditure Report 	 22

1. Summary of Work Done

During the course of this project, a variety of work has done on the two tasks

called for by the statement of work. These efforts are closely related to other work in

progress within the Clouds Project, a major research effort in the School of Informa-

tion and Computer Science of Georgia Tech in the area of reliable distributed comput-

ing. We are now very close to integrating the results of a number of individual tasks

supported under this and other projects to produce a first prototype of the Clouds dis-

tributed computing system.

Under the Distributed File Systems task, work has concentrated on the develop-

ment of the storage management system of the Clouds kernel. Since the fundamental

concept of the Clouds system is to support transparent, reliable access to arbitrary

objects located anywhere with a network multicomputer, distributed file system issues

must be addresses at a much lower level than is traditionally the case. The major

achievements of this task are as follows:

(1) initial design of the storage management system (see quarterly progress report 1

and Appendix A to that report)

(2) refinements to that design for improved efficiency (see quarterly progress report

2)

(3) design and implementation of low-level device drivers to support Clouds reliabil-

ity mechanisms (see quarterly progress reports 3 and 4)

(4) integration of storagement with kernel virtual memory management (see quar-

terly progress report 4 and Appendix A to that report).

The technical report "Notes on a Storage Manager for the Clouds Kernel"

(appendix A to quarterly progress report 4), thoroughly documents the results our

work on the Clouds Storage Manager.

Under the Language Support for Robust Distributed Programs task, the focus of

our work has been our language, Aeolus, and its intended uses. The most important

aspect of Aeolus is that it provides a high-level language interface to the action and

object management features of the Clouds Kernel. Thus it is intended to be used as a

systems programming language for the implementation of the layers of the Clouds

1

system above the kernel. In support of this implementation work, we have been

studying programming methodology issues involving the use of these unique capabili-

ties provided by the kernel. The major achievements of our language work have been:

(1) completion of the initial design of Aeolus (see quarterly progress report 1 and

Appendix A to quarterly progress report 3)

(2) substantial progress on implementation of an Aeolus compiler (see quarterly pro-

gress reports 2 and 3)

(3) initial programming methodology studies (see quarterly progress report 1 and 2

and Appendices B and A to those reports, respectively)

(4) definition of the interface to kernel action and object managers (see quarterly

progress report 4)

(5) refinements of the Aeolus design (see quarterly progress report 4 and Appendix

B to that report).

2. Distributed File Systems

2.1. Storage Management Design for an Action-based Operating System

The Clouds Project is an effort to provide support for a distributed computing

system which achieves performance improvements (over conventional computing sys-

tems) through the parallelism possible in a multi-computer environment and reliability

improvements through the redundancy available in processing resources and data

storage. In order to achieve such improvements, the system must ensure the proper

coordination of processes on various machines in the system and synchronize the use

of shared data. The system as a whole must be able to deal with failures of one of its

component machines, determining those processes on the failed machine which are

necessary for the continuation of some larger task. A reliable distributed system must

be able to ensure the consistency of data in the presence of machine failures, taking

into account that data may be replicated.

The initial goal of the Clouds project is to produce an operating system kernel

that provides the mechanisms needed by a reliable distributed computing system. In

providing these mechanisms, the Clouds kernel must support other conventional

2

mechanisms such as virtual memory, process control and secondary storage manage-

ment. The action and object support must be integrated with the conventional kernel

functions so that support for a reliable distributed computing system is available

through a well-defined kernel interface, and the implementation of the kernel is

efficient and compact.

One subtask currently in progress is the design and investigation of a portion of

the Clouds kernel: the storage management system. A Ph.D. research proposal by Pitts

(attached as Appendix A to quarterly Progress Report 1) described the initial plans for

work on this subtask. In addition to describing how such a system can be built, it also

defined the interaction of the storage management system with other parts of the ker-

nel, particularly its interaction with the virtual memory system.

Thus the purpose of this research task has been to design a kernel-level storage

management (file) system (storage manager) that supports a reliable distributed com-

puting system. The storage manager is responsible for the secondary storage available

on the system. Specifically, the design presents the structures and mechanisms neces-

sary to support the storage manager. The design includes support for both recoverable

and non-recoverable objects. Mechanisms to create, delete, write and read objects on

disks are defined. For recoverable objects the additional protocols and structures

ensure recoverability of objects in the presence of machine failures. The design also

discusses the interaction of the storage manager and the virtual memory system. This

portion of the design specifies the structures and mechanisms required for virtual

memory. The design also defines the support required for action management and

object recovery. Finally a facility for the location of segments on secondary storage

must be provided.

The design of the storage manager is being done two phases. Phase one has been

a design of essential features for the system. The end-result will be an implementa-

tion for the Clouds kernel that will serve as a test-bed for further research. An

analysis of the design and implementation will be done to determine the correctness

and effectiveness of the design. The results of the analysis may have an effect on

phase two. This phase of the design will include modifications and refinements to the

original design. In general, phase two will include features not absolutely necessary

for the storage manager, but which may be desirable later as the system is put to use

as a research device. Feedback from the analysis of the original design may suggest

3

some of the changes found in the second phase. Phase two is not intended for

immediate implementation.

The Clouds kernel will provide support for three basic mechanisms which will be

important to later discussion: processes, objects and actions. Processes are the active

agents of the system; to initiate and perform any work requires a process. The kernel

has a process manager which handles all bookkeeping associated with creating,

dispatching, and destroying processes.

Objects, on the other hand, are passive entities. Objects are typed collections of

data. The type of an object determines what operations may be performed on the

data, as well as how the data is organized. Object data can only be manipulated

through these operations, and then only by a process which has a proper capability for

the object. A capability is a unique name for an object along with a list of operations

which are permissible for use by the possessor. The object manager handles the over-

head of verifying capabilities and performing operation calls.

Objects are the organizational units of the system. By using objects, a program-

mer has a means for abstraction and isolation of data. The kernel also provides a

mechanism for organizing sets of operations into a unit. This mechanism is the

action. Actions are atomic. The set of operations comprising an action appears to exe-

cute completely (by committing its results) or not at all (by aborting). Also, the atomi-

city of actions prevents the execution of one action interfering with the execution of

another. Actions provide a mechanism for making the effects of a set of operations

consistent and recoverable.

Actions are managed by the object manager. Actions themselves are simply

organizational units of work and require processes in order to perform any task. An

action may have several processes or one process executing on its behalf.

The kernel provides processes, objects, and actions as efficiently as possible. Par-

ticularly, because objects have different types and different possible operations, the

kernel needs access to objects in a manner which is consistent and convenient. For

this reason, all objects have a secondary type, called the segment type. The segment

type is a sequence of bytes with primitive operations such as read a page, write a page,

and delete or add a page. The segment is accessible only by the kernel.

4

2.2. Storage Management

The Clouds secondary storage is managed as a set of partitions. Each partition is

an autonomous logical device with its own set of interface routines for the transfer of

information and the allocation of the secondary storage managed by the partition. A

partition resides completely on one physical device and consists of a contiguous set of

records on disk. The partition requires three structures to manage partition storage.

First is a partition header, which holds information concerning the partition such as its

size, whether it provides support for recoverability, a list of bad disk records for the

partition, and other such information. The header should be duplicated to reduce the

risk of its destruction by a media failure or other such disastrous error. The header is

placed at a known location in the partition.

Each partition also maintains a directory, contains a mapping of sysnames (for

objects) onto partition record addresses. Note that a partition directory contains map-

pings only for objects residing on that; partition. Redundancy should also be insured

for this structure. The partition directory is at a well-known location.

The third partition structure is a record map, which is a bit-map showing allocar

tion of records for the partition. The driver uses the record map to determine which

records are in use by segments and which can be allocated. Once again, the record

map is an important structure which should be duplicated to prevent its loss after a

media crash.

The remainder of the partition is available for the storage of object data, or as the

storage manager treats objects, segment data.

Before a partition can be accessed by the kernel, it must be mounted on the sys-

tem. This involves doing a consistency check on the partition storage, examining the

directory and record map, and cleaning up any loose ends as far as recovery manage-

ment is concerned. Of course, the physical device on which the partition resides must

be active prior to this processing.

2.3. Recovery Management and Virtual Memory

Segment recovery is accomplished via a shadowing scheme. That is, segments on

which actions are operating have shadow versions that the actions actually see. The

5

scheme is pessimistic, so that no modifications are made to a permanent version until

the action making the modifications commits. The goals of the recovery scheme are,

aside from producing consistent results, to allow recovery of segments (and partition

structures) with as little storage overhead as possible, and with as few disks accesses as

possible. Shadowing, then, will be minimal. That is, only those parts of the segment

actually modified are shadowed.

The storage manager becomes involve in recovery only when a top-level action

precommits and the shadow version of the segment on which the action is operating is

created. Prior to precommit, all write operations are done in memory. An active seg-

ment is mapped into memory by the virtual memory system. An object's address

space contains a block of permanent data and a block of volatile data. The permanent

data block contains data which will survive a crash. This is basically the permanent

object state. The volatile data block's contents will not survive a machine crash and

generally consists of such structures as locks and semaphores for the object. Also con-

tained in the volatile data block is much of the information maintained by the action

management system.

When an action operates on a segment, the action management system maintains

in the volatile data block versions of any modified recoverable parts of the segment.

There may be any number of versions due to the nesting of actions and actions shar-

ing the segment. When a top-level action precommits, data must be moved from the

volatile data block to the permanent data block prior to shadowing the segment on

secondary storage. To simplify the precommit procedure, we allow only one action per

segment to pass the precommit point. For example, if actions A and B are both

operating on object 0 and A precommits, B is prevented from precommitting. If B

attempts to precommit, the action management system blocks the action. B still may

access the object.

During the time precommit and commit are taking place, the virtual memory sys-

tem must insure that modified pages of the permanent data block remain in memory

and undisturbed. The virtual memory system can do this by physically locking the

pages in memory, making them read-only. Then the pages can be flushed to disk to

build the shadow version of the permanent segment.

8

The mapping of virtual memory to secondary storage is another of the storage

manager's responsibilities. On page faults, the virtual memory system makes use of

storage manager calls to locate the backing storage for faulted pages and also to allo-

cate or locate backing storage for virtual pages being paged out.

2.4. Storage Management Implementation

The development of the Clouds storage manager involves the implementation of

three components. These are the device object, the partition object, and the segment

object. These objects are abstractions of the disk storage available on a Clouds

machine. The device object manipulates device storage as a collection of uninterpreted

blocks of data, which it transfers in and out of virtual memory. The partition object

provides a mechanism for division of device storage for administrative purposes and

also is involved in the location of data, and the allocation of device storage. The seg-

ment object treats device storage as a collection of bytes. In fact, the segment object

is just an alternate view of any Clouds object. We consider the device object the

lowest level of abstraction and the segment object represents the highest level. In the

paragraphs that follow, we describe the current state of the storage manager.

At the device object level, we are developing two disk objects. Clouds disk

objects include not only the conventional device driver functions, but also provide

necessary support for the recovery mechanisms of the storage manager. Specifically,

the Clouds disk objects provide a mechanism, the flush routine, which insures that

requests scheduled by an action are actually completed before the action commits. This

mechanism differs from conventional disk management schemes, where a request may

remain enqueued after the process that issued it terminates. The flush routine relies

on the flush table, a per device structure. The table contains an entry for each action;

the entry contains a list of requests made by the action and a record of the number of

requests pending and completed.

The development of a RLO2 disk object has been straightforward and we now

have a working version integrated with the Clouds kernel. Minor changes in the way

the object formats the medium are anticipated. Additionally, the object must be

modified to lock physical pages for I/O transfers, because of the Clouds kernel's use

of the virtual memory system as the basic I/O mechanism. The RLO2 will allow us to

go ahead with the development of kernel and paritcularly with the testing of the

7

storage manager. The RLO2 will not; be the primary disk for the Clouds system, as it

holds only 10 Mb on each cartridge. The primary disk for the initial Clouds imple-

mentation will be the RA81, a disk object for which is under development in parallel

with the development of the RLO2 object. Because the RA81 is a "smart" device, pro-

gress has been slower and the integration of the facilities required by the Clouds

storage manager is more complex. Testing is currently under way on this device. We

have kept the device object interface for the two devices unform and also have

attempted to reduce any side-effects so that upon completion of the RA81 object, this

object can be use in the place of or along with the RL02.

The next level of abstraction for the storage manager is the partition level, which

we have already discussed in some detail. Implementation at this level is just being

completed. A partition provides all the structures required to support the creation and

management of Clouds objects. Specifically, the partitions provide support for the

location of objects and the allocation of disk storage for objects. We have presented

the partition structures necessary for these functions, namely the partition directory

and record map. There is another structure which, while not necessary for the func-

tionality of the partition object, we believe will considerably improve the efficiency of

the partition object's performance.

To understand the significance of this structure note that the Clouds kernel pro-

vides for the location-independent invocation of an object operation, which requires

the kernel to search for the object at each operation invocation. Object searches are

network-wide and several techniques are being developed to short-circuit these

searches. One concern is the necessity of going to disk in order to determine if the

object is on a partition. Each partition maintains a structure called a maybe table which

is intended to reduce the number of unnecessary disk accesses during object search

(an unnecessary access is one which shows the object is not on the partition in ques-

tion). The maybe table is a small in-memory representation of the partition member-

ship. A maybe table is an example of a Bloom filter [Bloom70]. The table is a

compressed hash table, in which several segment names may hash to the same entry.

In trade-off for the reduced size of the table, only a negative response to a query is

guaranteed to be correct. Responses indicating the object is on the partition may in

fact be wrong and may require the partition object to access the directory on disk. We

are really trading accuracy of the responses for speed since in most cases the query can

8

be answered without an unnecessary access to disk. Because searches are frequent

events, we feel that the Maybe table will have a large effect on system performance.

The segment system forms the highest abstraction provided by the storage

manager. Disk storage at this level is managed as a collection of arbitrarily sized seg-

ments, which generally represent some Clouds object. Segments provide a uniform

interface through which the Clouds kernel can manipulate the object. Although seg-

ments conceptually provide a simple view of storage as a sequence of bytes, the actual

implementation on disk is quite different. A disk segment is a tree structure, which

has as its root a segment header. This header contains all information pertinent to the

segment and is the entry into the segment (an entry in the partition directory points to

the segment header). The leaves of the segment tree are the data records on the seg-

ment. The internal nodes of the tree consist of link records, providing connectivity

between the segment header and the data records.

In addition, the segment system provides the recovery protocols discussed earlier.

Implementation of the segment system is currently in progress.

As discussed above, the segment system, the action management system and

object management system are involved in the management of virtual memory with

respect to the mapping of objects. We are finalizing the extent of each system's

responsibilities and influence in the virtual memory and the cooperation needed

between the systems. For example, the storage manager shares with the object

manager the responsibility for mapping the on-disk version of the segment to the vir-

tual memory version. Each segment has one or more windows which represent

chunks of the segments which are actually mapped into virtual memory. This allows

the mapping of portions of large objects into virtual memory, avoiding the cost of

mapping the entire object. The mapping of each object in memory will consists on

several standard windows: a code window for the executable portion of the object; a

permanent object data window; and a volatile data window. If the object is recoverable

the permanent data window actually consists of several optional windows. There may

be a static non-recoverable data window, containing object data not considered neces-

sary as part of the recoverable object state. There may also be a static recoverable data

window, which contains (part of) the recoverable object state. Finally, there may be a

permanent heap window, which is use in objects which provide customized recovery

[Wilkes85a, Wilkes85b]. Each of these 'windows may be mapped to different

9

partitions. For instance, the code window and static non-recoverable windows are

mapped onto the disk segment image itself. The volatile heap window and recoverable

windows are mapped to a paging partition, a special partition reserved simply for pro-

viding backing store. In the latter case, the storage manager is really providing two

sets of mappings from disk to virtual memory: one for handling page faults and the

other for handling the recovery aspects of object management.

The storage manager also makes use of the virtual memory system to assist the

action management system in the committing of actions. The segment system uses

virtual memory structures to determine which segment pages have been modified and

then, based on its own information as to the structure of the segment, decides which

segment pages must be shadowed to provide the necessary recovery. Because the

storage manager is aware of the segment's virtual memory mapping, and the special

attributes of the standard windows, it knows which modified pages actually need to be

shadowed and which can be simply written to disk.

A technical report [Pitts85] which summarizes all of the work which has been

done on the storage manager was attached to Quarterly Progress Report 4 as Appendix

A.

2.4.1. References

[Bloom70] Bloom, B.H., "Space/Time Trade-offs in Hash Coding with Allowable

Errors," Communications of the ACM, No. 13, Vol. 7 (July 1970), pp.422-

426.

[Pitts85] Pitts, D.V. and E.H. Spofford, "Notes on a Storage Manager for the Clouds

Kernel" Technical Report GIT-ICS-85/02, School of Information and Com-

puter Science, Georgia Institute of Technology, October 1985.

[Wilkes85a]

Wilkes, C. T., "Programming Methodologies for Resilience and Availabil-

ity," Ph.D. Thesis Proposal, School of Information and Computer Science,

Georgia Institute of Technology„January, 1985.

[Wilkes85b]

Wilkes, C. T., "Preliminary Aeolus Reference Manual," Technical Report

10

GIT-ICS-85/07, School of Information and Computer Science, Georgia

Institute of Technology, October 1985.

3. Language Support for Robust Distributed Programs

3.1. The Design of Aeolus

The major design goal of our language Aeolus is to make possible access to the

features of the Clouds system from a powerful systems programming language which

supplies those features—such as strong typing—which aid in the quick development of

error-free programs, yet allows those features to be explicitly circumvented when

necessary.

The major structuring features in Aeolus are processes and objects. Objects have

two purposes in Aeolus: to provide support for data abstraction, and to reflect the

recoverability and synchronization capabilities provided by the Clouds kernel. It has

been argued elsewhere [Allc82] that the object construct provides a powerful tool for

the organization of programs for recovery, both from the standpoint of the program-

mer and of the system. Objects may rely on the automatic operating system / run-

time system support for synchronization and recovery (autorecoverable and autosynch

objects). Alternatively, using powerful features provided by the language and the

Clouds system, the programmer may take advantage of semantic knowledge about the

application to explicitly code more appropriate recoverability and synchronization.

However, Aeolus objects also provide abstraction features even when synchronization

and recovery are not required. These non-Clouds objects provide a logical framework

for the organization of modules for separate compilation.

3.1.1. Features for Systems Programming

In keeping with its purpose as a systems programming language, Aeolus incor-

porates several features which give the programmer access to the hardware and the

lower levels of the systems software, as well as "convenience" features which allow

more efficient coding, including:

a full range of assignment and bit-manipulation operators similar to those in
the C language;

features for register optimization, such as a special index type for loop counters

11

and array references;

the option of specifying inline expansion of a procedure;

a facility for specifying arbitrary procedure argument lists of unspecified length
and (predefined) types (similar to the nospread arglists of Interlisp);

and the ability to specify storage addresses for variables, as well as some capa-
bilities for setting and doing arithmetic on pointers.

However, most of the power of Aeolus as a systems programming language, aside

from the access it provides to the features of the Clouds system, lies in the ability it

gives the programmer to specify low-level data structures as abstract data types, and in

the treatment of the underlying hardware as an object with operations on its state

available from the language.

In addition to the usual structured types (records and arrays), Aeolus provides a

structure type, which allows the programmer to specify abstract types for the manipula-

tion of bitfields. The structure is similar to the packed record construct of Pascal, except

that the programmer indicates that its fields should fit one of the addressable entities

defined by the target computer (byte, word, doubleword, quadword, etc.), and this

correspondence is checked by the compiler. This provides a secure mechanism allow-

ing bit fields within a low-level data structure to be referenced by name. Aeolus also

provides the byte and word types as predefined objects. These objects have operations

permitting manipulations similar to those of the bitzet type of Modula-2. The program-

mer may define similar objects for bit strings of other lengths.

The ability to inspect and change the state of the hardware is also important in

systems programming. Access to the underlying hardware is provided by the opera-

tions of special Aeolus objects. We call such an object a pseudo - object since only one

instance of it may exist, whereas there may be an arbitrary number of instances of a

normal object. An example of a pseudo-object is PC_System. This pseudo-object

gives access to the registers and ports of a PC's microprocessor, and through the ports

to the other system components, such as the interrupt controller, device controllers,

and modem registers. For example, the IN_BYTE and OUT BYTE operations of

PC_System allow values to be input and output from the byte ports of a PC; other

PC_System operations provide such capabilities as access to the register set, flags, and

interrupt mechanism. These operations typically compile inline to a single machine

instruction. For considerations of efficiency, some operations in hardware pseudo-

12

objects may give access to special instructions of the target machine, such as the string

instructions of the PC or the polynomial instructions of the VAX.

3.1.2. Features for Object and Action Programming

The design of Aeolus is intended to support the recovery and synchronization

capabilities of the Clouds system in a high-level systems programming language.

Objects in Aeolus, besides providing an organizational tool for secure separate compi-

lation, give access to the recovery properties of Clouds objects. Thus, if an Aeolus

object is designated as recoverable or autorecoverable, the Clouds kernel mechanisms

are used for invocations of its operations, allowing the system to control the recovera-

bility properties of the object's state. In the remainder of this section, the features

provided by Aeolus for accessing these features of Clouds are examined.

The code for an Aeolus object has two parts. The definition part is seen both by

the object itself when it is being compiled, and by all other objects or programs which

use that object. Compilation of a definition part produces a symbol table file which is

used for type checking among these separate compilations. It can contain

specifications of public types and constants defined by the object, and the interface

definitions of the object's operations. Definition parts may not contain variable

declarations. The implementation part contains the actual code of the operations, along

with any needed local (private) type, constant, or procedure definitions. Local vari-

ables of an object share the lifetime of the object instance to which they belong, and

thus act as "own" variables. This separation of definition and implementation pro-

vides a safe separate compilation mechanism similar to packages in Ada (TM) or

modules in Modula-2.

In the header of an object definition, the programmer may specify the object class

as being pseudo, local, nonrecoverable, recoverable, or autorecoverable. The classes

pseudo and local are called the non-Clouds object classes; the classes nonrecoverable,

recoverable, and autorecoverable are called the Clouds classes. If the object class is

specified as being pseudo, the object is treated as being simply a separate compilation

module; pseudo-objects are used as a simple separate compilation mechanism, as inter-

facing to the runtime system and kernel services, and for integrating objects written in

other languages into Aeolus systems. Local objects provide some of the functionality

of Clouds objects (such as access to multiple object instances) without the expense of

13

the Clouds object management facilities; however, local objects have no existence

independent of a process, as Clouds objects may have. The simplest Clouds object

class, nonrecoverable, makes use of the Clouds object management facilities but does

not use the action management. Objects of the autorecoverable class, however, provide

fully automatic access to the Clouds action management facilities. The entire object

state is made recoverable, and default handlers for the action events (such as ABORT

and COMMIT) are provided by the compiler/runtime system. Thus, the programmer

may gain access to the action mechanisms of the Clouds system with a single keyword.

However, the full power of the automatic Clouds action mechanisms may be unneces-

sary and inefficient in some cases. For those cases, the Aeolus/Clouds system pro-

vides mechanisms which allow the user to explicitly program recovery strategies

tailored to the individual requirements of the problem at hand. If the object is

specified as being recoverable, the programmer may specify part of the object state as

being recoverable and may provide alternate handlers for action events.

The Aeolus language also provides access to the synchronization mechanisms of

the Clouds system. When the autosynch object attribute is specified in an object

definition header, it indicates that the default system synchronization procedures are

to be used on the object's operations to provide concurrency atomicity. If the

autosynch attribute is not specified, synchronization may be explicitly programmed

using operations on the lock type provided by the language. A Clouds lock [Allc8313]

is not associated with a physical object, but rather with values in the domain of the

object. Thus—for example—a file name may be locked, even if a physical file with

that name does not yet exist.

Object operations are programmed like procedures. An operation invocation

looks like a procedure invocation with a prefix indicating the object instance upon

which to operate:

<object instance id> © <operation id> <actual param list>)

An object instance may be created by declaring a variable of that object type, and then

allocating the instance's data storage on the heap using an extended version of the

allocation function, or by associating the variable with a "permanent" object, much as

a file variable can be associated with a physical file in Pascal.

14

An operation or local procedure of a recoverable or autorecoverable Aeolus

object may be invoked as an action. The invocation of an action is similar to a pro-

cedure or operation invocation; however, a unique action-id is created by a Clouds

action manager for the invocation, which may be assigned to a variable of the invok-

ing procedure, for example:

actionlD := action (object]. 0 op]. (paraml, param2))

This action-id variable may be used to retrieve information from the system about the

status of the action, or to abort the action, using calls to a Clouds action manager.

This mechanism allows general control structures to be formulated, e.g., for the con-

current invocation of actions.

3.2. Programming Methodology

The features of Aeolus described above (and in [Wilk85b]) provide easy access

to the synchronization and recovery features of Clouds, and thus they provide a

framework within which to study programming methodologies suitable for action-

object systems such as Clouds. This study should lead to the design of high-level

language features to support that methodology. Thus, our interest in Aeolus lies not

so much in the language itself as in studying the sort of programming which may be

done with it.

We have found Aeolus to be effective as a systems programming language during

our studies of programming systems objects such as communications handlers for the

Clouds workstations. In particular, the clarity of interface definitions made possible by

use of pseudo-objects is extremely valuable for encapsulation of hardware details in

such hardware-dependent programming. Through our experience with developing sys-

tems objects, we have come to understand techniques for using subactions as

"firewalls" to limit the effect of failures. We have found that Allchin's generalized

lock mechanism makes it relatively easy to specify special-purpose synchronization

rules dependent on object semantics.

We intend to use Aeolus as a framework within which to study programming

methodologies for action-object systems. Among the hardest questions which need

more study is how replication can most effectively be used to provide availability.

15

Actions and resilient objects ensure that failures are not catastrophic, but they are

concerned with data integrity, not with how a program reacts to failures. The availa-

bility question involves use of multiple objects on different nodes to represent a sin-

gle resource, thus providing continued access to the resource in the presence of indi-

vidual node failures. Algorithms for read and write access to such resources must

be developed and evaluated. The recent paper by Daniels and Spector [Dani83] is one

example of such an algorithm.

We must also consider possible representations of work so that it may be res-

tarted; this is an area that has been until recently unexplored [McKe84]. Most of the

work on actions and objects has been oriented toward protection of data from

failures. The fact that processes are considered to be an important, independent

component supported by the Clouds architecture gives us a point of departure for

this study. McKendry's work on Petri nets [McKe84] lays the groundwork for an

attack on this problem within the framework of Clouds. If we view a program as a

collection of processes interacting through shared objects, some features akin to

the process interconnection specifications of Pronet [Macc82] may prove to be useful.

Our initial studies in programming methodologies for resilience and availability

are described in [Wilk85a]; there, a plan is presented for determining such methodolo-

gies appropriate to the design of objects needed in the Clouds system. Examples of a

replicated object exhibiting the properties of resilience and availability are given there,

as well as a preliminary design for a permanent heap, part of the run-time support

necessary for the Aeolus/Clouds system to provide these properties. The issues with

which we are concerned include the use of semantic knowledge of objects in the pro-

gramming of replication; trade-offs between consistency and availability; the appropri-

ateness of current programming models for replicated data; and the support needed

from the operating system and language runtime system to ensure availability and for-

ward progress of processes. As we progress with these studies, we will take advantage

of our experience in the implementation of the Aeolus runtime system and its interac-

tion with the action and object managers of the Clouds system.

3.3. Implementation

A compiler for Aeolus is currently under development on one of the DEC VAX

11/750 computers of the Clouds project under Berkeley Unix (TM) Version 4.2. We

18

are using the Amsterdam Compiler Kit (ACK) [Tane83] to generate code generators for

Aeolus for both the Clouds VAXes and the individual work stations which the Clouds

system will use to interface to the VAXes. Work on the semantic routines for Aeolus

is proceeding in parallel with the development of routines to generate intermediate

code for ACK. This work is being done in Pastel, an extended Pascal dialect

developed at the Lawrence Livermore National Laboratory.

The code-generation work is progressing quite well; we have been able to gen-

erate and execute code for object invocations which do not involve the facilities of the

Clouds kernel or object managers (that is, code for what we call "non-Clouds

objects").

Work is also progressing on the implementation of facilities for generating actual

"Clouds objects." This entails the definition of the interface to the Clouds object and

action managers, which will serve as an intermediary between user programs and the

kernel facilities. Thus, the members of the compiler group are working with members

of the kernel group on the definition and implementation of the action and object

managers. These interfaces are now well-defined, and we expect the Aeolus compiler

to be capable of interfacing with the action and object managers of the Clouds system,

and thus to be capable of invocations on actual Clouds objects, by the end of 1985.

Actual testing of object and action management calls awaits the implementation of the

requisite Clouds system services, which is expected in the first quarter of 1986.

As mentioned above, the design of the interfaces of the runtime system with the

Clouds action and object managers is essentially complete. Members of the Aeolus

group have been working with members of the kernel group to design these interfaces

and strategies for efficient action management. Of particular importance are our

designs for support of recoverable areas in Clouds objects; these constructs enable the

Aeolus language (in conjunction with the action management system) to provide view

atomicity in addition to the failure atomicity provided by the kernel. Each action which

touches an object which has a recoverable area gets its own copy (or version) of that

recoverable area on which it may make its changes; when a nested action commits, it

propagates its version of the recoverable area to its parent. View atomicity ensures

that each action in the action tree which accesses an object sees the correct version of

the data in that recoverable area. We have developed a technique for implementing

recoverable areas using partial replacement of the object page table entries which

17

provides view atomicity without causing a time penalty for access to the data in the

recoverable area. Rather, a small penalty is paid upon process exchange if a process is

associated with an action.

3.4. Design Refinements

The work of the Aeolus group during recent months has been concentrated on

the refinement and rationalization of the language design. The design of the language

has undergone a significant reworking, especially those parts of the design concerned

with specification of types. In view of one of the Aeolus design goals of providing the

power necessary for systems programming without sacrificing the advantages of strong

type checking, we wished to provide dynamic (flexible) data types; however, we felt

that our previous design for this violated the goals of simplicity and readability. Our

reworked design integrates flexible types into the language in a much cleaner manner,

within the framework of general para.meterized types. The changes to the design have

been incorporated into the language description [Wilk85b], along with the interfaces to

the Clouds system object and action managers. The revised language definition was

attached to Quarterly Progress Report 4 as Appendix B.

These design changes have now been incorporated into the symbol table of the

compiler and new semantic routines necessitated by the changes are being imple-

mented. We have also taken advantage of the redesign to streamline parts of the

semantic routine structure, taking into account our previous implementation experi-

ence. Work on the implementation is accelerating now that these changes are under-

stood.

3.5. References

[Dani83] Daniels, D., and A. Z. Spector, "An Algorithm for Replicated Direc-

tories," Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Princi-

ples of Distributed Computing, Montreal, August 1983.

[Macc82] Maccabe, A. B., and R. J. LeBlanc, "The Design of a Programming

Language Based On Connectivity Networks," Proceedings of the Third Inter-

national Conference on Distributed Computing Systems, Miami / Fort Lauder-

dale, October 1982.

18

[McKe84] McKendry, M. S., "Ordering Actions for Visibility," Proceedings of the

Fourth Symposium on Reliability in Distributed Software and Database Systems,

Silver Spring, Maryland, October 1984 (also available as Technical Report

GIT-ICS-84/05).

[Tane83] Tanenbaum, A. S., H. van Staveren, E. G. Keizer, and J. W. Stevenson,

"A Practical Tool Kit for Making Portable Compilers," Communications of

the ACM 26, 9, September 1983.

[Wilk85a] Wilkes, C. T., "Programming Methodologies for Resilience and Availabil-

ity," Ph.D. Thesis Proposal, School of Information and Computer Science,

Georgia Institute of Technology, January 1985.

[Wilk85b] Wilkes, C. T., "Preliminary Aeolus Reference Manual," Technical Report

GIT-ICS-85/07, School of Information and Computer Science, Georgia

Institute of Technology, July 1985 (revised October 1985).

4. Conclusions

Work on both of the two tasks of the project has been very productive over the

last year. In conjunction with related work on the Clouds kernel and the action

management system, we anticipate having a working Clouds prototype by early in

1986. The storage manager designed and currently being implemented under the Dis-

tributed File Systems task obviously is strongly related to the kernel and thus must be

combined with the kernel for testing. That integration should take place in the

immediate future. The next phase of this work, which includes performance measure-

ment and analysis followed by design refinement, will then be possible.

Under the Language Support for Robust Distributed Computing task, we have

produced a language (Aeolus) which includes features that match the capabilities for

action and object management provided by the Clouds kernel. This language has

enabled us to begin our studies of programming methodologies for action/object pro-

gramming. Further study in this area will be a major ongoing research effort. We

have also made substantial progress on a compiler for Aeolus. It will be ready for use

by the time the kernel and storage manager are integrated and available for managing

Aeolus objects and processes. The compiler interface to the action management sys-

tem has been defined and the compiler should be capable of generating code to utilize

19

this interface even prior to the implementation of the action manager.

In summary, our efforts under this project have been instrumental in the

development of a prototype of the Clouds reliable distributed computing system con-

cept. Work to be done in the next year will provide significant evidence of the viabil-

ity of the Clouds concept.

20

Q1 Q3

100

90

80

70

60

50

- 40

30

20

10

0

Q4

PE
R

C
E

N
TA

G
E

O
r
 ru

m
s

E
X

PE
N

D
E

D

TI
10

11
S

A
N

I)
S

 M
I.

L
A

R
S

(
C

11
11

1.
A

T
I V

E
)

FUNDS EXPENDITURE GRAPH

Esti mated

/

/

Q2

Q UARTER

21

FUNDS EXPENDITURE REPORT

Column A Column B 	Column C 	 Column D 	 Column E 	Column F

ORIGINAL PROPOSAL

Latest 	Reporting Cumulative Expenditures to Date 	Cost to 	Latest

Accepted 	Quarter 	 Complete 	Cost

Revised 	Expendi- 	Total 	Dollar 	Pct. Dollar 	Estimate 	Estimate

Proposal 	tures 	Man Hours 	Value 	Value

rect Labor
Number 	Fourlv

.ype 	of 	Hours 	Rate

Dollar
Total

Number
of Hours

Dollar
Total

1 	 350 	23.77 $8320.00 430 $10220.96 	$2899.36 430 $10220.96 100.0% $0.00 $10220.96

RA 	 1300 	11.41 114833.00 1648 $18802.35 	$5703.67 1648 118802.35 100.A $0.00 $18802.55

!erica! 	175 	6.74 $1180.00 0 $0.00 	10.00 0 $0.00 100.0% $0.00 $0.00

Total 	Direct Labor $24333.00 $29023.31 	18603.03 2078 129023.31 100.0% $0.00 229023.71
Burden 	@ 	24.6% $2337.00 $2387.93 	$756.40 $2527.93 100.0% 10.00 $:787. 95
Q1.0% starting 7/1/85)
(Excluding 	GRA Labor)

al 	Direct Labor and Burden $26670.00 $31411.24 	$9759.43 $31411.24 100.01 m.Oa 151411.24

AVEL EXPENSE $2500.00 $1193.74 	$0.00 $1193.74 100.07. $0.00 11197.74

NERAL & 	ADMINISTRATIVE EXPENSE 	$1500.00 $413.46 	$135.00 1415.46 100.07. 10.00 14:7.46

MPUT1NG CHARGES $1500.00 $1565.18 	$377.28 $1565.18 100,07. $0.00 11565.2

TOTAL DIRECT COSTS $32170.00 $34583.62 	$9367.71 $74587.62 100.07. 0.20 $74585.62

IRECT COSTS 	@ 	55.3% $17790.00 $19959.38 	$7276.49 119959.38 100.07. $19959. -', S
(63.51 	starting 	7/1/85)

CONTRACT PRICE #49960.00 154547.00 $54547.00

COMMITTMENTS AND $17144.20 154543.00 100.01
XPENDITURES

22

APPENDIX A

Programming Methodologies for Resilience and Availability

C. Thomas Wilkes

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT

The goal of the Clouds project at Georgia Tech is the implementation of a
fault-tolerant distributed operating system based on the notions of objects and
actions, which will provide an environment for the construction of reliable
applications. As part of the Clouds project, we are designing and implementing
a high-level language in which those levels of the Clouds system above the ker-
nel level will be implemented. The Aeolus language provides access to the syn-
chronization and recovery features of Clouds. It also provides a framework with
which to study programming methodologies suitable for action-object systems such
as Clouds.

This proposal describes a plan for determining programming methodologies
appropriate to the- design of objects needed in the Clouds system. Among the
properties needed by these objects are resilience and availability. Examples of
a replicated object exhibiting these properties are given, as well as a prelim-
inary design for a permanent heap, part of the run-time support necessary for
the Aeolus/Clouds system to provide these properties.

1. INTRODUCTION

Among the benefits promised by advocates of distributed computing are
improvements in system fault tolerance and reliability, increased availability
of data and services, and faster response through use of distributed pro-
grams. Interest in reliability has grown as distributed systems have come to be
used in an ever widening set of applications, including critical control sys-
tems. In the past, fault tolerance has principally been the concern of
hardware designers, who mainly used redundancy as a solution. More recently,
it has been realized that maintaining the integrity of distributed data is a
crucial concern in providing the benefits listed above. Accordingly, there
has been a growth in research interest in techniques for providing the
required data integrity in the presence of hardware failures and con-
currently executing processes.

The Clouds project at Georgia Tech [Allc82, Allc83a, Allc83b] is one of a
number of recent proposals in which reliability in a distributed system is based
on the use of atomic actions, a generalization of the transaction concept of
distributed databases. As part of the Clouds project, we are designing and
implementing a high-level language which will provide access to the synchroniza-
tion and recovery features of the Clouds system; this language will be used to
implement those levels of the Clouds system above the kernel level. It will
also provide a framework within which to study programming methodologies suit-
able for systems based on the action concept, such as Clouds. Among the proper-
ties needed by systems data structures, the design of which must be addressed by
such methodologies, are resilience -- survivability and consistency of the data
despite crashes and other faults -- and availability -- increased possibility of
access to replicated data despite network partitions or failures of some sites
in a multicomputer system.

This proposal describes a plan for studying such methodologies, in particu-
lar those needed in the design of the type of data structures neccessary for the
implementation of the Clouds system. Section 2 of this proposal presents the
problem explored by this work and describes the environment in which it will be
examined (the Clouds system). Section 3 describes the plan of the research to
be performed, and presents examples of a replicated object exhibiting the pro-
perties of resilience and availability, as well as a preliminary design for a
permanent heap, part of the run-time support neccessary for the Aeolus/Clouds
system to provide these properties. An outline of the proposed dissertation is
presented in Section 4.

-1-

2. PROBLEM STATEMENT AND BACKGROUND

The purpose of the proposed research is to explore programming methodolo-
gies for action-based systems appropriate to the design of data structures exhi-
biting the properties of resilience and availability. In this section, the
environment in which this study will be carried out is described, and a
rationale for the need of such programming methodologies is presented.

2.1. The Clouds System

The goal of the Clouds project at Georgia Tech is to allow the construction
of reliable application systems on unreliable hardware. We use the notion of
an object to represent system components, such as directories or queues. An
object consists of data and a set of operations on that data which maintain a
set of associated invariants. A set of changes to objects is grouped into an
action, a unit of work which appears to be atomic to its environment (in partic-
ular, to other actions). Objects are passive in the Clouds architecture; thus,
processes, which may represent a single top-level or nested action, are used to
provide activity in the system.

The actions in Clouds go beyond the related notion of transactions in a
database 	system. 	Rather 	than 	modelling 	all access to objects as simple
reads or writes, the Clouds approach supports arbitrary operations on 	objects
and allows 	a programmer to take advantage of operation semantics to increase
concurrency, and thereby performance. Through appropriate use of 	encapsula-
tion, concurrent 	actions can be allowed to change objects without breaching
serializability. Even breaches to serializability can be allowed, when it is
semantically appropriate and it is necessary to improve performance.

Thus, objects, actions and processes are fundamental concepts supported
. by the architecture. 	To support these concepts, recovery and consistency
are incorporated into the basic virtual memory mechanism. 	Synchronization
mechanisms to control the interactions of actions are also provided. It is
with these capabilities that Clouds is meant to support the data integrity
required for the implementation of reliable, distributed application programs.

The mechanisms developed for the support of transactions in database sys-
tems, as well as the traditional operating system synchronization mechanisms,
have been found to be insufficient for the support of the action-object approach
in operating systems. In particular, the problems of ordering and atomicity for
nested actions, and several simplifications which apply to many operating sys-
tems problems, are discussed in [McKeS4b]. In particular, it is shown that
through the use of per-action variables, it is not necessary to maintain com-
plete versions of recoverable data for many types of systems data structures,
giving substantial gains in space and time performance. The expediencies made
possible by these simplifications make the use of the action-object approach in
the Clouds system viable.

These mechanisms provided by the Clouds architecture are used to support
the operating system itself and its services. Thus, the system itself is decen-
tralized and resilient. The Clouds system may be considered to consist of a set
of fault-tolerant objects (servers) which in combination provide a reliable
environment for applications.

2.2. The Need for an Action-Based Programming Methodology

Actions are the key feature for guaranteeing data consistency. 	The
"all-or-nothing" nature of actions really solves two problems. When an action
falls, its effects are automatically undone; so, actions which fail due to
machine failures cannot leave objects in an inconsistent state. Addition-
ally, the required serializability of actions provides a coarse-grained syn-
chronization among them. 	(Other features may be used to provide more con-
currency by supporting synchronization at a lower 	level.) Actions which
are aborted for logical reasons (e.g., deadlock) again can have no visible
effects on the state of any object. Thus the action concept successfully
broadens the recovery viewpoint provided by checkpoints, since it encompasses
all the changes to any number of objects made by an arbitrarily complex action.

Actions alone do not provide all of the generally desired capabilities,
since they do not address the question of the resiliency of individual
objects. That is, they do not contribute toward the recovery of objects

-2-

located on machines that fail. Rather, they guarantee the integrity of sur-
viving objects. Both Argus and Clouds support resilience through use of stable
storage. (Stable storage has the property that information entrusted to it
is extremely unlikely to be lost.) Various features are provided which cause
the object support system to record sufficient information on stable storage
so that the state of an object (guardian in Argus) may be recovered after a
hardware failure. Note that for a combination of consistency and resili-
ence, the state of an object must be written to stable storage whenever an
action which modified the object commits (presuming that pessimistic recovery is
being used).

Writing the state on an object to stable storage is, of 	course, just
checkpointing. 	It is the coupling with the action mechanism which makes
checkpointing of objects effective. That is, part of the implementation of a
commit is a checkpoint of all affected objects. Thus checkpointing is made
an effective means for providing consistent, resilient objects.

The mechanism for specifying just what must be written is 	one 	way 	in
which Argus, 	Clouds and other proposals differ. In Argus, all mutex objects
within a guardian are written. As suggested by the name, mutex objects 	also
have certain synchronization properties, relating to their accessibility to con-
currently executing actions. Clouds, on the other hand, allows an entire
object or any data object within it to be specified as recoverable. As would
be expected, if the entire object is recoverable, then all of its contained
data objects 	are 	written to stable storage when a relevant commit occurs.
Both of these approaches exemplify implicit specifications of what must be
saved for recovery purposes. Yet another approach would be to require the pro-
grammer who defines an object to provide an explicit write-to-stable-storage
operation to be invoked by the object management system at appropriate
times. This variety of proposals reflects the need for study of a programming
methodology based on use of objects and actions, so that we can determine just
what kinds of features are most effective.

The Clouds architecture goes beyond others in that it can support actions
that involve objects on more than one machine. In other words, a remote
procedure call can be done without creation of a nested action. Allchin's work
[Allc83b] 	provides a definition of the basic capabilities supported by the
Clouds architecture and a design for their implementation. 	Now that that
implementation is in progress, we are studying how these capabilities may be
applied. In particular, we wish to study a programming methodology for systems
like Clouds. The semantic knowledge about objects afforded by the encapsulation
in object-oriented systems like Clouds should provide opportunities for optimi-
zations in the treatment of the synchronization and recovery of replicated data
unavailable in the simple read-write database model.

As part of the Clouds project, we are designing and implementing high-level
systems programming language called Aeolus (after the king of the winds in Greek
mythology). An overview of the Aeolus language is presented in [LeB185] (most
of the materials in this and the preceeding sections are also derived from this
paper). Aeolus gives the programmer access to the features of the Clouds system
discussed above. However, we also intend to use Aeolus as a framework for
studying the sort of programming methodology appropriate to Clouds. This study
should lead to the design of high-level language features to support that metho-
dology. Additionally, it should suggest what capabilities are desirable both in
the Aeolus run-time system and in the underlying action and object management
support of the Clouds system.

3. THE PROPOSED RESEARCH

In this section, a plan for the proposed research is presented, as well as
some preliminary examples of the sort of studies which will be made.

3.1. Plan of Research

The investigation of programming methodologies appropriate to systems
objects having the properties of resilience and availability necessitates the
programming of such objects. In the course of our studies, we propose to design
simple versions of fault-tolerant servers which will be useful in the Clouds
system, such as name servers, directory managers, system queues, etc. These
designs may not be complete, since the aim is to study the issues of availabil-
ity and resilience in terms of these data structures, rather than such issues as

-3-

naming in distributed systems. Complete designs of these objects will be left
for those researchers studying the relevant issues within the environment of the
Clouds system.

Among the issues which will be treated during this investigation are:

Use of semantic knowledge of objects in programming of replication
Can significant savings be achieved in programming the synchronization and
recovery of replicated data by taking advantage of semantic knowledge of com-
plex objects rather than using a simple read-write model?

Trade-offs between consistency and availability
Is it necessary, in programming replicated system services, to maintain
strict consistency (serializibility) among replicates in all cases, or are
there cases in which global consistency may be weakened in favor of availa-
bility of services?

Blocking (pessimistic) vs. non-blocking (optimistic) replication methods
Again, there are trade-offs here between consistency and availability; for
the systems objects of interest here, is the increased availability during
partitions or site failures afforded by optimistic methods worth the possible
cost incurred by the necessity to resolve inconsistencies introduced among
the replicates during the partition?

Appropriateness of current programming models for replicated data
Are programming models useful in programming non-replicated objects also use-
ful

 when replication is to be taken into account? That is, do the present

models suffice, or must new models be developed for efficient programming of
replicated objects?

Support needed for replication
What support is needed from the run-time system and from the operating system
to support the programming of replicated objects?

Support needed to ensure forward progress
What support is needed from the jab scheduler [Mcge84a] to continue execution
of operations on replicated objects despite failures?

Based on the knowledge gleaned about programming for resilience and availability
during these studies, we propose to design language features to aid in program-
ming fault-tolerant, replicated objects. Besides this upwards migration of
knowledge, a downwards migration -- capabilities required of the language run-
time support, as well as the action and object managers -- should manifest
itself.

3.2. Preliminary Studies

As examples of the types of explorations which will be made in the course
of this research, some preliminary studies are presented here. These examples
include investigation of the programming of replicated objects using recoverable
variables and using per-action and permanent variables. Also, a tentative
design for a permanent heap to provide part of the run-time support for these
objects is presented.

3.2.1. Replication Using Recoverable Variables

An example of an Aeolus object programmed to provide availability via
replication is shown in Example 1. This object, which implements a simple sym-
bol table, is derived from a single-copy (non-replicated) object (discussed in
[LeB185]) which uses actions to provide recovery "firewalls" around its critical
operations and the Clouds lock mechanism to specify synchronization rules which
allow a high degree of concurrency the use of its operations.

The replicated SYMTAB object shown here uses recoverable variables to pro-
vide resilience of data in the face of failures. Recoverable variables, dis-
cussed in [A11c83b], are similar to versions of distributed database work, and
require the creation of a new version (copy) of a recoverable variable for each
action which modifies the variable. These versions are maintained on a version
stack by the action managers of the Clouds system, which control visibility of
the versions to nodes of the action tree, as well as writing versions to stable
storage upon action commit.

-4-

Availability of the SYMTAB object is achieved by replication. 	Two
instances of this object (partners) are created by the parent process, one of
which is arbitrarily made the master instance, while the other is made the
slave. 	Operations may be invoked on either of these instances; however, the
slave instance merely relays the operation requests to the master. 	The master
instance will then carry out the operations both locally and at the slave
instance (by means of special operations) as if they had been originally invoked
at the master. Were the instances equal partners (that is, if operations could
be carried out at either instance), it would be necessary for each instance to
obtain appropriate locks both locally and at the partner in order to maintain
consistency, which could lead to deadlock unless some sort of global locking
mechanism is available. In our implementation, locks need be obtained only at
the master; thus, deadlock problems are avoided without the need for global
locks. Should the slave instance become unavailable to the master (because of
network partition or failure of the slave's site), the master will no longer
attempt to replicate operations at the slave until a reinitialization operation
is invoked by the Clouds action/object management support. Should the master
instance become unavailable to the slave, the slave makes itself the master and
carries out operations locally until reinitialization is invoked. When reini-
tialization occurs, the original master instance is again made master, and the
states of the two instances are merged. The merge process is aided by mainte-
nance of a version vector, which contains a sort of timestamp of both the latest
version of the data maintained locally and the last version which was known to
be consistent with the partner instance.

The implementation of the replicated SYMTAB object stresses availability at
the expense of strict consistency among the replicated instances across parti-
tions by using an optimistic (non-blocking) recovery method (see the section on
"Related Work"). Rather, it seeks to maintain a "reasonable" view of the data
at each instance, and resolves inconsistencies during the state-merge process
using backout or compensatory operations. The programming of the merge process
takes advantage of semantic knowledge of the object. Thus, the replicated SYM-
TAB object may be used -- despite site failures or partitions -- at any node at
which an instance is available, without running the risk of an operation being
blocked in order to maintain global consistency.

Example 1. Replicated SYMTAB object using recoverable variables

implementation of object symtab (replicate_number : integer) is

! Two-copy master/slave symbol table object using the action management
! facilities of Aeolus/Clouds for recovery firewalls and the lock
! mechanisms for synchronization, and demonstrating optimistic
! (non-blocking) site crash and partition recovery methods.

! The definitions of MAXREPLICATE, REPLICATE_RANGE, and VERSION_VECTOR
! actually appear in the definition part of SYMTAB, but are shown here for
! convenience.

MAXREPLICATE : const integer := 2

type replicate_range is 1 .. MAXREPLICATE

type version_vector is array [replicate_range] of integer

! The actual declarations of the implementation part.

here, there 	: recoverable replicate_range
! for storing values of replicate numbers

MAXBUCKET 	const integer := 101 	I or whatever

type hash_range is 1 .. MAXBUCKET

type ptr_entry is -> symtable_entry

type symtable_entry is
record

name 	: valstring ,
next 	: ptr_entry

end record

! just something for demo purposes

type symtab_type is array [hash_range] of ptr_entry

symtable 	: recoverable symtab_type

symentry_lock : lock (write : []
read : [read]) domain is hash_range

! The SYMENTRY lock allows locking of individual hash buckets in the
! symbol table. Several READ operations are allowed to proceed
! concurrently, but a WRITE operation blocks all other operations.

symtable_lock : lock (write : [write] ,
read : [read])

! The SYMTABLE lock allows the entire symbol table to be locked.
! This lock is set in the EXACT_LIST operation for purposes of
I getting an exact listing of the state of the symbol table.
! Operations which change the state of the symbol table must wait for
! completion of any outstanding EXACT_LIST operations.

partner 	: recoverable symtab 	! Object pointer to the partner object

master 	 boolean ! remember whether this instance is master or slave

local_version : recoverable version_vector
! The LOCAL_VERSION vector is used to store version numbers of the local
state (the HERE entry) and of the last version of the local state

! known to be consistent with the partner's state (the THERE entry).
! Note, however, that only one copy (per instance) of the actual state
! is maintained.

-6-

procedure hash (name : valstring) 	hash range is
1 This HASH function is a local (nonpublic) procedure of
1 the SYMTAB object.
begin

! the usual type of stuff
end procedure ! hash !

procedure send_state () is action
1 The SEND_STATE operation is called by the partner to copy the local
! state to the partner.
! Here, .knowledge of object semantics can be of great help in fine-tuning
! the state transfer process. For example, if the number of changes
! expected over an average expected partition period is small with respect
! to the total number of symbol table entries, it might be better to keep a
! log of those changes made during the partition period and then execute
! those changes on the partner's state. The method shown below for copying
! the entire local state to the partner assumes that the number of changes
1 will be large with respect to total size. Also, the method shown --
! total reconstruction of the symbol table -- is used
! since the symbol table data structure uses physical pointers. Had the
! data structure used integer indices instead, the state could have been
! copied directly to the partner.

next_entry : ptr_entry
: index hash_range

begin
for i := 1 to MAXBUCKET loop

next_entry := symtable [i]
while next_entry <> NIL loop

partner 0 sym_insert (next_entry -> .name, local_version [here])
next_entry := next_entry -> .next

end loop
end loop
local_version [there] := local_version [here]

end procedure ! send_state !

procedure receive_state () is action
! The RECEIVE_STATE operation is called by the partner's SEND_STATE
! operation to receive a copy of the partner's state.
1 This operation doesn't do anything because of the symbol table data
! structure and method of state transfer used above. If the data structure
I used indices instead of pointers, this operation would install the copy of
1 the state sent by the partner.
begin

null
end procedure ! receive_state !

procedure transfer_state (! partner_version : version_vector !) is action
! The TRANSFER_STATE operation is called by the MERGE_STATE operation to
! have the partner transfer its state to us. If the partner becomes
! unavailable, make this instance the master.
begin

aid := action (partner 0 send_state ())
if Committed (aid) then

local_version [here], local_version [there] := partner_version [there]
else

partner_available := FALSE
master 	 := TRUE

end if
end procedure ! transfer_state !

procedure reconcile_states (partner_version : version_vector) is action
! The RECONCILE_STATE procedure is called locally (by the MERGE_STATE
! operation) to. merge the local state and the partner's state in
! the case where both states have been updated since a partition
! occurred.
begin

null 	! later
end procedure ! reconcile_states !

	

procedure sym_insert 	newname : vaistring, newversion : integer !) is action
! The SYM_INSERT operation may be invoked as an action.
! It is called either by the INSERT operation below (if this instance is
! the master), or by the partner as an update operation (if this instance
! is the slave).
! Locks on the symbol table and the particular hash entry concerned are
! obtained by the caller.
! If NEWVERSION is greater than 0 (that is, the SYM_INSERT operation
! was called remotely), then this new version number is installed in the
! LOCAL_VERSION array.

entry 	: ptr_entry
bucket_num : hash_range

begin
bucket_num := hash (newname)
new (entry)
using ent := entry -> do

ent.name := newname
ent.next := symtable [bucket_num] -> .next

end using

region symtable [bucket_num] do
symtable [bucket_num] := entry

end region
if newversion > 0 then

local_version [here], local_version [there] := newversion
end if

end procedure ! sym_insert !

procedure insert (! newname : valstring !) is action
! The INSERT operation may be called as an action.
1 If this instance is the master, it sets write locks on the symbol table
! and on the hash entry to be changed, and then calls the SYM_INSERT
1 operation both locally and at the slave partner (if available) to do
! the actual insertion.
1 If this instance is the slave, it calls the master (if available) to do
! the insertion just as if the call had originated there. If the master
! is not available, the slave makes itself the master and performs the
! insertion.
! Note that, since only the master can call the SYM_INSERT operation
! (which actually performs the insertion), it is not necessary to set
! locks at the slave.

newversion : integer
aid 	: action id

begin
if master then

newversion := local_version [here] + 1
SetLock (symtable_lock, write)
SetLock (symentry_lock, write, hash (newname))
sym_insert (newname, 0)
local_version [here] := newversion
if partner_available then

aid := action (partner 0 sym_insert (newname, newversion))
Await (aid) 	! block until the nested action commits or aborts
if Committed (aid) then

local_version [there] := newversion
else

partner_available := FALSE
end if

end if
else 	! this instance is the slave

aid := action (partner 0 insert (newname))
Await (aid)
if not Committed (aid) then 	! become master

partner_available := FALSE
master 	 := TRUE
newversion 	:= local_version [here] + 1
SetLock (symtable_lock, write)
SetLock (symentry_lock, write, hash (newname))
sym_insert (newname, 0)
local_version [here] := newversion

end if
end if

end procedure ! insert !

merge_lock : lock (busy : [])

procedure merge state (! partner_version : version_vector !) is action
! The MERGE_STATE operation is invoked by the master partner after it{
! receives a REINIT invocation after a partition or crash.
1 This operation compares the local version vector (LOCAL_VERSION)
! with that of the partner (PARTNER_VERSION), and takes appropriate action
! to merge its state with that of the partner into a single,
! consistent state.
begin

SetLock (merge lock, busy)
master := FALSE
if local_version [here] = partner_version [there] then

! The local and partner states are already consistent
return .

elsif local_version [here] = partner_version [here] then
! The local state hasn't changed since the last time the
! states were consistent; copy the partner's state here

transfer_state (partner version)
elsif local_version [there] = partner_version [there] then

! The partner's state has not changed since the last time the
! states were consistent, so just copy over the local state
! to the partner

partner 411) transfer_state (local_version)
else

! Both the local and the partner's state have changed since
the two states were last consistent (partition case),

I so we must merge them
reconcile_states (partner_version)

end if
end procedure ! merge_state !

procedure reinit () is action
! The REINIT operation is invoked by the object manager in charge of this
! instance when the site on which it is running comes back up after a
! crash, or when a partition ends and this instance's state must be merged
! with its partner's state.
! If the MERGE lock is set, the partner has already initiated the merge
process, and this instance is made the slave.

! If the MERGE lock is not set, this instance is the first to have the
! REINIT operation invoked by the object manager, so it becomes the master,
! invokes the partner's MERGE_STATE operation and passes it the local
! LOCAL_VERSION array; the partner (if available) then determines what
! needs to be done to merge the two states into a consistent state.

aid : action id

begin
if TestLock (merge_lock, busy) then

return .
end if
SetLock (merge_lock, busy)
master := here = 1 ! arbitrary choice
if master then

aid 	action (partner lb merge_state (local_version))
Await (aid)
partner_available := Committed (aid)

else
aid := action (partner 0 reinit
Await (aid)
if not Committed (aid) then

master := TRUE
partner_available := FALSE

end if
end if

end procedure ! reinit I

-10-

procedure set_partner (! p : symtab, rep_number : replicate_range !) is
! The SET_PARTNER operation is used by the creating process to
! initialize the PARTNER object pointer.
begin

partner := p
there 	:= rep_number

end procedure ! set_partner !

begin ! initialization section
here 	 := replicate_number
master 	:= here = 1 	! arbitrary choice
local_version := version_vector"[0 : MAXREPLICATE]
symtab 	:= symtab_type"[NIL : MAXBUCKET]

! symbol table is initially empty
end implementation.

3.2.2. Replication Using Permanent and Per-Action Variables

Since the use of a recoverable symbol table data structure requires the
creation of a complete copy of the symbol table on the version stack for each
action which modifies the data structure, the implementation of the replicated
SYMTAB object presented in the preceeding subsection can become inefficient as
the size of the symbol table increases. Fortunately, we can use semantic
knowledge about the object to simulate the effect of recoverable variables at a
fraction of their cost. The technique which we will use is introduced in
(McKe84b].

An implementation of the SYMTAB object which uses this new technique is
shown in Example 2. Rather than require the system to maintain a version of the
symbol table per action, we will maintain lists of those elements inserted or
deleted by each action. These lists are maintained in per-action variables,
copies of which are created for each action during its BOA (beginning of action)
phase; an action may access not only its own per-action variables, but those of
its parent (if any). We provide handlers for the abort and nested commit events
of actions, which clean up after action aborts and propagate the values of the
per-action variables to the parent of the current action. Only one copy of the
entire symbol table data structure is maintained, as a permanent variable. Per-
manent variables are maintained in a special area of per-object storage, and are
managed by a shadowing mechanism provided by the Clouds kernel storage manage-
ment system (PittB4]. The shadows are created during the precommit action
event; thus, we provide a handler for the toplevel precommit event which per-
forms the actual insertions and deletions on the permanent symbol table, using
the INSERTED and DELETED lists which we have propagated up the action tree.

As in Example 1, only the INSERT operation is shown for sake of brevity;
however, the form of the DELETE operation would be very similar to that of
INSERT, except that items would be added to the DELETED per -action list rather
than to the INSERTED list. The processing of the DELETED list during action
events is shown in the code for the alternate event handlers.

Example 2. Replicated SYMTAB object using permanent and per-action variables

implementation of object symtab (replicate_number : integer) is

! Two-copy master/slave symbol table object using the action management
! facilities of Aeolus/Clouds for recovery firewalls and the lock
! mechanisms for synchronization, and demonstrating optimistic
! (non-blocking) site crash and partition recovery methods.
! Permanent variables, rather than recoverable variables, are used for
! for efficiency.

! Names are given here for alternate handlers provided for some of the action
! events.

action events
. abort is sym_abort,

nested commit is sym_nested_commit.
toplevel_precommit is sym_top_precommit

! The definitions of MAXREPLICATE, REPLICATE_ RANGE, and VERSION_VECTOR
! actually appear in the definition part of SYMTAB, but are shown here for
! convenience.

MAXREPLICATE : const integer := 2

type replicate_range is 1 .. MAXREPLICATE

type version vector is array [replicate_range] of integer

! The actual declarations of the implementation part.

here, there 	: permanent replicate_range
! for storing values of replicate numbers

MAXBUCKET 	: const integer := 101 	1 or whatever

type hash_range is 1 	MAXBUCKET

type ptr_entry is -> permanent symtable_entry ! allocate in perm. heap

type symtable_entry is
record

name 	: valstring ,
next 	: ptr_entry

end record

! just something for demo purposes

type symtab_type is permanent array [hash_range] of ptr_entry
! the array of pointers is in perm. storage

symtable 	: symtab_type

symentry_lock : lock (write : []
read : [read]) domain is hash_range

1 The SYMENTRY lock allows locking of individual hash buckets in the
! symbol table. Several READ operations are allowed to proceed
1 concurrently, but a WRITE operation blocks all other operations.

symtable_lock : lock (write : [write] ,
read : [read])

! The SYMTABLE lock allows the entire symbol table to be locked.
! This lock is set in the EXACT_LIST operation for purposes of
! getting an exact listing of the state of the symbol table.
! Operations which change the state of the symbol table must wait for
! completion of any outstanding EXACT_LIST operations.

-13-

partner 	: permanent symtab 	! Object pointer to the partner object

master 	: boolean ! remember whether this instance is master or slave

local_version : recoverable version_vector
! The LOCAL_VERSION vector is used to store version numbers of the local
! state (the HERE entry) and of the last version of the local state
! known to be consistent with the partner's state (the THERE entry).
! Note, however, that only one copy (per instance) of the actual state
! is maintained.

! The per-action variables of the SYMTAB object.
! We will maintain lists of those entries inserted and deleted by
! each action. The per-action variables are headers of those lists,
! which are pointers to entries allocated in the permanent heap.
! There are two standard names, Self and Parent, which refer to the
! per-action records of the current action and its parent,
! respectively.
! The PER-ACTION declaration causes a record type with name PERACTION,
! as well as the names Self and Parent with that record type, to be added
! to the Aeolus compiler's symbol table.

per-action is
record

inserted, deleted : ptr_entry
end record
snit peractionn[NIL:2] 	! For initialization of Self at action start

procedure hash (name : valstring) : hash_range is
! Same as in Example 1.

procedure send_state () is action
! Same as in Example 1.

procedure receive state () is action
! Same as in Example 1.

procedure transfer state (! partner_version : version_vector !) is action
! Same as in Example 1.

procedure reconcile_states (partner_version : version_vector) is action
! Same as in Example 1.

procedure sym_insert (! newname : valstring, newversion : integer !) is action
! The SYM_INSERT operation may be invoked as an action.
I It is called either by the INSERT operation below (if this instance is
! the master), or by the partner as an update operation (if this instance
! is the slave).
! Locks on the symbol table and the particular hash entry concerned are
! obtained by the caller.
! If NEWVERSION is greater than 0 (that is, the SYM_INSERT operation
! was called remotely), then this new version number is installed in the
! LOCAL_VERSION array.
! The insertion is noted on the INSERTED per-action list of the current
! action, but is not actually performed until toplevel precommit.

entry 	: ptr_entry
bucket_num : hash_range

begin
bucket_num := hash (newname)
new (entry)
using ent := entry -> do

ent.name := newname
ent.next := Self.inserted -> .next

end using
Self.inserted := entry
if newversion > 0 then

local_version [here], local_version [there] := newversion
end if

end procedure ! sym_insert !

procedure insert (! newname : valstring !) is action
! Same as in Example 1.
! Note that manipulation of the INSERTED per-action list is performed by
! the SYM_INSERT operation, which is called by the INSERT operation of the
! master.

procedure sym_abort () is
! The SYM_ABORT procedure is the alternate handler for the ABORT action
! event for the SYMTAB object.
! It frees all space which was allocated in the permanent heap for
! items inserted by the action being aborted.

entry, next_entry : ptr_entry

begin
entry := Self.inserted
while entry <> NIL loop

next_entry := entry -> .next
dispose (entry)
entry := next_entry

end loop
end procedure ! sym_abort !

procedure sym nested commit () is
! The SYM RESTED_EOMMIT procedure is the alternate handler for the
NESTED -COMMIT action event for the SYMTAB object.

! It adds the INSERTED and DELETED lists for the nested action being
! committed to the beginning of the respective lists of the action's parent.

entry : ptr_entry

begin
entry :21 Self.inserted
if entry <> NIL then

loop 	! find the end of the INSERTED list
if entry -> .next = NIL then

exit .
end if
entry := entry -> .next

end loop
entry -> .next := Parent.inserted
Parent.inserted := entry

end if

entry := Self.deleted
if entry <> NIL then

loop 	! find the end of the DELETED list
if entry -> .next 2 NIL then

exit .
end if
entry := entry -> .next

end loop
entry -> .next := Parent.deleted
Parent.deleted := entry

end if
end procedure ! sym_nested_commit !

procedure sym_top_precommit () 	is
! The SYM_TOP_PRECOMMIT procedure is the alternate handler for the
1 TOPLEVEL-PRECOMMIT action event for the SYMTAB object.
! 	It 	inserts or deletes each 	item 	in the INSERTED or DELETED list for this
! action into (or out of) 	the permanent symbol 	table. 	At this point,
1 the memory management system will create shadow versions of the pages
! in the permanent version affected by these changes.
! Note that, 	since the action management system promises that only one
! action can enter
mutual 	exclusion

its PRECOMMIT stage at a time, 	no further locking for
is necessary.

entry, next_entry : ptr_entry
place. prev_place : ptr_entry
bucket_num : hash_range

begin
entry := Self.inserted
while entry <> NIL loop

next_entry := entry -> .next
bucket_num := hash (entry -> .name)
entry -> .next := symtable [hash]
symtable [bucket_num] := entry
entry := next_entry

end loop

entry := Self.deleted
while entry <> NIL loop

next_entry := entry -> .next
bucket_num := hash (entry -> .name)
place 	:= symtable [bucket_num]
loop 	! find the entry in the permanent symbol table and remove it

if place = NIL then 	! not there, so don't worry about it
exit

elsif place -> .name = entry -> .name then I got it
if place = symtable [bucket_num] then 	! at start of bucket

symtable [bucket_num] := place -> .next
else

prev_place -> .next := place -> .next
end if
exit .

else
prev_place := place
place 	:= place -> .next

end if
end loop
entry := next_entry

end loop
end procedure ! sym_top_precommit !

merge_lock : lock (busy : [])

procedure merge_state (! partner_version : version_vector !) is action
! Same as in Example 1.

procedure reinit () is action
1 Same as in Example 1.

procedure set_partner (! p 	symtab. rep_number : replicate_range !) is
1 Same as in Example 1.

begin ! initialization section
here 	 := replicate_ number
master 	 := here 2 1 	! arbitrary choice
local version := version vector"[0 : MAXREPLICATE]
symtab 	 symtab_Type"[NIL : MAXBUCKET]

! symbol table is initially empty
end implementation.

3.2.3. The Permanent Heap

The design of the SYMTAB object presented in the preceeding subsection
requires the use of linked lists allocated in a heap in the permanent area of
per-object storage, both for its per-action and permanent variables. This per-
manent heap will require special run-time support for its management, which must
maintain the heap's consistency across failures.

In Example 3, we show a preliminary design for the permanent heap manager.
To maintain the consistency of the heap, this PERMHEAP object uses the same
techniques which we used in the SYMTAB object of Example 2 to implement recovery
for the symbol table data structure, i.e., per-action variables and associated
action-event handlers. (In fact, due to its compactness, this example may
demonstrate the use of these techniques more clearly than does the SYMTAB exam-
ple.) The actual management of memory is done by a HEAP object (whose definition
is shown in Example 3 for clarity), which can allocate and free blocks of memory
in both the permanent and the temporary heap areas. The HEAP object does not
implement recoverability at present; however, once the PERMHEAP object is avail-
able, the HEAP object may be altered to use the permanent heap for its FREE list
and bootstrapped.

The PERMHEAP object maintains lists of those areas of the heap allocated
and freed by each action, in per-action variables. Since the HEAP object (which
is at present nonrecoverable) does the actual management of the heap, alloca-
tions are visible to other actions immediately, thus maintaining the consistency
of the heap. A call to the ALLOCATE operation of PERMHEAP will return a pointer
to a block of memory allocated by HEAP in the permanent heap area of the object;
a pointer to the block is also added to the ALLOCATED per-action list. A call
to PERMHEAP's FREE operation will actually dispose the block of memory only if
it was allocated by the action which is trying to free it; otherwise, a pointer
to the block to be disposed is merely added to the FREED per-action list. Upon
abort of an action which allocated permanent heap storage, the ALLOCATED list is
used to clean up the heap via calls to HEAP's FREE operation. When a nested
action enters its commit phase, its ALLOCATED and FREED per-action lists are
propagated to its parent. Memory blocks on the permanent heap allocated by an
action are actually disposed when the action's toplevel ancestor (to which the
nested action's per-action lists have been propagated) enters its precommit
phase; this is done by invoking the FREE operation of HEAP on all members of the
toplevel action's FREED list:

Note that this implementation of the PERMHEAP object does not provide
strict serializability. To see this, consider some action, A, which exhausts
(or nearly exhausts) the permanent heap, causing other actions B and C trying to
allocate permanent memory to fail. Action A may well be aborted itself.
Actions B and C which failed because of A might not have failed had they been
executed serially. However, such breaches of strict serializability do not
affect the consistency of the permanent heap mechanism, and thus are of little
concern in this context.

Example 3. Run-time support for the permanent heap

implementation of object permheap is
! Support for the permanent heap, using per-action variables for
! recovery management.

uses heap
! The definition of the HEAP pseudo-object is shown here for clarity.
1 The HEAP object implements a standard heap management discipline (i.e,
1 without recovery), but allows one to allocate memory in either the
! permanent or the temporary memory area.

definition of object heap is
type heap_type is (normal_heap, permanent_heap)
operations

procedure allocate (size : unsigned
kind : heap_type) : address

1 	 -- the ALLOCATE operation returns a pointer to a block of
1 	 -- memory of the specified SIZE in the area of memory

-- indicated by KIND.
procedure free (block : address)

-- the FREE operation disposes the block of memory pointed
-- to by BLOCK.

end definition.

! The local declarations of the PERMHEAP object.
1
! Give the names of alternate handlers for some of the action events.

action events
abort is permheap_abort,

nested_commit is permheap nested_commit,
topleve1_precommit is permheap_top_precommit

! The BLOCKLIST type is used in the declaration of the per-action variables
! below.

type ptr_blocklist is -> blocklist

type blocklist is
record

block : address,
next : ptr_blocklist

end record

! The per-action variables for permanent-heap recovery management.
! We will maintain lists of memory blocks allocated and freed by each action.

per_action is
record

allocated, freed : ptr_blocklist
end record
init peraction"(NIL:2]

•

! The operations of the PERMHEAP object.

procedure allocate (! size : unsigned !) ! : address ! is
! Return a pointer to a block of memory of the given SIZE in
permanent memory.

list : ptr_blocklist

begin
new (list) 	 ! create a new entry for the ALLOCATED list
using 1 := list -> do

l.block 	:= heap 0 allocate (size, permanent_heap)
l.next 	' 	:= self.allocated
Self.allocated := list ! put new entry at beginning of ALLOCATED list
return l.block

end using
end procedure ! allocate !

procedure free (! block : address !) is
I Dispose the block of memory indicated by BLOCK.

prey, list : ptr_blocklist

begin
list, prey := Self.allocated I First, scan the ALLOCATED list to see if
loop 	 I BLOCK was allocated by the current action

if list = NIL then 	 ! Nope, go below
exit .

elsif list - > .block = block then 	! Yes, so
if prey = next then 	 ! remove it from ALLOCATED list;

Self.allocated := NIL
• else

prey 	.next := list -> .next
end if
heap 0 free (list -> .block) 	! go ahead and dispose it
dispose (list)
return . 	 ! we're done

else
prey := list
list := list -> .next

end if
end loop
new (list) 	 ! If we get here, BLOCK wasn't allocated by the
using 1 := list -> do 	! current action, so put it on the FREED list

l.block := block
l.next 	:= Self.freed

end using
Self.freed := list

end procedure ! free !

procedure permheap_abort () is
! The alternate handler for the ABORT action event.
! We'll just free all the space allocated by this action as indicated
! by the ALLOCATED list, and clean up the FREED list for good measure.

list, old : ptr_blocklist

begin
list := Self.allocated
while list <> NIL loop

heap V free (list -> .block)
old 	:= list
list := list -> .next
dispose (old)

end loop

list := Self.freed
while list <> NIL loop

old 	:= list
list := list -> .next
dispose (old)

end loop
end procedure ! permheap_abort !

procedure permheap_nested_commit () is
! The alternate handler for the NESTED COMMIT action event.
! We'll propagate the items on the ALLOCATED and FREED lists of this
! action to the beginning of the corresponding lists of its parent action.

List : ptr_blocklist

begin
list := Self.allocated
if list <> NIL then

loop 	! find the end of the ALLOCATED list
if list -> .next = NIL then

exit .
end if
list := list -> .next

end loop
list -> .next 	:= Parent.allocated
Parent.allocated := list

end if

list := Self.freed
if list <> NIL then

loop 	! find the end 	the DELETED list
if list -> .next = NIL then

exit .
end if
list := list -> .next

end loop
list -> .next := Parent.freed
Parent.freed := list

end if
end procedure ! permheap_nested_commit !

procedure permheap_top_precommit () is
! The alternate handler for the TDPLEVEL_PRECOMMIT action event.
! We'll use the normal HEAP operation FREE to dispose of the memory blocks
! on the FREED list, but we'll just dispose the ALLOCATED list -- it's only
! used to free up storage allocated by an aborting action.

list, old : ptr_blocklist

begin
list := Self.freed
while list <> NIL loop

heap 0 free (list -> .block)
old 	:= list
list := list -> .next
dispose (old)

end loop

list := Self.allocated
while list <> NIL loop

old 	:= list
list := list -> .next
dispose (old)

end loop
end procedure ! permheap_top_precommit !

begin ! object initialization
null

end implementation.

4. RELATED WORK

As with most of the topics involved in the study of distributed systems,
the synchronization and recovery of replicated data was first studied in the
area of distributed database systems. The history of these efforts is summar-
ized by Wright [Wrig83]. He classifies these methods as conservative (pessimis-
tic, blocking) and optimistic (non-blocking). Examples of conservative methods
are voting schemes [Giff79, Thom78], primary copy methods [Ston79], and token-
passing schemes [LeLa78]. The intent of these methods is to ensure consistency
of the replicated data by requiring access to a special copy or set of copies of
the data during partitions. Primary copy methods allow access to a copy during
a network partition only if the partition possesses the designated primary copy
of the data. Token-passing schemes are an extension of primary copy methods; a
token is passed among sites holding a copy of data, and that copy at the site
currently holding the token is considered the primary copy. Yet another exten-
sion of primary copy methods are the voting schemes. Each copy of the data
object is assigned a (possibly different) number of votes; a partition possess-
ing a majority of the votes for that object may access it. The conservative
schemes are called blocking since a data object is not available at a site in a
partition which does not possess the primary copy (or token or majority of
votes); thus, the access must block until the partition is ended, even if a copy
of the data is available in the partition. Indeed, under these schemes it is
possible that no partition may have access to the data object.

The optimistic methods do not seek to ensure global consistency of repli-
cated data during partitions [Davi8i, Davi82]. Thus, accesses are not blocked
if a replicate of the data is available in the partition in question. Rather,
inconsistencies in the data replicates are resolved during a merge process once
the partition is ended, by use of backouts or compensatory actions. It is
assumed that the number of such inconsistencies will be small (hence, optimis-
tic). However, tradeoffs may be made between consistency and availability. For
example, the Data-Patch tool for designing replicated databases [Blau82, Garc83]
assumes that, rather than strict consistency, a "reasonable" view of the data-
base should be maintained to enhance availability.

Wright develops enhancements to both the conservative and the optimistic
methods. Conservative schemes are extended by the notion of compatibility among
classes of transactions, which allow increased efficiency and availability with
these methods of concurrency control. He also considers the computational com-
plexity of the problem of backing out transactions under optimistic schemes, and
shows that (in general) the problem is NP-complete. He then develops efficient
heuristic solutions to this problem.

However, Wright's work (as is most of the work previously discussed)
assumes a simple data model based on reads and writes. He does speculate that
the semantic knowledge about objects available in object-oriented systems may
bring about the possibility of gains in efficiency over his model, since the
read-write model places unneccessary restrictions on availability and con-
currency when used with more complex objects. The Data-Patch tool mentioned
above takes advantage of semantic knowledge through its YACC-like approach to
the construction of partition-merge routines for databases.

Previous work in the area of replication of data in distributed operating
systems includes work on the LOCUS system at UCLA [Walk83] as well as the Argus
system at MIT [Her184] and the ISIS system at Cornell [Birm84]. The LOCUS sys-
tem supports replicated files and directories using an optimistic approach;
inconsistencies are allowed to develop among the separate partitions which are
resolved (except in the case of simple read-write file objects) by application-
dependent measures. No mention is made of system support for the applications'
recovery methods. Herlihy's work at MIT uses semantic knowledge of Argus
objects to enhance a conservative (voting) method. Analysis of the algebraic
structure of data types is used in the choice of appropriate intersections of
voting quorums. The ISIS system supports k-resilient objects (objects repli-
cated at k+1 sites and which can withstand up to k failures) by means of check-
points and the "available copies" voting algorithm. This system provides both
availability and forward progress, that is, even after up to k site failures,
enough information is available at the remaining sites possessing an object
replicate that work started at the failed sites can continue at these remaining
sites. This is accomplished through a coordinator-cohort scheme similar to the
master-slave discipline shown in the previous section.

-24-

Thus, recalling the issues detailed in Section 3.1, we believe that the
proposed research will lead to contributions in several of the areas mentioned.
The use of semantic knowledge of objects in the programming of non-blocking
replication methods has not been the subject of much previous study, especially
in the context of systems programming problems. The trade-offs mentioned,
between consistency and availability and between blocking and non-blocking
replication methods, have been the focus of some work in the database realm, but
again the issues have not been treated in operating systems. The issue of
appropriate programming models for availability in action/object systems has not
been treated before. Rather, in systems such as Argus, the applications
language has been designed oh initio, and the system as well as programming
models for it have been cut to fit. Finally, the study of support needed for
availability and for forward progress should provide valuable insights.

5. OUTLINE OF DISSERTATION

A proposed outline for the dissertation resulting from the proposed
research is presented here. Since this is an exploratory thesis, the answer to
the perennial question "how can we tell when you are done?" is a difficult one.
There will be some tangibles; in particular, designs for for the run-time sup-
port system for Aeolus and for the interfaces to the action manager, object
manager, and job scheduling systems should be forthcoming. However, completion
of several portions of the work will depend on our satisfaction with the com-
pleteness of the set of case studies and with the insights into the design of
language features which these case studies may yield.

Introduction
Background and terminology for the research to be discussed will be presented
in terms of an overview of the Clouds project and of the Aeolus language.
The goals and plan of the research will be described.

Contributions
The contributions of the research will be summarized.

Related Work
Previous work in this area will be discussed and compared to this research.

Case Studies
The results of the explorations 'in programming methodology for replicated
data will be presented and discussed.

Language Features for Resilience and Availability
Those features whose designs result from the case studies will be presented
and discussed: in particular, comparisons will be made with features provided
in other languages for distributed applications.

Run-Time and Operating System Support for Replicated Data
Designs or suggestions for support features resulting from the case studies
will be presented and compared to support provided by other systems.

Conclusions and Further Work
The work done and its contributions are summarized; ideas for further work
beyond the scope of this research which may develop are presented.

6. REFERENCES

[A1lc82] Allchin, J. E., and M. S. McKendry, "Object-Based Synchronization and
Recovery," Technical Report GIT-ICS-82/15, School of Information and
Computer Science, Georgia Institute of Technology, September 1982

[Allc83a] Allchin, J. E., and M. S. McKendry, "Synchronization and Recovery of
Actions," Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing, Montreal, August 1983

[Allc83b] Allchin, J. E.. "An Architecture for Reliable Decentralized Systems,"
Ph.D. Thesis, School of Information and Computer Science, Georgia
Institute of Technology, 1983 (also available as technical report
GIT-ICS-83/23)

[Birm84] Birman, K. P., T. A. Joseph, T. Raeuchle, and A. El Abbadi, 	"Imple-
menting Fault-Tolerant Distributed Objects," Proceedings of the Fourth
Symposium on Reliability in Distributed Software and Database Systems,
Silver Spring, Maryland, October 1984

[Blau82] Blaustein, B., R. M. Chilenskas, H. Garcia-Molina, D. R. Ries, and T.
Allen, "Partition Recovery Using Semantic Knowledge," Computer Cor-
poration of America, Cambridge, Massachussetts, November 1982

[Dan183] Daniels, D., and A. Z. Spector, "An Algorithm for Replicated Direc-
tories," Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing, Montreal, August 1983

[Davi81] Davidson, S., and H. Garcia-Molina, "Protocols for Partitioned Distri-
buted Database Systems," Proceedings of the Symposium on Reliability
in Distributed Software and Database Systems, Pittsburgh, Pennsyl-
vania, July 1981

[Davi82] Davidson, S., "An Optimistic Protocol for Partitioned Distributed
Database Systems," Ph.D. Thesis, Department of Electrical Engineering
and Computer Science, Princeton University, 1982

[Garc83] Garcia-Molina, H., T. Allen, B. Blaustein, R. M. Chilenskas, and D. R.
Ries, "Data-Patch: Integrating Inconsistent Copies of a Database after
a Partition," Proceedings of the Third Symposium on Reliability in
Distributed Software and Database Systems, Clearwater Beach, Florida,
October 1983

[Giff79] Gifford, D. K., "Weighted Voting for Replicated Data," Proceedings of
the Seventh ACM Symposium on Operating Systems Principles, Pacific
Grove, California, December 1979

[Her184] Herlihy, M. P., "Replication Methods for Abstract Data Types," Ph.D.
Thesis, Laboratory for Computer Science, Massachussetts Institute of
Technology, May 1984 (available as MIT/LCS/TR-319)

[LeB185] LeBlanc, R. J., and C. T. Wilkes, "Systems Programming with Objects
and Actions," to appear in Proceedings of the Fifth International
Conference on Distributed Computing Systems, Denver, Colorado, May
1985 (also available as Technical Report GIT-ICS-85/03)

[LeLa78] LeLann, G.. "Algorithms for Distributed Data-Sharing Systems which use
Tickets," Proceedings of the Third Berkeley Workshop on Distributed
Data Management and Computer Networks, Berkeley, California, August
1978

[McKe84a] McKendry, M. S., "Clouds: A Fault-Tolerant Distributed Operating Sys-
tem," School of Information and Computer Science, Georgia Institute of
Technology, May 1984

[McKe84b] McKendry, M. S., "Ordering Actions for Visibility," Proceedings of the
Fourth Symposium on Reliability in Distributed Software and Database
Systems, Silver Spring, Maryland, October 1984 (also available as
Technical Report GIT-ICS-84/05)

-27-

[Pitt84] Pitts, D., "Storage Management for an Action-Based Operating System,"
Ph.D. Thesis Proposal, School of Information and Computer Science,
Georgia Institute of Technology, November 1984 (also available as
Technical Report GIT-ICS-85/02)

[Ston79] Stonebreaker, M., "Concurrency Control and Consistency of Multiple
Copies of Data in Distributed INGRES," IEEE Transactions on Software
Engineering 5, 3, May 1979

[Thom79] Thomas, R. H., "A Majority Consensus Approach to Concurrency Control
for Multiple - Copy Databases," ACM Transactions on Database Systems 4,
2, June 1979

[Walk83] Walker, B., G. Popek, R. English, C. Kline, and G. Thiel, 	"The LOCUS
Distributed Operating System," Proceedings of the Ninth ACM Symposium
on Operating Systems Principles, Bretton Woods, New Hampshire, October
1983 (available as Operating Systems Review 17, 5) .

[Wrig83] Wright, D. D., "Managing Distributed Databases in Partitioned Net-
works," Ph.D. Thesis, Department of Computer Science, Cornell Univer-
sity, January 1984 (available as Technical Report 83-572, September
1983)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261

