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Date Prepared  January 14, 1985 
	

Summary/Work Package Title__ 
Contract No.MDA 904-84-C-6035 	FUNDS EXPENDITURE REPORT 

	
Research on Reliable 

Contractor Georgia Tech Research Corp. 	 Distributed Computing` 
Report Month 9/11/84-12/31/84 

Column B Column C 

Latest 	Reporting 
Accepted Duarter 
Revised 	Expendi- 	Total 

Proposal tures 	Man Hours 

Column D 	 Column E 	Column F 

Latest 
Cost 
Estimate 

Column A 

ORIGINAL PROPOSAL 

	

Cumulative Expenditures to Date 	Cost to 
Complete 

Dollar 	Pct. Dollar Estimate 
Value 	Value 

1.Direct Labor 
Number 	Hourly Dollar 

Type 	of Hours 	Rate Total 

PI 	 350 	23.77 $8320.00 $2773.32 117 $2773.32 33.3% $5546.68 $8320.00 
BRA 	 1300 	11.41 $14833.00 $2971.98 260 $2971.98 20.0% $11861.02 $14833.00 

Clerical 	175 	6.74 $1180.00 $0.00 0 $0.00 0.0% $1180.00 $1180.00 

Total Direct Labor $24333.00 $5745.30 377 $5745.30 23.6% $18587.70 $24333.00 
Burden 	d 	24.6% $2337.00 $682.24 $682.24 29.2% $1654.76 $2337.00 
(Excluding BRA Labor) 

Total Direct Labor and Burden 126670.03 24.12 $20242.46 $26670.00 

2. TRAVEL EXPENSE $2500.00 $0.00 $0.00 0.07. $2500.00 $2500.00 

3.6ENERAL & 	ADMINISTRATIVE EXPENSE $1500.00 $57.00 $57.00 3.8% $1443.00 $1500.00 

4.COMPUTING CHARGES $1500.00 $375.00 $375.00 25.07. $1125.00 $1500.00 

TOTAL DIRECT COSTS $32170.00 $6859.54 $6859.54 21.3% $25310.46 $32170.00 

5.INDIRECT COSTS 	; 	55.3% $17790.00 $3793.32 $3793.32 21.3% $13996.68 $17790.00 

TOTAL CONTRACT PRICE $49 960.00 $49960.00 

TOTAL COMMITMENTS AND $10652.86 $10652.86 21.37. 
EXPENDITURES 

FIGURE 1 
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Column A 	 Column B Column C Column D 	 Column E 	Column F 

         

Latest 	Reporting Cumulative Expenditures to Date Cost to 	Latest 
ORIGINAL PROPOSAL 
	

Accepted 8uarter 	 Complete 	Cost 
Revised Expendi- 	Total 	Dollar 	Pct. Dollar Estimate 	Estimate 
Proposal tures 	Man Hours 	Value 	Value 

1.Direct Labor 
Number 	Hourly 

Type 	of Hours 	Rate 
---- 

Dollar 
Total 

PI 	 350 	23.77 $8320.00 $2781.26 234 $5562.51 66.9% $2757.49 $8320.00 
GRA 	1300 	11.41 $14833.00 $5066.04 704 $8032.64 54.2% $6800.36 $14833.00 
Clerical 	175 	6.74 $1180.00 $0.00 0 $0.00 0.0% $1180.00 $1180.00 

Total Direct Labor $24333.00 $7847.30 938 $13595.15 55.9% $10737.85 $24333.00 
Burden 	i 	24.6Z $2337.00 $684.19 $1368.38 58.61 $968.62 $2337.00 
(Excluding GRA Labor) 

Total Direct Labor and Burden $26670.00 $8531.49 $14963.53 56.12 $11706.47 $26670.00 

2.TRAVEL EXPENSE $2500.00 $795.00 $795.00 31.8% $1705.00 $2500.00 

3.GENERAL & 	ADMINISTRATIVE EXPENSE $1500.00 $65.00 $132.00 8.81 $1368.00 $1500.00 

4.COMPUTING CHARGES $1500.00 $375.00 $750.00 50.01 $750.00 $1500.00 

TOTAL DIRECT COSTS $32170.00 $9766.49 $16640.53 51.7Z $15529.47 $32170.00 

5.INDIRECT COSTS 	55.31 $17790.00 $5400.86 $9202.21 51.7% $8587.79 $17790.00 

TOTAL CONTRACT PRICE $49960.00 $49960.00 

TOTAL COMMITMENTS AND $15167.35 $25842.74 51.71 
EXPENDITURES 
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, 
Prepared July 16, 1985 	 Summary/Work Package Titles 

ract No. MDA 904-84-C-6035 	 Research on Reliable Distributed 
ractor Georgia Tech Research Corp. 	 Computing 

FUNDS EXPENDITURE REPORT Report Month 4/1/85 - 6/31/85  

Column A 	 Column B Column C Column 0 	 Column E 	Column F 

             

Latest 	Reporting 	Cumulative Expenditures to Date 	Cost to 	Latest 
ORIGINAL PROPOSAL 
	

Accepted Quarter 	 Complete 	Cast 
Revised 	Expendi- 	Total 	Dollar 	Pct. Dollar Estimate 	Estimate 
Proposal tures 	Man Hours 	Value 	Value 

irect labor 
Number 	Hourly 

rype 	of Hours 	Rate 
Dollar 
Total 

PI 	 350 	23.77 $8320.00 $1759.09 308 $7321.60 8E1.01 $998.40 $8320.00 
6RA 	 1300 	11.41 $14833.00 $5066.04 1148 $13098.68 	- 88.3X $1734.32 $14833.00 
Clerical 	175 	6.74 $1180.00 $0.00 0 $0.00 0.0% $1180.00 $1180.00 

Total Direct Labor $24333.00 $6825.13 938 $20420.28 83.9% $3912.72 $24333.00 
Burden 	/ 	24.6% $2337.00 $432.74 $1801.11 77.11 $535.89 $2337.00 
(Excluding BRA Labor) 

tal Direct Labor and Burden $26670.00 $7257.86 $22221.39 83.32 $4448.61 $26670.00 

RAVEL EXPENSE $2500.00 $611.45 $1406.45 56.31 $1093.55 $2500.00 

ENERAL & 	ADMINISTRATIVE EXPENSE $1500.00 $146.46 $278.46 18.61 $1221.54 $1500.00 

[IMPUTING CHARGES $1500.00 $441.90 $1191.90 79.5% $308.10 $1500.00 

TOTAL DIRECT COSTS $32170.00 $8457.67 $25098.20 78.0% $7071.80 $32170.00 

4DIRECT COSTS 	1 	55.3% $17790.00 $4677.09 $13879.30 78.0% $3910.70 $17790.00 

. CONTRACT PRICE $49960.00 $49960.00 

L COMMITMENTS AND $13134.76 $38977.50 78.0% 
EXPENDITURES 
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Prepared  October 21,  1985 
ract No. MDA 904-84-C-6035  
ractor Georgia Tech Research Corp.  

FUNDS EXPENDITI* REPORT 

Dt, 	/ 
Summary/Work Package Title 
Research on Reliable Distributed 
Computing 

Report Month 7/1/85 - 9/10/85  

UGINAL PROPOSAL 

Column A Column B 

Latest 
Accepted 
Revised 
Proposal 

Column C 	Column D 
	

Column E 	Column F 

Reporting Cumulative Expenditures to Date 	Cost to 	Latest 
Quarter 	 Complete 	Cost 
Expendi- 	Total 	Dollar 	Pct. Dollar 	Estimate 	Estimate 
tures 	Man Hours 	Value 	Value 

Kt Labor 
Number 	Hourly 

)e 	of Hours 	Rate 
Dollar 
Total 

Number 
of Hours 

Dollar 
Total 

350 	23.77 $8320.00 430 $10220.96 	$2899.36 430 $10220.96 100.0% $0.00 $10220.96 
1300 	11.41 $14833.00 1648 $18802.35 	$5703.67 1648 $18802.35 100.0% $0.00 $18802.35 

wical 	175 	6.74 $1180.00 0 $0.00 	$0.00 0 $0.00 100.0% $0.00 $0.00 

Total 	Direct Labor $24333.00 $29023.31 	$8603.03 2078 $29023.31 100.0% $0.00 $29023.31 
Burden 	@ 	24.6% $2337.00 $2387.93 	$756.40 $2387.93 100.0% $0.00 $2387.93 
(21.0% starting 	7/1/85) 
(Excluding BRA Labor) 

Direct Labor and Burden $26670.00 $31411.24 	$9359.43 $31411.24 100.0% $0.00 $31411.24 

'EL EXPENSE $2500.00 $1193.74 	$0.00 $1193.74 100.0% $0.00 $1193.74 

RAL & 	ADMINISTRATIVE EXPENSE $1500.00 $413.46 	$135.00 $413.46 100.0% $0.00 $413.46 

UTING CHARGES $1500.00 $1565.18 	$373.28 $1565.18 100.0% $0.00 $1565.18 

TOTAL DIRECT COSTS $32170.00 $34583.62 	$9867.71 $34583.62 100.0% $0.00 $34583.62 

RECT COSTS 	@ 	55.3% $17790.00 $19959.38 	$7276.49 $19959.38 100.0% $0.00 $19959.38 
(63.5X starting 7/1/85) 

ONTRACT PRICE $49960.00 $54543.00 $54543.00 

OMMITTMENTS AND $17144.20 $54543.00 100.0X 
PENDITURES 
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QUARTERLY PROGRESS REPORT 
RESEARCH ON RELIABLE DISTRIBUTED 

COMPUTING 
CONTRACT MDA 004-84-C-6035 
REPORTING PERIOD IA SEP 84 -. 31 DEC 84 



1. Project Status 

During the initial quarter of this project, work has begun on each of the 
two tasks called for by the statement of work. As was planned, these efforts 
are closely related to work previously in progress within the Clouds Project, a 
major research effort in the area of reliable distributed computing. Under the 
Distributed File Systems task, a Ph.D. thesis proposal has been developed, enti-
tled "Storage Management for an Action-based Operating System." A summary of 
that proposal follows within this report and the entire proposal is attached as 
an appendix. Under the Language Support for Robust Distributed Programs task, 
work has been done on refining a programming language called Aeolus, which is 
intended for programming the Clouds system. A summary of Aeolus appears in a 
later section of this report, and a recently written paper on Aeolus is attached 
as an appendix. 

The work on the tasks of this project is proceeding on schedule. 	Future 
plans include a continuation of the two investigation presented here, including 
the development of another Ph.D. thesis proposal based on the Aeolus work. 

2. Storage Management for an Action-based Operating System 

The Clouds Project is an effort to provide support for a distributed com-
puting systems, which achieves performance improvements (over conventional com-
puting systems) through the parallelism possible in a multi-computer environ-
ment, and reliability improvements through the redundancy available in process-
ing resources and data storage. In order to achieve such improvements, the sys-
tem must ensure the proper coordination of processes on various machines in the 
system and synchronize the use of shared data. The system as a whole must be 
able to deal with failures of one of its component machines, determining what 
processes on the failed machine are necessary for the continuation of some 
larger task. A distributed system must be able to ensure the consistency of 
data in the presence of machine failures, taking into account' that data may be 
replicated. 

The initial goal of the Clouds project is to produce an. operating system 
kernel that supplies the mechanisms needed by a reliable distributed computing 
system. In supporting these mechanisms, the Clouds kernel must support other 
conventional mechanisms such as virtual memory, process control and secondary 
storage management. The action and object support must be integrated with the 
conventional kernel functions so that support for a reliable distributed comput-
ing system is available through a well-defined kernel interface, and the imple-
mentation of the kernel is efficient and compact. 

One subtask currently in progress is the design and investigation of a por-
tion of the Clouds kernel: the file (storage management) system. An attached 
Ph.D. research proposal by David Pitts describes the work on this subtask. In 
addition to describing how such a system can be built, it also considers the 
interaction of the storage management system with other parts of the kernel, 
particularly its interaction with the virtual memory system. 

The purpose of the proposed research is to design a kernel-level file sys-
tem that supports a reliable distributed computing system. The file system will 
manage the secondary storage available on the system. Specifically, the design 
presents the structures and mechanisms necessary to support the file system. 
The design will include support for both recoverable and non-recoverable 
objects. Mechanisms to create, delete, write and read objects on disks are 
defined. For recoverable objects the additional protocols and structures that 
will ensure recoverability of objects in the presence of machine failures and 
action aborts are detailed. The design also discusses the interaction of the 
file system and the virtual memory system. This portion of the design specifies 
the structures and mechanisms required for virtual memory. ' The design also 
defines the support required for action management and object recovery. Finally 
a facility for the location of segments on secondary storage must be provided. 

The design of the file system will have two phases. Phase one will be a 
design of essential features for the system. The end-result will be en imple-
mentation for the Clouds kernel that will serve as a test-bed for further 
research. 	An analysis of the design and implementation will be done to deter- 
mine the correctness and effectiveness of the design. 	The results of the 
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analysis may have an effect on phase two. This phase of the design will include 
modifications and refinements to the original design. In general, phase two 
will include features not absolutely necessary for the file system, but which 
may be desirable later as the system is put to use as a research device. Feed-
back from the analysis of the original design may suggest some of the Changes 
found in phase two. Phase two is not intended for immediate implementation. 

The Clouds kernel will provide support for three basic mechanisms which 
will be important to later discussion: processes, objects and actions. 
Processes are the active agents of the system; to initiate and perform any work 
requires a process. The kernel has a process manager which handles all book-
keeping associated with creating, dispatching, and destroying processes. 

Objects, on the other hand, are passive entities. Objects are typed col-
lections of data. The type of an object determines what operations may be per-
formed on the data, as well as how the data is organized. Object data can only 
be manipulated through these operations, and then only by a process which has a 
proper capability for the object. A capability is a unique name for an object 
along with a list of operations which are permissible for use by the possessor. 
The object manager handles the overhead of verifying capabilities and performing 
operation calls. 

Objects will be the organizational units of the system. By using objects, 
a programmer has a means for abstraction and isolation of data. The kernel also 
provides a mechanism for organizing sets of operations into a unit. This 
mechanism is the action. Actions are atomic. The set of operations comprising 
an action appears to execute completely or not at all. Also, the atomicity of 
actions prevents the execution of one action interfering with the execution of 
another. Actions provide a mechanism for making the effects of a set of opera-
tions consistent and recoverable. 

Actions are also managed by the object manager. Actions require processes 
in order to perform any task. An action may have several processes or one pro-
cess executing on its behalf. A single process Could be used by several actions 
at various times. 

The kernel provides processes, objects, and actions as efficiently as pos-
sible. Particularly, because objects have different types and possible opera-
tions, the kernel needs access to objects in a manner which is consistent and 
convenient. For this reason, all objects have a secondary type, called the seg-
ment type. The segment type is a sequence of bytes with primitive operations 
such as read a page, copy the object from one place to another, or append some 
data onto the end of the object. The segment is accessible only by the kernel. 

2.1. Storage Management 

The Clouds file system is managed as a set of partitions. 	Each partition 
is an autonomous logical device, having its own device driver which manages 
requests to the partition. The partition driver passes requests to a physical 
device driver. A partition resides completely on one physical device and con-
sists of a contiguous set of bytes on disk. The partition driver requires three 
structures to manage partition storage. First is a partition header, which holds 
information concerning the partition such as its size, whether it provides sup-
port for recoverability, a list of bad disk records for the partition, and other 
such facts. The header should be duplicated to reduce the risk of its destruc-
tion by a media failure or other such disastrous error. The header is placed at 
a known location in the partition. Before a partition can be accessed by the 
kernel, it must be mounted on the system. This process consists of initiating 
the driver for the partition, and giving it the starting location of the parti-
tion. 

Each partition also maintains a directory, contains a mapping of sysnames 
(for objects) onto partition record addresses. Note that partition directories 
contain mappings only for their own segments. Redundancy should also be insured 
for this structure. The partition driver also knows the location of the direc-
tory. 

The third partition structure is a record map, which is a bit-map showing 
allocation of records for the partition. The driver uses the record map to 
determine which records are in use by segments and which can be allocated. Once 
again, the record map is an important structure which should be duplicated to 

-2- 



prevent its loss after a media crash. The remainder of the partition is avail-
able for the storage of object data, Or as the file system treats objects, the 
storage of segment data. 

2.2. Recovery Management and Virtual Memory 

Segment recovery is accomplished via a shadowing scheme. That is, segments 
on which actions are operating will have shadow versions that the actions will 
actually see. The scheme is pessimistic, so that no modications are made to a 
permanent version until the action making the modifications commits. The goals 
of the recovery scheme are, aside from producing consistent results, to allow 
recovery of segments (and partition structures) with as little storage overhead 
as possible, and with as few disks accesses as possible. Shadowing, then, will 
be minimal. That is, only those parts of the segment actually modified are sha-
dowed. 

The file system becomes involved in recovery only when an action precommits 
and the shadow version of the segment on which the action is operating is 
created. Prior to precommit, all write operations are done in main memory. An 
active segment is mapped into virtual memory by the virtual memory system. An 
object's address space contains a block of permanent data and a block of vola-
tile data. The permanent data block contains data which will survive a crash. 
This is basically the object data. The volatile data block's contents will not 
survive a machine crash and generally consists of such structures as locks and 
semaphores for the object. Also contained in the volatile data block is much of 
the information maintained by the action management system. 

When an action operates on a segment, the action management system main-
tains versions of any modified recoverable parts of the segment in the volatile 
data block. There may be any number of versions due to the nesting of actions 
and actions sharing the segment. When a top-level action precommits, data must 
be moved from the volatile data block to the permanent data block, prior to sha-
dowing the segment on secondary storage. To simplify the precommit procedure, 
we allow only one action per segment to pass the precommit point. If actions A 
and B are both operating on object 0 and A precommits, B is prevented from 
precommitting. If B attempts to precommit, the action management system blocks 
the action. B still may access the object. 

During the time precommit and commit are taking place, the virtual memory 
system must insure that modified pages of the permanent data block remain in 
memory and undisturbed. The virtual memory system can do this by physically 
locking the pages in memory, making them read-only. Then the pages can be 
flushed to disk to build the shadow version of the permanent segment. 

Because the permanent data block is not modified until precommit, paging of 
object data can be performed using the permanent segment on disk. However, pag-
ing surfaces must be provided for the volatile data block. A partition for tem-
porary data can be created on disk for this purpose. Since all the data con-
cerned is volatile, no recovery is necessary for this partition. 

3. OVERVIEW OF AEOLUS 

The major design goal of Aeolus is to make possible access to the features 
of the Clouds system from a powerful systems programming language which supplies 
those features -- such as strong typing -- which aid in the quick development of 
error-free programs, yet allows those features to be explicitly circumvented 
when necessary. 

The major structuring features in Aeolus are processes and objects. 
Objects have two purposes in Aeolus: to provide support for data abstraction, 
and to reflect the recoverability and synchronization capabilities provided by 
the Clouds kernel. It has been argued elsewhere [A11c82] that the object con-
struct provides a powerful tool for the organization of programs for recovery, 
both from the standpoint of the programmer and of the system. Objects may rely 
on the automatic operating system / runtime system support for synchronization 
and recovery (recoverable and autosynch objects). Alternatively, using powerful 
features provided by the language and the Clouds system, the programmer may take 
advantage of semantic knowledge about the application to explicitly code more 
appropriate recoverability and synchronization. However, Aeolus objects also 
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provide abstraction features even when synchronization and recovery are not 
required. These nonrecoverable objects provide a logical framework for the 
organization of modules for separate compilation. 

3.1. Features for Systems Programming 

In keeping with its purpose as a systems programming language, Aeolus 
incorporates several features which give the programmer access to the hardware 
and the lower levels of the systems software, as well as "convenience" features 
which allow more efficient coding, including: 

a full range of assignment and bit-manipulation operators similar to 
those in the C language; 

features for register optimization, such as a special index type for 
loop counters and array references; 

the option of specifying inline expansion of a procedure; 

a facility for specifying arbitrary procedure argument lists of unspeci-
fied length and (predefined) types (similar to the nospread arglists of 
Interlisp); 

and the ability to specify storage addresses for variables, as well as 
some capabilities for setting and doing arithmetic on pointers. 

However, most of the power of Aeolus as a systems programming language, aside 
from the access it provides to the features of the Clouds system, lies in the 
ability it gives the programmer to specify low-level data structures as abstract 
data types, and in the treatment of the underlying hardware as an object with 
operations on its state available from the language. 

In•addition to the usual structured types (records and arrays), Aeolus pro-
vides a structure type, which allows the programmer to specify abstract types 
for the manipulation of bitfields. The structure is similar to the packed 
record construct of Pascal, except that the programmer indicates that its fields 
should fit one of the addressable entities defined by the target computer (byte, 
word, doubleword, quadword, etc.), and this correspondence is checked by the 
compiler. This provides a secure mechanism allowing bit fields within a low-
level data structure to be referenced by name. Aeolus also provides the byte 
and word types as predefined objects. These objects have operations permitting 
manipulations similar to those of the bftset type of Modula-2. The programmer 
may define similar objects for bit strings of other lengths. 

The ability to inspect and change the state of the hardware is also impor-
tant in systems programming. Access to the underlying hardware is provided by 
the operations of special Aeolus objects. We call such an object a pseudo-
object since only one instance of it may exist, whereas there may be an arbi-
trary number of instances of a normal object. An example of a pseudo-object is 
PC_System. This pseudo-object gives access to the registers and ports of a PC's 
microprocessor, and through the ports to the other system components, such as 
the interrupt controller, device controllers, and modem registers. For example, 
the IN_BYTE and OUT_BYTE operations of PC_System allow values to be input and 
output from the byte ports of a PC; other PC_System operations provide such 
capabilities as access to the register set, flags, and interrupt mechanism. 
These operations typically compile inline to a single machine instruction. For 
considerations of efficiency, some operations in hardware pseudo-objects may 
give access to special instructions of the target machine, such as the string 
instructions of the PC or the polynomial instructions of the VAX. 

3.2. Features for Object and Action Programming 

The design of Aeolus is intended to support the recovery and synchroniza-
tion capabilities of the Clouds system in a high-level systems programming 
language. Objects in Aeolus, besides providing an organizational tool for 
secure separate compilation, give access to the recovery properties of Clouds 
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objects. Thus, unless an Aeolus object is designated as nonrecoverable, the 
Clouds kernel mechanisms are used for invocations of its operations, allowing 
the system to control the recoverability properties of the object's state. In 
the remainder of this section, the features provided by Aeolus for accessing 
these features of Clouds are examined. 

The code for an Aeolus object has two parts. The definition part is seen 
both by the object itself when it is being compiled, and by all other objects or 
programs which use that object. Compilation of a definition part produces a 
symbol table file which is used for type checking among these separate compila-
tions. It can contain specifications of public types and constants defined by 
the object, and the interface definitions of the object's operations. Defini-
tion parts may not contain variable declarations. The implementation part con-
tains the actual code of the operations, along with any needed local (private) 
type, constant, or procedure definitions. Local variables of an object share 
the lifetime of the object instance to which they belong, and thus act as "own" 
variables. This separation of definition and implementation provides a safe 
separate compilation mechanism similar to packages in Ada {TM) or modules in 
Modula-2. 

The general syntax of object implementation parts in Aeolus is as follows: 

implementation of [ nonrecoverable 1 recoverable : autosynch : epsilon ] 
object <object id> is 

uses <id list> 
import <id list> 
action events <override list> 
<block> 

end implementation. 

(Although not shown in this exi, mnle syntax, objects may be specified as being 
autosynch and recoverable simultanL:u, y . . ;. 'hp object is specified as being 
nonrecoverable, it is treated as being simply a separate compilation module. 
That is, operations in nonrecoverable objects are compiled using the standard 
preludes and postludes for procedure bodies, without special code or system 
calls for recovery.' If the object is specified as being recoverable, the com-
piler provides a standard run-time framework for recovery by generating preludes 
and postludes for the object operations using Clouds object and action manager 
calls. Thus, the programmer may gain access to the action mechanisms of the 
Clouds system with a single keyword. However, the full power of the Clouds 
action mechanisms may be unnecessary and inefficient in some cases. For those 
cases, the Aeolus/Clouds system provides mechanisms which allow the user to 
explicitly program recovery strategies tailored to the individual requirements 
of the problem at hand. Therefore, if neither the nonrecoverable nor the recov-
erable keyword is given in an object header, it is assumed that object recovery 
is explicitly programmed. In this case, the programmer may provide alternate 
recovery procedures for recoverable variables of the object, and may also 
specify, in the action events clause, handlers other than the default system 
handlers for the precommit, commit, and abort events of the entire object. The 
compiler then specifies to the action and object management systems that, when 
one of the action events occurs, these alternate handlers are to be invoked 
instead of the standard, system-provided procedures. 

The Aeolus language also provides access to the synchronization mechanisms 
of the Clouds system. When the autosynch object attribute is specified in an 
object header, it indicates that the default system synchronization procedures 
are to be used on the object's operations to provide concurrency atomicity. If 
the autosynch attribute is not specified, synchronization may be explicitly pro-
grammed using operations on the lock type provided by the language. A Clouds 
lock [Allc83b] is not associated with a physical object, but rather with values 
in the domain of the object. Thus -- for example -- a file name may be locked, 
even if a physical file with that name does not yet exist. 

The uses clause allows the programmer to specify the use of system pseudo-
objects, while the import clause allows other user-defined or system-defined 
object definitions to be accessed. In a <block>, definitions of types, con-
stants, variables, recoverable variables, internal procedures, and operations 
may be written in any order (as long as their definitions appear before any 
uses); the <statement part> of the block is treated as an initialization routine 
to be executed upon creation of an instance of the object. 
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Object operations are programmed like procedures. An operation invocation 
looks like a procedure invocation with a prefix indicating the object instance 
upon which to operate: 

<object instance id> P <operation id> ( <actual param list> ) 

An object instance may be created by declaring a variable of that object type, 
and then allocating the instance's data storage on the heap using an extended 
version of the allocation function, or by associating the variable with a "per-
manent" object, much as a file variable can be associated with a physical file 
in Pascal. 

Operations or local procedures of (recoverable) Aeolus objects may be 
specified to be invocable as an action. The syntax of action implementations is 
much like that of procedures: 

procedure <proc id> ( <formal param list> ) is action 
<procedure block> 

end procedure 

(A <procedure block> is the same as a <block> except that it cannot contain 
declarations of recoverable variables.) Thus, the invocation of an action is 
similar to a procedure invocation; however, a unique action-id is created by a 
Clouds action manager for the invocation, which may be assigned to a variable of 
the invoking procedure: 

<action-id var> := action <proc id> ( <actual param list> ) 

This action-id variable may be used to retrieve infOrmation from the system 
about the status of the action, or to abort the action, using calls to a Clouds 
action manager. This mechanism allows general control structures to be formu-
lated, e.g., for the concurrent invocation of actions. 
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Abstract 

As computing systems enter more and more human activities, 
providing various sorts of services, it becomes increasingly 
important that these systems be reliable. The Clouds project is 
research into how reliable computing systems can be built. Such 
a system is supported at a low level by the Clouds kernel, 
currently under development. The kernel supports user-defined 
objects and atomic actions, with which the kernel can provide 
recoverability in the presence of mahcine and system failures. 

An important component of the kernel is a reliable file system. 
This proposal describes a plan for building such a file system. 
An overview of the preliminary design is given, discussing the 
structure of the system and techniques for insuring 
recoverability of the file system. The proposal also discusses 
the interaction of the file system with the virtual memory 
system. Some tentative ideas are presented for the design of the 
virtual memory system. The proposal also suggests some areas for 
evaluation of the design. 

Introduction  

Many potential advantages have been suggested for distributed 
computing systems, most notably performance improvements through 
the parallelism possible in a multi-computer environment, and 
reliability improvements through the redundancy available in 
processing resources and data storage. In practice, these 
improvements have been hard to achieve. The system must ensure 
the proper coordination of processes on various machines in the 
system and synchronize the use of shared data. The system as a 
whole must be able to deal with failures of one of its component 
machines, determining what processes on the failed machine are 
necessary for the continuation of some larger task. A 
distributed system must be able to ensure the consistency of data 
in the presence of machine failures, taking into account that 
data may be replicated. 
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The Clouds Project is an effort to provide support for such a 
system. The initial goal is to produce an operating system 
kernel that supplies the mechanisms needed by a reliable 
distributed computing system. Among mechanisms supported by the 
Clouds kernel are those described in the action-object model of 
fAllchin 83] and developed further in (McKendry 84]. In 
supporting these mechanisms, the Clouds kernel must support other 
conventional mechanisms such as virtual memory, process control 
and secondary storage management. The action and object support 
must be integrated with the conventional kernel functions so that 
support for a reliable distributed computing system is available 
through a well defined kernel interface, and the implementation 
of the kernel is efficient and compact. 

This proposal describes a plan for the design and investigation 
of a portion of the Clouds kernel: the file (storage management) 
system. In addition to describing how such a system can be 
built, we look at the interaction of the storage management 
system with other parts of the kernel, particularly its 
interaction with the virtual memory system. The system described 
in this proposal is a reduced design, in that it provides the 
functionality required by the kernel but not much more. 
Therefore, we also present some ideas for future expansion and 
refinement of the storage system, and examine how such a system 
can be used. 

The second chapter presents the problem we are addressing, and 
also provides some background concerning the environment in which 
we are working. The third chapter discusses the design and 
implementation of the file system. A set of protocols for 
segment recovery is presented along with a discussion of the 
structure of the file system. The requirements and structure of 
the virtual memory system are also discussed. The fourth chapter 
discusses related work. The fifth chapter presents an outline of 
the thesis. 



Problem Statement  and Background  

The purpose of the proposed research is to design a kernel level 
file system that supports a reliable distributed computing 
system. The file system will manage the secondary storage 
available on the system. Specifically, the design presents the 
structures and mechanisms necessary to support the file system. 
The design will include support for both recoverable and 
non-recoverable objects. Mechanisms to create, delete, write and 
read objects on disks are defined. For recoverable objects the 
additional protocols and structures that will ensure 
recoverability of objects in the presence of machine failures and 
action aborts are detailed. The design also discusses the 
interaction of the file system and the virtual memory system. 
This portion of the design specifies the structures and 
mechanisms required for virtual memory. The design also defines 
the support required for action management and object recovery. 
Finally a facility for the location of segments on secondary 
storage must be provided. 

The design of the file system will have two phases. Phase one 
will be a design of essential features for the system. The 
end-result will be an implementation for the Clouds kernel that 
will serve as a test-bed for further research. An analysis of 
the design and implementation will be done to determine the 
correctness and effectiveness of the design. The results of the 
analysis may have an effect on phase two. This phase of the 
design will include modifications and refinements to the original 
design. In general, phase two will include features not 
absolutely necessary for the file system, but which may be 
desirable later as the system is put to use as a research device. 
Feedback from the analysis of the original design may suggest 
some of the changes found in phase two. Phase two is not 
intended for immediate implementation. 

The next section will present an overview of the first phase 
design, plus some tentative ideas for the second phase. The 
remainder of this section provides some context for the proposed 
file system. 

An overview of the Clouds kernel is given in fSpafford 84]. The 
report describes the components of the kernel, what services or 
mechanisms the components provide, brief overviews as to how the 
components provide the services, and how the components interact. 
The kernel provides three basic mechanisms which will be 
important to later discussion. 

The Clouds kernel supports processes. Processes are the active 
agents of the system; to initiate and perform any work requires a 
process. The kernel has a process manager which handles all 
bookkeeping associated with creating, dispatching, and destroying 
processes. 
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Objects, on the other hand, are passive entities. Objects are 
typed collections of data. The type of an object determines what 
operations may be performed on the data, as well as how the data 
is organized. Object data can only be manipulated through these 
operations, and then only by a process which has a proper 
capability for the object. A capability is a unique name for an 
object along with a list of operations which are permissible for 
use by the possessor. The object manager handles the overhead of 
verifying capabilities and performing operation calls. 

Objects will be the organizational units of the system. By using 
objects, a programmer has a means for abstraction and isolation 
of data. The kernel also provides a mechanism for organizing 
sets of operations into a unit. This mechanism is the action. 
Actions are atomic. The set of operations comprising an action 
appears to execute completely or not at all. Also, the atomicity 
of actions prevents the execution of one action interfering with 
the execution of another. Actions provide a mechanism for making 
the effects of a set of operations consistent and recoverable. 

Actions are also managed by the object manager. Actions require 
processes in order to perform any task. An action may have 
several processes or one process executing on its behalf. A 
single process could be used by several actions at various times. 

The 	kernel 	provides 	processes, 	objects, and actions as 
efficiently as possible. Particularly, because objects have 
different types and possible operations, the kernel needs access 
to objects in a manner which is consistent and convenient. For 
this reason, all objects have a secondary type, called the 
segment type. The segment type is a sequence of bytes with 
primitive operations such as read a page, copy the object from 
one place to another, or append some data onto the end of the 
object. The segment is accessible only by the kernel. 



The Proposed Research  

In this section we sketch a tentative first phase design of the 
file system. Included in this design is a discussion of the 
interaction of the virtual memory system with the file system. 
Our dicussion starts at a point presented in [Spafford 841. In 
this report, an overview of the Clouds kernel design is 
presented. In particular, structures and general techniques are 
sketched. The purpose of phase one is to refine and expand this 
overview into a design which can be implemented. 

Storage Management  

The Clouds file system is managed as a set of partitions. Each 
partition is an autonomous logical device, having its own device 
driver which manages requests to the partition. The partition 
driver passes requests to a physical device driver. A partition 
resides completely on one physical device and consists of a 
contiguous set of bytes on disk. The partition driver requires 
three structures to manage partition storage. First is a 
partition header, which holds information concerning the 
partition such as its size, whether it provides support for 
recoverability, a list of bad disk records for the partition, and 
other such facts. The header should be duplicated to reduce the 
risk of its destruction by a media failure or other such 
disastrous error. The header is placed at a known location in 
the partition. Before a partition can be accessed by the kernel, 
it must be mounted on the system. This process consists of 
initiating the driver for the partition, and giving it the 
starting location of the partition. 

Each partition also maintains a directory, contains a mapping of 
sysnames (for objects) onto partition record addresses. Note 
that partition directories contain mappings only for their own 
segments. Redundancy should also be insured for this structure. 
The partition driver also knows the location of the directory. 

The third partition structure is a record map, which is a bit-map 
showing allocation of records for the partition. The driver uses 
the record map to determine which records are in use by segments 
and which can be allocated. Once again, the record map is an 
important structure which should be duplicated to prevent its 
loss after a media crash. The record map's use will be discussed 
further in the presentation of the recovery protocols. 

The remainder of the partition is available for the storage of 
object data, or as the file system treats objects, the storage of 
segment data. Figure 1. illustrates a 	simple 	partition 
consisting of one segment. 

Segments are located through the partition directory. The 
sysname for the object is mapped to the partition record where 
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the segment resides. This record contains the segment header. 
Like the partition header, the segment header contains 
information about the segment, such as its size (in bytes), its 
(object) type, and partition management information (mainly for 
recovery). In addition, the header contains a set of pointers to 
other partition records. These records may contain segment data 
or may be another set of pointers, called an index record. The 
pointers in the index record may point to yet other index 
records. The exact structure oE the segment depends upon its 
size. The implementation will limit segments to having two 
levels of index records. The leaf nodes of the tree of records 
for a segment will be data records. Thus access to a segment 
requires first locating on which partition the segment resides 
and mapping the sysname for the segment in the partition 
directory. This gives a pointer to the segment header. Access 
of the particular segment record requires a look at the size of 
the segment and following the appropriate path of pointers. For 
small segment this may take only one access. For larger 
segments, up to three accesses may be necessary. 

Recovery Management  

Segment recovery is accomplished via a shadowing scheme. That 
is, segments on which actions are operating will have shadow 
versions that the actions will actually see. The scheme is 
pessimistic, so that no modications are made to a permanent 
version until the action making the modifications commits. The 
goals of the recovery scheme are, aside from producing consistent 
results, to allow recovery of segments (and partition structures) 
with as little storage overhead as possible, and with as few 
disks accesses as possible. Shadowing, then, will be minimal. 
That is, only those parts of the segment actually modified are 
shadowed. 

The recovery scheme consists of a set of protocols that dictate 
what the file system must do for segment states and action 
events. To describe the recovery scheme we will consider these 
states and actions one-by-one and present the protocol for each. 
For the purpose of the discussion, suppose that an action A is 
started which eventually references a recoverable segment S 
(Figure 2. illustrates the partition on which S resides). 
Initially, nothing need be done as far as the file system is 
concerned as long as all references to the disk segment are read 
references. It is only when the action makes a modification to 
the disk segment that any overhead need be incurred. The time 
that A makes such a modification to S is when A precommits. At 
this time A flushes all modified pages to disk so that they will 
be in permanent storage, allowing the action to commit safely, 
even if the commit process is interrupted by a machine crash. 
However, the precommit must be carefully performed, because it is 
subject to being interrupted as well and we do not want the file 
system to be in an inconsistent state as a result. 

To insure that precommit is done correctly, the file system will 
follow two protocols. The first is a header shadow protocol, 
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which performs the following operations: 

HS1)Storage must be allocated for a shadow version of the 
segment header. 

HS2)The segment header on disk must be set to indicate that the 
segment is being shadowed. Note that in Figure 2. this 
field is initially labelled PERMANENT. When the object is 
being shadowed, this field is set to SHADOWED as shown in 
Figure 3. The shadow pointer field should be set to point 
to the shadow segment. Originally, the field is set to 
NULL, as shown in Figure 2. 

HS3)The data from the permanent segment header is copied to the 
shadow version. 

The results of this protocol for segment S can be seen in Figure 
3. Once the shadow is established, the modified page can be 
shadowed on disk using the following page shadow protocol: 

PS1)Allocate storage for a shadow version of the modified record 
and a shadow version of any index record needed to access 
the modified page. 

PS2)The data for the modified page, and any index record are 
copied to the shadow versions. Pointers in the segment 
header shadow and any other shadowed index record should be 
modified at this time. 

PS3)The permanent segment header should have its shadow pointer 
set to the address of the shadow segment header. 

Two notes here. Because our scheme is pessimistic none of action 
A's effects are allowed to be permanent until A commits. In 
particular, the permanent page map cannot be changed to show that 
shadow records have been allocated. Instead, all such 
allocations occur on a temporary page map, which could be kept in 
volatile memory. Eventually, upon commit of the action, the 
allocations will have to be made part of the permanent record 
map. A similar set of protocols must be enforce for this update 
as well. 

Secondly, note that steps PSP, PS3, and HS3 require the writing 
of at least three disk records altogether. We are assuming that 
these write are atomic. The proposed research will include a 
detailed analysis of the protocols with respect to this 
assumption. The results will allow conclusions as to the 
necessity of atomic writes for the protocols, when the assumption 
of having atomic writes can be relaxed, and the costs of not 
having atomic writes (the damage to recoverability). 

Once this protocol has been carried out, all future references by 
A (either read or write references) refer to the shadow version 
of segment S. However at this point most of segment S is 
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unshadowed and read references to pages other than record x will 
refer to permanent records. Any modifications to some other 
record y will cause steps 2 and 3 to be performed for the 
modified record and any index records that are required to access 
y 

The precommit protocol uses the shadow protocol as follows: 

Pl)Perform the header shadow protocol. 

P2)Perform the shadow protocol for each page modified by A. 

P3)Set the shadow flag of the segment header shadow to 
precommitted. 

FIgure 4. shows the precommitted segment S. Once this protocol 
has completed, all modified pages in the permanent segment are 
shadowed and the commit procedure can proceed. 

So this brings us to the commit protocol. The protocol consists 
of the following: 

Cl)Update the permanent page map on disk. This requires that 
all addresses for shadow records be allocated in the page 
map and all modified records of the segment including the 
segment header be deallocated in the page map. 

C2)The shadow segment header is set so that it is now the 
permanent segment header. 

C3)The partition directory is set so that it points to the new 
segment header for segment S. 

Once this protocol is complete, any references to the segment 
will refer to the new version of the segment as can be seen in 
Figure 5. The new segment is a merging of old unmodified records 
and new records. 

Actions can also abort for one reason or another and a file 
system protocol is required for this event as well. The protocol 
simply rids the file system of any trace of action A's work as 
follows: 

Al)The volatile page map is updated to removed allocations for 
A's shadow records of segment S. 

A2)The permanent segment header for S is set to show that S is 
unshadowed and the shadow pointer is set to null. 

Figure 6. shows the segment after an abort of action A. Note 
that this time the permanent record map is unchanged, while the 
volatile map is updated. 
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One final event must be considered. That is how does the system 
recover from a machine crash? The protocol for this event 
requires: 

CR1)A new volatile page map is created. 

CR2)Every segment modified by an action is inspected and 
categorized. In our example, S is inspected to determine if 
A had precommitted. Depending on the result, one of step 3 
or step 4 will take place. 

CR3)If A had precommitted, then the commit or abort protocol is 
completed as appropriate. 

CR4)If A had not completed, the abort protocol is performed. 

The above protocols are carried out by sending requests to the 
partition driver, which converts the requests to the appropriate 
disk operations and queues the operations at the physical device 
driver. Note that the driver can reschedule operations. It does 
not necessarily perform them in the order received. The 
operations are scheduled to optimize access to the physical 
device, and in general, we do not wany to interfere with the 
scheduling. However, the protocols require that pages be flushed 
to disk at precommit to insure that the file system can be 
recovered properly. Therefore, we must specify when the 
operations can be flushed and when the driver should be left to 
handle scheduling. 

Virtual Memory  

The file system becomes involved in recovery only when an action 
precommits and the shadow version of the segment on which the 
action is operating is created. Prior to precommit, all write 
operations are done in main memory. An active segment is mapped 
into virtual memory by the virtual memory system. An object's 
address space contains a block of permanent data and a block of 
volatile data. The permanent data block contains data which will 
survive a crash. This is basically the object data. The 
volatile data block's contents will not survive a machine crash 
and generally consists of such structures as locks and semaphores 
for the object. Also contained in the volatile data block is 
much of the information maintained by the action management 
system. 

When an action operates on a segment, the action management 
system maintains versions of any modified recoverable parts of 
the segment in the volatile data block. There may be any number 
of versions due to the nesting of actions and actions sharing the 
segment. When a top-level action precommits, data must be moved 
from the volatile data block to the permanent data block, prior 
to shadowing the segment on secondary storage. To simplify the 
precommit procedure, we allow only one action per segment to pass 
the precommit point. If actions A and B are both operating on 
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object 0 and A precommits, B is prevented from precommitting. If 
B attempts to precommit, the action management system blocks the 
action. B still may access the object. 

During the time precommit and commit are taking place, the 
virtual memory system must insure that modified pages of the 
permanent data block remain in memory and undisturbed. The 
virtual memory system can do this by physically locking the pages 
in memory, making them read-only. Then the pages can be flushed 
to disk to build the shadow version of the permanent segment. 

Because the permanent data block is not modified until precommit, 
paging of object data can be performed using the permanent 
segment on disk. However, paging surfaces must be provided for 
the volatile data block. A partition for temporary data can be 
created on disk for this purpose. Since all the data concerned 
is volatile, no recovery is necessary for this partition. 

Each object and process in the system has its own address space. 
To provide the mapping for the address spaces, the virtual memory 
system uses virtual address maps [Spafford 84]. Each virtual 
address map maps the contents of a different address space. A 
virtual memory map holds a pointer to the page tables for the 
address space in addition to a set of entries which specify the 
data that is mapped into the address space. This mapping is 
provided by segment control blocks. A segment control block 
indicates which portion of the segment is being mapped and the 
state of the pages making up this mapping. The entries in the 
virtual address map have a pointer to the segment control block, 
plus an indication of where in the address space the segment can 
be found. For instance, a process P's map may have an entry 
mapping file F into P's address space. The entry points to a 
segment control block for F. Since F could be very large, P 
might not want to map the entire file into its address space, so 
the segment control block indicates that only byte 64 to 2048 are 
being mapped. P's virtual address map entry for F indicates that 
this block of data is located at addresses 2000 through 3984 of 
P's address space. See Figure 7. 

Additionally, there are object control blocks and process control 
blocks which point to virtual address maps for the object or 
process. Using the virtual memory facilities provided, the 
kernel can share and restrict access of address spaces. Recall 
that an object's address space contains the volatile data block. 
For recoverable objects part of this block is used to maintain 
versions of the recoverable data. By proper mapping of address 
spaces in virtual memory, the action management system and the 
object itself can insure that actions see versions they are using 
and prohibit other actions from seeing these versions. 
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Related Work 

The 	Clouds 	kernel 	file system provides reliable storage 
management. Object data is recoverable automatically in the 
presence of machine crashes. Most current file systems for 
operating systems do not support similar facilities, but instead 
rely on a scavenger approaches entailing intervention by an 
operator. Database management systems have supported automatic 
crash recovery and transactions (similar to our atomic actions) 
[Gray 79, Gray 81, Lindsay 84]. [Verhofstad 78] presents a 
survey of recovery techniques used by database management 
systems. However, those models of computation differ from ours. 
A database transaction may consist of reading values, processing 
those values, and then rewriting some of the values. Operating 
systems tasks are more general than this and involve more complex 
data. An operating system running on the Clouds kernel would 
work with actions consisting of sets of object operation calls. 

[Stonebraker 81] describes imcompatibilities between the services 
provided by operating systems and the functionality required by 
database management systems. This study interests us because 
some database systems support facilities similar to those 
required of the Clouds kernel. Database systems which run on top 
of operating systems must either adapt the existing services to 
their needs or duplicate services, when such services either do 
not exist or can not be adapted. Both of these alternatives can 
lead to performance degradation. We will examine some of 
problems [Stonebraker 81] mentions, explaining how they are 
addressed by the Clouds kernel. We also look at some existing 
systems. 

A weakness of many operating systems is the handling of I/O. 
Most current system queue I/O requests at a device driver. The 
device driver schedules the requests based on device status and 
where the information is on the device. The information is 
transfered in and out of a collection of buffers. I/O operations 
do not necessarily take place when a task issues them. Suppose a 
task requests that a file be written to disk. This request is 
broken up into a number of page write requests, which are queued 
at the device driver. The task then terminates. If the writes 
are all actually preformed there is no problem. However, the 
machine could crash before the writes are done, or when some 
writes have been performed and some have not. The file data, 
then, is either incorrect (no writes are done) or inconsistent 
(some writes are done some are not). Pages can be left in 
inconsistent states if the machine crashes in the middle of a 
page write. 

The DMERT operating system [Wallace 83], which uses a basically 
UNIX-like file system, addresses some these problems by providing 
a protocol for writing files. The protocols preserve the 
consistency of the file system as a whole. However, since DMERT 
apparently does not force out buffered writes and writes the data 



in place (no shadowing), the consistency of data inside files can 
be destroyed. The Clouds kernel maintains constistency through 
the support of atomic actions at a low level and by supporting 
the actions with the set of protocols provided by the file 
system. 

[Stonebraker 81] also notes that I/O transfers from system 
buffers can be expensive. Many database systems prefer to 
maintain user buffers for this purpose. Note that since the 
Clouds kernel maps objects into the address space of the 
processes' referencing the objects, each user effectively has his 
own buffer area. Further, requests for data not currently in 
memory are handled by the page fault mechanism of virtual memory. 
It is expected that this approach will be very efficient. The 
Pilot operating system also takes this approach [Redell 80]. 

A problem with mapping objects into virtual memory arises when 
large objects are referenced. The larger the object being mapped 
is, the more significant the size of the page tables associated 
with this mapping become. With very large objects, the system 
may page out the page tables for the object. A page fault for a 
missing data page could then generate two faults. Our solution 
is to provide partial mappings, as noted earlier. This reduces 
the number pages that are mapped, which should reduce page 
faults. Stonebraker points out two problems with this solution. 
The portions of the object being mapped must be determined, and 
any number of mappings may be required of over the duration of 
the processing. 

As noted, the Clouds kernel supports a mechanism similar to the 
transactions found in database management systems such as System 
R [Gray 81]. System R supports transactions differently. 
Whereas the Clouds kernel relies on pessimistic recovery, System 
R uses an optimistic approach. Transaction modifications are 
done immediately and must be undone if to transaction aborts. 
Part of the rationale for using pessimistic recovery arises from 
the fact that undo procedures are not required. 

Data recovery in System R is supported by both a logging 
technique and shadowing. A log is kept of all transactions. On 
abort, this log can be used to undo a transaction. The shadowing 
technique used by System R is quite different from that used by 
Clouds, since it support optimistic recovery. There is slightly 
more 	overhead associated with System R shadowing, because 
separate directory entries are maintained for shadows. 

Although we support techniques used by other systems, the Clouds 
file system is unique in many ways. The involvement of the 
virtual memory system in action management and the file system is 
different. We expect that this design will increase the 
efficiency of the implementation. Our approach to segment and 
partition recoverability is a comprehensive one. Recovery of 
both is handled at the lowest level of the system. The shadowing 
technique used by the file system is minimal as far as storage is 
concerned. Furthermore, shadows exist only for the last part of 
an action's duration, reducing storage cost still more. Our 
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method of handling I/O requests relieves processes from having to 
do any special scheduling to insure the I/O operations are 
flushed properly. 



Outline of Thesis 

We present here a tentative outline for the thesis resulting from 
the proposed research. 

Introduction. This section presents an introduction to the area 
of research. Included here will be background and terminology. 
An overview of the kernel is given to provide the context in 
which the research was done. The goals and general plan of the 
research is presented. 

Phase One Design. This section details the designs of the file 
system and virtual memory system. We will present a detailed 
description of the structures and mechanisms employed. We will 
also discuss the implementation of the design. The reasoning 
behind the decisions reached will be presented as well. 

Analysis of Phase One. We provide here an analysis of the design 
and implementation. Included here will be the analysis of the 
conditions under which atomic writes are required by the recovery 
protocols. The correctness and general efficiency of the design 
will be discussed. 

Phase Two design. The modifications to the phase one design are 
presented. We discussed the motives behind such modifications 
and examine how the modifications are integrated into the 
original design 

Related Work. We compare the results of our research with other 
similar work. 

Further Research. We present other research that might grow from 
this work. These may include ideas too ambitious to be included 
in phase two. 

Conclusion. A summary of the work done is presented along with 
some conclusions about the research. 
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ABSTRACT 

The goal of the Clouds project at Georgia Tech is the implementation of a 
fault-tolerant distributed operating system based on the notions of objects and 
actions, which will provide an environment for the construction of reliable 
applications. As part of the Clouds project, we are designing and implementing 
a high-level language in which those levels of the Clouds system above the ker-
nel level will be implemented. The Aeolus language provides access to the syn-
chronization and recovery features of Clouds. It also provides a framework with 
which to study programming methodologies suitable for action-object systems such 
as Clouds. 

1. INTRODUCTION 

In recent years, numerous research groups have been investigating the 
potentials of distributed computing systems. Among the benefits promised by 
advocates of distributed computing are improvements in syst em fault tolerance 
and reliability, increased availability of data and services, and faster 
response through use of distributed programs. Interest in reliability has grown 
as distributed systems have come to be used in an ever widening set of appli-
cations, including critical control systems. In the past, fault tolerance has 
principally been the concern of hardware designers, who mainly used redun-
dancy as a solution. More recently, it has been realized that maintaining the 
integrity of distributed data is a crucial concern in providing the benefits 
listed above. Accordingly, there has been a growth in research interest in 
techniques for providing the required data integrity in the presence of 
hardware failures and concurrently executing processes. 

Early attempts to provide tools to develop such systems have taken 	a 
variety of approaches. 	The Eden system, developed at the University of Wash- 
ington, is an "integrated distributed" computing system which is built on 
support for object-based programming [Alme83]. The principal feature of Eden 
for supporting fault tolerance is the capability to checkpoint objects. The 
Pronet language project, a previous effort at Georgia Tech, reflects a dis-
tinctly different basic approach [Macc82a, Macc82b]. Pronet allows distributed 
programs to be constructed of processes which interact via messages transmitted 
through ports. Fault tolerance is supported through features which allow 
processes to be checkpointed and networks of processes to be reconfigured. It 
is interesting to note that even though Eden and Pronet are quite dif-
ferent, they both rely on checkpointing as a crucial feature. 

While checkpointing can be used to construct processes or objects with an 
acceptable degree of fault tolerance, it has an essential weakness in that it 
is oriented toward dealing with a single object or a single process at a 
time. Maintaining data integrity in the presence of interactions between 
processes or objects is the essential question and checkpointing does not 
deal well with such interactions. Thus a number of researchers have recently 
proposed that reliability in a distributed system be based on atomic actions, an 
extension of the transaction concept used in distributed database work. Work 
in this area includes the Argus project at MIT [Weih83, Lisk83], the Clouds 
project at Georgia Tech [Allc82, Allc83a, A11c83b], the Archons project 
[JensB2] and Spector's work [Schw83, Dani83] at CMU, the Enchere system in 
France [Bana83] and the work of Birman and Skeen at Cornell [Birm84], among 
others. 

2. OVERVIEW OF THE CLOUDS PROJECT 

The goal of the Clouds project is to allow the construction of reliable 
application 	systems on unreliable hardware. The basic approach is to exploit 
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the redundancy available in distributed systems which consist of multiple com- 
puters connected by high-speed local area networks. We refer to such a system 
as a multicomputer or computer cluster. We use the notion 	of 	an object to 
represent 	system components, such as directories or queues. A set of changes 
to objects is grouped into an action. The underlying support 	system 	ensures 
that, 	even 	if the objects extend across multiple machines, the changes will 
occur in totality or not at all. At this level, the support 	system, 	known 
as 	the Clouds 	kernel, is maintaining the consistency of the objects. It is 
ensuring that objects either reflect the effects of an action totally 	or 	not 
at 	all -- no intermediate states are possible. This guarantee of an action's 
totality permits us to characterize the effects of 	hardware 	component 
failures: they cause actions to fail. Since a failed action is guaranteed 
to have had no effects on the objects with which it interacted, we can restart 
the action without concern for potential inconsistencies it might have 
created. 

The actions in Clouds go beyond the related notion of transactions in a 
database 	system. 	Rather 	than 	modelling 	all access to objects as simple 
reads or writes, the Clouds approach supports arbitrary operations on 	objects 
and allows 	a programmer to take advantage of operation semantics to increase 
concurrency, and thereby performance. Through appropriate use of 	encapsula- 
tion, concurrent 	actions can be allowed to change objects without breaching 
serializability. Even breaches to serializability can be allowed, when it is 
semantically appropriate and it is necessary to improve performance. 

The capabilities of Clouds described thus far comprise an architecture 
which will support an operating system for a multicomputer. This structure con-
tains three major components: objects, actions and processes. 

Objects 
An object consists of data and a set of operations (procedures to operate) 
on that data which maintain a set of associated invariants. For example a 
queue object might contain the actual queue as data. Operations might be 
GET to remove an entry and PUT to add an entry to the queue. A typical 
invariant for a queue might be that no more entries will be removed from 
the queue than have been added to it. Maintaining such an invariant involves 
using synchronization mechanisms to delay processes that attempt to remove 
entries before they are entered. Only the operations on an object can mani- 
pulate the data of the object. This property of encapsulation assists 	in 
maintaining invariants. 	We exploit encapsulation in our system to incor- 
porate recovery. By making critical objects recoverable, we can guarantee 
the 	consistency of the system after failures. We can restart computations 
on other nodes without fear of partially completed computations 	disrupting 
consistency. 

Actions 
An action is a unit of work. During execution, an action evolves as a 
partial order of operations on objects. An action appears to be primitive 
to its surrounding environment. In particular, an action appears to be 
atomic to other actions. Once begun, an action either completes by commit- 
ting or fails by aborting. 	If an action aborts, it has no effect on its 
environment. 	This is achieved through recovery mechanisms which maintain 
the state of the objects in volved in aborted actions. 	Actions fail when 
they interact illegally with other actions (e.g., deadlock) or when they 
are explicitly aborted. In our implementation, actions can be nested to 
improve failure containment characteristics. 

Processes 
In the Clouds architecture, objects are passive. Thus processes 	are 	used 
to provide activity in the system. A process may be used to represent a 
single top-level action or a nested action, in which case it will terminate 
when the action completes. 

Thus objects, actions and processes are fundamental concepts supported 
by the architecture. 	To support these concepts, recovery and consistency 
are incorporated into the basic virtual memory mechanism. 	Synchronization 
mechanisms to control the interactions of actions are also provided. It is 
with these capabilities that Clouds is meant to support the data integrity 
required for the implementation of reliable, distributed application programs. 
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The mechanisms developed for the support of transactions in database sys-
tems, as well as the traditional operating system synchronization mechanisms, 
have been found to be insufficient for the support of the action-object approach 
in operating systems. In particular, the problems of ordering and atomicity for 
nested actions, and several simplifications which apply to many operating sys-
tems problems, are discussed in (McKe84). The expediencies made possible by 
these simplifications make the use of the action-object approach in the Clouds 
system viable. 

In addition to the basic action support, other mechanisms are needed to 
help ensure that a system tolerates faults such as component failures. One 
requirement is a representation of work. Work is represented in Clouds by 
action networks, which are described using a Petri-net notation; transitions in 
the Petri-nets correspond to action executions. A state of such a net is called 
a job. A second requirement is that continuity of job execution be maintained 
through failures. Thus, we use job schedulers to assign actions to machines. A 
primary scheduler may be supported by a set of backup schedulers, which may 
reside on different machines, to provide backup if a coordinator fails during 
action commit. 

These mechanisms provided by the Clouds architecture are used to support 
the operating system itself and its services. Thus, the system itself is decen-
tralized and resilient. The Clouds system may be considered to consist of a set 
of fault-tolerant objects (servers) which in combination provide a reliable 
environment for applications. 

3. THE NEED FOR AN ACTION-BASED PROGRAMMING METHODOLOGY 

Actions are the key feature for guaranteeing data consistency. 	The 
"all-or-nothing" nature of actions really solves two problems. When an action 
fails, its effects are automatically undone; so, actions which fail due to 
machine failures cannot leave objects in an inconsistent state. Addition-
ally, the required serializability of actions provides a coarse-grained syn- 
chronization among them. 	(Other features may be used to provide more con- 
currency by supporting synchronization at a lower 	level.) Actions which 
are aborted for logical reasons (e.g., deadlock) again can have no visible 
effects on the state of any object. Thus the action concept successfully 
broadens the recovery viewpoint provided by checkpoints, since it encompasses 
all the changes to any number of objects made by an arbitrarily complex action. 

Actions alone do not provide all of the generally desired capabilities, 
since they do not address the question of the resiliency of individual 
objects. That is, they do not contribute toward the recovery of objects 
located on machines that fail. Rather, they guarantee the integrity of sur-
viving objects. Both Argus and Clouds support resilience through use of stable 
storage. (Stable storage has the property that information entrusted to it 
is extremely unlikely to be lost.) Various features are provided which cause 
the object support system to record sufficient information on stable storage 
so that the state of an object (guardian in Argus) may be recovered after a 
hardware failure. Note that for a combination of consistency and resili-
ence, the state of an object must be written to stable storage whenever an 
action which modified the object commits (presuming that pessimistic recovery is 
being used). 

Writing the state of an object to stable storage is, of 	course, just 
checkpointing. 	Indeed, the concept of stable storage is an implicit or expli- 
cit part of any checkpointing scheme (i.e., Eden and 	Pronet). 	It 	is 	the 
coupling with the action mechanism which makes checkpointing of objects 
effective. That is, part of the implementation of a commit is a checkpoint of 
all affected objects. Thus checkpointing is made an effective means for pro-
viding consistent, resilient objects. 

The mechanism for specifying just what must be written is 	one 	way 	in 
which Argus, 	Clouds and other proposals differ. In Argus, all mutex objects 
within a guardian are written. As suggested by the name, mutex objects 	also 
have certain synchronization properties, relating to their accessibility to con-
currently executing actions. Clouds, on the other hand, allows an entire 
object or any data object within it to be specified as recoverable. As would 
be expected, if the entire object is recoverable, then all of its contained 
data objects 	are 	written to stable storage when a relevant commit occurs. 
Both of these approaches exemplify implicit specifications of what 	must 	be 
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saved for recovery purposes. Yet another approach would be to require the pro-
grammer who defines an object to provide an explicit write-to-stable-storage 
operation to be invoked by the object management system at appropriate 
times. This variety of proposals reflects the need for study of a programming 
methodology based on use of objects and actions, so that we can determine just 
what kinds of features are most effective. 

The Clouds architecture goes beyond others in that it can support actions 
that involve objects on more than one machine. In other words, a remote 
procedure call can be done without creation of a nested action. Allchin's work 
[Allc83b] 	provides a definition of the basic capabilities supported by the 
Clouds architecture and a design for their implementation. 	Now that that 
implementation is in progress, we are studying how these capabilities may be 

. applied. In particular, we wish to study a programming methodology for systeMs 
like Clouds. 

As part of the Clouds project, we are designing and implementing high-level 
systems programming language called Aeolus (after the king of the winds in Greek 
mythology). An overview of the Aeolus language is presented in the next sec-
tion. Aeolus gives the programmer access to the features of the Clouds system 
discussed above. However, we also intend to use Aeolus as a framework for 
studying the sort of programming methodology appropriate to Clouds. This study 
should lead to the design of high-level language features to support that metho-
dology. 

4. OVERVIEW OF AEOLUS 

The major design goal of Aeolus is to make possible access to the features 
of the Clouds system from a powerful systems programming language which supplies 
those features -- such as strong typing -- which aid in the quick development of 
error-free programs, yet allows those features to be explicitly circumvented 
when necessary. 

The major structuring features in Aeolus are processes and objects. 
Objects have two purposes in Aeolus: to provide support for data abstraction, 
and to reflect the recoverability and synchronization capabilities provided by 
the Clouds kernel. It has been argued elsewhere [A11c82] that the object con-
struct provides a powerful tool for the organization of programs for recovery, 
both from the standpoint of the programmer and of the system. Objects may rely 
on the automatic operating system / runtime system support for synchronization 
and recovery (recoverable and autosynch objects). Alternatively, using powerful 
features provided by the language and the Clouds system, the programmer may take 
advantage of semantic knowledge about the application to explicitly code more 
appropriate recoverability and synchronization. However, Aeolus objects also 
provide abstraction features even when synchronization and recovery are not 
required. These nonrecoverable objects provide a logical framework for the 
organization of modules for separate compilation. Example 1 shows the struc-
tural outline of the COM_Q nonrecoverable object, which provides buffered access 
to the asynchronous communications ports of the IBM Personal Computer. (This 
example has been elided for reasons of space, especially concerning the text of 
its operations. A sample operation is shown in example 3.) 

4.1. Features for Systems Programming 

In keeping with its purpose as a systems programming language, Aeolus 
incorporates several features which give the programmer access to the hardware 
and the lower levels of the systems software, as well as "convenience" features 
which allow more efficient coding, including: 

a full range of assignment and bit-manipulation operators similar to 
those in the C language; 

features for register optimization, such as a special index type for 
loop counters and array references; 

the option of specifying inline expansion of a procedure; 

a facility for specifying arbitrary procedure argument lists of unspeci- 
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fled length and (predefined) types (similar to the nospread arglists of 
Interlisp); 

and the ability to specify storage addresses for variables, as well as 
some capabilities for setting and doing arithmetic on pointers. 

However, most of the power of Aeolus as a systems programming language, aside 
from the access it provides to the features of the Clouds system, lies in the 
ability it gives the programmer to specify low-level data structures as abstract 
data types, and in the treatment of the underlying hardware as an object with 
operations on its state available from the language. 

In addition to the usual structured types (records and arrays), Aeolus pro-
vides a structure type, which allows the programmer to specify abstract types 
for the manipulation of bitfields. The structure is similar to the packed 
record construct of Pascal, except that the programmer indicates that its fields 
should fit one of the addressable entities defined by the target computer (byte, 
word, doubleword, quadword, etc.), and this correspondence is checked by the 
compiler. This provides a secure mechanism allowing bit fields within a low-
level data structure to be referenced by name. Several examples of abstract 
structured byte types are given in example 1. Aeolus also provides the byte and 
word types as predefined objects. 	These objects have operations permitting 
manipulations similar to those of the bitset type of Modula-2. 	The programmer 
may define similar objects for bit strings of other lengths. 

The ability to inspect and change the state of the hardware is also impor-
tant in systems programming. Access to the underlying hardware is provided by 
the operations of special Aeolus objects. We call. such an object a pseudo-
object since only one instance of it may exist, whereas there may be an arbi-
trary number of instances of a normal object. An example of a pseudo-object is 
PC_System, which is used in the implementation of the COM_Q object in example 1. 
This pseudo-object gives access to the registers and ports of a PC's micropro-
cessor, and through the ports to the other system components, such as the inter-
rupt controller, device controllers, and modem registers. For example, the 
IN_BYTE and OUT_BYTE operations of PC_System allow values to be input and output 
from the byte ports of a PC; other PC_System operations provide such Capabili-
ties as access to the register set, flags, and interrupt mechanism. These 
operations typically compile inline to a single machine instruction. For con-
siderations of efficiency, some operations in hardware pseudo-objects may give 
access to special instructions of the target machine, such as the string 
instructions of the PC or the polynomial instructions of the VAX. Example 2 
shows how PC_System may be used to program an asynchronous communications inter-
rupt service routine (ISR), a local procedure of the COM_Q object. This inter-
rupt handler is invoked when a character is received over the communications 
line, and enqueues the character for later processing by the RECEIVE operation 
of tne COM_Q object. 

The operations of PC_System are also used in the PUT_BYTE operation of the 
COM_Q object, the text of which is given in example 3. This procedure waits for 
several conditions concerning the state of the communications line to become 
true (unless a timeout occurs first), and then places a data byte on the line. 
Tne line state is checked by interrogating the registers of the communications 
controller via port input operations, and inspecting bit fields of the 
register-type values obtained. 

4.2. Features for Object and Action Programming 

The design of Aeolus is intended to support the recovery and synchroniza-
tion capabilities of the Clouds system in a high-level systems programming 
language. Objects in Aeolus, besides providing an organizational tool for 
secure separate compilation, give access to the recovery properties of Clouds 
objects. Thus, unless an Aeolus object is designated as nonrecoverable. the 
Clouds kernel mechanisms are used for invocations of its operations, allowing 
the system to control the recoverability properties of the object's state. 
Examples of the implementation of an nonrecoverable object have been shown pre-
viously. In Section IV, we shall present the development of an object which 
uses the system mechanisms for recovery and synchronization. In the remainder 
of this section, the features provided by Aeolus for accessing these features of 
Clouds are examined. 
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The code for an Aeolus object has two parts. The definition part is seen 
both by the object itself when it is being compiled, and by all other objects or 
programs which use that object. Compilation of a definition part produces a 
symbol table file which is used for type checking among these separate compila-
tions. It can contain specifications of public types and constants defined by 
the object, and the interface definitions of the object's operations. Defini-
tion parts may not contain variable declarations. The implementation part con-
tains the actual code of the operations, along with any needed local (private) 
type, constant, or procedure definitions. Local variables of an object share 
the lifetime of the object instance to which they belong, and thus act as "own" 
variables. This separation of definition and implementation provides a safe 
separate compilation mechanism similar to packages in Ada (TM) or modules in 
Modula-2. 

The general syntax of object implementation parts in Aeolus is shown in 
example 4. (Although not shown in this example syntax, objects may be specified 
as being autosynch and recoverable simultaneously.) If the object is specified 
as being nonrecoverable, it is treated as being simply a separate compilation 
module. That is, operations in nonrecoverable objects are compiled using the 
standard preludes and postludes for procedure bodies, without special code or 
system calls for recovery. If the object is specified as being recoverable, the 
compiler provides a standard run-time framework for recovery by generating 
preludes and postludes for the object operations using Clouds object and action 
manager calls. Thus, the programmer may gain access to the action mechanisms of 
the Clouds system with a single keyword. However, the full power of the Clouds 
action mechanisms may be unnecessary and inefficient in some cases. For those 
cases, the Aeolus/Clouds system provides mechanisms which allow the user to 
explicitly program recovery strategies tailored to the individual requirements 
of the problem at hand. Therefore, if neither the nonrecoverable nor the recov-
erable keyword is given in an object header, it is assumed that object recovery 
is explicitly programmed. In this case, the programmer may provide alternate 
recovery procedures for recoverable variables of the object, and may also 
specify, in the action events clause, handlers other than the default system 
handlers for the precommit, commit, and abort events of the entire object. The 
compiler then specifies to the action and object management systems that, when 
one of the action events occurs, these alternate handlers are to be invoked 
instead of the standard, system-provided procedures. 

The Aeolus language also provides access to the synchronization mechanisms 
of the Clouds system. When the autosynch object attribute is specified in an 
object header, it indicates that the default system synchronization procedures 
are to be used on the object's operations to provide concurrency atomicity. If 
the autosynch attribute is not specified, synchronization may be explicitly pro-
grammed using operations on the lock type provided by the language. A Clouds 
lock [Allc83b] is not associated with a physical object, but rather with values 
in the domain of the object. Thus -- for example -- a file name may be locked, 
even if a physical file with that name does not yet exist. The examples in the 
next section demonstrate the use of locks. 

The uses clause allows the programmer to specify the use of system pseudo-
objects, while the import clause allows other user-defined or system-defined 
object definitions to be accessed. In a <block>, definitions of types, con-
stants, variables, recoverable variables, internal procedures, and operations 
may be written in any order (as long as their definitions appear before any 
uses); the <statement part> of the block is treated as an initialization routine 
to be executed upon creation of an instance of the object. 

Object operations are programmed like procedures. An operation invocation 
looks like a procedure invocation with a prefix indicating the object instance 
upon which to operate: 

<object instance id> @ <operation id> ( <actual param list> ) 

An object instance may be created by declaring a variable of that object type, 
and then allocating the instance's data storage on the heap using an extended 
version of the allocation function, or by associating the variable with a "per-
manent" object, much as a file variable can be associated with a physical file 
in Pascal. 

Operations or local procedures of (recoverable) Aeolus objects may be 
specified to be invocable as an action. The syntax of action implementations is 
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much like that of procedures: 

procedure <proc id> ( <formal param list> ) is action 
<procedure block> 

end procedure 

(A <procedure block> is the same as a <block> except that it cannot contain 
declarations of recoverable variables.) Thus, the invocation of an action is 
similar to a procedure invocation; however, a unique action-id is created by a 
Clouds action manager for the invocation, which may be assigned to a variable of 
the invoking procedure: 

<action-id var> := action <proc id> ( <actual param list> ) 

This action-id variable may be used to retrieve information from the system 
about the status of the action, or to abort the action, using calls to a Clouds 
action manager. This mechanism allows general control structures to be formu-
lated, e.g., for the concurrent invocation of actions. 



Example 1. Declarations and initialization of the COMO object 

definition of object com_q is 

! The definition part of the COM_O object, which 
! provides buffered read/write access to either of the IBM PC serial 
! ports, COM1 or COM2. Reception from the port is interrupt-driven. 
! The nomenclature of the PC Technical Reference Manual is used here. 
! The definition part specifies the publicly available constants, types, 
! and operation interfaces of the object to those objects which import it. 

type status_type is 
(normal, 	init error, 	receive_error, 	buffer_overflow, 

	

DSR_timeout, CTS_timeout, 	THRE_timeout 

operations 
procedure init (baud_rate : 300 .. 9600, data_bits : 5 .. 8, 

stop_bits : 1 .. 2, parity : (odd, even, none), 
var error : boolean) is modify 

procedure finish () is modify 
procedure status () : status_type is examine 
procedure get_byte (var in data : byte, 

var received : boolean) is examine 
procedure put_byte (out_data : byte, var error : boolean) is modify 

end definition. 

implementation of object com_q (port: word) is 

! The implementation part of the COM_O object. 
! The operations specified in the definition part are actually implemented 
! here, and any other local constants, types, variables, or procedures are 
! specified. 

uses PC_System 
	! The PC CPU pseudo-object. 

import queue 

! The definition part of the QUEUE object is included here as comments for 
! 	clarity. 

! definition of object queue (elem_type : private, size : integer) is 
operations 

procedure enqueue (item : elem_type, var full : boolean) is modify 
procedure dequeue (var item : elem_type, 

var empty : boolean) is modify 
end definition. 

asynch_int : const word := 16#???? 	location of the asynch. int. vector 
IMR 	: const word := 16#21 	! Interrupt Mask Register n 

! Addresses of some important register ports on the IBM Asynch board. 

MCR 	: const word := 16#3fc 	! Modem Control Register 
LSR 	 : const word := 16#3fd 	! Line Status Register 
MSR 	: const word := 16#3fe 	! Modem Status Register 



! 	Define the internal 	structures of some of the above registers. 
! 	This 	includes both single bits and bit 	fields. 
! 	Fields are named from most 	significant 	to 	least 	significant bit. 

type LSR_struc is 
structured byte 

unused, 	 ! 	= 0 
TSRE, 
THRE, 
BI. 

! 
! 
! 

Transmitter Shift Register Empty 
Transmitter Holding Register Empty 
Break Interrupt 

FE, 
PE, 
ORun. 

! 
! 
! 

Framing Error 
Parity Error 
OverRun error 

DR 	 : 
end structure 

type MCR_struc is 
structured byte 

unused 	: 

boolean 

0 	7 

! 

! 

Data Ready 

3 bits, 	=0 
LOOPback, 
OUT2, 
OUTi, 
RTS, 
DTR 	 : 

end structure 

type MSR_struc 	is 
structured byte 

boolean 
! 
! 
Request To Send 
Data Terminal 	Ready 

RLSD, 
RI, 
DSR. 

! 
! 
! 

Receive Line Signal 	Detect 
Ring Indicator 
Data Set Ready 

CTS, 
DRLSD, 
TERI, 
DDSR, 
DCTS boolean 

! 
! 
! 
! 

Clear To Send 
Delta RLSD 
Trailing Edge Ring Indicator 
Delta DSR 
Delta CTS 

end structure 

! Queue for buffering of characters (data bytes) input from the srial port. 
! Currently allows buffering of up to 128 characters. 

in_q 	: queue (byte, 128) 

! The current status of the COM_Q object, and variables to save information 
! from the serial port registers about what went wrong. 

cstatus : status_type := normal 
LSR_save : LSR_struc := 0 

! Old state of interrupt vectors and modem control register. 

old_rs232_isry : doubleword 
old MCR 	: MCR strut 

begin 	! Initialization section 
new (ln_q) 	 ! Create instance of the QUEUE object 
old_MCR := in_byte (MCR) 
init (1200, 8, 1, none, error) 	! Standard parameters at first 
if error then 

status := init_error 
else 

init_isry (asynch_int, rs232_isr, old_rs232_isrv) 	! Set int. vector 
out_byte (IMR, 16#ac) 	 ! Enable diskette, comm, keyboard, timer 
out_byte (MCR, 2#00001000) 	! Enable OUT2 in modem control register 

end if 
end implementation. 
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Example 2. Interrupt service routine of the COM_Q object 

procedure rs232_isr () is 

The interrupt service routine handles the Data Ready interrupts 
for input from the serial port. The character is placed in 
the input queue. 

The LSR_errors constant definition provides an example of the use of 
constructors. This constant represents error conditions in the 
line status register for which we're on the lookout. 
This constant could also have been written as 

const byte := 2#00011010 
depending on the programmer's taste. 

Note that, although interrupts are disabled by the hardware when 
the ISR is invoked, we must explicitly re-enable interrupts when 

. we're done. 

LSR_errors : const LSR_struc 
:= 

 
LSR_struc"[ 

FALSE : 3, 
TRUE. 
TRUE. 
FALSE, 
TRUE, 
FALSE 

LSR_val 	: LSR_struc 
buffer_full : boolean 

! break interrupt 
! framing error 

! overrun error 

begin 
LSR_val := in_byte (LSR) 	 ! Get a byte from the LSR port 
if LSR_val & LSR_errors then 	! Test line status reg. for errors 

cstatus := receive_error 
LSR_save := LSR_val 

else 	 ! Enqueue byte from the receiver reg. 
in_q p enqueue (in_byte (RBR), buffer_full) 
if buffer_full then 

cstatus := buffer_overflow 
end if 

end if 
enable () 	 ! Re-enable interrupts (PC_System) 

end procedure ! rs232_isr ! 



Example 3. The PUT_BYTE operation of the COMO object 

procedure put_byte ( ! out_data : byte, var error : boolean I ) is 

! Send a data byte to the serial port. If an error such as timeout 
! has occurred, set the boolean variable "error". 

MCR_init : const MCR_struc := 2#00001011 
	

Set 0UT2, RTS, DTR (as byte) 
MSRval 	: MSR strut 
timeout 	const integer := 10 
count 	: integer := 0 

begin 
out_byte (MCR, MCR_init) 
while count <= timeout loop 

MSR_val := in_byte (MSR) 
if MSR_val.DSR then 

exit . 
end if 
count += 1 

end loop 
if count > timeout then 

status := DSR_timeout 
MSR_save := MSR_val 
error := TRUE 
return . 

end if 

count := 0 
while count <= timeout loop 

MSR_val := in_byte (MSR) 
if MSRval.CTS then 

exit . 
end if 
count += 1 

end loop 
If count > timeout then 

status := CTS_timeout 
MSR_save := MSR_val 
error := TRUE 
return . 

end if 

count := 0 
loop 

LSR_val := in_byte (LSR) 
if LSRval.THRE then 

exit . 
elsif count > timeout then 

status := THRE_timeout 
LSR_save := LSR_val 
error := TRUE 
return . 

end if 
count += 

end loop 

! Initialize the Modem Control Register 
! Wait for Data Set Ready 

! Wait for Clear To Send 

I Wait for Transmit Holding Reg. Empty 

out_byte (THR, out_data) 	 ! FINALLY send the data byte 
end procedure ! put_byte ! 



Example 4. Syntax of Aeolus object implementations 

implementation of [ nonrecoverable 1 recoverable 1 autosynch 1 epsilon ] 
object <object id> is 

uses <id list> 
import <id list> 
action events <override list> 
<block> 

end implementation. 

5. PROGRAMMING ACTIONS IN AEOLUS 

In this section we present an example Aeolus object which illustrates the 
use of some of the language features which Aeolus provides for access to the 
action management facilities of the Clouds system. The SYMTAB object implements 
a simple symbol table, which uses the action mechanism to provide recovery 
"firewalls" around its critical operations, and uses the Aeolus/Clouds lock 
mechanism to specify customized synchronization rules which allow a high degree 
of concurrency in the use of its operations. For simplicity, the version of the 
SYMTAB object shown here maintains only a single copy of its state; more 
advanced Aeolus programming techniques will allow implementation of multiple-
copy objects for availability purposes, without necessitating changes in the 
object interface. 

The "definition part" or interface of the SYMTAB object is shown in example 
5. An operation definition, as may be seen in this example, may specify (with 
the keyword action) that the operation is to be compiled so that its invocation 
will automatically result in the creation of an action to encapsulate its execu-
tion. (The newly created action will actually be a subaction of the action 
which invokes the operation. Thus the execution of the operation can be aborted 
without necessarily terminating the calling action.) All operations of the SYM-
TAB object are invoked as actions, except for the QUICK_LIST operation (more on 
this later). 

An operation definition may also indicate that the operation might modify 
(write to) or examine (read) the object state; this information is used in the 
compilation of objects which take advantage of the automatic synchronization 
(autosynch) capabilities supported by the Clouds kernel. As would be expected, 
multiple concurrently executing actions are allowed to access an autosynch 
object via examine operations. On the other hand, an action may not execute a 
modify operation on such an object until all other actions which have touched 
the object have either committed or aborted, and that action will lock out all 
others until it commits or aborts. 

SYMTAB does not use the autosynch feature; rather, it uses synchronization 
techniques which allow greater concurrency where possible. For example, among 
the operations defined in the SYMTAB object are two which provide listings of 
the object state. The OUICK_LIST operation provides only an approximate picture 
of the symbol table state, since it does not wait for any actions which have 
executed INSERT and DELETE operations on the symbol table to complete before it 
produces a listing. It thus can always be executed without waiting, but it 
effectively assumes that all changes which have been made to the working copy of 
the symbol table will eventually be committed. The picture of the symbol table 
provided by QUICK_LIST may not be and may never become a committed state. A 
precise picture is given by the EXACT_LIST operation, which is executed as an 
action. EXACT_LIST uses a lock (described below) to guarantee that all other 
actions which have changed the symbol table either commit or abort before the 
listing is produced. Thus the picture presented by this operation presents a 
valid logical view of the symbol table. Presumably, the user of the QUICK_LIST 
operation is willing to risk the possibility of an inconsistent picture in 
exchange for the greater speed of this operation. 

The implementation of the SYMTAB object is shown in example 6. The object 
defines two locks for synchronizing concurrent use of its operations. The 
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SYMENTRY lock is used to lock individual hash buckets of the symbol table hash 
array, allowing a typical multiple reader / single writer protocol. This proto-
col is used by the INSERT and DELETE operations to exclude multiple writers on a 
given hash bucket. However, the granularity of this lock allows multiple writ-
ers concurrent access to disjoint buckets. This granularity of locking was, of 
course, selected on the basis of knowledge of the particular data structures 
being used to implement the hash table. 

The SYMTABLE lock, on the other hand, is used to lock the entire hash 
array. 	This lock is unusual in that it allows multiple writers as well as mul- 
tiple readers, although writers exclude readers and vice versa. 	The SYMTABLE 
lock is used to express the incompatibility between the EXACT_LIST operation and 
the INSERT and DELETE operations, since the latter two modify the symbol table 
state. Such a lock is a very good example of the tailoring of synchronization 
constraints allowed by the Aeolus lock feature. 



Example 5. SYMTAB object definition part 

definition of object symtab is 

! Single-copy symbol table object using the action management 
! facilities of Aeolus/Clouds for recovery firewalls and the lock 
! mechanisms for synchronization. 

! The definition part contains specifications of public constants, 
! types, and operations defined by this object. 
! When compiled, it produces a symbol table file which may be imported 
! by other objects using this object in their implementations. 

MAX_VAL_LENGTH : const integer := 80 	! or whatever 

type valstring is string (MAX_VAL_LENGTH) 

operations 

procedure insert ( newname 	valstring ) is modify action 
! The INSERT operation must be invoked as an action. 
! It places an entry into the symbol table, 
! and locks the NEWNAME entry before the insertion. 

procedure delete ( oldname : valstring ) is modify action 
! The DELETE operation must be invoked as an action. 
! If it finds an entry with value field = OLDNAME, it locks that 
! entry and then removes the entry from the symbol table and frees 
! its storage space. 

procedure find ( name : valstring ) : boolean is examine acion 
! The FIND operation must be invoked as an action. 
! It sets a READ lock on the NAME entry, and then tries to locate 
! that entry with value field = NAME and returns TRUE if it succeeds. 

procedure quick_list () is examine 
! The QUICK_LIST operation provides a quick (dirty) listing of all 
! names currently in the symbol table. 

procedure exact_list () is examine action 
! The EXACT_LIST operation must be invoked as an action. 
! It provides a listing of the exact state of the symbol table at a 
! given point in time. To do this, it locks the whole symbol table, 
! thereby excluding any changes during preparation of the listing. 
! Thus, although EXACT_LIST, FIND, and QUICK_LIST operations 
! may execute concurrently, and INSERT and DELETE operations 
! which access different hash buckets may also execute 
! concurrently, INSERT and DELETE operations must block on 
! EXACT_LIST operations. 

end definition. 



Example 6. SYMTAB object implementation part 

implementation of object symtab is 

! Single-copy symbol table object using the action management 
! facilities of Aeolus/Clouds for recovery firewalls and the lock 
! mechanisms for synchronization. 

MAXBUCKET : const integer := 101 	1 or whatever 

type hash_range is 1 .. MAXBUCKET 

type ptr_entry is -> symtable_entry 

type symtable_entry is 
record 

name 	: valstring , 
next 	: ptr_entry 

end record 

! just something for demo purposes 

symtable 	: array [hash_range] of ptr_entry 

symentry_lock : lock ( write : [] 
read : [read] ) domain is hash_range 

! The SYMENTRY lock allows locking of individual hash buckets in the 
! symbol table. Several READ operations are allowed to proceed 
! concurrently, but a WRITE operation blocks all other operations. 

symtable_lock : lock ( write : [write] 
read : [read] 	) 

! The SYMTABLE lock allows the entire symbol table to be locked. 
! This lock is set in the EXACT_LIST operation for purposes of 
! getting an exact listing of the state of the symbol table. 
! Operations which change the state of the symbol table must wait for 
! completion of any outstanding EXACT_LIST operations. 

procedure hash ( name : valstring ) 	hash_range is 
! This HASH function is a local (nonpublic) procedure of 
! the SYMTAB object. 
begin 

! the usual type of stuff 
end procedure ! hash ! 

procedure insert 	newname : valstring I) is action 
! The INSERT operation must be invoked as an action. 
! It places an entry into the symbol table, 
! and locks the NEWNAME entry before the insertion. 

entry 	: ptr_entry 
bucket_num : hash_range 

begin 
SetLock (symtable_lock, 0, write) 
bucket num := hash (newname) 
new (entry) 
using ent := entry -> do 

ent.name := newname 
ent.next := symtable [bucket_num] -> .next 

end using 
SetLock (symentry_lock, bucket_num, write) 
region symtable [bucket_num] do 

symtable [bucket_num] := entry 
end region 

end procedure ! insert ! 
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procedure delete (! oldname: valstring !) is action 
! The DELETE operation must be invoked as an action. 
! If it finds an entry with value field s OLDNAME, it locks tht 
! entry and then removes the entry from the symbol table and frees 
! its storage space. 

entry, preventry : ptr_entry 
bucket_num 	: hash_range 

begin 
SetLock (symtable_lock, 0, write) 
bucket_num 	:= hash (oldname) 
entry, preventry := symtable [bucket_num] 
while entry <> NIL loop 

if entry -> .name = oldname then 
SetLock (symentry_lock, bucket_num, write) 
region entry do 

preventry -> .next := entry -> .next 
dispose (entry) 

end region 
exit . 

else 
preventry := entry 
entry 	:= entry -> .next 

end if 
end loop 

end procedure ! delete ! 

procedure find (! name : valstring I) ! : boolean ! is action 
! The FIND operation must be invoked as an action. 
! It sets a READ lock on the NAME entry, and then tries to locate 
! that entry with value field = NAME and returns TRUE if it succeeds. 

entry 	: ptr_entry 
bucket_num : hash_range 

begin 
bucket_num := hash (name) 
SetLock (symentry_lock, bucket_num, read) 
entry := symtable [bucket_num] 
while entry <> NIL loop 

if entry -> .name = name then 
return TRUE 

else 
entry := entry -> .next 

end if 
end loop 
return FALSE 	 ! if we get here, NAME isn't in the symbol table 

end procedure ! find ! 

procedure quick_list () is 
! The OUICK_LIST operation provides a quick (dirty) listing of 
! names currently in the symbol table. 

entry : ptr_entry 
: index hash_range 

begin 
for i := 1 to MAXBUCKET loop 

entry := symtable [i] 
while entry <> NIL loop 

write (entry -> .name) ! or whatever 
entry := entry -> .next 

end loop ! while I 
end loop ! for ! 

end procedure ! list ! 
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procedure exact_list () is action 
! The EXACT_LIST operation must be invoked as an action. 
! It provides a listing of the exact state of the symbol table at a 
! given point in time. To do this, it locks the whole symbol table, 
! thereby excluding any changes during preparation of the listing. 
! Thus, although EXACT_LIST, FIND, and QUICK_LIST operations 
! may execute concurrently, and INSERT and DELETE operations 
! which access different hash buckets may also execute 
! concurrently, INSERT and DELETE operations must block on 
! EXACT_LIST operations. 
begin 

SetLock (symtable_lock, 0, read) 
quick_list () 

end procedure ! exact_list ! 

: index hash_range 

begin ! initialization 
for i := i to MAXBUCKET loop 

symtable [i] := NIL 
end loop 

end implementation. 

! symbol table is initially empty 



6. CONCLUSIONS AND FUTURE WORK 

We have found Aeolus to be quite effective as a systems programming 
language (as represented by examples 1 through 3). In particular, the clarity 
of interface definitions made possible by use of pseudo-objects is extremely 
valuable for encapsulation of hardware details. Through our experience with 
developing objects like SYMTAB (examples 5 and 6), we have come to understand 
techniques for using subactions as "firewalls" to limit the effect of failures. 
We have found that Allchin's generalized lock mechanism makes it relatively easy 
to specify special-purpose synchronization rules dependent on object semantics 
(e.g., the use of the SYMTABLE lock in SYMTAB). 

Among the hardest questions which need more study is how replication can 
most effectively be used to provide availability. Actions and resilient objects 
ensure that failures are not catastrophic, but they are concerned with data 
integrity, 	not with how a program reacts to failures. The availability ques- 
tion involves use of multiple objects on different nodes to represent a 	sin- 
gle 	resource, thus providing continued access to the resource in the presence 
of individual node failures. Algorithms for read and write access to 	such 
resources must be developed and evaluated. The recent paper by Daniels and 
Spector [Dani83] is one example of such an algorithm. 

We must also consider possible representations of work so that it may be 
restarted; this is an area that has been until recently unexplored [McKe84]. As 
has been noted above, most of the work on actions and objects has been 
oriented 	toward 	protection 	of data from failures. The fact that processes 
are considered to be an important, independent component supported by 	the 
Clouds 	architecture gives us a point of departure for this study. McKendry's 
work on Petri-nets discussed above lays the groundwork for an attack on this 
problem within the framework of Clouds. If we view a program as a collection 
of processes interacting through shared objects, some features akin to 
the process interconnection specifications of Pronet [Macc82b] may prove to be 
useful. 
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1. Project Status 

During the second quarter of this project, work has continued on each of the two 

tasks called for by the statement of work. These efforts are closely related to other work 

in progress within the Clouds Project, our major research effort in the area of reliable 

distributed computing. Under the Distributed File Systems task, work has proceeded on 

the design of the Clouds storage manager. The main focus of this work has been the 

development of a firm interface specification for the storage manager. This effort is sum-

marized below and will be documented in a forthcoming technical report "A Note on 

Storage Management in Clouds". Under the Language Support for Robust Distributed 

Programs task, a Ph.D. thesis proposal has been developed, entitled "Programming 

Methodologies for Resilience and Availability," This proposal is attached as Appendix A. 

Other work in progress under this task, involving language definition and implementa-

tion, is described in section 3. 

The work on the tasks of this project is proceeding on schedule. Future plans 

include a continuation of the two investigation presented here. These efforts, in combi-

nation with other work in progress within the Clouds project, should lead to a working 

prototype system by the end of this year. 

2. Storage Management -- Progress Report 

This quarter's effort was devoted primarily to refining the design of the storage 

manager. This effort is documented in the technical report "A Note on Storage Manage-

ment for Clouds" (GIT-ICS-85/02). We were interested in establishing a firm interface 

for the storage manager, so that efforts on other parts of the Clouds kernel that interact 

with the storage manager can proceed. The refined design addresses some problems that 

with the recovery mechanism that were ignored initially. Some initial coding of data 

structures has started. 

We are taking an object-oriented approach to the design and have identified three 

object types which form the basis of the storage manager. At the lowest level is the dev-

ice object type, which is responsible for the uninterpretted transfer of data to and from 

pages on secondary storage. Most of the functionality at this level is similar to that 

found in conventional device drivers. The partition object type forms the next level in 

the storage manager and represents a logical device. Partitions provide a mechanism for 
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the division of secondary storage according the intended use of the storage (recoverable 

object storage, non-recoverable object storage, and paging surfaces, for example). The 

segment object type is an alternate type for Clouds objects. This alternate view of an 

object allows the storage manager to manipulate object data in a uniform and covenient 

manner. A segment object is simply a sequence of bytes that can be manipulated by a 

few simple operations, such as get a page of the segment and get the status of the seg-

ment. Most of the storage manager's recovery mechanism is located in objects of this 

type. 

We have defined operations and the major data structures for each of these object 

types, which collectively form the interface to the storage manager. Most accesses to the 

storage manager will be through a call on a segment object or some partition object 

operation; the device object operations form a low-level interface between the partition 

and segment objects and secondary storage. The segment and partition operation pro-

vide a uniform interface to the storage manager for the handling of both recoverable and 

non-recoverable object. 

Other refinements to the design concern the recovery mechanism, particularly the 

recovery of partition structures such as the partition allocation map. Our concern has 

been the avoidance of a bottleneck during action commits. To this end, we have 

developed a scheme using intention lists to avoid locking out large portions of the parti-

tion map during action commits, permitting as many actions to commit concurrently as 

possible. This scheme differs considerably from the recovery mechanism use for object 

data. 

The device object must be able to flush i/o requests during action commit, so to 

ensure that any committed changes are reflected in the permanent object data. We are 

in the process of developing a mechanism to allow actions to specify a set of requests 

which must be flushed to secondary storage before the commit is complete. Our goal 

with this mechanism is to interfere as little as possible with the normal scheduling of 

requests by the device object. 

The segment level recovery protocols have undergone some polishing to make them 

more efficient and remove some bugs. 
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3. Aeolus -- Progress Report 

As part of the Clouds project, we are designing and implementing a high-level sys-

tems programming language called Aeolus (after the king of the winds in Greek mythol-

ogy) in which those levels of the Clouds system above the kernel level will be imple-

mented. The Aeolus language, described in [Wilk85b] (in progress), provides access to 

the synchronization and recovery features of Clouds. It also provides a framework 

within which to study programming methodologies suitable for action-object systems 

such as Clouds. This study should lead to the design of high-level language features to 

support that methodology. Thus, our interest in Aeolus lies not in the language itself, 

but in studying the sort of programming which may be done with it. 

We have found Aeolus to be effective as a systems programming language during 

our studies of programming systems objects such as communications handlers for the 

Clouds workstations. In particular, the clarity of interface definitions made possible by 

use of pseudo-objects is extremely valuable for encapsulation of hardware details in such 

hardware-dependent programming. Through our experience with developing systems 

objects, we have come to understand techniques for using subactions as "firewalls" to 

limit the effect of failures. We have found that Allchin's generalized lock mechanism 

makes it relatively easy to specify special-purpose synchronization rules dependent on 

object semantics. 

A compiler for Aeolus is currently under development on one of the DEC VAX 

11/750 computers of the Clouds project under Berkeley Unix (TM) Version 4.2. We are 

using the Amsterdam Compiler Kit (ACK) [Tane83] to generate code generators for 

Aeolus for both the Clouds VAXes and the individual work stations which the Clouds 

system will use to interface to the VAXes. Work on the semantic routines for Aeolus is 

proceeding in parallel with the development of routines to generate intermediate code for 

ACK. This work is being done in Pastel, an extended Pascal dialect developed at the 

Lawrence Livermore National Laboratory. Present plans call for the Aeolus compiler to 

be capable of interfacing with the action and object managers of the Clouds system by 

mid-1985. 

As was mentioned above, we intend to use Aeolus as a framework within which to 

study programming methodologies for action-object systems. Among the hardest ques-

tions which need more study is how replication can most effectively be used to provide 
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availability. Actions and resilient objects ensure that failures are not catastrophic, but 

they are concerned with data integrity, not with how a program reacts to failures. 

The availability question involves use of multiple objects on different nodes to represent 

a single resource, thus providing continued access to the resource in the presence of 

individual node failures. Algorithms for read and write access to such resources must 

be developed and evaluated. The recent paper by Daniels and Spector [Dani83J is one 

example of such an algorithm. 

We must also consider possible representations of work so that it may be restarted; 

this is an area that has been until recently unexplored McKe84]. Most of the work on 

actions and objects has been oriented toward protection of data from failures. The 

fact that processes are considered to be an important, independent component sup-

ported by the Clouds architecture gives us a point of departure for this study. 

McKendry's work on Petri nets [McKe84] lays the groundwork for an attack on this 

problem within the framework of Clouds. If we view a program as a collection of 

processes interacting through shared objects, some features akin to the process 

interconnection specifications of Pronet [Macc82] may prove to be useful. 

Our initial studies in programming methodologies for resilience and availability are 

described in [Wilk85a]; there, a plan is presented for determining such methodologies 

appropriate to the design of objects needed in the Clouds system. Examples of a repli-

cated object exhibiting the properties of resilience and availability are given there, as 

well as a preliminary design for a permanent heap, part of the run-time support neces-

sary for the Aeolus/Clouds system to provide these properties. The issues with which 

we are concerned include the use of semantic knowledge of objects in the programming 

of replication; trade-offs between consistency and availability; the appropriateness of 

current programming models for replicated data; and the support needed from the 

operating system and language runtime system to ensure availability and forward pro-

gress of processes. As we progress with these studies, we will take advantage of our 

experience in the implementation of the Aeolus runtime system and its interaction with 

the action and object managers of the Clouds system. 

[Dani83] Daniels, D., and A. Z. Spector, "An Algorithm for Replicated Directories," 

Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of 

Distributed Computing, Montreal, August 1983 
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1. Project Status 

During the third quarter of this project, work has continued on each of the two 

tasks called for by the statement of work. These efforts are closely related to other work 

in progress within the Clouds Project, our major research effort in the area of reliable 

distributed computing. Under the Distributed File Systems task, work has proceeded on 

the integration of our storage management system with the Clouds kernel virtual 

memory management system. Additionally, implementation work has been done on 

several device drivers necessary to test the kernel and storage management system. 

Under the Language Support for Robust Distributed Programs task, we have been 

refining the definition of our language, Aeolus, and proceeding with the implementation 

of the compiler. A copy of the Aeolus definition is attached as Appendix A. 

The work on the tasks of this project is proceeding on schedule. Future plans 

include a continuation of the two investigation presented here. These efforts, in combi-

nation with other work in progress within the Clouds project, should lead to a working 

prototype system by the end of this year. 

2. Storage Management -- Progress Report 

This quarter's effort has been devoted to low-level implementation of the storage 

management system, namely the device drivers that Clouds will use. The Clouds kernel 

requires additional support beyond that normally supplied by conventional drivers. Pri-

marily, the drivers must be able to ensure that a committing action's writes are com-

pleted before the actions completes the commit procedure. A uniform interface is 

designed that provides access to any device on the Clouds system and successfully hides 

the difference between some very different device. There are three efforts in this area. 

The first is the implementation of a device driver for the RA81 disk. The RA81 and 

UDA50 operate using the Mass Storage Control Protocol developed by DEC, which to 

allows the development of classes of device drivers for devices supporting the protocol. 

We have been studying the protocol are now working on the implementation of the 

driver. 

The second effort is the implementation of a device driver for the RLO2 removable disk 

device. The RLO2 uses 10 Mb removable cartridges. This code is currently being tested. 



The RLO2 is a much simpler device than the RA81 and does not use the MSCP. The 

device supports flush of action requests on commit and does bad sector forwarding. 

The third effort at this level is the development of a virtual disk for use by the Clouds 

kernel. Using a recently completed ethernet driver, a device driver is being implemented 

that uses the ethernet perform the disk i/o on another system under Unix, using the 

standard raw disk i/o routines. This will provide the Clouds kernel with use of the large 

RA81 disks very quickly. Also, it the disk used by the virtual disk device is dual ported, 

so that when the RA81 driver is available, it will have a device already using the Clouds 

format and the system can switch from the virtual device to an on-system device very 

easily. 

At higher levels of the storage management system, the integration of the storage 

management system with virtual memory management has been examined. Data struc-

tures and routines for support of the page fault mechanism are under development. The 

routines will support the mapping of Clouds objects in virtual memory and the location 

of the disk page that satisfies a page fault. 

The partition system is the next target for implementation, and preparation for that 

effort is underway. The major data structures for the partition object are designed and 

the major routines have been pseudo-coded. There have been some changes made to the 

overall design of the partition system, principally in the nature of the division of respon-

sibility between the three levels of the storage management system: the device objects, 

the partition objects, and the segment objects. The storage management system 

attempts to make the action commit procedure transparent to the kernel, in that the 

segmentation system decides whether recovery is necessary for the segment being writ-

ten. The modified design alters the interfaces between segment system and the kernel so 

that the segment system will have the information it needs to make these decisions. 

Analysis of the protocol for maintaining the partition free-page maps consistently has 

revealed some important simplifications that could be made to that protocol. Normally, 

the system uses a volatile version of the partition free-page map. Changes are made to a 

permanent version of the free-page map only when actions commit. This would seem 

potentially to require multi-page writes for each action commit. However, it is possible 

to put off making the allocations part of the permanent free-page map indefinitely, since 

it may be reconstructed from information contained in the segment system. The work 

of updating the free-page map could be assumed by the system initialization, reducing 
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some of the overhead of normal action commit. Also, a compromise solution is feasible, 

in which free-page map updating is done as part of the background work done by the 

kernel. These ideas will be explored as part of the development of the storage manage-

ment system. 

3. Aeolus - Progress Report 

As part of the Clouds project, we are designing and implementing a high-level sys-

tems programming language called Aeolus (after the king of the winds in Greek mythol-

ogy) in which those levels of the Clouds system above the kernel level will be imple-

mented. Aeolus provides access to the synchronization and recovery features of Clouds. 

It also provides a framework within which to study programming methodologies suitable 

for action-object systems such as Clouds. 

The definition of the Aeolus language [Wilk85b] is nearing completion. The design 

described in that report has undergone several iterations as the details of the language 

design have been filled in and as we have gained experience in the sort of programming 

for which the language is intended. VVe believe that these iterations of the design pro-

cess have made the design of the language more coherent. Although we have drawn 

greatly on previous language designs in our work, we have tried to keep the design as 

simple as possible while fulfilling the design goals of Aeolus; thus, we have not attempted 

to provide such all-encompassing collections of features as are provided by some other 

language designs. As an example of the streamlined design of the language, the 

definition of type compatibility in Aeolus is quite simple; two entities are compatible if 

and only if they share the same type (by name equivalence). Thus, Aeolus provides no 

implicit type coercions. However, the language does provide powerful means of explicit 

type conversion, thus allowing the sort of manipulations necessary in systems program-

ming while maintaining safety through strict typing. Among the benefits which should 

accrue from a simple language design are ease of learning and understanding of the 

language by programmers as well as ease of implementation of the compiler. 

A compiler for Aeolus is currently under development on one of the DEC VAX 

11/750 computers of the Clouds project under Berkeley Unix (TM) Version 4.2. We are 

using the Amsterdam Compiler Kit (ACK) [Tane83I to generate code generators for 
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Aeolus for both the Clouds VAXen and the individual work stations which the Clouds 

system will use to interface to the VAXen. Work on the semantic routines for Aeolus is 

proceeding in parallel with the development of routines to generate intermediate code for 

ACK. The code-generation work is progressing quite well; during the last quarter, we 

have been able to generate and execute code for object invocations which do not involve 

the facilities of the Clouds kernel or object managers (that is, code for what we call 

"non-Clouds objects"). 

Work is also progressing on the implementation of facilities for generating actual 

"Clouds objects." This entails the definition of the interface to the Clouds object and 

action managers, which will serve as an intermediary between user programs and the 

kernel facilities. Thus, the members of the compiler group are working with members of 

the kernel group on the definition and implementation of the action and object 

managers. We expect the Aeolus compiler to be capable of interfacing with the action 

and object managers of the Clouds system, and thus to be capable of invocations on 

actual Clouds objects, during the coming quarter. 

We intend to use Aeolus as a framework within which to study programming 

methodologies for action-object systems. Our initial studies in programming methodolo-

gies for resilience and availability are described in [Wilk85a]; there, a plan is presented 

for determining such methodologies appropriate to the design of objects needed in the 

Clouds system. The issues with which we are concerned include the use of semantic 

knowledge of objects in the programming of replication; trade-offs between consistency 

and availability; the appropriateness of current programming models for replicated data; 

and the support needed from the operating system and language runtime system to 

ensure availability and forward progress of processes. We are currently attempting to 

identify data structures the study of which will be beneficial both in our work on metho-

dologies and in the Clouds implementation effort; that is, we wish to study structures 

needed in the kernel and system code. This effort, and the work toward definition of the 

Aeolus/Clouds interface which was described above, is providing feedback in both direc-

tions, aiding both the interface design and our understanding of action-based program-

ming methodologies. As we progress with the methodology studies, we are taking 

advantage of our experience in the implementation of the Aeolus runtime system and its 

interaction with the action and object managers of the Clouds system. 
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1. Introduction 

The goal of the Clouds project at Georgia Tech [A11c82, A11c83a, Allc83b] is the imple-
mentation of a fault-tolerant distributed operating system based on the notions of objects, 
actions, and processes, which will provide an environment for the construction of reliable appli-

cations. The Aeolus' programming language developed from the need for an implementation 
language for those portions of the Clouds system above the kernel level. Aeolus has evolved 
with these purposes: 

• to provide the power needed for systems programming without sacrificing readability or 
maintainability; 

• to provide abstractions of the Clouds notions of objects, actions, and processes as 
features within the language; 

• to provide access to the recoverability and synchronization features of the Clouds sys-
tem; and 

• to serve as a testbed for the study of programming methodologies for action-object sys-
tems such as Clouds [LeB185, Wilk861. 

Thus, the main interest of Aeolus lies not in the language itself, but in what may be done with 
the language. We have avoided providing high-level features for programming actions with the 
intention of evolving designs for such features out of our experience with programming in 
Aeolus. These features will then be incorporated into an applications language for the Clouds 
syste m . 

Aeolus has its roots in a long line of structured programming languages, including Simula, 
Pascal, Modula-2, and Ada.' Thus, many of its features should be easy to understand for those 
familiar with one of these languages; in particular, familiarity with Pascal or Modula-2 is 
assumed throughout this report, and features will often be explained in terms of the 
corresponding features in those languages. 

The main structuring features of Aeolus (as of the Clouds system) are objects, actions, 
and processes. Clouds supports the object concept as a convenient structuring principle for 
facilitating recovery and synchronization; Aeolus also allows the programmer to use the object 
features of the language for the specification of abstract data types, without necessarily invoking 
the object and action management features of the Clouds system. Thus, Aeolus objects provide 
a separate compilation facility as well as access to the object support of Clouds; the separation 
of object specifications into definition and implementation parts (much as are modules in Modula-2 
or packages in Ada) provides a safe interface to separately-compiled objects, as well as facilitat-
ing the design of large systems consisting of many objects (possibly implemented by several 
people) or the use of predefined objects. Aeolus pseudo-objects provide a means of isolating 
system dependencies—such as input/output or low-level machine architecture—into object-like 
modules which provide operations facilitating machine-level programming. 

Support of the Clouds notion of actions in Aeolus is fairly low-level. Essentially, means 
are provided for specifying that an operation (procedure) of an object may be invoked as an 
action, or that an operation invocation is to be executed as a (toplevel or nested) action. Also, 
the status of action executions may be checked by means of calls to a Clouds action manager. 

The process concept in Aeolus corresponds roughly to the program construct of Pascal or 
Modula-2. That is, a process ties together the constituent parts (objects) of a programmed sys-
tem, and the invocation of a process provides activity in the Clouds system. 

Except for the access Aeolus provides to the action management facilities of Clouds 
(which control recovery in the system), nothing in the language is explicitly dependent on the 
Clouds system for its implementation. In the Clouds implementation of Aeolus, the details of 
synchronization and recovery of objects are hidden by the interface to the Clouds object and 

'Aeolus was the king of the winds in Greek mythology. 

2Ada is a registered trademark of the U.S. Government—Ada Joint Program Office 
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action managers; thus, for example, it is transparent to the programmer (and to the language 
runtime support) whether an operation invocation involves a local or remote object. Therefore, 
an implementation of Aeolus—without its features for recovery handling—should be possible 
under any operating system; only the object management need be subsumed by the language 
runtime support, which should be trivial for a non-distributed system. 

This report is not intended to be a tutorial on the Aeolus language; rather, it strives to be 
a concise definition of the syntax and semantics of Aeolus, and thus should serve as a reference 
for programmers and implementors. 

2. Explanation of Notation 

The syntax (grammar) of a language consists of rules for arranging sequences of terminal 
symbols (also called tokens) in the vocabulary of the language (keywords, numbers, names 
(identifiers), and certain other characters used as punctuation to make the language more read-
able) into sentences (or sentential forms) which have meaning in the language. A syntax rule 
often specifies that a sequence of terminal symbols be grouped into a nonterminal symbol, an 
entity in the language which often has an intuitive meaning, such as an expression or a state-
ment. 

To describe the syntax of Aeolus in this manual, we will use a notation known as the 
extended Backus-Naur form (EBNF). (A complete grammar for Aeolus in LALR(1) form is 
presented in Appendix C.) In this notation, the so-called metasymbols and are used to 
enclose an Aeolus sentential form which is optional; the metasymbols { and } are used to 
enclose an Aeolus sentential form which may be repeated any number of times (possibly zero 
times). Tokens are enclosed in double quotes (""); nonterminal symbols are enclosed in angle 
brackets ( <>). The left-hand side of a syntax rule specifies the nonterminal which is being 
defined, while the right-hand side of the rule gives the sequence of terminal and nonterminal 
symbols which are valid for the nonterminal being defined; the two sides of the rule are 
separated by the metasymbol (meaning "expands into"). 

Thus, for example, the syntax rule 

<identifier list> --+ <identifier> {"," <identifier>} 

specifies that the nonterminal identifier list consists of either a single identifier nonterminal, or a 
sequence of two or more identifiers separated by the comma token (","). The following are 
valid identifier lists: 

foo 
foo, bar 

foo, bar, baz 

Also, the rule 

<variable declaration> 	<identifier list> ":" <type> 	<expression >] 

indicates that a variable declaration consists of an identifier list followed by the colon token 
(":"), a specification of the type of the variable(s), and an optional initialization of the 
variable(s) consisting of an assignment operator token (":.---") followed by an expression. The 
following are valid variable declarations: 

foo : real 
foo, bar: integer := baz + 1 
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3. Tokens 

The tokens, or terminal symbols, of the Aeolus language include identifiers, int and float 
numbers, litstrings, and keywords (or reserved words) and other delimiters (such as arithmetic 
operators and other types of special characters). In this section, we will discuss rules for the 
formation of these tokens. 

The following general rules apply: the ASCII character set is assumed; blanks must not 
occur within tokens (except litstrings); line breaks may not occur within any token (thus a sin-
gle token may not extend over several lines); and blanks as well as line breaks are ignored 
except where they serve to separate consecutive tokens. Arrangement of tokens on lines may 
be in free format; in particular, there may be multiple statements on a line. The case of letters 
is ignored in keywords and identifiers; however, the case of letters in litstrings is preserved. 

3.1. Identifiers 

An Aeolus identifier must begin with an upper or lower case letter, which may be fol-
lowed by any number of letters or digits. Also, a separator (the underscore character "2) may 
be placed between any two characters within an identifier to improve readability; however, a 
separator may not occur at the beginning or end of an identifier. 

<identifier> --• <letter> {[ <separator>] <letter or digit> 

Examples: 
I 	am 	an_Aeolus_identifier As_am_I 

3.2. Numbers 

An Aeolus number is an "int" or "float" number, which may be specified in any base 
between 2 and 16 inclusive. 

3.2.1. Ints 

A decimal "int" starts with a digit ("0" through "9"), which may be followed by any 
number of digits, optionally separated by an underscore character ("_") for readability. Ints in 
bases other than 10 may be specified by giving the base (a decimal number between 2 and 16 
inclusive), followed by the character "#", followed by the based number. A based number in 
a base greater than 10 may include the characters "A" through "F", as appropriate to the base 
of the number. (Note that case is not significant for these characters.) 

Examples: 

<num> 
<basedit> 

<basednum> 
<int> 
<int> 

- <digit> {(<separator>] <digit>) 
- <digit>, "A" .. "F" 

<basedit> {[ <separator >] <basedit> 
<num> 
<num> "#" <basednum> 

1 32767 32_767 2#101010 

8#52 16#2A 16#IT 13#42 

3.2.2. Floats 

A "float" number consists of a whole part followed by either a fractional part or an 
exponent or both. 3  The whole part is a (possibly based) number. The fractional part consists of 
a fractional point "." followed by a number with the same base as the whole part. The 
exponent consists of the letter "E" or "e" followed by a (possibly signed) decimal number, 
indicating the power of the base by which the float number should be multiplied. The base of a 

3Thus, a float number must always begin with a digit. 
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float number is given as for an int; however, if a float number is based and has an exponent, 
the character "#" must appear before the exponent. If no base is given, base 10 (decimal) is 
assumed. 

<exponent> 
<sign> 
<float> 
<float> 
<float> 
<float> 

Examples: 

"E" [<sign>] <num> 
--■ 

<num> "." <num> 
<num> 1"." <num>] <exponent> 
<num> "#" <basednum> "." <basednum> 
<num> "#" <basednum> ["." <basednum>] "#" <exponent> 

3.14159 8#7.77 0.1e32 2#1011#E-27 16#7f.a2#e+ 5 

3.3. Litchars and Litstrings 

A character is any member of the ASCII character set, including both printable characters 
(alphanumeric and punctuation) and control characters. Also, some systems may define exten-
sions to the ASCII character set (for instance, graphics characters) which may be considered 
character tokens on those systems. A litstring (literal string) token is a sequence of characters 
enclosed in single quotes (" 1 "). To include a single quote as a character in a litstring, the sin-
gle quote must be doubled ("'"'). A special case of the litstring token is the litchar (literal 
character) token, which is a litstring token consisting of a single character. 

	

<litstring> 
	

"`" {<character>}""' 

	

<litchar> 	" 1 " <character> " 1" 
Examples of LITSTRINGs: 

'Hello, world' Donnt be sad' This is a "litstring"' 

Examples of LITCHARs: 
'a' IV 171 WI 171, 

3.4. Comments and Compiler Options 

A comment is explanatory text inserted into code for the reader's benefit; it is ignored by 
the compiler, and does not affect the meaning of the code. In Aeolus, a comment may be 
placed anywhere within a line where a blank may be placed. It begins with an exclamation 
point ("!") and ends either at the next exclamation point or the end of the line on which the 
comment started, whichever comes first. Thus, comments do not extend over multiple lines. 

Examples: 
! This is an in-line comment. ! 	!As is this.! 

! This comment goes to the end of this line. 

A compiler option is used to communicate to the compiler the desired settings for various 
options which the compiler being used may implement, for example, whether range checks for 
valid variable values are to be generated. A compiler option begins with a dollar sign ("$") 
and ends either at the next dollar sign or at the end of the line on which the compiler option 
started, whichever comes first. 

Examples: 

	

$r+ 	$ 	$pagelength=84 

3.5. Reserved Words 

The following is a list of the reserved words (keywords) of Aeolus. These words may not 
be used as identifiers! Although the reserved words are shown here in upper case, upper and 
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lower case may be freely mixed 

ACTION 
ARRAY 
AUTOSYNCH 
BEGIN 
BITSTRING 
BY 
CASE 
CONST 
CONSTRAINT 
DEFINITION 
DO 
DOMAIN 
D OWNTO 
ELSE 
ELSIF 
END 
EVENTS 
EXAMINE 
EXIT 

in these words. 

FLEXARRAY 
FOR 
FORWARD 
IF 
IMPLEMENTATION 
IMPORT 
INDEX 
INL INE 
IS 
LOCK 
LOOP 
MOD WY 
NONRECOVERABLE 
NOT 
NULL 
OBJECT 
OF 
OPERATIONS 
OTHERWISE 

OVERRIDES 
PR OCED URE 
PROCESS 
PSEUD 0 
PURE 
RECORD 
RECOVERABLE 
REGION 
RETURN 
STRING . 
STRUCTURE 
STRUCTURED 
THEN 
TO 
TYPE 
USES 
USING 
WHILE 

3.8. Operators and Delimiters 

The following are characters or groups of characters used as operators or delimiters (punc- 
tuation) in Aeolus. 

3.7. Other Characters 

As mentioned before, blanks (except in litstrings) are ignored wherever they are not 
required to separate other tokens; thus, blanks may be used freely to improve the readability of 
code. Semicolons (";") are ignored in the same way as blanks; thus, semicolons may be used 
to separate or terminate statements if so desired, but are not required. Non-printable (control) 
characters are also ignored. 

4. Declarations and Scopes 

All identifiers in Aeolus code must be introduced by a declaration. In this section, the 
rules for ordering and extent of declarations will be presented. 

4.1. Compilation Units and Their Scopes 

Those sentential forms described by the Aeolus grammar which may be compiled are 
called compilation units. Compilation units include object definition parts, object implementation 
parts, and processes. As will be clarified in section 12, an object definition part serves to declare 
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those identifiers—constants, types, and operations—which the object makes available to other 
objects or processes, while the object implementation part actually provides the code for the 
object. Other objects or processes may import an object definition, and use the identifiers 
declared by it as if those identifiers had been declared locally. 

Every compilation unit implicitly imports the standard object, .which defines various useful 
identifiers. (These are listed in Appendix D.) Before any other declarations are given, the com-
pilation unit may import other objects via an import clause (see section 12). Then, declarations 
of constants, types, variables (except in object definitions), and procedures (operations) may be 
given in any order, as long as the declaration of any identifier used in another declaration textu-
ally precedes this use. There are, however, two exceptions to this general rule. 4  A procedure 
may be declared forward; that is, only its header is declared, while the declaration of its body is 
delayed until later (see section 11). Also, a pointer may be declared to reference a type whose 
declaration is delayed (section 6). 

After an identifier has been declared, other declarations and statements may refer to it, as 
long as these references occur within the scope of the identifier. The scope of an identifier 
extends from the point of its declaration to the end of the block in which it was declared. That 
is, if the identifier was declared in the the declaration part of a compilation unit, its scope 
extends to the end of that compilation unit; if, however, the identifier was declared in the 
declaration part of a procedure, its scope extends to the end of the procedure. The scope of 
identifiers introduced in a using statement (section 10) extends to the end of that statement. 

The scope defined by a procedure is said to be nested within the scope defined by the sur-
rounding compilation unit. As implied by the rules above, identifiers in a nested scope are not 
visible (available for reference) in the surrounding scope.. An identifier in an nested scope may 
have the same name as an identifier in an enclosing scope; the identifier in the enclosing scope 

is then not visible in the nested scope. Within a scope, however, an identifier must be unique; 
that is, an identifier may not be declared with the same name as another identifier already 
declared in the same scope (see below). Procedure declarations may not be nested (within 
other procedure declarations); thus, the maximum nesting level in Aeolus is 2, where the level 
of a compilation unit is 1. 

4.2. Qualified Identifiers 

As was stated above, an identifier must be unique within the scope in which it is declared 
so that the entity which it represents may be correctly identified. However, it often occurs that 
different object definitions declare constant or type identifiers with the same name, or that 
different enumerated types have members with the same name, 6  or that different objects have 
operations with the same name, or that different records have fields with the same name. 
Thus, it is sometimes necessary to qualify an identifer with the name of its defining type or 
record to ensure that it is unique. 

If types or constants with the same name defined by more than one imported object type ° 
 are visible in a scope, or if similarly-named members of different enumerated types are visible 

in a scope, these names must be qualified with the names of their defining types: 

<type-qualified id> --e <type id> " "" <identifier> 

For example, 

1These exceptions allow more general data structures and procedural definitions to be formulated, in particular 
recursive structures. 

5This problem may also occur in Pascal, which does not provide for qualification of enumerated types; thus, so-
called "holes'' may be left in the types. 

5As we shall see in the next section, the names of imported object definitions may be used as the names of types. 
Variables declared with an object type are said to be object instances. 
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obj1"foo 	obj2"foo 

refer to identifiers named "foo" defined by object types "objl." and "obj2", respectively. 
Also, if the enumerated types "signal_colors" and "primary_colors" are defined as follows: 

type signal_colors is ( red, yellow, green ) 

type primary_colors is ( red, green, blue ) 

then references to the identifiers "red" and "green" must be qualified: 

signal_colors"red primary_colors"red 

signal_colors"green primary_colors"green 

Different object types may define operations with the same name; however, there may 
also be several instances of the same object type visible in a scope. Object operation invocations 
must be qualified by the name of the object instance on which we wish to operate: 

<obj op invocation> --0 <obj instance id> "©" <op call> 

For example, if variable "in_queue" is an instance of an object type (say, "queue") with 
operation "enqueue": 

in_queue @ enqueue (item) 

The situation of record fields is similar to that of object operations. Declarations of record 
types may define fields with the same name; also, there may be several variables declared with 
the same record type visible in a scope. Thus, field references must be qualified by the name 
of the field's parent record. ?  

<field ref> 	<parent variable> "." <field id> 

For example, if variables "a" and "b" are both of some record type "complex," we may have: 

a.realpart b.realpart a.imaginarypart 

5. Constant Declarations 

An identifier declared as a constant is associated with a value which may not be changed. 
Thus, a constant may not be the target of an assignment statement (see section 10). The type 
of a constant may be any valid type specification (section 6). The value of a constant may be 
specified by an expression (section 9) in which only constant terms appear. Calls to (value-
returning) procedures defined by the object standard are also allowed to appear in such an 
expression. 

<const decl> 	<const id decl> ":" "const" <type> ":--=" <expr> 

This qualification is often called the field dereference operation. 
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Examples: 
i : const integer := -10 

j : const integer 	i + abs (2*i) 

8. Type Declarations 

The declaration of a data type specifies the set of values which variables of that type may 
assume. In the case of structured types, the type declaration also gives a "blueprint" of the 
structure of variables of that type. 

The general syntax for declaration of new types is: 

<type decl> -e "type" <new type id> "is" <type> 

As we shall see in the remainder of this section, types fall into three general classes: type 
identifiers (the names of previously-declared types, including non-parameterized object types), 
non-ID types (including enumerations and structured types), and parameterized object types. 
The compatibilities of types are discussed in section 9.3. 

Any type may have an optional indication that variables of that type, or components (of 
some variable) with that type may be shared. This attribute is indicated by the use of the key-
word shared before the type indication. The use of shared variables is explained in section 
10.2.5. 

8.1. Type Identifiers 

The simplest sort of type specification is simply the name of a previously-declared type, 
optionally followed by a constraint specification: 

--.. <type> 
<constrained type id> 

<constraint spec> 
<constraint spec> 

<subrange> 

["shared"] <constrained type id> 
--. 	<type id> [ <constraint spec>] 
--.. 	CT, 4417) 

- I. "[" <subrange> "]" 
--.. 	<scalar const> ".." <scalar const> 

Constraint specifications are described in section 7. The main utility of type identifiers is in 
specifying the types of entities such as variables (section 8). 

Several useful predefined types are provided by the object standard, which is automatically 
imported by every compiland. The definition part of standard is shown in Appendix D. It 
defines the following basic scalar types: 8  

• type integer, whose variables assume values between MININT and MAXINT; 

• type longint, whose variables assume values between MINLONGINT and MAXLON-
GINT; 

• type unsigned, whose variables assume values between MINUNS and MAXUNS; 

• type longuns, whose variables assume values between MINLONGUNS and MAX-
LONGUNS; 

• type boolean, whose variables assume values FALSE or TRUE; 

• type char, whose variables assume values of the character set used by the computer on 
which the program is being used (that is, those values representable by litchar tokens); 
and 

gAs shown in Appendix D, the types integer, !engin!, unsigned, and longune may be considered to be new types 

derived from constraints on an underlying int number "type" (which includes all numbers representable by an "int" 

token), while type real may be considered to be derived from a constraint on an underlying float number "type" 

(which includes all numbers representable by a "float" token). The types derived from "int" tokens are denoted col-

lectively as the "int types" in this document. 
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• 	type real, whose variables assume real numbers as values. 

Scalar types provide the basis for the construction of structured types. 

8.2. Non-ID Types 

The non-ID types include enumerated types, index and pointer types, and structured 
types. 

<type> 	["shared"] <non id type> 

8.2.1. Enumerations 

An enumeration (or enumerated type) consists of a list of identifiers which are used as con-
stants in the program. Variables of that enumeration type may assume only those identifers as 
values. The sequence of the identifiers in the declaration of the enumeration defines an order-
ing of those identifiers; the ordinal value of the first identifier is 0. 

<non id type> 	"(" <enumer id list> ")" 
<enumer id list> 	<id decl> {"," <id decl>} 

Example: 

type days is (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday) 

8.2.2. Index and Pointer Types 

An index type is a scalar type, variables of which will be used as indices in for loops or as 

array indices. °  A variable of an index type must be declared locally to the scope within which it 
is used. Structures may not have components of an index type, nor may variables of an index 
type be passed as var parameters to procedures or operations. The index variable of a for loop 
must be of an index type. 

<non id type> 	"index" <constrained type id> 

Example: 
type loopindex is index integer [1 .. 10] 

Variables of a pointer type may assume as values pointers to variables of another type t 
specified in the declaration of the pointer type: 

<non id type> 	"->" <id use> 

Pointer values are generated via calls to the operation new defined by object standard. Also, a 
variable of any pointer type may assume the value NIL, which means the variable is not point-
ing to anything. 

Example: 
type intptr is -> integer 

8.2.3. Structured Types 

Declarations of structured types provide blueprints for arranging groups of components of 
scalar types or of other structured types into a single structure. Structured types provide the 
programmer differing levels of abstraction with which to view data, from the most primitive 
view—sequences of bits—through high-level abstractions such as records. 

<non id type> 	<struct type> 

°This declaration provides a hint to the compiler that a variable of this type would be a good candidate to be 
placed in a register. 
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The structured types include bitstrings, strings, arrays, flexarrays, records, structures, sets, and 
locks. 

The declaration of a structured type may be associated with a constraint which gives an 
indication of the number of elements in an entity (variable, record field, or parameter) of that 
type, so that the size of the entity may be determined at the time of compilation. As explained 
in section 7, a constraint thus associated with a type declaration is inherited as an attribute by 
entities of that type, although the constraint is not considered a part of the type itself. Such a 
constraint may take the form of an explicit length specification (as with strings and bitstrings), 
or (as with arrays) may be derived from constraints on the index types. It is sometimes useful, 
though, to delay the specification of size constraints of a structured type which is to be used as 
the type of a formal parameter. The formal parameter then takes on the size constraints of an 
actual parameter substituted for it during a procedure call. To support this, a size constraint 
may be specified by a delayed constraint form; delayed constraints may be used only as attributes 
of formal parameters. 

8.2.3.1. Bitstrings 

A bitstring provides the most primitive structured abstraction of data, that of simply a 
sequence of bits: 

<struct type> 	"bitstring" "(" 1<expr>I ")" 

The length constraint of the bitstring (in bits) may be indicated by the value of the constant 
expression <expr>. If <expr> is not given, the type declaration is considered to be associ- 
ated with a delayed length constraint attribute; the length of a bitstring with such an attribute 

may be obtained at runtime by use of the operation bitlength provided by object standard. 

Example: 
type nybble is bitstring (4) 

The "system" object, defined for each computer system on which Aeolus may be com-
piled,' provides declarations of several useful bitstring types. These types are referred to col-
lectively as the storage classes, since they define the units of storage supported by the hardware 
of most computer systems: types bit, byte, word, longword, and quadword, with lengths BITSIZE, 
BYTESIZE, WORDSIZE, LONGWORDSIZE, and QUADWORDSIZE, respectively. 

Another important bitstring type, address, is also defined by the "system" object. The 
address type is defined as bitstring (ADDRESSSIZ E). The "system" object defines a constant of 
type address called NIL, which was mentioned in section 6.2.2. The relationship between 
address types and pointer types is discussed in section 9.3. 

8.2.3.2. Strings 

A string is a sequence of components of type char (that is, a sequence representable by a 
litstring token), terminated by a NUL character (ASCII 0). 

<struct type> 	"string" "(" [<expr>] ")" 

The maximum length constraint of the string (excluding the NUL terminator") may be 
specified by the value of the constant expression <expr>; this value must be a positive 
integer. If <expr> is omitted, the type declaration is considered to be associated with a 
delayed length constraint attribute; the maximum length of a string with such an attribute may 

1°At present, Aeolus is supported on the DEC VAX and IBM PC-XT and -AT families of computers; the system 

objects for these families are named VAX System and PC System, respectively. 

"The length operation on objects of type string--described later in this report—returns the count of characters in 

the string, also excluding the NUL terminator. 
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be obtained at runtime by use of the operation maxstringlen defined by object standard. The 
components of the string are stored in consecutive bytes of memory. 

Example: 
type tokenstring is string (127) 

A variable of type "tokenstring" will take up 128 bytes of memory, including room for a termi-
nator character for a string value of the maximum length (127 characters). 

8.2.3.3. Arrays 

An array is a sequence of a fixed number of components which are all of the same type. 
The individual components or elements of an array are specified by the element's indices, which 
are values belonging to the index type of the array. 

<struct type> 
<index type list> 

Example: 

"array" "[" [ <index type list>] 	" "of" < type > 
<constrained type id> {"," <constrained type id>) 

type smallarray is array [ integer [1 .. 10] ] of integer 

A declaration of the form 

array [T1, T2, 	, Tn] of TO 

with an index type list of n index types is considered shorthand for the declaration 

array [T1] of array [T2] of ... of array [Tn] of TO 

The size constraint attribute associated with entities of an array type is derived from constraints 
associated with the index types. Should any of the index types be associated with a delayed 
constraint, the array type is considered to be associated with a delayed size constraint. The 
minimum and maximum values of the index constraints for such an array may be obtained at 
runtime by use of the operations low and high provided by object standard. 

8.2.3.4. Flexarrays 

A flexarray is an array with a flexible size constraint attribute (sometimes called a dynamic 
array): 

	

<struct type> 	"flexarray" "[" [<index type list>] "]" "of" <type> 

	

<index type list> 	<constrained type id> ("," <constrained type id>) 

Each index type of a flexarray must be associated with a delayed constraint. A flexarray must 
be initialized with a special form of the operation new provided by object standard; the lower 
and upper bound constraints for each dimension of the flexarray (from first to last) are given as 
parameters to new. The lower and upper bound constraints for the first dimension of a flexar-
ray may be changed by specification of the new bounds in a call to operation resize provided by 
object standard. A flexarray type may be used only for the type of a variable, and thus may not 
be used as the type of a parameter, record field, or array element. 

Example: 

type smallflexarray is flexarray [ integer [] ] of integer 
f : smallfiexarray 
new (f, 1, 10) 
resize (f, -10, 20) 
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8.2.3.5. Records 

A record is a sequence of a fixed number of components which are of possibly differing 
types. An individual component or field of a record is specified by its field name, qualified by 
the name of the record variable to which the field belongs. 

A record type declaration specifies the names and types of each field in a variable of that 
record type. A record type may also have variant fields. The first field of a variant field is called 
its tagfield. The remainder of the variant field consists of a variant list, each of whose variants is 
prefaced by a variant label list, a list of constants whose types match that of the tagfield. The 
value of the tagfield selects the variant from the variant list one of whose variant labels matches 
that value. 

As we shall see in Section 8, tagfields may be assigned only in record constructors; thus, a 
tagfield may be changed only if all other fields of the record are specified at the same time. 

8.2.3.8. Structures 

A structure is a special case of a record somewhat similar to the packed record construct of 
Pascal. The declaration of a structure type specifies the storage class which the structure will fit: 

<struct type> —+ "structured" <type id> 
<field list> 
"end" "structure" 

(The storage classes were discussed in section 6.2.3.3.) A field in a structure typically represents 
a bitstring or scalar; the fields are packed together consecutively within an object of the 
specified storage class (without implicit padding), with the first field specified starting at the 
most significant bit position in the storage class. The compiler checks that the fields declared 
for the structure together fit into the specified storage class. 

8.2.3.7. Sets 

A set type defines a powerset of sets of values of the specified base type: 

<struct type> — "set" "of" <constrained type id> 

	

<struct type> 
	

"record" <field list> "end" "record" 

	

<field list> 
	<field> {"," <field>} 

	

<field> 	•—• 	<field id list> ":" <type> 

	

<field> 	•—• 	<variant field> 

	

<field id list> 	•—• 	<id decl> {"," <id decl>} 

	

<variant field> 
	

"case" <tagfield id> ":" <scalar type id> "of" 
<variant list> [ <variant otherwise >1 
"end" "case" 

	

<variant list> 
	<variant> {"Ii" <variant>} 

	

. <variant> 
	<variant label list> ":" <field list> 

	

<variant label list> 	<variant la.bel> {"," <variant label>} 

	

<variant label> 	<scalar coast> 
<variant label> 

- 

<subrange> 

	

<variant otherwise> 	

- 

"otherwise" <field list> 

Syntax of Record Type Declarations 
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type t is 
record 

case to : days of 
Monday .. Friday : 

office no, 
work_phone : integer 

II Saturday, Sunday : 
home_phone : integer 

end case 
last name : string (20) 
case tf2 : integer of 

3, 5 .. 7 : 
weekly rate : integer 

118 .. 10 	: 
monthly rate : integer 
benefits 	: boolean 

otherwise 
hourly_rate : integer 
temporary : boolean 

end case 
end record 

Example of a Record Type Definition 

The base type of a set must be scalar. There is no restriction on the number of elements that 
the base type may have. 

Example (see section 6.2.1): 
type dayset is set of days 

8.2.3.8. Locks 

A lock type may be used to declare variables which in turn may be used to implement 

locking protocols on particular values in some domain. 12  

	

<struct type> 
	

"lock" "(" <compat list> ")" ["domain" "is" <type>] 

	

<compat list> 
	

<compat> {"," <compat> 

	

<compat> 
	

<id use> ":" "[" <compat id list> "]" 

A lock declaration includes the specification of a compatibility list, which defines, for a given 

mode of the lock, which other modes are compatible with that mode. 13  The presence of an 
identifier in a compatibility list serves as a declaration of that identifier as a mode of the lock 
type; the modes of a lock type may together be thought of as an enumeration. An empty com-
patibility list indicates that the given mode is incompatible with all other modes. 

' =Note that a lock is obtained for a value of an object, and not on the object itself. Thus, for instance, a lock 
may be obtained on a file name even if that file does not yet exist. The lock structure is directly supported by the 
Clouds architecture. 

13A lock may be set with a specified mode only if other modes already set, if any, are compatible with that mode. 
Thus, a process adhering to a protocol using that lock may wish to block until the requested mode is available. Opera-
tions are provided by object standard for testing, setting, and releasing locks (see Appendix D). 
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type VAX_processor status is 
structured longword ! bit 

CM, 
TP : boolean 

1 31: 
! 30: 

Compatibility Mode 
Trace Pending 

MBZ1 : bitstring (2) ! 29-28: must be zero 
FPD, 
IS : boolean 

! 27: 
! 26: 

First Part Done 
Interrupt Stack 

current_mode : 0 	.. 3 ! 25-24 
previous_mode : 0 	.. 3 ! 23-22 
MBZ2 : boolean ! 21: must be zero 
IPL : 0 .. 16#1f ! 20-16: Interrupt Priority Level 
MBZ3 : byte ! 15-8: reserved (must be zero) 
DV, 
FU, 
IV, 
T, 
N, 
Z, 
V, 
C 

end structure 
: boolean 

! 7: 
6: 

! 	5: 
! 	4: 
! 3: 
! 	2: 
! 	1: 

0: 

Decimal oVerflow bit 
Floating Underflow bit 
Integer oVerflow bit 
Trace bit 
Negative condition code 
Zero condition code 
oVerflow condition code 
Carry condition code 

Example of a Structure Type Definition 

The lock declaration may also specify the domain of values which may be locked. If the 
domain specification is omitted, a simple lock (i.e., one which does not lock over any particular 
domain) is assumed. 

Examples: 

  

 

	

type simple_lock is lock ( 	busy : [1 

	

type file_lock is lock ( 	read : [read] 
write : ) domain is string (20) 

The declaration of "simple lock" above defines a lock type with a single mode "busy" which is 
incompatible with itself; thus, only one client may set a lock variable of type "simple_lock" at 
any one time. The declaration of "file_lock," on the other hand, defines a lock type over the 
domain of strings of length 20. Clients may set a lock variable of type "file_lock" on a given 
string with modes "read" or "write." The "read" mode is specified as being compatible with 
other settings of "read" mode; the "write" mode is incompatible with itself and with "read" 
mode. Thus, a client may set the lock with "read" mode on a given string even if several 
other clients have outstanding settings of the lock with "read" mode on that string; however, a 
client wishing to set the lock with "write" mode on a given string must wait for all outstanding 
settings of "read" mode on that string to be released. 

8.3. Parameterized Object Types 

Object types may be defined with one or more object parameters, which allow the user to 
instantiate so-called generic objects. These parameters typically specify sizes or element types 
to be assumed by abstract data types. The formal parameters of the object definition header are 
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replaced by actual parameters wh en the object type is used in a declaration: 

Example: 

<type> 
<parameterized obj id> 
<obj actual param list> 

- ["shared"] <parameterized obj id> 
- <id use> "(" <obj actual param list> ")" 

<expr> {"," <expr>} 

queue (integer, 128) 

If an object type queue has been defined with formal parameters allowing instantiation of queues 
with a given element type and queue size, the above parameterized object id specification will 
instantiate a queue of integers with maximum queue size 128. 

7. Constraint Declarations 

A constraint, which indicates the minimum and maximum values which a variable having 
that constraint may assume, may be specified for any scalar type except real. As was described 
in section 6, a constraint may be associated with a type declaration; although the constraint is 
not considered to be part of that type, entities of that type (variables, parameters, or record 
fields) inherit the constraint as an attribute. The type being constrained may have already had a 
constraint associated with it; the new constraint replaces any previous constraint. The effect (or 
lack thereof) of constraints on type compatibility is described in section 9.3. 

A constraint may also be associated with a previously-defined named type, and this associ-
ation may be given a name which may be used as if it were a type identifier. Such an associa- 
tion is called a constraint declaration: 

	

<constraint decl> 	"constraint" <new constraint id> "is" <constrained type id> 

Entities declared with a constraint identifier in place of a type are considered to be of the type 
indicated by the named type specified in the constraint declaration, as if the entity had been 
declared to be of that named type. Thus, a constraint declaration does not create a new type. 
However, the entity also inherits the constraint specified in the constraint declaration as an 
attribute. The new constraint replaces—for entities declared with the constraint name as a 
type—any constraint previously associated with the named type. 

Example (see section 6.2.1): 

constraint weekdays is days [Monday .. Friday] 

8. Variable Declarations 

A variable declaration introduces a variable into a process or object implementation part; it 
associates the variable with a unique identifier and with a fixed type. All variables whose 
identifiers appear in the same declaration list have the same type. A variable declaration may 
have an optional initialization clause, which consists of a constant expression of the same type 
as the variable type. This expression is evaluated, and its value assigned to the variable, before 
the block is entered in which the variable is declared." 

<var decl> 

- 

<id decl list> ":" <new type> [":=" <expr>] 
<new type> 	<type> 
<new type> 

- 

"recoverable" <type> {"," <override>} 

	

<override> 	

- 	

<id decl> "overrides" <id use> 

A variable may also be declared to be located at a specified address: 

	

<var address decl> 	<id decl> "[" <expr> "]" ":" <new type> [":--=" <expr>] 

"Variables declared global to a compiland are static, and may be initialized before execution (that is, at compila-
tion or link time). 
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The address expression must be a constant expression of type address. 

In the version of Aeolus under the Clouds system, variables may be declared to be recov-
erable. Recoverable variables are discussed in section 13. 

Examples: 
j : integer [1 .. 10] := 0 

a: array [ integer [1 .. 10] 	of 
record 

realpart, imaginarypart : real 
end record 

string_array : array [ integer [1 .. 10], integer [100 .. 200] ] 
of -> string (80) 

KB_flag [16#0017] : PC_keyboard_flag 

9. Expressions 

The use of expressions allows the programmer to obtain the values of variables and to gen-
erate new values by specifying computations to be performed. An expression is constructed 
from operands and operators. 

9.1. Operands 

An operand is either a literal constant (a number, string, or constructor [see below]), or a 
variable. A variable may be designated either by a (possibly qualified) simple identifier, or, if 
the variable is of a structured type, by a structured variable, which consists of the variable name 
followed by selectors. Selectors serve to designate the desired component of a variable. A call 
to a value-returning object operation or procedure (function) may also be used any -where a vari-
able may be used; in particular, the value returned by such a call may be dereferenced with 
selectors, if this return value has the appropriate type. 

<variable> 
<variable> 
<variable> 
<variable> 

<structured var> 
<structured var> 
<structured var> 

<id use> 
--+ 	<func call> 

<obj op invocation> 
<structured var> 

—+ <variable> "." <id use> 
<variable> "->" 
<variable> "[" <expr> {"," <expr>} "]" 

If the variable is of a pointer type, the pointer dereference operator ("->") may be used to 
obtain the item referenced by the pointer. If the variable is of a record type, an individual field 
of the record may be obtained by use of the field dereference operator ("."), followed by the 
name of the field. An individual element of a variable of an array type may obtained through 
use of an element selector operator, which specifies the index of the array element desired. 
Thus, the structured variable al<expr> I designates that element of array a whose index is the 
value of the expression <expr>. The list of index expressions in an array element selector, 
such as 

a [<expr 1> , <expr 2> , 	, <expr n>] 

is considered shorthand for the sequence of selectors 

a [ <expr 1>] [<expr 2>] 	[<expr n>] 

for an array a declared with n dimensions. The type of each element selector expression must 
be compatible with the type of the corresponding index type of the array (see below). 
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An element selector may also be applied to a variable of type bitstring or string; for pur-
poses of element designation, these sequences may be considered to be one-dimensional arrays 
with element type bit and char, respectively. The index type of such a sequence is considered 
to be unsigned (1 .. LEN!, where LEN is the length of the bitstring or string. 

Examples of variable designations (see section 8): 

a[5] .realpart 

a [i] .imaginarypart 

string_array 	110] -> 

string_array [10, 150] -:> [80] 

As stated above, operands may be literal constants as well as variables. The specification 
of a literal constant of an integer or real number is simply a token of that type (see section 3). 
A constant of a structured type, however, must be built by specification of its elements in a 
constructor. Constructors for constants of structured types are built using the following syntax: 

<constructor> 
<con elem> 
<con elem> 

—4. <type id> """ "[" <con elem> {"," <con elem>} "]" 
—4. 	<expr> [":" <expr>] 

<subrange> 

The constructor is prefaced by the name of the type to which the constant being constructed 
belongs. The value of each element of the constant is then specified (in the order in which the 
elements were declared in the relevant type declaration) by an expression which must have the 
same type as the corresponding element in the structured type. If a structure has several ele- 
ments of the same type in sequence, the same value may be assigned to each element by speci-
fying an optional repetition factor (a [positive] constant integer expression); thus, the construc-
tor element 0:10 would specify that the value 0 be assigned to the next 10 elements in a struc-
ture. 

The constructor for a constant of a set type merely lists those elements of the base type 
which are to be included in the set constant. An empty constructor ("[]") for a constant of a 
set type implies the so-called null set, which is a set with no members. 

Constants of bitstring and string types may also be expressed using more traditional styles 
of constructors for these types. The alternative constructor for a constant of a bitstring type is 
simply an unsigned binary number (or a number in another base with the equivalent bit pat-
tern) with same number of bits in its representation as the length of the bitstring. We have 
already seen (in section 3) the alternative constructor for constants of a string type, that is, a 
string token with enclosing quotes. The string constructor may have no more characters than 
the maximum length of the string type. When the standard constructor syntax shown above is 
used for constants of bitstring or string type, each element need not be individually specified; 
rather, (bit)string constants of smaller (maximum) length may appear as constructor elements, 
as long as the total (maximum) length of all constructor elements matches the (maximum) 
length of the target (bit)string type. The individual (bit)string constants are concatenated into 
the resulting constant. 

Constants of array, record, or structure types may be built only by using the above con-
structor syntax. Constructors are especially important for record or structure types with variant 
fields: the tagfield of a variant field may be assigned a value only in a constructor. Thus, a 
tagfield may not be changed without the specification of values for all other fields in the vari-
ant. 

IThis restriction simplifies runtime checking of variants considerably. 
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Examples of constructors (see section 6 and below): 

smallarray11, 2, 3:5, 4:2, 5] 

wordlbyte (2#1000), byte (2#0010)] 

tokenstring"['Hello, world! ', 'Bye, now.'] 

dayset"[Monday, Wednesday, Friday] 

daysetl] 

9.2. Operators 

The syntax of Aeolus expressions defines precedence levels of operators similar to those in 
Pascal or Modula-2. There are four levels of precedence: the logical NOT operator and the bit-
wise complement ("-") operator have the highest precedence (level 1), followed by the multi-
plicative operators (level 2), then the additive operators (level 3), and finally the relational opera-
tors (level 4). When a sequence of operators has the same precedence, the sequence is exe-
cuted from left to right in textual order. The order of evaluation in an expression may be 
changed by enclosing parts of the expression in parentheses. 

The operators provided by the Aeolus language are listed below. Unless otherwise 
specified, these are binary operators. In certain cases, the same operator symbol has different 
meanings when applied to data objects of different types. The intended operation is then 
identified by the types of the operands. 

9.2.1. Arithmetic Operators 

These operators apply to compatible operands of type integer, longint, unsigned, longuns, 

"real" 
"integer" 
"char" 
"string" 
<constructor> 
<variable> 
"not" <factor> 
"."" <factor> 
"(" <expr> ")'' 

<factor> {"multop" <factor>} 

<simple expr> 
["sign"] <term> {"addop" <term>). 

<rel expr> 
<simple expr> "relop" <simple expr> 

Syntax of Expressions 

<factor> 
<factor> 
<factor> 
<factor> 
<factor> 
<factor> 
<factor> 
<factor> 
<factor> 

<term> 

<expr> 
<simple expr> 

<expr> 
<rel expr> 
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and (except for the modulus operator) real: 

symbol 	operation precedence 

addition 3 
subtraction 3 
multiplication 2 
division 2 
modulus 2 

The operators "+ " and "-" may also be used as unary operators. They then denote the sign of 
a term; the "-" operator implies negation, while the "+ " operator implies the identity opera-
tion. The "%" or modulus operator yields the remainder of an integer division of its (integer) 
operands: 

x %y gives the remainder of x / y, for y > 0. 

The division operator ("/"), when applied to integer operands, yields the truncated quotient of 
its operands. 

9.2.2. Bitwise Operators 

The following operators may be applied to compatible operands of a bitstring type, except 
that the right operand of the shift operators is an expression of type integer: 

symbol 	 operation 	 precedence 

bitwise OR 	 3 
bitwise XOR 	 3 

< < 	left shift 	 3 
> > 	right shift 	 3 

bitwise AND 	 2 
bitwise complement un. 	1 

The left and right shift operators yield the value of their first operand shifted left or right 
(respectively) by the number of positions given by the value of their second operand; the 
vacated bits are zero-filled. The results of these operators are undefined if the value of the 
right operand is greater than the length (in bits) of the left operand. The bitwise complement 
operator ("-'") yields the one's complement of its operand. 

9.2.3. Address Operators 

Arithmetic on pointers is not allowed in Aeolus. However, the bitstring type address 
allows the programmer to perform address computations via explicit conversions from pointer 
types (see section 9.3). The "system" object for the computer for which a compiland is being 
compiled (such as VAX System or PC System) defines three named operations on data of type 
address: 

addr(v) 	Returns a value of type address representing the storage address of variable v, 
which may be a static or dynamic data item. 

next(a, t [, <expr>]) 
Increments the address-type variable a by an amount equal to the product of 
the value of <expr> and the size in address units (bytes or words, depending 
on the system object being used) of the type represented by type identifier t. 
The type of <expr> must be one of the "int types." If <expr> is omitted, 
the value 1 (one) is assumed for it. 

prev(a, t [, <expr>]) 
The same as next, but the address-type variable a is decremented rather than 
incremented. 
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9.2.4. Logical Operators 

The following operators apply to operands of type boolean and yield a boolean result: 

symbol 

OR 
AND 
NOT 

operation 

logical conjunction 
logical disjunction 
lo ical "le ation 

precedence 

3 
2 
1 

9.2.5. Set Operators 

The following operators apply to compatible operands of a set type and yield a value of 
the same type: 

symbol operation 	 precedence 

set union 	 3 
set difference 	 3 
set intersection 	 2 
symmetric set difference 	2  

The following named operations are also provided for sets by object standard: 

	

in(elem, s) 
	

Returns TRUE if the 	scalar elem is currently a member of set a, FALSE other- 
wise. The type of elem must be the same as the base type of a. 

out(elem, s) 
	

Returns the value of not in( elem, s). 

incl(s, elem) 
	

The scalar elem is included in (becomes a member of) the set 8. The type of 
elem must be the same as the base type of a. 

excl(s, elem) 
	

The scalar elem is excluded from (is no longer a member of) the set s. The 
type of elem must be the same as the base type of s. 

The following statements define the (binary) set operations: 

	

in(x, s1 + s2) 	iiff 
	

in(x, s1) or in(x, s2) 

	

in(x, sl - s2) 	if 
	

in(x, s1) and out(x, s2) 

	

in(x, sl * s2) 	iff 
	

in(x, sl) and in(x,s2) 

	

in(x, sl / s2) 	iff 
	

in(x, s1) <> in(x, s2) 

9.2.8. Relational Operators 

The relational operators apply to compatible operands of scalar, set, 
and yield results of type boolean: 

symbol 	 relation 

equality 
< > 
	

inequality 
less than <_ 	less than or equal to 
greater than 

>= 	t reater than or e ual to 

and bitstring types, 

The relations "<----" and ">=" denote improper inclusion when applied to sets, while the 
relations "<" and ">" denote proper inclusion. The relations and "<>" may also be 
applied to operands of a pointer type. Operands of a bitstring type are considered to be 
unsigned values of the equivalent length for purposes of comparison. The relations "=" and 
"<>" are also defined for compatible operands of a pointer, string, record, or array type. All 
relational operators have the lowest precedence (level 4). 
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9.3. Type Compatibility 

The operands of a binary operation are said to be compatible if they are of the same type, 
that is, if the types of the operand are equivalent. The types of operands are equivalent if the 
operands were declared with the same named type or with the same anonymous type." (This is 
known as name equivalence of types.) Thus, for example, given the declarations 

type t is array [ integer [1 .. 10] 	of integer 
a : t 
b : t 
c, d : array [ integer [1 .. 10] ] of integer 

the variables a and b have equivalent types (and are hence compatible) since their types both 
derive from the named type t. Also, variables c and d are compatible, since they share the 
same anonymous type. However, variable a is not compatible with variable c since their types, 
although structurally equivalent, are not name equivalent, since the anonymous type of c is not 
name equivalent to the named type t. 

The Aeolus language does not allow incompatible operands to appear in an expression; 
that is, there are no implicit type conversions (coercions). However, it is sometimes desirable 
to perform operations on operands of differing types. Thus, Aeolus provides the programmer 
with powerful means of explicit type conversion. 

Every named scalar type definition also implicitly defines a conversion function of the 
same name as the scalar type. This function may accept as a parameter an operand of any other 
scalar type, or of a bitstring type of the same storage class. The result of the function invoca-
tion is considered to be a scalar of the named type. Thus, if we have 

i : integer := 0 
type fruits is (apples, oranges, lemons) 

then the result of the expression fruits(i) is of type fruits and has value "apples;" also, the 
result of the expression integer(orange3) is of type integer and has value 1. 

As mentioned in section 7, a constraint which is associated with a scalar type (by way of a 
constraint specification in the type's declaration, or via a constraint declaration) is not con-
sidered part of that type, but rather is an attribute which is given to an entity (variable, parame-
ter, or record field) of that type 17 . Thus, a constrained entity is compatible with an entity which 
has the same type but a different (or no) constraint. For example, considering the declaration 
of type "days" in section 6.2.1 and the declaration of constraint "weekdays" in section 7, if we 
have the following variable declarations: 

dl : days 	d2 : weekdays 

then dl and d2 are compatible. However, every type declaration creates a new type; thus, if we 
had the declarations 

type it is integer 	type i2 is integer 

then entities of type "il" are incompatible with entities of type "i2," as well as with entities of 
type integer. Also, had "weekdays" been declared as a type rather than as a constraint, e.g., 

type weekdays is days [Monday .. Friday] 

18The term "anonymous type" refers to a specification of a non-ID type which appears as the type of an entity 
(variable, parameter, or field). 

I7Constraints are used for range checking (if enabled) and for determining the sizes of structures, not for type 
checking. 
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then variables dl and d2 would not be compatible. 

The type of a so-called ant token (see section 3.2.1) is determined by the size of the 
number it represents. Such a number may be assigned to any of the "int types" integer, longint, 
unsigned, or longuns (see section 6.2). Since these types are constrained, however, when range 
checking is enabled, the number may not be greater than the maximum (or less than the 
minimum) value representable in the target type.I 8  

The conversion functions integer and longint may also be applied to real expressions; if the 
resulting value is not too large for the given type, the result is an integer (or longint) value 
which represents the integral part of the real number (obtained by truncation). The real 
representation of an integer expression may be obtained by using the conversion function real. 

The declaration of a named bitstring type implicitly defines a conversion function to that 
bitstring type from any scalar type representable in that length bitstring. Thus, access may be 
obtained to the bit representation of data in an explicit manner. This implicit conversion func-
tion will also accept a data item of another bitstring type as parameter, as long as the 
parameter's length (in bits) is no greater than that of the target type. If the length of the 
source type is less than that of the target type, the resulting value is padded on the right with 
zeroes to the length of the target type. Also, two named operations are defined by object stan-
dard for selecting parts of the word bitstring type. The hibyte and lowbyte functions return (as 
values of type byte) the high-order and low-order (respectively) bytes of their word parameter. 

The definition of a named pointer type provides a conversion function of the same name 
from a variable of type address to that pointer type. However, the result of such a conversion 
may be used only for dereferences; it may not be assigned to a pointer variable. Values are 
assigned to address variables via the addr operation discussed above; values may be assigned to 
pointer variables only with the operation new defined by object standard (see Appendix D), or 
via assignment from other variables of the same pointer type. The exception to the above rules 
is a special constant of type address, called NIL, defined by each "system" object. The con-
stant NIL, which denotes a null pointer or address reference, may be assigned to a variable of 
any pointer or address type. 

A definition of a named string type provides a conversion function of the same name to 
that type from other string types with maximum lengths no greater than that of the target type. 
The resulting value is a null-terminated string with the same value as the source value, but with 
the same maximum length as the target type. A number of named operations are provided in 
object standard for other string manipulations and conversions, such as substring extraction and 
conversions between strings and numbers; these are listed in Appendix D. 

The conversion functions discussed above are for the most part somewhat restrictive in 
the types of the arguments which they will accept. Also, if the range checking option is 
enabled during compilation, most of these functions will generate runtime range checks of their 
parameters. However, Aeolus provides a less restrictive (and less safe) means of type conver-
sion. The retype function accepts as parameters a value of any type and a type identifier; the 
result is a value of the type specified by the type identifier, left-justified bitwise. For example: 

longword value := retype (integer value, longword) 

No type checking is performed; the only restriction is that the target type representation be no 
smaller (in bitlength) than the type of the source value. Any range checking or filling of 
unused space (when the target type is larger than the source type) is the responsibility of the 
programmer. 

18This implies that negative numbers may not be assigned to unsigned or longuns variables, since the minimum 
value representable in those types is 0. 
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10. Statements 

A statement allows the programmer to specify activities such as assignment of a value to a 
variable, decision branching, or repetitive execution of groups of statements. The so-called sim-
ple statements do not contain other statements, while the compound statements may contain other 
statements as parts. One or more statements may grouped into a statement list: 

<stmt list> —+ <stmt> f<stmt>) 

for use as a part of a compound statement. 

10.1. Simple Statements 

The simple statements include the assignment statement, procedure call, object operation 
call, EXIT statement, RETURN statement, and NULL statement. 

<stmt> —+ <simple stmt> 

10.1.1. Ass ignment Statements 

An assignment statement denotes the replacement of the value of the variable designated 
by the left-hand side with some function of the value of the expression on the right-hand side. 
The assignment operator used in an assignment statement describes what function of the value 
of the right-hand side is to be used. The simplest assignment operator is ":=---" (pronounced 
"gets"), which denotes simple replacement. Other assignment operators apply some binary 
operator to the value of the variable designated by the left-hand side and the value of the 
expression on the right-hand side; the resulting value replaces the value of the designated vari-
able. An example of such an assignment operator is "+ =--" (pronounced "plus-gets"); the 
assignment statement "i + = 1" is equivalent to "i i + 1". The other binary operators 
(listed throughout section 9) also have corresponding assignment operators. 

<simple stmt> 
<assign stmt> 

<lhs> 
<lhs elem> 
<lhs elem> 

<rhs> 
<rhs> 

<action invocation> 
<action invocation> 
<action invocation> 

<assign stmt> 
<lhs> "assignop" <rhs> 
<lhs elem> 1"," <lhs elem>) 
<id use> 
<structured var> 
<expr> 
["toplevel"] "action" "(" 
<proc call> 
<obj op call> 
<assign stmt> 

<action invocation> ")" 

Besides a single variable designation, an assignment statement may also take a list of vari-
able designations as its left-hand side; this is called a multiple assignment. Here, the value of the 
expression on the right-hand side is assigned to each of the variables designated on the left-
hand side, from the right of the list to the left. For example: 

j, lc := rn + 1 

is equivalent to the series of assignment statements: 

k:=m+1 j:=m+1 i:=m+1 

Assignment statements with other assignment operators may also be mutliple assignments. The 
variable designation rightmost in the variable list is used as the left operand for the binary 
operator. Thus: 

1 , j, k + = 1 
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is equivalent to the series of assignment statements: 1°  

	

k :=== k -E 1 	j :=== 1c -E 1 	i :=== k -E 1 

An assignment statement may also take the form of an action invocation. Action invoca-
tions are described in section 13. 

10.1.2. Procedure Calls 

A procedure call statement activates a named procedure. The procedure call may have a 
list of actual parameters, which are substituted for the corresponding formal parameters defined 
by the procedure declaration: 

	

<simple stmt> 	<proc call> 

	

<proc call> 	<proc id> "(" <parm list> ")" 

Procedure calls are more fully described in section 11.2. 

10.1.3. Object Operation Calls 

Object operation calls are similar to procedure calls. However, an object operation must 
in general be invoked on that instance of the object type given by the object ID specified in the 
operation call: 

<simple stmt> 

- 

<obj op call> 

	

<obj op call> 	

▪  

<obj id> "A " <obj op id> "(" <parm list> ")" 

	

<obj id> 	<id use> 

	

<obj id> 	<structured var> 

Operation calls are more fully described in section 12.3. 

10.1.4. EXIT Statements 

An EXIT statement specifies the termination of one or more enclosing loops (see section 
10.2.4). The keyword exit may be followed by either a period ("."), which specifies the termi-
nation of the immediately enclosing loop, or by an identifier, which specifies the termination of 
the enclosing loop with the same name: 

<simple stmt> 

- 

<exit stmt> 

	

<exit stmt> 	"exit" <name option> 

	

<name option> 	44.11 

<name option> 

- 

<id use> 

An EXIT statement may not appear outside a loop; however, a loop may contain several exit 
statements. 

Examples: 
exit . 

exit outer_loop 

10.1.5. RETURN Statements 

A RETURN statement specifies the termination (and return from) the enclosing pro-
cedure. The keyword return may be followed either by a period (".") if the enclosing pro-
cedure does not return a value, or by an expression of the same type as the declared return 

"'This may be compared to the equivalent C statement: 

j = k 	1; 
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type if the procedure is value-returning: 

<simple stmt> 
<return stmt> 

<value option> 
<value option> 

••••1,, 

 ••••10 

<return stmt> 
"return" <value option> 

, , 

<expr> 

A RETURN statement may not appear outside a procedure body; however, a procedure body 
may contain several RETURN statements. 

Examples: 
return . 

return 1.0 - cos (2.0*PI) 

10.1. B. NULL Statements 

A NULL statement indicates that no action is to be taken: 

	

<simple stmt> 	<null stmt> 

	

<null stmt> 	—+ "null" 

The NULL statement is useful in constructs in which a statement or statement list would ordi-
narily appear, but where no action is desired, for instance, in certain cases in a CASE statement 
or as the body of a procedure stub which is to be filled in later. 

10.2. Compound Statements 

The compound statements include the IF statement, CASE statement, LOOP statement, 
USING statement, and REGION statement. 

<stmt> <compound stmt> 

10.2.1. IF Statements 

The IF statement allows the programmer to construct decision control structures: 

	

<compound stmt> 	<if stmt> 

	

<if stmt> 	 <expr> "then" 
<stmt list> {<elsif option>1 [ <else option>[ 
"end" "if" 

	

<elsif option> 	"elsif" <expr> "then" <stmt list> 

	

<else option> 	"else" <stmt list> 

The expressions following the keywords if and elsif must be of type boolean. These expressions 
are evaluated in order, and the corresponding statement lists skipped, until one of the boolean 
expressions yield the value TRUE; the statement list following the keyword then after this 
expression is then executed, and control is then transferred to the statement following the key-
words end if. If the optional ELSE clause is present, the statement list following the keyword 
else is executed if none of the boolean expressions evaluate to TRUE. 

10.2.2. CASE Statements 

The CASE statement allows the programmer to specify a multiple-branch decision struc- 
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if in (ch, charsetn[V 'z']) then 
process_alpha (ch) 

elsif in (ch, charsetn[ 101  .. '9']) then 
process_digit (ch) 

elsif in (ch, charsetT,', 	1 1) then 
process_punctuation (ch) 

else 
error_message ('Not a valid character') 
ch " 

end if 

Example of an IF Statement 

tore based on the value of a single expression: 

<compound stmt> 
<case stmt> 

<case list> 
<case elem> 

<case stmt label list> 
<case stmt label> 
<case stmt label> 
<otherwise part> 

<case stmt> 
"case" <expr> "of" 
<case list> [<otherwise part>] 
"end" "case" 
<case elem> {"II" <case elem>} 

--+ 	<case stria label list> ":" <stmt list> 
<case stmt label> {"," <case stmt label>} 
<scalar const> 
<subrange> 
"otherwise" <stmt list> 

First, the expression following the keyword case is evaluated. This expression must be of a 
scalar type (excluding type real); also, each of the case statement labels must be a scalar constant 
or a scalar constant subrange the type of which is compatible with that of the expression (no 
value may occur or be contained in more than one label). Second, if one of the case statement 
label lists contains a label which matches or contains the value yielded by the expression, the 
statement list following that label list is executed, and control is transferred to the statement 
following the keywords end case. If none of the labels matches the value of the expression, and 

case ch of 
'a' .. 'z' : 

process_alpha (ch) 
11'0' .. '9' : 

process_digit (ch) 
II 	11 1.1  

• 1 	 1 	 • 

process_punctuation (ch) 
otherwise 

error_message ('Not a valid character') 
ch " 

end case 

Example of a CASE Statement 
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the optional OTHERWISE clause is present, the statement list following the keyword otherwise 
is executed; if no OTHERWISE clause is present, control is transferred to the end of the CASE 
statement. 

10.2.3. LOOP Statements 

The LOOP statement allows the programmer to specify that a statement list be executed 
repeatedly, either for a specified number of iterations, or while some condition is true, or until 
the loop is explicitly exited: 

	

<compound stmt> 
	<loop stmt> 

	

<loop stmt> 	--■ 	[ <iteration clause option>] <basic loop> 

	

<loop stmt> 	

- 	

<loop id dec> ":" [<iteration clause option>] 
<basic loop> <loop id use> 

	

<basic loop> 	—+ "loop" <stmt list> "end" "loop" 

	

<iteration clause option> 
	

"while" <expr> 
<iteration clause option> 

- 

"for" <index id> ":=" <expr> 
<direction> <expr> [<by clause>] 

<direction> 
<direction> 
<by clause> 

f ttc) l) 

- "downto" 
"by" <expr> 

The basic form of the LOOP statement, without the optional iteration clause, is essentially an 
infinite loop: the enclosed statement list is executed until the loop is explicitly exited by means 
of an EXIT statement (see section 10.1.4). 

Two iteration clause options are available for control of the repetitive execution of the 
LOOP construct. The simplest of these two options is the WHILE clause, which specifies that 
the loop is to be continued as long as some condition is fulfilled. The expression following the 
keyword while must be of type boolean. This boolean expression is evaluated before each exe-
cution of the statement list enclosed by the LOOP construct; this repetition continues as long as 
the expression yields the value 'TRUE. 

The second iteration clause option is the FOR clause, which specifies a that a progression 
of values is to be assigned to a variable during the repetitive execution of the loop. The 
identifier following the keyword for is called the loop index variable; this identifier must have 
been declared as a variable of an index type (see section 6.2.2). The loop index variable may 
not be the target of an assignment statement within the statement list enclosed by the LOOP 
construct. The direction of the progression of values is specified by the use of one of the 
<direction> keywords to or downto; the former specifies an increasing progression (that is, the 
loop index is incremented on each iteration), while the latter specifies a decreasing progression 
(the loop index is decremented). The ordinal amount by which the loop index is incremented 
or decremented on each iteration is specified by the value of the expression following the key-
word by in the optional BY clause; this expression must yield a positive value. If no BY clause 
is given, the value 1 is assumed for the increment or decrement. The starting value of the pro-
gression is given by the value of the expression following the token ":=", while the ending 
value of the progression is given by the value of the expression following the <direction> key-
word; the types of these two expressions must be compatible with the base type of the loop 
index. All three expressions (starting value, ending value, and increment) are evaluated before 
the loop is entered. Execution of the statement list enclosed by the LOOP construct continues 
until the value of the loop index variable exceeds the ending value, in the sense of the direc-
tion of the progression. 

A LOOP statement may optionally be qualified by a loop identifier. The appearance of this 
identifier at the start of the construct is considered to be the declaration of the loop identifier; if 
a loop identifier is specified, the same identifier must appear after the end loop keywords. The 
scope of the loop identifier is the extent of the LOOP statement which declared it. A loop 
identifier may be used in the <name option> clause of an EXIT statement (see section 10.1.4) 
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to specify the termination of an enclosing loop with that nanie. 20 

 Examples: 
InOut A ReadChar (ch) 
while ch <> ' loop 

process_char (ch) 
InOut @ ReadChar (ch) 

end loop 

for ch :== 'z' downto 'a' by 2 loop 
process_char (ch) 
for i :=-- integer (ch) to 10 * integer (ch) loop 

InOut @ WriteChar (ch) 
end loop 

end loop 

outer : 
loop 

loop 
InOut @ ReadChar (ch) 
if ch = 1 .' then 

number of sentences + = 1 
exit outer 

elsif ch =' then 
exit . 

end if 
process_char (ch) 

end loop 
number_pf_words + = 1 
skip spaces 0 

end loop outer 

10.2.4. USING Statements 

The USING statement allows the programmer to "alias" parts of complicated variable 
designators. These "aliases" may then be used in place of those parts of the designators within 
the statement list enclosed by the USING construct: 

<compound stmt> 
<using stmt> 

<use spec list> 
<use spec> 

<using stmt> 
"using" <use spec list> "do" 
<stmt list> 
"end" "using" 
<use spec> {"," <use spec>} 
<id decl> "for" <variable> 

The effect of a USING statement is the creation of a nested scope for the extent of that USING 
statement; the identifiers on the left-hand sides of each <use spec> in the <use spec list> 
are considered to be declared within this scope. The effective address value yielded by the vari-
able designation on the right-hand side of a <use spec> is assigned to the identifier on the 
left-hand side of that <use spec> 21  (that is, the identifier denotes the so-called !value of the 
variable designation). That identifier may then be used as shorthand for the variable designa-
tion within the statement list enclosed by the USING statement. An identifier declared in a 
<use spec> may also be used in the variable designation of any <use spec> following it tex-
tually. 

20This is especially useful when the named loop is not the loop immediately enclosing the EXIT statement. 

21 This value is also considered to be a good candidate to be placed in a register. 
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inOuc a  WriteChar (s2 [80]) 
s2 	string801 1 thanks for all the fiche!, ":55 -] 
s2 [1] := 'T 
aj.imaginarypart 	0.0 

end using 

al for a 	do 

10.2.5. REGION Statements 
The REGION statement implements a critical region protocol for mutual exclusion on exe-

cution of a region (list of statements). In the header of the REGION statement, the program-
mer specifies a variable designator on which the statements enclosed by the REGION statement 
will operate: 

	

<compound stmt> 	< region stmt> 

	

<region stmt> 	"region" <variable> "do" 
<stmt list> 
"end" "region" 

The type of the entity designated by <variable> must have the shared attribute (see section 
6), which indicates that access to the entity may be safely shared among concurrent processes. 
To ensure safe access, a shared entity may be appear as the target of an assignment only within 
a REGION statement designating that entity. 

The effect of a REGION statement is to associate the enclosed statement list with a sema-
phore which is also associated with all other REGION statements having the same variable 
designator. The first process to enter the region when the semaphore is free will then gain 
exclusive access to the region; others attempting to enter the region will be forced to wait in a 
queue on the semaphore. When a process leaves the region, it signals the semaphore so that 
the next process in the queue gains access (in a first in—first out manner). 

Example (see section 9.1): 

region a [j] do 
a [j].realpart := 10.5 
a [A .imaginarypart := 0.2 

end region 

11. Procedures 
The procedure construct provides a type of control abstraction known as procedural 

abstraction. A statement list may be associated with an identifier by means of a procedure 
declaration; then, the use of that identifier in a procedure call statement implies the activation of 
that statement list, with the possible substitution of actual parameters for formal parameters. 
Also, a procedure may be declared as value-returning, in which case the procedure may be 
activated within an expression; the return value of the procedure call may then be used by the 
expression for further computation. 

11.1. Procedure Declarations 
A procedure declaration consists of a procedure header and a list of statements enclosed by 

a procedure block. The header contains declarations of the procedure's name and (optionally) its 
formal parameters, return type, and procedure attributes; the block may contain, besides the 
statement list, any local declarations of constants or variables. The procedure block may be 
replaced in the declaration by the keyword forward, which indicates that the procedure block 
will appear in a second declaration of the procedure which must appear later within the same 
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<proc hdr> "forward" 
<proc hdr> <proc block> "procedure" 
"procedure" <proc id decl> "(" [<params>] ")" 
["returns" <return type>] "is" [ <proc attr>] 

- <formal parm section> {"," <formal parm section> idion >>) 
<id decl list> ":" ["const"] 	 <type  

- "action" 
- "inline" 

"pure" 
[ <proc decl pt>] <stmt pt> 
<proc declaration> {<proc declaration>) 

- <const or var decl> 
• <type decl> 

<constraint decl> 
- <var address decl> 

"begin" <stmt list> "end" 

Syntax of Procedure. Declarations 

<proc decl> 
<proc decl> 
<proc hdr> 

<params> 
<formal parm section> 

<proc attr> 
<proc attr> 
<proc attr> 

<proc block> 
<proc decl pt> 

<proc declaration> 
<proc declaration> 
<proc declaration> 
<proc declaration> 

<stmt pt> 

compiland; the specification of parameters, return type, and attributes must appear in the pro 

cedure header in the so-called forward declaration, and may not be repeated in the procedure 
header of the second declaration. 

The visibility of constants and variables declared locally to a procedure, as well as the visi-
bility within a procedure of items declared in a procedure's environment, was discussed in sec-
tion 4.1. The values of locally-declared variables are undefined upon entry to the procedure 
unless these variables have an associated initialization clause. Note that a procedure may not 
be declared within the declaration of another procedure; that is, a procedure declaration may 
not be nested. The use of a procedure's identifier in a procedure call within its procedure block 
declaration denotes the recursive activation of the procedure. 

The formal parameters declared in a procedure header act as "placeholders" in the pro-
cedure block for the actual parameters to be passed in a procedure call. At the time of a pro-
cedure call, the formal parameters are replaced by the corresponding actual parameters. There 
are two kinds of formal parameters, known as constant parameters and variable parameters. A 
constant parameter acts as a local constant to the procedure to which it is passed, with the value 
of the corresponding actual parameter as its value; a formal constant parameter may not appear 
as the target of an assignment statement. A formal variable parameter acts as a renaming of 
the corresponding actual parameter; any assignment to a formal variable parameter will be 
reflected in the value of the actual parameter. (This mechanism is known as pass by reference.) 
Formal parameters declared in a list prefaced by the keyword const in a procedure header are 
considered to be constant parameters; those declared without the keyword const are considered 
to be variable parameters. The type of a formal parameter may be any named type. The scope 
of a formal parameter is the same as that of the local variables of the procedure, that is, its 
scope is the extent of the procedure. 

A procedure may be specified to have a return type, in which case it is called a value-
returning procedure or function. The type of the return value may be any named type. The 
value to be returned must be specified by an expression in a RETURN statement (see section 
10.1.5); the type of this expression must be compatible with the return type. 

A procedure declaration may also specify certain attributes for the procedure. These 
include inline, which specifies that the compiler should insert the procedure code "inline" at the 
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point of the call to the procedure, rather than to compile an actual call to the procedure; and 
pure, which indicates to the compiler that the procedure does not modify any non-local variables 

or make any calls to other non-pure procedures. 22  (Do we need the attribute action if we use 
the action-invocation semantics described in section 13?) 

Example (see Appendices A and B for more examples): 

procedure factorial ( i : const integer ) returns integer is pure 
begin 

if i <=-- 1 then 
return 1 

else 
return i *factoria1(1-1) 

end if 
end procedure ! factorial ! 

11.2. Procedure Invocations 

The invocation of a procedure may take place either as a procedure call statement (see sec-
tion 10.1.2), or (if the procedure has been declared as value-returning) within an expression: 

<proc call> 	---. 	<proc id> "(" [ <parm list>] ")" 
<parm list> 	<expr> ("," <expr>} 

The values of the actual parameters specified in a procedure call are evaluated before the call, 
and these values are substituted for the formal parameters within the called procedure. For 

constant formal parameters, the actual parameter may be an expression. An actual parameter 
which is substituted for a variable formal parameter must be a variable designator; the selectors 
for components of structured variables are evaluated before parameter substitution takes place 
(that is, before the procedure call). The type of each actual parameter must be compatible with 
that of the corresponding formal parameter, and the number of actual parameters must match 
the number of formal parameters for that procedure, unless a parameter has been specified as 
arbitrary (more to come on this). 

Example: 
factorial( 2*j) 

12. Objects 

The object construct provides support for data abstraction in Aeolus. A collection of 
related data items may be encapsulated within an object, which also may provide operations (pro-
cedures that operate) on the data. The only access to the data of an object is via these opera-
tions; thus, an object can strictly control manipulation of its encapsulated data, helping guaran-
tee the invariants of the abstraction. 

An Aeolus object may also have parameters indicating, for instance, sizes or element 
types of the abstraction implemented by the object; thus, an object implementing a bounded 
stack abstraction may be parameterized by the element type and maximum number of elements 
of the stack. Then, various instances of the bounded stack object may be created (instantiated) 
with differing element types and sizes; the implementation of the object need not be concerned 
with details such as the element representation, and the programmer does not need to create 
new object types for each combination of element type and stack size. Support for such generic 
objects increases the level of abstraction available to the programmer, and makes possible the 
creation of libraries of reusable object types. 

22This attribute gives the compiler a hint that certain optimizations may be possible in this procedure. This attri-
bute is used at the programmer's risk; that is, the compiler does not attempt to verify that the procedure is actually 
pure. 
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The object construct also provides a safe separate compilation mechanism. The separation 
of an object specification into a definition part and an implementation part allows checking across 
the interface to an object, as well as allowing the use of an object definition before the 
corresponding implementation part is finished (thus facilitating top-down design). 

12.1. Object Definition Parts 

The definition part of an object defines the interface of the object with other compilands. 
It specifies the attributes of the object itself as well as the constants, types, and operations 
which the object provides to other objects and to processes. 

The header of an object definition part, besides declaring the name of the object, option-
ally specifies the object attributes and the object formal parameters for a generic object. One pos-
sible object attribute is indicated by the keyword pseudo, which indicates that the object being 
defined is a pseudo - object, the simplest form of object. A pseudo-object may not be instantiated, 
as a full-fledged object may be; its operation calls are qualified by its object type name rather 
than by an instance name. 23  Also, pseudo-objects may not use the action-management 

<obj def> 
<obj def hdr> <obj visible decls> "end" "definition" 
"definition" "of" [<obj attrs>] 
"object" <obj id decl> [ <generic option>] "is" 
"pseudo" 
"nonrecoverable" 
<auto .attr> [< auto attr>] 
"recoverable" 
"autosynch" 
"(" <obj formal param list> ")" 
<obj formal param> {"," <obj formal param>} 
<id decl> ":" <generic type> 
<type id> 
"type'' 
[ <uses option>] [<imports>] <decls&specs> 
"uses" <imp list> 
"import" <imp list> 
<misc id> {"," <misc id>} 
[<visible decls>] f<op spec part>] 
<visible decl> {<visible decl>) 
<const decl> 
<type decl> 
<constraint decl> 
"operations" <op spec list> 
<op spec> {<op spec>} 
<proc hdr> [<op effect>] 
"examine" 
"modify" 

Syntax of Object Definition Parts 

<comp unit> 
<obj def> 

<obj def hdr> 

<obj attrs> 
<obj attrs> 
<obj attrs> 
<auto attr> 
<auto attr> 

<generic option> 
<obj formal param list> 

<obj formal param> 
<generic type> 
<generic type> 

<obj visible decls> 
<uses option> 

<imports> 
<imp list> 

<decls&specs> 
<visible decls> 
<visible decl> 
<visible decl> 
<visible decl> 

<op spec part> 
<op spec list> 

<op spec> 
<op effect> 
<op effect> 

23Pseudo-objects are thus much like modules in Modula-2; the calling mechanism for their operations is simpler 
than for the other object types. 
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(recovery) features of the Clouds system (see section 13). A more complex form of object is 
given by the attribute keyword nonrecoverable, which indicates that—as with a pseudo-object-
the object being defined does not use the action•management (recovery) features of the Clouds 
system; however, unlike pseudo-objects, a nonrecoverable object may have multiple instantia-
tions. An instantiation of a nonrecoverable object is created by a call to the operation new pro-
vided by object standard; a variable of that object type is passed as a variable parameter to new, 
and the variable may thereafter be used to qualify operation invocations on that object instance. 

If neither of the pseudo or nonrecoverable attribute keywords is specified, the compiler 
assumes that the object makes use of the Aeolus/Clouds action and object management facili-
ties (see sections 12.3 and 13). The simplest way in which the programmer may make use of 
these facilities is through specification of one or both of the "auto" attributes in the object 
definition header. Specification of the recoverable attribute keyword causes the compiler to gen-
erate code in the object's operations for fully automatic handling of object state recovery, while 
specification of the autosynch keyword causes code to be generated for automatic synchroniza-
tion of object operation invocations based on programmer-supplied indications of operation 
effects (see below). Thus, the programmer may gain access to the action and object manage- 

definition of nonrecoverable object bounded_stack 
( size : unsigned, elem_type : type ) is 

! Definition of a generic bounded stack object with size SIZE 
! and elements of type ELEM_TYPE. 

operations 

procedure push ( elem : elem_type ) is modify 
! Places ELEM on the top of the stack, 
! if the stack is not full. 

procedure pop () : elem_type is modify 
! Removes the top element of the stack and returns it. 
! The return value is undefined if the stack is empty. 

procedure top_elem 	: elem_type is examine 
! Returns the top element of the stack without removing it. 
! The return value is undefined if the stack is empty. 

procedure empty () : boolean is examine 
! Returns TRUE if the stack has no elements, 
! FALSE otherwise. 

procedure full () : boolean is examine 
! Returns TRUE if the stack has SIZE elements, 
! FALSE otherwise. 

end definition. ! bounded_stack ! 

Example of an Object Definition 
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ment facilities of the Clouds system simply by specifying a few keywords. 24  However, in some 
cases the programmer may be able to use knowledge of the semantics of the object and its 
operations to program synchronization and recovery mechanisms more efficient than the 
automatic mechanisms supplied by the "auto" attributes. Automatic recovery involves check-
pointing of the entire object state; automatic synchronization is based on a simple read-write 
model of operation interactions on entire operations. As will be discussed in section 13, Aeolus 
provides facilities that allow the programmer to specify which parts of the object state are to be 
checkpointed (recoverable variables), to access information about the states of actions and to 
change these states (via operations on the action manager), and to control the recovery process 
by specification of what is to be done during action events (action event handlers); also, the 
programmer may specify finer-grained locking mechanisms for greater control of synchroniza-
tion (via the lock type; see section 6.2.3.8). 

If an object is to be generic, the programmer must specify the generic formal parameters 
in the object definition header. Such a parameter may be of any named type, or it may be an 
identifier which is to be used within the object implementation as a type identifier (specified by 
the keyword type in place of a type name in the formal parameter specification). As stated 
above, these parameters may be replaced by actual parameters (in the form of expressions or 
type names) when a variable of that object type is declared; the values of the actual parameters 
then determine the sizes, element types, etc. of that instance of the generic object (see section 
6.3). 

Following the object definition header, the programmer may specify the names of other 
object definitions which contain constant or type specifications to be used in this object 
definition. The names of these objects are specified in either a uses clause (if the object whose 
definition is being imported is a pseudo-object) or in an import clause (for other kinds of 
objects). Definitions imported in an object's definition part are also available in that object's 
implementation part. 

After any necessary imports are specified, the declarations of the object definition are 
given. These are called its visible declarations since the declarations are available publically to 
any object which imports the object definition. The visible declarations of an object may 
include specifications of constants, types, or operations, but not of variables. The specifications 
of the object's operations are listed following the keyword operations. Each specification con-
sists of the procedure's header (see section 11.1), optionally followed by one of the operation 
effect keywords examine or modify, which indicate that the operation reads from or writes to the 
object's state, respectively. This information is used by. the compiler to generate automatic read 
or write locking for each operation if the autosynch attribute is specified for the object. If no 
operation effect is specified, the compiler assumes that the operation neither reads nor modifies 
the object state, and thus no automatic locking is done for that operation. 

12.2. Object Implementation Parts 

The implementation part of an object provides the actual code for the operations of the 
object, as well as the definitions of any private constants, types, variables, or procedures needed 
by the object. The definition part of the object being implemented is implicitly imported by the 
implementation part; thus, the attributes, formal parameters, and public constant, type, and 
operation specifications provided by the definition part may not be repeated in the implementa-
tion part. Also, as mentioned in the previous section, any objects imported by the definition 
part are also available in the implementation part. The implementation part may import other 
objects as well via its own uses and import clauses. All constants, type definitions, and opera-
tions declared in the objects made available by any of these methods are visible in the imple-
mentation part; also, the names of these imported object types may be used as the types of 
variables declared in the implementation part. Such variables must be initialized by use of the 
operation new provided by object standard. 

21For more information on the mechanisms supplied by the Clouds system to support synchronization and 
recovery, see [Allc83bj. 
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<comp unit> 
<obj imp hdr> 

<event part> 
<override list> 

<override> 
<block> 
<decls> 
<decl> 
<decl> 
<decl> 

<obj imp tail> 

- <obj imp head> <block> <obj imp tail> 
- "implementation" "of" "object" <obj id> "is" 

"action" "events" <override list> 
<override> {"," <override> } 

- <id decl> "overrides" <id use> 
[<decls>] <stmt pt> 

- <decl> {<decl>} 
<const or var decl> 
<type decl> 
<proc decl> 
"implementation" "." 

Syntax of Object Implementation Parts 

• 

If none of the attribute keywords pseudo, nonrecoverable, nor recoverable are specified in 
the definition header of the object being implemented, the programmer may give an optional 
event part in the object's implementation part. Event part specifications are described in section 
13.2. 

The <block> of an object implementation part must include full declarations of all 
operations specified in the object's definition part. As with the full (second) declaration of a 
forward-declared procedure, the parameter list of an operation is not given in its full declara-
tion. Constants, types, or procedures declared in the <block> but not specified in the object's 
definition part are not visible to other compilands importing the object. Variables declared in 
the outer level of the <block> are global to the object, and are static ("own") variables; that 
is, the values of such variables survive between calls to the object's operations. The global 
variables of an object are called collectively the object's state. 

12.3. Object Operation Invocations 

An invocation of an object operation looks much like a procedure invocation, except that, 
outside the implementation part of the object itself, an operation name must be qualified by the 
name of a variable representing an instance of that object type (or, for pseudo-objects, by the 
name of the object type itself): 

	

<obj op call> 	<obj id> "@ " <obj op id> "(" <parm list> ")" 

	

<obj id> 	<id use> 

implementation of object bounded stack 
! ( size : unsigned, elem_type : type ) ! is 

! More to come. 

end implementation. ! bounded_stack ! 

Example of an Object Implementation 
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<obj id> 	<structured var> 

Invocations of pseudo-object and nonrecoverable object operations have semantics essentially 
like those of calls to procedures local to a compiland. The situation is different for operations 
declared in objects which use the Clouds object-management facilities, that is, all objects which 
are not pseudo-objects or nonrecoverable objects (the so-called "Clouds objects"). 25  Invoca-
tions of operations on Clouds objects are handled by the compiler through operations on the 
Clouds object manager on the machine on which the invoking code is running. The Clouds 
object on which the operation is being invoked need not be located on the same machine as the 
invoking code; the object manager then makes a remote procedure call (RPC) to the object 
manager on the machine on which the called object resides. The location—local or remote—of 
the object being operated upon, however, need not concern the programmer, as the RPC pro-
cess is transparent above the object-management level. (More to come on operation invocation 
se m an tics .) 

Examples (see previous two sections): 

sl : bounded_stack ( integer, 10 ) 
s2 : bounded_stack ( real, 5 ) 

if not s2 @ full O then 
sl @ push (42) 

elsif not s2 @ empty () then 
r := s2 	pop () + 3.14159 

end if 

13. Actions 

The action concept provides an abstraction of the idea of work in the Clouds system; an 
action represents a unit of work. Actions provide failure atomicity, that is, they display "all-or-
nothing" behavior: an action either runs to completion and commits its results, or, if some 
failure prevents completion, it aborts and its effects are cancelled as if the action had never exe-
cuted. The rationale for the action concept and the mechanisms supporting it in the Clouds 
system are described in [Allc8313]. 

Support for actions in the Aeolus language is relatively low-level. The methodology of 
programming with actions is not at present well-understood compared with experience in pro-
gramming with objects; thus, rather than providing high-level syntactical abstractions such as 
those available for object programming, Aeolus allows access to the full power of the Clouds 
system facilities for action management. The major syntactic support provided by Aeolus for 
action programming is in the programming of action events, recoverable variables, and action invo-
cations. 

13.1. Action Events 

At several points during the execution of an action, the action interacts with the action 
manager of the Clouds system to manage the states of objects touched by that action, including 
writing those states to permanent (stable or safe) storage, and recovering previous permanent 
states upon failure of an action. Thus, failure atomicity may be provided by the action manage- 

This is because the code for pseudo-objects and for nonrecoverable objects is actually linked into the code of 
the compiland using these objects, whereas the code for Clouds objects is physically separate from the code of the in-
voking compiland. This code is paged in on demand by the object manager (see lAlle83b1). 
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ment system. The action events include: 

event name 

BOA 
toplevel_precommit 

nested_precommit 
commit 

abort 

purpose 

beginning of action 
prepare for commit for a toplevel action 
prepare for commit for a nested action 
normal end of action (also called EOA) 
abnormal end of action 

The interactions with the Clouds action manager necessary when such events take place 
are done by default procedures supplied by the Aeolus compiler and runtime system; these pro-
cedures are called event handlers. When an action event occurs for a particular action, the 
action manager(s) involved invoke the event handlers for each object touched by that action. 

As was described in section 12.1, by specification of the keyword recoverable in the header 
of an object definition the programmer may take advantage of the recovery facilities of the 
Clouds system by having the compiler generate the necessary code automatically. This 
automatic recovery mechanism requires checkpoints of the entire state of the object, and uses 
the default action event handlers. However, it is sometimes possible for the programmer to 
improve the performance of object recovery by providing one or more object-specific event 
handlers which make use of the programmer's knowledge of the object's semantics; these 
programmer-supplied event handlers then replace the respective default event handlers for that 
object. Thus, if none of the attribute keywords pseudo, nonrecoverable, or recoverable are 
specified in the definition header of the object being implemented, the programmer may give an 
optional event part in the object's implementation part. Following the keywords action events, 
the programmer lists the name of each action event handler provided by the object implementa-
tion as well as the name of the action event whose default handler the specified handler is to 
override: 

	

<event part> 
	

"action" "events" <override list> 

	

<override list> 
	

<override> {"," <override > } 

	

<override> 
	

<id decl> "overrides" <id use> 

Thus, for example, the specification (say, in an object called "stack"): 

action events 
stack_BOA overrides BOA, stack_precommit overrides precommit 

indicates that the default handlers for the BOA and precommit action events are to be replaced 
by the procedures named "stack_BOA" and "stack_precommit," respectively, for the "stack" 
object only. 

13.2. Recoverable Variables 

As mentioned in section 8, if an object being implemented is not a pseudo-object, nonre-
coverable object, or (automatically) recoverable object, then some of its variables may be 
declared to have the recoverable attribute: 

<new type> — ■ "recoverable" <type> ("," <override>} 

	

<override> 	— 	<id decl> "overrides" <id use> 

The state of a recoverable variable which has been touched by an action is maintained on a ver- 
sion stack by a Clouds action manager, and is saved to permanent storage upon commit of the 
action which touched it. If an action which touched a recoverable variable is aborted, the ver- 
sion of that variable which existed before the action touched it is restored. 2°  Thus, the use of 
recoverable variables allows the programmer to provide finer granularity in the specification of 
that part of the object state which must be checkpointed, since the use of automatic recovery 
on object (the recoverable object attribute) performs checkpoints on the entire state of the 

2°For more information on the semantics of recoverable variables and the mechanisms to support them, see 

1Allc83b1. 
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object. 
The interaction with the action manager necessary to manage the states of recoverable 

variables is implemented by the action event handlers as described above. Again, the default 
event handlers may be overridden by programmer-supplied event handlers for the entire object 
to achieve better performance. However, to achieve better performance in the management of 
recovery for specific recoverable variables, the programmer may specify one or more alternate 
event handlers on a variable-by-variable basis which take advantage of semantic knowledge 
about the variable in question. Thus, the declaration of a recoverable variable may specify the 
name of an operation which overrides the default handler for an event. Override specifications 
for recoverable variables may coexist with override specifications for the entire object. 

Example: 
r : recoverable integer, r_precommit overrides nested_precommit 

In the declaration of "r" above, the default handler for the neated_precommit action event is 
overridden (replaced) by the procedure "r_precommit" for management of the recovery of 
variable "r." 

13.3. Action Invocations 

As mentioned in section 10.1.1, the right-hand side of an assignment statement may also 
take the form of an action invocation: 

	

<rhs> 
	

["toplevell "action" "(" <action invocation> ")" 

	

<action invocation> 	

- 	

<proc call> 

	

<action invocation> 	<obj op call> 

	

<action invocation> 	

- 	

<assign stmt> 

Here, the right-hand side (which consists of an operation invocation which, if the operation is 
value-returning, is embedded in another assignment statement) is invoked as an action; the 
action ID of this action is assigned to the variable designated by the left-hand side of the action 
invocation. The action ID may then be used as a parameter in operations on the action 
manager which provide information about the status of the action, cause a process to wait on 
the completion of an action, or explicitly cause an action to commit or abort. (The interface to 
the Clouds action manager is described in Appendix E.) If the keyword toplevel is specified, the 
action is created as a "top-level" action; that is, as an action with no ancestors. 27  Otherwise, the 
action is created as a "nested" action, that is, as a child (in the so-called action tree) of the 
action which created it; as described below, a nested action may be affected by an abort of one 
of its ancestors. 

The semantics of an action invocation is as follows: the action manager operation 
CreateAction is invoked with the name of the operation to be performed as well as the list of 
arguments to be passed to that operation. 28  The action manager then invokes the BOA event 
handler on the object to which the operation belongs. Next, the action manager creates and 
dispatches a process in which the operation code runs. An attempt by the operation to return 
to its caller is considered an implicit attempt to commit the action, and will cause control to 
transfer to the Commit operation of the action manager, which terminates the process and 
invokes the precommit event handler of each object touched by the action. (An explicit invo-
cation of the Commit operation has the same effect.) If precommit of the object is successful, 
the action manager then invokes the commit event handler of each touched object. If the 
action (or one of its ancestors) invokes the Abort operation of the action manager, the action 
manager terminates the process corresponding to the action and invokes the abort event 

27Thus, as we shall see, a. top-level action cannot be affected by an abort of any ancestor of the action which 
created it. 

28The exact details of the manner in which this information is provided depends on whether the operation is a lo-
cal procedure or a publicly-visible operation of the object to which it belongs. 
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handler of each object touched by that action. 

It may sometimes occur that an object operation may be called either as an action invoca-
tion or as an ordinary object operation invocation. In the case that an operation is invoked nor-
mally (that is, not as the target of an action invocation), an invocation of the action manager 
operation Commit by the operation will cause the action manager to merely return control to the 
point of invocation of the original operation; thus, in this case the Commit call is effectively a 
normal procedure return. On the other hand, an invocation of the Abort operation by an opera-
tion invoked normally will cause the parent action of the invoker of the original operation to 

abort. 29  Thus, in the case of normally-invoked operations, a call to the Abort action manager 
operation provides a mechanism similar to an exception-handling mechanism with a single 
exceptional condition ( "error"). 

14. Processes 

The final structuring feature of the Aeolus language provides an abstraction of the process 
concept of the Clouds system. (The process is analogous to the program construct of Pascal or 
Modula-2.) The invocation of a process provides activity in the Clouds system; processes may 
be considered the "glue" which binds object operations, and possibly actions, to do useful 
work. 

A process is introduced by a header which gives the name of the process, as well as 
clauses detailing any imports of object definitions necessary (see section 12.1): 

	

<comp unit> 
	

<prog head> <block> <prog tail> 

	

<prog head> 
	

<prog hdr> <uses option> <imports> 

	

<prog hdr> 
	

"process" <prog id> "is" 

	

<prog tail> 
	

"process" "." 

Following any import clauses, the body ( <block>) of the process is specified; the <block> 
has the same form as that of an object implementation part (section 12.2). 

29Note that all processes in the Clouds system are descendants of the top-level "universal action," which cannot 

be aborted. 
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process test_bounded_stack is 

import bounded stack 

bsl, bs2 : bounded stack ( 10, integer ) 

i : integer := 0 

begin 
new (bs1) new (bs2) 
loop 

if bs1 @ full () then 
exit . 

end if 
bsl @ push (i) 
if (i %3 = 0) and not (bs2 @ full 0 or bsl @ empty ()) then 

bs2 @ push (bs1 @ pop 0) 
end if 
i + = 1 

end loop 
end process. ! test_bounded_stack ! 

Example of a Process (see section 12.1) 
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1. Project Status 

During the fourth quarter of this project, work has continued on each of the two 

tasks called for by the statement of work. These efforts are closely related to other 

work in progress within the Clouds Project, our major research effort in the area of 

reliable distributed computing. Under the Distributed File Systems task, work has 

proceeded on the integration of our storage management system with the Clouds ker-

nel virtual memory management system. Additionally, implementation work has been 

done on several device drivers necessary to test the kernel and storage management 

system. 

Under the Language Support for Robust Distributed Programs task, we have 

been refining the definition of our language, Aeolus, and proceeding with the imple-

mentation of the compiler. We have also been actively working with members of the 

Clouds kernel group on the definition of the interface between the Aeolus run-time 

system and the Clouds action and object managers. 

The work on the tasks of this project has proceeded on schedule. These efforts, 

in combination with other work in progress within the Clouds project, have kept us on 

target toward our goal of having a working prototype system by the end of 1985. 

2. Storage Management - Progress Report 

The development of the Clouds storage manager involves the implementation of 

three components. These are the device object, the partition object, and the segment 

object. These objects are each abstractions of the disk storage available on a Clouds 

machine. The device object manipulates device storage as a collection of uninterpret-

ted blocks of data, which it will transfer in and out of virtual memory. The partition 

object provides a mechanism for division of device storage for adminstrative purposes 

and also is involved in the location of data and the allocation of device storage. The 

segment object treats device storage as a collection of bytes rn fact, the segment 

object is just an alternate view of any Clouds object. We consider the device object 

the lowest level of abstraction and the segment object represents the highest level. In 

the paragraphs that follow, we describe the current state of the storage manager. 



At the device object level, we are developing two disk objects. Clouds disk 

objects include not only the conventional device driver functions, but also provide 

necessary support for the recovery mechanisms of the storage manager. Specifically, 

the Clouds disk objects provide a mechanism, flush routine, which insures that requests 

scheduled by an action are actually completed before the action commits. This 

mechanism differs from conventional disk management schemes, where a request may 

remain enqueued after the process that issued it terminates. The flush routine relies 

on the flush table, a per device structure. The table contains an entry for each action; 

the entry contains a list of requests made by the action and a record of the number of 

requests pending and completed. The development of a RLO2 disk object has been 

straightforward and we now have a working version integrated with the Clouds kernel. 

Minor changes in the way the object formats the medium are anticipated. Addition-

ally, the object must be modified to lock physical pages for I/O transfers, because of 

the Clouds kernel's use of the virtual memory system as the basic I/O mechanism. 

The RLO2 will allow us to go ahead with the devlopment of kernel and partcularly with 

the testing of the storage manager. The RL02 will not be the primary disk for the 

Clouds system, as it holds only 10 Mb on each cartridge. The primary disk for the ini-

tial Clouds implementation will be the RA81, a disk object for which is under develop-

ment in parallel with the development of the RL02 object. Because the RA81 is a 

"smart" device, progress has been slower and the integration of the facilities required 

by the Clouds storage manager is more complex. Testing is currently under way on 

this device. We have kept the device object interface for the two devices unform and 

also have attempted to reduce any side-effects so that upon completion of the RA81 

object, this object can be use in the place of or along with the RL02. 

The next level of abstraction for the storage manager is the partition level. 

Implementation at this level is just being completed. A partition provides all the struc-

tures required to support the creation and management of Clouds objects. Specifically, 

the partitions provide support for the location of objects and the allocation of disk 

storage for objects. The Clouds kernel provides for the location-independent invoca-

tion of object operations, which requires the kernel to search for the objects t each 

operation invocation. Object searches are network-wide and several techniques are 

being developed to short-circuit these searches. One concern is the necessity of going 

to disk in order to determine if the object is on a partition. Each partition maintains a 

structure called a maybe table which is intended to reduce the number of unnecessary 
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disk accesses during object search (an unnecessary access is one which shows the 

object is not on the partition in question). The maybe table is a small in-memory 

representation of the partition membership. Our maybe table is an example of a 

Bloom filter [Bloom70]. The table is a compressed hash table, in which several seg-

ment names may hash to the same entry. In trade-off for the reduced size of the 

table, only a negative response to a query is guaranteed to be correct. Responses indi-

cating the object is on the partition may in fact be wrong and may require the partition 

object to access the directory on disk. We are really trading accuracy of the responses 

for speed since in most cases the query can be answered without an unnecessary 

access to disk. 

The segment system forms the highest abstraction provided by the storage 

manager. Disk storage at this level is managed as a collection of arbitrarily sized seg-

ments, which generally represent some Clouds object. Segments provide a uniform 

interface through which the Clouds kernel can manipulate objects. In addition, the 

segment system provides a set of protocols which insures the consistency of the per-

manent object data when manipulated by some action. Implementation of the seg-

ment system is currently in progress. Recovery is provided using a pessimistic sha-

dowing scheme, in which modifications are stored in a temporary version of the seg-

ment until the action making the modifications commits, making the temporary ver-

sion the new permanent segment. The segment system, along with the action 

management and object management systems are involved in the management of vir-

tual memory with respect to the mapping of objects. We are finalizing the extent of 

each system's responsibilities and influence in the virtual memory and the cooperation 

needed between the systems. The storage manager shares with the object manager the 

responsibility for mapping the on-disk version of the segment to the virtual memory 

version. Each segment has one or more windows which represent chunks of the seg-

ments which are actually mapped info virtual memory. This allows the mapping of 

portions of large objects into virtual memory, avoiding the cost of mapping the entire 

object. The storage manager also makes use of the virtual memory system to assist 

the action management system in the committing of actions. The segment system 

uses virtual memory structures to determine which segment pages have been modified 

and then, based on its own information as to the structure of the segment, decides 

which segment pages must be shadowed to provide the necessary recovery. 

3 



A technical report [Pitts85] which summarized all of the work which has been 

done on the storage manager is attached as Appendix A. 

[Bloom70] Bloom, B.H., "Space/Time Trade-offs in Hash Coding with Allowable 

Errors," Communications of the ACM, No. 13, Vol. 7 (July 1970), pp.422- 

426. 

[Pitts85] Pitts, D.V. and E.H. Spafford, "Notes on a Storage Manager for the Clouds 

Kernel" Technical Report GIT-ICS-85/02, School of Information and Com-

puter Science, Georgia Institute of Technology, October 1985. 

3. Aeolus - Progress Report 

As part of the Clouds project, we are designing and implementing a high-level 

systems programming language called. Aeolus (after the king of the winds in Greek 

mythology) in which those levels of the Clouds system above the kernel level will be 

implemented. Aeolus provides access to the synchronization and recovery features of 

Clouds. It also provides a framework within which to study programming methodolo-

gies suitable for action-object systems such as Clouds. 

The work of the Aeolus group during the past quarter has been concentrated on 

the completion and rationalization of the language design and—in conjunction with 

members of the kernel group on the definition of the interface of the Aeolus run-

time system with the Clouds action and object managers. The design of the language 

has undergone a major reworking, especially those parts of the design concerned with 

specification of types. In view of one of the Aeolus design goals of providing the 

power necessary for systems programming without sacrificing the advantages of strong 

type checking, we wished to provide dynamic (flexible) data types; however, we felt 

that our previous design for this violated the goals of simplicity and readability. Our 

reworked design integrates flexible types into the language in a much cleaner manner, 

within the framework of general parameterized types. The changes to the design have 

been incorporated into the language description [Wilk85b], which is now essentially 

complete; the interfaces with the Clouds system object and action managers remain to 

be specified in the language description. The new language definition is attached to 
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this report as Appendix B. 

Work on the implementation of a compiler for Aeolus has recently resumed fol-

lowing the absence over the past quarter of the team member responsible for imple-

mentation of the symbol table and code generation routines. The design changes have 

now been incorporated into the symbol table, and new semantic routines necessitated 

by the changes are being implemented. We have also taken advantage of the redesign 

to streamline parts of the semantic routine structure, taking into account our previous 

implementation experience. Work on the implementation is accelerating now that 

these changes are understood. 

The design of the interfaces of the runtime system with the Clouds action and 

object managers is essentially complete. Members of the Aeolus group have been 

assisting members of the kernel group over the past quarter in the design of these 

interfaces as well as in strategies for efficient action management. Of particular impor-

tance were our designs for support of recoverable areas in Clouds objects; these con-

structs enable the Aeolus language (in conjunction with the action management sys-

tem) to provide view atomicity in addition to the failure atomicity provided by the ker-

nel. Each action which touches an object which has a recoverable area gets its own 

copy (or version) of that recoverable area on which it may make its changes; when a 

nested action commits, it propagates its version of the recoverable area to its parent. 

View atomicity ensures that each action in the action tree which accesses an object 

sees the correct version of the data in that recoverable area. We have developed a 

technique for implementing recoverable areas using partial replacement of the object 

page table entries which provides view atomicity without causing a time penalty for 

access to the data in the recoverable area. Rather, a small penalty is paid upon process 

exchange if a process is associated with an action. The action and object managers 

exist now in pseudo-code; the interfaces with these kernel routines will shortly be 

codified as appendices to [Wilk85b]. 

We intend to use Aeolus as a framework within which to study programming 

methodologies for action-object systems. Our initial studies in programming metho-

dologies for resilience and availability are described in [Wilk85a]; there, a plan is 

presented for determining such methodologies appropriate to the design of objects 

needed in the Clouds system. The issues with which we are concerned include the use 

of semantic knowledge of objects in the programming of replication; trade-offs 
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between consistency and availability; the appropriateness of current programming 

models for replicated data; and the support needed from the operating system and 

language runtime system to ensure availability and forward progress of processes. 

Now that the language design is complete and our implementation effort is well under-

way, we plan to devote proportionally more effort to these studies in the immediate 

future. 

[Wilk85a] Wilkes, C. T., "Programming Methodologies for Resilience and Availabil-

ity," Ph.D. Thesis Proposal, School of Information and Computer Science, 

Georgia Institute of Technology, January 1985. 

[Wilk85b] Wilkes, C. T., "Preliminary Aeolus Reference Manual," Technical Report 

GIT-ICS-85/07, School of Information and Computer Science, Georgia 

Institute of Technology, July 1985. 
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Abstract: The Clouds project is research directed towards producing a reliable distributed 
computing system. The initial goal of the project is to produce a kernel which provides a reliable 
environment with which a distributed operating system can be built. The Clouds kernel consists 
of a set of replicated sub-kernels, each of which runs on a machine in the Clouds system. Each 
sub-kernel is responsible for the management of resources on its machine; the sub-kernel 
components communicate to provide the cooperation necessary to meld the various machines 
into one kernel. 

This report documents a portion of that research, namely, the implementation of a kernel-level 
storage manager that supports reliability. The storage manager is a part of each sub -kernel and 
maintains the secondary storage residing at each machine in our distributed system. In addition 
to providing the usual data transfer services, the storage manager ensures that data being stored 
survives machine and system crashes, and that the secondary storage of a failed machine is 
recovered (made consistent) automatically when the machine is restarted. Since the storage 
manager is a part of the Clouds kernel, efficiency of operation is also a concern. We wish to 
reduce the overhead required to ensure the recoverability of secondary storage as much as 
possible, while adhering to the design goals associated with the storage manager. 
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1. Background 

In this section we present an overview of the Clouds kernel and discuss the philosophy behind 
its development. The Clouds approach to providing reliability is through the use of actions and 
objects, as discussed in [ 1 ], [2], [ 3 ], [4]. The Clouds kernel provides higher level applications such 
as operating systems with three primitives: processes, actions, and objects. An object is a 
typed collection of data which is manipulated by a set of operations. The data structures and the 
set of operations for the object define its type. An action is the unit of (fault tolerant) work in 
the Clouds system. Actions guarantee failure atomicity of the operations performed by them: 
the operation appears to either occur totally or not at all. Processes in Clouds are similar to 
processes found in other systems, and represent a thread of execution and control. Actions and 
objects are passive, waiting for a process to activate them. The model of computation for the 
Clouds system is that of a set of processes making operation calls on objects to perform services 
required by the system. In order to make these services reliable, the object operation calls are 
performed under the auspices of an action. 

Figure 1. Architecture of the Clouds kernel 

Clouds actions provide a mechanism that allows the programmer to violate the conventional 
notions of correctness and consistency, as defmed by strict serializability, when programming 
reliable objects. The programmer can use any semantic knowledge about the intended 
activation of an object to program a customized method for providing the recovery of the object. 
This is done by the programmer writing new abort and commit operations for the object, which 
indicate how the object data must be recovered. By allowing object recovery to be customized 
in this way, we hope to provide increased concurrency in the execution of services compared to 
using the usual recovery and synchronization rules (i.e., serializability), and so improve the 
performance of the Clouds system. 

Technical Report GIT-ICS-85/02 
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The Clouds kernel has four major components: the object/action manager(s), the process 
manager, the communications manager, and the storage manager. Figure 1 depicts the 
architecture of the Clouds kernel for a system consisting of two nodes. The kernel is made up 
of two sub-kernels, one of which resides on each node that is part of the Clouds system. Each 
of the components of the kernel can communicate with its corresponding components on other 
nodes through the proper protocols. 

The object manager is responsible for providing the object operation invocation mechanism. 
Each object is named by a unique capability comprised of a system name (called a sysname) and 
a series of rights which indicate which object operations are available to the invoking process. 
The object manager checks the capability provided by the operation call, locates the desired 
object instance, formats and maps the operation parameters, and activates the object. The 
object manager is involved with handling action bookkeeping, as necessary. The object 
manager also hides references to objects on other machines by providing a remote procedure 
call mechanism (RPC). The object manager makes an RPC look exactly like a local operation 
call. 

The process manager creates, destroys, and dispatches processes. It manages local processes, as 
well as slave processes started to handle RPC's from other machines. The process manager is 
not a global scheduler; it simply manages local resources. 

The communications manager is responsible for the transmission of information among the 
machines in the Clouds , network. It maintains information about the connectivity of the 
network, the status of the various lines to which each machine is connected, and queues of 
outgoing and incoming data. The data that goes through the communications manager is 
uninterpreted — it might be an RPC or a part of a file that is being transmitted across the 
network. More detailed descriptions of the object, process, and communications managers can 
be found in [ 5] and [ 6]. 

The function of the storage manager was described above. It coordinates with the object 
manager to provide the correct commits and aborts of actions on object data residing on 
secondary storage. In the remainder of this report, storage will refer to the secondary storage 
(disk, tape, etc.) attached to a machine. Memory will refer to the main memory of the 
machine. 
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2. Hardware and Environment 

The Clouds kernel is currently under implementation on three VAX 11/750's.' The machines 
have eight megabytes of main memory altogether and are interconnected via a 10 Mb/sec 
Ethernet. Also connected to the Ethernet are a set of IBM-PC's, which will serve as intelligent 
work stations. Future versions of the system may be connected by multiple networks of varying 
bandwidth. 

Figure 2. Clouds hardware configuration 
Our prototype will have three types of storage devices available for the kernel. There may be a 
tape drive on one machine that will be used to archive data and perform conventional system 
backups. Each machine will have a R.L02 removable pack disk drive, in which each pack 
provides 10 Mb of storage. We expect that RLO2 media will be used as short term archive 
devices and boot devices. Finally, each system will also have up to four RA81 disk drives. 
Each such drive has a permanently mounted pack providing 456 megabytes of storage 
(unformatted). The RA81 drives are dual-ported; two controllers may be coupled to the drive 
simultaneo, T;L:v However, the drive is on-line to only one of the controllers at any time. The 
switching of the device between controllers is done primarily by a front panel switch, but 
switching can be done under program control. The disks are controlled by UDA50 controllers 

1. VAX is a trademark of the Digital Equipment Corporation 
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which use DEC's Mass Storage Control Protocol (MSCP). These devices are expected to 
provide the primary object storage for the Clouds system. Figure 2 shows the Clouds prototype 
system. 
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3. The Design Approach 

The Clouds kernel provides user-defined objects 2  as the building blocks (along with atomic 
actions) of a reliable distributed system. The arguments for using an object-oriented approach 
in general, and as used in the Clouds project in particular, are presented elsewhere [ 7] and [ 3 ] 
and we will not repeat those rationales here. We feel that the kernel, in addition to supporting 
objects for higher levels of software, should also reflect the use of an object-oriented 
methodology in its design and implementation. To this end we have identified basic 
components of the kernel and isolated them as modules that are accessible only through a set of 
procedures defined for each module. These objects are then used to form the major systems of 
the kernel: the object manager, the process manager, the communications manager, and the 
storage manager. 

We attempt to present kernel objects as typical Clouds objects that provide (restricted) access to 
functions and services provided by the kernel. However, there are differences between the 
objects that form the kernel and those that are supported by the kernel. The first such 
difference is in the implementation. User-defined objects will be created by users with an 
object-oriented language, such as Aeolus [ 8], [9]. This language enforces the use of an object-
oriented methodology. Our kernel objects are currently implemented as C modules and most 
of the responsibility for adhering to the philosophy of object-oriented design is the responsibility 
of the programmer, not the programming language. Still, we believe the careful use of this 
object methodology despite the lack of support in the language provides benefits in the 
implementation and later maintenance of the kernel. It also may make the later conversion of 
the kernel to some other object-oriented language, such as Aeolus, more convenient. 

The other difference reflects our concern for the efficiency of kernel functions and the operation 
invocation mechanism for objects. Many of the functions of the kernel are time-critical, or 
because of their frequent use require very efficient implementations. The operation invocation 
mechanism has overhead that we suspect cannot be afforded in these situations. Therefore, 
operation calls on kernel objects are handled differently than operation calls on user-defined 
objects. Calls on kernel operations may be performed as ordinary procedure calls or even as 
simple transfers to blocks of code. However, the appearance outside the kernel and the overall 
philosophy is that of an object-oriented kernel. 

Some kernel objects are not generally available outside the kernel. For example, this is the case 
with the objects comprising the storage manager. Operating system code may occasionally 
require direct access to secondary storage, but it is hoped that for the most part the abstractions 
provided by objects will suffice. 

The storage manager is based on three sets of objects: device objects, partition objects, and 
segment objects. Each of these objects manages the same actual item (secondary storage), but 
provides different abstractions. The device objects provide conventional device-level access to 
secondary storage. Partition objects allow devices to be sectioned logically according to the 
intended use of the storage on a device. Segment objects are the secondary storage extensions 
of the segment type provided by the kernel. R ecoverable permanent objects are implemented at 
the level of segment objects. 

The remainder of this report outlines a design for a storage manager for the Clouds kernel. It 
covers the important aspects of the structure and fun^#ion of the storage manager, and discusses 
how the storage manager is used by and uses °the•, pats of the kernel. The next three sections 
deal with the design and implementation of the device object, the partition object and the 
segment object. Those sections specify the data structures required plus the interface to the 

2 .. Also referred to as client objects. 
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objects. Section 7 then covers how these objects are used by the kernel. In that section we 
discuss some of the issues related to the reliability of the storage manager and its relationship to 
the rest of the kernel. Section 8 contains a summary of this report, and a few conclusions and 
reflections on the storage manager. 
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4. Device Objects 

As with conventional systems, the storage manager for the Clouds kernel provides a device 
level interface to secondary storage. This level of interaction with secondary storage is almost 
exclusively the province of the Clouds kernel. In fact, even within the kernel, most accesses to 
secondary storage are performed at some other (higher) level; only the storage manager makes 
frequent use of device objects. 

4.1 Device Media 
The storage manager views devices as two parts: the device itself and. the medium currently 
being used by the device. This viewpoint is moot for fixed media disks, but for other forms of 
secondary storage, such as tape and removable disk storage, it provides additional flexibility in 
the configuration of a system. This separation is complete; a sysname exists not only for each 
device in use on a system, but also for each medium. However, in many cases the distinction 
between accessing specific media and accessing devices is not important, so we wish to hide this 
separation. Therefore, the storage manager provides a mechanism for binding a medium to a 
device. 

Bindings between media and devices are generally performed at the initialization of the system 
and involve the association of device and medium. Binding a medium to a device may also 
involve the formatting of the medium. In this latter case, a new sysname is generated for the 
medium. This formatting or initialization of a medium will destroy any previous information 
that existed on the medium. The old sysname will no longer give access to any medium. The 
formatting of a blank or obsolete medium includes initializing the tables and structures that the 
storage manager requires. These structures are discussed in section 2.1. 

In other cases, an existing medium is bound to a device. An existing medium is one which has a 
sysname and is formatted. The binding will involve the reading of the sysname from the 
medium and comparing it with the sysname passed to the storage manager. The binding will 
take place only if a match occurs. We are not attempting to address security issues with this 
design. Our interest is to provide flexibility, while maintaining some control over what is 
accessible. The use of sysnames to access media provides this control. 

Once a medium has been bound to a device, any reference to the device refers to the bound 
medium. The usual sort of device calls then need only refer to the device. This device-medium 
binding stays in effect until it is explicitly broken by the storage manager. 

In addition to setting up this correspondence between device and medium, this binding also 
initializes an instance of a storage object in memory. In particular, critical tables and other 
structures required by the device are brought into system memory. We will now look at the 
data requirements of device objects. 

4.2 Device Object Structures 

The storage on a medium is presented as a sequence of 512-byte blocks that are addressed by 
offsets from some fixed block. The offset used to address a block is called a device block 
number (DBN). As we shall see in section 5, this storage can be subdivided into partitions, 
allowing the storage on a device to be apportioned for policy reasons. At the device level, 
though, the storage manager deals only with a contiguous string of blocks; partition boundaries 
are not visible. 

The device object is responsible for the transfer of data between secondary storage and 
memory. The device requires two tables in order to function. The first such structure is the 
media header. This table contains basic information about the medium and the device using it. 
This information includes the medium and device sysnames, the amount of available storage on 
the medium, and specifications for the device to which the medium is bound. 
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The other major structure is the index table. The index table describes the partitions that exist 
on this device. This will include information such as the location, extent, and type. The 
partition table is 16 entries long. Partitions are discussed in section 5. 

The medium header and index table must be resistant to failures — in particular, device failures 
such as head crashes. If the index table is destroyed by a head crash, for instance, we lose 
access to the partitions on that medium. We therefore provide copies of the tables, placing the 
copies on different cylinders in order to minimize the risk from multi-sector failures. The 
alternate copies will be located in known positions based on some computable function. We do 
not anticipate problems as far as maintaining the consistency of the slave-and master versions of 
the table is concerned, since the tables are infrequently modified and any such modifications are 
generally done during the system initialization. 

In addition, the device objects will maintain a structure in memory called a flush table. The use 
of this table is discussed in section 7, but briefly, the flush table allows a device to associate an 
action sysname with a set of requests. This supports the commit operation performed on 
recoverable objects. Some devices may require the device object to provide bad sector 
recovery. Objects written for these devices will have to maintain a bad sector table on disk. 

system 
device 
table 

device sysname  
po i nter 

medium 
sysname 
nnuffpr 

count fields 
# reads, writes 

errors , nterrupts 

status flags  a vsataat 
l 	dsive i 

device registers 
.z .ifer 

!nit routine 	— 

mount routine -- 

unmount routine - 

read routine 

write routine 

flush routine 

interrupt routine 

Figure 3. The system device table and other device object structures 

The device object uses one other structure, the system device table. The system device table is 
not a part of the device object proper„ but is actually the mechanism for managing the various 
instances of the device objects. This table lists all secondary storage devices that are active on 
the local machine. The device table entries contain pointers , to device and medium sysnames, 
status variables for the device, device registers, and entry points into the operations for the 

Techniml Report GIT-ICS-85/02 



- 10- 

device object. Figure 3 shows a device object pointed to by one entry from the system device 
table. 

4.3 Device Object Calls 

The device object calls deal with the transfer of information to and from the device and with the 
relationship of the device to its medium. This allows for devices switching the physical medium 
used for storage in a uniform way. Device and media sysnames are generally needed by those 
ells  setting up a binding between the medium and the device. Calls which perform i/o do not 
require a sysname. The proper device object calls are found through the system device tables. 

4.3.1 init(devncone) return mednatne 
Init generates a sysname for the medium currently on the device specified by devname. This 
sysname is written in the medium header. Also written into the medium header is the device 
specific information that is required. An area for the medium index table is reserved. The 
return value is the medium. This is a format call; any existing structure on the medium is 
overwritten. No other formatting is done, however. Any partitions desired are created later by 
other calls. Redundant copies of the medium header and index table are created for reliability. 

After the medium has been formatted, 'nit mounts the device. See the description of mount for 
details. 

4.3.2 mount(devname, medname) returns' integer 
This call binds the device called devname to the medium called medname. The sysname 
presented to the call is compared to that in the medium header. If the two match, the device 
and medium are bound. The medium index table and the medium map table are read from the 
disk. If the device requires it, a bad sector table is created from the device. The return value 
specifies the status of the call (success, failure). 

4.3.3 return_meditan cap(devname) returns medname 
This call returns the sysname of the medium that is bound to the device named devname. The 
return value is this sysname. If the device is unbound, a valid sysname might still be returned if 
a formatted medium is present in the device. In this case, the call can be seen as an operation 
to read a label. 3  This allows us to use media for which all currently existing copies of the 
sysname are deleted or unavailable. 

4.3.4 unmount(devname) returns integer 
Unmount breaks a device/medium binding. All partitions on the medium are de-activated. The 
return value is the status of the call. 

4.3 .5 read(Ibn, address) returns integer 
This call transfers the contents of a record located at disk address lbn to the page in memory at 
address. Read blocks the calling process on a semaphore until the request is complete and 
returns an integer indicating success or failure of the request. 

4.3.6 write(id, Ibn, address, flag) returns integer 
This call transfers the contents of a page in memory at location address to the record located at 
address lbn on the device in question. Id is an identification used to associate this request with 
a set of requests being issued by an action. If Id is an action sysname, then the device object 
looks the action id up in a flush table and if it is not there, creates an entry for the action and 
the request; if the action id is in the table, the request is added to that entry. If id is zero, then 
there is no action associated with this request. Flag is used to indicate whether this is a forced 

3. This kind of operation might seem to present a security hole in the system, in that it allows the system to determine 
the name of an unknown medium and then mount it. However, note that this call can only be executed by kernel 
code or by a user call with special kernel capabilities, and these are assumed to be trustworthy. 
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write. If flag is non-zero, the device interrupts the normal scheduling of requests by placing this 
request at the head of the queue. The new request is performed immediately after the current 
request is completed. A forced write blocks the calling process on a semaphore until the request 
is complete. Non-forced writes do not normally block the caller. 

4.3.7 flush(id) returns integer 
Flush uses the flush table maintained by the device object to ensure that all write operations 
associated with the action identified by id are actually completed. The return value indicates the 
status of the call. A positive return value (the number of requests completed) indicates a 
successful flush. A zero or negative return value indicates that the action's sysname was not 
found in the flush table or that some error occurred while attempting to flush the specified 
requests. 

4.3.8 enter( partnarne, size) returns lbn 
Enter registers a partition on the device. This involves making an entry for the partition in the 
index table for the device, placing the partition sysname, partname, and the partition size, size, 
in the entry, and allocating storage on the medium for the partition. The starting logical block 
number for the partition is placed in the index table and is returned as the value of the call. A 
negative return value indicates that an exceptional condition occurred, such as not enough 
storage for the partition on the device. Enter is called as part of creation of a partition. 

4.3.9 remove( partntone) returns integer 
This operation allows the caller to remove a partition from the device. Partname is the sysname 
for the partition. The entry for the partition is removed from the index table on the device and 
the storage for the partition is deallocated. The return value indicates success or an exceptional 
condition, such as a non-existent partition. Remove is called as part of the removal of a 
partition from the device. 

4.3.10 partitions(partarray) returns integer 
Partitions places the partition entries in the device's index table into the array parameter 
partarray. The major use of partitions is expected to be at system initialization, where it 
passes partition's sysnames to the boot code so that the partitions may be activated. The return 
value is either the number of partitions written into the partarray (a non-negative value) or a 
negative value indicating an exceptional condition, such as a bad index table. 
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5. The Partition Object 

The partition object represents an intermediate level of abstraction of secondary storage. 
Partitions are consecutive blocks of secondary storage that reside completely on one device. 
Each partition is a logical object in that it manages the allocation of its own storage and 
maintains the structures used to do so. A Clouds partition does not enforce any logical 
organization of the data which resides on the partition, at least not in the sense of a Unix 4 

 partition. A Unix partition represents a separate file system and all the files on the partition 
have a hierarchical relationship. The objects residing in a Clouds .partition may bear no 
relationship to each other. It is simply an administrative organization imposed by the partition 
system indicating how storage in a particular partition is managed. 

The two important types of partitions are recoverable and non-recoverable. When a partition is 
made non-recoverable, it is a declaration that no recovery will be provided for object data 
stored on that partition and that recoverable objects should not be placed in it. There is no 
similar restriction for recoverable partitions; such partitions may contain a mix of recoverable 
and non-recoverable objects. Other partition types include those used for paging surfaces and 
those reserved for temporary items. 

Partitions manage storage as device independent blocks of storage and these are the smallest 
units of allocation that partitions support. The blocks are addressed by a partition block number 
(pbn) which is an offset from the beginning of the partition. All partitions are a multiple of this 
block size. 5  

The partition has as its initial block a header containing partition specifications. The header 
repeats most of the information found in the medium index table entry for this partition, plus 
information about the partition's state. This structure is generally accessed only when the 
partition is activated or some change is made to the partition; at other times the information is in 
memory and is referenced there. 

Another structure used by the partition object is the system partition table. Like the system 
device table, the SPT is not part of any one partition object instance, but is part of the 
underlying mechanism. The table contains entries for all partitions which reside on the local 
machine. Each entry in the table associates a partition sysname with the data structures and 
information for that partition. These structures and information include the starting block 
number for the partition, pointers to in-memory structures and buffers used by the partition 
object, and a pointer to the device object on which the partition resides. This last pointer is 
actually a pointer into the system device table. Figure 4 shows the complete relationship 
amongst these structures. 

Another function of the partition object is to maintain the location of segments and make 
available this information upon request. One of the features supported by the Clouds kernel is 
the location independence of objects (and thus segments). We mean by this that an object may 
reside on any partition on any node in the Clouds system and may be moved to any other 
partition on any other node. This implies that each access to an object requires that a 
(potentially) system-wide search be initiated. The sysnames given to objects give no (definite) 
information as to the location of the objects. As can be imagined, such searches can be time-
consuming. In particular, searches on the partitions at a node might require one or more disk 
access each. WA discuss one method of lessening the impact of these searches shortly. 

4. Unix is a trademark of AT&T Bell Laboratories 
5. The preliminary implementation will undoubtedly make this size equal to the size of a main memory page frame. 
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figure 4. The system partition table and other partition object structures 

5.1 Partition Data Structures 

Two of the major functions provided by a partition object are the location of objects and the 
management of storage. To provide these functions the partition object maintains two 
structures: the partition directory and the partition page map. The partition directory is a large 
hash table which is composed of page-sized buckets. In our current implementation the bucket 
size is 512 bytes, allowing each bucket to hold sixteen entries, each entry consisting of 
sysname-pbn pairs. The sysname is the id for a segment and the pbn is the offset of the 
segment within the partition. The entries to the directory are hashed to the proper bucket on 
the sysname and then to the proper entry in the bucket by a secondary hash function, also on the 
sysname. 

The page map is simply a bit map representing the storage allocation for the partition. This 
structure, along with the directory, (-J.:1.in most of the information that composes the partition 
state. As such, they are crucial to maintaining the reliability of the partition and the system as a 
whole, and some care must be taken in the modification and access of the partition directory and 
page map, as explained in section 7. Additionally, the storage manager must protect these 
structures from device failures. The basis for this protection is redundancy of the information. 
The partition directory and page map have duplicates at known locations in the partition. We 
are not overly concerned with the extra storage required; we calculate that even with duplicate 
structures we can keep the storage requirements for these two structures below one per cent of 
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the total storage. Combined with the protocols we follow for maintaining the reliability of 
segments and partitions, we should be able to minimize the access overhead caused by this 
redundancy. 

The partition directory and page map may be too large to completely reside in memory and, in 
fact, we will not have them mapped entirely into virtual memory. Instead, we will maintain 
buffer areas for the two structures, bringing in new pages from secondary storage as needed, 
and using a least-recently-used discipline for replacement. We suspect that locality for the page 
map will be fairly good so that allocations of storage can be done from the memory buffers. 
However, we suspect that accesses to the partition directory will typically take one access to 
secondary storage. If our hashing functions are chosen properly we may be able to handle 
directory requests in (at most) one secondary storage access. 

The partition object maintains another structure which it uses to avoid unnecessary secondary 
storage accesses altogether (or at least make such accesses rare). The structure in question is a 
Bloom filter ['° 1  which we have called the Maybe Table. The Maybe Table is a probabilistic 
membership checker. It will indicate either that the object in question definitely does not reside 
on the partition being checked, or indicate that it possibly does. Thus, the Maybe Table gives a 
method of short-circuiting secondary storage accesses in cases where it gives a negative 
response. However, a positive response may still lead to unnecessary accesses to secondary 
storage. The key to success is to reduce the ratio of non-resident positive responses to all 
positive responses to as small a value as possible.° 

As described in [ 101 , a probabilistic membership checker is a hash table where collisions are 
allowed. There are two techniques described in that paper that present methods that could be 
used with Clouds object sysnames. In the first technique, the Maybe Table consists of a table of 
transformed entries. The transformation is a hashing function which takes a 48 bit sysname and 
produces a shorter Maybe Table entry. Several sysnames may hash to the same entry value. 
This entry value is then placed in the Maybe Table by the use of another hashing function; this 
time collisions are handled in a conventional manner. To query the Maybe Table, the sysname 
is once more transformed with the first hashing function, and the proper entry located using the 
second. If the retrieved entry matches the transformed sysname, a positive response is 
returned. Otherwise, the collision handling mechanism is invoked and another entry is tested. 
If a positive response has not been returned upon termination of this procedure, a negative 
response is returned. 

A second scheme is to treat the Maybe Table as a bit-string and use t different hashing 
functions, each of which returns an index into the bit-string. Placing a new entry in the Maybe 
Table requires setting the bit whose index is returned by each hashing function. The test for 
membership requires that all bits whose indices are returned by the hashing functions be set; 
any clear bit causes the return of a negative response. Figure 5 illustrates the use of these two 
techniques. In the example, the Maybe Tables are 18 bits in length. In each case, sysnames are 
represented by three bits in the Maybe Tables. In the first case, sysnames are represented 
straight-forwardly by three bit entries; in the second case, three bits are set for every sysname 
belonging to the table. 

The benefit drawn from the use of a Bloom filter such as the Maybe Table is that it is a more 
compact representation of the universe in which membership is being tested. In the case of the 
Clouds kernel, this is the sysname population of a partki. n. This allows more of the table to be 
kept in virtual memory (perhaps all of it), and so queries on the Maybe Table can generally be 

6. This is an area that is open to further research. We believe that the goal is achievable by careful selection of the 
(possibly more than one) filters used, and their manner of implementation. We hope to do some measurement and 
research on this once the system is working. 
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Figure 5. Two implementations of a Bloom filter 

answered without going to secondary storage. If the response is negative, an unnecessary access 
to secondary storage is avoided, speeding the search for the proper segment. If the response 
from the query is positive, then an access to secondary storage is required, to either locate the 
segment or to ascertain that it is really not on this partition. 

Maintaining the Maybe Table has several costs that must be considered. One, of course, is the 
initial creation cost. The storage manager will perform this initialization at system start-up for 
each partition and thus the time spent can be ignored. Another cost arises from the dynamic 
nature of the Clouds system. Objects are created on a partition, deleted from the partition, and 
moved to other partitions. Clearly, these changes must be reflected in the Maybe Table else the 
performance will be degraded. Creation of objects and the movemer ce objects onto a 
partition pose no problem: the sysname can simply be incorporated into the table via the 
methods described above. However, deletions of objects and movement of objects from a 
partition are more troublesome. An entry or set of bits in the Maybe Table cannot be cleared to 
remove a sysname's presence from the Maybe Table because several sysnames may be 
represented by the same entry or set of bits. 

f 

Technical Report GIT-ICS-85/02 

-,57,71",71--.7• 71;.7  7 1,7..;PP;T7WjW57igiggif,AZt 



- 16 - 

The simplest solution is to simply reconstruct the Maybe Table at intervals during the lifetime of 
the system. This reconstruction may be done asynchronously as a background task. The 
question of when the Maybe Table should be rebuilt is not yet answered. It would seem best to 
base the interval between reconstructions on activity of the partition, particularly the rate of 
deletions. This could be be done indirectly by recording the performance of the Maybe Table 
and reconstructing the table when the performance falls below a given threshold. Or the 
monitoring could be more direct, measuring the number of deletions and movements of objects 
from the partition. Both of these methods have advantages and disadvantages. The indirect 
method for example, seems to be desirable since it measures the attribute that we want to 
optimize (avoiding disk accesses). However, a burst of queries for a sysname not resident on 
this partition but which happens to hash to the same entry or set of bits could cause a severe 
drop in performance even though the table as a whole is behaving reasonably well. 

We are currently incorporating a Maybe Table into the partition object as described in PI. We 
wish to get the maximum performance from the Maybe Table with the minimum impact on 
virtual memory. Therefore, we may consider other implementations for the Maybe Table, 
depending on the performance obtained. It may be, for example, that we are able to take 
advantage of the nature of the sysname population to improve the performance of the table. 

5.2 Calls on the Partition Object 

The storage management system uses the following calls to manipulate the partition data. Most 
of the calls require at least one sysname as an input parameter, usually a sysname for the 
partition (the exception being create_partition; see below). Occasionally, sysnames for 
segments and devices may also be required. 

5.2.1 P create(devname, size, partatt) returns partnarne 
P_create   reserves a sequence of records on a device to form the partition. Size is the size of the 
partition in bytes (this parameter is rounded by the call to the record size of the device) and 
devname is the sysname of the device on which the partition is to reside. A syoame for the 
new partition is generated and returned as the value of the call. The record location of the 
initial record of the new partition is stored, along with the size (in device records) and the 
partition sysname, in the media index table. The attributes of the partition, specified in the 
input parameter partatt are also stored in this new partition entry. P_create   makes use of the 
enter call on the device object to perform its task. In particular, P_create   must be able to 
request allocation of storage from the device. 

5.2.2 P_destray(devname, partname) returns integer 
This call takes the two sysnames given as input parameters and frees the chunk of storage used 
by the named partition. partname specifies the particular partition to be destroyed and devname 
specifies the device on which it resides. The integer return value indicates the status of the 
partition after the call (destroyed or not found on this device). The call removes the partition's 
entry in the media index table and releases the storage used by the partition. The device 
manipulations are performed with the device object call remove. P_destroy also makes calls on 
the device object to perform its task. 

5.2.3 P_enter(partname, segname, pbn) returns integer 
P_enter places an entry in the partition directory for a segment. Segname and partname 
identify the segment and partition, respectively. The entry in the directory includes the segment 
sysname and the partition block number, pbn. The call also modifies the Maybe Table. - 
return value indicates success or an exceptional condition. 

5.2.4 P_remove(partnarne, segname) returns integer 
This call removes the entry for a segment from the partition directory. Segname and partname 
identify the segment and partition, respectively. 
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5.2.5 P_return(partname, segname, segi(o) returns integer 
P_return returns the segment header indicated by segname which resides on the partition 
specified by the input parameter partname. The header includes the sysname for the segment, 
the size of the segment (in partition records), the record address of the segment header, and 
whether the segment is recoverable. The segment header is placed in the parameter seginfo, 
which is a pointer to a block of storage reserved for the information. If the segment is present, 
the return value of the call is positive; otherwise the return value is negative. The call finds the 
information by searching the partition sysname map and examining the segment header found. 
The Maybe Table is first queried in an attempt to avoid unnecessary secondary storage accesses. 

5.2.6 P_get_Dirst,neal(partname, number, segarray) returns integer 
These two calls are similar to P_return, in that they return the attributes of a segment found on 
the partition specified by the input parameter partname. The segment is unspecified, however. 
P_get_first places the first number of segment sysnames appearing in the partition directory in 
the parameter segarray. P_get_next can then be used to retrieve the attributes of the number 
subsequent segments. The two calls share a static variable which holds the index of the next 
segment about which information will be returned by P_get_next. The variable is reset to zero 
after the last entry in the partition directory is accessed and is initially set to zero. which is an 
array large enough to hold the requested number of sysnames. The return value is either zero, 
indicating no sysnames could be found, or the number of sysnames actually returned by the call. 

5.2.7 P_stvailable_space(partnanze) returns integer 
This call simply returns the number of free records on the partition indicated by partname. A 
negative value may be returned in exception conditions. The call does a bit count on the volatile 
record map. Because the volatile free map contains allocations and deallocations for 
uncommitted actions and because no synchronization is done on the record map, the value 
returned should be considered only an approximation of the "true" number of free records. 

5.2.8 P fread,write}(partname, part eget, address) returns integer 
P_read causes the transfer of the contents of a partition record, part offset from the partition 
specified by partname to the physical page in memory indicated by address. P write reverses 
the procedure, transferring the contents from the physical memory page to the partition record. 
The calls use their return values to signal exceptional conditions. The virtual memory system 
uses this call to handle page faults. 

5.2.9 P_getblk(partname) returns pbn 
P_getblk simply returns the partition block number of a free page on the partition. The volatile 
page map is updated to reflect the allocation. A negative value is returned if there is no 
partition storage remaining. 

5.2.10 P_returnblk(partname) returns integer 
This call deallocates the page at the partition block number passed through pbn. The volatile 
page map is updated. A negative value indicates a bad partition block number. 

5.2.11 &restore( partname, pbn) returns integer 
The P_restore operation is called on system startup to examine the partition. If necessary, the 
operation will perform any repairs to the partition structures required to bring it back into a 
consistent state. The call will also cleanup any unfinished action processing. This sort of repair 
is done on a partition-by-partition basis, since not all partitions have the same attributes and 
therefore will not require the same processing. In particular, cleanup of action processing is not 
necessary on partitions not supporting recovery and partitions being used as paging surfaces. 
P_restore must determine attributes of the partition by examining the partition header and then 
proceed accordingly. The details of P_yestore's operation are described in section 7, which is 
concerned with the reliability of the storage manager. P_restore also initializes structures used 
by the partition object, such as the Maybe Table. 
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6. The Segment Object 

The segment object provides the final level of abstraction for secondary storage. With these 
objects, we are operating on blocks of storage allocated by the partitions. The abstraction 
provided by the segment object is that of a sequence of bytes (kernel segment type). The 
implementation is actually a tree of fixed length blocks of storage, as we shall see. 

Segment objects provide a standard abstraction for the kernel to manipulate and process all 
Clouds objects. The object implementation provides mechanisms for mapping segment data in 
and out of virtual memory, creating and destroying segments, and modifying segments. The 
necessary algorithms for maintaining the reliability of the segment data exist at this level. 

The segment object is unconcerned with the internal organization of the objects it is managing. 
The storage management system treats segments as uninterpreted bytes. Any interpretation is 
performed by other parts of the kernel, such as the object manager. 

6.1 Segment Object Data Structures 

Recall that a partition directory has a set of entries which contains the pbn for the segments 
residing on the partition. The partition block addressed by one of these entries contains a 
segment header that identifies the segment. The complete header is 512 bytes long and contains 
the segment (object) sysname, the object type sysname, a segment status field, a segment 
shadow pointer (the status field and pointer are used for recovery), and the size of the segment 
in bytes. The remainder of the header contains an array of pointers which lead to the segment 
data. These pointers address one of two sorts of blocks: index blocks, which are arrays of 
pointers to other blocks, and data blocks, which actually contain segment data. If, however, the 
storage required for segment data is less than that used for the array of pointers in the segment 
header, the segment data can be placed in the segment header itself. This would provide for the 
efficient processing of very small segments. Figure 6 shows the segment structure. 

A segment is a tree whose depth depends on the amount of data in the segment. Hence, the 
smallest segment may have a depth of two (the header and the data blocks addressed by the 
header), but trees of arbitrary depth are supported. This also means that occasionally the 
segment will be restructured when its size is increased. 

The interaction of the segment system and virtual memory is still being designed. It should be 
pointed out that much of the manipulations performed by the segment object will involve the 
segment's representation in virtual memory and the structures maintained by virtual memory 
itself. The segment system also makes some assumptions. One of these is that the location of 
the segment is known. That is, the action or process using the segment knows the partition on 
which the segment resides. Particularly, most segment calls do not require a partition sysname 
as a parameter. 

6.2 Calls on the Segment Object 

The following calls all require the sysname for the segment being manipulated. Any offsets are 
data record offsets, using the logical view of the segment. 

6.2.1 S_create(partname, segname, anr) returns integer 
S_create allocates storage for a segment and sets up the segment header and index records. 
The input parameters are the two sysnames for the partition and segment to be created,' and a 
structure holding information about the segment (its size, object type, recoverability). The 
storage for the segment can be allocated and structured on the basis of the size field of attr. 

7. Note that this call does not return a new sysname for the segment. If that were the case, it would not be possible to 
move existing segments into a partition and still reference them by their old names. 
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Figure 6. Clouds kernel segment structure 

Data records are written in subsequent requests. The return value indicates the call status. 

6.2.2 S_destmy(partname, segname) returns integer 
This call deallocates storage for a segment. The sysname for the segment, segnazne, is removed 
from the partition directory. 

6.2.3 S.read(segname, offset, size, addr) returns integer 
The Sjead call causes the transfer of size number of pages from storage to memory. Segnarne 
identifies both the memory and storage versions of the segment. The source of the pages is at 
location offset of the segment named by segname. Addr is the virtual memory address of the 

ar fer destination. The return value indicates the status of the call. 

6.2.4 S write(segnazne, offset, size, addr) returns integer 
S vvrite transfers data from memory to storage: Addr is the source of the transfer, in this case a 
virtual memory address. Segname is the sysname for the object (segment) whose data is to be 
transferred. Note that this identifies both the memory pages (source) and the secondary storage 
pages (destination) that must be transfered. Size number of pages, beginning at offset offset of 
the segment, are copied from virtual memory to the storage segment. The return value 
indicates the status of the call. 
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6.2.5 S_precorninigaid, touchlist) returns integer 
S_precommit performs the segment level precommit protocol as described in section 5. 
Touchlist is a list of the objects which have been modified by the action. Aid is the sysname of 
the action making the precommit call. The call return value indicates the success or failure of 
the call. 

6.2.6 S_eoa(segnone, flag) returns integer 
This operation performs the segment level commit or abort protocol as described in section 5, 
depending on the value of flag. The return value indicates the success or failure of the 
operation. 

6.2.7 S chgsize(segnarne, delta) returns integer 
The call allocates or deallocates storage from the end of a segment. Delta is the number of 
records to allocate or deallocate (positive or negative value, respectively). The return value is 
the status of the call. 

6.2.8 S_status(segru ►ne) returns integer 
This call determines the state of a secondary storage segment by examining the status field of 
the segment header. The return value is this status (permanent, shadowed, precorrunitted). 
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7. Reliable Storage Management 

In this section we look at the techniques used to ensure the reliability of the storage manager in 
the presence of machine failures and action aborts. All the techniques described below require 
the information and features provided by the use of atomic actions. This information includes 
the knowledge of when it is correct to make the effects of an operation permanent and what 
data has been modified. The storage manager provides a set of protocols that use this 
information to make the correct updates to secondary storage so as to leave the storage system 
in a consistent state. In order to understand these techniques and the motivation behind them, 
we need to understand how the Clouds kernel manages actions. 
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Figure 7. Actions block on competing commits 

The Clouds system considers actions to be units of work. Many actions may be active in the 
same object, with each action updating object data. The only restriction enforced by the kernel 8 

 on the synchronization of actions which are operating concurrently on a single object is at action 
'recommit. An action that precommits in an object blocks all other actions from precommitting 
in that object until the precommitting action is committed. Other actions still update and process 
the object's data; the only restriction is on the precommit procedure. Although this restriction 
may seem to create potential bottlenecks, the simplifications it provides in the processing of 
commits will keep the blocking intervals short enough so as to cause no problems. In particular, 
this restriction means that the storage manager must provide reliable updates for only one action 
per object per time period. 

There are two levels at which the storage manager must supply this sort of reliability: at the 
partition level, and at the segment level. The partition has critical data which must be updated 
correctly to allow the storage manager to function correctly. As stated previously, this data 
includes the partition directory and the partition page map. At the segment level the storage 
manager is responsible for the consistent update of object data and the underlying structures that 
represent this data. We use two rather distinct approaches to providing the recovery for these 
two levels. In both cases the technique ' ovide pessimistic recovery; no changes are actually 
made to the "live" data until the responsible action commits. 

8. The programmer may define other forms of synchronization within the implementation of the object based upon 
semantic knowledge and other design factors. The kernel does not preclude such choices. 
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7.1 Segment level recovery 

Segment recovery is accomplished via a shadowing scheme[ 111 . That is, segments on which 
actions are operating will have shadow versions which the actions will actually see. We note 
that one of the goals of the recovery scheme is, aside from producing consistent results, to allow 
recovery of segments (and partition structures) with as little storage overhead as possible, and 
with as few storage accesses as possible. Shadowing, then, will be minimal, with only those 
parts of the segment actually modified being shadowed. 

The shadowing scheme consists of a set of protocols that indicate what the storage manager 
must do for specified segment states and action events. We consider these states and events in 
the following paragraphs and develop the protocols that shadow segments. When an action is 
started, the storage manager is involved initially in the transfer of the data for the object being 
operated upon from storage to memory. Until precommit occurs, the only transfer of 
information is from device to system. All modifications to the action data are handled in 
memory by the action manager. On the action commit the storage manager starts transferring 
information back to storage. These transfers are the result of the action management system 
protocols for transfering action updates to the permanent state of the object 

7.1.1 The preconzmit protocol 
The precommit protocol ensures that updated pages of object data that an action has modified 
are recorded on non-volatile storage to prepare for the final commit of the action. The storage 
manager performs the shadowing and data transfers as follows: 

P I The storage manager determines how many pages are to be shadowed and allocates 
storage for shadow versions through calls to the virtual memory system and the partition 
object, respectively. The storage manager allocates shadow storage not only for modified 
data pages, but also for the segment header, plus any index pages that are required to 
reach a modified data page. 

P2 The storage manager shadows the segment. The segment header is copied to the shadow 
segment header. The modified data pages are copied from memory to the shadow data 
pages. Modified versions of index pages are copied to shadow index pages. Some index 
pages must be modified and shadowed so that the shadows point to the shadow versions 
of data pages. The storage manager places a modified version of the segment header 
into the shadow segment header. Modifications made to the segment header data could 
include a change in the size, and changes to the array of pointers (some of these pointers 
may point to shadow pages, as with the index pages). 

P3 The permanent segment header is modified so that the status flag indicates that the 
segment is being shadowed. A pointer is also set in the header which indicates the 
location of the shadow segment header. 

One point to note about the above protocol is that there are a number of reads assumed to get 
the segment structure into memory. Also note that the number of pages that must be shadowed 
and the identification of which index pages must be shadowed can be determined by knowing 
the size of the segment and which data pages must be shadowed. The segment header is 
modified last to reduce the work necessary to restore the segment in the event the system 
crashes before the precommit is completed. 9  

Once the precommit completes, we are left with two ver. on of the segment. The two versions 
overlap in spots as illustrated in Figure 8, where blocks within the dashed box are part of the 

9. A crash at any point before this final write will recover with the shadow pages still listed in the free space list and 
completely unreferenced, and thus they get scavenged automatically. 
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Figure 8. Precommitted segment 

permanent version, while blocks inside the dotted box are part of the segment shadow. Read 
operations on unshadowed pages refer to permanent pages. The shadow version is visible only 
to the action which is performing the commit. 

We must point out that the storage manager's precommit protocol is not the same as the action 
manager's precomrnit. After the storage manager has completed the shadowing, the action 
could still abort and the shadowed version would have to be removed. An example of such a 
situation is when the action spans several nodes and uses a two-phase commit protocol. Phase 
one is complete only when all nodes have completely shadowed any object data the action 
touched on their storage. If one node cannot do this, the action aborts. 

7.1.2 The commit protxol 
Once the segment is shadowed and the action decides that it can continue the commit, the 
storage manager performs its own commit protocol. The storage manager must switch the 
shadow version for the old permanent version of the segment. There is some bookkeeping for 
the partition as well. The protocol is as follows: 
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C 1 Update the permanent page map on storage. This requires that all addresses for shadow 
records be allocated in the page map and all modified records of the segment including 
the segment header be deallocated in the page map. 

C2 The partition directory is set so that it points to the new segment header for the segment. 

C3 The shadow segment header is set so that it is now the permanent segment header, that 
is, it is marked as "permanent." 
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Figure 9. A committed segment 

Once this protocol is complete, any references to the segment will refer to the new version of 
the segment. The new segment is a merging of old unmodified records and new records. 
Figure 9 shows a committed segment. The blocks in the dashed box were parts of the 
permanent segment being shadowed during precomrnit. These blocks are deallocated as part of 
the commit during step Cl. During this phase of the protocol, the storage manager updates the 
permanent page map on secondary storage. Recall that Clouds uses pessimistic recovery and 
any effects of an action, including storage allocation to perform the commit, cannot become 
permanent until the action commits. Therefore, all allocations are performed on a volatile page 
map. We discuss this and other ideas in the section on partition level recovery. 
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Actions can also abort for one reason or another and the storage manager requires a protocol 
7.1.3 The abort protocol 

for this event as well. The protocol simply rids the segment of any trace of the action's work as 
follows: 

A l The volatile page map is updated to remove allocations that the action has made to 

A2 The status flag of the permanent segment header is set to show that the segment is 
unshadowed and then the shadow pointer is set to null. 

shadow the modified pages of the segment. 

=
- 

25- 

Figure 10. An aborted segment 
1. 

The storage manager uses this protocol only when an action has started to commit and aborts in 
the middle. If the action aborts before attempting to commit, the storage manager is not 
involved at all. Figure 10 illustrates the results of the abort protocol. In this case, the blocks 
inside the dotted line are deallocated upon the abort, as these blocks are only shadows for the 
permanent segment. 
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7.1.4 System failures 
One final event must be considered. That is how does the system recover from a machine 
crash? Specifically, we are concerned with restoring the segment and partition to a consistent 
state after the system is brought up again. The system may have had a number of actions in 
various states at the time of the crash and we want to insure the appearance of indivisibility of 
actions. Under the Clouds policy, any action that has not preconunitted when a crash occurs is 
aborted when the system is restored. As we have already noted, actions which do not begin 
precommit before the system crashes do not concern the storage manager; these actions have no 
effect on system storage. For objects which completed preconunit• processing, we must 
determine whether their action's effects become permanent or are erased. This depends on the 
state of the action. The crash recovery protocol, then, is as follows: 

CR1 A new volatile page map is created for the partition. 
CR2 The storage manager determines which actions touched segments on this partition and 

determines the state of each such action. The storage manager polls a kernel database 
and examines the segments on its local storage to identify these segments. 

CR3 If a segment was touched by an action that has completed phase one and should be 
committed, the storage manager performs the commit protocol on the segment, as above. 

CR4 If the action which modified this segment was aborted by the action manager, the 
storage manager uses the abort protocol, as given above. 

At the end of crash recovery, the partitions are in a consistent state; either the actions occurred 
or they did not. The database referred to in step CR2 is a kernel level database shared by the 
nodes in the system. The database exchanges information amongst the systems using a suite of 
algorithms developed in [ 1]. The information in the database represents an approximate state of 
the network. This database is copied from other nodes by the kernel when a node is added to 
the Clouds system. Among the information kept in the database is a list of actions, their status, 
and segments touched by the actions. Generally, the storage manager can find here the 
information needed for crash recovery. In some cases, though, a local action (one which does 
not leave the site on which it is born) may not appear in this list, even though its status at the 
crash time was complete and known. In cases such as these, the storage manager can find 
shadowed segments only by an exhaustive examination of the partitions. 
Another issue is that of a system failure during an action write, so that only part of the write is 
actually completed. In the discussion thus far, we are assuming that we have atomic single 
record writes. The atomicity we are concerned with is failure atomicity, whereby the write 
either takes place or not. In practice, this means that we can detect an incomplete write (the 
system failed during a record write) and we are not overwriting the only copy of the data in 
question. If a device we are using does not support detection of incomplete writes, we can 
simulate the effect using the standard method of stable storage as described by Lampson and 
Sturgis  in  [12] 

In  [131 the question of when the atomic single record write assumption can be 
relaxed, if at all, and under what circumstances, is investigated. 
7.2 Partition level recovery 

In the last section we outlined the techniques used to provide reliability for the segments on 
storage. We now turn to the problem of maintaining the consistency of partition structures, 
particularly the page map and the segment directory. These structures were discussed to a small 
extent in the last section because they are involved in shadowing segments. We did not discuss 
how the structures themselves must be modified to maintain their consistency. Once again, let 
us consider the action environment provided by the kernel. Recall that a committing action 
blocks all other actions from committing in a segment it has modified. The partitions are 
objects, so that any action committing would block all other actions from committing in any 
object residing in that partition. For a one partition node, this permits only one action at a time 
to commit. We feel that this is too restrictive. 
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We allow any number of actions in a partition to commit simultaneously, excluding any segment 
conflicts. Given this, we do not feel that shadowing can be used to provide recoverability of the 
page map and directories. Maintaining the various shadow versions in itself would be 
complicated, but in addition we would need to propagate committed data to as yet uncommitted 
shadowed data. We therefore reject our segment level shadowing scheme as an approach for 
partition level recovery and we must develop another method for this task. 

The partition directory does not have a volatile component. There are two copies of the 
directory residing on the partition (for the redundancy necessary to protect against media 
failures) and a committing action on a partition object must update both copies in a consistent 
manner to indicate that the new object version is to be used. Once again, we assume atomic 
single record writes, which will allow us to determine whether the copies are consistent, when 
the writes are performed in a determined order. An examination of both permanent copies and 
the header of the segment involved, if done in the proper order, will reveal any inconsistencies 
and the manner in which they should be resolved. 

The partition page map has a volatile component which the storage manager uses to make non-
committed storage allocations and which disappears after a system crash. Note that the volatile 
page map provides correct storage allocation information excluding system failures. Now recall 
that the commit protocol for storage management entails three steps, the second of which 
involves installing the action's storage allocations onto the permanent page map. We have two 
approaches we feel will provide consistent updating of the permanent page map. The first 
approach simply does away with the permanent page map of the partition, and maintains only 
the volatile version. As noted earlier, this provides correct storage allocation until a system 
failure occurs and the page map is lost. Clearly, we must be able to recover the page map after 
the system is restarted, and the obvious solution is an examination of the partition. Equally 
clearly, this will require quite extensive processing upon system startups. 

The second approach to maintaining the partition page maps involves the use of intention lists 
and does require a permanent copy of the page map. With this approach, the storage manager 
during step one of the segment commit protocol does not write directly to the permanent page 
map, but instead writes an intention list of storage allocations (deallocations) to disk. Because 
the volatile page map reflects the correct storage allocation for a partition, the anal updating of 
the permanent page map from the intention list can be performed as background processing by 
the storage manager. If the system crashes before some updates are performed, they can 
always be done as part of the system startup processing. The steps required by this protocol are 
shown below: 

1. The creation of the intention list begins at precommit. When the shadow is allocated, the 
storage manager places these pages on the allocation intention list. The pages to be 
replaced by the shadows are placed on a deallocation intention list. 

2. When the signal is given to start the final commit, these lists are written to a list of 
pending allocations maintained by the partition. 

3. At some later time, these lists are merged into the page map as part of normal partition 
bookkeeping. 

The only restriction is that the updates from the intention list must be performed in the order in 
which the allocations and deallocations were committed. 

Our initial implementation of the storage manager will use the first mechanism. We have two 
reasons for doing this. First, we are concerned more with the cost of commit processing than 
we are with system startup processing simply because we feel that system failures will be 
infrequent and because action processing is our model of computation. This approach both 
simplies the implementation and makes the commit process more efficient, since no extra disk 
writes are required to update a permanent page map. 
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Secondly, an extensive examination generally will be made of the partitions at system startup to 
clean up any unfinished action commits or aborts. The reconstruction of the page map is 
partially subsumed in this processing. 

7.3 Device support for recovery 

The above protocols have several implicit assumptions on which they rely to operate correctly, 
two of which concern the device object. We have already mentioned the assumption that devices 
can perform atomic single record writes. The other assumption concerns the transfer of data 
from system to storage. The protocols assume that upon completion of a call to any of the 
"write" operations the data intended for transfer to storage has, in fact, been transferred. 
Under conventional systems, this is not necessarily the case, since requests for writes to storage 
may be buffered. Data may or may not actually be transferred before the system crashes. If 
the data were not actually transferred, there is no way to recover the segment or partition when 
the system is restarted. 

At the device level, then, the storage manager requires some way in which to ensure the timely 
completion of data transfers. We wish to accomplish this without adversely affecting the other 
processing on the system. Also, the action causing the writes to storage must be informed of 
the completion of the writes in order to continue its commit processing. 

There is a great deal of latitude with the timing of when the action writes are forced to the 
device. One discipline is to have a synchronous write operation that immediately forces the 
device to schedule requests issued by the operation. By this we mean that any requests currently 
being processed are completed and then normal scheduling is pre-empted. Synchronous write 
requests are then carried out in order of receipt. Thus, action writes are forced to the device 
early in the sequence of action commit processing. The drawback is that requests for 
synchronous writes appear in bursts at precommit and commit. Any scheduling that the device 
does for efficiency of the device's operation is disrupted. 

Another approach is to allow the device to schedule the requests subject to its own constraints 
and simply inform the storage manager when the requests are completed. This allows the 
devices to schedule requests efficiently, but can delay action commit processing. However, the 
storage manager does know when the completion of the precommit and commit protocols can be 
safely signalled. 

A compromise approach initially allows precommit and commit to be enqueued as usual and 
handled as normal requests. It is only when completion of the commit or precommit is 
imminent that the write must be forced to storage. To accomplish this, requests must be 
identifiable by the storage manager so that the manager can signal which requests must have 
priority. The manager can simply place the action id of the committing action in a field of the 
request when requesting a write to storage. 

When the storage manager determines it is necessary, it can make a call on the device object to 
reorder its queue of requests, giving priority to this action's requests. This technique may prove 
useful if a significant amount of time can elapse before the storage manager must complete the 
precommit and commit procedures. In cases where the action has touched a number of objects 
on several systems this may indeed be the case. In such situations, the devices can operate 
efficiently (and possibly reduce the number of pending precommit and commit requests, 
reducing the disruption when it becomes necessary to force them to storage), and the action is 
not delayed, since it :s not ready to complete its commit. To accomplish this as stated, the 
storage manager must be able to identify when requests must be forced to storage. This will be 
based on the results of any two phase commit that is performed and the storage manager will 
rely on the action management system to signal when final commit is to be performed. 

Each device object maintains a flush table (as discussed in section 4) to control the forcing of 
action writes. When the list of requests for the action entry in the flush table is empty, the 
storage manager can inform the action that the commit processing can continue. 
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7.4 Summary 

aipport for reliability and recovery is integrated throughout the storage manager from the 
lowest level to the highest. The segment system, via the use of segment objects, provides for 
recovery of client object data recovery through the use of shadowing of modified data and the 
discipline of the shadowing provided by the protocols discussed above. The data that the 
storage manager uses to manage Clouds objects is made recoverable by the partition objects. At 
this level, our primary concern is how to maintain the data across system failures, and we 
present a few approaches for doing this. At the device level, support is provided to ensure that 
data is written when necessary, allowing action processing to be performed correctly at a higher 
level. 
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8. Conclusions 

The motivation behind the Clouds project is the belief that systems in general and distributed 
systems in particular should provide reliable data management and reliable computation. This 
report documents part of our efforts towards that goal, namely the storage manager for the 
Clouds kernel. The Clouds storage manager, in addition to providing the traditional services of 
storage management, also provides support for the object-action methodology presented by the 
Clouds kernel. 

We have presented an overview of the storage manager for the Clouds kernel. The storage 
manager is presented as a collection of objects, each of which provides an abstract view of the 
secondary storage. At the lowest level, secondary storage is viewed through the device object, 
and the physical storage medium is viewed as a sequence of pages (in the current 
implementation, a page is 512 bytes) with very little structure, other than the device header and 
index table. One step higher in our hierarchy is the partition object, which manages a portion 
of the raw storage provided by the device object. Once again storage is viewed as a sequence of 
pages, but that storage has a more defined structure. Each partition maintains a directory and a 
page map, so that each partition is responsible for managing its storage and for providing a 
location service for the next level of abstraction, the segment object. The segment object 
provides a view of storage that is a sequence of bytes and each segment object generally 
corresponds to some other kernel or user object. The storage manager views segments as a 
tree- like structure of pages. 

We have described the data structures associated with each object and presented the operations 
with which the data structures can be manipulated. We have also tried to convey the 
relationships amongst the three objects and to show how they interact with each other and the 
rest of the kernel. 

The research that we are conducting is primarily involved with how the storage manager 
provides the recoverability of the storage it manages and thus supports the reliability of the 
Clouds kernel. To that end the storage manager uses a set of protocols to ensure that object 
data is updated in a consistent mariner and that even through system failures, enough 
information survives to maintain the consistency of the object. We show how these protocols 
are used to support the action/object programming paradigm of the Clouds system. 

Each level of storage object discussed provides some support for recoverability. The device 
objects maintain flush tables which allow the storage manager to ensure that action writes are 
completed before a commit is finalized. The partition object maintains a consistent view of 
allocated storage and insures the correct updating of the partition directory. The segment object 
provides recovery of object data through the set of protocols described. 
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1. Introduction 

The goal of the Clouds project at Georgia Tech [Allc82, Allc83a, Allc83b] is the imple-
mentation of a fault-tolerant distributed operating system based on the notions of objects, 

actions, and processes, which will provide an environment for the construction of reliable appli-

cations. The Aeolus' programming language developed from the need for an implementation 
language for those portions of the Clouds system above the kernel level. Aeolus has evolved 
with these purposes: 

• to provide the power needed for systems programming without sacrificing readability or 
maintainability; 

• to provide abstractions of the Clouds notions of objects, actions, and processes as 
features within the language; 

• to provide access to the recoverability and synchronization features of the Clouds sys-
tem; and 

• to serve as a testbed for the study of programming methodologies for action-object sys-
tems such as Clouds [LeB185, Wilk861. 

Thus, the main interest of Aeolus lies not, in the language itself, but in what may be done with 
the language. We have avoided providing high-level features for programming actions with the 
intention of evolving designs for such features out of our experience with programming in 
Aeolus. These features will then be incorporated into an applications language for the Clouds 
system. 

Aeolus has its roots in a long line of structured programming languages, including Simula, 

Pascal, NIodula-2, and Ada.2  Thus, many of its features should be easy to understand for those 
familiar with one of these languages; in particular, familiarity with Pascal or Modula-2 is 
assumed throughout this report, and features will often be explained in terms of the 
corresponding features in those languages. 

The main structuring features of Aeolus (as of the Clouds system) are objects, actions, 
and processes. Clouds supports the object concept as a convenient structuring principle for 
facilitating recovery and synchronization; Aeolus also allows the programmer to use the object 
features of the language for the specification of abstract data types, without necessarily invoking 
the object and action management features of the Clouds system. Thus, Aeolus objects provide 
a separate compilation facility as well as access to the object support of Clouds; the separation 
of object specifications into definition and implementation parts (much as are modules in Modula-2 
or packages in Ada) provides a safe interface to separately-compiled objects, as well as facilitat-
ing the design of large systems consisting of many objects (possibly implemented by several 
people) or the use of predefined objects. Aeolus pseudo - objects provide a means of isolating 
system dependencies—such as input/output or low-level machine architecture—into object-like 
modules which provide operations facilitating machine-level programming. 

Support of the Clouds notion of actions in Aeolus is fairly low-level. Essentially, means 
are provided for specifying that an operation (procedure) of an object may be invoked as an 
action, or that an operation invocation is to be executed as a (toplevel or nested) action. Also, 
the status of action executions may be checked by means of calls to a Clouds action manager. 

The process concept in Aeolus corresponds roughly to the program construct of Pascal or 
Modula-2. That is, a process ties together the constituent parts (objects) of a programmed sys-
tem, and the invocation of a process provides activity in the Clouds system. 

Except for the access Aeolus provides to the action manav-rient facilities of Clouds 
(which control recovery in the system), nothing in the language is c-splicitly dependent on the 
Clouds system for its implementation. In the Clouds implementation of Aeolus, the details of 
synchronization and recovery of objects are hidden by the interface to the Clouds object and 

'Aeolus was the king of the winds in Greek mythology. 

2Ada is a registered trademark of the U.S. Government—Ada Joint Program Office 
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action managers; thus, for example, it is transparent to the programmer (and to the language 
runtime support) whether an operation invocation involves a local or remote object. Therefore, 
an implementation of Aeolus—without its features for recovery handling—should be possible 
under any operating system; only the object management need be subsumed by the language 
runtime support, which should be trivial for a non-distributed system. 

This report is not intended to be a tutorial on the Aeolus language; rather, it strives to be 
a concise definition of the syntax and semantics of Aeolus, and thus should serve as a reference 
for programmers and implementors. 

2. Explanation of Notation 

The syntax (grammar) of a language consists of rules for arranging sequences of terminal 
symbols (also called tokens) in the vocabulary of the language (keywords, numbers, names 
(identifiers), and certain other characters used as punctuation to make the language more read-
able) into sentences (or sentential forms) which have meaning in the language. A syntax rule 
often specifies that a sequence of terminal symbols be grouped into a nonterminal symbol, an 
entity in the language which often has an intuitive meaning, such as an expression or a state-
ment. 

To describe the syntax of Aeolus in this manual, we will use a notation known as the 
extended Backus-Naur form (EBNF). (A complete grammar for Aeolus in LALR(1) form is 
presented in Appendix C.) In this notation, the so-called metasymbols [ and are used to 
enclose an Aeolus sentential form which is optional; the metasymbols { and } are used to 
enclose an Aeolus sentential form which may be repeated any number of times (possibly zero 
times). Tokens are enclosed in double quotes (""); nonterminal symbols are enclosed in angle 
brackets ( <>). The left-hand side of a syntax rule specifies the nonterminal which is being 
defined, while the right-hand side of the rule gives the sequence of terminal and nonterminal 
symbols which are valid for the nonterminal being defined; the two sides of the rule are 
separated by the metasymbol (meaning "expands into"). 

Thus, for example, the syntax rule 

<identifier list> 	<identifier> {"," <identifier>} 

specifies that the nonterminal identifier list consists of either a single identifier nonterminal, or a 
sequence of two or more identifiers separated by the comma token (","). The following are 
valid identifier lists: 

foo 
foo, bar 

foo, bar, baz 

Also, the rule 

<variable declaration> 	<identifier list> ":" <type> [":-=" <expression>] 

indicates that a variable declaration consists of an identifier list followed by the colon token 
(":"), a specification of the type of the variable(s), and an optional initialization of the 
variable(s) consisting of an assignment operator token (":=") followed by an expression. The 
following are valid variable declarations: 

foo : real 
foo, bar: integer 	biz + 



Aeolus Reference Manual 	 Preliminary Version 

3. Tokens 

The tokens, or terminal symbols, or the Aeolus language include identifiers, int and float 
numbers, litstrings, and keywords (or reserved words) and other delimiters (such as arithmetic 
operators and other types of special characters). In this section, we will discuss rules for the 
formation of these tokens. 

The following general rules apply: the ASCII character set is assumed; blanks must not 
occur within tokens (except litstrings); line breaks may not occur within any token (thus a sin-
gle token may not extend over several lines); and blanks as well as line breaks are ignored 
except where they serve to separate consecutive tokens. Arrangement of tokens on lines may 
be in free format; in particular, there may be multiple statements on a line. The case of letters 
is ignored in keywords and identifiers; however, the case of letters in litstrings is preserved. 

3.1. Identifiers 

An Aeolus identifier must begin with an upper or lower case letter, which may be fol-
lowed by any number of letters or digits. Also, a separator (the underscore character "_") may 
be placed between any two characters within an identifier to improve readability; however, a 
separator may not occur at the beginning or end of an identifier. 

<identifier> —4 <letter> {[ <separator>] <letter or digit> } 

Examples: 
I 	am 	an.Aeolus_identifier 	As am...I 

3.2. Numbers 

An Aeolus number is an "int" or "float" number, which may be specified in any base 
between 2 and 16 inclusive. 

3.2.1. Ints 

A decimal "int" starts with a digit ("0" through "9"), which may be followed by any 
number of digits, optionally separated by an underscore character ("_") for readability. Ints in 
bases other than 10 may be specified by giving the base (a decimal number between 2 and 16 
inclusive), followed by the character "#", followed by the based number. A based number in 
a base greater than 10 may include the characters "A" through "F", as appropriate to the base 
of the number. (Note that case is not significant for these characters.) 

Examples: 

<num> 
<basedit> 

<basednum> 
<int> 
<int> 

<digit> {[<separator>] <digit>} 
<digit>, "A" .. "F" 

{[<separator>] <basedit>} 
<num> 
<num> "#" <basednum> 

1 32767 32_767 2#101010 

8#52 16#2A 1.6#ff 13#42 

3.2.2. Floats 

A "float" number consists of a whole part followed by either a fractional part or an 
exponent or both. 3  The whole part is a (possibly based) number. The fractional part consists of 
a fractional point "." followed by a number with the same base as the whole part. The 
exponent consists of the letter "E" or "e" followed by a (possibly signed) decimal number, 
indicating the power of the base by which the float number should be multiplied. The base of a 

sThus, a float number must always begin with a digit. 
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float number is given as for an int; however, if a float number is based and has an exponent, 
the character "#" must appear before the exponent. If no base is given, base 10 (decimal) is 
assumed. 

<exponent> 
<sign> 
<float> 
<float> 
<float> 
<float> 

Examples: 

"E" [<sign>1 <num> 
t+ 1) ,  Ii .. 71 

<num> "." <num> 
<num> ["." <num>] <exponent> 
<num> "#" <basednum> "." <basednum> 
<num> "#" <basednum> ["." <basednum>] "#" <exponent> 

3.14159 8#7.77 0.1e32 2#1011#E-27 16#7f.a2#e+ 5 

3.3. Litchars and Litstrings 

A character is any member of the ASCII character set, including both printable characters 
(alphanumeric and punctuation) and control characters. Also, some systems may define exten-
sions to the ASCII character set (for instance, graphics characters) which may be considered 
character tokens on those systems. A litstring (literal string) token is a sequence of characters 
enclosed in single quotes ("`"). To include a single quote as a character in a litstring, the sin-
gle quote must be doubled ("'"'). A special case of the litstring token is the litchar (literal 
character) token, which is a litstring token consisting of a single character. 

	

<litstring> 	" 1 " {<character>} " 1 " 

	

<litchar> 	"'" <character> " 1 " 
Examples of LITSTRINGs: 

'Hello, world' 'Don"t be sad' 'This is a litstring" 

Examples of LITCHARs: 

	

1 a1 	'Z' 	1?1 	1111 

3.4. Comments and Compiler Options 

A comment is explanatory text inserted into code for the reader's benefit; it is ignored by 
the compiler, and does not affect the meaning of the code. In Aeolus, a comment may be 
placed anywhere within a line where a blank may be placed. It begins with an exclamation 
point ("!") and ends either at the next exclamation point or the end of the line on which the 
comment started, whichever comes first. Thus, comments do not extend over multiple lines. 

Examples: 

	

! This is an in-line comment. ! 	!As is this.! 

! This comment goes to the end of this line. 
A compiler option is used to communicate to the compiler the desired settings for various 

options which the compiler being used may implement, for example, whether range checks for 
valid variable values are to be generated. A compiler option begins with a dollar sign ("$") 
and ends either at the next dollar sign or at the end of the line on which the compiler option 
started, whichever comes first. 

Examples: 

	

$r+ 	$ 	$pagelength=84 

3.5. Reserved Words 

The following is a list of the reserved words (keywords) of Aeolus. These words may not 
be used as identifiers! Although the reserved words are shown here in upper case, upper and 
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lower case may be freely mixed in these words. 

ACTION 
ARRAY 
AUTORECOVERABLE 
AUTOSYNCH 
BEGIN 
BY 
CASE 
CONST 
CONSTRAINT 
DEFINITION 
DELETEHANDLER 
DO 
DOMAIN 
DOWNTO 
ELSE 
ELSIF 
END 
EVENTS 
EXAMINES 
EXIT 
FOR 

FORWARD 
IF 
IMPLEMENTATION 
IMPORT 
IN 
INDEX 
INITHAND LER 
INLINE 
IS 
LOCAL 
LOCK 
LOOP 
MODIFIES 
NONRECOVERABLE 
NOT 
NULL 
OBJECT 
OF 
OPERATIONS . 
OTHERWISE 
OUT 

OVERRIDES 
PER 
PERMANENT 
PROCEDURE 
PROCESS 
PSEUD 0 
PURE 
RECORD 
RECOVERABLE 
REGION 
REINITHAND LER 
RETURN 
RETURNS 
SHARED 
STRUCTURE 
STRUCTURED 
THEN 
TO 
TOPLEVEL 
TYPE 
USING 

3.8. Operators and Delimiters 

The following are characters or groups of characters used as operators or delimiters (punc-
tuation) in Aeolus. 

3.7. Other Characters 

As mentioned before, blanks (except in litstrings) are ignored wherever they are not 
required to separate other tokens; thus, blanks may be used freely to improve the readability of 
code. Semicolons (";") are ignored in the same way as blanks; thus, semicolons may be used 
to separate or terminate statements if so desired, but are not required. Non-printable (control) 
characters are also ignored. 

4. Declarations and Scopes 

All identifiers in Aeolus code must be introduced by a declaration. In this section, the 
rules for ordering and extent of declarations will be presented. 
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4.1. Compilation Units and Their Scopes 

Those sentential forms described by the Aeolus grammar which may be compiled are 
called compilation units. Compilation units include object definition parts, object implementation 
parts, and processes. As will be clarifiedin section 12, an object definition part serves to declare 
those identifiers—constants, types, and operations—which the object makes available to other 

objects or processes, while the object implementation part actually provides the code for the 
object. Other objects or processes may import an object definition, and use the identifiers 
declared by it as if those identifiers had been declared locally. 

Every compilation unit implicitly imports the standard object, which defines various useful 
identifiers. (These are listed in Appendix D.) Before any other declarations are given, the com-
pilation unit may import other objects via an import clause (see section 12). Then, declarations 
of constants, types, variables (except in object definitions), and procedures (operations) may be 
given in any order, as long as the declaration of any identifier used in another declaration textu-
ally precedes this use. There are, however, two exceptions to this general rule. 4  A procedure 
may be declared forward; that is, only its header is declared, while the declaration of its body is 
delayed until later (see section 11). Also, a type may be declared forward; pointer types may 
then be declared with the forward type as base type (section 6.2.2). 

After an identifier has been declared, other declarations and statements may refer to it, as 
long as these references occur within the scope of the identifier. The scope of an identifier 
extends from the point of its declaration to the end of the block in which it was declared. That 
is, if the identifier was declared in the the declaration part of a compilation unit, its scope 
extends to the end of that compilation unit; if, however, the identifier was declared in the 
declaration part of a procedure, its scope extends to the end of the procedure. The scope of 
identifiers introduced in a USING statement (section 10.2.4) extends to the end of that state-
ment. 

The scope defined by a procedure is said to be nested within the scope defined by the sur-
rounding compilation unit. As implied by the rules above, identifiers in a nested scope are not 
visible (available for reference) in the surrounding scope. An identifier in an nested scope may 
have the same name as an identifier in an enclosing scope; the identifier in the enclosing scope 
is then not visible in the nested scope. Within a scope, however, an identifier must be unique; 
that is, an identifier may not be declared with the same name as another identifier already 
declared in the same scope (see below). Procedure declarations may not be nested (within 
other procedure declarations); thus, the maximum nesting level in Aeolus is 2, where the level 
of a compilation unit is 1. 

4.2. Qualified Identifiers  

As was stated above, an identifier must be unique within the scope in which it is declared 
so that the entity which it represents may be correctly identified. However, it often occurs that 
different object definitions declare constant or type identifiers with the same name, or that 
different enumeration types have members with the same name,' or that different objects have 
operations with the same name, or that different records have fields with the same name. 
Thus, it is sometimes necessary to qualify an identifer with the name of its defining type or 
record to ensure that it is unique. 

If types or constants with the same name defined by more than one imported object type ° 
 are visible in a scope, or if similarly-named members of different enumeration types are visible 

in a scope, these names must be qualified with the names of their defining types: 

These exceptions allow more general data structures and procedural definitions to be formulated, in particular 
recursive structures. 

5This problem may also occur in Pascal, which does not provide for qualification of enumeration types; thus, so-
called "holes" may be left in the types. 

°As we shall see in section 12, the names of imported object definitions may be used as the names of types. 
Variables declared to be of an object type are said to be object instances. 
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<type-qualified id> 	<type id> "n" <identifier> 

For example, 

objl"foo 	obj2"foo 

refer to identifiers named "foo" defined by object types "objl" and "obj2", respectively. 
Also, if the enumeration types "signal_colors" and "primary_colors" are defined as follows: 

type signal_colors is ( red, yellow, green ) 

type primary_colors is ( red, green, blue ) 

then references to the identifiers "red" and "green" must be qualified: 

signal_colors'red primary_colorered 

signal_colors"green primary_colors"green 

Different object types may define operations with the same name; however, there may 
also be several instances of the same object type visible in a scope. Object operation invocations 
must be qualified by the name of the object instance on which we wish to operate: 

<obj op invocation> -- ■ <obj instance id> "©" <op can> 

For example, if variable "in_queue" is an instance of an object type (say, "queue") with 
operation "enqueue": 

in_queue @ enqueue (item) 

The situation of record fields is similar to that of object operations. Declarations of record 
types may define fields with the same name; also, there may be several variables declared with 
the same record type visible in a scope. Thus, field references must be qualified by the name 
of the field's parent record. 7  

<field ref> —p <parent variable> "." <field id> 

For example, if variables "a" and "b" are both of some record type "complex," we may have: 

a.realpart b.realpart a.imaginarypart 

5. Constant Declarations 

An identifier declared as a constant is associated with a value which may not be changed. 
Thus, a constant may not be the target of an assignment statement (see section 10). The type 
of a constant may be any valid type specification (section 6). The value of a constant may be 
specified by an expression (section 9) in which only constant terms appear. Calls to (value-
returning) procedures defined by the object standard with constant parameters are also allowed 
to appear in such an expression. 

<const decl> 	—■ 	<const idl decl> ":" "const" 
<properly constrained type nan., -> ":=" <expr> 

7This qualification is often called the field dereference operation. 
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Examples: 
i : const integer 	-10 

j : const integer := i + abs (2*i) 

B. Type Declarations 

The declaration of a data type specifies the set of values which members of that type (i.e., 
variables, record fields, or procedure parameters declared to be of that type) may assume. In 
the case of structured types, the type declaration also gives a "blueprint" of the structure of 
members of that type. 

The general syntax for declaration of new types is: 

<type decl> 

<formal type param option> 

<formal type param decl> 

<properly constrained type name> 

<complete params or constraint> 
<complete params or constraint> 

<actual type param spec> 

<constraint spec> 
<subrange> 

<new type indication> 
<new type indication> 

"type" <new type name> 
[<formal type param option>] "is" 
<new type indication> 
"(" <formal type param decl> 
{"," <formal type param decl> ")" 
<param id list> ":" 
<properly constrained type name> 
[":=--" <scalar const>] 
<type name> 
[<complete params or constraint>] 
<actual type param spec> 
<constraint spec> 
"(" <scalar const> 
{"," <scalar const>}")" 
"[" <subrange> "]" 
<scalar const> ".." <scalar const> 
["shared"] ["permanent"] <new type spec> 
"forward" 

As we shall see in the remainder of this section, types fall into two general classes: (possibly 
parameterized) type identifiers (the names of previously-declared types, including object types), 
and anonymous types 8  (including enumerations, index and pointer types, structured types, and 
locks). The compatibilities of types are discussed in section 9.3. 

Types may be parameterized, that is, some of the attributes of a type may depend on the 
values of formal type parameters. These parameters are declared in a formal type parameter 
option. (Object types may also be parameterized; see section 12.1.) A formal type parameter 
may be declared to be of a (possibly constrained) scalar type. The formal type parameters are 
associated with the values of actual parameters specified in the declaration of variables of that 
type (see section 8). The values of the type parameters of a member of a parameterized type 
may be accessed via field dereference operations on that member; for example, if type t were 
declared with type parameter p, and variable v were declared to be of type t with a value of i for 
parameter p, then the value of the expression v.p would be i. An default value for a type 
parameter may be specified in its declaration; the type is then said to be associated with a 
delayed constraint (see section 6.1). The value of a type parameter may be specified only in 
declarations of members of the type, in allocators for members of pointer types, or (if a default 
value for the type parameter has been given) in a constructor for a constant of the type (see 
section 9.1); the value of a type parameter may not be otherwise modified. Parameterized types 
may be nested within other parameterized types; the parameters of the nested types may 
depend only on the parameters of the enclosing types. Examples of parameterized types are 
given in section 6.2.3. 

8The term anonymous type refers to the fact that such a type is not given a name by the programmer; however, 
the effect of an anonymous type is as if that type had been declared with a system-generated name, and that name used 
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Any type may have an optional indication that members of that type may be shared. This 
attribute is indicated by the use of the keyword shared before the type indication. The use of 
shared variables is explained in section 10.2.5. Similarly, any type declared in a Clouds object 
implementation part (see section 12) may have an optional indication that members of that type 
are to be allocated in the object's permanent storage; this attribute is indicated by use of the key-
word permanent. The use of permanent variables is explained in section 13.3. 

As mentioned in section 4.1, a type may be declared forward, that is, its specification may 
be left temporarily incomplete by use of the keyword forward in place of an actual type 
specification. Forward-declared types may be used only as the base types of pointer types. A 
complete specification for the forward-declared type must eventually be given within the same 
scope in which the forward declaration appeared. 

8.1. Type Identifiers 

The simplest sort of type specification is simply the name of a previously-declared type, 
optionally followed by a actual type parameter specification or by a constraint specification: 

	

<new type spec> 	"new" <constrained type name> 

	

<constrained type name> 	<type name> [ <params or constraint>1 

	

<params or constraint> 	<complete params or constraint> 

	

<params or constraint> 	 4,),, 

If a type is declared with a formal type parameter option, a declaration of a member of that type 
must supply values for the type parameters in an actual type parameter option; the types and 
number of actual type parameters in the actual type parameter option must agree with those in 
the formal type parameter option. There are three cases, however, in which an empty actual 
type parameter option ("0") may be given in a declaration of a member of a parameterized 
type: if the parameterized type is a pointer type, to indicate that specification of the parameters 
is being delayed until the member of that type is allocated (the values of the type parameters 
must then be specified in the allocator); if the member of the parameterized type is being 
declared as a formal procedure parameter, to indicate that the type parameters of the formal 
procedure parameter will assume the values of those of the actual procedure parameter; or, if 
the parameterized type declaration included default values for the type parameters, to indicate 
that the values of the type parameters will be specified in a constructor for a constant value of 
that type (see section 9.1). Note that this does not preclude specification of type parameter 
values rather than an empty actual type parameter option in the above three cases. 

If no formal type parameter option was declared for the previously-declared type, no 
actual type parameter option may be given; however, if the previously-declared type was a 
scalar type (excepting real), a constraint specification for the scalar type may be provided. The 
constraint specification indicates the range of values which may be assumed by members of that 
scalar type; the constraint is not considered to be a part of the type, but rather associated with 
the type as an attribute. Constraint specifications are further described in section 7. 

Several useful predefined types are provided by the object standard, which is automatically 
imported by every compiland. The definition part of standard is shown in Appendix D. It 
defines the following basic scalar types: °  

• type integer, whose variables assume values between MININT and MAXINT; 

• type longint, whose variables assume values between MINLONGINT and MAXLON-
GINT; 

in place of the anonymous type. 

°As shown in Appendix D, the types integer, longMl, unsigned, and longuns may be considered to be new types 
derived from constraints on an underlying int number "type" (which includes all numbers representable by an "int" 
token), while type real may be considered to be derived from a constraint on an underlying float number "type" 
(which includes all numbers representable by a "float" token).. The types derived from "int" tokens are denoted col-
lectively as the "int types" in this document. 
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• type unsigned, whose variables assume values between MINUNS and MAXUNS; 

• type longuns, whose variables assume values between MINLONGUNS and MAX-
LONGUNS; 

• type boolean, whose variables assume values FALSE or TRUE; 

• type bit, whose variables assume values compatible with "int" numbers in the range 
0..1; 

• type char, whose variables assume values of the character set used by the computer on 
which the program is being used (that is, those values representable by litchar tokens); 
and 

• type real, whose variables assume real numbers as values. 

Scalar types provide the basis for the construction of structured types. 

8.2. Anonymous Types 

The anonymous types include enumeration types, index and pointer types, structured 
types, and locks. 

<new type spec> 	<anonymous type> 

8.2.1. Enumerations 

An enumeration (or enumerated type) consists of a list of identifiers which are used as con-
stants in the program. Variables of that enumeration type may assume only those identifers as 
values. The sequence of the identifiers in the declaration of the enumeration defines an order-
ing of those identifiers; the ordinal value of the first identifier is 0. 

	

<anonymous type> 	"(" <enumer id list> ")" 

	

<enumer id list> 	<id decl> {"," <id decl>} 

Example: 

type days is (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday) 

8.2.2. Index and Pointer Types 

An index type is a scalar type, variables of which will be used as indices in FOR loops or 
as array indices. 10  A variable of an index type must be declared locally to the scope within which 
it is used. Structures may not have components of an index type, nor may variables of an index 
type be passed as out or in out parameters to procedures or operations. The index variable of a 
FOR loop must be of an index type. 

<anonymous type> —+ "index" <properly constrained type name> 

Example: 
type loopindex is index integer[1..10) 

Members of a pointer type may assume as values pointers to variables of another type I 
specified in the declaration of the pointer type: 

<anonymous type> -- ■ "->" <constrained type name> 

A pointer value is generated via an allocator (see section 9.1). Also, a member of any pointer 
type may assume the value NIL, which means the variable is not pointing to anything. 

'This declaration provides a hint, to the compiler that a variable of this type would be a good candidate to be 
placed in a register. 
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Example: 
type intptr is -> integer 

As was mentioned in section 4.1 and above, the base type of a pointer may be a forward-
declared type. This allows recursive data structures to be built with pointers. 

8.2.3. Structured Types 

Declarations of structured types provide blueprints for arranging groups of components of 
scalar types or of other structured types into a single structure. Structured types provide the 
programmer differing levels of abstraction with which to view data, from the most primitive 
view—sequences of bits—through high-level abstractions such as records. 

<anonymous type> 	<struct type> 

The structured types include arrays, records, structures, and seta. 

8.2.3.1. Arrays 

An array is a sequence of a fixed number of components which are all of the same type. 
The individual components or elements of an array are specified by the element's indices, which 
are values belonging to the (possibly constrained) index type of the array. 

<struct type> 
<array index type list> 

<type> 
<type spec> 
<type spec> 

Example: 

• "array" "[" [ <array index type list>] "]" "of" <type> 
<properly constrained type name> 
{"," <properly constrained type name>} 

• ["shared"] ["permanent"] <type spec> 
• <constrained type name> 
• <anonymous type> 

type smallarray is array [ integer[1..10] of integer 

A declaration of the form 
array [Ti, T2, ... , Tn] of TO 

with an array index type list of n array index types is considered shorthand for the declaration 

array [Ti] of array [T2] of ... of array [Tn] of TO 
The declaration of an array type is associated with a constraint which gives an indication 

of the number of elements in a member of that type, so that the size of the member may be 
determined at the time of compilation. As explained in section 7, a constraint thus associated 
with a type declaration is inherited as an attribute by members of that type, although the con-
straint is not considered a part of the type itself. This constraint is derived from constraints on 
the index types of the array. It is sometimes useful, however, to delay the specification of the 
size constraint of an array type, especially in the case of a type which is to be used as the type 
of a formal procedure parameter. This is done by use of formal type parameters in the 
specification of the index constraints. 

Example of a parameterized array type: 

type anon(first, last : integer) is array [ integer[first..last] of integer 
type smallarray is new anon(1, 10) 

Although each member of an array type has a fixed number of elements, arrays with a 
flexible number of elements (so-called "dynamic" arrays) may be simulated by using pointers 
to parameterized arrays. Examples of a method for implementing dynamic arrays are presented 
in Appendix F. 
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Two important parameterized array types provided by object standard are described in the 
following subsections. 

8.2.3.1.1. Bitstrings 

A bitstring provides the most primitive structured abstraction of data, that of simply a 
sequence of bits: 

type bitstring(length : unsigned) is array [ unsigned[1..lengthj of bit 

The length constraint of the bitstring (in bits) is indicated by the value of the parameter 
"length." 

Example: 
type nybble is bitstring(4) 

The "system" object, defined for each computer system on which Aeolus may be com-

piled, 11  provides declarations of several useful bitstring types. These types are referred to col-
lectively as the storage classes, since they define the units of storage supported by the hardware 
of most computer systems: types bit, byte, word, longword, and quadword, with lengths BITSIZE, 
BYTESIZE, WORD SIZE, LONGWORDSIZE, and QUAD WORD SIZE, respectively. 

Another important bitstring type, address, is also defined by the "system" object. The 
address type is defined as bilstring(ADDRESSSIZE). The "system" object defines a constant of 
type address called NIL, which was mentioned in section 6.2.2. The relationship between 
address types and pointer types is discussed in section 9.3. 

8.2.3.1.2. Strings 

A string is a sequence of components of type char (that is, a sequence representable by a 
litatring token), terminated by a NUL character (ASCII 0). 

type string(length : unsigned) is array [ unsigned[1..lengthl ] of char 

The maximum length constraint of the string (including the NUL terminator) may be specified 
by the value of the parameter "length." 

Example: 
type tokenstring is string(128) 

8.2.3.2. Records 

A record is a sequence of a fixed number of components which are of possibly differing 
types. An individual component or field of a record is specified by its field name, qualified by 
the name of the record variable to which the field belongs. 

A record type declaration specifies the names and types of each field in a variable of that 
record type. A parameterized record type may also have variant fields. A variant field consists of 
a variant list, each of whose variants is prefaced by a variant label list, a list of constants whose 
types match that of the discriminant. The discriminant of a variant field is one of the formal 
type parameters of the enclosing record type; the name of the discriminant is indicated follow-
ing the keyword case in the variant field specification. The value of the discriminant selects the 
variant from the variant list one of whose variant labels matches that value. 

The rules for modifying type parameters used as record discriminants are the same as for 
other type parameters, and are described above and in section 9.1. 

11At present, Aeolus is supported on the DEC VAX and IBM PC-XT and -AT families of computers; the system 
objects for these families are named VA,Y_Spiem and PC System, respectively. 
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<struct type> 
<field list> 

<field> 
<field> 

<field name list> 
<variant field> 

<variant list> 
<variant> 

<variant label list> 
<variant label> 
<variant label> 

<variant otherwise> 

"record" <field list> "end" "record" 
<field> {"," <field>} 

- <field name list> ":" <type> 
<variant field> 
<id decl> {"," <id decl>} 
"case" <discriminant name> "of" 
<variant list> [ <variant otherwise>) 
"end" "case" 
<variant> ("11"  <variant>) 
<variant label list> ":" <field list> 
<variant label> {"," <variant label>} 

- <scalar const> 
- <subrange> 
- "otherwise" <field list> 

Syntax of' Record Type Declarations 

type t (discrl, discr2 : days) is 
record 

case discrl of 
Monday .. Friday : 

office_no, 
work_phone : integer 

IISaturday, Sunday : 
home_phone : integer 

end case 
last name : string (20) 
case discr2 of 

3, 5 .. 7 : 
weekly_rate : integer 

11 8 	10  
monthly_rate : integer 
benefits 	: boolean 

otherwise 
hourly_rate : integer 
temporary : boolean 

end case 
end record 

Example of' a Record Type Definition 

8.2.3.3. Structures 

A structure is a special case of a record somewhat similar to the packed record construct of 
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Pascal. The declaration of a structure type specifies the storage class which the structure will fit: 

<struct type> 	"structured" <storage class name> 
<field list> 
"end" "structure" 

(The storage classes were discussed in section 6.2.3.1.1.) A field in a structure typically 
represents a bitstring or scalar; the fields are packed together consecutively within an object of 
the specified storage class (without implicit, padding), with the first field specified starting at the 
most significant bit position in the storage class. The compiler checks that the fields declared 
for the structure together fit into the specified storage class. A structure may not have variant 
fields. 

8.2.3.4. Sets 
A set type defines a powerset of sets of values of the specified base type: 

<struct type> 	"set" "of" <constrained type id> 

The base type of a set must be scalar. There is no restriction on the number of elements that 
the base type may have. 

Example (see section 6.2.1): 
type dayset is set of days 

type VAX_processor_status is 
structured longword 
	

bit 
CM, 	 31: Compatibility Mode 
TP 
	

: boolean 
	

30: Trace Pending 
MBZ1 
	

: bitstring (2) 
	

29-28: must be zero 
FPD, 	 27: First Part Done 
IS 	 : boolean 

	
26: Interrupt Stack 

current_mode 	 : 0 .. 3 
	

25-24 
previous_mode 	 : 0 .. 3 

	
23-22 

MBZ2 
	

: boolean 
	

21: must be zero 
IPL 	 : 0 .. 16#lf 

	
20-16: Interrupt Priority Level 

MBZ 3 	 : byte 
	

15-8: reserved (must be zero) 
DV, 	 7: 	Decimal oVerflow bit 
FU, 	 6: 	Floating Underflow bit 
IV, 5: 	Integer oVerflow bit 
T, 	 4: 	Trace bit 
N , 	 3: 	Negative condition code 
Z, 	 2: 	Zero condition code 
V, 1: 	oVerflow condition code 
C 
	

: boolean 
	

0: 	Carry condition code 
end structure 

Example of a Structure Type Definition 
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8.2.4. Locks 

A lock type may be used to declare variables which in turn may be used to implement 
locking protocols on particular values in some domain." 

	

<struct type> 	"lock" "(" <compat list> ")" ["domain" "is" <type>] 

	

<compat list> 	<compat> {"," <compat>} 

	

<compat> 	<id use> ":" "[" <compat id list> "]" 

A lock declaration includes the specification of a compatibility list, which defines, for a given 
mode of the lock, which other modes are compatible with that mode." The presence of an 
identifier in a compatibility list serves as a declaration of that identifier as a mode of the lock 
type; the modes of a lock type may together be thought of as an enumeration. An empty com-
patibility list indicates that the given mode is incompatible with all other modes. 

The lock declaration may also specify the domain of values which may be locked. If the 
domain specification is omitted, a simple lock (i.e., one which does not lock over any particular 
domain) is assumed. 

Examples: 

	

type simple_lock is lock ( 	busy : [] 

	

type 	file_lock is lock ( 	read : [read] 	, 
write : 	) domain is string (20) 

The declaration of "simple lock" above defines a lock type with a single mode "busy" which is 
incompatible with itself; thus, only one client may set a lock variable of type "simple_lock" at 
any one time. The declaration of "file_lock," on the other hand, defines a lock type over the 
domain of strings of length 20. Clients may set a lock variable of type "file_lock" on a given 
string with modes "read" or "write." The "read" mode is specified as being compatible with 
other settings of "read" mode; the "write" mode is incompatible with itself and with "read" 
mode. Thus, a client may set the lock with "read" mode on a given string even if several 
other clients have outstanding settings of the lock with "read" mode on that string; however, a 
client wishing to set the lock with "write" mode on a given string must wait for all outstanding 
settings of "read" mode on that string to be released. 

7. Constraint Declarations 

A constraint, which indicates the minimum and maximum values of the range of values 
which a variable having that constraint may assume, may be specified for any scalar type except 
real. As was described in section 6, a constraint may be associated with a type declaration; 
although the constraint is not considered to be part of that type, members of that type inherit 
the constraint as an attribute. The type being constrained may have already had a constraint 
associated with it; the new constraint replaces any previous constraint. The effect (or lack 
thereof) of constraints on type compatibility is described in section 9.3. 

A constraint may also be associated with a previously-defined named type, and this associ-
ation may be given a name which may be used as if it were a type identifier. Such an associa-
tion is called a constraint declaration:" 

<constraint decl> 	"constraint" <new constraint name> "is" <constrained type name> 

12Note that a lock is obtained for a value of an object, and not on the object itself. Thus, for instance, a lock 

may be obtained on a file name even if that file does not yet exist. The lock s. is directly supported by the 

Clouds architecture. 

13A lock may be set with a specified mode only if other modes already set, if any, are compatible with that mode. 

Thus, a process adhering to a protocol using that lock may wish to block until the requested mode is available. Opera-

tions are provided by object standard for testing, setting, and releasing locks (see Appendix D). 

"A constraint declaration is similar to a subtype declaration in Ada. 
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A constraint declaration does not create a new type, but rather acts as a renaming of the named 
type, with the new constraint replacing any constraint previously associated with the named 
type; the constraint name is thus a synonym for the named type. As explained in section 9.3, 
synonyms for a named type are considered to be equivalent to the named type. 

Example (see section 6.2.1): 

constraint weekdays is days[Monday .. Friday] 

8. Variable Declarations 

A variable declaration introduces a variable into a process or object implementation part; it 
associates the variable with a unique identifier and with a fixed type. All variables whose 
identifiers appear in the same declaration list have the same type. A variable declaration may 
have an optional initialization clause, which consists of a constant expression of the same type 
as the variable type. This expression is evaluated, and its value assigned to the variable, before 
the block is entered in which the variable is declared. 15  

<var decl> 
	<id decl list> ":" <type> [":---=" <expr>] 

A variable may also be declared to be located at a specified address: 

<var address decl> 	<id decl> "[" <address expr> "]" ":" <type> [":---=" <expr>] 

The address expression must be a constant expression of type address. 

Examples: 
j : integer [1 .. 10] := 0 

a : array [ integer [1 .. 10] ] of 
record 

realpart, ima.ginarypart : real 
end record 

string_array : array [ integer [1 .. 10], integer [100 .. 200] I 
of -> string (80) 

KB_flag [16#0017] : PC_keyboard_flag 

9. Expressions 

The use of expressions allows the programmer to obtain the values of variables and to gen-
erate new values by specifying computations to be performed. An expression is constructed 
from operands and operators. 

9.1. Operands 

An operand is either a literal constant (a number or constructor [see below]), an allocator, 
or a variable. 

9.1.1. Variables 

A variable may be designated either by a (possibly qualified) simple identifier, or, if the 
variable is of a structured type, by a structured variable, which consists of the variable name fol-
lowed by selectors. Selectors serve to designate the desired component of a variable. A call to a 
value-returning object operation or procedure (function) may also be used anywhere a variable 
may be used; in particular, the value returned by such a call may be dereferenced with 

15Variables declared global to a compiland are static, and may be initialized before execution (that is, at compila-

tion or link time). 
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appropriate type. 
<id use> 
<rvalue proc call> 
<rvalue obj op call> 
<structured var> 
<variable> "." <id use> 
<variable> "->" 
<variable> "t" <expr> {"," <expr>} "I" 
<variable> "[" <subrange> "1" 

If the variable is of a pointer type, the pointer dereference operator ("->") may be used to 
obtain the item referenced by the pointer. If the variable is of a record type, an individual field 
of the record may be obtained by use of the field dereference operator ("."), followed by the 
name of the field. An individual element of a variable of an array type may obtained through 
use of an element selector operator, which specifies the index of the array element desired. 
Thus, the structured variable a(<erpr>J designates that element of array a whose index is the 
value of the expression <expr>. The list of array index expressions in an array element selec-
tor, such as 

a [<expr 1> , <expr 2> , 	, <expr n>] 

is considered shorthand for the sequence of selectors 

a [ < expr 1>[ [ <expr 2>[ 	[ <expr n>.] 

for an array a declared with n dimensions. The type of each element selector expression must 
be compatible with the type of the corresponding index type of the array (see below). 

Examples of variable designations (see section 8): 

a[5].realpart 

a [i] .imaginarypart 

string_array [1, 110] -> 

string_arra3r [10, 150] -> [80] 

As well as the ability to index single elements of an array, Aeolus provides the ability to 
specify a a/ice (or contiguous group of elements) of an array. A slice is denoted by a subrange 
in an array index expression. 

Examples of slice designations: 

type realarray(first, last) is array [ integer[first..last] of real 
a : realarray( 1, 10) 
b : realarray(1, 5) 
b := a[1..5] 
a[6..10] := b 

A slice may be applied only to a one-dimensional array." 

'Note, however, that any multidimensional array is equivalent to a one-dimensional array the element type of 
which is an array containing the other dimensions; thus, this restriction merely states that slices may only be applied to 
the first dimension of an array. 
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9.1.2. Constructors 

As stated above, operands may be literal constants as well as variables. The specification 
of a literal constant of an integer or real number is simply a token of that type (see section 3). 
A constant of a structured type, however, must be built by specification of its elements in a 
constructor. Constructors for constants of structured types are built using the following syntax: 

	

<constructor> 	<type id> """ "[" <con elem> {"," <con elem>}"]" 

	

<con elem> 	<expr> [":'' <expr>] 

	

<con elem> 	<subrange> 
The constructor is prefaced by the name of the type to which the constant being constructed 
belongs. The value of each element of the constant is then specified (in the order in which the 
elements were declared in the relevant type declaration) by an expression which must have the 
same type as the corresponding element in the structured type. If a structure has several ele-
ments of the same type in sequence, the same value may be assigned to each element by speci-
fying an optional repetition factor (a [positive] constant integer expression); thus, the construc-
tor element 0:10 would specify that the value 0 be assigned to the next 10 elements in a struc-
ture. 

The constructor for a constant of a set type merely lists those elements of the base type 
which are to be included in the set constant. An empty constructor ("H") for a constant of a 
set type implies the so-called null set, which is a set with no members. 

Constants of bitstring and string types may also be expressed using more traditional styles 
of constructors for these types. The alternative constructor for a constant of a bitstring type is 
simply an unsigned binary number (or a number in another base with the equivalent bit pat- 
tern) with same number of bits in its representation as the length of the bitstring. We have 
already seen (in section 3) the alternative constructor for constants of a string type, that is, a 
string token with enclosing quotes. The string constructor may have no more characters than 
the maximum length of the string type. When the standard constructor syntax shown above is 
used for constants of bitstring or string type, each element need not be individually specified; 
rather, (bit)string constants of smaller (maximum) length may appear as constructor elements, 
as long as the total (maximum) length of all constructor elements matches the (maximum) 
length of the target (bit)string type. The individual (bit)string constants are concatenated into 
the resulting constant. 

Constants of other array, record, or structure types may be built only by using the above 
constructor syntax. Constants of parameterized types may also be specified by means of con-
structors; the values of the type parameters are given as record field values at the outermost 
level of the constructor, while the value of the member of the parameterized type is given as a 
nested constructor (which must be consistent with the values of the type parameters). If the 
constant thus constructed is to be assigned to a member of the parameterized type, then if a 
value for a type parameter was given in the declaration of that member, the value for the type 
parameter may not differ from that given in the declaration of the member (but must still be 
specified in the constructor); if, however, the type parameter was given a default value (thus 
associating the parameterized type with a delayed constraint), the value given for it in the con-
structor may differ from the default value. Note, however, that even in this case the value of 
the type parameter may not be changed without specifying the complete value of the member at 
the same time. 
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Examples of constructors (see section 6 and below): 

smallarrayll, 2, 3:5, 4:2, 5] 

word"[byte (2#1000), byte (2#0010)] 

tokenstring"['Hello, world! ', 'Bye, now.'] 

dayset"[Monday, Wednesday, Friday] 

daysetil 

9.1.3. Allocators 

A value of a pointer type may be generated by an allocator. The allocator consists of the 
keyword new followed either by the (completely constrained) name of the type of object to be 
allocated (and which the pointer variable will reference), or by a constructor for the object to 
be allocated, including any necessary type parameters. (The rules for specification and 
modification of type parameter values were described in section 9.1 above.) 

	

<allocator> 
	

"new" <allocation options> 

	

<allocation options> 
	

<properly constrained type name> 

	

<allocation options> 
	

<constructor> 

Instances of object types may also be generated using allocators of the first form (i.e., using the 
name of the object type with any necessary object actual parameters; see section 12). 

9.2. Operators 

The syntax of Aeolus expressions defines precedence levels of operators similar to those in 
Pascal or Modula-2. There are four levels of precedence: the logical NOT operator and the bit-
wise complement ("-") operator have the highest precedence (level 1), followed by the multi-
plicative operators (level 2), then the additive operators (level 3), and finally the relational opera-
tors (level 4). When a sequence of operators has the same precedence, the sequence is exe-
cuted from left to right in textual order. The order of evaluation in an expression may be 
changed by enclosing parts of the expression in parentheses. 

The operators provided by the Aeolus language are listed below. Unless otherwise 
specified, these are binary operators. In certain cases, the same operator symbol has different 
meanings when applied to data objects of different types. The intended operation is then 
identified by the types of the operands. 

9.2.1. Arithmetic Operators 

These operators apply to compatible operands of type integer, longint, unsigned, longuns, 
and (except for the modulus operator) real: 

symbol 	operation precedence 

addition 3 
subtraction 3 
multiplication 2 
division 2 
modulus 2 

The operators "+" and " - " may also be used as unary operators. They then denote the sign of 
a term; the " - " operator implies negation, while the "+ " operator implies the identity opera-
tion. The "%" or modulus operator yields the remainder of an integer division of its (integer) 
operands: 

x %y gives the remainder of x / y, for y > 0. 
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• "int" 
▪ "float" 
▪ "litchar" 
▪ "Ilitstring" 

<constructor> 
• <allocator> 

<variable> 
"not" <factor> 

• "-" <factor> 
• "(" <expr> '')" 

<factor> ("multop" <factor>) 

▪ <simple expr> 
]"sign"] <term> {"addop" <term>) 

<rel expr> 
<simple expr> "relop" <simple expr> 

Syntax of Expressions 

<factor> 
<factor> 
<factor> 
<factor> 
<factor> 
<factor> 
<factor> 
<factor> 
<factor> 
<factor> 

<term> 

<expr> 
<simple expr> 

<expr> 
<rel expr> 

The division operator ("/"), when applied to integer operands, yields the truncated quotient of 
its operands. 

9.2.2. Bitwise Operators 

The following operators may be applied to compatible operands of a bitstring type, except 
that the right operand of the shift operators is an expression of type integer: 

symbol 

< < 
> > 

operation 

bitwise OR. 
bitwise X0Ft 
left shift 
right shift 
bitwise AND 
bitwise complement (unary) 

precedence 

3 
3 
3 
3 
2 
1 

The left and right shift operators yield the value of their first operand shifted left or right 
(respectively) by the number of positions given by the value of their second operand; the 
vacated bits are zero-filled. The results of these operators are undefined if the value of the 
right operand is greater than the length (in bits) of the left operand. The bitwise complement 
operator ("`") yields the one's complement of its operand. 

9.2.3. Address Operators 

Arithmetic on pointers is not qllowed in Aeolus. However, the bitstring type address 
allows the programmer to perform . -1,:zess computations via explicit conversions from pointer 
types (see section 9.3). The "system" object for the computer for which a compiland is being 
compiled (such as VAX System or PC System) defines three named operations on data of type 
address: 

addr(v) 	Returns a value of type address representing the storage address of variable v, 
which may be a static or dynamic data item. 
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next(a, t [, <expr>]) 
Increments the address-type variable a by an amount equal to the product of 
the value of <expr> and the size in address units (bytes or words, depending 
on the system object being used) of the type represented by type identifier t. 
The type of <expr> must be one of the "int types." If <expr> is omitted, 
the value 1 (one) is assumed for it. 

prev(a, t [, <expr>]) 
The same as next, but the address-type variable a is decremented rather than 
incremented. 

9.2.4. Logical Operators 

The following operators apply to operands of type boolean and yield a boolean result: 

symbol 	 operation 	 precedence 

OR 	logical conjunction 	 3 
AND 	logical disjunction 	 2 
NOT 	logical negation (unary)  

9.2.5. Set Operators 

The following operators apply to compatible operands of a set type and yield a value of 
the same type: 

symbol 	 operation 	 precedence  

	

set union 	 3 
set difference 	 3 
set intersection 	 2 
symmetric set difference 	2  

The following named operations are also provided for sets by object standard: 

inset(elem, s) Returns TRUE if the scalar elan is currently a member of.set 8, FALSE other- 
wise. The type of elem must be the same as the base type of s. 

outset(elem, s) Returns the value of not inset(elem, s). 

incl(s, elem) 	The scalar elem is included in (becomes a member of) the set s. The type of 
elem must be the same as the base type of s. 

excl(s, elem) 	The scalar elem is excluded from (is no longer a member of) the set s. The 
type of elem must be the same as the base type of 8. 

The following statements define the (binary) set operations: 

	

inset(x, sl + s 2 ) 	iff 	inset(x, sl) or inset(x, s2) 

	

inset(x, sl - s2) 	iff 	inset(x, sl) and outset(x, s2) 

	

inset(x, sl * s2) 	iff 	inset(x, sl) and inset(x,s2) 

	

inset(x, sl / s2) 	iff 	inset(x, sl) <> inset(x, s2) 

9.2.0. Relational Operators 

The relational operators apply to compatible operands of scalar, set, and bitstring types, 
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and yield results of type boolean: 

symbol 	 relation 

= 	equality 
<> 	inequality 

less than 
<= 	less than or equal to 

greater than 
>--.- 	;greater than or e ual to 

The relations "<=" and ">--=" denote improper inclusion when applied to sets, while the 
relations "<" and ">" denote proper inclusion. The relations "=--" and "<>" may also be 
applied to operands of a pointer type. Operands of a bitstring type are considered to be 
unsigned values of the equivalent length for purposes of comparison. The relations "=" and 
"< >" are also defined for compatible operands of a pointer, string, record, or array type. All 
relational operators have the lowest precedence (level 4). 

9.3. Type Compatibility 

The operands of a binary operation are said to be compatible if they are of the same type, 
that is, if the types of the operand are equivalent. The types of operands are equivalent if the 
operands were declared with the same named type or with the same anonymous type. (This is 
known as name equivalence of types.) Thus, for example, given the declarations 

type t is array [ integer [1 .. 10] ] of integer 
a : t 
b : t 
c, d : array [ integer [1 .. 10] ] of integer 

the variables a and b have equivalent types (and are hence compatible) since their types both 
derive from the named type t. Also, variables c and d are compatible, since they share the 
same anonymous type. However, variable a is not compatible with variable c since their types, 
although structurally equivalent, are not name equivalent, since the anonymous type of c is not 
name equivalent to the named type t. 

The Aeolus language does not allow incompatible operands to appear in an expression; 
that is, there are no implicit type conversions (coercions). However, it is sometimes desirable 
to perform operations on operands of differing types. Thus, Aeolus provides the programmer 
with powerful means of explicit type conversion. An expression takes on the type of its left-
most operand unless modified by explicit use of a conversion function. 

Every named scalar type definition also implicitly defines a conversion function of the 
same name as the scalar type. This function may accept as a parameter an operand of any other 
scalar type, or of a bitstring type of the same storage class. The result of the function invoca-
tion is considered to be a scalar of the named type. Thus, if we have 

i : integer := 0 
type fruits is (apples, oranges, lemons) 

then the result of the expression fruits(1) is of type fruits and has value "apples;" also, the 
result of the expression integer(oranges) is of type integer and has value 1. 

As mentioned in section 7, a constraint which is associated with a scalar type (by way of a 
constraint specification in the type's declaration, or via a constraint declailtion) is not con-
sidered part of that type, but rather is an attribute which is given to an entity (variable, parame-
ter, or record field) of that type. 17  Thus, a constrained entity is compatible with an entity which 
has the same type but a different (or no) constraint. For example, considering the declaration 

I 7Constraints are used for range checking (if enabled) and for determining the sizes of structures, not for type 
checking. 
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of type "days" in section 6.2.1 and the declaration of constraint "weekdays" in section 7, if we 
have the following variable declarations: 

dl : days 	d2 : weekdays 

then dl and d2 are compatible. However, every type declaration creates a new type; thus, if we 
had the declarations 

type it is new integer 	type i2 is new integer 

then entities of type "il" are incompatible with entities of type "i2," as well as with entities of 
type integer. Also, had "weekdays" been declared as a type rather than as a constraint, e.g., 

type weekdays is new days [Monday .. Friday] 

then variables dl and d2 would not be compatible. 

The type of a so-called int token (see section 3.2.1) is determined by the size of the 
number it represents. Such a number may be assigned to any of the "int types" integer, longint, 
unsigned, or longuns (see section 6.2). Since these types are constrained, however, when range 
checking is enabled, the number may not be greater than the maximum (or less than the 
minimum) value representable in the target type. 18  Since the "int types" are declared as types 
rather than as constraints, an expression of one of these types is not compatible with an expres-
sion of some other "int type" without explicit use of the appropriate conversion function. 

The conversion functions integer and longint may also be applied to real expressions; if the 
resulting value is not too large for the given type, the result is an integer (or longint) value 
which represents the integral part of the real number (obtained by truncation). The real 
representation of an integer expression may be obtained by using the conversion function real. 

An array slice with n elements is compatible with any array with n elements and a compa-
tible element type. Also, a slice of one element is compatible with any variable of a type com-
patible with the element type of the slice. Note that this implies the following correspondences: 

	

bit 	< = > 	bitstrin gslice [1..1] 	<=> 	bitstring( 1) 

	

char 	<=> 	stringslice[1..1] 	<=--> 	string( 1) 

Thus, bit is compatible with array [ integer [1..1] of bit; char is compatible with array [ integer 
[1..1] ] of char; and, in general, type t is compatible with an array of one element of element 
type 1. 

The declaration of a named bitstring type implicitly defines a conversion function to that 
bitstring type from any scalar type representable in that length bitstring. Thus, access may be 
obtained to the bit representation of data in an explicit manner. This implicit conversion func-
tion will also accept a data item of another bitstring type as parameter, as long as the 
parameter's length (in bits) is no greater than that of the target type. If the length of the 
source type is less than that of the target type, the resulting value is padded on the right with 
zeroes to the length of the target type. Allso, two named operations are defined by object stan-
dard for selecting parts of the word bitstring type. The highbyte and lowbyte functions return (as 
values of type byte) the high-order and low-order (respectively) bytes of their word parameter. 

The definition of a named pointer type provides a conversion function of the same name 
from a variable of type address to that pointer type. However, the result of such a conversion 
may be used only for dereferences; it may not be assigned to a pointer variable. Values are 
assigned to address variables via the addr operation discussed above; a value may be assigned to 
a pointer variable only by use of an allocator (see section 9.1.3), or via assignment from 
another variable of the same pointer type. The exception to the above rules is a special con-
stant of type address, called NIL, defined by each "system" object. "11) ,  constant NIL, which 
denotes a null pointer or address reference, may be assigned to a variable of any pointer or 
address type. 

18This implies that negative numbers may not be assigned to unsigned or longuns variables, since the minimum 
value representable in those types is 0. 
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A definition of a named string type provides a conversion function of the same name to 
that type from other string types with maximum lengths no greater than that of the target type. 
The resulting value is a null-terminated string with the same value as the source value, but with 
the same maximum length as the target type. A number of named operations are provided in 

object standard for other string manipulations and conversions, such as substring extraction and 
conversions between strings and numbers; these are listed in Appendix D. 

The conversion functions discussed above are for the most part somewhat restrictive in 
the types of the arguments which they will accept. Also, if the range checking option is 
enabled during compilation, most of these functions will generate runtime range checks of their 
parameters. However, Aeolus provides a less restrictive (and less safe) means of type conver-
sion. The retype function accepts as parameters a value of any type and a type identifier; the 
result is a value of the type specified by the type identifier, left-justified bitwise. For example: 

longword value := retype (integer_value, longword) 

No type checking is performed; the only restriction is that the target type representation be no 
smaller (in bitlength) than the type of the source value. Any range checking or filling of 
unused space (when the target type is larger than the source type) is the responsibility of the 
pro gram m er. 

10. Statements 

A statement allows the programmer to specify activities such as assignment of a value to a 
variable, decision branching, or repetitive execution of groups of statements. The so-called aim-
pie eta Cements do not contain other statements, while the compound statements may contain other 
statements as parts. One or more statements may grouped into a statement list: 

	

<stmt list> 	<stmt> (<stmt>} 

for use as a part of a compound statement. 

10.1. Simple Statements 

The simple statements include the assignment statement, procedure call, object operation 
call, EXIT statement, RETURN statement, and NULL statement. 

	

<stmt> 	<simple stmt> 

10.1.1. Assignment Statements 

An assignment statement denotes the replacement of the value of the variable designated 
by the left-hand side with some function of the value of the expression on the right-hand side. 
The assignment operator used in an assignment statement describes what function of the value 
of the right-hand side is to be used. The simplest assignment operator is ":=" (pronounced 
"gets"), which denotes simple replacement. Other assignment operators apply some binary 
operator to the value of the variable designated by the left-hand side and the value of the 
expression on the right-hand side; the resulting value replaces the value of the designated vari-
able. An example of such an assignment operator is "+=" (pronounced "plus-gets"); the 
assignment statement "i + = 1" is equivalent to "i i + I". The other binary operators 
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(listed throughout section 9) also have corresponding assignment operators. 

<simple stmt> 
<assign stmt> 

<lhs> 
<lhs elem> 
<lhs elem> 

<rhs> 
<rhs> 

<action invocation> 
<action invocation> 
<action invocation> 
<rvalue invocation> 
<rvalue invocation> 

<timeout option> 

<assign stint> 
<lhs> "assignop" <rhs> 
<lhs elem> {"," <lhs elem>} 
<id use> 
<structured var> 
<expr> 
["toplevel"[ "action" 
"(" <action invocation> [ <timeout option>] ")" 
<proc call> 
<obj op call> 
<lhs> <assign op> <rvalue invocation> 
<rvalue proc call> 
<rvalue obj op call> 
"for" <expr> 

Besides a single variable designation, an assignment statement may also take a list of vari-
able designations as its left-hand side; this is called a multiple assignment. Here, the value of the 
expression on the right-hand side is assigned to each of the variables designated on the left-
hand side, from the right of the list to the left. For example: 

j, k :=-- m + 1 

is equivalent to the series of assignment statements: 

	

1 	i:=m+ 1 

Assignment statements with other assignment operators may also be mutliple assignments. The 
variable designation rightmost in the variable list is used as the left operand for the binary 
operator. Thus: 

j, k + = 1 

is equivalent to the series of assignment statements:" 

	

k:=k+ 1 j:=k+ 1 	i:=k+ 1 
An assignment statement may also take the form of an action invocation. Action invoca-

tions are described in section 13. 

10.1.2. Procedure Calls 

A procedure call statement activates a named procedure. The procedure call may have a 
list of actual parameters, which are substituted for the corresponding formal parameters defined 
by the procedure declaration: 

	

<simple stint> 	<proc call> 

	

<proc call> 	<proc id> "(" <param list> ")" 

Procedure calls are more fully described in section 11.2. 

ieThis may be compared to the equivalent C statement: 

i 	j 	k = 1; 

-25- 



Aeolus Reference Manual 	 Preliminary Version 

10.1.3. Object Operation Calls 
Object operation calls are similar to procedure calls. However, an object operation must 

in general be invoked on that instance of the object type given by the object ID specified in the 
operation call: 

	

<simple stmt> 	<obj op call> 

	

<obj op call> 	<obj id> "@ " <obj op id> "(" <param list> ")" 

	

<obj id> 	<id use> 

	

<obj id> 	<structured var> 
Operation calls are more fully described in section 12.3. 

10.1.4. EXIT Statements 
An EXIT statement specifies the termination of one or more enclosing loops (see section 

10.2.4). The keyword exit may be followed by either a period ("."), which specifies the termi-
nation of the immediately enclosing loop, or by an identifier, which specifies the termination of 
the enclosing loop with the same name: 

<simple stmt> 	<exit stmt> 
<exit stmt> 	"exit" <name option> 

<name option> 
	

,, 

<name option> 	<id use> 
An EXIT statement may not appear outside a loop; however, a loop may contain several exit 
statements. 

Examples: 
exit . 

exit outer loop 

10.1.5. RETURN Statements 
A RETURN statement specifies the termination (and return from) the enclosing pro-

cedure. The keyword return may be followed either by a period (".") if the enclosing pro-
cedure does not return a value, or by an expression of the same type as the declared return 
type if the procedure is value-returning: 

<simple stmt> 	<return stmt> 
<return stmt> 	"return" <value option> 

<value option> 
<value option> 	<expr> 

A RETURN statement may not appear outside a procedure body; however, a procedure body 
may contain several RETURN statements. 

Examples: 
return . 

return 1.0 - cos (2.0*PI) 

10.1.0. NULL Statements 
A NULL statement indicates that no action is to be taken: 

<simple stmt> 	<null stmt> 
<null stmt> — "null" 

The NULL statement is useful in constructs in which a statement or statement list would ordi-
narily appear, but where no action is desired, for instance, in certain cases in a CASE statement 
or as the body of a procedure stub which is to be filled in later. 
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10.2. Compound Statements 

The compound statements include the IF statement, CASE statement, LOOP statement, 
USING statement, and REGION statement. 

<stint> 	<compound stint> 

10.2.1. IF Statements 

The IF statement allows 

<compound stmt> 
<if stmt> 

<elsif option> 
<else option> 	---• 

<if stmt> 
"if" <expr> "then" 
<stmt list> {<elsif option>} [ <else option>] 
"end" "if" 
"elsif" <expr> "then" <stmt list> 
"else" <stmt list> 

the programmer to construct decision control structures: 

The expressions following the key-words :land elsif must be of type boolean. These expressions 
are evaluated in order, and the corresponding statement lists skipped, until one of the boolean 
expressions yield the value TRUE; the statement list following the keyword then after this 
expression is then executed, and control is then transferred to the statement following the key-
words end if. If the optional ELSE clause is present, the statement list following the keyword 
else is executed if none of the boolean expressions evaluate to TRUE. 

10.2.2. CASE Statements 

The CASE statement allows the programmer to specify a multiple-branch decision struc-
ture based on the value of a single expression: 

-• 
-• 

<compound stmt> 
<case stmt> 

<case list> 
<case elem> 

<case stmt label list> 
<case stmt label> 
<case stmt label> 
<otherwise part> 

<case stmt> 
"case" <expr> "of" 
<case list> [ <otherwise part>] 
'end" "case" 
<case elem> {"II" <case elem>} 
<case stmt label list> ":" <stmt list> 
<case stmt label> {"," <case stmt label>} 
<scalar const> 
<subrange> 
"otherwise" <stmt list> 

if inset (ch, charsetTa' 'z'D then 
process_alpha (ch) 

elsif inset (ch, charsetl'O' .. '9']) then 
process digit (ch) 

elsif inset (ch, charset"[',', 1 . 1 , 11) then 
process_punctuation (ch) 

else 
error_message ('Not a valid character') 
ch " 

end if 

Example of an IF Statement 
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First, the expression following the keyword case is evaluated. This expression must be of a 
scalar type (excluding type real); also, each of the case statement labels must be a scalar constant 
or a scalar constant subrange the type of which is compatible with that of the expression (no 
value may occur or be contained in more than one label). Second, if one of the case statement 

label lists contains a label which matches or contains the value yielded by the expression, the 
statement list following that label list is executed, and control is transferred to the statement 
following the keywords end case. If none of the labels matches the value of the expression, and 
the optional OTHERWISE clause is present, the statement list following the keyword otherwise 
is executed; if no OTHERWISE clause is present, control is transferred to the end of the CASE 
statement. 

10.2.3. LOOP Statements 

The LOOP statement allows the programmer to specify that a statement list be executed 
repeatedly, either for a specified number of iterations, or while some condition is true, or until 
the loop is explicitly exited. The basic form of the LOOP statement, without the optional itera-
tion clause, is essentially an infinite loop: the enclosed statement list is executed until the loop is 
explicitly exited by means of an EXIT statement (see section 10.1.4). 

case ch of 
'a' 	'z' : 

process_alpha (ch) 
11 ,0' 	'9' : 

process digit (ch) 
I I 	It 	. 

, 	 • 	 , 	 • 

process_purtctuation (ch) 
otherwise 

error message ('Not a valid character') 
ch 

- 

" 
end case 

Example of a CASE Statement 

— 0 

— 0 

— 0. 

— 0 

— 0 

<compound stmt> 
<loop stmt> 
<loop stmt> 

<basic loop> 
<iteration clause option> 
<iteration clause option> 

<direction> 
<direction> 
<by clause> 

<loop stmt> 
[ <iteration clause option>] <basic loop> 
<loop id dec> ":" [ <iteration clause option>] 
<basic loop> <loop id use> 
"loop" <stmt list> "end" "loop" 
"while" <expr> 
"for" <index id> ":=" <expr> 
<direction> <expr> [<by clause>] 

to  I 

"downto" 
`y" <expr> 

Syntax of LOOP Statements 
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Two iteration clause options are available for control of the repetitive execution of the 
LOOP construct. The simplest of these two options is the WHILE clause, which specifies that 
the loop is to be continued as long as some condition is fulfilled. The expression following the 
keyword while must be of type boolean. This boolean expression is evaluated before each exe-
cution of the statement list enclosed by the LOOP construct; this repetition continues as long as 
the expression yields the value TRUE. 

The second iteration clause option is the FOR clause, which specifies a that a progression 
of values is to be assigned to a variable during the repetitive execution of the loop. The 
identifier following the keyword for is called the loop index variable; this identifier must have 
been declared as a variable of an index type (see section 6.2.2). The loop index variable may 
not be the target of an assignment statement within the statement list enclosed by the LOOP 
construct. The direction of the progression of values is specified by the use of one of the 
<direction> keywords to or downto; the former specifies an increasing progression (that is, the 
loop index is incremented on each iteration), while the latter specifies a decreasing progression 
(the loop index is decremented). The ordinal amount by which the loop index is incremented 
or decremented on each iteration is specified by the value of the expression following the key-
word by in the optional BY clause; this expression must yield a positive value. If no BY clause 
is given, the value 1 is assumed for the increment or decrement. The starting value of the pro-
gression is given by the value of the expression following the token ":=", while the ending 
value of the progression is given by the value of the expression following the <direction> key-
word; the types of these two expressions must be compatible with the base type of the loop 
index. All three expressions (starting value, ending value, and increment) are evaluated before 
the loop is entered. Execution of the statement list enclosed by the LOOP construct continues 
until the value of the loop index variable exceeds the ending value, in the sense of the direc- 

tion of the progression. 

A LOOP statement may optionally be qualified by a loop identifier. The appearance of this 
identifier at the start of the construct is considered to be the declaration of the loop identifier; if 
a loop identifier is specified, the same identifier must appear after the end loop keywords. The 
scope of the loop identifier is the extent of the LOOP statement which declared it. A loop 
identifier may be used in the <name option> clause of an EXIT statement (see section 10.1.4) 
to specify the termination of an enclosing loop with that name. 20  

Examples: 

InOut @ ReadChar (ch) 
while ch, < > 	loop 

process_char (ch) 
InOut 4 ReadChar (ch) 

end loop 

for ch := 'z' downto 'a! by 2 loop 
process char (ch) 
for i := integer (ch) to 10 * integer (ch) loop 

InOut 4. WriteChar (ch) 
end loop 

end loop 

This is especially useful when the named loop is not the loop immediately enclosing the EXIT statement. 
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outer : 
loop 

loop 
InOut @ ReadChar (ch) 
if ch 	then 

number_of_sentences + = 1 
exit outer 

elsif ch =' then 
exit . 

end if 
process char (ch) 

end loop 
number_of_words + = 1 
skip spaces () 

end loop outer 

10.2.4. USING Statements 

The USING statement allows the programmer to "alias" parts of complicated variable 
designators. These "aliases" may then be used in place of those parts of the designators within 
the statement list enclosed by the USING construct: 

<compound stmt> 
<using stmt> 

<use spec list> 
<use spec> 

<using stmt> 
"using" <use spec list> "do" 
<stmt list> 
"end" "using" 
<use spec> {"," <use spec>} 
<id decl> "for" <variable> 

The effect of a USING statement is the creation of a nested scope for the extent of that USING 
statement; the identifiers on the left-hand sides of each <use spec> in the <use spec list> 
are considered to be declared within this scope. The effective address value yielded by the vari-
able designation on the right-hand side of a <use spec> is assigned to the identifier on the 
left-hand side of that <use spec> 21  (that is, the identifier denotes the so-called !value of the 
variable designation). That identifier may then be used as shorthand for the variable designa-
tion within the statement list enclosed by the USING statement. An identifier declared in a 
<use spec> may also be used in the variable designation of any <use spec> following it tex-
tually. 

Example (see section 9.1): 

using sl for string_array [10], s2 for sl [150] ->, aj for a [j] do 
InOut @ WriteString (s1 [149] ->) 
InOut @ WriteString (s2) 
InOut @ WriteChar (s2 ]80]) 
s2 	string80Tthanks for all the fiche.' , ":551 
s2 [1] := IT' 
aj.imaginarypart := 0.0 

end using 

10.2.5. REGION Statements 

The REGION statement implements a critical region protocol for mutual exclusion on exe-
cution of a region (list of statements). In the header of the REGION statement, the program-
mer specifies a variable designator on which the statements enclosed by the REGION statement 

21This value is also considered to be a good candidate to be placed in a register. 
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will operate: 

	

<compound stmt> 	<region stmt> 

	

<region stmt> 	"region" <variable> "do" 
<stmt list> 
"end" "region" 

The type of the entity designated by <variable> must have the attribute shared (see section 
6), which indicates that access to the entity may be safely shared among concurrent processes. 
To ensure safe access, a shared entity may be appear as the target of an assignment only within 
a REGION statement designating that entity. Note that this entity may be an element of a 
structured type such as an array or record. 

The effect of the attribute shared is to associate the shared entity with a semaphore. 
(Note that if an array is composed of shared elements, this implies that the array is associated 
with an array of semaphores.) The semaphore associated with a shared entity is used to control 
access to all regions designating that entity by the variable designator <variable>. The first 
process to enter such a region when the semaphore is free will then gain exclusive access to 
that region; other processes attempting to enter that region, or other regions designating the 
same entity, will be forced to wait in a queue on the semaphore. When a process leaves the 
region, it signals the semaphore so that the next process in the queue gains access (in a first 
in—first out manner). 

Example (see section 9.1): 

region a [j] do 
a 01 .realpart := 10.5 
a [j] imaginarypart := 0.2 

end region 

11. Procedures 

The procedure construct provides a type of control abstraction known as procedural 
abstraction. A statement list may be associated with an identifier by means of a procedure 
declaration; then, the use of that identifier in a procedure call statement implies the activation of 
that statement list, with the possible substitution of actual procedure parameters for formal pro-
cedure parameters. Also, a procedure may be declared as value-returning, in which case the pro-
cedure may be activated within an expression; the return value of the procedure call may then 
be used by the expression for further computation. 

11.1. Procedure Declarations 

A procedure declaration consists of a procedure header and a list of statements enclosed by 
a procedure block. The header contains declarations of the procedure's name and (optionally) its 
formal parameters, return type, and procedure attributes; the block may contain, besides the 
statement list, any local declarations of constants or variables. The procedure block may be 
replaced in the declaration by the keyword forward, which indicates that the procedure block 
will appear in a second declaration of the procedure which must appear later within the same 
compiland; the specification of parameters, return type, and attributes must appear in the pro-
cedure header in the so-called forward declaration, and may not be repeated in the procedure 
header of the second declaration. 

The visibility of constants and variables declared locally to a procedure, as well as the visi-
bility within a procedure of items declared in a procedure's environment On ,3 discussed in sec-
tion 4.1. The values of locally-declared variables are undefined upon entry to the procedure 
unless these variables have an associated initialization clause. Note that a procedure may not 
be declared within the declaration of another procedure; that is, a procedure declaration may 
not be nested. The use of a procedure's identifier in a procedure call within its procedure block 
declaration denotes the recursive activation of the procedure. 
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▪ <proc hdr> "forward" 
▪ <proc hdr> <proc block> "procedure" 

"procedure" <proc name decl> "(" [<formal params>] ")" 
["returns" <properly constrained type name>] 
"is" [<proc attr>] 

- <formal param section> 
{"," <formal param section>} 
<id decl list> ":" 
[ <param mode>] <constrained type name> 
"in" 
"out" 
"in" "out" 

- "inline" 
"pure" 

▪ [ <proc block decl pt>] <stmt pt> 
<proc declaration> {<proc declaration>} 
<const or var decl> 
<type clecl> 
<constraint decl> 
<var address decl> 
"begin" <strut list> "end" 

Syntax of Procedure Declarations 

<procedure decl> 
<procedure decl> 

<proc hdr> 

<formal params> 

<formal param section> 

<param mode> 
<param mode> 
<param mode> 

<proc attr> 
<proc attr> 

<proc block> 
<proc block decl pt> 

<proc declaration> 
<proc declaration> 
<proc declaration> 
<proc declaration> 

<stmt pt> 

The formal parameters declared in a procedure header act as "placeholders" in the pro-
cedure block for the actual parameters to be passed in a procedure call. At the time of a pro-
cedure call, the formal parameters are replaced by the corresponding actual parameters. The 
type of a formal parameter may be any (possibly constrained) named type. The scope of a for-
mal parameter is the same as that of the local variables of the procedure, that is, its scope is the 
extent of the procedure. There are three possible modes of a procedure parameter: 
in 	An in procedure parameter acts as a local constant to the procedure whose value is 

provided by the corresponding actual procedure parameter. The actual parameter may 
be any expression of a type compatible with the formal parameter. As in the case of 
constants, an in parameter may not appear as the target of an assignment statement 
nor as an actual parameter corresponding to a formal parameter of mode out or in out 

out 	An out procedure parameter acts as a local variable to the procedure; the value of the 
parameter is assigned to the corresponding actual procedure parameter no later than 
upon return from the procedure. The actual parameter must be a variable of a type 
compatible with the formal parameter; the identity of this variable is determined when 
the procedure is invoked, and may not change during the invocation. The value of an 
out procedure parameter is undefined upon procedure entry. 

in out The same as out, except that the initial value of the procedure parameter is provided 
by the corresponding actual parameter. 

If no mode is specified for an formal procedure parameter, the mode is assumed to be in. 
A procedure may be specified to have a return type, in which case it is called a value-

returning procedure or function. The type of the return value may be any (possibly con-
strained) named type. The value to be returned must be specified by an expression in a 
RETURN statement (see section 10.1.5); the type of this expression must be compatible with 
the return type. 
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A procedure declaration may also specify certain attributes for the procedure. These 
include inline, which specifies that the compiler should insert the procedure code "inline" at the 
point of the call to the procedure, rather than to compile an actual call to the procedure; and 
pure, which indicates to the compiler that the procedure does not modify any non-local variables 

or make any calls to non-pure procedures. 22  

Example (see Appendices A and B for more examples): 

procedure factorial ( i : in integer ) returns integer is pure 
begin 

if i <= 1 then 
return 1 

else 
return i* factorial(i-1) 

end if 
end procedure ! factorial ! 

11.2. Procedure Invocations 

The invocation of a procedure may take place either as a procedure call statement (see sec-
tion 10.1.2), or (if the procedure has been declared as value-returning) within an expression: 

	

<proc call> 
	

<proc id> "(" [<param list>] ")" 

	

<param list> 
	

<expr> {"," <expr>} 
The values of the actual procedure parameters specified in a procedure call are evaluated before 
the call, and these values are substituted for the formal parameters within the called procedure. 
For in formal parameters, the actual parameter may be an expression. An actual procedure 
parameter which is substituted for a formal parameter of mode out or in out must be a variable 
designator; the selectors for components of structured variables are evaluated before parameter 
substitution takes place (that is, before the procedure call). The type of each actual parameter 
must be compatible with that of the corresponding formal parameter, and the number of actual 
parameters must match the number of formal parameters for that procedure, unless a parame-
ter has been specified as arbitrary (more to come on this). 

Example: 
factorial(2*j) 

12. Objects 

The object construct provides support for data abstraction in Aeolus. A collection of 
related data items may be encapsulated within an object, which also may provide operations (pro-
cedures that operate) on the data. The only access to the data of an object is via these opera-
tions; thus, an object can strictly control manipulation of its encapsulated data, helping guaran-
tee the invariants of the abstraction. 

An Aeolus object may also have parameters indicating, for instance, sizes or element 
types of the abstraction implemented by the object; thus, an object implementing a bounded 
stack abstraction may be parameterized by the element type and maximum number of elements 
of the stack. Then, various instances of the bounded stack object may be created (instantiated) 
with differing element types and sizes; the implementation of the object need not be concerned 
with details such as the element representation, and the programmer does not need to create 
new object types for each combination of element type and stack size. Support for such generic 
objects increases the level of abstraction available to the programmer, and makes possible the 
creation of libraries of reusable object types. 

22This attribute gives the compiler a hint that certain optimizations may be possible in this procedure. This attri-
bute is used at the programmer's risk; that is, the compiler does not attempt to verify that the procedure is actually 
pure. 
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The object construct also provides a safe separate compilation mechanism. The separation 
of an object specification into a definition part and an implementation part allows checking across 
the interface to an object, as well as allowing the use of an object definition before the 
corresponding implementation part is finished (thus facilitating top-down design). 

12.1. Object Definition Parts 

The definition part of an object defines the interface of the object with other compilands. 
It specifies the attributes of the object itself as well as the constants, types, and operations 
which the object provides to other objects and to processes. 

Specification of the autosynch keyword in an object definition header causes code to be 
generated for automatic synchronization of object operation invocations based on programmer-
supplied indications of operation effects (see below). This mechanism provides a simple 
read/write locking protocol; it may be used with any object class (see below) . 23  

The object class is also specified in the object definition header. The object classes fall into 
two groups: the non-Clouds object classes (pseudo and local) do not use any of the Clouds 

<comp unit> 
<obj def> 

<obj def hdr> 

<obj class> 
<obj class> 
<obj class> 
<obj class> 
<obj class> 

<generic option> 
<obj formal param list> 

<obj formal paranu> 
<generic type> 
<generic type> 

<obj visible decls> 
<imports> 

<decls&specs> 
<visible decl part> 

<visible decl> 
<visible decl> 
<visible decl> 

<op spec part> 
<op spec list> 

<op spec> 

<op effect> 
<op effect> 

- <obj def> 
<obj def hdr> <obj visible decls> "end" "definition" 4 7 7 

- "definition" "of" <obj class> ["autosynchl 
"object" <obj name decl> [ <generic option >] "is" 
"pseudo" 
"local" 
"nonrecoverable" 
"recoverable" 
"autorecoverable" 
"(" <obj formal param list> ")" 
<obj formal param> {"," <obj formal param>} 
<id decl> ":" <generic type> 
<constrained type id> 

- "type" 
- [ <imports>] <decls&specs> 

"import" <import name> {"," <import name>} 
[ <visible decl part>] [ <op spec part>] 
<visible decl> {<visible decl>} 

- <const decl> 
- <type decl> 

<constraint decl> 
- "operations" <op spec list> 
- <op spec> {<op spec>} 

"procedure" <proc name decl> 
"(" <formal params> ")" 
["returns" <properly constrained type name >] [ <op effect>] 

- "examines" 
- "modifies" 

Syntax of Object Definition Parts 

zsFor more information on the mechanisms supplied by the Clouds system to support synchronization and 
recovery, see lAllc83b1. 
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facilities for action or object management, and are thus similar to modules in Modula-2 (for 
pseudo-objects) or to generic packages in Ada (for local objects), while the so-called Clouds 
object classes (nonrecoverable, recoverable, and autorecoverable) may make use of the object 
management facilities and (for recoverable and autorecoverable types) the action management 
facilities. The definitions of the object classes are as follows: 

non-Clouds object classes: 

pseudo 	(or pseudo-local) A class of local (non-Clouds) object of which there is only one 
instance. This object class is used mainly for definition of system libraries, for inter-
facing with (separately-compiled) collections of procedures written in another pro-
gramming language, for abstraction of machine and system dependencies, and as a 
basic separate-compilation mechanism. 

local 	The standard class of non-Clouds object, which may have multiple instances. Object 
management is provided by the Aeolus runtime system. Unlike Clouds objects, a 
local object may have no existence independent of the process or object which 
created it. Local objects simulate Clouds objects without incurring the expense of 
the use of the action and object management facilities. 

Clouds object classes: 

nonrecoverable 	The basic class of Clouds object. Objects of class nonrecoverable make use 
of the object management facilities, but may not contain recoverable areas 
or action event handlers. 

recoverable 	The "roll-your-own recovery" type of Clouds object, as opposed to the 
autorecoverable class of objects (described below), which provides com-
pletely automatic recovery. In some cases, the programmer may be able to 
use knowledge of the semantics of the object and its operations to program 
synchronization and recovery mechanisms more efficient than the automatic 
mechanisms supplied by the autorecoverable class of objects. Automatic 
recovery involves checkpointing of the entire object state; automatic syn-
chronization is based on a simple read-write model of operation interactions 
on entire operations. As will be discussed in section 13, Aeolus provides 
facilities that allow the programmer to specify which parts of the object 
state are to be checkpointed (recoverable areas), to access information 
about the states of actions and to change these states (via operations on the 
action manager), and to control the recovery process by specification of 
what is to be done during action events (action event handlers); also, the 
programmer may specify finer-grained locking mechanisms for greater con-
trol of synchronization (via the lock type; see section 6.2.3.8). Only recov-
erable objects may contain recoverable area specifications and action event 
handler specifications. 

autorecoverable 	As mentioned above, autorecoverable objects provide completely automatic 
recovery. The entire object state (the global variables of the object) is 
recoverable, and the default event handlers are used. 

An instantiation of an object (other than of class pseudo) is created by use of an allocator (see 
section 9.1); the allocator yields a capability to the newly-created object instance, which may be 
assigned to a variable of that object type. The variable may thereafter be used to qualify opera, 
tion invocations on that object instance. The init object event handler (see section 12.2 below) 
for the object, if specified, as well as any variable initializations required by the object, is exe-
c-te‘' during the instantiation process. 

If an object is to be generic, the programmer must specify the formal object parameters in 
the object definition header. Such a parameter may be of any (possibly constrained) named 
type, or it may be an identifier which is to be used within the object implementation as a type 
identifier (specified by the keyword type in place of a type name in the formal parameter 
specification). As stated above, these parameters may be replaced by actual parameters (in the 
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definition of local object bounded_stack ( size : unsigned, elem_type : type ) is 

! Definition of a generic bounded stack object with size SIZE 
! and elements of type ELEM_TYPE. 

operations 

procedure push ( elem : elem_type ) modifies 
! Places ELEM on the top of the stack, if the stack is not full. 

procedure pop () returns elern_type modifies 
! Removes the top element of the stack and returns it. 
! The return value is undefined if the stack is empty. 

procedure top elem () returns elem_type examines 
! Returns the top element of the stack without removing it. 
! The return value is undefined if the stack is empty. 

procedure empty () returns boolean examines 
! Returns TRUE if the stack has no elements, FALSE otherwise. 

procedure full () returns boolean examines 
! Returns TRUE if the stack has SIZE elements, FALSE otherwise. 

end definition. ! bounded_stack ! 

Example of an Object Definition 

form of expressions or type names) when a variable of that object type is declared; the values 
of the actual parameters then determine the sizes, element types, etc. of that instance of the 
generic object (see section 6.3). 

Following the object definition header, the programmer may specify the names of other 
object definitions which contain constant or type specifications to be used in this object 
definition. The names of these objects are specified in an import clause. Definitions imported 
in an object's definition part are also available in that object's implementation part. 

After any necessary imports are specified, the declarations of the object definition are 
given. These are called its visible declarations since the declarations are available publically to 
any object which imports the object definition. The visible declarations of an object may 
include specifications of constants, types, or operations, but not of variables. The specifications 
of the object's operations are listed following the keyword operations. Each specification con-
sists of the procedure's header (see section 11.1), optionally followed by one of the operation 
effect keywords examines or modifies, which indicate that the operation reads from or writes to 
the object's state, respectively. This information is used by the compiler to generate automatic 
read or write locking for each operation if the autoaynch attribute is specified for the object. If 
no operation effect is specified, the con ;il_r assumes that the operation neither reads nor 
modifies the object state, and thus no automatic locking is done for that operation. 
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12.2. Object Implementation Parts 

The implementation part of an object provides the actual code for the operations of the 
object, as well as the definitions of any private constants, types, variables, or procedures needed 
by the object. The definition part of the object being implemented is implicitly imported by the 
implementation part; thus, the attributes, formal object parameters, and public constant, type, 
and operation specifications provided by the definition part may not be repeated in the imple-
mentation part. Also, as mentioned in the previous section, any objects imported by the 
definition part are also available in the implementation part. The implementation part may 
import other objects as well via its own import clauses. All constants, type definitions, and 
operations declared in the objects made available by any of these methods are visible in the 
implementation part; also, the names of these imported object types may be used as the types 
of variables declared in the implementation part. Such variables must be initialized by use of 
an allocator (see section 9.1). 

If the recoverable class is specified in the definition header of the object being imple-
mented, the programmer may give an action events part and/or a per-action part in the object's 
implementation part. Action events part and per-action part specifications are described in sec-
tions 13.2 and 13.3, respectively. 

An object implementation part must include full declarations of all operations specified in 
the object's definition part. As with the full (second) declaration of a forward-declared pro-
cedure, the parameter list of an operation is not given in its full declaration. Constants, types, 
or procedures declared in the <obj imp block> but not specified in the object's definition part 
are not visible to other compilands importing the object. Variables declared in the outer level 

• <obj imp head> <obj imp block> <obj imp tail> 
<obj imp hdr> <imports> <event part> 
"implementation" "of" "object" <obj name> "is" 
"action" 'events" <override list> 
<override> {"," <override>} 

• <id decl> "overrides" <id use> 
[ <obj block decls pt>] <obj events pt> 
<obj block decls> {<obj block decls>1 
<const or var decl> 
<type decl> 
<procedure decl> 
<recoverable area spec> 
<per-action spec> 
<inithandler spec> <reinithandler spec> <deletehandler spec> 
"inithandler" "is" 
<proc block> 
"end" "inithandler" 

▪ "reinithandler" "is" 
<proc block> 
"end" "rein.ithandler" 
"deletehandler" "is" 
<proc block> 
"end" " ..-letehandler" 

• "implefilentation" "." 

Syntax of Object Implementation Parts 

<comp unit> 
<obj imp head> 
<obj imp hdr> 

<event part> 
<override list> 

<override> 
<obj imp block> 

<obj block decls pt> 
<obj block decls> 
<obj block decls> 
<obj block decls> 
<obj block decls> 
<obj block decls> 

<obj events pt> 
<inithandler spec> 

<reinithandler spec> 

<deletehandler spec> 

<obj imp tail> 
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of the <obj imp block> are global to the object, and are static ("own") variables; that is, the 
values of such variables survive between calls to the object's operations. The global variables 
of an object are called collectively the object's state. In an object of class recoverable, part of the 
object state may be specified to be in a recoverable area. Recoverable areas are described in sec-
tion 13.2. 

An object implementation part contains specifications of handlers for the so-called object 
events. The object events include the Mit or object initialization event, the handler for which is 
executed whenever an instance of the object is created by use of an allocator (see section 12.1); 
the reinit or object reinitialization event, the handler for which is executedf the object has 
registered its desire for reinitialization with the action managerhen the system is reinitialized 
after a crash or partition (see Appendix E); and the delete or object deletion event, the handler 
for which is executed when the object instance is destroyed. No default handlers for the object 
events are supplied; if no action is desired for an event, the programmer must supply a NULL 
statement as the handler body. 

12.3. Object Operation Invocations 

An invocation of an object operation looks much like a procedure invocation, except that, 
outside the implementation part of the object itself, an operation name must be qualified by the 
name of a variable representing an instance of that object type (or, for pseudo-objects, by the 
name of the object type itself): 

	

<obj op call> 	<obj spec > "@ " <obj op id> "(" <param list> ")" 

	

<obj spec> 	<id use> 

	

<obj spec> 	<structured var> 

When an object invokes one of its own operations, however, the usual procedure call syntax is 
used. 

Invocations of pseudo-object and local object operations have semantics essentially like 
those of calls to procedures local to a compiland. The situation is different for operations 
declared in objects which use the Clouds object-management facilities (i.e., the so-called 
"Clouds objects") . 24  Invocations of operations on Clouds objects are handled by the compiler 
through operations on the Clouds object manager on the machine on which the invoking code 
is running. The Clouds object on which the operation is being invoked need not be located on 
the same machine as the invoking code; the object manager then makes a remote procedure call 
(RPC) to the object manager on the machine on which the called object resides. The 
location—local or remote—of the object being operated upon, however, need not concern the 
programmer, as the RPC process is transparent above the object-management level. (More to 

implementation of object bounded_stack 
! ( size : unsigned, elem_type : type ) ! is 

! More to come. 

end implementation. ! bounded_stack ! 

Example of an Object Implementation 

24This is because the code for pseudo-objects and for local objects is actually linked into the code of the compi-
land using these objects, whereas the code for Clouds objects is physically separate from the code of the invoking corn-
piland. This code is paged in on demand by the object manager (see lAllc83b1). 
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come on operation invocation semantics.) 

Examples (see previous two sections): 

sl : bounded stack ( integer, 10 ) 
s2 : bounded_stack ( real, 5 ) 

if not s2 CI) full 0 then 
s1 @ push (42) 

elsif not s2 @ empty () then 
r := s2@ pop() + 3.14159 

end if 

13. Actions 

The action concept provides an abstraction of the idea of work in the Clouds system; an 
action represents a unit of work. Actions provide failure atomicity, that is, they display "all-or-
nothing" behavior: an action either runs to completion and commits its results, or, if some 
failure prevents completion, it aborts and Its effects are cancelled as if the action had never exe-
cuted. The rationale for the action concept and the mechanisms supporting it in the Clouds 
system are described in [Allc83b]. 

Support for actions in the Aeolus language is relatively low-level. The methodology of 
programming with actions is not at present well-understood compared with experience in pro-
gramming with objects; thus, rather than providing high-level syntactical abstractions such as 
those available for object programming, Aeolus allows access to the full power of the Clouds 
system facilities for action management. The major syntactic support provided by Aeolus for 
action programming is in the programming of action events, recoverable areas, permanent and 
per-action variables, and action invocations. 

13.1. Action Events 

At several points during the execution of an action, the action interacts with the action 
manager of the Clouds system to manage the states of objects touched by that action, including 
writing those states to permanent (stable or safe) storage, and recovering previous permanent 
states upon failure of an action. Thus, failure atomicity may be provided by the action manage-
ment system. The action events include: 

event name 

BOA 
toplevel_precommit 

nested_precommit 
commit 

abort 

purpose 

beginning of action 
prepare for commit for a toplevel action 
prepare for commit for a nested action 
normal end of action (BOA) 
abnormal end of action 

The interactions with the Clouds action manager necessary when such events take place 
are done by default procedures supplied by the Aeolus compiler and runtime system; these pro-
cedures are called event handlers. When an action event occurs for a particular action, the 
action manager(s) involved invoke the event handlers for each object touched by that action. 

As was described in section 12.1, by specification of the keyword autorecoverable in the 
header of an object definition the programmer may take advantage of the recovery facilities of 
the Clouds system by having the compiler generate the necessary code a".tumatically. This 
automatic recovery mechanism requires checkpoints of the entire state of the object, and uses 
the default action event handlers. However, it is sometimes possible for the programmer to 
improve the performance of object recovery by providing one or more object-specific event 
handlers which make use of the programmer's knowledge of the object's semantics; these 
programmer-supplied event handlers then replace the respective default event handlers for that 
object. Thus, if object class keyword recoverable is specified in the definition header of the 
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object being implemented, the programmer may give an optional action event part in the object's 
implementation part. Following the keywords action events, the programmer lists the name of 
each action event handler provided by the object implementation as well as the name of the 
action event whose default handler the specified handler is to override: 

	

<event part> 
	

"action" "events" <override list> 

	

<override list> 
	

<override> 1"," <override> I 

	

<override> 
	

<id decl> "overrides" <id use> 

Thus, for example, the specification (say, in an object called "stack"): 

action events 
stack_BOA overrides BOA, stack_precommit overrides precommit 

indicates that the default handlers for the BOA and precommit action events are to be replaced 
by the procedures named "stack_BOA" and "stack_precommit," respectively, for the "stack" 
object only. 

13.2. Recoverable Areas 

As mentioned in section 8, if an object being implemented is specified to be recoverable, 
then some of its variables may be declared in a recoverable area: 

<recoverable area spec> 	"recoverable" 
<var decl> {<var decl>1 
"end" "recoverable" 

The state of a recoverable area which has been touched by an action is maintained on a version 
stack by a Clouds action manager, and is saved to permanent storage upon commit of the action 
which touched it. If an action which touched a recoverable area is aborted, the version of that 

area which existed before the action touched it is restored. 25  Thus, the use of recoverable areas 
allows the programmer to provide finer granularity in the specification of that part of the object 
state which must be checkpointed, since the use of automatic recovery on object (the autorecov-
erable object class) performs checkpoints on the entire state of the object. 

The interaction with the action manager necessary to manage the states of recoverable 
areas is implemented by the action event handlers as described above. Again, the default event 
handlers may be overridden by programmer-supplied event handlers for the entire object to 
achieve better performance. 

Example: 

recoverable 
j : integer 

a : realarray( 1,10) 
end recoverable 

13.3. Permanent and Per-Action Variables 

It may sometimes be desirable to make large data structures resilient. In such cases, the 
recoverable area mechanism may be inefficient, since it requires the creation of a new version 
of the entire recoverable area for each action which modifies the area. Often in such cases the 
programmer make take advantage of knowledge of the semantics of the data structure to 
efficiently program the recovery of the data structure. The Aeolus language provides two con-
structs which aid in the custom programming of data recovery, the so-called permanent and per-
action variables. 

As mentioned in section 6, any type may be given the attribute permanent. This attribute 
indicates that members of that type are to be allocated on the permanent heap, a dynamic 

26For more information on the semantics of recoverable areas and the mechanisms to support them, see 
[A11c83b1. 
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storage area in the object storage of each object instance. This area receives special treatment 
by the Clouds storage manager; in particular, it is shadow paged during the toplevel precommit 
action event." Any type which has as its base or element type a type with the attribute per-
manent inherits that attribute. Although other permanent types—such as permanent array 
types—may be declared, the only permanent types which may be used as the types of variables 
are permanent pointer types. In view of the support provided by the Clouds system, it is 
strongly recommended that the following discipline be observed in the use of permanent vari-
ables: those variables generated within an action by use of an allocator may be freely assigned 
values within that action; however, pre-allocated permanent variables—that is, those allocated 
outside the current action (by some other action)—should be assigned values only within a 
toplevel precommit event handler. However, this discipline is not enforced by the compiler. 

Aeolus also provides the per-action variable construct. An object implementation part of 
class recoverable may declare a single per-action variable section: 

<per-action spec> 	"per" "action" 
<var decl> (<var decl>) 
"end" "per" "action" 

A per-action specification resembles a recoverable area specification, and the semantics is also 
similar, in that each action which touches an object with per-action variables gets its own ver-
sion of the variables; however, the programmer may access the per-action variables not only of 
the current action, but also of the parent of the current action. The variables in a per-action 
specification are accessed as if they were fields in a record described by the specification; two 
entities of this "record type" are implicitly declared: Self and Parent, which refer respectively 
to the per-action variables of the current action and its immediate ancestor. 

Permanent and per-action variables may be used together to simulate the effect of recov-
erable areas at a much lower cost in space per action. In general, the per-action variables are 
used to propagate changes to the resilient data structure up the action tree; these changes are 
then applied during the toplevel precommit action event to the actual data structure in permanent 
storage. The use of permanent and per-action variables is described more fully in Appendix G. 

13.4. Action Invocations 
As mentioned in section 10.1.1 

take the form of an action invocation: 
, the right-hand side of an assignment statement may also 

<rhs> 

<action invocation> 
<action invocation> 
<action invocation> 
<rvalue invocation> 
<rvalue invocation> 

<timeout option> 

("toplevel"] "action" 
"(" <action invocation> 
<proc call> 
<obj op call> 
<lhs> <assign op> 
<rvalue proc call> 
<rvalue obj op call> 
"for" <expr> 

(<timeout option>] ")" 

<rvalue invocation> 

Here, the right-hand side (which consists of an operation invocation which, if the operation is 
value-returning, is embedded in another assignment statement) is invoked as an action; the 
action ID of this action is assigned to the variable designated by the left-hand side of the action 
invocation. The action ID may then be used as a parameter in operations on the action 
manager which provide information about the status of the action, cause a process to wait on 
the completion of an action, or explicitly cause an action to commit or abort. (The interface to 
the Clouds action manager is described in Appendix E.) If the keyword toplevel is specified, the 
action is created as a "top-level" action; that is, as an action with no ancestors. 27  Otherwise, the 

20For more information on the management of permanent heap storage, see IPitt841 and 1Wilk86i. 

27Thus, as we shall see, a top-level action cannot be affected by an abort of any ancestor of the action which 
created it. 
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action is created as a "nested" action, that is, as a child (in the so-called action tree) of the 
action which created it; as described below, a nested action may be affected by an abort of one 
of its ancestors. Optionally, a timeout value (in milliseconds) may be specified; if the action has 
not committed by the expiration of this timeout, the action will be aborted. If no timeout value 

is specified, a system-defined default value is used. 28  Only an operation or internal procedure of 
a recoverable or autorecoverable object may be invoked as an action. 

The semantics of an action invocation is as follows: the action manager operation 
CreateAction is invoked with the name of the operation to be performed as well as the list of 

arguments to be passed to that operation. 29  The action manager then invokes the BOA event 
handler on the object to which the operation belongs. Next, the action manager creates and 
dispatches a process in which the operation code runs. An attempt by the operation to return 
to its caller is considered an implicit attempt to commit the action, and will cause control to 
transfer to the Commit operation of the action manager, which terminates the process and 
invokes the precommit event handler of each object touched by the action. (An explicit invo-
cation of the Commit operation has the same effect.) If precommit of the object is successful, 
the action manager then invokes the commit event handler of each touched object. If the 
action (or one of its ancestors) invokes the Abort operation of the action manager, the action 
manager terminates the process corresponding to the action and invokes the abort event 
handler of each object touched by that action. 

It may sometimes occur that an object operation may be called either as an action invoca-
tion or as an ordinary object operation invocation. In the case that an operation is invoked nor-
mally (that is, not as the target of an action invocation), an invocation of the action manager 
operation Commit by the operation will cause the action manager to merely return control to the 
point of invocation of the original operation; thus, in this case the Commit call is effectively a 
normal procedure return. On the other hand, an invocation of the Abort operation by an opera-
tion invoked normally will cause the parent action of the invoker of the original operation to 

abort. 8°  Thus, in the case of normally-invoked operations, a call to the Abort action manager 
operation provides a mechanism similar to an exception-handling mechanism with a single 
exceptional condition ( "error"). 

14. Processes 

The final structuring feature of the Aeolus language provides an abstraction of the process 
concept of the Clouds system. (The process is analogous to the program construct of Pascal or 
Modula-2.) The invocation of a process provides activity in the Clouds system; processes may 
be considered the "glue" which binds object operations, and possibly actions, to do useful 
work. 

A process is introduced by a header which gives the name of the process, as well as 

23The default timeout value, as well as a( on manager operations to alter the timeout value after an action is in-
voked, are described in Appendix E. 

2sThe exact details of the manner in which this information is provided depends on whether the operation is a lo-

cal procedure or a publicly-visible operation of the object to which it belongs. 

32Note that all processes in the Clouds system are descendants of the top-level "universal action," which cannot 
be aborted. 
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clauses detailing any imports of object definitions necessary (see section 12.1): 

<comp unit> 
<process head> 

<process hdr> 
<process block> 

<process block decls pt> 
<process block decls> 
<process block decls> 
<process block decls> 
<process block decls> 
<process block decls> 

<process tail> 

<process head> <process block> <process tail> 
<process hdr> <imports> 
"process" <process name> "is" 
[ <process block decls pt>] <stmt pt> 
<process block decls> {<process block decls>} 
<const or var decl> 
<type decl> 
<constraint decl> 
<var address decl> 

—4 	<procedure decl> 
"process" "." 

Following any import clauses, the body ( <process block>) of the process is specified; the 
<stmt pt> of this block is the entry point when the process is activated, and execution begins 
there after any necessary variable initializations of the <process block> have been performed. 

process test_bounded_stack is 

import bounded_stack 

bsl, bs2 : bounded_stack 0 	! Delayed object parameter constraint 

i : integer := 0 

begin 
bsl := new bounded_stack ( 10, integer ) 
bs2 := new bounded_stack ( 20, integer ) 
loop 

if bsl @ full () then 
exit . 

end if 
bsl @ push (i) 
if (i % 3 = 0) and not (bs2 @ full () or bsl @ empty ()) then 

bs2 @ push (bsl @ pop 0) 
end if 
i + =--- 1 

end loop 
end process. ! test bo ,, ,.'ed stack ! 

Example of a Process (see section 12.1) 
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1. Summary of Work Done 

During the course of this project, a variety of work has done on the two tasks 

called for by the statement of work. These efforts are closely related to other work in 

progress within the Clouds Project, a major research effort in the School of Informa-

tion and Computer Science of Georgia Tech in the area of reliable distributed comput-

ing. We are now very close to integrating the results of a number of individual tasks 

supported under this and other projects to produce a first prototype of the Clouds dis-

tributed computing system. 

Under the Distributed File Systems task, work has concentrated on the develop-

ment of the storage management system of the Clouds kernel. Since the fundamental 

concept of the Clouds system is to support transparent, reliable access to arbitrary 

objects located anywhere with a network multicomputer, distributed file system issues 

must be addresses at a much lower level than is traditionally the case. The major 

achievements of this task are as follows: 

(1) initial design of the storage management system (see quarterly progress report 1 

and Appendix A to that report) 

(2) refinements to that design for improved efficiency (see quarterly progress report 

2) 

(3) design and implementation of low-level device drivers to support Clouds reliabil-

ity mechanisms (see quarterly progress reports 3 and 4) 

(4) integration of storagement with kernel virtual memory management (see quar-

terly progress report 4 and Appendix A to that report). 

The technical report "Notes on a Storage Manager for the Clouds Kernel" 

(appendix A to quarterly progress report 4), thoroughly documents the results our 

work on the Clouds Storage Manager. 

Under the Language Support for Robust Distributed Programs task, the focus of 

our work has been our language, Aeolus, and its intended uses. The most important 

aspect of Aeolus is that it provides a high-level language interface to the action and 

object management features of the Clouds Kernel. Thus it is intended to be used as a 

systems programming language for the implementation of the layers of the Clouds 
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system above the kernel. In support of this implementation work, we have been 

studying programming methodology issues involving the use of these unique capabili- 

ties provided by the kernel. The major achievements of our language work have been: 

(1) completion of the initial design of Aeolus (see quarterly progress report 1 and 

Appendix A to quarterly progress report 3) 

(2) substantial progress on implementation of an Aeolus compiler (see quarterly pro-

gress reports 2 and 3) 

(3) initial programming methodology studies (see quarterly progress report 1 and 2 

and Appendices B and A to those reports, respectively) 

(4) definition of the interface to kernel action and object managers (see quarterly 

progress report 4) 

(5) refinements of the Aeolus design (see quarterly progress report 4 and Appendix 

B to that report). 

2. Distributed File Systems 

2.1. Storage Management Design for an Action-based Operating System 

The Clouds Project is an effort to provide support for a distributed computing 

system which achieves performance improvements (over conventional computing sys-

tems) through the parallelism possible in a multi-computer environment and reliability 

improvements through the redundancy available in processing resources and data 

storage. In order to achieve such improvements, the system must ensure the proper 

coordination of processes on various machines in the system and synchronize the use 

of shared data. The system as a whole must be able to deal with failures of one of its 

component machines, determining those processes on the failed machine which are 

necessary for the continuation of some larger task. A reliable distributed system must 

be able to ensure the consistency of data in the presence of machine failures, taking 

into account that data may be replicated. 

The initial goal of the Clouds project is to produce an operating system kernel 

that provides the mechanisms needed by a reliable distributed computing system. In 

providing these mechanisms, the Clouds kernel must support other conventional 
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mechanisms such as virtual memory, process control and secondary storage manage-

ment. The action and object support must be integrated with the conventional kernel 

functions so that support for a reliable distributed computing system is available 

through a well-defined kernel interface, and the implementation of the kernel is 

efficient and compact. 

One subtask currently in progress is the design and investigation of a portion of 

the Clouds kernel: the storage management system. A Ph.D. research proposal by Pitts 

(attached as Appendix A to quarterly Progress Report 1) described the initial plans for 

work on this subtask. In addition to describing how such a system can be built, it also 

defined the interaction of the storage management system with other parts of the ker-

nel, particularly its interaction with the virtual memory system. 

Thus the purpose of this research task has been to design a kernel-level storage 

management (file) system (storage manager) that supports a reliable distributed com-

puting system. The storage manager is responsible for the secondary storage available 

on the system. Specifically, the design presents the structures and mechanisms neces-

sary to support the storage manager. The design includes support for both recoverable 

and non-recoverable objects. Mechanisms to create, delete, write and read objects on 

disks are defined. For recoverable objects the additional protocols and structures 

ensure recoverability of objects in the presence of machine failures. The design also 

discusses the interaction of the storage manager and the virtual memory system. This 

portion of the design specifies the structures and mechanisms required for virtual 

memory. The design also defines the support required for action management and 

object recovery. Finally a facility for the location of segments on secondary storage 

must be provided. 

The design of the storage manager is being done two phases. Phase one has been 

a design of essential features for the system. The end-result will be an implementa-

tion for the Clouds kernel that will serve as a test-bed for further research. An 

analysis of the design and implementation will be done to determine the correctness 

and effectiveness of the design. The results of the analysis may have an effect on 

phase two. This phase of the design will include modifications and refinements to the 

original design. In general, phase two will include features not absolutely necessary 

for the storage manager, but which may be desirable later as the system is put to use 

as a research device. Feedback from the analysis of the original design may suggest 

3 



some of the changes found in the second phase. Phase two is not intended for 

immediate implementation. 

The Clouds kernel will provide support for three basic mechanisms which will be 

important to later discussion: processes, objects and actions. Processes are the active 

agents of the system; to initiate and perform any work requires a process. The kernel 

has a process manager which handles all bookkeeping associated with creating, 

dispatching, and destroying processes. 

Objects, on the other hand, are passive entities. Objects are typed collections of 

data. The type of an object determines what operations may be performed on the 

data, as well as how the data is organized. Object data can only be manipulated 

through these operations, and then only by a process which has a proper capability for 

the object. A capability is a unique name for an object along with a list of operations 

which are permissible for use by the possessor. The object manager handles the over-

head of verifying capabilities and performing operation calls. 

Objects are the organizational units of the system. By using objects, a program-

mer has a means for abstraction and isolation of data. The kernel also provides a 

mechanism for organizing sets of operations into a unit. This mechanism is the 

action. Actions are atomic. The set of operations comprising an action appears to exe-

cute completely (by committing its results) or not at all (by aborting). Also, the atomi-

city of actions prevents the execution of one action interfering with the execution of 

another. Actions provide a mechanism for making the effects of a set of operations 

consistent and recoverable. 

Actions are managed by the object manager. Actions themselves are simply 

organizational units of work and require processes in order to perform any task. An 

action may have several processes or one process executing on its behalf. 

The kernel provides processes, objects, and actions as efficiently as possible. Par-

ticularly, because objects have different types and different possible operations, the 

kernel needs access to objects in a manner which is consistent and convenient. For 

this reason, all objects have a secondary type, called the segment type. The segment 

type is a sequence of bytes with primitive operations such as read a page, write a page, 

and delete or add a page. The segment is accessible only by the kernel. 
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2.2. Storage Management 

The Clouds secondary storage is managed as a set of partitions. Each partition is 

an autonomous logical device with its own set of interface routines for the transfer of 

information and the allocation of the secondary storage managed by the partition. A 

partition resides completely on one physical device and consists of a contiguous set of 

records on disk. The partition requires three structures to manage partition storage. 

First is a partition header, which holds information concerning the partition such as its 

size, whether it provides support for recoverability, a list of bad disk records for the 

partition, and other such information. The header should be duplicated to reduce the 

risk of its destruction by a media failure or other such disastrous error. The header is 

placed at a known location in the partition. 

Each partition also maintains a directory, contains a mapping of sysnames (for 

objects) onto partition record addresses. Note that a partition directory contains map-

pings only for objects residing on that; partition. Redundancy should also be insured 

for this structure. The partition directory is at a well-known location. 

The third partition structure is a record map, which is a bit-map showing allocar 

tion of records for the partition. The driver uses the record map to determine which 

records are in use by segments and which can be allocated. Once again, the record 

map is an important structure which should be duplicated to prevent its loss after a 

media crash. 

The remainder of the partition is available for the storage of object data, or as the 

storage manager treats objects, segment data. 

Before a partition can be accessed by the kernel, it must be mounted on the sys-

tem. This involves doing a consistency check on the partition storage, examining the 

directory and record map, and cleaning up any loose ends as far as recovery manage-

ment is concerned. Of course, the physical device on which the partition resides must 

be active prior to this processing. 

2.3. Recovery Management and Virtual Memory 

Segment recovery is accomplished via a shadowing scheme. That is, segments on 

which actions are operating have shadow versions that the actions actually see. The 
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scheme is pessimistic, so that no modifications are made to a permanent version until 

the action making the modifications commits. The goals of the recovery scheme are, 

aside from producing consistent results, to allow recovery of segments (and partition 

structures) with as little storage overhead as possible, and with as few disks accesses as 

possible. Shadowing, then, will be minimal. That is, only those parts of the segment 

actually modified are shadowed. 

The storage manager becomes involve in recovery only when a top-level action 

precommits and the shadow version of the segment on which the action is operating is 

created. Prior to precommit, all write operations are done in memory. An active seg-

ment is mapped into memory by the virtual memory system. An object's address 

space contains a block of permanent data and a block of volatile data. The permanent 

data block contains data which will survive a crash. This is basically the permanent 

object state. The volatile data block's contents will not survive a machine crash and 

generally consists of such structures as locks and semaphores for the object. Also con-

tained in the volatile data block is much of the information maintained by the action 

management system. 

When an action operates on a segment, the action management system maintains 

in the volatile data block versions of any modified recoverable parts of the segment. 

There may be any number of versions due to the nesting of actions and actions shar-

ing the segment. When a top-level action precommits, data must be moved from the 

volatile data block to the permanent data block prior to shadowing the segment on 

secondary storage. To simplify the precommit procedure, we allow only one action per 

segment to pass the precommit point. For example, if actions A and B are both 

operating on object 0 and A precommits, B is prevented from precommitting. If B 

attempts to precommit, the action management system blocks the action. B still may 

access the object. 

During the time precommit and commit are taking place, the virtual memory sys-

tem must insure that modified pages of the permanent data block remain in memory 

and undisturbed. The virtual memory system can do this by physically locking the 

pages in memory, making them read-only. Then the pages can be flushed to disk to 

build the shadow version of the permanent segment. 
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The mapping of virtual memory to secondary storage is another of the storage 

manager's responsibilities. On page faults, the virtual memory system makes use of 

storage manager calls to locate the backing storage for faulted pages and also to allo-

cate or locate backing storage for virtual pages being paged out. 

2.4. Storage Management Implementation 

The development of the Clouds storage manager involves the implementation of 

three components. These are the device object, the partition object, and the segment 

object. These objects are abstractions of the disk storage available on a Clouds 

machine. The device object manipulates device storage as a collection of uninterpreted 

blocks of data, which it transfers in and out of virtual memory. The partition object 

provides a mechanism for division of device storage for administrative purposes and 

also is involved in the location of data, and the allocation of device storage. The seg-

ment object treats device storage as a collection of bytes. In fact, the segment object 

is just an alternate view of any Clouds object. We consider the device object the 

lowest level of abstraction and the segment object represents the highest level. In the 

paragraphs that follow, we describe the current state of the storage manager. 

At the device object level, we are developing two disk objects. Clouds disk 

objects include not only the conventional device driver functions, but also provide 

necessary support for the recovery mechanisms of the storage manager. Specifically, 

the Clouds disk objects provide a mechanism, the flush routine, which insures that 

requests scheduled by an action are actually completed before the action commits. This 

mechanism differs from conventional disk management schemes, where a request may 

remain enqueued after the process that issued it terminates. The flush routine relies 

on the flush table, a per device structure. The table contains an entry for each action; 

the entry contains a list of requests made by the action and a record of the number of 

requests pending and completed. 

The development of a RLO2 disk object has been straightforward and we now 

have a working version integrated with the Clouds kernel. Minor changes in the way 

the object formats the medium are anticipated. Additionally, the object must be 

modified to lock physical pages for I/O transfers, because of the Clouds kernel's use 

of the virtual memory system as the basic I/O mechanism. The RLO2 will allow us to 

go ahead with the development of kernel and paritcularly with the testing of the 

7 



storage manager. The RLO2 will not; be the primary disk for the Clouds system, as it 

holds only 10 Mb on each cartridge. The primary disk for the initial Clouds imple-

mentation will be the RA81, a disk object for which is under development in parallel 

with the development of the RLO2 object. Because the RA81 is a "smart" device, pro-

gress has been slower and the integration of the facilities required by the Clouds 

storage manager is more complex. Testing is currently under way on this device. We 

have kept the device object interface for the two devices unform and also have 

attempted to reduce any side-effects so that upon completion of the RA81 object, this 

object can be use in the place of or along with the RL02. 

The next level of abstraction for the storage manager is the partition level, which 

we have already discussed in some detail. Implementation at this level is just being 

completed. A partition provides all the structures required to support the creation and 

management of Clouds objects. Specifically, the partitions provide support for the 

location of objects and the allocation of disk storage for objects. We have presented 

the partition structures necessary for these functions, namely the partition directory 

and record map. There is another structure which, while not necessary for the func-

tionality of the partition object, we believe will considerably improve the efficiency of 

the partition object's performance. 

To understand the significance of this structure note that the Clouds kernel pro-

vides for the location-independent invocation of an object operation, which requires 

the kernel to search for the object at each operation invocation. Object searches are 

network-wide and several techniques are being developed to short-circuit these 

searches. One concern is the necessity of going to disk in order to determine if the 

object is on a partition. Each partition maintains a structure called a maybe table which 

is intended to reduce the number of unnecessary disk accesses during object search 

(an unnecessary access is one which shows the object is not on the partition in ques-

tion). The maybe table is a small in-memory representation of the partition member-

ship. A maybe table is an example of a Bloom filter [Bloom70]. The table is a 

compressed hash table, in which several segment names may hash to the same entry. 

In trade-off for the reduced size of the table, only a negative response to a query is 

guaranteed to be correct. Responses indicating the object is on the partition may in 

fact be wrong and may require the partition object to access the directory on disk. We 

are really trading accuracy of the responses for speed since in most cases the query can 
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be answered without an unnecessary access to disk. Because searches are frequent 

events, we feel that the Maybe table will have a large effect on system performance. 

The segment system forms the highest abstraction provided by the storage 

manager. Disk storage at this level is managed as a collection of arbitrarily sized seg-

ments, which generally represent some Clouds object. Segments provide a uniform 

interface through which the Clouds kernel can manipulate the object. Although seg-

ments conceptually provide a simple view of storage as a sequence of bytes, the actual 

implementation on disk is quite different. A disk segment is a tree structure, which 

has as its root a segment header. This header contains all information pertinent to the 

segment and is the entry into the segment (an entry in the partition directory points to 

the segment header). The leaves of the segment tree are the data records on the seg-

ment. The internal nodes of the tree consist of link records, providing connectivity 

between the segment header and the data records. 

In addition, the segment system provides the recovery protocols discussed earlier. 

Implementation of the segment system is currently in progress. 

As discussed above, the segment system, the action management system and 

object management system are involved in the management of virtual memory with 

respect to the mapping of objects. We are finalizing the extent of each system's 

responsibilities and influence in the virtual memory and the cooperation needed 

between the systems. For example, the storage manager shares with the object 

manager the responsibility for mapping the on-disk version of the segment to the vir-

tual memory version. Each segment has one or more windows which represent 

chunks of the segments which are actually mapped into virtual memory. This allows 

the mapping of portions of large objects into virtual memory, avoiding the cost of 

mapping the entire object. The mapping of each object in memory will consists on 

several standard windows: a code window for the executable portion of the object; a 

permanent object data window; and a volatile data window. If the object is recoverable 

the permanent data window actually consists of several optional windows. There may 

be a static non-recoverable data window, containing object data not considered neces-

sary as part of the recoverable object state. There may also be a static recoverable data 

window, which contains (part of) the recoverable object state. Finally, there may be a 

permanent heap window, which is use in objects which provide customized recovery 

[Wilkes85a, Wilkes85b]. Each of these 'windows may be mapped to different 
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partitions. For instance, the code window and static non-recoverable windows are 

mapped onto the disk segment image itself. The volatile heap window and recoverable 

windows are mapped to a paging partition, a special partition reserved simply for pro-

viding backing store. In the latter case, the storage manager is really providing two 

sets of mappings from disk to virtual memory: one for handling page faults and the 

other for handling the recovery aspects of object management. 

The storage manager also makes use of the virtual memory system to assist the 

action management system in the committing of actions. The segment system uses 

virtual memory structures to determine which segment pages have been modified and 

then, based on its own information as to the structure of the segment, decides which 

segment pages must be shadowed to provide the necessary recovery. Because the 

storage manager is aware of the segment's virtual memory mapping, and the special 

attributes of the standard windows, it knows which modified pages actually need to be 

shadowed and which can be simply written to disk. 

A technical report [Pitts85] which summarizes all of the work which has been 

done on the storage manager was attached to Quarterly Progress Report 4 as Appendix 

A. 

2.4.1. References 

[Bloom70] Bloom, B.H., "Space/Time Trade-offs in Hash Coding with Allowable 

Errors," Communications of the ACM, No. 13, Vol. 7 (July 1970), pp.422- 

426. 

[Pitts85] Pitts, D.V. and E.H. Spofford, "Notes on a Storage Manager for the Clouds 

Kernel" Technical Report GIT-ICS-85/02, School of Information and Com-

puter Science, Georgia Institute of Technology, October 1985. 

[Wilkes85a] 

Wilkes, C. T., "Programming Methodologies for Resilience and Availabil-

ity," Ph.D. Thesis Proposal, School of Information and Computer Science, 

Georgia Institute of Technology„January,  1985. 

[Wilkes85b] 

Wilkes, C. T., "Preliminary Aeolus Reference Manual," Technical Report 

10 



GIT-ICS-85/07, School of Information and Computer Science, Georgia 

Institute of Technology, October 1985. 

3. Language Support for Robust Distributed Programs 

3.1. The Design of Aeolus 

The major design goal of our language Aeolus is to make possible access to the 

features of the Clouds system from a powerful systems programming language which 

supplies those features—such as strong typing—which aid in the quick development of 

error-free programs, yet allows those features to be explicitly circumvented when 

necessary. 

The major structuring features in Aeolus are processes and objects. Objects have 

two purposes in Aeolus: to provide support for data abstraction, and to reflect the 

recoverability and synchronization capabilities provided by the Clouds kernel. It has 

been argued elsewhere [Allc82] that the object construct provides a powerful tool for 

the organization of programs for recovery, both from the standpoint of the program-

mer and of the system. Objects may rely on the automatic operating system / run-

time system support for synchronization and recovery (autorecoverable and autosynch 

objects). Alternatively, using powerful features provided by the language and the 

Clouds system, the programmer may take advantage of semantic knowledge about the 

application to explicitly code more appropriate recoverability and synchronization. 

However, Aeolus objects also provide abstraction features even when synchronization 

and recovery are not required. These non-Clouds objects provide a logical framework 

for the organization of modules for separate compilation. 

3.1.1. Features for Systems Programming 

In keeping with its purpose as a systems programming language, Aeolus incor-

porates several features which give the programmer access to the hardware and the 

lower levels of the systems software, as well as "convenience" features which allow 

more efficient coding, including: 

a full range of assignment and bit-manipulation operators similar to those in 
the C language; 

features for register optimization, such as a special index type for loop counters 
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and array references; 

the option of specifying inline expansion of a procedure; 

a facility for specifying arbitrary procedure argument lists of unspecified length 
and (predefined) types (similar to the nospread arglists of Interlisp); 

and the ability to specify storage addresses for variables, as well as some capa-
bilities for setting and doing arithmetic on pointers. 

However, most of the power of Aeolus as a systems programming language, aside 

from the access it provides to the features of the Clouds system, lies in the ability it 

gives the programmer to specify low-level data structures as abstract data types, and in 

the treatment of the underlying hardware as an object with operations on its state 

available from the language. 

In addition to the usual structured types (records and arrays), Aeolus provides a 

structure type, which allows the programmer to specify abstract types for the manipula-

tion of bitfields. The structure is similar to the packed record construct of Pascal, except 

that the programmer indicates that its fields should fit one of the addressable entities 

defined by the target computer (byte, word, doubleword, quadword, etc.), and this 

correspondence is checked by the compiler. This provides a secure mechanism allow-

ing bit fields within a low-level data structure to be referenced by name. Aeolus also 

provides the byte and word types as predefined objects. These objects have operations 

permitting manipulations similar to those of the bitzet type of Modula-2. The program-

mer may define similar objects for bit strings of other lengths. 

The ability to inspect and change the state of the hardware is also important in 

systems programming. Access to the underlying hardware is provided by the opera-

tions of special Aeolus objects. We call such an object a pseudo - object since only one 

instance of it may exist, whereas there may be an arbitrary number of instances of a 

normal object. An example of a pseudo-object is PC_System. This pseudo-object 

gives access to the registers and ports of a PC's microprocessor, and through the ports 

to the other system components, such as the interrupt controller, device controllers, 

and modem registers. For example, the IN_BYTE and OUT BYTE operations of 

PC_System allow values to be input and output from the byte ports of a PC; other 

PC_System operations provide such capabilities as access to the register set, flags, and 

interrupt mechanism. These operations typically compile inline to a single machine 

instruction. For considerations of efficiency, some operations in hardware pseudo- 
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objects may give access to special instructions of the target machine, such as the string 

instructions of the PC or the polynomial instructions of the VAX. 

3.1.2. Features for Object and Action Programming 

The design of Aeolus is intended to support the recovery and synchronization 

capabilities of the Clouds system in a high-level systems programming language. 

Objects in Aeolus, besides providing an organizational tool for secure separate compi-

lation, give access to the recovery properties of Clouds objects. Thus, if an Aeolus 

object is designated as recoverable or autorecoverable, the Clouds kernel mechanisms 

are used for invocations of its operations, allowing the system to control the recovera-

bility properties of the object's state. In the remainder of this section, the features 

provided by Aeolus for accessing these features of Clouds are examined. 

The code for an Aeolus object has two parts. The definition part is seen both by 

the object itself when it is being compiled, and by all other objects or programs which 

use that object. Compilation of a definition part produces a symbol table file which is 

used for type checking among these separate compilations. It can contain 

specifications of public types and constants defined by the object, and the interface 

definitions of the object's operations. Definition parts may not contain variable 

declarations. The implementation part contains the actual code of the operations, along 

with any needed local (private) type, constant, or procedure definitions. Local vari-

ables of an object share the lifetime of the object instance to which they belong, and 

thus act as "own" variables. This separation of definition and implementation pro-

vides a safe separate compilation mechanism similar to packages in Ada (TM) or 

modules in Modula-2. 

In the header of an object definition, the programmer may specify the object class 

as being pseudo, local, nonrecoverable, recoverable, or autorecoverable. The classes 

pseudo and local are called the non-Clouds object classes; the classes nonrecoverable, 

recoverable, and autorecoverable are called the Clouds classes. If the object class is 

specified as being pseudo, the object is treated as being simply a separate compilation 

module; pseudo-objects are used as a simple separate compilation mechanism, as inter-

facing to the runtime system and kernel services, and for integrating objects written in 

other languages into Aeolus systems. Local objects provide some of the functionality 

of Clouds objects (such as access to multiple object instances) without the expense of 
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the Clouds object management facilities; however, local objects have no existence 

independent of a process, as Clouds objects may have. The simplest Clouds object 

class, nonrecoverable, makes use of the Clouds object management facilities but does 

not use the action management. Objects of the autorecoverable class, however, provide 

fully automatic access to the Clouds action management facilities. The entire object 

state is made recoverable, and default handlers for the action events (such as ABORT 

and COMMIT) are provided by the compiler/runtime system. Thus, the programmer 

may gain access to the action mechanisms of the Clouds system with a single keyword. 

However, the full power of the automatic Clouds action mechanisms may be unneces-

sary and inefficient in some cases. For those cases, the Aeolus/Clouds system pro-

vides mechanisms which allow the user to explicitly program recovery strategies 

tailored to the individual requirements of the problem at hand. If the object is 

specified as being recoverable, the programmer may specify part of the object state as 

being recoverable and may provide alternate handlers for action events. 

The Aeolus language also provides access to the synchronization mechanisms of 

the Clouds system. When the autosynch object attribute is specified in an object 

definition header, it indicates that the default system synchronization procedures are 

to be used on the object's operations to provide concurrency atomicity. If the 

autosynch attribute is not specified, synchronization may be explicitly programmed 

using operations on the lock type provided by the language. A Clouds lock [Allc8313] 

is not associated with a physical object, but rather with values in the domain of the 

object. Thus—for example—a file name may be locked, even if a physical file with 

that name does not yet exist. 

Object operations are programmed like procedures. An operation invocation 

looks like a procedure invocation with a prefix indicating the object instance upon 

which to operate: 

<object instance id> © <operation id> <actual param list> ) 

An object instance may be created by declaring a variable of that object type, and then 

allocating the instance's data storage on the heap using an extended version of the 

allocation function, or by associating the variable with a "permanent" object, much as 

a file variable can be associated with a physical file in Pascal. 
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An operation or local procedure of a recoverable or autorecoverable Aeolus 

object may be invoked as an action. The invocation of an action is similar to a pro-

cedure or operation invocation; however, a unique action-id is created by a Clouds 

action manager for the invocation, which may be assigned to a variable of the invok-

ing procedure, for example: 

actionlD := action ( object]. 0 op]. ( paraml, param2 ) ) 

This action-id variable may be used to retrieve information from the system about the 

status of the action, or to abort the action, using calls to a Clouds action manager. 

This mechanism allows general control structures to be formulated, e.g., for the con-

current invocation of actions. 

3.2. Programming Methodology 

The features of Aeolus described above (and in [Wilk85b]) provide easy access 

to the synchronization and recovery features of Clouds, and thus they provide a 

framework within which to study programming methodologies suitable for action-

object systems such as Clouds. This study should lead to the design of high-level 

language features to support that methodology. Thus, our interest in Aeolus lies not 

so much in the language itself as in studying the sort of programming which may be 

done with it. 

We have found Aeolus to be effective as a systems programming language during 

our studies of programming systems objects such as communications handlers for the 

Clouds workstations. In particular, the clarity of interface definitions made possible by 

use of pseudo-objects is extremely valuable for encapsulation of hardware details in 

such hardware-dependent programming. Through our experience with developing sys-

tems objects, we have come to understand techniques for using subactions as 

"firewalls" to limit the effect of failures. We have found that Allchin's generalized 

lock mechanism makes it relatively easy to specify special-purpose synchronization 

rules dependent on object semantics. 

We intend to use Aeolus as a framework within which to study programming 

methodologies for action-object systems. Among the hardest questions which need 

more study is how replication can most effectively be used to provide availability. 
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Actions and resilient objects ensure that failures are not catastrophic, but they are 

concerned with data integrity, not with how a program reacts to failures. The availa-

bility question involves use of multiple objects on different nodes to represent a sin-

gle resource, thus providing continued access to the resource in the presence of indi-

vidual node failures. Algorithms for read and write access to such resources must 

be developed and evaluated. The recent paper by Daniels and Spector [Dani83] is one 

example of such an algorithm. 

We must also consider possible representations of work so that it may be res-

tarted; this is an area that has been until recently unexplored [McKe84]. Most of the 

work on actions and objects has been oriented toward protection of data from 

failures. The fact that processes are considered to be an important, independent 

component supported by the Clouds architecture gives us a point of departure for 

this study. McKendry's work on Petri nets [McKe84] lays the groundwork for an 

attack on this problem within the framework of Clouds. If we view a program as a 

collection of processes interacting through shared objects, some features akin to 

the process interconnection specifications of Pronet [Macc82] may prove to be useful. 

Our initial studies in programming methodologies for resilience and availability 

are described in [Wilk85a]; there, a plan is presented for determining such methodolo-

gies appropriate to the design of objects needed in the Clouds system. Examples of a 

replicated object exhibiting the properties of resilience and availability are given there, 

as well as a preliminary design for a permanent heap, part of the run-time support 

necessary for the Aeolus/Clouds system to provide these properties. The issues with 

which we are concerned include the use of semantic knowledge of objects in the pro-

gramming of replication; trade-offs between consistency and availability; the appropri-

ateness of current programming models for replicated data; and the support needed 

from the operating system and language runtime system to ensure availability and for-

ward progress of processes. As we progress with these studies, we will take advantage 

of our experience in the implementation of the Aeolus runtime system and its interac-

tion with the action and object managers of the Clouds system. 

3.3. Implementation 

A compiler for Aeolus is currently under development on one of the DEC VAX 

11/750 computers of the Clouds project under Berkeley Unix (TM) Version 4.2. We 
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are using the Amsterdam Compiler Kit (ACK) [Tane83] to generate code generators for 

Aeolus for both the Clouds VAXes and the individual work stations which the Clouds 

system will use to interface to the VAXes. Work on the semantic routines for Aeolus 

is proceeding in parallel with the development of routines to generate intermediate 

code for ACK. This work is being done in Pastel, an extended Pascal dialect 

developed at the Lawrence Livermore National Laboratory. 

The code-generation work is progressing quite well; we have been able to gen-

erate and execute code for object invocations which do not involve the facilities of the 

Clouds kernel or object managers (that is, code for what we call "non-Clouds 

objects"). 

Work is also progressing on the implementation of facilities for generating actual 

"Clouds objects." This entails the definition of the interface to the Clouds object and 

action managers, which will serve as an intermediary between user programs and the 

kernel facilities. Thus, the members of the compiler group are working with members 

of the kernel group on the definition and implementation of the action and object 

managers. These interfaces are now well-defined, and we expect the Aeolus compiler 

to be capable of interfacing with the action and object managers of the Clouds system, 

and thus to be capable of invocations on actual Clouds objects, by the end of 1985. 

Actual testing of object and action management calls awaits the implementation of the 

requisite Clouds system services, which is expected in the first quarter of 1986. 

As mentioned above, the design of the interfaces of the runtime system with the 

Clouds action and object managers is essentially complete. Members of the Aeolus 

group have been working with members of the kernel group to design these interfaces 

and strategies for efficient action management. Of particular importance are our 

designs for support of recoverable areas in Clouds objects; these constructs enable the 

Aeolus language (in conjunction with the action management system) to provide view 

atomicity in addition to the failure atomicity provided by the kernel. Each action which 

touches an object which has a recoverable area gets its own copy (or version) of that 

recoverable area on which it may make its changes; when a nested action commits, it 

propagates its version of the recoverable area to its parent. View atomicity ensures 

that each action in the action tree which accesses an object sees the correct version of 

the data in that recoverable area. We have developed a technique for implementing 

recoverable areas using partial replacement of the object page table entries which 
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provides view atomicity without causing a time penalty for access to the data in the 

recoverable area. Rather, a small penalty is paid upon process exchange if a process is 

associated with an action. 

3.4. Design Refinements 

The work of the Aeolus group during recent months has been concentrated on 

the refinement and rationalization of the language design. The design of the language 

has undergone a significant reworking, especially those parts of the design concerned 

with specification of types. In view of one of the Aeolus design goals of providing the 

power necessary for systems programming without sacrificing the advantages of strong 

type checking, we wished to provide dynamic (flexible) data types; however, we felt 

that our previous design for this violated the goals of simplicity and readability. Our 

reworked design integrates flexible types into the language in a much cleaner manner, 

within the framework of general para.meterized types. The changes to the design have 

been incorporated into the language description [Wilk85b], along with the interfaces to 

the Clouds system object and action managers. The revised language definition was 

attached to Quarterly Progress Report 4 as Appendix B. 

These design changes have now been incorporated into the symbol table of the 

compiler and new semantic routines necessitated by the changes are being imple-

mented. We have also taken advantage of the redesign to streamline parts of the 

semantic routine structure, taking into account our previous implementation experi-

ence. Work on the implementation is accelerating now that these changes are under-

stood. 
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4. Conclusions 

Work on both of the two tasks of the project has been very productive over the 

last year. In conjunction with related work on the Clouds kernel and the action 

management system, we anticipate having a working Clouds prototype by early in 

1986. The storage manager designed and currently being implemented under the Dis-

tributed File Systems task obviously is strongly related to the kernel and thus must be 

combined with the kernel for testing. That integration should take place in the 

immediate future. The next phase of this work, which includes performance measure-

ment and analysis followed by design refinement, will then be possible. 

Under the Language Support for Robust Distributed Computing task, we have 

produced a language (Aeolus) which includes features that match the capabilities for 

action and object management provided by the Clouds kernel. This language has 

enabled us to begin our studies of programming methodologies for action/object pro-

gramming. Further study in this area will be a major ongoing research effort. We 

have also made substantial progress on a compiler for Aeolus. It will be ready for use 

by the time the kernel and storage manager are integrated and available for managing 

Aeolus objects and processes. The compiler interface to the action management sys-

tem has been defined and the compiler should be capable of generating code to utilize 
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this interface even prior to the implementation of the action manager. 

In summary, our efforts under this project have been instrumental in the 

development of a prototype of the Clouds reliable distributed computing system con-

cept. Work to be done in the next year will provide significant evidence of the viabil-

ity of the Clouds concept. 
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FUNDS EXPENDITURE REPORT 

Column A Column B 	Column C 	 Column D 	 Column E 	Column F 

ORIGINAL PROPOSAL 

Latest 	Reporting Cumulative Expenditures to Date 	Cost to 	Latest 

Accepted 	Quarter 	 Complete 	Cost 

Revised 	Expendi- 	Total 	Dollar 	Pct. Dollar 	Estimate 	Estimate 

Proposal 	tures 	Man Hours 	Value 	Value 

rect Labor 
Number 	Fourlv 

.ype 	of 	Hours 	Rate 
--- 

Dollar 
Total 

Number 
of Hours 

Dollar 
Total 

1 	 350 	23.77 $8320.00 430 $10220.96 	$2899.36 430 $10220.96 100.0% $0.00 $10220.96 

RA 	 1300 	11.41 114833.00 1648 $18802.35 	$5703.67 1648 118802.35 100.A $0.00 $18802.55 

!erica! 	175 	6.74 $1180.00 0 $0.00 	10.00 0 $0.00 100.0% $0.00 $0.00 

Total 	Direct Labor $24333.00 $29023.31 	18603.03 2078 129023.31 100.0% $0.00 229023.71 
Burden 	@ 	24.6% $2337.00 $2387.93 	$756.40 $2527.93 100.0% 10.00 $:787. 95 
Q1.0% starting 7/1/85) 
(Excluding 	GRA Labor) 

al 	Direct Labor and Burden $26670.00 $31411.24 	$9759.43 $31411.24 100.01 m.Oa 151411.24 

AVEL EXPENSE $2500.00 $1193.74 	$0.00 $1193.74 100.07. $0.00 11197.74 

NERAL & 	ADMINISTRATIVE EXPENSE 	$1500.00 $413.46 	$135.00 1415.46 100.07. 10.00 14:7.46 

MPUT1NG CHARGES $1500.00 $1565.18 	$377.28 $1565.18 100,07. $0.00 11565.2 

TOTAL DIRECT COSTS $32170.00 $34583.62 	$9367.71 $74587.62 100.07. 0.20 $74585.62 

IRECT COSTS 	@ 	55.3% $17790.00 $19959.38 	$7276.49 119959.38 100.07. $19959. -', S 
(63.51 	starting 	7/1/85) 

CONTRACT PRICE #49960.00 154547.00 $54547.00 

COMMITTMENTS AND $17144.20 154543.00 100.01 
XPENDITURES 
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APPENDIX A 

Programming Methodologies for Resilience and Availability 

C. Thomas Wilkes 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, GA 30332 

ABSTRACT 

The goal of the Clouds project at Georgia Tech is the implementation of a 
fault-tolerant distributed operating system based on the notions of objects and 
actions, which will provide an environment for the construction of reliable 
applications. As part of the Clouds project, we are designing and implementing 
a high-level language in which those levels of the Clouds system above the ker-
nel level will be implemented. The Aeolus language provides access to the syn-
chronization and recovery features of Clouds. It also provides a framework with 
which to study programming methodologies suitable for action-object systems such 
as Clouds. 

This proposal describes a plan for determining programming methodologies 
appropriate to the- design of objects needed in the Clouds system. Among the 
properties needed by these objects are resilience and availability. Examples of 
a replicated object exhibiting these properties are given, as well as a prelim-
inary design for a permanent heap, part of the run-time support necessary for 
the Aeolus/Clouds system to provide these properties. 

1. INTRODUCTION 

Among the benefits promised by advocates of distributed computing are 
improvements in system fault tolerance and reliability, increased availability 
of data and services, and faster response through use of distributed pro-
grams. Interest in reliability has grown as distributed systems have come to be 
used in an ever widening set of applications, including critical control sys-
tems. In the past, fault tolerance has principally been the concern of 
hardware designers, who mainly used redundancy as a solution. More recently, 
it has been realized that maintaining the integrity of distributed data is a 
crucial concern in providing the benefits listed above. Accordingly, there 
has been a growth in research interest in techniques for providing the 
required data integrity in the presence of hardware failures and con-
currently executing processes. 

The Clouds project at Georgia Tech [Allc82, Allc83a, Allc83b] is one of a 
number of recent proposals in which reliability in a distributed system is based 
on the use of atomic actions, a generalization of the transaction concept of 
distributed databases. As part of the Clouds project, we are designing and 
implementing a high-level language which will provide access to the synchroniza-
tion and recovery features of the Clouds system; this language will be used to 
implement those levels of the Clouds system above the kernel level. It will 
also provide a framework within which to study programming methodologies suit-
able for systems based on the action concept, such as Clouds. Among the proper-
ties needed by systems data structures, the design of which must be addressed by 
such methodologies, are resilience -- survivability and consistency of the data 
despite crashes and other faults -- and availability -- increased possibility of 
access to replicated data despite network partitions or failures of some sites 
in a multicomputer system. 

This proposal describes a plan for studying such methodologies, in particu-
lar those needed in the design of the type of data structures neccessary for the 
implementation of the Clouds system. Section 2 of this proposal presents the 
problem explored by this work and describes the environment in which it will be 
examined (the Clouds system). Section 3 describes the plan of the research to 
be performed, and presents examples of a replicated object exhibiting the pro-
perties of resilience and availability, as well as a preliminary design for a 
permanent heap, part of the run-time support neccessary for the Aeolus/Clouds 
system to provide these properties. An outline of the proposed dissertation is 
presented in Section 4. 
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2. PROBLEM STATEMENT AND BACKGROUND 

The purpose of the proposed research is to explore programming methodolo-
gies for action-based systems appropriate to the design of data structures exhi-
biting the properties of resilience and availability. In this section, the 
environment in which this study will be carried out is described, and a 
rationale for the need of such programming methodologies is presented. 

2.1. The Clouds System 

The goal of the Clouds project at Georgia Tech is to allow the construction 
of reliable application systems on unreliable hardware. We use the notion of 
an object to represent system components, such as directories or queues. An 
object consists of data and a set of operations on that data which maintain a 
set of associated invariants. A set of changes to objects is grouped into an 
action, a unit of work which appears to be atomic to its environment (in partic-
ular, to other actions). Objects are passive in the Clouds architecture; thus, 
processes, which may represent a single top-level or nested action, are used to 
provide activity in the system. 

The actions in Clouds go beyond the related notion of transactions in a 
database 	system. 	Rather 	than 	modelling 	all access to objects as simple 
reads or writes, the Clouds approach supports arbitrary operations on 	objects 
and allows 	a programmer to take advantage of operation semantics to increase 
concurrency, and thereby performance. Through appropriate use of 	encapsula- 
tion, concurrent 	actions can be allowed to change objects without breaching 
serializability. Even breaches to serializability can be allowed, when it is 
semantically appropriate and it is necessary to improve performance. 

Thus, objects, actions and processes are fundamental concepts supported 
. by the architecture. 	To support these concepts, recovery and consistency 
are incorporated into the basic virtual memory mechanism. 	Synchronization 
mechanisms to control the interactions of actions are also provided. It is 
with these capabilities that Clouds is meant to support the data integrity 
required for the implementation of reliable, distributed application programs. 

The mechanisms developed for the support of transactions in database sys-
tems, as well as the traditional operating system synchronization mechanisms, 
have been found to be insufficient for the support of the action-object approach 
in operating systems. In particular, the problems of ordering and atomicity for 
nested actions, and several simplifications which apply to many operating sys-
tems problems, are discussed in [McKeS4b]. In particular, it is shown that 
through the use of per-action variables, it is not necessary to maintain com-
plete versions of recoverable data for many types of systems data structures, 
giving substantial gains in space and time performance. The expediencies made 
possible by these simplifications make the use of the action-object approach in 
the Clouds system viable. 

These mechanisms provided by the Clouds architecture are used to support 
the operating system itself and its services. Thus, the system itself is decen-
tralized and resilient. The Clouds system may be considered to consist of a set 
of fault-tolerant objects (servers) which in combination provide a reliable 
environment for applications. 

2.2. The Need for an Action-Based Programming Methodology 

Actions are the key feature for guaranteeing data consistency. 	The 
"all-or-nothing" nature of actions really solves two problems. When an action 
falls, its effects are automatically undone; so, actions which fail due to 
machine failures cannot leave objects in an inconsistent state. Addition-
ally, the required serializability of actions provides a coarse-grained syn- 
chronization among them. 	(Other features may be used to provide more con- 
currency by supporting synchronization at a lower 	level.) Actions which 
are aborted for logical reasons (e.g., deadlock) again can have no visible 
effects on the state of any object. Thus the action concept successfully 
broadens the recovery viewpoint provided by checkpoints, since it encompasses 
all the changes to any number of objects made by an arbitrarily complex action. 

Actions alone do not provide all of the generally desired capabilities, 
since they do not address the question of the resiliency of individual 
objects. That is, they do not contribute toward the recovery of objects 
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located on machines that fail. Rather, they guarantee the integrity of sur-
viving objects. Both Argus and Clouds support resilience through use of stable 
storage. (Stable storage has the property that information entrusted to it 
is extremely unlikely to be lost.) Various features are provided which cause 
the object support system to record sufficient information on stable storage 
so that the state of an object (guardian in Argus) may be recovered after a 
hardware failure. Note that for a combination of consistency and resili-
ence, the state of an object must be written to stable storage whenever an 
action which modified the object commits (presuming that pessimistic recovery is 
being used). 

Writing the state on an object to stable storage is, of 	course, just 
checkpointing. 	It is the coupling with the action mechanism which makes 
checkpointing of objects effective. That is, part of the implementation of a 
commit is a checkpoint of all affected objects. Thus checkpointing is made 
an effective means for providing consistent, resilient objects. 

The mechanism for specifying just what must be written is 	one 	way 	in 
which Argus, 	Clouds and other proposals differ. In Argus, all mutex objects 
within a guardian are written. As suggested by the name, mutex objects 	also 
have certain synchronization properties, relating to their accessibility to con-
currently executing actions. Clouds, on the other hand, allows an entire 
object or any data object within it to be specified as recoverable. As would 
be expected, if the entire object is recoverable, then all of its contained 
data objects 	are 	written to stable storage when a relevant commit occurs. 
Both of these approaches exemplify implicit specifications of what must be 
saved for recovery purposes. Yet another approach would be to require the pro-
grammer who defines an object to provide an explicit write-to-stable-storage 
operation to be invoked by the object management system at appropriate 
times. This variety of proposals reflects the need for study of a programming 
methodology based on use of objects and actions, so that we can determine just 
what kinds of features are most effective. 

The Clouds architecture goes beyond others in that it can support actions 
that involve objects on more than one machine. In other words, a remote 
procedure call can be done without creation of a nested action. Allchin's work 
[Allc83b] 	provides a definition of the basic capabilities supported by the 
Clouds architecture and a design for their implementation. 	Now that that 
implementation is in progress, we are studying how these capabilities may be 
applied. In particular, we wish to study a programming methodology for systems 
like Clouds. The semantic knowledge about objects afforded by the encapsulation 
in object-oriented systems like Clouds should provide opportunities for optimi-
zations in the treatment of the synchronization and recovery of replicated data 
unavailable in the simple read-write database model. 

As part of the Clouds project, we are designing and implementing high-level 
systems programming language called Aeolus (after the king of the winds in Greek 
mythology). An overview of the Aeolus language is presented in [LeB185] (most 
of the materials in this and the preceeding sections are also derived from this 
paper). Aeolus gives the programmer access to the features of the Clouds system 
discussed above. However, we also intend to use Aeolus as a framework for 
studying the sort of programming methodology appropriate to Clouds. This study 
should lead to the design of high-level language features to support that metho-
dology. Additionally, it should suggest what capabilities are desirable both in 
the Aeolus run-time system and in the underlying action and object management 
support of the Clouds system. 

3. THE PROPOSED RESEARCH 

In this section, a plan for the proposed research is presented, as well as 
some preliminary examples of the sort of studies which will be made. 

3.1. Plan of Research 

The investigation of programming methodologies appropriate to systems 
objects having the properties of resilience and availability necessitates the 
programming of such objects. In the course of our studies, we propose to design 
simple versions of fault-tolerant servers which will be useful in the Clouds 
system, such as name servers, directory managers, system queues, etc. These 
designs may not be complete, since the aim is to study the issues of availabil-
ity and resilience in terms of these data structures, rather than such issues as 
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naming in distributed systems. Complete designs of these objects will be left 
for those researchers studying the relevant issues within the environment of the 
Clouds system. 

Among the issues which will be treated during this investigation are: 

Use of semantic knowledge of objects in programming of replication 
Can significant savings be achieved in programming the synchronization and 
recovery of replicated data by taking advantage of semantic knowledge of com-
plex objects rather than using a simple read-write model? 

Trade-offs between consistency and availability 
Is it necessary, in programming replicated system services, to maintain 
strict consistency (serializibility) among replicates in all cases, or are 
there cases in which global consistency may be weakened in favor of availa-
bility of services? 

Blocking (pessimistic) vs. non-blocking (optimistic) replication methods 
Again, there are trade-offs here between consistency and availability; for 
the systems objects of interest here, is the increased availability during 
partitions or site failures afforded by optimistic methods worth the possible 
cost incurred by the necessity to resolve inconsistencies introduced among 
the replicates during the partition? 

Appropriateness of current programming models for replicated data 
Are programming models useful in programming non-replicated objects also use-
ful 

 
 when replication is to be taken into account? That is, do the present 

models suffice, or must new models be developed for efficient programming of 
replicated objects? 

Support needed for replication 
What support is needed from the run-time system and from the operating system 
to support the programming of replicated objects? 

Support needed to ensure forward progress 
What support is needed from the jab scheduler [Mcge84a] to continue execution 
of operations on replicated objects despite failures? 

Based on the knowledge gleaned about programming for resilience and availability 
during these studies, we propose to design language features to aid in program-
ming fault-tolerant, replicated objects. Besides this upwards migration of 
knowledge, a downwards migration -- capabilities required of the language run-
time support, as well as the action and object managers -- should manifest 
itself. 

3.2. Preliminary Studies 

As examples of the types of explorations which will be made in the course 
of this research, some preliminary studies are presented here. These examples 
include investigation of the programming of replicated objects using recoverable 
variables and using per-action and permanent variables. Also, a tentative 
design for a permanent heap to provide part of the run-time support for these 
objects is presented. 

3.2.1. Replication Using Recoverable Variables 

An example of an Aeolus object programmed to provide availability via 
replication is shown in Example 1. This object, which implements a simple sym-
bol table, is derived from a single-copy (non-replicated) object (discussed in 
[LeB185]) which uses actions to provide recovery "firewalls" around its critical 
operations and the Clouds lock mechanism to specify synchronization rules which 
allow a high degree of concurrency the use of its operations. 

The replicated SYMTAB object shown here uses recoverable variables to pro-
vide resilience of data in the face of failures. Recoverable variables, dis-
cussed in [A11c83b], are similar to versions of distributed database work, and 
require the creation of a new version (copy) of a recoverable variable for each 
action which modifies the variable. These versions are maintained on a version 
stack by the action managers of the Clouds system, which control visibility of 
the versions to nodes of the action tree, as well as writing versions to stable 
storage upon action commit. 
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Availability of the SYMTAB object is achieved by replication. 	Two 
instances of this object (partners) are created by the parent process, one of 
which is arbitrarily made the master instance, while the other is made the 
slave. 	Operations may be invoked on either of these instances; however, the 
slave instance merely relays the operation requests to the master. 	The master 
instance will then carry out the operations both locally and at the slave 
instance (by means of special operations) as if they had been originally invoked 
at the master. Were the instances equal partners (that is, if operations could 
be carried out at either instance), it would be necessary for each instance to 
obtain appropriate locks both locally and at the partner in order to maintain 
consistency, which could lead to deadlock unless some sort of global locking 
mechanism is available. In our implementation, locks need be obtained only at 
the master; thus, deadlock problems are avoided without the need for global 
locks. Should the slave instance become unavailable to the master (because of 
network partition or failure of the slave's site), the master will no longer 
attempt to replicate operations at the slave until a reinitialization operation 
is invoked by the Clouds action/object management support. Should the master 
instance become unavailable to the slave, the slave makes itself the master and 
carries out operations locally until reinitialization is invoked. When reini-
tialization occurs, the original master instance is again made master, and the 
states of the two instances are merged. The merge process is aided by mainte-
nance of a version vector, which contains a sort of timestamp of both the latest 
version of the data maintained locally and the last version which was known to 
be consistent with the partner instance. 

The implementation of the replicated SYMTAB object stresses availability at 
the expense of strict consistency among the replicated instances across parti-
tions by using an optimistic (non-blocking) recovery method (see the section on 
"Related Work"). Rather, it seeks to maintain a "reasonable" view of the data 
at each instance, and resolves inconsistencies during the state-merge process 
using backout or compensatory operations. The programming of the merge process 
takes advantage of semantic knowledge of the object. Thus, the replicated SYM-
TAB object may be used -- despite site failures or partitions -- at any node at 
which an instance is available, without running the risk of an operation being 
blocked in order to maintain global consistency. 



Example 1. Replicated SYMTAB object using recoverable variables 

implementation of object symtab ( replicate_number : integer ) is 

! Two-copy master/slave symbol table object using the action management 
! facilities of Aeolus/Clouds for recovery firewalls and the lock 
! mechanisms for synchronization, and demonstrating optimistic 
! (non-blocking) site crash and partition recovery methods. 

! The definitions of MAXREPLICATE, REPLICATE_RANGE, and VERSION_VECTOR 
! actually appear in the definition part of SYMTAB, but are shown here for 
! convenience. 

MAXREPLICATE : const integer := 2 

type replicate_range is 1 .. MAXREPLICATE 

type version_vector is array [replicate_range] of integer 

! The actual declarations of the implementation part. 

here, there 	: recoverable replicate_range 
! for storing values of replicate numbers 

MAXBUCKET 	const integer := 101 	I or whatever 

type hash_range is 1 .. MAXBUCKET 

type ptr_entry is -> symtable_entry 

type symtable_entry is 
record 

name 	: valstring , 
next 	: ptr_entry 

end record 

! just something for demo purposes 

type symtab_type is array [hash_range] of ptr_entry 

symtable 	: recoverable symtab_type 

symentry_lock : lock ( write : [] 
read : [read] ) domain is hash_range 

! The SYMENTRY lock allows locking of individual hash buckets in the 
! symbol table. Several READ operations are allowed to proceed 
! concurrently, but a WRITE operation blocks all other operations. 

symtable_lock : lock ( write : [write] , 
read : [read] 	) 

! The SYMTABLE lock allows the entire symbol table to be locked. 
! This lock is set in the EXACT_LIST operation for purposes of 
I getting an exact listing of the state of the symbol table. 
! Operations which change the state of the symbol table must wait for 
! completion of any outstanding EXACT_LIST operations. 

partner 	: recoverable symtab 	! Object pointer to the partner object 

master 	 boolean ! remember whether this instance is master or slave 

local_version : recoverable version_vector 
! The LOCAL_VERSION vector is used to store version numbers of the local 
state (the HERE entry) and of the last version of the local state 

! known to be consistent with the partner's state (the THERE entry). 
! Note, however, that only one copy (per instance) of the actual state 
! is maintained. 
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procedure hash ( name : valstring ) 	hash range is 
1 This HASH function is a local (nonpublic) procedure of 
1 the SYMTAB object. 
begin 

! the usual type of stuff 
end procedure ! hash ! 

procedure send_state () is action 
1 The SEND_STATE operation is called by the partner to copy the local 
! state to the partner. 
! Here, .knowledge of object semantics can be of great help in fine-tuning 
! the state transfer process. For example, if the number of changes 
! expected over an average expected partition period is small with respect 
! to the total number of symbol table entries, it might be better to keep a 
! log of those changes made during the partition period and then execute 
! those changes on the partner's state. The method shown below for copying 
! the entire local state to the partner assumes that the number of changes 
1 will be large with respect to total size. Also, the method shown --
! total reconstruction of the symbol table -- is used 
! since the symbol table data structure uses physical pointers. Had the 
! data structure used integer indices instead, the state could have been 
! copied directly to the partner. 

next_entry : ptr_entry 
: index hash_range 

begin 
for i := 1 to MAXBUCKET loop 

next_entry := symtable [i] 
while next_entry <> NIL loop 

partner 0 sym_insert (next_entry -> .name, local_version [here]) 
next_entry := next_entry -> .next 

end loop 
end loop 
local_version [there] := local_version [here] 

end procedure ! send_state ! 

procedure receive_state () is action 
! The RECEIVE_STATE operation is called by the partner's SEND_STATE 
! operation to receive a copy of the partner's state. 
1 This operation doesn't do anything because of the symbol table data 
! structure and method of state transfer used above. If the data structure 
I used indices instead of pointers, this operation would install the copy of 
1 the state sent by the partner. 
begin 

null 
end procedure ! receive_state ! 

procedure transfer_state (! partner_version : version_vector !) is action 
! The TRANSFER_STATE operation is called by the MERGE_STATE operation to 
! have the partner transfer its state to us. If the partner becomes 
! unavailable, make this instance the master. 
begin 

aid := action (partner 0 send_state ()) 
if Committed (aid) then 

local_version [here], local_version [there] := partner_version [there] 
else 

partner_available := FALSE 
master 	 := TRUE 

end if 
end procedure ! transfer_state ! 



procedure reconcile_states ( partner_version : version_vector ) is action 
! The RECONCILE_STATE procedure is called locally (by the MERGE_STATE 
! operation) to.  merge the local state and the partner's state in 
! the case where both states have been updated since a partition 
! occurred. 
begin 

null 	! later 
end procedure ! reconcile_states ! 

	

procedure sym_insert 	newname : vaistring, newversion : integer !) is action 
! The SYM_INSERT operation may be invoked as an action. 
! It is called either by the INSERT operation below (if this instance is 
! the master), or by the partner as an update operation (if this instance 
! is the slave). 
! Locks on the symbol table and the particular hash entry concerned are 
! obtained by the caller. 
! If NEWVERSION is greater than 0 (that is, the SYM_INSERT operation 
! was called remotely), then this new version number is installed in the 
! LOCAL_VERSION array. 

entry 	: ptr_entry 
bucket_num : hash_range 

begin 
bucket_num := hash (newname) 
new (entry) 
using ent := entry -> do 

ent.name := newname 
ent.next := symtable [bucket_num] -> .next 

end using 

region symtable [bucket_num] do 
symtable [bucket_num] := entry 

end region 
if newversion > 0 then 

local_version [here], local_version [there] := newversion 
end if 

end procedure ! sym_insert ! 



procedure insert (! newname : valstring !) is action 
! The INSERT operation may be called as an action. 
1 If this instance is the master, it sets write locks on the symbol table 
! and on the hash entry to be changed, and then calls the SYM_INSERT 
1 operation both locally and at the slave partner (if available) to do 
! the actual insertion. 
1 If this instance is the slave, it calls the master (if available) to do 
! the insertion just as if the call had originated there. If the master 
! is not available, the slave makes itself the master and performs the 
! insertion. 
! Note that, since only the master can call the SYM_INSERT operation 
! (which actually performs the insertion), it is not necessary to set 
! locks at the slave. 

newversion : integer 
aid 	: action id 

begin 
if master then 

newversion := local_version [here] + 1 
SetLock (symtable_lock, write) 
SetLock (symentry_lock, write, hash (newname)) 
sym_insert (newname, 0) 
local_version [here] := newversion 
if partner_available then 

aid := action (partner 0 sym_insert (newname, newversion)) 
Await (aid) 	! block until the nested action commits or aborts 
if Committed (aid) then 

local_version [there] := newversion 
else 

partner_available := FALSE 
end if 

end if 
else 	! this instance is the slave 

aid := action (partner 0 insert (newname)) 
Await (aid) 
if not Committed (aid) then 	! become master 

partner_available := FALSE 
master 	 := TRUE 
newversion 	:= local_version [here] + 1 
SetLock (symtable_lock, write) 
SetLock (symentry_lock, write, hash (newname)) 
sym_insert (newname, 0) 
local_version [here] := newversion 

end if 
end if 

end procedure ! insert ! 

merge_lock : lock ( busy : [] ) 



procedure merge state (! partner_version : version_vector !) is action 
! The MERGE_STATE operation is invoked by the master partner after it{ 
! receives a REINIT invocation after a partition or crash. 
1 This operation compares the local version vector (LOCAL_VERSION) 
! with that of the partner (PARTNER_VERSION), and takes appropriate action 
! to merge its state with that of the partner into a single, 
! consistent state. 
begin 

SetLock (merge lock, busy) 
master := FALSE 
if local_version [here] = partner_version [there] then 

! The local and partner states are already consistent 
return . 

elsif local_version [here] = partner_version [here] then 
! The local state hasn't changed since the last time the 
! states were consistent; copy the partner's state here 

transfer_state (partner version) 
elsif local_version [there] = partner_version [there] then 

! The partner's state has not changed since the last time the 
! states were consistent, so just copy over the local state 
! to the partner 

partner 411) transfer_state (local_version) 
else 

! Both the local and the partner's state have changed since 
the two states were last consistent (partition case), 

I so we must merge them 
reconcile_states (partner_version) 

end if 
end procedure ! merge_state ! 

procedure reinit () is action 
! The REINIT operation is invoked by the object manager in charge of this 
! instance when the site on which it is running comes back up after a 
! crash, or when a partition ends and this instance's state must be merged 
! with its partner's state. 
! If the MERGE lock is set, the partner has already initiated the merge 
process, and this instance is made the slave. 

! If the MERGE lock is not set, this instance is the first to have the 
! REINIT operation invoked by the object manager, so it becomes the master, 
! invokes the partner's MERGE_STATE operation and passes it the local 
! LOCAL_VERSION array; the partner (if available) then determines what 
! needs to be done to merge the two states into a consistent state. 

aid : action id 

begin 
if TestLock (merge_lock, busy) then 

return . 
end if 
SetLock (merge_lock, busy) 
master := here = 1 ! arbitrary choice 
if master then 

aid 	action (partner lb merge_state (local_version)) 
Await (aid) 
partner_available := Committed (aid) 

else 
aid := action (partner 0 reinit 
Await (aid) 
if not Committed (aid) then 

master := TRUE 
partner_available := FALSE 

end if 
end if 

end procedure ! reinit I 
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procedure set_partner (! p : symtab, rep_number : replicate_range !) is 
! The SET_PARTNER operation is used by the creating process to 
! initialize the PARTNER object pointer. 
begin 

partner := p 
there 	:= rep_number 

end procedure ! set_partner ! 

begin ! initialization section 
here 	 := replicate_number 
master 	:= here = 1 	! arbitrary choice 
local_version := version_vector"[ 0 : MAXREPLICATE ] 
symtab 	:= symtab_type"[ NIL : MAXBUCKET ] 

! symbol table is initially empty 
end implementation. 



3.2.2. Replication Using Permanent and Per-Action Variables 

Since the use of a recoverable symbol table data structure requires the 
creation of a complete copy of the symbol table on the version stack for each 
action which modifies the data structure, the implementation of the replicated 
SYMTAB object presented in the preceeding subsection can become inefficient as 
the size of the symbol table increases. Fortunately, we can use semantic 
knowledge about the object to simulate the effect of recoverable variables at a 
fraction of their cost. The technique which we will use is introduced in 
(McKe84b]. 

An implementation of the SYMTAB object which uses this new technique is 
shown in Example 2. Rather than require the system to maintain a version of the 
symbol table per action, we will maintain lists of those elements inserted or 
deleted by each action. These lists are maintained in per-action variables, 
copies of which are created for each action during its BOA (beginning of action) 
phase; an action may access not only its own per-action variables, but those of 
its parent (if any). We provide handlers for the abort and nested commit events 
of actions, which clean up after action aborts and propagate the values of the 
per-action variables to the parent of the current action. Only one copy of the 
entire symbol table data structure is maintained, as a permanent variable. Per-
manent variables are maintained in a special area of per-object storage, and are 
managed by a shadowing mechanism provided by the Clouds kernel storage manage-
ment system (PittB4]. The shadows are created during the precommit action 
event; thus, we provide a handler for the toplevel precommit event which per-
forms the actual insertions and deletions on the permanent symbol table, using 
the INSERTED and DELETED lists which we have propagated up the action tree. 

As in Example 1, only the INSERT operation is shown for sake of brevity; 
however, the form of the DELETE operation would be very similar to that of 
INSERT, except that items would be added to the DELETED per -action list rather 
than to the INSERTED list. The processing of the DELETED list during action 
events is shown in the code for the alternate event handlers. 



Example 2. Replicated SYMTAB object using permanent and per-action variables 

implementation of object symtab ( replicate_number : integer ) is 

! Two-copy master/slave symbol table object using the action management 
! facilities of Aeolus/Clouds for recovery firewalls and the lock 
! mechanisms for synchronization, and demonstrating optimistic 
! (non-blocking) site crash and partition recovery methods. 
! Permanent variables, rather than recoverable variables, are used for 
! for efficiency. 

! Names are given here for alternate handlers provided for some of the action 
! events. 

action events 
. abort is sym_abort, 

nested commit is sym_nested_commit. 
toplevel_precommit is sym_top_precommit 

! The definitions of MAXREPLICATE, REPLICATE_ RANGE, and VERSION_VECTOR 
! actually appear in the definition part of SYMTAB, but are shown here for 
! convenience. 

MAXREPLICATE : const integer := 2 

type replicate_range is 1 .. MAXREPLICATE 

type version vector is array [replicate_range] of integer 

! The actual declarations of the implementation part. 

here, there 	: permanent replicate_range 
! for storing values of replicate numbers 

MAXBUCKET 	: const integer := 101 	1 or whatever 

type hash_range is 1 	MAXBUCKET 

type ptr_entry is -> permanent symtable_entry ! allocate in perm. heap 

type symtable_entry is 
record 

name 	: valstring , 
next 	: ptr_entry 

end record 

! just something for demo purposes 

type symtab_type is permanent array [hash_range] of ptr_entry 
! the array of pointers is in perm. storage 

symtable 	: symtab_type 

symentry_lock : lock ( write : [] 
read : [read] ) domain is hash_range 

1 The SYMENTRY lock allows locking of individual hash buckets in the 
! symbol table. Several READ operations are allowed to proceed 
1 concurrently, but a WRITE operation blocks all other operations. 

symtable_lock : lock ( write : [write] , 
read : [read] 	) 

! The SYMTABLE lock allows the entire symbol table to be locked. 
! This lock is set in the EXACT_LIST operation for purposes of 
! getting an exact listing of the state of the symbol table. 
! Operations which change the state of the symbol table must wait for 
! completion of any outstanding EXACT_LIST operations. 
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partner 	: permanent symtab 	! Object pointer to the partner object 

master 	: boolean ! remember whether this instance is master or slave 

local_version : recoverable version_vector 
! The LOCAL_VERSION vector is used to store version numbers of the local 
! state (the HERE entry) and of the last version of the local state 
! known to be consistent with the partner's state (the THERE entry). 
! Note, however, that only one copy (per instance) of the actual state 
! is maintained. 

! The per-action variables of the SYMTAB object. 
! We will maintain lists of those entries inserted and deleted by 
! each action. The per-action variables are headers of those lists, 
! which are pointers to entries allocated in the permanent heap. 
! There are two standard names, Self and Parent, which refer to the 
! per-action records of the current action and its parent, 
! respectively. 
! The PER-ACTION declaration causes a record type with name PERACTION, 
! as well as the names Self and Parent with that record type, to be added 
! to the Aeolus compiler's symbol table. 

per-action is 
record 

inserted, deleted : ptr_entry 
end record 
snit peractionn[ NIL:2 ] 	! For initialization of Self at action start 

procedure hash ( name : valstring ) : hash_range is 
! Same as in Example 1. 

procedure send_state () is action 
! Same as in Example 1. 

procedure receive state () is action 
! Same as in Example 1. 

procedure transfer state (! partner_version : version_vector !) is action 
! Same as in Example 1. 

procedure reconcile_states ( partner_version : version_vector ) is action 
! Same as in Example 1. 



procedure sym_insert (! newname : valstring, newversion : integer !) is action 
! The SYM_INSERT operation may be invoked as an action. 
I It is called either by the INSERT operation below (if this instance is 
! the master), or by the partner as an update operation (if this instance 
! is the slave). 
! Locks on the symbol table and the particular hash entry concerned are 
! obtained by the caller. 
! If NEWVERSION is greater than 0 (that is, the SYM_INSERT operation 
! was called remotely), then this new version number is installed in the 
! LOCAL_VERSION array. 
! The insertion is noted on the INSERTED per-action list of the current 
! action, but is not actually performed until toplevel precommit. 

entry 	: ptr_entry 
bucket_num : hash_range 

begin 
bucket_num := hash (newname) 
new (entry) 
using ent := entry -> do 

ent.name := newname 
ent.next := Self.inserted -> .next 

end using 
Self.inserted := entry 
if newversion > 0 then 

local_version [here], local_version [there] := newversion 
end if 

end procedure ! sym_insert ! 

procedure insert (! newname : valstring !) is action 
! Same as in Example 1. 
! Note that manipulation of the INSERTED per-action list is performed by 
! the SYM_INSERT operation, which is called by the INSERT operation of the 
! master. 

procedure sym_abort () is 
! The SYM_ABORT procedure is the alternate handler for the ABORT action 
! event for the SYMTAB object. 
! It frees all space which was allocated in the permanent heap for 
! items inserted by the action being aborted. 

entry, next_entry : ptr_entry 

begin 
entry := Self.inserted 
while entry <> NIL loop 

next_entry := entry -> .next 
dispose (entry) 
entry := next_entry 

end loop 
end procedure ! sym_abort ! 



procedure sym nested commit () is 
! The SYM RESTED_EOMMIT  procedure is the alternate handler for the 
NESTED -COMMIT action event for the SYMTAB object. 

! It adds the INSERTED and DELETED lists for the nested action being 
! committed to the beginning of the respective lists of the action's parent. 

entry : ptr_entry 

begin 
entry :21 Self.inserted 
if entry <> NIL then 

loop 	! find the end of the INSERTED list 
if entry -> .next = NIL then 

exit . 
end if 
entry := entry -> .next 

end loop 
entry -> .next := Parent.inserted 
Parent.inserted := entry 

end if 

entry := Self.deleted 
if entry <> NIL then 

loop 	! find the end of the DELETED list 
if entry -> .next 2 NIL then 

exit . 
end if 
entry := entry -> .next 

end loop 
entry -> .next := Parent.deleted 
Parent.deleted := entry 

end if 
end procedure ! sym_nested_commit ! 



procedure sym_top_precommit () 	is 
! The SYM_TOP_PRECOMMIT procedure is the alternate handler for the 
1 TOPLEVEL-PRECOMMIT action event for the SYMTAB object. 
! 	It 	inserts or deletes each 	item 	in the INSERTED or DELETED list for this 
! action into (or out of) 	the permanent symbol 	table. 	At this point, 
1 the memory management system will create shadow versions of the pages 
! in the permanent version affected by these changes. 
! Note that, 	since the action management system promises that only one 
! action can enter 
mutual 	exclusion 

its PRECOMMIT stage at a time, 	no further locking for 
is necessary. 

entry, next_entry : ptr_entry 
place. prev_place : ptr_entry 
bucket_num : hash_range 

begin 
entry := Self.inserted 
while entry <> NIL loop 

next_entry := entry -> .next 
bucket_num := hash (entry -> .name) 
entry -> .next := symtable [hash] 
symtable [bucket_num] := entry 
entry := next_entry 

end loop 

entry := Self.deleted 
while entry <> NIL loop 

next_entry := entry -> .next 
bucket_num := hash (entry -> .name) 
place 	:= symtable [bucket_num] 
loop 	! find the entry in the permanent symbol table and remove it 

if place = NIL then 	! not there, so don't worry about it 
exit 

elsif place -> .name = entry -> .name then I got it 
if place = symtable [bucket_num] then 	! at start of bucket 

symtable [bucket_num] := place -> .next 
else 

prev_place -> .next := place -> .next 
end if 
exit . 

else 
prev_place := place 
place 	:= place -> .next 

end if 
end loop 
entry := next_entry 

end loop 
end procedure ! sym_top_precommit ! 

merge_lock : lock ( busy : [] ) 

procedure merge_state (! partner_version : version_vector !) is action 
! Same as in Example 1. 

procedure reinit () is action 
1 Same as in Example 1. 

procedure set_partner (! p 	symtab. rep_number : replicate_range !) is 
1 Same as in Example 1. 



begin ! initialization section 
here 	 := replicate_ number 
master 	 := here 2 1 	! arbitrary choice 
local version := version vector"[ 0 : MAXREPLICATE ] 
symtab 	 symtab_Type"[ NIL : MAXBUCKET ] 

! symbol table is initially empty 
end implementation. 



3.2.3. The Permanent Heap 

The design of the SYMTAB object presented in the preceeding subsection 
requires the use of linked lists allocated in a heap in the permanent area of 
per-object storage, both for its per-action and permanent variables. This per-
manent heap will require special run-time support for its management, which must 
maintain the heap's consistency across failures. 

In Example 3, we show a preliminary design for the permanent heap manager. 
To maintain the consistency of the heap, this PERMHEAP object uses the same 
techniques which we used in the SYMTAB object of Example 2 to implement recovery 
for the symbol table data structure, i.e., per-action variables and associated 
action-event handlers. (In fact, due to its compactness, this example may 
demonstrate the use of these techniques more clearly than does the SYMTAB exam-
ple.) The actual management of memory is done by a HEAP object (whose definition 
is shown in Example 3 for clarity), which can allocate and free blocks of memory 
in both the permanent and the temporary heap areas. The HEAP object does not 
implement recoverability at present; however, once the PERMHEAP object is avail-
able, the HEAP object may be altered to use the permanent heap for its FREE list 
and bootstrapped. 

The PERMHEAP object maintains lists of those areas of the heap allocated 
and freed by each action, in per-action variables. Since the HEAP object (which 
is at present nonrecoverable) does the actual management of the heap, alloca-
tions are visible to other actions immediately, thus maintaining the consistency 
of the heap. A call to the ALLOCATE operation of PERMHEAP will return a pointer 
to a block of memory allocated by HEAP in the permanent heap area of the object; 
a pointer to the block is also added to the ALLOCATED per-action list. A call 
to PERMHEAP's FREE operation will actually dispose the block of memory only if 
it was allocated by the action which is trying to free it; otherwise, a pointer 
to the block to be disposed is merely added to the FREED per-action list. Upon 
abort of an action which allocated permanent heap storage, the ALLOCATED list is 
used to clean up the heap via calls to HEAP's FREE operation. When a nested 
action enters its commit phase, its ALLOCATED and FREED per-action lists are 
propagated to its parent. Memory blocks on the permanent heap allocated by an 
action are actually disposed when the action's toplevel ancestor (to which the 
nested action's per-action lists have been propagated) enters its precommit 
phase; this is done by invoking the FREE operation of HEAP on all members of the 
toplevel action's FREED list: 

Note that this implementation of the PERMHEAP object does not provide 
strict serializability. To see this, consider some action, A, which exhausts 
(or nearly exhausts) the permanent heap, causing other actions B and C trying to 
allocate permanent memory to fail. Action A may well be aborted itself. 
Actions B and C which failed because of A might not have failed had they been 
executed serially. However, such breaches of strict serializability do not 
affect the consistency of the permanent heap mechanism, and thus are of little 
concern in this context. 



Example 3. Run-time support for the permanent heap 

implementation of object permheap is 
! Support for the permanent heap, using per-action variables for 
! recovery management. 

uses heap 
! The definition of the HEAP pseudo-object is shown here for clarity. 
1 The HEAP object implements a standard heap management discipline (i.e, 
1 without recovery), but allows one to allocate memory in either the 
! permanent or the temporary memory area. 

definition of object heap is 
type heap_type is ( normal_heap, permanent_heap ) 
operations 

procedure allocate ( size : unsigned 
kind : heap_type ) : address 

1 	 -- the ALLOCATE operation returns a pointer to a block of 
1 	 -- memory of the specified SIZE in the area of memory 

-- indicated by KIND. 
procedure free ( block : address ) 

-- the FREE operation disposes the block of memory pointed 
-- to by BLOCK. 

end definition. 

! The local declarations of the PERMHEAP object. 
1 
! Give the names of alternate handlers for some of the action events. 

action events 
abort is permheap_abort, 

nested_commit is permheap nested_commit, 
topleve1_precommit is permheap_top_precommit 

! The BLOCKLIST type is used in the declaration of the per-action variables 
! below. 

type ptr_blocklist is -> blocklist 

type blocklist is 
record 

block : address, 
next : ptr_blocklist 

end record 

! The per-action variables for permanent-heap recovery management. 
! We will maintain lists of memory blocks allocated and freed by each action. 

per_action is 
record 

allocated, freed : ptr_blocklist 
end record 
init peraction"( NIL:2 ] 

• 



! The operations of the PERMHEAP object. 

procedure allocate (! size : unsigned !) ! : address ! is 
! Return a pointer to a block of memory of the given SIZE in 
permanent memory. 

list : ptr_blocklist 

begin 
new (list) 	 ! create a new entry for the ALLOCATED list 
using 1 := list -> do 

l.block 	:= heap 0 allocate (size, permanent_heap) 
l.next 	' 	:= self.allocated 
Self.allocated := list ! put new entry at beginning of ALLOCATED list 
return l.block 

end using 
end procedure ! allocate ! 

procedure free (! block : address !) is 
I Dispose the block of memory indicated by BLOCK. 

prey, list : ptr_blocklist 

begin 
list, prey := Self.allocated I First, scan the ALLOCATED list to see if 
loop 	 I BLOCK was allocated by the current action 

if list = NIL then 	 ! Nope, go below 
exit . 

elsif list - > .block = block then 	! Yes, so 
if prey = next then 	 ! remove it from ALLOCATED list; 

Self.allocated := NIL 
• else 

prey 	.next := list -> .next 
end if 
heap 0 free (list -> .block) 	! go ahead and dispose it 
dispose (list) 
return . 	 ! we're done 

else 
prey := list 
list := list -> .next 

end if 
end loop 
new (list) 	 ! If we get here, BLOCK wasn't allocated by the 
using 1 := list -> do 	! current action, so put it on the FREED list 

l.block := block 
l.next 	:= Self.freed 

end using 
Self.freed := list 

end procedure ! free ! 



procedure permheap_abort () is 
! The alternate handler for the ABORT action event. 
! We'll just free all the space allocated by this action as indicated 
! by the ALLOCATED list, and clean up the FREED list for good measure. 

list, old : ptr_blocklist 

begin 
list := Self.allocated 
while list <> NIL loop 

heap V free (list -> .block) 
old 	:= list 
list := list -> .next 
dispose (old) 

end loop 

list := Self.freed 
while list <> NIL loop 

old 	:= list 
list := list -> .next 
dispose (old) 

end loop 
end procedure ! permheap_abort ! 

procedure permheap_nested_commit () is 
! The alternate handler for the NESTED COMMIT action event. 
! We'll propagate the items on the ALLOCATED and FREED lists of this 
! action to the beginning of the corresponding lists of its parent action. 

List : ptr_blocklist 

begin 
list := Self.allocated 
if list <> NIL then 

loop 	! find the end of the ALLOCATED list 
if list -> .next = NIL then 

exit . 
end if 
list := list -> .next 

end loop 
list -> .next 	:= Parent.allocated 
Parent.allocated := list 

end if 

list := Self.freed 
if list <> NIL then 

loop 	! find the end 	the DELETED list 
if list -> .next = NIL then 

exit . 
end if 
list := list -> .next 

end loop 
list -> .next := Parent.freed 
Parent.freed := list 

end if 
end procedure ! permheap_nested_commit ! 



procedure permheap_top_precommit () is 
! The alternate handler for the TDPLEVEL_PRECOMMIT action event. 
! We'll use the normal HEAP operation FREE to dispose of the memory blocks 
! on the FREED list, but we'll just dispose the ALLOCATED list -- it's only 
! used to free up storage allocated by an aborting action. 

list, old : ptr_blocklist 

begin 
list := Self.freed 
while list <> NIL loop 

heap 0 free (list -> .block) 
old 	:= list 
list := list -> .next 
dispose (old) 

end loop 

list := Self.allocated 
while list <> NIL loop 

old 	:= list 
list := list -> .next 
dispose (old) 

end loop 
end procedure ! permheap_top_precommit ! 

begin ! object initialization 
null 

end implementation. 



4. RELATED WORK 

As with most of the topics involved in the study of distributed systems, 
the synchronization and recovery of replicated data was first studied in the 
area of distributed database systems. The history of these efforts is summar-
ized by Wright [Wrig83]. He classifies these methods as conservative (pessimis-
tic, blocking) and optimistic (non-blocking). Examples of conservative methods 
are voting schemes [Giff79, Thom78], primary copy methods [Ston79], and token-
passing schemes [LeLa78]. The intent of these methods is to ensure consistency 
of the replicated data by requiring access to a special copy or set of copies of 
the data during partitions. Primary copy methods allow access to a copy during 
a network partition only if the partition possesses the designated primary copy 
of the data. Token-passing schemes are an extension of primary copy methods; a 
token is passed among sites holding a copy of data, and that copy at the site 
currently holding the token is considered the primary copy. Yet another exten-
sion of primary copy methods are the voting schemes. Each copy of the data 
object is assigned a (possibly different) number of votes; a partition possess-
ing a majority of the votes for that object may access it. The conservative 
schemes are called blocking since a data object is not available at a site in a 
partition which does not possess the primary copy (or token or majority of 
votes); thus, the access must block until the partition is ended, even if a copy 
of the data is available in the partition. Indeed, under these schemes it is 
possible that no partition may have access to the data object. 

The optimistic methods do not seek to ensure global consistency of repli-
cated data during partitions [Davi8i, Davi82]. Thus, accesses are not blocked 
if a replicate of the data is available in the partition in question. Rather, 
inconsistencies in the data replicates are resolved during a merge process once 
the partition is ended, by use of backouts or compensatory actions. It is 
assumed that the number of such inconsistencies will be small (hence, optimis-
tic). However, tradeoffs may be made between consistency and availability. For 
example, the Data-Patch tool for designing replicated databases [Blau82, Garc83] 
assumes that, rather than strict consistency, a "reasonable" view of the data-
base should be maintained to enhance availability. 

Wright develops enhancements to both the conservative and the optimistic 
methods. Conservative schemes are extended by the notion of compatibility among 
classes of transactions, which allow increased efficiency and availability with 
these methods of concurrency control. He also considers the computational com-
plexity of the problem of backing out transactions under optimistic schemes, and 
shows that (in general) the problem is NP-complete. He then develops efficient 
heuristic solutions to this problem. 

However, Wright's work (as is most of the work previously discussed) 
assumes a simple data model based on reads and writes. He does speculate that 
the semantic knowledge about objects available in object-oriented systems may 
bring about the possibility of gains in efficiency over his model, since the 
read-write model places unneccessary restrictions on availability and con-
currency when used with more complex objects. The Data-Patch tool mentioned 
above takes advantage of semantic knowledge through its YACC-like approach to 
the construction of partition-merge routines for databases. 

Previous work in the area of replication of data in distributed operating 
systems includes work on the LOCUS system at UCLA [Walk83] as well as the Argus 
system at MIT [Her184] and the ISIS system at Cornell [Birm84]. The LOCUS sys-
tem supports replicated files and directories using an optimistic approach; 
inconsistencies are allowed to develop among the separate partitions which are 
resolved (except in the case of simple read-write file objects) by application-
dependent measures. No mention is made of system support for the applications' 
recovery methods. Herlihy's work at MIT uses semantic knowledge of Argus 
objects to enhance a conservative (voting) method. Analysis of the algebraic 
structure of data types is used in the choice of appropriate intersections of 
voting quorums. The ISIS system supports k-resilient objects (objects repli-
cated at k+1 sites and which can withstand up to k failures) by means of check-
points and the "available copies" voting algorithm. This system provides both 
availability and forward progress, that is, even after up to k site failures, 
enough information is available at the remaining sites possessing an object 
replicate that work started at the failed sites can continue at these remaining 
sites. This is accomplished through a coordinator-cohort scheme similar to the 
master-slave discipline shown in the previous section. 
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Thus, recalling the issues detailed in Section 3.1, we believe that the 
proposed research will lead to contributions in several of the areas mentioned. 
The use of semantic knowledge of objects in the programming of non-blocking 
replication methods has not been the subject of much previous study, especially 
in the context of systems programming problems. The trade-offs mentioned, 
between consistency and availability and between blocking and non-blocking 
replication methods, have been the focus of some work in the database realm, but 
again the issues have not been treated in operating systems. The issue of 
appropriate programming models for availability in action/object systems has not 
been treated before. Rather, in systems such as Argus, the applications 
language has been designed oh initio, and the system as well as programming 
models for it have been cut to fit. Finally, the study of support needed for 
availability and for forward progress should provide valuable insights. 



5. OUTLINE OF DISSERTATION 

A proposed outline for the dissertation resulting from the proposed 
research is presented here. Since this is an exploratory thesis, the answer to 
the perennial question "how can we tell when you are done?" is a difficult one. 
There will be some tangibles; in particular, designs for for the run-time sup-
port system for Aeolus and for the interfaces to the action manager, object 
manager, and job scheduling systems should be forthcoming. However, completion 
of several portions of the work will depend on our satisfaction with the com-
pleteness of the set of case studies and with the insights into the design of 
language features which these case studies may yield. 

Introduction 
Background and terminology for the research to be discussed will be presented 
in terms of an overview of the Clouds project and of the Aeolus language. 
The goals and plan of the research will be described. 

Contributions 
The contributions of the research will be summarized. 

Related Work 
Previous work in this area will be discussed and compared to this research. 

Case Studies 
The results of the explorations 'in programming methodology for replicated 
data will be presented and discussed. 

Language Features for Resilience and Availability 
Those features whose designs result from the case studies will be presented 
and discussed: in particular, comparisons will be made with features provided 
in other languages for distributed applications. 

Run-Time and Operating System Support for Replicated Data 
Designs or suggestions for support features resulting from the case studies 
will be presented and compared to support provided by other systems. 

Conclusions and Further Work 
The work done and its contributions are summarized; ideas for further work 
beyond the scope of this research which may develop are presented. 
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