
Cost Sharing No: 	N/A st Sharing Amount: S 	None

We: Distributed Combat Service Support Advanced Experimental Demonstrations

DMINISTRATIVE DATA OCA Contact 	William F. Brown 	 Ext. 4820

) Sponsor Technical Contact: 2) Sponsor Admin/Contractual Matters:

efense Priority Rating: 	DO-S1

	

Military Security Classification: 	None

	

(or) Company/Industrial Proprietary: 	

Gov't
e Attached Supplemental Information Sheet for Additional Requirements.

prior approval - Contact OCA in each case. Domestic travel requires sponsor avel: Foreign travel must have

C; 055
/

GTRI

Library

Project File

Other I. Newton

ject Director

search Administrative Network

search Property Management

COsi nting

Procurement/E ES Supply Services

Research Security Services
,--.81rts Coordinator IOCA)----

 Research Communications (2)

Project No.

7l 	Ur 	3

G-36-610

R 	Ti l: 	i) AI A 	SIII. El

ORIGINAL 	REVISION NO.

GT RI/GM 	DATE 	6 	83

Project Director: A. P. Jensen Schoolhiair 	ICS

Sponsor: 	"FERADCON, Procurement & Product -inn Directorate 	Ft. Belvoir, , VA

Type Agreement: D. 	0. 	ii0016 under 	 (AIRNICS) 	(OCA Tile 14 7)

Award Period: 	From 6/1/63 To 	4 Ts k ,9 (IPerformance) . (R-port.4

Sponsor Amount: This t.,hz,ne Total to Date

404) 894-3101

ESTRICTIONS

approval where total will exceed greater of $500 or 125% of approved proposal budget category.

uipment: Title vests with 	Government

MMENTS:

taw

-

15 O'Keefe Bldg.

tlanta, GA 30332

ior David Forinash

IRMICS

T. A. Bry nt

ONR

Campu

(404 	81-4213

PIES TO:

145,000

S 145,000

 $ 145,000

Estimated: S 145, 000

 Funded: 	$

nues Project No.

ES TO:

Director

rch Administrative Network

rch Property Management

nting

ement/GTRI Supply Services

ch,Sommuri;yllervices

Services

OCA 69.285

Final Invoice or Final Fiscal Report

ri Closing Documents

Ell Final Report of Inventions

O Govt. Property Inventory & Related Certificate

Classified Material Certificate

Other

Continued by Project No.

Library

GTRC

Research Communications (2)

Project File

Other 	 Heyser

Jones

EORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

oject No. G-36-610

ludes Subproject No.(s) 	N/A

ject Direc-tor(s) A.P. Jensen GTRC / NKR

nsor U.S. Army Computer Systems Command, Ft. Belvoir, VA.

Distributed Combat Service Support Advanced Experimental Demonstrations

ective Completion Date: 	7/10/84 (Performance) 	 (Reports)

nt/Contract Closeout Actions Remaining:

n None

Date 	October 2, 1985

SchoolXIS ICS

Combat Service Support System
Advanced Szperinental Demonstration

Presented to:

The
Army Institute for Research

in
Management Information and Computer Systems

(AIRMICS)

Contract No. DAAK70-79-D-0087-0016
Research Project No. G36-610

Principal Investigator:

Alton P. Jensen, Professor

Project Manager:

William O. Putnam, Research Scientist II

Principal Project Staff:

Steven L. Goldberg, Research Assistant
I-Ming Pai l Graduate Research Assistant
Miri So, Graduate Research Assistant

School of Information and Computer Science

GEORGIA INSTITUTE OF TECHNOLOGY

Atlanta, Georgia 30332

July 17, 1984

DISCLAIMER

The findir s of this rc ort are not to be construed as an official Department
of the Aat position, i less so designated by other authorized documents.

1

G36-610 Final Project Report 	 July 17, 1984

Table of Contents

Part 1. Project Overview

Part 2. Considerations in Software Design

Part 3. Software Design Requirements
Path Table
Sender Program
Receiver Program
Message Generator Program
Message Display Program

Part 4. Advanced Experimental Demonstrations
Demonstration :1
Demonstration 2
Demonstration :3
close-out Demonstration

Part 5. Recommended Issues for Further Research
Failure Detection
Alternate Routing
Distributed Data Base Consistency
Network Traffic Analysis
Software Portabilty
Error Detection and Correction
Dynamic Network Topology

Part 6. System Requirements
Operating System Requirements
Hardware Requirements

Part 7. Installation and Operation
File Organization and System Configuration
Data File Formats
Compiling the Source Code
Current Implementation (Georgia Tech)

Part 8. Figures 1 through 7

Part 9. Computer Program Listings and Documentation

2

G36-610 Final Project Report 	 July 17, 1984

Part 1. Project Overview

In the year ending July 17, 1984, the project group made good progress in
establishing a foothold on the problems of networking networks of
heterogeneous computers via asynchronous dial-up lines. In these endeavors,
fundamental issues such as network interfaces, automatic dialing, message
routing and rerouting, message forwarding, and error detection have been
addressed.

The year was concluded with successful demonstrations of a network
incorporating the above mentioned features. The network consisted of an ONYX
computer (running UNIX), a Honeywell DPS-6 (running GCCS), and an IBM Series/1
(running EDX).

The Honeywell DPS-6 is designated as the DAS3 in the AIRMICS network plan.
The ONYX was used as the TACCS. The Series/1 was used to demonstrate the
ability to manage communications between radically different systems.

At the beginning of the 1983-84 year, the specifications for the Advanced
Experimental Demonstrations (U110) were predicated on using three IBM Series/1
computers and a Honeywell DPS-6. The Honeywell had been specified to
represent the DAS3 in the network simulation. The Series/1 machines were to
be used to represent the TACCS.

A Honeywell DPS-6 was ordered and installed in December of 1983. In the
meantime, work proceeded on high level system design and specification of the
network interface.

It was determined that the software support provided by the Series/1 EDX
system would be inadequate for the desired system. It was necessary to write
a device handler for TTY type terminals in order to support
character-by-character, full duplex, buffered, asynchronous communications.
This device handler permitted a cleaner and more generic system
implementation. Once it was complete, it was possible to develop a system in
which messages and files were passed among a group of three Series/1
computers, an IBM 4341, a CDC CYBER, and a PRIME 550.

Presentations on the high-level design and implementation decisions were given
and the system was demonstrated for AIRMICS personnel in September, 1983.

In this demonstration, one facet of the AED was omitted. The links between
machines were supposed to be dial-up lines in the standard telephone network.
The auto-dial modems necessary for this part of the demonstration were not
available in time, so the connections were made directly. Arrangements were
made for modems to be available for the rest of the year pursuant to plans for
the next demonstration.

Subsequently, the three Series/1 machines were interconnected via the "Chat
Ring" IBM hardware and the IBM register insertion protocol implemented under
the Communications Facility II programs. This network was interfaced to the

3

G36-610 Final Project Report 	 July 17, 1984

Ungermann Bass Net/One LAN through one Series/1 acting as a host system. In
this environment, the previous demonstrations were repeated and augmented with
complete IBM-3270 protocol emulation using ASCII terminals under the YALE
ASCII programs via a Net/One connection. This demonstration was in itself a
first in that one Series/1 machine was channel connected to the IBM-4341 host
system while another Series/1 machine (using the YALE ASCII system) served as
a terminal concentrator for ASCII terminals connected via Net/One simulating
3270 workstations on the 4341 host system.

By January, the Honeywell DPS-6 had arrived but had not passed acceptance
tests. The system development on the Series/1 proceeded with activity
concentrating on the dialing, connection, and routing algorithms. At the end
of January, 1984, the Honeywell system was accepted. Training and orientation
proceeded.

In February, it became clear that the Series/1 with EDX would not be used by
the Army as a TACOS. The TACCS would be some type of 16 bit microcomputer
running UNIX. Emphasis was shifted to the Honeywell and ONYX computers now
available at the AIRMICS installation. Some of the Series/1 software was
modified and retained to interconnect with the other two systems for
demonstration purposes.

High level design for the network was completed in March, 1984. An overview
of the design is presented in Part 3.

In order to conserve effort and to insure portability of code, software
development was shifted to the ONYX system using the UNIX operating system and
the "C" language. It had become clear that the TACCS would be a UNIX based
micro similar to the ONYX. Since the Series/1 EDX code was to be abandoned at
the completion of this demo, new development was suspended.

The system design was refined and the system implemented. The system was in
place by late May and final testing for the close-out demonstration was
completed.

This demonstration illustrated interactive or batch submission of messages and
files to be transferred among three machines: one Series/1, one ONYX, and the
Honeywell DPS-6. Automatic forwarding and routing were performed. Utilities
were provided for the generation and display of messages. All linkages
between machines were made automatically through the telephone network using
1200 bps auto-dial modems. Due to an operating system bug on the ONYX, the
ONYX could transmit data to the Series/1 properly, but could not receive files
from that machine. All other links worked as designed. An initial
demonstration was given for local AIRMICS personnel during the first week of
June.

Demonstrations for external reviewers were given during the next week and last
week of June. The system performed according to specifications. Several
presentations were made by group members on the design and development of the
system.

4

G36-610 Final Project Report 	 July 17, 1984

Part 2. Considerations in software design

During the development of the software necessary for the AEDs of the current
contract and the issues of simulating command and control environments, a
umber of challenges were identified. This part of the report will briefly
review these areas in order to convey the nature of the tasks to be
accomplished and to identify progress that has been made.

The Honeywell DPS6 (as a DAS3) uses the GCCS 400 operating system which has
been described by some as "UNIX-like." However, GCCS has none of the standard
UNIX features such as pipes, I/O redirection, user-readable directories, or
dynamic file binding. The system does not provide the same power as UNIX
except at an assembly language programming level. The high level languages
such as PASCAL, provide none of the system level facilities of the language C.

The program development environment provided by GCCS has known deficiencies:
the editor inserts spurious characters in program source files resulting in
compiler errors and increased debugging time; the GCCS PASCAL compiler has a
number of bugs which cause it to return errors in correct programs often
making it necessary to recompile the same program two or three times (with no
modifications) before the compiler produces correct object code; the linker
also has trouble with the compiled PASCAL programs so it is often necessary to
link a program several times to get an executable program module.

Another problem concerned the handling of ports by GCCS. A port must be in
one of two states: LISTS -configured or NON-LISTENUR-configured. If the
port is not configured for the LISTENUR process, users cannot log in on the
port. However, if it is so configured, a program cannot use the port to dial
out on a modem. This means that a single port cannot be used for both
dial-out and dial-in operation. The Honeywell thus requires twice as many
ports and modems as the other systems. UNIX handles ports in a similar
manner, but the nature of the system is such that it is easy to write code (in
the high level language C) to circumvent the problem.

This project is directed to building a communications network which allows the
transfer of files and messages among the Honeywell, ONYX, and IBM Series/1
machines. These machines all have very different operating system and
hardware characteristics but the machine dependent elements of software in
this system are restricted to the small low level parts of the code while the
high level interface among the various computers is machine independent. This
structure provides for ease of expansion and maintenance.

At the hardware level, it was necessary to deal with three different types of
modems as well as three distinct and different machine interfaces:

* Each type of modem requires special code to handle the auto-dial
procedures therefore it is necessary to keep track of which type of
modem is in use at each machine.

5

G36-610 Final Project Report 	 July 1
7, 1984

* There are also differences in parity requirements for each kind of
computer: the Honeywell sends and receives with either odd or even
parity only (mark, space, and ignore parity options are not allowed);
the Series/1's transmit space parity, and ignore input parity; the
ONYX systems can be configured for any type of parity, but only for
one type at a time.

* Since the AID requires the other computers to call the ONYX, and since
the ONYX has no way of knowing which one is calling, it cannot set the
parity of the port in advance. If the parity is not set, the calling
machine cannot omuminfrate.

* The Cermetek modem used on the ONYX recognizes the parity of the ONYX
port and throws away all incoming characters which are not of that
parity, making it impossible for the caller to tell the ONYX which
parity to use.

At the high level interface, there were also problems to be solved. It was
necessary to allow an operator to type and send a message interactively, or
allow the message to come from a stored file. The file can be a saved message
from another system which needs to be forwarded to another system. Incoming
messages have to be separated into a local queue and a to-be-forwarded queue.
A process had to be designed to periodically check the queue of messages to be
forwarded and send on any message found there. The addresses of the messages
had to be validated, and the appropriate paths computed for transmission
across the network. Some of these tasks require functions and systems calls
of a type available on the ONYX/UNIX system but not available on the Honeywell
under GCCS without assembly language programming (eg. directory access, clock
access, sleeping processes).

Most of these problems have been solved. Some remain for attention in the
next project phase. There are also a number of new issues to be addressed,
such as dynamic reconfiguration of the network, detection of failed links,
broadcast capability, and message logging. The theoretical and mathematical
analysis of the system has not been explored. There are database problems to
be considered as we integrate the message passing network with the information
requirements of the combat support services system. The Georgia Tech project
staff is excited at the prospect and ready for the challenge.

6

G36-610 Final Project Report 	 July 17, 1984

Part 3. Software Design Requirements

The generalized system design is shown in figure 1. The modules identified
therein are discussed below. Initial versions of those modules have been
implemented on all hardware systems used in the AEDs. These initial modules
must be generalized and refined to uniformly perform the same functions on
each of the systems involved.

All software except the Honeywell dial-out program will be written in a High
Level language (Pascal, C, and EDL on the Honeywell, Onyx, and Series/1,
respectively). The Honeywell dial-out program will require a small assembly
language module to provide modem control.

path Table

The Path Table will be a two level structure. The first level will contain a
list of paths which lead to particular sites (which is dynamically
reconfigurable). The second level will contain a table of site names, their
telephone numbers (specific to tad, site), and the name of the local program
which will be invoked to establish the connection to the next site in the
path.

Sender Program

The Sender Program (which is identical in function for all systems) will be
responsible for sending a message to another system. The message will
consist of a header, a body, and a special end-of-message signal. The header
will contain the path through which the message must be sent (relative to the
current system). The body will be the actual text message to be transmitted.

The Sender Program will be invoked after a connection has been completely
established with the next system, and will expect to be communicating with a
Receiver Program (detailed below) on that system. The message will then be
transmitted (path, body, and terminator) via a simple format (line-by-line) to
the remote system, using the carriage-return as a line terminator. The
end-of-message signal will be the transmission of a special string followed by
a carriage return after the last line of valid data in the message body.

The Sender Program will then break the connection with the remote system,
after receipt of an acknowledgement (error conditions will be handled later),
which will consist of a line count indicating the number of lines received.
The Sender Program will then instruct the modem to hang up the phone.

Receiver Program

lbe Receiver Program will be responsible for receiving messages from a remote
system and saving them in a "mailbox" directory, creating a new file for each
message received. Messages to be forwarded to another system must be

7

G36-610 Final Project Report 	 July 17, 1984

recognized and queued to be sent by the Sender Program at the end of the
session. On the Series/1, such forwarding of messages will not be implemented
at this time.

The Receiver Program will be invoked when a connection is established, and
will assume that it is communicating with a Sender Program (described above)
which is running on the originating system. It must send upon initiation an
acknowledgement message to notify the Sender Program that it is currently
awaiting a message (header and body). The Receiver Program will maintain a
count of the number of lines received from the Sender Program, and will
transmit this count to the Sender Program as an acknowledgement upon receipt
of the end-of-message signal. The modem should automatically become available
when the Sender Program breaks the connection as a result of receiving the
acknowledgement.

It will be the responsibility of the Receiver Program at this point to dispose
of the message. This means that it must process the header of the message
and save the new message (either to be kept on this system or forwarded to
another system). Processing the header consists of stripping the current
site name from the path that was received in the message header. This
revised message (with its modified path) will then be written (header and
body) to the new file whose name is derived from a sequence number.

If the new message header is not empty (meaning that this is not the final
destination of the message), the Receiver Program will then invoke the Sender
Program, indicating to it the name of the file containing the message to be
forwarded (its sequence number or file name). The Receiver Program will then
terminate, leaving the Sender Program to initiate a transfer of the indicated
message to the next site in the network.

Message Generator Program

The message generator program, called GENMSG, will allow an interactive user
to type in a text message at his terminal. The program will prompt the user
for the destination address and look up the path for that address. The path
will be placed in the message header along with the return address. GENMSG
will also allow a user to send an existing text file as a message.

Message Display Program

The message display program, called DISPMSG, will allow the interactive user
to examine the contents of the message queue. The program will show the
message origin and text. The user will be able to browse through the
messages, delete messages, or save messages outside the queue. Arriving
messages are placed in one of two queues, local or nonlocal. The nonlocal
queue is monitored by the Sender program which forwards each message to the
next node in its specified path.

8

G36-610 Final Project Report 	 July 17, 1984

Part 4. Advanced Experimental Demonstrations

This part of the report will present detailed descriptions of the
demonstrations given during the course of the project. For each
demonstration, the purpose, technical issues, and design elements will be
identified.

Demonstration 1

The purpose of the first demonstration was to investigate the issues
surrounding interprocessor communications between heterogeneous computer
system. The technical issues involved included file transfer mechanisms,
positive identification of remote systems, remote console capability, error
detection and logging, communications protocols, and automatic establishment
of communications via dial-up lines.

The demonstration was conducted using three IBM Series/1 minicomputers. Files
were successfully transferred to and from each machine using asynchronous
communications links. One Series/1 was connected to a CDC CYBER computer.
Files were transferred from the CYBER to the Series/1 and then to another
Series/1. The converse was also demonstrated.

Automatic connection to the CYBER was made, with positive identification of
remote system and local user. The user at the Series/1 connected to the CYBER
and executed console commands interactively, with the Series/1 operating in a
pass-through mode. The remote console capability was also demonstrated using
two Series/1 computers. All communications were 1200 bits per second
asynchronous ASCII protocol.

Most programming was done in the EDL language under the Series/1 Event Driven
Executive operating system. In order to get full duplex communications on the
Series/1, it was necessary to write a new TTY device driver. The standard TTY
driver is half duplex. The new driver was written in Series/1 assembly code.

The demonstration was limited by the lack of availability of 1200 bps modems.
The connection between machines were made directly, and arrangement were made
for modems to be available for later demonstrations.

Demonstration 2

The purpose of the second demonstration was to investigate remote job
initiation and related issues. Issues involved included: remote job
initiation, status reporting, output and object routing, automatic routing and
disposal, synchronous and asynchronous communications, and interprocessor
communications between heterogeneous computer systems.

The three Series/1 computers used in the first demonstration were connected
together in a high-speed ring network. One Series/1 was channel attached to

9

G36-610 Final Project Report 	 July 17, 1984

an ESN 4341 super-mini computer. A 9600 bps asynchronous link was made to
connect a Series/1 to the CDC CYBER. Another such link was made to a PRIME
550 minicomputer. The third Series/1 was connected to the Ungermann-Bass
Net/One local area network via the locally modified Yale ASCII terminal
handling system. The 1200 bps modems were not yet available.

The operations described in the first demonstration were repeated on the new
network. Additionally, files were transferred to and from the PRIME 550 and
the IBM 4341.

An operator at a terminal on the Net/One LAN connected to the IBM 4341 system
through the Series/1 Yale ASCII system and initiated jobs and procedures
including creation, editing, compilation, and execution of programs. Using a
4341 Host Assembler, a program for the Series/1 was created on the 4341 and
compiled, whereupon the object code was transferred automatically down to the
Series/1 and loaded. The program listing was routed to another Series/1 which
was serving as an automated network print server. This was repeated with the
operator at a Series/1 terminal.

The demonstration was limited by the lack of availability of 1200 bps modems.
The connections between machines were made directly.

emonstration 3

The purpose of the third demonstration was to bring together some of the
elements of the first two demonstrations and build a simple message transfer
system using the machines chosen for the Distributed Combat Service Support
system. The TACCS and DAS3 units of the CSS node were to be simulated.
Issues addressed included: heterogeneous communications, automatic dial-up of
remote systems, file transfer mechanisms, store and forward message passing,
error detection and logging, automatic message generation and routing, system
security, and fault detection.

A Honeywell DPS Level 6 was used as a DAS3. An ONYX computer running the UNIX
operating system was used as a TACCS. An IBM Series/1 computer was also used
as a TACCS to demonstrate the ability of the system to work on a number of
radically different systems. DC Hayes Smartmodem 1200 modems were used for
the TACCS systems. A Cermetek Microelectronics InfoMate modem was used on the
DAS3. All connections between machines were made by automatic dial-up over
the public telephone network at 1200 bps.

A simple store-and-forward message passing system was demonstrated. Messages
generated on each machine were sent to all the other machines. Message
destinations were specified as paths through a sequence of network nodes.
Messages were generated and transmitted both with and without human
intervention. The computer systems automatically initiated and terminated
connections through the public telephone network as needed. All traffic
through each node was logged for auditing purposes. Transmission errors were
detected, and failed message retransmitted. Passwords were employed for the
dial-up connections to maintain security. The entire message transmission and

10

G36-610 Final Project Report 	 July 17, 1S 1

reception process was made transparent to the user.

Close-out Demonstration

The purpose of the final demonstration was to show all facets of I e
communications system built for the third demonstration. All issues mentio d
above were addressed, and the desired capabilities were demonstrated. e
connection of the Honeywell Level 6 (as a DAS3) to the network s
particularly noteworthy.

The system of AED 3 was improved and made more robust. An operating sys m
bug on the ONYX system prevented full two-way communication between the 0 X
and the Series/1. The Series/1 could receive messages from the ONYX, but I e
ONYX could not receive from both the Series/1 and the Honeywell during e
same session. The problem was that the two machines required different par y
settings for the ONYX. The UNIX operating system allows one to set a port o
disregard incoming parity, but this feature does not work on the ONYX. e
chose to set the port so that we could have two-way corignunications between e
Honeywell and the ONYX, and allow one way broadcasts to the Series/1.

Figures 2 through 7 characterize and illustrate the system's operation in t s
final demonstration.

Part 5. Recommammded Issues for Further Research

The following issues are those which are specific to this project s
specified. They show the "tip of the iceberg" of issues related to netwo s
of networks of heterogeneous system.

failure Detection

A network node should be able to recognize a failed attempt o
transmit to another node and take appropriate action, possi .y
including operator notification and/or automatic re-routing f
critical messages. Issues include: failure recognition, scheduli
network reliability, alternate routing, modem characteristics.

Alternate Routing

Each node in the network which will receive critical messages sho d
have one or more defined backup nodes to which messages will e
re-routed in the event that the primary destination node is out If
service. Issues include: alternate node selection, data redundan
data consistency, network topology, traffic analysis.

11

G36-610 Final Project Report 	 July
17, 1984

Distributed Database Consistency

If nodes are bypassed while they are out of service, how do we
guarantee that their databases are accurate?

Network Traffic Analysis

Identify potential bottlenecks in the network. Estimate the number
of ports, modems, and phone lines to be required in a realistic
implementation. Develop service time estimates for various classes
of messages to be used.

Software Portability

Can the system be moved to other computers? Other operating systems?
What changes will be required? What are the machine and system
dependencies of such a network?

Error Detection And Correction

How can we guarantee accurate transmission and reception of
messages? What methods will provide the greatest security at an
acceptable cost in service time and system resources?

Dynamic Network Topology

What will happen to the network if nodes appear and disappear
frequently? What if their network addresses change? Can the network
be made to grow and adapt without human intervention?

In order to make this a more useful and general system, it will be necessary
to provide better error detection and correction measures. Failure detection
and message routing must be explored further. It will be advantageous to port
the UNIX based system to as many different types of machines as possible to
identify any portability problems. The system must be made more robust. The
GCCS based part of the system should be translated into C if possible, and the
assembly code portions reduced. 'This should improve portability and make
expansion and maintenance easier.

12

G36-610 Final Project Report 	 July 17, 1984

Part 6. System Requirements

The communications system used in the close-out demonstration is limited by
certain hardware and software dependencies. This section of the report will
define those dependencies.

Operating System Requirements

The system is designed to run under two different operating systems. The
TACCS computer will use the UNIX operating system or one of its look-alike
systems. The DAS3 is defined to be a Honeywell DPS Level 6 running the GCCS
Mod 400 Revision 3.0 operating system.

The software for the UNIX system (the TACCS) is written entirely in the
high-level language C. It is not dependent in any way on any particular
version of UNIX. It will run without modification under UNIX System III or
System V or under Berkeley 4.1 BSD UNIX. During the last month of the
project, the UNIX software, was ported to a UNIX System III machine and to a
Berkeley UNIX (4.1 BSD) system. It was successfully compiled and executed on
both systems without change.

The software for the Honeywell Level 6 was written primarily in the high-level
language PASCAL, with some special I/O routines done in assembly language.
The software is dependent on the GCOS Mod 400 operation system and has not
been tested on any other system. Major dependencies are found in the disk and
asynchronous I/O routines.

Hardware Requirements

Certain tables used by the software must be set up to indicate the telephone
numbers of the network nodes. The system assumes that the modems to be used
for dial-out operations are connected to a circuit switched telephone network.
The modems must be either Hayes Smartmodem 1200 or Cermetek InfoMate 212A
models. The type of modem used for each line must be indicated to the system.
These modems are auto-dial, auto-answer, and they return status information
during the establishment of a connection.

The modem dependencies have been modularized. Other modems could be used, but
would require additional software to support them. The Honeywell requires a
modem which does not use an escape series followed by a pause (as required by
the Hayes Smartmodem 1200) to indicate the command mode. It is not possible
to send a character string followed by a pause from a GCOS PASCAL program
without a carriage return character included. This prevents the Hayes modem
from being used with the GCOS system. The Cermetek InfoMate meets the
requirement. Either mammy be used with the UNIX system.

The computer on which the system is to be run must have at least 1 megabyte of
disk space to hold the program system. It must have at least 256K bytes of

13

G36-610 Final Project Report 	 July 17, 1984

RAM to run the system, and one or more user consoles. A printer is useful for
logging, but not required. There must be at least one RS232 type asynchronous
port on a UNIX system and at least two such ports for a GCCS system.

14

G36-610 Final Project Report 	 July 17, 1984

Part 7. Installation and Operation

This section describes the installation of the system, including all
information necessary for maintaining and activating the system at a given
site. Since detailed setup varies from machine to machine, this section will
detail the steps necessary to manage the system on both the Onyx and the
Honeywell DPS-6. It is assumed that these are the only machines on which this
system can run.

Each section will be divided into two parts, one treating the Onyx, and the
other treating the Honeywell. For information on the current configuration
and maintenance thereof, refer to the section below, entitled "Current
Implementation (Georgia Tech)." To ensure a more thorough understanding of
the operating environment of this system, however, it is important that the
other sections be read as well.

File Organization and System Configuration

Onyx: The executable code ("xcvr") can reside anywhere on the system, so it
is suggested that the file be permitted correctly to all who may need to run
the Transceiver (including higher•level directories). This is left to your
discretion.

The files that the Transceiver uses, however, must be structured in the
following way:

There must be a single directory under which all of the following should
reside. Within this top-level directory, there must be three sub-directories:
"tables", "lclqueue", and "outqueue." The following is a pictorial
representation of this structure:

root

network (any starting point)

I 	 I 	 I
tables 	 lclqueue 	outqueue

I 	 I 	 I
.SEQ 	 .SEQ

site 	path 	thissite
table 	table

As illustrated, the "site table", "path table", and "thissite" files are all
located in the "tables" sub-directory. The "lclqueue" and "outqueue"
sub-directories are empty at the onset, with only a sequence file for each to
keep track of incoming files (".=m). These sequence files should contain an

15

G36-610 Final Project Report 	 July 17, 1984

integer (in ASCII) as the first and only element within each file
corresponding to the starting sequence number for the files in that
sub-directory. (This may be initialized to "0" if desired, when the system is
first installed.)

You must now consider the port configuration. There must be a specific single
port which is dedicated to the Transceiver. It must not be a standard login
port. In other words, do not define this port for login in the system
definition for UNIX. (For details on this, consult the UNIX manual.) The port
should be defined under "/dev/tty??", where "??" is the port number you want
to assign to the Transceiver.

To reflect the configuration of any particular machine, a single source file
will need to be modified to reflect the changes. This file is named "net.h",
and it accompanies the source files. Edit this file and change all applicable
path-names to reflect the hierarchy of the system under construction. This
file will contain several lines of definitions similar to the following:

*define LCLQUEUE "/Wcss/hope/lclqueue"

Simply replace these strings to reflect the correct paths according to your
definition of the system. Next, change any definitions to reflect the new
port address, if it is different from the one defined in the original system.
After this is done, recompile the system as described in the section below
entitled, "Compiling the Source Code."

The system should now be ready to be activated on this Onyx system.

The program "genmsg" is available on the Onyx only. It can reside anywhere on
the system, but must also be recompiled if any changes are made to the file
"net.h." This program automatically submits a message typed directly from a
user's terminal to the Transceiver for dispatching. Input can be redirected
such that a file may be used instead of direct keyboard input. This is
accomplished by invoking the program in the following manner: "genmsg <
message_file." This message file must match the input normally required by
"genmsg", including the first prompt the site to which the message should be
sent.

Recompiling "genmsg" is explained in the section "Compiling the Source Code."

Honeywell: There are the same types of files on the Honeywell as there are on
the Onyx. The Honeywell components of this system, however, do not all act on
the same files, so there is some difference. The executable files are
"MI:EWER" and "SENDER." The Sender may be located in any desired direOtory,
but the Receiver must be placed in the directory named ">UDD." For simplest
hosting of this system, it would be advisable to match the configuration of
your system to that described in the section below, "Current Implementation
(Georgia Tech)."

16

G36-610 Final Project Report 	 July 17, 1984

Data File Formats

There are essentially three data files (mentioned above) that are used by the
system (on all machines). These are the "Path Table", the "Site Table", and
the "Thissite" files. This section will detail the contents of each of these
files and the structure of the data represented therein. Note: the file
"Thissite" does not exist on the Honeywell,

Path Table: The Path Table is a file (named "paths") which contains a list of
all of the available paths to send data from one machine to another possibly
through several other systems. This is basically a static routing information
file, containing a list of sites and the various sites through which each site
can be sent messages. The file is a standard text file, so that adding and
deleting information from the file can be performed using any text editor.
The structure of this file is as follows:

:site 	 (ultimate destination)
sitelsite 	 (shortest possible path)
sitelsitelsitelsite 	(alternate path(s))
site
site!site!site

SiteTable: The Site Table is a file (named "sites") which contains a list of
all the direct connections to other sites which are available to this
particular machine. It is in essence a list of all the sites in the network
that can be accessed directly (either in a hierarchical sense or in
actuality), without the need for routing. Along with each site in this file
is a list of available phone numbers to that site and a flag indicating the
type of connection to be made (either a Honeywell, a Series/1 (defunct), or an
Onyx). The structure of the Site Table is described below:

:site
type 	(integer representing machine type)
phone-number (phone number relative to this site)
:site
type
phone-number
phone-number

In the above description, "type" is an integer value indicating the type of
machine that hosts the referenced site. The values for the type are detailed
in the section below, "CUrrent Implementation (Georgia Tech)."

17

G36-610 Final Project Report 	 July 17, 1984

Thissite: This file contains the name of this site as it should be recognized
by the other systems in the network. It is, as the others, a standard text
file. The only contents are the lower-case letters indicating the name of
this site. (To change the name of this site, edit that file and change the
name to that of this site. This name must be unique within the network, and
cannot be more than 8 characters for this initial version of the system.)

Compiling the Source Code

This section details the steps needed to recompile the source code on either
of the two machines currently supported.

Onyx: Change to the source directory on the system (under the current
implementation, this directory is "/vicssArpejoldnet") and type the following
oormarmds:

$ touch *.c *.h
$ make xcvr

(This will display information as it compiles,
and will eventually return after having compiled
everything. This takes about 15 minutes.)

Once this is done, the executable program "xcvr" will be created in the
current directory, which can then be moved to a working directory if desired.

To compile the program "genmsg" in case of changes to the file "net.h", type
the following commands in the directory mentioned immediately above:

$ touch net.h

(this insures that compilation will take place)

$ make genmsg

Honeywell: Recompilation on the Honeywell is awkward and difficult, and it
will not be covered in this guide. There should be no reason to recompile if
the system configuration matches the original configuration. Hopefully, it
will thus never be necessary to recompile. (At the point that this is being
written, some of the original source code has been modified and no concrete
explanation of regeneration can be detailed.)

18

G36-610 Final Project Report 	 July 17, 1984

Current Implementation (Georgia Tech

This section explains the details of the current implementation in the Georgia
Tech environment as implemented by the ICS/AIRMICS project during the fiscal
year 1983-1984. In this section, it is assumed that only two machines are
involved: an Onyx system running the UNIX operating system, and a Honeywell
DPS-6 (Level/6) running the GCCS operating system. Since operating system
restrictions prevail, some parts of this system are extremely specific to this
environment.

For example, on the Honeywell, there must exist an account of the name
"GOLDBERG", whose password must be "N360CSC." This can be changed by
modifying the source to the Transceiver on the Onyx so that it will not use
only that specific account. Such changes should be made to the source file
"callho.c" under the source directory "/v/css/hope/oldnet" on what is (at the
time of this description) Onyx System D. Recompilation on the Onyx is
detailed above ("Compiling the SourceCode).

The configuration for the host account on the Honeywell should match the
current configurations for the above-mentioned account, and to assure
compatibility, the file "SLARICUP.EC" within that account should also be moved
to the host account (assuming you decide to change the account from its
current name, "GOLDBERG").

On the Honeywell, there must be two modems, as described previously. One of
these must be a Cermetek modem which must be connected to , a port named
"DIAL06." This same modem will be used for outgoing calls only, invoked by
the Sender on the Honeywell when a message is ready to be transmitted. This
port ("DaAL06") must not be monitored by the LISTENUR under GCCS. There are
system configuration files which must be modified, all detailed in the DPS-6
manual, to ensure that the LISTENUR does not monitor or control the line
nmucw The other modem can be connected as a standard dial-in modem, with
LISTENUR enabled, since the Onyx will dial in directly and perform a login (to
the account "GOLDBERG").

There are three programs of importance on the Honeywell. These are the
"SENDER", the "RECEIVER", and "GENMSG." The "RECEIVER" will never be invoked
by anyone except the Onyx's Transceiver program, so it is not important but it
must reside in the file ">UDD>RECEIVER." The "SENDER" should be invoked by
the user when he wishes to transfer a message (contained in
">UDD>MBOX>DRAFT"). The "SENDER" should reside in ">UDD>SENDER." The
"GEVMSG" program is not completely implemented for the 1983-1984 project, so
generating messages must be done through editing the file ">UDD>MBOX>DRAFT"
and placing a valid message in that file.

On the Onyx, a modem must be connected for the current configuration to the
port R/demitty05." This modem must also be a Cermetek, as connected to the
Honeywell, described above. It will be used for both sending and receiving,
so for the purposes of this software, it could be the only modem on the
system. (This, of course, is no requirement.)

19

G36-610 Final Project Report 	 July 17, 1984

The Onyx program is called "xcvr", and must be invoked before any messages can
be transacted between the two machines. It will run until - terminated by the
operator, servicing requests for both transmission and reception of messages
over the modem. This program is normally in a "debug" state, echoing various
sorts of information to the terminal from which the program was initially
invoked. If you do not wish to see this status information, you may do one of
two things: change a flag and recompile the source, or reroute all output to
/dev/null. The first may be accomplished by editing the file "net.h" under
the source directory and deleting the line "$DEFINE XDEBUG." Then the source
will need to be recompiled as detailed in the section above, "Compiling the
Source Code." The second, simpler method, is to type "xcvr > /dev/null", which
will reroute all standard-error messages to the null device. There is a
second type of message that will appear on this "operator's terminal." This is
the "informative message", indicating that a transfer has taken place. This
is usually important, and thus worth seeing.

On the Onyx, all transactions and important status indicators are maintained
in a sequential "log file." This log file resides in "/v/cms/holxvIogilogfile"
and may be examined at any time by any user. The purpose of this file is
simply to maintain a permanent copy of error messages and informative status
messages for retrospection or possible debugging. For a blow-by-blow status
report, you can always type "tail -f /v/css/hope/log/logfile" on another
terminal (not the one you loaded "xcvr" on, since it is occupied). This will
list the last changes to the file as they appear, so you can watch new
developments, assuming the Transceiver is activated and transactions are
taking place.

For the most part, the Onyx software will recover from errors. If it cannot,
the Transceiver will completely terminate, causing a need for inspection of
the problem, possible repair, and re-execution of the program "xcvr." On the
other hand, the Honeywell is less able to cope with such problems as I/O
hangs, etc. If the Honeywell fails to participate in its half of the
conversation, use your own judgement in relieving the problem. If nothing
else, abort the program that may be hung and try to start again (the Onyx will
reset and also try again automatically in most cases). If it is impossible to
kill the program on the Honeywell, reset the Honeywell altogether. This is
sometimes the only way to deal with intermittent Honeywell failures.

On both machines, the "Site Table" file contains codes identifying the type of
connections made to another site. Currently, a type of "1" means that the
remote machine is a Series/1, a type of "4" means that the remote machine is
an Onyx, and a type of "9" means that the remote machine is a Honeywell.

This information should be sufficient to maintain the system as it is
currently implemented in the Georgia Tech environment. If it is not, feel
free to contact either Steven Goldberg or Bill Putnam in the ICS/A1RMICS
project office at (404) 894-4311.

20

Part 8

Figures 1-7

Message System Design

Figure 1

CXCVRD

i C_______
Sender

Receiver

System B

OUTQUEUE

—■

CLCCVRD

)(-

„.......•

I
y

Sender

Modem

4) Receiver

1200 bps

asynchronous System A

•

•

•

OUTQUEUE

--

Honeywell

System Configuration

Machine-specific attributes

Onyx:

Unix, one bidirectional phone line

Honeywell:

GCOS-6, two unidirectional phone lines

Series/ 1:

EDX, one bidirectional phone line

Figure 2

Tables

Site Table 	 Thissite Path Table

:honeywell

onyx ! honeywell

:onyx

onyx

series 1 :honeywell

17

3136

8924673

:onyx

2

4311

8943159

Figure 3

Generate & Display:

)10....
310... RECEIVER

Localqueue

Generate & Forward:

10 SENDER RECEIVER -O. Outqueue

SENDER

Localqueue

Figure 4

(------
Message

\ 	
Source

GENMSG
----- 	--

--0.Q.foutqueu_e__,/

Data Flow for GENMSG

Figure 5

Data Flow for SENDER

Figure 6

C_ocalqueLD

Data Flow for RECEIVER

Figure 7

Part 9

Program Source Listings

UNIX System Source Code

C programs

Table of Contents
	 Wed Nov 14 16:53:33 1984

File: Makefile 	 Page 1

File: annoy.c 	 Page 3
Annoy 	 3

File: callho.c 	 Page 4
CallHo 	 4
ReadChr 	 5

File: callsl.c 	 Page 7
Ca11S1 	 7

File: datetime.c 	 Page 9
DateTime 9

File: dial.c 	 Page 10
Dial 	 10

File: disp.c 	 Page 12
Copy 	 18
Delete 17
DoFileStuff 	. 	 14
Error 	 15
GetComm 14
Headers 	 17
Help 	 15
Quit 	 19
Startup 	 13
Type 	 15
Usage 19
main 12

File: firstfile.c 	 Page 20
FirstFile 	 20

File: frename.c 	 Page 21
FRename 21

File: genmsg.c 	 Page 22
main 	 22

File: getsecino.c 	 Page 23
GetSeciNo 	 23

File: handlelogin.c 	 Page 24
HandleLogin 	 24

File: hangup.c 	 Page 26
HangUp 	 26

File: myname.c 	 Page 28
MyName 	 28

File: net.h 	 Page 29

File: oldhandle.c 	 Page 31
HandleLogin 	 31

Table of Contents 	 Wed Nov 14 16:53:33 1984

File: openmodem.c 	 Page 32
OpenModem 32

File: read.c 	 Page 33
Read 	 33

File: readdir.c 	 Page 34
ReadDir 	 34
Sort 	 34

File: readstr.c 	 Page 36
ReadStr 	 36

File: receiver.c 	 Page 37
Receiver 	 37

File: sender.c 	 Page 39
Sender 39

File: src.cpr 	 Page 42

File: stripme.c 	 Page 42

StripMe 42

File: strsave.c 	 Page 43
StrSave 	 43

File: validpath.c 	 Page 44
ValidPath 44

File: validsite.c 	 Page 45
ValidSite 	 45

File: writelog.c 	 Page 47
WriteLog 	 47

File: xcvr.c 	 Page 48
main 48

Makefile Nov 14 16:53 1984 	 Page: 	1

clean:
rm -f *.o

read.o: net.h read.c
cc -0 -c read.c

readdir.o: net.h readdir.c
cc -0 -c readdir.c

firstfile.o: net.h firstfile.c
cc -0 -c firstfile.c

dial.o: net.h dial.c
cc -0 -c dial.c

callho.o: net.h callho.c
cc -0 -c callho.c

callsl.o: net.h callsl.c
cc -0 -c callsl.c

annoy.o: net.h annoy.c
cc -0 -c annoy.c

datetime.o: net.h datetime.c
cc -0 -c datetime.c

strsave.o: strsave.c
cc -0 -c strsave.c

frename.o: net.h frename.c
cc -0 -c frename.c

genmsg: net.h getsecino.o validpath.o myname.o frename.o
cc -0 -o genmsg genmsg.c getsecino.o validpath.o myname.o frename.o
chmod a+x genmsg

getsecino.o: net.h getsecino.c
cc -0 -c getsecino.c

handlelogin.o: net.h handlelogin.c
cc -0 -c handlelogin.c

hangup.o: net.h hangup.c
cc -0 -c hangup.c

myname.o: net.h myname.c
cc -0 -c myname.c

openmodem.o: net.h openmodem.c
cc -0 -c openmodem.c

readstr.o: net.h readstr.c
4C - 0 -c readstr.c

receiver.o: net.h receiver.c
cc -0 -c receiver.c

sender.o: net.h sender.c
cc -0 -c sender.c

Makefile Nov 14 16:53 1984 	 Page: 	2

stripme.o: net.h stripme.c
cc -0 -c stripme.c

validpath.o: net.h validpath.c
cc -0 -c validpath.c

validsite.o: net.h validsite.c
cc -0 -c validsite.c

writelog.o: net.h writelog.c
cc -0 -c writelog.c

xcvr.o: net.h xcvr.c
cc -0 -c xcvr.c

xcvr: xcvr.o openmodem.o sender.o receiver.o handlelogin.o\
read.o readdir.o dial.o callho.o callsl.o getsecino.o writelog.o annoy.o\
handlelogin.o myname.o openmodem.o readstr.o receiver.o datetime.o\
sender.o stripme.o validpath.o validsite.o hangup.o frename.o strsave.o\
firstfile.o
cc -0 -o xcvr xcvr.o readdir.o dial.o callho.o callsl.o getsecino.o\

writelog.o handlelogin.o myname.o openmodem.o readstr.o receiver.o\
datetime.o annoy.o sender.o stripme.o validpath.o validsite.o\
hangup.o read.o frename.o strsave.o firstfile.o
chmod a+x xcvr

disp.o: net.h disp.c
cc -0 -c disp.c

disp: disp.o strsave.o
cc -0 -o disp disp.o strsave.o readdir.o stripme.o
chmod a+x disp

annoy.c Nov 14 16:53 1984
	

Page: 	3

#include "net.h"

int Annoy (P1, P2, P3, P4)

char *P1, *P2, *P3, *P4;

/* For now, writes a message to the operator. In the future, it will */
/* probably send mail to someone or write to some other logfile. 	*/

char Now [26];

DateTime (Now);

fprintf (stderr,annoy: %s %s %s %s %s\n", Now, P1, P2, P3, P4);

return (0);

}

callho.c Nov 14 16:53 1984 	 Page: 	4

#define KLUDGE

#include "net.h"

char LoginPrompt [] = "LOGIN 	";
char LoginString [] = "L GOLDBERG\r";
char Password 	[] = "N360CSC\r";
char LoadString [] = "RECEIVER\r";

int CallHo (ModemFd)

int ModemFd;

{

struct 	termio TTYSet;
char ReadChr ();
char AckString [20];

register int Count;
int PromptLength = strlen (LoginPrompt);

/* Set up the modem for Honeywell's parity */

if (ioctl (ModemFd, TCGETA, EJTYSet) == ERR)
{

fprintf (stderr, "CallHo: Can't get old modem settings\n");
exit (1);

}

/*
TTYSet.c_cflag 6= —CSIZE;
TTYSet.c_cflag 1= (PARENB 1 CS7);

*/
TTYSet.c_oflag 6= —CRDLY;
TTYSet.c_oflag 1= (CR3 1 OPOST);

if (ioctl (ModemFd, TCSETA, STTYSet) == ERR)

fprintf (stderr, "CallHo: Can't set new modem settings\n");
exit Oh

}

sleep (2);

write (ModemFd, CR, 1);

do f
Count = 0; 	•
while (ReadChr (ModemFd) == LoginPrompt [Count])

Count++;
while (Count < PromptLength);

/* #ifdef)(DEBUG */
fprintf (stderr, "Login string detected. Attempting login.\n");
/* #endif */

/* Found login prompt. Sleep for a few seconds and flush input buffer. */

sleep (3);

callho.c Nov 14 16:53 1984 	 Pager 5

FlushModeminput (ModemFd);

/* Log in */

write (ModemFd, LoginString, strlen (LoginString));
#ifdef XDEBUG
fprintf (stderr, "is", LoginString);
#endif

sleep (2); /* Wait for Password prompt */

write (ModemFd, Password, strlen (Password));

sleep (20); /* Wait to log all the way in */ 	/* KLUDGE */

write (ModemFd, LoadString, strlen (LoadString));

#ifdef KLUDGE
sleep (2);
goto kludge;
#endif

while (!EQUALS (ReadStr (ModemFd, AckString), ACKMSG))

#ifdef XDEBUG
fprintf (stderr, "CallHo: Waiting for ACK.\n");

#endif
if (AckString == NULL)

fprintf (stderr, "CallHo: Timed out.\n");
#ifdef XDEBUG

else
fprintf (stderr, "CallHo: Received '%s'\n", AckString);

#endif
}

#ifdef KLUDGE
kludge:
#endif

return (0);
}

#define MAXRETRY 20

char ReadChr (Fd)

int Fd;

register char Ch;
register int NumTries = 0;

while ((Read (Fd, &Ch, 1) == 0) && (NumTries < MAXRETRY))

callho.c Nov 14 16:53 1984 	 Page: 	6

NumTries++;
#ifdef XDEBUG

fprintf (stderr, "ReadChr: Timed out on read.\n");
#endif

write (Fd, CR, 1);
}

if (NumTries >= MAXRETRY)

fprintf (stderr, "ReadChr: The Honeywell is not there.\n");
WriteLog ("CallHo:", "Honeywell appears down or disconnected", 1111

return (ERR);
}

return (Ch);
}

callsl.c Nov 14 16:53 1584
	

Page: 	7

#include "net.h"

char LoadMessage [] ■ "$L #RIECEIVE\r";

int Ca11S1 (ModemFd)

int ModemFd;

struct 	termio TTYSet;

char AckString [128];
char *RetVal;
register int Count;

. /* Set up the modem for Series/1 */

if (ioctl (ModemFd, TCGETA, &TTYSet) == ERR)

fprintf (stderr, "CallS1: Can't get old modem settings\n");
exit (1);

}

TTYSet.c_cflag &= —CSIZE;
TTYSet.c_cflag := CS8;
TTYSet.c_cflag 6= —PARENB;
TTYSet.c_oflag 6= —CRDLY;
TTYSet.c_oflag := (CR3 : OPOST);

if (ioctl (ModemFd, TCSETA, &TTYSet) == ERR)

fprintf (stderr, "CallS1: Can't set new modem settings\n");
exit (1);

}

sleep (3);

FlushModeminput (ModemFd);

/* Load the receiver program */

write (ModemFd, "\033", 1);

sleep (1)

write (ModemFd, LoadMessage, strlen (LoadMessage));

do {
RetVal = ReadStr (ModemFd, AckString);

#ifdef XDEBUG
fprintf (stderr, "CallS1: Waiting for ACK.\n");

#endif
if (RetVal == NULL)

fprintf (stderr, "Ca1lS1: Timed out.\n");
#ifdef XDEBUG

else
fprintf (stderr, "CallS1: Received qs 1 \n", RetVal);

#endif
} while (!EQUALS (AckString, ACKMSG)) ;

callsl.c Nov 14 16:53 1984 	 Page: 	8

return (0);
}

datetime.c Nov 14 16:53 1984
	

Page: 	9

#include "net.h"

int DateTime (Str)

char *Str;

long BDate;

BDate = time ((long *) 0);
sprintf (Str, "%s", ctime (aDate));
Str [strlen (Str)-1] = '\0'; 	/* Zap NL placed by TIME (2) */

return (0);

{

}

dial.c Nov 14 16:53 1984
	

Page: 	10

#include "net.h"

#define MAXRETRY 20

int Dial (ModemFd, DialProg, TelNums)

int ModemFd;
int DialProg;
char *TelNums [20];

{

char DialCmd [40];
char FromModem [20];
char Answer [2];
struct termio TTYSet;
int Oflag, Cflag;
register int RetVal, NumTries=0;

/* Using Hayes Modem - Minimal Code */

if (ioctl (ModemFd, TCGETA, &TTYSet) == ERR)
{

fprintf (stderr, "Dial: Can't get old modem settings\n");
exit (1);

}

Oflag = TTYSet.coflag;
Cflag = TTYSet.c_cflag;
TTYSet.c_oflag 1= (CR3 1 OPOST);

if (ioctl (ModemFd, TCSETA, &TTYSet) == ERR)
{

fprintf (stderr, "Dial: Can't set new modem settings\n");
exit (1);

}

write (ModemFd, CR, 1);

sleep Oh

FlushModeminput (ModemFd);

sprintf (DialCmd, "ATIAs\r", TelNums[0]);
write (ModemFd, DialCmd, strlen (DialCmd));
sleep (2);

FlushModeminput (ModemFd);

sleep (4); /* Give modem minimum time to dial & connect */

do {
RetVal = Read (ModemFd, Answer, 2);
NumTries++;

} while ((RetVal == 0) && (NumTries < MAXRETRY));

if (RetVal == 0)
{

WriteLog ("DialHayes: Modem hung on initial dial command", "", "", "");
return (ERR);

dial.c Nov 14 16:53 1984 	 Page: 	11

TTYSet.c_oflag = Oflag;

if (ioctl (ModemFd, TCSETA, &TTYSet) == ERR)
{

fprintf (stderr, "Dial: Can't reset modem settings\n");
exit (1);

}

if (Answer[0] != '1')
{

fprintf (stderr, "DialHayes: Modem answered %c\n", Answer[0]);
HangUp (ModemFd, 0);
return (ERR);

}

switch (DialProg)
{

case 1 : /* Series/1 - invokes receiver directly */
return (CallS1 (ModemFd));

case 4 : /* Onyx - uses Transceiver */
#ifdef XDEBUG

#endif
fprintf (stderr, "\nDial: Connected, about to send LOGINMSG\n");

sleep (3);
FlushModemlnput (ModemFd);
write (ModemFd, " 	\r", 6);
write (ModemFd, LOGINMSG, strlen (LOGINMSG));
write (ModemFd, CR, 1);
while (!EQUALS (ReadStr (ModemFd, FromModem) , ACKMSG))

fprintf (stderr, "Dial: waiting for ack\n");
#ifdef XDEBUG

#endif
}

return (0);
break;

case 9 : /* Honeywell - logs in and invokes receiver */
return (CallHo (ModemFd));

default: /* Unidentified receiving machine */
fprintf (stderr, "Dial: Don't know dial type Ul\n", DialProg);
return (ERR);
break;

}

disp.c Nov 14 16:53 1984 	 Page: 12

/* This program MUST be run with "sh -c disp", or getenv ("PWD") won't work */

#include "net.h"

#define ALIVE 0
#define DELETE 1
#define COPY 	0
#define MOVE 	1

struct Msg
{

char *FileName;

	

int 	MsgNum;
short Status;
char *Orig;

}

*Msg [128];

int NumMsgs;
char *OrigCwd;
char Comm;
char Queue [48];
char Parml [30];
char Parm2 [30];
int NumParms;

main (argc, argv)

int argc;
char **argv;

{

switch (argc)

case 1:
strcpy (Queue, LCLQUEUE);
break;

case 2:
strcpy (Queue, argv [1]);
break;

default:
Usage 0 ;

Startup 0 ;
Headers 0;

while (1)

	

Comm
{
	= GetComm 0;

disp.c Nov 	14 	16:53

switch 	(Comm)

1984 Page: 13

{

case 	'T':

case 	'D':

case 	'C':

case 	'M':

case 	'H':

case 	'Q':

case 	'U':

case 	'?':

default:

Type 	0;

Delete 	(DELETE);

Copy 	(COPY);

Copy 	(MOVE) ;

Headers 	0;

Quit 	0:

Delete 	(ALIVE);

Help 	0;

Error 	0;

break;

break;

break;

break;

break;

break;

break;

break;

break;
}

}

}

int Startup 0

/*
Gets the message filenames and sets up the Msg structs.

*/

{

register int i = 0;
char Junk;
char *FileNames [128];

OrigCwd = StrSave (getenv ("PWD")); 	/* Save original directory */

if ((chdir (Queue) == ERR)11((NumMsgs = ReadDir (Queue, FileNames)) == ERR))
{

fprintf (stderr, "There's no way I can read that directoryl\n");
exit (1);

}

for (; i < NumMsgs; i++)
[
Msg [i] = (struct Msg *) calloc (1, sizeof (struct Msg));
Msg [i]->FileName = StrSave (FileNames [i]);
sscanf (FileNames [i], "%c%5d", &Junk, &(Msg [i]->MsgNum));
Msg [i]->Status = ALIVE;
DoFileStuff (Msg [i]);

disp.c Nov 14 16:53 1984 	 Page: 	14

if (chdir (OrigCwd) == ERR)
fprintf (stderr, "Disp: Can't chdir\n");

int DoFileStuff (Msg)

struct Msg *Msg;

/*
Opens the Msg file, gets the Orig field, and sets Status accordingly.

*/

{

char TempStr [20];
register FILE *Fd;

if ((Fd = fopen (Msg->FileName, "r")) == NULL)
{

fprintf (stderr, "Disp: Can't open %s\n", Msg->FileName);
•Msg->Status = ERR;

else
{

SkipEOL (Fd); 	 /* Skip first line */
fscanf (Fd, "%s", TempStr);
Msg->Orig = malloc (20);
StripMe (TempStr, Msg->Orig); 	/* Orig = First name in TempStr */
fclose (Fd);

I

•

int GetComm 0

{

char TempStr [40];

do {
Comm = ";
fputs ("Disp> ", stdout);
if (fgets (TempStr, 40, stdin) == NULL)

disp.c Nov 14 16:53 1984 	 Page: 15

Quit 0;
TempStr [strlen (TempStr) - 1] = '\0';
NumParms = sscanf (TempStr, "%c %s %s", &Comm, Parml, Parm2);
while ((NumParms < 2) && (Comm == "));

return (islower (Comm) ? _toupper (Comm) : Comm);
}

Error 0

{
puts 	can't understand you. Please type '?' for help.");

}

Help 0

{

puts ("c M# file
puts ("d M#
puts ("h
puts ("m M# file
puts ("q
puts ("t
puts ("u

COPY Msg number M# to file");
DELETE Msg number Me);
Display message HEADERS");
MOVE Msg number M# to file");
QUIT program");
TYPE Msg number Me):
UNDELETE Msg Number Me);

Type ()

{

register int'i = 0;
register int Ch;

disp.c Nov 14 16:53 1984 	 Page: 	16

register int Num;
int Ok = FALSE;
register FILE *Fd;

if (NumParms 1= 2)
{

Error 0 ;
return;

Num = atoi (Parml);

for (i = 0; i < NumMsgs; i++)
if (Num == Msg [i]->MsgNum)

Ok = TRUE;
break;

if (10k)
{

printf ("Message number %d doesn't exist.\n", Num);
return;

Num = i;

if (chdir (Queue) == ERR)
{

fprintf (stderr, "Disp: Can't chdir\n");
return;

if ((Fd = fopen (Msg [Num]->FileName, "r")) == NULL)
{

fprintf (stderr, "Disp: Can't open %s\n", Msg [Num]->FileName);
Msg [Num]->Status = ERR;
return (0);

}

printf ("Message %d\n", Msg [Num]->MsgNum);
printf ("From: %s\n", Msg [Num]->Orig);
fseek (Fd, OL, 0);
SkipEOL (Fd);
printf ("Path: ");
while ((Ch = getc (Fd)) 1= EOF)

putc (Ch, stdout);
putc ('\n', stdout);
fclose (Fd);

if (chdir (OrigCwd) == ERR)
fprintf (stderr, "Disp: Can't chdir\n");

disp.c Nov 14 16:53 1984 	 Page: 17

Headers 0

{

register int i = 0;

if (NumMsgs == 0)
return;

puts ("\nNum From");

for (; i < NumMsgs; i++)
{

printf ("%3d %-20s", Msg [i]->MsgNum, Msg [i] ->Orig);
puts ((Msg [i]->Status == DELETE) ? " (deleted)" : "");

}

putc ('\n', stdout);
}

Delete (Mode)

int Mode;

{

register int Num;
register int i = 0;
int Ok = FALSE;

if (NumParms != 2)
•

Error 0;
return;

}

Num = atoi (Parml);

for (; i < NumMsgs; i++)
if (Num == Msg [i]->MsgNum)

{

Ok = TRUE;
break;

}

if (Ok)
Msg [i]->Status = Mode;

else
printf ("Message number %d doesn't exist.\n", Num);

disp.c Nov 14 16:53 1584 	 Page: 18

Copy (Mode)

int Mode; 	/* COPY or MOVE */

register int Num;
register int i =
int Ok = FALSE;
FILE *Fdl, *Fd2;
register char Ch;

if (NumParms 1= 3)
{

Error 0;
return;

}

Num = atoi (Parml);

for (; i < NumMsgs; i++)
if (Num == Msg [i]->MsgNum)

{

Ok = TRUE;
break;

}

if (10k)
{

printf ("Message number %d doesn't exist.\n", Num);
return;

if ((Fdl = fopen (Parm2, "w")) == NULL)
{

printf ("I'm sorry, but I can't open %s for writing.\n", Parm2);
return;

if (chdir (Queue) == ERR)
{

fprintf (stderr, "Disp: Can't chdir\n");
return;

if ((Fd2 = fopen (Msg [i]->FileName, "r")) == NULL)
{

fprintf (stderr, "Disp: Can't open %s\n", Msg [i]->FileName);
return;

disp.c Nov 14 16:53 1984 	 Page: 19

}

while ((Ch = getc (Fd2)) != EOF)
putt (Ch, Fdl);

fclose (Fdl);
fclose (Fd2);

if (Mode == MOVE)
Msg [i]->Status = DELETE;

if (chdir (OrigCwd) == ERR)
fprintf (stderr, "Disp: Can't chdir\n");

}

Quit 0

{
register int i = 0;

if (chdir (Queue) == ERR)
{

fprintf (stderr, "Disp: Can't chdir\n");
exit (1);

}

for (; i < NumMsgs; i++)
if (Msg [i]->Status == DELETE)

if (unlink (Msg [i]->FileName) == ERR)
fprintf (stderr, "Disp: Can't unlink %s\n", Msg [i]->FileName);

puts ("Have a nice dayl\n");

exit (0);
}

Usage 0

fprintf (stderr, "Usage: disp [queue]\n") ;
exit (1);

disp.c Nov 14 16:53 1984 	 Page: 20

}
#include "net.h"

char *FirstFile (Dir)

char *Dir;

/*
Returns a pointer to the first file in Dir returned by ReadDir,
or a NULL pointer if no files exist.

*/

{

char *Files [128];

if (ReadDir (Dir, Files) > 0)
return (StrSave (Files [0]));

else
return ((char *) NULL);

•

frename.c Nov 14 16:53 1984

#include "net.h"

int FRename (Pathl, Path2)

char *Pathl;
char *Path2;

/* Renames Pathl to Path2 */

{

if (link (Pathl, Path2) == ERR)
return (ERR);

if (unlink (Pathl) == ERR)
return (ERR);

return (0);
}

Page: 21

genmsg.c Nov 14 16:53 1984
	

Page: 22

#include "net.h"

main 0

FILE *TmpFileFd;
char TmpFileName [128];
char MsgFileName [128];
char SiteName [128];
char DestPath [128];
register int Ch;
int SeciNo;

printf ("To: ");
gets (SiteName);

if (IValidPath (SiteName, DestPath)) 	/* Leaves path in DestPath */
{

fprintf (stderr, "%s: Unknown destination.\n", SiteName);
exit (1);

• 	}

SeciNo = GetSeciNo (OUTQUEUE);

sprintf (TmpFileName, "%s/.M%.5d", OUTQUEUE, SeqNo);
sprintf (MsgFileName, "%s/M%.5d", OUTQUEUE, SeqNo);

if ((TmpFileFd = fopen (TmpFileName, "w")) == NULL)
{

fprintf (stderr, "GenMsg: Can't create %s\n", TmpFileName);
exit (1);

fprintf (TmpFileFd, "%s\n%s\!%s\n", DestPath, MyName 	DestPath);

printf ("Enter message, end with a control-D.\n");

while ((Ch = getc (stdin)) != EOF)
{

putc (Ch, TmpFileFd);
}

fclose (TmpFileFd);

if (FRename (TmpFileName, MsgFileName) == ERR)
{

fprintf (stderr, "GenMsg: Can't rename !!1\n");
exit (1);

}

if (chmod (MsgFileName, 0666) == ERR)
{

fprintf (stderr, "GenMsg: Can't chmod !!1\n");
unlink (MsgFileName);
exit (1);

}

{

}

getsecino.c Nov 14 16:53 1984 	 Page: 23

#include "net.h"

int GetSegNo (DirName)

char *DirName;

/* Returns an available sequence number for a file in the given DirName. */

{

int SeqNo;
FILE *SeqFileFd;
char SeqFileName [40];

sprintf (SeqFileName, "%s/.SEQ", DirName);

if ((SeqFileFd = fopen (SeqFileName, "r+")) == NULL)
{

fprintf (stderr, "GetSeqNo: Can't open %s\n", SeqFileName);
exit (1);

}

fscanf (SeqFileFd, "%d", 6SeqNo);

if (SeciNo < MAXSEQNO)
SeqNo++;

else
SeqNo = 1;

fseek (SeqFileFd, OL, 0);
fprintf (SeqFileFd, "%d
fclose (SeqFileFd);

-", SeqNo);

}

return (SeqNo);

handlelogin.c Nov 14 16:53 1984 	 Page: 24

#include "net.h"

char LoginCommand [] = LOGINMSG;

int HandleLogin (Fd)

int Fd;

/* Validates call-in connection from remote sender. 	*/
/* Returns 1 if validated. 	 */

{

char Ch, LoginLine [8];
int LoginStatus;
int LoginLength = strlen (LoginCommand);
register int NumChars;
register int Count, NumTries = 0;

do {
Count = Read (Fd, &Ch, 1);

#ifdef XDEBUG
fprintf (stderr, "Handlelogin: Scanning for CR. ('%.2x')\n", Ch);
#endif

} while ((Ch 1= '\r') && (Count I= 0));

if (Count == 0)
{

#ifdef XDEBUG
fprintf (stderr, "HandleLogin: Timed out on initial read.\n");

#endif
return (FALSE);

}

#ifdef XDEBUG
fprintf (stderr, "HandleLogin: Found CR, scanning for 1 LOGIN 1 \n");
#endif

do {
Count = 0;
NumChars = Read (Fd, &Ch, 1);
while ((Ch == LoginCommand [Count]) &E (NumChars I= 0))

{

Count++;
Read (Fd, &Ch, 1);

}

if (NumChars == 0)
{

fprintf (stderr, "HandieLogin: Timed out reading login message.\n");
return (FALSE);

}

#ifdef XDEBUG
fprintf (stderr, "HandleLogin: end of scan loop.\n");
#endif

} while (Count < LoginLength);
#ifdef XDEBUG
fprintf (stderr, "Login string detected.\n");
#endif

write (Fd, ACKMSG, strlen (ACKMSG));

handlelogin.c Nov 14 16:53 1984
	

Page: 25

write (Fd, CR, 1); /* Xmit Carriage-Return */

return (TRUE);
}

hangup.c Nov 14 16:53 1984 	 Page: 26

#include "net.h"

#define HONEYWELL 9 	/* Later - put this in net.h */
#define SERIES1 1

int HangUp (Fd, DialProg)

int Fd;
int DialProg;

/*
Sends a hangup command to the modem

*/

{

struct termio TTYSet;

if (DialProg == HONEYWELL)
{

sleep (5); 	 /* Ensure that the receiver has ended */
write (Fd, "BYE\r", 4); /* Transmit logoff request */

if (ioctl (Fd, TCGETA, &TTYSet) == ERR)
{

fprintf (stderr, "HangUp: Can't get old modem settings\n");
exit (1);

}

TTYSet.c_oflag &= —(CR3 	OPOST);

if (ioctl (Fd, TCSETA, &TTYSet) == ERR)
{

fprintf (stderr, "HangUp: Can't set new modem settings\n");
exit (1);

}

s 1 eep (4) ;
}

if (DialProg == SERIES1)
{

if (ioctl (Fd, TCGETA, &TTYSet) == ERR)
{

fprintf (stderr, "HangUp: Can't get old modem settings\n");
exit (1);

}

TTYSet.c_cflag &= —CSIZE;
TTYSet.c_cflag 1= (PARENB 	CS7);
TTYSet.c oflag &= —(CR3 i OPOST);

if (ioctl (Fd, TCSETA, &TTYSet) == ERR)
{
fprintf (stderr, "HangUp: Can't set new modem settings\n");
exit (1);

}

hangup.c Nov 14 16:53 1984

sleep (2);

write (Fd, "+++", 3); 	/* For Hayes ONLY */

sleep (2);

write (Fd, "ATH\r", 4); /* For Hayes ONLY */

sleep (2);

FlushModeminput (Fd); 	/* Flush input buffer */

return (0);
}

Page: 27

myname.c Nov 14 16:53 1984 	 Page: 28

#include "net.h"

char *MyName 0

{
char *RetPtr;
FILE *Fd;

RetPtr = malloc (20);

if ((Fd = fopen (THISSITEFILE, "r")) == NULL)
{
fprintf (stderr, "MyName: Can't open U\n", THISSITEFILE);
exit (1);
}_

fscanf (Fd, "is", RetPtr);

fclose (Fd);

return (RetPtr);
}

net.h Nov 14 16:53 1984 	 Page: 29

#define XDEBUG

#include <stdio.h>
#include <termio.h>
#include <fcntl.h>
#include <ctype.h>
#include <sys/types.h>

#define TRUE 1
#define FALSE !TRUE
#define EQUALS !strcmp
#define SkipEOL(fd) while(getc(fd)1=0 \n');
#define FlushModemlnput(fd) ioctl(fd,TCFLSH 2 O)

#define MODEMLINE "/dev/tty05"

#define LOGINMSG "LOGIN"
#define ACKMSG "ACK"
#define NACKMSG "NACK"

#define EOMSG "?MATZOH?"
#define SEPCHAR '!'

#define CR "\015"
#define ERR -1
#define MAXTRIES 700

#define LCLQUEUE "/v/css/hope/lclqueue"
#define OUTQUEUE "/v/css/hope/outqueue"
#define MAXSEQNO 32767

#define PATHTABLEFILE "/v/css/hope/tables/paths"
#define SITETABLEFILE "/v/csi/hope/tables/sites"
#define THISSITEFILE "/v/css/hope/tables/thissite"
#define LOGFILE 	"/v/css/hope/log/logfile"

char *FirstFile 0;
char *MyName 0;
char *ReadStr ():
char *StrSave 0:
char *Str i pMe ();

int Annoy 0:
int CallHo 0;
int Ca11S1 0;
int DateTime ();
int 	Dial ();
int FRename 0;
int GetSeqNo ();
int HandleLogin ();
int HangUp ();
int OpenModem 0:
int Read 0:
int ReadDir ();
int ValidPath 0:
int ValidSite 0:
int WriteLog 0:

/* Picks first file out of ReadDir's list of files */
/* Reads THISSITEFILE to find out this site's name */
/* Reads a str from a file up to a NL 	 */

/* St . rcopy with malloc (see KO p. 103) 	 */
/* Gets first site from full path (a!b!c!d) 	*/

/* Writes message(s) to operator (stderr) 	 */
/* Call and login to the (ugh) Honeywell 	 */

/* Call and login to the (ugh) Series/1 	 */
/* Gives date and time in a nice format 	 • */
/* Initial modem-dialing module 	 */
/* Changes the name of a file 	 */
/* Gets the next sequence number from a msg queue */
/* Establishes connection with machine calling in */
/* Hangs up the modem 	 */
/* Opens the modem line 	 */
/* Our own version of read(2) with timeouts, etc 	*/
/* Reads filenames in a directory 	 */
/* Validates a site and gives the full path to it */
/* Validates a site and gives the phone nums to it */
/* Writes message(s) to LOGFILE 	 */

net.h Nov 14 16:53 1984 	 Page: 30

/* Unix calls. Unix is a registered trademark of ATT Bell Laboratories 	*/

char *calloc 0;
char *ctime 0;
char *getenv 0;
char *malloc 0;
char *strcpy 0;
int atoi 0;
int chmod 0;
int link 0;
int unlink 0;
long time 0;
unsigned sleep 0;

oldhandle.c Nov 14 16:53 1984 	 Page:

#include "net.h"

int HandleLogin (Fd)

int Fd;

/* Validates call-in connection from remote sender. 	*/
/* Returns 1 if validated. 	 */

{

char Ch, LoginLine [8];
int LoginStatus;
register int Count, NumTries - 0;

do {
Count = Read (Fd, &Ch i 1);

NumTries++;
fprintf (stderr,"timed out %4:1 times tries4d\r", Count,NumTries);

} while ((Ch I= '\r') && (NumTries <= MAXTRIES));

if (NumTries > MAXTRIES)
{

fprintf (stderr, "HandleLogin: Timed out on initial read.\n");
return (FALSE);

}

ReadStr (Fd, LoginLine);
fprintf (stderr, "HandleLogin: received '%s'\n", LoginLine);

LoginStatus = (EQUALS (LoginLine, LOGINMSG));

if (LoginStatus)
write (Fd, ACKMSG, strlen (ACKMSG));

else
write (Fd, NACKMSG, strlen (NACKMSG));

write (Fd, CR, 1); /* Xmit Carriage-Return */

return (LoginStatus);
}

openmodem.c Nov 14 16:53 1984 	 Page: 32

#include "net.h"

int ModemFd;
struct termio TTYSet;

int OpenModem 0

•
int OFlag = 0_RDWR 1 O_NDELAY;

if ((ModemFd = open (MODEMLINE, ()Flag)) == ERR)
{

fprintf (stderr, "OpenModem: Can't open %s\n", MODEMLINE);
exit (1);

}

if (ioctl (ModemFd, TCGETA, &TTYSet) == ERR) /* get old modem settings */

fprintf (stderr, "OpenModem: Can't get old modem settings\n");
exit (1);

}

TTYSet.c_iflag b= —INPCK;
TTYSet.c_iflag 1= PARMRK;
TTYSet.c_iflag 1= !STRIP;

TTYSet.c_cflag 1= PARENB;
TTYSet.c_cflag &= —CSIZE;
TTYSet.c_cflag 1= CS7;
TTYSet.c_cflag &= —PARODD;
TTYSet.c_cflag &= —CBAUD;
TTYSet.c_cflag 1= B1200;

TTYSet.c_lflag &= —ICANON;
TTYSet.c_lflag &= —ECHO;

TTYSet.c_cc [VEOF] = 1 \001';

/* Don't check input parity
	*/

/* Mark parity errors (??)
	

*/
/* Get rid of bit 8
	

*/

/* Set even parity
	 */

/* Clear old baud-rate bits
	

*/
/* Set baud to 1200
	 */

/* Don't want canonical input */
/* No echo 	 */

/* MIN = 1 char (no buffering) */

if (ioctl (ModemFd, TCSETA, &TTYSet) == ERR) /* set new modem attributes */

fprintf (stderr, "OpenModem: Can't set new modem attributes\n");
exit (1);

return (ModemFd);
}

read.c Nov 14 16:53 1984
	

Page: 33

#include "net.h"

/* returns 0 if timed out, 1 if got NumBytes chars, -1 if ERROR */

int Read (Fd, Ptr, NumBytes)

int Fd;
char *Ptr;
unsigned NumBytes;

{
register int NumTries;
register int ReadRes;

for (; NumBytes > 0;.NumBytes--)
{
NumTries = 0;
while U(ReadRes = read (Fd, Ptr, 1)) == 0) 6& (NumTries < MAXTRIES))

NumTries++;

if (NumTries >= MAXTRI E S)
return (0);

if (ReadRes gsm= ERR)
return (ERR);

/* ignore nulls or parity-error indicators */

if ((*Ptr 1= '\0') && (*Ptr != '\377'))
Ptr++;

else
{

if (*Ptr == '\377')
fprintf (stderr, "Read: parity error.\n");

NumBytes++;

return (ReadRes);

readdir.c Nov 14 16:53 1984 	 Page: 34

#include "net.h"
#include <sys/dir.h>

int ReadDir (DirName, Files)

char *DirName;
char *Files [];

/*
Places the sorted filenames of DirName in the array Files.
The filenames in DirName starting with a '.' will be ignored.
Returns the number of unignored files, or ERR if DirName can't be read.

*

struct direct DirEntry;
register int Dir;
register int Num = 0;

if ((Dir = open (DirName, O_RDONLY)) == ERR)
return (ERR);

read (Dir, SDirEntry, sizeof (struct direct)); 	/* Skip . and .. */
read (Dir, &DirEntry, sizeof (struct direct));

while (read (Dir, &DirEntry, sizeof (struct direct)) I= 0)
{

if ((DirEntry.d_ino I. (ino_t) 0) && (DirEntry.d_name [0] != 1 . 1))

Files [Num] = StrSave (DirEntry.d_name);
Num++;

close (Dir);

if (Num > 0)
Sort (Files, Num);

return (Num);
}

Sort (v,

char *v[];
int n;

register int Gap, i, j;
char *Temp;

readdir.c Nov 14 16:53 1984 	 Page: 35

for (Gap = n/2; Gap > 0; Gap 1= 2)
for (1 = Gap; i < n;

for (j = i-Gap; j >= 0; j -us Gap)

if (strcmp (v [j], v [j+Gap]) <= 0)
break;

Temp = v [j];
v [j] = v [j+Gap];
v [j+Gap] = Temp;

}

readstr.c Nov 14 16:53 1984 	 Page: 36

#include "net.h"

char *ReadStr (Fd, String)

int Fd;
char *String;

{

char *Ptr;
char *RetPtr;

Ptr = String-1;
do {

Ptr++;

if (Read (Fd, Ptr, 	== 0)
#ifdef XDEBUG
{fprintf (stderr,"ReadStr: timed out.\n");
#endif

return (NULL) ; /* timed out */
#ifdef XDEBUG
}
#endif

} while ((*Ptr 1= '\r') && (*Ptr 1= '\n'));

*Ptr = 1 \0 1 ;

RetPtr = malloc (strlen (String) + 1);
strcpy (RetPtr, String);

return (RetPtr);
}

receiver.c Nov 14 16:53 1984 	 Page: 37

#include "net.h"

int Receiver (Fd)

int Fd;

char Path [128], FullPath [128], FirstSite [20]. *NewPath;
char MsgLine [128];
char Dummy [128];
char MsgFileName [40];
char *RetVal; /* was = MsgLine */
int Local = FALSE;
FILE *MsgFileFd;
register int LineCount = 0;

do {
ReadStr (Fd, Path);
while (strlen (Path) == 0);

#ifdef XDEBUG
fprintf (stderr,"Receiver: path is '%s'\n", Path);
#endif

ReadStr (Fd, FullPath);
#ifdef XDEBUG
fprintf (stderr,"Receiver: fullpath is '%s'\ n", FullPath);
#endif

if ((NewPath = StripMe (Path, FirstSite)) == NULL)
{

Local = TRUE;
sprintf (MsgFileName, "%s/M%.5d", LCLQUEUE, GetSegNo (LCLQUEUE));

}

else

I sprintf (MsgFileName, "%s/M%.5d", OUTQUEUE, GetSegNo (OUTQUEUE));
}

if ((MsgFileFd = fopen (MsgFileName, "w")) == NULL)

fprintf (stderr, "Receiver: Can't create%s\n", MsgFileName);
WriteLog ("Receiver: Can't create", MsgFileName, "", "");
return (1); /* FIX RETURN CODE */

}

WriteLog ("Receiver: receiving into", MsgFileName, "", "");

if (Local)
fprintf (MsgFileFd, "\n");

else
fprintf (MsgFileFd, "%s\n", NewPath);

fprintf (MsgFileFd, "%s\n", FullPath);

RetVal = ReadStr (Fd, MsgLine);
while ((!EQUALS (MsgLine, EOMSG)) && (RetVal 1= NULL))

#ifdef XDEBUG

receiver.c Nov 14 16:53 1984 	 Page: 38

fprintf (stderr, "Receiver: got Isi\n", MsgLine);
#endif

LineCount++;
fprintf (MsgFileFd, "%s\n", MsgLine);
ReadStr (Fd, MsgLine);

fclose (MsgFileFd);

if (chmod (MsgFileName, 0666) 	ERR)

fprintf (stderr, "Receiver: Can't chmod 111\n");
exit (1);

if (RetVal imis NULL)
{

fprintf (stderr, "Receiver: timed out reading message body.\n");
WriteLog ("Receiver: Timed out;", MsgFileName, "not received", "");
unlink (MsgFileName);
return;

sprintf (LineCountStr, "%d\r", LineCount);
write (Fd, LineCountStr, strlen (LineCountStr));

#ifdef XDEBUG
fprintf (stderr, "Receiver: sent line count (U)\n", LineCount);
#endif

do {
ReadStr (Fd, MsgLine);
while ((!EQUALS (MsgLine, ACKMSG)) && (!EQUALS (MsgLine, NACKMSG)));

if (EQUALS (MsgLine, NACKMSG))
{

fprintf (stderr, "Receiver: (debug) Received NACK.\n");
WriteLog ("Receiver: got NACK;", MsgFileName, "aborted", "");
unlink (MsgFileName);
return;

#ifdef XDEBUG
fprintf (stderr, "Receiver: received ACK. Saved file U.\n", MsgFileName);
#endif

WriteLog ("Receiver:", MsgFileName, "received OK", "");

if (Local)
{

StripMe (FullPath, FirstSite);
Annoy ("Received from", FirstSite, "into", MsgFileName);

return (0);
}

sender.c Nov 14 16:53 1984 	 Page: 39

#include "net.h"

int Sender (ModemFd)

int ModemFd;

{

char MsgFileName [40];
char *TempFileName; 	/* Gets allocated by FirstFile */
char FromModem [20];
int MsgFileFd;
char Path [128];
char FirstSite [20];
char FullPath [128];
char *TelNums [20];
char Ch;
int DialProg;
register int NumLines 	0;

if ((TempFileName = FirstFile (OUTQUEUE)) != NULL)
{

FlushModeminput (ModemFd);

sprintf (MsgFileName, "%s/%5", OUTQUEUE, TempFileName);

if ((MsgFileFd = open (MsgFileName, O_RDONLY)) == ERR)
{

fprintf (stderr, "Sender: Can't open %s\n", MsgFileName);
WriteLog ("Sender: Can't open msg file", MsgFileName, "", "");
exit (1);

}

ReadStr (MsgFileFd, Path);
ReadStr (MsgFileFd, FullPath);

StripMe (Path, FirstSite);

if (FirstSite == NULL)
{

fprintf (stderr, "Sender: Empty path in file %s\n", MsgFileName);
WriteLog ("Sender: Empty path in", MsgFileName, "", "");
exit (1);

}

if (ValidSite (FirstSite, &DialProg, TelNums))
{

if (Dial (ModemFd, DialProg, TelNums) == ERR)
{

fprintf (stderr, "Sender: Can't get through to U\n", FirstSite);
WriteLog ("Sender: Can't connect to", FirstSite, "", "");
return (1); /* FIX THIS RETURN CODE */

}

else
{

#ifdef XDEBUG
fprintf (stderr, "Dialed ok, now about to send file...");
#endif

WriteLog ("Sender: Connected to", FirstSite, "", "");
write (ModemFd, Path, strlen (Path));

sender.c Nov 14 16:53 1984 	 Page: 40

write (ModemFd, CR, 1);
write (ModemFd, FullPath, strlen (FuliPath));
write (ModemFd, CR, 1);

while (read (MsgFileFd, &Ch, 1) 1= 0)
{

if (Ch == '\n')
{

NumLines++;
write (ModemFd, CR, 0;

}

else
write (ModemFd, &Ch, 0;

}

FlushModeminput (ModemFd);

write (ModemFd, EOMSG, strlen (EOMSG));
write (ModemFd, CR, 1);

#ifdef XDEBUG
fprintf (stderr, "...done sending\n");
#endif

/* Editor's note: must take care of timeout here: */

ReadStr (ModemFd, FromModem);

while (strlen (FromModem) == 0)
{

ReadStr (ModemFd, FromModem);
}

if (atoi (FromModem) 1= NumLines)
{

#ifdef XDEBUG
fprintf (stderr,"Sender: got '%s' from modem\n", FromModem);
#endif

write (ModemFd, NACKMSG, strlen (NACKMSG));
fprintf (stderr,

"Sender: Sending NACK - sent %d lines\n", NumLines);
WriteLog ("Sender:", MsgFileName, "not sent", "(rcvd NACK)");

}

else 	 •

#ifdef XDEBUG
fprintf (stderr,"Sender: got 'is' from modem.\n", FromModem);
#endif

write (ModemFd, ACKMSG, strlen (ACKMSG));
unlink (MsgFileName);
WriteLog ("Sender:", MsgFileName, "sent OK", "");
Annoy ("Sent", TempFileName, "to", FirstSite);

}

write (ModemFd, CR, 1);
#ifdef XDEBUG
fprintf (stderr,"Sender: hanging up modem.\n");

HangUp (ModemFd, DialProg);
#endif

}

else
{

sender.c Nov 14 16:53 1984 	 Page: 41

fprintf (stderr, "Sender: no path to %s defined.\n", FirstSite);
WriteLog ("Sender: No path to", FirstSite, "defined", "");
return (1); /* FIX RETURN CODE */

}
}

}

src.cpr Nov 14 16:53 1984 	 Page: 42

#include "net.h"

char *StripMe (Path, FirstSite)

char *Path, *FirstSite;

/* Removes the first site name from Path and returns a pointer to the */
/* rest of the path. If there is only one site name left in Path, a */
/* NULL is returned. Path is not altered, and FirstSite points to the */
/* site name that has been stripped off the front of the path. */

{

register int i = 0;

while ((Path [i] I= SEPCHAR) 66 (Path [i] l= '\0'))
{
FirstSite [i] = Path [i];
i++;

1

FirstSite [i] = '\0';

return ((Path [i] == NULL) ? NULL : Path + i + 1);
}

strsave.c Nov 14 16:53 1984
	

Page: 43

#include "net.h"

char *StrSave (Str) 	/* Save a string somewhere */

char *Str;

char *Ptr;

Ptr = malloc (strlen (Str) + 1);
strcpy (Ptr, Str);

return (Ptr);

{

}

•

validpath.c Nov 14 16:53 1984
	

Page: 44

#include "net.h"

int ValidPath (Site, Path)

char *Site;
char *Path;

{

FILE *PathTableFd;
char SomeSite [128];
register int c;

if ((PathTableFd = fopen (PATHTABLEFILE, "r")) == NULL)

fprintf (stderr, "ValidPath: Can't open %s\n", PATHTABLEFILE);
exit Oh

}

getc (PathTableFd);

do {
fscanf (PathTableFd, "%s", SomeSite);
if (EQUALS (SomeSite, Site))

{

getc (PathTableFd);
fscanf (PathTableFd, "%s", Path);
fclose (PathTableFd);
return (TRUE);

else
{

c = getc (PathTableFd);
while ((c != ':') && (c: != EOF))

c = getc (PathTableFd);

} while (c != EOF);

fclose (PathTableFd);
return (FALSE);

}

/* skip first colon */

/* get a site */

/* read NL 	*/

validsite.c Nov 14 16:53 1984 	 Page:

#include "net.h"

int ValidSite (Site, DialProg, TelNums)

char *Site;
int *DialProg;
char *TelNums[];

/* Validates the existence of Site in SITETABLEFILE and returns as */
/* arguments the DialProg code and a list of pointers to telephone */
/* numbers through which the Site can be accessed. 	 */
/* Returns: TRUE if valid; FALSE otherwise. 	 */

{

FILE 	*SiteTableFd;
char 	SomeSite [128];
char 	*p;
register int c, i;
char 	TempBuf [20];

if ((SiteTableFd = fopen (SITETABLEFILE, "r")) == NULL)
{

fprintf (stderr, "ValidSite: Can't open %s\n", SITETABLEFILE);
exit (1);

getc (SiteTableFd); 	 /* skip first colon */

do {
fscanf (SiteTableFd, "%s", SomeSite); 	/* get a site */

if (EQUALS (SomeSite, Site))

SkipEOL (SiteTableFd); 	 /* read NL 	*/
fscanf (SiteTableFd, "%d", DialProg);
i = 0;
SkipEOL (SiteTableFd);

c = getc (SiteTableFd);
while ((c != 1 : 1) && (c != EOF))

ungetc (c, SiteTableFd);
fscanf (SiteTableFd, "%s", TempBuf);
p = malloc (strlen (TempBuf)+1);
strcpy (p, TempBuf);
TelNums [i++] = p;
SkipEOL (SiteTableFd);
c = getc (SiteTableFd);

TelNums [i] = NULL;
fclose (SiteTableFd);
return (TRUE);

else

c = getc (SiteTableFd);
while ((c != 1 : 1) && (c != EOF))

c = getc (SiteTableFd);

validsite.c Nov 14 16:53 1984
	

Page: 46

)

) while (c l= EOF);

fclose (SiteTableFd);
return (FALSE);

)

writelog.c Nov 14 16:53 1984
	

Page: 47

#include "net.h"

int WriteLog (P1, P2, P3, P4)

char *P1, *P2, *P3, *P4;

{

FILE *LogFd;
char Date [26];

DateTime (Date);

if ((LogFd = fopen (LOGFILE, "a")) == NULL)
{

fprintf (stderr, "WriteLog: Can't open %sl Good bye\n", LOGFILE);
exit (1);

}

setbuf (LogFd, (char *) NULL);

fpr.intf (LogFd, "%s %s %s %s %s\n", Date, P1, P2, P3, P4);

fclose (LogFd);

return (0);

}

xcvr.c Nov 14 16:53 1984 	 Page: 48

#include "net.h"

main ()

{

int ModemFd;
char Ch;

setbuf (stderr, (char *) NULL);

ModemFd = OpenModem (); 	/* must check for errors later */

FlushModeminput (ModemFd);

WriteLog ("Transceiver activated", "and ready", "", "");

for (; ;)

if (read (ModemFd, &Ch, 1) == 0)
{

fprintf (stderr, "starting sender...\n");
Sender (ModemFd);

}

else

#ifdef XDEBUG
fprintf (stderr, "starting handlelogin...\n");
#endif

if (HandleLogin (ModemFd))
{

#ifdef XDEBUG
fprintf (stderr, "starting receiver...\n");
#endif

Receiver (ModemFd);
}

}

sleep (4) ;

}

Honeywell DPS/6 System Source Code

PASCAL programs

"ZSYS72>UDD>GOLDBERG>RECEIVER.PS

1985/01/07 1648:12.8

Program Receiver(input, output, messg, seq);

Type nametype = packed array[1..5] of char;

(* Constant Declarations *)

Const
ack
nack
pathlcl
pathnlo

pathlms
pathnlm

= 'ACK ';
= 'NACK';
= '>UDD>LOCMSG>MESNUM';
= '>UDD>NLOMSG)MESNUM';

(* The files both named MESNUM in different directories
contains the sequence number of the last message for
local and no. local messages respectively. *)

= '>UDD>LOCMSG>M';
= '>UDD>NLOMSGW;

(* Var Declarations *)

Var
msg 	 : text;
messg 	: text;
seq 	 : text;

(* There is only one internal file that contains the
sequence number of the message. It would assigned
appropriately to one of the two external files. *)

local 	: boolean; 	(* Indicates whether it's or not a local msg.
i,j 	 : integer;
ch 	 : char;
ctln 	 : integer; 	(* Counter of lines *)
name 	 : nametype;

(* Contains the suffix of the name of the file in which
the message will be stored. *)

answer 	: packed array[1..4] of char;

(* End of global declarations. *)

(* *)

Procedure procheader(var local : boolean);

(* This procedure processes the header of the message and det.rmines
whether it's a local or a non local message. *)

Const
honeywell = 'honeywell";
hl 	 = 9;

var
iJ 	: integer;

ch 	 : char;
path 	: packed array[1..80] of char;
honeymaybe : packed array[1..9] of char;

Begin
reset(msg);
if not eof(msg) then

begin
i :- 0;
read(msg,ch);
while not eoln(msg) do (* process the first line

of the header. *)
begin

i := i + 1;
path[i] := ch;
read(msg,ch)

end;
i := i + 1;
path[i] := ch

end;
if i >= hl

then
begin

for j := 1 to hl do
begin

honeymaybe[j] 	path[j]
end

end;
if (i = hl) and (honeymaybe = honeywell)

then local := true 	(* its a local mesage *)
else

local := false 	(* it's not local *)
end; 	(* end of procedure process header. *)

(* *)

Procedure copy(var ctln : integer);
(* Makes a copy of the message upon receiving it in an internal file.*)
const

zero 	= 0;
endofm 	= '?MATZOH?';

var
i 	 : integer;
ch 	 : char;
nch 	 : integer;
mat 	 : packed array[1..8] of char;

(* End of declarations *)
begin

rewrite(msg);
endmess := false;
ctln := zero;
while not endmess do
begin

nch := zero;
read(ch);
while not eoln do
begin

nch := nch + 1;
if nch <= 8

then mat[nch] := ch;

write(msg,ch);
read(ch)

end; (* end of inner while loop. *)
nch := nch + 1;
if nch <= 8

then
begin

mat[nch] := ch
end;

if nch = 8
then
begin

if mat = endofm
then (* the end of the message is reached *)

endmess := true
end;

ctln := ctln + 1;
readln;
writeln(msg,ch)

end;
ctln := ctln - 3 (* Don't count the two lines of the

header and the line of ?MATZOH? *)
end; (* end of procedure copy *)

Procedure nameit(var name : nametype; local : boolean);
var

ch 	 : char;
messagnum : integer;
cnt 	 : integer;
pname 	: nametype;

j 	 : integer;

begin
if local

then reset(seq,path1c1)
else reset(seq,pathnlo);

(* now seq is assigned to the appropriate external file. *)
if not eof(seq)

then
begin

read(seq,messagnum); 	(* read an integer. *)
messagnum := (messagnum + 1) mod 32767

end;
if local

then rewrite(seq,path1c1)
else rewrite(seq,pathnlo);

(* now seq is assigned appropriately for writing .*)
writeln(seq,messagnum);
if local

then reset(seq,path1c1)
else reset(seq,pathnlo);

(* once again, seq is assigned appropriately for reading *)
cnt := 0;
if not eof(seq)

then
begin

read(seq,ch);
while (not eoln(seq)) and (cnt < 5) do
begin

if ch <>
then
begin

cnt := cnt + 1;
pname[cnt] := ch

end;
read(seq,ch)

end
end;

if cnt < 5
then
begin

cnt := cnt + 1;
pname[cnt] := ch

end;
i := 5;
for j := cnt downto 1 do
begin name[i] := pname[j]; i := i - 1 end;
for j := i downto 1 do name[j] := '0'

end; (* end of procedure name it. *)

Procedure copyex(local : boolean; ctln : integer);
(* Copies the intenal message file into an external file in the appropri,

directory local or non local messages. *)
var

i 	: integer;
ch 	: char;

begin
reset(msg);
if local

then
begin

rewrite(messg, pathlms, name);
readln(msg);
writeln(messg) 	(* When local, skip line from msg

and write a blank lin. to messg. *)
end

else
begin

rewrite(messg, pathnlm, name);
for i := 1 to 10 do read(msg,ch);
read(msg,ch);
while not eoln(msg) do
begin

write(messg,ch);
read(msg,ch)

end;
writeln(messg,ch);
readln(msg)

end; (* The first line of header is copied into
the external file after having stripped
the word 'honeywell!' *)

(* Now messg is associated with the appropriate file. *)
for i := 1 to ctln do
begin

read(msg,ch);
while not eoln(msg) do
begin

write(messg,ch);
read(msg,ch)

end; (* end of while loop. *)
writeln(messg,ch);
readln(msg)

end (* end of outer for loop. *)
end; (* End of copyex procedure. *)

(* MAIN *)
Begin

writeln('ACK'); 	(* Acknowledge the sender of readiness. *)
copy(ctln); 	(* make a copy of the message in an internal file. *)
procheader(local); 	(* Process the message header. *)
writeln(ctln); 	(* Acknowledge the sender of the number of line

received. *)
(* Hopefully will get an answer from sender saying OK. *)
i := 0;
read(ch);
while (not eoln) and (i <= 4) do
begin

i := i + 1;
answer[i] := ch;
read(ch)

end;
i := i + 1;
answer[i] := ch;
if i < 4

then for j := i + 1 to 4 do answer[j] := '
(* we completed with blanks the answer. *)
if answer = ack

then

	

	(* Everything went fine so far, therefore we should cop .
 the mesage into an external file. *)

begin
(* first we should create a name for it. *)

nameit(name,local);
copyex(local,ctln + 1)

end
(* else *) (* it must be that the sender is not

happy with the number of lines I
received. Don't do anything. *)

end. (* This the end of the receiver program. *)

^ZSYS72>UDD>MIRI>SRC>DIAL.PS

1985/01/07 1644:44.8

(*$NOMAIN*)
procedure dial;external;
procedure dial;
const modem_address = '!DIAL03';
type stat = set of

phone = packed array [1..7] of char;
var 	ch 	: char;

command : packed array [1..7] of char;
answer : packed array [1..8] of char;
route : array [1..10] of phone;
i,j : integer;
chl : integer;
status : 	stat;

procedure sleep; nonpascal;
begin

for i := 1 to 8 do
answer [i] := ";

close 	(output);
(* set modem status *)

rewrite 	(output,modem_address);
writeln 	(' 	xy');
command[1] := ";
command[2] := chr(14);
command[3] := 'N';
command[4] := 'E';
command[5] := 'W';
command[6] :=
command[7] := '1';
writeln (command);
writeln (' /P 24');

writeln (' /D "T5179'");
reset (input,modem address);
close (output);
status := [B , D , N , R , W , X];
REPEAT

read (ch);
UNTIL ((ch in status) or (ch = '/'));
case ch of
'/' : begin

read (ch);
writeln (' Modem status is : ',ch);

end;
'X' : begin

writeln (' Dial tone not detected.');
end;

end;
close (output);

sleep ; 	(* sleep for 5 sec *)

(* rewrite (output,modem_address);
close (output);
	 *)

close (input);
end;

"ZSYS72>UDD>MIRI>SRC>SENDER.PS

1985/01/07 1645:39.6

program file_read;
const modem address = '1DIAL03";

acklength = 3;
escape char = '/';

type ltr = 7A . .."Z";
va .r 	ch 	: char;

inbuffer : text;
(* 	file_name : packed array [1..21] of char; 	*)

file_name : packed array [1..10] of char;
i 	: integer;
letter : set of ltr;
line_number : packed array [1..10] of char;
line_count, line_count_rec : integer;
phone : packed array [1..8] of char;
ackmsg,accept : packed array [1..10] of char;
success, flag : boolean;

procedure dial;external;
procedure hangup;external;

beg i n
accept := 'ACK******* - ;
for i := 1 to 10 do

file_name[i] := 	-;
(* clear the name buffer *)

dial;

rewrite (output);

file_name := 'MBOR>DRAFT - ;

REPEAT
(* close (input);

reset (input, modem address);
close (output);
rewrite (output,modem_address); *)

(* send 'login' string and check for acknowledgement *)

close (output); 	 (**)

success := false;
while not (success) do
BEGIN

rewrite (output, modem_address);
writeln (' 	

-);

writeln ('LOGIN');
close (output);

(* 	readln; 	 *)
close (input);
reset (input, modem_address);
i := 1;
while not eoln do

begin
read (ackmsg[i]);
i := i + 1;

end;
if i <> (acklength+1) then success := false
else

begin
success := true;
i := 1;
while (ackmsg[i] = accept[i]) do

i:= i + 1;
end;

if (i = (acklength+1)) then
success := true

else
success := false;

END;

(* open the file with the name file.name and open the communication

port/modem_port *)
for i := 1 to 10 do

line_number[i] :=

close (input);
reset (input,file_name);
rewrite (output,modem_address);

line_count := 0;
read (ch);
while not eof do

begin
write (ch);
if (ch = escape_char) then

write (ch);
if eoln then

begin
readln;
line_count := line_count + 1;
writeln;

end;
if (not eof) then

read (ch);
end;

writeln ('?MATZOH?');

line_count := line_count - 2; 	(* Do not count first two lines *)

close (input);
reset (input,modem address);
read (line_count_rec);
if (line_count = line_count_rec) then

writeln ('ACK')
else

writeln ('NACK');
UNTIL (line_count = line_count_rec);
close (output);
hangup;

end.

Series/1 System Source Code

EDIT programs

SENDER PROGRAM START

* PROGRAM TO SEND A MESSAGE FILE TO THE ONYX COMPUTER VIA MODEM.
* WRITTEN BY BILL PUTNAM 4/11/84
* THIS PROGRAM USES THE GENERIC SMARTMODEM SUBROUTINES IN MODSUBS,SRC

PRINT OFF
COPY TCBEOU
COPY DSCBEQU
COPY DDBEOU
COPY PROGEQU
COPY DSOPEN
PRINT ON

MODEM 	IOCB 	SMODEM1
DSCB 	DSO=FILEOSNAME=??

RECBUF 	DC 	256H'0' 	 DISK BUFFER FOR I/O
DISKBUFR EQU 	RECBUF 	 DECLARED FOR DSOPEN
COUNT 	DC 	F'O' 	 NUMBER OF LINES SENT
tRCVD 	DC 	F'0' 	 NUMBER OF LINES RECEIVED
CONNMSG DC 	C'ACK 	 CONNECTION MESSAGE
EOFMSG 	TEXT 	'?MATZOH?' 	END OF TRANSMISSION MESSAGE

EJECT

* SUBROUTINES FOR USING THE SMARTMODEM ON AN ACCA LINE.
* WRITTEN BY BILL PUTNAM 3/15/84
* -THE ROUTINES EXPECT THE MODEM TO SEND NUMERIC RESULT CODES.
* -ALL ROUTINES LEAVE THE MODEM DEQUEUED.
* -ALL ROUTINES WILL EBQUEUE THE MODEM AS NEEDED, EXCEPT LISTEN
* AND GETMODEM

MSG 	TEXT 	LENGTH-128 	MESSAGE BUFFER USED BY SUBROUTINES

* SUBROUT TO EBQUEUE THE MODEM

GADDR = ADDRESS TO GOTO IF TIMEOUT OCCURRS
* EXPECTS THE MODEM TO BE DEQUEUED, LEAVES IT ENQUEUED

SUBROUT GETMODEM,GADDR
GTRY 	DEOT

ENV MODEMOUSY=GBUSY
GRET 	RETURN
*
GBUSY 	EQU *

MOT
QUESTION '(MODEM IS BUSYATRY AGAIN ? ',YES-GTRY
MOVE GETMODEM-2,GADDR 	SET RETURN ADDRESS TO GADDR
GOTO GRET

* DIAL UP THE MODEM AT THE GIVEN PHONE NUMBER.

NODIAL IS THE ADDRESS TO GO TO IF THE MODEM CAN'T CONNECT

SUBROUT DIALYNODIAL
PRINTEXT 'ATD5179' 	DIAL COMMAND
PRINTEXT SKIP=1 	 SEND CR/LF
CALL LISTEN,20,NODIAL 	READ THE RESULT CODE

DRET 	RETURN
**
* SEND MESSAGES TO REMOTE SYSTEM & PRINT RESPONSES.

STEXT = ADDRESS OF THE MESSAGE TO SEND
SECS = TIMEOUT INTERVAL
SADDR = ADDRESS TO GOTO IF TIMEOUT OCCURRS

**
SUBROUT SENDTXTYSTEXT,SECS,SADDR
MOVE St1SAVE,41
MOVE 01,STEXT
PRINTEXT (Olt].) 	 SEND TEXT
PRINTEXT SKIP=1 	 SEND CR/LF
CALL LISTENySECSYSADDR 	LISTEN FOR RESPONSE
MOVE t1ySt1SAVE
RETURN

St1SAVE DC F'0' 	 SAVE REGISTER tl HERE
*************************************ii *****•***************************
* SEND A 72 BYTE LINE TO OTHER SYSTEM

SDTEXT = ADDRESS OF THE MESSAGE TO SEND
SDSECS = TIMEOUT INTERVAL
SDNUM = BLOCK COUNTER
SDADDR = ADDRESS TO GOTO IF UNSUCESSFULL

**
SUBROUT SENDDATAySDTEXT,SDSECSYSDNUM,SDADDR
MOVE StiSAVErtl
MOVE 01,SDTEXT 	 COPY THE DATA TO XMIT BUFFER
MOVE MSG,(0,41),(128,BYTES)
MOVE MSG-2,SHEADER 	 SET CHARACTER COUNT
PRINTEXT MSG 	 SEND DATA
PRINTEXT SKIP=1 	 SEND CR/LF
MOVE 41,S01SAVE 	 RESTORE 01
RETURN

SHEARER DC X'8048' 	 DUMMY TEXT HEADER

* SUBROUT TO LISTEN FOR RESPONSE FROM REMOTE SYSTEM

LSECS = TIMEOUT INTERVAL
LADDR = ADDRESS TO GOTO IF TIMEOUT OCCURRS

* EXPECTS THE MODEM TO BE ENOUEUEDy LEAVES IT DEOUEUED

SUBROUT LISTEN,LSECSYLADDR
STIMER LSECS,TIO,SECS
READTEXT MSGOODE=LINE
TCBGET RETCODEy$TCBCO
STIMER RESET
IF (RETCODEYE0y-5) THEN

MOVE LISTEN-2 LADDR

SET TIMEOUT INTERVAL.
LISTEN FOR RESPONSE
GET RETURN CODE
RESET INTERVAL TIMER
TIMEOUT OCCURRED
SET RETURN ADDRESS TO LADDR

ENDIF
RETURN

**
* 	HANG UP THE PHONE

HADDR = ADDRESS TO GOTO IF THE MODEM CAN'T BE RESET
**

SUBROUT HANGUP,HADDR
HTRY 	EQU *

PRINTEXT '+++'
TERMCTRL DISPLAY
CALL LISTEN,10,HADDR 	READ THE RESULT CODE
IF (MSG,NE,C'0',BYTE),GOTO,HERR1
PRINTEXT 'ATZ'
PRINTEXT SKIP=1
CALL LISTEN,10,HADDR 	READ THE RESULT CODE
IF (MSG,NE,C'0',BYTE),GOTO,HERR1
DEOT MODEM
PRINTEXT 'MODEM AVAILABLE',SKIP=1
TERMCTRL DISPLAY
RETURN.

HERR1 	DEOT
PRINTEXT 'MODEM NOT IN COMMAND MODE.',SKIP=1
EJECT

START 	ECRU

*** SET THE FILE NAME AND OPEN THE FILE FOR READING

MOVE FILE+SDSCBVOL,SPARM1+8,(6,BYTES)
MOVE FILE+SDSCBNAMYSPARM1,(S,BYTES)
CALL DSOPEN,(FILE)
IF (FILE,NE,-1),GOTO,OPENERR

*** DIAL UP THE MODEM AT THE GIVEN PHONE NUMBER.

CALL GETMODEM,(ALLOCERR) 	ENQUEUE THE MODEM
CALL DIAL,(DERR1) 	 TELL. THE MODEM TO DIAL
PRINTEXT ' 	 SAY HELLO
PRINTEXT SKIP=1
PRINTEXT 'LOGIN'
PRINTEXT SKIP=1
PRINTEXT SKIP=1 	 PUNCTUATE WITH A CR
CALL LTSTEN,10,(LERR1) 	 LISTEN FOR CONNECTION MESSAGE
IF (MSG,NE,CONNMSG,3) THEN

DEOT
PRINTEXT 'BAD CONNECTION',SKIP=1
GOTO STOP

ENDIF

*** SEND FILE TO REMOTE SYSTEM
*

POINT FILEI1
LOOP 	READ FILE,RECBUF,1,0,END=E0F,ERROR=I0ERR
SEND' 	CALL SENDDATA,(RECBUF),10,RETCODEr(SERR1)

IF (RETCODE,NE,COUNT),GOTO,TXERR
ADD COUNT,1

SEND 	CALL SENDDATA,(RECBUF+128),10,RETCODE,(SERR2)
IF (RETCODE,NE,COUNT),GOTO,TXERR
ADD COUNT,1
GOTO LOOP

EOF 	CALL SENDTXT,(EOFMS0),10,(SERR3)
CONVTD 4RCVD,MS0
SUBTRACT tRCVD,2
IF (tRCVD,NE,COUNT) THEN

PRINTEXT 'NACK'
PRINTEXT SKIP-1
MOVE RETCODE,100

ELSE
PRINTEXT 'ACK'
PRINTEXT SKIP=1.

ENDIF
*
*** HANG UP THE PHONE
*
STOP 	CALL HANGUP,(NOHANG)
*
*** END OF PROGRAM

DEM.
IF (RETCODE,NE,-1) THEN

PRINTEXT 'MERROR IN TRANSMISSION.'
PRINTEXT 'OPLEASE RETRANSMIT LATER.'

ELSE
PRINTEXT 'MTRANSMISSION COMPLETE.'

ENDIF
ABORT 	F'ROGSTOP -1,LOGMSG=YES,P1=RETCODE

EJECT

* ERROR TRAPS
**
TXERR 	EOU *

IF (RETCODE,EO,-90) THEN TARGET FILE IS FULL
PRINTEXT '@THE TARGET FILE IS FULL.'
PRINTEXT '@TRANSMISSION ABORTED.'
GOTO EOF

ELSE
GOTO SERR1

ENDIF
ALLOCERR EOU *

PRINTEXT '@ERROR ALLOCATING REMOTE DATA SET.'
QUESTION '@TRY AGAIN ' ',YES=START,NO=FOF

OPENERR EQU *
PRINTEXT '@ERROR OPENING SOURCE FILE.'
PRINTEXT '@ERROR NUMBER '
PRINTNUM FILE
QUESTION 'OSTART OVER ' ',YES=START,NO=EOF

IOERR 	DEM.
PRINTEXT '01/0 ERROR READING SOURCE FILE.'
GOTO STOP

NOHANG 	EQU *
PRINTEXT 'UNABLE TO HANG UP PHONE.'
GOTO ABORT

DERR1 	EQU *
PRINTEXT 'OUNABLE TO CONTACT REMOTE SYSTEM.'
GOTO QUERY

LERR1 	EQU *
PRINTEXT '@UNABLE TO LOAD REQUESTED PROGRAM.'
GOTO QUERY

SERRO 	DEQT
PRINTEXT 'OERROR SENDING FILE NAME'
QUESTION '@TRY AGAIN ' ',YES=START,NO=QUERY

SERR1 	DEOT
PRINTEXT 'BLOCK NUMBER ',SKIP=2
PRINTNUM COUNT
PRINTEXT ' WAS NOT SENT CORRECTLY.'
QUESTION 'OTRY AGAIN ' ',YES=SEND1,NO=OUERY

SERR2 	DEOT
PRINTEXT 'BLOCK NUMBER ',SK1P=2
PRINTNUM COUNT
PRINTEXT ' WAS NOT SENT CORRECTLY.'
QUESTION POTRY AGAIN ' ',YES: -SEND2,NO=QUERY

SERR3 	Duo
PRINTEXT '@ERROR SENDING EOF MESSAGE'
QUESTION 'OTRY AGAIN .1 ',YES=E0F,NO=QUERY

QUERY 	EQU *
QUESTION '@RESTART PROGRAM 	',YES=START,NO=SIOP
ENDPROG
END

GENMSG 	PROGRAM START,DS=((??))
MSG 	TEXT 	LENGTH=72
OLINES 	DC 	F'0'
FOUND 	DC 	F'0'
RECBUF 	DC 	128F'0'

SITELIST EOU *
DC C' HONEYWELL. P:C'ONYX!HONEYWELL'
DC C'GROUCHO 	',C'ONYX!GROUCHO

LASTSITE EQU *
SITELEN EQU 10
PATHLEN EQU 14
TABLEN EQU SITELEN+PATHLEN
*
DEBUG 	ECB 	-1
START 	WAIT DEBUG

MOVE MSG:C":(72,BYTES)
READTEXT MSG,'TO: ',SKIP=1,MODE=LINE
MOVEA 01:SITELIST
DO WHILE:(4. 1:NE:LASTSITE):AND:(FOUND , E0 , 0)

IF ((0:01):EQ:MSG:4-SITELEN) THEN
MOVE FOUND:-1
MOVE RECBUF:(•SITELEN01),(+PATHLEN:BYTES)
MOVE RECBUF+128,(+SITELEN:01):(+PATHLEN,BYTES)
WRITE DSI,RECBUF,1,0,E0F=EOF:ERROR=I0ERR
ADD OLINES12

ELSE
ADD 01:+TABLEN

ENDIF
ENDDO
IF (FOUND:NE:-1) THEN

PRINTEXT '@@THAT SITE IS NOT DEFINED.'
QUESTION 'TRY AGAIN ? ',YES=START,NO=STOP

ENDIF
PRINTEXT 'OOPLEASE ENTER YOUR MESSAGE.'
PRINTEXT f@TYPE A PERIOD AT THE START OF A NEW LINE TO END.'
MOVE MSG:C":(72IBYTES)
MOVE 01:0
DO WHILE,(MSG:NE:C'.',BYTE)

READTEXT MSG,': 'IMODE=LINE,SKIP=1
MOVE (RECBUF,t1):MSG:(72:BYTES)
IF (01,E0:0) THEN

MOVE 01,128
ELSE

MOVE 01:0
WRITE DS1,RECBUF:1,01E0F=E0F,ERROR=I0ERR
ADD OLINES:2

ENDIF
MOVE MSG:C":(72:BYTES)

ENDDO

r.

IF (419E0,128) THEN
MOVE RECBUF+128,C' ',40
WRITE DS1pRECBUF,10,ERROR=I0ERR,E0F=EOF
ADD 4LINES,2

ENDIF
LOAD tSENDEROS=(DS1),EVENT=DEBUG
WAIT DEBUG
PROBSTOP -1,LOGMSO=YES,P1=RETCODE
EJECT

*** ERROR TRAPS
*
EOF 	PRINTEXT 'HMESSAGE FILE IS FULL.'

PRINTEXT v@ENLARGE IT AND TRY AGAIN.'
GOTO STOP

*
IOERR 	PRINTEXT '@OI/0 ERROR WRITING MESSAGE mi. ,

F'RINTEXT 'OPROGRAM ABORTED.'
GOTO STOP
ENDPROG
END

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101

